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Preface

With the rapid development of information, automation, and communication technol-
ogy, the security of these emerging systems is more important now than ever. This
special issue addresses the pressing need for secure cyber-physical systems in the face
of technological advancements. In particular, it focuses on developing theories and
methods for protecting heterogeneous, large-scale, and dynamic cyber-physical sys-
tems and managing security risks that critical infrastructures face. The guest editors
invited novel, high-quality theoretical and empirical contributions which leverage
decision theory and game theory to address security problems and related problems
such as privacy, trust, or bias in emerging systems. The goal of this special issue is to
enhance research efforts in order to identify major challenges and recent results that
explore the interdisciplinary connections between game theory, control, distributed
optimization, adversarial reasoning, machine learning, mechanism design, behavioral
analysis, risk assessments, and security, reputation, trust and privacy problems.

GameSec 2023, the 14th Conference on Decision and Game Theory for Security,
tried to encourage and attract contributions to game theory for security. GameSec 2023
received 33 submissions. The reviewing process was single-blind. Each paper received
3 reviews. Each PC member reviewed 1 to 4 papers, with an average review load of 3
papers. After extensive discussions among the Technical Program Committee (TPC)
chairs and the general chair, 19 papers were accepted as full articles. 10 papers with
borderline scores were proposed to participate in a rebuttal phase. Among them, 4
articles were accepted as short papers (2 pages long) and to present a poster at the
conference. GameSec 2023 featured 3 papers on “Mechanism design and imperfect
information”, 3 papers on “Security games”, 3 papers on “Learning in security games”,
3 papers on “Cyber deception”, 3 papers on “Economics of security” and 4 papers on
“Information and privacy”. This volume contains all the 19 full papers accepted to
GameSec 2023, and the 4 short papers accepted as posters. We hope that readers will
find this volume a useful resource for their security and game theory research.

GameSec 2023 was held in Avignon, France, during October 18–20, 2023. The
conference was held in person, but due to the long-tailed impact of COVID-19, some
attendees participated remotely. We are particularly grateful to Avignon University for
its support of the conference.

The GameSec conference series was inaugurated in 2010 in Berlin,Germany. Over
14 editions, GameSec has become an important venue for interdisciplinary security
research.

The previous conferences were held in College Park (USA, 2011), Budapest
(Hungary, 2012), Fort Worth (USA, 2013), Los Angeles (USA, 2014), London (UK,
2015), New York (USA, 2016), Vienna (Austria, 2017), Seattle (USA, 2018),



Stockholm (Sweden 2019), College Park (USA/virtual conference, 2020), Prague
(Czech Republic/virtual conference, 2021) and Pittsburgh (USA, 2022).

October 2023 Yezekael Hayel
Jie Fu

Tomas Kroupa
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Incentive-Based Software Security: Fair
Micro-Payments for Writing Secure Code

(Extended Abstract)1

Stefan Rass1,2 and Martin Pinzger3

1 Johannes Kepler University, LIT Secure and Correct Systems Lab,
Altenbergerstraße 69, 4040, Linz, Austria

stefan.rass@jku.at
2 Institute for Artificial Intelligence and Cybersecurity, Alpen-Adria-University

Klagenfurt, Universitätsstrasse 65-67, 9020, Klagenfurt, Austria
3 Department of Informatics Systems, Alpen-Adria-University Klagenfurt,

Klagenfurt, Austria

Abstract. We describe a mechanism to create fair and explainable incentives for
software developers to reward contributions to security of a product. We use
cooperative game theory to model the actions of the developer team inside a risk
management workflow, considering the team to actively work against known
threats, and thereby receive micro-payments based on their performance, and
calculated using the Shapley-value. We corroborate our model with a worked
example based on real-life data.

Keywords: Incentive based security � Shapley-value � Cooperative game �
Software Security

1 Introduction

Security has the unfortunate fate of not generating revenue by itself, but rather pre-
venting damage at additional cost. As such, it does not necessarily “add”to the func-
tionality of a system, but only protects it from malfunctions. Consequently, people may
take considerably less satisfaction from implementing a security mechanism, since the
system is working before and after, with no visible improvement other than increased
robustness and security. Prior game theoretic models have discovered reasons as to
why investments into more security are not necessarily made [1].

In some cases, such investments are, however, obligatory due to independent
auditing, legal or (security) standard compliance. If dedicated budgets are available,
why not use parts of them for an incentive mechanism for developers of software
products to not only aim at correct functionality, but also for security? We propose one
such mechanism here: let a standard risk management process (e.g., ISO27000) have

1 This work was supported by the Karl Popper Kolleg “Responsible Safe and Secure Robotic Systems
Engineering (SEEROSE)” at Universität Klagenfurt
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delivered a set of threats, with corresponding countermeasures, culminating in security
design goals for a software product. We quantify security via its implied reduction
of the risk level, based on the expected loss B ¼ impact � likelihood, where devel-
oper’s actions can reduce both, the impact and/or the likelihood. Parts of the, due to the
developer’s work, no-longer expected losses B can then be paid back to the team as
incentive for security. The Shapley-value can provide a fair mechanism to this end,
leveraging features of software repositories like git, such as cherry picking or audited
pull requests.

2 Method: Team Rewards from Risk Reductions

Specifically, let the threat list be T1; . . .; Tn, with Ti associated with ki � 1 counter-
measures Ci;1; . . .;Ci;ki , where each Ci;j is verifiable by a number mi;j of unit tests
Ui;j;1; . . .;Ui;j;mi;j . After the team S has made a commit to the repository, we can evaluate
the newly implemented countermeasures (e.g., along an audited pull request): If nðSÞ
unit tests pass among the (constant) total of m tests to cover all threats and
countermeasures, then the accomplishment of the team S is definable as
0� vðSÞ :¼ nðSÞ=m� 1. Therein, the contribution without the i-th person is vðS n figÞ,
from which we can compute the Shapley-value to quantify the security contribution
of the i-th team member.

The resulting mechanism inherits desirable properties from the Shapley-value: (i) a
developer not having added to the product’s security receives no reward (null-player),
(ii) the entire added value of security is paid back to the team (efficiency), (iii) equal
contributions imply equal rewards (symmetry), and (iv) contributions with multiple
benefits imply a cumulative reward (linearity).

3 A Worked Example

The full version of this work [2] contains a detailed example, based on a real-life
software product with known (but already fixed) vulnerabilities. Our example considers
(for simplicity) only one threat “loss of customer data”, possibly manifesting via three
known vulnerabilities with concrete Common Vulnerability Enumeration (CVE)
numbers. These directly imply countermeasures, and test-cases based on the CVE
description. We then (hypothetically) assume three developers to have addressed the
issues collaboratively. The incentive payments are then taken proportional (based on
the Shapley-value) the loss B that has been avoided thanks to the developer’s work. A
full numeric example based on publicly available risk data is given in [2], together with
conclusions.

xii S. Rass and M. Pinzger
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Using Game Theory Approach for COVID-19
Risk Analysis and Medical Resource Allocation

Cheng Kuang Wu

School of Computer Science, Guangdong University of Science and Technology,
Guangdong,523083, China

shapleyvalue@hotmail.com

The outbreak of COVID-19 has not only increased global mortality rates but has also
had a tremendous socio-economic impact, that is not limited to countries directly
affected by the disease. The outbreak has reduced the consumption of goods and
services, led to a collapse on the tourism industry in many areas, increased enterprise
operating costs, and accelerated the flight of foreign capital, generating huge economic
costs worldwide [3]. Experts from the World Health Organization discovered that
China’s large-scale urban and regional blockades and electronic surveillance measures
imposed by compulsory public power had been used to monitor hundreds of thousands
of Chinese people without the COVID-19 infection. This method of joint defense has a
high degree of coverage and effectiveness and provides unique insights into China’s
efforts to prevent the virus from spreading to other areas of the country and even
globally [2]. However, the current government agency lacks specific measures for
rational decision-making and does not apply mathematical models to capture the
interactions between the attackers (coronaviruses) and the defender (response com-
mander). The administrator of the organization should have a tool to measure the
strength of the COVID-19 and the resistance capability of the responding medical
resources.

The proposed model is applied to evaluate the risk value for affected districts (or
states) and for the deployment of medical resources for emergency response to the
COVID-19 disease outbreak. A simplified workflow chart summarizing the principles
of fair medical resource allocation is shown in Fig. 1. Two game-theoretic models are
constructed, representing the two stages needed for the economical deployment of the
available resources. In the first step, the interactions of four factors (i.e., infection rate,
treatment rate, recovery rate, and death rate) for a group of coronaviruses and the
response commander for the district are modeled as a zero-sum and non-cooperative
game. Then a mixed strategy Nash equilibrium method is used to derive the risk value
(RV) for each district based on the COVID-19 disease outbreak data for the USA, April
12, 2020 [1]. In the second step, the interactions of all response commanders of the
affected districts within the whole administrative region are likened to the playing of a
cooperative game. All risk values for the affected districts are utilized to compute a
Shapley-Shubik power index for each district. The number of responses and deploy-
ment of medical resources in the affected districts is computed from the Shapley-
Shubik power indexes for all districts. Finally, the emergency operations center (EOC)
launches a coordinated emergency response for the deployment of existing medical

https://orcid.org/0000-0002-5466-9987


resources in all affected districts in an attempt to increase the survival ratio of COVID-
19 patients.

The experiment only considers affected districts (states) with 3000 or more con-
firmed cases [1], as of 12 April 2020. Given the limited number of resources, the
administrator can choose to reallocate resources from lower RV response districts (e.g.,
South Carolina, Wisconsin, Arizona, Alabama, North Carolina, Virginia, Tennessee,
and Ohio) to support the ten higher RV response districts, namely New York, New
Jersey, Massachusetts, Michigan, Illinois, Louisiana, Washington, Connecticut, Indi-
ana, and Colorado. Resources from the lower RV districts are redistributed to the
nearest high RV districts (or states). The proposed Shapley-Shubik index (SSI) division
is better than a proportional (RV) division because it allows a player (i.e., a response
commander of the affected district) to be part of more than one coalition (i.e., multiple
players) in a cooperative game (i.e., the medical resource deployment game).
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Fig. 1. A workflow for 25 afflicted districts to deploy medical resources
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Shapley Value to Rank Vulnerabilities
on Attack Graphs: Applications

to Cyberdeception1

Martin Waffo Kemgne1 , Olivier Tsemogne2

and Charles Kamhoua3
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martin.kemgne@aims.ac.rw
2 IMT Atlantique, Brest, France

olivier.tsemogne@gmail.com
3 DEVCOM Army Research Laboratory, Adelphi, USA
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Abstract. Attack graphs are pivotal in cybersecurity, providing insights into
potential attack paths. Effective cybersecurity and cyberdeception necessitate the
prioritization of vulnerabilities for resource allocation and proactive defense.
However, current methods fall short in capturing vulnerability interactions and
addressing multi-target scenarios. In response, we introduce a cooperative game
framework utilizing the Shapley value for vulnerability ranking, enhancing
fairness and realism. Simulations demonstrate the Shapley value’s superiority in
honeypot allocation and vulnerability prioritization. Our study contributes a
novel centrality measure with practical applications in network security and
cyberdeception.

Keywords: Attack graphs � Shapley value � Honeypots � Cyberdeception �
Network security � Vulnerability

1 Introduction

Cybersecurity faces escalating threats [1, 10]. Traditional defense measures struggle
with evolving threats, emphasizing the need for vulnerability understanding and pri-
oritization. Attack graphs, revealing potential attack paths [5, 8], are valuable for this
purpose. However, current methods have limitations, often neglecting vulnerability
interactions and multi-target scenarios.

We propose using the Shapley value, a comprehensive approach, to rank vulner-
abilities. Unlike traditional centrality measures, it considers vulnerability interactions
and diverse target costs, enhancing fair resource allocation and risk mitigation in
cybersecurity.

1 Distribution Statement A: Approved for public release. Distribution is unlimited.
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Our research demonstrates the Shapley value’s effectiveness through simulations,
particularly in honeypot deployment and vulnerability prioritization. In summary, we
introduce a novel centrality measure based on cooperative game theory, showcasing its
practical applications in network security and cyberdeception.

2 System Model

Our network attack graph comprises nodes representing various devices (e.g., phones,
computers, IP cameras). Entry points for attackers are denoted as S0, while Ss repre-
sents the attacker’s target nodes. Vulnerabilities are depicted as edges in the graph.
Specifically, an edge from node A to B signifies that nodes A and B are in commu-
nication range, and node A has a vulnerability that node B exposes, creating a potential
pathway for the attacker. To prioritize network defense, we assign costs to target nodes,
indicating their importance. Higher values denote more critical assets, often housing
valuable information attractive to attackers. Additionally, each vulnerability associated
with a node carries a weight reflecting its significance, contributing to different attack
scenarios or overall network security. This model assumes that attackers possess
knowledge about target node values, enabling them to strategize their actions.

3 Game Model

Let G ¼ fS; s; S0; Ssg represent our network attack graph. Each node in the graph
represents a tool, and each edge represents a vulnerability for moving between tools.

We have e entry points (Ss ¼ fE1;E2; :::;Eeg) and t targets (Ss ¼ fT1; T2; :::; Ttg).
The attacker starts at an entry point E 2 E ¼ fE1;E2; :::;Eeg and aims to reach a target
T 2 T ¼ fT1; T2; :::; Ttg. The various scenarios for this movement are represented by
paths from E to T . In our game, we define CTi as the set of paths from E to Ti, identified
by their edges. With n vulnerabilities, we use N ¼ f1; 2; :::; ng to represent them. Each
target Ti is associated with a cost mi. The function v representing the game is defined as
follows:

v Sð Þ ¼
mi if 9 T 2 CTij

such that T � S; i ¼ 1; 2; . . .; n
max mi1 ;mi2 ; . . .;mirð Þ if 9 T 2 \ r

j¼1 CTij
such that T � S

0 otherwise

8
<

:
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4 Simulations

5 Conclusion

Our study introduces the Shapley value, a cooperative game theory concept, for
ranking vulnerabilities within attack graphs. We establish a cooperative game frame-
work over attack graphs, calculate the Shapley value for ranking, and validate our
approach through extensive simulations. Comparative analyses confirm the Shapley
value’s superiority over other centrality measures, optimizing honeypot allocation. The
Shapley value excels by considering vulnerability interactions and fairly distributing
importance. Simulations demonstrate its cost-effective honeypot deployment while
factoring each vulnerability’s contribution to overall attack risk and target-specific
costs. Our findings highlight the Shapley value’s potential in enhancing network
security and cyberdeception, particularly in optimizing honeypot allocation. Future
research avenues include integrating the Shapley value with other methods and
applying it to complex attack graph scenarios with repeated vulnerabilities.
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Extended Abstract

Sequential models with perfect observability represent situations in which communi-
cation is public and observable by all the agents. Such models are applied within
different domains of security, such as intrusion detection [1], blockchain protocols [4]
and wiretap channels [2]. The extensive-form game with perfect information is the
representation used to identify the solution of these models. To date, the literature
provides methods to identify specific solutions for small-size extensive-form games.
We provide the first method to identify all solutions that is also scalable with the size
of the games.

We consider a game in extensive form with perfect information.

Definition 1 (extensive-form game). An extensive-form game is a tuple
C ¼ hI ;A;H0;H;P; ui, where:
– I ¼ f1; . . .;Ngis the set of players;
– H0 is the set of histories with ; 2 H0;
– A : h0 2 H0 ! A is a function that provides for every history a set of actions A, i.e.,

for all a 2 A;we have h0 þ ðaÞ 2 H0;
– H ¼ fh 2 H0jAðhÞ ¼ ;g � H0is the set of outcomes;
– P : H0 n H ! I is a function that indicates which player Pðh0Þ 2 I acts after

observing the history h0 2 H0 n H;
– u ¼ ðuiÞi2I , with ui : H ! R the utility function of player i 2 I .

Every player picks a strategy, i.e., she chooses an action for every history observed.
Formally, a strategy si of a player i 2 I is a function si 2 Si ¼ fsi : h 2 Hi 7! a 2
AðhÞg that gives for every history h 2 Hi ¼ fh 2 H : PðhÞ ¼ ig an available action
a 2 AðhÞ. A strategy profile s 2 S :¼ �iSi is a Nash equilibrium if no player can
increase her utility by changing unilaterally her strategy, i.e, if for every i 2 I and for
all si 2 Si it holds uiðsi; s�iÞ� uiðsi; s�iÞ. A specific equilibrium can be computed
efficiently with the backward induction algorithm (cf., e.g., [3]). The absence of



methods to compute all the other Nash equilibria limits the insights for security models
[3, 4]. Hereafter, we provide a method to enumerate all the Nash equilibria of an
extensive-form game.

We define I : H � H ! I , where Iðh; h0Þ ¼ Pðh\ h0Þ, the function that maps the
pair of outcomes h; h0 2 H with h 6¼ h0to the player Iðh; h0Þthat separates their paths
from the root of the game tree. This relation between outcomes and strategies allows us
to define a graph-based method to identify all the outcomes of Nash equilibria. We
consider the following problem from graph theory.

Problem (MC). Existence of a maximal clique excluding a set of vertices
Input. hH;E;Xi defining a graph hH;Ei and a subset of vertices X � H.
Output. Is there a vertex set C � H n X that induces a maximal clique?

We introduce the following algorithm to determine whether a target outcome is a
Nash equilibrium. The iteration of the algorithm over all outcomes permits the enu-
meration of the equilibria.

The algorithm has an efficient representation, i.e., it does not require to enumerate
the strategies of the game. Furthermore, it relies on a graph theoretical problem whose
instances are often easy to compute, as verified for the vast majority of outcomes we
have tested. Finally, this algorithm is parallelizable, a condition that is key in order to
scale the solution method for larger games.
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Abstract. While Nash equilibrium has emerged as the central game-
theoretic solution concept, many important games contain several Nash
equilibria and we must determine how to select between them in order to
create real strategic agents. Several Nash equilibrium refinement concepts
have been proposed and studied for sequential imperfect-information
games, the most prominent being trembling-hand perfect equilibrium,
quasi-perfect equilibrium, and recently one-sided quasi-perfect equilib-
rium. These concepts are robust to certain arbitrarily small mistakes,
and are guaranteed to always exist; however, we argue that neither of
these is the correct concept for developing strong agents in sequential
games of imperfect information. We define a new equilibrium refinement
concept for extensive-form games called observable perfect equilibrium in
which the solution is robust over trembles in publicly-observable action
probabilities (not necessarily over all action probabilities that may not
be observable by opposing players). Observable perfect equilibrium cor-
rectly captures the assumption that the opponent is playing as rationally
as possible given mistakes that have been observed (while previous solu-
tion concepts do not). We prove that observable perfect equilibrium is
always guaranteed to exist, and demonstrate that it leads to a different
solution than the prior extensive-form refinements in no-limit poker. We
expect observable perfect equilibrium to be a useful equilibrium refine-
ment concept for modeling many important imperfect-information games
of interest in artificial intelligence.

Keywords: Nash equilibrium refinement · imperfect information

1 Introduction

When developing a strategy for a human or computer agent to play in a game, the
starting point is typically a Nash equilibrium. Even if additional information is
available about the opponents, e.g., from historical data or observations of play,
we would often still opt to start playing a Nash equilibrium strategy until we are
confident in our ability to successfully exploit opponents by deviating [13,16].
It is well known that several conceptual and computational limitations exist
for Nash equilibrium. For multiplayer and two-player non-zero-sum games, it
is PPAD-hard to compute or approximate one Nash equilibrium [6,7,10,27],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Fu et al. (Eds.): GameSec 2023, LNCS 14167, pp. 3–22, 2023.
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4 S. Ganzfried

different Nash equilibria may give different values to the players, and follow-
ing a Nash equilibrium strategy provides no performance guarantee. Even for
two-player zero-sum games, in which these issues do not arise, there can still
exist multiple Nash equilibria that we must select from. Therefore several solu-
tion concepts that refine Nash equilibrium in various ways have been proposed
to help select one that is more preferable in some way. Most of the common
equilibrium refinements are based on the idea of ensuring robustness against
certain arbitrarily small “trembles” in players’ execution of a given strategy.
Variants of these Nash equilibrium refinements have been devised for simulta-
neous strategic-form games as well as sequential games of perfect and imperfect
information. In this paper we will be primarily interested in sequential games
of imperfect information, which are more complex than the other games classes
and have received significant interest recently in artificial intelligence due to their
ability to model many important scenarios. To simplify analysis we will primarily
be studying a subclass of these games in which there are two players, only one
player has private information, and both players take a single action; however,
our results apply broadly to extensive-form imperfect-information games. We will
also be primarily focused on two-player zero-sum games, though some analysis
also applies to two-player non-zero-sum and multiplayer games. We will show
that existing Nash equilibrium refinement concepts have limitations in sequen-
tial imperfect-information games, and propose the new concept of observable
perfect equilibrium that addresses these limitations.

A strategic-form game (aka normal-form game) consists of a finite set of
players N = {1, . . . , n}, a finite set of pure strategies Si for each player i ∈ N , and
a real-valued utility for each player for each strategy vector (aka strategy profile),
ui : ×iSi → R. A mixed strategy σi for player i is a probability distribution over
pure strategies, where σi(si′) is the probability that player i plays pure strategy
si′ ∈ Si under σi. Let Σi denote the full set of mixed strategies for player
i. A strategy profile σ∗ = (σ∗

1 , . . . , σ
∗
n) is a Nash equilibrium if ui(σ∗

i , σ∗
−i) ≥

ui(σi, σ
∗
−i) for all σi ∈ Σi for all i ∈ N , where σ∗

−i ∈ Σ−i denotes the vector of
the components of strategy σ∗ for all players excluding player i. Here ui denotes
the expected utility for player i, and Σ−i denotes the set of strategy profiles for
all players excluding player i.

Nash equilibrium has emerged as the central solution concept in game theory,
and is guaranteed to exist in all finite strategic-form games [25,26]. However,
games may contain multiple Nash equilibria and it is not clear which one should
be played. A popular refinement of Nash equilibrium is trembling hand perfect
equilibrium [28]. Given a strategic-form game G, define G′ to be a perturbed game
which is identical to G except only totally mixed strategies (i.e., strategies that
play all pure strategies with non-zero probability) can be played. A strategy
profile σ∗ in G is a trembling-hand perfect equilibrium (THPE) if there is a
sequence of perturbed games that converges to G in which there is a sequence of
Nash equilibria of the perturbed games that converges to σ∗. It has been shown
that every finite strategic-form game has at least one THPE [28]. The following
result provides an alternative equivalent characterization of THPE [9]:
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Theorem 1. Let σ∗ be a strategy profile of an n-player strategic-form game G.
Then σ∗ is a trembling-hand perfect equilibrium if and only if σ∗ is a limit point
of a sequence {σ(ε)}ε→0 of totally mixed strategy profiles with the property that
σ∗ is a best response for all players against every element σ(ε) in this sequence.

While the strategic form can be used to model simultaneous actions, settings
with sequential moves are typically modelled using the extensive form repre-
sentation. The extensive form can also model simultaneous actions, as well as
chance events and imperfect information (i.e., situations where some information
is available to only some of the agents and not to others). Extensive-form games
consist primarily of a game tree; each non-terminal node has an associated player
(possibly chance) that makes the decision at that node, and each terminal node
has associated utilities for the players. Additionally, game states are partitioned
into information sets, where the player whose turn it is to move cannot dis-
tinguish among the states in the same information set. Therefore, in any given
information set, a player must choose actions with the same distribution at each
state contained in the information set. If no player forgets information that he
previously knew, we say that the game has perfect recall. A (behavioral) strategy
for player i, σi ∈ Σi, is a function that assigns a probability distribution over
all actions at each information set belonging to i. Similarly to strategic-form
games, it can be shown that all extensive-form games with perfect recall contain
at least one Nash equilibrium in mixed strategies. The concept of extensive-form
trembling hand perfect equilibrium (EFTHPE) is defined analogously to THPE
by requiring that every action at every information set for each player is taken
with non-zero probability in perturbed games. EFTHPE are then limits of equi-
libria of such perturbed games as the tremble probabilities go to zero. It has
been proven that an EFTHPE exists in every extensive-form game [9].

2 Observable Perfect Equilibrium

In order to simplify our analysis we define a subset of extensive-form information
games called two-player one-step extensive-form imperfect-information games
(OSEFGs):

– There are two players, P1 and P2.
– Player 1 is dealt private information τ1 from a finite set T1 uniformly at

random.1

– Player 1 can then choose action a1 from finite set A1.
– Player 2 observes the action a1 but not τ1.
– Player 2 then chooses action a2 from finite set A2.
– Both players are then given payoff ui(τ1, a1, a2).

For mixed strategy σ1 for player 1, σ1(τ1, a1) denotes the probability that
player 1 takes action a1 ∈ A1 with private information τ1 ∈ T1. Similarly for
1 Note that all of our analysis will still hold if we assume that τ1 is selected from an

arbitrary probability distribution.
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mixed strategy σ2 for player 2, σ2(a1, a2) denotes the probability that player 2
takes action a2 ∈ A2 following observed action a1 ∈ A1 of player 1.

Suppose we are in the position of player 2 responding to the observed action
a1 ∈ A1. If both players are following a Nash equilibrium strategy, then we know
that we are best responding to player 1’s strategy. However, suppose that we are
following our component from Nash equilibrium strategy profile σ∗ in which
σ∗
1(τ1, a1) = 0 for all τ1 ∈ T1. Our observation is clearly inconsistent with player

1 following σ∗, since they would never choose action a1. Since our strategy is part
of a Nash equilibrium, it ensures that player 1 cannot profitably deviate from σ∗

1

with any τ1 ∈ T1 and take a1; however, there may be many such strategies, and
we would like to choose the best one given that we have actually observed player
1 irrationally playing a1. In this situation, playing an EFTHPE strategy may
ensure that we play a stronger strategy against this opponent, who has selected
an action that they should not rationally play, since EFTHPE explicitly ensures
robustness against the possibility of “trembling” and playing such an action with
small probability.

Extensive-form trembling-hand perfect equilibrium assumes that all players
take all actions at all information sets with non-zero probability. In the situation
described above, we know that player 1 is taking a1 at some information set with
non-zero probability; however, we really have no further information beyond
that. It is very possible that they are playing a strategy that takes a′

1 ∈ A1 with
zero probability with all τ1 ∈ T1. The core assumption of game theory is that,
in the absence of any information the contrary, we assume that all players are
behaving rationally. Now clearly that assumption is violated in this case when
we observe player 1 irrationally playing a1. However, it seems a bit extreme to
now assume that all players are playing all actions with nonzero probability.
If we assume that the opponent is playing as rationally as possible given our
observations, then we would only consider trembles that are consistent with our
observations of their play. Such trembles must satisfy σ1(τ1, a1) > 0 for at least
one τ1 ∈ T1, or alternatively,

∑
τ1∈T1

σ1(τ1, a1) > 0. The concept of observable
perfect equilibrium (OPE) captures this assumption that all players are playing
as rationally as possible subject to the constraint that their play is consistent
with our observations.

Definition 1. Let G be a two-player one-step extensive-form game of imperfect
information, and suppose that player 2 has observed public action a1 from player
1. Then σ∗ is an observable perfect equilibrium if there is a sequence of perturbed
games, in which player 1 is required to play a1 with non-zero probability for at
least one τ1 ∈ T1, that converges to G, in which there is a sequence of Nash
equilibria of the perturbed games that converges to σ∗.

Proposition 1. Every observable perfect equilibrium is a Nash equilibrium.

Proof. Let σ∗ be an observable perfect equilibrium of G, where a1 is the observed
public action of player 1. Then there exists a sequence of games {Gε} converging
to G in which player 1 is forced to play a1 with non-zero probability for at least
one τ1 ∈ T1, and a sequence of Nash equilibria {(σε

1, σ
ε
2)} that converges to σ∗.
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Suppose that σ∗ is not a Nash equilibrium of the original game G. Suppose that
player 2 can profitably deviate to σ2. Then we have

u2(σ∗
1 , σ2) > u2(σ∗

1 , σ
∗
2)

u2

(
lim
ε→0

σε
1, σ2

)
> u2

(
lim
ε→0

σε
1, lim

ε→0
σε
2

)

By continuity of expected utility,

lim
ε→0

[u2 (σε
1, σ2) − u2 (σε

1, σ
ε
2)] > 0

So there exists some ε > 0 for which

u2 (σε
1, σ2) > u2 (σε

1, σ
ε
2)

This contradicts the fact that σε is a Nash equilibrium of Gε.
Now suppose player 1 can profitably deviate to σ1. By similar reasoning as

above, there exists some ε′ > 0 such that

u1 (σ1, σ
ε
2) > u1 (σε

1, σ
ε
2)

for all ε ∈ (0, ε′]. If
∑

τ1∈T1
σ1(τ1, a1) ≥ ε′ then we are done, since σ1 is a

valid strategy in Gε′ . Otherwise, let ε∗ =
∑

τ1∈T1
σ1(τ1, a1) < ε′. Then σ1 is a

valid strategy in Gε∗ . So player 1 can profitably deviate from σε∗
1 in Gε∗ . This

contradicts the fact that σε∗
is a Nash equilibrium of Gε∗ .

So we have shown that neither player can profitably deviate from σ∗, and
therefore σ∗ is a Nash equilibrium.

We can extend Definition 1 to general n-player extensive-form imperfect-
information games by adding analogous constraints for all observed actions (i.e.,
by requiring that the sum of the probabilities of strategy sequences taken con-
sistent with our observations is nonzero). This is useful because we are no longer
required to reason about trembles that are incompatible with the current path
of play, which are irrelevant at this point. For general extensive-form games,
there is a further consideration about what trembles should be considered for
future moves beyond the current path of play. Extensive-form trembling hand
perfect equilibrium assumes that all players may tremble in future actions, while
an alternative concept called quasi-perfect equilibrium (QPE) assumes that only
the opposing players tremble for future actions (even if we have trembled pre-
viously ourselves) [8]. The related concept of one-sided quasi-perfect equilibrium
(OSQPE) assumes that only the opposing players can tremble at all and we
cannot [11]. OSQPE is the most computationally efficient and is also the most
similar to observable perfect equilibrium.

In two-player one-step extensive-form imperfect-information games quasi-
perfect equilibrium and extensive-form trembling-hand perfect equilibrium are
identical, since both players only take a single action along the path of play.
They both require that both player 1 and player 2 put non-zero probability
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trembles on all actions. Both of these potentially differ from one-sided quasi-
perfect equilibrium, which from the perspective of player 2 requires that player
1 puts non-zero probability trembles on all possible actions, while player 2 does
not have this requirement. Note that all three of these concepts potentially dif-
fer from observable perfect equilibrium (from the perspective of player 2), which
requires only that player 1 makes a non-zero probability tremble at some infor-
mation set consistent with taking the observed action a1 and no requirement on
player 2.

Observable perfect equilibrium is fundamentally different from other equilib-
rium refinements in that it is dependent on the action taken by the other player.
For each observed action a1 we compute a potentially different strategy for our-
selves, conditionally on having observed a1. In contrast, all other equilibrium
refinement concepts compute a full strategy profile for all players in advance of
game play. If play contains longer sequences of actions than just a single move
for each player, we can recompute our OPE strategy after each new observation
(again by assuming positive probability trembles for all actions consistent with
the path of play). Note that in aggregate over all information sets an OPE still
defines a full strategy; we just do not need to compute it in entirety to implement
it.

We can view the relation between OPE and other solution concepts analo-
gously to the relation between endgame solving [15] and standard offline game
solving in large imperfect-information games. Previously the standard approach
for approximating Nash equilibrium strategies in large imperfect-information
games was to first apply an abstraction algorithm to create a significantly smaller
game that is strategically similar to the full game [3,17–19,22,29,30], then solve
the abstract game using an equilibrium-finding algorithm such as counterfactual
regret minimization (CFR) [31] or a generalization of Nesterov’s excessive gap
technique [20]. With endgame solving [15], the portion of the game tree that
we have reached is solved in real time to a finer degree of granularity than in
the offline abstract equilibrium computation. This focused computation led to
superhuman play in two-player [4,24] and six-player no-limit Texas hold ’em [5].
OPE similarly achieves computational advantages over other equilibrium refine-
ment concepts such as TFPE, QPE, and OSQPE, by focusing computation in
real time only on the portion of the game tree we have reached (and observed an
opponent’s “tremble”). However, unlike endgame solving, OPE still guarantees
that the computed strategy remains a Nash equilibrium, while it has been shown
that endgame solving may produce strategies that are not Nash equilibria of the
full game (even if the trunk strategy were an exact Nash equilibrium) [15].

In order to show existence of observable perfect equilibrium and an algorithm
for its computation, we first review results for the related concept of one-sided
quasi-perfect equilibrium. One-sided quasi-perfect equilibrium assumes that the
game is two-player zero-sum and that we play the role of the “machine player”
while the opponent is the “human player.” A key subroutine in the computation
of one-sided quasi-perfect equilibrium in two-player zero-sum games is the solu-
tion to an optimization formulation for an ε-quasi-perfect equilibrium strategy
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profile (where the trembles for the human player are lower bounded by �h(ε)).
The vector �h(ε) has entries �h(ε)[σ] = ε|σ|, where |σ| denotes the number of
actions for player h in the sequence σ. In the OSEFG setting there is just a sin-
gle action per player per sequence, so we have lh(ε) = ε. It has been shown that
the optimization formulation (1) corresponds to a one-sided quasi-perfect equi-
librium [11]. In (1), xm is the vector of the machine player’s strategy sequences,
xh is the vector of the human player’s strategy sequences, and Am is the pay-
off matrix from the machine player’s perspective. The vector fh and matrix Fh

are constants that encode the sequence-form representation of the information
set structure for the human player, and fm, Fm are analogous for the machine
player [23].

maxxm minxh
xT

mAmxh

s.t. Fmxm = fm
xm ≥ 0
Fhxh = fh
xh ≥ �h(ε)

(1)

The following result has been proven from this formulation [11].

Lemma 1. Consider the bilinear saddle point problem (1). Then, for any ε > 0
for which the domain of the minimization problem is nonempty, any solution to
(1) is a one-sided ε-quasi-perfect strategy profile.

From Lemma 1 they are able to prove the existence of one-sided quasi-perfect
equilibrium as a corollary [11].

Corollary 1. Every two-player zero-sum extensive-form game with perfect recall
has at least one-sided quasi-perfect equilibrium.

We can obtain analogous results for observable perfect equilibrium using
similar reasoning. We refer to the players as we did originally, where player 2
corresponds to ourselves (i.e., the “machine player”), and player 1 corresponds to
the opponent (i.e., the “human player”). Note that the optimization formulation
(2) differs from (1) only in the constraints for player 1’s strategy vector. The
inequality cTx1 ≥ ε encodes the constraint that the sum of the probabilities
that player 1 takes strategy sequences that are consistent with our observations
of play so far is at least ε, where c is a constant vector.

maxx2 minx1 xT
2 A2x1

s.t. F2x2 = f2
x2 ≥ 0
F1x1 = f1
cTx1 ≥ ε

(2)

Lemma 2. Consider the bilinear saddle point problem (2). Then, for any ε > 0
for which the domain of the minimization problem is nonempty, any solution to
(2) is an ε-observable-perfect strategy profile.
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Corollary 2. Every two-player zero-sum extensive-form game with perfect recall
has at least one observable perfect equilibrium.

For one-sided quasi-perfect equilibrium, it has been shown that formulation
(1) implies the following linear programming formulation (3) for an ε-quasi-
perfect equilibrium strategy for the machine player [11]. In (3), v is a new vector
of free variables, while all other quantities are the same as in (1).

arg maxxm,v (Am�h(ε))T xm + (fh − Fh�h(ε))T v
s.t. AT

mxm − Fhv ≥ 0
Fmxm = fm
xm ≥ 0
v free

(3)

Proposition 2. Any limit point of solutions to the trembling linear program
(3) as the trembling magnitude ε → 0+ is a one-sided quasi-perfect equilibrium
strategy for the machine player.

This linear programming formulation leads to a polynomial-time algorithm
for computation of one-sided quasi-perfect equilibrium by solving the problem
for consecutively smaller values of ε until a termination criterion is met [11].
It is argued that this computation is more efficient than analogous algorithms
for extensive-form trembling-hand perfect equilibrium and quasi-perfect equilib-
rium, because the OSQPE formulation only depends on ε through the objective,
while EFTHPE depends on ε through the left-hand-side of constraints, and QPE
depends on ε in both the right-hand-side of constraints and the objective. We now
provide a linear program formulation for ε-observable perfect equilibrium that is
analogous to (3), which also implies a polynomial-time algorithm for computa-
tion of observable-perfect equilibrium with the same computational advantages
as for OSQPE. Note that in our new LP formulation (4) ε occurs only in the
objective, as it did in (3). Note also that our objective has only about half as
many terms as the corresponding OSQPE objective, suggesting that OPE can be
computed faster than OSQPE. This agrees with the intuition described above,
since OPE only considers trembles for the opponent consistent with our obser-
vations of the path of play, while OSQPE considers all possible (past and future)
trembles for the opponent.

arg maxx2,w,v fT
1 v + εw

s.t. FT
1 v + wc = AT

2 x2

F2x2 = f2
x2 ≥ 0
w ≥ 0
v free

(4)

Proposition 3. Any limit point of solutions to the trembling linear program (4)
as the trembling magnitude ε → 0+ is an observable perfect equilibrium strategy
for player 2.
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Proof. First we create the dual of the minimization problem inside of (2):

min
x1:F1x1=f1,cTx1≥ε

=

maxw,v fT
1 v + εw

s.t. FT
1 v + wc = AT

2 x2

w ≥ 0
v free

(5)

Next we substitute this new dual formulation back into the outer maximiza-
tion problem to create a single maximization problem for player 2’s strategy:

arg maxx2,w,v fT
1 v + εw

s.t. FT
1 v + wc = AT

2 x2

F2x2 = f2
x2 ≥ 0
w ≥ 0
v free

(6)

3 No-Limit Poker

In this section we illustrate how observable perfect equilibrium leads to a differ-
ent strategy profile than the other equilibrium refinement concepts in no-limit
poker. Poker has been a major AI challenge problem in recent years, with no-
limit Texas hold ’em in particular being the most popular variant for humans.
No-limit Texas hold ’em is a large sequential game of imperfect information,
and just recently computers have achieved superhuman performance, first in
the two-player variant [4,24] and subsequently for six players [5]. These agents
attempt to compute approximations of Nash equilibrium strategies by first run-
ning an abstraction algorithm to create a smaller strategically-similar game, and
then solving the abstract game using an equilibrium-finding algorithm such as
counterfactual regret minimization. Counterfactual regret minimization (CFR)
is an iterative self-play procedure that has been proven to converge to Nash
equilibrium in two-player zero-sum [31], though it has been demonstrated to
not converge to Nash equilibrium in a simplified three-player poker game [1].
The key insight that led to superhuman play was to combine these abstrac-
tion and equilibrium-finding approaches with endgame solving [15], in which
the portion of the game we have reached during a hand is resolved in a finer
granularity in real time. It is somewhat remarkable that these approaches have
achieved such strong performance despite numerous theoretical limitations: the
abstraction algorithms have no performance guarantee, endgame solving has no
performance guarantee, CFR does not guarantee convergence to Nash equilib-
rium for more than two players, and furthermore even if CFR did converge for
more than two players there can be multiple Nash equilibria and following one
has no performance guarantee. It turns out that even ignoring all of these theo-
retical limitations, there is an additional challenge present. Even if we are in the
two-player zero-sum setting and are able to compute an exact Nash equilibrium,
the game may contain many Nash equilibria, and we would like to choose the
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“best” one. As we will see, even the simplest two-player no-limit poker game
contains infinitely many Nash equilibria.

In the no-limit clairvoyance game [2], player 1 is dealt a winning hand (W)
and a losing hand (L) each with probability 1

2 . (While player 2 is not explicitly
dealt a “hand,” we can view player 2 as always being dealt a medium-strength
hand that wins against a losing hand and loses to a winning hand.) Both players
have initial chip stacks of size n, and they both ante $0.50 (creating an initial
pot of $1). P1 is allowed to bet any integral amount x ∈ [0, n] (a bet of 0 is called
a check).2 Then P2 is allowed to call or fold (but not raise). This game clearly
falls into the class of one-step extensive-form imperfect-information games. The
game is small enough that its solution can be computed analytically (even for
the continuous version) [2].

– P1 bets n with prob. 1 with a winning hand.
– P1 bets n with prob. n

1+n with a losing hand (and checks otherwise).
– For all x ∈ (0, n], P2 calls a bet of size x with prob. 1

1+x .

It was shown by Ankenman and Chen [2] that this strategy profile constitutes
a Nash equilibrium. (They also show that these frequencies are optimal in many
other poker variants.) Here is a sketch of that argument.

Proposition 4. The strategy profile presented above is a Nash equilibrium of
the no-limit clairvoyance game.

Proof. Player 2 must call a bet of size x with probability 1
1+x in order to make

player 1 indifferent between betting x and checking with a losing hand. For a
given x, player 1 must bluff x

1+x as often as he value bets for player 2 to be
indifferent between calling and folding. Given these values, the expected payoff
to player 1 of betting size x is v(x) = x

2(1+x) . This function is monotonically
increasing, and therefore player 1 will maximize his payoff with x = n.

Despite the simplicity of this game, the solution has been used in order to
interpret bet sizes for the opponent that fall outside an abstracted game model by
many strong agents for full no-limit Texas hold ’em [12,14,21]. Thus, its solution
still captures important aspects of realistic forms of poker played competitively.

It turns out that player 2 does not need to call a bet of size x �= n with exact
probability 1

1+x : he need only not call with such an extreme probability that
player 1 has an incentive to change his bet size to x (with either a winning or
losing hand). In particular, it can be shown that player 2 need only call a bet of
size x with any probability (which can be different for different values of x) in
the interval

[
1

1+x ,min
{

n
x(1+n) , 1

}]
in order to remain in equilibrium.3

2 In the original formulation of the no-limit clairvoyance game [2] player 1 is allowed
to bet any real value in [0, n], making the game a continuous game, since player 1’s
pure strategy space is infinite. For simplicity we consider the discrete game where
player 1 is restricted to only betting integer values, though much of our equilibrium
analysis will still apply for the continuous version as well.

3 Note that if x is required to be integral then we always have x ≥ n
1+n

, and

min
{

n
x(1+n)

, 1
}

= n
x(1+n)

. However, our solution also holds for the continuous game.
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Proposition 5. A strategy profile σ∗ in the no-limit clairvoyance game is a
Nash equilibrium if and only if under σ∗ player 1 bets n with probability 1 with
a winning hand and bets n with probability n

1+n with a losing hand, and for
all x ∈ (0, n] player 2 calls vs. a bet of size x with probability in the interval[

1
1+x ,min

{
n

x(1+n) , 1
}]

.

Proof. We have already argued that the Nash equilibrium strategy for player 1 is
unique. Note that for x ∈ (0, n), player 1 will never actually bet x in equilibrium,
and player 2 must call with probability that ensures that player 1 will not want
to deviate and bet x. Suppose player 2 calls with probability p′ < 1

1+x , for some
x ∈ (0, n). If player 1 bets x with a losing hand, expected payoff is

p′(−0.5 − x) + (1 − p′)(0.5)
= p′(−1 − x) + 0.5

>
−1 − x

1 + x
+ 0.5

= −0.5

If instead player 1 checks with a losing hand, the expected payoff is -0.5. So
player 1 will strictly prefer to bet x than to check, and will have incentive to
deviate from his equilibrium strategy.

Now suppose player 2 calls with probability p′ > min
{

n
x(1+n) , 1

}
, for some

x ∈ (0, n). First suppose that n
x(1+n) ≤ 1. If player 2 bets x with a winning hand,

his expected payoff is

p′(0.5 + x) + (1 − p′)(0.5)
= 0.5p′ + p′x + 0.5 − 0.5p′

>
xn

x(1 + n)
+ 0.5

=
1.5n + 0.5

1 + n

If instead player 1 bets n, the expected payoff is

1
1 + n

(0.5 + n) +
(

1 − 1
1 + n

)

(0.5)

=
1.5n + 0.5

1 + n

So player 1 will strictly prefer to bet x than to bet n, and will have incentive to
deviate from his equilibrium strategy.

Our analysis so far has shown that for n
x(1+n) ≤ 1, the strategy profile is a

Nash equilibrium if and only if player 2 calls a bet of size x with probability in
the interval

[
1

1+x , n
x(1+n)

]
for all x ∈ (0, n].
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Now suppose that n
x(1+n) > 1. Suppose that player 2 calls a bet of x with

probability 1. If player 1 bets x, his expected payoff is

1(0.5 + x) + 0(0.5)
= x + 0.5
<

n

1 + n
+ 0.5

=
1.5n + 0.5

1 + n

If instead player 1 bets n, the expected payoff as shown above is 1.5n+0.5
1+n . So

player 1 will not have incentive to deviate and bet x instead of n.

So we have shown that player 2 has infinitely many Nash equilibrium strate-
gies that differ in their frequencies of calling vs. “suboptimal” bet sizes of player
1. Which of these strategies should we play when we encounter an opponent who
bets a suboptimal size? One argument for calling with probability at the lower
bound of the interval— 1

1+x—is as follows (note that the previously-computed
equilibrium strategy uses this value [2]). If the opponent bets x as opposed to the
optimal size of n that he should bet in equilibrium, then a reasonable deduction
is that he isn’t even aware that n would have been the optimal size, and believes
that x is optimal. Therefore, it would make sense to play a strategy that is an
equilibrium in the game where the opponent is restricted to only betting x (or
to betting 0, i.e., checking). Doing so would correspond to calling a bet of x
with probability 1

1+x . The other equilibria pay more heed to the concern that
the opponent could exploit us by deviating to bet x instead of n; but we need
not be as concerned about this possibility, since a rational opponent who knew
to bet n would not bet x.

One could use a similar argument to defend calling with probability at the
upper bound of the interval—min

{
n

x(1+n) , 1
}

. If the opponent somehow knew
that betting n was part of an optimal strategy but did not know that check-
ing was, then perhaps we should follow an equilibrium of the game where the
opponent is restricted to only betting x or n, in which case our calling frequency
should focus on dissuading the opponent from betting x with a winning hand
instead of n.

The first argument seems much more natural than the second, as it seems
much more reasonable that a human is aware they should check sometimes with
weak hands, but may have trouble computing that n is the optimal size and
guess that it is x. However, both arguments could be appropriate depending on
assumptions about the reasoning process of the opponent. The entire point of
Nash equilibrium as a prescriptive solution concept is that we do not have any
additional information about the players’ reasoning process, so will opt to assume
that all players are fully rational. If any additional information is available—
such as historical data (either from our specific opponents’ play or from a larger



Observable Perfect Equilibrium 15

population of players), observations of play from the current match, a prior distri-
bution, or any other model of the reasoning mechanism of the opponents—then
we should clearly utilize this information and not simply follow a Nash equilib-
rium. Without any such additional information, it does not seem clear whether
we should call with the lower bound probability, upper bound probability, or a
value in the middle of the interval. The point of the equilibrium refinements we
have considered is exactly to help us select between equilibria in a theoretically
principled way in the absence of any additional information that could be used
to model the specific opponents.

For the remainder of our analysis we will restrict our attention to the no-limit
clairvoyance game with n = 2, with extensive-form game tree given by Fig. 1.

Fig. 1. No-limit clairvoyance game with n = 2.

According to our above analysis, the unique Nash equilibrium strategy for
player 1 is to bet 2 with probability 1 with a winning hand, to bet 2 with proba-
bility 2

3 with a losing hand, and to check with probability 1
3 with a losing hand.

The Nash equilibrium strategies for player 2 are to call a bet of 2 with probabil-
ity 1

3 , and to call a bet of 1 with probability in the interval
[
1
2 , 2

3

]
. As it turns

out, the unique trembling-hand perfect equilibrium strategy for player 2 is to
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call vs. a bet of 1 with probability 2
3 .4 Since this is a one-step extensive-form

imperfect-information game, this is also the unique quasi-perfect equilibrium.
And since player 2’s strategy is fully mixed, this is also the unique one-sided
quasi-perfect equilibrium. However, the unique observable perfect equilibrium
strategy for player 2 is to call with probability 5

9 . Interestingly, the OPE corre-
sponds to a different strategy for this game than all the other refinements we
have considered, and none of them correspond to the “natural” argument for
calling with probability 1

2 based on an assumption about the typical reasoning
of human opponents. The OPE value of 5

9 corresponds to the solution assuming
only that player 1 has bet 1 but that otherwise all players are playing as ratio-
nally as possible. Note also that the OPE does not simply correspond to the
average of the two interval boundaries, which would be 7

12 .

Proposition 6. In the no-limit clairvoyance game with n = 2, the unique
extensive-form trembling-hand perfect equilibrium strategy for player 2 is to call
vs. a bet of 1 with probability 2

3 .

Proof. Let μ denote the Nash equilibrium strategy profile where player 2 calls
vs. a bet of 1 with probability 2

3 . Consider the game Gε where each action
probability must be at least ε. Consider the following strategy σ∗

ε,1 for player 1.
With a winning hand player 1 bets 2 with probability 1 − 2ε, and bets 1 with
probability 2ε. With a losing hand player 1 bets 2 with probability 2(1−2ε)

3 , bets
1 with probability ε and bets 0 with remaining probability 1− 2(1−2ε)

3 − ε = 1+ε
3 .

Consider whether player 1 can profitably deviate to strategy φ from this strategy
when player 2 follows μ. First, we calculate expected payoff for player 1 of playing
σ∗

ε,1 against μ:

1

2

(
(1− 2ε)

(
1

3
(2.5) +

2

3
(0.5)

)
+ (2ε)

(
2

3
(1.5) +

1

3
(0.5)

))

+
1

2

(
2(1− 2ε)

3

(
1

3
(−2.5) +

2

3
(0.5)

)
+ ε

(
2

3
(−1.5) +

1

3
(0.5)

)
+

(
1 + ε

3
(−0.5)

))

=
1

2

(
(1− 2ε)

(
7

6

)
+ (2ε)

(
7

6

))
+

1

2

(
2(1− 2ε)

3
(−0.5) + ε

(
−5

6

)
+

(
1 + ε

3
(−0.5)

))

=
7

12
+

1

2

(
−1

3
+

2ε

3
− 5ε

6
− 1

6
− ε

6

)

=
1

3
− ε

6

4 Observe that this game explicitly shows that Theorem 1 does not hold in general
for extensive-form games, since all of the Nash equilibria in this game satisfy the
alternative formulation of trembling-hand perfect equilibrium. To see this, consider
the sequence of strategies for player 1 that bet 1 with probability ε with a winning
hand and with probability ε

2
with a losing hand. This sequence will converge to the

unique Nash equilibrium strategy for player 1 as ε → 0, and furthermore player 2 is
indifferent between calling and folding vs. a bet of 1 against all of these strategies,
so all of player 2’s Nash equilibrium strategies are best responses. So the equivalent
formulation of trembling-hand perfect equilibrium is only valid for simultaneous
strategic-form games and does not apply to extensive-form games.
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If instead player 1 plays φ, expected payoff is

1
2

(

(1 − φ(W, 1))
(

7
6

)

+ φ(W, 1)
(

7
6

))

+
1
2

(

φ(L, 2) (−0.5) + φ(L, 1)
(

−5
6

)

+ (1 − φ(L, 2) − φ(L, 1))(−0.5)
)

=
7
12

+
1
2

(

−φ(L, 1)
3

− 0.5
)

=
1
3

− φ(L, 1)
6

Since φ(L, 1) ≥ ε, this quantity is maximized with φ(L, 1) = ε, producing
expected payoff 1

3 − ε
6 . Since this is the same expected payoff as playing σ∗

ε,1,
player 1 cannot profitably deviate from σ∗

ε,1. So the strategy profile where player
1 follows σ∗

ε,1 and player 2 follows μ is a Nash equilibrium of Gε. By taking the
limit as ε → 0 it follows that μ is a trembling-hand perfect equilibrium of the
original game G.

Now let μα denote the Nash equilibrium strategy profile where player 2 calls
vs. a bet of 1 with probability α, where 1

2 ≤ α < 2
3 . Suppose that player 1 plays

strategy φ against this strategy in Gε. Then player 1’s expected payoff is:

1
2

(

(1 − φ(W, 1))
(

1
3
(2.5) +

2
3
(0.5)

)

+ φ(W, 1) (α(1.5) + (1 − α)(0.5))
)

+
1
2

(

φ(L, 2)
(

1
3
(−2.5) +

2
3
(0.5)

)

+ φ(L, 1) (α(−1.5) + (1 − α)(0.5))
)

+
1
2

((1 − φ(L, 2) − φ(L, 1))(−0.5))

=
1
2

(

(1 − φ(W, 1))
(

7
6

)

+ φ(W, 1) (α + 0.5)
)

+
1
2

(φ(L, 2) (−0.5) + φ(L, 1) (−2α + 0.5) + (1 − φ(L, 2) − φ(L, 1))(−0.5))

=
1
2

(

φ(W, 1)
(

α − 2
3

)

+
7
6

+ φ(L, 1)(−2α + 1) − 0.5
)

=
1
2

(

φ(W, 1)
(

α − 2
3

)

+ φ(L, 1)(−2α + 1) +
2
3

)

For α ∈ (
1
2 , 2

3

)
, this is maximized in Gε with φ(W, 1) = ε, φ(L, 1) = ε.

However, if φ(W, 1) = φ(L, 1) = ε, then player 2’s expected payoff of calling vs.
a bet of 1 will be ε(−1.5) + ε(1.5) = 0, while the expected payoff of folding vs.
a bet of 1 is -0.5. So player 2 will strictly prefer to call vs. a bet of 1, and can
profitably deviate from μα. So there is no Nash equilibrium of Gε in which player
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2 plays μα, and therefore there cannot be a sequence of equilibria converging to
μα in G as ε → 0. So μα is not trembling-hand perfect.

Now suppose that α = 1
2 . Then the expected payoff is maximized in Gε with

φ(W, 1) = ε, while φ(L, 2) can be any value at least ε, since the coefficient is
−2α + 1 = 0. Against this strategy, player 2’s expected payoff of calling vs. a
bet of 1 is

ε(−1.5) + φ(L, 2)(1.5) ≥ ε(−1.5) + ε(1.5) = 0.

And as before the expected payoff of folding vs a bet of 1 is -0.5. So again player
2 will strictly prefer to call vs. a bet of 1, and μα is not trembling-hand perfect.

Corollary 3. In the no-limit clairvoyance game with n = 2, the unique quasi-
perfect equilibrium strategy for player 2 is to call vs. a bet of 1 with probability
2
3 . This is also the unique one-sided quasi-perfect equilibrium strategy.

Proposition 7. In the no-limit clairvoyance game with n = 2, the unique
observable perfect equilibrium strategy for player 2 is to call vs. a bet of 1 with
probability 5

9 .

Proof. Let μ denote the Nash equilibrium strategy profile where player 2 calls
vs. a bet of 1 with probability 5

9 . Consider the game Gε where the sum of the
probability that player 1 bets 1 with a winning hand and with a losing hand
is at least ε. Consider the following strategy σ∗

ε,1 for player 1. With a winning
hand they 2 with probability 1− 2ε

3 and bet 1 with probability 2ε
3 . With a losing

hand they bet 2 with probability 2(3−2ε)
9 , bet 1 with probability ε

3 , and bet 0
with remaining probability 1 − 2(3−2ε)

9 − ε
3 = 3+ε

9 . Consider whether player 1
can profitably deviate to strategy φ from this strategy when player 2 follows μ.
First, we calculate expected payoff for player 1 of playing σ∗

ε,1 against μ:

1

2

((
1 − 2ε

3

) (
1

3
(2.5) +

2

3
(0.5)

)
+

(
2ε

3

) (
5

9
(1.5) +

4

9
(0.5)

))

+
1

2

(
2(3 − 2ε)

9

(
1

3
(−2.5) +

2

3
(0.5)

)
+

ε

3

(
5

9
(−1.5) +

4

9
(0.5)

)
+

3 + ε

9
(−0.5)

)

=
1

2

((
1 − 2ε

3

) (
7

6

)
+

(
2ε

3

) (
19

18

))
+

1

2

(
2(3 − 2ε)

9
(−0.5) +

ε

3

(
−11

18

)
+

(
3 + ε

9
(−0.5)

))

=
1

2

(
− 2ε

27
+

7

6

)
+

1

2

(
−1

3
+

2ε

9
− 11ε

54
− 1

6
− ε

18

)

=
1

3
− ε

18
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If instead player 1 plays φ, expected payoff is

1
2

(

(1 − φ(W, 1))
(

7
6

)

+ φ(W, 1)
(

19
18

))

+
1
2

(

φ(L, 2) (−0.5) + φ(L, 1)
(

−11
18

)

+ (1 − φ(L, 2) − φ(L, 1))(−0.5)
)

=
1
2

(
7
6

− φ(W, 1)
9

)

+
1
2

(

−0.5 − φ(L, 1)
9

)

=
1
3

− φ(W, 1)
18

− φ(L, 1)
18

Given the constraint that φ(W, 1) + φ(L, 1) ≥ ε, this is maximized at
φ(W, 1) + φ(L, 1) = ε, producing expected payoff 1

3 − ε
18 . Since this is the same

expected payoff as playing σ∗
ε,1, player 1 cannot profitably deviate from σ∗

ε,1. So
the strategy profile where player 1 follows σ∗

ε,1 and player 2 follows μ is a Nash
equilibrium of Gε. By taking the limit as ε → 0 it follows that μ is an observable
perfect equilibrium of the original game G.

Now let μα denote the Nash equilibrium strategy profile where player 2 calls
vs. a bet of 1 with probability α, where 1

2 ≤ α ≤ 2
3 . Suppose that player 1 plays

strategy φ against this strategy in Gε. Then player 1’s expected payoff is:

1
2

(

(1 − φ(W, 1))
(

1
3
(2.5) +

2
3
(0.5)

)

+ φ(W, 1) (α(1.5) + (1 − α)(0.5))
)

+
1
2

(

φ(L, 2)
(

1
3
(−2.5) +

2
3
(0.5)

)

+ φ(L, 1) (α(−1.5) + (1 − α)(0.5))
)

+
1
2

((1 − φ(L, 2) − φ(L, 1))(−0.5))

=
1
2

(

(1 − φ(W, 1))
(

7
6

)

+ φ(W, 1) (α + 0.5)
)

+
1
2

(φ(L, 2) (−0.5) + φ(L, 1) (−2α + 0.5) + (1 − φ(L, 2) − φ(L, 1))(−0.5))

=
1
2

(

φ(W, 1)
(

α − 2
3

)

+
7
6

+ φ(L, 1)(−2α + 1) − 0.5
)

=
1
2

(

φ(W, 1)
(

α − 2
3

)

+ φ(L, 1)(−2α + 1) +
2
3

)

We want to maximize this subject to φ(W, 1) + φ(L, 1) ≥ ε. For 1
2 < α < 5

9 ,
it is maximized by φ(W, 1) = 0, φ(L, q) = ε. Against this strategy, player 2’s
expected payoff of calling vs. a bet of 1 is strictly larger than folding, so player
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2 can profitably deviate from μα. So there is no Nash equilibrium of Gε in
which player 2 plays μα, and therefore there cannot be a sequence of equilibria
converging to μα in G as ε → 0. So μα is not observable perfect.

For 5
9 < α < 2

3 , the expression is maximized by φ(W, 1) = ε, φ(L, q) = 0.
Against this strategy, player 2 strictly prefers to fold vs. a bet 1 of than to call.
So μα is not observable perfect.

For α = 1
2 , the expression is maximized by φ(W, 1) = 0 and φ(L, q) ≥ ε.

Against this strategy, player 2 strictly prefers to call vs. a bet 1 of than to fold.
So μα is not observable perfect.

For α = 2
3 , the expression is maximized by φ(W, 1) ≥ ε and φ(L, q) = 0.

Against this strategy, player 2 strictly prefers to fold vs. a bet 1 of than to call.
So μα is not observable perfect.

4 Conclusion

We presented a new solution concept for sequential imperfect-information games
called observable perfect equilibrium that captures the assumption that all play-
ers are playing as rationally as possible given the fact that some players have
taken observable suboptimal actions. We believe that this is more compelling
than other solution concepts that assume that one or all players make cer-
tain types of mistakes for all other actions including those that have not been
observed. We showed that every observable perfect equilibrium is a Nash equi-
librium, which implies that observable perfect equilibrium is a refinement of
Nash equilibrium. We also showed that observable perfect equilibrium is always
guaranteed to exist. We showed that an OPE can be computed in polynomial
time in two-player zero-sum games based on repeatedly solving a linear program
formulation. We also argued that computation of OPE is more efficient than
computation of the related concept of one-sided quasi-perfect equilibrium, which
in turn has been shown to be more efficient than computation of quasi-perfect
equilibrium and extensive-form trembling-hand perfect equilibrium.

We demonstrated that observable perfect equilibrium leads to a different
solution in no-limit poker than EFTHPE, QPE, and OSQPE. While we only
considered a simplified game called the no-limit clairvoyance game, this game
encodes several elements of the complexity of full no-limit Texas hold ’em, and
in fact conclusions from this game have been incorporated into some of the
strongest agents for no-limit Texas hold ’em. So we expect our analysis to extend
to significantly more complex settings than the example considered. We think
that observable perfect equilibrium captures the theoretically-correct solution
concept for sequential imperfect-information games, and furthermore is more
practical to compute than other solutions.

Future work should explore the scalability of the algorithm we have presented.
While algorithms based on solving linear programs run in polynomial time, they
often run into memory and speed issues that prevent them from being compet-
itive with algorithms such as counterfactual regret minimization and fictitious
play on extremely large games. Perhaps these algorithms can be modified in such
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a way that they are guaranteed to converge to an observable perfect equilibrium
in two-player zero-sum games (currently they are just guaranteed to converge to
Nash equilibrium and not to any specific refinement).

While the focus of this paper has been on two-player games, and two-player
zero-sum games specifically, the concept of observable perfect equilibrium is gen-
erally applicable to multiplayer games and non-zero-sum games as well. It has
been argued that one-sided quasi-perfect equilibrium is inappropriate for non-
zero-sum (and multi-player) games and should not be used [11]. By contrast,
we see no reason why observable perfect equilibrium cannot be applied to these
games with the same theoretical and computational advantages as for the two-
player zero-sum setting. In the future we would like to study applicability of
observable perfect equilibrium to these settings and develop new algorithms for
its computation.
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Abstract. Cyber-insurance is an insurance policy that protects the
insured from a variety of cybersecurity incidents such as cyber-attacks,
ransomware, and data breaches. The rapid expansion of cyber-insurance
in recent years hints the strong demand for cyber-insurance and its ben-
efits. However, the impacts of cyber-insurance practice on cybersecurity
enhancement and cyber-attackers are largely unknown. In this paper
we study the optimal cybersecurity investment and cyber-insurance
decision-making systematically with special attention paid to the effects
of the attacker’s strategies. The economic modeling analysis and sim-
ulation study suggest that although cyber-insurance may be beneficial
for the insured from a financial perspective, cyber-insurance practice
may not be optimal from the societal cybersecurity perspective. Pur-
chasing cyber-insurance decreases organizations’ optimal cybersecurity
investment and increases the attacker’s expected payoffs. Therefore, the
attacker has a motive to manipulate cyber-insurance by selective cyber-
attacks on organizations up to a critical point, beyond which we discov-
ered that imposing further threat will force organizations to invest more
in cybersecurity. The attacker is capable of “playing god” by controlling
the probabilities of initiating cyber-attacks and acts strategically to influ-
ence organizations’ incentives to whether to purchase cyber-insurance to
harvest benefits. This study of cyber-insurance’ effects on attackers and
their strategic manipulation of cyber-insurance provides insights for the
future of the cyber-insurance market.
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1 Introduction

Organizations in nearly every industry deal with cyber risk on a daily basis, and
the financial devastation of cyber-attacks is only growing. The cybersecurity risks
and incidents confronting organizations provide incentives for organizations to
invest in cybersecurity. Since cyber-insurance became an option over a decade
ago, the number of organizations purchasing cyber-insurance has been rising.

Cyber-insurance is an insurance policy that provides the insured with a com-
bination of coverage options to protect the insured from losses due to a variety
of cyber incidents such as data breaches, ransomware, denial-of-service attacks,
etc. Coverage may include the liability of lost data, the damage to technology
assets, the cost of business disruptions, informing affected clients, paying ran-
soms, and expenses and costs associated with legal issues. Like any insurance
product, cyber-insurance pools the risks of cyber-attacks among policyholders.
While cyber-insurance does not fundamentally change the overall destruction
that a cybersecurity incident can cause, it reduces the organization’s out-of-
pocket payment (“private loss”) in case of such an incident. In other words,
cyber-insurance is to mitigate the organization’s financial risk exposure in the
aftermath.

Cyber-insurance is still in its early stage and its effects on cybersecurity
remain an open question. Unlike the established insurances (e.g., home, auto,
health, etc.) where the odds of incidents are more of “act of god” (e.g., a light-
ening hitting a house), in the new cyber-insurance, the odds of cyber-incidents
are more controllable by the attacker. In some senses, the attacker’s action is
like the “hand of god” that controls the chance of cyber incidents. Therefore,
this research focuses on the attacker’s perspective and asks questions such as “Is
cyber-insurance really good for cybersecurity?”, “Can attackers benefit from the
practice of cyber-insurance?”, etc. By modelling a game between the attacker
and the organization, we study the optimal strategies of both parties. Using a
cybersecurity portfolio that consists of both cybersecurity investment (infras-
tructures, technologies, etc.) and cyber-insurance, we formulate an optimization
problem to derive the optimal choice for the organization to choose between
additional cybersecurity investment and purchasing cyber-insurance or not.

The novelty of this research is that it aims to study the possibility of the
attacker’s manipulation of cyber-insurance in their own favors by measuring
the optimal cybersecurity investment level of the organization with and without
cyber-insurance. A key determinant is the cyber threat imposed on the organi-
zation by the attacker. The attacker’s action affects the organization’s incentives
to purchase cyber-insurance. Depending on how cyber-insurance may affect the
attacker’s benefits, the attacker strategically chooses attack probability imposed
on the organization.

The modeling analysis and simulation study suggest a decrease in the orga-
nization’s optimal cybersecurity investment with cyber-insurance, and there is a
significant increase in the attacker’s expected payoffs as the organization shifts
from no cyber-insurance to cyber-insurance. Beyond that point of switch, impos-
ing further threat on the organization will force the organization to invest more
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in cybersecurity. In this scenario, the best response of the attacker is to impose
just the right amount of cyber threat to “induce” the organization to purchase
cyber-insurance. One of our important contributions is the finding of the criti-
cal point of attack probability for the organization switching to cyber-insurance
therefore significantly increase attack payoff. To the best of our knowledge, this
is the first study of the implications of cyber-insurance on the benefits of the
attacker per se and the attacker’s potential to manipulate the mechanism to
serve their own best interests.

The rest of the paper is organized as follows. Section 2 reviews literatures on
cyber-insurance. Section 3 conducts economic analysis on the organization’s opti-
mal cybersecurity investment with and without purchasing cyber-insurance, the
organization’s optimal cyber-insurance option, the effects of the organization’s
actions on the attacker, and the attacker’s optimal strategy of launching attacks.
Section 4 illustrates results from simulation study. Finally, Sect. 5 concludes our
work and discusses future research.

2 Related Work

Compared to established lines of insurance services, cyber-insurance is at its
early stage of development. Cyber-insurance is subject to not only general prob-
lems prevailing insurance markets like adverse selection and moral hazard [7],
it is much more complicated and challenging than other lines of insurance. The
cyber-insurance market is particularly complex as it has to tackle with chal-
lenges and obstacles prevailing in the insurance market such as the diversity of
insurance coverage generating uncertainty and the moral hazard problem [22,32].
Without considering catastrophic scenarios, the vast majority of cyber risks are
insurable and cyber-insurance can be profitable [12,19,21]. The insurers may
offer not only cyber-insurance contracts but also risk management services [25].
Post-incident covering by cyber-insurance contracts is commonly seen [28]. It
is generally agreed that cyber-insurance is effective at post-incident responses
[18,25].

While cyber-insurance appears to be a viable method for cyber risk trans-
fer, numerous problems with the insurability of cyber risks impede the devel-
opment of the cyber-insurance market. Surveys and literature reviews classified
researches on cyber-insurance into various areas, identified and categorized prac-
tical research problems and cyber-insurance challenges, provided the landscape
and trends of the research and proposed possible solutions [1,6,28]. There are
concerns about the insurance coverage, lack of information, and the complex-
ity of the cyber-related claims [2]. Problems such as information asymmetries
due to lack of data hinder cyber risk management via cyber-insurance [3,15].
A three-player game [27] implies attacks motivate the organizations to consider
cyber-insurance option for transferring the risks. With malicious users present,
equilibrium cyber-insurance contract that specifies user security fails to exist,
and thus cyber-insurers fail to underwrite contracts conditioning the premiums
on security in a general setting [8]. Recent empirical evidence suggests today’s
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cyber-insurance market is not effectively exercising predicted governance func-
tions on cybersecurity [33].

The effects of cyber-insurance on cybersecurity investment is an open ques-
tion. Cyber-insurance could result in higher cybersecurity investment depending
on the insurers’ ability to deal with potential adverse selection, moral hazard,
and other problems in the cyber-insurance market [12]. An insurance contract
incentivizing the insured to adopt preventative measures and implement best
practices can improve cybersecurity provided by premium discrimination and
the design of customized policies [11,13,30]. Security interdependence affects the
incentive of users to invest in self-protection with and without cyber-insurance
[29]. The key to improving overall network security lies in incentivizing users to
invest in sufficient self-defense investments despite of the possible free-riding on
others’ investing in the network. Under conditions of no information asymmetry
between the insurer and the insured, cyber-insurance incentivizes users to invest
in self-defense [5,16].

Nevertheless, in a model where a user’s probability to incur cyber dam-
age depends on both private security and network security, competitive cyber-
insurers may fail to improve network security [24]. Modeling the reactivity of the
attacker to cybersecurity investment as an endogenous risk generating mecha-
nism, it was shown that cyber-insurance may have negative effects on security
investment [17]. Without contract discrimination, the cyber-insurance market
equilibrium is inefficient and does not increase cybersecurity [13,14,20]. There
is little empirical evidence that cyber-insurance gives motives for the insured
to invest in cybersecurity [26,31]. A big challenge is the insurers’ missing solid
methodologies, standards, and tools to carry out their measurements [23]. A
unifying framework was introduced considering interdependent security, corre-
lated risk, and information asymmetries of cyber-insurance to understand the
discrepancies [4]. A more recent study questions to what extent cyber-insurance
companies influence global diffusion of cybersecurity protection and increase
cybersecurity mechanisms [32]. To date, the cybersecurity implication of cyber-
insurance remains a field of ambiguity.

Our research is related to existing literature on the incentive mechanisms
of cyber-insurance but focuses on a novel angle. Based on the observation of
cyber risk not being random and is largely in the control of the attacker, we
have a particular interest in the attacker’s attitude towards cyber-insurance, i.e.,
would the attacker welcome cyber-insurance? Since the attacker’s likelihood of
attack is a key determining factor of the organization’s decision, the attacker can
intentionally manipulate the whole system by adjusting their attack strategies
in terms of attack probabilities to influence organizations’ decision of purchasing
cyber-insurance, thus benefit the most from the practice of cyber-insurance.

Shifting risks to the insurer or shifting liability on the insured to invest more
is not enough for a successful cyber-insurance market. This paper considers a
cybersecurity portfolio that consists of both optimal cybersecurity infrastructure
investment and cyber-insurance purchase. By extending the Gordon-Loeb model
[9,10], economic cost-benefit analysis determines the optimal amount of cyber-
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security investment by taking into account the vulnerability of the organization
to a security breach and its potential loss. Our model predicts the critical point
(threshold) for the organization to shift from no insurance to insurance. Such a
shift can benefit the attacker thus the attacker has the motive to push the orga-
nization to become insured. To generalize, no matter whether cyber-insurance
has a positive or adverse overall effects on cybersecurity, the attacker can induce
the organization to act in a way that is to the benefit of the attacker.

3 Game of Cyber-Insurance

There are two components of financial investment in cybersecurity portfolio:
investment in fundamental cybersecurity infrastructure (“cybersecurity invest-
ment”) and investment in cyber-insurance policy (“cyber-insurance”). The key
difference between cybersecurity investment and cyber-insurance is that the for-
mer is preventive affecting the organization’s fundamental vulnerability to cyber-
attacks and the latter is aftermath coverage and clean-up, which by itself, does
not affect the inherent vulnerability of the organization.

How much should the organization invest in cybersecurity? All in all, the
organization is driven by the desire to earn profit, and its decisions are largely
the result of cost-benefit analysis. We apply and extend economic production
theory to the problem of assessing the impacts of cybersecurity investment and
cyber-insurance. The production theory framework is based on the analysis of the
relationship between cybersecurity inputs and output, or equivalently, costs and
benefits. Table 1 lists the variables used in the model and their brief meanings.

Table 1. Symbols and Definitions

Symbol/Variable Definition
Cs cost of additional cybersecurity investment
Ci cost of cyber-insurance (premium on cyber-insurance policy)
L0 cyber incident loss without cyber-insurance
L1 cyber incident loss with cyber-insurance (e.g., deductible)
t attack probability
r attack success rate at existing cybersecurity investment
R(Cs, r) attack success rate with additional cybersecurity investment
P a attacker’s payoff from a successful attack
Ca attacker’s cost of launching an attack



28 Z. Li and Q. Liao

3.1 Inputs and Output of Cybersecurity Investment
and Cyber-Insurance

We consider a one-period model of an organization contemplating a cyberse-
curity portfolio made up of cybersecurity investment and cyber-insurance. The
organization is risk-neutral meaning that it is indifferent to amounts of invest-
ments or forms of investments as long as they have the same expected net value,
regardless of various levels of risk and uncertainty.

Cybersecurity inputs include cybersecurity investment used to strengthen
cybersecurity systems such as intrusion detection/prevention systems, firewalls,
malware detection, antivirus and improved software, one time password tokens,
two-factor authentications, encryptions, internal control systems, user educa-
tion/training programs, etc. The organization’s additional spending on cyberse-
curity investment is represented by Cs. In the context of cyber-insurance, cyber-
security inputs also include cyber-insurance policy premium, represented by Ci,
had the organization chosen to purchase cyber-insurance.

Cybersecurity output is gauged by the reduced attack success rate gener-
ated by cybersecurity investment and the reduced incident loss private to the
organization under the coverage of cyber-insurance. Following the Gordon-Loeb
model [9], we measure the potential loss of cyber incident using triple variables
{t, r, L0} where t ∈ [0, 1] is the attack probability that the attacker may launch
an attack on the organization, r ∈ [0, 1] is the attack success rate at existing
cybersecurity investment, and L0 is the incident loss of a successful attack.

Specifically, the parameter r is used to denote the attack success rate at exist-
ing cybersecurity investment, the probability that without additional cyberse-
curity investment, a cyber attack will result in the organization’s being victim
of the attack and the loss L0 occurring. Typically, the attack probability on the
organization and the attack success rate would lie in the interior of 0 < t < 1
and 0 < r < 1. t × r × L0 is the organization’s expected loss conditioned on nei-
ther no additional cybersecurity investment nor cyber-insurance coverage. The
organization’s cybersecurity investment decision is on incremental investment
spending, based on the implicit assumption that the organization already has
some cybersecurity infrastructure in place, resulting in existing current attack
success rate. Therefore, there are no incremental fixed costs associated with
additional cybersecurity investment, only variable costs.

The expenditure of Cs is to reduce attack success rate r. Let R(Cs, r) be the
attack success rate on the organization that has additional investment amount
of Cs. R(Cs, r) is continuously twice differentiable. The nature of cyber vulner-
ability leads to the following features of the R function:

– R(Cs, 0) = 0 for all Cs. That is, if the organization is perfectly secure, then it
will remain perfectly secure regardless of additional cybersecurity investment.

– R(0, r) = r for all r. That is, if there is no additional cybersecurity investment,
attack success rate remains unchanged.

– R′(Cs, r) < 0 and R′′(Cs, r) > 0 for all r ∈ (0, 1) where R′ and R′′ denote
the first-order and second-order partial derivatives of the R function with
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respect to Cs, respectively. That is, cybersecurity is increasing in cybersecu-
rity investment at a decreasing rate.

The third feature of the R function implies that no finite cybersecurity invest-
ment can make the organization perfectly secure.

Cyber-insurance is specifically designed to address cyber-incident-related
losses. Being insured does not reduce incident loss, but it may significantly
decrease the organization’s private loss in case of incident. The organization
has to pay a premium to be insured. Due to moral hazard concerns, insurance
policies normally come with deductibles. The premium and the deductible are
the inputs of cyber-insurance.

Purchasing cyber-insurance does not change the incident loss L0. Acquiring
cyber-insurance does not increase or decrease the attack success rate, either.
That is, r (and hence R(Cs, r)) is independent of Ci. The expenditure of Ci is
to reduce the organization’s private loss of incident. Suppose cyber-insurance
reduces the organization’s private loss from L0 to L1. L1 includes the deductible
and the part of incident loss not covered by cyber-insurance. It can also be
extended to include the net present value of expected future increase in premi-
ums.

The organization can affect the attack success rate via cybersecurity
investment and expected private loss via cybersecurity investment and cyber-
insurance, but the organization cannot invest to reduce attack probability. Hence
attack probability t is exogenous to the organization, which is the control vari-
able of the attacker. The organization decides on cybersecurity investment and
cyber-insurance to reduce the expected net loss private to the organization.

3.2 Organization’s Strategy

To determine the amount to invest in cybersecurity and cyber-insurance, the
organization compares the expected benefits and expected costs of the two.

Choose Optimal Cybersecurity Investment Without Cyber-Insurance.
For comparison, we begin with the case when cyber-insurance is not an option
yet, i.e., Ci ≡ 0. The expected benefit of cybersecurity investment is equal to
the reduction in the organization’s expected loss attributed to additional cyber-
security investment.

[r − R(Cs, r)]tL0 (1)

Since Cs is the cost of cybersecurity investment, the expected net benefit of
cybersecurity investment is

[r − R(Cs, r)]tL0 − Cs (2)

Of variables in (2), t is the control variable of the attacker. r and L0 are
the given parameters specifying the existing status of cybersecurity of the orga-
nization. Cs is the only control variable of the organization. The risk-neutral
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organization’s goal is to choose optimal additional cybersecurity investment C∗
s

that maximizes (2).
C∗

s is found by solving the first-order condition of the objective function (2)
with respect to Cs.

− R′(C∗
s , r)tL0 = 1 (3)

where the left-hand-side is the marginal benefit of cybersecurity investment mea-
sured by the decrease in attack success rate when increasing cybersecurity invest-
ment by one unit. This partial derivative can be interpreted as the marginal
productivity of cybersecurity investment. The right-hand-side is the marginal
cost of increasing cybersecurity investment by one unit.

Choose Optimal Cybersecurity Investment with Cyber-Insurance.
When cyber-insurance is an option, the organization makes rational choice to
determine if it needs cyber-insurance based on its own risk exposure. The insurer
offers various combinations of premium and deductible to the organization, cor-
responding to the coverage and the attack success rate. In the one-period model,
we assume the price of purchasing cyber-insurance depends on existing cyberse-
curity investment but not on the additional cybersecurity investment the orga-
nization will choose after purchasing cyber-insurance (which will affect future
premium). Hence the organization’s choice of cybersecurity investment (after
being insured) does not affect the current premium, similar to a driver’s current
driving habits (after being insured) does not affect the current premium on the
auto insurance policy.

The premium and the deductible are inversely related. The inverse relation-
ship may apply to the following scenarios:

– The organization chooses a cyber-insurance policy that has a high deductible
to reduce the premium, or a high premium to reduce the deductible.

– The organization pays a high premium on a cyber-insurance policy with broad
coverage that reduces the organization’s private loss in case of incident.

Cyber-insurance reduces the organization’s private loss from L0 to L1. L1

captures the deductible. Taking as given its chosen cyber-insurance package of
{L1, Ci}, the organization’s expected benefit of additional cybersecurity invest-
ment with cyber-insurance is

[r − R(Cs, r)]tL1 (4)

The expected net benefit of additional cybersecurity investment with cyber-
insurance is

[r − R(Cs, r)]tL1 − Cs (5)

The organization chooses optimal additional cybersecurity investment, C∗∗
s ,

to maximize (5):

− R′(C∗∗
s , r)tL1 = 1 (6)
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Effects of Cyber-Insurance on Cybersecurity Investment. The optimal
additional cybersecurity investment increases in attack probability as well as the
organization’s private loss.

From (3),

− R′(C∗
s , r) =

1
tL0

(7)

From (6),

− R′(C∗∗
s , r) =

1
tL1

(8)

If the organization were perfectly secure (r = 0), then no cybersecurity invest-
ment would be necessary (C∗

s = C∗∗
s = 0). At some sufficiently large attack suc-

cess rate, it would be optimal to make positive additional cybersecurity invest-
ment.

Since R′ is increasing in Cs and L0 > L1, optimal additional cybersecurity
investment decreases when the organization has cyber-insurance coverage, i.e.,
C∗∗

s < C∗
s .

Fig. 1. Optimal additional cybersecurity investment with and without cyber-insurance.

Figure 1 illustrates the relative amounts of optimal additional cybersecu-
rity investment. The horizontal axis is various levels of additional cybersecurity
investment. The vertical axis measures expected benefits and costs of cybersecu-
rity investment with and without cyber-insurance. The concave curves are for (1)
and (4), respectively, of which, the lower curve is for (4). Both curves of expected
benefits start from the origin at R(0, r) = r. They increase at a decreasing rate
and converge to rtL0 and rtL1, respectively, as Cs → ∞. The 45o line is the cost
curve of cybersecurity investment. The vertical distance between the concave
benefit curve and the linear cost curve is the expected net benefit, as in (2) and
(5), and the corresponding level of cybersecurity investment is the optimal. Note
the intersection of the expected benefit curve and the cost curve corresponds to
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the largest feasible additional cybersecurity investment. As long as cybersecurity
investment stays below this amount, the organization’s expected net benefit is
positive. That is, it would receive a net benefit from additional cybersecurity
investment. Nevertheless, the net benefit is maximized at an amount lower than
the feasible upper-bound. As shown, the organization holding a cyber-insurance
policy decreases additional cybersecurity investment.

The first-order conditions represented by (7) and (8) are applicable when
the organization’s optimal additional cybersecurity investment has an interior
solution. In general, the organization chooses nonzero additional cybersecurity
investment if and only if (2) or (5) is nonnegative. It is possible that the organi-
zation’s optimal additional cybersecurity investment is zero in the following two
scenarios.

– The organization is perfectly secure thus R(Cs, 0) = 0 for any Cs. Optimal
additional cybersecurity investment is hence zero, the origin in Fig. 1.

– The organization’s expected net benefit of additional cybersecurity invest-
ment is negative for any Cs, i.e., if the concave curve in Fig. 1 falls entirely
below the 45o cost line. This could be the case if the organization has little
expected private loss (i.e., attack probability is small and private loss is small)
and/or cybersecurity investment is ineffective at reducing attack success rate
(i.e., R(Cs, r) is high).

Since L1 < L0, the latter scenario is more likely to occur with cyber-
insurance.

Choose Optimal Cyber-Insurance. The cost of cyber-insurance is Ci and
the expected benefit of being insured is R(C∗∗

s , r)t(L0 − L1). The organization
decides on cyber-insurance purchase to maximize expected net benefit of cyber-
insurance.

R(C∗∗
s , r)t(L0 − L1(Ci)) − Ci (9)

Recall Ci and L1 are inversely related and C∗∗
s depends on L1. If L1 is contin-

uously differentiable in Ci and the optimal cyber-insurance has an interior solu-
tion, the optimal cyber-insurance premium C∗

i solves the first-order condition of
(9). If L1 is not continuously differentiable in Ci, which is more likely to be the
case, the organization would choose the optimal insurance package {L∗

1, C
∗
i } from

available discrete cyber-insurance packages that generates the largest expected
net benefit, i.e., R(C∗∗

s (L∗
1), r)t(L0 − L∗

1) − C∗
i ≥ R(C∗∗

s (L1), r)t(L0 − L1) − Ci

for all {L1, Ci}.
It is possible that the organization’s optimal cyber-insurance does not have an

interior solution. In general, the organization would not purchase cyber-insurance
if the expected net benefit of cyber-insurance (9) is not positive. The organiza-
tion’s optimal cyber-insurance is zero in the following two scenarios.

– The organization is perfectly secure thus R(C∗∗
s (L1), 0) = 0 for any L1.

– The organization’s expected net benefit of cyber-insurance is negative for
any {L1, Ci}. This could be the case if the organization has little expected
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incident loss (i.e., attack probability is small and incident loss is small) and/or
the cyber-insurance policy offered is unfavorable.

3.3 Attacker’s Strategy

The attacker launches cyber-attacks to maximize expected net payoff:

max
t

R(Cs(t), r)tP a − tCa (10)

where P a is the attacker’s payoff received from a successful attack and Ca is the
cost of attack. For simplicity, assume the game between the organization and
the attacker is zero sum, i.e., L0 = P a. Given t, the attacker’s highest possible
expected net payoff is R(0, r)tL0−Ca = rtL0−Ca. This is the default benchmark
of zero additional cybersecurity investment with and without cyber-insurance.
As Cs increases, the attacker’s expected net payoff decreases since R(Cs, r) is
decreasing in Cs.

Attacking the organization is profitable as long as R(Cs(t), r)L0 > Ca. The
parameters characterizing the organization’s attractiveness to the attacker are
R(Cs, r) and L0. Whether the organization buys cyber-insurance does not affect
L0 that is either paid by the organization, the insurer, or both. R(Cs, r) increases
as Cs decreases. The organization’s purchasing cyber-insurance is beneficial to
the attacker if the organization reduces additional cybersecurity investment when
insured. Such potential gain for the attacker can only be realized if the organi-
zation chooses to buy cyber-insurance.

From (9), the organization chooses to buy cyber-insurance if it faces a high
attack probability and there exists a cyber-insurance bundle that satisfies

t ≥ Ci

R(C∗∗
s , r)(L0 − L1)

(11)

where the right-hand side is the lowest attack probability making the organi-
zation willingness to buy cyber-insurance, which is decreasing in L0. It implies
that compared to small and medium-sized organizations, large organizations
with high incident loss are more likely to buy cyber-insurance.

Buying cyber-insurance is beneficial for the organization when (11) holds
true. Since t is a control variable of the attacker, the attacker can affect the
organization’s decision to buy cyber-insurance. When t increases, the organiza-
tion is more likely to buy cyber-insurance, other things constant.

Nevertheless, other things are not constant. Although r and L0 are exogenous
and {L1, Ci} are predetermined, Cs increases with t, and hence R is decreasing
in t. The attacker faces a tradeoff when raising the attack probability on the
insured organization: an increase in t increases optimal additional cybersecurity
investment, decreasing attack success rate and hence expected payoff while the
increased t itself increases the expected payoff. The attacker has to control t
strategically to generate a positive net gain.
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With and without cyber-insurance, the attacker chooses t to solve (10). The
first-order condition is

R′(Cs, r)
dCs

dt
tL0 + R(Cs, r)L0 = Ca (12)

Combined with (7) and (8), the attacker’s optimal attack probability solves
dC∗

s

dt = R(C∗
s , r)L0 −Ca without cyber-insurance, and dC∗∗

s

dt = L1
L0

(R(C∗∗
s , r)L0 −

Ca) with cyber-insurance.

Fig. 2. The attacker’s optimal attack probability with and without cyber-insurance,
depending on the organization’s choice of additional cybersecurity investment in
response to attacker’s attack probability.

L1 < L0, C∗
s > C∗∗

s and R(C∗
s , r) < R(C∗∗

s , r). The relative size of dC∗
s

dt and
dC∗∗

s

dt depends. Facing the tradeoff, how cyber-insurance affects the attacker’s
optimal attack probability depends on how cybersecurity investment responds
to attack probability. Suppose (R(C∗

s , r)L0 − R(C∗∗
s , r)L1) > Ca(1 − L1

L0
), thus

dC∗
s

dt >
dC∗∗

s

dt . If cybersecurity investment is increasing in attack probability at
an increasing rate (Fig. 2a), the attacker shall decrease the attack probability
on the insured organization. If cybersecurity investment is increasing in attack
probability at a decreasing rate (Fig. 2b), the attacker shall increase the attack
probability on the insured organization. dCs

dt measures the slope of the cyberse-
curity investment curve. It would be the opposite if dC∗

s

dt <
dC∗∗

s

dt .
In summary, if the attacker holds constant attack probability, the introduc-

tion of cyber-insurance benefits the attacker by decreasing the organization’s
additional cybersecurity investment. The attacker may increase attack probabil-
ity to “induce” the organization to become insured. If the organization is already
insured, the attacker needs to choose the optimal attack probability strategically
to maximize the attack payoff. In practice, the attacker often lacks the knowl-
edge of which organization is insured. Thus, Case II in Fig. 2 is in favor of the
attacker as it justifies the consistent strategy of increasing the attack probabil-
ity regardless of whether the organization is insured or not. As counteracts, the
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organization shall consider the appropriate mechanism to adjust cybersecurity
investment in response to the attacker’s attack probability. It is also necessary
to keep the purchase of cyber-insurance private information unreleased to the
attacker.

4 Simulation Study

In this section, we conduct simulations to study the attacker’s strategies and
their impact on the organization’s strategy of cybersecurity portfolio in terms of
cybersecurity investment and cyber-insurance. In particular, we study the effects
of attack probability on the organization’s additional cybersecurity investment
and on the attacker’s expected payoffs with and without cyber-insurance.

The following function of attack success rate is used in simulations:

R(Cs, r) =
r

(αCs + 1)β
(13)

where α > 0 and β ≥ 1. R(Cs, r) is decreasing in both α and β. Such a R
function has a relatively simple functional form and satisfies all the three features
the function shall have, as specified in Sect. 3.1. For illustration purpose and
without loss of generality, we set the parameter values at α = 0.5 and β = 1.2.
The simulation results hold for all values of α > 0 and β ≥ 1.

Fig. 3. Organization benefits from additional cybersecurity investment with decreasing
attack success rate at a diminishing effect.

4.1 Attack Success Rate vs. Optimal Cybersecurity Investment
with Cyber-Insurance

Figure 3 illustrates, given attack success rate at existing cybersecurity invest-
ment, how attack success rate changes with additional cybersecurity investment.
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As shown, while attack success rate decreases with additional cybersecurity
investment, additional cybersecurity investment cannot reduce attack success
rate to zero. Recall r is the attack success rate at Cs = 0 and R(0, r) = r. Let
additional cybersecurity investment ranges between 0 and 20, R(Cs, r) decreases
when Cs increases, calculated using (13). Unless the organization is perfectly
secure that does not require additional cybersecurity investment (r = 0), the
organization that is vulnerable to cyber-threat benefits from additional cyberse-
curity investment. However, the organization cannot be 100% secure with addi-
tional cybersecurity investment.

The marginal effect of cybersecurity investment can be found by solving for
the partial derivative of (13) with respect to Cs,

R′(Cs, r) = −βαr(αCs + 1)−1−β (14)

Combining (7) and (8) with (14), we find optimal additional cybersecurity
investment without and with cyber-insurance.

C∗
s =

(αβrtL0)
1

1+β − 1
α

(15)

C∗∗
s =

(αβrtL1)
1

1+β − 1
α

(16)

Fig. 4. While optimal additional cybersecurity investment (insured or not) increases
when attack success rate (at existing cybersecurity investment) rises, cyber-insurance
actually reduces optimal cybersecurity investment and increases the critical point
(threshold) of cybersecurity investment. Organizations will not invest in additional
cybersecurity below the critical point.

Figure 4 illustrates the organization’s optimal additional cybersecurity invest-
ment given attack success rate at existing cybersecurity investment. Set t = 0.3
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and L0 = 100, three scenarios of private loss with cyber-insurance (L1 = 80,
L1 = 50, and L1 = 20) are considered. The horizontal axis measures attack
success rate at existing cybersecurity investment. The vertical axis is the orga-
nization’s optimal additional cybersecurity investment. The intersection of any
curve and the horizontal axis is the critical point or threshold of attack success
rate at existing cybersecurity investment that the organization would choose to
invest more in cybersecurity.

The organization will not choose additional cybersecurity investment (Cs =
0) if the attack success rate is below the critical point. From (15) and (16),
the optimal additional cybersecurity investment equals zero until r = 1

αβtL0

without cyber-insurance and r = 1
αβtL1

with cyber-insurance. At the specified
parameters, the former is 0.056 and the latter is 0.07, 0.11 and 0.28, at L1 = 80,
L1 = 50, and L1 = 20, respectively. As private loss decreases, the organization’s
willingness to invest in cybersecurity decreases.

Key observations from Fig. 4 include: 1) As attack success rate increases,
optimal additional cybersecurity investment increases, insured or not; 2) Being
insured decreases optimal additional cybersecurity investment. The decrease is
increasing in the coverage of cyber-insurance; 3) Being insured increases the
critical point (threshold) of additional cybersecurity investment. The threshold
is increasing in the coverage of cyber-insurance.

Fig. 5. The attacker’s expected payoff grows from having no cyber-insurance (a) to
having cyber-insurance (b and c)

4.2 Attacker’s Expected Net Payoff

To study the effects of cyber-insurance on the attacker’s expected payoff, we
adopt a simplified “high deductible + low premium” + “low deductible + high
premium” pricing model: Policy A with a bundle of {L1 = 50, Ci = 3} and Policy
B with a bundle of {L1 = 20, Ci = 7}. Figure 5 compares the attacker’s expected
payoff in three scenarios: without cyber-insurance, with cyber-insurance of high
deductible (Policy A) and with cyber-insurance of low deductible (Policy B).
The attacker’s cost function is largely composed of fixed or sunk cost in acquir-
ing knowledge and malware to launch attacks. The additional cost occurred on
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attacking one more target is small. Moreover, the fixed cost of attack is the same
with and without cyber-insurance. It is canceled out for comparison purpose. As
shown in the figure, the peak payoff increases from range 10–12 (5a) to range
14–16 (5b), then to range 25–30 (5c). The results suggest that the attacker ben-
efits from the organization’s purchasing cyber-insurance and benefits further if
the organization chooses cyber-insurance with low deductible.

4.3 Attack Strategy

For cyber-insurance, the organization chooses to purchase a policy bundle
{L1, Ci} if

R(C∗∗
s , r)t(L0 − L1) ≥ Ci (17)

From (13),
R(C∗∗

s , r) =
r

(αC∗∗
s + 1)β

(18)

Combined with (16),

R(C∗∗
s , r) =

r

(αβrtL1)
β

1+β

(19)

Combined with (17), we can find that an insurance policy {L1, Ci} is bene-
ficial to the organization facing attack probability

t ≥ {Ci(αβrL1)
β

1+β

r(L0 − L1)
}1+β (20)

where the right-hand side is the critical point (threshold) that the attacker may
choose to trigger the organization to buy cyber-insurance.

Note (20) also provides insights on the role of parameters’ configuration on
organization’s choice of cyber insurance and the attacker’s best response. The
condition would fail when the right-hand term is larger than one that could occur
at Ci(αβrL1)

β
1+β > r(L0−L1), in which case, the organization would not choose

cyber insurance regardless of the attacker’s strategy. The cyber-insurance-policy
specifications {L1, Ci} are among the key variables determining the value of
the right-hand term. In a way, the attacker and the insurer may have aligned
interests to make the organization choose cyber insurance, hence the efforts of
insurance companies to promote cyber insurance can serve the purposes of cyber
attackers.

Figure 6 shows the critical point (threshold) of attack probability at various
attack success rate at existing cybersecurity investment and various available
cyber-insurance policy options. The organization will not buy cyber-insurance if
the attack probability is below the threshold. The threshold attack probability
decreases if the organization is more vulnerable to cyber attacks (higher attack
success rate). In the case the calculated threshold attack probability is above 1,
the organization does not buy cyber-insurance regardless.
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Fig. 6. If the attack probability is below the critical point (threshold), the organiza-
tion will not buy cyber-insurance. The attacker may strategically choose an attack
probability that will trigger the organization to buy cyber-insurance that benefits the
attacker.

Fig. 7. Manipulating attack probabilities may significantly increase organization’s total
cybersecurity expenditure through purchasing cyber-insurance at the critical point.
The share of cybersecurity investment may also be decreased significantly at the crit-
ical point of attack probability due to purchasing cyber-insurance and bounces back
gradually after being insured.

4.4 Cybersecurity Portfolio

Lastly, we simulate how the organization’s cybersecurity portfolio in terms
of total expenditure on both cybersecurity investment and cyber-insurance is
affected by the attacker’s actions. Without cyber-insurance, the organization’s
spending on cybersecurity investment is C∗

s as in (15). When the organization
buys cyber-insurance, its total expenditure is C∗∗

s + C∗
i .

Figure 7a illustrates how the organization’s total cybersecurity expendi-
ture changes with attack probability. Total cybersecurity expenditure increases
regardless, indicating an increased spending on cybersecurity when the organiza-
tion faces increased attack probability. At the parameters used in the simulations,
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especially the significant premium compared to optimal additional cybersecurity
investment, total cybersecurity expenditure increases sharply at the critical point
after buying cyber-insurance.

Figure 7b is cybersecurity investment as a fraction of the total expenditure.
The share of cybersecurity investment falls sharply at the critical point when the
organization buys cyber-insurance and the share bounces back as the organiza-
tion increases cybersecurity investment at increasing attack probability. Empow-
ered with the critical point (threshold), the attacker may manipulate attack
probability to trigger the organization to buy cyber-insurance thus significantly
increase the attacker’s expected payoffs.

5 Conclusion

While more and more organizations adopt cyber-insurance, the effects of cyber-
insurance on cybersecurity remains unclear. This research study focuses on a
novel angle and sheds light on the overlooked issue of the effects of cyber-
insurance from the attacker’s perspective, and studies whether the attacker
may manipulate and ultimately benefit from the cyber-insurance practice. Our
research models a game between the attacker, whose strategy is to control attack
probability, and the organization, whose strategy is to choose optimal cybersecu-
rity portfolio consisting of both cybersecurity investment and cyber-insurance.
The economic modeling analysis and simulation study suggest that although
cyber-insurance may be beneficial for the insured organization from a financial
perspective, cyber-insurance may not always be the best from the cybersecu-
rity perspective. Especially, the attacker may benefit from cyber-insurance with
higher expected payoff from increased attack success rate resulting from the orga-
nization’s reduced optimal security investment. This paper contributes further
by identifying the critical point (threshold) of such attack probability for orga-
nizations to switch to cyber-insurance practice, therefore significantly increase
the cyber attack payoffs. In the future we plan to focus on the extension and the
application of the model. For example, the details of cyber insurance policies will
be explored by relating the premiums and deductibles to the risks. Self insur-
ance may be included as an alternative in addition to prevention/mitigation and
market insurance. Our future work will also study how the development of the
cyber-insurance market shall take into account the implications of the market
to the attacker and the counteracts to prevent the possible manipulation of the
market by the attacker.
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Abstract. In many real world situations, like minor traffic offenses in
big cities, a central authority is tasked with periodic administering pun-
ishments to a large number of individuals. Common practice is to give
each individual a chance to suffer a smaller fine and be guaranteed to
avoid the legal process with probable considerably larger punishment.
However, thanks to the large number of offenders and a limited capac-
ity of the central authority, the individual risk is typically small and a
rational individual will not choose to pay the fine. Here we show that if
the central authority processes the offenders in a publicly known order,
it properly incentives the offenders to pay the fine. We show analyti-
cally and on realistic experiments that our mechanism promotes non-
cooperation and incentives individuals to pay. Moreover, the same holds
for an arbitrary coalition. We quantify the expected total payment the
central authority receives, and show it increases considerably.

Keywords: rule enforcing · mechanism design · non-cooperation

1 Introduction

In this work, we study a special case of a classic dilemma, how to effectively
enforce a rule in a large population with only a very small number of enforcing
agents. This task is impossible if the large population cooperates and thus a
critical aspect of any suggested mechanism is the promotion of non-cooperation.
A well-known count Dracula way is to make the punishment for breaking the
rule extremely severe. We suggest an alternative mechanism, for a special case
of the dilemma motivated by collecting fines for traffic violations.

In many large cities, there is a huge number of traffic offences, highly exceed-
ing the capacity of state employees assigned to manage them. The assigned state
employees should primarily concentrate on serious and repetitive offenders. How-
ever, a large number of minor offences are still to be settled which makes the
former considerably harder. A common practise is that a smaller fine is assigned
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in an almost automated way and if an offender settles this fine then the legal
process does not start. Otherwise, the legal process should start with consid-
erably larger cost for the offender. The offence is also forgotten after a certain
judiciary period.

However, thanks to the limited capacity of state employees, legal processes
for non-repetitive minor traffic offenses are typically enforced in a small number
of cases1. The individual risk is thus small and a large fraction of the offenders
choose to ignore the fine. In this paper, we propose a simple mechanism which
properly incentives the offenders to pay the fine even under these conditions.

1.1 Main Contribution

In our proposed mechanism, the central authority processes the offenders in a
given order. Each offender is aware of his position in this ‘queue of offenders’
and has the option of publicly donating money to a fund of traffic infrastructure
or a charity predetermined by the central authority. If their total donations
amount to at least the fine, it is used to settle the offence. After the judiciary
period expires, or if the legal process is started, the fund retains the individual
donation. The central authority periodically sorts offenders in ascending order
of their average donation, and starts the legal process with those who paid the
least on average.

Compared to processing the offenders in random order, this mechanism
increases the individual risk of some offenders. This incentives them to pay the
fine, which in turn puts others in danger. We show both analytically and on real-
istic experiments that under the proposed mechanism, the strategic behaviour
of the offenders is to engage with the mechanism, and quantify the expected
revenue of the charity. Moreover, we show it is not beneficial for any group of
offenders to ignore the mechanism and share the cost of those who enter the
legal process. Finally, we study how the central authority can most efficiently
use its limited capacity to maximize the revenue of the charity.

This paper is a continuation of [1], where the authors introduced the model
studied here. We extend their work by providing a complete solution to w-Fines,
see Sect. 3, as well as producing more thorough numerical experiments.

1.2 Related Work

To our best knowledge, the field of non-cooperative mechanism design has not
been studied extensively yet. Our approach is somewhat similar to that of [2],
where the authors consider a variation of the elimination game which includes
bids. Our model can also be viewed as a generalization of the stopping games
[3], where participants choose a time to stop bidding and trade off their gain
from outlasting other players for the cost accumulated over time in the game. In
our case, the “prize” won by the lowest paying participant is cost of entering the

1 For instance, in the city of Prague considerably more than 100 000 such offenses are
dismissed every year because the judiciary period expires.
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legal process. However, both approaches did not consider the ranking of players,
which is at the core of our mechanism.

2 Problem Definition

Informally, we model the interaction of agents as a game we call Queue. Queue
consists of a finite sequence of Round, in which each agent can choose to pay,
however with some probability they forget and pay nothing. Those who paid at
least the fine in total, or spent enough time in Queue are removed. The rest is
ordered according to the amount they paid on average. A fixed number of those
at the start are then forced to pay a large penalty, and leave Queue. Let us now
define the interaction formally, starting with how Round is realized.

2.1 Round: One Step in Queue

Round is a parametric game O (N ) =O(N , F,Q, T, k, p), where N is an ordered
subset of agents2, F ∈ N is the fine, Q > F is the cost associated with entering
the legal process, T ∈ N is the judiciary period, i.e., the number of Round
instances after which agents are removed, k ∈ N is the number of agents forced
to pay Q in each Round, p ∈ [0, 1] is the probability of ignorance.

Each a ∈ N is characterized by a triplet (na, ta,ma) and his strategy πa. The
triplet corresponds to his observations—his position na in N , the number ta of
past Round games he participated in3, and his total individual payment ma in
the past Round games.

Round proceeds in three phases

1. Each agent a ∈ N , based on his observation, declares his strategy for this
Round πa ∈ ΔF+1, where Δ is the probability simplex. His payment μa is
then sampled from4

μa ∼ pσ0 + (1 − p)πa(na, ta,ma), (1)

where σν is the pure strategy of paying ν.
2. Each agent’s total payment and time is updated

ma ← ma + μa, (2)
ta ← ta + 1, (3)

and N is sorted5 according to the ratio of current total payment and time
ma/ta.

2 The agents are ordered according to their average payment in ascending order, i.e.
those who paid the least on average are sorted to the front of N .

3 This includes the current Round, i.e. ta ≥ 1.
4 This simulates that with probability p, the agent forgot to act in this Round.
5 We use stable sort, i.e. whenever there is a tie, the original order is preserved.
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3. Some agents are removed from N , which is done in three sub-phases. We call
such agents terminal and denote the set of terminal agents in this Round as
T .
(a) All agents a ∈ N with ma ≥ F are removed.
(b) First k agents in N have their ma increased by Q and are removed.
(c) All agents a ∈ N with ta ≥ T are removed.

The result of each Round is the ordered set of agents N \ T , and the set of
terminal agents T . Only the terminal agents are assigned their final utility.

Definition 1 (Utility). The utility of each agent a ∈ T is the negative amount
he paid

ua = −ma. (4)

2.2 Queue: A Game on Updating Sequences

Formally, Queue is G = G(F,Q, T, k, p, x, x0, w), where F,Q, T, k and p have the
same meaning as in Sect. 2.1, x is the number of entering agents after each Round,
x0 is the initial size of N and w is the horizon, i.e. the number of repetitions of
Round.

Queue aggregates Round in the following two simple phases. Starting with
N 1 s.t. |N 1| = x0, and ma, ta = 1 for each a ∈ N 1. We repeat them w-times.

1. The agents in N t play Round and non-terminal agents proceed to the next
iteration.

N t+1, T t+1 ← O(N t). (5)

2. x new agents enter the game

N t+1 ← N t ∪ X, (6)

where X is a set of agents with ma, ta = 0, and |X| = x. These new agents
are sorted to the end of N t+1.

In the last Round, all agents terminate, T w ← T w ∪ N w.
The new agents come from universum U . The strategy of all agents is then

given as π = ×a∈Uπa. We denote space of all such strategies as Π.
Each agents wants to choose strategy πa, which maximizes their utility in G

given strategies of other agents π−a. A strategy profile π ∈ Π is an equilibrium,
if no agent can increase his utility. Formally,

Definition 2 (ε-Equilibrium). π ∈ Π is an ε-equilibrium of G if ∀ π ∈ Π,
∀t ∈ {1, . . . w} and ∀a ∈ T t,

Eπ [ua(π)] ≥ E(πaπ−a) [ua(πa, π−a)] − ε. (7)

We note that the equilibrium always exists which can be shown by a standard
transformation to a normal form game.
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2.3 Avalanche Effect

Intuitively, every agent wants to pay as little as possible, while avoiding paying
Q. This translate to paying more than the others. However, if all agents adapt
this reasoning, the only option to avoid paying Q is to pay F . We formally show
this in Sect. 3.1.

Crucially, not all other agents can use this reasoning thanks to the probability
of ignorance. But as that vanishes, the agents should be incentivised to pay more.
Similarly, if the number of entering agents increases, so should the total payment.
We formally capture this in the avalanche effect.

Definition 3 (Avalanche effect). We say that Queue exhibits the avalanche
effect if at least one of the following holds in equilibrium when changing p, or x.

1. The expected terminal payment of all agents is increasing with p → 0+

lim
p→0+

d
dp

∑

a∈T
ma < 0. (8)

2. The expected terminal payment of all agents decreases slower than 1/x

d
dx

∑

a∈T
ma > 0, ∀x > 0. (9)

2.4 Division Problem

In our model, the judiciary period is split into T equal time intervals and sorted
at the start of each interval. The central authority can process kT offenders over
the judiciary period, and xT will enter the system.

The central authority can influence the system in two ways.

1. it can choose how often the sorting takes place, and
2. it can virtually split the entering offenders into g groups of size x/g, and

process k/g offenders in each.

The Division problem is how to set T and g to maximize the expected revenue
the central authority receives. We refer to the two cases as Time-Division problem
and Group-Division problem respectively.

3 Analytic Solution

As described in Sect. 1, the individual risk when the central authority processes
the agents in random order is typically small, i.e. kQ/|N | 	 F . Each agent is
also guaranteed to pay kQ/|N | if everyone cooperates and shares the costs of
those entering the legal process. Let us begin by showing that this is not the case
in our proposed system. That is, there is no coalition can benefit from choosing
to pay nothing and share the cost of those forced to pay Q. In our setting, this
is analogous to coalition proofness.
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Proposition 1. Let A be a set of agents using strategy πa = σ0 ∀a ∈ A, and
sharing the cost, i.e. their utility becomes

ũa = − 1
|A|

w∑

i=1

∑

a∈A∩T i

ma,∀a ∈ A.

If ũa < 0, then ∃a′ ∈ A s.t. a′ can deviate and increase his utility.

Proof. We split the proof into two parts according to how much an individual
needs to contribute.

1. 0 > ũa > Q: In this situation, not all agents of A were forced to pay Q.
Consider the agent a′ ∈ N who terminated last. Then, since a′ paid zero, his
original utility is zero and ũa < ua. Therefore, a′ would benefit from leaving
the coalition A.

2. ũa = −Q: In this case, all agents were forced to enter the legal process. Any
a ∈ A would therefore benefit from paying the fine, since then his utility is
ua = −F > −Q = ũa.

While existence of an analytic solution of Queue remains an open question,
we can find it in certain special cases.

3.1 Active Participants

Let us first focus on a situation when no agent forgets to participate in Round,
i.e. p = 0. Then it is easy to see that πa = σF is unique equilibrium. Consider
the first agent a ∈ N in the first Round, who chose to pay μa < F . Then he is
forced to pay Q, resulting to utility ua = −Q−μa < −F . Therefore, switching to
paying F is beneficial and the strategy of paying μa < F is not an equilibrium.
This means all agents will pay F in the first Round, and the situation thus repeat
in the following Round.

3.2 w-Fines: Special Case of Queue

Let us focus on the system without the introduction of the option to donate a
portion of the fine. Thus after scaling currency we can let F = 1, and there are
only two pure strategies σ0, σF the agents can take. If now T = w and no agents
are added after each Round x = 0, we call the game w-Fines.

Definition 4 (w- Fines). We refer to reduced Queue

F(w,F,Q, k, p, x0) = G(F,Q,w, k, p, 0, x0, w)

as w-Fines.

We begin by showing a crucial property of w-Fines.
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Lemma 1. In the w-Fines, the expected payment of ∀a ∈ N depends only on
the actions of agents in front of a.

Proof. If a pays zero, he remains in the Queue and is sorted in front of agents
who were behind him. He is potentially forced to pay Q, depending on the actions
of agents in front of him. If he pays F = 1, he is removed. In either case, the
actions of agents behind a have no impact on his payment. ��

In each Round, a ∈ N has na−1 agents in front of him. Due to the probability
of ignorance, even if all the agents decide to pay, a can estimate the probability
that at most k − 1 will forget. If that happens, a will be forced to pay Q in this
Round. Formally,

Definition 5. Let n be a positive integer. We denote by α(p, n, k) the probability
that in n − 1 independent coin tosses with the head probability p, the number of
heads is less than k.

Since α will be important in the following discussion, we briefly mention some
of its properties.

Lemma 2. Let k < np, then α(p, n + 1, k) ≤ e− (np−k)2

2np .

Proof. Let ξi denote the random variable such that

ξi =

{
1 w.p. p,

0 otherwise,

and ξn =
n∑

i=1

ξi. Thus, E[ξi] = p and E[ξn] = np. As per the Chernoff bounds,

P[ξn ≤ (1 − δ)np] ≤ e
−δ2np

2 , for all 0 < δ < 1. Thus α(p, n + 1, k) = P[ξn ≤ k] ≤
e−(1− k

np )2np/2 = e− (np−k)2

2np .

Proposition 2. If α(p, n, k) ≤ F/Q ≤ 1
4 then np > k. Moreover for each posi-

tive integer w and large enough n, α(p, n, k) ≥ α(p,wn,wk).

Proof. For γ ∼ B(n, p) if p < 1 − 1
n , then 1

4 < Pr(γ ≤ np) [4]. Therefore, when
1
4 ≥ F

Q , then k < np. Further, we note that Lemma 2 is tight for large enough

np. Hence, it suffices to prove the proposition for the upper bound e− (np−k)2

2np for
which the statement clearly holds.

Finally, we report a result that strengthens the second part of Proposition 2
for w = 2.

Theorem 1. α(p, n, k) ≥ α(p, 2n, 2k) for 1 ≤ k < np − p.

The proof can be found in Appendix A.
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Single Sorting Instance. We start by analysing the 1-Fines game, which is
equivalent to one Round. In this case, when an agent is sufficiently far from the
start of N , it is beneficial to pay nothing, while near the start it is beneficial to
pay and avoid paying Q. The boundary between the two will prove important.

Definition 6 (Critical strategy). Let r > 0 be the smallest integer such that
α(p, r, k)Q ≤ F . Then r is called critical position.

The critical strategy is

πcrit
a (na, ta,ma) =

{
σF if α(p, na, k)Q > F,

σ0 otherwise.
(10)

We note that ta = 1 and ma = 0 ∀a ∈ N for 1-Fines. We will show that πcrit
a is

the only equilibrium of the 1-Fines. First, we define αcrit as the probability with
which an agent is forced to pay Q when all agents follow πcrit

a .

Proposition 3. Let r be the critical position. Then if all agents but a follow
πcrit

b , and a uses σ0, then a is forced to pay Q w.p.

αcrit(p, r, na, k) =

{
α(p, na, k) if na < r,

α(p, r, k − (na − r)) otherwise.
(11)

Proof. Fix a ∈ N . When α(p, na, k) > F/Q (i.e. na < r), then agents in front
of a pay F and thus a will not pay Q only if enough of them forget. If na ≥ r,
then na − r agents choose not to pay. Therefore, a only needs k − (na − r) of the
r agents to forget. ��
Observe that αcrit ≤ α, since some agents may choose to pay zero. Also, by
Definition 5, αcrit = 0 for na > r + k.

Proposition 4. Let r be the critical position and let all agents follow πcrit
a ,

except for a ∈ N , whose strategy is πa = (q, 1 − q). Then the expected payment
of a is

(1 − p − q)F + (p + q)αcrit(p, r, na, k)Q. (12)

Proof. By definition of πa, a pays F w.p. 1 − p − q and he does not forget. If he
does, or pays zero w.p. q, he is forced to pay Q w.p. αcrit(p, r, na, k). ��
Corollary 1. Let r be the critical position and let all agents follow πcrit

a . Then
the expected payment of a ∈ N is

G1
a(p, na, k) =

{
(1 − p)F + pαcrit(p, r, na, k)Q, if na < r,

αcrit(p, r, na, k)Q, otherwise.
(13)

Theorem 2. The strategy πcrit
a is unique equilibrium of 1-Fines.

Proof. Consider a ∈ N in the sorted order. We will show by induction πcrit
a is

a unique best-response to strategies of agents in front of a given agent. For the
first agent, πcrit

a clearly maximizes the utility −Ga of a. In the induction step
we assume a′ in front of a follow πcrit

a . Following Lemma 1, the actions of the
others can be arbitrary. Observe the πcrit

a minimizes the expected payment (12).
Thus a wants to follow πcrit

a . ��
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More Sorting Instances. In this section we present analytic solution of the
general w-Fines game, w ≥ 1. We start by defining extension of πcrit

a , and showing
no agent can benefit by deviating from it. Later, we discuss some properties of
this analytic solution.

In w-Fines, no agents are added after sorting. After the first Round the
game is thus identical to (w − 1)-Fines. This recursive relation motivates us to
introduce the analogues of the variables used in the previous section recursively.
We use upper index to denote the game length w and number of Round, i.e. in
the previous section we would use r1,1 for the critical position r.

We extend Definition 6 of critical strategy to pay F if a’s position is in
front of some critical position rw,t, defined below. Note that since the second
Round corresponds to (w − 1)-Fines, rw,l = rw−1,l−1 for l > 1 and in particular
rw,w = · · · = r2,2 = r1,1 = r.

Definition 7 (w-Critical strategy). The w-critical strategy is

πcrit,w
a (na, ta,ma) =

{
σF if na < rw,ta ,

σ0 otherwise.
(14)

Let all agents follow πcrit,w
a . Then if w > 1 and a ∈ N 1 does not terminate in

the first Round, his expected payment in the remaining w − 1 rounds is

Gw
a (p, na, k) = Eγ∼B(min(na,rw,1)−1,1−p)[Gw−1

a (p, na − γ − k, k)], (15)

where Gw−1
a is the recursive extension of the expected payment G1

a (see Corol-
lary 1). A formula for Gw

a is given in Proposition 5 below.
In words, since all agents positioned in front of min(na, rw,1) want to pay

F , a’s position decreases by γ + k, γ ∼ B(min(na, r2,1) − 1, 1 − p). At the new
position, a is expected to pay Gw−1

a .

Proposition 5. Let all agents follow πcrit,w
a , and w > 1. Then the expected

payment of an agent a ∈ N is

Gw
a (p, na, k) =

{
(1 − p)F + pXw(p, rw,1, na, k), if na < rw,1,

Xw(p, rw,1, na, k), otherwise,
(16)

where
Xw(p, rw,1, na, k) =

αcrit(p, rw,1, na, k)Q + (1 − αcrit(p, rw,1, na, k))Gw
a (p, na, k)

is a’s expected payment if he does not pay F in the first Round.

It remains to determine critical positions rw,l. Recursively, rw,l = rw−1,l−1 for
l > 1. Hence it remains to define rw,1. Similarly to Definition 6, we define
the critical position in the first Round as the smallest rw,1 ∈ N such that
α(p, rw,1, k)Q + (1 − α(p, rw,1, k))Gw

a (p, rw,1, k) ≤ F .
In words, assume all agents in front of a want to pay F . In the first Round, if

a pays zero he risks paying Q w.p. α and the expected payment in the remaining
rounds w.p. 1−α. The critical position rw,1 is the smallest position na at which,
assuming all agents in front of it try to pay F , it is beneficial to pay zero.
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Lemma 3. Let w > 1. Then rw,1 ≥ rw−1,1 + k.

Proof. By definition, rw,1 is the smallest integer such that α(p, rw,1, k)Q + (1 −
α(p, rw,1, k))Gw

a (p, rw,1, k) ≤ F . For a contradiction we assume that rw,1 <
rw−1,1 + k. It suffices to show that Gw

a (p, rw,1, k) > F since this inequality along
with Q > F violates the defining property of rw,1.

If rw,1 − k < rw−1,1 then for each γ ≥ 0,

Gw−1
a (p, rw,1 − γ − k, k) = (1 − p)F + pXw−1(p, rw−1,1, rw,1 − γ − k, k),

see Proposition 5. Moreover, by the defining property of rw−1,1

Xw−1(p, rw−1,1, rw,1 − γ − k, k) > F.

Hence for each γ ≥ 0,

Gw−1
a (p, rw,1 − γ − k, k) > F

and thus Gw
a (p, rw,1, k) > F . ��

We are now ready to show the main result of this section.

Theorem 3 (Equilibrium of w-Fines). πcrit,w
a is unique equilibrium of w-

Fines.

Proof We proceed by induction on w. For w = 1 we use Theorem 2. After the first
Round, the game corresponds to (w−1)-Fines and there is a unique equilibrium
by the induction assumption. In the first Round, we can use a modification of
proof of Theorem 2: consider agents of N 1 in the sorted order and use induction
over agents. For an agent a ∈ N 1 let his strategy be πa = (q, 1 − q) in the first
Round, he follows πcrit,w

a from the second Round, and let all agents in front of
him follow πcrit,w

a . Then his expected payment is

(1 − p − q)F + (p + q)Xw(p, rw,1, na, k), (17)

This is because w.p. 1 − p − q he pays F and leaves. Otherwise, since all
agents in front of him follow πcrit,w

a , and he also follows πcrit,w
a from the second

Round, his expected payment is Xw(p, rw,1, na, k).
Strategy πcrit,w

a is chosen to minimize a’s expected payment (17). Therefore,
a will follow it even in the first Round. ��

Proposition 6. Let w > 0 be an integer and let all players follow πcrit,w
a . Then

the total expected payment of w-Fines is

wkQ + F (1 − p)
w∑

t=1

(rt,1 − 1). (18)

Proof. In the first Round, (1 − p)(rw,1 − 1) agents are expected to pay F , and
k are forced to pay Q. In the remaining rounds, the situation is analogous. ��
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Theorem 4. Equilibrium strategies of all w-Fines exhibit the avalanche effect.

Proof. Since limp→0+ α(p, n, k) = 1 and Q > F , the critical position in the last
Round rw,w → ∞. Using Lemma 3, the equilibrium strategies of all w-Fines
satisfy πcrit,w

a → σF ∀w ≥ 1. Thus, πcrit,w
a satisfies Definition 3. ��

In this simplified model, decreasing the probability of ignorance virtually
increases the number of state employees assigned to processing the fines. This
allows the central authority to increase the total payment through advertising,
rather than hiring additional employees, which may be much cheaper. We show
in Sect. 4 that these results translate well to a more general case where non-zero
number of agents enter the system in each Round.

Division Problem. To give a partial answer to the Division problem in this
setting, we will compare the total expected payment of w-Fines with k, and
1-Fines with wk.

Theorem 5. Let Q � F . Then the equilibrium strategy of F(w,F,Q, k, p, x0)
achieves a higher total payment than the equilibrium of F(1, F,Q,wk, p, x0) in
expectation by at least F (1 − p)w[k(w − 1) − 1].

Proof. By Proposition 6 and Lemma 3, the expectation of the total payment of
F(w,F,Q, k, p, x0) is at least

wkQ + F (1 − p)
w∑

t=1

(r1,1(k) − 1) + (t − 1)k,

while the expectation of the total payment of F(1, F,Q,wk, p, x0) is

wkQ + F (1 − p)(r1,1(wk) − 1).

To finish the proof, we note that by Proposition 2, if Q � F then wr1,1(k) ≥
r1,1(wk). ��

4 Experiments

We investigate two approaches based on how the agents choose their payments.
In Sect. 4.1, we define a simple strategy based on how the agent’s position changes
over the course of the Queue. In Sect. 4.2, we use reinforcement learning to obtain
a strategy which approximates equilibrium. In both cases we simplify the model
by assuming the function πa is the same for all agents. The code is available at
GitHub.

https://github.com/DavidSych/Rule_Enforcing_Through_Ordering/tree/master
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4.1 Basic Rational Strategy

To model behaviour of real decision makers, we introduce basic rational strategy
(BRS). Informally, each agent keeps track of a quantity he is willing to pay in
each Round. If, based on his shift in Queue since last Round, he determines he
will reach the beginning before T steps, his willingness to pay increases. Formally,

Definition 8 (basic rational strategy). Let a ∈ N , (n′
a, t′a,m′

a) be the obser-
vation of a in previous Round, and (na, ta,ma) his current observation. We call
ωa the willingness to pay of a. In the first Round a participates in, i.e. when
ta = 0, his willingness to pay is ωa = 0. In subsequent Round games, the will-
ingness to pay is updated before declaring πa according to

ωa ←
{

min(F − ma, ωa + 1), na < (na − n′
a)(T − ta),

max(0, ωa − 1), otherwise.
(19)

The strategy of a is to pay ωa, i.e. πa = σωa .

Note that this is a generalization of the approach introduced in Sect. 2.1, as πa

is not a function of only the observation in the current Round, but also depends
on history. This makes this strategy non-Markovian. As such, the Definition 2
does not apply. However, in our experiments we simply assess the effect of agents
using BRS, and make no claims regarding its optimality.

4.2 Reinforcement Learning

In order to approximate an equilibrium of Queue, we employ an iterative algo-
rithm. In each iteration, the algorithm approximates πa such that

πa ∈ argmax E(πa,π−a) [ua(πa, π−a)] . (20)

In words, we find πa such that it maximizes utility of a, assuming N \{a} follow
π. We denote as τ the iteration of the learning algorithm and πτ the strategy
the algorithm approximates the best-response against in iteration τ .

We use Proximal policy optimization (PPO) [5] to find π, utilizing trajectories
of all terminal agents for the update. For details on our implementation, see
Appendix B. This approach is not guaranteed to converge in general but if it
does converge, the resulting strategy is an equilibrium [6]. Similar approach was
successfully used before [7].

NashConv. In order to quantify the quality of the learned solution, we adapt
the notion of NashConv [8]. NashConv measures the negative difference in utility
agents are expected to receive under πτ and the approximate best-response πτ+1.
We approximate the latter by having a fraction of agents ρ follow πτ+1 while
the rest follows πτ . Formally,
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Fig. 1. Evolution of NashConv during training, averaged over one hundred random
seeds. The colored ares show standard error. (Color figure online)

Definition 9 (NashConv). Let each agent added to Queue follow πτ+1 w.p. ρ
and πτ otherwise. Let N be the set of agents following πτ+1 and their expected
utility

BRU(ρ, πτ+1, πτ ) = E(
πτ+1
N ,πτ

−N

) [
ua(πτ+1

a , πτ
−a)|a ∈ N

]
.

Then
NashConvτ (ρ) = BRU(ρ, πτ+1, πτ ) − Eπτ [ua(πτ )] . (21)

NashConv and ε-equilibrium are closely connected – if ρ is small enough such
that |N | 	 |N |, then NashConv ≈ ε. In Fig. 1 we present a representative
example of the evolution of NashConv during training. We averaged the results
over one hundred random seeds, and also show the standard error. The results
suggest that, although there is a considerable amount of noise, the algorithm was
able to reach a sufficiently close approximation of the equilibrium. Moreover, we
verified this trend translates to other experiments presented below.

4.3 Results

In this section, we numerically demonstrate the Avalanche effect and the Division
problem. Specifically, we show the total expected revenue, which is given as
Eπ

[∑
a∈T ma

]
. Unless stated otherwise, we use F = T = 4, Q = 6, x = x0 = 32,

k = 2 and p = 1/2 in all our experiments. Note that with these parameters if
the ordering is not introduced6, the individual risk in the first Round is kQ/x =

6 That is if the agents in N t which are forced to pay Q are selected at random.
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Fig. 2. Expected total payment of terminal agents for varying probability of ignorance
p (left) and number of incoming offenders x (right) averaged over ten random seeds and
showing also the standard error. The figures demonstrate the Avalanche effect defined
in Sect. 2.3.

0.375 	 F . Thus it is not rational to pay F and the revenue of the central
authority would be kQ = 12.

Note that the standard error is considerably high in all figures presented
below. This is partly due to the noise introduced by the learning algorithm,
which (if convergent) find a course correlated equilibrium. As these may vary
significantly in e.g. social welfare, similar variance can be expected in our case.

Avalanche Effect. In Fig. 2 we show the total expected payment as a function
of the probability of ignorance p, and the number of entering agents x. The
results suggest that the Queue exhibits the Avalanche effect in a general setting.
In fact, it exhibits both properties of Definition 3. Interestingly, the learned
solution achieves a considerably higher total payment compared to BRS.

Division Problem. In this section, we numerically study the Division problem
introduced in Sect. 2.4. Results for both the Time- and Group-Division problem
are presented in Fig. 3.

For the Time-Division problem, BRS seems to drastically overpay the learned
strategy if the sorting is frequent, i.e. T is large. On the other hand, when T is
small the willingness to pay doesn’t increase. This leads to paying only kQ = 48
for T = 1, while the learned strategy prefers to pay more. When the game is
sorted more often, the learned strategy seems to favor lower total payments.

In the Group-Division scenario, both BRS and the learned strategy pay less
in larger system. Splitting the game into several smaller thus increases the total
payment of the offenders. This is in agreement with the analytic solution pre-
sented in Sect. 3.2, suggesting the incoming agents don’t impact Queue much.
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Fig. 3. Expected total payment of terminal agents for varying number of sortings T
(left) and number of splits g (right). The results are averaged over ten random seeds
and the colored areas show standard error. The figures investigate the Division problem
defined in Sect. 2.4. (Color figure online)

Exploitability of Basic Rational Strategy. The BRS is a heuristic designed
to capture realistic behaviour of humans. However, it is not guaranteed to make
optimal decisions. In this section, we investigate exploitability of BRS. Specifi-
cally, we let 90% of the agents follow BRS, with the rest refining their strategy
using PPO. We compare the expected payment of agents following each of the
strategies after convergence. We present our results in Fig. 4 for varying proba-
bility of ignorance p and number of entering agents x. In all cases the learning
algorithm is able to find strategy which achieves vastly lower expected payment,
suggesting the BRS is quite exploitable.

Fig. 4. Expected total payment of terminal agents for varying probability of ignorance
p (left) and number of incoming offenders x (right) averaged over ten random seeds and
showing also the standard error. The training was done with 90% of agents following
BRS., i.e. approximating best-response to BRS.
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5 Conclusion

In this work, we suggest a simple mechanism for rule enforcing, like collecting
fines for traffic violations in large cities, by a small number of administrators.
We show analytically and on realistic experiments that this simple mechanism
exhibits the Avalanche effect and thus supports non-cooperation of offenders.
We quantify the fines collection in expectation. Finally, we present some initial
results towards understanding the effective use of the administrators, i.e., the
Division problem.

Future Work: Further study of the Division problem, in particular possible
strengthening of Lemma 3 is our work in progress.

We see a limitation of our numerical approach in that we limit ourselves to
scenarios where all agents share the same strategy πa. We would like to improve
on our results by having each agent follow one of a few leaders, similar to how
we investigated exploitability of BRS.

A Proof of Theorem 1

Theorem 1 α(p, n, k) ≥ α(p, 2n, 2k) for 1 ≤ k < np − p.
We will prove the theorem in a sequence of lemmas. Note that α(p, n, k) =

P[X ≤ k] for X ∼ B(n − 1, p).

Lemma 4. For random variables X ∼ B(n, p) and Y ∼ B(2n, p) and 1 < k <
np, we have P[X ≤ k] ≥ P[Y ≤ 2k].

Proof. We make use of the Camp-Paulson approximation [4,9] to the normal
distribution for a binomial distribution which states that for X ∼ B(n, p)

∣∣∣∣P[X ≤ k] − Φ
(

c − m

θ

)∣∣∣∣ ≤ 0.007√
np(1 − p)

,

where c = (1 − b)r
1
3 ,m = 1 − a, θ =

√
br

2
3 + a, b = 1

9(k+1) , a = 1
9(n−k) , r =

(k+1)(1−p)
p(n−k) , and Φ(x) = 1√

2π

∫ x

−∞e− t2
2 dt.

Since Φ is an increasing function it suffices to show the inequality between
the arguments of Φ for k < np. We define r(n, x) = (x+1)(1−p)

p(n−x) , c(n, x) =(
1 − 1

9(x+1)

)
r(n, x)

1
3 = 9x+8

9(x+1)r(n, x)
1
3 , m(n, x) = 1 − 1

9(n−x) and θ(n, x) =
√

1
9(x+1)r(n, x)2/3 + 1

9(n−x) .

Thus we need to show that c(n,x)−m(n,x)
θ(n,x) > c(2n,2x)−m(2n,2x)

θ(2n,2x) for k < np. We
prove this in two parts. Our first claim will show that there is a Kn < np, where
c(n, x) − m(n, x) is zero. ��

Claim. c(n, x) − m(n, x) is an increasing function of x for 0 < x < n and there
exists Kn < np such that c(n, x) < m(n, x) for all x < K and c(n, x) > m(n, x)
for all x > K.
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Proof. It is easy to see that for 0 < x < n, r(x) and c(x) are increasing functions
and m(n, x) is a decreasing function. Thus for 0 < x < np we have 1 > m(n, x) ≥
1 − 1

9(n−np) and (1 − 1
9(x+1) ) ≤ (1 − 1

9(np+1) ). We first find the condition for

x > 0 such that r(n, x) <
(

y−1
y

)3

for some y > 0. Note here that we can

assume that such an x exists as we are assuming p > 1
n . The inequality holds

for all x < np(y−1)3−y3(1−p)
y3(1−p)+p(y−1)3 . Since y > 0, we have that the inequality holds

for all x < np
(

y−1
y

)3

− 1 + p. Thus for y = 9(n − np) we have, c(n, x) =
9x+8
9(x+1)

(
1 − 1

9(n−np)

)
< m(n, x).

c(n, np) =
9np + 8

9(np + 1)

(
(np + 1)(1 − p)

p(n − np)

)1/3

=
9np + 8

9(np + 1)

(
np + 1

np

)1/3

≥ 9np + 8
9(np + 1)

(
np + 1

np

)1/3

=
9np + 8

9np

(
np

np + 1

)2/3

=
(

1 +
8

9np

)(
np

np + 1

)2/3

It is easy to see that
(
1 + 8

9x

) (
x

x+1

)2/3

> 1 for all x > 0. Thus c(n, np) > 1 >

m(n, np). This proves the claim. ��

Notice that Kn is very close to np but nevertheless lower than np. We are now
ready to partly prove Theorem 1.

Lemma 5. For 0 < x < K2n

2 , c(n,x)−m(n,x)
θ(n,x) > c(2n,2x)−m(2n,2x)

θ(2n,2x) .

Proof. To do this we see some properties of c(n,x)−m(n,x)
θ(n,x) . Individually the func-

tions compare as follows for 1 ≤ x < n.

(
θ(2n, 2x)
θ(n, x)

)2

=
1
2

(
x + 1
2x + 1

)1/3 (2n − 2x)1/3(1 − p)2/3 + (2x + 1)1/3p2/3

(n − x)1/3(1 − p)2/3 + (x + 1)1/3p2/3

≤ 1
2

(
x + 1
2x + 1

)1/3 (2n − 2x)1/3(1 − p)2/3 + (2x + 2)1/3p2/3

(n − x)1/3(1 − p)2/3 + (x + 1)1/3p2/3

≤ 1
22/3

(
x + 1
2x + 1

)1/3

< 1

Also c(n,x)
c(2n,2x) = 21/3

(
9x+8
18x+8

)(
2x+1
x+1

)2/3

> 1 as this is a decreasing function

for x > 0 with its limit at 1, and m(n, x) − m(2n, 2x) = 1
9(2n−2x) − 1

9(n−x) =
− 1

9(2n−2x) < 0.
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Thus we have c(2n, 2x) − m(2n, 2x) < c(n, x) − m(n, x). It follows that
Kn ≤ K2n

2 . Thus for x ≤ Kn we have θ(2n,2x)
θ(n,x)

c(n,x)−m(n,x)
c(2n,2x)−m(2n,2x) < 1 i.e.,∣∣∣ c(2n,2x)−m(2n,2x)

θ(2n,2x)

∣∣∣ ≥
∣∣∣ c(n,x)−m(n,x)

θ(n,x)

∣∣∣ but both quantities are negative and so
c(2n,2x)−m(2n,2x)

θ(2n,2x) ≤ c(n,x)−m(n,x)
θ(n,x) . For Kn < x < K2n

2 we have c(2n,2x)−m(2n,2x)
θ(2n,2x) ≤

0 ≤ c(n,x)−m(n,x)
θ(n,x) . ��

Lemma 5 allows us to state a weaker result.

Corollary 2. For random variables X ∼ B(n, p) and Y ∼ B(n + �n/p� , p) and
k < max{n

2 , np}, we have P[X ≤ k] ≥ P[Y ≤ 2k].

Proof. The proof follows from the fact that n + n
p > 2n and 2x < (np +

n)
(

9n
p −9np−1

9n
p −9np

)
− 1 + p < Kn+n

p
. ��

Now we can complete the proof of Theorem 1.

Proof (of Theorem 1). Notice that c − m and θ are monotonically increasing in
x. The difference between using n and 2n is just the rate of increase. We have
shown for x < K2n, (c − m)(n, x)θ2(2n, 2x) > (c − m)(2n, 2x)θ2(n, x). Now we
show the inequality holds for x = np, i.e., the two functions haven’t crossed each
other.

Define r1 = np+1
np , r2 = 2np+1

2np , b1 = 1
9(np+1) , b2 = 1

9(2np+1) , a = 1
18(n−np) ,

θ1 = b1r
2/3
1 + 2a and θ2 = b2r

2/3
2 + 2a. Thus we have

1 ≤ r1
r2

= 2
(

np + 1
2np + 1

)
=

2b2
b1

≤ 2 (22)

(c − m)(n, np)θ2(2n, 2np)− (c − m)(2n, 2np)θ2(n, np)

= ((1− b1)r
1/3
1 − 1 + 2a)θ2 − ((1− b2)r

1/3
2 − 1 + a)θ1

=
21/3(2np + 1)1/3(9np + 8)(n − np)− 22/3(np + 1)1/3(18np + 8)(n − np)

81[(np + 1)(2np + 1)]2/32np(n − np)

+
2[2np(np + 1)]2/3 − 2[np(2np + 1)]2/3 + 18(np + 1)21/3[np(2np + 1)]2/3]2/3

81[(2np + 1)(np + 1)]2/3(2np)(n − np)2

− 18(2np + 1)[2np(np + 1)]2/3

81[(2np + 1)(np + 1)]2/3(2np)(n − np)2

+
18(n − np)[np(np + 1)]1/3(2np + 1)2/3 − 9(n − np)[2np(2np + 1)]1/3(np + 1)2/3

81(n − np)[(np + 1)(2np + 1)]2/3(2np)

+
9[(np + 1)(2np + 1)]2/3(2np) + 2(np + 1)2/3(2np + 1)1/3(2np)1/3

81(n − np)[(np + 1)(2np + 1)]2/3(2np)2

− 2(np + 1)1/3(2np + 1)2/3(np)1/3

81(n − np)[(np + 1)(2np + 1)]2/3(2np)2
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Using p3 − q3 = (p − q)(p2 + pq + q2) we have,

21/3(2x + 1)1/3(9x + 8) − 9[2x(2x + 1)]1/3(x + 1)2/3

= 21/3(2x + 1)1/3[8 + 9x1/3(x2/3 − (x + 1)2/3]

= 21/3(2x + 1)1/3

[
8 +

(
−9x1/3(2x + 1)

x4/3 + x2/3(x + 1)2/3 + (x + 1)4/3

)]
(23)

and,

18[x(x + 1)]1/3(2x + 1)2/3 − 22/3(x + 1)1/3(18x + 8)

= (x + 1)1/3[8 + 18x1/3((2x + 1)2/3 − (2x)2/3]

= (x + 1)1/3

[
8 +

(
18x1/3(4x + 1)

(2x + 1)4/3 + (2x(2x + 1))2/3 + (2x)4/3

)]
(24)

Note that the sum of (23) and (24) is positive for x ≥ 1. Thus all the terms
with n − np in the numerator add up to a positive quantity. The only other
negative component is 18(np+1)21/3[np(2np+1)]2/3−18(2np+1)[2np(np+1)]2/3

81[(2np+1)(np+1)]2/3(2np)(n−np)2
, which is

dominated by 9[(np+1)(2np+1)]2/3(2np)
81(n−np)[(np+1)(2np+1)]2/3(2np)2

.

Thus c(n,np)−m(n,np)
θ(n,np)

/
c(2n,2np)−m(2n,2np)

θ(2n,2np) ≥ θ(n,np)
θ(2n,2np) ≥ 1. ��

B Learning Algorithm

The shared strategy πa is represented by a neural network and trained from
trajectories of all terminal agents. When selecting the strategy for a Round, we
mask all actions which would lead to ma+μa > F . This makes the agents unable
to overpay the fine F . We use fully-connected networks for both the actor and the
critic. Both take as input the observation7 of a in Round, i.e. (na, ta,ma). The
actor network has two hidden layers with four hidden units, and the critic has
three hidden layers with 32 units each, all using the ReLU activation function.
The rest of the hyperparameters are given in Table 1.

7 We normalize the observation to [0, 1]3.
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Table 1. Hyperparameters of the learning algorithm.

Parameter Value Description

ε 0.05 Policy update clipping

γ 1 Reward discounting

λ 0.95 Advantage decay factor

Ntrain 32 Number of training updates per cycle

Nepochs 512 Number of training epochs

Ntrain 2 · 104 Train buffer size

αactor 3 · 10−4 Actor learning rate

αcritic 10−3 Critic learning rate

cH 10−3 Entropy regularization weight

c 0.1 Gradient norm clipping
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Abstract. Stackelberg Security Games are often used to model strate-
gic interactions in high-stakes security settings. The majority of existing
models focus on single-defender settings where a single entity assumes
command of all security assets. However, many realistic scenarios fea-
ture multiple heterogeneous defenders with their own interests and pri-
orities embedded in a more complex system. Furthermore, defenders
rarely choose targets to protect. Instead, they have a multitude of defen-
sive resources or schedules at its disposal, each with different protective
capabilities. In this paper, we study security games featuring multiple
defenders and schedules simultaneously. We show that unlike prior work
on multi-defender security games, the introduction of schedules can cause
non-existence of equilibrium even under rather restricted environments.
We prove that under the mild restriction that any subset of a schedule
is also a schedule, non-existence of equilibrium is not only avoided, but
can be computed in polynomial time in games with two defenders. Under
additional assumptions, our algorithm can be extended to games with
more than two defenders and its computation scaled up in special classes
of games with compactly represented schedules such as those used in
patrolling applications. Experimental results suggest that our methods
scale gracefully with game size, making our algorithms amongst the few
that can tackle multiple heterogeneous defenders.

Keywords: Security Games · Stackelberg Equilibrium · Game Theory

1 Introduction

The past decades have seen a wave of interest in Stackelberg Security Games
(SSG), with applications to infrastructure [23], wildlife poaching [5–7] and cyber-
security [2,21,29]. SSGs are played between a single defender allocating defensive
resources over a finite set of targets and an attacker who, after observing this
allocation, best responds by attacking the target least defended [25].

Numerous variants of SSGs better reflecting the real world have been pro-
posed. Amongst the most well-researched extension are settings with scheduling
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constraints. Instead of guarding a single target, the defender chooses a set of tar-
gets instead, making it possible to model real world problems such as planning
patrols for anti-poaching [3,5,7,28] and the US coast guard [22,24], infrastruc-
ture protection [12], and optimal placement of police checkpoints [11]. Another
less explored extension is the multi-defender setting, where multiple defenders
(e.g., city, state and federal law enforcement), each utilize distinct resources in
tandem, potentially resulting in miscoordination [13]. Recent work in [8,9] solved
the challenging problem of finding equilibrium when defenders are heterogeneous,
both in the coordinated and uncoordinated case.

Unfortunately, there is almost no literature on settings exhibiting both
scheduling and multiple defenders. Our work fills this non-trivial gap. In contrast
to the positive results of [8,9], we show that equilibrium may not exist with the
inclusion of scheduling constraints, even under extremely stringent constraints
on other aspects of the problem. We then guarantee existence of equilibrium
in two defender settings when restricted to schedules satisfying the subset-of-
a-schedule-is-also-a-schedule structure [16], on top of other mild restrictions.
We construct polynomial time algorithms for computing equilibrium in such
restricted settings and propose two extensions. The first utilizes an additional
assumption of Monotone Schedules to handle the general multi-defender setting.
The second scales to scenarios with a large (possibly exponential) number of
schedules in structured domains such as patrolling. Empirically, our algorithms
scale gracefully, making them viable for use in the real world.

2 Background and Related Work

Our work is motivated by the security application played on the layered network
in Fig. 1a, where vertices represent neighborhoods and edges represent connect-
ing roads. Distinct law enforcement agencies (e.g., local and federal police) patrol
along a path starting from vertex a to vertex e. Patrols provide defence, or cov-
erage to the neighborhoods they pass (Fig. 1a). By randomizing or splitting their
patrols, agencies can broaden coverage at the expense of thinning them (Fig. 1b).
Coverage at each neighborhood is accumulated over patrols (Fig. 1c). An attacker
chooses a single neighborhood to attack based on this coverage, giving nega-
tive reward to law enforcement agencies. Neighborhoods and law enforcement
are non-homogeneous: neighborhoods differ in density and demographics, local
police value local businesses and inhabitants, while federal agencies focus on
federal government assets. Given these competing objectives, how should law
enforcement agencies plan their patrols?

The closest pieces of work to us are by Lou et al. [20] and Gan et al. [8,9]. The
work by Gan et. al. [8] focuses on the case with multiple heterogeneous defenders
without schedules, showing that an equilibrium always exists and can be com-
puted in polynomial time in both the coordinated and uncoordinated case by
extending the classic water-filling algorithm [15]. However, their model is limited
by the lack of schedules. This is not merely an issue of computation: our work
shows that the inclusion of schedules can trigger non-existence of equilibrium.
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Fig. 1. Multi-defender Patrolling on Layered Networks. Vertices are targets and black
edges are roads connecting targets. (a) The green path shows a patrol route by a single
defender, passing through b2, c3 and d4. Protected nodes are shaded, with the dark-
ness indicating degree of protection. (b) A coverage obtained by splitting/randomizing
patrols. Thinner arrows indicate smaller patrols. Compared to Fig. (a), more targets
are covered, but with lower intensity. (c) A joint patrol with two defenders; the first
employs the route in Fig. (b) and the second follows the blue paths. The orange edge
is used by both defenders. (Color figure online)

The work by Lou et al. [20] consider multiple defenders and scheduling, analyz-
ing equilibrium in terms of the Price of Anarchy between defenders and giving
conditions for their existence.1 However, the bulk of their work concerns homo-
geneous defenders; their results for heterogeneous defenders limited (e.g., having
every target completely covered). Here, they acknowledge possible non-existence
of equilibrium, proposing approximate solvers based on Mixed-Integer Program
with quadratic constraints. In contrast, our work makes additional assumptions
but guarantees existence and polynomial time solutions.

SSGs as a whole have a long and illustrious history. First introduced by von
Stackelberg [26] to model competitive firms and the first mover’s advantage, it
saw a resurgence beginning with [27] alongside a wave of applications primarily
in the domain of security which modeled defenders as first movers or leaders
[1,25]. Since then, an enormous amount of literature has surfaced, e.g., comput-
ing equilibrium in sequential settings [4,17,19], handling bounded rationality of
defenders [14], and various other structural assumptions such games on networks
[18], each catering to different variants of security applications.

3 Nash-Stackelberg Equilibrium with Scheduling

Our setting involves n heterogeneous defenders, T heterogeneous targets and a
single attacker. Each defender allocates defensive resources which induce cover-
age over targets, a quantitative measure of the degree to which each target is
protected. For example, coverage can refer to the average number of police offi-
cers patrolling at a particular neighborhood (Fig. 1). As is customary in security
games, we employ Stackelberg leadership models. Each defender first indepen-
dently commits to its coverage. The attacker then chooses to attack a target
t ∈ [T ] with the lowest total coverage under this commitment.
1 We point out [20] and [8] use different tie-breaking models for the attacker.
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Formally, each defender i has an attainable set of coverage V i ⊂ R
T
+ (which

we define concretely later), from which it chooses a coverage vector vi ∈ V i,
where defender i contributes vi(j) coverage to target j. A coverage profile v =
(v1, v2, · · · , vn) ∈ V 1 × V 2 · · · × V n is an ordered tuple of coverages from each
defender. We assume that coverage accumulates across defenders additively, such
that for a given coverage profile v, the total coverage of all defenders is vtotal =∑

i∈[n] v
i. The total coverage on target j is vtotal(j) =

∑
i∈[n] v

i(j) ≥ 0.
We assume coverage independent payoffs: each defender’s payoff is based on

the attacked target, but not on the coverage itself. In practical terms, this means
that an attack would “always succeed”, and the purpose of coverage is to redirect
the attacker elsewhere. For example, security officers may not be able to prevent
a determined terrorist attack, but having more officers in crowded areas may
make the cost of attack prohibitively high such that the attack occurs at a less
populated area. This assumption means there is no need to work explicitly with
numerical values for defender payoffs. Instead, each defender i has a fixed order
of preference over targets given by the total order �i. We write j �i k (resp.
j ≺i k ) if defender i prefers target j over k to be attacked (resp. not attacked).
We assume that there are no ties in defender preferences, hence j =i k if and
only if j = k. We write j �i k if and only if j �i k or j =i k, with j �i k being
defined analogously. Preference orders differ between defenders, hence j �i k
does not imply j �i′ k for i 	= i′. For any target t ∈ [T ], we define the set
T �i

t = {k ∈ [T ]|k �i t}, i.e., the set of targets which defender i strictly prefers
to be attacked over target t. T ≺i

t , T �i
t , and T �i

t are defined analogously.
We now define formally define the Nash-Stackelberg equilibrium (NSE) given

V i and �i for each defender. We call a tuple (v1, . . . , vn, t) ∈ V 1×· · ·×V n×[T ] a
strategy profile, abbreviated by (v, t). Strategy profiles are an NSE when (i) the
attacker is attacking a least covered target and (ii) neither defender i is willing
to unilaterally deviate their coverage from vi to v̂i ∈ V i (written as vi → v̂i),
assuming that the attacker could react to this deviation by possibly adjusting its
target from t to t̂. The NSE is named as such because the attacker best responds
to the total coverage as if it was a Stackelberg follower, while defenders interact
amongst themselves as if it were Nash. The former condition is formalized easily.

Definition 1 (Attacker’s Best Response Set). Given a total coverage
vtotal ∈ R

T
+, its attacker best response set is2

B(vtotal) = Argmin
t∈[T ]

vtotal(t) =
{

t ∈ [T ]
∣
∣
∣vtotal(t) = min

t′∈[T ]
vtotal(t′)

}

(1)

Definition 2 (Attacker Incentive Compatibility (AIC)). A strategy pro-
file (v, t) is attacker incentive compatible if and only if t ∈ B(vtotal).

2 In this paper, we use superscripts (·)i to specify a defender’s index, and brackets
() for elements in a vector. We capitalize Argmax to denote the subset of maximal
elements, and lower case argmax when referring to an arbitrary one.
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Essentially, a tuple (v, t) is AIC when the attacker does not strictly prefer some
target t̂ 	= t over t. Naturally, we desire profiles which are AIC.

As noted by [9], condition (ii) contains an important nuance: if defender i
deviates via vi → v̂i such that v̂total does not have a unique minimum coverage
(i.e., |B(v̂total)| > 1), how should the attacker break ties? In single-defender sce-
narios, one typically breaks ties in favor of the defender, also called the Strong
Stackelberg equilibrium. With multiple defenders, this is ambiguous since defend-
ers are heterogeneous. This is a non-trivial discussion, since the way the attacker
breaks ties significantly affects the space of equilibrium. There are two natural
choices for breaking ties: either punish or prioritize the deviating defender. These
choices mirror the concepts of weak and strong Stackelberg equilibrium in single-
defender settings. As [9] argue, the second convention of benefiting the deviating
defender can lead to spurious deviations from defenders. For example, a defender
may make a trivial “identity” deviation from vi → vi, yet demand a nontrivial
change in attacked target. As such we adopt the former concept. This means
that deviating players are pessimistic towards any change in attacked target
after their deviation (this pessimism exists only for deviations).

Definition 3 (Defender i-Weakly Attacker Incentive Compatibility (i-
WAIC)). A strategy profile (v, t) is i-WAIC if and only if (i) t ∈ B(vtotal) and
(ii) t̂ ∈ B(vtotal) =⇒ t̂ �i t.

Definition 4 (Defender i-Incentive Compatibility (i-IC)). A strategy
profile (v, t) is i-IC if and only if there does not exist v̂i ∈ V i and t̂ �i t
such that (v1, v2, · · · , vi−1, v̂i, vi+1, · · · , vn, t̂) is i-WAIC.

Definition 5 (Nash-Stackelberg Equilibrium (NSE)). A strategy profile
(v, t) is an NSE if and only if it is AIC and i-IC for all i ∈ [n].

Put simply, (v, t) is i-WAIC if it is AIC and the choice of t is made such as
to break ties against defender i (clearly, this is a strictly stronger condition
than AIC). Consequently, (v, t) is i-IC if there is no deviation vi → v̂i such
that defender i benefits strictly when the attacker changes it’s best-response
t → t̂ while breaking ties against defender i. Thus, any candidate NSE (v, t) is
only required be AIC, allowing us to freely choose how the attacker tiebreaks, as
though t was the “agreed upon norm” target for the attacker. However, if defender
i deviates, we use the stronger notion of WAIC for post-deviation tiebreaking.

Remark 1. Our model does not completely generalize [9] due to coverage inde-
pendent payoffs and additive coverage. However, these assumptions are related
to their cases of correlated defenders and non-overlapping payoffs respectively.

4 Analysis and Algorithms

Clearly, the existence and computation of NSE depends on the set V i. The
simplest specification of V i is obtained by explicitly specifying schedules and
requiring clearance constraints. Suppose each defender i ∈ [n] has 1 unit
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of divisible defensive resource to allocate across a set of Si > 0 schedules
Si = {si

1, s
i
2, · · · si

Si}. Each si
z ∈ R

T
+ is the non-negative coverage over all T

targets when defender i allocates its entire defensive resource to the z-th sched-
ule. si

z(j), j ∈ [T ] is the coverage specific to target j. Each defender di’s strategy
is a distribution xi ∈ R

Si

+ over its set of schedules, where
∑

si
z∈Si xi(si

z) = 1.

Assumption 1 (Clearance). Given schedules Si, the coverage vector vi is said
to satisfy clearance if all defensive resources are fully utilized, i.e.,

V i =

⎧
⎨

⎩
v ∈ R

T
+

∣
∣
∣
∣
∣
∃xi such that ∀j ∈ [T ] v(j) =

∑

si
z∈Si

xi(si
z) · si

z(j)

⎫
⎬

⎭
.

The clearance constraint on V i essentially requires defenders to expend as
much as they can, preventing them from “slacking off”. When each schedule
attacks a distinct target, i.e., Si = {e1, e2, . . . , eT }, clearance constraints reduce
to the setting of [9] and equilibria will exist. However, our focus is on the sched-
uled setting. Indeed, we now demonstrate an instance where NSE do not exist.3

Fig. 2. Illustration of Example 1. (a) Target labels. Defender 1 prefers diagonal (green)
targets attacked; defender 2 prefers off diagonal (blue) targets. (b–e) Defender schedules
s11, s

1
2, s

2
1 and s22. (f) Cyclic behavior. Green/blue arrows indicate changes in targets

induced by defender 1/2 deviating. (Color figure online)

Example 1. The game in Fig. 2 has n = 2 defenders and T = 4 targets. Targets
11, 12, 21, 22 are organized in a 2 × 2 matrix. Defender 1 has preferences 22 �1

11 �1 12 �1 21 (i.e., prefers diagonal targets attacked) while defender 2 has them
in reverse, 21 �2 12 �2 11 �2 22 (i.e., prefers off diagonal targets attacked). Each
has 2 schedules, s11 = (1−ε, 1, kε, 0), s12 = (0, kε, 1, 1−ε) and s21 = (1, 0, 1−ε, kε),
s22 = (kε, 1 − ε, 0, 1), where k ≥ 1, 0 ≤ ε � 1 and kε < 1.

Suppose (for now) that ε = 0 in Example 1. Then, defender 1 decides how to
split its coverage across rows, while defender 2 the columns. Suppose (v, t) is a
NSE. If t = 11, defender 2 is incentivized to deviate to v̂2 = s21 regardless of v1,
since this always causes 12 to have the “lowest” coverage and 12 �2 11. The same
may be said for t = 22, t = 12 and t = 21, where the latter two have defender 1
deviating. This “cyclic” behavior (Fig. 2f) implies that no equilibrium exists.

3 An earlier version of this paper included an incorrect example.
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Fig. 3. Left to right: reductions to obtain t-standard coverage for defender 1

The above argument is only partially correct. When ε = 0, Example 1 has a
NSE (v, 11) where v1 = v2 = (0.5, 0.5, 0.5, 0.5). If defender 2 deviates to v̂2 = s21,
the attacker tiebreaks, choosing target 22 over target 12, which hurts defender 2.
It may be verified that this is indeed a NSE. Introducing ε = 10−3 and k = 100
fixes this, ensuring target 12 possesses the strictly lowest coverage after deviation
regardless of v1. The full derivation is deferred to the extended version.

The non-existence is caused by the rigid enforcement of schedules. For exam-
ple, even though defender 1 prefers 11 to be attacked over 12, defending 11
through schedule s11 forces it to simultaneously defend 12, which it rather not
defend. Our fix expands the attainable coverage V i: instead of clearance, defend-
ers may provide less coverage than what they could have. This assumption was
used by [16] and is quite reasonable. For example, a patroller may deliberately
let down their guard at areas of lower priority, encouraging attacks there.

Assumption 2 (Subset-of-a-Schedule-is-Also-a-Schedule (SSAS))

V i =

⎧
⎨

⎩
v ∈ R

T
+

∣
∣
∣
∣
∣
∃xi such that ∀j ∈ [T ] v(j) ≤

∑

si
z∈Si

xi(si
z) · si

z(j)

⎫
⎬

⎭
.

Assumption 2 is obtained from Assumption 1 by replacing the equality con-
straint by an inequality. Checking if vi ∈ V i is done efficiently using linear
programs. Clearly, V i under SSAS is a superset of that under clearance. Under
SSAS, Example 1 with ε = 0 has a NSE (v1, v2, 11), where v1 = (0, 0.5, 0.5, 0),
v2 = (0, 0, 0, 1.0). Details, alongside the ε > 0 case are in the extended version.

4.1 Existence and Computation of NSE Assuming SSAS

For now, we restrict ourselves to 2 defenders. Under SSAS, any NSE can be
converted into a simpler canonical form, which we exploit to guarantee existence
for all Si, together with a polynomial time algorithm. We present these results
via a series of reductions. All proofs are deferred to the appendix.

Lemma 1. If (v1, v2, t) is an NSE, then there exists another NSE (ṽ1, v2, t)
such that (i) ṽ1(t) = 0 and (ii) ṽ1(j) = v1(j) for all targets j 	= t ∈ [T ].

Applying Lemma 1 to each defender guarantees that each NSE (v, t) must
correspond to an NSE with zero coverage on t. If we knew the attacked target
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t, we can reduce our search to coverage profiles with zero coverage on t. Now,
for some NSE (v, t) consider defender 1’s coverage profile v1 based on defender
2’s preference ordering. For illustration, assume WLOG that the targets are
ordered in decreasing order of defender 2’s preference of attacked target. An
example is shown in Fig. 3(a), where t = 4 and T = 8, and the height of each bar
corresponds to v1(j) for each target j. Lemma 1 simply says that the coverage
profile in Fig. 3(b) would also constitute an NSE.

Suppose defender 1’s goal is to discourage defender 2 from deviating. Since
target 4 is attacked, defender 2 benefits from deviating if and only if it can
induce some target in T �2

4 to be the new attack target. It does so by increasing
coverage over targets in T �2

4 (potentially reducing v2 elsewhere). Conversely,
defender 1 prevents this deviation by ensuring that its minimum coverage v1

over T �2
4 is as high as possible. Since v1 shown in in Fig. 3 is part of an NSE,

defender 2 does not have a coverage v̂2 such that v̂2(j) > 3 for all T �2
4 . If such

a v̂2 existed, defender 2 could simply deviate to that (placing no coverage on
targets in T �2

4 ), This induces either target 6 �2 4 to be attacked. Hence, for
defender 1 to discourage deviations from defender 2, it should reduce v1 in all
targets belonging to T �2

4 to be 3, and similarly for all T �2
4 , as shown in Fig. 3(c).

This new coverage remains a NSE. Lemma 2 formalizes the above argument.

Lemma 2. Suppose (v1, v2, t) is an NSE with v1(t) = v2(t) = 0. Then there
exists another coverage ṽ1 where (i) ṽ1(t) = 0, (ii) ṽ1(j) = 0 for all j ≺2 t, and
(iii) ṽ1(j) = mink�2t v1(k) for all j �2 t, such that (ṽ1, v2, t) is an NSE.

Lemma 2 allows us to transform any NSE (v1, v2, t) into a new NSE by adjust-
ing v1 appropriately. Clearly, a similar process can be done for defender 2 and
v2. Applying Lemma 2 for both player yields coverages with simpler structures.

Definition 6 (t-standard Coverage). For fixed t ∈ [T ], v1 ∈ V 1 is a t-
standard coverage for defender 1 if (i) there exists h1 ≥ 0 and v1(j) = h1

for all j �2 t, and (ii) v1(j) = 0 for all j �2 t. The same holds for defender 2.

Reducing a coverage in an NSE (v1, v2, t) into one containing t-standard
coverage is done by first applying Lemma 1 to each player, followed by Lemma 2
to each player. Figure 3 illustrates how v1 evolves according to this reduction as
per the prior discussions. Let H be the (possibly empty) set of NSE (v1, v2, t)
such that both v1 and v2 are t-standard coverage. For a fixed t ∈ [T ], we define
Ht to be all NSE (v1, v2, t) in H where t is attacked. By definition, we have (i)
Ht and Ht′ are disjoint when t 	= t′, and (ii) H =

⋃
t∈[T ] Ht. The existence of

NSE is equivalent to saying that H is non-empty.
Our algorithm for computing an NSE under Assumption 2 is straightforward:

iterate over all targets t ∈ [T ] and search for some element in Ht. Finding some
element (if it exists) of Ht for any t is done in polynomial time by solving 4
linear programs with size polynomial in Si, n and T , as shown in Algorithm 1.
MaximinCov(T , V i) is an oracle finding the coverage vi ∈ V i which maximizes
the minimum coverage over a given set of targets T . MaximinCov returns +∞
when T = ∅. When V i is defined by a finite set of schedules Si and SSAS,
MaximinCov can be implemented via linear programming (Algorithm 2).
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Fig. 4. Left: Solving NSE in 2 defender games. Right: A linear program finding the
Maximin coverage for defender i when V i is given by schedules Si and SSAS.

Theorem 1. Under the SSAS assumption (Assumption 2), H 	= ∅, i.e., an NSE
always exists. Consequently, Algorithm 1 is guaranteed to return an NSE.

4.2 Efficiency of NSE

Blindly applying Algorithm 1 can lead to a pathology where the attacked target
is undesirable for both players, i.e., a NSE (v, t) can have v1(t̃) ≥ 0 and v2(t̃) ≥ 0
when t̃ �1 t and t̃ �2 t. For example, suppose 1 �1 2 �1 3 and 1 �2 2 �2 3
where defenders possess identity schedules, i.e., Si = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Setting ṽ1 = ṽ2 = (1, 0, 0), we find that (ṽ, 2) is an NSE as it is AIC and
neither defender can give target 1 a coverage strictly greater than 1 by deviating.
However, both defenders prefer target 1 to be attacked. Indeed, a trivial NSE is
(v, 1) where v1 = v2 = (0, 0, 0), i.e., the profile (v, 1) “Pareto dominates” (ṽ, 2).

Definition 7 (Inefficiency). An NSE (v1, v2, t) ∈ Ht is inefficient (resp. effi-
cient) if and only if there exists j where j �1 t and j �2 t. Targets constituting
inefficient (resp. efficient) NSE are called inefficient targets.

Targets where Ht = ∅ are neither efficient nor inefficient. There may exist
multiple efficient NSE. However, we show that efficient NSE exists under SSAS.

Lemma 3. Let j, t ∈ [T ] such that Ht 	= ∅, j �1 t and j �2 t. Then, Hj 	= ∅.
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4.3 Exploiting Additional Structure in V i

We now move towards characterizing and solving for equilibrium in two classes
of games which contain even more structure in V i.

Finding NSE Under Monotone Schedules. The first is the case of Mono-
tone Schedules, where each defender’s schedule places less coverage on targets
preferred to be attacked. This allows us to efficiently solve for NSE when n ≥ 2.

Assumption 3 (Monotone schedules (MS)). A schedule si
z ∈ Si is Mono-

tone if j �i t =⇒ si
z(j) ≤ si

z(t). The game possesses Monotone Schedules (MS)
if all defender schedules are monotone.

Theorem 2. Under both MS and SSAS, a NSE exists for n ≥ 2. It can be
computed in polynomial time in the number of schedules, n, and T .

Proof. Define πi(t) ∈ [T ] such that target t is the πi(t)-th preferred
target of defender i. Define a matrix M ∈ R

n×T , where Mi,πi(j) =
MaximinCov(T �i

j , V i) for each defender i and target j.4 M is non-decreasing
from left to right. Let F (t) = maxi Mi,πi(t). For convenience, we assume
F (t) 	= F (t′) for t 	= t′ such that Argmint F (t) = {k∗}. We construct a NSE
(v, k∗) where:

1. for all defenders i, vi(k∗) = 0 such that vtotal(k∗) = 0, and
2. for every t 	= k∗, we find a defender i where Mi,πi(t) = F (t). We set coverage

vi(t) = F (k∗) and vi′
(t) = 0 for all i′ ∈ [n]\{i}.

Clearly, the above algorithm runs polynomial time. In Step 2, we have by def-
inition at least one defender i satisfying Mi,πi(t) = F (t). We first show that v
is achievable, i.e., vi ∈ V i for all defenders i. Fix i ∈ [n]. Let T be the set of
targets covered by it, each with coverage F (k∗). By Step 1, k∗ /∈ T . Further-
more, T ⊆ T ≺i

k∗ . If target j ∈ T and j �i k∗, then Mi,πi(j) ≤ Mi,πi(k∗) since M
is non-decreasing. This contradicts Mi,πi(j) = F (j) > F (k∗) ≥ Mi,πi(k∗) from
the definition of F and k∗. Now, let j∗ be defender i’s most preferred target
in T . Consider a coverage ṽi with ṽi(j) = F (j∗) for j �i j∗ and ṽi(j) = 0
otherwise. In Step 2, vi(j∗) > 0 implies F (j∗) = Mi,πi(j∗), because only tar-
gets j such that F (j) = Mi,πi(j) are covered by i. Hence, F (j∗) = Mi,πi(j∗) =
MaximinCov(T �i

j∗ , V i) and ṽi ∈ V i. Since F (j∗) ≥ F (k∗), ṽi(j) ≥ vi(j) for
j ∈ [T ], i.e., coverage of ṽi is no less than vi. Because ṽi ∈ V i, vi ∈ V i by SSAS.

Lastly, we show that (v, k∗) is indeed an NSE. It is AIC since vtotal(k∗) = 0.
Next, we prove that for any defender i, any v̂i ∈ V i and any target t �i k∗,
(v1, · · · , v̂i, · · · , vn, t) is not i-WAIC. First, we show that v̂total(t) ≥ F (k∗).
We have v̂total(t) = v̂i(t) +

∑
i′ 
=i vi′

(t) ≥
∑

i′ 
=i vi′
(t). Since vi has no cover-

age on T �i

k∗ , vi(t) = 0. Therefore,
∑

i′ 
=i vi′
(t) = vtotal(t) = F (k∗). We have

4 i.e., for each defender, reorder targets from most to least preferred (Fig. 3) and
compute the maximin coverage for targets comprising t and everything less preferred.
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Fig. 5. Public Security Game with m = 4, r = 2, using the L1-distance. (a) Preference
profiles for defenders. Size of nodes represent relative values of targets for each defender.
(b) Coverage by the defender 1, v1 by evenly distributing resource between buildings
marked by in green. Darker targets enjoy a higher coverage. Note that overlapping
regions get double the coverage. (c) Same as (b), but for defender 2. (d) Total coverage
vtotal accrued over both entities. (Color figure online)

v̂total(t) ≥
∑

i′ 
=i vi′
(t) = F (k∗). Second, v̂total(k∗) ≤ F (k∗). v̂total(k∗) = v̂i(k∗)

since vi′
(k∗) = 0 for any i′ 	= i. We claim that v̂i(k∗) ≤ F (k∗). If v̂i(k∗) > F (k∗),

defender i can cover all targets in T �i

k∗ with v̂i(k∗) > F (k∗) by MS. Therefore,
Mi,πi(k∗) > F (k∗), which conflicts with F (k∗) = maxi′ Mi′,πi′ (k∗). We have
v̂total(k∗) = v̂i(k∗) ≤ F (k∗). In conclusion, v̂total(t) ≥ v̂total(k∗). If t ∈ B(v̂total),
k∗ ∈ B(v̂total) holds, so (v1, · · · , v̂i, · · · , vn, t) is not i-WAIC. (v, k∗) is i-IC. �

Efficient Solvers when V i is Compactly Represented. In Algorithm 1,
we were required to optimize over t-standard coverage for each defender. This
involves solving linear programs. Unfortunately, the number of schedules can be
prohibitively large. For example, in patrolling on layered networks, the number of
schedules is exponential in its depth and is computationally infeasible for large
games. Fortunately, both our proof of existence and algorithm operate in the
space of attainable coverage V i and not directly on x and Si. In our example,
V i can be expressed as flows in the network (and more generally, any directed
acyclic graph with a source and a sink), which in turn is a polyhedron with a
polynomial number of constraints (in terms of the number of edges and vertices).

5 Experiments

Our experiments are conducted on an Intel(R) Core(TM) i7-7700K CPU @ 4.20
GHz. We use Gurobi [10] to solve linear programs. We seek to answer the fol-
lowing. (i) Can NSE be practically computed for reasonable environments? How
does computational time scale with parameters such as T , Si, V i, and n? (ii)
How does an NSE look like qualitatively? When n = 2, how many NSE are
efficient? What proportion of targets are included in some NSE? (iii) What is
the quality (in terms of the attacked target) in the multiple-defender setting
as compared to single defender settings? We explore 3 synthetically generated
games, where defender preferences �i are generated uniformly at random.
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Fig. 6. Wallclock time to find one efficient NSE using the algorithm in Fig. 4.

– Randomly Generated Schedules (RGS). We generate games with random
schedules where each si

j is a random integer from [0, 10], and the number
of schedules Si, T are specified. In some cases, we limit each schedule’s sup-
port size to be smaller than T (with the support again randomly selected).

– Public Security on Grids (PSG).
An event is held in the streets of Manhattan, which we abstract as a m×m grid
(Fig. 5), where each vertex represents a target (building). The security for the
event is managed by two entities: the city police and VIP security detail, each
with different priorities. Each places checkpoints distributed across buildings
in the city, which provide coverage in a radius r. The level of coverage is
dependent on the average number of officers allocated to it. An example with
m = 4, r = 2 is shown in Fig. 5.

– Patrolling on Layered Networks (PLN). We follow the motivating example in
Sect. 2, varying the width and number of layers. Each patrol can only change
its “level” (position on the y-axis) by at most one step between layers. Unlike
the public security game, there are now an exponential number of paths,
hence computational costs become an important consideration as well.

5.1 Computational Costs of Computing NSE

We first restrict ourselves to 2-defender settings under SASS. We evaluate com-
putational efficiency of the algorithms of Fig. 4, with results for RGS, PSG and
PLN summarized in Figs. 6 and 7. For PLN, we utilized the efficient method
in Sect. 4.3. We ran 100 trials for each parameter setting and report the mean
computation time and their standard errors (which were mostly negligible).

In RGS, we varied T , Si and the support size of each schedule. As expected,
the average running time increases superlinearly with T (Fig. 6a), since the loop
in Algorithm 1 is repeated more times, and calls to MaximinCov also incur a
higher cost. However, Fig. 6b shows that as Si increases, the required running
time increases linearly. This is unexpected, since Si is involved in the Maximin-
Cov subroutine, whose constraint matrix grows linearly with Si. This suggests
that the runtime of MaximinCov grows linearly with Si, atypical of linear pro-
grams. This could be because (i) our problems are small by standards of modern
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Fig. 7. Top: Wallclock time to compute NSE for PSG using the algorithm in Fig. 4.
Bottom: Computing NSE for PLN using the method in Sect. 4.3.

Fig. 8. Top: Running time for RGS under MSS assumptions. Top: Wallclock time as
n increases. Bottom: Running time as T and Si vary.

solvers, or (ii) the solver exploits additional structure under the hood. Lastly,
Fig. 6c shows that adjusting support size does not impact running time. This is
unsurprising since the solver is not explicitly told to exploit sparsity.

In PSG, we varied T by increasing the grid size m from 4 to 10. As with
RGS, Fig. 7aa running time superlinearly with T . We also indirectly adjusted
the support size by adjusting r, the radius of security coverage (Fig. 7b). Once
again, we did not notice any appreciable difference in running times. Similarly
for PLN, we note a superlinear growth in running time as the network enlarges,
be it from increasing layers or width of the network (Fig. 7c and 7d).

We now examine multiple defenders in RGS under SSAS and MSS. Again,
we ran 100 rounds for each scenario and report the means (standard errors were
negligible) in Fig. 8. We observe running times increasing linearly with n and
schedules (omitted due to space constraints), but superlinearly with T .
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5.2 Quality of NSE Computed

We now investigate the quality of NSE that are computed with 2 defenders,
under the SSAS assumption. If there only defender 1 existed (e.g., V 2 = {0})),
then defender 1 simply chooses v1 = 0 and t to be its most desired target to be
attacked. The existence of defender 2 makes it such that both defenders must
compromise to reach an NSE, with the target to be attacked worsened from
defender 1’s perspective. In essence, this is the “cost of partnership”.

We investigate this degradation in quality of attacked target (in ordinal
terms) from the perspective of a single defender. In each run, we compute all the
efficient NSE and their attacked target’s rank in terms of the preference order
�i. This rank suboptimality is a measure of the degradation of policy. Since there
are multiple efficient NSE, we consider 3 cases: (i) the optimistic case where we
tiebreak to benefit defender 1, (ii) tiebreaking by averaging and (iii) the pes-
simistic case we tiebreak against defender 1. For each of these settings, we run
the experiment 100 times and report the frequency of every rank suboptimality
(Fig. 9).

Fig. 9. Rank suboptimality. From top to bottom: RGS with 10 targets, schedules, and
full suport, PSG with m = 4, r = 2, PLN with 5 layers each of width 5.

5.3 Number of Targets Included in NSE

Recall that each of the T targets may be efficient, inefficient or not part of any
NSE. We investigate for randomly generated 2 defender games in RGS, PSG
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Fig. 10. Top (resp. bottom): #targets (resp. ratio over T ) that are efficient NSE as T
increases. Left to right: Results for RGS, PSG and PLN respectively.

and PLN the number and proportion of these targets as T varies. For RGS, we
fix Si = 200. Our results are reported in Fig. 10. We can see that in all our
experiments, the number of efficient targets (or NSE) increase linearly with T ,
the proportion of such targets decreases and tapers off at around 100 targets.

6 Conclusion

In this paper, we explored the problem of multidefender security games in the
presence of schedules in the restricted setting of coverage dependant utilities. We
show that even in this restricted case, equilibrium may not exist under clearance
constraints in contrast to prior work. We show that equilibrium is guaranteed
under SSAS and present polynomial time solvers, as well as several extensions.
Future work include removing the restriction on coverage dependant utilities as
well as extensions to the non-additive or uncoordinated setting.
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A Appendix

A.1 Proof of Lemma 1

Proof. Since v1 ∈ V 1 and ṽ1(j) ≤ v1(j) for all j ∈ [T ], we have ṽ1 ∈ V 1 by
Assumption 2. We now show that (ṽ1, v2, t) is AIC, 1-IC, and 2-IC.
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1. (ṽ1, v2, t) is AIC. For all j ∈ [T ] and j 	= t, we have

ṽ1(j) + v2(j)= v1(j) + v2(j)
︸ ︷︷ ︸

definition of ṽ1

≥ v1(t) + v2(t)
︸ ︷︷ ︸
(v1,v2,t) is AIC

≥ ṽ1(t) + v2(t)
︸ ︷︷ ︸

by definition of ṽ1

.

2. (ṽ1, v2, t) is 1-IC. If not, there exists v̂1 ∈ V1, j �1 t where (v̂1, v2, j) is
1-WAIC, implying (v1, v2, t) is not 1-IC and not an NSE.

3. (ṽ1, v2, t) is 2-IC. Suppose otherwise. Then there exists v̂2 ∈ V2, j �2 t where
(ṽ1, v̂2, j) is 2-WAIC, implying that ṽ1(k) + v̂2(k) > ṽ1(j) + v̂2(j) for k ≺2 j,
and ṽ1(k) + v̂2(k) ≥ ṽ1(j) + v̂2(j) for k �2 j. Then for any k �2 j(�2 t),
ṽ1(k) + v̂2(k) ≥ ṽ1(j) + v̂2(j) indicates that v1(k) + v̂2(k) ≥ v1(j) + v̂2(j) by
definition of ṽ1 that ṽ1(k) = v1(k), ṽ1(j) = v1(j). Besides, for any k ≺2 j,

v1(k) + v̂2(k)≥ ṽ1(k) + v̂2(k)
︸ ︷︷ ︸
by definition of ṽ1

> ṽ1(j) + v̂2(j)
︸ ︷︷ ︸

(ṽ1,v̂2,j) is 2-WAIC

= v1(j) + v̂2(j)
︸ ︷︷ ︸

by definition of ṽ1

.

Since (v1, v̂2, j) is 2-WAIC, (v1, v2, t) is not 2-IC and not an NSE.

A.2 Proof of Lemma 2

Proof. v1 ∈ V 1 and ṽ1 has no more coverage than v1, so ṽ1 ∈ V 1 by the SSAS
assumption. By the definition of NSE, it is sufficient to show that (ṽ1, v2, t) is
AIC, 1-IC, and 2-IC to prove the Lemma.

1. (ṽ1, v2, t) is AIC. t ∈ B(ṽ1, v2) because ṽ1(t) + v2(t) = 0.
2. (ṽ1, v2, t) is 1-IC. If not, then there exists v̂1 ∈ V 1, j �1 t such that (v̂1, v2, j)

is 1-WAIC. Therefore, (v1, v2, t) is also not 1-IC, contradicting the assumption
that (v1, v2, t) is an NSE.

3. (ṽ1, v2, t) is 2-IC. We prove this by contradiction. Suppose (ṽ1, v2, t) is not 2-
IC, then there exists v̂2 ∈ V 2, j �2 t where (ṽ1, v̂2, j) is 2-WAIC. By definition
of 2-WAIC, we have that ṽ1(k′)+v̂2(k′) > ṽ1(j)+v̂2(j) for any target k′ ≺2 j,
and ṽ1(k′) + v̂2(k′) ≥ ṽ1(j) + v̂2(j) for any target k′ �2 j. Consider u2 ∈ V 2

such that u2(k′) = v̂2(k′) for any target k′ �2 t and u2(k′) = 0 for any
target k′ �2 t. Notice that there always exist a unique target k ∈ [T ] such
that (v1, u2, k) is 2-WAIC. We claim that if k is the target that (v1, u2, k) is
2-WAIC, then k �2 t. We prove this by excluding other targets e �2 t. Notice
that there is a target m �2 t that v1(m) = mink′�2t v1(k′). Consider a target
e �2 t, then

v1(e) + u2(e)≥ ṽ1(e) + u2(e)
︸ ︷︷ ︸
by definition of ṽ1

= ṽ1(e) + v̂2(e)
︸ ︷︷ ︸
by definition of u2

> min
k′�2t

{ṽ1(k′) + v̂2(k′)}
︸ ︷︷ ︸

(ṽ1,v̂2,j) is 2-WAIC

≥ min
k′�2t

ṽ1(k′)
︸ ︷︷ ︸

v̂2(k′)≥0

= v1(m)
︸ ︷︷ ︸

by definition of m

= v1(m) + u2(m)
︸ ︷︷ ︸

u2(m)=0

.

Thus, e has more coverage than m, so (v1, u2, e) is not 2-WAIC. Then k �2 t
does not hold. There exists a target k �2 t such that (v1, u2, k) is 2-WAIC,
so (v1, v2, t) is not 2-IC, which contradicts that (v1, v2, t) is an NSE. �
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A.3 Proof of Theorem 1

To better understand the structure of H, we introduce partial sets H1
t ⊂

V 1,H2
t ⊂ V 2 for Ht and show how they compose the set Ht.

Definition 8. H1
t is the set of v1 ∈ V 1 such that there exists h1 ≥ 0, v1(j) = h1

for any target j ∈ T �2
t , v1(j) = 0 for any target j ∈ T �2

t ,and there does not
exist j �2 t and v̂2 ∈ V 2, (v1, v̂2, j) is 2-WAIC. Similar for H2

t .

Theorem 3. Ht = H1
t × H2

t × {t}.
Proof. For any (v1, v2, t) ∈ Ht, v1 and v2 are t-standard coverage. Since Ht

only contains NSEs, (v1, v2, t) is 1-IC and 2-IC. Thus, v1 ∈ H1
t , v

2 ∈ H2
t . We

now show that for any coverage v1 ∈ H1
t and v2 ∈ H2

t , (v1, v2, t) ∈ Ht. First,
(v1, v2, t) is an NSE. (v1, v2, t) is AIC because v1(t) = v2(t) = 0. Also, (v1, v2, t)
is 1-IC and 2-IC by definition of H1

t and H2
t . Second, v1 and v2 are t-standard

coverage. Thus, (v1, v2, t) ∈ Ht. �
Theorem 3 decomposes the space of Ht. Next we consider how to compute

H1
t and H2

t , which provides us an NSE in Ht. We first consider the reduction of
the set containing deviation strategies.

Lemma 4. For a target t and a coverage v1 ∈ H1
t , if there is a v̂2 ∈ V 2 and

j �2 t such that (v1, v̂2, j) is 2-WAIC, we construct u2 ∈ V 2 such that u2(k) = 0
for k ∈ T �2

t and u2(k) = mink′�2t v̂2(k′) for k ∈ T �2
t , then there exists a target

m �2 t such that (v1, u2,m) is 2-WAIC.

Proof. In a 2-WAIC strategy profile (v1, v̂2, j) and j �2 t, v1(k) + v̂2(k) >
v1(j) + v̂2(j) for any target k �2 t. Since v1 ∈ H1

t , v1(k) = 0 for any target
k �2 t. So, mink�2t v̂2(k) > v1(j) + v̂2(j). We have u2(k) > v1(j) + v̂2(j) by
definition of u, so any target k ∈ T �2

t is not the attacked target. There always
exists a target m such that (v1, u2,m) is 2-WAIC, and here m �2 t. �

Lemma 4 reduces the deviation v̂2 to u2 with a canonical structure that u2(k)
are equal for targets k ∈ T �2

t , but u2(k) = 0 elsewhere. The computation of u2

is related to the oracle MaximinCov. For convenience, we use M i(T ) instead
of MaximinCov(T , V i) when the set of coverage is default to be V i. Formally,
M i(T ) = maxvi∈V i minj∈T vi(j) for T 	= ∅, and M i(T ) = +∞ for T = ∅. With
this notation, we give a sufficient and necessary condition for Hi

t 	= ∅.

Theorem 4. H1
t 	= ∅ if and only if M1(T �2

t ) ≥ M2(T �2
t ). Similarly, H2

t 	= ∅ if
and only if M2(T �1

t ) ≥ M1(T �1
t ).

Proof. We prove the first claim for H1
t 	= ∅, and it is same for H2

t 	= ∅.

1. When M1(T �2
t ) ≥ M2(T �2

t ), we consider a coverage v1 ∈ V 1 of defender 1
such that v1(k) = M1(T �2

t ) for target k �2 t, and v1(k) = 0 elsewhere. For
any coverage v̂2 ∈ V 2, there is a target m ∈ T �2

t such that v1(m) + v̂2(m) ≤
M2(T �2

t ) ≤ v1(k) for any target k ∈ T �2
t . Any target k ∈ T �2

t has no less
coverage than target m given coverage (v1, v̂2), so there does not exist target
j �2 t such that (v1, v̂2, j) is 2-WAIC. Thus, v1 ∈ H1

t by definition.
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2. When M1(T �2
t ) < M2(T �2

t ), we want to show that H1
t = ∅. M1(T �2

t ) 	= +∞,
so for any v1 ∈ V 1, there exists target j �2 t such that v1(j) ≤ M1(T �2

t ).
Then consider a coverage v̂2 ∈ V 2 of defender 2 such that v̂2(k) = M2(T �2

t )
for targets k ∈ T �2

t and v̂2(k) = 0 for other targets. In the coverage profile
(v1, v̂2), target k ∈ T �2

t has strictly more coverage than target j. Notice that
there always exists a target j′ such that (v1, v̂2, j′) is 2-WAIC. Thus, for any
v1 ∈ V 1, there exists v̂2 ∈ V 2, such that there exists j′ �2 t and (v1, v̂2, j′) is
2-WAIC. Therefore, H1

t = ∅. �

Corollary 1. For any defender i ∈ [2], there exists t ∈ [T ] such that Hi
t 	= ∅.

Proof. Let i′ 	= i be another defender. There exists a target t such that for any
target j ∈ [T ], t �i′ j. Then M i(T �i′

t ) = M i(∅) = +∞. However, M i′
(T �i′

k ) =
M i′

([T ]) is finite. Therefore, Hi
t 	= ∅. �

Lemma 5. For any set of targets T ′ ⊂ T , Mi(T ′) ≥ Mi(T ) holds.

Proof. Let vi∗ be the coverage when Mi(T ) achieves the maximum. Let vi = vi∗,
then we have mintj∈T ′ vi(j) ≥ Mi(T ). Therefore Mi(T ′) ≥ Mi(T ). �

Lemma 6. For two defenders i, i′ and targets t �i′ j, if Hi
j 	= ∅, then Hi

t 	= ∅.

Proof. Since t �i′ j, we have T �i′
t ⊂ T �i′

j and T �i′
j ⊂ T �i′

t . By Hi
j 	= ∅, we have

M i(T �i′
j ) ≥ M i′

(T �i′
j ). Then using Lemma 5, we get M i(T �i′

t ) ≥ M i(T �i′
j ) ≥

M i′
(T �i′

j ) ≥ M i′
(T �i′

t ). By Theorem 4, Hi
k 	= ∅. �

Theorem 5. H 	= ∅.

Proof. Suppose T 1 = {t ∈ [T ]|H2
t 	= ∅} and T 2 = {t ∈ [T ]|H1

t 	= ∅}. By
Corollary 1, T 1, T 2 	= ∅ and T 2 	= ∅. There is a unique j1 ∈ T 1 (j2 ∈ T 2) such
that for any t ∈ T 1, t �1 j1 (for any t ∈ T 2, t �2 j2). It is sufficient to show
that T 1 ∩ T 2 	= ∅. If we show this, then there is a target j ∈ T 1 ∩ T 2. We have
H1

j 	= ∅,H2
j 	= ∅, and thus H 	= ∅. Next we prove T 1 ∩ T 2 	= ∅ by contradiction.

Suppose T 1 ∩T 2 = ∅. Since T 1, T 2 	= ∅ and T 1 ∩T 2 = ∅, we have T 1 = [T ]\
T 1 	= ∅, and T 2 = [T ]\T 2 	= ∅. There is a unique k1 ∈ T 1 (k2 ∈ T 2) such that for
any t ∈ T 1, k1 �1 t (for any t ∈ T 2, k2 �2 t). By Lemma 6, for any target t �1 j1,
t ∈ T 1, and for any target t �2 j2, t ∈ T 2. Therefore, j1 �1 k1 and j2 �2 k2.
Then we have T �1

k1
= T 1, T �1

k1
= T 1, and T �2

k2
= T 2, T �2

k2
= T 2. By Theorem

4 and H2
k1

= ∅,H1
k2

= ∅, we have M2(T 1) < M1(T 1) and M1(T 2) < M2(T 2).
By T 1 ∩ T 2 = ∅, T 2 ⊂ T 1 and T 1 ⊂ T 2. By Lemma 5, M1(T 1) < M1(T 2) and
M2(T 2) < M2(T 1). Combining this with previous inequality, we get M2(T 1) <
M1(T 2) and M1(T 2) < M2(T 1), which are contradictory.

Therefore, T 1 ∩ T 2 	= ∅. There is a target j ∈ T 1 ∩ T 2. By definition of
T 1, T 2, we have H1

j ,H2
j 	= ∅. Thus, Hj 	= ∅ by Theorem 3. Hj ⊂ H, so H 	= ∅. �
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A.4 Proof of Lemma 3

Proof. By Theorem 3 in the appendix, Ht = H1
t ×H2

t ×{t}. Ht 	= ∅, so H1
t ,H2

t 	=
∅. Since j �1 t, j �2 t, further by Lemma 6 in the appendix, we have H1

j ,H2
j 	= ∅.

Use Theorem 3 again, Hj = H1
j × H2

j × {j}. Therefore, Hj 	= ∅. �

A.5 Proof of Theorem 2 where F (t) �= F (t′)

Proof. Here, Argmint F (t) may not be a singleton, and we handle the edge case
of selecting a specific k∗ from Argmint F (t). Consider the set F = Argmint F (t)
and let F = mint′∈[T ] F (t′). For any t, j ∈ F , t 	= j, we say t � j if for any
defender i, Mi,πi(t) = F =⇒ t �i j. We show that � is transitive. Suppose
t � j and j � j′. Hence, t �i j for any defender i where Mi,πi(t) = F . On one
hand, Mi,πi(j) ≥ Mi,πi(t) ≥ F since t �i j. On the other hand, j ∈ F , so
Mi,πi(j) ≤ F . Therefore, Mi,πi(j) = F . Using a similar argument on j � j′ gives
us Mi,πi(t) = Mi,πi(j′) = F and t �i j �i j′. So, t � j′ and � is transitive.

We claim there exists a target k∗ ∈ F such that �t ∈ F , t � k∗. If not, then
for any kq ∈ F , there exists kq+1 ∈ F where kq+1 � kq. Thus, we can construct
an infinite sequence · · · � k2 � k1. Since � is transitive, each kq must be distinct,
which is not possible with a finite number of targets. Now we select a target k∗.

Once k∗ is selected, we set vi(k∗) = 0 for all defenders i. For any t 	= k∗,
we have F (t) ≥ F (k∗). For a fixed t, there are two cases: (i) if F (t) > F (k∗),
for any defender i such that Mi,πi(t) = F (t), we have k∗ �i t, since Mi,πi(t) >
F (k∗) ≥ Mi,πi(k∗). (ii) If F (t) = F (k∗), there is at least one defender i satisfying
Mi,πi(t) = F (t) such that k∗ �i t, otherwise t�k∗, contradicting the choice of k∗.
Thus, for any t 	= k∗, there always exists a defender i where Mi,πi(t) = F (t) and
k∗ �i t. Our construction sets vi(t) = F (k∗) and vi′

(t) = 0 for i′ 	= i. Showing
v is feasible and (v, k∗) is an NSE is same with the main proof of Theorem 2.�
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Abstract. The Mirai botnet network epidemic discovered in 2016 falls
into the category of numerous epidemics propagated by attackers over
a network to gain control over multiple devices. This particular epi-
demic has been employed in some of the most extensive and widespread
distributed denial of service (DDoS) attacks [24]. To take control of
numerous devices, the attacker’s strategy consists of injecting malicious
code from an infected device into one or more vulnerable neighboring
devices. This initiates a conflict, as the defender attempts to restrict the
attacker’s influence and control. Intelligent and rational agents (defender
and attacker) thus engage in a conflictual interaction, constantly com-
peting for optimal strategies within the network. Their objective is to
gain control over the most crucial devices, which are identified using
centrality measures. Nevertheless, an agent’s perception of the signifi-
cance of devices may vary due to factors such as variations in roles,
information accessibility, available resources, and diverse viewpoints on
risks, issues, or opportunities [8]. Consequently, the agents involved in
the process may hold different views regarding the significance of devices,
resulting in the utilization of different centrality measures. The signifi-
cance of considering these variations in centrality measures, as well as the
impact on each agent’s objective, is emphasized by our analysis. Hence,
we propose a non-zero-sum game model to identify the optimal centrality
measure for each agent in the context of controlling an epidemic spread.
Our model also provides the NE (Nash Equilibrium) strategy profile for
agents at each stage of the game. Numerical experiments show that, by
taking into account these differences in centrality measures and using our
game model, defenders effectively limit the impact of epidemics caused
by malicious attackers.
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1 Introduction

Networks have become an essential part of our daily lives, ranging from social
networks to transportation networks, and even cyber networks. One of the crit-
ical challenges in these networks is controlling epidemics that spread through
them [16]. The spread of epidemics in a network is commonly due to an agent
attempting to compromise devices in the network through a cyber-attack, which
spreads like a virus, infecting other devices in the network. To prevent this, vari-
ous techniques have been developed, including the use of game theory [9,25,26].
However, motivated by propagation scenarios involving two main agents, one of
which aimed to eventually compromise the system, we take into consideration
a wide range of games wherein the attacker and the defender’s interactions are
dynamic, involve uncertainty, and could extend over a long period of time. In
recent years, game theory has emerged as a powerful tool to model and analyze
the strategic interactions between agents in such networked systems and has
been applied in many fields, including cyber security [5].

In the field of game theory for cyber security, the problem of epidemic con-
trol has become increasingly important due to the rise of epidemics caused by
malicious intelligent and rational agents, who generally have complete informa-
tion about the state of the network. Due to the attacker’s informational advan-
tage, a variety of deception techniques have been developed to safeguard the
network. Deception is a cyber defense mechanism that aims to intentionally
misguide the cyber attacker by hiding true information or presenting false infor-
mation to attackers, in order to prevent or at least to reduce damages from cyber
attacks [21]. One important cyber deception technique under uncertainty is the
use of tools such as honeypots to mislead attackers and detect attacks [1]. There-
fore, the authors of [22], employing honeypot placement as a defense technique,
recently proposed a one-sided partially observable stochastic game framework
for determining an optimal strategy for both the attacker and defender in the
context of network epidemic problems. However, the proposed value iteration
(VI) algorithm presents a major problem related to scalability (24 nodes in the
context of lateral movement problems with lower dimensional states and belief
spaces). Meanwhile, the epidemic control problem generally applies to networks
with numerous devices and, henceforth, requires more efficient tools. To address
this issue, the authors of [23] modeled the epidemic control problem as a game
between two players who make decisions based on centrality measures, which
are measures of a device’s importance or influence in a network. Nonetheless,
the study only examines the scenario where both agents use the same central-
ity measures from the outset of the game. In practice, however, agents may
hold varying perspectives and levels of knowledge regarding the significance of
devices within a network. Due to the asymmetry of the agents’ knowledge, they
may have divergent preferences regarding the centrality measures they choose,
as these decisions are influenced by the information available to each of them.

Exploring the scenario in which agents use distinct centrality measures holds
significant importance for various reasons. Firstly, different centrality measures
capture various aspects of a device’s significance in a network [15]. Due to agents’
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lack of awareness of each other’s methods, they may have distinct opinions on
which nodes are the most important. Secondly, agents may have varying prefer-
ences for using different centrality measures due to factors like implementation
complexity and impact on the network. For instance, one agent may prefer degree
centrality for its simplicity, while another agent may favor betweenness centrality
for its consideration of the network’s overall structure. Finally, the use of differ-
ent centrality measures may lead to different decisions and outcomes, affecting
the effectiveness of epidemic control strategies. Studying the impact of different
centrality measures on agents’ decisions and strategies can help us understand
how information and objectives influence decision-making and the resilience of
epidemic control strategies to errors or inaccuracies in centrality measures.

This article thus presents a new approach to the centrality game on a net-
work using a cyber deception technique. The proposed game is asymmetric, with
two players making decisions based on their respective centrality measures. The
game is modeled as a two-player non-zero-sum game on a graph, where the nodes
represent devices in the network, and the edges represent attacks using spe-
cific vulnerabilities. The attacker sequentially chooses from any infected node,
adjacent and susceptible nodes to attack keeping his position secret from the
defender. On his side, the defender chooses edges that will act as honeypots, to
detect and counteract unauthorized use of information systems; the proposed
model considers several factors. First, each player chooses his or her centrality
measure at the start of the game, and this choice is common knowledge. Sec-
ond, the attacker does not observe all the actions of the defender after a given
time slot. Third, the detection of transmission means that the defender cures the
infected node, the source of the transmission. Moreover, although the nodes lack
intelligence and rationality, they have the potential to make decisions based on
their current state. During each time slot, a node has the potential to transition
from a Susceptible to a Resistant state or from an Infected to a Susceptible state,
but the exact probabilities of these changes are only known to the defender. This
assumes that a time slot of the game consists of two stages: the stage of strate-
gic interactions and the stage of random transitions. We thus propose four key
contributions for improving the scalability of the proposed solution:

– a two-player non-zero-sum infinite horizon stochastic game is studied in which
no player observes the opponent’s actions,

– a coupled system in which two players act strategically and a set of nodes
react to their individual states,

– an investigation of the impact of different centrality measures on agents’
strategies and the game outcome,

– an examination of the effects of network topology and parameter settings on
the game outcome.

Our results highlight the importance of taking into account the heterogeneity
in agents’ perspectives when designing strategies for epidemic control problems
in networks.
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2 Related Work

A common cause of epidemic spread in networks is the attempt by an agent
to compromise the computers in the network through a cyber attack, with var-
ious goals such as distributed denial of service (DDoS). Indeed, DDoS follows
the furtive preliminary recruitment of devices into a zombie army called a bot-
net [12]. A report by [11] revealed that during the period between April 2013
and May 2014, DDoS attacks affected 38% of companies that provide financial
services or operate online services for the public. The mathematical modeling
of epidemics borrows fundamental notions from epidemiology in that the pop-
ulation is divided into compartments and the name of the epidemic is derived
from the possible compartments and the possible transitions of an individual
between compartments. Thus, several epidemic models can be distinguished,
namely SIS, SIR, etc. The concept of Nash equilibrium has been used in several
works including various epidemic models to determine a profile of equilibrium
strategies between conflicting agents. For example, the NE concept is used in
[19] and [20] to stop the spread of SIS epidemics in a decentralized manner
and to optimize influence in competitive contexts. To compare the advantages
of centralized and decentralized protection of a network against threats, Tra-
janovski, Hayel, et al. [19] discuss the price of anarchy (PoA) in a single com-
munity, bipartite, and multi-community networks. They prove the existence of
the Nash equilibrium and outline a reinforcement learning algorithm to find the
NE in pure strategies. However, like several other authors, they did not include
strategic defense mechanisms as deception schemes, despite their effectiveness
in contexts with asymmetric information and an attacker’s advantage. Several
deception methods exist in the literature related to network security. In [17]
numerous deception techniques have been proposed for network security, such
as impersonation, delays, fakes, camouflage, false excuses, and social engineering
because traditional cybersecurity approaches face a continual cycle of detecting
and responding to new threats and vulnerabilities. Therefore, game models are
more elaborated and computers can examine the huge number of possible threat
scenarios in cyber systems better than humans. However here, no one is guar-
anteed to have information dominance in terms of intelligence and accessibility.
Hence the importance of game theory for cyber security. Because of these obser-
vations, the authors of [22] employed a SIR-type game model integrating game
theory and cyber deception for epidemics. Indeed, they modeled the problem as
a partially observable stochastic game on a graph in which the defender aims to
optimize the placement of honeypots to mislead the attacker as much as possi-
ble. However, the proposed approach presents problems related to the scalability
with the size and complexity of the proposed Heuristic Search Value Iteration
(HSVI) algorithm [10].

According to some authors, the globality of the proposed solution in the pre-
vious approach may be responsible for these limitations, as it does not consider
the topology of the considered graph. Therefore, [23] proposed an approach in
which the agents pose their actions taking into account the influence of the nodes
in the graph, influence measured through various centrality measures [2]. The
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authors of [23] demonstrated that their model is a game of centralities thresh-
olds, and provided the necessary conditions for obtaining a Nash equilibrium.
However, these results were based on the assumption that the two agents in con-
flict act according to the same centrality measure, which is not always the case in
real-world situations. Indeed, in most cyber security problems, the protagonists
do not have identical information and resources. As a result of this asymmetry,
there can be an asymmetry in their perceptions of a node’s importance within
the graph. The selection of the centrality measure is thus influenced, resulting
in agents eventually opting for different centrality measures.

3 General Model Description

In this game, there are two sides: the attacker, who controls the malware and
wants to infect as many devices in the network as possible, and the defender,
who wants to stop or reduce the infection. The devices in the network will make
a decision based on their own state. As the game progresses, different stages will
occur, and we’ll explain each one in more detail. So, in summary, it’s a battle
between the attacker and defender to control the network, and the network
devices will make a probabilistic decision based on their current state.

3.1 Problem Description

The attacker tries to infect a maximum number of devices in the network to
reach a minimum threshold that will allow her to launch her attack. She can do
this because some devices have weak points that can be easily taken advantage
of. For example, many devices use default passwords that don’t change for a
long time, so they are more likely to be hacked, due to the relatively limited
range of default passwords. Knowing the status of each device through frequent
probes enables the attacker to infect and compromise the system to spread the
malware. To prevent this spread, we suggest the defender deploy a patch for
infected devices and use a cyber deception technique. An Intrusion Detection
System (IDS) installed on certain network edges can identify code transmissions
and nullify them, but this defensive action could reveal the defender’s counter-
measures to the attacker. To conceal the defensive measure, we propose that
the defender allows the code to reach its target, revealing to the attacker that
the device is infected, and then disinfects the device before the attacker’s sub-
sequent probe. The tool thus used is called an intrusion-proof system (IPS) in
the following. It can detect malicious connectivity attempts and automatically
install patches on infected devices that are sources of the malware propaga-
tion attempt. Additionally, users of infected or vulnerable devices can choose to
accept the patch or customize their password, and the defender is informed of
their decision. The probabilities of infected devices accepting patches and vul-
nerable devices customizing passwords are known only to the defender and are
not reported to the attacker.
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3.2 System Model

This section provides a detailed description of the interactions between the
attacker and the defender in the context of an epidemic spread. The model
takes into consideration three main factors: the conflicting interests of the two
parties, the dynamic spread of the virus through the network, and the response
of each device depending on its current state. To distinguish between the strate-
gic interactions of the players and the internal state transitions of the devices,
the model assumes that the game is divided into time slots, with each time slot
comprising two stages: the strategic stage (the first stage) and the reactive stage
(the second stage).

3.2.1 Time Slot Description
A time slot in this framework involves two distinct stages: firstly, the strate-
gic actions of the attacker and defender, and secondly, the probabilistic
moves/reactions of the devices, which depend on their current state, i.e., internal
state transitions of the devices.

Strategic stage: The two players (attacker and defender) make their actions,
which result in an intermediate state a(z)i for each device i of the network.

– Attacker: Assuming perfect information about the state of each device in the
network at every time slot, the attacker is the strategic and rational agent
who spreads malware through the network by silently propagating it from
each infected device to adjacent susceptible devices. However, the attacker
may not want to transmit the malware to all susceptible neighbors of each
infected device, as doing so could expose the infected devices and raise the
defender’s suspicions.

– Defender: In order to limit the spread of the malware, the defender acts
strategically by using IPSs to monitor a limited number of edges at each time
slot. Whenever a malware transmission is detected on edge, the defender cures
the two devices involved in the transmission (i.e., the source device and the
target device). The defender’s choice of IPS locations is not revealed to the
attacker; these IPSs are only available for a single time slot, and the interac-
tion between the attacker and defender is repeated at each time interval.

– It should be noted that each player’s actions are influenced by the centrality
measure he/she has chosen to evaluate the influence of the network devices.
After establishing the action profile, the system enters an intermediate state
a (z), indicating the beginning of the second stage within the current time
slot.

Reactive Stage: During the second stage of a time slot, each device has the
ability to take an action that can result in a change of its internal state. The
transition depends on the device’s current state and the specific self-restoration
process used. An infected device can perform tasks such as updating software
or running a malware scan to eliminate the threat with probability α, and then
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transition to the susceptible state. Alternatively, a susceptible device can choose
with probability ρ, to install an immunization mechanism to become resistant.
Regardless of the action taken, each device i will transition from the intermediate
state a(z)i to a final state z

′
i, as depicted in Fig. 1. Not being informed of these

transition probabilities, the attacker cannot infer the defender’s actions, since an
infected device may become susceptible due to either an IPS or its own decision.

Fig. 1. Possible state transitions of a node depending on the decision taken.

Illustration of a Time Slot Sequence: We present a hypothetical situation
for our game with two different scenarios. In the first one (a), both agents use
degree centrality, while in the second scenario (b), the defender uses betweenness
centrality and the attacker uses degree centrality. In each scenario, the attacker
selects from any infected node the susceptible neighbor with the highest central-
ity value. Meanwhile, the defender chooses two nodes with the highest centrality
values to protect.

After explaining the sequence of events within a given time slot, the following
section focuses on describing the asymmetric game model. This model is used to
determine the optimal strategies of the attacker and defender at each time slot.
It should be noted that, in our context, a player’s optimal strategy comprises two
key components. The first one is the selection of the centrality measure, and the
second one is the computation of the optimal probability distribution associated
with it. In the following, we refer to the centrality measure used by the defender
as cd and the centrality measure used by the attacker as ca. Furthermore, we
assume that the centrality measure used by each player is common knowledge
information.
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3.3 Definition of the Asymmetric Centrality Game

Without loss of generality, we focus on the defender’s goal of minimizing and
the attacker’s goal of maximizing the number of infected devices at each time
slot. Considering the fact that only the attacker knows the state of the sys-
tem at each time slot, which is private information for her, the asymmet-
ric centrality game is the non-zero sum Bayesian game defined by the tuple
G =

(
G,N,Z,A = A1 × A2, α, ρ,O,Rd,Ra, b0

)
, where:

• G = (V,E) is a non-directed graph representing the network where V =
{1, 2, 3, ..., |V |} is the set of nodes and E ⊆ {e ∈ 2|V |, |e| = 2} is the set of
edges,

• N is the set of players: the defender (player 1) and the attacker (player 2),
• The network at time t is the sub-graph of the network at time t−1, consisting

of non-resistant nodes, i.e. at time t, V = V \ Rt−1 (where M t−1 represents
the set of nodes of type M at the end of time slot t − 1),

• Z is the set of possible states of the network and each state z is defined by,
z = (zi)

|V |
i=1; where

zi =
{

S if node i is susceptible
I if node i is infected ; for all i ∈ V. The attacker knows the state

of the network while the defender has to update his belief at each time slot t,
• The set A1 refers to the actions available to the defender, which involve

selecting up to h edges to deploy IPSs. The defender lacks knowledge about
the state of the network at each time t, so all edges in the set S = E ∩(V ×V )
are potentially usable by the attacker. However, since S may be quite large,
the defender should limit his field of action by playing over the set Sb at
each time t, referred to as the defender’s critical zone. This set is defined
by Sb =

⋃

z∈supp(b)

Sz where Sz = {(i, j) ∈ It × St : {i, j} ∈ E} and supp (b) =

{z ∈ Z | b (z) �= 0} is the support of the belief b over the network state. Then,

the defender’s actions space is accordingly, A1 =
{Ph (Sb) if |Sb| > h{

2Sb
}

otherwise ,

• The set of actions available to the attacker is denoted as A2. To perform
an action, the attacker selects a set Ti of adjacent susceptible nodes from
any infected node i, as the targets for propagating the malware. The attacker
strategically avoids targeting the same susceptible node from different infected
sources to minimize the likelihood of detection, as doing so would not yield
any additional benefit. Thus, an action a2 for the attacker at time t can be
represented as a tuple T = (Ti)i∈It ≡

⋃

i∈It

T
′
i , with T

′
i = {{i, j}, j ∈ Ti} that

satisfy the properties:

⎧
⎨

⎩

∀i ∈ It, Ti ⊆ St

∀i ∈ It,∀j ∈ Ti, (i, j) ∈ Sz

∀k, l ∈ It, k �= l =⇒ Tk ∩ Tl = ∅
,

• O represents the set of observations made by the defender, which depends on
the state of each node at the end of each time slot. The defender observes
a node if its state changes from I to S or from S to R. When there is no
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observation for the defender, then oi = X. A defender’s observation profile
can thus be defined as a tuple o(z, a, z′) = (oi)i∈V , with oi ∈ {z′

i,X}, ∀i ∈ V ,
• Rd is the defender’s reward and Ra the attacker’s one at each time slot, b0

is the defender’s initial belief.

4 Asymmetric Centrality Game Solution

Every agent aims to hold the most crucial positions within the graph. To achieve
this, each agent focuses on nodes with high centrality values from their individual
perspective (ca for the attacker and cd for the defender). The model’s outcome
thus depends on the centrality of each node, which rewards the defender if a node
transits from an infected to a susceptible or resistant state, while the attacker
benefits from infecting a node.

4.1 Players’ Rewards Associated with an Action Profile

When an action profile (W,T ) ∈ A1 × A2 is implemented, the centrality value
of any node is rewarded to the defender, if the node transits from infected to
susceptible or resistant, or to the attacker, if the node transits from susceptible
to infected. Table 1 displays the expected partial reward for both players, which
includes the centrality value of node i according to both the defender’s and
attacker’s centrality measures, denoted as cd

i and ca
i respectively.

Table 1. The players expected reward resulting from a joint action (W, T ) on one edge
{i, j}.

ATTACKER:
Propagate i → j?

Propagate
({i, j} ∈ T )

No propagate
({i, j} /∈ T )

DEFENDER: Watch cd
i , −ca

i 0

({i, j} ∈ W )

Watch {i, j}? No watch − (1 − α) cd
j , (1 − α) ca

j 0

({i, j} �∈ W )

At a given state z, the rewards associated to an action profile (W,T ) ∈
A1 × A2 are assigned to the defender and attacker as follows:

Rd (W,T ) =
∑

{i,j}∈Sz

{i,j}∈W
j∈Ti

cd
i −

∑

{i,j}∈Sz

{i,j}�∈W
j∈Ti

(1 − α) cd
j =

∑

{i,j}∈S

{i,j}∈W
j∈Ti

cd
i −

∑

{i,j}∈S

{i,j}�∈W
j∈Ti

(1 − α) cd
j ,
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Ra (W,T ) =
∑

{i,j}∈Sz

{i,j}�∈W
j∈Ti

(1 − α) ca
j −

∑

{i,j}∈Sz

{i,j}∈W
j∈Ti

ca
i =

∑

{i,j}∈S

{i,j}�∈W
j∈Ti

(1 − α) ca
j −

∑

{i,j}∈S

{i,j}∈W
j∈Ti

ca
i .

Indeed, for all {i, j} ∈ S \ Sz, we never get j ∈ Ti.

4.2 Players’ Rewards Associated with a Strategy Profile

Denote by Πi the strategy space for player i. Let’s consider mixed strategies π1

∈ Π1 for the defender and π2 : Z −→ Δ (A2) ∈ Π2 for the attacker.

• Defender’s reward: The expected reward of the defender with belief b ∈ Δ (Z)
associated to the strategy profile π = (π1, π2) is Rd (π|b) =

∑

z∈Z

b (z)Rd (π|z),

where

Rd (π|z) =
∑

(W,T )∈A1×A2

π1 (W )π2 (T |z)Rd (W, T ) ,

=
∑

{i,j}∈S

(W,T )∈A1×A2
{i,j}∈W

j∈Ti

π1 (W )π2 (T |z) cd
i +

∑

{i,j}∈S

(W,T )∈A1×A2
{i,j}�∈W

j∈Ti

π1 (W )π2 (T |z) (α − 1) cd
j ,

=
∑

{i,j}∈S

π1 (i, j)π2 (i, j|z)
(

cd
i + (1− α) cd

j

)
−

∑

{i,j}∈S

(1− α)π2 (i, j|z) cd
j ,

π1 (i, j) =
∑

W∈A1
{i,j}∈W

π1 (W ) and π2 (i, j|z) =
∑

T∈A2
j∈Ti

π2 (T |z) being respectively

the probabilities that the defender watches edge {i, j} and the attacker targets
node j from node i at state z. Therefore,

Rd (π|b) =
∑

z∈Z

b(z)

( ∑

{i,j}∈S

π1 (i, j)π2 (i, j|z)
(

c
d
i + (1 − α) c

d
j

)
−

∑

{i,j}∈S

(1 − α)π2 (i, j|z) c
d
j

)

=
∑

{i,j}∈S

π1 (i, j)ϕd (i, j|b, π2) −
∑

{i,j}∈S

ψd (i, j|b, π2)

where, ϕd (i, j|b, π2) = π2 (i, j|b)
(

cd
i + (1 − α) cd

j

)
is the defender’s expected

profit in case of detected virus transmission from i to j, ψd (i, j|b, π2) =
(1 − α) π2 (i, j|b) cd

j is the marginal loss of the defender in case of malware

transmission from nodes i to j, and π2 (i, j|b) =
∑

z∈Z

π2 (i, j|z) b (z) is the

marginal probability that the attacker spreads the virus from i to j knowing b.
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• Attacker’s reward: The expected reward of the attacker associated with the
strategy profile π = (π1, π2), when the defender’s belief is b ∈ Δ (Z), is given
by Ra (π|b) =

∑

z∈Z

b (z)Ra (π|z).

Ra (π|z) =
∑

(W,T )∈A1×A2

π1 (W )π2 (T |z)Ra (W, T )

=
∑

{i,j}∈S

(W,T )∈A1×A2
{i,j}�∈W

j∈Ti

π1 (W )π2 (T |z) (1− α) ca
j −

∑

{i,j}∈S

(W,T )∈A1×A2
{i,j}∈W

j∈Ti

π1 (W )π2 (T |z) ca
i ,

=
∑

{i,j}∈S

π2 (i, j|z)
(
(1− α) ca

j − π1 (i, j)

(
(1− α) ca

j + ca
i

))
,

Therefore,

Ra (π|b) =
∑

z∈Z

b(z)
∑

{i,j}∈S

π2 (i, j|z)

(
(1 − α) ca

j − π1 (i, j)

(
(1 − α) ca

j + ca
i

))
,

=
∑

{i,j}∈S

π2 (i, j|b) ϕa (i, j|π1) ,

where ϕa (i, j|π1) = (1 − α) ca
j − π1 (i, j)

(
(1 − α) ca

j + ca
i

)
=

(
1 −

π1 (i, j)
)

(1 − α) ca
j − π1 (i, j) ca

i is the expected reward of the attacker in

case she targets the node j from i and π2 (i, j|b) =
∑

{i,j}∈S

π2 (i, j|z) b (z) has

the same interpretation as above.

Furthermore, at each time slot, the main goal for every player is to optimize
his payoff by considering the strategy his opponent has chosen. This means
that each player aims to play the strategy that best responds to his opponent’s
strategy.

4.3 Players Solution Approach

• Defender solution approach: Suppose the attacker has a strategy denoted
as π2 ∈ Π2. A strategy π1 ∈ Π1 employed by the defender is consid-
ered as the optimal response to π2 if it maximizes the reward Rd (π|b) =∑

{i,j}∈S

π1 (i, j) ϕd (i, j|b, π2) −
∑

{i,j}∈S

ψd (i, j|b, π2).

In addition, knowing the strategy π2 allows us to determine the coeffi-
cients ϕd (i, j|b, π2) and ψd (i, j|b, π2) for all {i, j} ∈ S. Once these coefficients
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are fixed, the maximum payoff for the defender can be obtained by maximiz-
ing

∑

{i,j}∈S

π1 (i, j) ϕd (i, j|b, π2). To achieve this maximum payoff, the defender

should focus on the top h edges of Sb according to their rank value r (i, j|b, π2) =
1 + |{{x, y} ∈ Sb : ϕd (x, y|b, π2) > ϕd (i, j|b, π2)}|, and set π1 (i, j) = 0 for the
remaining edges. In other words, π1 best responds to π2 if π1 (i, j) = 0
whenever r (i, j|b, π2) > h, i.e., if π1 (i, j) = 0 for all {i, j} not in the set
SLd (π2) = {{x, y} ∈ Sb : r (x, y|b, π2) � h} of the h top-ranked edges of
Sb according to ϕd (·|b, π2). SLd (π2) is called short list of the defender, best
responding to the attacker’s strategy π2. It is important for the defender to
choose a pseudo probability distribution π1 over Sb that is consistent with some
probability distribution over A1.

• Attacker solution approach: In the same way, an attacker’s strategy
π2 ∈ Π2 is considered as the best response to a defender’s strategy π1 ∈ Π1

when the reward Ra (π|b) =
∑

{i,j}∈S

π2 (i, j|b) ϕa (i, j|π1) is maximized. The

maximum reward for a fixed defender’s strategy π1 and thus, fixed coef-
ficients ϕa (i, j|π1) and b (z) is achieved when π2 (i, j|z) = 0 in any pos-
sible state z (i.e., b (z) �= 0) where ϕa (i, j|π1) is not maximal. In other
words, for all possible states z ∈ Z, π2 (i, j|z) = 0 if {i, j} /∈ SLa (π1) =
{{x, y} ∈ S : ∀ {u, v} ∈ S, ϕa (x, y|π1) � ϕa (u, v|π1)}, which is referred to as
the short list of the attacker best responding to the defender’s strategy π1.
This implies that at state z, the attacker may only transmit the virus from
each infected node i to a susceptible neighbor j if ϕa (i, j|π1) is equal to the
maximum possible value.

4.4 Nash Equilibria Properties

A strategy profile π∗ = (π∗
1 , π

∗
2) is a Nash equilibrium if and only if each player

best responds to his/her opponent’s strategy and no player can unilaterally
change his strategy. The short lists of players associated with their best responses
as defined above satisfy the following proposition:

Proposition 1. Suppose that SLd (π∗
2) �= S then, the shortlist of the defender is

a subset of the short list of the attacker, i.e., SLd (π∗
2) ⊆ SLa (π∗

1).

This means that the defender does not need to worry about the attacker’s
insignificant target in advance unless he wants to monitor all edges of the graph.

Proof. Suppose that SLd (π∗
2) �= S and take any {i, j} �∈ SLa (π∗

1). Then, for all

z ∈ Z, π∗
2 (i, j|z) = 0 and ϕd (i, j|b, π∗

2) =
∑

z∈Z

b (z)π∗
2 (i, j|z)

(
cd
i +(1 − α) cd

j

)
=

0. In this case, {i, j} is minimally ranked according to ϕd (·|b, π∗
2) because

ϕd (u, v|b, π∗
2) � 0, ∀{u, v} ∈ S. Since SLd (π∗

2) �= S, at least one edge {x, y} ∈ S

is not h top-ranked according to ϕd (·|b, π∗
2).

As ϕd (x, y|b, π∗
2) � 0 = ϕd (i, j|b, π∗

2), we conclude that {i, j} is not h top-
ranked according to ϕd i.e., {i, j} �∈ SLd (π∗

2). �
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The previous inclusion relation between the short lists (Proposition 1) leads
us to the following proposition, which shows that our game is actually a game
of thresholds.

Proposition 2. 1. For all {k, l} ∈ SLa (π∗
1) \ SLd (π∗

2), {i, j} ∈ SLd (π∗
2), and

{u, v} ∈ S \ SLa (π∗
1), it holds:

{
ca
j � ca

l > ca
v

ca
j > ca

l ⇐⇒ π∗
1{i, j} > 0 .

2. For all couples {k, l}, {k′, l′} ∈ SLa (π∗
1) \ SLd (π∗

2), it holds: ca
l = ca

l′ .

This implies that, at Nash equilibrium,

– The objective of the defender is to safeguard nodes with centrality values
that exceed a specific threshold θ1. Similarly, the attacker’s goal is to target
nodes with centrality values not lower than another threshold θ2. Moreover,
the specific values of these thresholds are determined based on the centrality
measure employed by the attacker.

– From the attacker’s perspective, all the nodes that the defender should leave
unprotected have the same centrality values.
However, note that this proposition does not state that SL2 (π∗

1) \ SL1 (π∗
2) is

a non-empty set.

Proof. From {k, l} �∈ SLd (π∗
2), it comes π∗

1 (k, l) = 0. From {k, l} ∈ SLa (π∗
1), it

comes that ϕa (k, l|π∗
1) = (1 − α) ca

l is maximal. This point leads to the second
statement of the Proposition 2 because, taking {k′, l′} ∈ SLa (π∗

1) \ SLd (π∗
2),

implies ϕa (k′, l′|π∗
1) = (1 − α) ca

l′ is maximal too, and then, (1 − α) ca
l′ =

(1 − α) ca
l , i.e., ca

l = ca
l′ .

Note that {u, v} �∈ SLa (π∗
1), and from Proposition 1, {u, v} �∈ SLd (π∗

2) so,
π∗
1 (u, v) = 0. In this case, ϕa (u, v|π∗

1) = (1 − α) ca
v and, since ϕa (k, l|π∗

1) =
(1 − α) ca

l is maximal, it comes (1 − α) ca
l > (1 − α) ca

v and, consequently, ca
l >

ca
v .

In addition, the maximality of ϕa (k, l|π∗
1) also applies to {i, j} and, therefore

(1 − α) ca
j −π∗

1 (i, j)
(

ca
i + (1 − α) ca

j

)
= (1 − α) ca

l . Then, π∗
1 (i, j)

(
ca
i +

(1 − α) ca
j

)
= (1 − α)

(
ca
j − ca

l

)
. The positivity of ca

j − ca
l relies on that of

ca
i + (1 − α) ca

j , thus ca
j � ca

l . �

Since we have demonstrated that players act in accordance with centrality
thresholds, it is evident that these thresholds have a direct impact on players’
optimal responses. The Proposition 3 provides a more specific characterization of
shortlists SLd (π∗

2) and SLa (π∗
1) by taking into account these centrality thresh-

olds.

Proposition 3. For some centrality values θ1 and θ2, it holds:

1. SLd (π∗
2) = {{i, j} ∈ Sb : ca

j � θ1}; SLa (π∗
1) = {{i, j} ∈ S : ca

j � θ2};
2.

{
For some {i, j} ∈ SLd (π∗

2) , it holds ca
j = θ1 and π∗

1 (i, j) �= 0,
For some {k, l} ∈ SLa (π∗

1) , it holds ca
l = θ2 and π∗

2 (k, l|b) �= 0; .
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3. θ2 � θ1. In particular, if θ2 < θ1, then no centrality value can lie in the space
]θ2, θ1[.

Proof. Consider θk = min
{source,target}∈SLp(π∗

−k)
ca
target, for (k, p) ∈ {(1, d) , (2, a)}.

By this definition, ca
j � θk for any {i, j} ∈ SLp

(
π∗

−k

)
. Conversely, on the

one hand, take any {k, l} ∈ S such that ca
l � θ2. The minimum value θ2 is

attained for some {k′, l′} ∈ SLa (π∗
1). Then, from the inequality ca

l � ca
l′ and

proposition 2.1, it comes {k, l} ∈ SLa (π∗
1) (indeed, suppose {k, l} ∈ S\SLa (π∗

1),
we have, ca

l < ca
l′ ). Similarly, take any {i, j} ∈ S such that ca

j � θ1. With the
same reasoning, we get {i, j} ∈ SLd (π∗

2). Point 1 is proven.
For the proof of point 2, since θk = min

{source,target}∈SLp(π∗
−k)

ca
target, for (k, p) ∈

{(1, d) , (2, a)}, they are attained for some {i, j} ∈ SLd (π∗
2) and {k, l} ∈ SLa (π∗

1)
respectively.

Since SLd (π∗
2) ⊆ SLa (π∗

1) and the definition of θk, k = 1, 2, we have θ2 � θ1
(and more specifically θ2 < θ1 iff SLd (π∗

2) ⊂ SLa (π∗
1)). Moreover, let’s assume

that there is {u, v} ∈ SLa (π∗
1) and {i, j} ∈ S such that θ2 = ca

v and ca
j ∈ ]θ2, θ1[.

In this case, {i, j} , {u, v} ∈ SLa (π∗
1) \ SLd (π∗

2); by Proposition 2.2 ca
j = θ2,

which is absurd. Point 3 is proven. �
Once a factual definition of short lists of players is provided, it becomes

apparent that they are determined by centrality thresholds that are established
based solely on the centrality measure of the attacker. The following section aims
to elucidate the mathematical properties that determine these thresholds and
emphasize the associated optimal strategy for each player.

5 Nash Equilibria Analysis

It is assumed that the players are playing a strategy profile π∗ = (π∗
1 , π

∗
2) that is

a Nash equilibrium. Additionally, the defender holds a belief b about the network
state. This means that the set of possible strategies that each player can choose
from, denoted by supp (π∗

k), are contained within their respective short lists,
denoted by SLp

(
π∗

−k

)
, (k, p) ∈ {(1, d) , (2, a)}, which are determined by their

individual thresholds θk. In this section, based on the definition of the attacker’s
shortlist SLa(π∗

1), we denote by s the maximum value of ϕa under the Nash
equilibrium, i.e., s = max

{i,j}∈S

ϕa (i, j|π∗
1).

Proposition 4. 1. The probability of the defender placing an IPS on any edge
{i, j} ∈ Sb is expressed as:⎧
⎨

⎩
{i, j} ∈ SLa (π∗

1) ⇐⇒ ϕa (i, j|π∗
1) = s and π∗

1 (i, j) =
(1 − α) ca

j − s

ca
i + (1 − α) ca

j

{i, j} �∈ SLa (π∗
1) =⇒ ϕa (i, j|π∗

1) < s and π∗
1 (i, j) = 0

.

2. Mathematically speaking, the total probability of protection for every edge in
Sb is equal to the number of IPSs that the defender has. This is represented
by the equation:

∑

{i,j}∈Sb

ca
j �θ1

π∗
1(i, j) = h.
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3. The highest value s that the attacker tries to achieve when making her decision

is expressed as: s = (1 − α)

⎛

⎜
⎜
⎜
⎝

∑

{i,j}∈Sb

ca
j �θ1

ca
j

ca
i + (1 − α) ca

j

⎞

⎟
⎟
⎟
⎠

− h

1 − α

∑

{i,j}∈Sb

ca
j �θ1

1
ca
i + (1 − α) ca

j

.

Proof. 1. The comparison of ϕa (i, j|π∗
1) and s is according to the definition of

the attacker’s shortlist SLa(π∗
1). On the one hand, if {i, j} ∈ SLa (π∗

1) then,

s = (1 − α) ca
j − π∗

1 (i, j)
(

ca
i + (1 − α) ca

j

)
⇐⇒ π∗

1 (i, j) = (1−α)ca
j −s

ca
i +(1−α)ca

j
.

On the other hand, if {i, j} /∈ SLa (π∗
1) then, {i, j} /∈ SLd (π∗

2); the assertion
1 is proven.

2. A defender’s action is to select h edges to protect from his short list SLd (π∗
2).

It is important to remember that for every edge {i, j} in the selected list,
the value of π∗

1(i, j) is equal to the sum of the values of π∗
1(W ) for all

W ∈ A1 such that {i, j} belongs to W , i.e. π∗
1 (i, j) =

∑

W∈A1
{i,j}∈W

π∗
1(W ). Then,

∑

{i,j}∈Sb

ca
j �θ1

π∗
1(i, j) =

∑

{i,j}∈Sb

ca
j �θ1

∑

W∈A1
{i,j}∈W

π∗
1(W ) = h

∑

W∈A1

π∗
1(W ) = h.

In fact, since an action consists of h elements, it will be repeated h times in
the sum. This leads us to the conclusion shown in assertion 2, which is based
on the fact that π∗

1 represents a probability distribution over the defender’s
actions set A1.

3. The assertion 3 comes from assertion 2 and the first point of assertion 1.
�

Based on Proposition 3, the recommended course of action for the defender
in response to the attacker’s strategy involves the prior construction of the
defender’s short list. This process entails the careful selection of the suitable
centrality measure to assess the impact of the network nodes. As a result, the
defender’s optimal strategy can be summarized in two key stages: the selection
of the centrality measure and the subsequent computation of the corresponding
π∗
1 optimal strategy.

Proposition 5. At Nash equilibrium, the defender must use the attacker’s cen-
trality measure to assess the significance of nodes in the graph. This implies that
the defender’s decisions are based on the same centrality measure as that of the
attacker.

Proof. The defender’s best response, represented by the set SLd(π∗
2) is deter-

mined by a centrality threshold based on the attacker’s centrality measure
(first point of proposition (3)). Moreover, the defender’s optimal strategy π∗

1
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on SLd(π∗
2) is still influenced by the attacker’s centrality measure (first assertion

of proposition (1)). To put it simply, if the defender wants to play optimally,
he needs to take into account the attacker’s centrality measure when making
decisions. �

The following proposition allows us to determine at each time t, if a given
(θ1, θ2) is a Nash equilibrium:

Proposition 6. 1. a) At Nash equilibrium, we have
∑

{i,j}∈Sb

ca
j �θ1

ca
j − θ1

ca
i + (1 − α) ca

j

�

h

1 − α
.

b) If in particular θ1 > θ2, then
∑

{i,j}∈Sb

ca
j �θ1

ca
j − θ2

ca
i + (1 − α) ca

j

=
∑

{i,j}∈Sb

ca
j �θ2

ca
j − θ2

ca
i + (1 − α) ca

j

=
h

1 − α
.

2. Assuming that the set Lasth ⊆ {{i, j} ∈ Sb : ca
j � θ1

}
contains the h

last-ranked elements of Sb based on their π∗
1 (i, j) values, it follows

∑

{i,j}∈Lasth

π∗
1 (i, j) � h (h − 1)

|Sb| − 1
.

3. a) If s � 0 then θ1 = min
{i,j}∈Sb

ca
j .

b) If s > 0 then the attacker infects a susceptible node j if and only if that
is for some infected node i, it holds ϕ2 (i, j|π1) = s.

Proof. The positivity of π∗
1 (i, j) for all {i, j} in the defender’s shortlist implies

(1 − α) ca
j � s then (1 − α) θ1 � s . Moreover,

(1 − α) θ1 � s ⇐⇒ θ1 �

⎛
⎜⎜⎜⎜⎜⎝

∑

{i,j}∈Sb
ca
j �θ1

ca
j

ca
i + (1 − α) ca

j

⎞
⎟⎟⎟⎟⎟⎠

− h

1 − α

∑

{i,j}∈Sb
ca
j �θ1

1

ca
i + (1 − α) ca

j

⇐⇒
∑

{i,j}∈Sb
ca
j �θ1

ca
j − θ1

ca
i + (1 − α) ca

j

� h

1 − α
.

In case θ1 > θ2, there exist {i, j} ∈ SLa(π∗
1) \ SLd(π∗

2), such that ca
j = θ2 and

then,

π∗
1 (i, j) =

(1 − α) ca
j − s

ca
i + (1 − α) ca

j

=
(1 − α) θ2 − s

ca
i + (1 − α) θ2

= 0. So, we get

s = (1 − α) θ2 ⇐⇒

⎛
⎜⎜⎜⎜⎜⎝

∑

{i,j}∈Sb
ca
j �θ1

ca
j

ca
i + (1 − α) ca

j

⎞
⎟⎟⎟⎟⎟⎠

− h

1 − α

∑

{i,j}∈Sb
ca
j �θ1

1

ca
i + (1 − α) ca

j

= θ2 ⇐⇒
∑

{i,j}∈Sb
ca
j �θ2

ca
j − θ2

ca
i + (1 − α) ca

j

=
h

1 − α
.
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Thus, (1 − α) ca
j � s in the general case, and s = (1 − α) θ2 in case θ1 > θ2. The

assertion 1 is thus proven.
Assertion 2 is a condition that comes from [27], where the authors give the

condition to pass from the probability on elements to the probability on the
associated sets of size h.

For the proof of 3, suppose s � 0. That is, for any {i, j} ∈ Sb, we get
successively:

ϕa (i, j|π1) � 0, ⇐⇒ (1 − α) ca
j − π∗

1(i, j)(c
a
i + (1 − α) ca

j ) � 0,

⇐⇒ π∗
1 (i, j) �

(1 − α) ca
j

ca
i + (1 − α) ca

j

> 0,∀ {i, j} ∈ Sb,

⇐⇒ ca
j � θ1 for all {i, j} ∈ Sb ⇐⇒ θ1 = min

{i,j}∈Sb

ca
j .

Suppose on the other hand that s > 0. From the definition of the attacker’s
shortlist, it comes: R (π∗|b) =

∑

{i,j}∈S

ϕa(i,j|π∗
1 ) is maximal

π∗
2 (i, j|b) ϕa (i, j|π∗

1) =

s
∑

{i,j}∈S

ϕa(i,j|π∗
1 )=s

π∗
2 (i, j|b). The maximization of this result imposes the maximiza-

tion of the π∗
2 (i, j|b)’s value whenever ϕa (i, j|π∗

1) is maximal. �

6 Numerical Illustrations

Communication and information exchange are integral to modern society and, as
such, networks have become essential infrastructure. Therefore, protecting these
networks against the spread of malicious software is of utmost importance. As we
have previously demonstrated, one effective strategy for epidemic propagation in
networks is to target the most central devices above a certain centrality thresh-
old. In this section, we present a simulation of the impact of our centrality game
on epidemic dynamics, focusing on the scenario of complete information, where
the defender has perfect knowledge about the network state. In our experiments,
we employ some popular centrality measures described in [3]: degree centrality
(D), betweenness centrality (B), eigenvector centrality (E), clustering coeffi-
cient centrality (Clus), and closeness centrality (Clo). However, our model is
flexible enough to incorporate alternative centrality measures if desired. The
simulation has several realizations and a realization ends once all the nodes in
the graph have become resistant. Some parameters employed for these simu-
lations are as follows: α = 0.1, 
 = 0.2, and 10 IPSs for the defender. The
program presents the results of the subsequent metrics upon completion of each
realization:
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– The epidemic peak (EP), the maximum number of infected nodes reached in
the network during a given period;

– The time this peak is attained (TP), i.e., the number of periods it took to
reach this peak;

– The time for the control of the epidemic (TC), i.e., the first period at which
the number of edges in the stake is not greater than the number of IPSs.
From that period onward, the defender prevents any infection;

– The time for the virus extinction (TE), i.e., the period after which there are
no more infected nodes in the network.

The objectives of this section can be summarized into two main goals. The
first goal is to show how different centrality measures affect the optimal strategies
of the players, as previously defined, and identify the most effective centrality
measure for the attacker. The second objective consists of the evaluation of
the defender’s loss if he does not adopt the recommended optimal strategy.
To closely mimic real-world scenarios, we conducted our experiments on two
prominent network types that have experienced epidemic spread in recent years.
The mathematical graph model chosen for the mathematical modeling of each
of them was selected on the basis of the main characteristics of the networks
developed in [14].

– Power network (Ukraine power grid hack, December 2015): From a physical
concept, it is reasonable to conceptualize the power system as a small-world
network (East China Power Grid [4]). From the perspective of the system
comprising networks of varying voltage levels, the power supply and distribu-
tion networks at the middle and low voltage levels within cities are strongly
interconnected, whereas the transmission networks at higher voltage levels are
sparsely connected. From the point of view of the transmission network of the
same voltage stage, the network of each region is closely connected, while the
network of different regions is sparsely connected. This observation suggests
that the power system exhibits the characteristics of a small-world network,
characterized by significant local clustering and limited global interconnection
[6].

– Social network (the spread of false information regarding COVID-19 vaccines
on social media platforms [18]): An example is the social network Twitter.
We have used the Barabási-Albert model for its mathematical representa-
tion, because of its ability to capture some key features of the latter. The
Barabási-Albert model is a preferential growth model that is based on two
fundamental principles: continuous network growth (which reflects the fact
that social networks are constantly expanding) and preferential attachment
(which refers to the fact that new vertices tend to connect to existing vertices
that already have many links).
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6.1 Optimal Strategic Defense (OSD) Against Optimal Strategic
Attack (OSA): Best Centrality Measure for the Attacker

We assume that players adopt their optimal strategies as defined above. Since
there are several ways to measure the centrality value of a node, the question
that arises is therefore as follows: which centrality measure should the attacker
use to maximize her payoff (i.e., to maximize the number of infected nodes of
the graph)? We therefore study the effectiveness of various centrality measures
in identifying critical nodes to attack in the context of epidemic spread. To
accomplish this task, we generated:

– a Watts-Strogatz graph with the following characteristics: number of nodes =
1000; degree of each node in the initial graph = 20; probability of modifying
each edge = 0.1. Obtaining a graph containing 10000 edges;

– a Barabási-Albert graph with the following characteristics: number of nodes
= 1000; number of connection for each node = 15. This results in a graph
containing 14775 edges.

Considering that each graph contains 7 infected nodes at the beginning of
the game, we performed for each one a simulation containing 100 realizations
for every centrality measure mentioned above. We then obtained the following
results:

• Watts-Strogatz graph: According to the table (2a) given our Watts-Strogatz
graph model, closeness centrality appears as the best centrality measure for
the attacker to infect a maximum number of nodes. Indeed, nodes with high
closeness centrality are geographically close to many other nodes in terms
of the shortest path length. In the given Watts-Strogatz graph model, the
graph structure combines local clustering and short average path lengths.
This is achieved through the initial ring structure and the subsequent random
rewiring process [14]. As a result, many nodes in the network are relatively
close to each other, both in terms of clustering and path lengths. Nodes with
higher closeness centrality are likely to be positioned in densely connected
areas of the graph, making them potential hubs for spreading the infection.
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• Barabási-Albert graph: The clustering coefficient centrality is identified as the
most effective centrality measure for propagating malware, as shown in table
(2b). The Barabási-Albert graph model is a preferential attachment model,
where new nodes are more likely to connect to already well-connected nodes.
As a result, this model tends to create a scale-free network structure with a
few highly connected hub nodes and many low-degree nodes. In a scale-free
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network, the clustering coefficient tends to be relatively low for most nodes
but significantly higher for a few hub nodes. These hub nodes act as highly
interconnected clusters, forming the backbone of the network. By targeting
nodes with high clustering coefficient centrality, an attacker can exploit these
densely connected clusters to infect a maximum number of nodes efficiently.

6.2 Sub-optimal Defense Against Optimal Strategic Attack

We have demonstrated that the defender’s optimal strategy requires the adop-
tion of the same centrality measure as the attacker (in our previous simulations,
closeness centrality for the Watts-Strogatz model and clustering coefficient cen-
trality for the Barabási-Albert model). However, in some cases, implementing
this strategy in practice can incur high costs (e.g., the time complexity of imple-
menting the attacker’s centrality measure). Additionally, the defender may face
limitations in terms of resources or sophistication. Therefore, we employed two
main strategies as alternatives to the recommended optimal approach:

• The first strategy (Degree Strategic Defense “DSD”) involves the defender
using the degree centrality (chosen for its computational simplicity) to
assess the significance of the graph’s nodes. Subsequently, we determined
the defender’s optimal probability distribution associated with this centrality
measure (assuming that the attacker also employs degree centrality).

• The second strategy (Random Defense “RD”) is a purely random approach,
wherein the defender selects nodes to protect based on a uniform probability
distribution. This strategy does not consider any centrality measure.

In order to evaluate the correlation in terms of the maximum number of
infected nodes between these strategies and the optimal one, we have compared
each of the defender’s strategies with the attacker’s optimal strategy. It is worth
mentioning that these experiments were conducted on the same graphs used ear-
lier. Unsurprisingly, the results depicted in Figs. 2c and 2d clearly demonstrate
that regardless of whether it is a Watts-Strogatz or Barabási-Albert graph, fol-
lowing the recommended optimal strategy benefits the defender. Moreover, in
our context where the attacker aims to maximize the number of infected nodes,
employing the random defense strategy is strongly discouraged. However, the
following observation applies to both the Watts-Strogatz and Barabási-Albert
models:

• The defender’s optimal strategy (OSD), based on clustering coefficient cen-
trality for the Barabási-Albert graph and closeness centrality for the Watts-
Strogatz graph, is initially close to the degree strategic defense strategy.
Indeed, at the beginning of the game, nodes with a high degree tend to have
a high clustering coefficient and high closeness centrality, which aligns with
the optimal strategy. However, as time progresses, the DSD strategy primar-
ily focuses on nodes with a high degree which may have a lower clustering
coefficient on the one hand and a lower closeness centrality on the other hand.
As a result, the two strategies diverge as the infection progresses.
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Additionally, in our Barabási-Albert graph, it is important to highlight that the
betweenness centrality measure is not suitable for the attacker, who obtains
eleven times as many infected nodes by using the clustering coefficient. This
observation can be explained by the fact that:

• Betweenness centrality measures the frequency with which a node lies on the
shortest path between two other nodes in a graph. However, in a Barabási-
Albert graph characterized by preferential connections and high clustering,
this measure fails to capture a node’s capacity to propagate an epidemic effec-
tively. Nodes possessing high betweenness centrality may not exhibit extensive
connectivity or reside within dense clusters, thus limiting their potential for
spreading malware.

7 Conclusion

The notorious WannaCry Ransomware attack that occurred in 2017 was one of
the worst attacks that ever had before. WannaCry Ransomware is a type of mali-
cious software that blocks user access to files or systems, holding files or entire
devices hostage using encryption until the victim pays a ransom in exchange for
a decryption key, which allows the user to access the files or systems encrypted
by the program [13]. Like the latter, many attacks with the same objectives
are perpetrated daily. Using their intelligence and rationality, and due to lim-
ited resources, many attackers choose the devices to infect based on their influ-
ence in the network, which they determine through various centrality measures.
[23] addressed and found a solution to the problem when the defender and the
attacker use identical centrality measures. This paper generalized the problem by
addressing situations where players opt for different centrality measures. We have
demonstrated that in a two-player asymmetric network centrality game, where
each player takes action according to its centrality measure, the defender, to play
optimally, must use the attacker’s centrality measure. Based on the simulations
conducted in this study, it has been observed that the appropriate centrality
measure for the attacker to infect the maximum number of nodes depends on
the type of graph. In particular, we have shown that in certain types of graphs,
the clustering coefficient centrality is the most effective for the attacker, while in
others, the closeness centrality is more appropriate. Our findings have important
implications for the epidemic control problem, as they suggest that the choice of
centrality measure can significantly impact the effectiveness of control measures.
In particular, our results can inform the development of targeted intervention
strategies aimed at reducing the spread of infectious diseases. The objective for
us is to use these notions of centrality game to solve problems of the lateral
movement type [7].
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of cyber deception against epidemic botnets in internet of things. IEEE Internet
Things J. 9, 2678–2687 (2021)

22. Tsemogne, O., Hayel, Y., Kamhoua, C., Deugoue, G.: Partially observable stochas-
tic games for cyber deception against network epidemic. In: GameSec 2020. LNCS,
vol. 12513, pp. 312–325. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64793-3 17

23. Tsemogne, O., Kouam, W., Anwar, A.H., Hayel, Y., Kamhoua, C., Deugoué, G.: A
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Abstract. Grey-hat hackers possess specialist skills and knowledge to
identify and close vulnerabilities in computer systems but might be
tempted to switch from an ethical to an unethical hacking role to disclose
or exploit the vulnerabilities for malicious benefit. This paper focuses on
the emerging topic of game-theoretical modelling of the phenomenon of
grey-hat hackers. A two-player complete information bimatrix game is
designed to capture the strategic dilemmas involved in an organisation’s
interaction with a grey-hat hacker. An equilibrium analysis of the game
illustrates these dilemmas from a game-theoretical point. This game is
then extended to a class of stochastic bimatrix games called “Shades of
Grey”. Several game instances are presented, showing how an instance
with a full-rank stopping matrix can resolve these dilemmas. This yields a
more sophisticated and versatile framework for game-theoretic modelling
of (un)ethical hacking roles than previously known in the literature. The
paper also incorporates the concept of regular matrix pencils and their
spectral analysis to analyse Nash equilibrium solutions for the special
class of bimatrix games with rational payoff functions. We believe these
linear algebra techniques will be useful to other game-theoretic applica-
tions beyond the Shades of Grey games.

Keywords: Strategic security games · Stochastic games · Grey-hat
hackers · Equilibrium dilemmas

1 Introduction

Black-hat hackers are computer criminals who maliciously attack systems and
exploit vulnerabilities, motivated by rewards such as financial gain. On the other
hand, ethical (white-hat) hackers are tasked with improving the security of com-
puter systems by identifying open vulnerabilities and using their expertise to
close them. Grey-hat hackers are skilled actors in cyberspace whose behaviour
is dictated by contrasting motivations: having discovered an open vulnerability
they may cooperate with the system’s owner to receive a bounty, or they might
choose to attack it, given sufficient incentives. Organisations need to understand
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Fu et al. (Eds.): GameSec 2023, LNCS 14167, pp. 110–129, 2023.
https://doi.org/10.1007/978-3-031-50670-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50670-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-50670-3_6


Shades of Grey 111

the phenomenon of grey-hat hackers: they need to weigh the advantages and
disadvantages of cooperating with them to minimise risks to their assets and
maximise benefits resulting from their technical expertise.

While game theory has been successfully applied to model typical scenarios
between organisations and black-hat cyber actors using a wide range of different
techniques and models [1,11,13,17,20], surprisingly little appears to be known
specifically about the interaction with a grey-hat hacker. To the author’s knowl-
edge, the only paper explicitly addressing a scenario involving a grey-hat hacker
is [3], proposing and analysing a stochastic game based on an inspection game.
The nature of a stochastic game in terms of its transition rules helps shape the
model’s capabilities of considering evolving players. The grey-hat hacker game
in [3] continues while the organisation and the hacker are cooperating and stops
otherwise. This reflects the wish of the organisation to detect betrayal, upon
which the attacker is punished and removed from the game. However, this may
not accurately capture the nuanced dynamics of grey-hat hacking scenarios. Such
scenarios involve ethical dilemmas, where hackers may have mixed intentions in
patching, disclosing or exploiting vulnerabilities. A grey-hat hacker may have
their own agenda favouring the white-hat ethical hacking role or, indeed, the
black-hat role. Likewise, organisations might have policies and preferences that
influence their decision-making. Modelling these aspects through game theory
requires a sophisticated game approach, both in terms of the design of the stage
game and the stochastic stopping rules. This can be taken into account by the
features of the game framework presented in this paper.

The contributions of this paper are as follows. As a first step towards the
stochastic bimatrix game proposed in this paper, we propose a two-player coor-
dination game to model the interaction between a grey-hat hacker and an organ-
isation. This complete information bimatrix game possesses a rich Nash equilib-
rium structure, making it a natural choice for characterising the various decision-
making processes and strategic dilemmas involved in this scenario. The paper’s
main contribution to security games is extending the one-stage game to a stochas-
tic bimatrix stopping game, the Shades of Grey game. Repeating the complete
information game and using several stopping strategies shows that the stochas-
tic game can resolve dilemmas under certain conditions, making it more flexible
and suitable for real scenarios. As part of our framework to analyse the Shades
of Grey game, we consider the linear algebra concept of matrix pencils and their
spectral analysis using generalised eigensystems. We establish results expressing
Nash equilibrium solutions of bimatrix games with rational payoff functions as
generalised nonnegative eigenvectors corresponding to real eigenvalues. While
these results are primarily used to analyse the Shades of Grey game, they may
also be useful for other game-theoretic applications.

The following notations relating to game theory and generalised eigensys-
tems of linear matrix pencils are used throughout this paper. Uppercase symbols
A,B,C, . . . denote real matrices, assumed to be square and of size n ≥ 2. Let
E (e, respectively) be the square matrix (column vector, respectively) with all
entries set to one, ei the ith unit vector and O the zero matrix, with the size
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of these being clear from the context. A bimatrix game is a two-person non-
zero-sum finite game G(A,B) where the first (row) player plays a row action
and the second (column) player plays a column action. We write x and y for
a pure or mixed strategy of the first and second players in the game. A strat-
egy profile s = (tx, y) groups the strategies of each player together. We write
s∗ = (tx∗, y∗) for a Nash equilibrium, which is a strategy profile satisfying
vA = tx∗Ay∗ ≥ xAy∗ ∀x and vB = tx∗By∗ ≥ x∗By ∀y. Nash equilibria
may be pure or mixed, and the corresponding Nash equilibrium is called pure
or mixed accordingly. Given a Nash equilibrium with the notations above, we
refer to v = (vA, vB) as the corresponding game value profile. In contrast to
the value of a matrix game, bimatrix game value profiles need not be unique.
Matrix pencils are expressions of the form A − λB where λ is indeterminate,
generalising the concept of a straight line to matrix functions. A matrix pencil
A − λB is called a regular matrix pencil if the matrices A and B are square
and the characteristic polynomial f(λ) = det(A − λB) does not vanish iden-
tically, i.e. f(λ) �≡ 0. The concept of eigenvalues and eigenvectors of a matrix
can be generalised to regular matrix pencils as follows: left (right respectively)
generalised eigenvectors for the finite eigenvalue μ are nonzero solutions of the
equation tx(A−μB) = 0 (the equation (A−μB)y = 0 respectively), where μ is a
root of the characteristic polynomial f . If rank(B) = r ≤ n we have deg(f) ≤ r,
the pencil has at the most d finite eigenvalues. If B = I, we can see that the
finite eigenvalues coincide with the eigenvalues of A in the usual sense. In this
paper, for ease of reading, we shall occasionally employ the term “hacker” as a
synonym for “grey-hat hacker” and refer to generalised eigenvectors simply as
eigenvectors if no confusion arises.

The remainder of the paper is organised as follows. Related work is outlined
in Sect. 2, Sect. 3 presents the grey-hat hacker stage game. Section 4 studies a
linear algebra approach for solving bimatrix stochastic games. This is used in
Sect. 5, where the Shades of Grey game is introduced and analysed. Section 6 is
the paper’s conclusion.

2 Related Work

This paper relates to several research strands: the area of strategic security
games, stochastic games, and the application of linear algebra techniques to
game theory. Furthermore, some non-game theory background research into the
classification, motivation and impact of grey-hat hacking is indirectly related to
this paper. We refer to the review in the [3] for an overview of these issues.

Strategic two-player two-action bimatrix security games have been proposed
for many security application scenarios in the literature, for example, the intru-
sion detection game of [1], or the two-target attack-defence (AD) game in [17].
Using the concept of strategic equivalence, Moulin and Vial [18] have given a
complete analysis of two-action bimatrix games based on proving the existence of
three classes of such games, each class with its own Nash equilibrium structure.
According to these authors, if trivial games are excluded, a two-action bimatrix
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game has either no pure and one mixed (Type 1), one pure (Type 2) or two pure
and one mixed (Type 3) Nash equilibrium solutions. Strategic security games
typically are of Type 1. In contrast, the bimatrix game proposed as part of a
stochastic game in this paper is of Type 3, which we argue makes it interesting
and innovative.

Stochastic games have been introduced in a pioneering paper by Shapley [21].
As explained in [1], stochastic security games have enjoyed popularity for mod-
elling security scenarios due to the increased sophistication of this game model
compared to static games. To our knowledge, the stochastic game proposed in
the recent paper by Cohen et al. [3] is the first security game specifically mod-
elling the strategic interaction with a grey-hat hacker. The game is a stochastic
bimatrix game, and the authors apply the theoretical results of [4] on the Nash
equilibrium structure of a class of repeating inspection games to the grey-hat
hacker scenario. Various types of inspection games have been investigated exten-
sively in the literature [2,7,9] and lend themselves well for applications due to
recent results on the structure of general Nash equilibrium solutions for bimatrix
stochastic inspection games [5,6]. In the two-player stochastic inspection game
used for this grey-hat hacker game, the inspector and the hacker interact strate-
gically, both with limited resources, playing repeatedly. An interesting feature
of this game is the idea of parameterising the stage game, leading to an evolving
number of states which are dynamically managed based on a decreasing budget
spent by the organisation in each game round. In each round, the players have to
decide whether they cooperate or not (“separate” in [3]). In the case of coopera-
tion, the grey-hat hacker helps the organisation to close the vulnerability. In the
case of the grey-hat hacker refraining from cooperation, they become a black-hat
hacker and exploit the vulnerability. If the organisation inspects in this case, it
detects the attack and can punish the attacker. The game terminates in this sit-
uation. The actions available to the players are similar to those in our grey-hat
hacker stage game introduced in the next section, but there are a number of
key differences between the game and the Shades of Grey game introduced in
this paper: the stage game is more sophisticated, based on a Type 3 bimatrix
game with a rich Nash equilibrium structure rather than an inspection game.
The stochastic state model of the Shades of Grey game is simpler. However,
flexibility is achieved due to the generic structure of the state transition rules
(the stopping matrix), allowing for the creation and analysis of various game
profiles that can model the players’ preferences more precisely.

Previous work on the relationship between linear algebra and game theory
is relevant to Sect. 4 and Sect. 5. The articles [10,12] are classical results on
optimal solutions of matrix games, based on studying linear algebra properties
of the game matrix. Extensions to bimatrix games are proposed in [15,16]. The
idea to use spectral analysis of matrices and matrix pencils for analysing matrix
games was first given in [23,24]. The theoretic model underlying the framework
for finding stationary solutions of stochastic stopping games is introduced in
[19] and generalised in [22]. A modern survey of linear algebra properties of the
von Neumann model is [14]. A good introduction to the mathematical concept of



114 E. Pflügel

linear matrix pencils and their spectral analysis based on generalised eigenvalues
and eigenvectors is given in Gantmacher’s book [8].

3 The Grey-Hat Hacker Stage Game

In this section, the bimatrix grey-hat hacker stage game is introduced. We
describe the game model and justify its suitability for a grey-hat hacker sce-
nario, analyse the structure of its Nash equilibria, and discuss the presence of
dilemmas and their impact on the usefulness of the game. This leads to a more
general discussion of the model’s limitations and how they might be addressed.

3.1 Game Description

In the two-player bimatrix grey-hat hacker game, a hacker H and an organisation
O interact to decide whether to cooperate or not. Depending on the specific
actions, the outcome is for a vulnerability in the organisation’s system to be
patched or exploited. In what follows, assumptions on the motivation and actions
of a grey-hat hacker are made, consistent with characteristics reported in the
literature, cf. [3] and the references therein.

A grey-hat hacker does not wish to act maliciously if they are taken seriously
by the organisation they contacted about a vulnerability found in their system.
This means that a hacker is willing to perform white-hat (ethical) hacking roles
if they feel trusted by the organisation. In the case of both players cooperating,
H helps the organisation to close its vulnerability. Both players are rewarded:
the hacker receives remuneration as a fee bf paid by the organisation. It is
assumed that white-hat hacking is beneficial to the organisation as it benefits
from increased security, compensating for having to pay the fee, expressed as a
positive benefit-cost difference bp−cf . On the other hand, a grey-hat hacker will
feel compelled to turn into a black-hat hacker (cyber criminal), if the organisation
refuses to cooperate. An organisation might ignore the grey-hat hacker’s request
to acknowledge the vulnerability’s existence and assist with patching it. This is
ultimately rooted in the organisation not trusting the hacker. For example, it
might not believe the reported existence of the vulnerability or prefer to fix it
using in-house resources.

In a situation of mutual betrayal, the grey-hat hacker turned black-hat hacker
will exploit the vulnerability, usually with the help of other malicious cyber
actors, by disclosing it to them. Consequently, the black-hat hacker earns an
attack reward ba, incentivising their malicious actions. In this case, the defender
experiences a loss cl. The organisation needs to weigh up the impact of their
actions, depending on whether they deem the grey-hat hacker trustworthy. No
costs or benefits arise to any of the players if the organisation rejects a grey-hat
hacker willing to cooperate. It is hence in the organisation’s interest to cooperate
and benefit from the resulting increased security, specified in the game model
as bp − cf > 0. If the grey-hat hacker betrays the trusting organisation, the
organisation incurs the loss cl due to the vulnerability exploit and additionally
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the fee cf paid to the hacker. The grey-hat hacker earns bf + ba, reduced by
the remorse cost of cr. This situation is disadvantageous to the organisation; it
would prefer not to cooperate with the hacker in this case. The resulting game is
illustrated in Fig. 1, based on its strategic normal form and the players’ actions
and utility functions corresponding to the description in the previous paragraph.

Fig. 1. The grey-hat hacker bimatrix game G(D,G) is where a grey-hat hacker H and
an organisation O decide whether to cooperate or betray. If both cooperate, the white-
hat hacker receives a fee and the organisation benefits from increased security. If both
betray, the black-hat hacker exploits the vulnerability, and the defender experiences a
loss. A trusting organisation that the grey-hat hacker betrays incurs a loss due to the
exploited vulnerability and the fee paid to the grey-hat hacker. The grey-hat hacker
benefits from betrayal but experiences a remorse cost. No costs or benefits arise if the
organisation rejects the cooperative grey-hat hacker.

The utility functions for the game G(D,G) for both players can be extracted
in usual bimatrix game notation as matrices

D =
( −cl 0

−cf − cl bp − cf

)
, G =

(
ba 0

bf + ba − cr bf

)
. (1)

Figure 2 summarises the different parameters occurring in the utilities, and the
assumptions made on them. Note that any change in these assumptions will
potentially lead to a new game with a different equilibrium solution structure.

Fig. 2. Parameters and their assumptions in the utility functions for the grey-hat
hacker bimatrix game G(D,G).



116 E. Pflügel

3.2 Equilibrium Analysis

As Type 3 bimatrix game, the game has three Nash equilibria. Based on tak-
ing into account Assumptions (A)-(A3), one observes payoff changes result-
ing from unilateral deviation of strategies of the two players in this static
game, as illustrated in Fig. 3. This yields the pure equilibrium strategy profiles

s∗
W = ((1, 0),

(
1
0

)
) and s∗

B = ((0, 1),
(

0
1

)
).

Fig. 3. The pure Nash equilibria in the bimatrix grey-hat hacker stage game are the
black-hat (not cooperate, not cooperate) and white-hat hacker (cooperate, cooperate)
roles.

The mixed strategy profile is s∗ = (tx∗, y∗) where tx∗ = (1 − ba
cr

, ba
cr

) and

y∗ =

(
1 − cf

bp
cf
bp

)
. This can be determined using a closed-form expression for 2×2

bimatrix games (cf. [1]), or derived from the linear algebra techniques developed
in Sect. 4, see Remark 2. The game value profiles corresponding to the three Nash
equilibria are vB = (−cl, ba), vW = (bp − cf , bf ) and vG = (−cl(bp−cf )

bp
,
babf
cr

). Let
V = {vB , vG, vW }.

To refine the equilibrium analysis of the game, we analyse the Pareto-optimal
equilibria. This is useful to identify and understand the outcomes that offer
the best possible “global” collective welfare for both players involved. Consider
different order functions on V: the total orders ≺O and ≺H using componentwise
order for players O and H, and the “product” order ≺ defined by (a1, a2) ≺
(b1, b2) if a1 < b1 and a2 < b2. The latter is used for a Pareto-optimal ordering
of the equilibria.

Based on the assumptions of the model, and the structure of the found Nash
equilibrium value profiles, it is clear that

vB ≺O vG ≺O vW . (2)

We will distinguish three cases.
Case ba < bf : Let us first notice that if ba �= bf , since ba < cr, we have

vG ≺H vW . Together with (2), we deduce the relation vG ≺ vW . Furthermore,
in this case, the fee provided to the white-hat hacker outperforms the gain from
attacking. Hence vB ≺H vW and then it holds vB ≺ vW based on transitivity
in (2). No order relationship ≺H exists between vB and vW . As an outcome for
this case, we obtain the total ordering ≺ as depicted in the Hasse-diagram in
Fig. 4(a).
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Fig. 4. The three Nash equilibria in the grey-hat hacker stage game as partially ordered
sets with maximal elements for the two scenarios (a) one Pareto-optimal equilibrium
(b) two Pareto-optimal equilibria.

Case ba > bf : In this situation, which is opposite to the white-hat role, one
has vW ≺H vB and vG ≺H vW . However, (2) shows that vW ≺O vB is not true,
so the only relationship that holds is vG ≺ vW . Part (b) in Fig. 4 illustrates ≺
in this case.

Case ba = bf : In this final case, we find vG ≺H vW and hence also vG ≺ vW .
Comparing vB and vW , due to ba = bf we obtain vB ≺ vW , resulting in the
same situation as Part (a) in Fig. 4.

In summary, we obtain the following characterisation of the Pareto-optimal
Nash equilibria represented as maximal elements of V:

Theorem 1. Given the generic utility functions and their assumptions (A1)-
(A4) in the game G(D,G) and the order ≺, the following statements hold:

1. If ba > bf , the order ≺ is partial, it holds vG ≺ vW , and vW and vG are
maximal elements of V.

2. If ba ≤ bf , in addition to the above relation, one has vB ≺ vW . The order ≺
is total, and vW is the only maximal element of V.

Remark 1. The relation vG ≺ vW in Theorem 1 for the game G(D,G) is consis-
tent with a result by Moulin and Vial [18], stating that the mixed Nash equilib-
rium in any Type 3 bimatrix game can be improved upon.

3.3 Discussion

The game G(D,G) being Type 3 of the aforementioned typology in [18], appears
very appropriate to choose as a suitable type for a grey-hat hacker game. The
pure Nash equilibrium solutions directly map to the two extremes of black-hat
and white-hat hackers in the “Shades of Grey” scenarios, whilst the interest-
ing additional game-theoretical contribution — the existence of an additional,
mixed Nash equilibrium — can be interpreted as representative of the interim
motivational state of the grey-hat hacker, caught between the two extreme roles
of (un)ethical hacking.

The scenario-specific characteristics must be examined to determine whether
a game-theoretical model is suitable for a given scenario in general, not only for
the security application domain. These characteristics must be consistent with
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the model’s strategies, utilities and assumptions. Furthermore, upon analysing
the game’s NE solutions, they should suggest sensible actions and not lead to
dilemmas that cannot easily be resolved. The following issues can lead to such
a dilemma.

– Pure versus mixed equilibrium: A difficult decision for each player to make is
whether they should prefer a pure strategy rather than a mixed one. While
a pure strategy might appeal to humans from a psychological point of view
due to its simple conceptual definition, a mixed strategy might appear more
balanced.

– Multiple Pareto-optimal equilibria: In this situation, several equilibria exist
where a change from one to the other implies that one of the players suffers
a reduced payoff. No clear choice is possible in this case.

Dilemmas require resolution; otherwise, the game has no deterministic outcome.
Furthermore, mutual knowledge about the dilemma-resolution strategy needs to
be available.

Although the present game models the player’s utility functions granularly, it
still has some shortcomings: both aforementioned types of dilemmas are present.
It could be argued that the choice between mixed or pure equilibrium is less
problematic if one considers that the mixed equilibrium can always be improved
upon. The main issue is the choice of pure equilibrium in the situation ba ≥ bf ,
where there are two pure Pareto-optimal equilibrium solutions. This aspect will
be further addressed in the next section by a more sophisticated game approach
capturing players’ intentions that cannot be specified by utility functions of a
stage game alone but using a stochastic game framework.

4 On Bimatrix Games with Rational Payoff Functions

This section introduces a class of bimatrix games with rational payoff functions.
The definition of Nash equilibria for this type of game is stated and a result on
sufficient conditions for the existence of these is proven. Furthermore, the special
class of rank-1 games is also studied. Sources of inspiration for the techniques
used in this section are classical results by Kaplansky [10], Thompson and Weil
[22,23] for the game theory and linear algebra aspects, combined with a simple
version of a stochastic game that was first formalised and analysed in Shapley’s
seminal paper [21]. Matrix games with rational payoff functions were considered
in [14], where a perturbation theory was developed. The author is unaware of
an extension to bimatrix games, as proposed in this section.

4.1 A Sufficient Condition

Denote B(A,B,C) where C > 0 a bimatrix game with rational payoff functions.
By this, it is meant a two-player game where the payoffs to Player 1 and Player
2 using the strategy profile (tx, y) are defined as uA(x, y) =

txAy
txCy and uB(x, y) =

txBy
txCy respectively.

A Nash equilibrium concept can be defined as follows:
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Definition 1. A Nash Equilibrium strategy (x∗, y∗) of a bimatrix game with
rational payoff functions satisfies vA =

tx∗Ay∗
tx∗Cy∗ ≥ txAy∗

txCy∗ ∀x and vB =
tx∗By∗
tx∗Cy∗ ≥

tx∗By
tx∗Cy ∀y. We say that s∗ = (x∗, y∗) is a Nash equilibrium and that v = (vA, vB)
is the corresponding game value profile.

Define a normalised vector to be one whose components add up to one. The
following theorem gives a sufficient condition for the existence of a Nash equi-
librium of a bimatrix game with rational payoff functions, using linear algebra
concepts.

Theorem 2. Given the game B(A,B,C), assume the matrix pencils A−λC and
B − λC are both regular. For each pencil, assume is has a real finite eigenvalue
μA and μB, respectively. Furthermore, assume that there exists a normalised
nonnegative left eigenvector xµB

of B − λC to the eigenvalue μB and a nor-
malised nonnegative right eigenvector yµA

of A−λC to the eigenvalue μA. Then
(x∗, y∗) = (xµB

, yµA
) is a Nash equilibrium of the game and (μA, μB) is the

corresponding game value profile.

Proof. We have for a normalised nonnegative left eigenvector xµB
satisfying

txµB
(B − μBC) = 0 ⇐⇒ txµB

B = μB
txµB

C

that for any Player 2 strategy y it holds

txµB
By

txµB
Cy

= μB . (3)

This trivially implies
txµB

ByµA

txµB
CyµA

≥
txµB

By
txµB

Cy
.

Similarly, we can show for a real nonnegative right eigenvector yµA
that

txµB
AyµA

txµB
CyµA

≥
txAyµA

txCyµA

(4)

for any Player 1 strategy x. Hence, these strategies form, by definition, a Nash
equilibrium with payoffs μA and μB as required. 
�
Definition 2. The generalised eigensystem EA,B,C associated with the pencils
A − λC and B − λC is a pair EA,B,C = (EA,C , EB,C) where EA,C is the set of
real eigenvalues of A−λC together with their right generalised eigenvectors, and
EB,C the set of real eigenvalues of B − λC together with their left generalised
eigenvectors.

This result generalises existing work on game-theoretic interpretations of specific
instances of the matrix pencils A−λC and B−λC. If C = E, Theorem 2 yields a
linear algebra characterisation of sufficient conditions for the existence of a Nash
equilibrium for a standard bimatrix game. Weakly completely mixed equilibrium
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solutions are obtained if eigenvectors are strictly positive. Milchtaich et al. [15,16]
investigate weakly completely mixed Nash equilibria of bimatrix games and state
a necessary and sufficient condition for their existence, but without using the
notion of matrix pencils. For C = E and B = −A, Theorem 2 specialises to
a result on optimal solutions of matrix games by Thompson and Weil [23]. If
B = −A, one obtains a special case of the approach by the same authors [22]
on the relationship of generalised eigensystems and equilibrium solutions of the
von Neumann model [19] for game theory.

Remark 2. The mixed Nash equilibria found for the grey-hat hacker stage game
G(D,G) in Sect. 3.2 can be seen to consist of left and right eigenvectors as in
Theorem 2. Hence, the sufficient condition of the theorem can be used to derive
this particular Nash equilibrium. Indeed, one verifies, for example, that for the
grey-hat hacker mixed equilibrium s∗ = (x∗, y∗) with game value profile vG =
(v(1)

G , v
(2)
G ) it holds

Ay∗ = − cl
bp

(
bp − cf
bp − cf

)
= v

(2)
G e = v

(2)
G Ey∗

and hence (A − v
(2)
G E)y∗ = 0.

A property that will be useful for the equilibrium analysis of the Grey thinking
game in Sect. 5.3 is that of interchangeable Nash equilibria. In a two-player game,
this is defined as follows: if x1 and x2 are any two strategies of the first player
and y1 and y2 are any two strategies of the second player such that (x1, y1)
and (x2, y2) are two Nash equilibria, then (x1, y2) and (x2, y1) are also Nash
equilibria.

Proposition 1. The Nash equilibria found by Theorem 2 are interchangeable.

Proof. Using Eq. (3) we see that x1 is not only a best response to y1 but to all
Player 2 strategies, which includes y2. The converse is true for y2, which is a
best response to x2 but also to x1. Similarly, we can show that x2 and y1 are
mutual best responses. 
�

4.2 On Rank-1 Bimatrix Games

This section considers the game B(A,B,C) in the case where C > 0, rank(C) =
1, and studies the implications on the existence of Nash equilibria. These results
will be useful for analysing the Shades of Grey games in Sect. 5.

We commence with a linear algebra result for matrix pencils of the form
A−λC and rank(C) = 1, which we call rank-1 pencils. We use rank-factorisation
to write

C = ptq (5)

where p, q ∈ R
n are positive column vectors.

The following proposition provides an eigenspace structure result for rank-1
regular matrix pencils.
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Proposition 2. If tq adj(A)p = 0, the rank-1 pencil A − λp tq has no finite
eigenvalues. Otherwise, the pencil has the single finite real eigenvalue c =

det(A)
tq adj(A)p . The associated left and right eigenvectors x, y can be determined

explicitly using the formulae tx =
tq adj(A)
tq adj(A)p and y = adj(A)p

tq adj(A)p .

Proof. First, note that the characteristic polynomial f(λ) = det(A − λptq) is a
linear function and one has

f(λ) = tq adj(A)pλ − det(A).

If tq adj(A)p = 0, the pencil has no finite eigenvalues as f is a nonzero constant.
Otherwise, based on the definitions of c, x and y as in the proposition, it can be
directly verified that Ay = cptqy and txA = ctxptq. So c is a finite eigenvalue of
A − λptq with left and right eigenvectors x and y. This must be the only such
eigenvalue as the degree of f is one. 
�

The following theorem states sufficient conditions for the existence of a Nash
equilibrium solution of the game B(A,B,C) where A − λC and B − λC are
rank-1 pencils, and explicit formulae for their construction.

Theorem 3. Consider a rank-1 bimatrix game with rational payoff functions
B(A,B,C) where C = ptq > 0 and assume tq adj(A)p �= 0 and tq adj(B)p �= 0.
Define

tx =
tq adj(B)
tq adj(B)p

, y =
adj(A)p

tq adj(A)p
, μA =

det(A)
tq adj(A)p

, μB =
det(B)

tq adj(B)p

and assume that x and y are nonnegative, satisfying txe �= 0, tey �= 0. Define
tx∗ = tx/txe and y∗ = y/tey. Then (x∗, y∗) is a Nash equilibrium of the game
and (μA, μB) is the corresponding game value profile.

4.3 Application to Bimatrix Stochastic Stopping Games

Shapley introduced the notion of stochastic matrix games in [21]. In this paper,
he studied how to define the value and optimal solutions of stochastic matrix
games and how these relate to the value and optimal solutions of the stage matrix
game. The concept of a stationary solution was introduced and used to define the
value of the game. Using modern terminology, we say that the game S(A,B, S) is
a two-state undiscounted stochastic bimatrix game, where state transition prob-
abilities depend only on the current state and the chosen strategies. The game
has one transient state s0 “play” and an absorbing state s1 “stop”. The game
is described by the payoff matrices A and B specifying a bimatrix stage game
repeated in each round, and the stopping matrix S controlling the probabilities
of repeating the game jointly for Player 1 and Player 2. Given a strategy profile
(tx, y), the stopping probability is txSy and the probability of continuing the
game is 1−txSy (see Fig. 5). In the scenario where A = −B, the game S exhibits
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Fig. 5. State transitions in the stochastic stopping game, when playing the strategy
profile (tx, y).

the characteristics of a stochastic matrix game, corresponding to Example 1 in
Shapley’s paper.

Following Shapley, let us fix a stationary strategy profile (tx, y) and study
the expected utility of the players when using these strategies based on an undis-
counted model. The condition

0 < txSy ≤ 1 (6)

will be important in the sequel.

Lemma 1. Assume the stationary strategy profile (tx, y) satisfies 0 < txSy ≤ 1.
Then the expected number of steps required for the game S(A,B, S) to stop in
state s1 when the players are using (x, y) in state s0 is 1/ txSy. The expected
resulting payoff profile is u(x, y) =

(
txAy
txSy ,

txBy
txSy

)
.

Proof. After k > 0 iterations, the expected accumulated payoff when playing
the same strategy (x, y) in each round of the game is

uA,k(x, y) = txAy
k−1∑
i=1

(1 − txSy)i (7)

and

uB,k(x, y) = txBy

k−1∑
i=0

(1 − txSy)i (8)

since the probability of remaining in state s0 is s := 1 − txSy where, according
to the assumptions of the lemma, 0 ≤ s < 1. The game finishes with probability
one. Furthermore, one has

∑∞
i=0 si = 1

1−s . The expected game payoff profile u
is hence

u(x, y) = lim
k→∞

(uA,k(x, y), uB,k(x, y)) =
(

txAy
txSy

,
txBy
txSy

)
.


�
We would like to maximise u(x, y) w.r.t. unilateral changes of strategies of the
two players. This immediately leads to the following
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Proposition 3. Let the strategy (x∗, y∗) satisfy 0 < tx∗Sy∗ ≤ 1 and assume it is
a Nash equilibrium strategy of the bimatrix game with rational payoffs B(A,B, S).
Then it is a stationary Nash equilibrium solution of the stochastic stopping game
S(A,B, S). The converse statement holds.

Combining this proposition and Theorem 2, we can state sufficient, construc-
tive conditions for the existence of stationary solutions of S(A,B, S), based on
generalised eigensystems.

Revisiting rank-1 pencils and Theorem 3, we find a formula for constructing
a value profile (vA, vB) and corresponding Nash equilibrium solutions (x∗, y∗) for
a rank-1 bimatrix stochastic game where S = ptq is a positive matrix. Compute

vA =
det(A)

tq adj(A)p
, vB =

det(B)
tq adj(B)p

, tx =
tq adj(B)
tq adj(B)p

, y =
adj(A)p

tq adj(A)p
.

The equilibrium solutions (x∗, y∗) are then obtained from (x, y) above by nor-
malisation.

5 The Shades of Grey Stochastic Game

This section introduces Shades of Grey, a generic strategic stochastic bimatrix
stopping game. This framework is more flexible than that of [3] regarding the
adaptability of the stopping matrix S. We introduce several specific instances of
this game, modelling strategic preferences of the two players: the organisation
O and the grey-hat hacker H. For each instance, we then find mixed stationary
Nash equilibria. To analyse the Shades of Grey game, we apply the theory of
linear matrix pencils, their generalised eigenvalues and eigenvectors, as developed
in the previous section.

5.1 Generic Game

The generic Shades of Grey game G(D,G, S) is, as a stochastic bimatrix stopping
game, described by the payoff matrices (7) and (8) for the bimatrix stage game,

and a generic stopping matrix which will be denoted by S =
(

s0 s1
s2 s3

)
where

0 ≤ si ≤ 1, not all of the si equal to one or to zero: S �= E, S �= O.
As a general, symbolic equilibrium analysis of this game is challenging, we

shall consider several specific game instances to express further strategic prefer-
ences of the grey-hat hacker and the organisation, inspired by the shortcomings
of the stage game model introduced in Sect. 3. We differentiate two classes of
such game instances based on the rank of the matrix S.

5.2 Rank-1 Games

The first class is that of Rank-1 Games. We devise specific stopping matrices
to express strategic preferences of the two players, based on their personality
profile. We identify four games in total.
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Tints of White. In this game, a grey-hat hacker strives to be a white-hat hacker.
This is modelled by continuing the game with nonzero probability 1 − sW for
0 < sW < 1 as long as the white-hat hacking role is played within the stage
game, expressed by

SW =
(

1 sW
1 sW

)
.

Tints of Black. This game models a grey-hat hacker, favouring the playing of
an unethical hacking role. The stopping matrix is formed accordingly as

SB =
(

sB 1
sB 1

)

with 0 < sB < 1. This is a preference opposite to that in the previous Tints of
Black game.

Innocent Inc. This game assumes the organisation O to be näıve, believing in
ethical hacking and inclined to trust the grey-hat hacker. We have

SI =
(

1 1
sI sI

)

where 0 < sI < 1. When O chooses not to employ the hacker in one game round,
it is disappointed and stops.

Cautious Corp. Here, the idea is to assume that a risk-averse organisation
does not easily trust the grey-hat hacker. The stopping matrix is

SC =
(

sC sC
1 1

)

with 0 < sC < 1. If O employs the ethical hacker, it feels nervous and disengages
from the repeated game.

To analyse these games, we focus on the existence of a mixed strategy derived
from generalised eigensystems and application of Proposition 3.

Theorem 4. The rank-1 Shades of Grey games below have a mixed stationary
Nash equilibrium solution (x∗, y∗) with corresponding game value profile v as
follows:

(i) Tints of White: tx∗ = 1
bf+sW (cr−bf )

(bf + sW (cr − bf − ba), sW ba),

y∗ = 1
bp

(
bp − cfcf

)
, v = ( −cl(bp−cf )

bp−(1−sW )cf
,

babf
bf+sW (cr−bf )

),

(ii) Innocent Inc: tx∗ = 1
cr

(cr − ba, ba), y∗ = 1
bp+(1−sI)cl

(
bp − cf

cf + (1 − sI)cl

)
, v =

(− cl(bp−cf )
bp+cl(1−sI)

,
babf

ba(sI−1)+cr
).

For the two remaining games, more assumptions are needed.

Theorem 5. The rank-1 Shades of Grey games below have a mixed stationary
Nash equilibrium solution (x∗, y∗) with corresponding game value profile v as
follows:
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(i) Tints of Black: if sBbf + cr − bf − ba > 0, then tx∗ = 1
sBbf+cr−bf

(sBbf +

cr − bf − ba, ba), y∗ = 1
bp

(
bp − cf

cf

)
, v = ( −cl(bp−cf )

sB(bp−cf )+cf
,

babf
bf (sB−1)+cr

),

(ii) Cautious Corp: if (cl + cf )sC − cl > 0, then tx∗ = 1
cr

(cr − ba, ba),

y∗ = 1
sC(bp+cl)−cl

(
sC(bp − cf )

sC(cf + cl) − cl

)
, v = ( −cl(bp−cf )

sC(bp+cl)−cl
,

babf
sC(cr−ba)+ba

).

Proof (of Theorem 4 and 5). The characterisations of the mixed equilibria can be
derived from Proposition 3, applied to the following positive rank-factorisations:

SW =
(

1
1

) (
1 sW

)
, SI =

(
1
sI

) (
1 1

)

and

SB =
(

1
1

)(
sB 1

)
, SC =

(
sC
1

)(
1 1

)
.


�
A more detailed analysis of the complete Nash equilibrium structure of these
games shows that the Tints of White and Innocent Inc games both possess
two pure equilibria in addition to the mixed equilibrium. For example, in the
Tints of White game, the presence of the parameter sW does not affect the
preferred unilateral payoff deviations as illustrated in Fig. 3 as the rational payoff
structure is obtained by multiplying the second column of the matrices D and
G by the factor s−1

W > 1. This means that the pure equilibrium solutions of this
game coincide with those of the stage game G(D,G). Dilemmas remains if mixed
equilibrium solutions are present – e.g. if ba > bf/sW , the Pareto-dilemma still
arises.

5.3 Rank-2 Games

We will study one game instance for the second class, that of Rank-2 Games.
The increase in rank will be shown to resolve the dilemmas that were present in
the previous rank-1 game models.

Grey Thinking. This game expresses the grey-hat hacker’s and the organisa-
tion’s desire to avoid both the white and black-hat roles, as they lead to dilemmas
as presented in Sect. 3. This is modelled by the possibility of an infinite number
of repetitions, leading to the nonnegative stopping matrix

S =
(

1 0
0 1

)
.

Due to condition (6), the strategy profiles ((0, 1),
(

1
0

)
) and ((1, 0),

(
0
1

)
) are

excluded from being considered as stationary equilibrium solutions when using
the matrix pencil approach.



126 E. Pflügel

Theorem 6. The Grey Thinking game has one mixed Nash equilibrium (x∗, y∗)
that cannot be improved upon. Let its associated game value profiles be (v∗

D, v∗
G).

Then, depending on the comparative relationship between ba and bf , it holds:

(i) If ba < bf , the mixed Nash equilibrium is: tx∗ = 1
2bf−cr

(cr − bf − ba, ba −
bf ), y∗ =

(
0
1

)
and v∗

D = bp − cf , v∗
G = bf .

(ii) If ba ≥ bf , the mixed Nash equilibrium is: tx∗ = (1, 0), y∗ =
1

bp+2cl

(
cl − cf + bp

cl + cf

)
and v∗

D = −cl, v
∗
G = ba.

Proof. The pencils D−λI and G−λI are trivially regular, as the identity matrix
has full rank. One finds ED =

{
[μ(1)

D , y
(1)
µD ], [μ(2)

D , y
(2)
µD ]

}
where

μ
(1)
D = −cl, y(1)

µD
=

1
bp + 2cl

(
cl + bp − cf

cl + cf

)
, μ

(2)
D = bp − cf , y(2)

µD
=

(
0
1

)
.

For G − λI one obtains EG =
{[

μ
(1)
G , x

(1)
µG

]
,
[
μ
(2)
G , x

(2)
µG

]}
where

μ
(1)
G = ba,

tx(1)
µG

=
(
1, 0

)
, μ

(2)
G = bf , tx(2)

µG
=

1
2bf − cr

(
cr − bf − ba, ba − bf

)
.

We now distinguish three cases. According to Proposition 1, equilibrium
solutions are interchangeable, and hence in each case, we must consider all
combinations of left eigenvectors x

(1)
µG , x

(2)
µG with right eigenvectors y

(1)
µD , y

(2)
µD . As

x
(1)
µGSy

(2)
µD = 0, we only need to examine the potential strategy profiles

s(11) = (x(1)
µG

, y(1)
µD

), s(21) = (x(2)
µG

, y(1)
µD

), s(22) = (x(2)
µG

, y(2)
µD

)

with corresponding value profiles

v(11) = (−cl, ba), v(21) = (−cl, bf ), v(22) = (bp − cf , bf ).

If ba < bf , both s(21) and s(22) have vectors that can be normalised to be
nonnegative, but v(21) ≺ v(22), so we choose s(22). If ba > bf , then we find that
s(11) is the only choice of eigenvectors that can be normalised to be nonnegative.
In the case ba = bf , the vectors tx

(1)
µG and tx

(2)
µG normalise to the same eigenvector

(1, 0), which must be combined with y
(1)
µD . Hence, this case is the same as the

previous case. Finally, note that none of the pure equilibria improve the mixed
equilibria found in the theorem. 
�
Remark 3. The analysis of this game shows a link between algebraic eigenvalues
of a matrix and game theory which was first investigated by Weil [24], but
described as “lacking parsimony” in his paper. The Grey Thinking game instance
shows that specific stochastic stopping games may form such a link that Weil
was missing as he restricted his study to static matrix games.
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5.4 Note on Discounted Games

So far, our framework based on matrix pencils and their generalised eigensystems
assumed an undiscounted stochastic game model. The restriction to strategies
x, y with a stopping matrix S verifying the condition 0 < txSy ≤ 1 ensures
convergence of the geometric series in (7) and (8). Due to the non-vanishing
denominator, this also leads to a well-defined rational payoff function in the
game B. On the other hand, it might rule out the use of specific strategies when
dealing with a nonnegativestopping matrix S ≥ 0 with some entries being zero
as in the Black or White Thinking game.

We can extend the matrix pencil framework to discounted stochastic stopping
games with limiting average payoffs by considering the complete spectral theory
of regular matrix pencils, which includes the concept of the eigenvalue at infinity.
Assume ŷ is a nonnegative right eigenvector of the pencil A − λS and x̂ a left
eigenvector of the pencil B − λS, both for the eigenvalue at infinity. This means
Sŷ = 0, tx̂S = 0 and Aŷ �= 0, tx̂B �= 0 ([8]).

Consider the discounted game using the limiting average payoff function
tx̂Ay/k in round k of the game. Then, reviewing Eqs. (7) and (8), one obtains
for Player 1

ûA,k(x̂, ŷ) =
tx̂Aŷ

k

k−1∑
i=0

1 = tx̂Aŷ.

Similarly, for Player 2, one has

ûB,k(x̂, ŷ) = tx̂Bŷ.

In some situations, this yields a correspondence between the eigenvalue at infinity
with its associated eigenvectors and stationary solutions of the discounted game
model.

The discounted model allows relaxing the condition on the stopping matrix
S to be a positive matrix. For example, consider an inspection game akin to
the grey-hat hacker game in [3], which stops when the hacker has been caught
not cooperating. Assume generic payoff matrices D = ((dij)) ∈ R

2×2 and G =
((gij)) ∈ R

2×2. The stopping matrix is

S =
(

1 0
0 0

)
.

The vectors tx̂ = (0 1) and ŷ =
(

0
1

)
are left and right eigenvectors to the

infinite eigenvalue of the two pencils defining the game. Indeed, they satisfy

tx̂S = (0 0), Sŷ =
(

0
0

)
.

and for generic matrices D and G the above vectors will not be elements of their
left and right nullspaces. When choosing the above strategies x̂ and ŷ, one has
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tx̂Sŷ = 0, tx̂Dŷ = d22 and tx̂Gŷ = g22. Hence both players never end the game
and accumulate payoffs in the undiscounted game. Using the limiting average
discount model, they can achieve the utilities ûA = d22 and ûB = g22.

Remark 4. Thompson et al. [22] investigated the use of generalised eigensystems
for game theory but did not find a meaning for the eigenvalue at infinity. This
could be explained by their view of the matrix pencil A − λB originating as an
economic production model, see von Neumann’s paper [19].

6 Conclusion

In summary, this paper presents several contributions to the field of security
games and game theory. Firstly, it introduces a two-player complete informa-
tion bimatrix game as an initial step. This bimatrix game captures the strategic
dilemmas involved in the interaction between a grey-hat hacker and an organ-
isation, modelling an aspect that was not covered in previous security game
models in the literature. Furthermore, the paper’s main contribution lies in
extending the one-stage game to a stochastic framework by introducing the
Shades of Grey game. By repeatedly playing the complete information game
and employing various stopping strategies, the stochastic game has the ability
to address specific player preferences, making it more adaptable and realistic
for modelling grey-hat hacking scenarios. Furthermore, a game with a full-rank
stopping matrix can resolve dilemmas that were present in the stage game. As
another contribution, primarily to analyse the Shades of Grey game, but with
potential for broader applications in other game-theoretic contexts, the concept
of matrix pencils and their spectral analysis through generalised eigensystems is
introduced for finding sufficient conditions for the existence of Nash equilibrium
solutions in bimatrix games with rational payoff functions. We argue that com-
bining well-established game-theoretical principles with exploring lesser-known
yet intriguing linear algebra concepts to aid in analysing stochastic stopping
games is interesting and promising. Future research could build upon this theo-
retical framework and extend it to other types of stochastic games to obtain a
complete classification of two-action strategic stochastic security games.
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1 Introduction

The predict-then-optimize (PTO) framework [4,11,14,24] is a common paradigm
for making “smart” decisions with incomplete information. In this framework, one
predicts information about the state of the world, and then optimizes a given
reward function based on these predictions, possibly subject to constraints. One
example of PTO is the problem of hospital bed demand prediction during the
COVID-19 pandemic, when hospitals faced shortages of beds but were able to
acquire overflow spaces for patients at an additional cost [17,27]. These hospitals
needed to predict the true distribution of hospital beds needed and then choose
the optimal number of overflow beds to purchase [13,20]. For example, one may
want to predict the distribution of bed demand, then optimize to order beds
such that there are enough beds on 95% of nights. The traditional way of doing
this is to train a two-stage (TS) model in which one first learns a predictive
model to maximize predictive accuracy, and then runs an optimization algorithm
maximizing a decision quality function over the trained model’s predictions.
In this paradigm, predictive accuracy is not always aligned with the reward
function being optimized [9]. To correct for this, decision-focused learning (DFL)
[14,33], in contrast to the traditional PTO paradigm of two-stage learning (TS),
trains the predictive model to directly optimize the decision quality function and
differentiates through the entire prediction and optimization pipeline, making
training an end-to-end process. DFL has been shown to outperform TS across a
wide variety of domains [9,22,28,32].

While predict-then-optimize frameworks are becoming increasing popular,
their robustness to label drift at decision time is not well-understood. Under-
standing robustness enables us to reason about the suitability of the models for
various test sets. Differences between labels in train and test sets is common in
practice. In hospital bed demand prediction, this difference in labels might arise
if the prognosis of different viral variants changes. Our primary method of assess-
ing a model’s ability to deal with such differences between training and testing
sets is by adding perturbations to the underlying labels at test time and assess-
ing how it impacts the model’s downstream performance. Specifically, we study
adversarial label perturbations, with the intuition that a model that can handle
worst-case label drift is robust. This label drift can have a profound effect on the
downstream decisions, leading to, for example, a shortage of hospital beds. Before
decision-focused learning becomes more widely applied in real-world settings, it
is imperative to understand the robustness of predict-then-optimize algorithms
to label drift.

Our contributions include the following: First, we propose modifications
of both TS and DFL that anticipate label noise in training (Robust TS,
Robust DFL, and Algorithm 1). Next, by examining the decision quality func-
tion, we give a necessary condition for when a learner can improve performance
by anticipating label drift: the decision quality function must be asymmet-
ric around the optimal decision (Theorem 1). Moreover, we derive bounds on
their relative performance by casting both optimization problems as Stackel-
berg games (Sect. 4.2) to demonstrate that Robust DFL is at least as robust as
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Robust TS when the predictive model is perfectly expressive. Finally, we empir-
ically validate these theoretical results by comparing Robust DFL and Robust
TS across four domains (Sect. 5) and empirically demonstrate that Robust DFL
outperforms Robust TS under adversarial label drift.

1.1 Related Work

Predict-Then-Optimize and Decision-Focused Learning. Predictive models max-
imizing accuracy on the entire dataset sometimes do so with the consequence
of making suboptimal decisions with those predictions in hand (cf. [6,15]). This
suboptimal decision-making is partially remedied by decision-focused learning,
which integrates the downstream decision-making objective into the learning
pipeline. Decision-focused learning has been applied in settings where the opti-
mization task is combinatorial in nature [3,22,33]. Kotary et al. [19] surveys
recent efforts to leverage ML to solve constrained optimization problems.

Robustness and Optimization in Machine Learning. Our work falls in the inter-
section of work on decision-focused learning and the broad literature on adver-
sarial machine learning [12,31]. Much of this literature considers label tampering,
which is commonly studied in the context of data poisoning attacks, in which
labels in a training dataset are adversarially changed prior to model learning.
For example, Butler et al. [8] demonstrate that predict-then-optimize frameworks
are susceptible to data poisoning attacks on data features in the training set. In
contrast, we are concerned with adversarial drift on labels at test time– after the
model has been trained. The literature focusing on adversarial drift at test time
[10,16,30] is largely concerned with shifts in features rather than labels, often
using robust optimization [21,35] to these shifts in features. A related problem
is that of adversarial label contamination, where a small number of labels in
the training set are flipped [34]. Also connected is H-infinity control [5], which
minimizes the gain in the system states with respect to bounded noise.

2 Background

2.1 Predict-Then-Optimize Problems

In the standard predict-then-optimize framework, one makes a prediction about
the state of the world, then optimizes a decision quality function given the
prediction. The predictive task is to learn a parameterized (by w) model
mw : X → Y mapping features x ∈ X to predict the unknown parameters
mw(x) = ŷ ∈ Y ⊆ R

d in the optimization problem. This prediction is used to
make decisions based on a decision quality function f : Z × Y → R mapping
decisions z ∈ Z ⊆ R

� and true labels y ∈ Y to a real-valued reward. Given a
prediction ŷ, the learner computes the optimal decision z∗(ŷ), where the function
z∗ : Y → Z is defined

z∗(ŷ) := argmax
z∈Z

f(z, ŷ) . (1)
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The decision is then evaluated on the ground truth label y0 to obtain the decision
quality f(z∗(ŷ), y0). The learner is given a dataset Dtrain = {(xi, yi)} to train
the predictive model. After the model mw is trained, a testing dataset Dtest is
presented. The trained model then yields predictions of the missing labels and
propose the corresponding decisions. The decisions are evaluated on the revealed
ground truth labels in the testing set 1

|Dtest|
∑

(x,y)∈Dtest

f(z∗(mw(x)), y).

Assumptions on f . Throughout, we generally assume that f is L-Lipschitz con-
tinuous in both Y and Z and its maximum is always attained by some z ∈ Z
so that z∗(·) is always well-defined. Moreover, we assume that f(z∗(·), ·) is
quasi-concave-convex, meaning that f(z∗(·), y) is quasiconvex for all y ∈ Y and
f(z∗(ŷ), ·) is quasiconcave for all ŷ ∈ Y. This assumption is necessary in order
to apply the minimax theorem in Sect. 4.2. If z∗ is affine in y, this condition is
satisfied by f being quasi-concave-convex.

2.2 Frameworks for Predict-Then-Optimize

We now summarize two existing learning methods with different objectives that
the learner uses to train the predictive model mw. These are visualized in
Fig. 1(L). When unclear from context, we refer to TS and DFL as “Standard
TS” and “Standard DFL” to disambiguate them from their robust counterparts
introduced in Sect. 3.

The two-stage (TS) approach learns a predictive model mw by minimizing
root mean squared error (RMSE):

min
w

∑

(x,y)∈Dtrain

‖mw(x) − y‖2 , (Standard TS)

where the norm ‖ · ‖ denotes the Euclidean norm. We denote the model learned
by Standard TS on the training data Dtrain by mT . After the model is learned,
given a new input x, the prediction yT = mT (x) is then used to optimize the
decision quality function z∗(yT ) in Eq. (1).

In contrast, the objective in decision-focused learning is the decision quality
function instead of RMSE.

max
w

∑

(x,y)∈Dtrain

f(z∗(mw(x)), y) (Standard DFL)

Similarly, we call the Standard DFL model mD learned via training data Dtrain.
The advantage of decision-focused learning is the alignment of the training objec-
tive and the testing objective f . To optimize the objective in Standard DFL, it
is common to use gradient descent, which requires backpropagating through the
optimal decision z∗ from Eq. (1). This can be achieved by differentiating through
the optimality and KKT conditions (cf. [1,2]).
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Fig. 1. In TS (left, i), the model optimizes RMSE loss, as opposed to DFL (left, ii),
which uses the decision quality function as the loss. Robust analogs (right) are proposed
in Sect. 3.

3 Robust Algorithms Anticipating Worst-Case Label
Drift

The dependence of optimization on prediction renders Predict-then-Optimize
frameworks particularly vulnerable to shifts in the (optimized-upon) labels at
test time. Adversarial training is often used in the adversarial machine learning
literature to mitigate susceptibility to changes in data at test time. It is natural
to ask when adversarial training, or some variant thereof, might improve the
decision quality of predict-then-optimize frameworks. We consider the case where
models mT and mD are fully expressive and there is no generalization error, and
empirically validate that the intuition from that setting still holds in imperfect
generalization settings in Sect. 5.

3.1 Modeling Worst-Case Label Drift

We study the robustness of a model by examining its decision quality under
adversarial label drift; intuitively, adversarial drift yields a worst-case decision
quality (under some “drift budget”) to stress-test a model’s robustness.

In understanding the worst case noise, suppose that an “adversary” (abstrac-
tion for nature generating worst-case label drift) can additively perturb the true
parameters y by some small ε such that ‖ε‖ ≤ r for a fixed budget r at test time.
We assume the “adversary” seeks to choose a best response

ε ∈ ε∗(z, y, r) := argmin
ε:‖ε‖≤r

f(z, y + ε) (2)

to minimize the predictive model’s decision quality function given the decision
z and true parameters y. If ε∗(z, y, r) is not uniquely determined, we slightly
abuse notation and take ε∗(z, y, r) to be any choice in the argmin of Eq. (2),
and if r is understood from context, we omit it as an argument. We often study
ε0 ∈ ε∗(z∗(y0), y0, r): an optimal response to the optimal decision.

Observe that the “adversary” seeks to minimize the decision quality function
even if the predictive model is optimizing root mean squared error, as in two-
stage learning. This is because we are concerned with the downstream decisions
recommended by the optimization problem, whose quality is measured by f .
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3.2 Improving Decision Quality by Anticipating Label Drift:
Motivating Examples

We consider two different decision quality functions where either (A) the optimal
decision is the same in the presence and absence of noise, or (B) a learner can
make a “smarter” decision by anticipating the presence of noise. We leverage
insight from (B) to propose incorporate adversarial training into DFL and TS
in Sect. 3.3.

Consider a quadratic decision quality function pictured in Fig. 2(L), with
Z = Y = R. In this case, the optimal decision z∗(ŷ) = ŷ. The leader, without
anticipating label drift, maximizes their utility by selecting ŷ = y0. If they plan
for label drift, then the leader can generally choose some ŷ �= y0 or choose
ŷ = y0. If ŷ �= y0, then ε∗(ŷ, y0) = {r sign(y0 − ŷ)}, resulting in decision quality
1−(ŷ−(y0+ε∗))2 strictly less than 1−r2. In contrast, if ŷ = y0, then ε∗(y0, y0) =
{−r, r}, resulting in decision quality 1 − r2. Therefore, a learner cannot benefit
from anticipating label noise, as their “best” decision in either case (anticipating
label noise or not) is to predict ŷ = y0.

In contrast, consider the “asymmetric” decision quality function in
Fig. 2(R), where, again, Z = Y = R and z∗(ŷ) = ŷ for all ŷ ∈ Y. As above,
suppose a learner anticipates adversarial label drift. Broadly, the learner could
choose ŷ < y0, ŷ = y0 (with ε∗(y0, y0) = {−r}), or ŷ > y0 (again, with
ε∗(ŷ, y0) = {−r}). Figure 2(R; red) demonstrates that choosing ŷ = y0 leads
to a poor decision quality once the the adversarial label perturbation is added.
Therefore, the best decision for a learner anticipating adversarial label drift is
some ŷ < y0 such that ε∗(ŷ, y0) = {r}, which mitigates the adversary’s attack
(yellow). Therefore the learner is able to leverage the asymmetry of the decision
quality function in order to choose a “smarter” decision than simply predicting
y0, as they would do without anticipating noise.

Fig. 2. Two contrasting decision quality functions, both with z∗(ŷ) = ŷ. Different
dashed lines represent how the function shifts as y0 shifts. (L) The optimal decision
z∗(y0) also maximizes the decision quality in the presence of an adversary. Note that
ε∗(y0, y0) = {r, −r}, and we demonstrate the decision quality under either adversari-
ally optimal drift (yellow, red lines). (R) The optimal decision in the presence of an
adversary is to choose ŷ < y0 (yellow dot), as ε∗(ŷ, y0) = {r} for such ŷ. This is in
contrast with ε∗(y0, y0) = {−r}. This change in optimal drift leads one to observe
that anticipating noise (yellow dot) yields higher decision quality than not anticipating
noise (red dot). (Color figure online)
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3.3 Robust Model Formulations

Observing that some models can improve their performance by anticipating label
noise, we now propose robust formulations of both TS and DFL, when the learner
anticipates label drift in the test set for such decision quality functions. The
learner commits to a model mw, and applies the model to every instance in
the dataset (x0, y0) ∈ Dtrain to produce a prediction ŷ = mw(x0) and decision
ẑ = z∗(ŷ). The “adversary”, who knows the true parameters y0, observes the
chosen decision ẑ to conduct an attack ε∗(ẑ, y0, r) as defined in Eq. (2).

Definition 1 (Robust two-stage learning). The learner aims to minimize
the root mean squared error between the predictions and the perturbed labels
(Fig. 1 (R,i)):

min
w

∑

(x0,y0)∈Dtrain

‖mw(x0) − (y0 + ε∗
x0,y0

)‖2 (Robust TS)

s.t. ε∗
x0,y0

= argmin
ε:‖ε‖≤r

f(z∗(mw(x0)), y0 + ε)

If the function class given by weights w has high capacity, then we abstract
away the model weights and, given any data point (x0, y0), we suppose that the
model is able to choose yRT := mRT (x0) that is a solution of the following:

max
yRT

1 − ‖yRT − (y0 + εRT )‖2 s.t. εRT = argmin
ε:‖ε‖≤r

f(z∗(yRT ), y0 + ε) (3)

Observe that Robust TS is an analogue of standard adversarial training algo-
rithms, where adversarial changes are now made to labels instead of features.
While an alternative formulation might use perturbations that attack the RMSE
loss instead of the decision quality, this approach disembodies the robust learn-
ing problem from the Predict-Then-Optimize context. Because the algorithm is
exposed to adversarial label drift at test time, our Robust TS algorithm is best
trained with label drift. We find empirical support for Robust TS in Sect. 5.

Definition 2 (Robust decision-focused learning). The learner aims to
maximize the decision quality evaluated on the perturbed labels (Fig. 1 (R, ii)):

max
w

∑

(x0,y0)∈Dtrain

f(z∗(mw(x0)), y0 + ε∗
x0,y0

) (Robust DFL)

s.t. ε∗
x0,y0

∈ argmin
ε:‖ε‖≤r

f(z∗(mw(x0)), y0 + ε)

Similarly to Robust TS, if the model is fully expressive, then the model can
find yRD := mD(x0) for each (x0, y0) pair independently of other data points.
This prompts us to solve Robust DFL:

max
yRD

f(z∗(yRD), y0 + εRD) s.t. εRD = argmin
ε:‖ε‖≤r

f(z∗(yRD), y0 + ε) (4)
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One can understand Eq. (4) as a zero-sum game by observing εRD ∈
argmax‖ε‖≤r −f(z∗(yRD), y0 + ε). Moreover, as εRD is a function of yRD, cast-
ing as a Stackelberg game is natural, where the “adversary” adding noise follows
observing the model’s prediction yRD. Therefore, we can study whether or not
the pair (yRD, εRD) is an equilibrium solution. Moreover, if f(z∗(·), ·) is quasi-
concave-convex, then we can apply the canonical minimax theorem [29] and
conclude that (yRD, εRD) is a Nash equilibrium as Eq. (4) is zero-sum. Casting
this problem as a game is similar to the approach taken by Hardt et al. [18],
though their model of noise is anticipating noise on features, rather than labels.

4 Improving Robustness by Anticipating Label Drift

With robust formulations in hand, we now show that if adversarial training
can improve the decision quality regret of an algorithm when worst-case label
drift is added at test time, the optimization objective f must be asymmetric in
the parameter space around the optimal decision, demonstrated by studying ε∗.
Knowing that anticipating label drift can improve decision quality, we discuss
how to apply Robust TS and Robust DFL in practice, incorporating max-min
optimization into training to be robust to label drift.

4.1 Robustness via Defendability

The examples in Sect. 3.2 develop the intuition that asymmetry of f around the
optimal decision plays an important role in determining the robustness of the
decision quality function when models are perfectly expressive.

Definition 3. A decision quality function f : Z×Y → R is r-defendable at y0 ∈
Y if there exists ŷ ∈ Y such that f(z∗(ŷ), y0 + ε∗(z∗(ŷ), y0, r)) > f(z∗(y0), y0 +
ε∗(z∗(y0), y0, r)).

Defendability is tightly connected to the pair (y0, ε∗(z∗(y0), y0)) not being
a Nash equilibrium to the problem in Eq. (4), modulo the ability to apply the
minimax theorem. We now show that defendability also implies a certain type
of asymmetry in the decision quality function, studied through ε∗.

Theorem 1. Let f be a decision quality function such that f(z∗(·), ·) is quasi-
concave-convex. If f is r-defendable at y0, then ε∗(z∗(y0), y0, r) �= {ε : ‖ε‖ = r}.
Proof. For contradiction, suppose ε∗(z∗(y0), y0, r) = {ε : ‖ε‖ = r}. Since ε∗ is
defined as a best response, we immediately have f(z∗(ŷ), y0) ≥ f(z∗(ŷ), y0 +
ε∗(ŷ, y0)). Moreover, since f is defendable, we have f(z∗(ŷ), y0 + ε∗(ŷ, y0)) >
f(z∗(y0), y0 + ε∗(y0, y0)) = f(z∗(y0), y0 + ε∗(ŷ, y0)). Finally, as f is quasiconvex
in its second argument and all budget-exhausting responses belong in ε∗(y0, y0),
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we have max(f(z∗(y0), y0 + ε∗(ŷ, y0)), f(z∗(y0), y0 − ε∗(ŷ, y0))) = f(z∗(y0), y0 +
ε∗(ŷ, y0)) ≥ f(z∗(y0), y0). Chaining these together,

f(z∗(ŷ), y0) ≥ f(z∗(ŷ), y0 + ε∗(ŷ, y0)) ε∗ is best response
> f(z∗(y0), y0 + ε∗(y0, y0)) defendability
= f(z∗(y0), y0 + ε∗(ŷ, y0)) assumption on ε∗

≥ f(z∗(y0), y0) quasiconvexity + assumption on ε∗,

which contradicts the optimality of z∗.

Theorem 1 shows that if decision quality can be improved by anticipating
label drift, it must be the case that the best response to y0 must be context-
dependent, taking into consideration the shape of f .

In the following section, we will present regret bounds for these robust algo-
rithms. It is important to note, however, that for symmetric decision quality
functions, these algorithms yield the same solution pairs as their standard coun-
terparts.

Proposition 1. Consider decision quality function f and y0 ∈ R
k such that

ε∗(z∗(y0), y0, r) = {ε : ‖ε‖ = r}. Then for any ε0 ∈ ε∗(z∗(y0), y0, r), the pair
(y0, ε0) is a subgame perfect Nash equilibrium for Standard TS (Eq. (5)), Stan-
dard DFL (Eq. (6)), Robust TS (Eq. (3)), and Robust DFL (Eq. (4)).

Proof. We formally cast standard TS and standard DFL as games when models
are perfectly expressive.

max
yT

1 − ‖yT − y0‖2 s.t. ε∗(yT , y0) = argmin
‖ε‖≤r

f(z∗(yT ), y0 + ε) (5)

Observe that the leader’s payoff is independent of the follower’s payoff
−f(z∗(yT ), y0 + ε). Similarly, we cast Standard DFL as a game when models
are perfectly expressive.

max
yD

f(z∗(yD), y0) s.t. ε∗(yD, y0) = argmin
‖ε‖≤r

f(z∗(yD), y0 + ε) (6)

For standard TS and DFL, since the leader’s payoff is independent of the
response, choosing yT or yD = y0 maximizes the leader’s reward, regardless of
the adversary’s response. Given the decision y0, the “adversary” playing ε0 ∈
ε∗(z∗(y0), y0, r) is a best response to optimize their objective.

In Robust TS, there is always a response ε ∈ ε∗(z∗(·), y0) such that ‖ε‖ = r
by quasiconvexity of f in its second argument. The objective then becomes
maxyRT

1−‖yRT −y0‖2+ c2 for some c ≥ 0 by quasiconcavity of f(z∗(·), ·) in its
first objective (which implies that the best response will not improve decision
quality). Regardless of the choice of ε, then the optimal decision is to report
yRT = y0. Thus, (y0, ε0) is a subgame perfect Nash equilibrium.

Finally in Robust DFL, the assumption implies that f is not r-defendable
at y0 by Theorem 1. Therefore, (y0, ε0) is a Nash equilibrium, and in turn, a
subgame perfect Nash equilibrium since we can apply the minimax theorem.
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Proposition 1 suggests that if the adversary’s best response to the learner
choosing the optimal y0 can arbitrarily exhaust the noise budget, the standard
and robust algorithms have the same solution. Since Robust TS (Eq. (3)) can
be understood as a general-sum Stackelberg game, less is known about the con-
vergence to the equilibria than zero-sum Stackelberg games like Robust DFL
(c.f., [7]). This may play a larger role in distinguishing the performance of
robust and standard algorithms when models have some generalization error,
as we demonstrate in Sect. 5. However, for certain asymmetric decision quality
functions, we now show that Robust DFL outperforms Robust TS. This yields
a simple check to understand whether a decision quality function is robust to
label drift.

4.2 Bounding Decision Quality Regret

We now show that Robust DFL yields decision quality no worse than that of
Robust TS (Theorem 2). In Proposition 2, we use the piecewise quadratic deci-
sion quality function from Sect. 3.2 to demonstrate the performance gap from
Robust TS can be strictly worse than that of Robust DFL by considering an
asymmetric decision quality function, which we show by proving f is defendable
implies a strict regret bound.

We start by defining the decision quality regret as the gap in decision quality
from of a predictive model to this optimum. Note that while optimizing the deci-
sion quality function is a maximization problem for the model, lowering decision
quality regret is better as it measures the error induced by poorly responding to
label drift.

Definition 4 (Decision quality regret). Define the decision quality regret
of prediction ŷ when the ground truth parameter is y0 with an adversarial per-
turbation budget r by:

Reg(ŷ, y0; r) = f(z∗(y0), y0) − min
ε:‖ε‖≤r

f(z∗(ŷ), y0 + ε)

The decision quality regret defined in Definition 4 measures the regret of the
(optimal) decision z∗(ŷ) induced by prediction ŷ and the worst-case label devi-
ated up to a perturbation of norm r. We now show that the decision quality
regret of the optimal Robust TS prediction yRT as at least as high as that of
the optimal Robust DFL prediction yRD.

Theorem 2. Let f : Z ×Y → R be a L-Lipschitz decision quality function, and
consider some ground truth y0 ∈ Y such that (yRD, εRD) is a solution to Eq. (4)
and (yRT , εRT ) is a solution to Eq (3). Then

0 ≤ Reg(yRD, y0; r) ≤ Reg(yRT , y0; r) ≤ 2L ‖yRT − y0‖ + Lr .

Proof. The optimality of Robust DFL can be written as a maximization problem

with a worst-case objective: yD = argmax
ŷ

(

min
ε:‖ε‖≤r

f(z∗(ŷ), y0 + ε)
)

. In contrast,
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Algorithm 1. Robust Decision-focused Learning
1: Input: training set Dtrain, learning rate α, model mw, adversarial learning rate

αadv, perturbation budget r
2: for epoch = 1, 2, · · · and (x0, y0) ∈ Dtrain do
3: Generate prediction ŷ = mw(x0)
4: Solve Eq. (1) to get decision z∗ = argmaxz f(z, ŷ)
5: Solve Eq. (2) to get perturbation ε̂ = ε∗(z∗, y0, r)
6: Compute decision quality f(z∗, y0 + ε̂)
7: Run approximate gradient ascent mw ← mw + α ∂f

∂z∗
∂z∗
∂ŷ

∂ŷ
∂w

8: end for
9: Return: predictive model mw

the learner in Robust TS does not maximize the worst-case decision quality,
which leads to a prediction yTS with a suboptimal objective. Therefore, we have:

min
ε:‖ε‖≤r

f(z∗(yD), y0 + ε) ≥ min
ε:‖ε‖≤r

f(z∗(yT ), y0 + ε) . (7)

By the definition of the decision quality regret, Eq. 7 directly implies
Reg(yD, y0; r) ≤ Reg(yT , y0; r). The remaining inequality can be shown by using
Lemma 1 (Sect. A), which concludes the proof.

Theorem 2 quantifies the source of decision quality regret in terms of ‖ŷ − y0‖
and r. While Theorem 2 gives both upper and lower bounds on the decision
quality regret incurred by Robust TS, it is unclear at first whether the gap
is ever strict. In Proposition 2, we show by counterexample that the decision
quality regret of the optimal Robust TS solution can be strictly greater than
that of the optimal Robust DFL solution.

Proposition 2. For all r ∈ R++, there exists a decision quality f : Z × Y → R

such that Reg(yRD, y0; r) < Reg(yRT , y0; r).

Proof. In the setting where the model is perfectly expressive, the solution to
Robust TS (Eq. 3) yields yRT = y0 as any deviation yields a stronger attack
and increased error. We know from Lemma 2 (Sect. A) that a decision qual-
ity function f is r-defendable at y0 if and only if there exists ŷ ∈ Y such
that Reg(ŷ, y0; r) < Reg(y0, y0; r) = Reg(yRT , y0; r), where equality follows as
yRT = y0. If yRT = y0, this tells us that f is r-defendable iff Reg(ŷ, y0; r) <
Reg(yRT , y0; r), thus the gap is strict if f is r-defendable at y0. Observe that the
decision quality function in Sect. 3.2 is r-defendable, so the definition is feasible.

When models are perfectly expressive, Theorem 2 shows that the gap between
the Robust DFL and Robust TS is bounded by Lr. Moreover, Proposition 2
shows that the gap in decision quality regret between Robust DFL and Robust
TS is strict for r-defendable decision quality functions. Together, these results
highlight the benefits of using decision-focused learning in the presence of label
drift for r-defendable decision quality functions.
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4.3 Robust Algorithms in Practice

In practice, optimizing the robust algorithms is not simple. In particular, given
the pair (ŷ, y0), the computation of the decision quality f(z∗(ŷ), y0 + ε̂) requires
estimating (i) optimal decision ẑ = z∗(ŷ) by the optimization problem in Eq. (1),
and (ii) the optimal adversarial perturbation ε̂ = ε∗(ẑ, y0, r) defined in Eq. (2).
Both of these values are not generally defined with closed-form solutions. In
Algorithm 1, we leverage the idea from DFL to differentiate through optimization
problems and apply the concept of adversarial training to solve the problem in
Definition 2. We solve for ε̂ by running projected gradient descent, which we
instantiate multiple times. The time complexities of training the models can
be found in Sect. B. While both Robust TS and Robust DFL are slower than
their standard counterparts due to the optimization required at each iteration
to calculate ε̂, both algorithms still run in polynomial time.

5 Experiments

5.1 Experimental Domains

We now compare the non-robust learning methods discussed in Sect. 2.2 and
the robust learning methods discussed in Definitions 1 and 2. We evaluate the
performance of different learning methods in four different domains that deal
with optimizing over uncertain, estimated parameters where model expressivity
is limited. Both the linear top-k and demand prediction domains have asymmet-
ric decision quality functions, while portfolio optimization and budget allocation
have symmetric decision quality functions. The latter three domains are drawn
from Shah et al. [28], which we augment with the first domain in order to have
an additional asymmetric domain. For detailed descriptions of each domain, see
Sect. C.

– Demand Prediction Using features x0 to predict the bed demand y0, select
number of beds z∗(ŷ) via an asymmetric decision quality f with a preference
to overestimating demand.

– Linear Top-k Using a linear model to predict the utilities y0 of d resources
from features x0, where the relationship between features and labels is cubic,
select the k resources with the highest utilities.

– Portfolio Optimization Predict the next stock price from historical stock
prices and then choose a continuous allocation z ∈ Z ⊆ [0, 1]d between d
stocks [26], maximizing the sum of the immediate net profits and a symmetric
quadratic risk penalty term.

– Budget Allocation Choose a website on which to run advertisements by
predicting the click-through rates on each website for each user and then
selecting a set of websites on which to run advertisements to maximize the
expected number of users who click on the ad.
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The adversarial perturbations added to the labels represents a shift in the bed
demand, underlying utilities, stock prices, and click-through rates, respectively.
We ran all experiments over 30 different random seeds and present the mean of
the performances on the test set. These experiments are run with a predictive
model that is not fully expressive; despite this, the results still align with the
intuition from our theoretical results.

5.2 Discussion of Empirical Results

In Fig. 3, we plot the effect of the budget for the adversarial perturbations at
test-time on the decision quality. The robust algorithms are trained with the
same budget as is used at test time, omitting the case where the test budget is
0. For more results on performance when the adversarial budget differs between
training and test time, see Sect. C. In Fig. 4, we present the RMSE for each
of the algorithms’ predictions at test time, varying the adversarial perturbation
budget r, in order to show how much generalization error each model incurs.
Finally, in Fig. 5, we visualize the test-time predictions from the models in the
Demand Prediction domain to show how DFL and Robust DFL have learned
to overestimate in order to maximize the reward, which favors overallocation of
beds rather than underallocation.

The results presented in Sect. 3 show that Robust DFL will perform better
than Robust TS (and TS) in asymmetric domains under perfect expressiveness,
and this is verified in our experimental results in Fig. 3. It is notable and sur-
prising that Standard DFL already performs significantly better than both TS
and Robust TS in these domains. Therefore in asymmetric domains, it may be
useful to spend effort on using even standard DFL for the sake of robustness,
rather than on robust version of TS, which ultimately still delivers lower quality.

Robust DFL also offers some improvements over Standard DFL:
reducing variance and improving decision quality in high-noise
regimes. For example, Robust DFL has a lower variance than DFL, as demon-
strated in the Linear Top-k domain of Fig. 3. This difference in variance is sta-
tistically significant for most r in Linear Top-k: pr=0.5 < 10−5, pr=1 < 10−5,
pr=1.5 < 10−5, pr=2 < 10−5. Additionally, in the high-noise regimes (r = 3, 4, 5)
of the Demand Prediction domain, the decision quality yielded by Robust DFL
is higher than that of Standard DFL, and this difference is statistically signif-
icant (pr=3 < 0.01, pr=4 < 0.0001, pr=5 < 10−5). In the Demand Prediction
domain, both Robust DFL and DFL learn to overestimate the bed demand, as
seen in Fig. 5, which is incentivized by the decision quality function. We can see,
by comparing the left and right sides of Fig. 5, that the addition of label pertur-
bations at train time allow Robust DFL to anticipate and tolerate label drift of
a higher magnitude (whereas DFL is non-adaptive because it is not trained with
perturbations).

For perfectly expressive models and symmetric decision quality functions,
Proposition 1 suggests that all four algorithms will be the same. Despite the
fact that the predictive model is not perfectly expressive, Budget Allo-
cation (bottom right) still exemplifies this phenomenon, with the qualifi-
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Fig. 3. Effect of adversarial budget on decision quality (30 trials). In the asymmetric
Demand Prediction and Linear Top-k domains, DFL and Robust DFL outperform TS
and Robust TS.

Fig. 4. Effect of adversarial noise budget on RMSE (30 trials). In all domains,
DFL/Robust DFL have higher RMSE than TS/Robust TS.

Fig. 5. Predictions from Demand Prediction models, trained on r = 1 (L) and r = 4
(R) adversarial perturbation budgets.

cation that DFL tends to do slightly better than TS. The Portfolio Optimization
domain (bottom left), however, shows an unforeseen result: the robust algo-
rithms (especially Robust DFL) outperform the standard algorithms.
This demonstrates that, despite the symmetry of the decision quality function
implying that TS and DFL are able to learn the optimal solution, the robust
algorithms offer a practical improvement in performance when models are not
perfectly expressive. Notably, as seen in the third plot of Fig. 4, Robust TS
achieves lower RMSE than TS. These results show that robustification can help
both symmetric and asymmetric domains.
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6 Conclusion

In this work, we study robustness of predict-then-optimize frameworks to char-
acterize when an adversarially trained algorithm might outperform its standard
counterpart by anticipating noise in the test set. Leveraging these insights, we
propose robust versions of DFL and TS, and we show that Robust DFL out-
performs Robust TS when the decision quality function is defendable. Finally,
we empirically validate our results with experiments across four domains, find-
ing that Robust DFL does well in asymmetric domains and can even improve
performance in symmetric domains.
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A Omitted Proofs

Lemma 1. Let f be L-Lipschitz and fix r ∈ R+. For all y0, y ∈ Y,
Reg(y, y0; r) ≤ 2L‖y − y0‖ + Lr

Proof.

Reg(ŷ, y0; r) = f(z∗(y0), y0) − min
ε:‖ε‖≤r

f(z∗(ŷ), y0 + ε)

= f(z∗(y0), y0) − f(z∗(ŷ), y0 + ε̂)
≤ f(z∗(y0), ŷ) + L ‖y0 − ŷ‖ − f(z∗(ŷ), ŷ) + L ‖y0 + ε̂ − ŷ‖
≤ f(z∗(y0), ŷ) − f(z∗(ŷ), ŷ)

︸ ︷︷ ︸
≤0 by optimality of z∗

+2L ‖y0 − ŷ‖ + Lr

≤ 2L ‖y0 − ŷ‖ + Lr .

Lemma 2. A decision quality function f : Z × Y → R is r-defendable at y0 if
and only if there exists ŷ ∈ Y such that Reg(ŷ, y0; r) < Reg(y0, y0; r).

Proof. f is r-defendable at y0 if and only if ∃ŷ ∈ Y such that

−f(z∗(ŷ), y0 + ε̂) < −f(z∗(y0), y0 + ε)
⇐⇒ f(z∗(y0), y0) − f(z∗(ŷ), y0 + ε̂) < f(z∗(y0), y0) − f(z∗(y0), y0 + ε) ,

where ε := ε∗(z∗(y0), y0, r) and ε̂ := ε∗(ŷ, y0, r).
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B Runtime Analysis

TS = Θ(T ·N ·TM ), where T is the number of timesteps of model training, N is
the number of instances, and TM is the time to run the forward and backward
passes for the predictive model.

DFL = Θ(T · N · (TM + TZ + T ′
Z + TDQ + T ′

DQ)), where TZ is the time
for the forward pass of the optimization and T ′

Z is the backward pass for the
optimization, and TDQ/T ′

DQ are the forward and backward passes for calculating
the decision quality.

Robust TS = Θ(T ·N ·(TM+TZ+I ·TA·(TDQ+T ′
DQ))), where TA is the number

of iterations to run projected gradient descent, and I is the number of times
the perturbation generation process is instantiated (where more instantiations
produce a better ε̂).

Robust DFL = Θ(T ·N ·(TM +TZ +T ′
Z +TDQ+T ′

DQ+I ·TA ·(TDQ+T ′
DQ))).

C Experimental Setup

We now give an overview of the four studied decision quality functions. Note
that we do not enforce the concave-convex assumption on the decision quality
functions; rather, the associated experiments show the performance in realistic
scenarios where the assumption does not always hold.

Demand Prediction Domain. The Demand Prediction task is to predict the num-
ber of beds required in a hospital’s overflow unit [17,27]. In this setting, one
might have a decision quality with a global maximum at the exact demand but
also with a strong preference to overestimating bed demand than underestimat-
ing, yielding a decision quality like that in Fig. 6, given in Eq. 8.

f(z, y) =
1

1 + e−2(z−y+2.73)
− 1

0.91(1 + 25e−(z−y+2.73)/6)
(8)

– Predict: Use feature x0 to predict the demand y0.
– Optimize: Pick a z∗ that maximizes the decision quality f in Eq. 8.

Linear Top-k Domain. The linear model domain requires fitting a linear model
to data that express a cubic relationship between features and labels. It is drawn
from [28], motivated by the importance of such problems in the AI interpretabil-
ity literature .

– Predict: Use feature x0 ∈ Rd to predict the utility ŷ ∈ Rd , where the true
utility of resource n is y0n = 10x0

3
n − 6.5x0n.

– Optimize: Pick the top b = 1 from d resources, z∗(ŷ) = arg topk(ŷ).
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Fig. 6. Decision quality function f for the Demand Prediction domain. The decision
quality drops drastically when the demand y is higher than the supply z.

Portfolio Optimization Domain. The Portfolio Optimization domain is a
quadratic programming problem [26], where investors choose a continuous allo-
cation z ∈ Z ⊆ [0, 1]n between n stocks, subject to a budget constraint
Z = {z ∈ [0, 1]n : 1�z = 1}. We implement the Markowitz formulation [23,25].

– Predict: Given d historical stock prices for n stocks, x ∈ Rn×d, predict the
next stock prices y ∈ Rn.

– Optimize: Given n predicted stock prices ŷ, maximize the weighted sum of
the immediate net profit minus a risk penalty term, with f(z, y) = z�y −
λz�Qz. We let the risk aversion constant λ = 0.1 and Q be the identity
matrix for simplicity.

Budget Allocation Domain. The Budget Allocation domain is a submodular
optimization problem adapted from Wilder et al. [33], where the task is to choose
a website on which to run advertisements using click-through rates (CTRs) from
the Yahoo! Webscope Dataset [36]. This is a particularly difficult problem for
Robust DFL due to the combinatorial structure of the optimization problem. The
advertisement plan is discrete and it is hard for DFL to differentiate through
and learn from discrete decisions.

– Predict: Given d features for m websites, x ∈ Rm×d, predict the CTRs of n
users y ∈ Rm×n.

– Optimize: Given the predicted matrix of user/website CTRs ŷ, select a set
of websites (subject to budget constraint r) denoted by z ∈ {0, 1}m on which
to run advertisements to maximize the expected number of users who click on
the ad at least once. We also incorporate a weight matrix w that represents
the number of times that a user will see an ad on a given website.

f(z, y) =
n∑

j=0

(1 −
m∏

i=0

(1 − zi · yij)wij )

D Additional Empirical Analysis

Performance of Robust Algorithms with Unknown Noise Budgets. In addition
to showing that Robust DFL is robust when the adversarial budget is known
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at training time, we demonstrate that the generalizability of Robust DFL to
different noise budgets. In Fig. 7, each row represents a different training noise
budget, while each column represents a testing noise budget. Each cell is com-
bination between training noise and testing noise, containing the difference in
decision quality between Robust DFL and Robust TS. We observe that Robust
DFL outperforms Robust TS in a higher number of train/test noise combina-
tions. In particular, on and above the diagonal where the train noise is closer to
the test noise, the improvement is more significant.

Fig. 7. The shade of teal depicts the extent to which Robust DFL outperforms Robust
TS. The improvement of Robust DFL over DFL highlights the importance of using
the decision quality and the importance of considering the adversarial perturbation,
respectively. Negative cells are where Robust TS outperforms Robust DFL. Intuitively,
these regions are where Robust DFL tries to defend against noise that is simply not
present at test time.

References

1. Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, Z.: Differentiable
convex optimization layers. arXiv:1910.12430 (2019). http://arxiv.org/abs/1910.
12430, arXiv: 1910.12430

2. Amos, B., Kolter, J.Z.: OptNet: differentiable optimization as a layer in neural
networks. In: Proceedings of the 34th International Conference on Machine Learn-
ing, pp. 136–145, PMLR (2017). https://proceedings.mlr.press/v70/amos17a.html.
ISSN: 2640–3498

http://arxiv.org/abs/1910.12430
http://arxiv.org/abs/1910.12430
http://arxiv.org/abs/1910.12430
http://arxiv.org/abs/1910.12430
https://proceedings.mlr.press/v70/amos17a.html


Characterizing and Improving the Robustness of PTO Frameworks 151

3. Amos, B., Koltun, V., Kolter, J.Z.: The limited multi-label projection layer. arXiv
preprint arXiv:1906.08707 (2019)

4. Angalakudati, M., et al.: Business analytics for flexible resource allocation under
random emergencies. Manage. Sci. 60(6), 1552–1573 (2014)

5. Başar, T., Bernhard, P.: H-Infinity Optimal Control and Related Minimax Design
Problems: A Dynamic Game Approach. Springer Science & Business Media, Cham
(2008)

6. Beygelzimer, A., Langford, J.: The offset tree for learning with partial labels. In:
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2009, pp. 129–138. Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1557019.1557040.
ISBN 9781605584959

7. Blum, A., Haghtalab, N., Hajiaghayi, M.T., Seddighin, S.: Computing stackelberg
equilibria of large general-sum games. In: Fotakis, D., Markakis, E. (eds.) SAGT
2019. LNCS, vol. 11801, pp. 168–182. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30473-7_12

8. Butler, R., Tuck, W.W., Sinha, A., Ngyuen, T.: Poisoning attacks on data-based
decision making: a preliminary study. In: AASG-22: 3rd Autonomous Agents for
Social Good (AASG) held at the 21st International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS) (2022)

9. Cameron, C., Hartford, J., Lundy, T., Leyton-Brown, K.: The perils of learning
before optimizing. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 36, no. 4, pp. 3708–3715 (2022). https://doi.org/10.1609/aaai.v36i4.
20284, https://ojs.aaai.org/index.php/AAAI/article/view/20284

10. Carlini, N., et al.: On evaluating adversarial robustness (2019). https://arxiv.org/
abs/1902.06705

11. Chan, C.W., Farias, V.F., Bambos, N., Escobar, G.J.: Optimizing intensive care
unit discharge decisions with patient readmissions. Oper. Res. 60(6), 1323–1341
(2012)

12. Chen, P.Y., Hsieh, C.J.: Adversarial robustness for machine learning. Imprint
(2022)

13. Deschepper, M., Eeckloo, K., Malfait, S., Benoit, D., Callens, S., Vansteelandt, S.:
Prediction of hospital bed capacity during the COVID- 19 pandemic. BMC Health
Serv. Res. 21(1), 1–10 (2021)

14. Elmachtoub, A.N., Grigas, P.: Smart “predict, then optimize”. Manage. Sci. 68(1),
9–26 (2022). ISSN 0025–1909, https://doi.org/10.1287/mnsc.2020.3922, https://
pubsonline.informs.org/doi/abs/10.1287/mnsc.2020.3922

15. Ford, B., Nguyen, T., Tambe, M., Sintov, N., Fave, F.D.: Beware the soothsayer:
from attack prediction accuracy to predictive reliability in security games. In:
Khouzani, M.H.R., Panaousis, E., Theodorakopoulos, G. (eds.) GameSec 2015.
LNCS, vol. 9406, pp. 35–56. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-25594-1_3

16. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014). https://doi.org/10.48550/ARXIV.1412.6572, https://arxiv.org/
abs/1412.6572

17. Grimm, C.A.: Hospital experiences responding to the COVID-19 pandemic: results
of a national pulse survey march 23–27, 2020. US Dept. Health Hum. Serv. Off.
Inspector General 41 (2020)

18. Hardt, M., Megiddo, N., Papadimitriou, C., Wootters, M.: Strategic classification.
In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Com-
puter Science, pp. 111–122 (2016)

http://arxiv.org/abs/1906.08707
https://doi.org/10.1145/1557019.1557040
https://doi.org/10.1007/978-3-030-30473-7_12
https://doi.org/10.1007/978-3-030-30473-7_12
https://doi.org/10.1609/aaai.v36i4.20284
https://doi.org/10.1609/aaai.v36i4.20284
https://ojs.aaai.org/index.php/AAAI/article/view/20284
https://arxiv.org/abs/1902.06705
https://arxiv.org/abs/1902.06705
https://doi.org/10.1287/mnsc.2020.3922
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2020.3922
https://pubsonline.informs.org/doi/abs/10.1287/mnsc.2020.3922
https://doi.org/10.1007/978-3-319-25594-1_3
https://doi.org/10.1007/978-3-319-25594-1_3
https://doi.org/10.48550/ARXIV.1412.6572
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1412.6572


152 S. Johnson-Yu et al.

19. Kotary, J., Fioretto, F., Hentenryck, P.V., Wilder, B.: End-to-end constrained opti-
mization learning: a survey. CoRR abs/2103.16378 (2021). https://arxiv.org/abs/
2103.16378

20. Kutafina, E., Bechtold, I., Kabino, K., Jonas, S.M.: Recursive neural networks in
hospital bed occupancy forecasting. BMC Med. Inform. Decis. Mak. 19(1), 1–10
(2019)

21. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. In: International Conference on Learning
Representations (2018)

22. Mandi, J., Demirovi, E., Stuckey, P.J., Guns, T.: Smart predict-and-optimize
for hard combinatorial optimization problems. In: Proceedings of the AAAI
Conference on Artificial Intelligence 34(02), 1603–1610 (2020). ISSN 2374–3468,
https://doi.org/10.1609/aaai.v34i02.5521, https://ojs.aaai.org/index.php/AAAI/
article/view/5521

23. Markowitz, H.M., Todd, G.P.: Mean-Variance Analysis in Portfolio Choice and
Capital Markets, vol. 66. John Wiley, Hoboken (2000)

24. Mehrotra, M., Dawande, M., Gavirneni, S., Demirci, M., Tayur, S.: Or practice-
production planning with patterns: a problem from processed food manufacturing.
Oper. Res. 59(2), 267–282 (2011)

25. Michaud, R.O.: The Markowitz optimization enigma: is ‘optimized’ optimal?
Financ. Anal. J. 45(1), 31–42 (1989)

26. Popescu, I.: Robust mean-covariance solutions for stochastic optimization. Oper.
Res. 55(1), 98–112 (2007)

27. Sen-Crowe, B., Sutherland, M., McKenney, M., Elkbuli, A.: A closer look into
global hospital beds capacity and resource shortages during the COVID-19 pan-
demic. J. Surg. Res. 260, 56–63 (2021)

28. Shah, S., Wilder, B., Perrault, A., Tambe, M.: Learning (local) surrogate loss
functions for predict-then-optimize problems. In: Neural Information Processing
Systems (2022)

29. Sion, M.: On general minimax theorems (1958)
30. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199 (2013)
31. Vorobeychik, Y., Kantarcioglu, M.: Adversarial machine learning. In: Synthesis

Lectures on Artificial Intelligence and Machine Learning, vol. 12, no. 3, pp. 1–169
(2018)

32. Wang, K., et al.: Decision-focused learning in restless multi-armed bandits with
application to maternal and child care domain. arXiv preprint arXiv:2202.00916
(2022)

33. Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: decision-
focused learning for combinatorial optimization. In; Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, no. 01, pp. 1658–1665 (2019).
ISSN 2374–3468, https://doi.org/10.1609/aaai.v33i01.33011658, https://ojs.aaai.
org/index.php/AAAI/article/view/3982

34. Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., Roli, F.: Support vec-
tor machines under adversarial label contamination. Neurocomputing 160, 53–62
(2015). ISSN 0925–2312. https://doi.org/10.1016/j.neucom.2014.08.081, https://
www.sciencedirect.com/science/article/pii/S0925231215001198

35. Xu, H., Caramanis, C., Mannor, S.: Robustness and regularization of support vec-
tor machines. J. Mach. Learn. Res. 10(7) (2009)

36. Yahoo!: Yahoo! webscope dataset (2007). https://webscope.sandbox.yahoo.com/.
ydataysm-advertiser-bids-v1.0

https://arxiv.org/abs/2103.16378
https://arxiv.org/abs/2103.16378
https://doi.org/10.1609/aaai.v34i02.5521
https://ojs.aaai.org/index.php/AAAI/article/view/5521
https://ojs.aaai.org/index.php/AAAI/article/view/5521
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/2202.00916
https://doi.org/10.1609/aaai.v33i01.33011658
https://ojs.aaai.org/index.php/AAAI/article/view/3982
https://ojs.aaai.org/index.php/AAAI/article/view/3982
https://doi.org/10.1016/j.neucom.2014.08.081
https://www.sciencedirect.com/science/article/pii/S0925231215001198
https://www.sciencedirect.com/science/article/pii/S0925231215001198
https://webscope.sandbox.yahoo.com/.ydataysm-advertiser-bids-v1.0
https://webscope.sandbox.yahoo.com/.ydataysm-advertiser-bids-v1.0


Quantisation Effects in Adversarial
Cyber-Physical Games

Takuma Adams1,3(B) , Andrew C. Cullen2 , and Tansu Alpcan1

1 Department of Electrical and Electronic Engineering, The University of Melbourne,
Parkville, Australia

takuma.adams@unimelb.student.edu.au
2 School of Computing and Information Systems, The University of Melbourne,

Parkville, Australia
3 Defence Science and Technology Group, Canberra, Australia

Abstract. As the complexity in models of cyber-physical systems
increases, conventional game-theoretic tools begin to struggle due to the
presence of hard-to-evaluate nonconvex game dynamics. Complex adver-
sarial security games often exhibit nonconvex behaviour such as those
admitted by a Kuramoto-Sakaguchi system with Lanchester dynamics.
We pose this system as a two-player, zero-sum dynamic security game,
where players seek to gain a decision advantage over their opponents.
By leveraging multi-agent reinforcement learning, we study the impact
action space quantisation has on a player’s ability to uncover optimal
strategies to achieve a decision advantage in a complex decision-making
system. A comparison of solutions on continuous and discrete action
spaces reveals good agreement across algorithms indicating convergence
to some ε-Nash equilibrium. Surprisingly, the higher fidelity offered by
continuous action spaces also yields computational advantages compared
to discrete spaces in the context of the adversarial decision game.

Keywords: Cyber-Physical Systems · Adversarial Games ·
Multi-Agent Reinforcement Learning · Dynamical Systems

1 Introduction

The phenomena of collective behaviours in complex systems can be observed in
both cooperative and competitive contexts across many different natural [26,27]
and cyber-physical [6,17,18] systems. These highly complex systems are fre-
quently represented as networked agents where edges represent the interactions
and diffusion of information as permitted by a computing or communication sys-
tem [4]. Such networked cyber-physical systems are becoming commonplace in
our day-to-day lives motivating the need to interrogate security problems. Secu-
rity problems emerge when agents engage in adversarial activities over the net-
work, like when cyber-security specialists interact with malicious actors through
a communication network. Hence, it is imperative that we can model the impli-
cations of rational decision-makers intentionally interacting through a network
where the synchronicity of their actions would yield a more effective offensive or
defensive outcome.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Fu et al. (Eds.): GameSec 2023, LNCS 14167, pp. 153–171, 2023.
https://doi.org/10.1007/978-3-031-50670-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50670-3_8&domain=pdf
http://orcid.org/0000-0003-4673-8708
http://orcid.org/0000-0001-8243-6470
http://orcid.org/0000-0002-7434-3239
https://doi.org/10.1007/978-3-031-50670-3_8


154 T. Adams et al.

Fig. 1. A conceptual illustration of the NBKL model shows the blue and red nodes,
which represent the Blue and Red team agents, respectively, in the two-player zero-
sum game played over the NBKL dynamical system. Solid lines represent peer linkages
while dashed lines represent the adversarial interactions (surface). (Color figure online)

The notion of synchronous networked agents is aligned with the cyclical
nature of human cognition [19,28]. By applying a common decision-theoretic
framework to all agents, we can compare decision states and consider the
decision-making of multiple interacting agents. This lends itself to the analy-
sis of organisational dynamics in decision-making systems.

We focus on a complex dynamical system that exhibits collective deci-
sion behaviour appropriate for the study of adversarial decision-making across
the spectrum of cyber-physical systems ranging from human-human, human-
machine, and machine-machine teams. This system consists of two teams, each
containing multiple agents leveraging collaborative dynamics in an attempt to
gain a decision advantage over their opponents in a zero-sum game. We model
the cyclic decision state of each agent using a competitive decision framework
known as the Obverse, Orient, Decide, and Act (OODA) loop [5]. This frame-
work encodes the oscillating nature of decision states into a four-step process
for agents (human and machine) at both the individual and team level [9,10].
The evolution of a team’s collective decision state is governed by the nonlinear
dynamics of the Kuramoto-Sakaguchi model [20] which models synchronisation
between networked oscillators. The Lanchester combat model [12] is a modified
Lotka-Volterra model for multiple predator populations engaged in an adver-
sarial manner. Thus, by assigning each agent an initial resource, the decision
advantage of a team is quantified by its relative resource attrition according
to this combat model [12]. Coupling the decision dynamics with the Lanchester
model yields the Networked Boyd Kuramoto Lanchester (NBKL) model [1] illus-
trated in Fig. 1.

The exploration of strategies employed by rational players to achieve deci-
sion superiority is game-theoretic and has shown a promising research direc-
tion [7,8]. Since previous work focused on exactly solving static decision games
using discrete action spaces, there is scope to explore solutions for dynamic
games with continuous action spaces. However, adding additional complexity to
an already computationally costly game underscores the need to explore alter-
nate solution methods when exploring higher-resolution spaces. The nonlinear
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nature of an NBKL-based game makes established solution methods for dynam-
ics games with linear system dynamics or affine nonlinear dynamics (e.g. using
linear quadratic regulators [2]) infeasible. Instead, reinforcement learning (RL)
methods and their game theoretic interpretations [3] are of interest. Specifically,
multi-agent reinforcement learning (MARL) provides a natural solution method
in the context of our adversarial system. While the application of MARL to
conventional board-style gridworld games [13] is well documented, application
to complex cyber-physical systems exhibiting cyclic decision dynamics is under-
explored.

Hence, we apply well-known MARL algorithms to solve an NBKL-based game
with different action spaces to capture the complexities of contemporary cyber-
physical and cyber-security systems. Previous work in applying game theory to
Kuramoto-based models differs from this work in the choice of state-action space
and the application of MARL as a solution method. In this paper we: (1) compare
the effectiveness of continuous and discrete action spaces when solving dynamic
games on a complex cyber-physical system; (2) apply established MARL meth-
ods to solve cyclic decision games; (3) demonstrate the applicability of MARL to
approximate optimal solutions to a complex cyber-physical game. Understand-
ing the benefits and drawbacks of different state-action spaces will enable better
construction of human-human, human-machine, and machine-machine teams in
future complex systems.

The remainder of the paper is arranged as follows. The next section provides
an overview of related works before Sect. 3 sets the context of the game-theoretic
problem. Section 4 then introduces the models underlying the dynamics of the
game followed by the formalisation of the game-theoretic component. Subsequent
experimentation is explained in Sect. 6 before concluding with a pathway for
future research.

2 Related Work

This section briefly presents background and literature on decision models, espe-
cially focusing on cyclic decisions, dynamic games, and multi-agent reinforcement
learning.

Decision Frameworks: Establishing robust frameworks to study decision-
making allows us to better model and compare the cognitive states of multi-
ple agents as they strive to satisfy objectives. Decision-theoretic frameworks
illustrate the cyclical nature of human cognition—notably in the Perception-
Action Cycle [19], and Wohl’s Stimulus, Hypothesis, Option, and Response
model (SHOR) [28]. Another relevant version is OODA [5] which quantises
decision-making for humans and machines into four distinct steps. The pro-
cess has also been shown to capture decision-making for organisations as well
as individuals [9,10]. Furthermore, the OODA loop has undergone quantitative
treatment by interpreting the decision states of networked individuals through
the lens of phase oscillators in the context of Kuramoto-Sakaguchi models [30].
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Kuramoto-Sakaguchi: This projection of an oscillator’s (agent’s) phase onto
a cyclic decision space has seen Kuramoto-Sakaguki decision models evolve from
pure physics models [11] to mirror complex real-world adversarial decision sys-
tems [1,30]. The complexity of these real-world systems makes theoretical results
difficult to obtain leaving numerical approximations of static systems the only
viable solution. The study of evolving cyber-physical systems has been aug-
mented through a game-theoretic lens [7,8] allowing us to interrogate dynamic
games over a finite temporal horizon. We differentiate ourselves from previous
game theoretic analyses of cyclic decision games by exploring the impact of con-
tinuous action spaces on the ability of players to implement optimal strategies
solved for using different solution methods.

Solution Methods: Solution methods utilising linear quadratic regulators [2]
require affine nonlinear dynamical systems and hence are not suitable for solv-
ing NBKL-based games. Dynamic games on general nonlinear systems without
specific assumptions have also been studied in [16] for open-loop and closed-loop
information structures. However, that work focuses on the connections between
deep neural networks and dynamic games which was also explored earlier in [22].
In the case of a general system such as Kuramoto-Sakaguchi, where obtaining
analytical solutions is challenging, most of the literature investigates numerical
solutions of games using deep neural networks and deep RL methods. In the
context of an adversarial decision-making game, we consider a novel application
of MARL to solve a computationally intensive cyber-physical game as opposed
to conventional (e.g. board [13] or Atari-style [25]) games with simple updates.

It has been shown that value iteration and related learning methods such
as DQN are not very suitable for continuous action spaces due to dependency
on the action-value function [29]. Therefore, in continuous action settings, pol-
icy gradient methods and actor-critic methods, which build upon both policy
iteration and gradients, have been the focal point. The convergence of policy
gradient methods to Nash equilibrium in the context of zero-sum Markov games
has been recently analysed theoretically [3]. We leverage this finding in our work
to explore the applications of gradient methods such as Proximal Policy Opti-
mization (PPO) [21], Policy Gradient (PG) [24] to solve a game over a complex
system with different action spaces.

3 Problem Definition

We investigate the impact continuous and discretised action spaces have when
solving complex cyber-physical games. The specific cyber-physical system we
explore is admitted by the NBKL model (Eqs. 1 and 2). Through game theoretic
treatment of the model, we propose an adversarial two-player, zero-sum, dynamic
game. We consider a fully observable environment where the decision variable
is the frustration—or intended decision advantage—between Blue and Red with
respect to each other. Each player simultaneously selects a new action at uniform
intervals throughout the game’s evolution. These actions perform a joint state
update, acting on the environment simultaneously.
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We solve the system of equations in discrete time where actions, or frustra-
tions, are drawn from discrete and continuous sets bounded between 0 and π. In
the context of cyclic decision loops, an action of 0 means that a player wants to
be in the same decision state as their opponent, while π indicates an intended
advantage of half a decision cycle. The impact of a player’s choice of frustration
is then realised through attrition of their adversary’s resources described by the
discrete-time NBKL model introduced in the next section.

4 A Complex, Cyclic Decision-Making Model

The NBKL model is formulated in terms of two teams of agents, denoted B and
R, where each is a set of indices corresponding to agents for the Blue and Red
teams respectively. Each agent can only be assigned to one team. The decision
dynamics between the teams of the respective rational players are represented
in Eq. 1 using a two-network nonlinear Kuramoto-Sakaguchi model [20]. The
Kuramoto-Sakaguchi model captures the cyclic behaviour of an agent’s internal
decision state, θ ∈ [0, 2π], and provides means for players to have an intended
decision advantage. The intended decision advantage over an adversary is given
by our decision variable Φ = (φ, ψ), known as a frustration in the physics nomen-
clature. Frustrations are restricted to an action set A ⊂ [0, π] such that φ ∈ A
and ψ ∈ A encode the intended decision advantage of Blue and Red with respect
to each other. That is, each player’s strategic goal is to have a decision advantage
of φ or ψ over their adversary’s cyclic decision loop.

The decision advantage achieved by a player is quantified through the attri-
tion of their agents’ resources, following the framework outlined in Sect. 3. Each
agent is assigned a resource quantity p ∈ R

+, which is updated according to Eq. 2
capturing dynamics similar to predator-prey models in an adversarial context.
The resource is tied to a player’s utility and measures a single agent’s ability to
contribute to their respective team’s outcome—like hit points in a game. Thus,
we assume that only agents with a positive resource contribute to their team as
required by many applications and enforce this using Heaviside step functions,
H. Combined, s = [p, θ] encodes the state of the system such that s ∈ S where S
is the set of all possible states. The evolution of s is defined in terms of a system
of coupled nonlinear differential NBKL equations [1] given by

θ̇i =H(pi)

⎛
⎝ωi −

∑
j∈B∪R

H(pi)Kijσij sin (θi − θj − Φij)

⎞
⎠ , (1)

ṗi =H(pi)

( ∑
h∈B∪R

H(ph)Mih
Γi,h + Γh,i

2
· (δhph − δipi)

cos (θh − θi) + 1
2

−
∑

k∈B∪R
H(pk)εikκikpkdk

sin(θk − θi) + 1
2

Ok

)
, (2)

for i ∈ B ∪R where θ̇i and ṗi are the temporal derivatives of the i-th agent’s the
internal decision state and resource respectively. The coupling strength between
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Fig. 2. Illustration of how frustration impacts the decision dynamics of the game. Here,
the blue and red dots indicate internal decision-states of two Blue and Red agents with
decision-states given by θi and θj respectively. The Blue agent’s intended decision
advantage with respect to the Red is given by φij . (Color figure online)

the i-th and j-th agent is given by σij . We also explicitly state the structure
of permitted interactions represented as an adjacency matrix between agents
denoted Kij—entries are 0 when no interaction occurs and 1 when an edge
exists between two agents.

It is clear from Eq. 1 that when Φij = 0, the i-th agent will attempt to align
its decision state with that of the j-th’s. A non-zero frustration then means the
i-th agent will align to some decision-state Φij ahead of j-th’s. The effect of
frustration between two connected agents is pictorially shown in Fig. 2, where
the non-zero frustration from the Blue agent’s perspective, φij , drives the Blue
agent to realise an even greater decision advantage over the Red. By making
Φ a decision variable in our game, Blue and Red are required to choose an
optimal frustration that most positively impacts their outcomes since the phase
difference between two adversarial agents is the realised decision advantage of
one and disadvantage of the other.

The networked Lanchester component in Eq. 2 introduces several key terms.
Namely, we partition the adjacency matrix K into two. The inter-team matrix,
M, encodes collaboration between peers and resource reallocation through Γ
while the intra-team matrix, ε, captures linkages at the adversarial surface
between the two teams. The decision dynamics influence the attrition of resources
through a measure of synchronicity known as the order parameter, Ok. The
order parameter is a geometric measure of the alignment of agent decision states
(phases), is bounded between 0 (disorder) and 1 (order), and is computed as

Ok =
1∑

j∈B∪R H(pj)

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

j∈B∪R
H(pj)eiθj

∣∣∣∣∣∣

∣∣∣∣∣∣
2

, (3)
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Fig. 3. llustration of the NBKL dynamics and evolution of player resources. Nodes
in the top row represent individual agents for the Blue and Red players respectively
where the node size indicates the level of resource remaining for the agent in question.
The bottom row shows the diminishing total resources available to each player. (Color
figure online)

where i in this case is
√−1 and || · ||2 is the L2 norm. Table 1 summarises the

remaining components of the coupled system. The evolution of player resources
of the NBKL system is shown in Fig. 3. Note the diffusion of resources to the
adversarial surface (agents linking Blue and Red) due to Γ while the total quan-
tity of resources for both players decreases.

4.1 Discrete-Time NBKL Model

We define discrete decision points for players at time instances, tk, by uniformly
discretising the finite engagement time horizon [0, Tf ]. Thus, the NBKL equa-
tions are numerically integrated over a series of time intervals t ∈ [Tk, Tk + δt],
where δt is long enough to allow for the system dynamics to meaningfully evolve
over the decision window. Subsequently, we define K = Tf/δt as the number of
decisions or turns that each player makes over this finite horizon.

For notational convenience, we define the state, s(k), at time tk as

s(k) := [pi(tk) θi(tk)] .

Thus, the discrete-time counterpart of NBKL dynamics is captured by the fol-
lowing discrete-time nonlinear mapping yielding the Discrete-Time NBKL (DT-
NBKL)

s(k + 1) = f(s(k), φ(k), ψ(k)) , (4)
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Table 1. Summary of Parameters.

Parameter Description Type

θi Phase R
B+R

ωi Decision Speed R
B+R

pi Agent resource R
B+R

s = [p, θ] State (phase, resource) R
2(R+B)

Kij Phase coupling matrix R
(R+B)2

Φi = (φi, ψi) Player frustration [0, π]B+R

Mij Intra-team connectivity {0, 1}(R+B)2

εij Adversarial coupling matrix {0, 1}(R+B)2

Γij Team coupling matrix R
(R+B)2

δi Inhibitor of internal force transfer R
B+R

di Inhibitor of adversarial outcomes R
B+R

B, R Adjacency Matrix R
(R+B)2

Oi local order parameter R
B+R

H(·) Heaviside function {0, 1}

where k = 0, 1, . . . ,K correspond to t0, t1, . . . , Tf thus allowing us to consider a
dynamic NBKL-based game.

5 Game Theoretic Formulation

We formulate the competition between the Blue and Red players within the
dynamic environment described by the nonlinear NBKL equations as a two-
player, zero-sum, dynamic, non-cooperative game. Here, both Blue and Red
control their teams of networked agents B and R respectively. Each player can
select an action, (φ, ψ) ∈ (A,A), that dictates their strategic goal of either
leading or lagging their opponent’s decision state given by φ and ψ for Blue and
Red, respectively. Over the time horizon of this discrete-time game [0,K] (or
[0, Tf ]), the players decide on a series of actions at each time step k yielding the
strategy vectors

SB = [φ0, φ1, . . . , φK ] and SR = [ψ0, ψ1, . . . , ψK ] . (5)

At time step K (or time Tf ), the game reaches the end of the finite horizon.
The resulting end state of the DT-NBKL system is used as a basis to quantify
the game outcome for the players. Specifically, let

PB(k) :=
∑
i∈B

pi(k) and PR(k) :=
∑
i∈R

pi(k) , (6)
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be the team resources of Blue and Red players, respectively at time step k.
Moreover, define the incremental changes in these resources as

ΔPB(k) :=
∑
i∈B

pi(k) − pi(k − 1) ,

ΔPR(k) :=
∑
i∈R

pi(k) − pi(k − 1) .

⎫⎪⎪⎬
⎪⎪⎭

(7)

Thus, the utility functions of the players are defined as

UB(SB , SR) = PB(K,SB , SR) − PR(K,SB , SR) ,

UR(SB , SR) = PR(K,SB , SR) − PB(K,SB , SR) ,

}
(8)

where PR and PB depend on player strategies via the DT-NBKL dynamics in
Eq. 4. The zero-sum nature of the game follows from the definitions in Eq. 8, i.e.
UB + UR = 0. These utilities can be considered a measure of the final balance
of player resources and can alternatively be in terms of stage costs due to their
linear nature

UB(SB , SR) =
K∑

k=0

QB(k) ,

QB(k) := ΔPB(k) − ΔPR(k) ,

UR(SB , SR) =
K∑

k=0

QR(k) ,

QR(k) := ΔPR(k) − ΔPB(k) = −QB(k) .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

The resulting game is formally defined as follows.

Definition 1 (DT-NBKL Game). Let the set of two players P = {B,R}
have the respective continuous strategies (SB , SR), defined in Eq. 5) with cor-
responding utility functions (UB , UR) defined in Eq. 8. The DT-NBKL game is
defined by the tuple

GNBKL := 〈P, (SB , SR), (UB , UR)〉 .

In the given discrete-time game, each player aims to maximise their utility
function. Hence, the Blue and Red players solve their respective optimisation
problems to determine their best responses to the other player. The well-known
Nash equilibrium—along with its relaxed counterpart ε-Nash—provide natural
solution concepts for the DT-NBKL game as defined in Definitions 2 and 3
respectively.

Definition 2 (Nash Equilibrium). The strategies (S∗
B , S∗

R) with correspond-
ing utilities (U∗

B , U∗
R) are said to constitute a Nash equilibrium solution of the

DT-NBKL game (Definition 1) if

U∗
B(S∗

B , S∗
R) ≥ UB(SB , S∗

R) ,

U∗
R(S

∗
B , S∗

R) ≥ UR(S∗
B , SR) ,

}
(10)
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for all strategies SB 	= S∗
B and SR 	= S∗

R [14].

Definition 3 (ε-Nash Equilibrium). The strategies (S∗
B , S∗

R) with corre-
sponding utilities (U∗

B , U∗
R) are said to constitute an ε-Nash equilibrium solution

of the DT-NBKL game (Definition 1) if

U∗
B(S∗

B , S∗
R) ≥ UB(SB , S∗

R) − ε ,

U∗
R(S

∗
B , S∗

R) ≥ UR(S∗
B , SR) − ε ,

}
(11)

for all strategies SB 	= S∗
B and SR 	= S∗

R [14].

5.1 Solution Methodologies

Solving a dynamic game over the system defined by Eqs. 1 and 2 is challeng-
ing due to complex nonlinear dynamics resulting in a nontrivial state update.
Since it is not possible to apply classical solution techniques used for convex
two-player zero-sum games such as linear programming, we leverage MARL as
outlined in Algorithm 1. In MARL, agents interact with the environment at
each time step k to alter the state sk by taking some action (φk, ψ)k ∈ A × A
resulting in an updated state and some utility (also called reward in RL) for each
player given in Eq. 9. MARL algorithms simultaneously maximise each player’s
expected cumulative utility at each time step k.

The MARL equivalent of strategy vectors defined in Eq. 5 are the decision-
making rules characterised by policies mapping a state, s, to an action, a, and
is defined as

πB(φ|s) = P(φk = φ|st = s) and πR(ψ|s) = P(ψk = ψ|st = s) ,

for all (φ, ψ) ∈ A×A, s ∈ S. As discussed in Sect. 2 value iteration methods may
not be suitable for continuous action spaces. In addition, it is a known result
that optimal policies, π∗, converge to Nash equilibrium when using multi-agent
policy gradient and actor-critic methods [3] making these methods suitable for
our game theoretic analysis. Briefly, policy gradient methods are RL schema that
learn parameterised policies by optimising πμ over some differentiable param-
eter vector μ ∈ R rather than estimating value functions which estimate the
utility of a player being in a state at a given time step [24]. Actor-critic methods
approximate both policy and value functions, V , [23] which can be defined for
each player as

VB(n) =
K∑

k=n

QB(k) and VR(n) =
K∑

k=n

QR(k) . (12)

The optimal value function is one that satisfies Bellman’s equations such that

V ∗
B(k) = max

φ(k)
QB(k) + V ∗

B(k + 1) ,

V ∗
R(k) = max

ψ(k)
QR(k) + V ∗

R(k + 1) .

⎫⎪⎬
⎪⎭

(13)



Quantisation Effects in Adversarial Cyber-Physical Games 163

Algorithm 1 . Generic Multi-agent Reinforcement Learning for DT-NBKL
Game

Input: Sets of agents B, R and initial conditions pi(0), θi(0) ∀i ∈ B ∪ R
Output: Policies πB ≈ π∗

B and πR ≈ π∗
R

Initialise: PPO or PG networks GB and GR with differentiable policy parameteri-
sations μB and μR

for each episode do
s ← [pi(0) θi(0)] ∀i ∈ B ∪ R �Initialise state
k ← 0
UB ← 0 and UR ← 0
while PB > 0.1PB(0) and PR > 0.1PR(0) and k < 8 do

k ← k + 1
aB ∼ GπB (s) and aR ∼ GπR(s) �Sample actions
s′ ← f(s, aB , aR) �Equation 4
QB ← ΔPB − ΔPR and QR ← ΔPR − ΔPB �Equation 9
UB ← UB + QB and UR ← UR + QR

s ← s′

end while
μB ← argmaxμB E[s, πμB (s)] and μR ← argmaxμR E[s, πμR(s)] �One-step policy
ascent to optimise μB and μR, and update πB and πB

end for

6 Results

6.1 Experimental Setup

By leveraging the exact BKL solver introduced by Cullen et al. [7], we create
a DT-NBKL MARL environment using PettingZoo’s ParallelEnv multi-agent
API [25], enabling Blue and Red to move simultaneously. This MARL envi-
ronment enables both Blue and Red to simultaneously learn policies making it
possible to draw direct parallels between the policies derived using reinforcement
learning methods and the game-theoretic analysis we desire for this complex sys-
tem. The DT-NBKL system is set up such that each player has a team of 30
agents each with an initial resource of pi(0) = 100 for all i ∈ B ∪ R. For the
majority of results discussed in the next section, both Blue and Red have iden-
tical network topologies and are arranged according to an Erdõs-Rényi graph as
shown in Fig. 3. An additional case with non-identical Blue and Red typologies
was explored to investigate the impact of asymmetric networks on DT-NBKL
game outcomes.

The exponential nature of the game results in diminishing returns for both
players as the game progresses. As such, we introduce a termination criterion ter-
minating the game if either PB(k) or PR(k) fell below 10% of its initial quantity.
The winning player was rewarded an additional utility equal to |PB(k)− PR(k)|
while the loser received the negation. Otherwise, the game was truncated after
k = 8 turns during training as indicated in Algorithm 1 due to the exponen-
tial decay associated with the NBKL dynamics. Exponential decay of resources
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meant both players observed low stage utilities as the number of turns increased
resulting in unnecessary computations.

For policy training, RLLib’s [15] existing library of policy gradient methods
was used. Namely, the well-known PPO [21] and PG [24] algorithms. The discrete
and continuous action spaces yielded player actions from A = {0, 1, 2, 3} and the
closed set [0, 1] respectively. As such we introduce bijective functions fD : A →
{0, π/3, 2π/3, π} and fC : A → [0, π], to map actions back to the decision space.
A continuous action space was quantised by uniformly snapping actions to the
discrete by applying a surjective mapping fQ : A → {0, π/3, 2π/3, π}. Each
policy was trained over 196 iterations of 128 episodes each on a 12th Gen Intel
Core i7-1255U with 16 GB RAM with no GPU acceleration.

6.2 Analysis of Computed Policies

To determine the relative performance of different action spaces, we analysed
the results of the DT-NBKL games in which each player implemented optimal
policies trained using different action spaces. We also played different algorithms
(PPO and PG) against each other to mitigate the impact of a particular algo-
rithm. Since initial conditions for Blue and Red were symmetrical we could,
without loss of generality, study the relative performance from Blue’s perspec-
tive by playing optimal π∗

B against various π∗
R. 200 DT-NBKL games were played

for each combination of policies for a total of 4, 800 games. Test results indicate
policies trained using MARL approach an optimal solution in the context of the
DT-NBKL game. We also demonstrate that, despite complex dynamics, an opti-
mally chosen frustration is an effective tool that can skew results in a player’s
favour.

Figure 4 shows that policies trained on continuous action spaces dominate
those trained on discrete spaces with continuous π∗

B winning all 800 games played
against discrete π∗

R irrespective of the algorithm. Correspondingly, discrete π∗
B

loses all 800 games played against continuous π∗
R. Furthermore, we can see that

continuous policies performed poorly under quantisation against both naively
discrete policy and the original continuous policy. We can see from Figs. 4b and
4d that discrete π∗

B performed even better against quantised π∗
R than discrete

π∗
R. This is likely due to variance in the continuous input not accounting for

subsequent quantisation. As such, even small deviances from π/2 significantly
impacted the frustration played by the quantised player implying that policies
that underwent quantisation were unable to play optimal strategies. While per-
formance was similar across algorithms, one notable outlier was the superior
performance of the continuous PPO policy compared to the continuous PG pol-
icy.

The optimal strategy for the DT-NBKL game appears to be to play a frus-
tration as close to π/2 which is equivalent to a quarter of a decision cycle. This
is demonstrated in Fig. 5a where, due to the symmetry of the system, we see
Blue and Red nearing a stalemate by playing identical strategies. The reason
behind the stalemate is discussed further in Sect. 6.3. Despite the dominance of
continuous policies, optimal discrete policies exhibit interesting behaviour when
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Fig. 4. Percentage of wins optimal Blue policies observed when played against various
optimal Red policies 200 times. The top row is Blue with a PPO algorithm while the
bottom row is with a PG. The left column is Blue with a continuous space while the
right is with a discrete space. (Color figure online)

playing against continuous policies. Under these conditions, the discrete pol-
icy always opts for a greater frustration which is in contrast to when it plays
against another optimal discrete policy (Fig. 5b). While the discrete policy still
loses, implementing this strategy greatly reduces its losing margin. We can see
this by comparing the game outcomes where the strategy induced by optimal
discrete π∗

R (Fig. 5c) significantly increases its utility compared to a suboptimal
discrete πR playing against the same π∗

B (Fig. 5d). Similar results were observed
for both PPO and PG algorithms.

The consistency of strategies players implemented, along with corresponding
utilities is a strong indicator that policies converged to some ε-Nash equilib-
rium as defined in Definition 3. Furthermore, while discrete action spaces did
improve in performance as they reached optimality, results showed clear perfor-
mance benefits for continuous action spaces. From this, we can conclude that an
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Fig. 5. Game outcomes at different game stages (k). Each subplot sees different optimal
policies pitted against each other. Note Fig. 5d is an exception where Red implements
a suboptimal policy.

optimal strategy realised through a superior choice in frustration can act as a
force multiplier to enable one player to dominate another despite identical initial
conditions.

6.3 Convergence Analysis

Due to the zero-sum nature of the game, we only need to verify the convergence
of the Blue player’s policy, πB , to some optimal value and Red’s convergence
follows. An indicator of policy convergence is shown in Fig. 6 where Blue’s utility,
UB from Eq. 9, converges within the designated training time for all four policies
(PPO and PG for both continuous and discrete action spaces). Convergence
to a utility of zero is expected due to the zero-sum nature of the DT-NBKL
and moving target limitations where both policies are improving simultaneously.
Note that the shading in the Figure highlights the 95% confidence interval (CI)
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Fig. 6. Mean utility averaged over a training iteration of 128 episodes for Blue policies
trained on various action spaces and algorithms. (Color figure online)

from sample data indicating that discrete policies exhibited higher variance than
continuous policies.

An alternative indicator for policy convergence can be obtained by playing
an optimal policy against previous versions that still be considered suboptimal.
We assumed a Blue policy with 25,088 episodes (196-th iteration) of training is
optimal hence denote it as π∗

B . We then played π∗
B against various πR trained

to degrees of completion (e.g. 7,680 episodes of training). 200 DT-NBKL games
were played for each policy match-up. The outcomes of each playoff are shown
in Fig. 7 where we can see that in all four cases π∗

B dominates highly suboptimal
πR. The monotonically decreasing performance of π∗

B to 50% as the number of
episodes πR is trained on is a marker of Blue’s convergence to an optimal policy.
A 50% win rate is expected when two optimal policies play against each other.

An additional worthwhile observation is that policies trained using a contin-
uous action space were marginally computationally faster during training than
discrete policies. In particular, the continuous PPO algorithm is noteworthy
due to its high performance against all other policies (including continuous PG),
while having a faster training time compared to its discrete counterpart as shown
in Fig. 8. Further, while training was only sampled five times, the 95% CI was
small. The PG algorithm had a greater variance in compute time compared to
the PPO algorithm which may be a result of local minimia in the search space.
Despite this, continuous PG yielded an overall faster compute time for a fixed
number of training episodes. Summary statistics for training time per training
iteration of 128 episodes are listed in Table 2. Since training time increases with
the number of training episodes, the impact of computation time will become
important as more complex decision spaces are explored requiring a longer train-
ing duration.
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Fig. 7. Percentage of DT-NBKL games won by an optimal Blue policy, π∗
B , when played

against Red policies, πR, of varying suboptimality. Each match-up was repeated 200
times. (Color figure online)

7 Conclusion

By combining multiple MARL algorithms with NBKL derived game-theoretic
dynamics, we observe that rational players with continuous action spaces per-
form significantly better than those with discrete action spaces. In other words,
choosing an appropriate action space for a player in a heterogeneous scenario

Table 2. Mean training time per training iteration of 128 episodes (±95% CI).

Algorithm Action Space Mean time per iteration

PPO Continuous 34.9±2.2
Discrete 37.3 ± 2.9

PG Continuous 47.2± 24.2
Discrete 51.3 ±22.6
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Fig. 8. Comparison of training time for different action spaces. Each policy was trained
five times.

can effectively guarantee success independent of initial conditions. Furthermore,
continuous policies not only performed better but also were computationally
more efficient during training. The performance and computational advantages
of continuous policies make them an ideal candidate for future research on using
MARL to find optimal solutions for dynamic games on cyber-physical systems.
This is supported by the agreement between different policies on player strategies
(SB , SR) and corresponding utilities (UB , UR) indicates convergence toward some
ε-Nash equilibrium. Thus, initial results demonstrate the practical applicability
of MARL in the context of dynamic games with complex nonconvex dynam-
ics where traditional approaches may be computationally expensive or infeasi-
ble due to continuous action spaces. Contextualising these findings in terms of
well-known cyclic decision models provides insight into organisational dynamics,
teaming, and the gamut of actions available to players. Therefore, these results
have significant implications for the plethora of real-world security systems that
exhibit similar adversarial dynamics.

By demonstrating the applicability of this framework, this work has laid the
foundation for future work exploring the sensitivity of these game-theoretic sce-
narios to varied team dynamics. Solving the game for a larger set of decision vari-
ables beyond frustration is also of interest. Although initial results are promis-
ing, validation against other cyber-physical and security systems such as Multi
Particle Environments [25] will strengthen the generalisability of results and
application of findings to communication networks, cyber-security, and swarm
robotics.
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Abstract. We study automated intrusion response for an IT infrastruc-
ture and formulate the interaction between an attacker and a defender
as a partially observed stochastic game. To solve the game we follow
an approach where attack and defense strategies co-evolve through rein-
forcement learning and self-play toward an equilibrium. Solutions pro-
posed in previous work prove the feasibility of this approach for small
infrastructures but do not scale to realistic scenarios due to the exponen-
tial growth in computational complexity with the infrastructure size. We
address this problem by introducing a method that recursively decom-
poses the game into subgames with low computational complexity which
can be solved in parallel. Applying optimal stopping theory we show that
the best response strategies in these subgames exhibit threshold struc-
tures, which allows us to compute them efficiently. To solve the decom-
posed game we introduce an algorithm called Decompositional Fictitious
Self-Play (dfsp), which learns Nash equilibria through stochastic approx-
imation. We evaluate the learned strategies in an emulation environment
where real intrusions and response actions can be executed. The results
show that the learned strategies approximate an equilibrium and that
dfsp significantly outperforms a state-of-the-art algorithm for a realistic
infrastructure configuration.

Keywords: Cybersecurity · network security · intrusion response ·
game decomposition · reinforcement learning · game theory · optimal
control

1 Introduction

A promising direction of recent research is to automatically find security strate-
gies for an IT infrastructure through reinforcement learning methods, whereby
the problem is formulated as a Markov decision problem and strategies are
learned through simulation (see survey [18]). While encouraging results have
been obtained following this approach (see e.g., [9,12]), key challenges remain.
Most of the prior work, for example, follows a decision-theoretic formulation
and aims at learning effective defender strategies against a static attacker with a
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fixed strategy [7–9,12]. Only recently has the problem of learning effective secu-
rity strategies against dynamic attackers been studied. This approach includes a
game-theoretic framing, and the problem becomes one of learning Nash equilibria
[1,2,10,19,30,33].

Fig. 1. The target infrastructure
and the actors in the intrusion
response use case.

Chief among the remaining challenges is
the complexity of the formal model, resulting
from the need to describe the target infras-
tructure with sufficient detail and at a realis-
tic scale. Learning effective strategies with cur-
rently known methods is infeasible for most
realistic use cases.

In this paper, we address the complex-
ity challenge and present a scalable approach
to automatically learn near-optimal defender
strategies against dynamic attackers. We apply
our approach to an intrusion response use case
that involves the IT infrastructure of an orga-
nization (see Fig. 1). We formalize the use case
as a partially observed stochastic game between
two players – the operator of the infrastructure,
which we call the defender, and an attacker,
which seeks to intrude on the infrastructure. To
manage the complexity when formalizing the
use case, we recursively decompose the game
into simpler subgames, which allows detailed
modeling of the infrastructure while keeping computational complexity low.

The decomposition involves three steps. First, we partition the infrastruc-
ture according to workflows that are isolated from each other. This allows us to
decompose the game into independent subgames (one per workflow) that can be
solved in parallel. Second, the graph structure of a workflow allows us to decom-
pose the workflow games into node subgames. We prove that these subgames
have optimal substructure [6, Ch. 15], which means that a best response of the
original game can be obtained from best responses of the node subgames. Third,
we show that the problem of selecting which response action to apply on a node
can be separated from that of deciding when to apply the action, which enables
efficient learning of best responses through the application of optimal stopping
theory [21]. We use this insight to design an efficient reinforcement learning algo-
rithm, called Decompositional Fictitious Self-Play (dfsp), which allows scalable
approximation of Nash equilibrium strategies.

Our method for learning the equilibrium strategies and evaluating them is
based on a digital twin of the target infrastructure, which we use to run attack
scenarios and defender responses (see Fig. 2) [9–11]. Such runs produce system
measurements and logs, from which we estimate infrastructure statistics. We
then use these statistics to instantiate simulations of the infrastructure’s dynam-
ics and learn strategies through dfsp.
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We summarize the contributions in this paper as follows.

1. We formulate the intrusion response problem as a partially observed stochas-
tic game and prove that, under assumptions often met in practice, the game
decomposes into subgames whose best responses can be computed efficiently
and in parallel.

2. We design dfsp, an efficient reinforcement learning algorithm for approxi-
mating Nash equilibria of the decomposed game.

3. For a realistic use case, we evaluate the learned response strategies against
network intrusions on a digital twin.

2 Related Work

Fig. 2. Our framework for automated
intrusion response [9–11].

Networked systems found in engineer-
ing and science often exhibit a mod-
ular topological structure that can be
exploited for designing control algo-
rithms [24]. System decomposition for
the purpose of automatic control was
first suggested by Šiljak in 1978 [29]
and approaches based on decompo-
sition, such as divide and conquer,
layering, and hierarchical structuring
are well established in the design of
large-scale systems, a notable exam-
ple being the Internet. Similar decom-
position methods are frequently used
in robotics and multi-agent systems,
as exemplified by the subsumption
architecture [4]. Within the fields of decision- and game-theory, decomposition
is studied in the context of factored decision processes [27], distributed decision
processes [22], factored games [17], and graph-structured games [20].

Decomposition as a means to automate intrusion response has been studied
first in [17,25,34,35]. The work in [17] formulates the interaction between a
defender and an attacker on a cyber-physical infrastructure as a factored Markov
game and introduces a decomposition based on linear programming. Following
a similar approach, the work in [35] studies a Markov game formulation and
shows that a multi-stage game can be decomposed into a sequence of one-stage
games. In a separate line of work, [25] models intrusion response as a minimax
control problem and develops a heuristic decomposition based on clustering and
influence graphs. This approach resembles the work in [34], which studies a
factored decision process and proposes a hierarchical decomposition.

In all of the above works, decomposition is key to obtain effective strategies
for large-scale systems. Compared to our work, some of them propose decompo-
sition methods without optimal substructure [25], others do not consider partial
observability [17,35], or dynamic attackers [34]. Most importantly, all of the
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above works evaluate the obtained strategies in a simulation environment. They
do not perform evaluation in an emulation environment as we report in this
paper, which gives higher confidence that the strategies are effective on the tar-
get infrastructure.

For a comprehensive review of prior research on automated intrusion response
(beyond work that use decomposition), see [10, §VII].

Fig. 3. Examples of a workflow, attacker actions, and defender actions.

3 The Intrusion Response Use Case

We consider an intrusion response use case that involves the IT infrastructure of
an organization. The operator of this infrastructure, which we call the defender,
takes measures to protect it against an attacker while providing services to a
client population (see Fig. 1). The infrastructure is segmented into zones with
virtual nodes that run network services. Services are realized by workflows that
are accessed by clients through a gateway, which also is open to the attacker (see
Fig. 3a).

The attacker’s goal is to intrude on the infrastructure, compromise nodes,
and disrupt workflows. It can take three types of actions to achieve this goal: (i)
reconnaissance; (ii) brute-force attacks; and (iii) exploits (see Fig. 3b).

The defender continuously monitors the infrastructure through accessing and
analyzing intrusion detection alerts and other statistics. It can take four types
of defensive actions to respond to possible intrusions: (i) migrate nodes between
zones; (ii) redirect or block network flows; (iii) shut down nodes; and (iv) revoke
access to nodes (see Fig. 3c). When deciding between these actions, the defender
must balance two conflicting objectives: maximize workflow utility towards its
clients and minimize the cost of intrusion.

4 Formalizing the Intrusion Response Problem

We formalize the above use case as an optimization problem where the goal
is to select an optimal sequence of defender actions in response to a sequence
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of attacker actions. We assume a dynamic attacker, which leads to a game-
theoretic formulation of the intrusion response problem. The game is played on
the IT infrastructure, which we model as a discrete-time dynamical system whose
evolution depends on the actions by the attacker and the defender. Both actors
have partial observability of the system state, and their observations depend
on the traffic generated by clients requesting service, which we assume can be
described by a stationary process.

Notations. Boldface lower case letters (e.g., x) denote row vectors and upper
case calligraphic letters (e.g., V) represent sets. The set of probability distribu-
tions over V is written as Δ(V). A random variable is denoted by upper case (e.g.,
X) and a random vector is denoted by boldface (e.g., X = (X1, . . . , Xn)). P is
the probability measure and the expectation of f with respect to X is expressed
as EX [f ]. When f includes many random variables that depend on π we sim-
plify the notation to Eπ[f ]. We use x ∼ f to mean that x is sampled from f and
sometimes write P[x|z, y] instead of P[X = x|Z = z, Y = y] when X,Z, Y are
clear from the context. Symbols used throughout the paper are listed in Table 1.

4.1 Modeling the Infrastructure and Services

Following the description in Sect. 3, we consider an IT infrastructure with appli-
cation servers connected by a communication network that is segmented into
zones (see Fig. 1). Overlaid on this physical infrastructure is a virtual infrastruc-
ture with tree-structure that includes nodes, which collectively offer services to
clients.

A service is modeled as a workflow, which comprises a set of interdependent
nodes. A dependency between two nodes reflects information exchange through
service invocations. We assume that each node belongs to exactly one work-
flow. As an example of a virtual infrastructure, we can think of a microservice
architecture where a workflow is defined as a tree of microservices (see Fig. 3a).

Infrastructure. We model the virtual infrastructure as a (finite) directed graph
G � 〈{gw} ∪ V, E〉. The graph has a tree structure and is rooted at the gateway
gw. Each node i ∈ V has three state variables. v

(R)
i,t represents the reconnaissance

state and realizes the binary random variable V
(R)
i,t . v

(R)
i,t = 1 if the attacker has

discovered the node, 0 otherwise. v
(I)
i,t represents the intrusion state and realizes

the binary random variable V
(I)
i,t . v

(I)
i,t = 1 if the attacker has compromised the

node, 0 otherwise. Lastly, v
(Z)
i,t indicates the zone in which the node resides and

realizes the random variable V
(Z)
i,t . We call a node i ∈ V active at time t if it is

functional as part of a workflow (denoted αi,t = 1). Due to a defender action
(e.g., a shut down) a node i ∈ V may become inactive (i.e., αi,t = 0).

Workflows. We model a workflow w ∈ W as a subtree Gw � 〈{gw} ∪ Vw, Ew〉
of the infrastructure graph. Workflows do not overlap except for the gateway
which belongs to all workflows.
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4.2 Modeling Actors

The intrusion response use case involves three types of actors: an attacker, a
defender, and clients (see Fig. 1).

Attacker. At each time t, the attacker takes an action a(A)
t , which is defined as

the composition of the local actions on all nodes a(A)
t � (a(A)

1,t , . . . ,a(A)
|V|,t) ∈ AA,

where AA is finite. A local action is either the null action (denoted with ⊥) or
an offensive action (see examples in Fig. 3b). An offensive action on a node i

may change the reconnaissance state v
(R)
i,t or the intrusion state v

(I)
i,t . A node i

can only be compromised if it is discovered, i.e., if v
(R)
i,t = 1. We express this

constraint as a(A)
t ∈ AA(s(A)

t ).
The attacker state S(A)

t �
(
V

(I)
i,t , V

(R)
i,t

)
i∈V ∈ SA evolves as

s(A)
t+1 ∼ fA

(· | S(A)
t = s(A)

t ,A(A)
t = a(A)

t ,A(D)
t = a(D)

t

)
(1)

where S(A)
t , A(A)

t , and A(D)
t are random vectors with realizations s(A)

t , a(A)
t , and

a(D)
t . (A(D)

t represents the defender action at time t.)

Defender. At each time t, the defender takes an action a(D)
t , which is defined as

the composition of the local actions on all nodes a(D)
t � (a(D)

1,t , . . . ,a(D)
|V|,t) ∈ AD,

where AD is finite. A local action is either a defensive action or the null action ⊥
(see examples in Fig. 3c). Each defensive action a(D)

i,t �= ⊥ leads to S(A)
i,t+1 = (0, 0)

and may affect V
(Z)
i,t+1.

The defender state S(D)
t �

(
V

(Z)
i,t

)
i∈V ∈ SD evolves according to

s(D)
t+1 ∼ fD

(· | S(D)
t = s(D)

t ,A(D)
t = a(D)

t

)
(2)

where s(D)
t and a(D)

t realize the random vectors S(D)
t and A(D)

t .

Clients. Clients consume services of the infrastructure by accessing workflows.
We model client behavior through stationary stochastic processes, which affect
the observations available to the attacker and the defender.

4.3 Observability and Strategies

At each time t, the defender and the attacker both observe ot �(
o1,t, . . . ,o|V|,t

) ∈ O, where O is finite. (In our use case ot relates to the
number of idps alerts per node.) ot is drawn from the random vector Ot �
(O1,t, . . . ,O|V|,t) whose marginal distributions ZO1 , . . . , ZO|V| are stationary and

conditionally independent given S(D)
i,t and S(A)

i,t . (Note that ZOi
depends on the

traffic generated by clients.) As a consequence, the joint conditional distribution
Z is given by

Z
(
Ot = o | s(D)

t , s(A)
t

)
=

|V|∏

i=1

ZOi

(
Oi,t = oi | s(D)

i,t , s(A)
i,t

) ∀o ∈ O (3)



178 K. Hammar and R. Stadler

The sequence of observations and states at times 1, . . . , t forms the histories
h(D)

t ∈ HD and h(A)
t ∈ HA. These histories are realizations of the random vectors

H(D)
t � (S(D)

1 ,A(D)
1 ,O1, . . . ,A

(D)
t−1,S

(D)
t ,Ot) and H(A)

t � (S(A)
1 ,A(A)

1 ,O1, . . . ,

A(A)
t−1,S

(A)
t ,Ot). Based on their respective histories, the defender and the attacker

select actions, which define the defender strategy πD ∈ ΠD : HD → Δ(AD) and
the attacker strategy πA ∈ ΠA : HA → Δ(AA).

4.4 The Intrusion Response Problem

When selecting the strategy πD the defender must balance two conflicting objec-
tives: maximize the workflow utility towards its clients and minimize the cost of
intrusion. The weight η ≥ 0 controls the trade-off between these two objectives,
which results in the bi-objective

J �
∞∑

t=1

γt−1

(
∑

w∈W

∑

i∈Vw

ηu
(W)
i,t︸ ︷︷ ︸

workflows utility

− c
(I)
i,t︸︷︷︸

intrusion cost

)

(4)

where γ ∈ [0, 1) is a discount factor, c
(I)
i,t is the intrusion cost associated with

node i at time t, and u
(W)
i,t expresses the workflow utility associated with node i

at time t. For this paper, we assume that u
(W)
i,t is proportional to the number of

active nodes in the subtree rooted at i and that c
(I)
i,t = v

(I)
i,t + c(A)(a(D)

i,t ), where
c(A) is a non-negative function.

Given (4) and an attacker strategy πA, the intrusion response problem can
be stated as

maximize
πD∈ΠD

E(πD,πA) [J ] (5a)

subject to s(D)
t+1 ∼ fD

(· | S(D)
t = s(D)

t ,A(D)
t = a(D)

t

)
, s(D)

t ∈ SD ∀t (5b)

s(A)
t+1 ∼ fA

(· | S(A)
t = s(A)

t ,At = at

)
, s(A)

t ∈ SA ∀t (5c)

ot+1 ∼ Z
(· | S(D)

t+1 = s(D)
t+1,S

(A)
t+1 = s(A)

t+1), ot ∈ O ∀t (5d)

a(A)
t ∼ πA

(· | H(A)
t = h(A)

t

)
, a(A)

t ∈ AA(s(A)
t ) ∀t (5e)

a(D)
t ∼ πD

(· | H(D)
t = h(D)

t

)
, a(D)

t ∈ AD ∀t (5f)

s(A)
1 ∼ b(A)

1 , s(D)
1 ∼ b(D)

1 (5g)

where at � (a(D)
t ,a(A)

t ), E(πD,πA) denotes the expectation over the random vec-
tors (H(D)

t ,H(A)
t )t∈{1,2,...} when following the strategy profile (πD, πA); (5b)–(5c)

are the dynamics constraints; (5d) describes the observations; (5e)–(5f) capture
the actions; and (5g) define the initial state distributions. (As a maximizer of
(5) exists (see Theorem 1), we write max instead of sup throughout this paper.)

Solving (5) yields an optimal defender strategy against a static attacker with
a fixed strategy. Note that this defender strategy is generally not optimal against
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a different attacker strategy. For this reason, we aim to find a defender strategy
that maximizes the minimum value of J (4) across all possible attacker strategies.
This objective can be formally expressed as a maxmin problem:

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J ] subject to (5b)−(5g) (6)

Solving (6) corresponds to finding a Nash equilibrium [23, Eq. 1] of a two-player
game. Hence the problem of solving (6) can be analyzed through game theory.

5 The Intrusion Response Game

The maxmin problem in (6) defines a stationary, finite, and zero-sum Partially
Observed Stochastic Game with Public Observations (a po-posg) [16, Def. 1]:

Γ � 〈N , (Sk)k∈N , (Ak)k∈N ,O, (fk)k∈N , Z, u, (b(k)
1 )k∈N , γ〉 (7)

The game Γ has two players N = {D,A} with D being the defender and A being
the attacker. (Sk)k∈N are the state spaces, (Ak)k∈N are the action spaces, and
O is observation space (as defined in Sect. 4). The transition functions (fk)k∈N
are defined by (5b)–(5c), the observation function Z is defined in (3), and the
utility function u(st,a

(D)
t ) is the expression within brackets in (4). (b(k)

1 )k∈N are
the state distributions at t = 1 and γ is the discount factor in (4).

Fig. 4. Growth of |S|, |O|, and |Ak| in
function of |V|, where k ∈ {D, A}, |Z| =

10, |O(V)| = 100, and |A(V)
D | = |A(V)

A | =
10.

Game Play. When the game starts
at t = 1, s(D)

1 and s(A)
1 are sampled

from b(D)
1 and b(A)

1 . A play of the
game proceeds in time-steps t = 1, 2, . . ..
At each time t, the defender observes
h(D)

t and the attacker observes h(A)
t .

Based on these histories, both players
select actions according to their respec-
tive strategies, i.e., a(D)

t ∼ πD(· | h(D)
t )

and a(A)
t ∼ πA(· | h(A)

t ). As a result of
these actions, five events occur at time
t+1: (i) ot+1 is sampled from Z; (ii) s(D)

t+1

is sampled from fD; (iii) s(A)
t+1 is sampled from fA; (iv) the defender receives the

utility u(st,a
(D)
t ); and (v) the attacker receives the utility −u(st,a

(D)
t ).

Belief States. Based on their histories h(D)
t and h(A)

t , both players form beliefs
about the unobservable components of the state st, which are expressed through
the belief states b(D)

t (s(A)
t ) � P[s(A)

t | H(D)
t = h(D)

t ] and b(A)
t (s(D)

t ) � P[s(D)
t |

H(A)
t = h(A)

t ]. The belief states are updated at each time t > 1 via [16, Eq. 1] and
are realizations of B(D)

t and B(A)
t . The initial beliefs at t = 1 are the degenerate

distributions b(D)
1 (02|V|) = 1 and b(A)

1 (s(D)
1 ) = 1, where 0n is the n-dimensional

zero-vector and s(D)
1 is given by the infrastructure configuration (see Sect. 4).
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Best Response Strategies. A defender strategy π̃D ∈ ΠD is called a best
response against πA ∈ ΠA if it maximizes J (4). Similarly, an attacker strategy
π̃A is called a best response against πD if it minimizes J (4). Hence, the best
response correspondences are

BD(πA) � arg max
πD∈ΠD

E(πD,πA)[J ] and BA(πD) � arg min
πA∈ΠA

E(πD,πA)[J ] (8)

Optimal Strategies. An optimal defender strategy π∗
D is a best response

strategy against any attacker strategy that minimizes J . Similarly, an opti-
mal attacker strategy π∗

A is a best response against any defender strategy that
maximizes J . Hence, when both players follow optimal strategies, they play best
response strategies against each other:

(π∗
D, π∗

A) ∈ BD(π∗
A) × BA(π∗

D) (9)

Since no player has an incentive to change its strategy, (π∗
D, π∗

A) is a Nash equi-
librium [23, Eq. 1].

We know from game theory that Γ has a mixed Nash equilibrium [14–16] and
we know from Markov decision theory that BD(πA) and BA(πD) are non-empty
[21]. Based on these standard results, we state the following theorem.

Theorem 1.

(A) Γ (7) with the instantiation described in Sect. 4 has a mixed Nash equilib-
rium.

(B) The best response correspondences (8) in Γ with the instantiation described
in Sect. 4 satisfy |BD(πA)| > 0 and |BA(πD)| > 0 ∀(πA, πD) ∈ ΠA × ΠD.

Proof. The statement in (A) follows from the following sufficient conditions: (i)
Γ is stationary, finite, and zero-sum; (ii) Γ has public observations; and (iii)
γ ∈ [0, 1). Under these conditions, the existence proofs in [14, §3], [15, Thm. 2.3],
and [16, Thm. 1] apply, which shows that Γ can be modeled as a finite strategic
game for which Nash’s theorem applies [23, Thm. 1].

To prove (B), we note that obtaining a pair of best response strategies
(π̃D, π̃A) ∈ BD(πA) × BA(πD) for a given strategy pair (πA, πD) ∈ ΠA × ΠD

amounts to solving two finite and stationary pomdps (Partially Observed
Markov Decision Processes) with discounted utilities. It then follows from
Markov decision theory that a pair of pure best response strategies (π̃D, π̃A)
exists [21, Thms. 7.6.1–7.6.2]. �

6 Decomposing the Intrusion Response Game

In this section we present the main contribution of the paper. We show how
the game Γ (7) with the instantiation described in Sect. 4 can be recursively
decomposed into subgames with optimal substructure [6, Ch. 15], which means
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Table 1. Notations.

Notation(s) Description

G, Gw, V, E , Vw, Ew Infrastructure tree, subtree of w, and sets of nodes and edges in G and Gw

Z, W, AD, AA(st) Network zones, workflows, defender actions, and attacker actions at time t

A(V)
D , A(V)

A (st), O(V) Action and observation spaces per node at time t, Ak = (A(V)
k )|V| and O = (O(V))|V|

v
(I)
i,t , v

(Z)
i,t , v

(R)
i,t Intrusion state, zone, and reconnaissance state of i ∈ V at time t

V
(I)
i,t , V

(Z)
i,t , V

(R)
i,t Random variables with realizations v

(I)
i,t , v

(Z)
i,t , v

(R)
i,t

Γ, N , u, S = SA × SD, O po-posg (7), set of players, utility function, state space, and observation space

st = (s
(D)
t , s

(A)
t ) State at time t

at = (a
(D)
t ,a

(A)
t ) Action at time t

ot,ut, a
(k)
t ,h

(k)
t Observation, utility, action of player k at time t, and history of player k at time t

Bk,b
(k)
t , π̃k, ã

(k) Belief space, belief state, best response strategy and action of player k

St,Ot,At,Ut,B
(k)
t ,H

(k)
t Random vectors with realizations st,ot,at,ut,b

(k)
t ,h

(k)
t

πk, Z, u
(W)
i,t Strategy of player k, observation distribution, and workflow utility of node i at time t

⊥, an(i), αi,t Null action, set of i and its ancestors in G, and active status of node i at time t

c
(I)
i,t , c

(A) Intrusion cost associated with node i at time t and action cost function

fA, fD, Bk Transition functions and best response correspondence of player k

Fig. 5. Illustrations of Theorem 2; arrows indicate inputs and outputs; ⊕ denotes vector
concatenation; k ∈ {D, A}; h

(k)
w,t � (h

(k)
j,t )j∈Vw ; and a

(k)
w,t � (a

(k)
j,t )j∈Vw .

that a best response (8) of the original game can be obtained from best responses
of the subgames. We further show that best responses of the subgames can be
computed in parallel and that the space complexity of a subgame is independent
of the number of nodes |V|. Note that the space complexity of the original game
increases exponentially with |V| (see Fig. 4).

Theorem 2 (Decomposition theorem).

(A) A game Γ (7) with the instantiation described in Sect. 4 can be decomposed
into independent workflow subgames Γ (w1), . . . , Γ (w|W|). Due to their inde-
pendence, the subgames have optimal substructure.

(B) Each subgame Γ (w) can be further decomposed into node subgames
(Γ (i))i∈Vw with optimal substructure and space complexities independent of
|V|.
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(C) For each subgame Γ (i), a best response strategy for the defender can be
characterized by switching curves, under the assumption that the observation
distributions ZO1|s(A) , . . . , ZO|V||s(A) (3) are totally positive of order 2 (i.e.,
tp-2 [21, Def. 10.2.1]).

Statements A and B express that Γ decomposes into independent subgames,
which consequently can be solved in parallel (see Fig. 5). This decomposition
implies that the largest game that is tractable on a given compute platform
scales linearly with the number of processors on the platform. Further, statement
C says that a best response strategy for the defender in each subgame can be
characterized by switching curves, which can be estimated efficiently.

In the following sections we provide proofs of Theorem 2.A–C. The requisite
notations are given in Table 1.

6.1 Proof of Theorem 2.A

Following the instantiation of Γ described in Sect. 4, the state, observation, and
action spaces factorize as

S =
(Z × {0, 1}2)|V| O =

(O(V)
)|V| AD =

(A(V)
D

)|V| AA =
(A(V)

A

)|V| (10)

where O(V), A(V)
D , and A(V)

A denote the local observation and action spaces for
each node.

Since each node belongs to exactly one workflow, (10) implies that Γ can
be decomposed into subgames Γ (w1), . . . , Γ (w|W|). To show that the subgames
are independent, it suffices to show that they are observation-independent,
transition-independent, and utility-independent [27, Defs. 32, 33, 35].

From (3) we have

Z
(
Oi,t+1 = oi,t+1 | s(D)

t+1, s
(A)
t+1

)
= Z

(
Oi,t+1 = oi,t+1 | s(D)

i,t+1, s
(A)
i,t+1

)

for all oi,t+1 ∈ O, st+1 ∈ S, and t ≥ 1, which implies observation independence
across nodes i ∈ V and therefore across workflows [27, Def. 33].

From the definitions in Sect. 4 and (1)–(2) we have

fD
(
S(D)

i,t+1 = s(D)
i,t+1 | s(D)

t ,a(D)
t

)
= fD

(
S(D)

i,t+1 = s(D)
i,t+1 | s(D)

i,t ,a(D)
i,t

)

fA
(
S(A)

i,t+1 = s(A)
i,t+1 | s(A)

t ,a(A)
t ,a(D)

t

)
= fA

(
S(A)

i,t+1 = s(A)
i,t+1 | s(A)

i,t ,a(A)
i,t ,a(D)

i,t

)

for all si,t ∈ S,ai,t ∈ A, i ∈ V, and t ≥ 1, which implies transition independence
across nodes i ∈ V and therefore across workflows [27, Def. 32].
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Following (4) and the definition of u
(W)
i,t (see Sect. 4.4) we can rewrite u(·) as

u(st,a
(D)
t ) =

∑

w∈W

∑

i∈Vw

ηu
(W)
i,t − c

(I)
i,t (a

(D)
i,t , v

(I)
i,t )

︸ ︷︷ ︸
�uw

=
∑

w∈W
uw

((
si,t,a

(D)
i,t

)
i∈Vw

)

(11)

The final expression in (11) is a sum of workflow utility functions, each
of which depends only on the states and actions of one workflow. Hence,
Γ (w1), . . . , Γ (w|W|) are utility independent [27, Def. 35]. �

6.2 Proof of Theorem 2.B

Our goal is to show that a workflow subgame Γ (w) decomposes into node-
level subgames with optimal substructure. That is, we aim to show that a best
response in Γ (w) can be constructed from best responses of the subgames.

Following the description in Sect. 4, we know that the nodes in a workflow
are connected in a tree and that the utility generated by a node i depends on the
number of active nodes in the subtree rooted at i. Taking into account this tree
structure and the definition of the utility function, we decompose Γ (w) into node
subgames (Γ (i))i∈Vw where each subgame depends only on the local state and
action of a single node. It follows from (10) that this decomposition is feasible
and that the space complexity of a subgame is independent of |V|. Further,
we know from Theorem 2.A that the subgames are transition-independent and
observation-independent but utility-dependent. To prove optimal substructure it
therefore suffices to show that it is possible to redefine the utility functions for the
subgames such that at each time t, the best response action in Γ (w) for any node
i is also a best response in Γ (i) and vice versa. For the sake of brevity we give the
proof for the defender only. The proof for the attacker is analogous. In this proof,
for better readability, we omit the constants γ, η and use the shorthand notations
s(D)
w,t � (s(D)

j,t )j∈Vw , b(D)
w,t � (b(D)

j,t )j∈Vw , V � V ∗
D,πA

, and τ ∈ arg mink>t a
(D)
k �= ⊥,

where V is the value function [21, Thm. 7.4.1]. Further, we use an(i) to denote
the set of node i and its ancestors in the infrastructure graph G.

From Bellman’s optimality equation [3, Eq. 1], a best response action for node
i at time t in Γ (w) against an attacker strategy πA is given by

arg max
a
(D)
i,t ∈A(V)

D

[

E
πA

[
Ut + V (S(D)

t+1,B
(D)
t+1)

∣
∣
∣ s(D)

t ,b(D)
t ,a(D)

i,t

]]

(a)= arg max
a
(D)
i,t ∈A(V)

D

[

E
πA

[
−c

(I)
i,t + V (S(D)

t+1,B
(D)
t+1)

∣
∣
∣ s(D)

t ,b(D)
t ,a(D)

i,t

]]

(b)= arg max
a
(D)
i,t ∈A(V)

D

[

E
πA

[
−c

(I)
i,t +

∞∑

k=t+1

∑

j∈Vw

Uj,k

∣
∣
∣ s(D)

w,t,b
(D)
w,t,a

(D)
i,t

]]
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(c)= arg max
a
(D)
i,t ∈A(V)

D

[

E
πA

[
−c

(I)
i,t +

τ∑

k=t+1

∑

j∈Vw

Uj,k

∣
∣
∣ s(D)

w,t,b
(D)
w,t,a

(D)
i,t

]]

(d)= arg max
a
(D)
i,t ∈A(V)

D

[

E
πA

[
−c

(I)
i,t +

τ∑

k=t+1

∑

j∈an(i)

Uj,k

∣
∣
∣ s(D)

w,t,b
(D)
w,t,a

(D)
i,t

]]

(e)= arg max
a
(D)
i,t ∈A(V)

D

[

E
πA

[
−c

(I)
i,t +

τ∑

k=t+1

∑

j∈an(i)

u
(W)
j,k − c

(I)
j,k

∣
∣
∣ s(D)

w,t,b
(D)
w,t,a

(D)
i,t

]]

(f)= arg max
a
(D)
i,t ∈A(V)

D

[

E
πA

[
−c

(I)
i,t +

τ∑

k=t+1

|an(i)|αi,t+1 − c
(I)
i,k

∣
∣
∣ s(D)

i,t ,b(D)
i,t ,a(D)

i,t

]]

(12)

where Ut denotes the vector of utilities for all nodes at time t. (a) holds because
(Uj,t)j∈V\{i} and u

(W)
i,t are independent of a(D)

i,t and therefore does not affect
the maximization; (b) follows from the utility independence across workflows
(Theorem 2.A) and the definition of the value function V [21, Thm. 7.4.1]; (c)
holds because any a(D)

i,t except ⊥ leads to s(A)
i,t+1 = (0, 0), which means that all

state variables at time k > τ are independent of a(D)
i,t and can therefore be moved

outside the arg max operator; (d) follows because (Uj,t)j∈V\an(i) is independent
of a(D)

i,t ; (e) is an expansion of (Uj,k)j∈an(i),k∈{t+1,...,τ} based on (4); and (f)

follows because the terms in (u(W)
j,k )j∈an(i),k∈{t+1,...,τ} that depend on a(D)

i,t equal
k|an(i)|αt+1,i, where k is the constant of proportionality (see Sect. 4). (Recall
that αi,t = 1 if node i is active at time t and αi,t = 0 otherwise.)

The final expression in (12) depends only on local information related to
node i. This means that we can use it to define utility functions of the subgames
(Γ (i))i∈Vw such that they become utility-independent. Further, since the maxi-
mizer of the final expression in (12) is also a maximizer of the first expression, it
follows that a a best response in Γ (i) is also a best response for node i in Γ (w)

and thus in Γ (Theorem 2.A). Hence (Γ (i))i∈Vw have optimal substructure. �

6.3 Proof of Theorem 2.C

The idea behind this proof is that the problem of selecting which defensive
action to apply in a subgame Γ (i) (Theorem 2.B) against a given attacker strat-
egy can be separated from the problem of deciding when to apply it. Through
this separation, we can analyze the latter problem using optimal stopping the-
ory. Applying a recent result by Krishnamurthy [21, Thm. 12.3.4], the optimal
stopping strategy in Γ (i) can be characterized by switching curves.

We perform the above separation by decomposing a(D)
i,t into two subactions:

a(D,1)
i,t and a(D,2)

i,t which realize A(D,1)
i,t and A(D,2)

i,t . The first subaction a(D,1)
i,t �=

⊥ determines the defensive action and the second subaction a(D,2)
i,t ∈ {S,C}

determines when to take it. Specifically, if a(D,2)
i,t = C, then a(D)

i,t = ⊥, otherwise

a(D)
i,t = a(D,1)

i,t . Using this action decomposition, at each time t, a strategy π
(i)
D in
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Γ (i) is a joint distribution over A(D,1)
i,t and A(D,2)

i,t , which means that it can be
represented in an auto-regressive manner as

π
(i)
D (A(D,1)

i,t = a(D,1)
i,t ,A(D,2)

i,t = a(D,2)
i,t | h(k)

i,t ) (13)
(a)= π

(i)
D (A(D,1)

i,t = a(D,1)
i,t | h(D)

i,t )π(i)
D (A(D,2)

i,t = a(D,2)
i,t | h(D)

i,t ,a(D,1)
i,t )

(b)= π
(i)
D (A(D,1)

i,t = a(D,1)
i,t | b(D)

i,t , s(D)
i,t )π(i)

D (A(D,2)
i,t = a(D,2)

i,t | b(D)
i,t , s(D)

i,t ,a(D,1)
i,t )

(c)= π
(i)
D (A(D,1)

i,t = a(D,1)
i,t | s(D)

i,t )π(i)
D (A(D,2)

i,t = a(D,2)
i,t | b(D)

i,t , s(D)
i,t ,a(D,1)

i,t )

where (a) follows from the chain rule of probability; (b) holds because (s(D)
i,t ,b(D)

i,t )

is a sufficient statistic for H(D)
i,t [21, Thm 7.2.1]; and (c) follows because any

a(D,1)
i,t �= ⊥ leads to S(A)

i,t+1 = (0, 0) and is thus conditionally independent of B(D)
i,t

[11, Eq. 16].
The strategy decomposition in (13) means that we can obtain a best

response strategy in Γ (i) by jointly optimizing two substrategies: π
(i,1)
D and

π
(i,2)
D . The former corresponds to solving an mdp M (D,1) with state space

s(D)
i ∈ Z and the latter corresponds to solving a set of optimal stopping pomdps

(M (D,2)

i,s(D),a(D))s(D)∈Z,a(D)∈A(V)
D

with state space s(A)
i ∈ {(0, 0), (1, 0), (1, 1)}.

Each stopping problem can be defined with a single stop action rather than
multiple stop actions [9, §III.C] because

arg max
πD∈Π

(i,2)
D

[

EπD

[ ∞∑

t=1

γt−1Ui,2,t

∣
∣
∣ B(D)

i,1 = e1

]]

= arg max
πD∈Π

(i,2)
D

[

EπD

[ τ1∑

t=1

γt−1Ui,2,t

∣
∣
∣ B(D)

i,1 = e1

]
+

EπD

[ τ2∑

t=τ1+1

γt−1Ui,2,t

∣
∣
∣ B(D)

i,τ1+1 = e1

]
+ . . .

]

= arg max
πD∈Π

(i,2)
D

[

EπD

[ τ1∑

t=1

γt−1Ui,2,t

∣
∣
∣ B(D)

i,1 = e1

]]

(14)

where Π
(i,2)
D , Ui,2,t, and τ1, τ2, . . . denote the strategy space, utility, and stopping

times in M
(D,2)

i,s(D),a(D) . Note that the belief space B(i)
D for each stopping problem

is the 2-dimensional unit simplex and that B(D)
i,τj+1 = e1 = (1, 0, 0) for each

stopping time τj since a(D,2)
i,τj

= S =⇒ s(A)
i,τj+1 = (0, 0).
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The transition matrices for each stopping problem are of the form:
⎡

⎣
1 − p p 0

0 1 − q q
0 0 1

⎤

⎦ and

⎡

⎣
1 0 0
1 0 0
1 0 0

⎤

⎦ (15)

where p is the probability that the attacker performs reconnaissance and q is
the probability that the attacker compromises the node. The left matrix in (15)
relates to a(D,2)

i,t = C and the right matrix relates to a(D,2)
i,t = S. The non-zero

second order minors of the matrices are (1 − p)(1 − q), pq, 1 − q, 1 − p, p, and
(1 − p)q, which implies that the matrices are tp-2 [21, Def. 10.2.1]. Since the
distributions ZO1|s(A) , . . . , ZO|V||s(A) also are tp-2 by assumption, it follows from

[21, Thm. 12.3.4] that there exists a switching curve Υ that partitions B(i)
D into

two individually connected regions: a stopping set S
(i)
D where a(D,2)

i,t = S is a

best response and a continuation set C
(i)
D where a(D,2)

i,t = C is a best response
(see Fig. 5c).

The argument behind the existence of a switching curve is as follows [21,
Thm. 12.3.4]. On any line segment L(e1, b̂(D)) in B(i)

D that starts at e1 and ends
at the subsimplex joining e2 and e3 (denoted with b̂(D) ∈ B(i)

D,e1
), all belief states

are totally ordered with respect to the Monotone Likelihood Ratio (mlr) order
[21, Def. 10.1.1]. As a consequence, Topkis’s theorem [32, Thm. 6.3] implies that
the optimal strategy on L(e1, b̂(D)) is monotone with respect to the mlr order.
Consequently, there exists a threshold belief state α

̂b(D) on L(e1, b̂(D)) where the
optimal strategy switches from C to S. Since B(i)

D can be covered by the union
of lines L(e1, b̂(D)), the thresholds α

̂b
(D)
1

, α
̂b
(D)
2

, . . . yield a switching curve Υ . �

7 Finding Nash Equilibria of the Decomposed Game

To find a Nash equilibrium of Γ (7) we develop a fictitious self-play algorithm
called Decompositional Fictitious Self-Play (dfsp), which estimates Nash equi-
libria based on the decomposition presented above. The pseudocode is listed in
Algorithm 1. (In Algorithm 1, ⊕ denotes vector concatenation, −k denotes the
opponent of player k, and M

(k)
i denotes the best response pomdp of player k in

Γ (i) (Theorem 2).)
dfsp implements the fictitious play process described in [5] and generates a

sequence of strategy profiles (πD, πA), (π′
D, π′

A), . . . that converges to a Nash
equilibrium (π∗

D, π∗
A) [28, Thms. 7.2.4–7.2.5]. During each step of this process,

dfsp learns best responses against the players’ current strategies and then
updates both players’ strategies (lines 8–12 in Algorithm 1). To obtain the best
responses, it first finds best responses for the node subgames as constructed in
the proof of Theorem 2.B (lines 15–19), and then it combines them through
concatenation (lines 20–26).
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Algorithm 1: dfsp

1 Input: p-solver: a pomdp solver,
2 δ: convergence criterion, Γ : po-posg

3 Output: An approximate Nash equilibrium
4 (πD, πA)

5 Algorithm dfsp (p-solver, δ, Γ )
6 Initialize πD, πA, δ̂

7 while δ̂ ≥ δ do
8 in parallel for k ∈ {D,A} do
9 πk ←local-

brs(p-solver, Γ, k, π−k)

10 π̃k ←composite-strategy(Γ,πk)
11 πk ←average-strategy(πk, π̃k)
12 δ̂ ←exploitability(π̃D,π̃A) (see (17))
13 end
14 return (πD, πA)
15 Procedure local-brs(p-solver, Γ, k, π−k)
16 πk ← ()
17 in parallel for w ∈ W, (i) ∈ Vw do
18 πk ← πk⊕ p-solver(M (k)

i , π−k)
19 return πk

20 Procedure composite-strategy(Γ,πk)
21 return πk ←Procedure λ (s(k)t , b(k)

t )
22 a(k)t ← ()
23 for w ∈ W, i ∈ Vw do
24 a(k)t ← a(k)t ⊕ (π(i)

k (s(k)i,t ,b(k)
i,t ))

25 end

26 return a(k)t

Finding best responses
for node subgames amounts
to solving pomdps. The
principal method for solv-
ing pomdps is dynamic
programming [21]. Dynamic
programming is how-
ever intractable in our
case, as demonstrated in
Fig. 6d. To find the best
responses we instead
resort to approxima-
tion algorithms. More
specifically, we use the
Proximal Policy Opti-
mization (ppo) algo-
rithm [26, Alg. 1] to
find best responses for
the attacker, and we
use a combination of
dynamic programming
and stochastic approximation to find best responses for the defender. In par-
ticular, to find best responses for the defender, we first solve the mdp defined
in Sect. 6.3 via the value iteration algorithm [21, Eq. 6.21], which can be done
efficiently due to full observability. After solving the mdp, we approximate the
optimal switching curves defined in the proof of Theorem 2.C (Sect. 6.3) with
the following linear approximation [21, Eq. 12.18].

πD(b(D)) =

⎧
⎪⎨

⎪⎩

S if
[
0 1 θ

]
[
(b(D))T

−1

]
> 0

C otherwise
s.t θ ∈ R

2,θ2 > 0,θ1 ≥ 1 (16)

The coefficients θ in (16) are estimated through the stochastic approximation
algorithm in [21, Alg. 14] and [9, Alg. 1].

8 Digital Twin and System Identification

The dfsp algorithm described above approximates a Nash equilibrium of Γ (7)
by simulating games and updating both players’ strategies through reinforcement
learning and dynamic programming. We identify the parameters required to
instantiate these simulations through system identification based on data from
the digital twin in Fig. 2. Details of this process and the configuration of the
target infrastructure can be found in [11].
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9 Experimental Evaluation

Our approach to find near-optimal defender strategies includes learning Nash
equilibrium strategies via the dfsp algorithm and evaluating these strategies on
the digital twin (see Fig. 2). This section describes the evaluation results.

Experiment Setup. We evaluate dfsp both on a digital twin of the target
infrastructure and in simulations of synthetic infrastructures (see Fig. 1 and
Fig. 2). The digital twin is deployed on a server with a 24-core intel xeon
gold 2.10 GHz cpu and 768 gb ram. Simulations of Γ and executions of dfsp
run on a cluster with 2xtesla p100 gpus, 4xrtx8000 gpus, and 3x16-core intel

xeon 3.50 GHz cpus. Code and hyperparameters for replicating the experiments
is available in [11] and the references therein.

Convergence Metric. To estimate the convergence of the sequence of strategy
pairs generated by dfsp, we use the approximate exploitability metric δ̂ [31]:

δ̂ = Eπ̂D,πA [J ] − EπD,π̂A [J ] (17)

where J is defined in (4) and π̂k denotes an approximate best response strat-
egy for player k. The closer δ̂ becomes to 0, the closer (πD, πA) is to a Nash
equilibrium.

Baseline Algorithms. We compare the performance of our approach
(πdecomposition) with two baselines: πfull and πworkflow. Baseline πfull solves the
full game without decomposition and πworkflow decomposes the game on the
workflow-level only.

We compare the performance of dfsp with that of Neural Fictitious Self-Play
(nfsp) [13, Alg. 1] and ppo [26, Alg. 1], which are the most popular algorithms
among related work (see [10, §VII]).

Baseline Strategies. We compare the defender strategies learned through dfsp
with three baselines. The first baseline selects actions at random. The second
baseline assumes prior knowledge of the opponent’s actions and acts optimally
based on this information. The last baseline acts according to the following
heuristic: shut down a node i ∈ V when an idps alert occurs, i.e., when oi,t > 0.

9.1 Learning Best Responses Against Static Opponents

We first examine whether our method can discover effective strategies against a
static opponent strategy, which in game-theoretic terms is the problem of finding
best responses (8). The static strategies are defined in [11].

To measure the scalability of πdecomposition we compare its performance with
πworkflow and πfull on synthetic infrastructures with varying number of nodes
|V| and workflows |W|. To evaluate the optimal stopping approach described in
Sect. 7 we compare its rate of convergence with that of ppo. Figure 6a shows the
learning curves. The red, purple, and pink curves represent the results obtained
with πdecomposition; the blue and beige curves represent the results obtained with
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Fig. 6. Evaluation results; the curves show the mean and 95% confidence interval
for four random seeds; dp is short for dynamic programming; the speedup in (e) is
calculated as Sn = T1

Tn
where Tn is the completion time with n processes. (Color figure

online)

πworkflow; the orange and green curves represent the results obtained with πfull;
and the dashed black lines relate to the baseline strategy that assumes prior
knowledge of the opponent’s strategy.

We note in Fig. 6a that all the learning curves of πdecomposition converge near
the dashed black lines, which suggests that the learned strategies are close to
best responses. In contrast, the learning curves of πworkflow and πfull do not
converge near the dashed black lines within the measured time. This is expected
as πworkflow and πfull can not be parallelized like πdecomposition. (The speedup of
parallelization is shown in Fig. 6e.) Lastly, we note in the rightmost plot of Fig. 6a
that the optimal stopping approach, which exploits the statement in Theorem
2.C, converges significantly faster than ppo. An example of a learned optimal
stopping strategy based on the linear approximation in (16) is shown in Fig. 6f.

9.2 Learning Equilibrium Strategies Through Fictitious Play

Figures 6b–6c show the learning curves of the strategies obtained during the dfsp
self-play process and the baselines introduced above. The red curves represent the
results from the simulator; the blue curves show the results from the digital twin;
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the green curve give the performance of the random baseline; the orange curve
relate to the oi,t > 0 baseline; and the dashed black line gives the performance
of the baseline strategy that assumes prior knowledge of the attacker actions.

We note that all learning curves in Fig. 6b converge, which suggests that the
learned strategies converge as well. Specifically, we observe that the approximate
exploitability (17) of the learned strategies converges to small values (left plot),
which indicates that the learned strategies approximate a Nash equilibrium both
in the simulator and in the digital twin. Further, we see from the middle plot that
both baseline strategies show decreasing performance as the attacker updates its
strategy. In contrast, the defender strategy learned through dfsp improves its
performance over time. This shows the benefit of a game-theoretic approach
where the defender strategy is optimized against a dynamic attacker.

Figure 6c compares dfsp with nfsp on the simulator. We observe that dfsp
converges significantly faster than nfsp. The fast convergence of dfsp in com-
parison with nfsp is expected as dfsp is parallelizable while nfsp is not.

9.3 Discussion of the Evaluation Results

In this work, we propose a formal framework based on recursive decomposition
for solving the intrusion response use case, which we evaluate experimentally on
a digital twin. The key findings can be summarized as follows.

(i) Our framework approximates optimal defender strategies for a practical IT
infrastructure (see Fig. 6b). While we have not evaluated the learned strate-
gies on the target infrastructure due to safety reasons, the fact that they
achieve similar performance on the digital twin as on the simulator gives us
confidence in the strategies’ performance on the target infrastructure.

(ii) Decomposition provides a scalable approach to automate intrusion response
for IT infrastructures (see Fig. 6a and Fig. 6c). The intuition behind this
finding is that decomposition allows to design efficient divide-and-conquer
algorithms that can be parallelized (see Theorem 2.A–B and Algorithm 1).

(iii) The theory of optimal stopping provides insight about optimal defender
strategies, which enables efficient computation of best responses (see the
rightmost plot in Fig. 6a). This property can be explained by the threshold
structures of the best response strategies, which drastically reduce the search
space of possible strategies (Theorem 2.C).

(iv) Static defender strategies’ performance deteriorate against a dynamic
attacker whereas defender strategies learned through dfsp improve over
time (see the right plot in Fig. 6b). This finding suggests fundamental limi-
tations of static intrusion response systems, such as the Snort idps.

10 Conclusions

We include elements of game theory and reinforcement learning in a framework
to address the problem of automated intrusion response for a realistic use case.
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We formalize the use case as a partially observed stochastic game. We prove a
decomposition theorem stating that the game decomposes recursively into sub-
games that can be solved efficiently and in parallel, and that the best response
defender strategies exhibit threshold structures. This decomposition provides us
with a scalable approach to learn near-optimal defender strategies. We develop
Decompositional Fictitious Self-Play (dfsp) – a fictitious self-play algorithm for
finding Nash equilibria. To assess the learned strategies for a target infrastruc-
ture, we evaluate them on a digital twin. The results demonstrate that dfsp con-
verges in reasonable time to near-optimal strategies, both in simulation and on
the digital twin, while a state-of-the-art algorithm makes little progress toward
an optimal strategy within the same time frame.
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16. Horák, K., Bošanský, B.: Solving partially observable stochastic games with public
observations. In: Proceedings of the AAAI Conference on Artificial Intelligence
(2019)

17. Huang, L., Chen, J., Zhu, Q.: Factored Markov game theory for secure interde-
pendent infrastructure networks. In: Rass, S., Schauer, S. (eds.) Game Theory for
Security and Risk Management. SDGTFA, pp. 99–126. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75268-6 5

18. Huang, Y., Huang, L., Zhu, Q.: Reinforcement learning for feedback-enabled cyber
resilience. Ann. Rev. Control 53, 273–295 (2022)

19. Kamhoua, C., et al.: Game Theory and Machine Learning for Cyber Security.
Wiley, Hoboken (2021)

20. Kearns, M., Littman, M., Singh, S.: Graphical models for game theory. In: Seven-
teenth Conference on Uncertainty in Artificial Intelligence (UAI 2001) (2001)

21. Krishnamurthy, V.: Partially Observed Markov Decision Processes: From Filtering
to Controlled Sensing (2016). https://doi.org/10.1017/CBO9781316471104

22. Nair, R., et al.: Networked distributed POMDPs: a synthesis of distributed con-
straint optimization and POMDPs. In: Conference on Artificial Intelligence and
the Innovative Applications of Artificial Intelligence (2005)

23. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)
24. Ouyang, Y., Tavafoghi, H., Teneketzis, D.: Dynamic games with asymmetric infor-

mation: common information based perfect Bayesian equilibria and sequential
decomposition. IEEE Trans. Autom. Control 62(1), 222–237 (2017)

25. Rasouli, M., Miehling, E., Teneketzis, D.: A scalable decomposition method for the
dynamic defense of cyber networks. In: Rass, S., Schauer, S. (eds.) Game Theory
for Security and Risk Management. SDGTFA, pp. 75–98. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-75268-6 4

26. Schulman, J., et al.: Proximal policy optimization algorithms (2017). https://arxiv.
org/abs/1707.06347

27. Seuken, S., Zilberstein, S.: Formal models and algorithms for decentralized decision
making under uncertainty. Auton. Agents Multi-Agent Syst. 17, 190–250 (2008).
https://doi.org/10.1007/s10458-007-9026-5

28. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations, Cambridge (2009)

29. Siljak, D.: Large-Scale Dynamic Systems: Stability and Structure. Dover (1978)
30. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons

Learned, 1st edn. Cambridge University Press, Cambridge (2011)
31. Timbers, F., et al.: Approximate exploitability: learning a best response in large

games (2020). https://arxiv.org/abs/2004.09677
32. Topkis, D.M.: Minimizing a submodular function on a lattice. Oper. Res. 26(2),

305–321 (1978). https://www.jstor.org/stable/169636
33. Tsemogne, O., Hayel, Y., Kamhoua, C., Deugoué, G.: Optimizing intrusion detec-
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1 Introduction

The cybersecurity domain encounters numerous complex issues due to the
dynamic nature of threats and the intricate decision-making processes involved.
One of the most powerful threats in cybersecurity is the Advanced Persistent
Threat (APT) attack where attackers carry out highly targeted, long-term,
stealthy attacks against government, military, and corporate organizations [1].
In many instances, APTs manage to establish a persistent and concealed pres-
ence within a targeted network for extended periods, sometimes lasting months
or even years, without being detected.

Additional challenges include protecting dynamic and diverse mobile net-
works from intense, short attacks such as denial of service (DoS), especially in the
context of the Internet of Battlefield Things (IoBT) [2] and tactical dynamic net-
works [3]. The attackers rely on lateral movement to utilize the network resources
in reaching their targets. To counter this, defenders can employ appropriate
actions to effectively detect and mitigate lateral movement. In this context, we
consider cyber deception via honeypots to proactively mislead attackers.

Computer networks face several challenges that can impact their perfor-
mance, security, and reliability. The rapid expansion of wireless networking has
introduced numerous challenges, including network scalability, resource alloca-
tion, interference mitigation, and security. Software-Defined Networking (SDN)
encounters new challenges and opportunities in networks, specifically regarding
the functionality, performance, and scalability of SDN in cloud computing, IT
organizations, and networking enterprises [4].

Mobility is a significant characteristic of tactical networks, which introduces
distinct challenges such as intermittent network connectivity, temporary power
loss, and communication issues. These challenges can be particularly problem-
atic when multiple autonomous computers communicate through a network and
interact with each other [5]. As a result, fixed deception policies are subopti-
mal since one needs to consider the connectivity of the computer network. In
our work, we primarily focus on modeling cyber deception in dynamic tactical
networks.

Cyber deception represents an advanced proactive technology in the field of
cyber defense. Its purpose is to provide attackers with credible yet misleading
information, effectively leading them astray. While deception techniques have
traditionally been employed in the physical domain as a tactic of traditional
warfare, their application has extended to the realm of cyberspace, serving as a
means of intrusion detection and defense. In many ways, cyber deception shares
similarities with non-cyber deception, encompassing comparable philosophical
and psychological characteristics. Proactive measures can be employed with the
objective of capturing the attackers and closely monitoring their actions. Hon-
eypots play a vital role in this process, acting as simulated entities within the
system or network to deceive the attacker. By studying the attacker’s strate-
gies and intentions through the use of honeypots, defenders can enhance their
comprehension of the attack and subsequently develop more effective deception
schemes [6].



Honeypot Allocation for Cyber Deception in Dynamic Tactical Networks 197

Honeypots play a crucial role in the realm of cyber deception by serving as
effective tools to mislead and divert attackers while consuming their valuable
resources. These deceptive elements can be categorized into two types: low-
interaction honeypots and high-interaction honeypots. Low-interaction honey-
pots simulate specific services and are typically implemented in a virtualized
environment, offering a relatively simpler setup and operational process com-
pared to high-interaction honeypots. However, it is important to note that low-
interaction honeypots are more prone to detection by adversaries, making them
easier to identify and bypass [7].

A key challenge in securing tactical networks lies in their mobile nature,
rendering the defender’s base policy ineffective and sub-optimal over time. For
instance, defender honeypot allocation based on the initial network is not useful
as network connectivity changes over time as well as not optimal over whole
state space. Despite the increasing attention given to cyber deception in the
past decade, there remains a gap in the literature regarding its incorporation of
mobility features and anticipation of the future evolution of tactical networks. In
this paper, we utilize dynamic attack graphs and game theory to model mobility
in tactical networks. Specifically, when network mobility is present, the connec-
tivity of the corresponding attack graph undergoes changes in specific edges,
thereby redefining potential attack paths and possibly rendering some defender
strategies ineffective. To the best of our knowledge, this framework represents a
novel approach for proactive defense in the presence of network mobility.

This paper presents a novel approach for dynamic cyber deception via strate-
gic honeypot allocation given a limited deception budget. By leveraging a game
theoretic framework, our objective is to devise an effective honeypot alloca-
tion policy throughout the network attack graph that takes into account future
changes in network connectivity. We model this problem as a two-player Markov
game. In our analysis, the defender anticipates future network mobility. We
assume a well-known attacker performed reconnaissance before launching this
attack. The proposed model takes into account different node values that reflect
the significance of each node in the network.

We design the state space according to potential changes in network connec-
tivity assuming that a mobile node may lose communications with its neighbors
inducing a transition to a new state. As shown in the results sections, it is ben-
eficial for the defender to allocate honeypots according to the current network
topology while taking into account the potential transitions to new topologies
as well to reduce the cost of reconfiguration in the future. This results in a
Markov game model that can be solved via standard Q-minimax algorithm [8].
We validate the efficiency of the proposed algorithm that showed a substantial
improvement in mitigating attacker impact via deception using strategic alloca-
tion for honeypots. We balance the need for future look-ahead transitions and
our numerical results show a faster convergence rate with a reasonable amount
of iterations. We compare our defensive deception strategies to other allocation
policies. Moreover, we demonstrate that our approach exhibits greater improve-
ment against a less informed attacker that fails to anticipate future transitions.
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This finding underscores the significance of cyber deception in enhancing net-
work security.

We summarize our main contribution below:

– We design a dynamic game between defender and attacker, to generate a
cyber deception strategy against lateral move attacks leveraging attack graphs
under network mobility. The game is played on attack graphs that capture
vulnerabilities, node importance, and network topology.

– We design a realistic set of future states considering the possibility of different
node losing communications.

– We model our predictive model in the transition matrix of the Markov game
model and solve for the stationary Nash equilibrium strategy at different
states.

– Finally, we present numerical results that show the effectiveness of cyber
deception as well as the fast convergence of the game solver with the pres-
ence of network mobility. We evaluated our approach under symmetric and
asymmetric information between both players and analyzed the scalability of
our approach under different assumptions.

The rest of the paper is organized as follows. We describe related work in
Sect. 2. In Sect. 3, we discuss the system model, define the game model, and pro-
pose our deception approach. In Sect. 4 we present the methodology of network
mobility-assisted cyber deception. Our numerical results are presented in Sect. 5
and in Sect. 6 we conclude our work and discuss the potential future extension
of our research.

2 Related Work

Our research builds upon existing work on cyber deception and games on attack
graphs to model lateral movement attacks and characterizes game-theoretic
deception strategies with the presence of network mobility.

2.1 Attack Graph

Attack modeling techniques, such as attack graphs (AGs), provide a graph-based
approach to representing and visualizing cyber-attacks on computer networks [9].
However, the scalability of generating attack graphs poses a significant challenge,
with existing works struggling to handle large enterprise networks [10]. In this
study, we focus on a simplified attack graph where nodes represent vulnerable
hosts and edges represent specific exploits for attacker reachability. While this
model may not capture every vulnerability, it effectively demonstrates potential
attack paths that adversaries can exploit, which is crucial for generating optimal
honeypot allocation policies. It is important to note that attack graphs are lim-
ited in their ability to directly model mobility, but effectively modifying attack
graphs can be used to model mobility in tactical networks.
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2.2 Game Theoretic Deception

In cybersecurity research, game theoretic defensive deception has been exten-
sively addressed. Schlenker et al. [11] propose a deception game for defender
who decides on deception in response to the attacker’s observation while the
attacker is either uninformed of the deceit or aware of it. The comprehensive
game model of hypergame theory [12] has been used to simulate the many sub-
jective viewpoints of participants in uncertain situations. Wan et al. [13] discuss
hypergame-based deception against advanced persistent threat attacks perform-
ing multiple attacks performed in the stages of cyber kill chain. Sayed et al.
[14] propose a game theoretic approach for zero-day vulnerability analysis and
deceptive mitigation against zero-day vulnerability. Zhu et al. [15] discuss the
synergies between game theory and machine learning [16,17] to formulate defen-
sive deception. In this paper, we extend cyber deception under network mobility.

2.3 Network Deception

Computer network deception research focuses on developing techniques, strate-
gies, and technologies to enhance the effectiveness of deception as a proactive
cyber defense. Lu et al. [18] describe the fabrication or manipulation of network-
level information such as network topology, host information, tarpits, and traffic
information. Chiang et al. [19] discuss the use of defensive cyber deception to
enhance the security, dependability of network systems, and focus on the appli-
cation of Software-Defined Networking (SDN). Urias et al. [20] discuss the use
of computer network deception as a means to gather threat intelligence.

2.4 Mobility in Tactical Network

In tactical networks, mobility refers to the ability of devices or agents to move
within the network while maintaining connectivity and resource access. Mobility
involves features like protocol support, seamless roaming, handover management,
and location tracking. However, it presents challenges such as intermittent con-
nectivity, location management, handover & roaming efficiency, quality of ser-
vice, security & privacy, and scalability. Overcoming these challenges is essential
to achieve uninterrupted connectivity and adaptability in various environments
[5]. Mobility also does not follow the same pattern as traffic expansion [21].

The characteristics of mobility in tactical networks include various aspects
related to the movement and connection of users or nodes within network. Piroz-
mand et al. [22] examined human mobility in terms of its geographical, temporal,
and connectivity properties. They explore mobility models, traces, and forecast-
ing methods to give a thorough picture of how nodes move within networks.
Abdulla et al. [23] analyzed the mobility characteristics of commonly used mod-
els, focusing on inter-contact times and the approximation of exponential distri-
butions in opportunistic network scenarios.

The impact of node mobility in tactical networks is a crucial area of research,
focusing on how the movement of nodes within a network affects various network
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characteristics and performance. Fu et al. [24] investigated the impact of node
mobility on cascading failures in spatial networks. This includes studying the
influence of node mobility on network load redistribution, the cascading process,
and the robustness of network configurations against cascading failures. Xia et
al. [25] proposed a cluster-based routing protocol called FASTR to mitigate the
impact of node mobility in networks with high node mobility and low group
mobility. This protocol utilizes a mobile backbone to address the challenges
associated with node mobility.

The mobility model and its parameters significantly impact network commu-
nication in wireless mobile opportunistic networks. Various mobility models are
proposed to describe random movement patterns of nodes in ad hoc networks,
emphasizing the importance of considering node mobility in network design and
analysis [26]. Pala et al. [27] investigate how node mobility influences energy con-
sumption and network lifetime. Results show that mobility can improve energy
balancing up to a certain level, but excessive mobility may degrade energy bal-
ancing in wireless networks.

Urias et al. [28] highlighted the limited number of deception platforms that
have been successfully shown to enable strategic deception in computer network
operations environments. This indicates that the development of specific tools
and techniques for combining network mobility and cyber deception may still be
an area of ongoing exploration. Therefore, network mobility can be incorporated
in designing deception techniques such as dynamic movement and placement of
deceptive elements within the network.

In our work, we develop deception techniques against lateral movement
attacks considering network mobility. This is the first model that explicitly con-
siders the impact of network mobility in designing proactive game-theoretic poli-
cies for optimizing deception resources. We present our system model and game
formulation in the following sections.

3 System Model

3.1 Attack Graph Model

We consider a targeted attack that follows a thorough reconnaissance phase,
during which the adversary gathers all the necessary information about the net-
work structure, node properties, and existing vulnerabilities. To represent these
features, we adopt a modified version of the attack graph model [29] denoted as
G1(N , E , θ,V) where

– N represents the set of nodes
– E represents the set of edges
– θ represents the set of node types. We assume that each non-leaf1 node can

have two types such as ∧ (AND), ∨ (OR).
– V represents the value associate with each node.

1 Non-leaf nodes can be predecessor of at least one node.
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The set of nodes is interconnected through the set of edges, which depict
their accessibility and network connectivity. The defender classifies the nodes
based on their importance, functionality, and role through a course of an attack
action. Within this classification, there are two distinct subsets of nodes, the
set of entry nodes E and the set of target nodes T . The remaining nodes are
intermediate nodes that an attacker must compromise while progressing from
an entry node (attack start node ∈ E) toward a target node ∈ T . The defender
decides what nodes are most valuable and are more likely to be targeted and
hence labels them as targets either based on previous attack reports or according
to expert decisions.

In this graph, each node represents a host that has one or more vulnerabilities
that can be exploited to reach a neighboring node. The edge represents the con-
nection that can be utilized by malicious users to reach the next targeted node.
A legitimate user at node v possesses the appropriate credentials to access node
u. However, an adversary can only reach node u by exploiting a vulnerability.
At the same time, there must exist an exploitable vulnerability at u, an open
port at v and node v is reachable via a communication link from node u. Such
exploitation possibility is represented by eu,v ∈ E . Each node i ∈ N is assigned a
value V(i) which denotes node importance. Therefore, G1(N , E , θ,V) represents
the attack graph, which is assumed to be known to both the defender and the
attacker.

The attack graph model also considers node types θ. The types of nodes,
denoted by ∧ (AND) or ∨ (OR), determine the conditions under which a node
can be controlled by an adversary. If a node is marked with ∧ (AND), it means
that all of its predecessor nodes must be controlled by the adversary for the
node itself to come under adversary control. On the other hand, if a node is
marked with ∨ (OR), it means that only one of its predecessor nodes needs to
be controlled by the adversary for the node to come under adversary control.

In the case of computer network attacks, each adversary operates indepen-
dently, and exploits a set of nodes to reach a specific target. Therefore, all the
nodes within the attack graph are designated with the ∨ (OR) node type.

Node mobility denotes node removal on the computer network due to multi-
ple factors including hardware failure, network maintenance, network redesign,
security concern, decommissioning, network upgrade, and network optimization.
In a tactical network, if all nodes are moving in the same direction and speed
which allows them to maintain communications the attack remains static. How-
ever, due to specific tactical requirements, one or more nodes may be assigned to
change their course and go in other directions resulting in a new attack graph.
Removing a node eliminates all exploitable vulnerabilities of that node. In other
words, it removes all edges connected to it. We consider a complete informa-
tion structure where the defender and attacker can observe node mobility in the
network. Hence, both players can update the attack graph of the game.

Figure 1 represents a 7-node tree attack graph consisting of one entry node
(1), four intermediate nodes (2, 3, 4, 6), and two target nodes (5, 7). In this
network, there is one available path for reaching target node (7), while there
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Fig. 1. 7-node tree network topology with a single entry node and two target nodes
(5, 7) and because of node mobility, node 4 and node 6 will likely abandon the group
in the future.

are three paths for reaching target node (5). Due to node mobility, nodes 4
and 6 are likely to lose communications in the future, leaving only two avail-
able attack paths to reach target node (5). Future mobility information should
impact the initial honeypot allocation strategy deployed by the defender from
the beginning. Our model quantifies and captures the advantages of considering
the network’s future evolution. In this example, we consider nodes leaving the
network, however, the proposed model is general to adapt any future topologies
including adding or removing new connections, or new nodes.

3.2 Defender Model

At a given state, the defender strategically places a set of honeypots along the
network edges among the set of edges leading to the set of target nodes T to
deceive the attacker. The honeypot budget is denoted as H. Hence, the defender’s
action space, denoted as Ad, consists of possible allocation vector e in which
Ad = {e ∈ 2E | eT 1 ≤ H}. Where, e is a binary vector of length |E|, where
each entry e(i) equals 1 if a honeypot is allocated along the ith edge, and is
set to zero otherwise. To balance the defender strategies, the defender pays a
cost, Cd, per each installed honeypot in the network, otherwise, the defender will
always try to maximize the number of allocated honeypots. The total cost can be
expressed as Cd × |ad|1, where |ad|1 is the number of honeypots associated with
the action ad. Finally, assuming both players are rational, the defender aims to
reduce the attacker’s reward by placing honeypots on edges that are attractive
to the attacker, while minimizing the total cost of the played deception strategy.

3.3 Attacker Model

The defender considers a practical scenario where the attacker had gathered
valuable reconnaissance information about the network topology before launch-
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ing this attack. Hence, the attacker is launching a targeted attack to compro-
mise a specific subset of nodes, T . Therefore, she selects one of the possible
attack paths to reach a target node to maximize its expected reward. Thus,
the attacker’s action space, denoted as Aa, consists of all possible attack paths
starting from an entry node u ∈ E to a target node v ∈ T . The attacker incurs
an attack cost that depends on the selected attack path. We consider a cost due
to traversing a node in the attack graph denoted by Ca. The attacker faces a
tradeoff between traversing important nodes while reducing his overall attack
cost.

3.4 Reward Function

The reward function is formulated to capture the tradeoff that faces each player.
For each action profile played (ad, aa) ∈ Ad ×Aa, the defender receives a reward
Rd(ad, aa) and the attacker reward is Ra. We consider a zero-sum game where
Ra + Rd = 0. Recall that each node i ∈ N is assigned a value v(i) ∈ V that
reflects its importance, the defender gains more by protecting high-valued nodes
via correct placement of honeypots. On the other hand, the attacker reward
increases when attacking nodes of high values along the selected attack path
while evading honeypots.

The defender reward is expressed as:

Rd(ad, aa) =
∑

i∈aa

[
Cap · v(i) · 1{i∈ad} − Esc · v(i) · 1{i/∈ad}

]

−Cd · ‖ad‖1 + Ca(aa) (1)

Here, Cap represents the capture reward received by the defender when the
attacker encounters a honeypot along the selected attack path aa. On the other
hand, Esc denotes the gain for the attacker upon a successful attack from one
node to another while progressing toward the target node.

Finally, Cd and Ca(aa) are the cost per honeypot, and attack cost, respec-
tively. The attack cost is proportional to the length of the attack path as the
attacker could become less stealthy due to numerous moves.

Now we define a two-player zero-sum game for a particular state, s,
Γ (s)(P,A,R), where P is the set of the two players (i.e., defender and attacker).
The game action space A = Ad × Aa as defined above, and the reward function
R = (Rd, Ra).

The finite game developed above admits at least one NE in mixed strategies
[30]. Let x and y denote the mixed strategies of defender, and attacker when the
game is played on graph, G. The defender expected reward of the game can be
expressed as:

Ud(G) = xT Rd(G)y (2)

where Rd(G) is the matrix of the game played on G and the attacker expected
reward Ua(G) = −Ud(G). Both defender and attacker can obtain their NE mixed
strategies x∗ and y∗ via a linear program (LP) as follows,
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maximize
x

Ud

subject to
∑

ad∈Ad

Rd(ad, aa)xad
≥ Ud, ∀aa ∈ Aa.

∑

ad∈Ad

xad
= 1, xad

≥ 0,

(3)

where xad
is the probability of taking action ad ∈ Ad.

Similarly, the attacker’s mixed strategy can be obtained through a minimizer
LP under y of Ud.

4 Dynamic Game Model

In the previous section, we show the formulation of one stage game. In this
section, we extend the formulation for a dynamic muti-stage game (Markov
game) between the defender and the attacker due to network mobility.

In a dynamic environment, the game is played under varying circumstances
each time, encompassing different network connectivity configurations, changes
in connectivity, and as well as patching existing vulnerabilities. In our work, we
primarily focus on the mobility of the network over time. To comprehensively
analyze the progression and evolution of this game, we employ a Markov game
framework where the state of the game captures all information needed to gen-
erate a honeypot allocation strategy. We assume that the defender changes the
allocations based on the new topology. Players reward is the total reward over
all future states.

Let s denote the state of the game defined as the attack graph associated
with the network topology at state s. A dynamic game Γ is defined as the tuple
(K,A,S,P,R), where K is a set of two players, S is a finite set of states. We
consider an uncontrolled dynamic game where P : S × S ′ → [0, 1] is a transition
probability function between states such as P (s, s′) denotes the probability of
transitioning from state s to the future state s′. The action space A = Πs∈SA(s)
and reward function R. Each player aims to maximize his long-term expected
payoff. Where R(s′) is the immediate reward as defined in Sect. 3 for any state
s′. A terminal state s′′ ∈ S is a state, where no transition future transitions
can be reached from s′′. In other words, at any terminal state, players receive
immediate rewards onward.

4.1 State Space and Game Transitions

Given an initial attack graph (full topology), network mobility may induce new
connections, and/or result in removing nodes from the network topology. As we
discussed in the Sect. 1, node mobility in tactical networks renders the defender’s
base strategy ineffective, and requires reconfigurations to the initial honeypot
allocation strategies as well as other security resources in the network.

For practical constraints, it is difficult for the defender to anticipate new
connections to be added to the initial attack graph due to mobility from the
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initial topology. Therefore, and without loss of generality, our model does not
consider transitioning to such states. Additionally, we focus on removing connec-
tions due to losing communications between mobile nodes/agents. The defender
builds this model using information regarding node movement patterns in the
future. For simplicity, we consider one node change at a time. In other words,
N (s) − N (s′) = u, where u is a node moving away from the tactical net-
work set of nodes/agents. To formally define our Markov game, the defender
needs to compute the transition probability matrix, P. When node u moves
away, it is removed from the attack graph state, and hence we transition to
a new state s′. The transition probability, denoted as P (s, s′), is defined as
1 − (value proportion × degree proportion)

p(s, s′) = 1 − ν(u)
νmax

× δ(u)
δmax

, (4)

where 0 < ν(u) < νmax is the value assigned to node u, δ(u) is the degree of
node u where δmax is the max node degree in the network. The formulation in
(4) follows a practical assumption that high-valued nodes and central nodes in
the network are less likely to abandon the tactical network. However, a node
with less connectivity and leaf nodes will have a higher probability of being
disconnected. Additionally, we assign a non-zero probability for no state change
(i.e., self-transition). Hence, p(s, s) = μ, and

∑
s′ �=s p(s, s′) = 1−μ , ∀s ∈ S, such

that μ is the chance of experiencing no mobility. This fully defines the dynamic
game model.

4.2 Nash Equilibrium Analysis

Let xi(s); i = 1, . . . , |Ad|(s), and yj(s); j = 1, . . . , |Aa|(s), denote the prob-
ability that the defender and attacker play the ith and jth pure actions at
state s from their corresponding available actions spaces, Ad(s) and Aa(s),
respectively. A stochastic stationary policy is readily defined over all states as
πd =

{
x(s1), . . . ,x(sn)

}
for the defender, and πa =

{
y(s1), . . . ,y(sn)

}
for the

attacker, where n = |S| is the total number of states.
Each player can maximize their expected reward by greedily maximizing the

Q(s)-function at each state which is defined below in Eq. (10). The main goal
of the defender is to maximize the expected discounted rewards. Under some
stationary defense and attack policies, πd and πa respectively, the expected sum
of discounted rewards starting from some initial state s ∈ S at time t = 0 is
given by:

V (s, πd, πa) = E

[ ∞∑

t=0

γtRd (st, ad, aa, st+1)
∣∣∣s0 = s, πd, πd

]
, (5)

It is worth noting that, the immediate reward Rd(.) depends not only on the
current state s but on the future state s′ as well. The expectation in (5) is taken
over the players’ stationary policies (noting that πd and πa are randomized
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policies) and the state evolution, denoted as P(.). The subscript t represents the
t-th stage, and 0 < γ < 1 is a discount factor. Based on the findings in Sect. 3,
this finite game achieves a value V (s) at each state s. Moreover, there exists
a mixed strategy Nash equilibrium (NE) where V (s) denotes the value under
the equilibrium mixed strategies π∗

d(s) and π∗
a(s) at this state. To determine the

optimal stationary policies for both players (i.e., NE), can be learned using value
iteration over the value function at each state which is equivalent to finding the
value of the game which is defined as:

V ∗(s) := V (s,x∗(s)∗,y∗(s)∗) = max
x(s)

min
y(s)

V (s,x(s),y(s)); ∀s ∈ S (6)

The optimal randomized stationary policies x∗(s) and y∗(s) for state s are
the solutions to the following equation:

V ∗(s) = max
x(s)

min
y(s)

E

[
R(s, a(d), a(a), s′) + γV ∗(s′)

∣∣∣x(s),y(s)
]
, (7)

where the immediate reward term is given by

E

[
R(s, ad, aa, s′)

∣∣∣x(s),y(s)
]

=
∑

s′∈S

∑

ad∈Ad

∑

aa∈Aa

R(s, ad, aa, s′)x(s)y(s)p(s′, s)

(8)

Thus, the optimal stationary policies are π∗
d = {x∗(s1), . . . ,x∗(sn)}, π∗

a =
{y∗(s1), . . . ,y∗(sn)}.

A Dynamic game can be solved using value iteration following Markov Deci-
sion Process (MDP) intuition [8]. In this context, the value of state s by solving:

V (s) = max
πd∈Δ(Ad)

min
aa∈Aa

Q(s, ad, aa), (9)

where Q(., ad, aa) denotes the quality of the state-action pair defined as the total
expected discounted reward achieved by following a non-stationary policy that
takes action ad and then continues with the optimal policy thereafter. For a
dynamic game, the state-action quality function is defined as:

Q(s, ad, aa) = E

[
R(s, ad, aa, s′) + γV ∗(s′)

∣∣∣ad, aa

]
(10)

We solve (7) to find the optimal policy, by iterating over the value function
following the Q-minimax algorithm introduced in [8].

V ∗(s) = max
x(s)∈Δ(Ad)

min
aa∈Aa

∑

ad∈Ad

Q(s, ad, aa)xad(s), (11)

The tabular nature of the Q-minimax algorithm evidently faces the curse of
dimensionality due to the size of the state-action space. To enhance its scalabil-
ity, we experiment with various techniques, such as limiting the state space to
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include future states that impact the attack paths leading to target nodes. In
the following section, we present our numerical results and compare the perfor-
mance of the learned policies derived from our game model with other deceptive
policies.

Algorithm 1. Predictive Model (Proposed Algorithm)
1: procedure Input(Topology, H, Esc, Cap, Cd, Ca, V)
2: Initialize: S, s0, entry node, E, T
3: h = 1
4: while h < � do
5: Generate all new nodes at depth h
6: Define and solve all static game at depth h
7: h + +
8: end while
9: h = l − 1

10: while h > 0 do
11: Calculate (x∗(sh),y∗(sh))
12: h −−
13: end while
14: Return (π∗

d , π∗
a)

15: end procedure

5 Numerical Results

In this section, we analyze and validate our game-theoretic model by examining
the obtained numerical results. Specifically, we evaluate the convergence, effec-
tiveness, and scalability of our approach. Firstly, we ensure and demonstrate the
convergence of the extended Q-Learning algorithm to optimal (Nash equilibrium)
strategies as well as the convergence of both the state value function as well as the
rate of convergence at different networks. Secondly, we evaluate the performance
of the developed approach by comparing the attacker’s reward against various
deception policies, including random, myopic (which ignores future transitions),
and our policy based on the proposed predictive model. We consider formula-
tion including full state space and compact state space. Lastly, we assess the
scalability of our algorithm by comparing its performance on both full state and
compact state space formulations.

We analyze the potential impact of network mobility by generating attack
graph by NetworkX library and the attack graph also follows the definition in
Sect. 3.1. We identify the subsets of entry and target nodes. Each intermediate
node is assigned a value generated randomly between 10 and 50. Our 20-node
network topology has 3 entry nodes (in blue) and 3 target nodes (in red) as shown
in Fig. 2. For this 20-node network, the defender has 10 actions for honeypot
allocations including (6, 12), (5, 11), (16, 19), (11, 15), (0, 5), (16, 20), (12, 16),
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Fig. 2. Network topology consists of 20 nodes, with entry nodes represented in blue,
target nodes in red, and intermediate nodes in yellow. (Color figure online)

(0, 6), (15, 19), (15, 18), while the attacker selects between 4 attack paths: path1
= [0, 5, 11, 15, 18], path2 = [0, 5, 11, 15, 19], path3 = [0, 6, 12, 16, 19], path4
= [0, 6, 12, 16, 20].

To incorporate network mobility, we remove nodes from the attack graph,
leading to transitioning to a new state and having a modified attack graph.
We then explore how to update the defender’s base policy by considering both
future rewards and transitions. To address the dimensionality of the Q-minimax
algorithm, we adopt a formulation with a two-step look-ahead. Additionally, we
explore two different state-space representations. The first is a full state space
that encompasses all possible transitions, where any node in the intermediate
subset can leave the network, resulting in a new state transition. The second
is a compact state space that includes only future states associated with nodes
belonging to attack paths. The compact state representation is based on the
intuition that the mobility of nodes that do not belong to any attack path will
have no impact on the optimality of the defender’s strategies. For the 20-node
network, the full state space consists of 272 states, while the compact state space
has 19 states.

Convergence: In Fig. 3, we illustrate the convergence of the value function for a
sample state S0 in both the full and compact state formulation. The value func-
tion reaches convergence in less than 15 iterations. In each iteration, Q(s, ad, aa)
is updated, and the value of the state updates based on that. The convergence
value of the state S0 is different for full and compact state space as they have
different numbers of states, but both signify that incorporating mobility info in
player strategies is always beneficial in tactical networks. This is associated with
the convergence of the corresponding defense and attack strategies, as shown in
Fig. 4a and 4b.

Defender’s strategy reaches convergence to the Nash Equilibrium (NE) pol-
icy depicted in Fig. 4a, where three actions have non-zero probability values
while seven actions have zero probability values. Defender mixes between these
3 locations to deploy honeypot based on node significance and potential future
rewards afterward. Simultaneously, the attacker’s strategy converges to a NE
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Fig. 3. Convergence of the state value function under various state spaces over network
mobility.

Fig. 4. Defender and attacker strategy at a sample state converges to a mixed NE
strategy at full state space.

policy as shown in Fig. 4b. Attacker selects (mixing randomly) among paths
2,3,4 with the presence of mobility as selecting between these paths maximizes
the attacker expected reward as well as assists the attacker in successfully con-
ducting lateral movement attacks and reaching the target, while playing path 1
with zero probability.

Performance: In Fig. 5, we analyze the attacker’s reward under different
defender policies, considering random, myopic, and our predictive model poli-
cies, for both the full state and compact state formulations. Both figures (a, b)
demonstrate that the predictive model policy outperforms both other policies,
weak deception policies result in increasing the attacker reward. The variations in
the attacker’s reward across different entry nodes can be attributed to changes in
the attacker and defender action spaces, the availability of new attack paths, as
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Fig. 5. Attacker reward for different defender policies over entry nodes under various
state spaces.

Fig. 6. Attacker reward at a sample state for different capture and escape values.

well as the intermediate node spaces showing that entry node 1 is more impactful
when compromised.

Figure 6a demonstrates when the capture reward increases, the attacker’s
overall reward decreases across various defender policies. It is worth noting here
that the attacker has no option to completely back off assuming a persistent
attacker. On the other hand, Fig. 6b shows that as the attacker’s escape reward
increases, the attacker’s reward continuously increases across different defender
policies. It is important to note that the negative values of the escape rewards
(0–2) do not contradict the results, as they signify a decrease in the attacker’s
reward. Overall, it shows again that the myopic policy outperforms the ran-
dom policy while adhering to the predictive model policy results in the most
significant reduction in the attacker’s reward.



Honeypot Allocation for Cyber Deception in Dynamic Tactical Networks 211

Figure 7 illustrates the attacker reward for different points of time at different
deception policies for a 50-node network. For the node at S2 (terminal state), the
attacker reward remains the same for both the myopic and predictive model poli-
cies, as there are no future states reward to be considered onward from that state.
At S1, the attacker reward is slightly higher for the defender’s myopic policy com-
pared to the predictive model policy. However, the improvement between the two
policies becomes more significant at S0, highlighting the importance of account-
ing for future evolution due to mobility instead of responding to sudden changes
in network connectivity in a reactive fashion. Consequently, this demonstrates
that proactive deception provides an advantage to the defender, highlighting the
potential impact of implementing a moving target defense strategy alongside
deception. Such an approach can disrupt the reconnaissance information that
an adversary may gather regarding future transitions in the network.

Fig. 7. Attacker reward over various depth nodes in 50 nodes network.

Scalability: We generate different Watts-Strogatz graphs by NetworkX library
and demonstrate the overall complexity of different formulations under various
parameters in Fig. 8. In this context, the variable H represents the number of
honeypots, and K represents the average number of nearest neighbors to each
node. In Fig. 8 the running time increases exponentially for the full state-space
consideration due to the involvement of the intermediate node space in mobil-
ity. In addition, increasing the honeypot budget increases, which enlarges the
defender’s action space, and also increases the runtime. However, considering
the compact state-space formulation results in 44% reduction in runtime com-
pared to full state space for a network of 100 nodes, and H = 2.
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Fig. 8. Scalability in the number of nodes in the network under full and compact state
spaces.

6 Conclusion and Future Work

In this paper, we present a dynamic game model involving a defender and an
attacker to analyze the effectiveness of cyber deception in mitigating lateral
move attacks in the presence of network mobility. Our proposed approach incor-
porates a multistage node removal technique and a predictive model to determine
stationary mixed strategies by solving the dynamic game. We evaluate the effec-
tiveness of the deception method under different network settings. Our numerical
results and simulations it is evidence that cyber deception strategies were able to
mitigate the attack impact. Finally, we showcase the scalability of our approach
in terms of network size under mobility and provide a compact state space.

There are several potential extensions to this work. One avenue for further
exploration is optimizing the node removal process through parallel computation,
which can significantly improve speed. However, addressing the inter-dependency
between states in parallel calculations requires further investigation. Addition-
ally, network mobility can be modeled as a moving target defense, involving the
implementation of various strategies and techniques to make the network more
dynamic and unpredictable for potential attackers. This can be achieved through
careful planning and coordination. We also would like to consider the erroneous
topology case, where the defender can obtain a noisy version of the topology.
Quantifying the noise and leveraging stochastic attack graph models can help
address this case which is part of our ongoing research. Another obvious exten-
sion is using function approximation such as deep Q-learning to scale to much
larger/more complex games.
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1 Introduction

Proactive defense refers to a class of defense mechanisms for the defender to detect any
ongoing attacks, distract the attacker with deception, or use randomization to increase
the difficulty of an attack to the system. In this paper, we propose a mathematical frame-
work and solution approach for synthesizing a proactive defense system with deception.

We start by formulating the attack planning problem using a probabilistic attack
graph, which can be viewed as a Markov decision process (MDP) with a set of attack
target states. Attack graphs (AGs) [9] can be used in modeling computer networks.
They are widely used in network security to identify the minimal subset of vulnerabili-
ty/sensors to be used in order to prevent all known attacks [16,19]. Probabilistic attack
graphs introduce uncertain outcomes of attack actions that account for action failures
in a stochastic environment. For example, in [7,8], probabilistic transitions in attack
graphs capture uncertainties originating from network-based randomization. Under the
probabilistic attack graph modeling framework, we investigate how to allocate decoy
resources as fake targets to distract the attacker into attacking the fake targets and how
to modify the attack action costs to discourage the attacker from reaching the true tar-
gets.

The joint design of decoy resource allocation and action cost modification can be
cast as a bi-level optimization problem, where the defender (at the upper level) designs
the system, in anticipation of the attacker’s (at the lower level) best response, given
that the attacker has disinformation about the system due to allocated decoys. However,
bi-level optimization problems are generally NP-hard [4]. We investigate two possible
types of attackers: A rational attacker who maximizes the total reward and a bounded
rational attacker whose action choices are computed using quantal response [3,12],
where the probability of an action is proportional to the exponential of the total (dis-
counted) return of that action.

For the rational attacker, we show that the bi-level optimization problem can be
converted into a single-level optimization problem using KarushKuhnTucker (KKT)
conditions of the lower-level optimization problem. For the bounded rational attacker,
we formulated a constrained optimization problem and developed a new projected gra-
dient ascent method to solve a (local) optimal policy. We build two important relations:
First, we show that the projection step of a defender’s desired attack policy to the set of
realizable attack policy space can be performed using Inverse Reinforcement Learning
(IRL) [23]. Essentially, IRL shapes the attacker’s perceived reward so that the rational
attacker will mimic a strategy chosen by the defender. Second, the gradient ascent step
can be performed using policy improvement, which is a subroutine in policy iteration
with respect to maximizing the defender’s total reward. The projected gradient ascent
is ensured to converge to a (local) optimal solution to this nonconvex-constrained opti-
mization problem.

Related Work. The proactive defense design problem is closely related to the Stack-
elberg security game (SSG) (surveyed in [21]). In an SSG, the defender is to protect
a set of targets with limited resources, while the attacker selects the optimal attack
strategy given the knowledge of the defender’s strategy. In [15], the authors study secu-
rity countermeasure-allocation and use attack graphs to evaluate the network’s security
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given the allocated resources. However, traditionally SSG does not account for the use
of deception.

Deceptions create incorrect/incomplete information for the attacker. In [22], the
authors formulate a security game to allocate limited decoy resources to mask a net-
work configuration from the cyber attacker. The decoy-based deception manipulates
the adversary’s perception of the payoff matrix. In [2], the authors study honeypot allo-
cation in deterministic attack graphs and determine the optimal allocation strategy using
the minimax theorem. In [13], the authors study directed acyclic attack graphs that can
be modified by the defender using deceptive and protective resources. They propose
a mixed-integer linear program (MILP)-based algorithm to determine the allocation of
deceptive and protective resources in the graph. In [5], they harden the network by using
honeypots so that the attacker can not discriminate between a true target and a fake tar-
get. In [13], the authors assign fake edges in the attack graph to interdict the attacker
and employ MILP to find the optimal solution.

Compared to existing work, our work makes the following contributions: First, we
do not assume any graph structure in the attack graph and consider probabilistic attack
graphs instead of deterministic ones. As the attacker can take a randomized strategy in
the probabilistic attack graph, it is impossible to construct a payoff matrix and apply
the minimax theorem for decoy resource allocation. Second, we consider simultane-
ously allocating limited decoy resources and modifying the cost of attack actions, and
analyzing the best response of the attacker given the disinformation caused by decep-
tion. Third, we propose tractable solutions for dealing with different types of attackers:
rational and bounded rational. We show that by modifying the action reward and decoy
resource allocation properly, it is possible to shape the attacker’s behavior so that the
misperceived attacker is incentivized to commit an attack strategy that maximizes the
defender’s reward. Finally, we evaluate our solution under different attacker types and
test the scalability of our method on different problem sizes.

2 Preliminaries and Problem Formulation

Notations. Let R denote the set of real numbers and Rn the set of real n-vectors. Let
Rn

>0 (resp. Rn
<0) be the set of positive (resp. negative) real n-vectors. We use 1 to

represent the vector of all ones. Given a vector z ∈ Rn, let zi be the i-th component.
Given a finite setZ, the set of probability distributions over Z is represented asDist(Z).
Given d ∈ Dist(Z), the support of d is denoted as Supp(d) = {z ∈ Z | d(z) > 0}. Let
IB be the indicator function, i.e., IB(x) = 1 if x ∈ B, and IB(x) = 0 otherwise.

We consider the adversarial interaction between a defender (player 1, pronoun
she/her) and an attacker (player 2, pronoun he/him/his) in a system equipped with
proactive defense (formally defined later). We first introduce a formal model, called
probabilistic attack graph, to capture how the attacker plans to achieve the attack objec-
tive. Then, we introduce proactive defense countermeasures with deception.

Attack Planning Problem. The attack planning problem is modeled as a probabilistic
attack graph,

M = (S,A, P, ν, γ, F,R2),
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where S is a set of states (nodes in the attack graph), A is a set of attack actions,
P : S × A → Dist(S) is a probabilistic transition function such that P (s′|s, a) is the
probability of reaching state s′ given action a being taken at state s, ν ∈ Dist(S) is
the initial state distribution, γ ∈ (0, 1] is a discount factor. The attacker’s objective is
described by a set F of target states and a target reward function R2 : F × A → R≥0,
which assigns each state-action pair (s, a) where s ∈ F and a ∈ A to a nonnegative
value of reaching that target for the attacker. The reward function can be extended to
the entire state space by defining R2(s, a) = 0 for any s ∈ S \ F, a ∈ A. To capture
the termination of attacks, we introduce a unique sink state ssink ∈ S \ F such that
P (ssink|ssink, a) = 1 for all a ∈ A and P (ssink|s, a) = 1 for any target s ∈ F and
a ∈ A.

The probabilistic attack graph characterizes goal-directed attacks encountered in
cyber security [10,17], in which by reaching a target state, the attacker compromises
certain critical network hosts. Probabilistic attack graphs [13,20] capture the uncertain
outcomes of the attack actions using the probabilistic transition function and generalize
deterministic attack graphs [9].

The attacker is to maximize his discounted total reward, starting from the initial state
S0 ∼ ν. A randomized, finite-memory attack policy is a function π : S∗ → Dist(A),
which maps a finite run ρ ∈ S∗ into a distribution π(ρ) over actions. A policy is called
Markovian if it only depends on the most recent state, i.e., π : S → Dist(A). We only
consider Markovian policies because it suffices to search within Markovian policies for
an optimal attack policy.

Let (Ω,F) be the canonical sample space for (S0, A0, (St, At)t>1) with the Borel
σ-algebra F = B(Ω) and Ω = S × A × ∏∞

t=1(S × A). The probability measure Prπ

on (Ω,F) induced by a Markov policy π satisfies: Prπ(S0 = s) = μ0(s), Prπ(A0 =
a | S0 = s) = π(s, a), and Prπ(St = s | (Sk, Ak)k<t) = P (s | Sk, Ak), and
Prπ(At = a | (Sk, Ak)k<t, St) = π(St, a).

Given a Markovian policy π : S → Dist(A), we define the attacker’s value function

V π
2 : S → R as V π

2 (s) = Eπ[
∞∑

k=0

γkR2(Sk, Ak)|S0 = s], where Eπ is the expectation

given the probability measure Prπ.

Proactive Defense with Deception. We assume that the defender knows the attacker’s
objective given by the tuple 〈F,R2〉, i.e., the target states and target reward function.
The defender’s proactive defense mechanisms are the following:

– Defend by deception: The defender employs a deception method called “revealing
the fake”. Specifically, the defender has a set D ⊂ S \ F of states in the Markov
decision process (MDP) M that can be set to be fake target states with fake target
rewards y ∈ R|D|. The attacker cannot distinguish the real targets F from fake
targets D.

– Defend by state-action reward modification: The defender has a set W ⊂ (S \ (F ∪
D)) × A of state action pairs in the MDP M whose reward can be modified. Once
the reward of the state action pair (s, a) is modified, the attacker’s perceived reward
R2(s, a) < 0, i.e., the cost of attack action a at state s is −R2(s, a).
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The defender can determine how to allocate her decoy resource and limited state-action
reward modification ability.

Definition 1 (Decoy allocation under constraints). The defender’s decoy allocation
design is a nonnegative real-valued vector y ∈ R|S|

≥0 satisfying y(s) = 0 for any
s ∈ S \ D and constrained by 1Ty ≤ h for some h ≥ 0. Given a decoy allocation y,
the attacker’s perceptual reward function is defined by

Ry
2 (s, a) =

{
y(s) if y(s) > 0,
R2(s, a) if y(s) = 0.

Definition 2 (Action reward modification). Given a set W ⊂ (S \ (F ∪ D)) × A,
the defender’s action reward modification is a nonpositive reward-valued vector x ∈
R|S×A|

≤0 satisfying x(s, a) = 0 for any (s, a) /∈ W and −1Tx ≤ k for some k ≥ 0.
Given an action reward modification x, the attacker’s perceptual reward function is
defined by

Rx
2 (s, a) =

{
x(s, a) if x(s, a) < 0,
R2(s, a) if x(s, a) = 0.

The defender does not consider modifying the state-action reward for (fake or real)
target states F ∪ D because once a state in F ∪ D is reached, the attack is terminated.

Definition 3. The defender’s proactive defense strategy is a tuple (x,y) including an
action reward modification x and a decoy allocation design y.

Because the action reward modification is independent of the decoy allocation
design, the reward function given a defender’s strategy (x,y) is the composition of
Rx

2 and Ry
2 and thus omitted.

Assumption 1. The attack process terminates under two cases: Either the attack suc-
ceeds, in which the attacker reaches a target s ∈ F , or the attack is interdicted, in which
the attacker reaches a state allocated with a decoy.

Our problem can be informally stated as follows.

Problem 1. In the attack planning scenario we mentioned above, determine the
defender’s strategy to allocate decoy resources and modify action rewards so as to max-
imize the probability that the attacker reaches a fake target given the best response of
the attacker.

3 Main Results

In this section, we first define the attacker’s perceptual planning problem for a fixed
action reward modification and decoy resource allocation (x,y). Then we show that the
design of the proactive defense can be formulated as a bi-level optimization problem.
We investigate the special property of the formulated bi-level optimization problem to
develop an optimization-based approach for synthesizing the proactive defense strategy.
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3.1 A Bi-level Optimization Formulation

The defender’s strategy changes how the attacker perceives the attack planning problem
as follows:

Definition 4 (Perceptual attack planning problem with modified reward and
decoys). Let the action reward modification be x and decoy allocation be y, and the
attacker’s original planning problem M = (S,A, P, ν, γ, F,R2), the perceptual plan-
ning problem of the attacker is defined by the following MDP with terminating states:

M(x,y) = (S,A, P y , ν, γ, F ∪ Dy , Rx,y
2 ),

where S,A, ν, γ are the same as those in M , Dy = {s ∈ D | y(s) �= 0} are decoy
target states and absorbing. The transition function P y is obtained from the original
transition function P by only making all states in Dy absorbing. The reward Rx,y

2 is
defined based on Definition 1 and Definition 2.

The perceptual value for the attacker is

V π
2 (ν;x,y) = Eπ

[ ∞∑

k=0

γkRx,y
2 (Sk, Ak) | S0 ∼ ν

]
,

where Eπ is the expectation given the probability measure Prπ induced by π from the
MDP M(x,y).

The defender’s deception objective is given by a reward function Ry
1 : S → R,

defined by

Ry
1 (s) =

{
1 if s ∈ Dy ,

0 otherwise.
(1)

Given the probability measure Prπ , we denote the defender’s value by

V π
1 (ν;y) = Eπ

[ ∞∑

k=0

γkR1(Sk) | S0 ∼ ν
]
.

With this reward definition, the value V π
1 (ν;y) is the probability of the attacker

reaching a fake target in Dy .
Then the problem of synthesizing an optimal proactive defense strategy (x,y) can

be mathematically formulated as

Problem 2.

max.
x∈X,y∈Y

V π∗
1 (ν;y)

s.t. π∗ ∈ argmax
π

V π
2 (ν;x,y).

where X = {x ∈ R|W |
≤0 | −1Tx ≤ k} and Y = {y | ∀s ∈ S \D,y(s) = 0 and 1Ty ≤

h} are the ranges for variables x and y correspondingly.

In words, the defender decides (x,y) so that the attacker’s best response in his
perceptual attack planning problem turns out to be an attack policy most preferred by
the defender, as it maximizes the defender’s value.
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3.2 Synthesizing Proactive Defense Against a Rational Attacker

The bi-level optimization problem is known to be strongly NP-hard [6]. In this section,
we show that when the attacker is rational, then the lower-level problem can be for-
mulated as a LP. Thus, the original bi-level optimization is a special case–bi-level LP.
Using the KKT condition of the lower-level problem, the bi-level LP reduces to a single-
level optimization with special ordered set (SOS) constraints. We formulate the lower-
level LP using occupancy measures [1]. For a given defense strategy (x,y), the optimal
policy perceived by the attacker can be solved using the following LP:

max.
m

∑

s∈S,a∈A

Rx,y
2 (s, a)m(s, a).

s.t.
∑

a∈A

m(s, a) = γ
∑

s′∈S,a′∈A

P (s|s′, a′)m(s′, a′) + ν(s),∀s ∈ S, (2)

m(s, a) ≥ 0,∀s ∈ S, a ∈ A. (3)

where m(s, a) is the (discounted) occupancy measure that represents the frequency a
state s is visited and a is taken. Using the solution of the LP, the optimal attacker policy
π is recovered via: π(s, a) = m(s,a)∑

a′∈A m(s,a′) .

The original bi-level optimization reduces to

max.
x∈X,y∈Y

∑

s∈S,a∈A

R1(s, a)m(s, a)

s.t. max.
m

∑

s∈S,a∈A

Rx,y
2 (s, a)m(s, a), s.t. (2), (3).

By rewriting the lower-level LP using its KKT conditions, we convert the bi-level
optimization problem into a single-level optimization problem with SOS1 constraints.

First, we have the lower-level problem:

max.
m

∑

s∈S,a∈A

Rx,y
2 (s, a)m(s, a).

s.t.
∑

a∈A

m(s, a) = γ
∑

s′∈S,a′∈A

P (s|s′, a′)m(s′, a′) + ν,∀s ∈ S, (4)

m(s, a) ≥ 0,∀s ∈ S, a ∈ A. (5)

where we have Rx,y
2 (s, a) = R2(s, a) + x(s, a) + y(s),∀s ∈ S, a ∈ A. Thus we can

use KKT condition to form the lower-level problem to a Lagrangian function. We first
rewrite

∑

a∈A

m(s, a) = γ
∑

s′∈S,a′∈A

P (s|s′, a′)m(s′, a′) + ν(s),∀s ∈ S. (6)
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to the matrix form, which is equivalent to

Cm − γDm − ν = 0.

where C,D corresponds to the parameters in Eq. 6. And m ∈ R|S×A|
≥0 denotes the

vector of state-action visiting frequency.
Thus the Lagrangian function can be written as

L(m,μ, λ) = (R2 + x+ y)T m(s, a) + μTm+ λT (Cm − γDm − ν). (7)

where y is extended to S × A domain by defining y(s, a) = y(s)
The necessary conditions are listed as follows:

− (R2 + x+ y) + μ + (C − γD)T λ = 0,

Cm − γDm − ν = 0,
− m ≤ 0,

μ ≥ 0,

μ(i)m(i) = 0, i = 1, 2, ..., |S × A|. (8)

And the Eq. 8 can be written in the form of special order set (SOS). We then combine
these necessary conditions with the upper-level problem, the bi-level problem can be
rewritten as:

max.
x∈X,y∈Y,m

∑

s∈S,a∈A

R1(s, a)m(s, a)

s.t. 1Ty ≤ h,

− 1Tx ≤ k,

y ≥ 0,
x ≤ 0,

− (R2 + x+ y) + μ + (C − γD)T λ = 0,

Cm − γDm − ν = 0,
− m ≤ 0,

μ ≥ 0,

μ(i)m(i) = 0, i = 1, 2, ..., |S × A|. (9)

where (9) are special ordered sets of type 1 (SOS1) constraints. This optimization prob-
lem can be solved using the Gurobi Optimization toolbox.

3.3 Synthesizing Proactive Defense Against a Bounded Rational Attacker

The defense against a rational agent can be sensitive to potential mismatches on the
rationality assumption: Consider the defender aims to protect two targets {1, 2}. Both
targets have similar values but target 1’s value is slightly higher than that of target 2.
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Knowing a rational agent will aim at target 1, the defender will enforce all resources to
guard target 1 and may leave target 2 unprotected. However, a bounded rational attacker,
based on the quantal response [3,12], will compromise either target with almost equal
probabilities. We investigate how to design a defense strategy against attackers with
bounded rationality.

Transforming into a Constrained Optimization Problem. Based on the quan-
tal response model, an attacker with bounded rationality aims to compute a quantal
response policy π∗ in the perceived MDP M(x,y) by solving the following entropy-
regularized Bellman equation [14]:

V ∗
2 (s;x,y) = τ log

∑

a

exp{(R2(s;x,y) + γV ∗
2 (s;x,y))/τ},

where τ > 0 is the temperature parameter that controls the degree of entropy regular-
ization, if τ approaches 0, the Bellman equation recovers the optimal Bellman equation
under a rational attacker. However, due to the bounded rationality assumption, the orig-
inal bi-level optimization cannot be reduced into a bi-level LP as the objective function
using occupancy measures includes an additional nonlinear term which is the weighted
entropy of the policy.

Next, we propose a gradient-based method to solve Problem 2 assuming the attacker
is bounded rational. First, we show the original problem can be formulated as a con-
strained optimization problem. Let Π(x,y) be the set of quantal response policies in
the attacker’s perceived planning problem with respect to a choice of variables x and
y. The bi-level optimization problem is then equivalently written as the following con-
strained optimization problem:

max.
π∗,x∈X,y∈Y

V π∗
1 (ν;y)

s.t. π∗ ∈ Π(x,y). (10)

This, in turn, is equivalent to

max.
π∗ V π∗

1 (ν;y)

s.t. π∗ ∈
⋃

x∈X,y∈Y

Π(x,y). (11)

Here, the constraint means the attacker’s response π∗ can be selected from the col-
lection of optimal attack policies given all possible values for x, y.

By the definition of the defender’s value function, it is noted that V π
1 (ν;y) does not

depend on the exact value of y but only depends on whether y(s) > 0 for each state
s ∈ D. Formally,

Lemma 1. For any y1,y2 ∈ Y , if y1(s) = 0 =⇒ y2(s) = 0 and vice versa, then
V π
1 (ν;y1) = V π

1 (ν;y2).
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Proof. Given two different vectors y1 and y2, we can construct two MDPs:
M1 := M(x,y1) = (S,A, P y1 , ν, γ, F,R1) and M2 := M(x,y2) =
(S,A, P y2 , ν, γ, F,R1), respectively.

If y1(s) = 0 if and only if y2(s) = 0, then the transition functions P y1 of M1 and
P y2 of M2 are the same (see Definition 4).

Further, the defender’s reward function Ry1
1 also equals to Ry2

1 (see (1)), given both
the transition dynamics and reward are the same, we have V π

1 (ν;y1) = V π
1 (ν;y2).

Lemma 1 proves given an attacker’s policy π, the defender’s value only relates to
where the decoys are located. Next, to remove the dependency of V π

1 (ν;y) on y, we
make the following assumption:

Assumption 2. The set Dy = {s ∈ D | y(s) �= 0} of states where decoys are allo-
cated is given.

Under this assumption, we simply assume all states in the given set D have to be
assigned with nonzero decoy resources. That is Dy = D.

This assumption further reduces the defender’s synthesis problem into a constrained
optimization problem.

max.
π∗ V π∗

1 (ν)

s.t. π∗ ∈ Π �
⋃

y∈Y,x∈X

Π(x,y),

y(s) > 0,∀s ∈ D. (12)

Because the above problem is a standard-constrained optimization problem, one can
obtain a locally optimal solution using the projected gradient method:

πk+1 = projΠ(πk + η∇V πk

1 (ν)).

where projΠ(π) denotes projecting policy π onto the policy space Π and η is the step
size.

Connecting Inverse-Reinforcement Learning with Projected Gradient Ascent. A
key step in performing Projected Gradient Ascent (PGA) is to evaluate, for any policy
π̂, the projection projΠ(π̂). However, this is nontrivial because the set Π̄ includes a set
of attack policies, each of which corresponds to a choice of vectors (x,y). As a result,
Π̄ does not have a compact representation. Next, we propose a novel algorithm that
computes the projection.

First, it is noted that this projection step is equivalent to solving the following opti-
mization problem:

min.
π

D(π̂, π)

s.t. π ∈ Π,

y(s) > 0;∀s ∈ D. (13)
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where D(π̂, π) is the distance between the two policies π̂, π.
The distance functionD can be chosen to be the Kullback-Leibler (KL)-divergence

between policy-induced Markov chains. Specifically, the KL divergence in (13) can be
expressed as

DKL (Mπ̂(x,y)‖Mπ(x,y)) =
∑

ρ

P̂r(ρ) log
P̂r(ρ)

Pr(ρ|x,y)

=
∑

ρ

P̂r(ρ) log P̂r(ρ) −
∑

ρ

P̂r(ρ) log Pr(ρ|x,y), (14)

where P̂r(ρ) is the probability of path ρ in the Markov chain Mπ̂(x,y), and Pr(ρ|y) is
the probability of path ρ in the Markov chain Mπ(x,y) induced by a policy π.

Because the first term in the sum in (14) is a constant for π̂ is fixed, the KL diver-
gence minimization problem is equivalent to the following maximization problem:

max.
x∈X,y∈Y

∑

ρ

P̂r(ρ) log Pr(ρ|x,y) (15)

Problem (15) can be solved by an extension of the Maximum Entropy (MAXENT)
IRL algorithm [23], which was originally developed in the absence of constraints on the
reward parameters. It is well-known that IRL is to infer, from the expert demonstrations,
a reward function for which the policy generating the demonstrations is optimal.

The use of IRL to perform the projection is intuitively understood as follows: The
goal is to compute a pair of vectors (x,y) that alters the attacker’s perceived reward
function so that the bounded rational attacker’s optimal policy given (x,y) is closed to
the “expert policy” π̂, under the constraints of x,y. Importantly, we used the MAXENT
IRL because it assumes the expect policy is entropy-regulated, and thus is consistent
with the assumption of the quantal response of a bounded rational attacker.

To enforce the constraints x ∈ X,y ∈ Y , we approximate the constraint using a
logarithmic barrier function and compute the optimal solution (x∗,y∗) using gradient-
based numerical optimization Considering the constraint 1Ty ≤ h, we implement the
barrier function to approximate the inequality constraints and rewrite the optimization
problem as:

max.
x,y

∑

ρ

P̂r(ρ) log Pr(ρ|x,y) +
1
t
log(h − 1Ty) +

1
t
log(k + 1Tx)

s.t. y(s) = 0, ∀s ∈ S \ D,

x(s, a) = 0,∀(s, a) ∈ S × A \ W.

where t is the weighting parameter of the logarithmic barrier function. In our experi-
ment, t is fixed to be 1000.

Let L(x,y) be the objective function. Specifically, x and y can be updated via
xk+1 = projX(xk + ηx∇L(x,y)), yk+1 = projY(yk + ηy∇L(x,y)).
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Policy Improvement for Gradient Ascent Step. After the projection step to obtain a
policy πk and the corresponding vector (x,y), we aim to compute a one-step gradient
ascent to improve the objective function’s value

V k+1
1 (ν) = V k

1 (ν) + ∇V k
1 (ν),

where V k
1 (ν) is the defender’s value evaluated given the attack policy πk at the k-th

iteration.
For this step, we perform a policy improvement step with respect to the defender’s

reward function Ry
1 . It is shown in [11,18] that policy improvement is a one-step New-

ton update of optimizing the value function.
Specifically, the policy improvement is to compute

π̃k+1(s, a) =
exp ((R1(s, a) + γV k

1 (s′))/τ)
∑

a∈A exp ((R1(s, a) + γV k
1 (s′))/τ)

,

The policy at iteration k + 1 is obtained by performing the projection step (13) in
which π̂ � π̃k+1.

The iteration stops when |V k+1
1 (ν) − V k

1 (ν)| ≤ ε where ε is a manually defined
threshold. The output yields a tuple (x∗,y∗) which is the (local) optimal proactive
defense strategy. We can only obtain a local optimal proactive defense strategy here
due to the transferred constrained optimization problem having a nonconvex constraint
set. However, we can start from different initial policies and select the best one.

To summarize, the proposed algorithm starts with an initial policy π̃0, and use
the IRL to find the projection π0 as well as the corresponding vectors (x0,y0) that
shape the attacker’s perceptual reward function for which π0 is optimal. Then a policy
improvement is performed to update π0 to π̃1. By alternating the projection and policy
improvement, the process terminates until the stopping criteria is satisfied.

Remark 1. In our problem, we assume the set D is given. If the set D is not given
but to be determined from a candidate set of states. Then the bi-level optimization is
combinatorial and NP-hard. A naive approach is to enumerate all possible combinations
and evaluate the defender’s value for every subset and select the one that yields the
highest defender’s value.

4 Experiment

We illustrate the proposed methods with two sets of examples, one is a probabilistic
attack graph and another is an attack planning problem formulated in a stochastic grid-
world. For all case studies, the workstation used is powered by Intel i7-11700K and
32GB RAM.

Figure 1 shows a probabilistic attack graph with the targets F = {10}. The attacker
has four actions {a, b, c, d}. For clarity, the graph only shows the transition given action
a where a thick (resp. thin) arrow represents a high (resp. low) transition probability.
For example, P (0, a) = {1 : 0.7, 2 : 0.1, 3 : 0.1, 4 : 0.1}1. The defender can allocate

1 The exact transition function is provided: https://www.dropbox.com/s/nyycf57vdry139j/
MDPTransition.pdf?dl=0.

https://www.dropbox.com/s/nyycf57vdry139j/MDPTransition.pdf?dl=0
https://www.dropbox.com/s/nyycf57vdry139j/MDPTransition.pdf?dl=0
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Fig. 1. A probabilistic attack graph.

decoy resources at a set D = {11, 12} of decoy states and receive a reward of 1 if the
attacker reaches the decoy instead of the true targets. If no decoy resource is allocated,
the attacker receives a reward R2(s, a) = 1 for any s ∈ F and the optimal attack
policy has probability 60.33% of reaching the target set F from the initial state 0. In the
meantime, the defender’s expected value is 0.149. That is, with probability 14.9%, the
attacker will reach decoy set D and the attack is terminated.

Consider a defender who has a limited decoy resource constrained by 1Ty ≤ 3
and cannot modify the state-action reward. First, we consider the decoy allocation
against a rational attacker, from the bi-level LP solution, the decoy resource alloca-
tion is y1(11) = 1.218,y1(12) = 0. The defender’s value is 0.654 given the best
response of a rational attacker in M(y1). Then, the same problem is solved for defend-
ing against a bounded rational attacker. The decoy resource allocation based on the
PGA method yields y2(11) = y2(12) = 1.313. Based on the given decoy resource
allocation, the attacker has an 8.63% probability of reaching the target set F and the
defender’s expected value is 0.653 at initial state 0. In these two cases, we observed
that the defender’s values are similar: By assigning resources to decoys to attract the
attacker, the defender reduces the attacker’s probability of reaching the target state sig-
nificantly (85% reduction) and improves the defender’s value by 3.38 times.

A key observation is that the decoy allocation against rational attacker y1 places
resources only at one decoy state. This is because, when y1(11) = 1.218, the rational
attacker selects the optimal action to reach state 9 and then 11 from state 6 instead of
the true target 10. If the attacker is bounded rational, then at state 6, he will choose
the action leading to either 9 or 10 with nearly equal probabilities. Thus, the design
y1 against a rational attacker can be sensitive to possible mismatches in the rational-
ity assumption. To see this, we perform the following comparison: We use the design
y1 against a rational attacker to construct the attack planning MDP and then solve
the optimal attack policy of a bounded rational attacker in this MDP. The defender’s
value is obtained by evaluating the bounded rational attacker policy in M(y1) with
the defender’s reward. In this example, we observe that the defender’s value is 0.444,
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which indicates that the defender would have a performance drop of 33% if the ratio-
nality assumption is violated. On the other hand, when we solve a rational attack policy
in the MDP M(y2), whose defense is optimized against the bounded rational attacker,
we observe the defender’s value is 0.654, which is similar to the case against a bounded
rational attacker. The result is shown in Table 1.

Table 1. Defender’s values in the probabilistic attack graph.

Defense Strategies Types of Attackers

Rational Bounded Rational

y1 optimized for rational attackers 0.654 0.444

y2 optimized for bounded rational attackers 0.654 0.653

Fig. 2. A 6× 6 gridworld.

Next, we consider a robot motion planning problem in attack graphs modeled by
stochastic gridworlds. The purpose of choosing such an environment is to make the
results more interpretable. Consider first a small 6 by 6 gridworld in Fig. 2. The attack-
er/robot aims to reach a set of goal states while avoiding detection from the defender.
The attacker can move in four compass directions. Given an action, say, “N”, the
attacker enters the intended cell with 1 − 2α probability and enters the neighboring
cells, which are west and east cells with α probability. In our experiments, α is selected
to be 0.1. A state (i, j) means the cell at row i and column j.

The defender has deployed sensors shown in Fig. 2 to detect an attack. Once the
attacker enters a sensor state, his task fails. The decoy set D is given as blue cells and
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Fig. 3. A 10× 10 gridworld.

the target set F is given as green cells. The robot icon represents the robot’s initial state.
If no decoy resource is allocated, the attacker’s policy has a probability of 98.98% of
reaching the target set from the initial state. In the meantime, the defender’s expected
value is 3.56×10−6, which means the attacker’s probability of reaching decoys is close
to 0.

We employ the bi-level LP to solve decoy allocation against a rational attacker and
the result is y1((1, 4)) = 1.946,y2((4, 5)) = 1.774, the defender’s value is 0.433.
Then the same problem is solved for defending against a bounded rational attacker. The
PGA method yields y2((1, 4)) = 2.016,y2((4, 5)) = 1.826. Based on the given decoy
resource allocation, the attacker has a 9.9% probability of reaching the target set F , and
the defender’s expected value at the initial state is 0.388.

To see how sensitive y1 is to the rationality assumption of the attacker, we evaluate
the defense strategy y1, y2 against these two types of attackers: rational and bounded
rational attackers. We observe a 26% decrease of defender’s value when using y1, opti-
mized against rational attacker, to defend against a bounded rational attacker. When
the optimal defense y2 against a bounded rational attacker is used against a rational
attacker, the performance loss for the defender is negligible. The result is shown in
Table 2.

The Effects of Allowing Action-Reward Modification and Different Choices of
Decoy States. We study how much the defense can be improved by allowing
additional state-action reward modification. The actions the defender can mod-
ify are marked as arrows in Fig. 2. The PGA method yields x2((4, 0), ‘N’) =
−1,x2((4, 1), ‘N’) = −0.94,x2((4, 2), ‘N’) = −0.904,x2((4, 4), ‘N’) =
x2((4, 4), ‘W’) = x2((4, 4), ‘S’) = −1,x2((4, 4), ‘E’) = 0, y2((1, 4)) =
1.938,y2((4, 5)) = 1.734. The defender’s value is 0.394 given the joint decoy allo-
cation and action reward modification, and the attacker has a probability of 8.6% to
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reach the true goal, which is 13.13% reduction compared to that when only the decoy
resource allocation is allowed. The result is shown in Table 3.

Table 2. Defender’s values in 6× 6 gridworld with only decoy allocation.

Defense Strategies Types of Attackers

Rational Bounded Rational

y1 optimized for rational attackers 0.433 0.321

y2 optimized for bounded rational attackers 0.431 0.388

In order to test how the decoy set D influences the result. We re-allocate the
position of decoys to {(0, 2), (5, 3)}. The result is shown in Table 4. If we do not
allocate decoy resources, the attacker reaches the target set with 98.97% probabil-
ity, and the defender’s value is 7.61 × 10−8 at the initial state. If the defender
can allocate resources to the decoys, PGA method yields y2((0, 2)) = 1.141 and
y2((5, 3)) = 1.0. The attacker’s probability of reaching the target set is 3.99%
and the defender’s expected value is 0.699. If the defender is allowed to mod-
ify the same set of state-action rewards as she is in the previous example, PGA
method yields x2((4, 0), ‘N’) = −1,x2((4, 1), ‘N’) = −0.85,x2((4, 2), ‘N’) =
−0.081,x2((4, 4), ‘N’) = x2((4, 4), ‘W’) = x2((4, 4), ‘S’) = −1,x2((4, 4), ‘E’) =
0, y2((0, 2)) = 0.985 and y2((5, 3)) = 1.068. Under this configuration, the attacker’s
probability of reaching the target set is 0.3% (93% reduction compared to only allocat-
ing decoy resources) and the defender’s expected value is 0.730 (4.4% increase com-
pared to only allocate decoy resources). Clearly, the choice of decoy states D influ-
ences the attacker’s probability of reaching the target set and the defender’s expected
value: the second set D′ = {(0, 2), (5, 3)} appears to outperform the first set D =
{(1, 4), (4, 5)}. The defender’s value is 0.73 given decoy set D′, compared to 0.39
given decoy set D.

Table 3. Experiment result in 6× 6 gridworld given D = {(1, 4), (4, 5)}.

No decoy Decoy only Decoy and action reward

Attacker’s value 0.99 0.099 0.086

Defender’s value 3.56 × 10−6 0.388 0.394

4.1 Scalability

We increase the gridworld size to 10×10 as shown in Fig. 3. The sensors, decoy set, and
target set are represented using the same notations as the 6 × 6 gridworld. The results
obtained from bi-level LP and PGA are shown in Table 5.
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Table 4. Experiment result in 6× 6 gridworld given D = {(0, 2), (5, 3)}.

No decoy Decoy only Decoy and action reward

Attacker’s value 0.99 0.04 0.003

Defender’s value 7.61 ×10−8 0.699 0.730

Table 5. Defender’s values in 10× 10 gridworld.

Defense Strategies Types of Attackers

Rational Bounded Rational

y1 optimized for rational attackers 0.476 0.469

y2 optimized for bounded rational attackers 0.476 0.472

Fig. 4. The convergence of PGA for computing an optimal defense strategy in 10× 10 gridworld
given different initializations.

We also test the convergence of the PGA method using different initial policies as
shown in Fig. 4. From Fig. 4, we observe that different initial policies result in a similar
converged value for the objective function. However, the rate of convergence depends
on the initialization of the PGA. The PGA method solved the 10 × 10 gridworld using
2112.25 s and the 6× 6 example using 537.58 s. The bi-level LP solution running time
increases from 0.17 s to 0.89 s when we increase the gridworld size from 6 × 6 to
10 × 10. The running time shows both methods can be extended to moderate problem
sizes.

5 Conclusion and Future Work

We present a mathematical framework and algorithms for decoy allocation and reward
modification in a proactive defense system against rational and bounded rational attack-
ers. The formulation and solutions can be extended to a broad set of adversarial interac-
tions in which proactive defense with deception can be deployed. In the future, it would
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be interesting to consider more complex attack and defense objectives and investigate
the decoy allocation given the uncertainty in the attacker’s goal or capability. Apart
from “revealing the fake” studied herein, another direction is to explore how to “con-
ceal the truth” by manipulating the attacker’s perceptual reward of compromising true
targets.
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Abstract. Honeypots are a classic cyber-deceptive technique that
allows a defender to add false information into the system in an effort
to deter/delay/distract potential attackers. However, the effectiveness of
honeypots is dependent on their design along with the environment into
which they are deployed. In this work, we consider the scenario where
there is a collection of honeypots along with a set of fake credentials. In
the first part of the paper, we uncover fundamental bounds that relate to
how long these deceptive elements remain effective. In the second part of
the paper, we take our results one step further and analyze a two-person
game where the attacker attempts to access desired resources within
a system according to a preference model and the defender attempts
to design honeypots that slow attacker progress. While prior work has
demonstrated the defender’s ability to learn attacker preferences by
observing the attacker’s actions, we enrich both parties’ action spaces
by allowing the attacker to query whether a server is real or honeypot
and by allowing the defender to choose between honeypots that better
reveal attacker behavior, or honeypots that exploit current knowledge of
attacker behavior. In this setting, we provide and analyze optimal strate-
gies for the attacker, along with a learning bound for and simulation of
defender strategies.

Keywords: Adversarial game · Cyber-deception · Active learning

1 Introduction

Cybersecurity is an area of great importance for any organization, whether in
industry, government, military, or other settings [4,13]. Despite increased focus,
systems meant to provide security face two challenges. First, many techniques
offer a plausible approach to defense, but lack provable security guarantees, or
offer them in highly narrow settings. Second, the space is dynamic, with frequent
appearances of new cyberattacks and defenses, as well as combinations of extant
techniques. These obstacles must be overcome for organizations to have confi-
dence in their cybersecurity. As a result, we are interested in studying settings
that have rich attack models and defense strategies with provable guarantees.
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Among the most important such settings involve the use of deception for
providing means of defense [1]. For defenders, such deception can be expressed
through honeypots—false information or devices that are added within an ecosys-
tem to slow down or block attackers [3,6]. Honeypot-based systems naturally
admit a game-theoretical formulation [12], but there is a wide variety of such
settings. Many of the most realistic settings have not yet been addressed.

We focus on cyberattack settings where the attacker’s interests can be
described via a preference model, as in [6,7]. In contrast to earlier work, the
attacker may choose between two attack vectors. In one approach, the attacker
attempts to use accessible credentials to gain access to a system, allowing the
attacker to access resources within the system of the most interest to the attacker.
In the other, the attacker performs random attacks, which may be faster than
relying on credentials but is less targeted towards the specific resources which
the attacker would like to access. To prevent these attacks, the defender has the
ability to use deception—setting up honeypot systems and creating false sets of
credentials in order to slow down or prevent the attacker from breaking in. This
work studies the fundamentals of such multiple-attack scenarios.

2 Related Work

A rich line of literature has studied deception in the context of cybersecurity.
In such work, a typical scenario involves a two-player game between an attacker
and a defender. The goal of the attacker is to access some system resources.
The defender can prevent this from happening (or slow it down) by present-
ing honeypots—fake resources—to the user. Such games have been extensively
studied [2,5,11], usually in the form of zero-sum games.

A closely related line of work involves learning from preferences. For example,
attackers may have particular interests in accessing certain resources. Defenders
therefore seek to learn these preferences. Doing so enables them to potentially
deploy honeypots and other means of deception. Such work, including [6], obtain
learning bounds on the number of interactions required for defenders to learn a
sufficiently accurate estimate of the attacker model.

This work studies richer scenarios with multiple attack vectors. The first of
these is inspired by [15]; here the attacker seeks to obtain credentials via querying
servers, but must deal with honeypot servers that do not tell the truth (like the
spies in [15]). The second involves a preferential model as in [6]. In contrast
to this work, we tackle two additional factors. The first is that defenders must
handle the two attack factors. The second is that the environment is changed by
deployment of honeypots—complicating learning attacker preferences.

3 Setup and Structure

In this work, we consider a system of s servers, of which � are honeypots and μ
are real, and c credentials, of which ρ are fake. Let S denote the set of indices
of all servers, Sh the set of honeypots and Sr the set of real servers. While the
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defender knows the identities of all servers and credentials, the attacker discovers
them over the course of the game. Instead, the attacker only knows that there
are at most tH honeypot servers and tF false credentials.

The i-th server is described by a feature vector xi ∈ R
d
+, which intuitively

may be thought of as the embedding of various features which describe the
server, such as name and location. The attacker has a vector of preferences
within the same embedding space, denoted w ∈ R

d
+. For instance, the attacker

may be interested in servers located in a particular region. Both attacker and
defender observe xi for each server i, while only the attacker knows their own
preference vector w. We say that the attacker’s relative “interest” in a server
i is proportional to wT xi. We refer to the α real servers with highest attacker
interest as the attacker’s desired servers Sd. The game ends when the attacker
performs β accesses to each of the α desired servers.

The attacker may choose one of two strategies: performing queries to learn
the identities of each server and credential, then accessing the desired servers over
the following αβ timesteps, or performing random attacks. If the attacker elects
to perform identity queries, the attacker selects a server i ∈ [s] and credential
j ∈ [c], then poses a question of the form “Server i, is credential j real (R) or
fake (F)?” in each timestep until learning all identities. If instead they perform
random attacks, they access the i-th server with probability

pi =
exp(wT xi)∑

j∈S exp(wT xj)
.

One attack is carried out in each timestep until all αβ goal accesses are per-
formed. When attacking server i, the attacker gains access to a portion of its
private data if i is real; otherwise, the attacker discovers that i is a honeypot.

The attacker gains 1 point each time they complete one of the αβ desired
accesses and loses 1 point each time they attack a honeypot – upon accessing or
querying server i for the j-th time in timestep t, the attacker reward is

Rt(i, j) =

⎧
⎪⎨

⎪⎩

−1 if attack and i ∈ Sh

1 if attack, i ∈ Sd and j < β

0 otherwise.
(1)

Rewards are also multiplied by a discount factor Δt in timestep t, for 0 < Δ ≤ 1.
While the identity query strategy avoids the random access strategy’s risk of
penalization from attacking honeypots, this strategy’s accesses may be performed
later than random strategy accesses, and thus encounter lower rewards due to
the discount Δ.

Meanwhile, the defender chooses the x-vectors of their � honeypots, selecting
between honeypot placements that allow the defender to learn a better estimate
W̃ of w and placements that maximize honeypot attack probability. The defender
receives reward −Rt(i, j) in timestep t, forming a zero-sum game.

The remainder of this work is structured as follows. First, we consider the
attacker’s two actions in Sect. 4. Sections 4.1 and 4.2 discuss the amount of
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queries needed for the attacker to learn servers’ and credentials’ identities prior to
performing the αβ desired accesses, while Sect. 4.3 analyzes the random attack
strategy, determining the expected number of random attacks needed to per-
form the αβ desired accesses. We then discuss the game from the defender’s
point of view in Sect. 5. This section compares honeypot placement strategies,
establishing a learning bound on the defender’s ability to learn w (and thereby
more effectively target honeypots that lure the attacker) and demonstrating the
defender’s strategies in a simulated game environment.

4 Attacker Strategy

In this section, the defender is fixed such that the x-vectors of honeypots are
held constant. We first study the attacker’s identity query strategy, where the
attacker asks a query of the form, “Server i, is credential j real (R) or fake (F)?”
in each timestep until learning all identities and performing the desired accesses.

We assume that our � honeypots are low-interaction, which implies that they
will always respond with the answer F, whereas the remaining μ real servers will
respond truthfully with either R or F, depending on whether the credential is real
or fake, respectively. As such, a response of R only occurs when i and j are both
real; otherwise the response is F. Only once that the attacker has learned the
identities of all s servers and c credentials can the attacker perform their desired
αβ accesses. Under this setup, Sect. 4.1 determines the worst-case maximum
number of identity queries until the attacker can perform their desired accesses,
while Sect. 4.2 finds the average case number of queries. A greater number of
timesteps prior to the desired accesses will result in a greater time penalty on
the attacker’s positive rewards during the desired accesses in (1).

Lastly, Sect. 4.3 considers the attacker’s random attack strategy.

4.1 Determining Server and Credential Identities - Worst Case

We refer to the property of a credential being real or fake as the “type” of the
credential. Analogously, we refer to the property of a server being a real server
or a honeypot as the identity of the server. We will study the following problems:

1. How many questions are necessary and sufficient to determine the type of
each of the credentials?

2. How many questions are necessary and sufficient to determine the identity of
each of the servers?

We note that as a result of the symmetry of the game setup, the solutions to both
of these problems is the same, and consequently we will focus on the first prob-
lem. For shorthand, we will refer to the solution to 1) above as Q∗(s, c, tH , tF )
so that after Q∗(s, c, tH , tF ) questions, the attacker will always be able to deter-
mine the type of each of the c credentials. For notational convenience, when the
parameters s, c, tH , tF are understood, we will abbreviate Q∗(s, c, tH , tF ) as Q∗.
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Our main result is to show that, for the case where tH ≥ tF − 1, at most
Q∗ = tH + tF − 1 + c questions (or queries) are necessary and sufficient. This
implies that, under the scenario where there are roughly as many fake credentials
as honeypots, both types of deception appear to impact the attacker nearly
equally. However, when tH << tF − 1, this trend does not hold. We show in
Sect. 4.1 that at most only c + O(

√
tF ) queries are needed for the case where

tH is a constant. From a defender point of view, this implies that increasing the
number of fake credentials (typically easier) has a similar effect as increasing the
number of honeypots, provided they are roughly comparable in number. In this
setting, introducing either one additional fake honeypot or one additional fake
credential requires the attacker ask one additional query. When tH << tF − 1,
introducing a honeypot appears to be significantly more impactful than a fake
credential. For this setting, introducing one honeypot requires the attacker ask at
most

√
tF additional queries whereas increasing the number of fake credentials in

certain cases only increases the overall number of queries by at most a constant.

Upper Bound on Q∗. In the following, we show that Q∗ ≤ tH + tF − 1 + c.
This result is stated more formally in Lemma 1. Afterwards, for the setting where
tH <

√
tF , we show that this quantity is at most only

√
tF (2tH + 1)+1+ c. We

begin with the following observation, which we state as a claim for clarity.

Claim 1. If server i responds R when queried about credential j, then credential
j is real and server i is a real machine.

The basic idea behind our first approach, which shows Q∗ ≤ tH + tF − 1+ c,
is to ask as few questions as possible in order to produce an answer of R to one of
our questions. Afterwards, we will query this server about the identity of each of
the other c−1 credentials. The output of the following procedure will be the set
CR ⊆ [c], which we will later show, contains the identity of the real credentials.

Initialize CR = ∅. We proceed as follows:

– Step 1: Generate tH + tF + 1 pairs of elements say (i1, j1), (i2, j2), . . . ,
(itH+tF +1, jtH+tF +1) where |{i1, . . . , itH+tF +1}| = |{j1, . . . , jtH+tF +1}| =
tH + tF + 1. (ik, jk) represents the question: “Server ik, is credential jk R
or F?”

– Step 2: Starting with question (i1, j1), the attacker asks each of the questions
in the list generated at step 1. Suppose that k∗ is the first question that
generates the response R. Claim 1 implies that server ik∗ is a real machine
and also that credential jk∗ is a real credential. Add jk∗ to the set CR.

– Step 3: If k∗ = tH + tR + 1, then add [c] \ [k∗] to CR. Otherwise, ask server
ik∗ about the credentials {jk∗+1, . . . , jc}. For any k ∈ [c] \ [k∗], if server ik∗

responds R, then add jk to the set CR.
– Step 4: For k ∈ {1, 2, . . . , k∗ − 1} ask server ik∗ about credential jk. For any

k ∈ [k∗ − 1], if server ik∗ responds R, then add jk to the set CR.

We begin with the following observation.

Claim 2. In step 2, k∗ ≤ tH + tF + 1. Furthermore, if k∗ = tH + tF + 1, then
the credentials {jtH+tF +1, jtH+tF +2, . . . , jc} are real.
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Note that according to Claim 1, server i∗k has correctly identified c − k∗ + 1
of the m credentials by the end of step 3, which implies that we have not asked
server i∗k about the identity of k∗ − 1 credentials and in particular about the
credentials {1, 2, . . . , k∗ − 1}. We now arrive at the main result of this section.

Lemma 1. For any j ∈ [c], j ∈ CR if and only if credential j is real. The number
of questions asked in steps 1–4 is at most tH+tF −1+c provided c, s ≥ tH+tF +2.

Proof. The fact that the set CR contains the identities of each of the real creden-
tials follows immediately from the previous discussion. The number of questions
asked at steps 1) and 4) are k∗ and k∗ − 1, respectively. Letting q3 denote the
number of questions asked at step 3, the total number of questions is:

2k∗ − 1 + q3. (2)

Here, there are two cases to consider. If k∗ < tH + tF + 1, then q3 ≤ c − k∗ and
(2) is at most c + tH + tF − 1 as desired. Otherwise, if k∗ = tH + tF + 1, then
q3 = 0 and (2) is 2(tH + tF + 1) − 1.

Although the previous approach has the advantage of working for a wide
range of parameter choices for tH , tF , it is far from optimal in many cases. In
particular, for the setting where tH is a constant with respect to tF , it turns out
that a better strategy exists which requires c + O(

√
tF ).

For simplicity, we assume that tF is a square, although it is straightforward to
extend to a more general setting. The attacker first chooses a set of tF credentials,
denoted j1, . . . , jtF

and partitions this set of credentials into
√

tF groups denoted:

J1 = {j1, . . . , j√
tF

},

J2 = {j√
tF +1, . . . , j2

√
tF

},

...
J√

tF
= {jtF −√

tF +1, . . . , jtF
}.

Initialize CR = ∅. We proceed as follows.

– Step 1: Generate tF pairs of questions (i1, j1), (i1, j2), . . . , (i1, j√
tF
),

(i2, j√
tF +1), (i2, j√

tF +2), . . . , (i2, j2√
tF
), . . . , (i√tF

, jtF
) where i1, . . . , i√tF

are
√

tF distinct hosts. Starting with (i1, j1) ask each of these tF queries.
– Step 2: Generate an additional (at most) tH

√
tF +1 queries of the form (i, j)

such that for each such query the following holds: (i) Host i has not been
queried previously and (ii) Credential j has not appeared in any previous
queries. If any point we receive the response T, we proceed to Step 3).

– Step 3: At this point, we have received the response T. Suppose the query
which receives this response is (ik, jk). Insert jk into CR. We next ask the
following

√
tF questions: (i1, jk), (i2, jk), . . . , (i√tF

, jk). Let IF denote the set
of servers whose response is F. Go to Step 4).



240 S. Cromp et al.

– Step 4: For each v ∈ [
√

tF ], if iv ∈ IF , then for each j ∈ Jv, we perform the
query (ik, j) and if the response is T, then we add credential j to CR.

– Step 5: For each credential j outside the set j1, j2, . . . , jtF
, we perform the

query (ik, j) and if the response if T, we add j to the set CR.

Lemma 2 states that the maximum number of queries necessary to determine
the type of each of the c credentials. First, we present an illustrative example.

Example 1. Suppose tH = 1, and tF = 16. We assume in the following that i1 is
a honeypot and j5, j6, . . . , j16, j17, j18, j19 are fake credentials. According to the
previous procedure, in step 1 suppose we formulate t = 16 queries:

⎡

⎢
⎢
⎣

(i1, j1) (i2, j5) (i3, j9) (i4, j13)
(i1, j2) (i2, j6) (i3, j10) (i4, j14)
(i1, j3) (i2, j7) (i3, j11) (i4, j15)
(i1, j4) (i2, j8) (i3, j12) (i4, j16)

⎤

⎥
⎥
⎦ . (3)

More specifically the attacker will first ask the query (i1, j1) followed by (i1, j2)
and so on until we have asked all 16 queries. Since i1 is a honeypot and j5, . . . , j20
are fake, it follows that the response to each of these queries is F.

For step 2, assume the next 5 queries are (i5, j17), (i6, j18), (i7, j19), (i8, j20),
(i9, j21). We will receive the response T on the second to last query since i8 is
not a honeypot and j20 is a real credential. At this point we add j20 to our list
of real credentials and after the query (i8, j20) we will proceed to the third step.

At step 3), we ask (i1, j20), (i2, j20), (i3, j20), (i4, j20). (i1, j20) returns F and
the others return T. Because of the T responses, each of the credentials in the
last 3 columns of (3) are of type fake. Next we proceed to step 4).

At step 4), in order to determine the identity of the credentials in the set
j1, . . . , j20 it suffices to query the host i8 (which we know is not a honeypot)
about each of the credentials in the first column of (3). Since each of these
credentials are by assumption real, it follows that j1, . . . , j4 will be added to CR.

Finally, in step 5) we add each credential outside {j5, j6, . . . , j19} to CR. Note
that this step requires c − 16 additional queries to i8. In all, for each subsequent
step we have performed respectively 16, 4, 4, 4, and c − 16 queries. In total
c + 12 queries which, for this choice of parameters, is less than or equal to
c +

√
tF (2tH + 1) + 1 = c + 4 · (2 + 1) + 1 = c + 13 as claimed.

Lemma 2. For the setup where tH <
√

tF and where c, s > tH + tF , the
number of queries to determine the type of each credential is at most Q∗ ≤√

tF (2tH + 1) + 1 + c.

Lower Bound on Q∗. We next turn to the question of optimality and we will
show that for the case where tH ≥ tF − 1, at least tH + tF − 1 + c questions
are also necessary. We can consider our setup as a game, that is being played
between an attacker and Mother Nature (MN) where the attacker is allowed to
ask any questions of the same form as described earlier and Mother Nature is
allowed to fix the identities and types of each of the servers and credentials.

The main challenge, which we focus on now, is to establish the result for the
case where tH = tF −1. Our key technical result is described in the next lemma.
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Lemma 3. Suppose the attacker asks tH + tF − 1 queries and, among these
queries, there are exactly c0 credentials contained across the tH + tF −1 queries.
Then, in order to determine the identity of these c0 credentials, there exists an
assignment of identities to credentials and servers by MN such that c0 additional
queries are necessary.

Under our setup, we assume that MN always assigns at most tH honeypots
and at tF − 1 fake credentials to ensure that the first tH + tF − 1 queries receive
the response F where during these first tH + tF − 1 queries at least tH + 1
servers are queried and at least tH + 1 credentials are also queried. Note that
this scenario is always indeed possible since it can be the case that the first tH
hosts queried are honeypots and the following tF − 1 = tH credentials queried
are of type fake. Using the result stated in the previous lemma, we will show
in Theorem 1 that an additional c0 queries are necessary to determine the first
c0 credentials that were queried along with an additional c − c0 queries (which
each pertain to credentials outside the first c0 queried), implying a total of
tH + tF − 1 + c0 + (c − c0) = tH + tF − 1 + c queries are necessary.

In order to tackle this problem, we will visualize the first tH + tF − 1 queries
by means of edges in a bi-partite graph where the vertices on the left side of this
graph, which we denote as VS , represent each of the servers queried in the first
tH + tF − 1 queries and the vertices on the right hand side of the graph, which
we denote as VC , represent the credentials queried in the first tH +tF −1 queries.
There exists an edge between vertex i on the left side of the graph and vertex j
on the right hand side of the graph if the attacker asks the question (i, j). We
illustrate this setup by means of the next example. For shorthand, we refer to
this graph as the question graph G for the game.

Example 2. Suppose the attacker asks (i1, j1), (i2, j2), (i1, j3), (i3, j2). Then, the
question graph G that represents this sequence of questions is shown below:

For our analysis, we assume that the first tH + tF − 1 queries, which by
assumption all have received the response F, are fixed before the start of the
game. We say that the question sequence Q belongs to G if for every query in Q
either the server queried or the credential queried about (or both) are contained
in G and we represent this as Q ∈ G. As will be discussed in Claim 6, we assume
that when a query contains either a host or credential not represented in G, then
their identity is not labeled F. Conceptually, the questions in Q are questions
that are asked by an attacker (after the initial tH + tF − 1 queries) that can be
used to recover the identity of each credential in G.

The graph G will always have tH + tF − 1 edges. Given the graph G, we can
recast our problem as a labeling game for MN where she can label at most tH
vertices in VS to be F (which means they are honeypots) and at most tH vertices
in VC to be F (which means the corresponding credential is of type fake). In order
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to make this a binary labeling, we will assume the other vertices that are not
labeled F are labeled R. The goal will be to show that for any given G and Q,
there exists a labeling procedure, denoted by the function L, which takes as input
G and Q and outputs a labeling L(G,Q) such that:

1. The labeling L(G,Q) is consistent - This means that for any edge in the
question graph G at least one vertex in that edge is labeled F under L(G,Q).

2. The labeling procedure L(G,Q) is robust - If |Q| < |VC | it is not possible for
the attacker to ascertain the identity of each credential in G by asking the
queries in Q and G.

Note that in order to satisfy the consistency constraint, for any edge (i, j) ∈ EG
(where EG represents the edge set for the question graph G), either i is labeled
F or j is labeled F or both. Note also that if i is labeled R and (i, j) ∈ EG , then
it follows under our setup that j must be labeled F and vice versa.

Next, we introduce notation addressing robustness. Let D be a decoding rule
such that given Q along with a sequence of responses FR to each of the queries
in Q, the output of D is the set of credentials whose identities are known. Given
an assignment of identities to the vertices in G, the response from each of the
servers is deterministic. We capture this relationship by letting FR be a function
which takes as input the assignment of identities to servers and credentials. The
robustness property of L requires that for any sequence of queries Q ∈ G of
cardinality less than |VC |, there exists a labeling L(G,Q) such that

|D (Q, FR (L(G,Q)))| < |VC |. (4)

Thus, the goal will be to show that there exists a labeling procedure L, which
is consistent and robust. With an abuse of notation, we will also say that a
labeling for a particular graph G and a particular set of queries Q is consistent
with respect to G if each edge in G has a vertex labeled F. Furthermore, for a
specific question sequence Q, we will say that the labeling is robust with respect
to G,Q if (4) holds provided |Q| < |VC |.

The next three claims, whose proofs are deferred for the extended version of
the paper, will be useful in our subsequent derivations and in particular will be
invoked in the proof of Lemma 4. Let LtH ,tF −1(G,Q) be a labeling procedure
that assigns at most tH F labels to vertices in VS and tF − 1 F labels to vertices
to vertices in VC . When it is clear from the context, the parameters tH , tF − 1
may be omitted from the notation for the labeling procedure L.

Claim 3. Let G′ be a question graph and Q ∈ G′ be a question sequence where
G′ has vertex set VS ∪ VC and G′ has edge set EG′ . Let G = G′ + e1, e2 where
e1 = (i1, j1), e2 = (i2, j2) and where the degree of any vertex in G′ is at most
tH and j1 	= j2. If, for any sequence Q there exists a labeling LtH−1,tF −2(G′, Q),
which is consistent and robust with respect to G′,Q, then there exists a labeling
LtH ,tF −1(G,Q) that is consistent and robust with respect to G,Q.

Claim 4. Suppose tH = tF − 1 and G is a question graph after tH + tF − 1
queries by the attacker where |VC | ≥ tH + 1, |VS | ≥ tH + 1, and at most one
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vertex in VC has degree at least 2 and the remaining vertices in VC have degree
one. For any question sequence Q ∈ G, there exists a labeling that is consistent
and robust with respect to G,Q.

Claim 5. Let G be a question graph where there exists v∗ ∈ VS with degree tH
and where each neighbor of v∗ has degree exactly one. For any question sequence
Q ∈ G, there exists a labeling that is consistent and robust with respect to G,Q.

We now aim to prove Lemma 3 by induction on tH = tF − 1 and the next
claim considers the base case. Recall that for now, we assume the degree of each
vertex in VC is less than tH +1 after the initial tH + tF −1 queries. We will show
later that when this restriction is removed the result still holds afterwards.

Claim 6. Suppose tH = tF −1 = 1, G is the question graph after tH +tF −1 = 2
queries by the attacker where |VC | ≥ tH + 1 = 2 and |VS | ≥ tH + 1 = 2. Then,
there exists a labeling procedure that is consistent and robust.

Using the previous claim, we have the following lemma.

Lemma 4. Suppose tH = tF −1 > 1 and G is a question graph after tH + tF −1
queries by the attacker where |VC | ≥ tH + 1, |VS | ≥ tH + 1, and the degree of
any vertex in G is at most tH . Then, for any question sequence Q, there exists
a labeling procedure that is consistent and robust.

Proof. The proof will be by induction on tH (and tF − 1) where the base case
was proven in Claim 6. Suppose the result holds for all tH , tF − 1 ≤ L and
consider the case where tH = tF − 1 = L + 1. Let G′ denote the question graph
if we remove two edges (or queries) from G where j1 	= j2. By the induction
hypothesis, G′ has a labeling procedure that is consistent and robust. If G′ has
any unconnected vertices, we remove those from the graph as well. For the case
where there exists a vertex v ∈ VC or v ∈ VS with degree tH then one of the
edges removed from G must be adjacent to v. Because |VC |, |VS | ≥ tH + 1, there
can be at most one vertex in VC with a degree tH and at most one vertex in VS
with degree tH . Let E = {(ir1 , jr1), (ir2 , jr2)} denote the set of two vertices that
were removed from G to obtain G′ where we require that jr1 	= jr2 .

Next we consider the choice of the two edges in E . If there is a choice of
edges such that no vertices are isolated by their removal, then the vertex sets of
G and G′ are the same and the result follows from Claim 3. Next, we consider
the case where at least one vertex in VC appears in G but not G′. Note that if
this scenario occurs, then one of the following holds:

1) All the vertices in VC have degree one,
2) There is exactly one vertex in VC that has degree at least two and the remain-

ing have degree one, or
3) G contains a vertex v ∈ VS that has degree tH and each neighbor of v has

degree exactly one.
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1) and 2) fall under the conditions of Claim 4. 3) is handled by Claim 5.
Next, we consider scenarios where there appears at least one vertex from

VS that appears in G but not G′ as a result of removing edges (ir1 , jr1), (ij2 , jr2)
where jr1 	= jr2 . This result can be proven using similar logic to Claim 3. Suppose
that Q ∈ G is any valid question sequence Q ∈ G. Let Q′ ⊆ Q be such that
Q′ ∈ G′. Note that Q′ is simply the result of removing at most two queries that
involve either ir1 , ir2 and some credential outside G. By the inductive assumption,
there exists a labeling which is consistent and robust with respect to G′, Q′.
Suppose v ∈ G′ (v ∈ G as well) represents a credential which is unknown given
the queries G′,Q′. If v is not adjacent to ir1 , ir2 and it is not equal to j1, j2, then
setting ir1 , jr2 to be F results in a labeling which is robust and consistent with
respect to G,Q. If v is adjacent to ir1 , then setting ir1 to be F and jr2 to be
F results in a robust and consistent labeling. Otherwise, if v is adjacent to ir2

setting ir2 to be F and jr1 to be F results in a robust and consistent labeling.

Theorem 1. In order to identify the identity of all c credentials, there exists a
strategy for MN that always requires the attacker to ask at least tH + tF − 1 + c
questions when tH = tF − 1.

Proof. Suppose first that there exists a vertex v ∈ VS that is queried tH+1 times.
Then in this case, we can assume MN labels v to be F. Furthermore, if MN labels
the next tH −1 servers to be F, then it follows that at least tH +1+(tH −1)+c =
c + tH + tF − 1 queries are necessary. Similarly, if there exists a vertex v ∈ VC
that is queried tH + 1 times then we can also assume v is labeled F and so
given tH + 1 queries the attacker will have identified exactly one credential.
We can assume that MN labels the next tH honeypots queried to be F, which
implies in this case that an additional tH queries are required. Finally, since at
this point, the attacker has recovered the identity of only a single credential,
the attacker needs to produce an additional c − 1 queries implying a total of
tH +1+ tH +(c − 1) = c+ tH + tF − 1 queries are necessary in this case as well.

As a result of the logic in the previous paragraph, we can assume that cre-
dential is queried at most tH times and each server is also queried at most tH
times, which means we can invoke Lemma 3. Suppose that given this setup,
the first tH + tF − 1 queries each receive F from the attacker and the following
query receives T. Then according to Lemmas 3 and 4, in order to determine the
set of c0 credentials asked about during the first tH + tF − 1 queries at least
another c0 queries are necessary. Since among these c0 credentials there are at
most tF − 1 fake credentials, the attacker must also query each of the remain-
ing c − 1 − c0 credentials to determine their identity implying that a total of
tH + tF − 1 + 1 + c0 + (c − 1 − c0) = c + tH + tF − 1 queries are necessary.

The next result follows by induction on tH with base case in Theorem 1.

Corollary 1. For tH ≥ tF −1, there exists a strategy for MN that always requires
the attacker to ask at least tH + tF − 1 + c questions.
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4.2 Determining Server and Credential Identities - Average Case

In this section, we derive an explicit expression for the expected number of
queries that are sufficient to determine the identity of each of the fake credentials
provided the strategy outlined in Lemma 1. Recall we have s servers, of which �
are honeypots along with c credentials among which there are ρ that are fake.

First, we compute the probability that we can use exactly k+1 questions to
obtain the first T response. This means that the first k questions in our strategy
either have a fake credential, a honeypot, or both. Suppose that of these, j of
the k questions involve a fake credential, and the remaining k − j involve a
true credential. This constrains these last k − j to use a honeypot, while the j
questions involving a fake credential can have a true or honeypot server.

Next, we count the ways we can obtain the credentials. This is just
(
ρ
j

)(
c−ρ
k−j

)
,

where the two coefficients select from the false and then true credentials. Next,
we must allocate the servers. Recalling our constraint, the k− j questions with a
true credential must be allocated to k − j of � honeypots, while the remaining j
servers can be either real or honeypots. Suppose u of these j servers are chosen
as honeypots. This gives

(
�

k−j+u

)(
s−�
j−u

)
. Further, there are

(
j
u

)
ways of ordering

the two types of servers paired with fake credentials relative to each other.
Our focus thus far has been aimed at getting an F response for the first k

questions. We need to now obtain T for the k + 1st question. This means using
remaining true credentials and true servers, of which we now have (c − ρ − (k −
j))× (s − � − (j − u)). Next we must sum over the possibilities j and u, so that
our overall number of ways to select the questions is given by Bk =

k∑

j=0

j∑

u=0

(
ρ

j

)(
c − ρ

k − j

)(
�

k − j + u

)(
s − �

j − u

)(
j

u

)

(c−ρ− (k−j))× (s−�− (j −u)),

noting, of course, that there are cases where these coefficients reduce to zero
simply because there are insufficient credentials or questions to allocate.

The probability that we obtain the first T response on the (k+1)-th question
is simply the number of possible sequences of k F responses followed by one
T response divided by the number of sequences of F responses of any length
followed by one T response, i.e. Pk =

∑t+�
i=0

Bk

Bi
.

Further, after the first “true” answer at the (k+1)-th query, we must perform
c−1 more queries to identify the remaining credentials. As such, c+k questions
are required in total which yields an expected number of questions

E[Q] =
ρ+�∑

k=0

(c + k)Pk. (5)

4.3 Attacker Random Access Strategy

We next analyze the game scenario in which the attacker repeatedly performs
random accesses. Holding all honeypots constant, we bound the expected num-
ber of timesteps for the attacker to complete their αβ desired accesses. Let Tα,β
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denote this quantity of timesteps. Then, the attacker can select between pursu-
ing this all-access strategy (incurring E[Tα,β ] accesses on average) or pursuing
Sect. 4.1’s all-credential querying strategy (incurring E[Q]as defined in Eq. (5),
plus αβ). Below, we provide bounds on E[Tα,β ] (Fig. 1).

Fig. 1. # of questions used to learn identities of all credentials given average, worst,
or best case, varying quantity of honeypots or fake credentials respectively.

Let pi be the probability the real server with the i-th highest value of wxi is
accessed. Further, let p0 equal the probability a honeypot or real server outside
the top α is accessed. Clearly,

∑α
i=0 pi = 1, while the probability of a desired

αβ access at the first timestep is no less than αpα and no greater than αp1.

Theorem 2 (Necessary and sufficient total number of accesses). Let
h(α, β) = logα+(β − 1) log logα − log log (β − 1)! +C. Then, for a constant C,

1
p1

h(α, β) ≤ E[Tα,β ] ≤ 1
pα

h(α, β).

Proof. Let να,β be the total number of accesses to the α desired servers in order
for each server to have β accesses, and let P (p0 = η − π, να,β = π) be the
probability that out of η accesses, η − π are to p0 and the remaining π are
enough to complete the desired accesses. Where line 2 follows by the binomial
theorem and using p1 as an upper bound for the probability that any one desired
server is accessed (i.e. p1 = maxi∈[α]pi

), we have that P (Tα,β = η) =

η∑

π=αβ

P (p0 = η − π, να,β = π) ≤
η∑

π=αβ

(
η − 1
η − π

)

(1 − αp1)η−π(αp1)πP (να,β = π)

=
η∑

π=αβ

(
η − 1
η − π

)

(1 − αp1)η−π(αp1)π×
[

exp
(

−e−(π−rα,β)/α

β!

)

− exp
(

−e−(π−rα,β−1)/α

β!

)]

,
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for rα,β = α logα + αβ log logα. Line 3 follows by [9], who also show that
E[να,β ] = α logα + α(β − 1) log logα − α log log (β − 1)! + αC. Therefore,
E[Tα,β ] ≤ 1

αp1
(α logα + α(β − 1) log logα − α log log (β − 1)! + αC).

E[Tα,β ] ≤ 1
αp1

(α logα + α(β − 1) log logα − α log log (β − 1)! + αC)

=
1
p1

(logα + (β − 1) log logα − log log (β − 1)! + C) =
1
p1

h(α, β).

The same process, with pα to lower bound any one desired server’s access
probability, gives that P (Tα,β = η) ≥ ∑η

π=αβ

(
η−1
η−π

)
(1 − αpα)η−π(αpα)π ∗

[
exp

(
− e−(π−rα,β)/α

β!

)
− exp

(
− e−(π−rα,β−1)/α

β!

)]
, so E[Tα,β ] ≥ 1

pα
h(α, β).

5 Defender Strategy

We next analyze the game from the defender’s perspective. While real servers are
held constant, the defender will design honeypots to “mimic” the real servers:
dynamically setting xi = xj for honeypot i and real server j to confuse and
distract the attacker. For simplicity, the attacker is fixed to perform random
accesses; we save the attacker’s identity query strategy for future work.

We will demonstrate that specific honeypot placements are most effective for
exploiting knowledge of the attacker’s preferences, while other honeypot place-
ments are most effective for gaining knowledge of the attacker’s preferences.
Specifically, setting honeypot server i to mimic real server j with maximum
attack probability increases the chance of the honeypot being attacked. This
is an “exploit” action. However, the defender must form an estimate W̃ of the
attacker’s preferences w to determine which server is max. As we shall see, mim-
icking servers with low attack probabilities enables faster rates of learning. This
is an “explore” action, where the reward is not maximized in the short term.

We begin by providing theoretical results on the defender’s ability to learn
the attacker preferences w in Sect. 5.1. Then, Sect. 5.2 validates our theoretical
results using a simulation, demonstrating that the defender stalls the attacker
from finishing their desired accesses by an average of 5.8% timesteps and scores
an average of 32% points more than a defender baseline with constant honeypots.

5.1 Theoretical Results

We bound the expected preference estimation error E[||W̃ − w||] in terms of
parameters such as the number of timesteps and servers. For notational sim-
plicity, we shall make the following assumption: the defender may change one
honeypot’s x-vector every τ interactions between the attacker and defender. Let
T denote the total number of periods with constant honeypot values. Though
the final time period may be shorter than τ timesteps if the attacker completes
their αβ desired accesses prior to the period’s τ -th timestep, we suppose for sim-
plicity that all periods contain τ steps. However, all results are easily modified
to accommodate a shorter final time period.
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Estimating Attacker Preferences. First, we outline a procedure for the
defender to form their estimate W̃ . Concretely, suppose that each honeypot takes
on the x-value of a real server. While there are consequences on the reward when
the attacker accesses real server i versus a honeypot server with vector xi (i.e.,
if the honeypot is sampled by the attacker, the defender has a positive reward),
there is no difference from the point of view of learning w. For this reason, we
can restrict the learning problem to operate on x1, . . . , xμ, where μ = |Sr|, the
number of real servers. Let bk

i be the total number of servers, real or honeypot,
that have value xi in time period 1 ≤ k ≤ T , so that

∑
j∈[μ] b

k
j = μ + � = s and

that 1 ≤ bk
j ≤ 1 + � for all j. Then, the distribution pk in time period k is

pk
i =

bk
i exp(w

T xi)∑
j∈S bk

j exp(wT xj)
. (6)

The defender will run the following algorithm: for the k-th time period, let ak
i

be the number of observed attacks on any of the bk
i servers with x-vector equal

to that of the i-th real server. The defender will estimate the attack distribution
as p̃k

i = ak
i /τ for all 1 ≤ i ≤ μ, then apply smoothing with a small constant

ω so that p̃k
i > 0. Smoothing avoids dividing by 0 in the learning process. The

defender will then form and solve a system as in [8], i.e., Aw̃k = Ỹ k for

A =

⎡

⎢
⎢
⎣

x1 − x2

x2 − x3

. . .
xμ−1 − xμ

⎤

⎥
⎥
⎦ and Ỹ k =

⎡

⎢
⎢
⎣

log(p̃k
1/p̃k

2)
log(p̃k

2/p̃k
3)

. . .
log(p̃k

μ−1/p̃k
μ)

⎤

⎥
⎥
⎦−

⎡

⎢
⎢
⎣

log(bk
1/bk

2)
log(bk

2/bk
3)

. . .
log(bk

μ−1/bk
μ)

⎤

⎥
⎥
⎦ .

In order to perform linear least squares, we assume μ−1 ≥ d. This will produce an
estimate w̃k for each period. The final estimate is then just W̃ = 1/T

∑T
k=1 w̃k.

Preference Learning Bound. At first glance, the learning bound in [8]
appears to have a similar flavor, where we could use the τT observed inter-
actions to obtain a bound on ‖W̃ − w‖. Critically, this result does not apply to
our setting, because the distributions of our samples are different in each of the
T periods due to the varying bk. Instead, we find

Theorem 3. Let B = (AT A)−1AT . Further, let g(pk, δ) = c21||B||2 log2
(

2Tμ
δ

)

∑μ
j=1

1
(pk

j )
4 for constant c1 and kmax = argmaxk g(pk, δ). Then, the defender can

learn an estimate W̃ that with probability at least 1 − δ satisfies E[‖W̃ − w‖] ≤

1
τT

√
√
√
√log(d + 1)

T∑

k=1

g(pk, δ) +
2 log(d + 1)

3τT

√
1
8
g(pkmax , δ) +

1
τT

T∑

k=1

√
1
8
g(pk, δ)
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Interpreting the Bound. Before tackling the proof, we make some remarks. First,
there are three summands in the bound. The scaling with respect to game length
for the first two summands is given by O( 1

τ
√

T
), for the second by O( 1

τT ) and
for the third by O(1/τ). To see this, note that we are summing over T terms in
the first and third summand. In the first, this is inside the square root, while
in the third, there is no square root, canceling the 1/T in front. Therefore, the
third term is dominant. However, when τ > T , we have that 1

τ < 1√
τT

so that
we obtain the same overall learning rate as if all the distributions were identical.

Next, consider the term g(pk, δ). We have that E[‖W̃−w‖] scales with μT (the
product of the number of periods with the number of genuine servers), though
the factor is only squared-logarithmic. A more interesting term is

∑μ
j=1

1
(pk

j )
4 .

The learning rate is worse when particular probabilities pk
j are small. In fact, to

obtain the best learning rate, the defender would want a uniform distribution.
To this end, the defender may design their honeypots so as to cause pk to most
closely resemble the uniform distribution.

The last observation translates into a simple “explore” strategy for the
defender. Given � total honeypots, and that

∑
j bk

j = μ+ �, the defender should
allocate bk

i ’s so the resulting model in (6) is as close to uniform as possible.
We now prove the result. The following lemma will prove useful.

Lemma 5. For any k, with probability at least 1 − δ, it holds that

||E[w̃k − w]|| ≤ E[||w̃k − w||] ≤ ‖B‖c1
τ

log
(
2μT

δ

)
√
√
√
√1

8

μ∑

j=1

1
(pk

j )4
.

Proof (Proof of Lemma 5). Observe that w̃k = BỸ k and w = BY k, where Y k

is analogous to Ỹ k for pk. Let ek
i = p̃k

i − pk
i . Then,

w̃k − w = B

⎡
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⎢
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. . .

log( p̃k
μ−1

p̃k
μ

)

⎤

⎥
⎥
⎦− B

⎡

⎢
⎢
⎣

log(pk
1

pk
2
)

. . .

log(pk
μ−1

pk
μ

)

⎤

⎥
⎥
⎦ = B

⎡

⎢
⎢
⎣

log(1 + ek
1

pk
1
) − log(1 + ek

2
pk
2
)

. . .

log(1 + ek
μ−1

pk
μ−1

) − log(1 + ek
μ

pk
μ
)

⎤

⎥
⎥
⎦ .

So,
E[‖w̃k − w‖]

‖B‖ ≤ E

⎡

⎢
⎢
⎣

∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎣

log(1 + ek
1

pk
1
) − log(1 + ek

2
pk
2
)

. . .

log(1 + ek
μ−1

pk
μ−1

) − log(1 + ek
μ

pk
μ
)

⎤

⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥

⎤

⎥
⎥
⎦

= E

⎡

⎣

√
√
√
√

μ−1∑

j=1

(

log

(

1 +
ek
j

pk
j

)

− log

(

1 +
ek
j+1

pk
j+1

))2
⎤

⎦

≤ E

⎡

⎣

√
√
√
√

μ−1∑

j=1

log2
(

1 +
ek
j

pk
j

)

+ log2
(

1 +
ek
j+1

pk
j+1

)⎤

⎦ ≤ E

⎡

⎣

√
√
√
√2

μ∑

j=1

log2
(

1 +
ek
j

pk
j

)⎤

⎦



250 S. Cromp et al.

and by Jensen’s inequality, since E[·1/2] ≤ E[·]1/2,

E[‖w̃k − w‖] ≤ ‖B‖E
⎡

⎣2
μ∑

j=1

log2
(

1 +
ek
j

pk
j

)⎤

⎦

1/2

. (7)

We will now derive a bound on log2
(

1 + ek
j

pk
j

)

. From Hoeffding’s inequality

[10], we have P (|ek
j | ≥ ε) = P (|p̃k

j − pk
j | ≥ ε) ≤ 2 exp(−2τε2). Suppose we want

P (|ek
j | ≤ ε) with probability 1−δ, then δ = 2 exp(−2τε2) so that ε =

√
1
2τ log 2

δ .
We next apply union bound to simultaneously control the deviations for all μT
probabilities pk

j . With probability at least 1 − δ, we have for all 1 ≤ j ≤ μ and

for all 1 ≤ k ≤ T that |ek
j | ≤

√
1
2τ log 2μT

δ .

Note that E[|ej |] = 0, so by the Taylor expansion and for some constant c1,
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Since E[log2(·)] = E[| log(·)|]2 = E[log(·)]2, from (7) and linearity,

E[‖w̃k − w‖] ≤ ‖B‖
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Lastly, ||E[w̃k − w]|| ≤ E[||w̃k − w||] by Jensen’s inequality.

Proof (Proof of Theorem 3). We will bound E[||W̃ −w||] using the matrix Bern-
stein inequality [14]. We first define and bound Sk = (w̃k −w)−E[w̃k −w]. This
is a centered version of the error from estimating w̃k in one period k. E[Sk] = 0
and E[‖Sk‖] ≤ E[‖w̃k − w‖] + ‖E[w̃k − w]‖ ≤ 2E[‖w̃k − w‖]. By Lemma 5,

E[||Sk||] ≤ 2‖B‖c1
τ

log
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)
√
√
√
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8

μ∑

j=1

1
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Let kmax = argmaxk Lk. Note that E[||Sk||2] = E[||Sk||]2. Next, define Z =
∑T

k=1
1
T Sk, so that E

[||Z||2] = E

[∣
∣
∣
∣
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∣
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k=1
1
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∣
∣
∣
∣
∣
∣
2
]

=
∑T

k=1
1

T 2E
[||Sk||2] . This

follows since the cross terms are products of uncorrelated terms with zero mean.
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By the matrix Bernstein inequality [14] applied to a d-element vector,
E[||Z||] ≤ √

2E[||Z||2] log(d + 1) + Lkmax
3T log(d + 1), we obtain

E[||Z||] ≤
√
√
√
√2 log(d + 1)
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T 2
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Ultimately, E[||W̃ − w||] =
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Substituting for E[||Z||] and ||E[w̃k − w]|| (from Lemma 5) gives the result.

5.2 Simulation

We implement the defender strategy with a simple thresholding heuristic: the
defender begins by exploring in each time period, then switches to exploiting
after the first time period k for which ||w̃k −w̃k−1|| is less than a hyperparameter
ε. We use hyperparameters s = 4, � = 1, d = 2, τ = 100, ε = 0.1,Δ = 1, α = 2
and β = 4000. Further, we use a simplified reward scheme where the defender
loses no points when the attacker completes a desired access. We compare our
strategy, “mimic explore/exploit” with a constant strategy where the honeypot
is set to mimic a random real server at the beginning of the game, as well as
a “mimic explore” strategy where the defender never exploits. See Table 1 for a
summary; results are averaged across 100 runs.
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Fig. 2. Preference estimation error ‖W̃ k − w‖ across 1500 time periods (τ = 100). We
find that the explore strategy achieves lowest error, while explore/exploit achieves
highest and the constant strategy serves as a middle ground.

For ease of comparison, we first fix each run to last T = 1500 time periods.
Figure 2 depicts ||W̃ k − w||, the error in estimating attacker preferences, across
time periods. As expected, the mimic explore strategy consistently achieves the
smallest preference estimation error. Mimic explore/exploit begins with com-
parable performance to mimic explore, but it soon plateaus as it switches
to exploiting at time period 741 on average (σ = 446). Despite that, mimic
explore/exploit ultimately does not estimate preferences as well as the constant
method, explore/exploit method achieves the highest average score as shown
by Fig. 3b. Figure 3a demonstrates that, as mimic explore/exploit switches to
exploit, it soon overtakes both mimic explore and constant strategies in encour-
aging the attacker to access the honeypot. Explore/exploit is able to effectively
leverage the knowledge gained during explore phase – applying it during exploit
phase and scoring an average of 32% more points than constant defender.

We lastly examine game length, an alternative metric for measuring the
effectiveness of honeypot placements in slowing the attacker’s progress. Mimic
explore/exploit strategy prolongs the attacker from achieving their goal the
longest, requiring an average of 5.8% more time periods than the constant
method.

Table 1. Standard deviation in parenthesis

Periods to complete
desired accesses

Final preference
estimation error

Final score

Mimic explore/exploit 1932.81 (16.18) 0.054 (0.019) 43613.80 (1426.84)
Mimic explore 1756.01 (6.97) 0.025 (0.012) 33038.49 (176.22)
Constant 1826.59 (90.52) 0.040 (0.029) 38015.75 (5544.89)



The Credential is Not Enough 253

Fig. 3. Defender reward during first 200 or 1500 periods. While explore/exploit perfor-
mance initially matches the lowest-scoring explore strategy, it surpasses the constant
strategy as it switches to exploit, with widening performance gap.
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Abstract. Repeated coopetitive games capture the situation when one
must efficiently balance between cooperation and competition with the
other agents over time in order to win the game (e.g., to become the
player with highest total utility). Achieving this balance is typically very
challenging or even impossible when explicit communication is not fea-
sible (e.g., negotiation or bargaining are not allowed). In this paper we
investigate how an agent can achieve this balance to win in repeated
coopetitive polymatrix games, without explicit communication. In par-
ticular, we consider a 3-player repeated game setting in which our agent
is allowed to (slightly) manipulate the underlying game matrices of the
other agents for which she pays a manipulation cost, while the other
agents satisfy weak behavioural assumptions. We first propose a payoff
matrix manipulation scheme and sequence of strategies for our agent that
provably guarantees that the utility of any opponent would converge to
a value we desire. We then use this scheme to design winning policies
for our agent. We also prove that these winning policies can be found
in polynomial running time. We then turn to demonstrate the efficiency
of our framework in several concrete coopetitive polymatrix games, and
prove that the manipulation costs needed to win are bounded above by
small budgets. For instance, in the social distancing game, a polymatrix
version of the lemonade stand coopetitive game, we showcase a policy
with an infinitesimally small manipulation cost per round, along with a
provable guarantee that, using this policy leads our agent to win in the
long-run. Note that our findings can be trivially extended to n-player
game settings as well (with n > 3).

1 Introduction

Repeated coopetitive games play a central role in multi-agent learning [3,11,18,
23], as well as in many other areas of multi-agent systems (MAS) [14,16,24][?].
They capture the situation in which a number of competing agents repeatedly
playing an underlying multi-player game. The goal of each agent is not just
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Fu et al. (Eds.): GameSec 2023, LNCS 14167, pp. 257–276, 2023.
https://doi.org/10.1007/978-3-031-50670-3_13
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simply maximizing their total payoff, but also to have the highest one (a.k.a. to
win the game). The agents, however, cannot achieve this by just solely focusing
on their own policies, but they need to coordinate with some of their competitors
to play against the rest (hence the term coopetition, which is a portmanteau of
the words cooperation and competition). When communication between agents
is explicitly feasible, many MAS based approaches can be used to initiate and
maintain these cooperation, ranging from negotiation and bargaining theory, to
coalitional game theory and coordination [14,22].

However, when explicit communication is not feasible, achieving those nec-
essary cooperative behaviours becomes a significantly more difficult situation.
Recently, there has been a line of research investigating whether such coopera-
tive behaviours can emerge by just observing and reacting to the played strategies
of the opponents [4,6,16]. A key challenge here is not just to identify the appro-
priate opponents to cooperate, but to know when to switch sides as well. For
example, in the lemonade stand game [25], three players simultaneously place
their stands on one of the twelve positions uniformly distributed on the shore
of a circle-shaped island. The payoff of each player is the sum of the distances
between their stand and that of their opponents (a more detailed description
of its polymatrix game version, called social distancing Game, can be found in
Sect. 7). The goal of each agent is then to win the game, that is, to be the one
with the highest total payoff over a finite period of time. Now, in order to achieve
this, the agent must pick one of the two opponents and start cooperating (e.g.,
by placing their stands at the opposite positions of the circle). By doing so, one
can easily prove that the average payoff of the two cooperating players will be
significantly higher than that of the third one. However, this cooperation alone
would not provide a guaranteed win (as the cooperating partner can still get
higher payoffs). Thus, a key step in this game is to know the right time to switch
the team and start cooperating with the third player (by doing so, one might be
able to become the one with the highest payoff in the long run).

Note that although the LSG has rather a simplistic setting, it captures the
essence of many real-world applications, ranging from technological battles (e.g.,
the high-definition optical disc format war between Blu-ray and DVD) and R&D
alliances [2], to environmental politics [5], and multiplayer video gaming [19],
where strategically switching side and its timing are critical.

This paper seeks to address this problem in the following way: we relax the
original setting by considering the case when one of the players is keen to sacrifice
a (small) portion of their received payoff to modify the others’ payoff value (e.g.,
the player donates some of their payoffs to the opponents, or makes some costly
effort to reduce the others’ payoff). We refer to this type of actions as payoff
manipulation, the corresponding cost as manipulation cost, and the player who
performs this as the manipulator (or as player 1 in the technical sections, we
will make this clear later in the paper). We also assume that the opponents of
the manipulator satisfy a series of stronger and stronger assumptions for which
we present different policies for the manipulator that exploit these behavioural
assumptions. The weakest of which is learning to play a strictly dominant action
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over time, and the strongest of which is being no-regret (for a more detailed
discussion of the behaviour of the opponents, see Sect. 3). Note that even the
strongest assumption we make is mild and widely used in the game theory and
online learning/optimization communities. To focus on the essence of the prob-
lem, we only deal with the 3-player setting in this paper. Note that our findings
can be extended to the generic n-player setting. In addition, we assume that the
game is a polymatrix game. Against this background, our contributions are as
follows:

– First we propose a number of winning policies for the manipulator. In par-
ticular, we show that there exist a set of dominance solvable policies that
can guarantee the win for the manipulator (Theorem 1) and they can be
calculated in polynomial running time (Theorem 2).

– We then further improve these results by proposing another novel class of
methods called batch coordination policies that can provably guarantee low
manipulation cost (Theorem 3), which can also be calculated in polynomial
time (Theorem 4).

– We also investigate a number of additional objectives, apart from just aiming
to win the game (e.g., winning with the largest possible margin, or achieving
socially good outcome, etc.,).

– Finally we further refine our findings to a number of concrete polymatrix
games. In particular, we show that for these games, the total manipulation
cost the manipulator needs to spend is very small. For example, in the Social
Distancing Game, the manipulator can already achieve guaranteed win by
just using an infinitesimally small amount of manipulation (Sect. 7).

Note that due to page limitations, we have deferred all the proofs, example
game analyses, and numerical results to the online ArXiv version of this paper
(under the same title).

1.1 Related Work

From the manipulating agent’s perspective, our setting can be viewed as a mech-
anism design (MD) problem [9,13]. In particular, we can consider the game
matrix chosen by the manipulator (i.e., the designer) as the mechanism, and the
actions chosen by each participant as the information they choose to report. In
this domain, perhaps the most similar to our problem setting is the online MD
framework [7,15], in which a central mechanism must make decisions over time
as different agents arrive and depart at different time steps. However, our setting
deals with agents which do not depart or arrive, but rather gain knowledge about
the central mechanism as time moves on. Secondly, the goal of the designer is
distinct from typical MD settings. Rather than standard solution concepts such
as incentive compatibility or social welfare, we aim for the goal of guiding play-
ers into playing specific strategies. Such solution concepts are common amongst
the online learning community in which the problem of playing a repeated game
against another agent is explored under various conditions.
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The problem of constructing zero-sum games with a pre-specified (strictly)
dominant strategy is similar to designing games with unique minimax equilib-
rium [1,8,20][?] (for a more detailed description of this topic, we refer the reader
to Appendix ??).

While the work above only focuses on the existence of unique equilibria,
methods for constructing games with unique equilibria were also developed in
tandem. Following the aforementioned work of [20], a parameterized construction
for bimatrix games was proposed by [17], which subsumes an earlier construction
proposed by [10]. It is worth noting that the closest to our setting is the work
from [4], which also considers the problem of payoff matrix manipulation so that
the unique Nash equilibrium of the new game is a predefined strategy profile.
To the best of our knowledge, neither this work nor the other above-mentioned
settings have considered manipulation cost (as we do in our paper), and therefore
might not be able to find winning policies with small manipulation costs in our
setting.

2 Preliminaries

To begin, we introduce some basic definitions from game theory through which
our problem setting will be formally described. We define a finite normal form
three-player general-sum game, Γ, as a tuple (N ,A, u). We denote the set of
players by N = {1, 2, 3}. Each player i ∈ N must simultaneously select an
action from a finite set Ai. For the sake of brevity, we use n, m and l to denote
the cardinalities of A1, A2 and A3 respectively. We denote by A = A1 ×A2 ×A3

the set of all possible combinations of actions that may be chosen by the players.
Furthermore, each player is allowed to randomize their choice of action. In

other words, player i can select any probability distribution s ∈ Δ(Ai) over
her action set. An action is then selected by randomly sampling according to
this distribution. We refer to this set of probability distributions as the set of
strategies available to the player. We say that a strategy is pure if it corresponds
to the deterministic choice a single action, otherwise we say that a strategy is
mixed. Hereafter we refer to the manipulating agent as player 1. We denote the
strategy chosen by player 1 by the vector x, where x(i) indicates the probability
that player 1 selects action i. Similarly, we use y and z to denote the strategies
chosen by players 2 and 3 respectively.

After strategies have been selected, player i receives a reward given by her
utility function ui : A → R, which we consider to be a random variable under the
probability space (A,F ,P) where we define the event space F to be the power
set of A along with the probability measure P to be the real-valued function P :
F → [0, 1] such that for any a1 ∈ A1, a2 ∈ A2 and a3 ∈ A3, P

({(a1, a2, a3)}
)

=
x(a1) · y(a2) · z(a3).

In this paper, we restrict our focus to polymatrix games. That is we assume
that the utility function for each agent is of the form ui =

∑
i�=j uij , where

uij : Ai × Aj → R describes the payoff player i receives from its interaction
with player j. Observe that any three-player polymatrix game can be succinctly
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represented by six payoff matrices A(i,j), which each correspond to a function
uij . Additionally, we let ‖A‖∞ := maxk,l |A(k, l)| denote the infinity norm of a
given payoff matrix.

In what follows, we consider a direct extension of the three-player polymatrix
setting, in which player 1 takes the role of a manipulator, and is allowed to alter
the payoff matrices A(2,1) and A(3,1). In other words, we assume that player 1 has
control over the payoffs other players receive when interacting with her. Thus, in
addition to selecting a strategy, player 1 is also tasked with specifying the payoff
matrices A(2,1) and A(3,1). We refer to the joint submission of a strategy and
payoff matrices as player 1’s complete strategy. We denote player 1’s complete
strategy by the tuple (x, (A(i,j))(i,j)∈P ), where P is the index set {(2, 1), (3, 1)}.

We use A0 to denote the original payoff matrices of the game before they
are altered by player 1. One can interpret A0 as a description of the dynamics
of interaction between players, before the manipulator has implemented rules
and restrictions. In a realistic setting, player 1 should not be able to modify
the original game wherever there is interaction between player 2 and 3 alone.
We clearly capture this notion in polymatrix games by specifying that player 1
cannot modify the matrices A

(2,3)
0 and A

(3,2)
0 .

We assume that there is an associated cost for modifying the payoff matrices,
which takes the form

∑
(i,j)∈P ‖A(i,j) − A

(i,j)
0 ‖∞. This cost has a natural inter-

pretation when the manipulator uses monetary incentives in attempt to alter the
behaviour of fellow players. More specifically, the cost corresponds to the sum
of the maximum monetary payments (or fines) each player can receive, and thus
represents, in the worst case, how much the manipulator may need to pay (or
charge) in order to implement an altered version of the game.

With this cost in mind, observe that the expected payoff (or utility) of player
1 is given by the expected payoff it receives when participating in the altered
polymatrix game, minus the cost it incurs for altering payoff matrices:

xTA(1,2)y + xTA(1,3)z −
∑

(i,j)∈P

∥
∥
∥A(i,j) − A

(i,j)
0

∥
∥
∥

∞
.

In contrast, the expected utility of player 2 is simply given by the expected
payoff it receives from participating in the altered game: xTA(2,1)y+yTA(2,3)z.
Similarly, the expected payoff of player 3 is given by xTA(3,1)z + yTA(3,2)z.

Note that since all three players are employing mixed strategies, the payoff
observed by each player may not be the same as the expected payoff. For example,
if the players sample actions (a1, a2, a3) from the distributions (x, y and z), then
the utility player 1 observes is

u1(x,y, z) = A(1,2)(a1, a2) + A(1,3)(a1, a3) −
∑

(i,j)∈P

∥
∥
∥A(i,j) − A

(i,j)
0

∥
∥
∥

∞

Similarly, the utility for player 2 is u2(x,y, z) = A(2,1)(a1, a2) + A(2,3)(a2, a3)
and the observed utility for player 3 follows in a analogous manner. When the
strategies used are clear from context we will drop them from notation and use
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u1, u2, u3. We say player 1 has won the game if her utility is higher than the
utilities of other players.

3 Problem Setting

In many cases, a manipulator will engage repeatedly with the same system par-
ticipants. Additionally, aside from the manipulator, players are often unaware
of their own, and others, utility functions and must learn them over time. With
these concerns in mind, we consider a repeated version of the setting described
above. More specifically, we consider a setting in which players engage in the
aforementioned polymatrix game repeatedly for T time steps. At each time step
t, each player is required to commit to a strategy, xt, yt and zt. In addition,
player 1, in her role as manipulator, must select the set of payoff matrices A

(i,j)
t ,

for (i, j) ∈ P , at each time step. We assume that players 2 and 3 have no
initial knowledge of A0, but receive feedback, at the end of every time step
detailing the payoff they received. More precisely, player 2 receives feedback
u2,t = u2(xt,yt, zt), at the end of time step t. Player 3 receives feedback in a
similar fashion. Therefore, when selecting their strategy in round t + 1, players
2 and 3 have access to a history of feedback (and a history of their own strat-
egy choices) up to time step t to inform their decision. In contrast, whilst also
receiving feedback at the end of each time step, we assume that player 1 has full
knowledge of A0 prior to the start of play.

We use Ht = (u1,t′ ,xt′)tt′=1 to denote the history observed by player 1 up to
time step t. We use the notation Ht to denote the set of all observable histories of
length t. Given a time horizon T , we define a policy ρ = (ρt)Tt=1 as a sequence of,
potentially randomized, mappings ρt : Ht → Δ(A1)×R

n×m×R
n×l from feedback

histories to complete strategies. In other words, a policy ρ is a specification of
which complete strategy to choose given the feedback observed so far.

Generalizing from the single-shot setting, we define the utility of each player
in the repeated setting as the time average of their respective utilities in each
round. That is: Ui(xt,yt, zt)Tt=1 := 1

T

∑T
t=1 ui(xt,yt, zt). As before, when the

sequence of strategies used by each player is clear from context, we write U1, U2

and U3 for the sake of brevity. We say that player 1 has won the game, if her
utility is the highest. We assume that player 1 participates in the game with
the aim of winning. On the other hand, we assume that players 2 and 3 are
‘consistent’ agents.

Definition 1. (Consistent Agent) Suppose that for an agent there exists an
action a∗ that is the unique best response for her for every round of the game.
Suppose that within T rounds of the game, the number of rounds the agent plays
action a∗ is T ∗. If P

(
limT→∞ T∗

T = 1
)

= 1 then the agent is ‘consistent’.

In other words, if an agent has a single action that performs the best in all
rounds, and the proportion of time she plays that action converges to 1 almost
surely, then we say she is consistent. If a consistent agent does not have an action
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that always performs the best, we make no assumption on the behaviour of the
player.

Unless stated otherwise, we restrict our focus to players who are consistent,
no matter the strategies submitted by the other players. This assumption is
much weaker that the standard assumption of rationality in full information
mechanism design settings. In the sections that follow, we will develop a number
of policies which guarantee player 1 a winning outcome with high probability
under this assumption.

4 Winning Policies

In this section, we present a number of policies which guarantee player 1 a
winning outcome with high probability. Before describing these policies in detail,
we first present a brief conceptual argument showcasing the underlying idea
behind all the policies we present.

Consider the policy where player 1 plays the same action i∗ in every round.
Assume that player 2 and player 3 each have strictly dominant actions j∗ and
k∗ respectively against, the action i∗ of player 1. That is, u2(ei∗ , ej∗ , ek) >
u2(ei∗ , ej , ek ) for all j �= j∗ and k and u3(ei∗ , ej , ek∗) > u3(ei∗ , ej , ek) for all
j and k �= k∗. Since both players are consistent, the proportion of time each of
them plays their strictly dominant action converges to 1 almost surely. Therefore,
if u1(ei∗ , ej∗ , ek∗) ≥ max{u2(ei∗ , ej∗ , ek∗), u3(ei∗ , ej∗ , ek∗)}, then intuitively,
player 1 will eventually win if T is large enough. Unfortunately such an action
i∗, which satisfies the above assumptions, may not exist in the original game.
However, player 1 can always guarantee the existence of such an action by alter-
ing payoff matrices. If player 1 can find a low cost alteration, then she can win
the game with high probability.

We then present another policy of a similar flavor where player 1 plays the
same action i∗ in every round. We assume that player 2 has a strictly dominant
action j∗ against the action i∗ of player 1, but player 3 only has a strictly
dominant action k∗ against the action i∗ of player 1 and the action j∗ of player
2. Therefore if player 3, is an agent who is willing to wait for some action to
eventually become her unique best response, then the manipulator can modify
the payoff matrices appropriately to ensure that she wins if T is large enough.
Therefore in order for such a policy to work successfully, we must make a slightly
stronger behavioural assumption on player 3, which leads us to the definition of
a ‘persistent’ agent.

All of the policies we present here combine games constructed to satisfy
assumptions similar to those above, with a simple time-dependent determinis-
tic policy. First in Sect. 4.1 we show how to construct payoff matrices such that
actions j∗ and k∗ are strictly dominant for players 2 and 3, under the assumption
that player 1 uses action i∗. In Sect. 4.2, we present the class of dominance solv-
able policies, which consist of stationary policies leveraging the methodologies
developed in the previous section. Lastly, we present the class of batch coordi-
nation policies, which spend half the time horizon cooperating with one player,
and half of the time horizon cooperating with the other.
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4.1 Designing Dominance Solvable Games

Here, we describe several constructions of three player games which will be used
extensively in our definitions for different kinds of policies. In particular, we show
how to find a matrix A(2,1) (or A(3,1)) such that a particular action for player 2
(or 3) is strictly dominant against all actions of player 3 (or 2) and a particular
action of the manipulator. We also show how to find a matrix A(3,1) (or A(2,1))
such that a particular action for player 3 (or 2) is strictly dominant against a
particular action of player 2 (or 3) and a particular action of the player 1. For
the sake of brevity we refer to players 1, 2 and 3 by P1, P2 and P3 respectively.

Let x be the fixed strategy of the manipulator. To ensure that P2 has a
strictly dominant strategy ej∗ against x and all actions of P3, For some v2 ∈ R

l

we must choose a matrix A(2,1) that satisfies the system

[xTA(2,1)ej + eTj A(2,3)ek] = v2,k ∀k ∈ [l] and j = j∗

[xTA(2,1)ej + eTj A(2,3)ek] < v2,k ∀k ∈ [l] and j �= j∗ (1)

By symmetry, to ensure that P3 has a strictly dominant strategy ek∗ against
x and all actions of P2, for some v3 ∈ R

m we must choose a matrix A(3,1) that
satisfies the system

[xTA(3,1)ek + eTj A(3,2)ek] = v3,j ∀j ∈ [m] and k = k∗

[xTA(3,1)ek + eTj A(3,2)ek] < v3,j ∀j ∈ [m] and k �= k∗ (2)

Now further suppose that P2 plays the fixed strategy y. In order to make ek∗

the dominant strategy against the strategies x and y of P1 and P2 respectively,
for some v0 ∈ R we must choose a matrix A(2,1) that satisfies the system

[xTA(3,1)ek + yTA(3,2)ek] = v0 k = k∗

[xTA(3,1)ek + yTA(3,2)ek] < v0 k �= k∗ (3)

With the following lemma, we show that strategy profiles satisfying systems
(1) and (2) always exist.

Proposition 1. Fix i∗ ∈ [n], j∗ ∈ [m] and k∗ ∈ [l] with x = ei∗ . Matrices
A(2,1) and A(3,1) that satisfy the systems (1) and (2) exist.

Proof. Set the entries of A(2,1) to

A(2,1)(i∗, j) := 2‖A
(2,3)
0 ‖∞ + 1 for j = j∗

A(2,1)(i∗, j) := 0 for j �= j∗

and the entries of A(3,1) to

A(3,1)(i∗, k) := 2‖A
(3,2)
0 ‖∞ + 1 for k = k∗

A(3,1)(i∗, k) := 0 for k �= k∗

now both of these matrices together satisfy systems (1) and (2).
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In addition, this result clearly extends to system (3), as any matrix satisfying
system (2) satisfies system (3).

Corollary 11. Fix i∗ ∈ [n], j∗ ∈ [m] and k∗ ∈ [l] with x = ei∗ and y = ej∗ .
Matrices A(2,1) and A(3,1) that satisfy the systems (1) and (3) exist.

Proof. The same as the proof of Proposition 1. If system (2) is satisfied, so is
system (3).

In what follows, we will develop policies based on payoff matrices which
satisfy systems (1), (2) and (3).

4.2 Dominance Solvable Policies

In this section, we introduce the class of dominance solvable policies. In short,
dominance solvable policies consist of player 1 playing a constant complete strat-
egy which satisfies a number of the linear systems. We first introduce type-I
dominance solvable policies.

Definition 2. (Dominance Solvable Type-I Policy)
Let

(
A(2,1), A(3,1)

)
satisfy systems (1) and (2) for some i∗ ∈ [n], j∗ ∈ [m],

k∗ ∈ [l]. Then, the policy ρt(Ht) =
(
ei∗ , A(2,1), A(3,1)

)
for t ∈ N is a dominance

solvable type-I policy.

In words, a dominance solvable type-I policy is one in which player 1 plays
a constant complete strategy which satisfies systems (1) and (2). Similarly, we
define dominance solvable type-II policies as those in which player 1 plays a
constant complete strategy which satisfies systems (1) and (3).

Definition 3. (Dominance Solvable Type-II Policy)
Let

(
A(2,1), A(3,1)

)
satisfy systems (1) and (3) for some i∗ ∈ [n], j∗ ∈ [m],

k∗ ∈ [l]. Then, the policy ρt(Ht) =
(
ei∗ , A(2,1), A(3,1)

)
for t ∈ N is a dominance

solvable type-II policy.

If one uses iterated elimination of strictly dominated strategies and there is
only one strategy left for each player, the game is called dominance solvable [12].
We name the policies described above dominance solvable since the underlying
single-shot game that results from these policies is almost dominance solvable.
In the game that results from these policies, if we eliminate all the actions of
player 1 except i∗ and then implement iterated elimination of strictly dominated
strategies, there will be only one strategy left for each player.

We say that a dominance solvable policy is winning if player 1 wins the
corresponding single-shot game when (ei∗ , ej∗ , ek∗) is played:

u1(ei∗ , ej∗ , ek∗) ≥ u2(ei∗ , ej∗ , ek∗) and u1(ei∗ , ej∗ , ek∗) ≥ u3(ei∗ , ej∗ , ek∗)
(4)

Winning dominance solvable type-I policies are highly attractive as they allow
the manipulator to win in the long-run against consistent agents. This claim is
formalized in the following theorem.
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Theorem 1. If the manipulator uses a winning dominance solvable type-I policy
against consistent agents in an infinitely repeated game then,

P

(
U1(xt,yt, zt)

∞
t=1 ≥ U2(xt,yt, zt)

∞
t=1 and U1(xt,yt, zt)

∞
t=1 ≥ U3(xt,yt, zt)

∞
t=1

)
= 1

At times, for the sake of brevity, we use U∞
1 , U∞

2 and U∞
3 to denote the long-

run utilities U1(xt,yt, zt)∞
t=1, U2(xt,yt, zt)∞

t=1 and U3(xt,yt, zt)∞
t=1 respectively.

For the analogous guarantee on type-II policies we assume a slightly stronger
behavioural assumption than being ‘consistent’ on one of the agents. We assume
that player 3 is ‘persistent’, i.e. if there is some finite-time cutoff point after
which there exists an action that always remains the unique best-response in
hindsight then she will play that action a large fraction of time.

Definition 4. (Persistent Agent) Suppose that the action k∗ is the best action
in hindsight for player 3 eventually, with probability 1. That is,

P

(
ek∗ = arg max

z∈Δl

U3(xt,yt, z)
T
t=1 eventually

)
= 1

Let T ∗ denote the number of rounds within T rounds, that player 3 plays action
k∗. If P

(
limT→∞ T∗

T = 1
)

= 1 then player 3 is ‘persistent’.

Note that every persistent agent is consistent. We prove this in Proposition 2.
The guarantee of winning when using type-II policies is exactly the same as
type-I policies except that we assume one of the players is persistent.

Theorem 2. If the manipulator uses a winning dominance solvable type-II pol-
icy against a consistent player 2 and a persistent player 3 in an infinitely repeated
game then,

P

(
U1(xt,yt, zt)

∞
t=1 ≥ U2(xt,yt, zt)

∞
t=1 and U1(xt,yt, zt)

∞
t=1 ≥ U3(xt,yt, zt)

∞
t=1

)
= 1

Observe that any constant complete strategy is dominance solvable as long
as it satisfies the linear systems (1) and (2) (or (3)) for a given triple of actions
(i∗, j∗, k∗). Furthermore, a dominance solvable policy is winning if and only if
it satisfies the pair of linear inequalities in system (4). As a result, winning
dominance solvable policies, if they exist, can be found in polynomial time by
solving a sequence of linear feasibility problems, where each linear feasibility
problem corresponds to a different triple of actions.

Theorem 3. If winning dominance solvable policies exist, then there exists an
algorithm that can find such policies with running time that is polynomial in the
number of actions of the players.

If player 1 uses a type-I policy, she can make a very weak behavioural assump-
tion on the other players to guarantee winning in the long run. On the other
hand, type-II policies are guaranteed to be at least as cost-effective as type-I
policies, as all type-I policies are also type-II policies.
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4.3 Batch Coordination Policies

Note that, even if a winning dominance solvable policy exists, it may be very
costly to alter the payoff matrix. However, the manipulator may be able to
beat one player through very cheap alterations whilst losing to the other, and
vice versa. In this case it makes sense for player 1 to divide the time horizon,
spending half the horizon winning over one player, and spending the other half
winning over the other, using cheap alterations to the original payoff matrices
in the process. This is the central idea behind batch coordination policies. The
following definition makes this idea rigorous.

Definition 5. (Winning Batch Coordination policy) Suppose the matrices Â(2,1)

and Â(3,1) satisfy systems (1) and (2) for some i2 ∈ [n], j2 ∈ [m], k2 ∈ [l] and
that the matrices Ã(2,1) and Ã(3,1) satisfy systems (1) and (2) for some i3 ∈ [n],
j3 ∈ [m], k3 ∈ [l] such that for i �= 1

E[u1(ei2 , ej2 , ek2 )] + E[u1(ei3 , ej3 , ek3 )] > E[ui(ei3 , ej3 , ek3 )] + E[ui(ei3 , ej3 , ek3 )]

then the policy

ρt =

{
(ei1 , Â(2,1), Â(3,1)) if 1 ≤ t ≤ T/2
(ei2 , Ã(2,1), Ã(3,1)) if T/2 < t ≤ T

is called a winning batch coordination policy.

Winning batch coordination policies can be interpreted as following differ-
ent dominance solvable policies for each half of the game. Therefore, winning
batch coordination policies are more general than winning dominance solvable
policies. Note that the dominance solvable polices played in each half of the time
horizon may not be winning by themselves. However, when combined, these sub-
policies must form a winning policy for the overall batch coordination policy to
be winning.

Before we present the guarantee for player 1 when using winning batch coor-
dination policies, we make a slightly stronger behavioural assumption on both
players than the assumption of being ‘persistent’. We now assume that both play-
ers aim to maximize their expected utility. We use the well-established notion of
regret as a metric for measuring the performance of players 2 and 3 with respect
to the payoffs they accumulate over time.

Definition 6. The regret of any sequence of strategies (y1, ...,yT ) chosen by
player 2 with respect to a fixed strategy y is given by

RT,y =
T∑

t=1

xTt A
(2,1)
t yt + yTt A

(2,3)
0 zt −

T∑

t=1

xTt A
(2,1)
t y + yTA

(2,3)
0 zt

That is, the regret is the difference between the payoff accumulated by the
sequence (y1, ...,yT ) and the payoff accumulated by the sequence where a given
fixed mixed strategy y is chosen at each time step. A similar notion of regret
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is defined for the player 3. We say that a player is ‘no-regret’ if her regret with
respect to the sequence of strategies chosen by the other two players is sublinear
in T: limT→∞ maxy∈Δm

RT,y

T = 0.
Note that every no-regret player is persistent. We prove this in Proposition

2. If the manipulator uses a winning batch coordination policy against no-regret
players, then the probability that there exists some finite number of rounds in
which she wins is 1. This result is formalized in the following theorem.

Theorem 4. If the manipulator uses a winning batch coordination policy
against no-regret players then

P

(
U1(xt, yt, zt)

T
t=1 ≥ U2(xt, yt, zt)

T
t=1 and U1(xt, yt, zt)

T
t=1 ≥ U3(xt, yt, zt)

T
t=1 eventually

)
= 1

It is worth noting that this guarantee on the convergence of utilities is
stronger than the one given for winning dominance solvable policies in Theo-
rem 1. This is because of the strict inequality on the utilities of the players in
Definition 5. By presenting this guarantee instead of a guarantee on the infinite
horizon utilities, we are ensured that the guarantee of winning in a finite num-
ber of rounds with probability 1 implies that the manipulator can use one set of
game matrices for half the rounds and another set for the second half.

Similarly to winning dominance solvable policies, winning batch coordination
policies can be found in polynomial time by solving a number of linear feasibility
problems.

Theorem 5. If winning batch coordination policies exist, then there exists an
algorithm that can find such policies with running time that is polynomial in the
number of actions of the players.

We present the following proposition that states all persistent players are
consistent, and that all no-regret players are persistent.

Proposition 2. All persistent players are consistent. Further, all no-regret play-
ers are persistent.

That is, each assumption on the behaviour of the agents is successively stronger.
To emphasize this, we prove that there exists a type of player who is persistent
but not no-regret.

Proposition 3. If an agent uses the Follow the Leader algorithm, then she is
persistent but not no-regret.

For the remainder of the paper we use the weakest assumption, that players
are consistent but not necessarily persistent.

5 Additional Objectives

The manipulator may have additional goals and objectives aside from simply
winning the game. For example, the manipulator may want to win by a large
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margin, or win by making the smallest alterations to the payoff matrices pos-
sible, or even have a goal completely different to winning, such as maximizing
the egalitarian social welfare. For each of the policy classes from Sect. 4, the
manipulator can solve a sequence of linear feasibility problems in order to find
a winning policy if one exists. As long as the linear constraints of one of these
problems are satisfied, the manipulator is guaranteed to win (i.e. she has found
a winning policy). Therefore, the manipulator can specify any additional objec-
tives she may have as a linear function to optimize with respect to the linear
constraints imposed by the policy class. In other words, the manipulator may
choose a linear objective function which captures her additional goals, and solve
a sequence of linear programs (LPs), instead of a sequence of linear feasibility
problems. For example let d2 and d3 be the cost of altering matrices A

(2,1)
0 and

A
(3,1)
0 respectively. If we consider a minimization problem with objective d2 +d3,

then this amounts to finding a winning policy which makes the least cost modi-
fication possible. Similarly, let v2 be the payoff for player 2 and v3 be the payoff
for player 3 in the strategy profile of consideration. Setting v2 as a maximization
objective amounts to winning whilst ensuring player 2 does as well as possi-
ble. We could also act adversarially against player 2, by instead minimizing v2.
Meanwhile, setting v2 + v3 as a maximization objective corresponds to winning
whilst maximizing the utilitarian welfare of the other players.

In what follows, we investigate additional objectives and goals of wider inter-
est. In Sect. 5.1 we investigate how player 1 can maximize her margin of victory,
in Sect. 5.2 we investigate how the manipulator may win in the most cost effi-
cient way possible. Meanwhile, in Sect. 5.3 we investigate how the manipulator
may maximizing the egalitarian social welfare.

5.1 Winning by the Largest Margin

In strictly competitive settings, it is often desirable for players to win, whilst
ensuring that their long run utility is much higher than the other players. This
motivates the following definition:

Definition 7. The margin of a policy ρt(Ht) = (xt, (A
(i,j)
t )(i,j)∈P ) for t ∈ N

when playing against player 2 and player 3’s no-regret sequence of strategies
(yt)∞

t=1 and (zt)∞
t=1 is defined to be

min
{
E

[
U1(xt,yt, zt)

∞
t=1 − U2(xt,yt, zt)

∞
t=1

]
,E

[
U1(xt,yt, zt)

∞
t=1 − U3(xt,yt, zt)

∞
t=1

] }

That is, the margin is the minimum difference between the long run expected
utility of player 1 and another player. Any winning dominance solvable policy
will have a margin of at least zero. Additionally, for any of the policy classes
discussed above, if a winning policy exists, then a winning policy with the largest
margin can be found efficiently via the addition of a linear objective and a small
number of linear constraints and variables.

Theorem 6. If winning dominance solvable policies exist, then there exists an
algorithm that can find the largest margin dominance solvable policy, with run-
ning time that is polynomial in the number of actions of the players.
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5.2 Winning with the Lowest Inefficiency Ratio

In many scenarios, it is only sensible to make changes to payoff matrices if one
would see a large relative improvement compared to the cost of alteration. We
characterize the notion of relative improvement using the following definition.

Definition 8. The Inefficiency Ratio of a policy ρt(Ht) = (xt, (A
(i,j)
t )(i,j)∈P )

for t ∈ N when playing against player 2 and player 3’s no-regret sequence of
strategies (yt)∞

t=1 and (zt)∞
t=1 is defined to be

limT→∞ 1
T

∑T
t=1

∑
(i,j)∈P ‖A

(i,j)
t − A

(i,j)
0 ‖∞

E

[
limT→∞ 1

T

∑T
t=1

(
xT
t A

(1,2)
t yt + xT

t A
(1,3)
t zt

)]
− K

where K = mini,j,k

(
A(1,2)(i, j) + A(1,3)(j, k)

)
is the minimum revenue for player

1.

In other words, the inefficiency ratio is the ratio between the cost for modifying
the payoff matrices and the expected increase in long run payoffs from the worst
case payoff. Note that this fraction must converge for the definition to be mean-
ingful. In a similar fashion to maximizing the margin of victory, policies which
minimize the inefficiency ratio can be found in polynomial time.

Theorem 7. If winning dominance solvable policies exist, then there exists an
algorithm that can find the winning dominance solvable policy with the lowest
inefficiency ratio, with running time that is polynomial in the number of actions
of the players.

5.3 Maximizing the Egalitarian Social Welfare

We now consider an altruistic goal for the manipulator that is different from the
original goal of winning. Here, we relax the original goal of winning and develop
a policy that ensures the utility of all players are as large as possible. To further
this notion, we define the quantity we call the egalitarian social welfare, which
we aim to maximize.

Definition 9. The Egalitarian Social Welfare of a strategy profile (x,y, z) is
defined to be

S(x,y, z) := min
{

U1(x,y, z), U2(x,y, z), U3(x,y, z)
}

We can find the dominance solvable policy that maximizes egalitarian social
welfare in polynomial running time. Note that such a policy will always exist.

Theorem 8. There exists an algorithm that can find the dominance solvable
policy that maximizes egalitarian social welfare with running time that is poly-
nomial in the number of actions of the players.

Now, we present a number of examples of the theory we have developed.
Each example highlights a different aspect of the theory.
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6 Three-Player Iterated Prisoner’s Dilemma

The first example we consider is a three-player version of the iterated prisoner’s
dilemma. As in the two-player version, each player must choose from a set of
two actions A = {C, D} which stand for cooperate and defect respectively. The
payoff matrices for each player are defined as follows:

A
(i,j)
0 =

[
3 0
5 1

]
if i < j and A

(i,j)
0 =

[
3 5
0 1

]
if i > j

6.1 Winning Strategy for a Manipulator

Note that defection is a strictly dominant strategy for each player. Moreover, the
payoff awarded to each player is the same when everyone defects. As a result,
by Theorem 1, player 1 can win the game with high probability by repeatedly
defecting, and never altering payoff matrices. Note that this policy is zero cost in
the sense that the manipulator never needs to alter any payoff matrices. However,
the margin is also zero. We now illustrate how alterations to the payoff matrices
can result in a winning policy for the manipulator, which has positive margin,
and encourages cooperation between players. In particular, we outline a policy
which the manipulator may use to converge to the strategy profile (D,C,C). For
0 ≤ ε ≤ 7/6 set

Â =
[

3 5
3/2 + ε −1/2

]
.

Let player 1 adopt the policy ρt =
(
e2, Â, Â

)
. Note that the mixed strategy of

any player is characterized by the probability that they cooperate. If player 3
cooperates with probability λ then the expected utility player 2 receives from
cooperating is 3/2 + ε + 3λ. Meanwhile, the expected utility player 2 receives by
defecting is 1/2 + 4λ. Since, λ ∈ [0, 1], this implies that cooperation is a strictly
dominant strategy for player 2. By symmetry, cooperation is also a strictly dom-
inant strategy for player 3.

The single shot utility under the profile (D,C,C) for player 1 is 7 − 2ε.
Meanwhile the utilities of players 2 and 3 are both 4.5+ ε. By Theorem 4.2, this
implies

P

(
U1(xt,yt, zt)

∞
t=1 ≥ U2(xt,yt, zt)

∞
t=1 and U1(xt,yt, zt)

∞
t=1 ≥ U3(xt,yt, zt)

∞
t=1

)
= 1

since ε ≤ 7/6.
Observe that the policy ρ has a much improved margin relative to the trivial

policy of repeated defection we first considered. In fact, the margin of policy ρ is
2.5−ε, which is the maximum margin achievable by a dominance solvable policy
as ε → 0.

7 Social Distancing Game

Next, we consider a more practical application of the theory above. More pre-
cisely, we consider the social distancing game which is a small variation of the
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lemonade stand game introduced by [25]: It is summer on a remote island, and
you need to survive. You decide to set up camp on the beach (which you may
shift anywhere around the island), as do two others. There are twelve places to
set up around the island like the numbers on a clock. The game is repeated.
Every night, everyone moves under cover of darkness (simultaneously). There
is no cost to move. The pandemic is eternal, so the game is infinitely repeated.
The utility of the repeated game is the time-averaged utility of the single-shot
games. The only person that survives is the one with the highest total utility at
the end of the game (Figs. 1 and 2).

Fig. 1. Example Social Distancing Game

Fig. 2. Best-responses for different opponent configurations: The dashed and shaded
segment indicates the third player’s best-response actions, and arrows point to the
action opposite each opponent. (Figures reworked from [21])

The utility of a player in a single round of the social distancing game is the
sum of its distances from the other two players. The distance between two players
is the length of the shortest path between them along the circumference of the
clock. More formally, the distance between two positions is defined as follows:

d(i, j) =

{
|i − j| |i − j| ≤ 6
12 − |i − j| otherwise

For example, if Alice sets up at the 3 o’clock location, Bob sets up at 10
o’clock, and Candy sets up at 6 o’clock, then the utility of Alice is d(3, 10) +
d(3, 6) = 5 + 3 = 8, the utility of Bob is d(10, 3) + d(10, 6) = 5 + 4 = 9, and
the utility of Candy is d(6, 3) + d(6, 10) = 3 + 4 = 7. If all the camps are set
up in the same spot, everyone gets 0. If exactly two camps are located at the
same spot, the two collocated camps get the distance to the non-collated camp
as their utility and the non-collated camp gets twice the same distance as her
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utility. In contrast to the lemonade stand game, the social distancing game is
not constant-sum. However, it is a polymatrix game, and thus the techniques
developed above can be applied. In what follows, we consider a three-player,
infinitely repeated version of the social distancing game. Each player i has 12
actions, Ai = {1, . . . , 12}, each corresponding to a number on the clock. The
payoff matrix for each pair of players (i, j) is derived directly from the distance
function d. That is, A

(i,j)
0 (k, l) = d(k, l) for all k, l ∈ Ai.

7.1 Winning Strategy for a Manipulator

We now present a winning dominance solvable type-I policy for the social distanc-
ing game. By definition, for any pair of positions (k, l) on the clock, d(k, l) ≤ 6.
This implies that the maximum utility achievable by any player is 12. In addition,
a player i only achieves their maximum payoff when both remaining players place
themselves directly opposite of player i. Thus, there are only 12 combinations
of pure strategies which maximize the utility of player 1, each corresponding to
a single number on the clock. In particular, we choose to work with one such
strategy profile, (e12, e6, e6). Consider the following dominance solvable policy.
Set

Â(k, l) =

{
d(k, l) − ε if d(k, l) < 6
d(k, l) + ε if d(k, l) = 6

and let player 1 adopt the policy ρt =
(
e12, Â, Â

)
. First, observe that, under

policy ρ, e6 is a dominant strategy for player 2 against the fixed strategy e12 of
player 1. Additionally, by symmetry, e6 is also a dominant strategy for player
3 against the fixed strategy of player 1. Moreover, note that player 1’s utility
under the strategy profile (e12, e6, e6) is 12−2ε. Meanwhile, the utilities of both
players 2 and 3 is 6 + ε. Thus, by Theorem 1, for sufficiently small ε we have

P

(
U1(xt,yt, zt)

∞
t=1 ≥ U2(xt,yt, zt)

∞
t=1 and U1(xt,yt, zt)

∞
t=1 ≥ U3(xt,yt, zt)

∞
t=1

)
= 1

Note that such a result implies that player 1 can guarantee her maximum payoff
in the long run by only making an infinitesimal change to the payoff matrices!

7.2 Maximizing Egalitarian Social Welfare

We now present a socially good solution a manipulator can guide the players
to converge to by using a winning dominance solvable policy. In the standard
version of the game without a manipulator, one of the “socially optimal” strategy
profiles is (e12, e4, e8), since in this profile, all the players are spread out evenly
around the clock. It is possible for a manipulator to guide the players to an
approximately optimal solution, in the sense that she can enable convergence to
the strategy profile (e12, e5, e7).
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Consider the following dominance solvable policy. Set

Â(k, l) =

⎧
⎪⎪⎨

⎪⎪⎩

d(k, l) if k �= 12
d(k, l) − 1 − 2ε if k = 12 and l �= 5
d(k, l) + 1 − ε if k = 12 and l = 5

and

Ã(k, l) =

⎧
⎪⎪⎨

⎪⎪⎩

d(k, l) if k �= 12
d(k, l) − 1 + ε if k = 12 and l �= 7
d(k, l) + 1 − ε if k = 12 and l = 7

and let player 1 adopt the policy ρt =
(
e12, Â, Ã

)
. First, observe that, under

policy ρ, e5 is a dominant strategy for player 2 against the fixed strategy e12 of
player 1. Additionally, e7 is a dominant strategy for player 3 against the fixed
strategy of player 1. Moreover, note that player 1’s utility under the strategy
profile (e12, e5, e6) is 10− (2+ ε) = 8− ε. Meanwhile, the utilities of both players
2 and 3 is also 8 − ε. Thus, by Theorem 1, for sufficiently small ε > 0 we have

P

(
U1(xt,yt, zt)

∞
t=1 ≥ U2(xt,yt, zt)

∞
t=1 and U1(xt,yt, zt)

∞
t=1 ≥ U3(xt,yt, zt)

∞
t=1

)
= 1

Note that such a result implies that player 1 can guarantee that the game con-
verges to an approximately socially optimal solution whilst ensuring that she
still wins the game!

8 Conclusions

In this paper, we considered a 3-player repeated polymatrix game setting in
which our agent is allowed to (slightly) manipulate the underlying game matrices
of the other agents for which she pays a manipulation cost, while the other agents
are ‘consistent’. In our framework, two examples of consistent agents are those
that use follow-the-leader or any no-regret algorithm to play the game. We first
proposed a payoff matrix manipulation scheme and sequence of strategies for our
agent that provably guarantees that the utility of any consistent opponent would
converge to a value we desire. Using this theory we developed winning dominance
solvable policies and winning batch coordination policies, both of which have
strong theoretical guarantees such as tractability and the ability to win in a
finite number of rounds almost surely. In addition, we showed that these policies
can be found efficiently by solving a sequence of linear feasibility problems. We
then considered additional objectives the manipulator may have, such as winning
by the largest margin or whilst seeing a large improvement relative to the cost
of modifying the payoff matrices. We then considered a socially good objective
different from winning, namely maximization of the egalitarian social welfare.
We showed that our framework could be extended to capture such objectives via
linear objective functions. After this, we considered a social distancing game and
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showed that, by making only infinitesimal changes to the payoff matrices, the
manipulator can maximize her payoff i.e. maximize her distance from the other
players. The manipulator can also guide the utilities of all players to converge to
a socially optimal solution. Note that due to page limitations, we have deferred
all the proofs, example game analyses, and numerical results to the online ArXiv
version of this paper (under the same title). Therefore we refer readers interested
in more detailed discussions to that longer version of our paper.
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Abstract. We present a constant-round deterministic broadcast proto-
col against timid adversaries in the synchronous authenticated setting.
A timid adversary is a game-theoretically rational adversary who tries
to attack the protocol but prefers the actions to be undetected. Our pro-
tocol is secure against such an adversary corrupting t out of n parties
for any t < n. The round complexity is 5 for timid adversaries and is
at most t + 5 for general malicious adversaries. Our results demonstrate
that game-theoretic rationality enables us to circumvent the impossibil-
ity of constructing constant-round deterministic broadcast protocols for
t = ω(1).

Keywords: Broadcast protocol · Game theory · Timid adversary

1 Introduction

Byzantine broadcast is a fundamental protocol in distributed computing used to
construct fault-tolerant distributed systems and cryptographic protocols, includ-
ing multiparty computation [28,43,44] and blockchains [27,35,41]. The Byzan-
tine broadcast problem is that a specific party called the sender distributes a
message among n parties in the presence of a malicious adversary who corrupts
at most t parties. The difficulty is in a requirement that all non-corrupted parties
should output the same value even if the sender is corrupted.

In synchronous networks with pairwise authenticated channels, the classical
results [40,42] show that broadcast is possible if and only if t < n/3. By assuming
the setup of digital signatures, which is referred to as the authenticated setting,
Dolev and Strong [17] presented a deterministic protocol with round complexity
t + 1 for any t < n. They also showed the round complexity lower bound of
t + 1 for deterministic protocols in the authenticated setting. Since then, many
studies have been devoted to constructing randomized protocols with expected
constant-round complexity [1,12,18,24,36,47,48].

In this work, we demonstrate that game-theoretic rationality can be used
to circumvent the impossibility result of [17]. Specifically, we consider rational
adversaries who prefer to violate the requirements of the broadcast protocol but
do not prefer their actions to be detected. Namely, such adversaries prefer to
attack the protocol stealthily. We call them timid adversaries.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Fu et al. (Eds.): GameSec 2023, LNCS 14167, pp. 277–293, 2023.
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Table 1. Previous and Our Results on Authenticated Broadcast Protocols

References Resilience Round
Complexity

Adversary
Model

Results

[17] t < n t + 1 Malicious ∃determ. protocol
[17] t < n t Malicious No determ. protocol
[20] t < n t + 3 Malicious ∃detectable protocol
[36] t < n/2 57 Malicious ∃rand. protocol
[24] t < n/2 + k O(k2) Malicious ∃rand. protocol
[24] t < n o(2n/(n −

t))
Malicious No rand. protocol

[21] t < n/2 + k O(k) Malicious ∃rand. protocol
[1] t < n/2 10 Malicious ∃rand. protocol
[12] t < n O(n/(n −

t))
Malicious ∃rand. protocol

This work t < n 5 Rational ∃determ. protocol

A timid adversary is an adversary model that lies between semi-honest and
malicious adversaries. A semi-honest adversary only tries to extract secret infor-
mation by honestly performing the protocol. The model seems artificial and
cannot be applied to protocols without secrecy requirements, such as broadcast.
A malicious adversary does anything to attack the protocol and is a good model
for studying the worst-case scenarios. However, the worst-case model restricts the
usability of protocols and may not reflect real-life situations. A timid adversary
attacks the protocol carefully so that his behavior will not be detected. Since the
actions of a timid adversary vary depending on the detection mechanism of the
protocol, we model it as a rational player in game theory who behaves to max-
imize his utility. A timid adversary can behave maliciously if the protocol does
not employ any detection system. The adversary may behave like a semi-honest
adversary if the protocol checks the validity of each computation.

Our Contributions. We introduce a game-theoretic security notion for broadcast
protocols that takes into account adversaries’ rational behavior. In our model, a
single rational adversary corrupts a subset of participants of the broadcast proto-
col. The non-corrupted participants honestly follow the protocol. The adversary
has a preference for the outcome of the protocol execution. We say a proto-
col is secure if (1) it satisfies the requirements for the broadcast protocol for a
“harmless” adversary and (2) no timid adversary obtains higher utility than the
harmless adversary. In other words, the protocol is secure in the sense that the
best strategy for timid adversaries is doing nothing.

We construct a constant-round deterministic broadcast protocol against
timid adversaries in the authenticated setting. The round complexity is 5 for
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timid adversaries and is at most t+5 for any malicious adversaries. The commu-
nication complexity of our protocol against timid adversaries is O(κn2), where
κ is a security parameter of the signature scheme. We summarize the previous
and our results on authenticated broadcast protocols in Table 1.

The basic idea of our protocol is to use digital signatures as
proofs/certificates. Consider a countersignature π = (m,σB(σA(m))), where
σi(x) is a signature of player i for x. If player C has π, it means that C knows
that player B has a proof that A has message m. Suppose that all players are
prescribed to send the received countersignature to everyone by appending their
own signature. If some player got the same countersignature as π from t + 1
different players, it means that everyone knows that B has a proof that A has
m. This is because there are at most t corrupted parties, and thus at least one
honest party sent π to everyone. We use and generalize this idea to construct a
constant-round protocol for timid adversaries.

Related Security Notions for Broadcast. We compare our security notion of ratio-
nal broadcast against timid adversaries with the related notions in the literature.

In [19,20], Fitzi et al. showed that detectable broadcast could be achieved
for any t < n. In detectable broadcast, all honest parties either accept or reject
the execution. A malicious adversary can cause an honest party to abort the
protocol, but in that case, all the honest parties noticed the fact. Since a mali-
cious action can be detected, any detectable broadcast protocol can be used as a
rational protocol against timid adversaries. As far as we know, no constant-round
detectable broadcast protocol exists.

Goldwasser and Lindell [29] presented a simple two-round protocol for broad-
cast with abort for any t < n. A requirement is relaxed such that any honest
party needs to output either some same value or ⊥. Since a broadcast protocol
with abort may not have a mechanism for detecting malicious behaviors, the
notion of broadcast with abort is incompatible with our security notion.

Aumann and Lindell [9] introduced the notion of covert security, where any
deviation from the protocol can be detected with some probability ε. Although
existing studies [8,15,30,39] for covert security have been aimed at constructing
general multiparty computation protocols, the security notion can be adopted
to broadcast. If the probability ε is high enough, a protocol with covert security
can be used as a broadcast protocol for timid adversaries. As observed in [45],
the standard definition of covert security is not necessarily weaker than standard
security against malicious adversaries. Since a secure Byzantine broadcast pro-
tocol is also secure for timid adversaries, the notion of covert security is strictly
stronger than ours.

Our results of constructing a protocol that takes 5 rounds for rational adver-
saries and t + 5 rounds for malicious adversaries are similar to the notion of
early stopping [16], where the protocol may halt early if the actual number of
corrupted parties is less than its maximum t. More specifically, Albouy et al. [5]
studied the problem of constructing Byzantine broadcast protocols with good-
case latency; they gave a deterministic broadcast protocol in the authenticated
setting such that the round complexity may be a constant if the actual number of
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honest parties is sufficiently large. However, it is difficult to employ their proto-
col in our setting because it has no mechanism for detecting cheaters. Namely, a
rational adversary may have no incentive to refrain from attacking the protocol.

Related Work. A game-theoretic analysis of players in cryptographic protocols
was initiated by Halpern and Teague [33] for secret sharing. The problem is
achieving fair secret reconstruction among rational parties, which has been exten-
sively studied in the literature. See [2,7,22,37,38] and the references therein.
Fairness among rational parties has been studied for other problems such as
multiparty computation [6,31], leader election [3,4,13,49], consensus [34], and
coin toss [14].

There have been studies on protocols against rational adversaries to circum-
vent the known impossibility results. Groce et al. [32] studied the possibility of
constructing a Byzantine agreement tolerating t corruptions for t ≥ n/2, which
is impossible in the traditional setting. Garay et al. [25] introduced a frame-
work of rational protocol design to capture incentive-driven adversaries within
the simulation-based paradigm. Their framework was used to relax fairness in
multiparty computation [26] and analyze Bitcoin [10]. The notion of timid adver-
saries was introduced by Fujita et al. [23] as a game-theoretically relaxed model
of a malicious adversary. They presented perfectly secure message transmission
protocols that circumvent the known impossibility results.

2 Preliminaries

We briefly describe our network model, the setup assumptions, and the definition
of Byzantine broadcast.

There are n parties on the network. A protocol is said to be t-resilient if
it works correctly, even if at most t parties are corrupted and controlled by
an adversary. We assume the synchronous communication model. Namely, the
protocol proceeds in rounds, and each party can send messages to other parties
in each round. The messages of non-corrupted (honest) parties can be correctly
delivered at the beginning of the next round.

We assume a public-key infrastructure (PKI) and digital signature schemes.
Each party can generate a signature using his secret key, and the validity can be
checked with the corresponding public key. It is called an authenticated setting.

A signature scheme consists of three algorithms (Gen,Sign,Ver). A key-
generation algorithm Gen, on input security parameter n, outputs a pair of keys
(pk, sk). The security parameter is usually represented by the string 1 · · · 1 of
length n, denoted by 1n. A signing algorithm Sign, on input secret key sk and
message m, outputs a signature σ. A verification algorithm Ver, on input public
key pk and pair (m,σ), checks if σ is a valid signature of m. Here, we give a
formal definition of the standard security notion of signature schemes.
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Definition 1 (Security of Signature Scheme). A signature scheme
(Gen,Sign,Ver) is existentially unforgeable against chosen-message attack (EUF-
CMA) or simply secure if for every polynomial-time adversary A,

Pr
[
(pk, sk) ← Gen(1n); (m,σ) ← ASignsk(·)(vk) : m /∈ Q ∧ Verpk(m,σ) = 1

]

is negligible in n, where Q = {mi}i is the set of queries mi made by A to oracle
Signsk(·), for which A received σi generated by Signsk(mi) as a response.

In the above definition, an adversary A can use the signing oracle Signsk(·) as
many times as A wants to obtain valid pairs {(mi, σi)}i of message mi and sig-
nature σi, where each mi was chosen by A. Finally, A outputs a pair (m,σ).
The winning condition that m /∈ Q ∧Verpk(m,σ) = 1 means that the submitted
message m should differ from the messages queried to the signing oracle, and the
pair should be a valid message-signature pair. Thus, the above security guaran-
tees that no adversary can generate a valid signature-message pair except those
generated by a valid signing algorithm.

As a correctness property, we require that for any (pk, sk) generated by
Gen(1n) and message m, it holds that Vervk(m,Signsk(m)) = 1. For simplicity,
we assume an ideal signature scheme where the above probability is equal to
zero.

The following is a traditional definition of Byzantine broadcast.

Definition 2 (Byzantine Broadcast). A protocol Π for n parties is said to
be a t-resilient Byzantine broadcast protocol if the following conditions hold for
any adversary controlling at most t parties:

1. Validity: If the sender is honest and holds an initial input m, then all honest
parties output m.

2. Agreement: All honest parties output the same value.

Dolev and Strong [17] presented a polynomial-time authenticated broadcast
protocol with round complexity t + 1 for any t < n. Also, they showed that as
long as protocols are deterministic, the round complexity must be at least t+1,
even in the authenticated setting.

3 Rational Broadcast Protocols

We define a game-theoretically rational adversary model. First, we define a game
played by a rational player/adversary. The outcome of the game consists of
the information that represents whether the adversary successfully violates the
security requirements. Since timid adversaries care whether their actions were
detected, the outcome also includes such information. After that, we define a
security notion of rational broadcast protocols, which roughly says that the best
strategy for rational adversaries is doing nothing on the protocol.
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Broadcast Game. We define the broadcast game. First, set parameters incorrect =
disagree = undetect = 0. Given the protocol Π, an adversary A chooses the
sender s ∈ [n], the message m, and the set of parties C ⊆ [n] with |C| ≤ t. The
protocol is executed by specifying s as the sender with initial message m, where
the parties in C are controlled by A, and the other parties honestly follow the
protocol description of Π. After running the protocol, each party i ∈ [n] outputs
vali. Let H = [n] \ C. If s ∈ H and there exists i ∈ H such that vali /∈ {m,⊥},
set incorrect = 1. If there exist i, j ∈ H such that vali 
= valj , set disagree =
1. In executing the protocol, every player may send a message “DETECT i”
indicating that the player detected that player i cheating. If no player sent
messages “DETECT i” during the protocol for i ∈ C, set undetect = 1. The
outcome of the game against adversary A is outA = (incorrect, disagree, undetect).

In the above definition of incorrect, the case that vali = ⊥ for i ∈ H is not
considered a successful attack by adversaries. One reason is that if vali = ⊥
for some honest party i, i may propose to execute the protocol again. If so,
we cannot say that the adversary attacked successfully. Another reason is that
the output value ⊥ usually implies that some attack was detected. Hence, timid
adversaries naturally consider that outcome a failure.

Utility. The utility u(A) of the adversary A is the expected value E[U(outA)],
where U is a function that maps the outcome outA of the game to real values.

Definition 3 (Security of Rational Broadcast). A broadcast protocol Π is
said to be secure against rational t-adversaries with utility function U if there
exists a “harmless” adversary B controlling at most t parties such that

1. Security: Π satisfies validity and agreement for B;
2. Nash equilibrium: For any adversary A controlling at most t parties, u(A) ≤

u(B).

The above notion captures game-theoretic security; if protocol Π satisfies the
above, a strategy of harmless adversary B is the best response since every other
strategy (following adversary A) cannot increase the expected utility. Thus, every
adversary rationally behaves harmlessly in protocol Π.

Timid Adversaries. We consider a timid adversary who tries to violate the secu-
rity requirements of protocols but does not prefer the attacks to be detected.
Specifically, we consider the set of utility functions that satisfy the following
conditions:

1. U(out) > U(out′) if incorrect > incorrect′, disagree = disagree′, and undetect =
undetect′;

2. U(out) > U(out′) if incorrect = incorrect′, disagree > disagree′, and undetect =
undetect′;

3. U(out) > U(out′) if incorrect = incorrect′, disagree = disagree′, and undetect >
undetect′,
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where out = (incorrect, disagree, undetect) and out′ = (incorrect′, disagree′,
undetect′) are two outcomes of the broadcast game. We denote by Utimid the
set of utility functions satisfying the above conditions.

By definition, for any U ∈ Utimid, it holds that

U(1, 1, 1) > max{U(0, 1, 1), U(1, 0, 1)}
≥ min{U(0, 1, 1), U(1, 0, 1)} > U(0, 0, 1) > U(0, 0, 0).

We use the above relation in the analysis.
Note that if protocol Π satisfies t-resilient Byzantine broadcast of Defini-

tion 2, any adversary controlling at most t parties achieves either U(0, 0, 0) or
U(0, 0, 1). Since a harmless adversary will achieve U(0, 0, 1), Π is also secure
against rational t-adversaries. Namely, Definition 3 for timid adversaries is a
relaxation of Definition 2.

4 Our Protocol

We assume that a PKI is established on the network. Let (Gen,Sign,Ver) be a
signature scheme. We assume that each party i ∈ [n] has a pair (pki, ski) of keys
generated by Gen(1n) and all parties know {pki}i∈[n]. With the secret key ski,
party i can generate a signature σi(m) of message m by Signski

(m). The validity
of a pair (m,σi) can be verified with the public key pki by Verpki

(m,σi).
First, we recall the Dolev-Strong authenticated broadcast protocol [17]. The

protocol uses a signature chain. A signature chain for value v of length � is
defined as (1) (v, σi(v)) for some i ∈ [n] if � = 1; (2) (c, σi(c)) for some i ∈ [n] for
� > 1, where c is a signature chain for v of length �−1 that consists of signatures
with � − 1 distinct signers other than i. A signature chain is valid if it satisfies
the above conditions and all signatures are valid.

Dolev-Strong Protocol

1. The sender s with input m sends (m,σs(m)) to all parties.
2. For round r = 2, . . . , t + 1, each party i does the following:

– If i received a valid signature chain c for value v of length r − 1 where no
signature of i is included, then i signs it and sends (c, σi(c)) to all parties.
(Party i does this procedure once for each value v. Namely, if i appended
a signature for value v and sent to all parties, i does nothing for value v
henceforth.)

– At the end of round t + 1, let V be the set of values of valid signature
chains of length t + 1 that i received. If |V | = 0 or |V | > 1, i outputs ⊥.
Otherwise, i output the value in V .

Before presenting the formal description, we give an overview of our protocol.
In the following, we introduce three notions: proof of dissemination (PoD), proof
of agreement (PoA), and proof of termination (PoT). They help us understand
our protocol and make the security proof easy to follow.
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Protocol Overview

1. The sender sends the initial input m and its signature to all parties.
2. Each party generates a countersignature from the received message and sends

it to all parties.
3. Each party collects countersignatures. A set of t + 1 valid countersignatures

functions as a “proof of dissemination” of message m. It means that a non-
corrupted party has sent a countersignature of m to all parties. Party i sends
the local proof PoDi

m for message m to all parties. If i found valid countersig-
natures for different values, i does nothing.

PoDi
m = “Party i knows that everyone got the proof that s sent m.”

Note that, even if party i has PoDi
m, there may be the case that s sent m′ 
= m

to some party.
4. Each party collects proofs of dissemination {PoDj

m}. A set of t+1 valid proofs
for consistent m is a “proof of agreement,” implying that a non-corrupted
party has found no inconsistency and sent a proof of dissemination to all
parties. If party i gets a proof of agreement PoAi

m = {PoDj
m}j , i sends the

local proof PoAi
m to all parties via the Dolev-Strong protocol. Otherwise,

party i does nothing.

PoAi
m =

“Party i knows that everyone knows that
everyone got the proof that s sent m.”

Even if party i has PoAi
m, there may be the case that another party j does

not have PoAj
m. Namely, j got the proof that s sent m, but j does not know

everyone knows this fact.
5. A set of t + 1 valid proofs {PoAj

m} works as a “proof of termination” since it
implies that a valid proof of agreement has been sent to all parties. If party
i gets a proof of termination PoT = {PoAj

m}j , i outputs the value m. If
another party j has not obtained a proof of termination, j continues to run
the Dolev-Strong protocol, in which party i also needs to participate. At the
end of the Dolev-Strong protocol, if party i found a valid PoAj

m, i outputs m.
Otherwise, i outputs ⊥ and sends a message “DETECT s,” meaning that the
sender s has cheated.

PoT =
“Everyone knows that everyone knows that
everyone got the proof that s sent m.”

We give a formal description of our protocol. Since we define several validity
notions, we summarize them in Table 2.

Our Protocol Πrbc

Note that, in each round, if party i received a message containing (x, σj(x))
from party j such that σj(x) is not a valid signature, then i considers j has sent
i nothing.
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Table 2. Validity Notions

Objects Validity Conditions

Signature σi(m) Vervki
(m,σi(m)) = 1

Countersignature σi(σs(m))
Vervki

(σs(m), σi(σs(m))) = 1
∧ Vervks

(m,σs(m)) = 1

Countersignature set
CSigSetim = {σj(σs(m))}j

∀j, σj(σs(m)) is valid
∧ each j in CSigSetim is distinct
∧ |CSigSetim| ≥ t + 1

Proof of dissemination
PoDi

m = (m,CSigSetim, σi
m)

Vervki
((m,CSigSetim), σi

m) = 1
∧ CSigSetim is valid

(Signed) proof of agreement
PoAi

m = (PoAm, σi
m), where

PoAm = (m, {(CSigSetjm, σj
m)}j)

Verski
(PoAm, σi

m) = 1
∧ ∀j,

(
Vervkj

(CSigSetjm, σj
m) = 1

∧ CSigSetjm is valid
)

∧ each j of CSigSetjm is distinct
∧ |{(CSigSetjm, σj

m)}j | ≥ t + 1

Signature chain
Cj = (PoAj

m, σj
m) of length k

σj
m = σik

(σik−1(· · · (σi1(PoA
j
m)) · · · ))

∧ PoAj
m is valid

∧ ∀� ∈ [k], σi�
(· · · ) is valid

∧ each i� in σj
m is distinct

∧ received in round 4 + k

1. The sender s with input m sends (m,σs(m)) to all parties.
2. For each party i, if i received a valid signature (m,σs(m)) from s and received

no valid signature for other value m′ 
= m, then i signs it and sends the
countersignature (m,σi(σs(m))) to all parties. Otherwise, i sends nothing.

3. For each party i, if i received at least t+1 valid countersignatures of distinct
signers for the same value m and did not see any valid countersignature for
other value m′ 
= m, then i sends a proof of dissemination

PoDi
m = (m,CSigSetim, σi(CSigSetim))

to all parties, where
CSigSetim = {σj(σs(m))}j

is the set of valid countersignatures of distinct signers for m that i received
and |CSigSetim| ≥ t + 1.
Otherwise, i sends nothing.

4. For each party i, if i received at least t + 1 valid proofs of dissemination
{PoDj

m} of distinct j for the same value m and did not see any valid proof
for other value m′ 
= m, then i sends a signed proof of agreement PoAi

m =
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(PoAm, σi(PoAm)) to all parties, where

PoAm = (m, {(CSigSetjm, σj(CSigSetjm))}j)

is generated from a set of valid proofs of dissemination of distinct j for m
that i received and |{(CSigSetjm, σj

m)}j | ≥ t + 1.
Otherwise, i sends nothing.

5. For round r = 4 + k with k = 1, . . . , t + 1, each party i does the following:
(a) In each round, if i received from j a valid signature chain Cj =

(PoAj
m, σj

m) containing no signature of i and did not see any valid chain
for other value m′ 
= m, i sends (PoAj

m, σi(σj
m)) to all parties. (Note that

i does this procedure once for each value PoAj
m.)

If i obtained at least t+1 signed proofs of agreement {(PoAj
m, σ�(σj

m))}�

(including i’s one) with valid signatures of distinct � for the same value
m and did not see any valid proof for other value m′ 
= m, i outputs m
and halts.
Otherwise, i sends nothing.

(b) At the end of round t + 5, if party i received a valid signature chain of
length t + 1 containing valid PoAj

m and did not see any valid proof for
other value m′ 
= m, i outputs m and halts.
Otherwise, i sends “DETECT s” to all parties, outputs ⊥, and halts.

4.1 Security Proofs

We give a security proof of our protocol. Before proving the main theorem (The-
orem 1), we give a technical lemma used in the proof.

Lemma 1. In every broadcast game of Πrbc in the presence of rational t-
adversary with utility function U ∈ Utimid for t < n, it holds that (1) if i ∈ H
outputs m 
= ⊥, then i have obtained a valid PoAj

m for some j ∈ [n]; (2) if i ∈ H
outputs ⊥, every � ∈ H have failed to generate a signed proof of agreement
(PoAj

m, σ�(PoAj
m)) for a valid PoAj

m for some j ∈ [n] in round 4.

Proof. Since every i ∈ H follows the prescribed protocol, we can see that i
outputs m 
= ⊥ in round 5 or t+5. For the former case, i obtained at least t+1
signed proofs of agreement {(PoAj

m, σ�(σj
m))}�; for the latter case, i received a

valid signature chain containing valid PoAj
m. Thus, in both cases, i ∈ H have

obtained a valid PoAj
m, implying (1).

Similarly, i ∈ H outputs ⊥ only when i failed to obtain a valid signature chain
of length t+1 in round t+5. This event happens only when every honest party
� failed to obtain a valid PoAj

m in round 4; this is because if � ∈ H obtained
a valid PoAj

m, � performs the Dolev-Strong protocol as a sender to broadcast
(PoAj

m, σ�(PoAj
m)) to all parties. By the agreement property of the Dolev-Strong

protocol, honest party i would obtain a valid PoAj
m, a contradiction. Hence, (2)

follows. �
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Theorem 1. The broadcast protocol Πrbc is secure against rational t-
adversaries with utility function U ∈ Utimid for any t < n. The round complexity
is 5 for a harmless adversary and is at most t + 5 for any adversary controlling
t parties.

Proof. We consider a harmless adversary B that chooses a random sender s ∈ [n],
a random message m, and C = ∅. Namely, B does not make any attacks on the
protocol. It is not difficult to see that the protocol satisfies validity and agreement
against B. In the presence of B, each party i receives n valid proofs of agreement
in round 5. Thus, the round complexity for a harmless adversary is 5.

We show the Nash equilibrium property. Since u(B) = U(0, 0, 1), we need to
show that for any adversary A, u(A) ≤ U(0, 0, 1). To achieve a higher utility, an
adversary needs outcomes of incorrect = 1 or disagree = 1.

Consider the case that incorrect = 1. By definition, when incorrect = 1, the
sender must not be corrupted. Since no party other than s can generate σs(m′)
for m′ 
= m, parties will not output messages other than m or ⊥. Namely, as
long as the signature scheme is unforgeable, it is not possible to be the case that
incorrect = 1.

Next, consider the case that disagree = 1. Suppose for contradiction that two
parties i, j ∈ H output vali = m, valj = m′ 
= m, respectively.

First, we consider the case that ⊥ /∈ {m,m′}. By (1) of Lemma 1, i and j
have obtained valid PoAm and PoAm′ , respectively. A valid PoAm contains a set
{CSigSet�m}� of size at least t + 1 for distinct �, where each CSigSet�m is valid.
Since there are at most t corrupted parties, the existence of valid PoAm implies
that some non-corrupted party � sent CSigSet�m to all parties in round 3. Since
each CSigSet�m consists of at least t+1 valid countersignatures for m, some non-
corrupted party �′ sent (m,σ�′(σs(m))) to all parties in round 2. Similarly, one
can deduce that the existence of valid PoAm′ implies that some party �′′ sent
(m′, σ�′′(σs(m′))) to all parties in round 2. Thus, all parties must have received
valid countersignatures for distinct m and m′. In that case, all non-corrupted
parties would have sent nothing in round 3, a contradiction.

Next, we consider the case that m 
= ⊥ and m′ = ⊥. Since valj = ⊥, (2)
of Lemma 1 implies that every � ∈ H has failed to generate a signed proof of
agreement. In that case, since there are at most t corrupted parties, no party
can receive at least t + 1 valid proofs of agreement {PoAj} of distinct j in
round 5. Thus, it must be the case that party i output m after performing the
Dolev-Strong protocol. By the agreement property of the Dolev-Strong protocol,
party j ∈ H would output m, contradicting the fact that valj = ⊥. Thus, it is
impossible to achieve disagree = 1.

By the above analysis, for any adversary A, the utility u(A) is either U(0, 0, 1)
or U(0, 0, 0). Note that u(A) = U(0, 0, 0) when A corrupts the sender s, the
protocol halts in round t + 5, and the cheating of s is detected. Since u(A) ≤
U(0, 0, 1) = u(B), the protocol satisfies a Nash equilibrium.

To prove the worst-case round complexity, consider the case that some party
i sent a valid signature chain Ci = (PoAi

m, σi
m) of length k to some honest party

j in round 4 + k for some k = 1, . . . , t + 1. In that case, by the property of the
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Dolev-Strong protocol, every honest party can obtain a valid signature chain
of length t + 1 in round t + 5. Otherwise, no honest party will receive a valid
signature chain of length t+1 in round t+5, and thus all honest parties output
⊥ by sending “DETECT s”. In either case, the worst-case round complexity is
t + 5. �

Communication Complexity. The communication complexity of the above pro-
tocol against a harmless adversary is O(κn3), where κ is a security parameter
of the signature scheme, and we assume that each signature is of length O(κ).
We can employ non-interactive threshold signatures [11,46] to reduce the com-
munication complexity. In a non-interactive threshold signature scheme, each
party can generate a signature share of message x, and there is an algorithm
that converts k valid shares to a signature of x. No set of less than k parties can
forge a valid signature. In our protocol, a set CSigSetjm of countersignatures can
be replaced with a threshold signature. Namely, in round 2, each party sends a
signature share of (m,σs(m)) to all parties, and in round 3, each party generates
a valid threshold signature of (m,σs(m)) instead of CSigSetim. Since the size of
PoDi

m can be reduced from O(κn) to O(κ), the total communication complexity
of the resulting protocol is O(κn2).

4.2 Detecting Cheaters

In our protocol, the sender is the only player who can be detected as a cheater.
Regarding this point, we can show that as long as t ≤ �(n − 1)/2�, the sender s
can be declared a cheater only when s is corrupted.

Proposition 1. In every broadcast game of Πrbc in the presence of rational t-
adversary A with utility function U ∈ Utimid for t ≤ �(n−1)/2�, if i ∈ H outputs
⊥, then A chose the sender s ∈ [n] and C ⊆ [n] such that s ∈ C.

Proof. Suppose for contradiction that A chose the sender s ∈ [n] and C such
that s /∈ C. Since s ∈ H, every player receives a valid signature σs(m) in round
2. Then, every player i ∈ H sends a valid countersignature σi(σs(m)) to all
players. Since the number of honest players satisfies

|H| = n − t ≥ n −
⌊

n − 1
2

⌋
≥

⌊
2n − (n − 1)

2

⌋
=

⌊
n − 1
2

+ 1
⌋

≥ t + 1,

every player i ∈ H obtains at least t + 1 valid countersignatures in round 3.
By a similar argument, every player i ∈ H obtains at least t + 1 valid proofs
of dissemination in round 4 and obtains at least t + 1 valid signed proofs of
agreement in round 5. Hence, every player i ∈ H outputs m in round 5 and
halts, which contradicts the assumption that some honest player outputs ⊥.
Therefore, the statement follows. �

Proposition 1 guarantees a sort of soundness of the detection mechanism in
our protocol. However, we can see that the guaranteed bound t ≤ �(n − 1)/2�
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is optimal and cannot be extended to t > �(n − 1)/2�. Specifically, there is a
t-adversary A with t = �(n − 1)/2� + 1 such that A chooses the sender s and C
with s /∈ C, but every i ∈ H outputs ⊥. The strategy of A is fairly simple; every
party i ∈ C does nothing in the protocol. For such A, the number of honest
players satisfies

|H| = n − t = n −
(⌊

n − 1
2

⌋
+ 1

)
≤ t.

Since only at most t players are active, every honest player cannot generate any
valid countersignature set, for which at least t + 1 valid countersignatures are
needed. Thus, honest players will output ⊥ in the game against A.

The above weakness of our protocol does not contradict the game-theoretic
security of Definition 3. Since every honest player outputs ⊥, the outcome of the
game is outA = (incorrect, disagree, undetect) = (0, 0, 1), where s ∈ H is wrongly
detected as a cheater, but no player i ∈ C is detected. The above strategy
of A achieves the same utility as a harmless one and does not violate a Nash
equilibrium.

5 Discussion

In this work, we introduce a game-theoretic security notion for broadcast pro-
tocols, which can be used in various cryptographic protocols such as multiparty
computation and blockchains. We have developed a constant-round broadcast
protocol against adversaries corrupting t out of n players for any t < n. Since
constructing constant-round protocols is impossible for malicious adversaries,
our protocol heavily relies on the rationality of timid adversaries who prefer
their actions to be undetected in protocol executions.

There are several interesting open problems. First, as discussed in Sect. 4.2,
our protocol may wrongly detect an honest player as a cheater for t ≥ �(n −
1)/2� + 1. Possible future work is constructing a protocol without such weak-
ness or proving it is impossible. Another one is improving our protocol with
respect to round complexity and communication complexity. The worst-case
round complexity of our protocol is t + 5, which depends on the number of
corrupted players. It may be interesting to incorporate randomized protocols
[1,12,47,48] instead of the Dolev-Strong protocol [17] for constructing protocols
with expected constant-round protocols for (worst-case) malicious adversaries.
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Abstract. Software-Defined Networking (SDN) is an evolving network
paradigm that separates the control and forwarding functions of network
devices. Its application in tactical networks can help to automate Vir-
tual Private Networks (VPN) establishments, Unit Task Reorganization
(UTRs), security certificate management, and security solution automa-
tion. Despite these advantages, tactical networks continue to face new
threats. In this paper, we introduce a new stealthy packet-dropping sce-
nario that can appear during data forwarding in tactical networks. To
overcome this attack scenario, we propose a new game-theoretic app-
roach called FlipPath to provide an optimal data forwarding strategy
that prevents packet-dropping on a network path. The forwarding path
is considered a shared resource, and each player wants to control it for a
long period while minimizing the related costs. We use periodic strategies
to characterize the Nash equilibria that identify the defender’s optimal
data-forwarding strategies. Our computational results have shown that
the defender who adopts the proposed methodology can mitigate the
attacker’s stealthy packet-dropping.

Keywords: Stealthy Attack · FlipIt Game · Software-Defined
Network · Tactical Network · Nash Equilibrium

1 Introduction

Software-Defined Networking (SDN) is a flexible architecture model in which
network functions are automatically programmed by a central controller accord-
ing to evolving requirements [1]. This architecture enables the implementation of
new services without knowing the specific technologies of the underlying infras-
tructure. The level of programmability of SDN can enable rapid deployment of
services, easier reconfiguration, and interoperability between different networks.
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The application of SDN in a tactical network can help to avoid time-consuming
by automating Virtual Private Network (VPN) establishments, security certifi-
cate management, security solution automation, and Unit Task Reorganizations
(UTRs) that are frequent in army’s tactical networks [2]. Despite these advan-
tages, tactical networks continue to face sophisticated threats such as stealthy
attacks.

In general, stealthy attacks are highly sophisticated and can remain unde-
tected for long periods. Some notorious cyber attacks have gone undetected for
months or even longer [3]. The first widely reported stealthy attack (Operation
Aurora) was made public by Google in January 2010, and its malicious activ-
ity was suspected to have begun six months earlier. This cyber attack was very
large in scale and reportedly targeted 34 organizations, including Yahoo, Syman-
tec, and Google itself [4]. Another example is the notorious Stuxnet virus that
reportedly damaged nearly a thousand uranium hexafluoride centrifuges in Iran’s
Natanz facility [5]. Stealthy attacks are preferred by attackers because their sig-
natures are not necessarily known by the defender. As technology grows, attack-
ers are developing new threats to evade current intrusion detection systems. In
[6], Khalil and Bagchi introduced four modes of stealthy packet-dropping attacks
and provided countermeasures. These modes include misrouting, power control
attacks, controlled-jamming attacks, and identity delegation attacks.

In this paper, we introduce a new stealthy packet-dropping scenario that can
appear during data forwarding in tactical networks. In this scenario, the attacker
is one of the intermediate nodes of the forwarding path and has a packet-dropping
function that can be enabled or disabled. The attacker drops packets when its
dropping function is enabled and forwards data when this function is disabled.
We assume that the network includes an intrusion detection system that detects
an attacker when its dropping function remains enabled for a long period. Thus,
a stealthy attacker will drop packets at relatively short time intervals to remain
undetectable. In a tactical network, this stealthy behavior can lead to traffic
degradation between tactical force units, and negatively impact operational pro-
cesses and situational awareness. As tactical force units are deployed for a specific
mission, a lack of situational awareness can lead to mission failure. The FlipIt
game model can be used to overcome this problem. However, existing FlipIt game
approaches [7–9] cannot work because they do not consider some features such
as the probability of taking control and the case in which the attacker and the
defender may have more than one action, as in the new stealthy attack scenario.
To overcome this problem, we propose a novel game-theoretic approach called
FlipPath to model the strategic interaction between the source node (defender)
and the malicious node (attacker) on the forwarding path. We consider a for-
warding path as a shared resource, where at any time, either the defender or the
attacker can move (flip) to try to take over the path. At any time t, the path is
under the control of one player, who is not necessarily the player who makes the
last move before t. To capture players’ stealthy behavior, we assume that neither
the defender nor the attacker has any real-time feedback about the other side.
The goal of each player is to control the path for a long time while minimizing
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the related costs. There is a random starting phase (the first move is selected
uniformly at random from a given interval) and a fixed inter-arrival time between
two consecutive moves. Thus, we consider a periodic strategy for each player. As
proven in [7], when there is no real-time feedback, periodic defense is optimal
against periodic attacks, and vice versa. We characterized the Nash equilibrium
of the game where the defender first determines and declares its strategy and the
attacker answers accordingly. Our contribution can be summarized as follows:

– Introducing a new attacker’s stealthy packet-dropping scenario in a tactical
network. In this scenario, the attacker attempts to drop packets for a long
period while remaining undetectable;

– Propose a novel game-theoretic model called FlipPath to prevent the
attacker’s stealthy packet-dropping in a tactical network path. In this game,
players compete to control the forwarding path, and a player can take over
the path according to a probability distribution. We use periodic strategies
to characterize the Nash equilibria that identify the defender’s optimal data-
sending strategies.

The rest of this paper is organized as follows: Sect. 2 presents the related
work. Section 3 describes the network architecture. In Sect. 4, we describe a
new attacker’s stealthy packet-dropping scenario. In Sect. 5, the proposed game-
theoretic approach is presented. Section 6 validates the proposed game model
through computational simulation. Section 7 concludes this paper and presents
future directions.

2 Related Work

As mentioned earlier, cyber-attacks are becoming more and more sophisticated
to evade current intrusion detection systems. These attacks consist in compro-
mising a system while remaining undetectable. In general, several methodologies
have been proposed in wireless networks to deal with cyber-attacks. One of these
methodologies is local monitoring. The local monitoring in a node’s neighbor-
hood consists of listening to nearby traffic and exchanging information within
a node’s transmission range to detect malicious nodes. The idea of monitor-
ing traffic in the neighborhood makes it possible to establish trust relationships
between nodes, detect and mitigate certain types of attacks, or discover routes
in the network [10]. In local monitoring, nodes supervise a portion of their neigh-
bors’ incoming and outgoing traffic, and each node performs a local check on the
observed traffic to determine malicious behavior. Several protocols rely on local
monitoring for intrusion detection [11,12]. These protocols build trust and rep-
utation between nodes to protect the network against attacks. In [13], Bucheg-
ger et al. proposed an approach based on overhearing packets transmitted by
neighbors and establishing reputation scores. This solution is ineffective because
adversary nodes obtain high reputation scores, and malicious actions cannot be
detected [6]. Awerbuch et al. [14] proposed an approach for detecting malicious
behavior involving selective packet dropping. This method can detect stealthy
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packets dropping at the destination node. However, it involves a significant com-
munication overhead and requires other techniques to identify and isolate mali-
cious nodes. In [6], Khalil and Bagchi introduced four ways of achieving stealthy
packet dropping including misrouting, power control attack, controlled-jamming
attack, and identity delegation attack. They provide a protocol to remedy each
of these attacks. Overall, local monitoring can work when a node has several
neighbors. It may be unable to work when there is only one possible forwarding
path including an attacker as an intermediate node.

The above drawback can be addressed by using a FlipIt game methodology
[7]. However, existing FlipIt game approaches [7–9,15–18] cannot work because
they do not consider some features such as the probability of taking control and
the case where the attacker and defender each have more than one action. To
remedy these shortcomings, we propose a novel game-theoretic approach called
FlipPath to model the strategic interaction between the source node (defender)
and the malicious node (attacker) on the forwarding path. In Sect. 3 below, we
describe the network architecture.

3 Network Architecture and Operation

The network architecture includes the infrastructure layer, control layer, and
application layer as shown in Fig. 1. This architecture is inspired by those pro-
posed in [19,20]. The infrastructure layer includes mobile nodes organized in
clusters, and each cluster has a local controller that acts as a cluster head. The
latter manages the cluster and establishes connections between nodes through
flow rules. Some nodes have Wi-Fi and LTE interfaces, while others support only
the Wi-Fi connection. The LTE is used to connect the node to the central SDN
controller, while the Wi-Fi connection is used for the connection between nodes.
The cluster head is mobile and changeable and can be changed depending on its
remaining energy, location, and moving speed. Only nodes with Wi-Fi and LTE
interfaces can work as a cluster head. If no node has the LTE connection in a
group of nodes, this group is controlled by the neighboring cluster head through
a multi-hop connection. Each cluster head contains a database to record informa-
tion such as nodes, remaining node energy, and the connection between nodes.
Once the information is collected, the cluster head sends it to the central SDN
controller.

To manage the network, we provide three main components: Route Building
Agent, Lifetime Prediction Agent, and Data Collector Agent. Each cluster head
includes these components to manage its cluster. The Route Building Agent
(RBA) is used for route discovery in a cluster or in a whole network. This agent
aims to find a possible forwarding path between the source and the destination
nodes. Figure 2 shows two cases in which the route discovery has been performed.
This figure shows that for route discovery, the source node sends a Route Request
(RReQ) packet to the controller. The controller receives the request, computes
the path, and returns a Route Reply (RReP) packet. After replying, the con-
troller installs forwarding rules in all the intermediate nodes to inform them
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Fig. 1. Network architecture.

Fig. 2. Forwarding path in different cases.

about the flow identifier and how to manage it. If the source and destination
nodes are in the same cluster, as shown in Fig. 2 (case 1), the RReQ is sent to
the cluster head. Otherwise, the cluster head forwards the RReQ to the central
SDN controller, as shown in Fig. 2 (case 2). After establishing the forwarding
path, the Lifetime Prediction Agent (LPA) computes the lifetime of the path
to prevent data loss due to nodes’ mobility. This lifetime represents the time to
use the forwarding path. Finally, the Data Collector Agent (DCA) collects data
within a cluster or across the entire network. When receiving data from nodes or
cluster heads, the DCA saves them into a database implemented at the control
plane. The controller uses this database to manage the network. In Sect. 4, we
formulate the problem we address in this paper.
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4 Problem Formulation

As nodes are mobile in a tactical environment, the network may be in a sit-
uation where there is only one path from the source node to the destination.
We consider such a situation with an attacker as an intermediate node in the
forwarding path as shown in Fig. 3. This figure shows the two cases in which the
attacker can be on the forwarding path. In the first case, the forwarding path
is within a cluster, while in case 2, the forwarding path involves two clusters.
In both cases, the attacker and the source nodes are on the same path and the
source node is aware of the malicious node’s presence on the path. The attacker

Fig. 3. Different attack scenarios.

has a packet-dropping function that can be enabled or disabled. It drops pack-
ets when its dropping function is enabled and forwards data when this function
is disabled. We assume that the network includes an intrusion detection sys-
tem that detects an attacker when its dropping function remains enabled for a
long period. Thus, a stealthy attacker will drop packets at relatively short time
intervals and remains undetectable. In a tactical network, this stealthy behav-
ior can lead to traffic degradation between tactical force units, and negatively
impact operational processes and situational awareness. As the attacker cannot
be detected by the intrusion detection system, the source node must find the
best time interval to successfully send the data to the recipient. In Sect. 5, we
describe the proposed game model to address this problem.

5 Proposed FlipPath Game Model

FlipPath is a game in which players compete to control a forwarding path for a
long period while minimizing the related costs. The forwarding path is considered
a shared resource between the source node (defender) and the malicious node
(attacker). A player gets a reward of δ when controlling the path and a cost of C
when not controlling it. When a player moves (flips), it can take control according
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to a probability P . Thus, at a given time t, a player who controls the path is
not necessarily the one who makes the last move. A flip is costly for a player,
and it corresponds to the action taken to try to take control. Only one player
can control the path at a given time. When both players move at the same time,
only one player keeps control based on the resulting action profile. A player’s flip
is considered unnecessary when the player who was controlling the path keeps
control after the flip. When moving, a player pays a certain move cost of K. The
player’s benefit is defined as the fraction of time the latter controls the resource
minus the average move cost. The best strategy for a given player is the one that
gives it control of the resource a large fraction of the time with few moves. Since
a player must pay a move cost, the latter will be disincentivized to move too
frequently. FlipPath differs from the FlipIt model in that it takes into account
certain characteristics, such as the probability of taking control and the case
where the attacker and defender can have more than one action. These features
make the FlipPath model a solution for overcoming stealthy packet-dropping in
a tactical network. In the following, we model the interaction between the source
and the destination nodes on the tactical network path as a game.

5.1 Players’ Actions

Attacker Actions. The attacker’s actions consist of activating (a) or deactivat-
ing (d) its packet-dropping function. When this function is enabled or activated,
the attacker drops packets transmitted in the path. Similarly, when the drop-
ping function is deactivated, the attacker just forwards data to the next node
on the forwarding path. As explained before, the attacker activates its dropping
function to try to get control, and it deactivates the function to avoid detec-
tion. We consider Aa = {a, d} as the set of attacker actions where a and d are
respectively for the activation of deactivation.

Defender Actions. The defender’s actions consist of sending (s) data or wait-
ing (w) a certain amount of time before sending data on the forwarding path.
The defender waits a certain amount of time before sending data to avoid the
attacker or the time interval in which the attacker can be activated. We consider
Ad = {s, w} as the set of defender actions where s and w are respectively for
sending data and waiting a certain amount of time before sending data.

5.2 Players’ Strategies

We consider periodic strategies with a random phase (in such a strategy, moves
are spaced at equal intervals, with the exception of the first randomly selected
move called the phase). A periodic strategy with a random phase is characterized
by a fixed interval π between consecutive moves. π can be calculated using the
rate of play of the player, as follows: π = 1

σ . We consider πa and πd respectively
the attacker and the defender strategy. Figure 4 shows how the game is played
between attacker and defender using periodic strategies. The defender strategy
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Fig. 4. Example of players’ interaction on the path.

πd = 3 s, and the attacker’s πa = 4 s. As shown in Fig. 4, each player moves
by choosing an action at the end of its period. Given Aa and Ad, there are four
possible action profiles that can appear: (s, a), (s, d), (w, a), and (w, d). Each
player has action profiles for which it controls the path. Thus, a player takes
control if its action profile appears after a strategy choice.

5.3 Game Formulation

We formulate the game by describing the different cases in which each player
controls the forwarding path (Fig. 5). As in Fig. 5, if the defender is sending data

Fig. 5. Different cases in which each player controls the path.

while the attacker is activated, the attacker takes control. In this case, all data
going from the source node to the destination will be dropped by the attacker.
Similarly, if the attacker is deactivated while the defender is waiting for a certain
amount of time, the attacker takes control. We assume that the attacker controls
the path because it has found the best time interval to remain deactivated with-
out incurring an unnecessary risk of detection. On the other hand, if data are
successfully going from the source node to the destination, we consider that the
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defender is controlling the path. This case appears when the attacker is deacti-
vated while the defender is sending data on the path. Similarly, if the defender is
not sending data while the attacker is activated, the defender controls the path
because it found the best time to not send data on the forwarding path and the
attacker is incurring an unnecessary risk of detection.

5.4 Payoff Functions

In a periodic game, the benefit of a player depends of players’ rate of play. Let σa

and σd be respectively the rate of play of the attacker and that of the defender.
We denote the benefit of player i by Ui(σa, σd). Let’s consider two players i
and j. In [7], it has been proven that in the interval [0, 1], if player i is moving
no faster than player j, the time in which it will control the shared resource is
expressed as follows: σi

2σj
. Thus, the time in which player i will not control the

path is 1− σi

2σj
. The average flip cost is given by kiσi. Thus, we design the payoff

functions as follows:

Case 1 : σa ≤ σd

Ua(σa, σd) = Pa ∗ (
σa

2σd
)δa − (1 − Pa) ∗ (1 − σa

2σd
)Ca − kaσa (1)

Ud(σa, σd) = Pd ∗ (1 − σa

2σd
)δd − (1 − Pd) ∗ (

σa

2σd
)Cd − kdσd (2)

Case 2 : σa ≥ σd

Ua(σa, σd) = Pa ∗ (1 − σd

2σa
)δa − (1 − Pa) ∗ (

σd

2σa
)Ca − kaσa (3)

Ud(σa, σd) = Pd ∗ (
σd

2σa
)δd − (1 − Pd) ∗ (1 − σd

2σa
)Cd − kdσd (4)

Equations 1 and Eq. 2 present the attacker and the defender payoff functions
when the attacker is moving no faster than the defender. Equation 3 and Eq. 4
show the attacker and defender payoff functions when the attacker is moving
faster than the defender. In these equations, δa is the attacker’s reward for
controlling the path. This reward represents the fraction of packets dropped or
the time the attacker loses to the defender before sending packets. Ca is the
cost to the attacker of not controlling the path. This cost represents the fraction
of packets successfully transmitted or the energy expended by the attacker to
monitor the traffic to be able to drop the packets. Similarly, δd is the defender’s
reward for controlling the path, and Cd is the defender’s cost of not controlling
the path. After formulating the payoff functions, we analyze the Nash equilibrium
in Sect. 5.5 below.
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5.5 Nash Equilibrium Analysis

The Nash equilibrium is a strategy profile for which no player can get a better
payoff by changing its strategy. In the proposed game model, the Nash equi-
librium identifies the optimal rate of play for both players. To compute the
Nash equilibrium, we consider the case in which the attacker is moving no faster
(σa ≤ σd) than the defender, and that the attacker is moving faster (σa ≥ σd)
than the defender.

Case 1: (σa ≤ σd) Taking the partial derivative of Ua(σa, σd), we obtain:

∂Ua(σa, σd)
∂σa

=
∂(Pa ∗ ( σa

2σd
)δa − (1 − Pa) ∗ (1 − σa

2σd
)Ca − kaσa)

∂σa

=
P ∗ δa + (1 − Pa) ∗ Ca

2σd
− ka

It follows that Ua(., σd) is increasing if σd < Pa∗δa+(1−Pa)∗Ca

2ka
, and decreasing

if σd > Pa∗δa+(1−Pa)∗Ca

2ka
.

Case 2: (σa ≥ σd) In this case, the attacker is moving faster than the defender.
As in case 1, taking the partial derivative of Ua(σa, σd), we obtain:

∂Ua(σa, σd)
∂σa

=
∂(Pa ∗ (1 − σd

2σa
)δa − (1 − Pa) ∗ ( σd

2σa
)Ca − kaσa)

∂σa

=
Paσd

2σ2
a

δa +
(1 − Pa)σd

2σ2
a

Ca − ka

It follows that, Ua(., σd) is increasing on [0,
√

σd(Paδa+C(1−Pa)a)
2ka

], decreasing on

[
√

σd(Paδa+(1−Pa)Ca)
2ka

,∞] and thus has a maximum at

σa = max{σd,
√

σd(Paδa+(1−Pa)Ca)
2ka

}.
Let’s σ∗

a and σ∗
d be respectively the attacker and defender rate of play at

the Nash equilibrium. We need to consider the constraints of cases 1 and 2 to
calculate the values of σ∗

a and σ∗
d. Based on these constraints over σd, we perform

the following analysis.
If σd < Pa∗δa+(1−Pa)∗Ca

2ka
, then

√
σd(Paδa+(1−Pa)Ca)

2ka
> σd. Thus, the optimal

benefit of the attacker is achieved at rate σa =
√

σd(Paδa+(1−Pa)Ca)
2ka

.

If σd = Pa∗δa+(1−Pa)∗Ca

2ka
, then Ua(σa, σd) = Paσakaδa

Paδa+(1−Pa)Ca
− (1 − Pa)(1 −

Paσakaδa
Pδa+(1−Pa)Ca

)Ca − kaσa), for all σa ∈ [0, Pa∗δa+(1−Pa)∗Ca

2ka
].

For σa ≥ σd, we have: σa ≥
√

σa(Pa∗δa+(1−Pa)∗Ca)
2ka

≥
√

σd(P∗δa+(1−P )∗Ch
a )

2ka
⇒
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σa ∈ [
√

σd(Pa∗δa+(1−Pa)∗Ca)
2ka

, ∞]. Based on the first case we considered, the ben-
efit Ua(σa, σd) decreases in σa. In this case, the maximum value of Ua(σa, σd) is

achieved for any σa in [0,
√

σd(Paδa+(1−Pa)Ca)
2ka

].

If σd > Pa∗δa+(1−Pa)∗Ca

2ka
, we obtain, 1

2σd
< 2ka

P∗δa+(1−Pa)∗Ca
⇒ Pa ∗ ( σa

2σd
)δa+(1−

Pa) ∗ (1 − σa

2σd
)Ca − kaσa < 0 ⇒ Ua(σa, σd) < 0. it follows from both cases that

the attacker’s benefit is always non-positive and as such the attacker’s optimal
strategy is not playing at all.
Let Φa(σd) be the set of values σa that optimize the attacker’s benefit for a
fixed rate of play σd. Φd(σa), the set of values σd that optimize the defender’s
benefit for a fixed rate of play σa. Let consider μ = Paδa+(1−Pa)Ca

2ka
and ρ =

Pdδd+(1−Pd)Cd

2kd
. Φa is given by Eq. 5.

Φa(σd) =

{√
σd(Paδa+(1−Pa)Ca)

2ka
if σd ≤ μ

0 if σd > μ
(5)

As we did to obtain Φa, the same process can lead to obtaining Φd. The value
of Φd is given by Eq. 6.

Φd(σa) =

{√
σa(Pdδd+(1−Pd)Cd)

2kd
if σa ≤ ρ

0 if σa > ρ
(6)

Equation 5 and Eq. 6 show that it is better for a player to not play at all when
the rate of play of the other player is greater than a certain threshold. μ can
be seen as a threshold for the attacker and ρ is the threshold for the defender.
Thus, the attacker will decide to not play at all if σd > μ. Likewise, the defender
will decide to not play at all (σd = 0) if σa > ρ. The Nash equilibrium is
the intersection between Φa and Φd. We use the same computation as in [7] to
compute the values of σ∗

a and σ∗
d.

– Case 1: If ka < kd. The Nash equilibrium is obtained for rates:

σ∗
a =

Pdδd + (1 − Pd)Cd

2kd
; σ∗

d =
1
2
(

Ka

δa + Ca
)(

δd + Cd

Kd
)2

– Case 2: If ka > kd. The Nash equilibrium is obtained for rates:

σ∗
a =

1
2
(

Kd

δd + Cd
)(

δa + Ca

δd + Cd
) ; σ∗

d =
Paδa + (1 − Pa)Cd)

2ka

– Case 3: If ka = kd. We obtain the following Nash equilibrium:

σ∗
a =

Pdδd + (1 − P )Cd

2kd
; σ∗

d =
Paδa + (1 − Pa)Ca)

2ka

In the following, we have performed some evaluations to validate the proposed
methodology. Section 6 presents computational simulation
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Fig. 6. Nash equilibrium considering different parameters.

Fig. 7. Players’ rate of plays.

6 Computational Simulation

As shown earlier, the Nash equilibrium depends on several parameters, which
are: the probability of taking control, the reward of controlling the path, the
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cost of not controlling the path, and the flip cost. As explained above, the Nash
equilibrium is the intersection between Φa and Φd, where Φa(σd) represents the
set of values σa that optimize the attacker’s benefit for a fixed rate of play σd.
Φd(σa) is the set of values σd that optimize the attacker’s benefit for a fixed rate
of play σa. We plotted Φa and Φd functions considering different values of ka

and kd. Figure 6 shows the obtained results. This figure shows Nash equilibria
as a function of different parameters. Indeed, when the values of payoffs, costs,
and probabilities change, the Nash equilibrium changes. In Fig. 6a, we have three
points of intersection, while in Fig. 6b, Fig. 6c, and Fig. 6d, there is only one point
of intersection. This result is related to the values of parameters. As in Fig. 6b
and Fig. 6c, when the flip cost changes, the Nash equilibrium also changes. Let
(r1, r2) be a pair that respectively represents the defender’s gain when it plays
the Nash equilibrium strategy and when it does not. For cases (a), (b), (c), and
(d), we have respectively obtained the following gains: (0.8, 0.3), (0.7, −0.2),
(0.6, 0.1), and (0.5, −0.4). These results show that the defender who employs
Nash’s strategy obtains a better gain. This gain is an indicator of how many
packets the source node can successfully transmit to the destination.

We also evaluate the impact of reward and cost on the rate of play with
different flip costs. Figure 7a presents the results obtained from this evaluation.
This figure shows that when the reward to control the path and the cost of not
controlling the path increase, the attacker’s rate of play also increases. This result
shows that when the cost of not controlling the path is high, the attacker will
move quickly to try to get control. As the players’ rate of play is symmetrical,
the defender will also try to get control as shown in Fig. 7b. When moving, the
player should carefully look at the other player’s strategy to avoid being forced
to not play at all.

7 Conclusion and Future Work

The aim of this paper was to propose a solution against stealthy attacks in SDN-
based tactical networks. We introduced a new stealthy packet-dropping scenario
that can appear during data forwarding in a network path and provide a counter-
measure. The proposed approach is a novel game-theoretic model called FlipPath
that provides an optimal data-forwarding strategy for the defender. The forward-
ing path is considered a shared resource, and each player wishes to control it for
a long period while minimizing the related costs. We used periodic strategies to
characterize Nash equilibria. The results showed that the defender who adopts
the proposed methodology will obtain a better result. In future work, as the play-
ers’ rate of play is symmetrical, we will investigate how this symmetrical nature
can impact the defender’s reward. In addition, we will perform simulations in
the Mininet simulator.
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Abstract. Double extortion ransomware attacks consist of an attack
where victims files are both encrypted and exfiltrated for extortion pur-
poses. There is empirical evidence this leads to an increased willingness to
pay a ransom, and higher ransoms, compared to encryption-only attacks,
depending on the value of the exfiltrated files. However, there seem to
be two complications: First, victims are uncertain whether data is exfil-
trated, due to for example misconfigured monitoring systems. Second, it
is hard for attackers to estimate the value of compromised files. Thus,
victims have an incentive to hide what they know and attackers an incen-
tive to find out information. The goal of this study is to use game theory
to explore the payoff consequences for attackers of victims having private
information. We analyse a signaling game with double-sided information
asymmetry: (1) attackers know whether data is exfiltrated and victims
do not, and (2) victims know the value of data if it is exfiltrated, but the
attackers do not. Our analysis of the game indicates that private infor-
mation substantially lowers the return to attackers. These results imply
that victims should be careful to not reveal the value of files during
negotiations.

Keywords: Ransomware · Data exfiltration · Information asymmetry

1 Introduction

The last decade has seen a rapid rise in crypto-ransomware attacks [7,8,10,19,20,
23]. Crypto-ransomware, or ransomware for short, is broadly defined as the use
of crypto-techniques to encrypt the files of a victim, after which the attackers ask
for a ransom to decrypt the files [29]. Ransomware has proved highly profitable
for criminal gangs, primarily because many victims pay the ransom in order to
receive the decryption keys [21]. Since roughly 2019, ransomware groups have
been experimenting with double extortion [6,13]. In this case the attackers not
only encrypt files, but also exfiltrate data with the purpose to sell or publish the
data if the victim does not pay [16,17,20]. Double extortion has increased the
ransom requested and probability of victims paying [19].
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One important issue for victims of a ransomware attack is determining
whether data was exfiltrated. Due to the deletion of log files by attackers, or
misconfigured monitoring systems, victims often do not know whether data was
exfiltrated [25,26]. This means that an attacker who has not exfiltrated data can
still threaten the publication of data, to get a larger ransom paid. On the flip
side, the claims of an attacker that has exfiltrated data may be viewed as less-
credible, empty threats, by the victim. Attackers are, thus, increasingly trying
to send credible signals that data was exfiltrated. For instance, to back up their
claim, some attackers send evidence of exfiltration by means of a file tree of the
exfiltrated data or a couple of files. Such signals could, however, still be sent,
even if at a higher cost, by attackers who have not exfiltrated data.

Another limitation of sending ‘evidence’ of data exfiltration is that it might
give the victim the opportunity to determine the value of the exfiltrated data.
In practice, it is hard for attackers to determine the value of the files to the
victim. The filenames and files which contain text are often in a foreign language,
and the sensitivity of data is difficult to judge without insider understanding.
Furthermore, it takes effort to estimate the importance of, potentially, millions
of files. Attackers are, therefore, likely to be imperfectly informed of the value of
files, even if data is exfiltrated. Combined, therefore, we have two information
asymmetries in double extortion ransomware attacks. First, the victim does not
know whether data was exfiltrated or not, but the attacker does. Second, the
victim can assess whether potentially exfiltrated data is valuable or not, but
the attacker cannot. Here, we define valuable data for the victim, as data with
large reputation costs if it gets accessible for the general public, competitors or
similar.

To our knowledge, no previous studies have modelled this two-sided infor-
mation asymmetry of data exfiltration, and analysed how it effects the prof-
itability of attacks. Most empirical [19] and game-theoretical modeling [16,17]
of double extortion ransomware has focused on the extra profits for attackers
by conducting data exfiltration and encryption, compared to only data encryp-
tion. We address the relationship between the uncertainty of data exfiltration
and profitability by analysing a signaling game. Signaling games provide a way
to model a strategic game with incomplete information and sequential choice
[1,11,14,18,22]. The basic premise is that a player holding extra information
could try to influence the other players by sending a credible signal of their
information. Signalling games provide a natural framework with which to explore
double extortion and the payoff consequences of assymetric information. For a
more detailed explanation of signaling games we refer to [22].

Our work provides the following key contributions: First, we provide a game-
theoretical framework to analyse the double-sided information asymmetry in
double extortion ransomware attacks. The framework consists of a signaling
game, wherein the attacker can send a costly signal of data exfiltration that can
inform the victim’s beliefs and payment decision. Second, we identify four sepa-
rating and four pooling equilibria of the game and their underlying conditions.
The type of equilibria that exists in the game will depend on the parameters of
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the game, particularly the cost of signaling data exfiltration, the cost to recover
files without decryption, the reputation loss from data leakage, and the probabil-
ity the victim’s files contain valuable data. We identify the factors determining
how much surplus the attacker can extract from the victim. Third, we analyse
the impact that private information of the victim has on the profitability of the
attacked. Through examples, we show that the payoff loss to the criminal from
now knowing the value of files can range from zero to over 20%. Private informa-
tion can, therefore, potentially disrupt the business model of ransomware games
by reducing the profits they can make.

We remark that our paper adds to a growing literature using game theory to
analyse the ransomware decision process [4,5,12]. Prior game-theoretical studies
have focused on the interaction of ransomware and victim’s decision to invest in
security measures like backups or insurance [2,24,28,29]. For instance, Laszka,
Farhang and Grossklags [15] focused on modeling the ransomware ecosystem as
a whole and how backup decisions affect the ransomware ecosystem. Vakilinia
et al. [27] take a different approach in exploring how a double sided auction can
facilitate the negotiation between attacker and victim to achieve a ‘fair’ ran-
som. Galinkin [12] analyses measures that an attacker can disrupt the business
model of the attackers by lowering the profitability of ransomware attacks. The
main intervention suggested is that of back-ups. We note, however, that in a set-
ting with double extortion, back-ups are not enough to combat the ransomware
threat. We must also consider the reputational costs from the publication of
exfiltrated data.

We proceed as follows. In Sect. 2 we introduce the signalling game. In Sect. 3
we provide our main results. In Sect. 4 we conclude.

2 Signaling Game

We consider a game between a criminal, henceforth called the attacker, and a
victim. We take as given that the victim has been subject to a ransomware attack
and their data has been encrypted. The attacker is demanding a ransom for the
decryption key. If the victim does not pay the ransom then it will cost VP to
recover normal operations. If the victim does pay the ransom then we assume the
attackers will provide the decryption key and it will cost VNP to recover normal
operations. From a game theoretic point of view, the predictions of our model
depend solely on the difference in recovery cost from paying versus not paying
VP − VNP . Thus, to simplify the model, and without loss of generality, we set
VNP = 0 and VP = V . We assume that V > 0 and so access to the decryption
key reduces recovery costs.

We take it as given that, as well as encrypting files, the attacker attempted
to exfiltrate data from the victim. This attempt may or may not have been
‘successful’. In either case, the attacker can threaten to publish exfiltrated data
unless the ransom is paid. We model two forms of incomplete information:
1. The attacker knows if data is exfiltrated but the victim does not know. Let

α denote the probability that data was exfiltrated. The value of α is com-
mon knowledge to attacker and victim. We use the term NDE and DE to
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distinguish the type of attacker as no data exfiltration and data exfiltration,
respectively.

2. The victim knows the reputational damage that would result from data exfil-
tration but the attacker does not know. We assume that there are two types of
victim: those with sensitive data, called high type, and those without, called
low type. If exfiltrated data were to be leaked then the victim would incur
reputation costs T1 or T0 < T1 depending on whether they are high or low
type, respectively. If the data is not leaked then we assume there is no rep-
utation cost. The probability the victim is high type is β. The value of β is
common knowledge to attacker and victim.

The game has three stages. Following the approach of Harnsanyi [9], Nature
determines the the type of the victim (high or low type) and the type of the
criminal (data exfiltrated or no data exfiltrated) in Stage 1 of the game. The
victim learns their type (with probability β they are high type), and the attacker
learns whether data was exfiltrated (with probability α it is exfiltrated).

In stage 2 the attacker chooses (a) whether or not to send a signal that data
has been exfiltrated, and (b) a ransom demand. The signal can, for instance,
consist of a picture of the file tree of the exfiltrated data, or a sample of exfiltrated
data. The cost to the attacker of sending a signal when data is exfiltrated is kD,
whereas if data is not exfiltrated it is kN . We assume that it is harder to send
a credible signal if no data is exfiltrated, so kD < kN . The attacker can choose
any ransom demand. To simplify notation we denote by RS the ransom demand
of the attacker if they send a signal and RNS the demand if no signal is sent.1

In stage 3 the victim observes whether or not a signal was sent, and learns
the ransom demand. The victim then chooses whether to pay the ransom or not.
To simplify the analysis we assume an ultimatum bargaining game in which their
is no opportunity for negotiation, and the choice to pay or not ends the game.

The variables of the game are summarized in Table 1. One additional vari-
able we introduce is L ≥ 0 which captures the legal fees and costs (including
psychologically and moral) of paying a ransom. We also introduce variable μ to
represent the beliefs of the victim on the likelihood that data has been exfil-
trated. Finally, we use variable ε to represent the smallest unit of currency. This
will allow us to characterise the optimal ransom in a more succinct way. We
exclude from the analysis any fixed costs incurred by the attacker and victim
that are not dependent on the strategic elements of the game. For instance we
do not include the cost to the attacker of implementing the attack. We can

1 The attacker could choose any ransom above 0 for any combination of both own type
and signal. So, suppose, more generally, we denote by RS

DE , RS
NDE , RNS

DE and RNS
NDE

the ransom of a type DE or NDE if they signal or do not signal. There cannot be
an equilibrium in which an attacker of type DE and NDE signal and RS

NDE �= RS
DE ;

this would reveal the attacker if type NDE and, thus, make their signal ineffective.
Similarly, there cannot be an equilibrium in which an attacker of type DE and NDE
would not signal and RNS

NDE �= RNS
DE ; this would again reveal the attacker if type

NDE and lower the ransom the victim would rationally pay.



Double-Sided Information Asymmetry in Double Extortion Ransomware 315

Table 1. Variables used in the data exfiltration signaling game

Variable Description

Attacker RS Ransom when signaling

RNS Ransom when not signaling

kD Cost of signal with data exfiltration

kN Cost of signal without data exfiltration

β Probability of data being valuable

Victim T1 Reputation cost for valuable data

T0 Reputation cost for non-valuable data

V Recovery cost without decryption key

L Legal fees of paying ransom

α Probability of data exfiltration

μ Belief on probability of data exfiltration

ε The smallest unit of currency

exclude such costs, without loss of generality, because they will not influence the
equilibrium outcomes of the game. We depict the game in Fig. 1.

3 Results

In the following we solve for Bayesian equilibria of the game that satisfy the
D1 Criterion [11]. Informally, a Bayesian equilibrium has the property that both
attacker and victim: (1) maximise their expected payoffs given the strategy of
the other and their beliefs, (2) update their beliefs using Bayes rule. Thus, in
equilibrium, players appropriately interpret information, and have no incentive
to change their actions given their beliefs and the actions of the other player.
The D1 Criterion is used to place ‘common sense’ restrictions on beliefs. Specif-
ically, a Bayesian equilibrium may not tie down beliefs off the equilibrium path,
because play could reach nodes that have zero probability and so Bayes rule is
indeterminate. The D1 Criterion imposes extra conditions on beliefs by saying
that any deviation from the equilibrium path is assumed to be done by the type
with the most incentive to deviate [3].

The D1 Criterion is useful to rule out equilibria sustained by ‘non-intuitive
beliefs’ [14]. For instance, consider a candidate equilibria in which the attacker
chooses to not signal if they are type DE or NDE. On the equilibrium path the
attacker should not signal. Thus, Bayes rule does not impose any restrictions
on beliefs were the attacker to signal. Yet, informally, a type DE has the most
incentive to deviate and signal. The D1 Criterion would, thus, require the victim
to believe the deviation was by a type DE. This rules out ‘non-intuitive’ equilibria
that are only sustained by the victim believing a signal would be from the type
NDE.



316 T. Meurs et al.

Fig. 1. Description of the game.

To focus the analysis on what we believe are the most realistic cases, we
distinguish and characterize two broad types of equilibrium: (a) separating equi-
libria in which the type DE signals data is exfiltrated and the type NDE does
not, and a (b) pooling equilibria in which both the type DE and NDE signal
that data is exfiltrated. We exclude from analysis pooling equilibria in which
both the type DE and NDE do not signal that data is exfiltrated, as well as
hybrid equilibria in which the attacker randomises their actions. In the following
we discuss separating and pooling equilibria in turn before analysing the impact
of private information. Throughout, we assume that if the victim is indifferent
between paying and not paying then they will not pay.

3.1 Separating Equilibrium

A separating equilibrium has the basic characteristic that the attacker signals
data exfiltration if they are of type DE (i.e. data was exfiltrated) and does not



Double-Sided Information Asymmetry in Double Extortion Ransomware 317

signal if they are of type NDE (i.e. data was not exfiltrated). The existence of
a separating equilibrium and the exact form of any equilibrium will depend on
the parameters of the game. Specifically, we identified four types of separating
equilibria, which we will label A1-A4. These are summarised in Table 2. As you
can see the equilibria differ by whether or not the victim pays the ransom. For
example, in equilibrium A3 the victim pays the ransom if the attacker signals
but does not pay the ransom if the attacker does not signal. In equilibrium A4
the victim only pays if they are a high type and the attacker signals.

Table 2. Equilibria satisfying the D1 criterion in the signaling game.

Equilibrium Attacker Victim

DE NDE T1 T0

Signal No signal Signal No signal

A1 Signal No signal Pay Pay Pay Pay

A2 Signal No signal Pay Pay No pay Pay

A3 Signal No signal Pay No Pay Pay No Pay

A4 Signal No Signal Pay No Pay No pay No pay

B1 Signal Signal Pay Pay Pay Pay

B2 Signal Signal Pay Pay No pay Pay

B3 Signal Signal Pay No pay Pay No pay

B4 Signal Signal Pay No pay No pay No pay

In all four equilibria A1-A4 the high type victim pays if they receive a signal
of data exfiltration. The equilibria differ in whether a low type victim pays if
they receive a signal of data exfiltration and/or whether the victim pays if they
receive no signal. To provide some intuition for the four equilibria we introduce
three ransom demands that prove particularly relevant: (1) R∗

S0 = T0+V −L−ε,
(2) R∗

S1 = T1 +V −L− ε, and (3) R∗
NS = max{V −L− ε, 0}. Informally, see the

proof of Theorem 1 for the full details, R∗
S0 and R∗

S1 are the maximum ransom
the low type and high type, respectively, are willing to pay if they believe data
has been exfiltrated. While, R∗

NS is the maximum ransom the attacker can ask
if the victim believes data is not exfiltrated. We readily see that if V < L the
victim would not pay any positive ransom demand if they know data has not
been exfiltrated.

If data exfiltration is believed to have taken place then the high type is willing
to pay a larger ransom than the low type, R∗

S1 > R∗
S0. This provides a strategic

trade-off for the attacker: (a) if they ask for a high ransom, R∗
S1, then they

extract maximum surplus from the high type victim, but the low type will not
pay the ransom. (b) If they ask for a low ransom, R∗

S0, then both the low and
high type victim will pay the ransom but they do not fully extract surplus from
the high type. This trade-off is captured by the following term:

ΦS = β(R∗
S1 − R∗

S0) − (1 − β)R∗
S0 = β(T1 − T0) − (1 − β)(T0 + V − L − ε). (1)
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The first term in ΦS is the expected gain for the attacker from extracting max-
imum surplus from the high type, while the second term is the expected loss
from charging a ransom the low type is not willing to pay.

We are now in a position to state our first main result. As the preceding
discussion preempts we need to consider combinations of V ≷ L and Φ ≷ 0
giving rise to the four different cases and equilibria.

Theorem 1. There exists a separating equilibrium satisfying the D1 criterion
if and only if the following conditions hold:

(A1) If L < V and ΦS < 0 then kD < T0 < kN .
(A2) If L < V and ΦS > 0 then kD < βT1 − (1 − β)(V − L) < kN .
(A3) If L > V and ΦS < 0 then kD < T0 + V − L < kN .
(A4) If L > V and ΦS > 0 then kD < β(T1 + V − L) < kN .

Proof. We first consider the strategy of the victim. Suppose the attacker sends
a signal and ransom demand RS . Suppose the victim infers the attacker is type
DE. In other words, μ = 1. If the victim is low type and pays the ransom
their expected payoff is −RS − L. Their expected payoff if they do not pay is
−T0−V . It follows the low type victim will optimally pay the ransom if and only
if −RS −L > −T0 −V or equivalently RS < T0 +V −L. They would, therefore,
pay ransom R∗

S0. If the victim is high type and pays the ransom their expected
payoff is −RS −L. Their expected payoff if they do not pay is −T1−V . It follows
the high type victim will optimally pay the ransom if and only if RS < T1+V −L.
They would, therefore, pay ransom R∗

S1. Given that T1 > T0 we also have that
the high type would pay ransom R∗

S0.
Now suppose the attacker does not send a signal and sets ransom demand

RNS . Suppose the victim infers the attacker is type NDE. In other words, μ = 0.
If the victim is low type and pays the ransom their expected payoff is −RNS −L.
Their expected payoff if they do not pay is −V . It follows the low type victim
will optimally pay the ransom if and only if −RS − L > −V or equivalently
RS < V − L. They would, therefore, pay ransom R∗

NS if V > L and not pay if
V < L. The same logic holds if the victim is high type.

We now consider the incentives of the attacker. Suppose the attacker is type
DE. Also suppose that on the equilibrium path they signal and set ransom R∗

S0.
Their expected payoff in equilibrium is π(S,R∗

S0) = T0 + V − L − ε − kD. In
exploring incentives to deviate from the equilibrium path, we first consider the
possibility the attacker signals but sets a different ransom demand RS �= R∗

S . If
RS < R∗

S0 then the expected payoff of the attacker is π(S,RS) = RS − kD <
π(S,R∗

S0) and so the attacker receives a lower payoff than on the equilibrium
path. If R∗

S1 > RS > R∗
S0 (and μ = 1) then the high type victim would pay the

ransom but the low type victim would not. The expected payoff of the attacker
is, therefore, π(S,RS) = βRS − kD ≤ βR∗

S1 − kD. It follows the attacker prefers
the equilibrium path if and only if β(T1+V −L−ε) ≤ T0+V −L−ε. Rearranging
gives the condition on ΦS < 0. Reversing this argument we can say it is on the
equilibrium path for the attacker of type DE to signal and set ransom R∗

S1 if
and only if ΦS > 0.
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We next consider the possibility that an attacker of type DE chooses to not
signal. Suppose they set ransom demand RNS (and are inferred to be type NDE).
Their expected payoff is at most π(NS,RNS) = R∗

NS . We then have four different
cases to consider. (a) Suppose V > L and R∗

S = R∗
S0. It follows the attacker

prefers the equilibrium path if and only if V − L − ε < T0 + V − L − ε − kD or,
equivalently, kD < T0. (b) Suppose V > L and R∗

S = R∗
S1. It follows the attacker

prefers the equilibrium path if and only if V − L − ε < β(T1 + V − L − ε) − kD
or, equivalently, kD + (1 − β)(V − L − ε) < βT1. (c) Suppose V < L and
R∗

S = R∗
S0. It follows the attacker prefers the equilibrium path if and only if

0 < T0 + V − L − ε − kD or, equivalently, kD < T0 + V − L. (d) Suppose V < L
and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium path if and only

if 0 < β(T1 + V − L − ε) − kD or, equivalently, kD < β(T1 + V − L − ε).
Next suppose the attacker is type NDE. Extending the logic of the preceding

discussion there is no incentive for the attacker to choose a ransom other than
R∗

NS . We focus, therefore, on the incentive to signal and choose ransom demand
R∗

S . We again have four different cases to consider. (a) Suppose V > L and R∗
S =

R∗
S0. On the equilibrium path the attacker has expected payoff π(NS,R∗

NS) =
V − L − ε. It follows the attacker prefers the equilibrium path if and only if
V − L − ε > T0 + V − L − ε − kN or, equivalently, kN > T0. (b) Suppose V > L
and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium path if and only if

V −L−ε > β(T1+V −L−ε)−kN or, equivalently, kN +(1−β)(V −L−ε) > βT1.
(c) Suppose V < L and R∗

S = R∗
S0. It follows the attacker prefers the equilibrium

path if and only if 0 > T0 +V −L− ε−kN or, equivalently, kN > T0 +V −L. (d)
Suppose V < L and R∗

S = R∗
S1. It follows the attacker prefers the equilibrium

path if and only if 0 > β(T1 + V − L − ε) − kN or, equivalently, kN > β(T1 +
V − L − ε).

It remains to check the D1 criterion is satisfied. The only game path we need
to consider in any detail is that where the attacker does not signal and sets
ransom RNS �= R∗

NS . We have assumed the victim will infer the attacker is type
NDE. Given that KN > kD, the attacker has most incentive to not signal when
of type NDE. This assumption, therefore, naturally satisfies the D1 criterion.�

In interpretation of Theorem 1 we can see that there exists a separating
equilibrium if and only if kD is sufficiently small and kD is sufficiently large.
In other words, a separating equilibrium exists if it is ‘cheap’ for the attacker
to signal when they have exfiltrated data and ‘expensive’ for the attacker to
signal if they have not exfiltrated data. This would imply, for instance, that if
victims have invested in good monitoring systems to identify data exfiltration,
they could make it harder for the attacker of type NDE to send a credible signal;
then, kN would increase and we would expect the improved monitoring to result
in a separating equilibrium.

3.2 Pooling Equilibrium

We turn our attention now to pooling equilibria. We focus on pooling equilibrium
in which the attacker signals. That is, the attacker signals that data is exfiltrated
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whether they are type NDE or DE. Consequently a signal does not convey any
useful information to the victim on whether or not data has been exfiltrated. We
identify four types of pooling equilibria, which we will label B1-B4. These are
summarised in Table 2. Two ransom demands that prove particularly relevant in
this case are: (4) R∗

P0 = αT0+V −L−ε, and (5) R∗
P1 = αT1+V −L−ε. Informally,

R∗
P0 and R∗

P1 are the maximum ransom the low and high type, respectively, are
willing to pay if they believe the attacker has exfiltrated data with probability
α.

As with the separating equilibrium, the optimal ransom demand of the
attacker involves a trade-off between setting a high ransom R∗

P1 that only the
high type will pay and a low ransom R∗

P0 that both the high and low type will
pay. This trade-off is captured by the term:

ΦP = βα(T1 − T0) − (1 − β)(αT0 + V − L − ε). (2)

We can now state our second result.

Theorem 2. There exists a pooling equilibrium in which the attacker signals,
satisfying the D1 criterion, if and only if the following conditions hold:

(B1) If L < V and ΦP < 0 then kN < αT0.
(B2) If L < V and ΦP > 0 then kN < βαT1 − (1 − β)(V − L).
(B3) If L > V and ΦP < 0 then kN < αT0 + V − L.
(B4) If L > V and ΦP > 0 then kN < β(αT1 + V − L).

Proof. Consider the strategy of the victim. Suppose the attacker sends a signal
and ransom demand RS . Suppose the victim infers the attacker is type DE with
probability μ = α. If the victim is low type and pays the ransom their expected
payoff is −RS−L. Their expected payoff if they do not pay is −αT0−V . It follows
the low type victim will optimally pay the ransom if and only if −RS − L >
−αT0−V or equivalently RS < αT0+V −L. They would, therefore, pay ransom
R∗

P0. If the victim is high type and pays the ransom their expected payoff is
−RS − L. Their expected payoff if they do not pay is −αT1 − V . It follows the
high type victim will optimally pay the ransom if and only if RS < αT1 +V −L.
They would, therefore, pay ransom R∗

P1. Given that T1 > T0 we also have that
the high type would pay ransom R∗

P0.
Now suppose the attacker does not send a signal and sets ransom demand

RNS . Suppose the victim infers the attacker is type NDE. In other words, μ = 0.
If the victim is low type and pays the ransom their expected payoff is −RNS −L.
Their expected payoff if they do not pay is −V . It follows the low type victim
will optimally pay the ransom if and only if −RS − L > −V or equivalently
RS < V − L. They would, therefore, pay ransom R∗

NS if V > L and not pay if
V < L. The same logic holds if the victim is high type.

Next consider the incentives of the attacker. Suppose the attacker is type
DE. Also suppose that on the equilibrium path they signal and set ransom R∗

P0.
Their expected payoff in equilibrium is π(S,R∗

P0) = αT0 + V − L − ε − kD.
Suppose the attacker signals but sets a different ransom demand RS �= R∗

S . If
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RS < R∗
S0 then the expected payoff of the attacker is π(S,RS) = RS − kD <

π(S,R∗
P0) and so the attacker receives a lower payoff than on the equilibrium

path. If R∗
P1 > RS > R∗

P0 (and μ = β) then the high type victim would pay the
ransom but the low type victim would not. The expected payoff of the attacker
is, therefore, π(S,RS) = βRS − kD ≤ βR∗

P1 − kD. It follows the attacker prefers
the equilibrium path if and only if β(αT1 + V − L − ε) ≤ αT0 + V − L − ε.
Rearranging gives ΦP < 0. Reversing this argument we can say it is on the
equilibrium path for the attacker of type DE to signal and set ransom R∗

P1 if
and only if ΦP > 0.

Now consider the possibility that an attacker of type NDE chooses to not
signal. Suppose they set ransom demand RNS (and are inferred to be type NDE).
Their expected payoff is at most π(NS,RNS) = R∗

NS . We then have four different
cases to consider. (a) Suppose V > L and R∗

S = R∗
P0. It follows the attacker

prefers the equilibrium path if and only if V − L − ε < αT0 + V − L − ε − kN
or, equivalently, kN < αT0. (b) Suppose V > L and R∗

S = R∗
P1. It follows the

attacker prefers the equilibrium path if and only if V −L− ε < β(αT1 +V −L−
ε) − kN or, equivalently, kN + (1 − β)(V − L − ε) < βαT1. (c) Suppose V < L
and R∗

S = R∗
P0. It follows the attacker prefers the equilibrium path if and only

if 0 < αT0 + V − L − ε − kN or, equivalently, kN < αT0 + V − L. (d) Suppose
V < L and R∗

S = R∗
P1. It follows the attacker prefers the equilibrium path if and

only if 0 < β(αT1 + V − L − ε) − kN or, equivalently, kN < β(αT1 + V − L − ε).
One can show, using kD < kN , that the analogous conditions for a type DE to
prefer signalling to not signalling are less binding.

It remains to check the D1 criterion is satisfied. The only game path we need
to consider in any detail is that where the attacker does not signal and sets
ransom RNS �= R∗

NS . We have assumed the victim will infer the attacker is type
NDE. Given that KN > kD, the attacker has most incentive to not signal when
of type NDE. This assumption, therefore, naturally satisfies the D1 criterion. �

In interpretation of Theorem 2 there exists a pooling equilibrium if and only
if kN is sufficiently small. In other words, there exists a pooling equilibrium
if and only if it is cheap for the attacker to signal even if data has not been
exfiltrated. In practical terms this would suggest the victim does not have any
monitoring technology to identify or evaluate a data breach. It would also suggest
the criminals could easily extract some information, e.g. file tree or sample file,
that would allow them to signal data exfiltration even though data was not
exfiltrated.

Depending on the parameters of the game there may exist a separating equi-
librium, a pooling equilibrium, or neither. To illustrate, consider the parameters
L = 0, V = 5, α = 0.9, β = 0.5, T0 = 1 and T1 = 5. Then ΦS < 0 and so there
exists a separating equilibrium if and only if kD < 1 < kN . Also ΦP < 0 and
so there exists a pooling equilibrium if kN < 0.9. Thus, for kN < 0.9 there is
a pooling equilibrium, for 0.9 < kN < 1 there is neither a separating nor pool-
ing equilibrium, and for 1 < kN there is a separating equilibrium. The relative
size of the cost for the attacker to signal data exifiltration when they have not
exfiltrated data is, thus, crucial to determining the equilibrium outcome.
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3.3 The Value of Private Information

A key objective of our work is to analyse the payoff consequences, for both victim
and attacker, of private information on the side of the victim. In Table 3 we detail
the expected payoff of the attacker and victim in equilibria A1-A4 and B1-B4.
These are ex-ante expected payoffs before own type is known. For instance, in
equilibrium A1 there is probability α the attacker is type DE and obtains payoff
R∗

S0 − kD and probability 1 − α the attacker is type NDE and obtains payoff
R∗

NS . The expected payoff is, therefore, α(R∗
S0 −kD)+ (1−α)R∗

NS Given that ε
can be arbitrarily small we have omitted it from calculations of expected payoff.

Table 3. Expected payoff of attacker and victim in equilibrium.

Equilibrium attacker Victim

A1 αT0 + V − L − αkD −αT0 − V

A2 α(β(T1 + V − L) − kD) + (1 − α)(V − L) −α(βT1 + (1 − β)T0) − V

A3 α(T0 + V − L − kD) −αT0 − V

A4 α(β(T1 + V − L) − kD) −α(βT1 + (1 − β)T0) − V

B1 & B3 αT0 + V − L − αkD − (1 − α)kN −αT0 − V

B2 & B4 β(αT1 + V − L) − αkD − (1 − α)kN −βαT1 − (1 − β)αT0 − V

To analyse the consequences of private information we need to consider an
alternative game in which the attacker knows the type of the victim and so
knows if the reputational damage that would result from data publication is T0

or T1. We can apply Theorems 1 and 2 to distinguish the conditions under which
there exist separating and pooling equilibirum in this revised game. Specifically,
by setting β = 0 or 1 we derive the following corollaries.

Corollary 1. If the victim is known to be type i = {0, 1} there exists a separating
equilibrium satisfying the D1 criterion if and only if the following conditions hold:

A1A2. If L < V , then kD < Ti < kN .
A3A4. If L > V , then kD < Ti + V − L < kN .

Proof. Suppose β = 0. Then ΦS < 0. Applying Theorem 1 we obtain conditions:
(A1) L < V and kD < T0 < kN , and (A3) L > V and kD < T0 + V − L < kN .
Suppose β = 1. Then ΦS > 0. Applying Theorem 1 we obtain conditions: (A2)
L < V and kD < T1 < kN , and (A4) L > V and kD < T1 + V − L < kN . �

Corollary 2. If the victim is known to be type i = {0, 1} there exists a pooling
equilibrium with a signal satisfying the D1 criterion if and only if the following
conditions hold:

B1B2. If L < V then kN < αTi.
B3B4. If L > V then kN < αTi + V − L.
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Proof. Suppose β = 0. Then ΦP < 0. Applying Theorem 2 we obtain conditions:
(B1) L < V and kN < αT0, and (B3) L > V and kN < αT0 + V − L. Suppose
β = 1. Then ΦP > 0. Applying Theorem 2 we obtain conditions: (B2) L < V
and kN < αT1, and (B4) L > V and kN < αT1 + V − L. �

With these two corollaries we can derive the expected payoff of the attacker
and victim in a game where the victim’s type is known. The lower half of Table 4
details the payoffs from equilibria of the game in which the victims type is known.
For instance, the expected payoff of the attacker under equilibrium A3A4 if the
victim is type 0 is α(T0+V −L−kD) and the expected payoff of the attacker under
equilibrium A3A4 if the victim is type 1 is α(T1+V −L−kD). Some care is needed
in deriving ex-ante expected payoffs because the existence of equilibrium A3A4
for the low type does not guarantee existence of equilibrium A3A4 for the high
type, and vice-versa. Even so, by calculating which equilibrium emerges for each
type we can determine an ex-ante expected payoff. For instance, if equilibrium
A3A4 does exist for both the low type and high type then the attackers ex-ante
expected payoff (before victim type is known) is α(βT1+(1−β)T0+V −L−kD).

Table 4. Expected payoff of attacker and victim in equilibrium when type is known.

Equilibrium attacker Victim

A1A2 (i = {0, 1}) αTi + V − L − αkD −αTi − V

A3A4 (i = {0, 1}) α(Ti + V − L − kD) −αTi − V

B1-B4 (i = {0, 1}) αTi + V − L − αkD − (1 − α)kN −αTi − V

We are now in a position to quantify the payoff consequences of private
information for the victim. For any set of parameters L, V, T0, T1, kD, kN , α and
β we can determine which, if any equilibrium will hold in a game with incomplete
information on victim’s type, and the games where victim’s type is known to
be high or low. We can then calculate expected payoffs of the attacker and
victim with and without incomplete information on victim’s type. We provide
two examples.

In Fig. 2 we plot expected payoffs as a function of β when L = 1, V = 3, α =
0.5, T0 = 2, T1 = 4, kD = 0.1 and kN = 6. This is a case with a separating
equilibrium. You can see that the payoff of the attacker is substantially lower
when the type of the victim is not known. The loss reaches a maximum at the
point of transition between equilibria A1 and A2 given by T0 = βT1−(1−β)(V −
L) or equivalently

β =
T0 + V − L

T1 + V − L
. (3)

For the parameters in our example this gives β = 2/3. If the type of the victim
is unknown the expected payoff of the attacker is 2.95. If the type of the victim
is known the ex-ante expected payoff of the attacker is 3.62. So, the attacker’s
payoff is 18.43% lower if it does not know the type of the victim.
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We can see the victim’s payoff is higher if the attacker does not know their
type and β < 2/3. The intuition being that the attacker sets the ransom as if
the victim is low type (equilibrium A1) and, thus, the high type is not exploited
as much as they would have been if type was known. If β > 2/3 we see that the
payoff of the victim is the same whether or not the attacker knows their type. In
this case the attacker sets the ransom as if the victim is high type (equilibrium
A2). This means the high type is maximally exploited by the attacker, while the
low type does not pay the ransom and, therefore, suffers recovery and reputa-
tional losses. The net effect for the victim is the same as if the attacker knew
their type and they were maximally exploited. We remind that the attacker’s
payoff is lower if the victim’s type is not known. This is because they also lose
when the ransom is set at a level the low type will not pay.

Fig. 2. Expected payoff of the attacker and victim when L = 1, V = 3, α = 0.5, T0 =
2, T1 = 4, kN = 6, kD = 0.1. An example of a separating equilibrium.

In Fig. 3 we plot the corresponding payoffs when, everything else the same,
kN = 0.9. This is a case with a pooling equilibrium. Again, we see that
the attacker loses payoff from not knowing the type of the victim. This loss
is maximal at the transition from equilibrium B1 to B2, given by αT0 =
βαT1 − (1 − β)(V − L) or equivalently

β =
αT0 + V − L

αT1 + V − L
. (4)

For the parameters in our example this gives β = 3/4. If the type of the victim
is unknown the expected payoff of the attacker is 2.5. If the type of the victim
is known the ex-ante expected payoff of the attacker is 3.25. So, the attacker’s
payoff is 23.08% lower because it does not know the type of the victim.

The relative trade-offs for the victim are similar in the pooling example as
the separating example. In particular, if the attacker sets the ransom for a victim
of low type (equilibrium B1) then the victim gains from their type being private
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Fig. 3. Expected payoff of the attacker and victim when L = 1, V = 3, α = 0.5, T0 =
2, T1 = 4, kN = 0.9, kD = 0.1. An example of a separating equilibrium.

if they are high type. If, however, the attacker sets the ransom for a victim of
high type (equilibrium B2) then the victim does not gain from their type being
unknown. In summary, the attacker loses payoff from not knowing the victim’s
type. The victim gains from their type being unknown in the case of equilibrium
A1, B1 and also A3 and B3. The victim does not gain from the type being
unknown in the case of equilibrium A2, A4, B2 and B4.

It is interesting to compare payoffs when kN = 0.9 with those when kN = 6
(for, say, β = 2/3). You can see that the attackers expected payoff is higher
when kN = 6. This may seem counter-intuitive given that a high kN means a
higher cost from signalling. Note, however, that a high kN results in a separating
equilibrium that allows the type DE attacker to extract a high ransom because
their signal of data exfiltration is credible. Specifically, when kN = 6 the type DE
sets ransom R∗

S0 = T0+V −L = 4, while a type NDE sets ransom R∗
NS = V −L =

2. The expected payoff of the attacker is, therefore, α(R∗
S0−kD)+(1−α)R∗

NS =
3.9α + 2(1 − α) = 2.95.

By contrast, when kN = 0.9 we obtain a pooling equilibrium in which the
attacker’s signal of data exfiltration is not sufficiently credible. This lowers the
ransom the attacker can demand to R∗

P0 = αT0 + V − L = 3. Consequently the
type DE gets a lower payoff with the lower kN (2.9 compared to 3.9). The type
NDE, by contrast, has a higher payoff (2.1 compared to 2) because they are also
able to demand ransom R∗

P0, although they incur cost kN . The expected payoff
of the attacker is R∗

P0 − 0.1α − 0.9(1 − α) = 2.5. Overall, therefore, the attacker
has a lower expected payoff when kN = 0.9 compared to kN = 6 (2.5 compared
to 2.95). This trade-off is apparent from the payoffs in Table 3, comparing A1
and B1.

You can also see in Table 3 that the payoff of the victim is not impacted
by kN . This is because the criminal is able to extract the same surplus from
the victim in equilibria A1, A3, B1 and B3. Generally, speaking, as would be
expected, the loss to the victim is reduced by lowering T0, T1, V and β. The
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victim’s payoff is also reduced by lowering α. Thus, reduced the losses from data
exfiltration as well as reducing the probability of data exfiltration reduce the
losses to the victim.

4 Conclusion

This paper provides a game-theoretic analysis of the double-sided information
asymmetry in double extortion ransomware attacks. We recognised that victims
are typically unable to verify if data was exfiltrated or not, while attackers typi-
cally do not know the value of any data exfiltrated. We modeled the ransomware
attack as a signaling game, where attackers could signal if data is exfiltrated and
victims pay based on the ransom, signal and the value of information. Our key
contribution is that, depending on the parameters of the game, private infor-
mation of the victim (about the value of exfiltrated data) significantly lowers
the profitability of the attack for the criminal. It is, therefore, in the interests
of potential victims, businesses, organisations, and/or individuals, to retain and
amplify the extent of their private information.

According to our model, the most effective way to disrupt the attackers prof-
itability is to: lower the probability of ‘successful’ data exfiltration, lower the
probability the victim has files of high reputational cost, and lower the recov-
ery cost from an attack. This would involve a mix of prevention (to lower the
probability of data exfiltration and loss of sensitive data) as well as improved
recovery options, such as back-ups. Crucially there is an externality effect: the
more victims safeguard their sensitive data the more that benefits other busi-
nesses, including those with vulnerable sensitive data. This is because it would
revise downwards the beliefs of attackers about the ransoms they can reason-
ably expect victims to pay. This externality effect should be acknowledged by
policy makers. In particular, it means businesses will under-invest in cyber secu-
rity prevention and recovery compared to the social optimum. This can justify
government support for cyber security investment.
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Abstract. In this paper, we consider opacity-enforcing planning with
temporally-extended goals in partially observable stochastic environment.
We consider a probabilistic environment modeled as partially observable
Markov decision process (POMDP) in which the observation function is
actively controlled as the agent decides which sensors to query at each
decision step. The agent’s objective is to achieve a temporal objective,
expressed using linear temporal logic for finite traces (LTLf ), whilemaking
achieving its goal opaque to a passive observer who can access the sensor
readings of a subset of sensors that are unsecured. Opacity, as a security
property, means that when from the observer’s perspective, the execution
that satisfied the temporal goal is observational-equivalent to an execu-
tion that does not satisfy the temporal goal. When both secured and unse-
cured sensors are available upon query, the agent must be selective in its
sensor query to prevent information leaking to the observer and to ensure
task completion.We propose an algorithm that synthesizes a strategy that
decides jointly the control actions and sensor queries to guarantee that the
temporal goal is achieved and made opaque with probability 1. Our app-
roach is based on planning with augmented belief state space. Further, we
show how to employ properties in the temporal logic formula to reduce
the size of the planning state space and improve scalability. We show the
applicability of our algorithm on a case study with robotic planning in a
stochastic gridworld with partial observations.

Keywords: Game theory · Opacity · Markov decision processes ·
Eavesdropping Attacks

1 Introduction

Opacity is a security property, specified for a system interacting with a passive
observer (also called an attacker). By enforcing opacity, the goal is to make the
attacker, who knows the system model and observes the system execution, con-
fused about if a secret state has been reached or a secret behavior has been real-
ized. The notion of opacity was first introduced by Mazaré [13] for cryptographic
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protocols. Since then, variants of opacity have been studied for different classes
of systems including Petri nets [4], labeled transitions systems [3], finite state
automata [15], probabilistic finite automata [18], hidden Markov models [10], and
Markov decision processes (MDPs) [1]. Depending on the nature of the secret
to be made opaque, there are different variants of opacity, including state-based,
which requires the secret behavior of the system (i.e., the membership of its
current state to the set) to remain opaque (uncertain) until the system enters a
non-secret state; language-based, which aims to hide a set of secret executions;
and “model-based”, which wants to prevents the observer to find out the true
model of the system among several potential models known to the observer.

In this work, we investigate language-based opacity in stochastic systems with
asymmetric, incomplete information to the planning agent and the eavesdrop-
ping attacker. To motivate the problem formulation, consider a scenario where
an autonomous robot, denoted Player 1 (P1), is entrusted with the confidential
task of delivering vital medical supplies to remote camp sites. The robot must
retrieve these supplies from a base station and navigate through a probabilistic
environment characterized by slippery conditions and the absence of GPS sig-
nals. P1 employs a sensor network to monitor its own location. However, this
sensor network includes certain vulnerable sensors that leak information to an
adversarial observer. The planning question is how can the robot ensure the
success of its mission, while ensuring its opacity to the observer? That is, the
observer cannot tell if the task is achieved or not from the observations. This
problem is interesting because instead of considering a passive observer/attacker
has a stationary observation function, the robot can strategically select sensor
queries and thus control the amount of information leaked to the attacker with
access to only unsecured sensors.

Our Approach and Contributions: We propose to investigate a joint active
perception and control framework for the planning agent (P1) to decide if the
opacity and mission success can be both achieved given different initial states
of the stochastic system and initial observations for both P1 and the passive
observer (P2). Our contributions involve incorporating 2-beliefs system to cap-
ture P1’s knowledge about the current state and P1’s knowledge about P2’s
knowledge about the current state. Reasoning with this 2-beliefs system, we
develop an algorithm that computes a strategy for P1 that actively selects which
sensor to query and which control action to exercise to ensure satisfaction of the
mission objective and opacity constraint simultaneously. However, maintaining
and updating the 2-belief system requires exponential memory due to the sub-
set construction. To address the issue of scalability, we introduce a method to
determine when to stop tracking P2’s belief, while ensuring the correctness in
the computed strategy. Finally, we demonstrate the correctness of our method
on robot motion planning in a stochastic gridworld environment with partial
observations provided by range sensors and location sensors.

Related Work: Opacity-enforcing control has been extensively studied in the
context of discrete event systems (DESs). Previous work in the supervisory con-
trol framework focuses on enforcing opacity in deterministic systems by modeling
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the control system as a deterministic finite state automaton in the presence of
a passive observer [14,15,23]. Different approaches have been proposed to syn-
thesize opacity [5,21,22] or to verify if a system is opaque [11,16,20]. To synthe-
size opacity in deterministic systems, Saboori et al. [17] synthesizes supervisor
that restricts certain system behaviors to ensure opacity. Cassez et al. [5] pro-
pose the use of dynamic masks that filter out unobservable events and verify
the opaqueness of a secret by reducing the opacity enforcement problem to a
2-player safety game. Xie et al. [22] design non-deterministic supervisors (con-
troller) so that the observer, knowing the nondeterministic supervisor, cannot
determine if a secret is satisfied or not. Besides masking and nondeterministic
control design, [9,21] investigate how to edit the observations to ensure opacity
using a non-deterministic edit function.

Game-theoretic approach for opacity enforcement has also been proposed.
Maubert et al. [12] introduce the game with opacity condition, in which one
player with perfect observation aims to enforce current-state opacity against
another player with imperfect observation during their two-player interactions.
They reduce the opacity-guarantee game to a safety game and the opacity-
violating game to a reachability game, for which existing solution can be used
to solve players’ strategies. Hélouët et al.[8] present a framework for enforcing
opacity against different types of attackers with different information about the
input and the observations. The existing approaches for opacity-enforcement in
deterministic systems or games are not applicable for stochastic systems with
partial observations to both the system and the observer.

For opacity in stochastic DESs, Saboori and Hadjicostis [18] propose three
probabilistic variants of current state opacity and develop opacity verification
algorithms for systems modeled as probabilistic finite automata. Keroglou and
Hadjicostis [10] investigate model-based opacity where the user wants to conceal
a true system modeled by a hidden Markov model among several potential hidden
Markov models from an intruder. Bérard et al. [1] extend language-based opacity
for ω-regular properties on MDPs. They assume a static observation function
and present several decidability results. In contrast, we focus on synthesizing an
opacity-enforcing strategy for an agent operating in a stochastic environment
and utilizing active sensor queries of secured and unsecured sensors.

2 Preliminaries and Problem Formulation

Notations. Given a finite set X, D(X) denotes the set of all probability distri-
butions over X. For a probability distribution d ∈D(X), Supp(d), the support of
d, is the set of elements in X with non-zero probabilities under d.

We model the interaction between an agent, Player 1/P1, and the environ-
ment as a Partially Observable Markov Decision Process (POMDP). The agent
actively queries sensors in the environment to obtain task-relevant information.

Definition 1 (POMDP with active perception). The stochastic system
with partial observations is a tuple

M = (S,A,P, Ω, Γ = Γ1 ∪ Γ2, O, s0, ω0, ω
+

0 , AP,L)
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in which (1) S is a finite set of states; (2) A is the set of P1’s control actions that
change the state in S; (3) P ∶ S ×A→D(S) is a probability transition function
such that for each s, s′

∈ S and a ∈ A, P(s, a, s′) is the probability of reaching
s′ given action a taken at state s; (4) Ω ⊆ 2S is the set of all observations; (5)
Γ ={γ0, γ1, · · · , γN} is a set of indexed sensors, partitioned into secured sensors
Γ1 and unsecured sensors Γ2; (6) O ∶S ×2Γ

→Ω is the observation function such
that for a state s ∈ S and a sensor subset X ⊆ Γ , O(s,X) ∈Ω is the set of states
whose sensor readings for sensor set X are the same as the readings given state
s (we call O(s,X) the set of observation-equivalent states to s based on sensor
information in X); (7) s0 ∈ S is the initial state; (8) ω0 and ω+0 are respectively
the initial observations of P1 and P2, where s0 ∈ω0 ∩ω+0 and ω0 ⊆ω+0 ; (9) AP is
a set of atomic propositions; and (10) L ∶ S → 2AP is the labeling function that
maps a state s ∈ S to a set L(s) of atomic propositions evaluated to true at s.

The following regularity assumption is made on the observation function.

Assumption 1. Let X1,X2 ⊆Γ be two sets of sensors. If X1 ⊆X2, then for any
state s ∈ S, O(s,X2) ⊆O(s,X1).

That is, the more sensor readings the less uncertainty about the current state.
A perception action is a subset of sensors being queried. A joint control and
perception action of P1, or a control-perception action for short, is a tuple (a,X)
including a control action a ∈A and a perception action X ⊆Γ . In the following,
by a P1’s action, we mean a control-perception action, from A1 =A × 2Γ .

We consider an eavesdropping attacker, Player 2/P2, who accesses the infor-
mation from the unsecured sensors queried by P1.

Definition 2 (Observations of an eavesdropping attacker P2). For any
state s ∈ S, for any perception action X ⊆ Γ performed by P1 when the system
entered s, P2’s observation is O(s,X∩Γ2) where X∩Γ2 is the subset of unsecured
sensors in the queried sensor set X. In addition, P2 does not observe the control
actions taken by P1.

Remark 1. We assume that a sensor will emit signal only if it is queried by P1
and P2 can only obtain information from the unsecured sensors queried by P1.
However, this assumption can be easily lifted for the case where there is a subset
Z of sensors that always emit signals and P2 can access the subset of unsecured
sensors in Z at all times. In this case, we only need to include these sensors Z
into each perception action of P1.

Game Play. The game play in M is constructed as follows. The game starts
from the initial state s0, P1 gets the observation ω0, and P2 receives observation
ω+0 . Based on ω0, P1 takes an action (a0,X0) ∈A1. The system then moves to a
state s1, drawn randomly based on P(s0, a0, ·). P1 receives observation O(s1,X0)
and P2 receives observation O(s1,X0∩Γ2). At each step, P1 can either decide to
terminate the game play or take a control-perception action and move to the next
state. Assuming that the game play will be eventually terminated, the resulting
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play is a finite sequence of state-action pairs ρ = s0(a0,X0)s1(a1,X1)s2 . . . sn

such that P(si, ai, si+1) > 0 for all integers 0 ≤ i < n. The labeling of this play is
L(ρ)=L(s0)L(s1) . . . L(sn). The set of finite plays in M is denoted by Plays(M).

The finite play generates a sequence of observations for both players. For P1,
given that P1 knows his own action decisions, we have

O1(ρ) = ω0(a0,X0)ω1(a1,X1) . . . ωn,

where ω0 is the initial observation and for i ≥ 1, ωi is the observation of state si

given the sensor query Xi−1, i.e., ωi =O(si,Xi−1). For P2, as P1’s control actions
are invisible,

O2(ρ) = ω+0 (X0 ∩ Γ2)ω+1 (X1 ∩ Γ2) . . . (Xn−1 ∩ Γ2)ω+n,

where ω+0 is the initial P2’s observation and for i ≥ 1, ω+i is P2’s observation
of state si given the sensor query Xi−1 ∩ Γ2, i.e., ω+i = O(si,Xi−1 ∩ Γ2). Two
plays ρ1, ρ2 ∈ Plays(M) are observation-equivalent to player i iff Oi(ρ1) =Oi(ρ2).
Given a play ρ ∈ Plays(M), we denote by [ρ]1 (resp. [ρ]2) the set of plays that
are observation-equivalent to ρ from P1’s perception (resp. P2’s perception).
The set of all sequences of observations P1 (resp. P2) can observe for the plays
of M is denoted Obs1(M) (Obs2(M)). The inverse of observation function for
player i is the function O−1i ∶Obsi(M)→ 2Plays(M) such that for each η ∈Obsi(M),
O−1i (η) = {ρ ∈ Plays(M) | Oi(ρ) = η}. The following property is easy to prove:

Proposition 1. For every play ρ ∈ Plays(M) and for each player i,
ρ ∈O−1i (Oi(ρ)).

Objective in Temporal Logic: P1 has a temporal objective ϕ specified in
Linear Temporal Logic over Finite Traces (LTLf ). The syntax of LTLf formulas
is given as follows.

Definition 3 (LTLf [7]). Let AP be a set of atomic propositions. An (LTLf )
formula over AP is defined inductively as follows:

ϕ ∶ =p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∧ ϕ2 | ©ϕ | ϕ1 Uϕ2 | ♦ϕ | �ϕ,

where p ∈ AP ; ¬, ∧ and ∧ are the Boolean operators negation, conjunction and
disjunction, respectively; and © , U , ♦ and � denote the temporal modal oper-
ators for next, until, eventually and always respectively.

The operator ©ϕ specifies that formula ϕ holds at the next time instant,
while the operator ϕ1 Uϕ2 denotes that there exists a future time instant at
which ϕ2 holds, and that ϕ1 holds at all time instants up to and including that
future instant. That is, the system must satisfy ϕ1 continuously until a time
instant in future at which ϕ2 holds. The temporal operator ♦ϕ specifies that ϕ
holds at some instant in the future and the operator �ϕ specifies that ϕ holds
at all time instants from the current instant.

For any LTLf formula ϕ over AP , a set of words Words(ϕ) ⊆ (2AP )∗ that
satisfy the formula is associated. A finite word w ∈ (2AP )∗ satisfies ϕ, denoted
by w |= ϕ, iff w belongs to Words(ϕ). See [7] for detailed semantics of LTLf .

To illustrate our definitions, we introduce a running example.
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Example 1. (Part I) Consider the POMDP in Fig. 1. To reduce visual clutter,
only the transitions with non-zero probabilities are drawn and the exact proba-
bilities of those transitions are omitted. The POMDP has 5 states, s1 through s5,
and the sensor set Γ consists of sensors, A,B,C and D, which cover {s2, s3}, {s3},
{s4, s5} and {s2, s3, s4}, respectively (shown by the dotted shapes in the figure).
All the sensors are Boolean sensors. A Boolean sensor returns True when the cur-
rent state is covered by the sensor and False otherwise. This sensor set is divided
into the secured sensors Γ1 ={B} and the unsecured sensors Γ2 ={A,C,D}. P1’s
task is to eventually reach state s5, which is expressed using the LTLf formula
ϕ = ♦ s5. An example of the observations obtained by P1 and P2 is as follows.
P1 starts from state s1 and takes a control-perception action (a, {A,B}), and
reaches state s2 probabilistically. P1 obtains the observations based on both the
sensors and thus O1(s2, {A,B}) = {s2}, while P2 obtains the observations only
based on the unsecured sensors O2(s2, {A,B} ∩ Γ2) =O2(s2, {A}) = {s2, s3}.

Fig. 1. An illustrative running example, POMDP with active perception M . The
dashed region represents the sensors: red (A), blue (B), green (C) and violet (D).
(Color figure online)

P1’s Strategy. In the POMDP with active perception M , P1 has to simulta-
neously either determine a control-perception action or terminate the game. A
finite-memory, randomised strategy for P1 is a function π∶Plays(M)→D(A1∪{⋉})
where ⋉ means P1 terminates the play. Because P1 has partial observations, P1
can only use observation-based strategy π ∶ Obs1(M)→ D(A1 ∪ {⋉}) that maps
an observation of a play to an action. P1 maintains for each time step k, the
observation sequence ηk = w0(a0,X0)w1 . . . wk it has perceived up to time step
k, and then, it feeds ηk to π to choose an action. A policy π induces a prob-
ability distribution Prπ over Plays(M). Let Π be the set of all finite-memory,
randomized, observation-based strategies for P1.

Definition 4 (Qualitative opacity). An LTLf formula ϕ is opaque to P2
with respect to a play ρ ∈Plays(M) if and only if 1. L(ρ) |= ϕ; and 2. there exists
at least one observation-equivalent play ρ′

∈ [ρ]2 such that L(ρ′) �|= ϕ.

In words, P2 cannot tell from its observation if the formula is satisfied or not.

Definition 5 (Opacity-enforcing winning play). Given a secret ϕ, a play
ρ∈Plays(M) is winning if L(ρ) |= ϕ. The set of winning plays is denoted WPlays.
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A winning play ρ is opaque-enforcing winning if ϕ is opaque to P2 with respect
to ρ. The set of opacity-enforcing winning plays is denoted OWPlays.

Definition 6 (Opacity-enforcing winning strategy). Given a prefix ρ ∈
Plays(M), a strategy π ∈ Π is said to be a winning strategy for P1 if P1 can
ensure to satisfy ϕ with probability one, that is, Prπ({ρ′|ρ · ρ′

∈ WPlays)} = 1.
A strategy π is said to be opacity-enforcing winning strategy for P1 if P1 can
enforce an opacity-enforcing winning play starting from ρ with probability one,
that is, Prπ({ρ′|ρ · ρ′

∈ OWPlays}) = 1.

Problem 1. Given a POMDP with active perception M in Definition 1 and P1’s
specification ϕ, given that P2 receives all sensor readings from unsecured sensors,
compute, if exists, an opacity-enforcing winning strategy for P1.

3 Main Result: Opacity-Enforcing Winning with 2-Beliefs

In this section, we present a solution to Problem 1. We first make use of
the fact that an LTLf formula can be represented as a deterministic finite
automaton to construct a product POMDP that augments the original POMDP
states with task-relevant information. We use this product POMDP to formulate
the opacity-enforcing planning problem and present solutions to compute P1’s
opacity-enforcing winning strategy using joint active perception and control.

As a first step, we encode the LTLf formula into a finite-state automaton.

Definition 7 (Deterministic Finite Automaton (DFA)). A DFA is a
tuple A = (Q,Σ, δ, ι, F ) with a finite set of states Q, a finite alphabet Σ, a tran-
sition function δ ∶ Q × Σ → Q, an initial state ι, and a set of accepting states
F ⊆Q.

We assume the transition function is complete. That is, for any (q, σ) ∈ Q × Σ,
δ(q, σ) is defined.1 The extended transition function δ ∶ Q × Σ∗

→ Q is defined
in the usual manner, i.e. , for each state q ∈ Q and word w0w1 . . . wn ∈ Σ∗,
δ(q, w0w1 . . . wn) = δ(δ(q, w0), w1 . . . wn). Word w = w0w1 . . . wn ∈Σ

∗ is accepted
by A if and only if δ(ι, w) ∈F . The language of A, denoted L(A), consists of all
those words accepted by A, i.e. , L(A) = {w ∈Σ∗ | δ(ι, w) ∈ F}.

The algorithm uses the idea of De Giacomo and Vardi [7] to convert the
LTLf formula ϕ into a DFA A with Σ = 2AP such that Words(ϕ) = L(A). From
now on, we assume Σ = 2AP . In the next step, we construct a product POMDP
from the POMDP M and the DFA A to determine whether P1 can enforce an
opacity-enforcing winning play from the initial state s0.

Definition 8 (Product POMDP). The product POMDP between the
POMDP with active perception M = (S,A,P, Ω, Γ = Γ1 ∪ Γ2, O, s0, ω

0
1 , AP,L)

and the DFA A = (Q,Σ, δ, ι, F ) is a tuple

M = (S ×Q,A, Γ, T, (s0, q0), Z,O, B0
1 , B

0
2 , S × F )

1 Any incomplete transition function can be made complete by adding a sink state
and redirecting all the missing transitions to it.
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in which (1) S ×Q is the set of states; (2) A is the set of control actions; (3) Γ
is the set of sensors; (4) T ∶ (S × Q) × A→ D(S × Q) is the transition function
s.t. for states (s, q) and (s′, q′) and action a, T ((s, q), a, (s′, q′)) = P(s, a, s′) if
δ(q, L(s′)) = q′. Otherwise, T ((s, q), a, (s′, q′)) = 0; (5) (s0, q0) is the initial state
where q0 = δ(ι, L(s0)); (6) Z ⊆ 2(S×Q) is the set of observations; (7) O ∶ (S ×Q) ×
2Γ
→Z is the observation function s.t. for a state (s, q) ∈S ×Q and sensor subset

X ⊆ Γ , O((s, q),X) =O(s,X) ×Q; (8) B0
1 = {(s, q) | s ∈ ω0, q = δ(q0, L(s))} is the

initial observation for P1; (9) B0
2 = {(s, q) | s ∈ ω+0 , q = δ(q0, L(s))} is the initial

observation for P2; and (10) S × F is the set of goal states.

A finite play γ = (s0, q0)(a0,X0)(s1, q1)(a1,X1) . . . (sn, qn) in M, by the con-
struction of the product POMDP, can be projected into a single finite play
ρ= s0(a0,X0)s1(a1,X1) . . . sn in M . The projection of plays in M to plays in M
is a bijection due to the deterministic transitions in the DFA.

By construction, the play ρ satisfies the specification ϕ iff there exists an
integer 0 ≤ i ≤ n such that (si, qi) ∈ S × F .

The observation function in this product game is used to update both P1’s
belief and P2’s belief. Let X be a sensor query performed by P1 and (s, q)∈S×Q
be the state the product game M enters. P1’s belief about the current state is
updated using O((s, q),X) and P2’s belief is updated using O((s, q),X∩Γ2). For
this product game, function PostM ∶ (S×Q)×A→2S×Q maps a state (s, q)∈S×Q
and an action a ∈ A to the set of possible reachable states as PostM((s, q), a) =
{(s′, q′) ∈ S × Q | T ((s, q), a, (s′, q′)) > 0}. We extend this function for domains
2(S×Q)

× A and 2(S×Q)
× 2A such that for each B ⊆ S × Q, a ∈ A, and Y ⊆ A,

PostM(B, a) =
⋃

(s,q)∈B

PostM((s, q), a) and PostM(B, Y ) =
⋃

a∈Y

PostM(B, a). Given

a state (s, q) ∈ S × Q, we use M[(s, q)] to denote a product POMDP obtained
from M by letting (s, q) to be the initial state.

3.1 Computing an Opacity-Enforcing Strategy

From the product POMDP M, we formulate a one-player stochastic game to
model the interaction of P1 and the environment, along with P2’s observation.

Definition 9 (POMDP augmented with 2-beliefs). Given the product
POMDP M=(S×Q,A, Γ, T, (s0, q0), Z,O, B0

1 , B
0
2 , S×F ), the POMDP augmented

with 2-beliefs is a tuple
G = 〈V,A1, v0, VF ,Δ〉,

where (1) V ={((s, q), B1, B2) | s∈S, q ∈Q,B1 ⊆ (S ×Q), B2 ⊆ (S ×Q)} is the set of
states, where B1 and B2 are beliefs of P1 and P2, respectively; (2) A1 = A × 2Γ

is the set of control-perception actions that can be taken by P1, as given in M;
(3) v0 = ((s0, q0), B0

1 , B
0
2) is the initial state; (4) VF = {((sF , qF ), BF

1 , BF
2 ) ∈ V |

(sF , qF ) ∈ (S × F ), BF
1 ⊆ (S × F ), BF

2 ∩ (S × F ) ≠ ∅, BF
2 ∩ S × (Q ∖ F ) ≠ ∅} are

the set of goal states (P1 aims to reach one of such a goal state); and (5)
Δ ∶ V ×A1 →D(V ) is the probabilistic transition function such that all states in
VF are sink states, and for each state v = ((s, q), B1, B2) ∈ VF , action (a,X) ∈
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A1, and state v′
= ((s′, q′), B

′
1, B

′
2)) ∈ V , Δ(v, (a,X), v′) = T ((s, q), a, (s′, q′)) if

B
′
1 = PostM(B1, a) ∩O((s′, q′),X), B

′
2 = PostM(B2, A) ∩O((s′, q′),X ∩ Γ2), and

q′
= δ(q, L(s′)), and otherwise, Δ(v, (a,X), v′) = 0.

Each state ((s, q), B1, B2) of this product game indicates a situation where
the true state of the system is (s, q), P1’s belief about the current state is B1, and

P2’s belief about the current state is B2. Each transition ((s, q), B1, B2)
(a,X)
−−−−−−→

((s′, q′), B
′
1, B

′
2) corresponds to a situation where P1 selects an action (a,X)∈A1,

after which, the game stochastically transitions from the true state (s, q) to the
new true state (s′, q′). Then, with the sensor query, P1 observes O((s′, q′),X)
and thus updates its belief from B1 to B

′
1 by considering the possible states in

which it can be given the taken action a and eliminating the states that are
inconsistent with the observation. Likewise, P2 observes O((s′, q′),X ∩ Γ2) and
updates P2’s belief from B2 to B

′
2 based on the information from unsecured

sensors. If a state in VF is reached, P1 chooses to terminate the play.
The following example shows the construction as described in Definition 9.

Example 2. (Part II) In Example 1, the secret task for P1 is ϕ = ♦ s5.
The DFA corresponding to ϕ is shown in the Fig. 2a. Figure 2b shows the
product POMDP of this DFA and the POMDP in Example 1. From this
product POMDP, the POMDP augmented with 2-beliefs G is constructed.
Figure 2c shows a partial construction of G. In this figure, B0

1 = {(s1, 0)}, B0
2 =

{(s1, 0), (s2, 0), (s3, 0), (s4, 0), (s5, 1)}, B4
1 ={(s5, 1)} and B4

2 ={(s4, 0), (s5, 1)}. To
see how the belief is updated, consider state ((s3, 0), {(s3, 0)}, {(s2, 0), (s3, 0)}),
at which P1 knows the exact current state and P2 is uncertain if the current
state is s2 or s3. If P1 takes action a and query sensor set {C,D}, state (s5, 1) is
reached with probability one. The sensor C returns 1 and sensor D returns 0. In
this case, P2, who has access to both C and D, will know that (s5, 1) is reached.
On the other hand, if P1 takes action a and queries B and C, at state s5, B
outputs 0 and C outputs 1. P1 will know that s5 is reached. P2, with only sen-
sor C’s information, cannot distinguish if state (s5, 1) or (s4, 0) is reached. The
opacity is enforced and the play is winning for P1. The goal state in this figure
has a self-loop for all actions. This is because all states in VF are absorbing.

The opacity-enforcing winning strategy computation relies on the proof that
in the presence of the eavesdropping attacker and partial observations, either
player is sure that one of the states in its belief is the true state.

We now also show that the belief of P2 always includes the belief of P1.

Lemma 1. For any state ((s, q), B1, B2) ∈ V reachable from the initial state v0,
B1 ⊆B2.

Proof. By induction on the lengths of the plays in the product game. For the
initial state v0=((s0, q0), B0

1 , B
0
2), by the construction of B0

1 and B0
2 in Definition 8

and the assumption that w0 ⊆ w+0 in Definition 1, we have B0
1 ⊆B0

2 .
Consider a play with length k in G such that vk = ((sk, qk), Bk

1 , Bk
2 ) is

the last state of the play. By induction hypothesis, Bk
1 ⊆ Bk

2 . For any state
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Fig. 2. (a) DFA for the temporal goal ϕ = ♦ s5. (b) Product POMDP M. (c) A
fragment of POMDP with 2-beliefs G, constructed from M.

vk+1 = ((sk+1, qk+1), Bk+1
1 , Bk+1

2 ) reached by an action (a,X) ∈ A1 from vk, it
holds that Bk+1

1 =PostM(Bk
1 , a) ∩O((sk+1, qk+1),X) and Bk+1

2 =PostM(Bk
2 , A) ∩

O((sk+1, qk+1),X ∩Γs). Since Bk
1 ⊆Bk

2 and a ⊆A, PostM(Bk
1 , a) ⊆PostM(Bk

2 , A).
Also, given (X∩Γ2)⊆X, it holds that O((sk+1, qk+1),X)⊆O((sk+1, qk+1),X∩Γ2).
Hence, Bk+1

1 ⊆Bk+1
2 . ��

Lemma 2. For any state ((s, q), B1, B2) ∈ V that is reachable from the initial
state v0, it holds that (s, q) ∈B1 and (s, q) ∈B2.

Proof. We first show that (s, q) ∈B1 using induction on the lengths of the plays
of G. For the initial state v0 = ((s0, q0), B0

1 , B
0
2), by construction of belief from

the initial observation, (s0, q0)∈B0
1 . Consider a play with length k in G such that

vk = ((sk, qk), Bk
1 , Bk

2 ) is the k-th state reached by a sequence of P1’s actions.
Assume (sk, qk) ∈Bk

1 . For any state vk+1 = ((sk+1, qk+1), Bk+1
1 , Bk+1

2 ) reached from
vk by an action (a,X)∈A1, taken by P1, it holds that T ((sk, qk), a, (sk+1, qk+1))>0,
Bk+1

1 =PostM(Bk
1 , a) ∩O((sk+1, qk+1),X). Because (sk, qk) ∈Bk

1 , by construction
we have (sk+1, qk+1)∈PostM(Bk

1 , a). Also, because sk+1 ∈O(sk+1,X), (sk+1, qk+1)∈
O((sk+1, qk+1),X). Thus, (sk+1, qk+1) ∈Bk+1

1 .
This proof combined with the result of Lemma 1 proves (s, q) ∈B2. ��

Lemma 3. Let ρG = ((s0, q0), B0
1 , B

0
2)(a0,X0)((s1, q1), B1

1 , B
1
2) . . . ((sn, qn), Bn

1 ,
Bn

2 ) be a play of G. For each (s′
n, q′

n) ∈ Bn
2 , there exists a play ρM =

(s′
0, q

′
0)(a

′
0,X

′
0)(s

′
1, q

′
1)(a

′
1,X

′
1) . . . (s′

n, q′
n) of M such that for each 0 ≤ i < n,

(s′
i, q

′
i) ∈B

i
2 and X ′

i =Xi ∩ Γ2.

Proof. Proof by induction on k =n, n−1, . . . , 0. For k =n, ρn
G = ((sn, qn), Bn

1 , Bn
2 ).

By the statement assumption, (s′
n, q′

n) ∈ Bn
2 , and clearly ρn

M = (s′
n, q′

n) is a play
of M[(s′

n, q′
n)]. Therefore, the statement holds for the induction’s base case.

For the induction hypothesis, assume given the play

ρk
G = ((sk, qk), Bk

1 , Bk
2 )(ak,Xk)((sk+1, qk+1), Bk+1

1 , Bk+1
2 ) . . . ((sn, qn), Bn

1 , Bn
2 )
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of G, there exists a sequence

ρk
M = (s′

k, q′
k)(a′

k,Xk ∩ Γ2)(s′
k+1, q

′
k+1)(a

′
k+1,Xk+1 ∩ Γ2) . . . ((s′

n, q′
n))

where (s′
i, q

′
i) ∈B

i
2 for each k ≤ i ≤ n, is a play of M. Now, consider the play

ρk−1
G = ((sk−1, qk−1), Bk−1

1 , Bk−1
2 )(ak−1,Xk−1) . . . ((sn, qn), Bn

1 , Bn
2 )

of G. Given ρk−1
G is a play in G, G has a transition from ((sk−1, qk−1), Bk−1

1 , Bk−1
2 )

to ((sk, qk), Bk
1 , Bk

2 ) with action (ak−1,Xk−1). By the construction of G’s transi-
tion function, this implies that Bk

2=PostM(Bk−1
2 , A)∩O((sk, qk),Xk−1∩Γ2), which

means (1) Bk
2 ⊆ PostM(Bk−1

2 , A), and (2) Bk
2 ⊆O((sk, qk),Xk−1 ∩ Γ2). Given (1)

and that (s′
k, q′

k) ∈Bk
2 , it holds that there exists (s′

k−1, q
′
k−1) ∈B

k−1
2 and a′

k−1 ∈A
such that (s′

k, q′
k) ∈ PostM((s′

k−1, q
′
k−1), a

′
k−1), which implies that in M, there

exists a transition with action a′
k−1 from state (s′

k−1, q
′
k−1) to state (s′

k, q′
k), and

by (2), it holds that (s′
k, q′

k) ∈O((sk, qk),Xk−1 ∩ Γ2). These two combined imply
that ρk−1

M =(s′
k−1, q

′
k−1)(a

′
k−1,Xk−1∩Γ2)(s′

k, q′
k)(a′

k,Xk ∩Γ2) . . . ((s′
n, q′

n)) is a play
of M and for each k ≤ i ≤ n, (s′

k, q′
k) ∈Bk

2 . ��
The above properties are important to construct an opacity-enforcing strat-

egy to satisfy the given specification. Even in situations where P1 may only
have a belief such that it is a subset of (S × F ) and P1 does not perfectly know
the current true state, P1 knows that the specification has been satisfied from
Lemma 2. Also, with Lemma 1, we know that for P1 to enforce opacity, it is
not sufficient to reach a state such that only P1’s belief is a subset of (S × F )
as it means that P2’s belief always encompasses P1’s belief and hence, P1 must
ensure that P2’s belief has at least one additional state that is not in (S × F ).

In the above constructed POMDP augmented with 2-beliefs, P1 is tasked with
reaching the goal states in VF with probability one. We show that reaching these
goal states with probability one would ensure that P1 would satisfy the given
specification while ensuring opacity in the POMDP M .

Definition 10 (Belief-Based Winning Strategy/Region).
A strategy π ∶ V → D(A1) in the POMDP with 2-beliefs G is winning at

state v0 for P1 if by starting from v0 and following π, P1 ensures to reach a
state ((s, q), B1, B2) where B1 ⊆ S × F with probability 1. Strategy π is opacity-
enforcing winning at a state v0 if by starting from v0 and following π, P1 guaran-
tees to reach a goal state VF with probability 1. It is well known that belief-based
strategies are sufficient to win almost-surely the reachability game for P1 [2]
and thus, a strategy π ∶ V → D(A1) is belief-based if for every pair of states
((s, q), B1, B2), ((s′, q′), B1, B2) ∈V , it holds π((s, q), B1, B2) =π((s′, q′), B1, B2).
A set of states from which P1 has a belief-based winning strategy is called
P1’s winning region, denoted as Win(G). P1’s opacity-enforcing winning region,
denoted OWin(G), consists of those states from which P1 has an opacity-enforcing
winning strategy.

Theorem 1. A belief-based winning strategy π in the POMDP augmented with
2-beliefs G is also winning in the POMDP with active perception M and enforces
opacity and winning with respect to its temporal objective ϕ.
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Proof. Let ρo = ((s0, q0), B0
1 , B

0
2)(a0,X0)((s1, q1), B1

1 , B
1
2) . . . ((sn, qn), Bn

1 , Bn
2 )

be a play generated by π over G. This play is projected onto play ρM =

s0(a0,X0)s1 . . . sn on M . Because π is a winning strategy, ((sn, qn), Bn
1 , Bn

2 )∈VF ,
implying qn ∈ F and Bn

1 ⊆ (S × F ). This means that L(s0s1 · · · sn) |= ϕ, which
means that ρM |= ϕ and the play ρM is winning for P1. Because this ρo is
selected arbitrarily, then this means π is a winning strategy for M . Also, given
that Bn

1 ⊆ (S × F ), P1 knows that being in any one of the states in its belief, it
satisfies the specification.

For P2’s belief, it holds that Bn
2 ∩(S×(Q∖F ))≠∅. That is, there exists a state

(s′, q′) ∈ Bn
2 such that q′

≠ F . For each such a state (s′, q′), by Lemma 3, there
exists a play ρ−M = (s′

0, q
′
0)(a

′
0,X

′
0)(s

′
1, q

′
1) . . . (s′

n, q′
n) of M where X ′

i = Xi ∩ Γ2

for all 0 ≤ i < n. This implies that σ−M = s′
0s

′
1 . . . s′

n is a run of M and L(σ−M ) �|=
ϕ. Given Proposition 1, P2 believes that run σ+M = s0s1 . . . sn has a non-zero
probability to have been executed. Therefore, because P2 believes any of the
two runs σ+M = s0s1 . . . sn and σ−M of M where L(σ+M ) |= ϕ and L(σ−M ) �|= ϕ could
have been executed, π is opacity-enforcing. ��

We introduce Algorithm 1 to compute a belief-based winning strategy for P1.
The algorithm initializes a set Y0 = V and iteratively computes Yk+1 from Yk for
k ≥ 0. At each iteration k, Algorithm 1 computes the set of states from which it
can reach a state in VF with a positive probability while ensuring to stay within
the set Yk with probability 1. The algorithm uses the following function

Allow(v, Y ) = {(a,X) ∈A1 | PostG(v, (a,X)) ⊆ Y },∀v ∈ V, Y ⊆ V

where PostG(v, (a,X))={v′
∈V | Δ(v, (a,X), v′)>0} is the set of states reachable

from state v by playing action (a,X). By definition, by playing an action from
the allowed set Allow(v, Y ), P1 can be sure to stay within state set Y . Let for a
state v = ((s, q), B1, B2) ∈ V , [v]∼ denote the set of belief-equivalent states with v
such that [v]∼ = {((s′q′), B

′
1, B

′
2) ∈ V | B

′
1 =B1, B

′
2 =B2}. Then, let

Allow([v]∼, Y ) =
⋂

v′
∈[v]

∼

Allow(v′, Y ).

Thus, we have that an action is allowed for P1 to play at a state v if and only
if that action is allowed for P1 at all of its belief-equivalent states v′.

Next, we define the following progress function given a set of states Y ⊆ V
and a set R ⊆ Y ,

Prog(R, Y ) = {v ∈ Y | ∃(a,X) ∈ Allow([v]∼, Y ),PostG(v, (a,X)) ∩ R ≠ ∅}.

The progress function yields a set of states from which P1 has at least one
allowed action to reach R in the next state.

In the inner loop of Algorithm 1 (Lines 4–7), we fix the Yk and iteratively
update Ri until a fixed point is reached. Intuitively, the fixed point is a set of
states from which P1 can ensure to reach VF with probability ≥0 and stay within
Yk with probability 1. Then, we set this fixed point in the inner loop as Yk+1 and
continue with the computation until the fixed point is reached at the outer loop
Yn+1 =Yn for some n≥0. The belief-based winning region for P1 is OWin(G)=Yn.
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We next show that OWin(G) obtained using Algorithm 1 is, in fact, the
opacity-enforcing almost-sure winning region for P1 and at every state in
OWin(G), P1 has an opacity-enforcing strategy to reach R with probability one.

Algorithm 1. Belief-Based Opacity-Enforcing ASW Region
Inputs: POMDP augmented with 2-belief G.
Outputs: P1’s opacity-enforcing ASW region, OWin(G).
1: k ← 0; Yk ← V
2: repeat
3: i ← 0; Ri ← VF

4: repeat
5: Ri+1 ← Ri ∪ Prog(Ri, Yk)
6: i ← i + 1
7: until Ri+1 =Ri

8: Yk+1 ← Ri; k ← k + 1
9: until Yk+1 = Yk

10: return OWin(G) ← Yk.

Lemma 4. OWin(G) computed by Algorithm 1 is opacity-enforcing winning
for P1.

Proof is in the appendix. From the obtained OWin(G), P1’s opacity-enforcing
belief-based strategy can be defined as function π∗

1 ∶ OWin(G)→ 2A1 such that

π∗
1(v) = {(a,X) ∈A1 | (a,X) ∈ Allow([v]∼,OWin(G))}. (1)

Thus, at each state v ∈ OWin(G), P1 has to play an action in π∗
1(v). Also,

by the construction of Allow(·), for every states v = ((s, q), B1, B2) and v′
=

((s′, q′), B
′
1, B

′
2), if B1 =B

′
1 and B2 =B

′
2, then π∗

1(v) = π∗
1(v

′).

Theorem 2. By playing the strategy π∗
1 defined in Eq. 1, P1 ensures that the

game eventually reaches VF .

The proof for the theorem is provided in the appendix.

Complexity Analysis: The algorithm first encodes the secret goal ϕ into a
DFA. This step takes a doubly-exponential time in the size of ϕ in the worst
case [6,19]. However, for commonly seen LTLf formulas in robotic planning
and AI applications, this translation is tractable. The POMDP augmented with
2-beliefs has O(|S||Q|2|S||Q|2|S||Q|) reachable states in the worst case. Each non-
goal state v = ((s, q), B1, B2) has O(|S|) transitions with non-zero probabilities
for each action (a,X) ∈A × 2Γ in the worst case. Accordingly, using appropriate
data structures, mainly hash tables, it takes O(|A||S||Q|22|S||Q|+|S|) to construct
the POMDP augmented with 2-beliefs. Computing an opacity-enforcing winning
strategy for G takes a quadratic time to the size of G in the worst case. Therefore,
the final running time of our algorithm is O(|A|2|S|2|Q|22(4|S||Q|+2|S|)).

Example 3. (Part III) We show how to use Algorithm 1 to obtain the
opacity-enforcing winning region for the fragment of the opacity-enforcing
game in Fig. 2c. From Fig. 2c, we have, v1 = {((s1, 0), B0

1 , B
0
2)}, v2 =
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{((s3, 0), {(s3, 0)}, {(s2, 0), (s3, 0)})}, v3 = {((s5, 1), {(s5, 1)}, {(s5, 1)})} and v4 =
{((s5, 1), {(s5, 1)}, {(s4, 0), (s5, 1)})}.

We start with Y0 = {v1, v2, v3, v4} where v1 is the initial state in Fig. 2c, and
v4 is the final state.

Moving on to the inner loop, we initialize the set R0 as {v4} since it is the only
final state in the fragment under consideration. Next, we compute Prog(R0, Y0),
which yields {v2, v4}. Subsequently, R1 is updated as {v2, v4}, and we compute
Prog(R1, Y0), resulting in {v1, v2, v4}. This set represents the fixed point for this
iteration. Consequently, we update Y1 as {v1, v2, v4}, which is the fixed point for
the outer loop and the opacity-enforcing winning region.

3.2 When to Stop Tracking P2’s Beliefs?

In the construction of the POMDP augmented with 2-beliefs presented in Defi-
nition 9, we face the issue of exponential growth of the state space. To mitigate
the issue, we use the minimal DFA accepting ϕ. This reduces the state space of
M and G. Additionally, in certain situations, we can stop tracking P2’s belief by
leveraging certain properties in the specification automaton and P1’s winning
region computed from the product POMDP without opacity constraints.

First, we introduce some notions.
Given a DFA I, we define the subautomata for each state q ∈Q as follows:

Definition 11. Given a DFA I = (Q,Σ, δ, ι, F ), for any q ∈Q,

– good suffixes Lq is the language of the DFA Iq = (Q,Σ, δ, q, F ).
– bad suffixes Lq is the language of the DFA Iq = (Q,Σ, δ, q,Q ∖ F ).

Given two languages L1 and L2, represented by DFAs I1 = (Q1, Σ, δ1, ι1, F1)
and I2 = (Q2, Σ, δ2, ι2, F2), checking if L1 ⊆ L2 is equivalent to see whether
L1 ∩ L2 = ∅, which can be achieved by checking whether the language of the
product DFA I1 ×I2 = (Q1 ×Q2, Σ, δ, (ι1, ι2), F1 × (Q∖F2)) where δ((q1, q2), σ)=
(δ1(q1, σ), δ2(q2, σ)) for each (q1, q2) ∈Q1 ×Q2 and σ ∈Σ, is empty or not.

Next, we solve P1’s belief-based winning strategy without enforcing opacity
to the observer. In this case, we need not to keep track of P2’s belief.

Definition 12 (Product POMDP augmented with P1’s belief). Given
the product POMDP M=(S×Q,A, Γ, T, (s0, q0), Z,O, B0

1 , B
0
2 , S×F ), the product

POMDP augmented with P1’s belief is a tuple

H = 〈H,A1,HF , T , h0〉
in which 1. H={((s, q), B1) | s∈S, q∈Q,B1⊆(S×Q)} is the set of states, where B1

is P1’s belief; 2. A1 is the set of control-perception actions that can be taken by
P1, as given in M; 3. h0=((s0, q0), B0

1) is the initial state, where B0
1 is the initial

belief as in M; 4. HF ={((sF , qF ), BF
1 ) | (sF , qF )∈(S×F ), BF

1 ⊆(S×F )} is the set
of final states, which ensure P1 satisfies the objective ϕ; and 5. T ∶H×A1→D(H)
is the probabilistic transition function. First, all states in HF are sink states. For
a state h ∈H ∖HF , for each action (a,X) ∈A1 and state h′

= ((s′, q′), B
′
1)) ∈H,

T (h, (a,X), h′) = T ((s, q), a, (s′, q′)) if B
′
1 = PostM(B1, a) ∩ O((s′, q′),X), and

otherwise, T (h, (a,X), h′) = 0.
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P1’s belief-based winning strategy in H can be solved using a slight modifi-
cation of Algorithm 1: Let

Allow(h, Y ) = {(a,X) ∈A1 | PostH(h, (a,X)) ⊆ Y },∀h ∈H,Y ⊆H.

and Allow([h]∼, Y ) =
⋂

h′
∈[h]

∼

Allow(h′, Y ). where [((s, q), B1))]∼ = {((s′q′), B
′
1) ∈H |

B
′
1 =B1}.

The progress function is defined as

Prog(R, Y ) = {h ∈ Y | ∃(a,X) ∈ Allow([h]∼, Y ),PostH(h, (a,X)) ∩ R ≠ ∅}.

We have that Yk is initialized to H and Ri is initialized to HF . Intuitively,
these modification allows P1 to compute belief-based winning strategy only con-
sidering his own belief.

Thus, without constructing the POMDP with two-beliefs G, we can obtain
Win(G) = {((s, q), B1, B2) ∈ V | ((s, q), B1) ∈Win(H)} that includes a set of states
P1 can enforce a winning play (with/without opacity to P2).

Remark 2. OWin(G) ⊆Win(G).

The following Lemma is crucial: It enables us to determine if an opacity-
enforcing winning strategy exists without enumerating all beliefs that can be
reached in the POMDP augmented with 2-beliefs G.

Lemma 5. For any state v = ((s, q), B1, B2) ∈V where v ∈Win(G), if there exists
p ∈Q s.t. (s, p) ∈B2 and Lq ⊆ Lp, then v ∈OWin(G).

Proof. Given that v∈Win(G), P1 can enforce a play ρ=s0(a0,X0)s1(a1,X1) . . . sn

where s0 = s such that δ(q, L(ρ)) ∈ F . As a result, L(ρ) ∈ Lq is a good suffix for
the language L(A) given the state q.

Given that Lq ⊆ Lp, L(ρ) ∈ Lp. Let p = ((s0, q0), B0
1 , B

0
2)(a0,X0) . . . ((sn, qn),

Bn
1 , Bn

2 ) be in G, the play corresponding to the play ρ. That is, the projection of
p onto S is ρ. Let pn = δ(p, L(ρ)). It holds that (sn, pn) ∈Bn

2 by the construction
of P2’s belief. Because L(ρ) ⊆ Lp, then pn ∈ Q ∖ F . Further since Bn

1 ⊆ Bn
2 and

Bn
1 ⊆S ×F , then Bn

2 ∩ (S × (Q ∖ F ))≠∅ and Bn
2 ∩S ×F ≠∅. The play ρ is opaque

and winning for P1. ��

Definition 13 (Augmented POMDPs with Trimmed 2-Beliefs). Given
the product POMDP M and the winning region of P1 without opacity constraint
Win(G), the Augmented POMDPs with Trimmed 2-Beliefs is a tuple

G′
= 〈W ∶ =Win(G) ∪Win(H),A1,WF ∶ =VF ∪Win(H),Δ′, v0〉

where W is the set of states; A1 and v0 are from Definition 9; WF is the set of
goals states and is the union of VF (the goal states of G, as in Definition 9) and
Win(H); and Δ′ is the probabilistic transition function s.t. all the goal states in
WF are sink states, and for each non-goal state w=((s, q), B1, B2)∈Win(G)∖WF ,
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– if there exists (s, p)∈B2 such that Lq ⊆Lp, Δ′(w, ((s, q), B1))=1. That is, with
probability one, P1 reaches a state in Win(H) and stop tracking P2’s belief.

– otherwise, for each action (a,X) ∈ A1, Δ′(w, (a,X), ((s′, q′), B′
1, B

′
2)) =

T ((s, q), a, (s′, q′)), where B
′
1 = PostM(B1, a) ∩ O((s′, q′),X) and B

′
2 =

PostM(B2, A) ∩O((s′, q′),X ∩ Γ2).

We now solve the above augmented POMDPs with trimmed 2-beliefs using
Algorithm 1. P1 follows the policy computed from G′ until a state ((s, q), B1) ∈
Win(H) or a goal state VF is reached. If a state ((s, q), B1) ∈Win(H) is reached,
then P1 transitions to the winning policy of the game H and adhere to it.

4 Experimental Validation

In this section, we demonstrate the use of the developed opacity-enforcing plan-
ning for P1, an autonomous robot tasked with delivering medicine in a GPS
denied environment. Figure 3a shows the environment setup. The robot is tasked
with first reaching the base station, A in the gridworld, to pick up essential sup-
plies and then delivering the critical supplies to one of the critical zones B and
C. This task is specified by the LTLf formula ϕ=¬(B∧C)U (A∧♦ (B∧C)). The
robot is expected to keep this task opaque from the adversarial observer.

Fig. 3. (a) Autonomous robot in an adversarial environment. (b) The stochasticity in
the environment when robot chooses to traverse N. (c) Specification DFA for ϕ=¬(B∧
C)U (A ∧ (B ∧ C)).

The environment is monitored by the sensors {S0, S1, S2, S3, S2, S5} as shown
in the Fig. 3a. The sensors S0,S1,S2 and S3 respectively cover the rows 0, 1, 2
and 3, and the sensors S4 and S5 cover the columns 1 and 3 respectively. Only
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S4 is a secured sensor. Sensors S0 and S2 are precision range sensors and each
returns the exact position of the robot if the robot is in a cell in the range of the
sensor and returns False otherwise. The other sensors are Boolean range sensors
and each returns True if the robot is in a cell that is covered by the sensor
and returns False if not. The robot has partial observations of its position,
obtained from the deployed sensor network. The eavesdropping adversary has
partial observation of the robot’s position from unsecured sensors. Due to limited
communication constraint, for any belief B and any control action in A, the set
of perception actions for the robot to select along with the control action includes
querying any two sensors that cover at least one of the possible next states, i.e. ,
states in PostM(B,A). The robot traverses through the environment with four
possible actions {N,S,E,W}. When the robot performs an action, its actuators
guarantee that it reaches the intended cell with a probability p, make the robot
to stay in the same cell with a probability (1−p)/2, and transit the robot to the
cell that is 90 degrees (clockwise) apart from the intended cell with a probability
(1−p)/2 as shown in the Fig. 3b. The gridworld environment is surrounded by
bouncy walls. If the agent takes an action and hits a wall, it remains in the
original cell. The cells 4, 12, and 15 are the unsafe zones for the robot. In a
unsafe zone is reached, the robot gets stuck.

Fig. 4. (a) The results of experimentation for every initial state in the gridworld. (b)
Fragment of opacity-enforcing and not enforcing run starting from cell 2.

Figure 3c shows the DFA encoding the temporal formula ϕ. This DFA has a
non-accepting sink state state 3, and an accepting goal state 0. Figure 4 shows
results obtained from solving the opacity-enforcing winning strategy for the
robot. Each green dot represents an initial state from which the robot has a
opacity-enforcing winning strategy. Each red dot represent a state that has no
winning strategy.
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We discuss our results for the case where P1’s initial position is cell 0 and
both P1 and P2 are aware of this. Figure 4b shows a fragment of a run in the
modified opacity-enforcing game for the above example. In the shown fragment,
we have an opacity-enforcing winning run and a run that does not enforce opacity
when the robot starts from the cell 0 and has reached the cell 2. Here, we encode
a state as ((s, q), B1, B2) where (s, q) represents the robot’s true state with s
being the cell number and q the automata state, B1 is the robot’s belief of its
position and B2 is the observer’s belief of the robots position. From Fig. 4b, we
observe that the sensor query of the robot affects the enforcement of opacity at
state ((10, 2), {(10, 2)}, {(10, 2)}). From state ((10, 2), {(10, 2)}, {(10, 2)}), for the
robot to reach the critical zone C it can take action N along with one perception
action, i.e. , a query of a pair of sensors selected from {S2, S5}, {S2, S3}, {S2, S4}
or {S2, S1} since any of these possible perception actions will enable the robot
know it’s true next state. Querying {S2, S3} or {S2, S1} does not enforce opacity
as they provide the observer with enough information to ensure that the robot
is precisely in the critical zone C.

To assess the effectiveness of the opacity-enforcing policy, we conducted
empirical evaluations through statistical analysis. We performed 50, 000 itera-
tions of the simulation in the gridworld setup, starting from the initial state
((0, 1), {(0, 1)}, {(0, 1)}), for which the robot has an opacity-enforcing winning
strategy. We let the robot to randomly select actions from the winning strategy
computed from Win(H). We observed the robot achieved task satisfaction in all
iterations while enforcing opacity in 47.07% of the iterations. In the remaining
52.93% of iterations, the robot successfully satisfied the task specification but
did not enforce opacity. If the robot uses the strategy computed from Win(G),
with probability 1, the robot not only satisfies the task specification but also
enforces opacity.

Next, we see how the trimming technique reduces computation. The construc-
tion of G resulted in a total of 135, 334 states, and with the use of the modified
construction of the game, i.e. on constructing the game G′ with the trimming
of the beliefs results in a total of 51, 763. This significant reduction of the state
space aids in faster computation of the almost-sure winning region/strategy.

The experiments were executed on an Intel (R) Core (TM) i7 CPU @ 3.2 GHz.

5 Conclusion and Future Work

In this work, we formulated and solved the problem of synthesizing a joint con-
trol and active perception for an agent in a stochastic environment to satisfy
a secret temporal goal while enforcing opacity against a passive observer with
partial observations. Building on the modeling and solution approaches, several
future directions can be considered: First, a quantitative variant of opacity-
enforcing planning remains to be investigated. For example, from the set of
states at which P1 does not have a winning and opacity-enforcing strategy, is
it possible to compute a strategy that ensures winning with probability ≥p and
opacity with probability ≥ε? This would enable a more nuanced understanding of
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opacity enforcement and the development of strategies that account for varying
degrees of opacity and task performance. Second, opacity-enforcement can be
considered for the agent and the observer with different capabilities in control
and perception. In this work, the information to the observer is a subset of the
agent’s information. This assumption is no longer valid if the observer has a dif-
ferent information channel that is uncontrollable and inaccessible by the agent.
It would be interesting to know which subsets of opacity-enforcing games are
decidable.

A Proof for Lemma 4

Proof. Let N be the index where YN = YN+1. To prove YN =OWin(G), we prove
the following: 1. OWin(G) ⊆ Yj for all 0 < j ≤ N , using induction. Since Y0 = V ,
we have that OWin(G) ⊆ Y0. Assume that OWin(G) ⊆ Yi for some i > 0. Then,
Yi+1 includes any state that has a strategy to reach VF with positive probability
while staying within Yi. Thus, for any state in Yi∖Yi+1, P1 cannot stay within Yi

with probability one. However, P1 has a strategy to ensure that the game stays
within OWin(G) and thereby Yi, given OWin(G) ⊆ Yi. As Yi+1 only removes the
states that cannot ensure to stay within OWin(G), we have that OWin(G) ⊆Yi+1.

2. YN ∖ OWin(G) = ∅, by contradiction. Assume that there exists a state
v ∈YN ∖OWin(G). Then, by construction, for any v ∈Rk ∪Prog(Rk, YN ), P1 has a
strategy to reach VF with positive probability in finitely many steps. Let ET be
the event that “starting from a state in YN , a run reaches a state in VF within
T steps” and let γ > 0 be the minimal probability for an event ET to occur for
any state v ∈YN . Then, the probability of not reaching a state in VF in infinitely
many steps can be upper bounded by lim

k→�
(1−γ)k

= 0. Therefore, for any v ∈ YN ,

P1 has a strategy to ensure a state in VF is reached with probability one. This
contradicts the assumption v /∈ OWin(G). Thus, YN =OWin(G). ��

B Proof for Theorem 2

Proof. Consider the level sets R0, . . . , RN obtained using Algorithm 1 with input
OWin(G). Let 0 < k ≤K be a level and v ∈Rk be a state. Suppose there exists an
action (a,X) ∈ π∗

1(v) s.t. PostG(v, (a,X)) ∈Rk−1. Since the probability of taking
action (a,X) is non-zero, the level strictly decreases with a positive probabil-
ity. Moreover, for any action in π∗

1(v) and its probabilistic outcomes, the game
remains within OWin(G) with probability 1. Let En denote the event of “Reach-
ing Rk−1 from a state in Rk in n steps”. It follows lim

n→�
P (En) = 1. By repeating

for levels k =K, . . . , 1, we conclude R0 = VF is reached with probability 1. ��
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Abstract. Privacy-preserving AI algorithms are widely adopted in var-
ious domains, but the lack of transparency might pose accountability
issues. While auditing algorithms can address this issue, machine-based
audit approaches are often costly and time-consuming. Herd audit, on the
other hand, offers an alternative solution by harnessing collective intelli-
gence. Nevertheless, the presence of epistemic disparity among auditors,
resulting in varying levels of expertise and access to knowledge, may
impact audit performance. An effective herd audit will establish a credi-
ble accountability threat for algorithm developers, incentivizing them to
uphold their claims. In this study, our objective is to develop a systematic
framework that examines the impact of herd audit on algorithm develop-
ers using the Stackelberg game approach. The optimal strategy for audi-
tors emphasizes the importance of easy access to relevant information,
as it increases the auditors’ confidence in the audit process. Similarly,
the optimal choice for developers suggests that herd audit is viable when
auditors face lower costs in acquiring knowledge. By enhancing trans-
parency and accountability, herd audit contributes to the responsible
development of privacy-preserving algorithms.

1 Introduction

AI and algorithmic decision-making have become pervasive in both business and
society. However, the lack of transparency in algorithms poses significant chal-
lenges when it comes to accountability and responsibility. When algorithms are
treated as “black boxes” and their inner workings remain undisclosed, it becomes
difficult to ensure that they perform as intended and adhering to necessary stan-
dards [19]. One specific category of algorithms that exemplifies this challenge is
privacy-preserving algorithms [10]. These algorithms have been widely embraced
by product developers to safeguard the privacy of consumer users. For instance,
prominent platforms like Facebook Ad Recommendation Systems, Google SQL,
and Safari to have integrated differential privacy into their products to provide
enhanced privacy protection. Nevertheless, verifying such claims can be arduous
and intricate, for example see [4,9,20].

The adoption of privacy-preserving algorithms is a positive step toward
addressing privacy concerns in AI applications. However, the lack of transparency
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Fu et al. (Eds.): GameSec 2023, LNCS 14167, pp. 349–368, 2023.
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and the inability to scrutinize these algorithms can cast doubt on the effec-
tiveness of the privacy measures. Greater efforts need to be made to establish
independent auditing mechanisms or standardized practices that allow for the
verification and validation of privacy claims made by algorithmic systems. By
promoting transparency and accountability, we ensure that privacy-preserving
algorithms genuinely deliver on their promises and provide the necessary pro-
tection for users’ privacy.

Herd Audit: Auditing algorithms [3,29] play a crucial role in tackling this chal-
lenge. However, traditional machine-based audit methods like direct scraping, sock
puppet, and carrier puppet often necessitate the development of custom computer
programs to gather data. Not only can these approaches be expensive, but they
also consume a significant amount of time. A cost-effective alternative approach
to auditing involves leveraging citizen science and the principles of crowd-sourcing
to establish a democratic audit process that engages a diverse population of end
users. This concept gives rise to herd-audit (or group-audit) approaches, which
incentivize end users to contribute collectively to the auditing process.

By harnessing the power of collective intelligence [26], herd-audit approaches
tap into the knowledge, experiences, and perspectives of a wide range of individ-
uals. This distributed effort can result in a more comprehensive and diverse audit
of algorithms. Implementing herd-audit approaches not only addresses the lim-
itations of traditional methods but also promotes transparency and inclusivity.
It allows a broader segment of the population to actively participate in holding
algorithmic systems accountable. By empowering end users as auditors, we can
foster a more democratic and participatory approach to algorithmic auditing
while minimizing costs and time investments (Fig. 1).

Fig. 1. A herd of diverse end-users act as auditors to inspect the AI algorithm used in
the developed product.

Epistemic Disparity: One significant challenge in implementing herd-audit
approaches is the presence of epistemic disparity [13,17]. Not all users possess
the same level of expertise or knowledge required to conduct comprehensive
audits of algorithms. There is a wide distribution of knowledge and variations in
users’ access to relevant information. These variations stem from differences in
cognitive and reasoning capabilities among users. A user-auditor who approaches
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the task with meticulous scrutiny is more likely to arrive at accurate outcomes
during the evaluation process. Conversely, a user-auditor with limited cogni-
tive resources may inadvertently provide opportunities for algorithm developers
to evade their responsibility. To some extent, the incorporation of audit into
the algorithm design process itself establishes a reliable accountability mecha-
nism for algorithm developers. When algorithms are transparent and capable
of herd-audit, any deviations from the claimed performance are readily evident.
For example, in relation to privacy protection, if an algorithm designer asserts
the inclusion of differential privacy and the algorithm undergoes herd-audit, any
inconsistencies between the claimed privacy assurances and the actual perfor-
mance will be revealed. This accountability mechanism acts as an incentive for
algorithm developers to uphold their claims and create responsible algorithms.

Game-Theoretic Framework: To design an effective herd-audit mechanism,
this work aims to develop a comprehensive system framework that investigates
the influence of herd-audit on algorithm developers. One of the primary aims of
this framework is to gain insights into the behavior and motivations of develop-
ers when subjected to herd-audit. To accomplish the goal, the system framework
adopts a Stackelberg game approach [12,27]. In this approach, the developer
assumes the role of the leader and determines the desired level of performance for
differential privacy. The followers, comprising idiosyncratic end-users or auditors,
are selected from a user population characterized by varying levels of epistemic
capabilities. The proposed framework assumes that algorithms and their asso-
ciated guarantees are clearly communicated to the end-users through a privacy
protection agreement. This leader-and-follower structure allows us to analyze the
optimal strategies employed by both the developer and the auditors, providing
insights into the potential noncompliant behaviors of developers in worst-case
scenarios. Furthermore, it helps in understanding how to incentivize developers
to create responsible algorithms and explore the accountability mechanisms that
emerge in situations of transparency.

In order to capture the magnitude of epistemic disparity experienced by end-
users (auditors), this work employs a rational inattention model [5,28], which
takes into account the costs associated with accessing information during the
decision-making process. It acknowledges that end-users have limited cognitive
resources and are unable to fully attend to or process all available informa-
tion. One notable advantage of this model is its incorporation of the concept
of mental effort, which provides a high-level abstraction of cognitive processes.
This abstraction facilitates the characterization of cognitive processes at a pop-
ulation level by aggregating diverse behaviors. The rational inattention model
has played an important role recently in explaining various economic phenom-
ena involving individuals with cognitive constraints, such as consumer behavior,
investment decisions, and financial markets.

We analyze the concept of epistemic disparity among auditors, character-
ized by the epistemic factor, which measures the difficulty of accessing infor-
mation. We find that auditors with lower epistemic factors exhibit higher
audit confidence, indicating a better audit performance. Furthermore, our
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investigation reveals that herd audit is a viable approach when auditors face
lower costs in accessing information. In such circumstances, the algorithm devel-
oper is less likely to deviate significantly from their claims. Our findings highlight
the importance of reducing epistemic injustice as well as lowering information
costs in order to enhance the effectiveness of herd audit. By doing so, we can
foster a more reliable and accountable environment for the development and
evaluation of algorithms.

Paper Organization: The rest of this paper is organized as follows. Section 2
provides an overview of recent research on algorithm auditing and explores
related game-theoretic approaches. Section 3 introduces the rational inattention
model, which captures the reasoning process of herd auditors with varying levels
of epistemic disparity. In Sect. 4, a Stackelberg herd audit game is proposed for
a specific class of privacy-preserving algorithms. Section 5 discusses the equilib-
rium solutions that characterize the behaviors of both auditors and developers.
Finally, Sect. 6 concludes the paper, summarizing the key findings and implica-
tions.

2 Related Work

Algorithm auditing refers to the process of evaluating and assessing the algo-
rithms used in various systems or applications to ensure they are fair, transpar-
ent, unbiased, and comply with ethical standards [3]. In the context of differ-
ential privacy, several machine-based verification methods have been proposed
for privacy-preserving algorithms [4,9,20]. These machine auditors are capable
of acquiring a large number of samples and utilizing the law of large numbers
to estimate the probability of outcomes and verify the algorithms. While there
has been a rich literature on citizen science and its applications in crowdsensing
[34], crowdsourcing [40], and crowd defense [32], herd-audit is a concept in its
infancy. It not only reduces auditing costs but also poses a reputational threat
to product developers, as public perception [14], and consequently market value,
can be directly influenced by the results of the audit.

The disparity in the capability of herd behaviors has been extensively studied
in collective intelligence [8,11,26,37]. The literature has examined the perfor-
mance [30], reliability [25], and trustworthiness [36] of participants engaged in
outsourced tasks. In order to address this variability, researchers have employed
processes such as risk and reputation management [1,38] to understand the dif-
ferences among participants. Notably, many studies have placed emphasis on
the careful selection of participants to effectively achieve the goals of the task
at hand. This body of work primarily focuses on understanding the impact of
cognitive variabilities in herd audits, as participants exhibit diverse cognitive
abilities and processes in assessing whether algorithms perform as claimed.

Numerous studies have focused on the modeling and understanding of cogni-
tive behaviors in humans. One prominent example is cognitive-behavioral theory
[15,16,24], which integrates cognitive and behavioral perspectives to elucidate
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how thoughts, beliefs, and cognitive processes shape behavior. This theory under-
scores the significance of cognitive processes in interpreting and responding to
environmental stimuli, while highlighting the potential for modifying these pro-
cesses to achieve desired behavioral outcomes. More recently, efforts have been
directed toward developing the theory of mind [2], which involves attributing
mental states such as beliefs, desires, intentions, and emotions to comprehend
and predict individuals’ behavior. In our work, we adopt a higher-level app-
roach by employing the concept of rational inattention. Rational inattention
establishes a connection between mental effort and information gathering and
processing, examining the influence of effort on individuals’ decision-making pro-
cesses. This approach, as studied in [35], provides an economics and mathemat-
ical framework that formally analyzes how decision-makers acquire and process
information while considering associated costs. Utilizing this framework offers
several advantages, including a high-level abstraction of mental effort, which
encompasses attention, perception, memory, and problem-solving in cognitive
functioning. Additionally, it facilitates the exploration of the interplay between
cognition and decision-making processes, enabling a focused investigation into
the cognitive impact on audit decisions.

A game-theoretic approach is commonly employed to capture the threat
posed by followers in dynamic games, such as ultimatum games [33], Stackel-
berg games [6], bargaining games [18], as well as in mechanism design prob-
lems involving contract designs [7,39] and incentive mechanisms [23,41]. In this
study, we adopt a Stackelberg game framework to evaluate the dependability
of herd auditors, who are modeled as randomly sampled idiosyncratic individ-
uals, and to assess the opportunities available to the product designer to evade
compliance. Recently, there has been increased interest in the investigation of
evasion behaviors within the context of detection and machine problems. This
includes studying evasion behaviors, exploiting evasion-aware detection methods
to counter intelligent and strategic adversaries [22], as well as developing evaders
for subsequent test of collaborative cognition-assisted detector [31]. Additionally,
the literature on cyber deception has explored evasion strategies to gain a better
understanding of attackers’ stealthiness [21].

3 Herd Auditors with Epistemic Disparity

In the context of herd-auditing an algorithm, the auditor is uncertain about
the true state ω ∈ Ω = {g, b}, where g indicates the null hypothesis, implying
that the algorithm is consistent with the claim, while b is for the alternative
hypothesis, meaning that the algorithm does not comply. The prior belief of state
ω can be denoted as μ(ω), implying the auditor’s uncertainty in the algorithm’s
compliance.

In order to reduce the uncertainty, the auditor can obtain information s about
the state according to the information obtaining strategy d(s|ω). More specifi-
cally, s can be viewed as the outcome of the algorithm, and d(s|ω) indicates how
the auditor accesses (obtains) it. The information s together with the obtaining
strategy leads to a posterior belief of the state μ(ω|s) = μ(ω)d(s|ω)∑

ω μ(ω)d(s|ω) .
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Based on the information s (correspondingly, the posterior belief μ(ω|s)),
the auditor can select an element from a finite action set a ∈ A = {T, F},
where T means reporting algorithm compliance, while F indicates reporting
non-compliance. The decision rule δ : S �→ A aims to maximize the expected
utility of u(ω, a), where u : Ω × A �→ R is the utility of choosing action a when
the state is ω (Fig. 2).

Fig. 2. An illustration of how the auditor performs audit. The auditor acquires infor-
mation s about the unknown state ω using strategy d and then makes a decision a
using strategy δ.

However, the acquisition of information can incur costs, which can be viewed
as the discrepancy between the prior belief μ(ω) and the posterior belief μ(ω|s)
regarding the state ω. In conventional rational inattention research, a common
method to model the cost is through the lens of Shannon mutual information.
Furthermore, due to variations in epistemic disparities, the cost incurred for
accessing information (i.e., reduction in uncertainty) differs among auditors. To
account for this, we introduce the concept of an epistemic factor for each auditor,
denoted as λ, which quantifies the differences in the cost experienced by different
auditors when reducing the same amount of uncertainty. The larger value of λ
implies harder access to relevant information, as the cost for the same amount
of uncertainty reduction becomes higher.

To this end, the auditor’s objective becomes

max
d,δ

E[u(ω, a)] − λI(ω; s), (1)

where the expected utility is given by

E[u(ω, a)] =
∑

ω

∑

a

μ(ω)u(ω, a)
∑

s:δ(s)=a

d(s|ω) (2)

represents the expected utility in correct audit, and

I(ω; s) =
∑

ω

∑

s

d(s|ω)μ(ω) ln d(s|ω)∑
ω d(s|ω)μ(ω) (3)

stands for the information cost.

3.1 Bayes Hypothesis Testing as the Auditor’s Decision Rule

Conventionally, Bayes hypothesis testing deals with the optimization problem

max
δ

E[u(ω, a)] =
∑

ω

∑

a

μ(ω)u(ω, a)
∑

δ(s)=a

d(s|ω) (4)
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with given distributions for both hypotheses d(s|g) and d(s|b) during decision-
making, which coincides with the first term in the auditor’s objective (1). For
null hypothesis d(s|g) and alternative hypothesis d(s|b), the expected utility can
be reformulated as

E[u(ω, a)] =
∑

ω

∑

a

μ(ω)u(ω, a)
∑

δ(s)=a

d(s|ω)

= μ(g)u(g, F ) + μ(b)u(b, F )

+
∑

δ(s)=T

μ(g)
[
u(g, T ) − u(g, F )

]
d(s|g) − μ(b)

[
u(b, F ) − u(b, T )

]
d(s|b).

(5)
Therefore, the auditor should decide δ(s) = T if μ(g)

[
u(g, T )− u(g, F )

]
d(s|g) >

μ(b)
[
u(b, F ) − u(b, T )

]
d(s|b). More formally, the optimal decision rule can be

written as

δ∗(s) =

⎧
⎪⎨

⎪⎩

T, μ(b)d(s|b)
μ(g)d(s|g) < u(g,T )−u(g,F )

u(b,F )−u(b,T ) ,

F, μ(b)d(s|b)
μ(g)d(s|g) > u(g,T )−u(g,F )

u(b,F )−u(b,T ) ,

{T, F}, μ(b)d(s|b)
μ(g)d(s|g) =

u(g,T )−u(g,F )
u(b,F )−u(b,T ) ,

(6)

which leads us to a threshold decision rule and can be viewed as making a decision
based on the posteriors. We then represent the optimal decision rule correspond-
ing to given d(s|g) and d(s|b) as δ∗

d(s). We denote the signal set partitioned by
δ∗
d(s) as {

Sd,T = {s : δ∗
d(s) = T},

Sd,F = {s : δ∗
d(s) = F}.

(7)

3.2 Auditor’s Choice of the Information Strategy

With the optimal decision rule δ∗
d, the auditor’s objective becomes

max
d,δ

E[u(ω, a)] − λI(ω; s), with δ = δ∗
d, (8)

which leads to the constrained optimization problem

max
d

∑

ω

∑

a

μ(ω)u(ω, a)
∑

s:δ∗
d(s)=a

d(s|ω)

− λ
∑

ω

∑

s

d(s|ω)μ(ω) ln d(s|ω)∑
ω d(s|ω)μ(ω) ,

s.t.
∑

s

d(s|ω) = 1, d(s|ω) ≥ 0,∀s ∈ S,∀ω ∈ Ω.

(9)

To analyze the problem, we use the method of Lagrange multipliers and denote

J(d, y) =
∑

ω

∑

a

μ(ω)u(ω, a)
∑

s:δ∗
d(s)=a

d(s|ω)

− λ
∑

ω

∑

s

d(s|ω)μ(ω) ln d(s|ω)∑
ω d(s|ω)μ(ω) −

∑

ω

y(ω)d(s|ω),
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with the last term corresponding to the constraint that d(s|ω) should be a con-
ditional probability mass function.

Then, for d(s|g) with s ∈ Sd,T , according to the first-order and the second-
order condition,

∂J(d, y)
∂d(s|g) = μ(g)u(g, T ) − λμ(g) log(

d(s|g)
v(s)

) − y(g) = 0,

∂2J(d, y)
∂d(s|g)2 = −λμ(g)

μ(b)d(s|b)
d(s|g)v(s) ≤ 0,

where v(s) =
∑

ω d(s|ω)μ(ω). Letting log(y′(g)) = y(g)
λμ(g) leads to the following

d(s|g) that maximizes (9).

λμ(g)
[
u(g, T )

λ
− log(

d(s|g)
v(s)

) − log y′(g)
]
= 0,

d(s|g) = v(s) exp(u(g,T )
λ )

y′(g)
.

Similarly, for d(s|g) with s ∈ Sd,F and d(s|b), we arrive at

d(s|g) =

⎧
⎪⎨

⎪⎩

v(s) exp(
u(g,T )

λ )
∑

Sd,T
v(s) exp(

u(g,T )
λ )+

∑
Sd,F

v(s) exp(
u(g,F )

λ )
, s ∈ Sd,T ,

v(s) exp(
u(g,F )

λ )
∑

Sd,T
v(s) exp(

u(g,T )
λ )+

∑
Sd,F

v(s) exp(
u(g,F )

λ )
, s ∈ Sd,F ,

(10)

d(s|b) =

⎧
⎪⎨

⎪⎩

v(s) exp(
u(b,T )

λ )
∑

Sd,T
v(s) exp(

u(b,T )
λ )+

∑
Sd,F

v(s) exp(
u(b,F )

λ )
, s ∈ Sd,T ,

v(s) exp(
u(b,F )

λ )
∑

Sd,T
v(s) exp(

u(b,T )
λ )+

∑
Sd,F

v(s) exp(
u(b,F )

λ )
, s ∈ Sd,F .

(11)

The corresponding posterior belief μ(g|s) = μ(g)d(s|g)∑
ω μ(ω)d(s|ω) = μ(g)d(s|g)

v(s) can then
be written as

μ(g|s) =

⎧
⎪⎪⎨

⎪⎪⎩

μ(g) exp(
u(g,T )

λ )
∑

Sd,T
v(s) exp(

u(g,T )
λ )+

∑
Sd,F

v(s) exp(
u(g,F )

λ )
, s ∈ Sd,T , (12a)

μ(g) exp(
u(g,F )

λ )
∑

Sd,T
v(s) exp(

u(g,T )
λ )+

∑
Sd,F

v(s) exp(
u(g,F )

λ )
, s ∈ Sd,F , (12b)

Note that (12a) can be viewed as the posterior belief μ(g|s) given s that
results in an action a = T (i.e., μ(g|s) = μ(g|T ), s ∈ Sd,T ), while (12b) can be
viewed as the posterior belief μ(g|s) given s that results in an action a = F (i.e.,
μ(g|s) = μ(g|F ), s ∈ Sd,F ). A similar expression can be found for μ(b|s).

μ(b|s) =

⎧
⎪⎪⎨

⎪⎪⎩

μ(b) exp(
u(b,T )

λ )
∑

Sd,T
v(s) exp(

u(b,T )
λ )+

∑
Sd,F

v(s) exp(
u(b,F )

λ )
, s ∈ Sd,T , (13a)

μ(b) exp(
u(b,F )

λ )
∑

Sd,T
v(s) exp(

u(b,T )
λ )+

∑
Sd,F

v(s) exp(
u(b,F )

λ )
, s ∈ Sd,F . (13b)
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Remark 1. For an auditor with epistemic factor λ, the information obtaining
strategy represented by the conditional probability d(s|ω) is chosen if its resulting
posterior belief μ(ω|s) maximizes the value of E[u(ω, a)]−λI(ω; s), where u(ω, a)
is the utility and I(ω; s) is the mutual information between ω and s that measures
the expected reduction of uncertainty from the prior belief to the posterior belief
caused by d(s|ω).

The μ(g|s),∀s ∈ Sd,T , can also be interpreted as the audit confidence for
making the decision a = T when observing the information s. Since u(g, T ) >
u(g, F ), it is evident that auditors with a smaller epistemic factor λ have higher
confidence in the audit process. This implies that auditors who can easily access
relative information are more likely to perform better in the audit.

4 Stackelberg Herd Audit Game

To examine the impact of herd-audit on the algorithm developer’s incentive to
create irresponsible algorithms, we formulate the interplay between the herd-
auditor (she) and the algorithm developer (he) as a Stackelberg herd audit game
in a specific context of privacy-preserving algorithms.

4.1 Connection to Differential Privacy

To begin with, we first give the definition of ε-differential privacy.

Definition 1 (ε-DP). A (randomized) mechanism M : D �→ B is ε-
differentially private (ε-DP) if for every pair of neighboring inputs D1,D2 ∈
D, and for every (measurable) output set B ∈ B, the probabilities of events
M(D1;F, ε) ∈ B and M(D2;F, ε) ∈ B are closer than a factor of exp(ε):

Pr(M(D1;F, ε) ∈ B) ≤ exp(ε) · Pr(M(D2;F, ε) ∈ B). (14)

In the context of differential privacy, consider a scenario in which there is a
public-known privacy protection agreement that requires ε′ privacy budget. How-
ever, since more privacy budget (which means decreasing the privacy protection
and making the results more distinguishable) often leads to better algorithm
accuracy, the algorithm developer has the incentive to use some ε > ε′ when
performing the algorithm, which creates irresponsibility. Hence, we consider the
state ω = g means ε = ε′ and the state ω = b means ε > ε′. Since privacy protec-
tion is often achieved by adding noise, it is assumed that for a given algorithm
M with input dataset D, the privacy budget ε results in an output distribution
p(M(D)|ε) for later usage.

4.2 Problem Setting for the Developer

Considering that there are two types of algorithm developers g and b, and they
play a mixed strategy for executing ε, which are q(ε|g) and q(ε|b), respectively
(for discrete choices of ε, ε ∈ E). Each ε results in an algorithm accuracy A(ε),
where A : E �→ R, under the assumption that a larger ε leads to better accuracy.
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Fig. 3. The Stackelberg herd audit game involves a privacy protection agreement that
specifies a privacy budget ε′. In this game, the algorithm developer takes the first step
by selecting a strategy q(ε|ω), determining the value of ε to be executed. Subsequently,
the auditor, characterized by an epistemic factor λ, decides how to acquire information
that influences her audit confidence (μ in the figure and r in the context.)

Assumption 1. Given an algorithm M with input dataset D, a privacy budget
ε results in an unique output distribution p(M(D)|ε).
Assumption 2. For a given algorithm, the algorithmic accuracy under the pri-
vacy budget ε ∈ E ⊆ R is governed by A : E �→ R, and it is increasing in ε ∈ E.

In this context, the developer’s choice of strategy q(ε|ω) given his own type
ω will lead to the distributions for the two hypotheses

Qg(s) =
∑

ε

p(s|ε)q(ε|g), (15)

Qb(s) =
∑

ε

p(s|ε)q(ε|b), (16)

where p(s|ε) is the output distribution p(M(D)|ε) in Assumption 1.

Responsible Developer. For a responsible algorithm developer, the mixed
strategy q(ε|g) should have mass 0 for ε > ε′, which means that he always
provides privacy protection at least comply with the agreement. Moreover, in
order to maximize A(ε), a responsible algorithm developer tends to put all the
mass on ε = ε′ since A(ε) < A(ε′),∀ε < ε′.

Proposition 1 (Responsible Developer’s Strategy). A responsible devel-
oper’s mixed strategy reduces to a pure strategy by letting all the mass on ε = ε′.
Hence, Qg(s) =

∑
ε p(s|ε)q(ε|g) = p(s|ε′).

Irresponsible Developer. However, it is important to consider various sce-
narios involving an irresponsible algorithm developer who prioritizes algorithm
performance and disregards compliance with the agreement. If there is no audi-
tor or no penalty imposed when the developer fails to pass the audit (i.e., when
the auditor determines that a = F ), the irresponsible developer can choose
an extremely large value for ε. Consequently, it is reasonable to assume that a
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penalty will be enforced if the irresponsible developer is detected. In such a sit-
uation, the irresponsible developer may attempt to maximize the probability of
avoiding penalties, which corresponds to the probability of the auditor deciding
a = T .

Assumption 3. The irresponsible algorithm developer’s mixed strategy will not
put any mass on ε = ε′. That is, q(ε′|b) = 0.

4.3 Revisiting the Auditor’s Problem

Considering that the penalty term for the irresponsible developer is influenced
by the actions of the auditor, particularly in terms of whether the irresponsible
developer is caught or not, it is necessary to reexamine the problem from the
auditor’s perspective when the developer is also a strategic player aiming to
evade the audit.

First, we reformulate the auditor’s problem by setting u(g, T ) = u(b, F ) = 0
and setting the penalty terms u(b, T ) and u(g, F ) with negative values. However,
within the context of DP, it is important to note that the auditor does not possess
the discretion in determining the distributions for both hypotheses. In particular,
the distributions for these hypotheses are predefined by the output distribution
p(s|ε) and the developer’s mixed strategy. What the auditor can decide is the
probability of establishing her audit confidence r. In other words, the auditor
determines the audit confidence r(g|s) and r(b|s), which favors the null and
the alternative hypothesis, respectively, given the observed signal s. These audit
confidences are analogous to those provided in (12) and (13).

Assumption 4. Assume that u(b, T ) < 0 and u(g, F ) < 0 are the negative
utilities for making wrong audit decision.

Given the distributions for the two hypotheses Qg(s) and Qb(s), the auditor
aims to achieve the following:

max
r

u(g, F )
∑

s

Qg(s)r(b|s)
︸ ︷︷ ︸
false positive error

+u(b, T )
∑

s

Qb(s)r(g|s)
︸ ︷︷ ︸
false negative error

− λ Es [DKL(r(ω|s)‖μ(ω))] ,

(17)

where the first two terms put negative weights on the audit error, and the last
term quantifies the expected reduction in uncertainty for the state ω, measured
in terms of the Kullback-Leibler (KL) divergence:

λ
∑

s

[∑

ε

p(s|ε)q(ε|g) +
∑

ε

p(s|ε)q(ε|b)
] ∑

ω

r(ω|s) log r(ω|s)
μ(ω)

.

This term encapsulates the epistemic disparity and its influence on the informa-
tional cost by the parameter λ.

Note that the decision of r(g|s) and r(b|s) already incorporate the information
obtaining strategy d(s|ω) for the auditor since r(ω|s) = μ(ω)d(s|ω)∑

ω μ(ω)d(s|ω) . (The
observation follows from Remark 1 in Sect. 3.2.)
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Remark 2. It is important to distinguish between the probability distributions
of an output sample s under both hypotheses, Qg(s), Qb(s), and the information
obtaining strategy for the auditor, d(s|g), d(s|b). Note that Qg(s), Qb(s) are given
by the output distribution based on Assumption 1 and the developer’s mixed
strategy q(ε|g), q(ε|b), and that the information obtaining strategy on how to
observe output sample d(s|g), d(s|b) mainly comes from the auditor’s preference
over utility u(ω, a) and the epistemic factor λ, which leads to the audit confidence
(posterior belief of the state) r(g|s) and r(b|s).

4.4 Revisit the Irresponsible Developer’s Problem

Until now, the irresponsible developer’s objective has become the following.

max
q(·|b)

∑

ε

q(ε|b)A(ε) + β
∑

s

[
∑

ε

p(s|ε)q(ε|b)
]

r(g|s), (18)

with r(g|s) comes from the auditor’s problem. The former term is the expected
algorithm accuracy, and the latter term corresponds to the false negative rate of
the auditor’s decision, which is the rate of the irresponsible developer successfully
passing the audit (and thus, the irresponsible developer seeks to maximize it).
Note that β > 0 indicates the irresponsible developer’s preference on the two
goals (the successful passing rate and the expected accuracy). The interaction
between two players is illustrated in Fig. 3.

5 Equilibrium Analysis

For simplicity, we initially consider a scenario where the cardinality of the set E
is three; i.e., |E| = 3 with E = {εl, εm, εh}, where εl < εm < εh and it’s assumed
that the claimed differential privacy budget is ε′ = εl. A more general case will
be presented in Sect. 5.3. Furthermore, we assume that the distinguishability—
quantified by distance or discrepancy measures such as the Kullback-Leibler
divergence—between the output distributions p(·|ε) and p(·|ε′) increases when
the difference between ε and ε′ expands. Then, Qg(s) =

∑
ε p(s|ε)q(ε|g) =

p(s|ε′) = p(s|εl) and Qb(s) =
∑

ε p(s|ε)q(ε|b) = p(s|εm)q(εm|b) + p(s|εh)q(εh|b).

5.1 The Auditor’s Optimal Strategy

The decision-making process of the auditor is captured by the following opti-
mization problem:

max
r

u(g, F )
∑

s

[ ∑

ε

p(s|ε)q(ε|g)
]
r(b|s) + u(b, T )

∑

s

[ ∑

ε

p(s|ε)q(ε|b)
]
r(g|s)

− λ Es [DkL(r(ω|s)‖μ(ω))] ,

s.t.
∑

ω

r(ω|s) = 1, r(w|s) ≥ 0,∀w ∈ {g, b},∀s ∈ S.

(19)
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In (19), the KL divergence term with a negative sign is concave with respect to
the decision variables r(·) given fixed priors μ(·). Therefore, the combination of
the terms in the objective function forms a weighted sum of concave functions.
This makes the overall objective function concave. Given the linear constraints,
the feasibility set is convex. Hence, the optimization problem (19) is a concave
maximization over a convex set.

The Lagrangian corresponding to (19) is then given by

J(r, y, z) = u(g, F )
∑

s

[ ∑

ε

p(s|ε)q(ε|g)
]
r(b|s)

+ u(b, T )
∑

s

[ ∑

ε

p(s|ε)q(ε|b)
]
r(g|s) − λ

∑

s

[ ∑

ε

p(s|ε)q(ε|g)

+
∑

ε

p(s|ε)q(ε|b)
] ∑

ω

r(ω|s) log r(ω|s)
μ(ω)

− yr(g|s) − zr(b|s),

(20)

where y ∈ R and z ∈ R are the associated Lagrange multipliers. Then, the
first-order condition concerning r(g|s) implies

∂J(r)
∂r(g|s) = u(b, T )

[
p(s|εm)q(εm|b) + p(s|εh)q(εh|b)

]

− λ

[
p(s|εl) + p(s|εm)q(εm|b) + p(s|εh)q(εh|b)

](
log

r(g|s)
μ(g)

+ 1
)

− y

= 0.

Hence, we obtain

u(b, T )Qb(s) − λv(s)
(
log

r(g|s)
μ(g)

+ 1
)

− y = 0,

u(b, T )Qb(s)
λv(s)

−
(

y

λv(s)
+ 1

)
= log

r(g|s)
μ(g)

.

By letting log y′(s) =
(

y
λv(s) + 1

)
, r(g|s) can be written as,

r(g|s) =
μ(g) exp

(u(b,T )Qb(s)
λv(s)

)

μ(g) exp
(u(b,T )Qb(s)

λv(s)

)
+ μ(b) exp

(u(g,F )Qg(s)
λv(s)

) , (21)

Following the similar procedure for r(b|s) yields

r(b|s) =
μ(b) exp

(u(g,F )Qg(s)
λv(s)

)

μ(g) exp
(u(b,T )Qb(s)

λv(s)

)
+ μ(b) exp

(u(g,F )Qg(s)
λv(s)

) . (22)

Proposition 2. The strategy specified by (21) and (22) is optimal for the audi-
tor with epistemic factor λ.



362 Y.-T. Yang et al.

Remark 3. The results coincide with the intuition. We first take a look at r(g|s).
Recall that u(b,T )

λ is negative. Consider the case where the penalty term u(b, T )
is the same across all the auditors, we can see that the auditor with a larger
epistemic factor (harder to access to information) λ achieves r(g|s) that is closer
to μ(g). Combining with the auditor’s objective in the maximization problem
(19), it means that the larger-λ auditor might have a larger false negative error.
Similarly, for r(b|s), the larger-λ auditor might have a larger false positive error.

5.2 The Irresponsible Developer’s Optimal Strategy

The irresponsible developer endeavors to enhance algorithmic accuracy while
concurrently maximizing the probability of evading detection by the auditor,
thereby increasing the likelihood of being perceived as a responsible developer.
Hence, the irresponsible developer’s decision-making can be described by the
following optimization problem:

max
q(·|b)

[
q(εm|b)A(εm) + q(εh|b)A(εh)

]

+ β
∑

s

[
p(s|εm)q(εm|b) + p(s|εh)q(εh|b)

]
r(g|s).

(23)

By leveraging q(εm|b) = 1 − q(εh|b), we rewrite the problem (23) as follows:

max
q(εl|b)

A(εh) + β
∑

s

r(g|s)p(s|εh),

+
{[

A(εm) − A(εh)
]
+ β

∑

s

r(g|s)[p(s|εm) − p(s|εh)
]}

q(εm|b).
(24)

Since the first two terms A(εh) + β
∑

s r(g|s)p(s|εh) are independent of q(·|b),
(24) suggests the following strategy for the irresponsible developer:

{
q(εm|b) = 1, if A(εm) − A(εh) + β

∑
s r(g|s)[p(s|εm) − p(s|εh)

]
> 0

q(εh|b) = 1, otherwise.

That is, the irresponsible developer has a pure strategy by choosing either
q(εm|b) = 1 or q(εh|b) = 1.

Proposition 3. If A(ε) is increasing in ε, the irresponsible developer always
chooses the largest ε (namely, εh in the case) if r(g|s) = r(g|s′),∀s, s′ ∈ S.

Proof. We sketch the proof for |S| = 2 with S = {s1, s2}. In this example,
p(s1|εm) + p(s2|εm) = 1 and p(s1|εh) + p(s2|εh) = 1, then r(g|s1)[p(s1|εm) −
p(s1|εh)] + r(g|s2)[p(s2|εm) − p(s2|εh)] = 1 − 1 = 0 if r(g|s1) = r(g|s2). Hence,
A(εm) − A(εh) +

∑
s r(g|s)[p(s|εm) − p(s|εh)

]
< 0 in the case where A(εm) <

A(εh), which leads to q(εm|b) = 0 and q(εh|b) = 1.
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That is, in the case where λ = ∞, r(g|s) = μ(g),∀s ∈ S, the irresponsible
developer’s best response is q(εh|b) = 1 (regardless of how much A(εh) is greater
than A(εm) and the value of β). It implies that when the auditor’s epistemic fac-
tor λ is extremely large, indicating a lack of information acquisition, the auditor
may refrain from obtaining crucial information. Consequently, the irresponsible
developer is likely to consistently maximize their violations of the claim.

Remark 4. The irresponsible developer always violates as much as possible when
the epistemic factor for the auditor λ = ∞.

Remark 5. When the auditor’s epistemic factor λ is small, indicating easy access
to relevant information, an irresponsible developer is more likely to exhibit a
lower tendency to violate.

Remark 6. If the auditor’s epistemic factor λ is large, it is likely that an irre-
sponsible developer with a larger β (placing more value on the success rate of
passing audits) will also exhibit a tendency to violate the claim more severely.

5.3 Multiple Choices of Privacy Budgets

In the case when there are more than three choices of privacy budgets; i.e.,
E = {ε0, · · · εi, · · · , ε|E|−1}. We assume that the claimed privacy budget is ε′ = ε0.
The characterizations of the auditor’s optimal strategy hold for this general case.
That is, the auditor’s strategy is given by

r(g|s) =
μ(g) exp

(u(b,T )Qb(s)
λv(s)

)

μ(g) exp
(u(b,T )Qb(s)

λv(s)

)
+ μ(b) exp

(u(g,F )Qg(s)
λv(s)

) , (25)

r(b|s) =
μ(b) exp

(u(g,F )Qg(s)
λv(s)

)

μ(g) exp
(u(b,T )Qb(s)

λv(s)

)
+ μ(b) exp

(u(g,F )Qg(s)
λv(s)

) , (26)

where Qb(s) =
∑

E\ε0
p(s|ε)q(ε|b) and v(s) = p(s|ε0) +

∑
E\ε0

p(s|ε)q(ε|b). The
irresponsible developer’s problem (23) is generalized to

∑

ε

q(ε|b)A(ε) + β
∑

s

[
∑

ε

p(s|ε)q(ε|b)
]

r(g|s)

=
∑

εi∈E
q(εi|b)

[
A(εi) + β

∑

s

r(g|s)p(s|εi)
]
.

(27)

The irresponsible developer determines his optimal pure strategy ε to maximize
(27). Specifically, the irresponsible developer assigns q(ε|b) = 1 to the ε that
achieves the largest

[
A(ε) + β

∑
s r(g|s)p(s|ε)].

Proposition 4. The irresponsible developer’s optimal strategy is choosing the ε
that maximizes

[
A(ε) + β

∑
s r(g|s)p(s|ε)].
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Auditor’s Audit Confidence and Epistemic Factor. With respect to Fig. 4,
the optimal solution to the auditor’s problem given by (21) and (22) establishes
a relationship between the epistemic factor λ and the auditor’s confidence r(·|s)
under fixed utilities u(ω, a).

Fig. 4. The trend between the auditor’s audit confidence (posterior belief) and the
auditor’s epistemic factor. Left: the case where

(
u(g, F )

Qg(s)

v(s)
− u(b, T )Qb(s)

v(s)

)
< 0.

(μ(g) = μ(b) = 0.5, u(b, T ) = u(g, F ) = −1, Qb(s)/v(s) = 0.25) Right: the case
where

(
u(b, T )Qb(s)

v(s)
− u(g, F )

Qg(s)

v(s)

)
< 0. (μ(g) = μ(b) = 0.5, u(b, T ) = u(g, F ) =

−1, Qb(s)/v(s) = 0.85)

Taking the partial derivative of r(g|s) with respect to λ yields

∂r(g|s)
∂λ

=
μ(g)μ(b)

(
u(g, F )Qg(s)

v(s) − u(b, T )Qb(s)
v(s)

)
exp

(
u(g,F )

Qg(s)
v(s) +u(b,T )

Qb(s)
v(s)

λ

)

λ2y′(s)2
.

(28)
Here, if the developer is irresponsible, then he never chooses a privacy budget ε

that is equal to the claimed budget ε0. Hence,
(
u(g, F )Qg(s)

v(s) − u(b, T )Qb(s)
v(s)

)
�= 0.

The term ∂r(g|s)
∂λ is (strictly) positive if

(
u(g, F )Qg(s)

v(s) − u(b, T )Qb(s)
v(s)

)
> 0 and

(strictly) negative otherwise. When
(
u(g, F )Qg(s)

v(s) − u(b, T )Qb(s)
v(s)

)
< 0, r(g|s)

is close to 1 when λ goes close to 0. Furthermore, the audit confidences for g
and b become closer to 0.5 when λ increases, which coincides with the setting
that higher λ leads to a weaker incentive to acquire more accurate information,
thereby inducing lower audit confidences. Similarly,

∂r(b|s)
∂λ

=
μ(g)μ(b)

(
u(b, T )Qb(s)

v(s) − u(g, F )Qg(s)
v(s)

)
exp

(
u(g,F )

Qg(s)
v(s) +u(b,T )

Qb(s)
v(s)

λ

)

λ2y′(s)2
.

(29)
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The term ∂r(b|s)
∂λ is positive if

(
u(b, T )Qb(s)

v(s) − u(g, F )Qg(s)
v(s)

)
> 0 and negative

otherwise. When
(
u(b, T )Qb(s)

v(s) − u(g, F )Qg(s)
v(s)

)
< 0, r(b|s) is close to 1 when λ

goes close to 0. Furthermore, the audit confidences for g and b become closer
to 0.5 when λ increases, which coincides with the setting that higher λ leads
to a weaker incentive to acquire more accurate information, thereby inducing
lower audit confidences. Note that audit confidence is determined by optimizing
the objective, which consists of penalties for audit errors and costs associated
with information acquisition. In this context, it is important to carefully select
reasonable intervals for u(ω, a) and λ. In practice, as auditors are end-users for
the algorithm, and given the disparities in end-users across different algorithms,
the range for the epistemic factor needs to be contingent upon the ease with
which corresponding end-users of the algorithm can access relevant information.

Fig. 5. The trend between the auditor’s audit confidence (posterior belief) and the
irresponsible developer’s choice that leads to Qb(s)

v(s)
. Here, μ(g) = μ(b) = 0.5, u(b, T ) =

u(g, F ) = −1, λ = 1.

Irresponsible Developer’s Choice and Auditor’s Audit Confidence.
According to (15) and (16), the irresponsible developer’s budget choice deter-
mines Qb(·) given p(·). Hence, (21) and (22) (shown in Fig. 5) also establish a
relationship between the irresponsible developer’s choice and the auditor’s audit
confidence.

By taking partial derivative of r(g|s) with respect to Qb(s)
v(s) , we obtain

∂r(g|s)
∂ Qb(s)

v(s)

=
μ(g)μ(b)u(g,F )+u(b,T )

λ exp
(

u(g,F )
Qg(s)
v(s) +u(b,T )

Qb(s)
v(s)

λ

)

(
μ(g) exp

(u(b,T )Qb(s)
λv(s)

)
+ μ(b) exp

(u(g,F )Qg(s)
λv(s)

))2 , (30)
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which is negative since u(g, F ) + u(b, T ) < 0. Additionally, as the value of λ
increases (when auditors incur higher costs for information acquisition), the
magnitude of ∂r(g|s)/∂(Qb(s)

v(s) ) decreases, implying relatively less influence on
audit confidence. This trend is evident in Fig. 5, where a greater λ corresponds
to a flatter curve for r(g|s).

6 Discussion and Conclusions

Herd audit is a collective mechanism that empowers users to hold algorithm
developers accountable, fostering the development of compliant and responsi-
ble digital products for the betterment of society. In this study, we examine
herd audit through a game-theoretic lens, capturing the interactions between an
idiosyncratic user and a privacy-preserving algorithm developer. Our framework
adopts a Stackelberg game approach, enabling us to assess the impact of herd
audit on responsible algorithm design and understand selfish and irresponsible
strategies in worst-case scenarios.

We have specifically explored the presence of auditors with varying cognitive
and reasoning capabilities, capturing epistemic disparities. Within our game-
theoretic framework, we have consolidated the concept of rational inattention.
The optimal strategy for auditors underscores the importance of easy access to
relevant information, which enhances their confidence in the herd-audit process.
Similarly, the optimal decision for algorithm developers has revealed that herd
audit is a viable approach when auditors face lower costs in accessing knowledge,
as denoted by smaller epistemic factors.

Based on our findings, we conclude that herd audit poses a credit threat
to developers and plays a vital role in promoting the responsible development
of privacy-preserving algorithms. As future work, we aim to enrich the game-
theoretic framework by incorporating end-users’ incentives. This extension allows
us to design an incentive mechanism that encourages participation in herd audit.
Additionally, we plan to explore the fusion and aggregation of distributed audits
alongside a central audit center. Leveraging tools from decentralized hypothesis
testing, game theory, information theory, and differential privacy, this research
direction holds promise for advancing the field further.
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Abstract. We formulate a security game in a context of mixed arma-
ment acquisition, involving a finite set of Nations in strategic relation-
ship, with utility functions which are nonlinear and non-differentiable
on the boundary of their sets of definition. Since we want to study the
long-term effect of the Nations’ investment in nuclear weapons, we focus
on the steady-state analysis of the game. This requires us to extend the
classical results from Rosen on compact-concave games, to unbounded
concave games, relying on the coercivity property of the Nations’ util-
ity functions. In addition, we prove the existence and uniqueness, under
mild assumptions, of an interior point Nash Equilibrium solution of the
game. Simulations are performed in case of a duopoly, highlighting the
efficiency loss reduction and stabilizing effect of nuclear armaments by
comparison with the conventional-only setting.

Keywords: Security Game · Nash Equilibrium · Uniform Coercivity ·
Strategic Stability

1 Introduction

The primary goal of Nations is to maximize their perceived security, which
requires each Nation to develop an effective deterrence strategy [15]. In classical
game theoretic models, deterrence as a military strategy is based upon a stan-
dard, iterated two-player prisoner’s dilemma model by which cooperation can
be assured if a rational player understands the punishment or cost of defection
[3,14,26]. Models in this area are often inspired by the USA and USSR-allied, or
at least Western vs Eastern blocs, nuclear arms race, and formulate the security
dilemma in arms procurement as a two-player noncooperative game in normal
form [23,29]. However, many of the actions taken by Nations in pursuit of the
maximization of their perceived security – such as arms procurement and the
development of new military technologies – might, in turn, lead to a decrease
rather than an increase in their perceived security. This dilemma is explained
by the fact that the increase in military capability of one Nation might be inter-
preted as a risk that the arming Nation will use it to perform an attack in
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the future. In this context, in order to re-establish the balance of power, the
other Nations could either increase their own military capabilities or initiate a
preemptive strike. Choosing the first option may result in a security spiral, in
which several Nations are tied in an arms race, responding to increases in arms
procurement and defense expenditure by others by arming themselves more and
more heavily, and may lead to war in the long run. Such a situation is known as
the security dilemma [11,12], and is one possible outcome of arms race models.

Standard literature dealing with arms race models [24,30] focuses on the
dynamic process of the arms race over the time or on fitting real data col-
lected over the years using this model. In this setting, game theory is a useful
tool to model interactions between Nations with conflicting interests. The clas-
sical literature dealing with nuclear strategy using game theory focuses mainly
on discrete decision space repeated games [22] and differential games. Within
repeated games, iterated prisoners’ dilemmas between two Nations [17,18] have
been extensively studied. At each iteration, each Nation has a choice between a
high or low level of arms. In the static version, each Nation’s dominant strategy
is to choose a high level of arms. The Nash Equilibrium outcome of the static
prisoner dilemma model for arms race is therefore that both Nations choose high.
As a result, the static game outcome is worse for both Nations than if both had
chosen a low level of arms. However, in reality, the game is not played once and
for all, but is an ongoing series of decisions, i.e., the prisoner dilemma is played
repeatedly by the two Nations. This opens the possibility for cooperation to
emerge through rewards and punishment strategies, e.g., tit-for-tat [10].

A somewhat equivalent framework stems from Richardson-type models of
arms race [16,27], which provide parametrized systems of differential equations
to represent the evolution of the weapons stockpile. These equations can be
derived as closed-loop Nash Equilibria of linear-quadratic differential games that
implement an interpretable reasoning of players [19,20,27,28]. However, military
strategies that hinge on nuclear weapons imply that Nations’ evaluation of the
effect of each other’s actions should be nonlinear, and Richardson-type’s mod-
els fail to represent accurately the specific nature of nuclear armaments [6,8].
Indeed, contrary to conventional war, nuclear warfare allows for significant pre-
emptive and retaliatory strikes whose magnitude depend nonlinearly on the ini-
tial stockpiles. A two-stage game model may show that a second-strike capability
decreases as the exponential of the ratio of the initial stockpiles [5].

If the goal of game-theoretic models is to quantify the outcomes of situations
of conflict between armed Nations, non-proliferation policies and containment
treaties are often designed with the goal to stabilize the rivalry between Nations
and reduce strategic risks. For example, during the Cold War, several agree-
ments between the USA and the USSR, such as the intermediate-range nuclear
forces (INF) treaty, helped balance nuclear-able weapons so that each side could
survive a preemptive nuclear attack with a sufficiently large stockpile of ballistic
missiles to launch a retaliatory strike, in the context of nuclear strategies heavily
influenced by the concept of MAD (mutually assured destruction). Nowadays,
9 countries are thought to possess nuclear weapons. Within them, only 5 – the
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USA, Russia, China, France and the United Kingdom – have signed the treaty on
the non-proliferation of nuclear weapons (NPT), the second most widely ratified
treaty after the United Nations charter. Under the NPT, each of the 191 parties
‘undertakes to pursue negotiations in good faith on effective measures relating
to the cessation of the nuclear arms race at an early date and to nuclear disar-
mament, and on a treaty on general and complete disarmament under strict and
effective international control’ [1]. The security architecture is completed by the
comprehensive nuclear-test-ban treaty (CTBT) with 177 parties, which prohibits
nuclear tests and as such limits the possibility to develop nuclear weapons1.

1.1 Problem Statement

We model the interactions among Nations possessing both conventional and
nuclear weapons, i.e., mixed armament, using noncooperative game theory. Con-
trary to most papers which focus on the dynamics of arms procurement, we focus
on the steady-state analysis of the game, which captures the long-term solution
of the dynamical model, and is formulated as a one-shot (static) game. On the
quantitative side, a first difficulty appears in modeling the Nations’ utility func-
tions such that they reflect the security perceived at a Nation-wide level – thus,
depending on the Nation’s armament strategy and on that of its rivals. This
leads us to define utility functions which are nonlinear and non-differentiable
on the boundary of their sets of definition. A second difficulty arises from this
modeling choice and requires that we extend classical results from noncooper-
ative game theory, to characterize the game equilibria. On the qualitative side,
we aim to assess the effects of long-term investments in nuclear weapons on the
efficiency and strategic stability of the Nations’ international system.

1.2 Main Contributions

We propose a multipolar security model which addresses the specific logic of
nuclear strategies in a context involving mixed armament, i.e., both conventional
and nuclear weapons. The model is formulated in a dynamic setting, but since
we want to study the stabilizing and security dilemma reduction potential of
mixed armament, we focus on the one-shot game steady-state formulation, which
captures the long-term effects of the competition among Nations. This paper
provides three important contributions to the state of the art. First, considering
a new way to model the security perceived at the Nation-wide level, that takes
inspiration from [5], we extend the classical results from Rosen [25] on compact-
convex games to unbounded convex games relying on the coercivity property
of the Nations’ utility functions. This allows us, in a second step, to prove the
existence of an interior point Nash Equilibrium solution of the one-shot game.
The proof of uniqueness of the interior point Nash Equilibrium follows, under
mild assumption on the game parameters. In a last step, our model is used to

1 Currently, while it is already enforced by parties, the CTBT has not yet entered into
force because 8 out of 44 Annex 2 Nations have not ratified it.
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determine numerically that nuclear weapons have a stabilizing effect and can
potentially reduce the efficiency loss by comparison with a conventional-only
setting, therefore providing possible guidelines for current treaties refinements.

Paper Organisation

This paper is organized as follows. In Sect. 1, we provide an overview of the game
theoretic approaches for arms procurement competition modeling and how their
outcomes can be used to design containment treaties with stabilizing effects.
We also introduce the problem statement, and main contributions. In Sect. 2,
the arms building model is formulated as a one-shot noncooperative game. Con-
ditions for the existence and uniqueness of an interior point Nash Equilibrium
solution of this game are studied in Sect. 3. Analytical results and numerical
illustrations in case of a duopoly are discussed in Sect. 4. We conclude in Sect. 5.

2 The Mixed Armament Competition Model

The international system is first and foremost made up of Nations, that we will
indifferently call players. In international relations [2], an organization is said
to be unitary if and only if its decisions contain all the information useful for
its interaction with the international system. Moreover, an organization is said
to be rational if its decision-making process consists in maximizing its (well-
ordered) preferences through its actions, given the information available to it
and its anticipation of what other organizations might do. Hence, in our work,
Nations can be represented as rational unitary players. Note that no hypothesis
is made a priori on the order of the preferences.

We aim to study the strategies of Nations to invest in nuclear and con-
ventional weapons in order to maximize their security while minimizing their
storage and R&D costs. We start by placing ourselves in a framework of discrete
time evolution. Nations seek to ensure their own security within a certain time
horizon (finite or infinite), and in anticipation of a crisis. They can acquire con-
ventional and nuclear weapons to maximize their security, while bearing storage
and R&D costs. We choose a realistic framework [31], and assume that Nations
are primarily defensive and secondarily aggressive. This means that they seek
through conventional and nuclear armaments to ensure their own security, and
that their marginal gain from arming themselves increases with the levels of
adversary armaments.

2.1 Dynamics of Arms Building

Let N be a finite set of N Nations, and T be the horizon of the game (possibly
infinite). We propose a model with continuous decision spaces, i.e., the Nations
(as players) do not decide whether to attack or not, but they decide on the
power drawn from their investment in nuclear and conventional weapons. Models
with continuous decision spaces prove themselves more realistic [4,15,27,28]. We
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might assume that the power drawn for each category of armament depends
linearly on the Nation’s arms production and that the coefficients relating the
arms production to the power drawn out of it differ between the categories of
weapons. In absence of numerical values for these coefficients, we will not consider
this level of details in the present work. In what follows, τ = {nuc} or {conv}
and denotes nuclear or conventional.

Let uτ
n(t) be the power drawn from the quantity of weapons of class τ pro-

duced by Nation n ∈ N and xτ
n(t) be the power drawn from its stockpile of

weapons of class τ at time period t. We define un(t)
def=

(
uτ

n(t)
)
τ
, the column

vector which contains the power drawn from the production of Nation n for each
class of weapons, u(t) def= col

(
(un(t))n

)
be the stack of the power drawn from the

weapons production by the N Nations. Similarly, xn(t)
def=

(
xτ

n(t)
)
τ

is the col-
umn vector which contains the power drawn from stockpile of Nation n for each
class of weapons, and x(t) def= col

(
(xn(t))n

)
be the stack of the power drawn from

the stockpiles of the N Nations. Furthermore, we define the following sequences:
x

def= (x(t))t and un
def= (un(t))t. The dynamics of Nation n’s power drawn from

stockpile of class τ weapons is defined as follows:

∀n ∈ N , xτ
n(t + 1) = xτ

n(t) + uτ
n(t) − νxτ

n(t), (1)

with an obsolescence rate ν ≥ 0. The players’ utility at time period t writes:

Jn

(
un(t), x(t)

)
= fn

(
x(t)

) − cS
n

(
xn(t)

) − cD
n

(
un(t)

)
, (2)

where fn(·) is the security function of player n, cS
n(·) its storage (operational)

cost and cD
n (·) its development (R&D) cost. The players may have local con-

straints, e.g., finite budget, maximum capacity of production, etc., which may
evolve dynamically. We denote Un(t) ⊂ R

2
+ the set of un(t) that preserve these

constraints, i.e., the feasibility set of player n. Each player n ∈ N maximizes the
sum Jn(·) over time of its future utility, with discounting rate ρn ∈]0; 1[, n ∈ N :

Vn(x) = max
un(t)∈Un(t),∀t

J̄n

(
un, x

)
,

where J̄n(un, x) def=
T∑

t=0

ρt
nJn

(
un(t), x(t)

)
.

(3)

We aim to study this model in the long run, with ν = 0. In what follows, we
denote xn

def= lim
t→+∞ xn(t) player n’s steady state, with lim

t→+∞ u(t) = 0. Using a
slight abuse of notation, the static model is given by:

Vn(x) = max
xn∈R

2
+

J̄n(x) where J̄n(x)
def= Jn

(
0, x

)
. (4)

with the decision variable now being Nation n’s power drawn from its stockpiles,
xn ∈ Un. Let x−n

def= col
(
(xm)m �=n

)
,∀n be the vector that contains the stack of

the power drawn from the stockpiles of weapons of all Nations in N except n.
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2.2 Strategic Relationship

For each Nation, the international system is divided into opponents, neutrals and
allies (commercial or military). A commercial alliance is a binding agreement
allowing transfer of military capacities between parties. A military alliance is a
binding agreement establishing a coalition of military interests and capacities
between parties. To simplify the setting, we will not consider alliances in the
following. In what follows, we make the assumption that the decisions of Nations
are not affected by those of neutrals.

We now want to structure the set of Nations, by taking into account how
their decisions impact those of the others. For each Nation n ∈ N , the set of
opponents σ(n) ⊂ N is defined by a binary relation of hostility, represented by
the hostility function σ(·). It is reasonable to assume that a Nation is never its
own opponent and that any opponent of a Nation must treat the considered
Nation as an opponent in return. Therefore, we assume that the relation of
hostility is irreflexive and symmetric, i.e.:

∀n ∈ N , n /∈ σ(n),
∀n,m ∈ N , m ∈ σ(n) ⇐⇒ n ∈ σ(m).

We introduce the strategic relation as the reflexive-transitive closure of the hos-
tility relation:

Definition 1 (Strategic relation). We say that two Nations n and m are
in strategic relationship and write n ∼ m if a (possibly degenerate) sequence of
hostility relations connects n to m, i.e., if there exists k ∈ N such that m ∈ σk(n).

Lemma 1. The strategic relation is an equivalence relation.

Proof. By definition, the strategic relation is symmetric. It is transitive because
∀n,m, l ∈ N such that n 	= m,m 	= l, n 	= l, n ∼ m and m ∼ l mean that there
exist k, k′ ∈ N such that m ∈ σk(n) and l ∈ σk′

(m). Then, by composition of
the strategic relation, we get that l ∈ σk+k′

(n). Therefore, the strategic relation
is transitive. Now, ∀n ∈ N , σ0(n) = {n}, thus the strategic relation is an
equivalence relation. 
�

Lemma 1 implies that the decisions of Nations belonging to the same equiv-
alence class are independent of the decisions of the Nations out of it. Hence,
we can split the set of players into a finite number of equivalence classes. This
allows to decompose the main noncooperative game into the same number of
noncooperative games, that can be solved independently. In what follows, we
assume this procedure has already been done, and focus on a game in which the
N Nations share strategic relations:

Assumption 1. All Nations in N are in strategic relationship.

In particular, if the game is nontrivial and consists of at least two players, then
every Nation has an opponent.
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2.3 Target Value

For Nation n ∈ N , the target value of adverse armament of class τ is denoted
by xτ

σ(n), which is a function of xτ
−n. Later, we will call it Nation n target value.

This value represents the level of threat caused by the set of opponents. Several
modeling choices are possible. For instance, Nations preparing for a one-off crisis
will evaluate the target value as the maximum level of armaments of class τ of
the set of opponents. In any case, it must satisfy the following assumption:

Assumption 2. There exist κ−, κ+ > 0 input coefficients that do not depend
on the power drawn from the weapon stockpiles, such that:

κ− max
m∈σ(n)

xτ
m ≤ xτ

σ(n) ≤ κ+ max
m �=n

xτ
m.

Remark 1. Target values defined as the maximum, the sum or the mean over
σ(n) of the power drawn from the weapon stockpiles satisfy Assumption 2:

max
m∈σ(n)

xτ
m ≤ max

m∈σ(n)
xτ

m ≤ max
m �=n

xτ
m,

max
m∈σ(n)

xτ
m ≤

∑

m∈σ(n)

xτ
m ≤ N max

m �=n
xτ

m,

1
N

max
m∈σ(n)

xτ
m ≤

∑
m∈σ(n) xτ

m

|σ(n)| ≤ max
m �=n

xτ
m.

Let us discuss briefly the interpretation of Assumption 2. The right hand side
of the inequality ensures that Nations use armaments levels of others to compute
the level of threat they face, while the left hand side ensures that Nations do
not ignore the greatest opponent in the computation of the threat they face.

2.4 Security Functions

The perceived security of a Nation n ∈ N is a function of the power drawn from
its own weapon stockpile xn and of its target value xσ(n), where xσ(n) is the col-
umn vector which contains the target value of Nation n in each weapon class. As
Nations seek to maximize their perceived security, it increases with their effective
weapon stockpile and decreases with the opponents’ effective weapon stockpiles.
Using deterrence terminology, the effective stockpile value can be defined as the
maximum available quantity of armaments, a Nation is both credible, and capa-
ble to use in a potential conflict. We shall assume that Nations have a credible
threat in using the military capacities we consider. However, the capability of
the weapon stockpiles may depend on the quality and type of armaments as well
as on the military doctrine of each Nation. We distinguish between two classes
of armaments: nuclear (strategic) weapons allowing for preemptive strikes, and
conventional (tactical) weapons which can be used on the battlefield. Therefore,
Nation n’s security function can be decomposed as follows:

fn(xn, x−n) =
∑

τ

ατfτ
n(xn, x−n), where

∑

τ

ατ = 1, ατ ≥ 0, ∀τ. (5)
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Extrinsic and Intrinsic Perceived Security. For each class τ of armaments,
we decompose fτ

n into two parts: the extrinsic part, which represents the loss of
perceived security due to the environment, and the intrinsic part, which repre-
sents the gain of perceived security due to the possession of armaments of class
τ . The extrinsic perceived security of Nation n brought by class τ armaments
coincides with its opponents’ effective stockpile of class τ . Now, as Nations are
primarily defensive and secondarily aggressive, the intrinsic perceived security
of Nation n brought by class τ armaments is modeled as a linear function of
Nation n’s effective stockpile value of armaments of class τ . Its slope is a con-
cave function φ(·) of the weapons they are supposed to deter. Nuclear strategies
are generally dual-purpose, contrary to conventional strategies. Thus, the slope
is φ

(
xconv

σ(n)+xnuc
σ(n)

ξn

)
for nuclear, and φ

(
xconv

σ(n)

ξn

)
for conventional, where ξn > 0 is a

threat threshold which captures Nation n’s peacefulness. To go further we need
to evaluate the effective stockpile value for nuclear and conventional armaments.

Effective Stockpiles. Consider first conventional weapons. It is reasonable to
assume that Nations are able to use at some point in a potential conflict all of
the conventional weapons they possess. Therefore, Nation n’s power drawn from
effective stockpile of conventional weapons is equal to the power drawn from its
actual stockpile of conventional weapons xconv

n .
Now, consider nuclear weapons. Depending on multiple factors, Nations can

be cautious and prepare for an adversarial first strike by seeking a second-strike
capability, or they can hinge on their preemptive first-strike capability to deter
their counterparts. Therefore, stochastic multi-stage games can be used to model
the succession of strikes [5]. We use this setting to derive the closed form expres-
sion of the expected number of remaining weapons in case of a conflict between
two armed Nations, after a single preemptive strike.

Following [5], we consider two Nations called n and m ∈ N , n 	= m. Nation n
holds Wn ∈ N weapons. It is attacking Nation m, which holds Wm ∈ N

∗ weapons.
Nation n aims to destroy with a preemptive strike as much as possible of Nation
m’s weapons. Assume that Nation n’s weapons have an accuracy λn > 0, i.e.,
each weapon has a probability pn = 1 − e−λn of destroying its target. Assume
that both weapons and targets are indistinguishable. Let W r

m be the random
variable that gives the number of remaining weapons for Nation m after a single
preemptive strike of Nation n. Let K

def=
⌊

Wn

Wm

⌋
and w

def= Wn − KWm.

Proposition 1. After an optimal single preemptive strike by Nation n, the
expected number of remaining weapons for Nation m is:

E[W r
m] = (Wm − w) exp(−Kλn) + w exp (−(K + 1)λn) ,

= Wm exp
(

−λn
Wn

Wm

)
, if K ∈ N.

Proof. Let Wn = �1,Wn� and Wm = �1,Wm�. For all k ∈ Wm, let g(k) ∈ Wn

be the number of weapons assigned by Nation n to target k. We order the
targets such that g(·) is decreasing. Notice that W r

m is a function of g(·), but



Modeling and Analysis of a Nonlinear Security Game 377

to simplify the notation we omit this dependence. Nation n has to solve the
following optimization problem:

min
g(·)

E [W r
m] , s.t.

∑

k∈Wm

g(k) = Wn, (6)

which consists in finding a minimizer of a function over a non-empty finite set,
whence the minimizer exists. We argue that the (unique) minimizer is given by

g(k) =

{
K + 1 if 1 ≤ k ≤ Wn − KWm,

K else.
(7)

First, consider a strike on a single target k ∈ Wm. Up to a reordering, let
(Xl)l∈�1,g(k)� be a collection of Bernoulli independent and identically distributed
random variables with parameter pn. Xl = 1 means that weapon l destroys its
target k, with probability pn = 1 − e−λn . Let Yk =

∑g(k)
l=1 Xl. Target k remains

intact if and only if Yk = 0, with probability P (Yk = 0) = e−g(k)λn . Nation m
has W r

m =
∑

k∈Wm
1{Yk=0} remaining weapons. Therefore:

E [W r
m] =

∑
k∈Wm

E
[
1{Yk=0}

]
=

∑
k∈Wm

P (Yk = 0) =
∑

k∈Wm
e−g(k)λn .

Let g(·) be a minimizer of problem (6). Let us show that g(0) ≤ g(Wm)+1 using
on a proof by contradiction. Assume the converse: g(0) ≥ g(Wm) + 2. As g(·) is
decreasing, there exists l, l′ such that g(0) = g(l) > g(l + 1) ≥ g(l′) = g(Wm)
and l′ is minimal. Define g�(·) by

g�(l) = g(l) − 1, g�(l′) = g(l + 1), g�(k) = g(k), ∀k ∈ Wm \ {l, l′},

g� is decreasing and sums to Wn. Note that g(l′)+1 = g(Wm)+1 < g(0) = g(l).
Whence, one can compute:

E [W r
m]|g� − E [W r

m]|g = (eλn − 1)
(
e−λng(l) − e−λn(g(l′)+1)

)
< 0,

which contradicts that g be minimal. Whence, the minimizer g is decreasing and
satisfies g(0) ≤ g(Wm) + 1, i.e., it is given by (7). In turn, the minimum is:

E [W r
m] = (Wm − w) exp (−Kλn) + w exp (−(K + 1)λn) .

Now, if Wn = KWm, i.e., w = 0, then E [W r
m] = Wm exp (−Kλn). 
�

Nation n’s opponents have xτ
σ(n) weapons of class τ . Thus Proposition 1

shows that the effective power drawn from stockpile value of class τ weapons,
after a single preemptive strike by Nation n with nuclear weapons, is given by
xτ

σ(n) exp
(
−λn

xconv
n

xτ
σ(n)

)
.

Generic Security Function. Combining all of the above, we can define a
generic security function for both conventional and nuclear armaments. Let a, b ∈
{0, 1}. Define Nation n’s security function for conventional armaments as:

fconv
n (xn, x−n) = xconv

n exp

(
−λσ(n)

xnuc
σ(n)

xconv
n

)a

φ

(
xconv

σ(n)

ξn

)
− xconv

σ(n) exp

(
−λn

xnuc
n

xconv
σ(n)

)b

, (8)
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and Nation n’s security function for nuclear armaments as

fnuc
n (xn, x−n) = xnuc

n exp
(

−λσ(n)

xnuc
σ(n)

xnuc
n

)a

φ

(
xconv

σ(n) + xnuc
σ(n)

ξn

)

−xnuc
σ(n) exp

(

−λn
xnuc

n

xnuc
σ(n)

)b

,

(9)

where λσ(n) is a measure of the accuracy of the nuclear weapons of Nation
n’s opponents. In general, Nations might choose among four doctrine choices,
shaping their security functions. Indeed, each Nation will choose whether it relies
on its vulnerable second-strike capacity (a = 1) or not (a = 0); and whether it
relies on its preemptive first strike capacity (b=1) or not (b=0). We focus on the
case (a, b) = (0, 1), more representative of modern nuclear military capabilities.
Therefore, applying (5), the security function of Nation n ∈ N will be given by:

fn(xn, x−n) = αnuc[xnuc
n φ

(
(xconv

σ(n) + xnuc
σ(n))/ξn

)−xnuc
σ(n) exp

(−λnxnuc
n /xnuc

σ(n)

)]

+ αconv [
xconv

n φ
(
xconv

σ(n)/ξn

) − xconv
σ(n) exp

(−λnxnuc
n /xconv

σ(n)

)]
,

(10)

with αnuc + αconv = 1, αnuc, αconv ≥ 0, λn is Nation n’s nuclear armaments
accuracy, and ξn > 0 is a Nation-specific constant which models Nation n’s
peacefulness. Remind that φ(·) is a concave, strictly increasing function. We
also assume φ(0) = 0, φ′(0) = 1, φ(3)(0) > 0 and that φ(x) = o(x) at infinity.

Remark 2. In what follows, we will choose φ : s → ln(1 + s) in numerical compu-
tations. Furthermore, for technical purposes, let k > 0, φk : s → min{φ(s), φ(k)}
and denote J̄k

n(.) the utility function defined as J̄n(.) by replacing φ(.) by φk(.).

Let ∇n · J̄n(x)
def= 〈∇xn J̄n(x), xn〉

‖xn‖ be the directional derivative of J̄n(·) along xn.
Also, observe that under Assumption 2, the following inequality holds:

∇n · J̄n(xn, x−n) ≤ λ̂ + φ

(√
2
κ+

ξ̂
‖x̂‖

)
− Č‖xn‖, ∀n ∈ N (11)

where x̂ = (x̂τ )τ with x̂τ = max
m∈N

xτ
m, Č = min

m∈N , τ
Čτ

m, λ̂ = max
m∈N

λm, and ξ̂ =

max
m∈N

ξm. An analogous inequality holds for
(
J̄k

n(·), φk(·)).

We observe that f(·, x−n) is a C∞ function on
(
R

∗
+

)2. It is also well-defined on
∂(R∗

+)
2 \ {0}. Moreover, around this set, it is continuous and bounded thus one

can extend it by continuity at 0 by the value 0. However, it is not differentiable on
∂(R∗

+)
2. Therefore, we cannot directly apply standard results from game theory,

which require that the players’ utility functions be defined on a closed-convex
domain and be differentiable. The analysis of the one-shot game will therefore
require to deal, first, with the degenerate case of the boundary and, second, to
develop theoretical tools to study objective functions defined on open unbounded
domains.
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3 Analysis of the One-Shot Game

Let U def=
∏

n Un. We define G def=
(
N ,U , (J̄n)n

)
as the one-shot (static) game

involving a set N of N armed Nations. For all n ∈ N , Nation n’s utility function
is derived from (4), with target value satisfying Assumption 2. The security
functions are defined in (5), and we assume quadratic cost functions, cS

n(·), ∀n:

cS
n(xn) =

1
2
Cconv

n (xconv
n )2 +

1
2
Cnuc

n (xnuc
n )2 ,

where Cconv
n , Cnuc

n > 0 are storage marginal costs for conventional and nuclear
weapons respectively, assuming cD

n (0) = 0. Nation n’s utility function takes
the form: J̄n(xn, x−n) = fn(x) − cS

n(xn). We will analyze the outcome of the
noncooperative game G relying on the classical Nash Equilibrium, as solution
concept.

Definition 2 (Nash Equilibrium). A Nash Equilibrium x∗ = (x∗
n)n of G is

a vector of power drawn from the stockpiles of weapons, such that J̄n(x∗) ≥
J̄n(xn, x∗

−n),∀xn ∈ Un,∀n ∈ N .

We recall below the definition of a concave game.

Definition 3 (Concave N-player game). Let E
def
=

∏N
n=1 En be a product of

Euclidean spaces (En)n. Let U ⊂ E be a convex subset of E and for all n ∈ N
assume the utility functions J̄n : U → R are continuous. The game G, where
each player n ∈ N solves the parametrized optimization problem:

max
xn∈En

J̄n(xn, x−n) s.t. x ∈ U , ∀n ∈ N ,

is called a concave game if for all n ∈ N , xn → J̄n(xn, x−n) is a concave function
for each fixed value of x−n such that x ∈ U . If U is compact, then it is called a
compact-concave game.

A classical result [25, Theorem 1] ensures the existence of Nash Equilibria for
concave N -player games whose joint strategy set is a compact convex. In the
follow up, we extend this result to the case where: (i) the joint strategy set
is a closed convex; and, (ii) the players’ utility functions satisfy a coercivity
property. Finally, we prove the existence of an interior point Nash Equilibrium
for the N -player static game G.

Remark 3. Note that contrary to the finite-horizon game involving a finite num-
ber of time steps in the dynamic game, decision variables cannot be normalized
in the one-shot game. Indeed, as we study the equilibria in the long-run, i.e.,
steady states, without requiring a priori budget constraints, there is no reason
that Nash Equilibria take bounded values when time goes to infinity, e.g., in the
case of a security spiral.
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The following proposition deals with the degenerate cases where, at a Nash
Equilibrium, a Nation would disarm and give up a weapons class. We show that
this kind of solution requires all Nations to disarm for the same weapons class.

Proposition 2 (Disarmament). Let x be a Nash Equilibrium. Let τ ∈
{nuc, conv} and n ∈ N . The following statements hold true:

1. If xτ
σ(n) = 0, then for all m ∈ σ(n), xτ

m = 0;
2. If xτ

n = 0, then for all m ∈ N , xτ
m = 0.

Proof. To prove the first statement, let xτ
σ(n) = 0. Then, for all m ∈ σ(n),

0 ≤ xτ
m ≤ max

�∈σ(n)
xτ

� ≤
xτ

σ(n)

κ− = 0, by Assumption 2.

Therefore, ∀m ∈ σ(n), xτ
m = 0. Now, we want to prove the second statement.

First, let us show that if xτ
n = 0, then ∀m ∈ σ(n), xτ

m = 0 by contraposition.
Assume that there exists m ∈ σ(n) such that xτ

m > 0, which implies xτ
σ(n) > 0

using the first statement. Now, as xτ
σ(n) > 0, a direct computation yields a

lower bound on the gradient of the security function at (xnuc
n , xconv

n ) ∈ (R+)2:
∂fn

∂xτ
n
(xn, x−n) ≥ ατφ

(
xτ

σ(n)

ξn

)
> 0, because φ(·) is strictly increasing and φ(0) = 0.

Note that, at xτ
n = 0, ∂cS

n

∂xτ
n
(xn) = Cτ

nxτ
n = 0. Therefore,

∂J̄n

∂xτ
n

(xn, x−n) =
∂fn

∂xτ
n

(xn, x−n) − ∂cS
n

∂xτ
n

(xn) =
∂fn

∂xτ
n

(xn, x−n) > 0.

Hence, all strategies with xτ
n = 0 are dominated, i.e., if x is a Nash Equilibrium,

we have that xτ
n > 0. Therefore, if xτ

n = 0, then ∀m ∈ σ(n), xτ
m = 0. Now,

assume that xτ
n = 0. Then, by induction, ∀k ∈ N, ∀m ∈ σk(n), xτ

m = 0. As N is
a strategic relationship class, N = σ|N |(n). Therefore, xτ

m = 0. 
�

Let U† def= U ∩ (R∗
+)

2N and U†
n

def= Un ∩ (R∗
+)

2. As a consequence of Proposition
2, there exists a trivial Nash Equilibrium which coincides with a “general and
complete disarmament” strategy (x = 0). In the following sections, we prove the
existence and uniqueness of interior points Nash Equilibria x∗ ∈ U†. An interior
point Nash Equilibrium does not lie on the boundary of (R∗

+)
2.

3.1 Existence of a Nash Equilibrium

It is well-known that every compact-concave game admits a Nash Equilibrium.
As the utility functions of the game G are concave in their own strategy space,
we can build a compact concave game G′ by imposing constraints to G, ensuring
the existence of a Nash Equilibrium for G′. Let U ′ ⊂ U be a compact convex.

Lemma 2. Assume that a Nash Equilibrium is reached at an interior point of
U ′. Then, since the players’ utility functions are concave in their own strategy
space, it is also a Nash Equilibrium for the game with strategy space U .
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Proof. The proof relies directly on the concavity of the objective functions.

Using this property, we can show under further assumptions on the asymp-
totic behavior of the utility functions that the boundedness of U is not required.

Definition 4. Let Ψ : U ⊂ E → R be a continuous function. We say that
Ψ(·) is uniformly coercive in xn over En if and only if there exists rn > 0 and
g : En → R such that:

∀x ∈ U , ∇n · Ψ(x) ≥ g(xn),
∀y ∈ En, ‖y‖ ≥ rn =⇒ g(y) > 0.

where ∇n · Ψ(x) = 〈∇xnΨ(x), xn〉
‖xn‖ is the directional derivative of Ψ(·) along xn.

Using (11) and that φk(·) are bounded, we check that the opposite of objective
functions −J̄k

n(·),∀n are uniformly coercive over their own strategy space.

Proposition 3. Let G̃ = (N ,U , (Ψn)n) be a concave game. Assume U ⊂ E is
closed and −Ψn(·) is uniformly coercive over its own strategy space Un,∀n. Then,
G̃ admits a Nash Equilibrium.

Proof. Let Bn(r) be the closed ball of radius r > 0 in En. Let B(r) def=
∏N

n=1 Bn(r). Hence, Γ (r) def= B(0, r) ∩ U ⊂ U is the intersection of two closed
convex sets and is bounded, thus it is a compact convex. Then, G̃ is a compact
concave game over Γ (r) and admits a Nash Equilibrium, denoted by x∗. Now,
for all n ∈ N , −Ψn(·) is uniformly coercive over En. Hence, there exists rn > 0
and gn(·) such that

∀x ∈ U , − ∇n · Ψn(x) ≥ g(xn),
∀y ∈ En, ‖y‖ ≥ rn =⇒ g(y) > 0.

Set r > max
n

{rn}. If there existed n ∈ N such that xn ∈ ∂Bn(r), then the
optimality conditions would write:

∇n · Ψn(x) ≥ 0 with ‖xn‖ = r,

Now, ‖xn‖ = r ≥ rn thus ∂Ψ
∂n (x) ≤ −gn(xn) < 0, which is a contradiction.

Therefore, for r > 0 large enough, Nash Equilibria of G̃ are either interior points
of Γ (r) ⊂ U or boundary points of U . Notice that in the former case, by Lemma
2, they are also interior points Nash Equilibria for the game with strategy space
U . Therefore, the game G̃ admits a Nash Equilibrium. 
�
Proposition 4. There exists a Nash Equilibrium solution of G

Proof. From Proposition 3 that for all k > 0, the game Gk def=
(
N ,U , (J̄k

n)n
)

admits a Nash Equilibrium x∗k. Thus, the directional derivative of J̄k
n(.) at x∗k
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must be non-negative. For all ζ > 0, let F (ζ) = λ̂ + φ
(√

2κ+

Č̂ξ
ζ
)
. From (11), we

infer that z ≤ F (z) where z = Č
∥
∥
∥x̂∗k

∥
∥
∥. As φ(.) is strictly increasing, for all

p ∈ N, z ≤ F p(z). Now, the assumptions on φ imply that F has a unique fixed
point z0 over R∗

+ that depends only on φ, λ̂, κ+

Čξ̂
and that F p(z) converges to z0.

Therefore, z ≤ z0. Let r > z0/Č and k >
√
2κ+

ξ̂
r. Hence, one can check that the

games G̃k =
(
N ,U ∩ B(r), (J̄k

n)n
)

and G̃ =
(
N ,U ∩ B(r), (J̄n)n

)
are identical.

Now, let x∗ a Nash Equilibrium of G̃. As ‖x∗‖ ≤ z/Č ≤ z0/Č < r, x∗ does not
lie on ∂B(r) thus it is a Nash Equilibrium of G. 
�
Theorem 1. The game G admits an interior point Nash Equilibrium x∗ ∈ U†

under the sufficient conditions:

Cnuc
n ξn < 2κ−αnuc

n , Cconv
n ξn < κ−αconv

n .

Proof. Let ε > 0 and Γε =
⋂

n,τ{xτ
n > ε} ⊂ U†. From Proposition 3, as Γε is

a closed convex set, the game G� def=
(N , Γε, (J̄n)n

)
admits a Nash equilibrium

x∗. Reasoning by contradiction, suppose that x∗ ∈ ∂Γε. This means that there
exists n ∈ N and τ ∈ {nuc, conv} such that x∗τ

n = ε. Hence, using first order
Taylor-Lagrange expansion, at least one of the following inequalities holds true:

∂J̄n

∂xconv
n

(x∗) ≥ (
κ−αconv − Cconv

n ξn

) ε

ξn
+ o(ε),

∂J̄n

∂xnuc
n

(x∗) ≥ (
2κ−αnuc − Cnuc

n ξn

) ε

ξn
+ o(ε).

If G parameters are chosen such that κ−αconv > Cconv
n ξn, 2κ−αnuc > Cnuc

n ξn, for
ε small enough, ∂J̄n

∂xτ
n
(x∗) > 0. It contradicts the necessary optimality condition

∂
∂xτ

n
J̄n(x∗) ≤ 0 thus x∗ ∈ U†. Hence, G† def=

(N ,U†, (J̄n)n
)

admits the same Nash
Equilibrium x∗, which is also an interior point Nash Equilibrium of G. 
�

3.2 Uniqueness of the Interior Point Nash Equilibrium

Assumption 3. ∀n ∈ N , 1 − 1
xnuc

σ(n)

∑

m �=n

∂xnuc
σ(n)

∂xnuc
m

≥ 0 and Cnuc
n − αnuc

ξn

∑

m �=n

∂xnuc
σ(n)

∂xnuc
m

≥ 0.

In the rest of the paper, we assume that Assumption 3 holds.

Proposition 5. The game G† is strongly monotone.



Modeling and Analysis of a Nonlinear Security Game 383

Proof. Let Fn
def=

[
∂J̄n(x)
∂xnuc

n

∂J̄n(x)
∂xconv

n

]T

be the gradient of player n’s utility with

respect to its own actions. We get: ∀xn ∈ U , ∂J̄n(x)
∂xconv

n
= αconvφ(xconv

σ(n)/ξn) −
Cconv

n xconv
n , which implies that J̄n(·) reaches its maximum in the variable xconv

n

at (xconv
n )∗ = αconv

Cconv
n

φ
(

xconv
σ(n)

ξn

)
, if (xconv

n )∗ is admissible, or, else, at the border of
the interval of definition of xconv

n . Similarly, for Nation n’s other decision variable,
we get: ∂J̄n(x)

∂xnuc
n

= αnucφ
(

xconv
σ(n)+xnuc

σ(n)

ξn

)
+ λn

∑
τ ατ exp

(
−λn

xnuc
n

xτ
σ(n)

)
− Cnuc

n xnuc
n .

Consider the pseudo-Hessian matrix Hnuc of the players’ utilities considering
only nuclear weapons where each nth row and mth column component is given
as Hnuc

n,m = ∂Fnuc
n

∂xnuc
m

, n,m ∈ N , i.e., in details:

Hnuc
n,m =

⎧⎪⎪⎨
⎪⎪⎩

−λ2
n

∑
τ

ατ

xτ
σ(n)

exp

(
−λn

xnuc
n

xτ
σ(n)

)
− Cnuc

n if m = n,(
αnuc

ξn
φ′

(
xconv

σ(n)+xnuc
σ(n)

ξn

)
+ λ2

n
αnucxnuc

n
(xnuc

σ(n))
2 exp

(
−λn

xnuc
n

xnuc
σ(n)

))
∂xnuc

σ(n)
∂xnuc

m
if m �= n.

Thus −Hnuc is a Z-matrix as its-off diagonal entries are negative. Under Assump-
tion 3, we observe that −Hnuc is strictly diagonally dominant thus −Hnuc is an
M -matrix, i.e., a Z-matrix with eigenvalues whose real parts are nonnegative
[32]. Thus, Hnuc is negative definite. Furthermore, letting F

def= col
(
(Fn)n

)
, as

∂Fn

∂xconv
n

is constant for all n ∈ N , the inequality (y−x)T
[
F (y)−F (x)

]
< 0,∀x 	= y

follows from [25, Theorem 6] and the game G† is strongly monotone. 
�
Theorem 2. The game G has a unique interior point Nash Equilibrium x∗ ∈ U†.

Proof. Let us consider that there exists two Nash Equilibria x∗ and x∗∗ solutions
of the game G†. As both x∗ and x∗∗ are Nash Equilibria they must satisfy the
stationarity condition. Mutliplying the first order condition with

(
y − x∗) at

point x∗ and
(
y − x∗∗) at point x∗∗, we get:

(y − x∗)T F (x∗) = 0, ∀y ∈ U†, (12a)

(y − x∗∗)T F (x∗∗) = 0, ∀y ∈ U†. (12b)

Taking (12a) in y = x∗ and (12b) in y = x∗∗ and summing the two above
equations, we get: (x∗∗ − x∗)T (F (x∗∗) − F (x∗)) = 0, which contradicts the fact
that the game G† is strongly monotone from Proposition 5. Therefore, the game
G† admits a unique Nash Equilibrium. 
�

3.3 Distributed Nash Equilibrium Seeking

When more than two Nations are involved, algorithmic methods need to be
developed to compute Nash Equilibria.

Proposition 6. The pseudo-gradient F (x) of the game G is Lipschitz continu-
ous in x ∈ U†.
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Proof. The proof relies on the Triangle Inequality and Mean Value Theorem.
Due to space limit, it is omitted. 
�

We assume that the Nations are in a full information feedback setting.

Assumption 4. Each player n ∈ N can get the decisions of all its opponents
x−n ∈ ∏

m �=n Um.

Under Propositions 5 and 6, and Assumption 4, various gradient-based algo-
rithms can be proposed to compute the interior point Nash Equilibrium solu-
tion of G and are proved to converge [9]. We will implement a regularization
algorithm for monotone game, called proximal point method (PPM). PPM is
an alternative method to distributed gradient descent schemes, whose inter-
est lies in the fact that it avoids having to coordinate the players in their
steplength choice. At iteration l, xl is the solution of a Variational Inequality
(VI) of the type: (y − x)T F l(x) ≤ 0, ∀y ∈ U , with F l(x) = F (x) − θ(x − xl),
and θ > 0 is a regularization parameter which implicitly determines iteration
bounds to reach a prescribed error level [21]. In this setting, the regulariza-
tion parameters are required to be the same for all the players. Extensions of
iterative proximal point method for monotone games where each player can
independently select and adapt its algorithm parameter after each iteration [13]
exist, but will not be considered in the current version of the work. In prac-
tice, the PPM algorithm can be implemented by solving at each iteration l:
xl+1

n = argmaxu∈Un

(
J̄n(u, xl

−n) − θ‖u − xl
n‖2

)
, ∀n ∈ N .

4 Analysis and Simulations in Case of a Duopoly

4.1 Analytical Analysis

In the case of a duopoly (N =2), we provide an analytical characterization of the
interior point Nash Equilibrium of G. We define Ñ def= {(n,m) ∈ N 2 | n 	= m}.
For all (n,m) ∈ Ñ , we let xm denote x−n and σ(n) def= {m}. Then, the interior
point Nash Equilibrium of G is obtained by solving the following system:

max
x∈(R∗

+)2
J̄n(xn, xm), ∀(n,m) ∈ Ñ ,

leading to the following first order (necessary) optimality conditions:

∂J̄n

∂xconv
n

(xn, xm) = 0,
∂J̄n

∂xnuc
n

(xn, xm) = 0, ∀(n,m) ∈ Ñ ,

which can be written explicitly as the following system of equations:

∀(n,m) ∈ Ñ , Cconv
n xconv

n − αconvφ

(
xconv

m

ξn

)
= 0, (13a)

Cnuc
n xnuc

n − λn

∑

τ

exp
(
−λnxnuc

n

xτ
m

)
− αnucφ

(
xnuc

m +xconv
m

ξn

)
= 0. (13b)
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Let (n,m) ∈ Ñ . Define Rconv
n : x → αconv

Cconv
n

φ
(

x
ξn

)
. Then one can rewrite (13a)

as xconv
n = Rconv

n (xconv
m ). Hence, when dealing with two players, the Nash Equi-

librium components (xconv
n )n are found at the intersection (χ2, χ1) of curves

(u,Rconv
1 (u))u>0 and (Rconv

2 (v), v)v>0. Consider the following functional equa-
tions with unknowns Rnuc

n : x → y:

Cnuc
n y−λn

(
exp

(
−λny

x

)
+ exp

(
−λny

χn

))
−αnucφ

(
x+χn

ξn

)
= 0, ∀n ∈ N . (14)

Then (13b) is equivalent to Rnuc
n (xnuc

m ) = xnuc
n by setting x = xnuc

m and
y = xnuc

n . Let μn = χn

ξn
, ρn = Cnuc

n ξn and the change of variables (X,Y ) =
(xnuc

ξn
, Cnuc

n ynuc), then (14) recasts as:

Y − λn

(
exp

(
−λn

ρn

Y

X

)
+ exp

(
−λn

ρn

Y

μn

))
− αnucφ(X+μn) = 0, ∀n ∈ N . (15)

Proposition 7. Equation (15) has a unique solution.

Proof. Let ρ, μ, λ > 0 and α ∈ (0, 1). For all X,Y ≥ 0, define

h(X,Y ) =

⎧
⎨

⎩

Y − λ exp
(
−λ

ρ
Y
X

)
− λ exp

(
−λ

ρ
Y
μ

)
− αφ(X + μ) if X 	= 0,

Y − λ exp
(
−λ

ρ
Y
μ

)
− αφ(μ) else.

For all X ≥ 0, Y → h(X,Y ) is continuous and strictly increasing over R+. As
h(X, 0) ≤ −λ < 0 and lim

Y →+∞
h(X,Y ) = +∞, it is one-to-one from R+ to a set

containing 0. Thus it has a unique zero on R+ and (15) has a unique solution. 
�
Due to limited space and for the sake of simplicity, we assume in what follows that
λn exp

(
−λn

ρn

Y
μn

)
is negligible, i.e., we assume that preemptive nuclear strikes

onto conventional targets achieve little security gain when compared to nuclear
targets. Setting it to 0 yields the following equation:

Y − λn exp
(

−λn

ρn

Y

X

)
− αnucφ(X + μn) = 0, ∀n ∈ N . (16)

In the following, we provide a closed-form expression of the solution of (16),
which relies on the special function W(·), defined as the principal branch of
the Lambert W-function [7] , solution to wew = r, r ≥ 0. W(·) cannot be
expressed in terms of elementary functions, although some approximations,
bounds, and integral representations, e.g., W(x) = 1

π

∫ π

0
ln

(
1 + x sin t

t et cot t
)
dt

are well-known. For all X, ρ, λ, μ > 0, let

G(X; ρ, λ, μ) def=
αnuc

ρ
φ(X + μ) +

1
λ

XW
(

λ exp
(

−αnucλ

ρ

φ(X + μ)
X

))
.
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Proposition 8. The functional equation (16) with unknown X → Y (X) admits
a unique solution on C∞(R∗

+) which satisfies :

Y = ρnG(X; ρn, λn, μn). (17)

Proof. Let n ∈ N . For all X,Y > 0, define w = λn

ρnX (Y − αnucφ(X + μn)) and

r = λn exp
(
−αnuc λn

ρn

φ(X+μn)
X

)
. One has the expression

w − r exp(−w) =
λn

ρnX

(
Y − λn exp

(
−λn

ρn

Y

X

)
− αnucφ(X + μn)

)
.

Consequently, (X,Y ) ∈ (R∗
+)

2 satisfies (16) if and only if wew = r, i.e., if and
only if w = W(r), which writes as (17). 
�
From Proposition 8, we infer the closed-form expressions of the best-replies:

xnuc
n = Rnuc

n (xnuc
m ) = ξnG

(
xnuc

m

ξn
; Cnuc

n ξn,
λn

Cnuc
n ξn

)
, ∀(n,m) ∈ Ñ . (18)

Fig. 1. In the special case of the duopoly, the interior point Nash Equilibrium is found
graphically at the intersection point of the best-reply maps (Rnuc

n )n=N1,N2 of each
Nation as defined in (18). The model’s parameters are given in Table 1.

4.2 Numerical Results and Discussions

As shown in Fig. 1, Nash Equilibria can be numerically obtained when comput-
ing the intersection points of the curves drawn by the best-reply maps Rnuc

n

computed as with (18) and αconv = αnuc = 1
2 . Note that the security and the

utility of both Nations with mixed armaments in a mutual deterrence relation-
ship are greater than with only conventional weapons. Indeed, from Table 1 we
can compute the efficiency gap between the social optimum of disarmament and
the interior point Nash Equilibrium. With only conventional armaments the effi-
ciency gap is of 108 whereas with mixed armaments it drops to 74, representing
an inefficiency reduction of 31%. This can be interpreted as a stabilizing effect
of nuclear armaments.

Depending on the observed efficiency loss, it might be interesting, in an exten-
sion of our work, to provide a method for specifying a Pareto dominating solution
that depends on the Nations’ threat thresholds.



Modeling and Analysis of a Nonlinear Security Game 387

Table 1. Utility (bold-red) and security (italic-black) functions at Nash Equilibrium.
Parameters: ξN1 = 200, ξN2 = 150, Cconv

n = Cnuc
n = 5×10−3, λn = 0.7, ∀n ∈ {N1, N2}.

Nash Equilibrium Strategy Conventional-only Mixed armaments
(xconv

n , xnuc
n ) Utility Security Utility Security

Nation 1 (52, 149) −53 6 −45 14

Nation 2 (60, 141) −55 7 −29 33

5 Conclusion

We formulate a security game in a context of mixed armament acquisition,
involving a finite set of Nations in strategic relationship. Our model incorporates
key elements such as resource allocation to R&D and storage, defense capabili-
ties, and geopolitical considerations, to provide a realistic representation of the
arms procurement process. To analyze the long-term solution of the dynamical
model, we study the steady states of the dynamical game by solving the associ-
ated one-shot game. On the theoretical side, we provide two important contri-
butions to the state of the art. First, we extend classical results about compact-
convex games to unbounded convex games relying on the coercivity property of
the utility functions. Second, our results showcase the stabilizing effect of nuclear
armaments and provide possible guidelines for current treaties refinements or for
the understanding of various arms competition scenarios, including multilateral
arms competitions and asymmetric weaponry.

Future research could focus on studying other identified factors such as
alliances and the role of emerging technologies. Additionally, empirical stud-
ies and use case analyses would be valuable to validate the model outcomes and
assess its real-world applicability. Finally, we anticipate that our contributions
will serve as a valuable tool for policymakers, analysts, and researchers, assisting
in the development of effective arms control measures and promoting stability
in international relations.
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