
Arithmetic Circuit Implementations
of S-boxes for SKINNY and PHOTON

in MPC

Aysajan Abidin , Erik Pohle(B) , and Bart Preneel

COSIC, KU Leuven, Leuven, Belgium
{aysajan.abidin,erik.pohle,bart.preneel}@esat.kuleuven.be

Abstract. Secure multi-party computation (MPC) enables multiple dis-
trusting parties to compute a function while keeping their respective
inputs private. In a threshold implementation of a symmetric primitive,
e.g., of a block cipher, each party holds a share of the secret key or of the
input block. The output block is computed without reconstructing the
secret key. This enables the construction of distributed TPMs or tran-
sciphering for secure data transmission in/out of the MPC context.

This paper investigates implementation approaches for the lightweight
primitives SKINNY and PHOTON in arithmetic circuits. For these prim-
itives, we identify arithmetic expressions for the S-box that result in
smaller arithmetic circuits compared to the Boolean expressions from
the literature. We validate the optimization using a generic actively
secure MPC protocol and obtain 18% faster execution time with 49%
less communication data for SKINNY-64-128 and 27% to 74% faster
execution time with 49% to 81% less data for PHOTON P100 and P288.
Furthermore, we find a new set of parameters for the heuristic method of
polynomial decomposition, introduced by Coron, Roy and Vivek, special-
ized for SKINNY’s 8-bit S-box. We reduce the multiplicative depth from
9 to 5.

Keywords: S-box · SKINNY · PHOTON · Secure Multi-Party
Computation · Arithmetic Circuit

1 Introduction

Recent improvements in advanced cryptographic protocols, such as secure multi-
party computation (MPC), fully homomorphic encryption (FHE), or zero-know-
ledge proof systems, made computation on encrypted data practical. This devel-
opment enables privacy-preserving and GDPR compliant data processing and
utilization in many areas, such as in public sector services, in smart cities, or
healthcare. With added privacy benefits for users and data providers, various
use cases emerge where cryptographic primitives are needed, including proofs

This work is supported by the Flemish Government through FWO SBO project
MOZAIK S003321N.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 86–105, 2024.
https://doi.org/10.1007/978-3-031-50594-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50594-2_5&domain=pdf
http://orcid.org/0000-0002-5128-3608
http://orcid.org/0000-0001-8871-8532
http://orcid.org/0000-0003-2005-9651
https://doi.org/10.1007/978-3-031-50594-2_5


Arithmetic Circuit Implementations of S-boxes 87

over correct hashing, ciphertext-compression for FHE schemes, and secure out-
sourcing of computation and data storage for MPC.

Applications of Symmetric Primitive Evaluation in MPC. The applica-
tions of MPC evaluation of symmetric-key primitives are numerous. We briefly
sketch a selection of them. In a distributed TPM, instead of relying on trusted
hardware, trust is distributed among multiple servers. Generation of secret keys
is distributed and each server only ever obtains a secret share. The key shares
are used in collaborative (or distributed) computations, e.g., encryption or sign-
ing, using MPC without reconstructing the secret key. Symmetric-key encryption
can also be paired with MPC to enable flexible, secure and privacy-preserving
data collection and processing [1]. Collected data can be encrypted at the
source, stored and once MPC-based processing is desired, the data is decrypted in
MPC and then processed. Since MPC creates a secure context for data process-
ing, the input that is moved into this context and the output data that is moved
out of this context may be encrypted to facilitate secure input/output with
parties that do not participate in the MPC protocol [23,24]. Addition-
ally, in the same way, MPC computation can be paused and continued later by
encrypting intermediate data for secure storage. Finally, symmetric primitives in
MPC may be used as oblivious PRFs, to bootstrap secure database queries
or to create MPC-in-the-head zero-knowledge proofs and post-quantum
signatures [10].

Related Work. Dedicated PRFs [18,23,24], block and stream ciphers [2–
4,9,17,21,32], and hash functions [20,22] have been proposed that focus on min-
imizing multiplicative depth. However, in a real-world scenario, cryptographic
mechanisms and constructions need to interoperate between traditional comput-
ing systems (e.g., IoT devices, mobile phones, commodity and server CPUs) and
these advanced cryptographic protocols. Traditional symmetric primitives, such
as AES [33] and SHA-2 [34], are widely used in real-world applications and are
widespread in internet and industry standards. For instance, the correct pro-
cessing of financial transaction data in MPC requires the usage of standardized
constructions from that real-world domain since the information is not pro-
tected under non-standard cryptographic mechanisms that are MPC-friendly.
These standards almost exclusively specify traditional symmetric primitives at
the core. Further, thresholdization of primitives, i.e., where the secret key is
split among multiple parties who then jointly compute the relevant operation
without reconstructing the secret key, is recently being investigated by NIST for
standardization [8]. The important key part of thresholdization is that a thresh-
old and a non-threshold implementation have to be interoperable, such that,
e.g., systems managing keys in a threshold fashion can seamlessly interact with
systems not using thresholdization.

While thresholdized AES implementations have been studied, e.g., [12,13,
16,19,27], other traditional primitives have not received that much attention.
In this work, we want to study threshold implementations of lightweight primi-



88 A. Abidin et al.

tives that may be used in applications where AES is undesirable. Lorünser and
Wohner [30] implement several symmetric ciphers using two MPC frameworks,
namely, MP-SPDZ and MPyC, to facilitate a better understanding of the two
MPC frameworks. However, they treat the primitives as black boxes with little
optimization of the primitive’s performance. Motivated partly by the interop-
erability of privacy-enhancing protocols and lightweight cryptography, Mandal
and Gong [31] study the Boolean circuit complexity of the core primitives in
the NIST Lightweight Cryptography Competition (LWC)1 round 2 candidates.
However, their study is limited to Boolean circuits using the two-party garbling
scheme HalfGates [35] for the MPC evaluation of the ciphers.

Contribution. To complement this effort, we move to the arithmetic circuit
setting where variables are elements of, e.g., a finite field or ring, and basic gates
are addition and multiplication gates. We investigate whether such a represen-
tation results in benefits, such as reduced circuit size, faster execution, or less
communication data, over a straight-forward emulation of Boolean arithmetic
paired with known Boolean circuits of lightweight primitives. A possible avenue
in the arithmetic setting is to identify operations and structure in the primitive
where groups of bits can be encoded as field/ring elements and equivalent arith-
metic operations can replace bit-oriented functionality. For this purpose, we ana-
lyze the ten LWC finalists, but we limit our study to substitution-permutation
network (SPN) designs of the underlying primitives which excludes SPARKLE,
Grain-128AEAD, and TinyJambu. Moreover, we rule out the permutations used
in sponge-based AEADs (Ascon, ISAP, and Xoodyak) for two reasons. First,
the sponge structure creates highly serial circuits with high multiplicative depth
that results in poor performance in non-constant round MPC protocols. Second,
the permutation’s round function operates over lanes, sheets, and columns of the
state, mixing bits over all dimensions. This makes grouping bits within the state
costly without a foreseeable benefit for arithmetic purposes. Further, the SPN
primitives of Elephant and GIFT-COFB involve a bit-level permutation making
the linear layer costly (when grouped). Ultimately, we identify two primitives,
SKINNY and PHOTON, stemming from the finalists Romulus and PHOTON-
Beetle, respectively, where all operations on the state can be expressed as cell-
wise operations and no intra-cell operations occur. We can therefore group the
bits of each cell into one field/ring element and then investigate the cost of all
operations in the arithmetic circuit. While SKINNY serves as the main demon-
stration example, we also apply our findings to PHOTON. Our contributions
can be summarized as follows:

– We provide several program representations for the SKINNY primitive in
arithmetic circuits over F2k (see Sect. 3) optimized for usage in MPC proto-
cols. We identify a trade-off between multiplications and pre-processed ran-
dom bits for the evaluation of polynomials, resulting in a reduced number of
multiplications for all 4-bit S-boxes.

1 https://csrc.nist.gov/Projects/Lightweight-Cryptography.

https://csrc.nist.gov/Projects/Lightweight-Cryptography


Arithmetic Circuit Implementations of S-boxes 89

– We benchmark the promising candidates of the trade-off in the secret shar-
ing based “SPDZ-like” protocol MASCOT in the active security setting (see
Sect. 4). We confirm the trade-off in practice and obtain improved perfor-
mance for SKINNY variants with 64-bit block size, i.e., faster execution and
lower communication cost, compared to the baseline.

– We show how the results for SKINNY carry over to a threshold implemen-
tation of PHOTON (see Sect. 4.3). We obtain similar performance improve-
ments for 4-bit S-boxes and can apply well-known optimizations of the AES
S-box used in the 8-bit PHOTON instance.

The rest of this paper is organized as follows. We give an introduction and
background information on SKINNY, PHOTON and on the MPC protocol in
Sect. 2. Then, we investigate the representation of SKINNY in arithmetic circuits
in Sect. 3. The results of the experimental benchmark are detailed and discussed
in Sect. 4. We conclude the paper in Sect. 5.

2 Background on Primitives and MPC

In the following, we give background details on the SKINNY lightweight block
cipher family (Sect. 2.1), the permutations defined in PHOTON (Sect. 2.2) and
discuss one MPC protocol for arithmetic circuits (Sect. 2.3).

2.1 SKINNY

SKINNY [6] is a lightweight tweakable block cipher with a SPN structure similar
to AES. Its different variants process 64-bit or 128-bit blocks, and 64–384-bit
tweakeys which is the concatenation of a (secret), e.g., 64- or 128-bit key and
a (public) tweak. Table 1 lists the number of rounds specified for each variant.
The round function alters the internal state, a 4 × 4 array of s-bit cells. For a
block size of 64-bit, s = 4, for 128-bit block size, s = 8. The initial state is the
message block. Let the message be a sequence of s-bit values s0 s1 . . . s15, then
the 4 × 4 array is filled row-wise:(

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

)
.

The resulting ciphertext is the state after all rounds have been computed. The
tweakeys are loaded into 4 × 4 arrays, TK1,TK2,TK3, in the same manner.
TK1, present in all variants, is loaded with tweakey bits 0 · · · (16s − 1). TK2
and TK3 are loaded with tweakey bits 16s · · · (32s − 1) and 32s · · · (48s − 1)
respectively, if needed. The round function applies five steps in series: SubCells,
AddRoundConstants, AddRoundKey, ShiftRows and MixColumns.

SubCells. SubCells applies the S-box to each cell in the state. For s = 4, the 4-
bit S-box is used (see Fig. 1a), for s = 8, the 8-bit S-box is used (see Fig. 1b).
Both S-boxes are computed by repeating XOR and NOR operations, and bit
permutations. For the S-box definition as a truth table, we refer the reader
to the original specification document [6].



90 A. Abidin et al.

AddRoundConstants. This step XORs public constants to three cells:

s′
0 ← s0 ⊕ c0, s′

4 ← s4 ⊕ c1, s′
8 ← s8 ⊕ 0x2.

The constants c0 and c1 are defined for each round, whereas the operand for
s8 remains 0x2.

AddRoundKey. In each round, the first two rows of the state are XORed cell-
wise with the first rows of each available round tweakey. Let ai..j ⊕ bi..j be a
short-hand notation for ai ⊕ bi . . . aj ⊕ bj , then

s′
0..3 ← s0..3 ⊕ TK10..3 ⊕ TK20..3 ⊕ TK30..3,

s′
4..7 ← s′

4..7 ⊕ TK14..7 ⊕ TK24..7 ⊕ TK34..7.

ShiftRows. Shift rows applies a cell-wise permutation PS on the state where

PS(0, ..., 15) = (0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12).

This rotates each row by 0, 1, 2 and 3 elements to the right.
MixColumns. The MixColumns step multiplies the state with the matrix(

s′
0 s′

1 s′
2 s′

3
s′
4 s′

5 s′
6 s′

7
s′
8 s′

9 s′
10 s′

11
s′
12 s′

13 s′
14 s′

15

)
←

(
1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

) (
s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

)
.

Key Schedule. The key schedule describes how a round key is derived from
the cipher’s key. The first round key is the tweakey itself. Round keys for
subsequent rounds are obtained by applying the permutation PT cell-wise on
the 4 × 4 array representation of each tweakey. Each cell in TK2 and TK3 is
further updated by a linear feedback shift register (LFSR). In short, denoting
the round key for the next round by TKi′, i = 1, 2, 3, we have

TK1′ ← PT (TK1), TK2′ ← LFSR2◦PT (TK2), TK3′ ← LFSR3◦PT (TK3),

where PT (0, .., 15) = (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7) and LFSR2/
LFSR3 are defined in Table 2. PT swaps the first two rows with the last two
rows of the state and applies a permutation to the now first two rows.

Table 1. The number of rounds for each variant of SKINNY. Variants are denoted by
SKINNY-b-tk where b is the block size in bits and tk is the tweakey size in bits. Note
that the key size equals the block size in all variants.

Variant Block Size Rounds

SKINNY-64-64
64

32
SKINNY-64-128 36
SKINNY-64-192 40

Variant Block Size Rounds

SKINNY-128-128
128

40
SKINNY-128-256 48
SKINNY-128-384 56



Arithmetic Circuit Implementations of S-boxes 91

Table 2. Linear feedback shift registers LFSR2 and LFSR3 defined in the key schedule
of SKINNY for tweakeys TK2 and TK3, respectively.

Cell size

LFSR2 4-bit (x3, x2, x1, x0) → (x2, x1, x0, x3 ⊕ x2)

8-bit (x7, x6, x5, x4, x3, x2, x1, x0) → (x6, x5, x4, x3, x2, x1, x0, x7 ⊕ x5)

LFSR3 4-bit (x3, x2, x1, x0) → (x0 ⊕ x3, x3, x2, x1)

8-bit (x7, x6, x5, x4, x3, x2, x1, x0) → (x0 ⊕ x6, x7, x6, x5, x4, x3, x2, x1)

2.2 PHOTON

We briefly describe the internal permutations Pt, t ∈ {100, 144, 196, 256, 288},
of the PHOTON hash function [25]. Similarly to SKINNY, the internal state is
a d × d array of s-bit cells that is transformed by applying the following round
function steps 12 times: AddConstant, SubCells, ShiftRows, MixColumnsSerial.
Since Pt is a permutation, it has no secret key addition layer. Table 3 lists the
parameters for each variant.

AddConstant. Public round constants and instance-specific internal constants
are XORed to the first column of the state.

SubCells. If s = 4, the PRESENT S-box [7] is applied to each cell in the state.
If s = 8, the AES S-box is applied.

ShiftRows. This applies a cell-wise permutation on the state where row i is
rotated by i columns to the left.

MixColumnsSerial. Each column of the state is multiplied with a matrix At

d times. The multiplication is defined over F2[X]/X4 + X + 1 for s = 4 and
over F2[X]/X8 + X4 + X3 + X + 1 for s = 8.

Table 3. State size d, cell size s and modulus of PHOTON Pt.

Instance d s Modulus

P100 5 4
P144 6 4 X4 + X + 1

P196 7 4
P256 8 4
P288 6 8 X8 + X4 + X3 + X + 1

2.3 A Multi-party Computation Protocol for Arithmetic Circuits

In this and the following sections, we denote a uniform random sampling from
a finite set A with $← A. We now briefly discuss the SPDZ-style, dishonest-
majority MPC protocol on arithmetic circuits that achieves active security using



92 A. Abidin et al.

information-theoretically secure MACs. The communication model in the pro-
tocol assumes secure point-to-point channels and a synchronous network. If we
later refer to a round of communication, this means each party broadcasts one or
more local values to all other parties. In this model, the broadcast based on point-
to-point connections costs O(n2) values to send for n players. In the protocol,
the computation is split into a pre-processing, a.k.a. offline, phase and an online
phase. In the offline phase, the players jointly create correlated randomness for
multiplication and bit-decomposition. Since neither the individual party’s inputs
nor the concrete function to compute2 have to be known, this phase can take
place well before the online phase and is usually computationally much heav-
ier. In the online phase, the parties know their own inputs and the arithmetic
circuit. This phase consumes the correlated randomness from the offline phase.
Since we only consider binary extension fields in this paper, we adapt the nota-
tion for the MPC protocol accordingly. Recall that F2k = F2[X]/Q(X) is a
finite field with 2k elements, where k > 0. Each element can be represented as a
polynomial of degree at most k − 1 whose coefficients are in F2 and Q(X) is an
irreducible polynomial of degree k. Addition g(X)+h(X), for g(X), h(X) ∈ F2k ,
is performed coefficient-wise. Multiplication g(X)h(X) is the ordinary polyno-
mial multiplication modulo Q(X). Every variable in the arithmetic circuit is an
element in F2k . During execution, each player holds or obtains an additive secret
share of every variable. We denote the additive share of x ∈ F2k of player i with
x(i), i.e.,

∑
x(i) = x. A SPDZ-like share of the same player is denoted with

[[x]]i = 〈x(i),m(i)〉 which carries a MAC share m(i) that authenticates the secret
share to enable active security where m is created using the global secret MAC
key Δ ∈ F2k .

Offline Phase. The offline phase implements the functionalities FTriple and
FBit by using somewhat homomorphic encryption SHE (e.g. in [14,15,29]) or
oblivious transfer [28]. While the offline phase dominates the total runtime of
the MPC protocol, its details are less important for the purpose of this paper.
We invite the reader to consult the aforementioned references for further details.

The functionality FTriple produces Beaver multiplication triples [5] of the

form ([[a]], [[b]], [[c]]) where c = ab and a, b
$← F2k . The functionality FBit produces

random bits [[r]] with r
$← {0, 1}.

Online Phase. Before detailing the addition and multiplication of shares, we
have to describe the concept of (partially) opening a share. In general, if a share
[[x]] is opened, each player i broadcasts x(i) and then sums up all shares to obtain
x. For active security, the players first commit to the MAC shares m(i)−Δ(i)x(i)

before opening them. Later it is checked whether m − Δx = 0. The core idea of
SPDZ is to defer the checking of the MAC values to the very end of the protocol,
resulting in a so-called partial open. Before the final output is revealed, all MACs
2 However, the players must know an upper bound on the number of required multi-

plication triples resp. random bits.



Arithmetic Circuit Implementations of S-boxes 93

of partially opened shares are checked in one go. If this check passes, the output
value is reconstructed.

Let [[x]] = 〈x(i),m
(i)
x 〉, [[y]] = 〈y(i),m

(i)
y 〉 be shares and e ∈ F2k a public con-

stant, then addition of shares, public constants and multiplication by public
constants can be performed locally by each player:

e + [[x]] = [[e + x]] :

{
〈x(0) + e,m

(0)
x + eΔ(0)〉 if i = 0,

〈x(i),m
(i)
x + eΔ(i)〉 else,

e · [[x]] = [[e · x]] : 〈e · x(i), e · m
(i)
x 〉,

[[x]] + [[y]] = [[x + y]] : 〈x(i) + y(i),m
(i)
x + m

(i)
y 〉.

Given a multiplication triple ([[a]], [[b]], [[c]]) from FTriple, we compute the multi-
plication [[x]] · [[y]] = [[x · y]] in two steps.

1. The players partially open [[x − a]] as γ and [[y − b]] as ε.
2. Each player computes locally [[x · y]]i = [[c]]i + γ · [[b]]i + ε · [[a]]i + γ · ε.

The partial open requires one round of communication, unlike the linear opera-
tions mentioned before.

We can also compute a bit-decomposition of a shared x ∈ F2k into k shares
of the bits of x, b0, . . . , bk−1 where x =

∑k−1
j=0 bjX

j . Note that the resulting bit
bi is still shared over F2k . Given k random bits [[r0]], . . . , [[rk−1]] from FBit,

1. The players locally compute [[r]] =
∑k−1

j=0 [[rj ]]Xj and partially open [[x− r]] as
γ.

2. Let γ0, . . . , γk−1 ∈ {0, 1} be the (clear text) decomposition of γ. Each player
then computes [[b0]] = [[γ0 + r0]], . . . , [[bk−1]] = [[γk−1 + rk−1]].

In summary, multiplying two secret-shared values, i.e., [[x ·y]] ← [[x]] · [[y]], requires
one multiplication triple from FTriple and one round of communication. A bit-
decomposition of [[x]] into k bits [[b0]], . . . , [[bk−1]] requires k random bits from
FBit and one round of communication. Note that both for multiplication and bit-
decomposition, data of independent operations can be sent in the same round.

3 Arithmetic Circuit Implementation

We aim to explore possible performance gains of an arithmetic representation of
the circuit where we utilize properties of the underlying field over an emulation
of Boolean arithmetic. Thus in the following, variables are elements of a finite
field. The cell-focused nature of SKINNY allows the representation of each cell
as a finite field element. Thus, the state consists of 16 field elements.

Concretely, we define two fields3 of size 24 and 28,

F24 = F2[X]/(X4 + X3 + 1),

F28 = F2[X]/(X8 + X7 + X6 + X5 + X4 + X2 + 1). (1)
3 Since the SKINNY reference does not specify operations in a field, we are free to

pick a suitable one.



94 A. Abidin et al.

For SKINNY versions with a 64-bit state, we pick the field F24 and for a 128-bit
state, we use F28 . We encode s-bit cell values bs−1 . . . b0 into field elements as
bs−1 . . . b0 ↔ ∑s−1

i=0 biX
i. We express values from this correspondence as hex-

adecimal literals, e.g., 0xa3 ↔ X7 + X5 + X + 1. With this correspondence,
XOR of two s-bit values translates to addition of two field elements in F2s . As a
result, all parts of the round function except for SubCells become linear and can
be computed locally by each player. The fields defined in Eq. (1) entail a mini-
mal number of multiplications to implement the respective S-box via polynomial
interpolation. We give more details later in Sect. 3.2. From Table 2, we can see
that if the tweakey is available in shared bits, the LFSR computation, and thus
the whole key schedule, is also linear and incurs no communication rounds.

Furthermore, we recall that squaring is a linear operation in fields of charac-
teristic two, i.e., (

s−1∑
i=0

biX
i

)2

=
s−1∑
i=0

(biX
i)2. (2)

Given the bits of such a field element as vector b = (b0, . . . , bs−1), the output bit
vector for squaring is sq : {0, 1}s 	→ {0, 1}s = Mb where M ∈ F

s×s
2 is a matrix

depending on the irreducible polynomial. Thus, given the bit-decomposition b
of x ∈ F2s , any power of the form x2j can be computed without any multipli-
cation triples since sq is a linear function. We stress, however, that the initial
bit-decomposition requires one opening in the online phase, so computing any
number of squares in {x2, x4, x8, ...} costs one round of communication and s
random bits.

In the following, we describe approaches to express the non-linear part of
SubCells, the S-box. Section 3.1 describes the baseline approach that emulates
Boolean arithmetic. Then, we study approaches via polynomial interpolation.
Section 3.2 details the interpolation and Sect. 3.3 improves the evaluation by
utilizing the free squaring property. In Sect. 3.4, we apply a polynomial decom-
position to compute the S-box. Table 4 lists the cost of each S-box implementa-
tion approach in terms of multiplication triples, random bits and communication
rounds.

3.1 Binary S-box

The Boolean operations AND, XOR and NOT can be naturally emulated in
any field with characteristic two. If the values are a sharing of 0 or 1, AND
is expressed as multiplication, XOR as addition and NOT is addition with the
constant 0x1. In this approach, each bit in an s-bit cell is encoded as a field
element and we compute the S-box as given in the SKINNY specification [6]
emulating Boolean operations (see Fig. 1). We will further use this approach as
baseline for the comparison.



Arithmetic Circuit Implementations of S-boxes 95

(a) The 4-bit S-box. (b) The 8-bit S-box.

Fig. 1. The 4-bit and 8-bit S-box of the SKINNY cipher. The cell bit xi is transformed
into x′

i.

3.2 S-box via Polynomial Interpolation

Another representation of the (s-bit) S-box is via a polynomial Ps(z) =∑2s−1
i=0 aiz

i, where ai ∈ F2s . Then, the computation of the S-box on a given
value x is the evaluation of Ps at x. We can obtain the coefficients ai by asso-
ciating (x,Ss(x)) for all x ∈ F2s and computing the interpolating polynomial
by means of Lagrange interpolation, or by solving the following linear system of
equations ⎛

⎜⎝
0x1 0x01 . . . 0x02

s−1

0x10 0x11 . . . 0x12
s−1

...

⎞
⎟⎠

⎛
⎜⎝

a0

...
a2s−1

⎞
⎟⎠ =

⎛
⎜⎝

Ss(0x0)
Ss(0x1)

...

⎞
⎟⎠ . (3)

This approach primarily motivated the choice for the irreducible polynomials
in Eq. (1). The chosen modulus entails a maximally sparse interpolating polyno-
mial for the respective S-box, i.e., for this modulus, Ps(z) contains the maximal
number of coefficients ai = 0x0.

The interpolating polynomial for SKINNY’s 4-bit S-box S4 is

P4(z) = 0xc+ 0x8z + 0x3z2 + 0xdz3 + 0xfz4 + 0x4z5 + 0x8z6 + 0x6z7

+ 0x1z8 + 0x9z9 + 0x8z10 + 0xez12 + 0xcz13 + 0xbz14. (4)

The inverse S−1
4 is slightly sparser, with one less non-zero coefficient. For the

8-bit S-box S8, P8(z) is more unwieldy with degree 252 and 244 non-zero coeffi-
cients. Its inverse S−1

8 has degree 252 with 241 non-zero coefficients.
For a direct evaluation of P (z), we need to compute the powers zi that occur

in P (z). The remaining linear combination
∑

aiz
i is free. In order to minimize

the number of sequential multiplications, we express the computation through
the shortest addition chain of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14} for P4 (see
Fig. 2a). This approach is marked as MUL in Table 4. Analogously for S8, we
find a chain that requires 242 multiplications in 8 rounds and for S−1

8 , we use
239 multiplications in 8 rounds.

3.3 S-box via Polynomial Interpolation with Free Squaring

We may use bit-decomposition and then repeated free squaring to compute more
powers in a single round. This creates a trade-off between multiplicative depth,



96 A. Abidin et al.

(a) Only via multiplications (MUL).

(b) Using free squares 2,4,8 (SQ1).

Dashed arrows denote free squaring via

bit-decomposition.

Fig. 2. Shortest addition chain for powers in the interpolating polynomial for
SKINNY’s 4-bit S-box. Each level in the tree denotes one communication round.

the number of multiplications and the number of required pre-processed random
bits for the bit-decomposition. We explore this trade-off for the 4-bit S-box in
detail since the number of powers to compute is significantly smaller than for the
8-bit S-box. We denote this approach SQ1, SQ2, . . . where one, two, . . . base
values are used for free squaring. Table 4 lists the cost for each combination. For
S4 and SQ1, we first square z1 to obtain z2, z4, z8. This is illustrated in Fig. 2b.
For SQ2, we compute z3 normally and also square it to obtain z6, z12, z9 for free.
For SQ3, z5 is squared to obtain z10 and for SQ4 squaring z7 yields z14, z13, z11.
While squaring once/twice, e.g., SQ1 and SQ2, decreases the number of rounds
that are necessary for the computation, SQ3 and SQ4 require one more round.
The reason for the additional required round is that some powers can no longer
be computed in the original round since the prerequisite powers are no longer
both available in the previous round because they are computed later for free.
Concretely, power 14 can no longer be computed in round 3 by using powers 6
and 8 since power 6 is computed for free at the earliest in round 3. Figure 5a in
Appendix A illustrates this by showing the addition chain for SQ3.

We visualize the trade-off in the 8-bit case in Fig. 5b in Appendix A. Three
configurations may be of interest. The plain multiplication approach requires
242 multiplications in 8 rounds but no random bits. Using only the square chain
1 → 2 → 4 → 8 → . . . requires 236 multiplications, 8 random bits in 4 rounds.
On the other end, if as many values are computed via squaring as possible, the
computation requires 33 multiplications and 264 random bits in 5 rounds.

3.4 Decomposition

We can use the decomposition method, CRV, by Coron, Roy and Vivek [11] to
reduce the number of multiplications to evaluate the interpolating polynomial
P (z). In short, P (z) is decomposed into the sum of products of polynomials pi(z)



Arithmetic Circuit Implementations of S-boxes 97

Table 4. Cost of implementation approaches for SKINNY’s 4-bit and 8-bit S-boxes.
MUL denotes the direct evaluation of the interpolating polynomial, BIN is the emu-
lation of Boolean arithmetic, SQi denotes utilization of i free square chains and CRV
denotes the polynomial decomposition.

S4 S−1
4

Mult. Bits Depth Mult. Bits Depth

MUL 12 0 4 11 0 4

BIN 4 0 2 4 0 4

SQ1 9 4 3 8 4 3
SQ2 6 8 3 6 8 3
SQ3 5 12 4 5 12 4
SQ4 3 16 4 3 16 4

CRV 2 8 4 2 8 4

S8 S−1
8

Mult. Bits Depth Mult. Bits Depth

MUL 242 0 8 239 0 8

BIN 8 0 4 8 0 4

SQ1 236 8 4 233 8 4
SQ33 33 264 5 32 256 5

CRV 10 40 5 10 40 5

and qi(z),

P (z) =
t−1∑
i=1

pi(z)qi(z) + pt(z), (5)

where each polynomial pi, qi only has monomials za with a ∈ L where

L = Cα1 ∪ · · · ∪ Cαl
. (6)

The set L is constructed from a number of cyclotomic bases Cαj
constructs the

consecutive squares starting from αj : Cαj
= {2iαj mod 2s − 1 | ∀0 ≤ i < 2s}.

With a good choice of l cyclotomic bases, all powers za for a ∈ L can be
computed with l − 2 multiplications. Naturally, α1 = 0 and α2 = 1, i.e., z0

and z1, which don’t require any computation. Essentially, zαj is computed as
the product of previous values, while z2

iαj is computed for free since squaring
is linear in our chosen field. Therefore, the entire polynomial can be evaluated
with l − 2 + t − 1 multiplications by first computing the monomials defined by
L and then computing the product pi(z)qi(z).

The CRV method is heuristic as one chooses the cyclotomic bases and coeffi-
cients for polynomials qi to solve the resulting linear system for coefficients of pi.
The authors of [11] give α values for 4- and 8-bit polynomials for which random
choices for qi lead to a system with a solution.

Their parameter choice was motivated by finding higher-order masking to
protect implementations against side-channel attacks and has a minimal number
of multiplications. For our scenario, we also attempt to reduce the multiplicative
depth since this reduces the number of communication rounds in the protocol.
Table 5 lists our parameter choice and the heuristics given in [11]. For the 4-bit
case, the choice αj ∈ {0, 1, 3} is also minimal in terms of communication rounds.
For the specific S-boxes S8 and S−1

8 , we find a new set of cyclotomic bases with a
lower multiplicative depth and less random bits which only increases the number
of linear operations.



98 A. Abidin et al.

Table 5. Parameter choices for the polynomial decomposition in F2s and the evalua-
tion cost in terms of multiplication triples, random bits and multiplicative depth. The
parameter t denotes the number of pi/qi polynomials in Eq. (5).

s t Base α Mult Bits Depth

CRV [11] 4 2 {0, 1, 3} 2 8 4
CRV [11] 8 6 {0, 1, 3, 7, 29, 87, 251} 10 48 9
Ours for S8 and S−1

8 8 7 {0, 1, 3, 5, 7, 11} 10 40 5

Using this approach, any 4-bit S-box can be implemented requiring 2 mul-
tiplications and 8 random bits in 4 rounds. Our new parameters implement
SKINNY’s 8-bit S-boxes with 10 multiplications and 40 random bits in 5 rounds,
however, they don’t allow the implementation of any 8-bit S-box4.

4 Experimental Results

We implemented two cipher variants, SKINNY-64-128 and SKINNY-128-256, in
the forward and inverse direction. In Sect. 4.1 we evaluate all S-box approaches
for SKINNY’s 4-bit S-box and in Sect. 4.2, we investigate the BIN and CRV
variant for SKINNY’s 8-bit S-box. Finally, we apply the results to PHOTON
in Sect. 4.3. Table 6 shows the gate counts for the complete primitives. In all
comparisons, BIN denotes the baseline.

We benchmark in a three-party LAN setting5 using the MASCOT MPC
protocol [28] in the MP-SPDZ framework [26]. MASCOT provides active security
for a dishonest majority. In the MP-SPDZ implementation, shares are elements
of the field F240 defined as F240 = F2[Y ]/(Y 40+Y 20+Y 15+Y 10+1). We therefore
embed both F24 and F28 into F240 . This also achieves 40-bit statistical security.
Let E4 and E8 denote the embedding F24 ↪→ F240 and F28 ↪→ F240 , respectively.
We use E4(Y ) = Y 35+Y 20+Y 5+1 and E8(Y ) = Y 35+Y 30+Y 25+Y 20+Y 10+Y 5

as they require the lowest number of linear operations to be computed among
all available embeddings. Note that decomposing an embedded element from F2s

still only costs s random bits (see Table 7 in Appendix A for more details). A
different modulus for F240 would require different embeddings from F24 and F28

but has otherwise no impact on the performance.
We compute 100 circuits (key schedule, if applicable, and block encryption/

decryption) in parallel to allow for amortization effects in the pre-processing
phase. Both the input block and the key are secret inputs and not entirely
known by any party. Note that if one party fully knows the key, it may be
more efficient to compute the key schedule locally and input each round key
separately. We compute the key schedule within the MPC protocol to make our

4 The parameters cannot be used to decompose the AES S-box, for instance.
5 Each party runs on a separate machine with 4 cores and 16 GB RAM connected with

a bandwidth of 10 Gbit/sec and <1 ms latency.



Arithmetic Circuit Implementations of S-boxes 99

Table 6. Gate counts of SKINNY-64-128, SKINNY-128-256, PHOTON P100, PHO-
TON P288 and AES-128 (for context). Add/Cmul denote the number of local linear
operations.

Mult. Random Bits Add/Cmul Comm. Rounds

SKINNY-64-128 (BIN) 2304 0 10238 72
SKINNY-64-128 (CRV) 1152 4608 82764 144
SKINNY-128-256 (BIN) 6144 0 27465 145
SKINNY-128-256 (CRV) 7680 30720 1545744 240
PHOTON P100 (BIN) 1200 0 13862 48
PHOTON P100 (CRV) 600 2400 56520 48
PHOTON P288 (BIN) 13824 0 135648 72
PHOTON P288 (AES) 2592 6912 207072 60
AES-128 [13] 1200 3200 45149 53

experiments more broadly usable, if, e.g., the key is the result of a previous MPC
computation or each party inputs a key share as in the case for transciphering
or OPRF evaluation.

4.1 SKINNY-64-128

We choose the SKINNY-64-128 variant to assess the performance of all 4-bit
S-box implementation approaches. Any performance gains for SKINNY-64-64 or
SKINNY-64-192 will be similar since these variants only differ in the number of
rounds and the linear key schedule.

Figure 3a visualizes the total, i.e., pre-processing and online, runtime and
total communication data per player per encryption/decryption and S-box imple-
mentation approach for SKINNY-64-128. We note that the number of multipli-
cations in the circuit seems to dominate the total performance regarding time
and data. The more free squares are used, the lower the time and data.

While the SQ4 approach uses fewer multiplications than BIN, we measure
fewer data but a slower total time, presumably due to the two additional rounds
and four bit-decompositions. The CRV implementation performs best in time
and data compared to all other approaches, including the baseline Boolean arith-
metic emulation BIN. At least in our setting, trading-off two multiplications with
two bit-decompositions (and thus eight random bits) leads to better overall per-
formance. SQ4 is around 24% slower but uses 23% less data than BIN. CRV is
approx. 18% faster and uses 49% less data than BIN.



100 A. Abidin et al.

(a) SKINNY-64-128. (b) SKINNY-128-256 and AES-128.

Fig. 3. Total, i.e., pre-processing and online, execution time and communication data
for multiple S-box implementation approaches of SKINNY-64-128 and SKINNY-128-
256 amortized with 100 executions in parallel. The legend symbol o denotes the forward
direction while × denotes the inverse direction.

4.2 SKINNY-128-256

We implemented the BIN and CRV approach for the 8-bit S-boxes since the
MUL or SQ1/SQ33 approaches are not better than CRV or BIN in any metric,
i.e., number of multiplications, number of random bits or multiplicative depth.
We evaluate BIN and CRV in SKINNY-128-256 and report the total time and
communication data per player in Fig. 3b. In the same figure, we also give total
time and communication data of an AES forward and inverse computation in
the same setting following the implementation from Damgård et al. [13].

As already visible in the gate counts (cf. Table 4), the CRV approach does
not create a favourable trade-off for the 8-bit S-box. This means that the BIN
baseline approach is faster and uses less data than CRV. Furthermore, for the
block size of 128 bits, AES outperforms SKINNY-128-256. The S-box of AES
is much cheaper to implement arithmetically, via 6 multiplications and two bit-
decompositions than the Boolean implementation that would require 32 mul-
tiplications. In addition, AES only has ten rounds while SKINNY-128-256 has
more than four times more rounds.

4.3 PHOTON

Finally, we transferred the results to PHOTON. The four defined permutations
P100, P144, P196 and P256 use the 4-bit S-box of PRESENT [7] while P288 uses
the AES S-box. The PHOTON permutations have mixing layers where the state
is multiplied with a mixing matrix in a pre-defined finite field. While it may
seem that this complicates the implementation approaches, a fixed modulus is
not a problem since the CRV method (for the 4-bit case) applies to any field
with the same cost. Further, any AES S-box implementation may be applied to
P288. To illustrate how our results carry over, we implemented P100 and P288.
For P100, we apply the CRV decomposition approach, and for P288 we apply the



Arithmetic Circuit Implementations of S-boxes 101

Fig. 4. Total, i.e., pre-processing and online, execution time and communication data
for PHOTON P100 and P288 amortized with 100 executions in parallel.

known AES S-box optimizations from [13]. Figure 4 illustrates the benchmark
results. For P100, we note a 27% faster execution with 49% less data. For P288,
we observe a 74% faster execution with 81% less data.

5 Conclusion

We investigated and identified improvements of an arithmetic circuit represen-
tation of the most costly component of the SKINNY cipher, namely, the S-box,
over an emulation of its Boolean circuit for MPC evaluation. Our approaches
implement SKINNY’s S-boxes over F24 and F28 .

In the 4-bit case, we identified a favourable trade-off between the Boolean
implementation, a direct interpolation of the S-box with squaring, and a poly-
nomial decomposition approach. Choosing the decomposition approach saves
50% of multiplications in the circuit, traded-off with pre-processed random bits,
compared to the Boolean implementation. Our practical benchmark confirms
the trade-off. Moving to the arithmetic circuit setting indeed offers increased
performance benefits of ≈18% faster execution with ≈49% less data.

In the 8-bit case, we observe that the S-box cannot be more efficiently
expressed using our techniques. Our benchmark shows no improvement over
the baseline Boolean circuit approach. Nonetheless, we find new parameters for
the polynomial decomposition approach specific to SKINNY’s 8-bit S-boxes that
reduces the multiplicative depth of an evaluation from 9 to 5.

Further, we apply our technique to PHOTON and obtain an improved circuit
representation with 50% fewer multiplications for the variants with 4-bit cells.
For the 8-bit cell-based variant P288 with the AES S-box optimization, we achieve
a circuit with ≈81% fewer multiplications. A practical benchmark confirms the
optimization effort over a Boolean circuit emulation with 27% and 74% faster
execution and 49% and 81% less data for P100 and P288, respectively.

Finally, we note that the identified polynomial decomposition approach will
likely achieve similar improvements for other primitives with 4-bit S-boxes, such
as Midori, TWINE, LED, KLEIN, QARMA, or KNOT.



102 A. Abidin et al.

A Appendix

We detail the used (inverse) embeddings in Table 7. The inversion of the embed-
ding of F24 and F28 only costs 4 and 8 random bits from FBit, respectively.

Table 7. The used embeddings from F24 and F28 into F240 on a bit level. Let b3X
3 +

b2X
2+b1X+b0 be an element in F24 and b7X

7+b6X
6+b5X

5+b4X
4+b3X

3+b2X
2+

b1X + b0 be an element in F28 . An element in F240 is
∑39

i=0 b′
iY

i. Bits b′
i that are not

set below are 0.

Embedding F24/F28 to F240 F240 to F24/F28

F24 ↪→ F240 via
Y 35 + Y 20 + Y 5

+1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′
0

b′
5

b′
10

b′
15

b′
20

b′
30

b′
35

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0

0 1 1 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎝

b0

b1

b2

b3

⎞

⎟
⎠

⎛

⎜
⎝

b0

b1

b2

b3

⎞

⎟
⎠ =

⎛

⎜
⎝

1 1 0 0

0 1 0 1

0 0 0 1

0 0 1 0

⎞

⎟
⎠

⎛

⎜
⎝

b′
0

b′
5

b′
10

b′
15

⎞

⎟
⎠

F28 ↪→ F240 via
Y 35 + Y 30 + Y 25

+Y 20 + Y 10

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′
0

b′
5

b′
10

b′
15

b′
20

b′
25

b′
30

b′
35

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 1 0 0 1 1 1

0 1 1 1 1 0 0 0

0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0

0 1 0 1 0 1 0 0

0 1 1 1 1 0 1 0

0 1 0 0 1 0 0 1

0 1 1 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

b2

b3

b4

b5

b6

b7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b0

b1

b2

b3

b4

b5

b6

b7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 1 0 1 0

0 1 1 0 0 1 0 0

0 1 1 0 0 1 0 1

0 1 0 1 0 1 0 0

0 0 0 1 0 1 0 1

0 0 1 1 1 0 0 0

0 1 0 0 0 1 0 0

0 1 1 1 0 0 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′
0

b′
5

b′
10

b′
15

b′
20

b′
25

b′
30

b′
35

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(a) Shortest addition chain for powers in

the interpolating polynomial for S4 suing

free squares (2,4,8), (6,12,9) and (10)

(SQ3). Note that since 6 is no longer av-

ailable in round 2,14 has to be computed

in round 4.

(b) Trade-off between the number of

multiplications and free squares for 

the interpolation polynomial of S8.

Fig. 5. Additional figures for shortest addition chain and the trade-off between multi-
plication and free squares.



Arithmetic Circuit Implementations of S-boxes 103

References

1. Abidin, A., et al.: MOZAIK: an end-to-end secure data sharing platform. In: Second
ACM Data Economy Workshop (DEC 2023), Seattle, WA, USA, 18 June 2023, p. 7.
ACM (2023)

2. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient
encryption and cryptographic hashing with minimal multiplicative complexity. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_17

4. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020(3), 1–45 (2020)

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1_34

6. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5_5

7. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

8. Brandão, L.T.A.N., Peralta, R.: NIST IR 8214C ipd NIST First Call for Multi-
Party Threshold Schemes (Initial Public Draft) (2023)

9. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-
ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

10. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key
primitives. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pp. 1825–1842. Association for Computing
Machinery (2017)

11. Coron, J.-S., Roy, A., Vivek, S.: Fast evaluation of polynomials over binary finite
fields and application to side-channel countermeasures. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 170–187. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44709-3_10

12. Damgård, I., Keller, M.: Secure multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS,
vol. 6052, pp. 367–374. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14577-3_31

13. Damgård, I., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES
via an actively/covertly secure dishonest-majority MPC protocol. In: Visconti, I.,
De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 241–263. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32928-9_14

14. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-662-44709-3_10
https://doi.org/10.1007/978-3-642-14577-3_31
https://doi.org/10.1007/978-3-642-14577-3_31
https://doi.org/10.1007/978-3-642-32928-9_14
https://doi.org/10.1007/978-3-642-40203-6_1


104 A. Abidin et al.

15. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5_38

16. Damgård, I., Zakarias, R.: Fast oblivious AES a dedicated application of the Min-
iMac protocol. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2016. LNCS, vol. 9646, pp. 245–264. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31517-1_13

17. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and few ANDs per
bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp.
662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

18. Dobraunig, C., Grassi, L., Guinet, A., Kuijsters, D.: Ciminion: symmetric encryp-
tion based on Toffoli-gates over large finite fields. In: Canteaut, A., Standaert, F.-X.
(eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 3–34. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-77886-6_1

19. Durak, F.B., Guajardo, J.: Improving the efficiency of AES protocols in multi-party
computation. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 229–
248. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-64322-8_11

20. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
a new hash function for zero-knowledge proof systems. In: Bailey, M., Greenstadt,
R. (eds.) 30th USENIX Security Symposium, USENIX Security 2021, pp. 519–535.
USENIX Association (2021)

21. Grassi, L., Lüftenegger, R., Rechberger, C., Rotaru, D., Schofnegger, M.: On a
generalization of substitution-permutation networks: the HADES design strategy.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 674–
704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_23

22. Grassi, L., Onofri, S., Pedicini, M., Sozzi, L.: Invertible quadratic non-linear layers
for MPC-/FHE-/ZK-friendly schemes over Fnp application to Poseidon. IACR
Trans. Symmetric Cryptol. 2022(3), 20–72 (2022)

23. Grassi, L., Øygarden, M., Schofnegger, M., Walch, R.: From Farfalle to Mega-
fono via Ciminion: the PRF hydra for MPC applications. In: Hazay, C., Stam, M.
(eds.) EUROCRYPT 2023. LNCS, vol. 14007, pp. 255–286. Springer, Cham (2023).
https://doi.org/10.1007/978-3-031-30634-1_9

24. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly sym-
metric key primitives. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 430–443. ACM (2016)

25. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

26. Keller, M.: MP-SPDZ: a versatile framework for multi-party computation. In: Lig-
atti, J., Ou, X., Katz, J., Vigna, G. (eds.) 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2020, pp. 1575–1590. ACM (2020)

27. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–
249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_12

28. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pp. 830–842. ACM (2016)

https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-31517-1_13
https://doi.org/10.1007/978-3-319-31517-1_13
https://doi.org/10.1007/978-3-319-96884-1_22
https://doi.org/10.1007/978-3-030-77886-6_1
https://doi.org/10.1007/978-3-662-64322-8_11
https://doi.org/10.1007/978-3-030-45724-2_23
https://doi.org/10.1007/978-3-031-30634-1_9
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-319-61204-1_12


Arithmetic Circuit Implementations of S-boxes 105

29. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–
189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6

30. Lorünser, T., Wohner, F.: Performance comparison of two generic MPC-
frameworks with symmetric ciphers. In: Samarati, P., di Vimercati, S.D.C., Obai-
dat, M.S., Ben-Othman, J. (eds.) Proceedings of the 17th International Joint Con-
ference on e-Business and Telecommunications, ICETE 2020, SECRYPT, vol. 2,
pp. 587–594. ScitePress (2020)

31. Mandal, K., Gong, G.: Can LWC and PEC be friends?: evaluating lightweight
ciphers in privacy-enhancing cryptography. In: Fourth Lightweight Cryptography
Workshop. NIST (2020)

32. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers
for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.)
EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49890-3_13

33. National Institute of Standards and Technology: Specification for the ADVANCED
ENCRYPTION STANDARD (AES). Federal Information Processing Standards
Publications 197 (2001)

34. National Institute of Standards and Technology: Secure Hash Standard (SHS).
Federal Information Processing Standards Publications 180-4, August 2015

35. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data trans-
fer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6_8

https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

	Arithmetic Circuit Implementations of S-boxes for SKINNY and PHOTON in MPC
	1 Introduction
	2 Background on Primitives and MPC
	2.1 SKINNY
	2.2 PHOTON
	2.3 A Multi-party Computation Protocol for Arithmetic Circuits

	3 Arithmetic Circuit Implementation
	3.1 Binary S-box
	3.2 S-box via Polynomial Interpolation
	3.3 S-box via Polynomial Interpolation with Free Squaring
	3.4 Decomposition

	4 Experimental Results
	4.1 SKINNY-64-128
	4.2 SKINNY-128-256
	4.3 PHOTON

	5 Conclusion
	A Appendix
	References


