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1 � Introduction

Effective application of information technologies and immersion of today’s citizens 
into digital environment relies upon understanding of the users’ cognitive abilities, 
in order to optimally design information perception and selection in a human-
computer system. The same consideration applies to more advanced technologies 
generally associated with cyberspace, such as virtual and augmented reality, or 
brain-computer interfaces. Correspondingly, the new research direction of 
Cyberpsychology was forged, which studies neurocognitive, affective, and social 
aspects of interaction between people and digital devices and computer systems, as 
well as the effects of online and off-line usage of digital technologies [1–3]. Lack of 
consideration of a user’s cognitive status when organizing a cyber-interaction might 
result in degraded user experience (UX) and even involve health hazards.

The problem of investigating the cognitive status of a person is considered from 
various positions (medicine, psychology, neurophysiology, etc.) by different 
authors. In medicine, most commonly, Montreal Mental State Scale (MMSE), men-
tal status assessment scale, or a battery of frontal dysfunction tests are currently 
used to assess the cognitive status of patients [4]. These techniques make it possible 
to diagnose already noticeably impaired cognitive functions. Despite this, the 
MMSE scale is widely used as a predictor of progression of different forms of 
dementia, in longitudinal studies of the dynamics of cognitive impairment or for 
cognitive screening of patients’ condition after stroke [5–7].

The popularity of this technique is determined by the simplicity of use and the 
ability to cover various areas of cognitive activity, including orientation in space, 
attention, memorization, object naming, etc. At the same time, registration of 
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electrical activity of the brain with changing functional capabilities of the organism 
associated with aging and/or cardiovascular diseases using modern mathematical 
methods of processing and analysis of data allows performing more differentiated 
diagnosis of cognitive deficits [8].

Electroencephalography (EEG) allows quantitative analysis of the functional 
state of different regions of the cerebral cortex, which reflects the potential readi-
ness of the nervous system to solve problems and the reaction to the effects of 
stimuli during various activities. Clinical studies more often consider the closed-eye 
resting state to elucidate the individual features of topographic distribution and the 
degree of synchronization/de-synchronization of neuronal (synaptic) activity 
depending on the state of the patients [9, 10]. EEG identifies several main rhythms 
related to selection and memorization of information, motivation, and emotional 
regulation. In particular, amplitude and peculiarities of spatial organization of theta 
rhythm (frequency 4–8 Hz) are considered as a marker of cognitive status disorders 
[11–14]. A study by Babiloni et al. [15] showed that theta rhythm in the parietal, 
occipital, temporal, and limbic regions was higher in a mild form of Alzheimer’s 
disease compared to mild cognitive disorders and the normal group. In another 
study, the increase in theta-power was recognized as the most pronounced indicator 
of cognitive deficits in patients with dementia [13].

For the study of frequency characteristics of EEG, spectral analysis methods 
based on the Fourier transform are widely used. However, the use of spectral analy-
sis methods alone may not be sufficient to characterize the causes and dynamics of 
events that underlie the features of the frequency-spatial organization of EEG asso-
ciated with different cognitive functions. Therefore, the development of new meth-
ods of EEG analysis to assess cognitive status is an important task.

At the same time, it is well known that the EEG power spectrum follows a power-
law function: P ∝ 1/fβ, where P is power, f is frequency, and β is the “power-law 
exponent” parameter, which is associated with aperiodic brain activity (or “scale-
free brain activity” in reference to its scale-invariant nature) [16]. Identifying diverse 
values of the power law parameters is of interest, since it characterizes the mecha-
nisms of generating arrhythmic activity of the brain in different states.

Another promising approach to describe the structure of EEG is the application 
of graph theory [17, 18]. Visibility graph algorithms allow a time sequence to be 
characterized by a network topology: A periodic sequence can be transformed into 
a regular lattice, and a chaotic series corresponds to random graphs. This approach 
was successfully used to classify networks in Alzheimer’s patients and control net-
works [18–20]. Moreover, the theta range of EEG bio potentials turned out to be the 
most informative for distinguishing between patients with Alzheimer’s disease and 
minimal brain dysfunctions [20].

It has been shown that the electrical activity of the brain can be described with 
Benford’s law. The algorithm based on this law was used to differentiate the awake 
and the anesthesia sleep states or to imitate artifacts in EEG recording [21]. In [22], 
the distribution analysis of EEG signal time derivatives for compliance with the 
Benford distribution law method was used to differentiate Alzheimer’s patients 
from healthy individuals. The authors note that an additional advantage of the 
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proposed method of data classification using half total error rates (HTER) is lack of 
influence of sample size.

In the current work, we apply similar approach to classify patients with coronary 
heart disease with different levels of cognitive status according to MMSE. To test 
the hypothesis that the distribution of the EEG signals corresponds to the power law, 
we consider the power of the theta rhythm in the parietal part of the right hemi-
sphere of the brain. We select one of the leads in EEG registration and construct 
regression model that predicts MMSE with the goodness-of-fit to power law factor.

The rest of our chapter is organized as follows. In Sect. 2, we describe the meth-
ods used in our study: EEG recording, power law distribution, and Kolmogorov-
Smirnov test for the goodness-of-fit. In Sect. 3, we perform correlation and 
regression analyses for the data extracted from the EEG signals. In conclusion, we 
summarize our results, note limitations of our current study, and outline further 
research directions.

2 � Method

The dataset used in the study included EEG collected from 18 subjects who were 
patients of a clinic specializing on heart diseases. All of them were male, with the 
age ranging from 57 to 74 years (mean = 65.4, SD = 4.17). Their neurophysiologic 
examination was carried out during the preoperative period of coronary artery 
bypass surgery.

The indicators of the short mental status assessment scale (MMSE) of patients 
were in the range of 25–30 points (cognitive deficits are diagnosed at MMSE <26).

EEG registration was performed with 64 leads in accordance with the interna-
tional system 10–10 (the arrangement of the electrodes is shown in Fig. 1). However, 
only the signal recorded from the TP8 temporal-parietal electrode of the right hemi-
sphere was used to construct the model in our study. Basically, it was selected dur-
ing several calculations for different leads as the lead that shows the most 
prominent effect.

During the EEG registration, the subjects were in relaxed state. The signal 
recording time was on average 10 min and the sampling frequency was 1000 Hz. 
Prior to the detailed analysis, artifacts were removed from the EEG records, in 
accordance with the standards implemented in the neuroscanner software.

Spectral analysis allows measuring the power of the analyzed frequency range 
and comparing the EEG rhythms intensity in different electrodes [23]. Using the 
fast Fourier transform, the periodogram was built and the spectral power of the sig-
nal in the parietal lead TP8 was determined. Then, the correspondence of the distri-
bution of spectral power in the frequency range 4–8 (for theta-rhythm) to the power 
law distribution was determined.

Power functions are very different from the popular Gaussian distribution and 
are of fundamental importance in models of nonlinear dynamics and can be speci-
fied as follows [24]:
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Fig. 1  Arrangement of the 
electrodes according to the 
10–10 system
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where C is a normalization constant.
When testing the fit to power law, one needs to limit x, since the graph diverges 
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Power law distribution was found in studies of a wide variety of empirical phe-
nomena, such as the frequency of words in the text (Zipf’s law), the number of cita-
tions, the popularity of resources on the Internet, sales of books, earthquake 
magnitudes, etc. In some cases, the hypothesis of fit to power law had to be rejected, 
but the goodness-of-fit value would still be indicative of some phenomenon’s char-
acteristics. For instance, it was found that the goodness-of-fit can be used to predict 
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the quality of crowdworkers’ performance in image labeling [25]. Variations of 
power laws, particularly Benford’s law, were successfully used for such diverse 
applications as financial fraud detection and Alzheimer’s disease detection based on 
EEG signals [22].

Statistical testing of fit to power law is not straightforward, and the conventional 
least-squares fitting is misleading in many cases. In [24], it was convincingly dem-
onstrated that Kolmogorov-Smirnov statistic in combination with maximum-
likelihood is far more appropriate. Correspondingly, in our study, we rely on plpva 
software library provided in [24] to obtain the goodness-of-fit values. The cut-off 
parameter was set to the minimum due to the limited amount of data available in 
our case.

So, in our analysis, we check fit of the spectral power distribution to the power 
law and relate it to MMSE that we use as the dependent variable. EEG signal is used 
as the main independent variable, and we also control for the age of the subjects.

3 � Results

Kendall’s tau-b correlation between the subjects’ MMSE scores (ordinal scale) and 
age was statistically significant (τ18 = 0.411, p = 0.028) and, somehow unexpectedly, 
positive. Generally, studies report inverse relations between MMSE scores and age.

Figure 2 shows the graph of theta rhythm spectral power values arranged in 
descending order for the 18 subjects. The MMSE values for each subject are given 
in brackets in the legend, and the lines are displayed in green (MMSE = 29–30), 
orange (MMSE = 27–28), or red (MMSE = 25–26). Further, we calculated goodness-
of-fit (GOF) values for each subject’s EEG signal, based on the Kolmogorov-
Smirnov test statistics implemented in plpva.m. The values for MMSE and the 
independent variables obtained in our study are presented in Table 1.

Pearson correlation between MMSE score and GOF was highly significant and 
positive (r18 = 0.639, p = 0.004).

The relationship between the MMSE score, goodness-of-fit to power law distri-
bution (GOF), and age (Age) of the test subject was further investigated using 
regression analysis. The following linear regression model was obtained (R2 = 0.513, 
F2,15 = 7.91, p = 0.005):

	 MMSE Gof Age� � � � �14 735 20 992 0 106. . . 	 (4)

In the model, the GOF factor was significant (p = 0.006, Beta = 0.585), while 
Age was not (p = 0.091, Beta = 0.329). However, the Akaike Information Criterion 
value (AIC  =  59.359) obtained for (4) was lower than the corresponding value 
(AIC = 60.892) for the model that only had the GOF factor. This suggests that the 
relative amount of information “lost” is lower in (4) and it should be preferred over 
the one-factor (GOF) regression model.
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Fig. 2  Ordered spectral power values for the theta rhythm in the subjects EEG signals

The discovered correspondence of the theta rhythm to the power law indicates 
that the presented approach can be used to analyze both the distribution of spectral 
power in the other EEG frequency ranges and in other cortical sites reflecting the 
brain functional state.

4 � Discussion and Conclusion

As individuals’ immersion in high-tech information and cyber environments inten-
sifies, the role of effective and affective interaction with various computers and 
gadgets becomes crucial for users of all ages and cognitive abilities.

This is particularly important for the currently advancing VR/AR technologies 
and brain-computer interfaces, which rely on fast and proper assessment of a user’s 
cognitive status. Understandably, monitoring the cognitive status must not break the 
immersion, which is unavoidable in some currently used assessment methods that 
rely on surveys.

The results of the study of the application of power law to describe the distribu-
tion of the spectral power of the EEG, in particular, the amplitude of theta 
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Table 1  The values for the variables in the study

Subject number Age GOF MMSE score

1 68 0.2579 28
2 59 0.1710 25
3 69 0.3014 30
4 64 0.2653 26
5 67 0.3936 30
6 68 0.2831 30
7 59 0.3118 29
8 62 0.2826 26
9 62 0.2810 26
10 60 0.2704 25
11 67 0.2639 26
12 68 0.2817 28
13 57 0.3146 28
14 76 0.2859 28
15 69 0.2588 28
16 66 0.2198 27
17 74 0.3029 28
18 63 0.2694 27

oscillations in the parietal region of the right hemisphere, suggest that it might be 
applicable for the classification of individuals with respect to their cognitive status. 
Statistically significant association of cognitive status indicator (MMSE) and 
goodness-of-fit calculated for distribution of spectral power in one of EEG leads 
(TP8) was revealed. The best regression model (4) constructed for MMSE included 
GOF and Age factors and was significant. Therefore, further studies of the applica-
tion of power law for EEG analysis in order to classify the functional state of the 
brain can be considered promising.

Our findings regarding the significance of Benford’s law with regard to the EEG 
signal features are consistent with the results reported in [21, 22]. In [21], however, 
the statistics they obtained from Kolmogorov-Smirnov test for Benford’s law were 
similar for the different groups of EEG signals. Informal visual analysis of QQ-plots 
(which are advised against in [24]) was used to make conclusions, and no specific 
goodness-of-fit values were reported. We believe that our approach that involves a 
particular model for GOF and the concrete R2 value might be more robust.

At the same time, we need to note that the R2 = 0.513 obtained in our study 
implies rather moderate prediction quality. This might be explained by using regres-
sion and focusing on individuals, which implies more uncontrolled factors, instead 
of classification of EEG signals into several groups, as done in many related studies. 
For instance, in [26] the very best model for classification into two emotional states 
achieved accuracy of 0.623, while the ones for the four other considered models 
were at about 0.55. Also, whereas the currently mainstream method for EEG-based 
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classification, artificial neural networks (see, e.g., in [27]), requires large datasets, 
our proposed approach does not need thousands of data records.

The construct validity of our study might be somehow affected by the usage of 
MMSE to operationalize cognitive status of the participants. This score is rather 
aimed towards assessing mild cognitive impairments [5], and even for that purpose 
it is known to be relatively crude, so that, for example, Montreal Cognitive 
Assessment (MoCA) is often recommended as an advantageous alternative [12]. 
One benefit of relying on MMSE was its easier availability, since it is widely col-
lected in medical clinics during examination and monitoring of the patients. With 
regard to research applications, it has been noted though that it shows insufficient 
criterion validity [7]. At the same time, MMSE is still reported as a significant fac-
tor, whose importance is higher is the one of demographics and activity factors [6].

The weak influence of age, which is known to be negatively associated with 
MMSE values [6, 28], is probably due to the relatively narrow age range of the 
patients examined, since the most pronounced change in MMSE was found for the 
age between 84 and 105 years. Correspondingly, experiments with more subjects, 
whose number in our study was relatively small, should be done, and more factors 
explored, besides the Age parameter.

Another limitation of our study is the somehow arbitrary choice of the EEG lead 
for the analysis. TP8 has no reliable theoretical justification with respect to cogni-
tive status, unlike, for instance, the Fz lead, for which we found no effect. At the 
same time, in [21] they found that the electrodes O1 and O2 were particular charac-
teristic, while the occipital region of the brain is generally thought to be less affected 
by the changes resulting from Alzeihmer’s disease. Correspondingly, we call for 
more studies to replicate or refute our findings.

Acknowledgments  The authors express gratitude to Irina Tarasova and Olga Trubnikova for help 
with data acquisition and Irina Kukhareva and Irina Syrova for carrying out the neuro-psychological 
screening and the Research Institute for Complex Issues of Cardiovascular Diseases, 
Kemerovo, Russia.

The reported study was funded by RFBR according to the research project No. 19-29-01017.

References

1.	Ancis, J.R.: The age of cyberpsychology: an overview. Technol. Mind Behav. 1(1) (2020). 
https://doi.org/10.1037/tmb0000009

2.	Voiskounsky, A.E.: Perspectives of formation of internet psychology. Psihologicheskij zhur-
nal. 34(3), 110–118 (2013) (in Russian)

3.	Parsons, T.D.: Cyberpsychology and the Brain: The Interaction of Neuroscience and Affective 
Computing, 1st edn. Cambridge University Press, Cambridge (2017)

4.	Tarasova, I.V., Trubnikova, O.A., Kukhareva, I.N., Barbarash, O.L.: Methodological 
approaches to the diagnosis of postoperative cognitive dysfunction in cardiac surgery clinic. 
Kompleksnye problemy serdechno-sosudistyh zabolevanij. 4, 73–78 (2015). https://doi.org/1
0.17802/2306-1278-2015-4-73-78. (in Russian)

A. Zlobin et al.

https://doi.org/10.1037/tmb0000009
https://doi.org/10.17802/2306-1278-2015-4-73-78
https://doi.org/10.17802/2306-1278-2015-4-73-78


221

5.	Choe, Y.M., Lee, B.C., Choi, I.G., Suh, G.H., et al.: MMSE subscale scores as useful predictors 
of AD conversion in mild cognitive impairment. Neuropsychiatr. Dis. Treat. 16, 1767–1775 
(2020). https://doi.org/10.2147/NDT.S263702

6.	Na, K.S.: Prediction of future cognitive impairment among the community elderly: a machine-
learning based approach. Sci. Rep. 9, 1–9 (2019). https://doi.org/10.1038/s41598-019-39478-7

7.	Van Heugten, C.M., Walton, L., Hentschel, U.: Can we forget the mini-mental state examina-
tion? A systematic review of the validity of cognitive screening instruments within one month 
after stroke. Clin. Rehabil. 29(7), 694–704 (2015). https://doi.org/10.1177/0269215514553012

8.	Smailovic, U., Jelic, V.: Neurophysiological markers of Alzheimer’s disease: quantitative EEG 
approach. Neurol. Ther. 8(2), 37–55 (2019). https://doi.org/10.1007/s40120-019-00169-0

9.	Doan, D.N.T., Ku, B., Choi, J., Oh, M., et al.: Predicting dementia with prefrontal electroen-
cephalography and event-related potential. Front. Aging Neurosci. 13, 180 (2021). https://doi.
org/10.3389/fnagi.2021.659817

10.	Meghdadi, A.H., Stevanovic, M.K., McConnell, M., Rupp, G., et al.: Resting state EEG bio-
markers of cognitive decline associated with Alzheimer’s disease and mild cognitive impair-
ment. PLoS One. 16(2), e0244180 (2021). https://doi.org/10.1371/journal.pone.0244180

11.	Han, S.H., Pyun, J.M., Yeo, S., Kang, D.W., et al.: Differences between memory encoding and 
retrieval failure in mild cognitive impairment: results from quantitative electroencephalogra-
phy and magnetic resonance volumetry. Alzheimers Res. Ther. 13(1), 1–11 (2021). https://doi.
org/10.1186/s13195-020-00739-7

12.	Kutlubaev, M.A.: Detection of cognitive deficit in a therapist’s practice: review of screening 
scales. Terapevticheskiy arkhiv. 86(11), 135–138 (2014) (in Russian)

13.	Musaeus, C.S., Engedal, K., Høgh, P., Jelic, V., Mørup, M., et al.: EEG theta power is an early 
marker of cognitive decline in dementia due to Alzheimer’s disease. J. Alzheimers Dis. 64(4), 
1359–1371 (2018). https://doi.org/10.3233/JAD-180300

14.	Tarasova, I.V.: Electroencephalographic Correlates of Cognitive Impairment and Their 
Modification in Patients with Coronary Artery Bypass Surgery. Doctor of Medical Sciences 
Thesis, Research Institute of Physiology and Fundamental Medicine, Kemerovo (2017) (in 
Russian)

15.	Babiloni, C., Binetti, G., Cassetta, E., Dal Forno, G., et  al.: Sources of cortical rhythms 
change as a function of cognitive impairment in pathological aging: a multicenter study. Clin. 
Neurophysiol. 117(2), 252–268 (2006). https://doi.org/10.1016/j.clinph.2005.09.019

16.	He, B.J.: Scale-free brain activity: past, present, and future. Trends Cogn. Sci. 18(9), 480–487 
(2014). https://doi.org/10.1016/j.tics.2014.04.003

17.	Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuno, J.C.: From time series to complex 
networks: the visibility graph. Proc. Natl. Acad. Sci. 105(13), 4972–4975 (2008). https://doi.
org/10.1073/pnas.0709247105

18.	Yu, H., Zhu, L., Cai, L., Wang, J., et  al.: Identification of Alzheimer’s EEG with a WVG 
network-based fuzzy learning approach. Front. Neurosci. 14, 641 (2020). https://doi.
org/10.3389/fnins.2020.00641

19.	Cai, L., Deng, B., Wei, X., Wang, R., Wang, J.: Analysis of spontaneous EEG activity in 
Alzheimer's disease using weighted visibility graph. In: Proceedings of the 40th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society, 
pp. 3100–3103. EMBC, Honolulu (2018). https://doi.org/10.1109/EMBC.2018.8513010

20.	Vecchio, F., Miraglia, F., Marra, C., Quaranta, D., Vita, M.G., et al.: Human brain networks 
in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. 
J. Alzheimers Dis. 41(1), 113–127 (2014). https://doi.org/10.3233/JAD-132087

21.	Kreuzer, M., Jordan, D., Antkowiak, B., Drexler, B.: Brain electrical activity obeys Benford’s 
law. Anesth. Analg. 118(1), 183–191 (2014). https://doi.org/10.1213/ANE.0000000000000015

22.	Tirunagari, S., Abasolo, D., Iorliam, A., Ho, A.T., Poh, N.: Using Benford's law to detect anoma-
lies in electroencephalogram: an application to detecting Alzheimer’s disease. In: Proceedings 
IEEE Conference on Computational Intelligence in Bioinformatics and Computational 
Biology, pp. 1–6. CIBCB, Manchester (2017). https://doi.org/10.1109/CIBCB.2017.8058547

Predicting Individual Cognitive Status Based on EEG Data Fit to Power Law Distribution

https://doi.org/10.2147/NDT.S263702
https://doi.org/10.1038/s41598-019-39478-7
https://doi.org/10.1177/0269215514553012
https://doi.org/10.1007/s40120-019-00169-0
https://doi.org/10.3389/fnagi.2021.659817
https://doi.org/10.3389/fnagi.2021.659817
https://doi.org/10.1371/journal.pone.0244180
https://doi.org/10.1186/s13195-020-00739-7
https://doi.org/10.1186/s13195-020-00739-7
https://doi.org/10.3233/JAD-180300
https://doi.org/10.1016/j.clinph.2005.09.019
https://doi.org/10.1016/j.tics.2014.04.003
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.1073/pnas.0709247105
https://doi.org/10.3389/fnins.2020.00641
https://doi.org/10.3389/fnins.2020.00641
https://doi.org/10.1109/EMBC.2018.8513010
https://doi.org/10.3233/JAD-132087
https://doi.org/10.1213/ANE.0000000000000015
https://doi.org/10.1109/CIBCB.2017.8058547


222

23.	Smolyakov, Y.N.: Integral estimation of cognitive abilities based on the result of spectral anal-
ysis of the EEG. Syst. Anal. Med., 102–105 (2014) (in Russian)

24.	Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM 
Rev. 51(4), 661–703 (2009). https://doi.org/10.1137/070710111

25.	Heil, S., Bakaev, M., Gaedke, M.: Web user interface as a message. In: Proceedings 
International Conference on Web Engineering (ICWE 2021) Lecture Notes in Computer 
Science, pp. 88–96, Biarritz (2021). https://doi.org/10.1007/978-3-030-74296-6_7

26.	 Imah, E.M., Rahmawati, E.: Classification of emotional state based on EEG signal 
using AMGLVQ.  Proc. Comput. Sci. 157, 552–559 (2019). https://doi.org/10.1016/j.
procs.2019.09.013

27.	Jiao, Z., Gao, X., Wang, Y., Li, J., Xu, H.: Deep convolutional neural networks for mental 
load classification based on EEG data. Pattern Recogn. 76, 582–595 (2018). https://doi.
org/10.1016/j.patcog.2017.12.002

28.	Nagaratnam, J.M., Sharmin, S., Diker, A., Lim, W.K., Maier, A.B.: Trajectories of mini-
mental state examination scores over the lifespan in general populations: a systematic review 
and meta-regression analysis. Clin. Gerontol., 1–10 (2020). https://doi.org/10.1080/0731711
5.2020.1756021

A. Zlobin et al.

https://doi.org/10.1137/070710111
https://doi.org/10.1007/978-3-030-74296-6_7
https://doi.org/10.1016/j.procs.2019.09.013
https://doi.org/10.1016/j.procs.2019.09.013
https://doi.org/10.1016/j.patcog.2017.12.002
https://doi.org/10.1016/j.patcog.2017.12.002
https://doi.org/10.1080/07317115.2020.1756021
https://doi.org/10.1080/07317115.2020.1756021

	Predicting Individual Cognitive Status Based on EEG Data Fit to Power Law Distribution
	1 Introduction
	2 Method
	3 Results
	4 Discussion and Conclusion
	References


