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Abstract. Password-based credentials (PBCs), introduced by Zhang
et al. (NDSS’20), provide an elegant solution to secure, yet convenient
user authentication. Therein the user establishes a strong cryptographic
access credential with the server. To avoid the assumption of secure stor-
age on the user side, the user does not store the credential directly, but
only a password-protected version of it. The ingenuity of PBCs is that
the password-based credential cannot be offline attacked, offering essen-
tially the same strong security as standard key-based authentication.
This security relies on a secret key of the server that is needed to verify
whether an authentication token derived from a password-based creden-
tial and password is correct. However, the work by Zhang et al. assumes
that this server key never gets compromised, and their protocol loses all
security in case of a breach. As such a passive leak of the server’s stored
verification data is one of the main threats in user authentication, our
work aims to strengthen PBC to remain secure even when the server’s key
got compromised. We first show that the desired security against server
compromise is impossible to achieve in the original framework. We then
introduce a modified version of PBCs that circumvents our impossibility
result and formally define a set of security properties, each being optimal
for the respective corruption setting. Finally, we propose a surprisingly
simple construction that provably achieves our stronger security guaran-
tees, and is generically composed from basic building blocks.

1 Introduction

Password-based authentication is still the most common form of user authenti-
cation online. Their main benefit is convenience: users can access their accounts
from any device based on human-memorizable information only. On the down-
side, passwords provide weak security guarantees. The biggest threats are server
compromise, i.e., an attacker gaining access to the password data stored on the
server side, and weak passwords that can be (online) guessed.

To provide better security for users, strong authentication solutions such as
FIDO [18,23] see an increasing interest in the industry and among standardiza-
tion communities. In these solutions, the user typically owns a cryptographically
strong signing key, and authenticates by signing a challenge provided by the
server who stores the corresponding public key. This solution eliminates both
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the risk of guessing attacks (the user now has a high-entropy key) and server
compromise (the information on the server side is only the user’s public key,
i.e., not sensitive). However, this strong security comes for the price of reduced
usability, as the user must securely manage cryptographic key material. This is
particularly challenging when users want to access the key from many, and pos-
sibly low-security, devices. A common approach therefore is to rely on tamper-
resistant hardware tokens, e.g. Yubikey [25], which is desirable from a security
perspective, but clearly not ideal in terms of usability [19].

Password-Based Credentials. To combine the best of both worlds, Zhang et
al. [26] recently proposed the concept of password-based credentials (PBC) that
provide similarly strong security as the key-based solution, but without having
to store sensitive key material on the user side. In the PBC-system, the user
establishes a cryptographically strong access credential with the server upon
registration. To avoid the need of secure hardware on the user side, the user does
not store the sensitive credential directly, but only a password-protected version
of it. When authenticating to the server, the user needs both the credential and
her password. The twist of their solution is that this password-based credential
is resistant to offline brute-force attacks against the password, and thus could
even be synced via (untrusted) cloud providers or simply copied on many (low-
security) devices. This offline-attack resistance is achieved by relying on a high-
entropy key of the server for verifying whether an authentication token derived
from the credential and password is correct. Thus, verifying whether a password
guess was correct requires interaction with the server, which reduces the attack
surface from offline to online attacks if an attacker knows the password-based
credential. If the adversary does not possess the user’s password-based credential,
the security is essentially equivalent to strong authentication. Their security
comes with one significant limitation though – it assumes the server never gets
compromised.

Importance of Server Compromise. Server compromise is a major threat to
password-based authentication, and refers to an attack where the adversary gains
access to the authentication information maintained by the server, such as pass-
word hashes. The server itself is considered to be honest, but an attacker can
now recover the users’ access details to either gain access to a user’s account at
the compromised server or, if the same password is re-used across multiple ser-
vices, even impersonate the user on different sites. Even major companies such as
Yahoo [24], PayPal [10], Linkedin [1], Blizzard [20] or LastPass [22] have suffered
from such attacks, resulting in millions of password hashes or password-protected
files being compromised.

Thus, considering the threat of server compromise and building solutions
that maintain security in such scenarios is crucial for end-user authentication.
Surprisingly, despite having server compromise as a core motivation for their
work, Zhang et al. [26] do not include server compromise attacks in their model.
In fact, their PBC protocol loses all security if the server’s data gets compro-
mised, as the attacker can then impersonate any user who has registered with
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the server. This even holds regardless of the user’s chosen password, as it does
not require any additional offline attack to recover the password.

1.1 Our Contributions

We address the problem of password-based credentials that remain secure in the
presence of server compromise. We show that the desired security is impossible
to achieve in the framework proposed by Zhang, Wang and Yang [26] (hence-
forth called the ZWY framework). We adapt this framework to circumvent the
impossibility result and propose a generic protocol that provably satisfies our
stronger notion – and is even simpler than the one by Zhang et al.

Following the work by Zhang et al. [26], we formalize PBC as a password-
based token scheme, i.e., the actual authentication protocol is abstracted away.
On a high-level, the user registers with the server, obtaining a credential that is
protected under her password. After registration, the user can generate a token
by “signing” her username and message (which typically will be a fresh nonce
in the actual authentication protocol) using the credential and password as a
secret key input. The server verifies that token using it’s secret verification key.

We extend and strengthen the ZWY security framework to capture the fol-
lowing high-level security guarantees:

Strong Unforgeability: An attacker without knowledge of the user’s creden-
tial should not be able to forge an authentication token – thus essentially
guaranteeing the same level as classic key-based strong authentication. This
property must also hold when the adversary knows the user’s password, and
when the server is compromised, i.e., even if the adversary knows the server’s
verification key.

Online Unforgeability: When the adversary knows the user’s credential (but
not the server’s verification key), tokens remain unforgeable as long as the
adversary has not guessed the correct password. The strength of this property
is that the adversary must not be able to offline attack the password but run
an online attack against the honest server. Requiring participation of the
server for each password guess, enables the server to notice suspicious access
patterns and impose throttling on the affected account.

Offline Unforgeability: If both the user’s credential and the server’s key are
compromised, the attacker can unavoidably test passwords in an offline way.
However, we require the attacker to perform such an offline attack on each
password. This adds a last layer of security for users with strong passwords.

The ZWY framework captures a security definition for a combined version
of online unforgeability and a weaker form of strong unforgeability where the
server could not be compromised. Their work did not cover or achieve offline
unforgeability.

Impossibility of Security Against Server-Compromise in Single-Key Setting. In
the ZWY framework [26], the server only has a single verification key for all
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users. The high-level idea of their concrete construction is as follows: the server
has a global MAC key, and the credential is essentially a server’s (algebraic)
MAC on the username which the user encrypts under her password. The core
idea of authentication is decrypting the credential with the password, recovering
the MAC and sending it back to server (and bound to the message). Without
knowing the server’s high-entropy key, one cannot verify if the decrypted value
is indeed a correct MAC, ensuring the desired online unforgeability. It is easy to
see that this construction is not secure if the server’s key got compromised, as
the adversary can simply create MACs for all users he wants to impersonate.

In fact, we show that this is not merely a weakness of their scheme but inher-
ent in the overall single-key setting. That is, we show that strong unforgeability
and offline unforgeability are impossible to achieve when the server owns a single
verification key for all users.

Framework for Multi-key Password-Based Credentials. As two of the three desired
security properties are impossible to achieve in the single-key ZWY frame-
work [26], we propose a new variant – Multi-key Password-based Credentials
(mkPBC) – where the server maintains an individual verification key for every
user. Moving to a setting where the server maintains individual verification infor-
mation for each user requires an additional property also concerned with server
compromise, yet not captured by any of the three properties listed above:
Pw-Hiding: The server’s verification key for a user should not leak any infor-

mation about the user’s password.

The reason this property is not covered by the unforgeability notions dis-
cussed above is that learning the password in the mkPBC scheme does not allow
the server to impersonate the user (this still requires the user credential). How-
ever, as users tend to reuse their passwords across different sites, we want the
password to remain fully hidden in case the server gets compromised.

We formally define all four properties through game-based security defini-
tions, capturing the optimal security guarantees for a mkPBC scheme.

Simple Construction From Standard Building Blocks. Finally, we present a sur-
prisingly simple generic mkPBC scheme (PBCStE) constructed from standard
building blocks – a pseudorandom function, public-key encryption and signature
scheme. The challenge is in formally proving that it achieves all our security
notions. To do so, we require the signature scheme to satisfy two properties
in addition to unforgeability – complete robustness and randomness injectivity.
Both are natural properties, and we show that they are achieved by standard
signature schemes, such as Schnorr and DSA.

Interestingly, our construction does not only provide stronger security than
the original scheme, but is also much simpler and generic: Whereas Zhang et
al. [26] gave a concrete discrete-logarithm based construction that required the
q-SDH and q-DDHI assumptions, our PBCStE only requires basic building blocks,
and thus can be easily implemented using standard cryptographic libraries. The
generic approach also allows to obtain a quantum-safe variant of our scheme if
the generic building blocks are instantiated with PQC-variants.
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2 Single-Key Password-Based Credentials

This section presents the idea and security of the ZWY framework by Zhang et
al. [26], to which we refer to as single-key password-based credentials (skPBC).
We show that no skPBC can achieve security in the presence of server com-
promise, which we consider a crucial goal and which motivates our switch to
multi-key PBCs in the following section.

We start by presenting the definition of single-key PBCs before we present
the impossibility result. We adopted the ZWY framework to our notation for
consistency with our main result. For completeness, we summarize our editorial
changes to the ZWY syntax and security definitions in Appendix A and explain
that they do not change the technical aspects of [26].

Syntax. A (single-key) password-based credential system skPBC consists of five
algorithms (KGen, 〈RegU,RegS〉,Sign,Vf) used in two main phases – a registra-
tion phase and an authentication phase – and involves two parties: a server S
and a user U who wishes to authenticate to the server. In the single-key setting,
the server is assumed to have a single long-term key KGen(1λ) → (ssk, spk) that
is used to register and verify all users. In the interactive registration protocol
〈RegU(spk, uid, pw),RegS(ssk, uid)〉 → (ask;−) the user registers herself at the
server with a username uid and password pw from password space Dpw. The
server issues her a credential ask (= authenticated secret key) using a server key
ssk and stores her username in his database.

While the overall goal is to use PBC for user authentication, where U and
S engage in a challenge-response protocol, this is abstracted away in PBCs by
modelling a special type of authentication token τ . This token is created through
Sign(uid, ask, pw,m) → τ by the user for a (challenge) message m and username
uid, using the user’s credential ask and password pw. Verification is a secret-key
operation and allows the server with key ssk to verify whether the message m
was indeed signed by user uid. This is defined through Vf(ssk, uid,m, τ) → 0/1.

2.1 Security Model of ZWY [26]

Zhang et al. [26] proposed the security definition Existential Unforgeability under
Chosen Message and Chosen Verification Queries Attack (EUF-CMVA). This
definition comes with two independent winning conditions and guarantees, (1)
classic unforgeability if the adversary only knows the user’s password but none
of the keys (neither of server nor user) and (2) online unforgeability if the user’s
key got compromised.

Thus, this can be seen as a combined version of the strong and online unforge-
ability we described in the introduction, with one significant limitation though:
the ZWY model does not allow for server compromise in the strong unforgeabil-
ity game, thus we refer to their version as weak unforgeability. In fact, we show
that strong unforgeability is impossible in their setting.

Furthermore, their work does not capture offline unforgeability, again due to
the absence of server compromise, and we show that this is also impossible in
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Fig. 1. Weak and Strong (including the highlighted text) Unforgeability for skPBC.
The oracles use the values (i, uidi, aski, pwi) established during registration.

their setting. Note that the pw-hiding property is not needed in skPBC, as the
server does not maintain user-specific state which could depend on the password.

For consistency and ease of presentation, we split the EUF-CMVA game
along the two independent winning conditions which correspond to weak and
online unforgeability. In the following we only focus on the weak unforgeability
and the impossibility of strong unforgeability.

Weak Unforgeability. Weak unforgeability guarantees that the adversary cannot
forge a valid authentication token for a user if he does not know the user’s
credential ask. This provides standard security for users whose credential have
not been compromised.

This property is modelled as a game played between a challenger and an
adversary. The adversary chooses the usernames of all users. The challenger
registers them with randomly chosen passwords with the honest server. The
adversary is given the passwords of all users and can then ask arbitrary honest
users to sign messages of his choice (via OSign) and ask the server to verify
tokens of his choice (via OVf , recall that this is necessary as verify is a secret-
key operation). He can also corrupt users via the ORevCred oracle, which returns
the credential aski of a user i of his choice. The adversary wins if he can forge
an authentication token on a fresh message for a user whose credential he has
not obtained. The security experiment ExpweakUNF

A,skPBC(λ) is given in Fig. 1 and the
security definition is as follows:

Definition 1 (skPBC Weak/Strong Unforgeability). A skPBC scheme is
x-unforgeable, for x ∈ {weakly , strongly}, if for all PPT adversaries A, it holds
that Pr[ExpxUNF

A,skPBC(λ) = 1] ≤ negl(λ).

2.2 Impossibility of Strong (and Offline) Unforgeability

Lifting the security definition from weak to strong unforgeability is straightfor-
ward: to model server compromise, we give the adversary access to the server’s
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secret state – here ssk – after registering honest users. We require the same
unforgeability for users whose individual credentials he never learned (see Fig. 1).

However, we now show that achieving this notion is impossible in the single-
key setting. The idea of the attack is simple: once the adversary has learned the
server’s secret key, he re-runs the registration of an arbitrary honest user with a
password of his choice to obtain a valid user credential and creates tokens in her
name. More precisely, the following adversary A wins the strong unforgeability
game for skPBC with probability 1:

A(spk)

Pick uid1
r←− Duid, send (uid1, st) to the challenger, receive (st, pw1, ssk);

Pick pw′ r←− Dpw and run (ask′; −) ← 〈RegU(spk, uid1, pw′),RegS(ssk, uid1)〉
Choose m∗ r←− M; compute τ∗ ← Sign(uid1, ask′, pw′, m∗) and output(uid1, m

∗, τ∗)

Success Analysis of A: By the correctness definition it holds that Vf(ssk, uid1,
m∗,Sign(uid1, ask′, pw′,m∗)) = 1 since ask′ is obtained by running the registra-
tion protocol with (uid1, pw′) and the correct issuer secret key ssk. The adver-
sary did neither query OSign(1,m∗) nor ORevCred(1), and thus wins the security
experiment ExpstrongUNF

A,skPBC (λ) with probability 1.
The attack exploits the fact that a single key ssk is used to both register users

and verify their tokens, and never gets updated when a user registers. Hence,
the authentication cannot depend on any user-provided input, but solely on the
server key (and the secrecy thereof). This attack also extends to the context of
offline unforgeability since an adversary who knows ssk can forge authentication
tokens for any user without offline dictionary attacks.

3 Multi-key Password-Based Credentials

Motivated by the impossibility of strong unforgeability in the single-key setting,
we now introduce our concept of multi-key password-based credentials. The cru-
cial difference is that the server no longer has a single secret key to issue user
credentials and verify their tokens. Instead, he generates a user-specific verifica-
tion key for each registered user and uses that user-specific key when verifying
a user’s token. We modify the original PBC syntax to the multi-key setting and
then formalize the desired security properties.

Syntax. While the overall idea and concept remain the same in the multi-key
setting, we change how the server stores user-specific verification information.
We do not assume that the server has a single key pair (ssk, spk). Instead, in
the registration phase, the server will output a user-specific verification key avk
which allows him to verify the user’s authentication token.

Definition 2 (Multi-key Password-based Credential). A multi-key PBC
scheme mkPBC = (Setup, 〈RegU,RegS〉,Sign,Vf) with message space M, user-
name space Duid and password space Dpw is defined as follows.
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Setup(1λ) → pp: Outputs public parameters pp. We assume all algorithms get
the public parameters pp as implicit input.

〈RegU(uid, pw),RegS(uid)〉 → (ask; avk): An interactive protocol between U
with (uid, pw) ∈ Duid × Dpw and S. After successful registration, the user
outputs a credential ask, and the server outputs a user-specific verification
key avk.

Sign(uid, ask, pw,m) → τ : Generates an authentication token τ on message
m ∈ M and username uid, using ask and pw.

Vf(uid, avk,m, τ) → 0/1: Outputs 1 if authentication token τ is valid on uid
and m under avk and 0 otherwise.

We require all honestly generated authentication tokens using the correct combi-
nation of ask and pw to pass validation under the corresponding avk. A formal
correctness definition is given in Appendix C.

3.1 Security Model

We now provide a formal model for the following security properties motivated
in Sect. 1.1 and partially inspired by the ZWY model [26].

Strong Unforgeability: An adversary who does not know a user’s ask cannot
forge an authentication token for that user, even when he knows the user’s
password pw and the server’s verification key avk.

Online Unforgeability: An adversary who knows ask but not pw or avk can-
not forge an authentication token more efficiently than through online guess-
ing attacks, interacting with the server who has avk.

Offline Unforgeability: If the adversary knows both ask and avk of a user,
he has to conduct a brute-force offline dictionary attack on the password pw
in order to forge an authentication token.

Pw-Hiding: The avk does not leak any information about the underlying pw.

Optimal Security. We stress that all security guarantees are optimal for the
respective corruption setting, i.e., achieve the strongest level of full/online/offline
attack-resistance for each combination of corrupted keys and passwords. When
defining these properties through formal security models, it is important to give
the adversary therein as much “access” to honest parties as possible. In fact, this
was not properly captured in the ZWY model: therein corrupt users where not
allowed to register with an honest server, which allows entirely insecure schemes
to be proven secure. See Appendix A for a discussion of that shortcoming. Inter-
estingly, our choice of letting the server maintain independent key material for
all users, simplifies the modelling significantly: since the server in mkPBC does
not have any long-term secret key used during registration or verification, the
adversary can internally simulate the registration of any corrupt user (expressed
through any combination of uid and pw) that he wants. Thus, for our security
model (Fig. 2), it suffices to consider only a single honest target user and let the
adversary (internally) handle all other (corrupt) users in the system.
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Fig. 2. Security experiments and oracles for mkPBC. The overall goal of the adversary
in our three unforgeability games is the same, and is shown in the combined xUNF
experiment, where only the set of revealed keys and oracles differ depending on x.

Strong Unforgeability. Without knowing the user’s credential ask, we want the
strongest security in the sense that an adversary can forge tokens in the name of
an honest user uid with negligible probability only. This is modelled by letting
the challenger run the registration for an honest user uid with password pw,
obtaining ask and avk. It then hands avk, pw to the adversary, and grants A
access to a sign oracle OSign, which returns tokens created with ask (and pw) for
messages mi of his choice. The adversary wins if he can produce a valid token
τ∗ for a fresh message m∗ that verifies for the honest users uid and avk.

Definition 3 (Strong Unforgeability). A mkPBC scheme is strongly
unforgeable, if for all PPT adversaries A: Pr[ExpstrongUNF

A,mkPBC (λ) = 1] ≤ negl(λ).

Online Unforgeability. If the adversary knows the user’s high-entropy credential
ask it is impossible to achieve strong unforgeability anymore. As soon as A
has correctly guessed the user’s password, there is no security. The best we can
hope for is security against online attacks, relying on the server’s user-specific
verification key avk as a second defense, i.e. the honest server’s participation
must be required to verify each of A’s password guesses.

In the security game, this is modelled by giving A the credential ask of the
honestly registered user uid, but neither avk nor pw. Consequently, we grant
A access to avk through a verify oracle OVf that allows the adversary to verify
message-token pairs (mi, σi) of his choice under the server’s avk. Given that
the adversary knows ask, he can use OVf as a password test oracle, submitting
tokens generated for the correct ask and different password guesses pw′.

It might look surprising that we grant A access to a sign oracle too – as he
does know ask here – but this oracle is necessary since he does not know the
corresponding pw and must be able to observe valid tokens by the honest user.
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The adversary’s goal is still to forge an authentication token for the honest
user. The security definition needs to be weakened to online attacks though, and
states that the adversary cannot win the experiment significantly better than
through testing qVf +1 of the |Dpw| passwords where qVf is the number of queries
made to the OVf oracle. The additional constant 1 is added because the forgery
which A outputs in the end, can itself be seen as a password guess.

Definition 4 (Online Unforgeability). A mkPBC scheme is online unforge-
able, if for all PPT adversaries A it holds that Pr[ExponlineUNF

A,mkPBC(λ) = 1] ≤
qVf+1
|Dpw| + negl(λ), where qVf is the number of queries to the OVf oracle.

Offline Unforgeability. If both keys, ask and avk, related to an honest user are
compromised, the unforgeability solely relies on the strength of the user password
pw. The best we can hope for in this setting are offline attacks: the adversary can
test passwords by signing a message using the corrupted ask and password guess
pw′ and verify the resulting token using the key avk. As soon as the adversary
has correctly guessed pw, there is no secret left, and he can create tokens for
arbitrary messages. Offline attacks are unavoidable in this case, but we also want
them to be the best possible attack. This means that choosing a strong password
adds an additional (albeit weak) layer of security for the user.

To quantify the offline amount of work the adversary has to perform, we
took inspiration from security models of other password-based protocols [6–8]
and introduce an oracle OTestPW which takes the adversaries password guess pw′

and returns 1 if pw = pw′ and 0 else. The adversary’s goal stays the same –
forging an authentication token for the honest user – which he must not be able
to do significantly better than through testing qf of the |Dpw| passwords where
qf is the number of queries made to the OTestPW oracle.

Note that proving a concrete scheme to satisfy this property inherently
requires some idealized assumption such as the random oracle, which needs to
get invoked on the user’s password – otherwise we could simply not count the
offline password guesses.

Definition 5 (Offline Unforgeability). A mkPBC scheme is offline unforge-
able, if for all PPT adversaries A it holds that Pr[ExpofflineUNF

A,mkPBC(λ) = 1] ≤
qf

|Dpw| + negl(λ), where qf is the number of queries to the oracle OTestPW.

PW-Hiding. This property guarantees that a malicious server learns nothing
about the user’s password, or rather that a user-specific key avk – despite being
derived from a user password pw – does not leak any information about pw.

To model this property, we follow the classic indistinguishability approach.
The adversary chooses two passwords pw0 and pw1 for a user uid. The challenger
randomly chooses a bit b and runs the registration protocol for user uid and pwb,
yielding ask and avk. It hands avk to the adversary, whose goal is to output
the correct bit b better than through guessing. To model any possible leakage
through other parts of the PBC system, we also grant the adversary access to
an OSign oracle which is keyed with ask and pwb.
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Definition 6 (Pw-Hiding). A mkPBC scheme is pw-hiding, if for all PPT
adversaries A it holds that Pr[ExpPW−Hiding

A,mkPBC (λ) = 1] ≤ 1/2 + negl(λ).

4 Our Instantiation: Sign-Then-Encrypt Based Scheme

In this section, we describe PBCStE which securely realizes all security guaran-
tees described in Sect. 3. Our scheme is conceptually entirely different from the
one proposed by Zhang et al. [26], which essentially relied on a DL-based alge-
braic MAC. Our scheme is generic and soley relies on basic building blocks: a
signature scheme, encryption scheme and a pseudorandom function. In order to
prove security, we need two less common properties from the signature scheme
in addition to unforgeability: complete robustness and randomness injectivity.
We stress that both are natural assumptions and argue that they are satisfied
by standard signatures schemes such as Schnorr, DSA and BLS. We start by
defining the main building blocks and their required security properties before
describing our provably secure construction.

4.1 Building Blocks

We now introduce the building blocks needed for our construction, focusing on
the lesser known properties that we will require from the signature scheme.

Notation. Since our construction depends on a signature scheme with determinis-
tic key generation algorithm using explicit randomness, we write “y := A(x; r)”
to highlight that the output y is derived deterministically by algorithm A on
input x with randomness r. Conversely, when we write “y ← A(x)”, the output
y may be derived either deterministically or probabilistically by algorithm A
from input x. We utilize “s r←− S” to denote the uniformly random sampling of
a value s from the set S.

Pseudorandom Function. We require a secure PRF F : {0, 1}λ × X → Y. In
some of our security experiments, the adversary will be in possession of the PRF
key, and we still want unpredictability of outputs – we then resort to assuming
F to be a random oracle for the combined input domain of {0, 1}λ × X .

Public-Key Encryption. A public-key encryption (PKE) scheme ΠEnc :=
(KGenE , Enc,Dec) consisting of key generation (pkEnc, skEnc) ← KGenE(1λ), an
encryption c ← Enc(pkEnc,m) and decryption algorithm m ← Dec(skEnc, c). We
require ΠEnc to be indistinguishable against chosen-ciphertext attacks (IND-
CCA).

Signature Scheme. A signature scheme ΠSign := (SetupS ,KGenS ,SignS ,VfS)
with setup pp ← Setup(1λ), key generation (pkSig, skSig) := KGen(pp; r) for
randomness r, sign algorithm σ ← SignS(skSig,m), and verify algorithm b ←
VfS(pkSig,m, σ). Note that we make the randomness used in key generation
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explicit and assume KGen to be a deterministic function when given random-
ness r ∈ Rλ as input. Rλ is part of the public parameters pp and denotes the
randomness space. We require the scheme to be existentially unforgeable under
chosen-message attacks (EUF-CMA): It must be infeasible for an adversary given
pkSig from (skSig, pkSig) := KGen(pp; r) for random r

r←− Rλ and access to a sign
oracle to produce a valid signature on a fresh message. Our construction requires
two additional properties: complete robustness and randomness injectivity.

Complete Robustness. Géraud and Naccache [12] formalized the notion of com-
plete robustness which requires that it should be hard for an adversary to find
a message-signature-pair which verifies under two different public keys.

Definition 7 (Complete Robustness). A signature scheme ΠSign := (Setup,
KGen,Sign,Vf) achieves complete robustness (CROB) or is CROB-secure
if for pp ← Setup(1λ) it holds that for every PPT A, the probability
Pr[(pk, pk′,m, σ) ← A(pp) : pk �= pk′ ∧ Vf(pk,m, σ) = Vf(pk′,m, σ) = 1] is
negligible in λ.

Randomness Injectivity. The second property we need is randomness injectivity
which requires that the KGen algorithm is injective on the randomness space.
We call a signature scheme randomness injective if it is hard for an adversary to
find two distinct values r, r′ ∈ R, which, when given to KGen, map to the same
sk or pk. This also implies that for every public key there exists only one secret
key. In Appendix C, we give a formal definition of randomness injectivity.

4.2 Our PBCStE Protocol

The idea of our protocol – referred to as PBCStE – is surprisingly simple and turns
classic signature-based authentication into a secure mkPBC. In the following, we
describe the intuition and give the full description in Fig. 3.

Upon registration, the user generates a signature key pair (pkSig, skSig) and
sends the public key pkSig to the server. Such a key pair enables strong authen-
tication through signing (uid,m), but all security will be lost when an attacker
gets access to the user’s signing key. We therefore do not store (or even gen-
erate) the key normally, but derive it deterministically as (pkSig, skSig) :=
KGenS(pp;F (k, pw)) from a PRF key k and the user’s password pw. The user
now only stores the PRF key k and re-derives the signature key pair when she
wants to generate an authentication token.

This solution already satisfies strong and offline unforgeability as well as
password hiding. The challenge is to also guarantee online unforgeability, i.e.,
ensuring that the knowledge of the user’s key and an authentication token does
not allow to brute-force the password. So far, this isn’t achieved as an attacker
who knows k and a valid signature σ can mount an offline password test by
computing possible key-pairs (pk′

Sig, sk
′
Sig) from password guesses pw′ until he

has found the correct pw′ under which σ verifies.
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Preventing Offline Attacks. We prevent this offline attack by hiding the actual
signature σ in the token. Therefore, we let the user encrypt σ under an encryption
public-key pkEnc to which the server knows the corresponding secret key skEnc.
More precisely, (pkEnc, skEnc) is a key pair that the user normally generated upon
registration, where she keeps pkEnc as part of her credential, i.e., ask = (k, pkEnc)
and sends the secret decryption key to the server, i.e., avk = (skEnc, pkSig). Now,
only the server knowing skEnc can recover the signature from the authentication
token and verify its validity. Thus, this encryption finally turns the verification
into a secret-key operation, which is essential for the desired online unforgeability.
We stress that this additional and explicit encryption layer is essential for our
security and cannot be achieved from assuming secure channels between the user
and server: honest user’s can be subject to phishing attacks, and accidentally
send authentication tokens to a malicious server.

The Challenge of Proving Online Unforgeability. While the additional encryption
immediately removes the obvious offline attack, proving that this is sufficient to
achieve online unforgeability is not straightforward.

The challenge is that the adversary knows the PRF key k and can offline
attack the password and thereby recover the secret signing key (pkSig, skSig) :=
KGenS(pp;F (k, pw)). Once he knows the correct secret key there is no security
left. And indeed, we cannot rely on any unforgeability guarantees of the signature
for this proof. The reason why our scheme is still secure stems from the fact that
the adversary does not know which key is the correct one: he does not know pkSig

(this is part of the server’s secret key) nor any signature value (they are encrypted
under the server’s key). The only way for A to learn whether a recovered key is
correct, is to compute a signature and send it for validation to the server. The
crucial part in our proof is to show that every interaction with the honest server
for such a verification is bound to a single password guess only, ensuring the
desired online unforgeability.

To illustrate how the signature scheme could allow multiple password tests
in one interaction, consider a signature σ on m which verifies under two differ-
ent public keys pk1 and pk2 constructed from passwords pw1 and pw2. If the
adversary sends (m,σ) to the server and learns that the signature is not valid,
he concludes that the server’s public key is neither pk1 nor pk2 and has ruled
out the two passwords pw1 and pw2 with one interaction. Hence, we require that
every signature verifies under at most one public key which is achieved through
complete robustness. Another way how the signature scheme could allow mul-
tiple password tests is if the public key pk1 can be constructed from multiple
passwords pw1 and pw2. Therefore, we require that every password maps to a
unique secret key and unique public key. This is achieved if F is injective, and
if the signature scheme has randomness injectivity.

4.3 Security Analysis

In this section, we provide the main security theorems for our PBCStE scheme
and sketch their proofs. The detailed proofs are given in the full version of the
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paper [9]. Table 1 provides an overview of the different security properties and
the necessary assumptions on the building blocks of PBCStE.

Fig. 3. Our PBCStE scheme.

Theorem 1. If F is a secure PRF and ΠSign is an EUF-CMA secure signature
scheme, then PBCStE is strongly unforgeable.

Proof (Sketch). In the strong unforgeability game, the adversary knows the
verification key avk = (pkSig, skEnc) and password pw of a user uid, but not
the user credential ask = (k, pkEnc). He does have access to a sign oracle
OSign that creates tokens for ask, and A wins if he can create an authen-
tication token τ∗ which verifies under avk on a fresh message m∗. In this
proof, we can ignore the encryption, as the adversary knows skEnc, i.e., for all
tokens returned by OSign, he can recover the contained signature derived from
(pkSig, skSig) := KGenS(pp;F (k, pw)). Thus, the task of the adversary boils down
to forging a standard signature under the unknown skSig. This is infeasible if the
signature scheme is unforgeable (EUF-CMA) under the assumption that the
PRF-derived secret key is indistinguishable from a randomly chosen one. The
latter follows from the pseudorandomness of F which concludes our proof.

Theorem 2. If F is a random oracle, ΠSign is completely robust and random-
ness injective, and ΠEnc is CCA-secure, then PBCStE is online unforgeable.

Proof (Sketch). Here, the adversary knows the high-entropy credential ask =
(k, pkEnc) of a user uid, but neither her password pw nor the corresponding ver-
ification key avk = (pkSig, skEnc). Both are accessible through the OSign and OVf

oracle though. We must show that if A outputs a valid token τ∗ for a fresh message
m∗ for uid, he must have conducted a successful online-attack on the password. In
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this proof, we first show that, due to the CCA-security of encryption, the OSign ora-
cle does not give the adversary any information about the underlying signature.
Then, we argue that the adversary knows the PRF key k and may offline guess
passwords to create possible key pairs (pk′

Sig, sk
′
Sig) := KGenS(pp;F (k, pw′)) and

forge signatures under sk′
Sig. However, in order to create a valid authentication

token, he needs to use the correct secret key skSig. As the correct pkSig is part of
the secret avk and A never sees any signature σi, his only chance of learning which
key is correct, is by using the verify oracle OVf . Complete robustness of the sig-
nature ensures that every interaction with OVf only leaks whether pkSig = pk′

Sig,
allowing a single public-key guess per query. The injectivity of F and the random-
ness injectivity of ΠSign ensure that this pk′

Sig maps to a single password guess,
thus the adversary can only guess one password per interaction with OVf . This
concludes our proof.

Theorem 3. If F is a random oracle and if ΠSign is EUF-CMA secure and
randomness injective, then PBCStE is offline unforgeable.

Proof (Sketch). In the offline unforgeability game, the adversary now knows
all keys, i.e.,. ask = (k, pkEnc) and avk = (pkSig, skEnc) of a user uid. The
only secret left is her password pw, and we must show that forging a fresh
token m∗, τ∗ for uid requires to (at least) offline-attack the password. Note that
the adversary is given k here, but not the actual signature key (pkSig, skSig) :=
KGenS(pp;F (k, pw)), which still depends on the password. Thus the task of A
again boils down to forging a valid signature under pkSig. He could either aim
at forging the signature directly, i.e., without trying to recover the secret key, or
brute-force the password to compute skSig, as then creating a signature is trivial.
The former is infeasible if the signature is unforgeable, and the latter is bounded
by the number of password guesses if the signature is randomness injective (RI)
and F a random oracle. RI guarantees that there is only one value r = F (k, pw)
such that (pkSig, skSig) = KGenS(pp; r), i.e., there is only a single password that
leads to the correct key. Since the password pw was chosen uniformly at random
from Dpw, the adversary needs to query the random oracle F for each password
guess, and after qF queries his success probability is bounded by qF /|Dpw|.
Theorem 4. If F is a secure PRF, then PBCStE is pw-hiding.

Proof (Sketch). Recall that in the pw-hiding game the adversary receives a ver-
ification key avk = (pkSig, skEnc) that is either derived for pw0 or pw1, and his
task is to determine the underlying password. In our scheme, the only password-
dependent information is (pkSig, skSig) := KGenS(pp;F (k, pwb)). The adversary
knows pkSig, but not the PRF key k, and has access to the key through the sign
oracle for ask = (k, pkEnc). As k is chosen at random from {0, 1}λ, it imme-
diately follows from the PRF property that the adversary cannot distinguish
whether pkSig was created from r = F (k, pwb) or r chosen at random from Rλ.
Since in the latter case, the avk is independent of the password, the pw-hiding
property follows. Note that we do not require any property from the signature
scheme here, as the pw-hiding concerns confidentiality of the password instead
of unforgeability as the other three properties.
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Concrete Instantiation of Building Blocks. The requirements for both the PRF
and PKE are standard, so we only focus on how randomness injectivity and
complete robustness can be achieved by a signature scheme. In Appendix D, we
show that the DL-based standard signature schemes DSA [16], Schnorr [21] and
BLS [5] all achieve both properties (apart from being (EUF-CMA) unforgeable).

Notable signature schemes which are not completely robust include RSA,
GHR and Rabin signatures (see [17]). Nevertheless, Géraud and Naccache [12]
show a generic method to transform any signature scheme into a completely
robust scheme by appending a hash of the public key to the signature. This
transformation also preserves the unforgeability property of the scheme.

5 Related Work

While our work builds upon the novel PBC work by Zhang et al. [26], we also
put it in a bigger context of password-based authentication schemes.

Works Without Online Unforgeability. Isler and Küpcü [14] give an overview of
existing schemes where a user authenticates with the combination of a password
and a password-based credential. As in PBCs, the password-based credential
is not directly the user’s secret key but only a password-protected version of
it. They analyzed several existing works [2–4,13,15] and argued that most are
not resistant against server-compromise and proposed a new scheme. The main
drawback of all schemes (except DE-PAKE [15], discussed below) is that they do
not achieve the same strong online unforgeability as [26] and our work. Roughly,
when the password-based credential got compromised, their model only guar-
antees security when the adversary never sees any authentication token from
the honest user, thus excluding phishing attacks from their model. Our work
provides online unforgeability without assuming full secrecy of tokens.

DE-PAKE. Device Enhanced PAKE by Jarecki et al. [15] is a variant of
password-authenticated key exchange where a user and a server derive a shared
key based on the user’s knowledge of a strong key (stored on an auxiliary device)
and a password. Jarecki et al. show a generic solution which uses the Ford-
Kaliski method [11] to strengthen her password into a strong key using a PRF
and uses this strong key in an asymmetric PAKE protocol to derive a shared
key with the server. Our work uses the same PRF-based method to strengthen
a password into a key. Similarly to the work of Jarecki et al., we aim to achieve
optimal protection against online and offline attacks, albeit in the context of
pure user authentication instead of key exchange. Our PBCStE scheme uses sim-
pler building blocks than the solution presented in [15]. As our scheme allows
for non-interactive generation of challenge messages (e.g., by hashing the user
id with a current timestamp), we can even achieve the optimal solution of user
authentication with one message.
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6 Conclusion

We revisited the existing framework of password-based credentials from Zhang
et al. [26] and found that an important security property was missing – the
resistance to server compromise. We showed that achieving this level of security
is impossible in their single-key framework. While the attack is simple, it is of
practical relevance considering that data breaches happen frequently. This moti-
vated us to propose a new framework called multi-key password-based credentials
which remain secure in the presence of server compromise. We established formal
definitions for the optimal security levels and proposed a solution that utilizes
generic building blocks and satisfies all desirable security properties.

Given the simplicity of our construction, an immediate question is whether
our multi-key setting is somehow weakening the overall security guarantees, when
compared with the single-key ZWV version. We argue in Appendix B that the
opposite is true by showing how a secure mkPBC can be transformed into a
secure skPBC scheme.

A The ZWY Framework

In order to improve the clarity and the consistency with our framework of mkPBC
we made some minor changes to the syntax and security definitions of Zhang
et al. [26]. We explain the changes and why this does not affect the technical
result. Further, we highlight one of the shortcomings of the ZWY framework: It
does not consider the registration of corrupt users.

Changes to the Syntax. We made the following minor changes to the syntax
of ZWY [26]: (1) We do not explicitly describe the behaviour of the registration
protocol if a party aborts. (2) We do not enforce the registration protocol to
keep a registry Reg with uid’s but assume this happens on the application level.

Changes to the Security Experiments. The ZWY framework models pass-
word compromise through an oracle which reveals honest users’ passwords. Since
in the weak and strong unforgeability definition, the win condition of the adver-
sary is independent of his knowledge of pw, we did not model this oracle but
instead hand the adversary all user passwords directly.

Furthermore, the ZWY framework considers the forgery of a user who has
not registered with the server a valid attack, while we removed this condition
from the security experiment. We argue that this type of forgery is not a concern
as it will be caught on the application level. This change was made to focus on
attacks that are relevant to the security of the system.

No Registration Oracle. We note that the ZWY security model [26] has
another weakness: it does not allow corrupt users to register, which allows to
prove entirely insecure schemes secure (e.g. the server sends his secret key ssk
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to the user during registration). We stress that this is primarily an oversight
in the security model, and can be easily fixed by granting the adversary such
registration access. We do not see any issue in the concrete skPBC scheme pro-
posed in [26] and conjecture that it can be proven secure in this adjusted security
model.

B Comparison of mkPBC and skPBC

Given the simplicity of our construction, an immediate question is whether our
multi-key setting is somehow weakening the overall security guarantees, when
compared with the single-key ZWV version. We show that the opposite is true by
showing how a secure mkPBC can be transformed into a secure skPBC scheme.
Our transformation additionally requires symmetric authenticated encryption
(AE) scheme, thus can only be seen as a relativized comparison.

Table 1. Overview of the different security properties and the security assumptions
needed for the building blocks of our PBCStE scheme. CROB stands for complete robust-
ness and RI is randomness injectivity.

Security Property Leaked Values Assumptions

User Server

ask = (k, pkEnc) pw avk = (pkSig, skEnc) F Signature Encryption

Strong Unforgeability × � � Secure PRF Unf ×
Online Unforgeability � × × RO CROB & RI CCA

Offline Unforgeability � × � RO Unf & RI ×
Pw-Hiding × × � Secure PRF × ×

The high-level idea of the transformation is as follows: In order to transform
the mkPBC to have only one key, the server outsources storage of the user-
specific verification keys avk to the users. In the tranformation, the server in
the skPBC scheme has a single long-term key ssk which is the secret key kAE of
an AE scheme. In the registration phase, the server and user run the mkPBC
registration, but instead of letting the server store the obtained avk it returns its
encryption c ← AE.Enc(kAE, (uid, avk)) to the user. During authentication, the
user passes c back to the server by appending it to the authentication token τ
which is computed via the mkPBC process. The server can decrypt c to obtain the
verification key avk and verify the user’s token. For the security of the scheme, it
is crucial that the user does not learn avk from c otherwise she could run offline
attacks. Furthermore, it is important that users cannot pass the valid ciphertext
of a different verification key avk′ to the server as this would allow forgeries.
Both, confidentiality and integrity, is achieved by using a secure authenticated
encryption scheme.

In the full version, we prove that his transforms yields an online and weakly
unforgeable skPBC, if mkPBC is online and strongly unforgeable and AE is a
secure authenticated encryption scheme.
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C Formal Definitions

In this section, we give formal definitions for the correctness of a mkPBC scheme,
and for the randomness injectivity of a signature scheme.

Definition 8 (Correctness of mkPBC). A mkPBC scheme is correct, if for all
pp ← Setup(1λ), (uid, pw) ∈ Duid × Dpw, m ∈ M it holds that: Vf(uid, avk,m,
Sign(uid, ask, pw,m)) = 1 where (ask; avk) ← 〈RegU(uid, pw),RegS(uid)〉.
Definition 9 (Randomness Injectivity). A signature scheme Π := (Setup,
KGen,Sign,Vf) is called randomness injective if for pp ← Setup(1λ) with Rλ ∈
pp, it holds that for every PPT A, the following probability is negligible in λ:

Pr[(r, r′) ← A(pp) : r, r′ ∈ Rλ ∧ r �= r′ ∧ (sk = sk′ ∨ pk = pk′)
for (pk, sk) ← KGen(pp; r), (pk′, sk′) ← KGen(pp; r′)]

D Signatures with Complete Robustness

In this section, we show that DSA [16], Schnorr [21] and BLS [5] signatures
achieve complete robustness and randomness injectivity.

Theorem 5. The DSA, Schnorr and BLS signature scheme all achieve ran-
domness injectivity information-theoretically. DSA and Schnorr are CROB-
secure assuming a collision-resistant hash function, and BLS is information-
theoretically CROB-secure.

Proof. For the randomness injectivity, observe that DL-based signature schemes
where it holds that pk = gsk for sk

r←− Zq achieve randomness injectivity by
setting Rλ = Zq and (gr, r) := KGen(pp; r).

Since the complete robustness only considers the verification algorithm we
can ignore the key generation and signing algorithms. We argue about complete
robustness for each of the signatures individually:

DSA: In DSA, a signature σ := (r, s) verifies for m under pk if F (gH(m)·s−1 ·
pkr·s−1

) = r for two hash functions F and H. Thus, σ verifies under a second
public key pk′ only if F (gH(m)·s−1 · pkr·s−1

) = F (gH(m)·s−1 · (pk′)r·s−1
) which

happens only with negligible probability if F is collision resistant.
Schnorr: In Schnorr signatures, a signature σ = (r, s) verifies under pk for

message m if H(gs · pk−r,m) = r for a hash function H. Thus, σ verifies
under a second public key pk′ only if H(gs · pk−r,m) = H(gs · (pk′)−r,m)
which happens only with negligible probability if the hash function H is
collision resistant.

BLS: In BLS signatures, a signature σ verifies under pk for message m if
e(σ, g) = e(H(m), pk). Thus, it verifies under a second public key pk′ only if
e(H(m), pk) = e(H(m), pk′). But this means that pk = pk′ and the signature
only verifies under a single public key pk = pk′.
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