
Cheap and Fast Iterative Matrix Inverse
in Encrypted Domain

Tae Min Ahn, Kang Hoon Lee, Joon Soo Yoo, and Ji Won Yoon(B)

School of Cybersecurity, Korea University, Seoul 02841, Korea
{xoals3563,hoot55,sandiegojs,jiwon yoon}@korea.ac.kr

Abstract. Homomorphic encryption (HE) is a promising technique for
preserving the privacy of sensitive data by enabling computations to be
performed on encrypted data. However, due to the limitations of arith-
metic HE schemes, which typically only support addition and multiplica-
tion, many nonlinear operations must be approximated using these basic
operations. As a result, some nonlinear operations cannot be executed in
the same manner as they would be in the plain domain. For instance, the
matrix inverse can be calculated using the Gaussian elimination method
in the plain domain, which is not possible using only the usual arithmetic.
Therefore, much literature has turned to iterative matrix inverse algo-
rithms such as the Newton method, which can be implemented using
only additions and multiplications. In this paper, we propose a new
matrix inversion method with better performance and prove that the
new method outperforms the existing method; the number of depths
of the new method is fewer than that of the existing method. Thus,
we can evaluate more operations and design the algorithm efficiently
since the number of operations is limited in HE. We experiment on ML
algorithms such as linear regression and LDA to show that our matrix
inverse operation is more efficient than Newton’s in HE. Our approach
exhibits approximately twice the performance improvement compared to
the Newton’s method.

Keywords: inverse matrix · homomorphic encryption · machine
learning

1 Introduction

Privacy-preserving data mining (PPDM) is becoming significantly vital as more
and more data is collected, analyzed, and shared. In addition to this trend,
privacy regulations such as the General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA) have boosted the significance of
privacy-preserving techniques by necessitating organizations to protect sensitive
and personal information. In this regard, various techniques such as differential
privacy and homomorphic encryption (HE) are proposed to protect sensitive
information. Among these techniques, homomorphic encryption, which is based

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 334–352, 2024.
https://doi.org/10.1007/978-3-031-50594-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50594-2_17&domain=pdf
https://doi.org/10.1007/978-3-031-50594-2_17

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 335

on lattice-based cryptography, is considered a post-quantum resistant encryption
algorithm and one of the most promising solutions to attacks from quantum
computers. The technique is often referred to as the “holy grail” of cryptography,
as it allows for computation on encrypted data. Hence, much literature [3–5] has
focused on the execution of privacy-preserving data analysis using homomorphic
encryption.

However, homomorphic encryption is often considered impractical due to its
poor time performance, albeit with its promising properties. Specifically, the
computation of HE circuits typically requires more time at least by the several
order of magnitude compared to the construction of plain circuits. In [3], the
evaluation of a logistic regression model on the Edinburgh Myocardial Infarction
dataset, which consists of 1,253 observations and 10 features, has been reported
to require 116 min when implemented within the HE scheme. In contrast, the
same process in the plain domain, utilizing a personal computer, can be com-
pleted in a matter of seconds. In light of this limitation, much of the recent
research has focused on algorithmically [14,15] improving the time performance
of HE, as well as on the use of parallel structures [6] in the hardware construction
of HE schemes, in an effort to make the technique practical for deployment.

The most efficient and practical implementation of a fully homomorphic
encryption scheme based on the Learning with Errors (LWE) problem is the
CKKS scheme with leveled homomorphic encryption (LHE) setting. While the
CKKS scheme offers the ability to perform arbitrary computations through the
use of bootstrapping techniques, its practical deployment is limited to the LHE
setting. In this context, the depth of the circuit must be pre-determined, with
the number of multiplications per ciphertext serving as the determining factor.
Furthermore, as the scheme is based on arithmetic homomorphic encryption, the
majority of algorithms must be approximated using only the basic operations of
addition and multiplication.

The primary concern when executing privacy-preserving data mining algo-
rithms in HE is the low latency of matrix operations. Among these operations,
the most challenging and time-consuming task to construct within HE is the
inverse operation. In the plain domain, the inverse of a matrix can be easily
obtained through the use of Gaussian elimination. However, in the encrypted
domain, all HE circuits must be designed for the worst-case scenario. Addition-
ally, the encrypted elements in a matrix necessitate comparison operations for
all elementary row (or column) operations and time-consuming divisions.

In order to overcome this problem, there are several attempts at designing
matrix inverse operations in the context of HE. However, they have been met
with limited success due to their näıve implementation, resulting in a significant
increase in computational time and multiplicative depth. Cheon et al. [7] use
a matrix version of Goldschmidt’s algorithm described in [8] since it can only
be operated using additions and multiplications. However, it is not practical to
use as it requires knowledge of a threshold value in advance, which is infeasible
in the encrypted domain. Therefore, much literature generally uses Newton’s
method [9] for matrix inversion in HE [11,12] because it obtains an approximate

336 T. M. Ahn et al.

matrix inverse using only additions and multiplications in an iterative manner.
However, it also has a drawback as it requires many iterations and multiplica-
tions.

The issue of multiplicative depth is also crucial when designing homomor-
phic circuits, as most algorithms in practice use leveled homomorphic encryption
(LHE), in which the multiplicative depth is predetermined. In the encrypted
domain, the matrix inverse must be approximated using a sequence of matrix
multiplications, which significantly increases the multiplicative depth of the cir-
cuit. For example, the Newton method requires a multiplicative depth of 43
to approximate the inverse matrix, taking up most of the circuit’s depth and
preventing further operations. Although a technique called bootstrapping can
increase the multiplicative depth of the ciphertext, it requires a much greater
amount of time and is therefore avoided in practical circuit construction.

Therefore, it is crucial to design an efficient matrix inverse operation with
fewer depths in leveled homomorphic encryption (LHE). By reducing the number
of multiplications per ciphertext in the matrix inverse algorithm, one can design
an HE circuit with a shallower multiplicative depth. Additionally, with the same
security parameter set, more operations can be added for further computations
within a leveled homomorphic encryption scheme or smaller parameters can be
chosen for more efficient computation of the circuit.

In short, our contributions are summarized as the following:

– We present a novel iterative matrix inverse operation. Our technique can
reduce the number of depths by nearly a half compared to the Newton’s
method, mostly used algorithms in the current literature.

– We provide mathematical proofs and experimental result comparing two
approaches—ours and Newton’s method. Specifically, we demonstrate the
convergence speed and required depths of both approaches in theory and
implementation.

– Our matrix inverse algorithm seamlessly integrates with the inverse matrix
in HE. We substantiate our claim by presenting experimental results.

2 Background

2.1 Homomorphic Encryption

Homomorphic encryption (HE) is a technique that allows for computations to
be performed on the encrypted data without the need for decryption, utilizing a
one-to-one model between the client and the server. This is achieved by designing
the encryption scheme based on the Learning with Errors (LWE) problem [10],
which uses noise as a means of ensuring security. However, as computations are
performed on the encrypted data, the noise in the ciphertext accumulates, and if
this noise exceeds a certain threshold, the correctness of the decryption process
can no longer be guaranteed.

Let M and C denote the spaces of plaintexts and ciphertexts, respectively.
The process of HE is typically composed of four algorithms: key generation,
encryption, decryption, and evaluation.

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 337

1. Key generation: Given the security parameter λ, this algorithm outputs a
public key pk, a public evaluation key evk and a secret key sk.

2. Encryption: Using the public key pk, the encryption algorithm encrypts a
plaintext m ∈ M into a ciphertext ct ∈ C.

3. Decryption: For the secret key sk and a ciphertext ct, the decryption algo-
rithm outputs a plaintext m ∈ M.

4. Evaluation: Suppose a function f : Mk → M is performed over the
plaintexts m1, · · · ,mk. Then, the evaluation algorithm takes in ciphertext
c1, · · · , ck corresponding to m1, · · · ,mk and the evaluation key evk to output
c∗ such that Dec(c∗) = f(m1, · · · ,mk).

In the field of homomorphic encryption, there are two primary categories
of encryption schemes: fully homomorphic encryption (FHE) and leveled homo-
morphic encryption (LHE). FHE permits any computation to be executed on
the encrypted data, while LHE is more restricted in the types of computations
that can be performed. These distinctions are due to the various methods used
to handle the accumulation of noise in the ciphertext.

FHE utilizes a specialized technique known as bootstrapping to reduce the
noise in the ciphertext and increase the multiplicative level of the ciphertext,
allowing for further computations to be performed on the encrypted data. How-
ever, the use of bootstrapping is a computationally expensive technique and
can be time-consuming. In practical applications, LHE is often preferred for its
faster performance when working with limited depth circuits. This is because
LHE does not rely on the use of bootstrapping and thus is less computationally
intensive.

Homomorphic encryption can be categorized in terms of evaluation based
on the type of computations that can be performed on the encrypted data.
Arithmetic homomorphic encryption allows for basic arithmetic operations such
as addition and multiplication to be performed on the encrypted data. Two
popular examples are CKKS encryption [1] and BFV [13] encryption schemes,
where the CKKS encryption scheme is the latest and the most practical HE solu-
tion providing real number arithmetics. Boolean-based homomorphic encryption
allows for Boolean operations, such as AND, OR, and NOT, to be performed on
the encrypted data. TFHE [15] and FHEW [14] are two examples. The choice
of the homomorphic encryption scheme depends on the specific application and
the type of computations that need to be performed on the data.

2.2 Arithmetic HE

Arithmetic HE generally uses the usual arithmetic such as addition and mul-
tiplication within the limited multiplicative depth which is pre-defined by the
encryption parameters. Therefore, one needs to consider the depth of the cir-
cuit in advance for the optimal performance since the more depth of the circuit
requires larger parameter set resulting in the performance degradation. In the
BFV and CKKS schemes, the depth of the circuit is mostly determined by the
number of multiplications per chiphertext required for the HE circuit.

338 T. M. Ahn et al.

Moreover, the multiplication operation is more complex designed than the
addition in HE. In BFV and CKKS, the multiplication between two cipher-
texts entails auxiliary procedures such as relinearization and modulus switching.
Therefore, the time gap between such operations differs in a significant amount.
As an illustration, within the CKKS scheme, the computational time required
for multiplication exceeds that of addition by a factor greater than 46 (time
for mult. : 649ms, add: 14ms)1. Hence, it is important to note that reducing
number of multiplication is crucial in HE circuit design.

One of the key features of the CKKS scheme is the use of the Single Instruc-
tion Multiple Data (SIMD) structure. SIMD [17] is a structure that enables the
packing of vector plaintexts into a single ciphertext, and operations are per-
formed in vector units. Another feature is additional functionalities such as slot
rotation. Rotations enable us to interact with values located in different cipher-
text slots. These features allow for efficient operations on vectors and matrices.
Halevi et al. [16] introduce a matrix encoding method based on diagonal decom-
position, where the matrix is arranged in diagonal order. This method requires
O(n) ciphertexts to represent the matrix, and the matrix multiplication can be
computed using O(n2) rotations and multiplications and two circuit depths given
the multiplication of two square matrices of size n.

Additionally, Jiang et al. [18] propose the matrix multiplication method that
reduces the complexity of multiplications and rotations to O(n) by employing
three levels of computational depth. These approaches are beneficial in terms
of computational efficiency. Nevertheless, within the scope of this paper, we
employ a naive matrix multiplication approach that necessitates O(n3) multi-
plicative operations for the computation of the inverse matrix. The evaluation
of an inverse matrix typically entails substantial computational depth. Utiliz-
ing a naive matrix multiplication method is advantageous in this regard, as it
necessitates only a single depth.

2.3 Circuit Depth

In leveled homomorphic encryption, the total count of multiplication evaluations
for a single ciphertext is predetermined by the initial depth parameter of the
HE system. For example, when a ciphertext is assigned a depth level denoted
as L, it is intrinsically constrained to execute a maximum of L multiplicative
operations. Beyond this specified threshold of L multiplications, the ciphertext
ceases to support further multiplication operations.

The design of HE circuits can significantly influence the multiplicative depths,
making it a crucial consideration. To illustrate this point, consider four distinct
ciphertexts denoted as x, y, z, and w, each initially possessing a depth level of L.
When these ciphertexts are multiplied sequentially, it consumes 3 depth levels,
resulting in a ciphertext denoted as xyzw with a reduced depth of L − 3.

Alternatively, we can initially perform a multiplication between x and y,
yielding xy with a depth decrement of 1; likewise, we can evaluate a multipli-

1 λ = 128, N = 216, Δ = 250, L = 50.

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 339

cation on z and w. Finally, the multiplication of xy and zw results in a cipher-
text xyzw with a reduced depth of L − 2. Importantly, both approaches yield
equivalent results and require an identical count of 3 multiplication operations.
However, the depth level of the resulting ciphertext differs by a factor of 1.

Note that when multiplying ciphertexts with different levels, the multiplica-
tion operations are executed based on the lowest level among them.

2.4 Conventional Iterative Matrix Inverse

There are mainly two approaches in implementing the iterative matrix inverse
operation: Goldschmidt’s method [8] and Newton’s method.

Goldschmidt Algorithm. (See the details in Algorithm 3) Let A be an invert-
ible square matrix that satisfies ‖Ā‖ ≤ ε < 1 for Ā = I − 1

2t A for some non-
negative integer t. It follows that

1
2t

A(I + Ā)(I + Ā2) · · · (I + Ā2r−1
) = I − Ā2r

where I is the identity matrix. Additionally, we note that ‖Ā2r‖ ≤ ‖Ā‖2r ≤ ε2
r

,
which implies that 1

2t

∏r−1
i=0 (I + Ā2i) = A−1(I − Ā2r) is an approximate inverse

of A when ε2
r � 1.

The algorithm is able to correctly output the approximate matrix inverse for
some sufficiently large r ∈ N. Using the Goldschmidt algorithm, Cheon et al.
propose a matrix inverse method over HE schemes [7].

Newton’s Method. (See the details in Algorithm 4) Likewise, let A ∈ R
n×n be

any invertible square matrix, and let α be the reciprocal of the dominant eigen-
value of AAT . Newton’s method computes the following sequence of matrices
{Xk}k≥0 as:

X0 = αAT and Xk+1 = Xk(2I − AXk),

until Xk converges to A−1. We will dive into the details including the proof for
convergence in Theorem 1.

Newton’s method for obtaining an approximate inverse matrix consists of
three steps: (1) computing AAT , (2) computing the dominant eigenvalue of
AAT , and (3) calculating a sequence of Xn to approximate the inverse of A. It
is worth noting that α is the reciprocal of a dominant eigenvalue of AAT which
can be approximated using the Goldschmidt’s algorithm through a combination
of addition and multiplication operations.

In fact, it is difficult to directly obtain the dominant eigenvalue from homo-
morphic encryption. However, in this paper, we demonstrate that convergence
can be proven even when a larger value is used rather than the exact value of the
dominant eigenvalue. Therefore, some literature uses a trace instead of a domi-
nant eigenvalue when obtaining the inverse matrix in homomorphic encryption
by Newton’s method [12]. The trace of a square matrix is the sum of its main

340 T. M. Ahn et al.

diagonal elements. Thus, the trace of AAT is always greater than the domi-
nant eigenvalue of AAT since the trace is the sum of eigenvalues and AAT is
positive-definite.

3 Problems in Two Popular Methods

In this section, we will delve into the details and challenges associated with the
implementation of the iterative matrix inverse operation in HE using two distinct
approaches: Goldschmidt’s method and Newton’s method.

First, a major limitation of Goldschmidt’s method is that the value of Ā must
be known in advance in order to satisfy the condition where ‖Ā‖ is less than 1.
This is infeasible, as all values—including input, intermediate, and output—are
processed in an encrypted state. In other words, it is not possible to find t such
that ‖Ā‖ = ‖I − 1

2t A‖ < 1. As a result, the algorithm cannot be initiated at
all. It may be suggested to raise the value of t sufficiently large to match the
condition of ‖Ā‖ < 1, however, this would highly likely zero out the elements of
Ā = I− 1

2t A, thus the approach cannot provide the approximate matrix inverse
for all A.

Next, a drawback of Newton’s method is the significant computational com-
plexity in terms of overall time consumption. Upon examination of Newton’s
method, the sequence of Xn requires two matrix multiplications in one itera-
tion; assuming that the process converges in r iterations, the time complexity of
step (3) in Sect. 2.4 is O(n2r). Additionally, step (3) consumes 2r circuit-depth.
As a result, the time complexity of Newton’s method and its depth-consumption
are significant. To provide an intuitive example, for a small matrix of size n = 10
and iteration number r = 15, the total number of multiplications in a HE setting
is 4,500. If we assume that each multiplication takes 649 ms, the expected time
for the inverse matrix operation would be at least 2,920 s.

4 Proposed Approach

We propose a novel matrix inverse method by combining elements from both
Goldschmidt’s method and Newton’s method.

4.1 Motivation

Goldschmidt’s approach requires the value of t for the convergence of Ā =
I − 1

2t A, however, as previously mentioned, finding this value in the encrypted
domain is infeasible.

In contrast, Newton’s method relates the dominant eigenvalue of AAT to
the scaling of AAT , where the scaling by α ensures that the norm of AAT is
less than 1.

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 341

4.2 Efficient Matrix Inverse

Based on this observation, we posit that the dominant eigenvalue λ1 is correlated
with the role of t in Goldschmidt’s method. To address this issue, (1) we first find
the dominant eigenvalue of AAT , and (2) scale AAT by its dominant eigenvalue.
(3) We then use the normalized AAT to iteratively approximate the matrix
inverse using the Goldschmidt’s sequence for Yi, as detailed in Algorithm 1.

Algorithm 1. Our Approach
1: Input: n × n invertible matrix A, iteration number r
2: Output: approximate inverse matrix Yr

3: λ1 ← a dominant eigenvalue or trace of AAT

4: Y0 ← 1
λ1

AT

5: Ā0 ← In×n − 1
λ1

AAT

6: for i = 1 to r do
7: Yi ← Yi−1(In×n + Āi−1)
8: Āi ← Ā2

i−1

9: end for

In summary, our approach diverges from Newton’s method in two fundamen-
tal ways: (1) we employ the Goldschmidt algorithm to approximate the inverse
of matrix A, and (2) our technique incurs a multiplicative depth of only 1 per
iteration, while Newton’s method entails a depth of 2 per iteration.

It is worth emphasizing that both methods involve the same number of multi-
plications per iteration, namely, 2. However, the discrepancy in depth utilization
per iteration between the two methods arises from the fact that our approach
permits the computation of multiplications independently, incurring a depth cost
of 1 for each operation. In contrast, Newton’s method conducts matrix multipli-
cations sequentially, incurring a depth cost of 2 per iteration.

Furthermore, it is crucial to note that both Newton’s method and our app-
roach require an equivalent number of iterations to achieve convergence. Conse-
quently, given that Newton’s method necessitates a depth of 2 per iteration, our
approach ultimately requires only half the depth cost to achieve convergence
compared to Newton’s method. Further details regarding this matter will be
addressed in the subsequent proof section.

The reason for finding the dominant eigenvalue of AAT , instead of A itself,
is because not all eigenvalues of the input matrix A are necessarily positive.
For convergence, it is essential that the norm of Ā0 (the matrix used in the
Algorithm 1) be less than 1. AAT has the property that all of its eigenvalues
are positive. By using the dominant eigenvalue of AAT , we ensure that the norm
of Ā0 remains less than 1 for any invertible matrix A. In the case that the input
matrix A is positive definite, it is unnecessary to calculate AAT . Under such
circumstances, we can directly evaluate the inverse matrix using the following
approach.

342 T. M. Ahn et al.

Algorithm 2. Our Approach
1: Input: n × n positive-definite invertible matrix A, iteration number r
2: Output: approximate inverse matrix Yr

3: λ1 ← a dominant eigenvalue or trace of A
4: Y0 ← 1

λ1
In×n

5: Ā0 ← In×n − 1
λ1

A
6: for i = 1 to r do
7: Yi ← Yi−1(In×n + Āi−1)
8: Āi ← Ā2

i−1

9: end for

5 Convergence and Depth Analysis

In this work, we demonstrate that our proposed method converges to the inverse
matrix, and it does so at the same rate as Newton’s method. To support our
claim, we provide the following lemma, which establishes the convergence of a
matrix A under a specific condition.

Lemma 1. Suppose A is an n × n complex matrix with spectral radius ρ(A).
Then, lim

k→∞
Ak = 0 if ρ(A) < 1.

5.1 Proof of Convergence

Suppose that the eigenvalues of an n×n matrix A by λi(A), i = 1, . . . , n. When
A is positive-definite, we can order its eigenvalues in a non-decreasing order as
follows:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) > 0.

It is worth noting that the eigenvalues of a positive definite matrix are real and
positive.

We first state the convergence of Newton’s iterative algorithm. We provide
details of the proof of Theorem 1 in Appendix B.1 since it is used in other
theorems.

Theorem 1. Let A ∈ R
n×n be an invertible matrix and define the sequence

{Xk}k≥0 of matrices as follows:
{

X0 = αAT ,

Xk+1 = Xk(2I − AXk).

where α = 1
λ1(AAT)

. Then, Xk → A−1 as k → ∞.

Next, we prove that the sequence in our approach (in Algorithm 1) converges
to an inverse matrix, i.e., Yi → A−1.

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 343

Theorem 2. Let A ∈ R
n×n be an invertible matrix and define the sequence

{Yk}k≥0 of matrices as follows:
⎧
⎪⎨

⎪⎩

Y0 = αAT , with α = 1
λ1(AAT)

,

Ā = I − αAAT ,

Yk+1 = Yk(I + Ā2k).

Then, Yk → A−1 as k → ∞.

Proof. From the definition of Theorem 2, we get

Yk = αAT (I + Ā)(I + Ā2) · · · (I + Ā2k−1
) = A−1(I − Ā2k). (1)

We show that ρ(Ā) = ρ(I − αAAT) < 1. We note that the eigenvalues λi(Ā)
are given by, λi(Ā) = 1 − αλi(AAT). Since AAT is positive-definite and α =

1
λ1(AAT)

, we have |λi(Ā)| < 1. Thus, we can get ρ(Ā) < 1. Therefore, by Lemma

1 we have limk→∞ Āk = 0. We note that Yk = αAT
∏k−1

i=0 (I + Ā2i) = A−1(I −
Ā2k) follows from Eq. (1). Therefore,

lim
k→∞

Yk = αAT
∞∏

i=0

(I + Ā2i) = A−1(I − lim
k→∞

Ā2k) = A−1.

In the context of our method, we posit the use of the trace of AAT in place of
the dominant eigenvalue of AAT . Our method still guarantees convergence of
the iterative process, as the spectral radius of the modified matrix Ā, denoted
as ρ(Ā), remains less than one under this assumption.

5.2 Convergence Comparison

We prove that our method has the same convergence rate as Newton’s method.

Theorem 3. Let A ∈ R
n×n be an invertible matrix. Suppose {Xk}k≥0 is the

sequence of matrices generated from Newton’s method of Theorem 1 and {Yk}k≥0

generated from Theorem 2 with A. Then for any 0 < ε � ‖A−1‖, let R1, R2 ∈
N be the smallest integers that satisfy ‖A−1 − Xi‖ < ε for all i > R1 and
‖A−1 − Yj‖ < ε for all j > R2 respectively. Then we have R1 = R2. That
is, the method illustrated in Theorem 2 converges with the same iterations as
Newton’s method.

Proof. From the proofs of Theorem 1 and Theorem 2, we have

Xk = A−1(I − Rk) = A−1

(

I −
(

I − 1
λ1(AAT)

AAT

)2k
)

,

Yk = A−1(I − Ā2k).

344 T. M. Ahn et al.

We first prove that R1 and R2 always exist for 0 < ε < ‖A−1‖. Define two
sequences {xk}k≥0 and {yk}k≥0 with xk = ‖A−1 − Xk‖ and yk = ‖A−1 − Yk‖.

For simplicity, we denote the greatest eigenvalue of AAT as λ1, and the
smallest eigenvalue as λn. Then we have

xk = ‖A−1 − Xk‖ =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

AAT

)2k
∥
∥
∥
∥
∥

≤ ∥
∥A−1

∥
∥ ·

∥
∥
∥
∥I − 1

λ1
AAT

∥
∥
∥
∥

2k

=
∥
∥A−1

∥
∥ ·

(
λ1 − λn

λ1

)2k

.

Also for yk, we have

yk =
∥
∥A−1 − Yk

∥
∥ =

∥
∥
∥
∥A

−1 ¯AAT
2k

∥
∥
∥
∥ =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

· AAT

)2k
∥
∥
∥
∥
∥

≤ ∥
∥A−1

∥
∥ ·

∥
∥
∥
∥I − 1

λ1
· AAT

∥
∥
∥
∥

2k

=
∥
∥A−1

∥
∥ ·

(
λ1 − λn

λ1

)2k

.

Then by the definition of λ1 and λn, we have the inequality

0 <
λ1 − λn

λ1
< 1.

From the results, we can observe that both sequences xn and yn monotonically
decrease and both converge to 0 as k → ∞. Thus, for any 0 < ε � ∥

∥A−1
∥
∥, there

always exist R1, R2 ∈ N such that

xi < ε for all i > R1, and yj < ε for all j > R2.

We further investigate the behavior of xk and yk to compare the minimal itera-
tion required, namely R1 and R2:

xR1 =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

AAT

)2R1
∥
∥
∥
∥
∥

< ε,

yR2 =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

AAT

)2R2
∥
∥
∥
∥
∥

< ε.

It is readily evident that, for a given ε value, R1 is equal to R2.

Our proposed method, despite relying on the trace instead of the dominant
eigenvalue when compared to Newton’s method, demonstrates an equivalent
convergence rate. The proof for this is similar to Theorem 3.

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 345

5.3 Depth Comparison

From Theorem 3, we confirm that our method converges at the same rate as
Newton’s method. It implies that our method uses less multiplicative depth for
matrix inverse operation.

Specifically, let tdiv denote the iteration number required for the division
algorithm method. Moreover, let Xk and Yk represent the previous two algo-
rithms, and assume that Xk and Yk converge at iterations of R1 and R2,
respectively. Then, the total number of multiplications required for Xk is 2tdiv

+n3 + n2 + 2n3R1 and the total number of multiplications required for Yk is
2tdiv + 2n2 + 2n3R2. Since the division algorithm requires the same amount
of multiplications for both algorithms, we only compare the remaining terms.
Hence, Yk requires almost the same number of multiplications since R1 = R2.

For a depth comparison, we analysis the sequence equation Xk+1 = Xk(2I−
AXk) in Theorem 1 and the sequence equation Yk+1 = Yk(I + Ā2k) in Theo-
rem 2. First, assuming the depth level of the input matrix A is denoted as L, and
the level of X0 is assumed to be L − 5, we can observe that X1 is computed by
multiplying A and X0, then subtracting it from 2I, followed by another multipli-
cation with X0. Considering only the multiplication operations (since addition
and subtraction do not affect the level), the level of AX0 becomes L − 6, and
after another multiplication with X0, the resulting matrix X1 has a level of L−7.
Following this pattern, we can see that X2 has a L − 9 level, X3 has a L − 11
level, and so on. Since the level difference between Xk and Xk+1 (k ≥ 0) is 2,
we can conclude that the Newton method consumes 2 depths per iteration.

Next, assuming the level of Y0 is L, then Ā has a L−1 level. Y1 is computed
by adding Ā and I and then multiplying it by Y0, resulting in a L − 2 level.
Ā2 is the square of Ā, which has L − 2 level. Y2 is the result of multiplying Y1

and Ā2, which makes its level L−3. This pattern continues, and we can observe
that Y3 has a L − 4 level, Y4 has a L − 5 level, and so on. The level difference
between Yk and Yk+1 (k ≥ 1) is always 1. Therefore, our method consumes 1
depth per iteration.

Based on the observation, the total depths required for Xk is tdiv + 2 + 2R1

and the total depths required for Yk is tdiv + 3 + R2. Since R1 = R2, and
assuming that R1 = R2 ≥ 2, our method can achieve the inverse matrix with
fewer depths compared to the Newton method.

6 Experiment

In this section, we conduct a comparative analysis to evaluate the performance
of the proposed algorithm and Newton’s method when applied to invertible
matrices in both the plain and encrypted domains. The evaluation focuses on two
critical metrics: circuit depth and iteration number. Subsequently, the proposed
algorithm is applied to linear regression and LDA in the encrypted domain to
validate its computational efficiency.

346 T. M. Ahn et al.

6.1 Experiment Setting

Environment. In our cryptographic experiments, we employed OpenFHE [2]
library for implementing the CKKS scheme. All experiments were evaluated on
a system consisting of Intel Core i9-9900K CPU 3.60GHz × 16, 62.7 GiB RAM,
Ubuntu 20.04.4 LTS.

CKKS Scheme Setting. We employed a 128-bit security level for all CKKS
implementations. The other encryption parameters, including the ring dimen-
sion N , scaling factor Δ, and circuit depth D, were pre-determined to perform
the inverse matrix operations or machine learning algorithms. Furthermore, we
exclusively used a leveled approach and avoided the use of bootstrapping during
the evaluation of homomorphic circuits.

6.2 Invertible Matrix and Machine Learning

Fig. 1. The distribution of iteration numbers required for convergence to the inverse
matrix across various dimensions for two algorithms—ours and Newton method.

Iteration Number Distribution. Figure 1 demonstrates the distributions of
the iteration numbers for our proposed algorithm and the Newton’s method. We
conducted 100 experiments for matrix dimensions of 10, 20, . . . , 50 and depicted
their distributions using box plots. We randomly generated square invertible
matrices of varying sizes, with the smallest eigenvalue greater than 10−7 to
avoid being recognized as zero. We recorded the iteration numbers at which
convergence was achieved, with ε set to 0.001 and compared the approaches in
the plain domain using Matlab R2022b. The results of our experiments show that
our proposed algorithm converges identically to Newton’s method regardless of
dimension.

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 347

Time and Memory w.r.t. Circuit Depth. The reduction in depths has a
significant impact on both the multiplication time and the memory size of cipher-
text and keys in the encrypted domain. For example, in the CKKS scheme, with
the same parameter set (λ, N , Δ), the multiplication time increases propor-
tionally with respect to the depth D of the circuit (see Table 1). Specifically,
multiplication time for D = 1 is 0.037, while 0.649 for D = 50; the latter is
approximately 17 times greater.

Table 1. Impact of circuit depth on the multiplication and key generation time in the
CKKS encryption scheme with fixed encryption parameters (λ, N , Δ).

λ N Δ Depth Mult. Time (s) KeyGen Time (s)

128 216 250 1 0.037 0.225

128 216 250 10 0.14 0.763

128 216 250 20 0.251 1.323

128 216 250 30 0.361 1.884

128 216 250 40 0.486 2.461

128 216 250 50 0.649 3.062

Additionally, in the leveled-CKKS scheme, the size of the ciphertext and key
are linearly determined by the circuit depth. This is due to the fact that the
CKKS scheme uses rescaling (or similarly modulus-reduction in other schemes)
procedure, which reduces the ciphertext size (modulus) after multiplication. Con-
sequently, a larger initial ciphertext size is necessary to accommodate the entire
circuit multiplications. Therefore, the depth of the circuit is a crucial factor that
determines both the time performance and memory capacity in leveled encryp-
tion schemes.

Comparison of Implementation in Encrypted Domain: Time and
Depth. We compare our proposed algorithm with the Newton’s method for
a randomly generated square matrix of size 5 with regards to error at specific
iterations, under varying circuit depths (as seen in Table 2) in the encrypted
domain. We use the same set of parameters (λ, N , Δ) as in Table 1 and measure
the error of the approximated inverse matrix using the spectral norm. For the
convergence of the approximated inverse, we set ε = 0.001.

The results indicate that our algorithm converges at iteration number 16,
which can be efficiently implemented with a circuit depth of D = 27. In contrast,
the Newton’s method converges at the same iteration number 16; however, it
requires a circuit depth of D = 43.

Therefore, we conclude that our proposed algorithm has the same conver-
gence speed as the Newton’s method in the encrypted domain. However, as our
algorithm can be implemented with a smaller circuit depth, its total execution

348 T. M. Ahn et al.

Table 2. Evaluation of our approach and Newton’s method in the encrypted domain
based on iteration number, circuit depth, and error (both use trace instead of dominant
eigenvalue).

Our Method Newton Method

Depth #Iter Error Time(s) #Iter Error Time(s)

20 9 0.4957 242.36 4 2.3868 177.97

25 14 0.0036 442.15 7 1.5761 301.48

27 16 4.59e−6 596.62 8 1.0687 409.17

35 16 4.59e−6 1054.35 12 0.1296 791.84

40 16 4.59e−6 1242.98 14 0.0036 1042.87

43 16 4.59e−6 1410.56 16 4.59e−6 1256.37

time is about 596 s, whereas the Newton’s method’s execution time is about
1,256 s, making our method 2.1 times faster.

Table 3. Comparison of our proposed approach and Newton’s method in perform-
ing ML algorithms—linear regression and LDA (both use trace instead of dominant
eigenvalue).

Our Method Newton Method

ML. Alg. Iter. (Depth) Time (s) Iter. (Depth) Time (s)

Linear 22(58) 14921.42 22(58) 13352.61

Regression 22(37) 7541.7 N/A N/A

LDA 9(36) 1902.33 9(36) 1884.76

9(28) 1481.71 N/A N/A

Application to ML Algorithms. We demonstrate the efficiency of our app-
roach through two popular ML algorithms, linear regression and LDA, that uti-
lize a positive definite matrix as input to evaluate its inverse. We compare the
efficiency of our method with the Newton’s algorithm in terms of circuit depth
and time performance in the encrypted domain; we show that our algorithm
significantly enhances the overall performance.

For our evaluation of linear regression in the encrypted domain, we employed
100 samples with 8 features from the well-known public dataset “Diabetes
dataset”. We used the same encryption parameters λ,N,Δ and set ε = 0.001
for the convergence of the matrix inverse operation. The linear regression of the
dataset requires an inverse of a 8 × 8 square matrix. Our method and Newton’s
method both required 22 iteration number (see Table 3). However, our method

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 349

requires less depth per iteration than Newton’s method. This results in a cir-
cuit depth optimization of 37 for our method, compared to 58 for the Newton’s
method.

Initially, we conducted an experiment using the same circuit depth of 58 for
both our method and Newton’s method. Our approach closely resembles New-
ton’s method in terms of the number of iterations required for convergence.
However, it is noteworthy that as the depth level of the ciphertext decreases, the
ciphertext modulus decreases as well, resulting in an increase in multiplication
speed. In contrast to our method, which consumes only one depth in a single
iteration, Newton’s method consumes two depths in a single iteration. Conse-
quently, even when performing the same number of operations, the multiplication
of ciphertexts with a relatively lower depth level in Newton’s method takes less
time than in our approach. This phenomenon results in a decrease in the total
execution time of Newton’s method, reducing it by 1568.81 s compared to the
execution time of our method. However, our method can perform additional 21
multiplications followed by the acquisition of the inverse matrix. Conversely, in
the case of the Newton’s method, further multiplication was no longer feasible
upon obtaining the inverse matrix.

Subsequently, we measured the execution time of our approach with an opti-
mal circuit depth of 37. Our approach demonstrated approximately 1.8 times less
execution time compared to the Newton’s method. It is important to note that
the Newton’s method cannot be implemented with a depth of 37; a minimum
circuit depth of 58 is required to ensure correctness of the result.

In the evaluation of LDA, we used a subset of 150 samples from Iris flower
dataset, which consists of 4 features and 3 species. With the same setting as
in the linear regression, the LDA algorithm has to compute over an inverse of
4 × 4 matrix. Our method and Newton’s method both required 9 iterations.
Hence, the total depth required for each approach was 28 and 36, respectively,
for constructing the optimal circuit. The evaluation time for the optimal circuit
for each approach was approximately 1481.71 s for our method and 1884.46 s for
the Newton’s method, indicating a 1.27 times improvement in time performance
of our proposed algorithm.

7 Conclusion

This paper presents a novel iterative matrix inverse algorithm that reduces mul-
tiplicative depths compared to the widely used Newton’s method in the homo-
morphic encryption domain. Our algorithm offers significant improvements in
computational time efficiency, with about 2 times reduction, and is advanta-
geous in machine learning algorithms requiring the inverse of matrices.

Acknowledgements. This work was supported by an Institute of Information &
Communications Technology Planning Evaluation (IITP) grant funded by the Korea
government (MSIT) (No. 2021-0-00558-003, Development of National Statistical Anal-
ysis System using Homomorphic Encryption Technology).

350 T. M. Ahn et al.

A Iterative Matrix Inverse Methods

A.1 Goldschmidt’s Matrix Inverse Method

Algorithm 3. Goldschmidt’s Matrix Inverse Approach
1: Input: n × n invertible matrix A, iteration number r
2: Output: approximate inverse matrix Br

3: t ← 1
4: while true do
5: Ā0 ← In×n − 1

2t
A

6: if ‖Ā0‖ < 1 then
7: break;
8: end if
9: t ← t + 1
10: end while
11: B0 ← 1

2t
In×n

12: for i = 1 to r do
13: Bi ← Bi−1(In×n + Āi−1)
14: Āi ← Ā2

i−1

15: end for

A.2 Newton’s Matrix Inverse Method

Algorithm 4. Newton’s Matrix Inverse Approach
1: Input: n × n invertible matrix A, iteration number r
2: Output: approximate inverse matrix Br

3: λ1 ← a dominant eigenvalue of AAT

4: B0 ← 1
λ1

A
T

5: for i = 1 to r do
6: Bi ← Bi−1(2In×n − ABi−1)
7: end for

B Detailed Proof

B.1 Proof of Theorem 1

Proof. Let Rk = I−AXk. Then, we note that Xn+1 = Xk(I+Rk). We first show
that ρ(R0) = ρ(I − αAAT) < 1. We note that the eigenvalues λi(R0) are given
by, λi(R0) = 1 − αλi(AAT). Since AAT is positive-definite and α = 1

λ1(AAT)
,

we have |λi(R0)| < 1. Thus, we get ρ(R0) < 1. Therefore, by Lemma 1, we have

lim
k→∞

Rk
0 = 0. (2)

Cheap and Fast Iterative Matrix Inverse in Encrypted Domain 351

Next, we note that,

Rk = I − AXk = I − AXk−1(I + Rk−1)
= I − AXk−1 − AXk−1Rk−1

= Rk−1 − AXk−1Rk−1

= (I − AXk−1)Rk−1 = (Rk−1)2.

Therefore, inductively, we have Rk = R2k

0 . Hence, lim
n→∞Rk = lim

k→∞
R2k

0 = 0,

where the last equality follows from Eq. (2). Finally, from the definition of Rk,
we note that Xk = A−1(I − Rk). Therefore,

lim
n→∞ Xk = lim

n→∞ A−1(I − Rk) = A−1.

Consider the scenario in which the trace of the matrix product AAT is
utilized in place of the dominant eigenvalue. Despite the replacement of the
scalar parameter alpha with the reciprocal of the trace of AAT , the spectral
radius of the matrix R0 remains less than one. This ensures that the iterative
process converges.

References

1. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT
2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-70694-8 15

2. Al Badawi, A., et al.: OpenFHE: open-source fully homomorphic encryption
library. In: Proceedings of the 10th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, pp. 53–63 (2022)

3. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model train-
ing based on the approximate homomorphic encryption. BMC Med. Genomics
11(4), 23–31 (2018)

4. Sun, X., Zhang, P., Liu, J.K., Yu, J., Xie, W.: Private machine learning classifica-
tion based on fully homomorphic encryption. IEEE Trans. Emerg. Top. Comput.
8(2), 352–364 (2018)

5. Wood, A., Najarian, K., Kahrobaei, D.: Homomorphic encryption for machine
learning in medicine and bioinformatics. ACM Comput. Surv. (CSUR) 53(4), 1–
35 (2020)

6. Jung, W., Kim, S., Ahn, J. H., Cheon, J. H., Lee, Y.: Over 100x faster bootstrap-
ping in fully homomorphic encryption through memory-centric optimization with
GPUS. ACM Comput. Surv. (CSUR), 114–148 (2021)

7. Cheon, J.H., Kim, A., Yhee, D.: Multi-dimensional packing for HEAAN for approx-
imate matrix Arithmetics. Cryptology ePrint Archive (2018)

8. Cetin, G.S., Doroz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-wise homo-
morphic encryption. Cryptology ePrint Archive (2015)

9. Guo, C.H., Higham, N.J.: A schur-newton method for the matrix\boldmath p th
Root and its Inverse. SIAM J. Matrix Analy. Appl. 28(3), 788–804 (2006)

https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15

352 T. M. Ahn et al.

10. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 1–40 (2009)

11. Mital, N., Ling, C., Gündüz, D.: Secure distributed matrix computation with dis-
crete Fourier transform. IEEE Trans. Inf. Theory 68(7), 4666–4680 (2022)

12. Cock, M.D., Dowsley, R., Nascimento, A.C., Newman, S.C.:Fast, privacy preserv-
ing linear regression over distributed datasets based on pre-distributed data. In:
Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp.
3–14 (2015)

13. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive (2012)

14. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5 24

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020)

16. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in HElib. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 93–120.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 4

17. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71, 57–81 (2014)

18. Jiang, X., Kim, M., Lauter, K., Song, Y.: Secure outsourced matrix computation
and application to neural networks. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1209–1222 (2018)

https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-319-96884-1_4

	Cheap and Fast Iterative Matrix Inverse in Encrypted Domain
	1 Introduction
	2 Background
	2.1 Homomorphic Encryption
	2.2 Arithmetic HE
	2.3 Circuit Depth
	2.4 Conventional Iterative Matrix Inverse

	3 Problems in Two Popular Methods
	4 Proposed Approach
	4.1 Motivation
	4.2 Efficient Matrix Inverse

	5 Convergence and Depth Analysis
	5.1 Proof of Convergence
	5.2 Convergence Comparison
	5.3 Depth Comparison

	6 Experiment
	6.1 Experiment Setting
	6.2 Invertible Matrix and Machine Learning

	7 Conclusion
	A Iterative Matrix Inverse Methods
	A.1 Goldschmidt's Matrix Inverse Method
	A.2 Newton's Matrix Inverse Method

	B Detailed Proof
	B.1 Proof of Theorem 1

	References

