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Preface

We are honoured and pleased to have served as PC Co-Chairs of ESORICS 2023. As one
of the longest-running reputable conferences focused on security research, ESORICS
2023 attracted numerous high-quality submissions from all over the world, with authors
affiliated with diverse academic, non-profit, governmental, and industrial entities.

After two rounds of submissions, each followed by an extensive reviewing period,
wewound upwith an excellent program, covering a broad range of timely and interesting
topics. A total of 478 submissions were received: 150 in the first round and 328 in the
second. 3–4 reviewers per submission in a single blind review driven by selfless and
dedicated PC members (and external reviewers) who collectively did an amazing job
providing thorough and insightful reviews. Some PC members even “went the extra
mile” by reviewing more than their share. The end-result was 93 accepted submissions:
28 and 65, in the first and second rounds, respectively.

The 18-session ESORICS 2023 technical program included: (1) 93 talks
corresponding to accepted papers, (2) a poster session, and (3) 3 impressive keynote
talks by internationally prominent and active researchers: Virgil Gligor, Carmela
Troncoso, and Mathias Payer. The program testifies to the level of excellence and
stature of ESORICS.

We offer our deepest gratitude to:

• Authors of all submissions, whether accepted or not. We thank them for supporting
ESORICS and for their trust in us and the PC to fairly evaluate their research results.

• General Chairs: Kaitai Liang and Georgios Smaragdakis, who dealt with (and
addressed) numerous logistical and organisational issues. We very much appreciate
it!

• Submission Chairs: Gabriele Costa and Letterio Galletta, for their super-human
efforts and invaluable support during the submission and reviewing processes. We
could not have done it without them!

• Publication Chairs: Florian Hahn and Giovanni Apruzzese, for handling the pro-
ceedings. We are especially grateful to them for handling numerous requests from
the authors.

• WebChair:YuryZhauniarovich for creating andmaintaining the conferencewebsite.
• Poster Chair: Bala Chandrasekaran, for taking care of the poster track.
• All PCmembers and their delegated reviewers, who were the main engine of success

of ESORICS 2023 and whose hard work yielded an excellent program.

– Special thanks to the recipients of the Outstanding Reviewer Award: Ferdinand
Brasser and Brendan Saltaformaggio, for their exceptional reviewing quality.



vi Preface

In closing, though clearly biased, we believe that ESOIRCS 2023 was an overall
success and we hope that all attendees enjoyed the conference.

September 2023 Mauro Conti
Gene Tsudik
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A Practical TFHE-Based Multi-Key
Homomorphic Encryption with Linear
Complexity and Low Noise Growth

Yavuz Akın1, Jakub Klemsa1,2(B), and Melek Önen1

1 EURECOM Sophia-Antipolis, Biot, France
{yavuz.akin,jakub.klemsa,melek.onen}@eurecom.fr

2 Czech Technical University in Prague, Prague, Czech Republic

Abstract. Fully Homomorphic Encryption enables arbitrary computa-
tions over encrypted data and it has a multitude of applications, e.g.,
secure cloud computing in healthcare or finance. Multi-Key Homomor-
phic Encryption (MKHE) further allows to process encrypted data from
multiple sources: the data can be encrypted with keys owned by differ-
ent parties. In this paper, we propose a new variant of MKHE instanti-
ated with the TFHE scheme. Compared to previous attempts by Chen
et al. and by Kwak et al., our scheme achieves computation runtime
that is linear in the number of involved parties and it outperforms the
faster scheme by a factor of 4.5–6.9×, at the cost of a slightly extended
pre-computation. In addition, for our scheme, we propose and practi-
cally evaluate parameters for up to 128 parties, which enjoy the same
estimated security as parameters suggested for the previous schemes
(100 bits). It is also worth noting that our scheme—unlike the previ-
ous schemes—did not experience any error in any of our seven setups,
each running 1 000 trials.

Keywords: Multi-key homomorphic encryption · TFHE scheme ·
Secure cloud computing

1 Introduction

Fully Homomorphic Encryption (FHE) refers to a cryptosystem that allows for
an evaluation of an arbitrary computable function over encrypted data (first-ever
scheme in [14], find a survey in [1]). With FHE, a secure cloud-aided computa-
tion, between a user (U) and a semi-trusted cloud (C), may proceed as follows:

– U generates secret keys sk, and evaluation keys ek, which she sends to C;
– U encrypts her sensitive data d with sk, and sends the encrypted data to C;
– C employs ek to evaluate function f , homomorphically, over the encrypted

data, yielding an encryption of f(d), which it sends back to U;

This work was supported by the MESRI-BMBF French-German joint project UPCARE
(ANR-20-CYAL-0003-01). Find the full version at https://ia.cr/2023/065.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 3–23, 2024.
https://doi.org/10.1007/978-3-031-50594-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50594-2_1&domain=pdf
https://ia.cr/2023/065
https://doi.org/10.1007/978-3-031-50594-2_1


4 Y. Akın et al.

– U decrypts the message from C with sk, obtaining the result: f(d) in plain.

In such a setup, there is one party that holds all the secret keying material.
In case the data originate from multiple sources, Multi-Key (Fully) Homomor-
phic Encryption (MKHE) comes into play. First proposed by López-Alt et al.
[20], MKHE is a primitive that enables the homomorphic evaluation over data
encrypted with multiple different, unrelated keys. This allows to relax the intrin-
sic restriction of a standard FHE, which demands a single data owner.

Previous Work. Following the seminal work of López-Alt et al. [20], differ-
ent approaches to design an MKHE scheme have emerged: first attempts require
a fixed list of parties at the beginning of the protocol [12,25], others allow parties
to join dynamically [5,27], Chen et al. [8] extend the plaintext space from a single
bit to a ring. Later, Chen et al. [6] propose an MKHE scheme based on the TFHE
scheme [11], and they claim to be the first to practically implement an MKHE
scheme; in this paper, we refer to their scheme as CCS. The evaluation complex-
ity of their scheme is quadratic in the number of parties and authors only run
experiments with up to 8 parties. The CCS scheme is improved in recent work
by Kwak et al. [19], who achieve quasi-linear complexity (actually quadratic,
but with a very low coefficient at the quadratic term); in this paper, we refer
to their scheme as KMS. Parallel to CCS and KMS, which are both based on
TFHE, there exist other promising schemes: e.g., [7], defined for BFV [4,13] and
CKKS [10], improved in [16] to achieve linear complexity, or [23], implemented
in the Lattigo Library [24], which requires to first construct a common public
key; also referred to as the Multi-Party HE (MPHE). The capabilities/use-cases
of TFHE and other schemes are fairly different, therefore we solely focus on the
comparison of TFHE-based MKHE.

Our Contributions. We propose a new TFHE-based MKHE scheme with a lin-
ear evaluation complexity and with a sufficiently low error rate, which allows for
a practical instantiation with an order of hundreds of parties while achieving eval-
uation times proportional to those of plain TFHE. More concretely, our scheme
builds upon the following technical ideas (k is the number of parties):

Summation of RLWE keys: Instead of concatenation of RLWE keys (in cer-
tain sense proposed in both CCS and KMS), our scheme works with
RLWE encryptions under the sum of individual RLWE keys. As a result, this
particular improvement decreases the evaluation complexity from quadratic
to linear.

Ternary distribution for RLWE keys: Widely adopted by existing FHE imple-
mentations [15,22,24,29], zero-centered ternary distribution ζ : (−1, 0, 1) →
(p, 1− 2p, p) works well as a distribution of the coefficients of RLWE keys; we
suggest p ≈ 0.1135. It helps reduce the growth of a certain noise term by
a factor of k, which in turn helps find more efficient TFHE parameters.

Avoid FFT in pre-computations: In our experiments, we notice an unex-
pected error growth for higher numbers of parties and we verify that the
source of these errors is Fast Fourier Transform (FFT), which is used for fast
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polynomial multiplication. To keep the evaluation times low and to decrease
the number of errors at the same time, we suggest replacing FFT with an
exact method just in the pre-computation phase. We also show that FFT
causes a considerable amount of errors in KMS, however, replacing FFT in
its pre-computations is unfortunately not sufficient.

We provide two variants of our scheme:

Static variant: the list of parties is fixed – the evaluation cost is independent of
the number of participating parties, and the result is encrypted with all keys;

Dynamic variant: the computation cost is proportional to the number of par-
ticipating parties, and the result is only encrypted with their keys (i.e., any
subset of parties can go offline).

The variants only differ in pre-computation algorithms – performance-wise, given
a fixed number of parties, the variants are equivalent (it only depends on the
parameters of TFHE) and the evaluation complexity is linear in the number of
involved parties. The construction of our scheme remains similar to that of plain
TFHE, making it possible to adopt prospective advances of TFHE (or its imple-
mentation) to our scheme. In addition to the design of a new MKHE scheme:

– We support our scheme by a theoretical noise-growth & security analysis.
Thanks to the low noise growth, we instantiate our scheme with as many as
128 parties. We show that our scheme is secure in the semi-honest model;

– We design and evaluate a deep experimental study, which may help evalu-
ate future schemes. In particular, we suggest simulating the NAND gate to
measure errors more realistically. Compared to KMS, we achieve 4.5-6.9× bet-
ter bootstrapping times, while using the same implementation of TFHE and
parameters with the same estimated security (100bits). The bootstrapping
times are around 140ms per party (experimental implementation);

– We extend previous work by providing an experimental evaluation of the
probability of errors. For our scheme, the measured noises fall within the
expected bounds, which are designed to satisfy the rule of 4σ (1 in 15 787);
we indeed do not encounter any error in any of our 9 000 trials in total.

Paper Outline. We briefly recall the TFHE scheme in Sect. 2 and we present
our scheme in Sect. 3. We analyze the security, correctness & noise growth, and
performance of our scheme in Sect. 4, which is followed by a thorough experi-
mental evaluation in Sect. 5. We conclude our paper in Sect. 6.

2 Preliminaries

In this section, we briefly recall the original TFHE scheme [11]. First, let us
provide a list of symbols & notation that we use throughout the paper:

– B: the set of binary coefficients {0, 1} ⊂ Z,
– T: the additive group R/Z referred to as the torus (i.e., real numbers mod1),
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– Zn: the quotient ring Z/nZ (or its additive group),
– M (N)[X]: the set of polynomials mod XN + 1, with coefficients from M ,
– $: the uniform distribution,
– a

α← M : the draw of random variable a from M with distribution α (for
α ∈ R, we consider the /discrete/ normal distribution N(0, α)),

– E[X], Var[X]: the expectation and the variance of random variable X.

2.1 TFHE Scheme

The TFHE scheme is based on the Learning With Errors (LWE) encryption
scheme introduced by Regev [28]. TFHE employs two variants, originally referred
to as T(R)LWE, which stands for (Ring) LWEover the Torus. The ring variant
(shortly RLWE ; introduced in [21]) is defined by polynomial degree N = 2ν

(with ν ∈ N), dimension n ∈ N, noise distribution ξ over the torus, and key dis-
tribution ζ over the integers (generalized to respective polynomials mod XN+1).
Informally, to encrypt torus polynomial m ∈ T

(N)[X], RLWE outputs the pair
(b = m−〈z,a〉+e,a), referred to as the RLWE sample, where z

ζ← (Z(N)[X])n is
a secret key, e

ξ← T
(N)[X] is an error term (aka. noise), and a $← (T(N)[X])n is

a random mask. To decrypt, evaluate ϕz(b,a) = b+ 〈z,a〉 = m+ e, also referred
to as the phase. Internally, RLWE samples are further used to build so-called
RGSW samples, which encrypt integer polynomials, and which allow for homo-
morphic multiplication of integer-torus polynomials. It is widely believed that
RLWE sample (b,a) is computationally indistinguishable from a random element
of (T(N)[X])1+n (shortly random-like), provided that adequate parameters are
chosen. If a = 0 and e = 0, we talk about a trivial sample. The plain variant
(shortly LWE) operates with plain torus elements instead of polynomials.

Bootstrapping. By its construction, (R)LWE is additively homomorphic: the
sum of samples encrypts the sum of plaintexts. However, the error terms also
add up, i.e., the average noise of the result grows. To deal with this issue, TFHE
(as well as other fully homomorphic schemes) defines a routine referred to as
bootstrapping. In addition to refreshing the noise of a noisy sample, TFHE boot-
strapping is capable of evaluating a custom Look-Up Table (LUT), which makes
TFHE fully homomorphic. Find an illustration of the operation flow in Fig. 1.
For a comprehensive technical description of TFHE, we refer to Appendix A.

In this paper, we focus on the basic variant of TFHE with a Boolean message
space: true and false are encoded into T ∼ [−1/2, 1/2) as −1/8 and 1/8, respectively.
To homomorphically evaluate the NAND gate over input samples c1,2, the sum
(1/8,0) − c1 − c2 is bootstrapped with a LUT, which holds 1/8 and −1/8 for the
positive and for the negative half of T, respectively.
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Fig. 1. The flow of TFHE: homomorphic addition and bootstrapping, which is com-
posed of other operations. The output sample (b′,a′) may proceed to another homo-
morphic addition, or to the output and decryption.

3 The AKÖ Scheme

In this section, we recall the notion of Multi-Key Homomorphic Encryption
(MKHE) and we propose two variants of MKHE. We outline changes that lead
from the basic TFHE [11] towards our proposal of MKHE – we outline the for-
mat of multi-key bootstrapping keys, and we comment on a distribution for
RLWE keys. We provide a technical description of our scheme, which we denote
AKÖ.

3.1 Towards the AKÖ Scheme

In addition to the capabilities of a standard FHE scheme, an MKHE scheme:

(i) runs a homomorphic evaluation over ciphertexts encrypted with unrelated
keys of multiple parties (accompanied by corresponding evaluation keys);

(ii) requires the collaboration of all involved parties, holding the individual keys,
to decrypt the result.

Note that there exist multiple approaches to reveal the result: e.g., one outlined
in [6], referred to as Distributed Decryption, or one described in [23], referred to
as Collective Public-Key Switching.

We propose our scheme in two variants:

Static variant: the list of parties is fixed at the beginning, then evaluation keys
are jointly calculated – no matter how many parties join a computation, the
evaluation time is also fixed and the result is encrypted with all the keys;

Dynamic variant: after a “global” list of parties is fixed, evaluation keys are
jointly calculated, however, only a subset of parties may join a computation
– the evaluation cost is proportional to the size of the subset and the result
is only encrypted with respective keys (i.e., the remaining parties can go
offline). If a party joins later, a part of the joint pre-calculation of evaluation
keys needs to be executed in addition, as opposed to CCS [6] and KMS [19].

Note that in many practical use cases—in particular, if we require semi-honest
parties—the (global) list of parties is fixed, e.g., hospitals may constitute the
parties. In addition, the pre-calculation protocol is indeed lightweight.

As already outlined, our scheme is based on the three following ideas:
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(i) create RLWE samples encrypted under the sum of individual RLWE keys,
(ii) use a ternary (zero-centered) distribution for individual RLWE keys, and
(iii) avoid Fast Fourier Transform (FFT) in pre-computations.

Below, we discuss (i) and (ii), leaving (iii) for the experimental part (Sect. 5).
Note that the following lines might require an in-depth knowledge of TFHE.

(R)LWE Keys & Bootstrapping Keys. First, let us emphasize that secret
keys of individual parties are never revealed to any other party, however, the
description of AKÖ involves all of them. The underlying (and never reconstructed)
LWE key is the concatenation of individual keys, i.e., s :=

(
s(1), s(2), . . . , s(k)

) ∈
B

kn, where s(p) ∈ B
n are secret LWE keys of individual parties. We refer to s

as the common LWE key. For RLWE keys, we consider their summation, i.e.,
Z :=

∑
p z(p), which we refer to as the common RLWE key. This particular

improvement decreases the computational complexity from O(k2) to O(k).
For bootstrapping keys, we follow the original construction of TFHE,

where we use the common (R)LWE keys. For blind-rotate keys, we generate an
RGSW sample of each bit of the common LWE key s =

(
s(1), . . . , s(k)

)
, under

the common RLWE key Z =
∑

p z(p). In addition, any party shall neither leak
its own secrets nor require the secrets of others. Hence, we employ RLWE public
key encryption [21]. Let us outline the desired form of a blind-rotate key for bit
s:

BKs =
(
bΔ + s · g aΔ

b� a� + s · g
)

, BKs ∈ (
T
(N)[X]

)2d×2
, (1)

where (bΔ,aΔ) and (b�,a�) hold d + d RLWE encryptions of zero under the
key Z; cf. TFHE.RgswEncr. For key-switching keys, we need to generate an LWE
sample of the sum of j-th coefficients of individual RLWE secret keys z(p), under
the common LWE key s, for j ∈ [0, N −1]. Here a simple concatenation of masks
(values a) and a summation of masked values (values b) do the job. With such
keys, bootstrapping itself is identical to that of the original TFHE.

Ternary Distribution for RLWE Keys. For individual RLWE keys, we suggest
to use zero-centered ternary distribution ζp : (−1, 0, 1) → (p, 1 − 2p, p), param-
eterized by p ∈ (0, 1/2), which is widely adopted by the main FHE libraries like
HElib [15], Lattigo [24], SEAL [22], or HEAAN [29]. Although not adopted in
CCS nor in KMS, in our scheme, a zero-centered distribution for RLWE keys
is particularly useful, since we sum the keys into a common key, which is then
also zero-centered. This helps reduce the blind-rotate noise from O(k3) to O(k2),
which in turn helps find more efficient TFHE parameters.

It is worth noting that for “small” values of p, such keys are also referred to
as sparse keys (in particular with a fixed/limited Hamming weight), and there
exist specially tailored attacks [9,31]. At this point, we motivate the choice of
p solely by keeping the information entropy of ζp equal to 1bit, however, there
is no intuition—let alone a proof—that the estimated security would be at least
similar (more in Sect. 5.1). For the information entropy of ζp, we have
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H(ζp) = −2p log(p) − (1 − 2p) log(1 − 2p) != 1, (2)

which gives p ≈ 0.1135. For zi ∼ ζp, we have Var[zi] = 2p ≈ 0.227.

3.2 Technical Description of AKÖ

Algorithms with index q are executed locally at the respective party, encryption
algorithms naturally generalize to vector inputs.

Static Variant of AKÖ. Below, we provide algorithms for the static variant:
◦ AKÖ.Setup(1λ, k): Given security parameter λ and the number of parties k,
generate & distribute parameters for:

– LWE encryption: dimension n, standard deviation α > 0 (of the noise);
– LWE decomposition: base B′, depth d′;
– set up LWE gadget vector: g′ ← (1/B′, 1/B′2, . . . , 1/B′d′);
– RLWE encryption: polynomial degree N (a power of two), std-dev β > 0;
– RLWE decomposition: base B, depth d;
– set up RLWE gadget vector: g ← (1/B, 1/B2, . . . , 1/Bd);
– generate a common random polynomial (CRP) a

$← T
(N)[X].

◦ AKÖ.SecKeyGenq(): Generate secret keys s(q) $← B
n and z(q) ∈ Z

(N)[X], s.t.

z
(q)
i

ζp← {−1, 0, 1}.
◦ AKÖ...: Algorithms for (R)LWE en/decryption and bootstrapping (including
BlindRotate, KeySwitch, etc.) are the same as in TFHE; cf. Appendix A.
◦ AKÖ.RLwePubEncr

(
m, (b, a)

)
: Given message m ∈ T

(N)[X] and public key
(b, a) ∈ T

(N)[X]2 (an RLWE sample of 0 ∈ T
(N)[X] under key z ∈ Z

(N)[X]),
generate temporary RLWE key r(q), s.t. r

(q)
i

ζ← {−1, 0, 1}. Evaluate b′ ← RLwe-
SymEncrq(m, b, r(q)) and a′ ← RLweSymEncrq(0, a, r(q)). Output (b′, a′), which is
an RLWE sample of m under the key z.
◦ AKÖ.RLweRevPubEncr

(
m, (b, a)

)
: Proceed as RLwePubEncr, with a difference

in the evaluation of b′ ← RLweSymEncrq(0, b, r(q)) and a′ ← RLweSymEncrq(m,a,

r(q)), where only m and 0 are swapped, i.e., m is added to the right-hand side
instead of the left-hand side.
◦ AKÖ.BlindRotKeyGenq(): Calculate and broadcast public key b(q) ← RLwe-

SymEncrq(0, a), using the CRP a as the mask. Evaluate B =
∑k

p=1 b(p) (n.b.,
(B, a) = RLWE Z(0), hence it may serve as a common public key). Finally, for
j ∈ [1, n], output the blind-rotate key (related to s

(q)
j and Z):

BK
(q)
j ←

⎛

⎝
RLwePubEncrq

(
s(q)j · g, (B, a)

)

RLweRevPubEncrq

(
s(q)j · g, (B, a)

)

⎞

⎠ , (3)
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which is an RGSW sample of the j-th bit of s(q), under the common RLWE key Z.
◦ AKÖ.KeySwitchKeyGenq(): For i ∈ [1, N ], broadcast [b(q)

i |A(q)
i ] ← LweSym-

Encrq

(
z(q)∗i · g′), where z(q)∗ ← KeyExtract(z(q)). Aggregate and for i ∈ [1, N ],

output the key-switching key (for Zi =
∑

p z
(p)
i and s = (s(1), . . . , s(k))):

KSi =
[ k∑

p=1

b(p)
i

bi

∣
∣
∣ A(1)

i ,A(2)
i , . . . ,A(k)

i

Ai

]
, (4)

which is a d′-tuple of LWE samples of g′-respective fractions of Z∗
i under the

common LWE key s, where Z∗
i is the i-th element of the extraction of the com-

mon RLWE key Z =
∑

p z(p).

Changes to AKÖ towards the Dynamic Variant. For the dynamic variant,
we provide modified versions of BlindRotKeyGen and KeySwitchKeyGen; other
algorithms are the same as in the static variant. Note that, in case we allow
a party to join later, all temporary keys need to be stored permanently and both
algorithms need to be (partially) repeated. This causes a slight pre-computation
overhead over CCS and KMS.
◦ AKÖ.BlindRotKeyGen_dynq(): Calculate and broadcast public key b(q) as
described in the AKÖ.BlindRotKeyGenq() algorithm. Then, for j ∈ [1, n]:

1: generate two vectors of d temporary RLWE keys r(q)j and r′(q)
j

2: for p ∈ [1, k], p �= q, output bΔ(p)
q,j ← RLweSymEncrq(0, b

(p), r(q)j )

3: output bΔ(q)
q,j ← RLweSymEncrq(s

(q)
j · g, b(q), r(q)j )

4: output aΔ
q,j ← RLweSymEncrq(0, a, r(q)j )

5: for p ∈ [1, k], output b�(p)
q,j ← RLweSymEncrq(0, b

(p), r′(q)
j )

6: output a�
q,j ← RLweSymEncrq(s

(q)
j · g, a, r′(q)

j )
To construct the j-th blind-rotate key of party q, related to subset of parties

S � q, evaluate

BK
(q)
j,S ←

⎛

⎝

∑
p∈S bΔ(p)

q,j aΔ
q,j

∑
p∈S b�(p)

q,j a�
q,j

⎞

⎠ , (5)

which is an RGSW sample of s(q)j under the subset RLWE key ZS =
∑

p∈S z(p).

N.b., BK(q)
j,S is only calculated at runtime, once S is known.

◦ AKÖ.KeySwitchKeyGen_dynq(): Proceed as AKÖ.KeySwitchKeyGenq(), while
instead of outputting aggregated KSi’s, aggregate relevant parts once S is known:

KSi,S =
[∑

p∈S
b(p)

i

∣
∣
∣
(
A(p)

i

)
p∈S

]
. (6)

Possible Improvements. In [6], authors suggest an improvement that
decreases the noise growth of key-switching, which can also be applied in our
scheme; we provide more details in the full version of this paper [18].
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4 Theoretical Analysis of AKÖ

In this section, we provide a theoretical analysis of our AKÖ scheme with respect to
security, correctness (noise growth), and performance. For a detailed technical
description of some of the involved algorithms, we refer to Appendix A – in
particular, for those shared by AKÖ and TFHE; cf. AKÖ... in Sect. 3.2.

4.1 Security

We assume that all parties follow the protocol honestly-but-curiously (aka. the
semi-honest model). First, let us recall what is secure and what is not in LWE
(selected methods; also holds for RLWE ):

✓ re-use secret key s with fresh mask a and fresh noise e;
✓ re-use common random mask a with multiple distinct secret keys s(p) and

fresh noises e(p);
✗ publish 〈s,a〉 in any form (e.g., release the phase ϕ or the noise e);
✗ re-use the pair (s,a) with fresh noises ei.

Below, we show that if all parties act semi-honestly, our scheme is secure in both
of its variants. Note that rather than formal proofs, we provide informal sketches.

Public Key Encryption. In AKÖ, there are two algorithms for public key
encryption: RLwe(Rev)PubEncr

(
m, (b, a)

)
. They re-use a common random mask

(the public key pair (b, a)) with fresh temporary key r(q). Provided that b and
a are indistinguishable from random (random-like), it does not play a role to
which part the message m is added/encrypted, i.e., both variants are secure.

Blind-Rotate Key Generation (static variant). Provided that CRP a is
random-like, which is trivial to achieve in the random oracle model, we can
assume that (our) b(q) is random-like. Assuming that other parties act honestly,
also their b(p)’s are random-like, hence the sum B is random-like, too. With (B, a)
random-like, public key encryption algorithms are secure, hence AKÖ.BlindRot-
KeyGenq is secure, too.

Blind-Rotate Key Generation (dynamic variant). In this variant, party q
re-uses temporary secret key r(q) for encryption of zeros using public keys b(p) of
other parties, and for encryption of own secret key s(q). This is secure provided
that b(p)’s are random-like, which is true if generated honestly.

Key-Switching Key Generation (both variants). The AKÖ.KeySwitch
KeyGen(_dyn)q algorithms employ the standard LWE encryption, hence they
are both secure.
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4.2 Correctness and Noise Growth

The most challenging part of all LWE-based schemes is to estimate the noise
growth across various operations. First, we provide estimates of the noise growth
of blind-rotate and key-switching, next, we combine them into an estimate of
the noise of a freshly bootstrapped sample. Finally, we identify the maximum of
error, which may cause incorrect bootstrapping. We evaluate all noises for the
static variant, while for the dynamic variant, we provide more comments below
respective theorems. All proofs can be found in the full version of this paper [18].

Theorem 1 (Noise Growth of Blind-Rotate). The AKÖ.BlindRotate algo-
rithm returns a sample with noise variance given by

Var[〈Z̄,ACC〉] ≈ knNdVBβ2(3 + 6pkN)
BK error

+ 1/2 · knε2(1 + 2pkN)
decomp. error

+ Var[tv]
︸ ︷︷ ︸
usually 0

. (7)

For the dynamic variant, we have (3 + k · 6pN) → (
1 + k(2 + 6pN)

)
in the BK

error term, which we consider practically negligible as 6pN ≈ 700.

Theorem 2 (Noise Growth of Key-Switching). The AKÖ.KeySwitch algo-
rithm returns a sample that encrypts the same message as the input sam-
ple, while changing the key from Z∗ to s, with additional noise eKS, given by〈
s̄, c̄′′〉 =

〈
Z̄∗, c̄′〉 + eKS, for which

Var[eKS] ≈ Nkd′VB′β′2

KS error

+ 2pkNε′2

decomp. error

. (8)

For the dynamic variant, key-switching keys are structurally equivalent, hence
this estimate holds in the same form.

Corollary 1 (Noise of a Freshly Bootstrapped Sample). The AKÖ.Boot-
strap algorithm returns a sample with noise variance given by

V0 ≈ 3knNdVBβ2(1+2pkN)
BK error

+ 1/2knε2(1+2pkN)
b.-r. decomp.

+Nkd′VB′β′2

KS error

+ 2pkNε′2

k.-s. decomp.

.

(9)
For the dynamic variant, the BK error term is changed according to Theorem 1.

Maximum of Error. During homomorphic evaluations, freshly bootstrapped
samples get homomorphically added/subtracted, before being possibly boot-
strapped again; cf. Fig. 1. Before a noisy sample gets blindly rotated, it gets
scaled and rounded to Z2N , which induces an additional rounding error.

Lemma 1 (Rounding Error). The rounding step before BlindRotate
induces an additional error with variance (in the torus scale) given by

Var
[〈
s̄, 1/2N · (b̃, ã) − (b,a)

〉]
=

1 + kn/2

48N2
=: Vround(N,n, k). (10)
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After rounding, the noise gets refreshed inside the BlindRotate algorithm,
which “blindly-rotates” a torus polynomial, referred to as the test vector, which
encodes a LUT. I.e., the rounding step is where the maximum of errors across
the whole computation appears. We focus on this error in the experimental part,
since it may cause incorrect blind-rotation, in turn, incorrect LUT evaluation.
In the following corollary, we evaluate the variance of the maximal error and we
define quantity κ, which is a scaling factor of normal distribution N(0, 1).

Corollary 2 (Maximum of Error). The maximum average error through-
out homomorphic computation is achieved inside AKÖ.Bootstrap by the rounded
sample 1/2N · (b̃, ã) with variance

Vmax ≈ max
{∑

k2
i

}
· V0 + Vround, (11)

where ki are coefficients of linear combinations of independent, freshly boot-
strapped samples, which are evaluated during homomorphic calculations, before
being bootstrapped (e.g.,

∑
k2

i = 2 for the NAND gate evaluation). We denote

κ :=
δ/2√
Vmax

=
δ

2σmax
, (12)

where δ is the distance of encodings that are to be distinguished (e.g., 1/4 for
encoding of bools).

We use κ to estimate the probability of correct blind rotation (CBRot). E.g.,
for κ = 3, we have Pr[CBRot] ≈ 99.73% ≈ 1/370 (aka. rule of 3σ), however, we
rather lean to κ = 4 with Pr[CBRot] ≈ 1/15 787. Since the maximum of error
is achieved within blind-rotate, it dominates the overall probability of correct
bootstrapping (CBStrap), i.e., we assume Pr[CBStrap] ≈ Pr[CBRot].

4.3 Performance

Since the structure of all components in both variants of AKÖ is equivalent to that
of plain TFHE with only n → kn (due to LWE key concatenation), we evaluate the
performance characteristics very briefly: AKÖ.BlindRotate is dominated by 4d ·
kn degree-N polynomial multiplications, whereas AKÖ.KeySwitch is dominated
by Nd′ · (1 + kn) torus multiplications, followed by 1 + kn summations of Nd′

elements. Using FFT for polynomial multiplication, for bootstrapping, we have
the complexity of O(N logN · 4dkn) + O(Nd′ · (1 + kn)).

For key sizes, we have |BK| = 4dNkn·|TRLWE | and |KS| = d′N(1+kn)·|TLWE|,
where |T(R)LWE | denotes the size of respective torus representation.

5 Experimental Evaluation

For a fair comparison, we implement our AKÖ scheme1 side by side with pre-
vious schemes CCS [6] and KMS [19]. These are implemented in a fork [30] of
1 Available at https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe as 3gen.

https://gitlab.eurecom.fr/fakub/3-gen-mk-tfhe
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a library2 [26] that implements TFHE in Julia. For the sake of simplicity, we
implement only the static variant on AKÖ – recall that performance-wise, the two
variants are equivalent, for noise growth, the differences are negligible.

In this section, we first comment on errors induced by existing TFHE imple-
mentations. Then, we introduce type-1 and type-2 decryption errors that one
may encounter during TFHE-based homomorphic evaluations. Finally, we pro-
vide three kinds of results of our experiments:

1. for all the three schemes (CCS, KMS, and AKÖ) and selected parameter sets,
we measure the performance, the noise variances, and the amount of decryp-
tion errors of the two types,

2. we demonstrate the effect of FFT during the pre-computation phase of AKÖ,
3. we compare the performance of all the three schemes with a fixed parameter

set tailored for 16 parties, with different numbers of actually participating
parties (i.e., the setup of the dynamic variant).

We run our experiments on a machine with an Intel Core i7-7800X processor
and 128GB of RAM.

Implementation Errors. The major source of errors that stem from a par-
ticular implementation of the TFHE scheme is Fast Fourier Transform (FFT),
which is used for fast modular polynomial multiplication in RLWE ; find a study
on FFT errors in [17]. Also, the finite representation of the torus (e.g., 64-bit
integers) changes the errors slightly, however, we neglect this contribution as
long as the precision (e.g., 2−64) is smaller than the standard deviation of the
(R)LWE noise. Note that these kinds of errors are not taken into account in
Sect. 4.2, which solely focuses on the theoretical noise growth of the scheme
itself.

Due to the excessive noise that we observe for higher numbers of parties with
our scheme, we suggest replacing FFT in pre-computations (i.e., in blind-rotate
key generation) with an exact method. This leads to an increase of the pre-
computation costs (n.b., it has no effect on the bootstrapping time), however, in
Sect. 5.2, we show that the benefit is worth it.

Types of Decryption Errors. The ultimate goal of noise analysis is to
keep the probability of obtaining an incorrect result reasonably low. Below, we
describe two types of decryption errors, which originate from bootstrapping, and
which we measure in our experiments. N.b., the principle of BlindRotate is the
same across the three schemes, hence it is well-defined for all of them.

Note 1. For the notion of correct decryption, we always assume symmetric inter-
vals around encodings. E.g., for the Boolean variant of TFHE, which encodes
true and false as ±1/8, we only consider the “correct” interval for true as (0, 1/4),
although (0, 1/2) would work, too. Hence in the Boolean variant, actual incorrect
decryption & decoding would be half less likely than what we actually measure.

2 As noted by the authors, the code serves solely as a proof-of-concept.
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Fresh Bootstrap Error. We bootstrap noiseless sample c of μ, i.e., BlindRotate
rotates the test vector “correctly”, meaning that ϕ̃/2N = μ selects the correct
position from the encoded LUT. Then, we evaluate the probability of the result-
ing phase ϕ′ falling outside the correct interval. We refer to this error as the
type-1 error, denoted Err1. This probability relates to the noise of a correctly
blind-rotated, freshly bootstrapped sample. It can be estimated from V0; see
(9).

Blind Rotate Error. Let us consider a homomorphic sum of two independent,
freshly bootstrapped samples (cf. Fig. 1). We evaluate the probability that the
sum, after the rounding step inside bootstrapping, selects a value at an incorrect
position from the test vector, which encodes the LUT (as discussed in Sect. 4.2).
We refer to this error as the type-2 error, denoted Err2. It can be estimated from
Vmax; see (11). We evaluate Err2 by simulating the NAND gate:

fresh c1
Bootstr.−−−−−→ c′

1

fresh c2
Bootstr.−−−−−→ c′

2

}

(1/8 − c′
1 − c′

2) → get rounded ϕ̃ → check ϕ̃/2N
?∈ (0, 1/4).

(13)

5.1 Experiment #1: Comparison of Performance and Errors

For the three schemes—CCS, KMS and AKÖ—we measure the main quantities:
the bootstrapping time (median), the variance V0 of a freshly bootstrapped sam-
ple (defined in (9)), the scaling factor κ (defined in (12)), and the number of
errors of both types. We extend the previous work – there is no experimental
evaluation of noises/errors in CCS nor in KMS. In all experiments, we replace
FFT in pre-computations with an exact method. For CCS and KMS, we employ
the parameters suggested by the original authors, and we estimate their security
with the lattice-estimator by Albrecht et al. [2,3]. We obtain an estimate of
about 100 bits, therefore for our scheme, we also suggest parameters with esti-
mated 100-bit security. We provide more details on concrete security estimates
of the parameters of CCS, KMS and AKÖ in the full version of this paper [18].
The results for CCS, KMS and AKÖ can be found in Table 1, 2 and 3, respectively.

In the results for CCS, we may notice that for 2 to 8 parties, the measured
value of κ, denoted κ(m), agrees with the calculated value κ(c), whereas for 16
parties (n.b., parameters added in KMS [19]), the measured value κ(m) drops
significantly, which indicates an unexpected error growth.

In the results for KMS, we may notice a similar drop of κ – here it occurs for
all numbers of parties – we suppose that this is caused by FFT in bootstrapping
(more on FFT later in Sect. 5.2). For both experiments, we further use κ(m) and
Z-values of the normal distribution to evaluate the expected rate of Err2, which
is in perfect accordance with the measured one.

For our AKÖ scheme, the results do not show any error of any type. Regard-
ing the values of κ (also V0), we measure lower noise than expected – this we
suppose to be caused by a certain statistical dependency of variables – indeed,
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our estimates of noise variances are based on an assumption that variables are
independent, which is not always fully satisfied. We are able to run AKÖ with up
to 128 parties, while the only limitation for 256 parties appears to be the size of
RAM. We believe that with more RAM (> 128GB) or with a more optimized
implementation, it would be possible to practically instantiate the scheme with
even more parties.

Table 1. Key sizes (taken from [19]), bootstrapping times (tB ; median), noises and
errors of the CCS scheme [6], with original parameters and without FFT in pre-
computations (i.e., using precise calculations). ∗Parameters for k = 16 added by [19].
Labels (c) and (m) refer to calculated and measured values, respectively. Running 1 000
trials, i.e., evaluating 2 000 bootstraps; cf. (13). N.b., the actual error rate of a NAND
gate would be approximately half of Err2; cf. Note 1.

k |keys| tB V
(c)
0 V

(m)
0 κ(c) κ(m) Err1,2 Exp.

[MB] [s] [10−4] [10−4] [%�] Err2

2 95 .58 16.2 14.6 2.19 2.30 1 24 21

4 108 2.4 19.1 18.6 2.01 2.04 3 41 41

8 121 10 6.36 6.27 3.39 3.41 0 0 .65
∗16 214 86 2.15 34.5 5.07 1.49 29 128 136

Table 2. Key sizes (taken from [19]), bootstrapping times (tB ; median), noises and
errors of the KMS scheme [19], with original parameters and without FFT in pre-
computations. Running 1 000 trials.

k |keys| tB V
(c)
0 V

(m)
0 κ(c) κ(m) Err1,2 Exp.

[MB] [s] [10−4] [10−4] [%�] Err2

2 215 .61 .458 11.5 12.7 2.60 1.5 12 9.3

4 286 2.1 .915 15.3 8.97 2.26 4 29 24

8 251 5.4 1.83 17.1 6.34 2.13 3 35 33

16 286 15 3.66 32.0 4.49 1.56 22.5 122 119

32 322 35 7.32 30.1 3.17 1.60 23 109 110

5.2 Experiment #2: The Effect of FFT in Pre-Computations

As outlined, polynomial multiplication in RLWE , when implemented using FFT,
introduces additional error, on top of the standard RLWE noise. In this exper-
iment, we compare noises of freshly bootstrapped samples: once with FFT in
blind-rotate key generation (induces additional errors), once without FFT (we
use an exact method instead). We choose our AKÖ scheme with 32 parties.
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Table 3. Parameters, key sizes (calculated), bootstrapping times (tB ; median), noises,
and errors of the static variant of AKÖ, without FFT in pre-computations. Running
1 000 trials, no errors of type Err2 (let alone Err1) experienced.

k LWE RLWE |keys| tB V
(c)
0 V

(m)
0 κ(c) κ(m)

n log2(α) B′ d′ N log2(β) B d [GB] [s] [10−4] [10−4]

2 520 −13.52 23 3 1 024 −30.70 27 2 .08 .19 4.69 4.18 4.04 4.27

4 510 −13.26 22 5 26 3 .24 .56 3.96 2.02 4.33 5.93

8 540 −14.04 22 5 24 4 .66 1.2 4.43 4.20 4.01 4.11

16 590 −15.34 23 4 2 048 −62.00 226 1 .93 1.8 4.56 1.02 4.04 7.90

32 620 −16.12 23 4 226 1 2.0 4.3 3.58 1.21 4.38 6.78

64 650 −16.90 23 4 225 1 4.1 8.6 3.41 1.80 4.20 5.25

128 670 −17.42 23 5 224 1 9.1 18 2.40 .486 4.15 5.47

We observe a tremendous growth of the noise of a freshly bootstrapped sam-
ple in case FFT is employed for blind-rotate key generation: in almost 4% of
such cases, even a freshly bootstrapped sample gets decrypted incorrectly (i.e.,
Err1 ≈ 4%). On the other hand, such a growth does not occur for lower numbers
of parties, hence we suggest verifying whether in the particular case, the effect
of FFT is remarkable, or negligible, and then decide accordingly. Recall that
pre-computations with FFT are much faster (e.g., for 64 parties, we have 33 s
vs. 212 s of the total pre-computation time).

Unexpected Error Growth in KMS. For the KMS scheme, we observe an
unexpected error growth (cf. Table 2), which we suppose to be caused by FFT
in bootstrapping. We replace all FFTs in the entire computation of KMS—
including bootstrapping—with an exact method, and we re-run Experiment #1
with the KMS scheme with (only) 2 parties – due to a ∼ 40× slower evaluation.

We obtain V
(m)
0 ≈ 5.58 · 10−4, which is still much more than the expected

value V
(c)
0 ≈ 0.458 ·10−4, but the value of κ(m) increases from 2.60 to 3.73 and it

results in no type-2 errors. At least partially, this confirms our hypothesis that
the unexpected error growth in KMS is caused by FFT in evaluation.

Supporting evidence can be found in the design of KMS: in its blind-rotate,
we observe that there are (up to) 4 nested FFTs: one in the circled  product,
followed by three inside ExtProd: one in the � product and two in NewHbProd.
Compared with AKÖ, where there is just one level of FFT inside blind-rotate in
Prod, this is likely the most significant practical improvement over KMS.

5.3 Experiment #3: Performance Comparison

We extend the performance comparison of CCS and KMS, presented in Fig. 2
of KMS [19] (which we re-run on our machine), by the performances of our AKÖ
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scheme. Note that the setup of that experiment corresponds to the dynamic vari-
ant – recall that performance-wise, the dynamic variant is equivalent to the static
variant, which is implemented in our experimental library. For each scheme, we
employ its own parameter set tailored for 16 parties, while we instantiate it with
different numbers of actually participating parties; find the results in Fig. 2.

Fig. 2. Comparison of median bootstrapping times of the CCS scheme [6], the KMS
scheme [19], and our AKÖ scheme. 100 runs with respective parameters for 16 parties
were executed. N.b., FFT in pre-computations does not affect performance.

5.4 Discussion

The goal of our experiments is to show the practical usability of our AKÖ scheme:
we compare its performance as well as the probability of errors with previous
schemes – CCS [6] and KMS [19].

In terms of bootstrapping time, AKÖ runs faster than both previous attempts
(cf. Fig. 2). Also, the theoretical complexity of AKÖ is linear in the number of
parties (cf. Sect. 4.3), as opposed to quadratic and quasi-linear for CCS and
KMS, respectively.

To evaluate the number of errors that may occur during bootstrapping, we
propose a new method that simulates the rounding step of BlindRotate (cf.
(13)), which is the same across all the three schemes. Our experiments show
that both CCS and KMS suffer from a considerably high error rate (cf. Table 1
and 2, respectively): for CCS, the original parameters are rather poor; for KMS,
it seems that there are too many nested FFT’s in bootstrapping – we show that
FFT in evaluation—at least partially—causes the unexpected error growth.

To sum up, AKÖ significantly outperforms both CCS & KMS in terms of boot-
strapping time and/or error rate. The major practical limitation of the CCS
scheme is the quadratic growth of the bootstrapping time, whereas the KMS



A Practical TFHE-Based Multi-Key Homomorphic Encryption 19

scheme suffers from the additional error growth in implementation. A disadvan-
tage of AKÖ is that it requires (a small amount of) additional pre-computations
if a new party decides to join the computation in the dynamic variant. Also AKÖ
does not enable parallelization, as opposed to KMS.

6 Conclusion

We propose a new TFHE-based MKHE scheme named AKÖ in two variants,
depending on whether only a subset of parties is desired to take part in a homo-
morphic computation. We implement AKÖ side-by-side with other similar schemes
CCS and KMS, and we show its practical usability in thorough experimentation,
where we also suggest secure & reliable parameters. Thanks to its low noise
growth, AKÖ can be instantiated with hundreds of parties; namely, we tested up
to 128 parties. Compared to previous schemes, AKÖ achieves much faster boot-
strapping times, however, a slight overhead of pre-computations is induced. For
KMS, we show that FFT errors are prohibitive for its practical deployment –
unfortunately, replacing FFT in pre-computations is not enough.

Besides benchmarking, we suggest emulating (a part of) the NAND gate to
achieve a more realistic error analysis: the measured amount of errors shows
to be in perfect accordance with the expected amount. This method may help
future schemes to evaluate their practical reliability.

Future Work. We plan to extend the threat model to assume malicious parties.

A Technical Description of TFHE

We provide a technical description of the TFHE scheme in a form of self-
descriptive algorithms. Parameters and secret keys are considered implicit
inputs.
◦ TFHE.Setup(1λ): Given security parameter λ, generate parameters for:

– LWE encryption: dimension n, standard deviation α > 0 (of the noise);
– LWE decomposition: base B′, depth d′;
– set up LWE gadget vector: g′ ← (1/B′, 1/B′2, . . . , 1/B′d′);
– RLWE encryption: polynomial degree N (a power of two), standard deviation

β > 0;
– RLWE decomposition: base B, depth d;
– set up RLWE gadget vector: g ← (1/B, 1/B2, . . . , 1/Bd).

Other input parameters of the Setup algorithm may include the maximal allowed
probability of error, or the plaintext space size (for other than Boolean circuits).
◦ TFHE.SecKeyGen(): Generate secret keys for:

– LWE encryption: s $← B
n;

– RLWE encryption: z
$← B

(N)[X], (alternatively zi
ζ← {−1, 0, 1} for some dis-

tribution ζ).
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For LWE key s ∈ B
n, we denote s̄ := (1, s) ∈ B

1+n the extended secret key,
similarly for an RLWE key z ∈ Z

(N)[X], we denote z̄ := (1, z) ∈ Z
(N)[X]2.

◦ TFHE.LweSymEncr(μ): Given message μ ∈ T, sample fresh mask a $← T
n and

noise e
α← T. Evaluate b ← −〈s,a〉+μ+e and output c̄ = (b,a) ∈ T

1+n, an LWE
encryption of μ. This algorithm is used as the main encryption algorithm of the
scheme. We generalize this as well as subsequent algorithms to input vectors and
proceed element-by-element.
◦ TFHE.RLweSymEncr(m,a = ∅, zin = z): Given message m ∈ T

(N)[X], sample

fresh mask a
$← T

(N)[X], unless explicitly given. If the pair (a, zin) has been
used before, output ⊥. Otherwise, sample fresh noise e ∈ T

(N)[X], ei
β← T, and

evaluate b ← −zin ·a+m+e. Output c̄ = (b, a) ∈ T
(N)[X]2, an RLWE encryption

of m. In case a is given, we may limit the output to only b.
◦ TFHE.(R)LwePhase(c̄): Given (R)LWE sample c̄, evaluate and output ϕ ←
〈s̄, c̄〉, where s̄ is respective (R)LWE extended secret key.
◦ TFHE.EncrBool(b): Set μ = ±1/8 for b true or false, respectively. Output
LweSymEncr(μ).
◦ TFHE.DecrBool(c̄): Output LwePhase(c̄) > 0, assuming T ∼ [−1/2, 1/2).
◦ TFHE.RgswEncr(m): Given m ∈ Z

(N)[X], evaluate Z ← RLweSymEncr(0),
where 0 is a vector of 2d zero polynomials (i.e., Z ∈ (T(N)[X])2d×2). Output
Z+ m · G, an RGSW sample of m.
◦ TFHE.Prod

(
BK, (b, a)

)
: Given RGSW sample BK of s ∈ Z

(N)[X], and
RLWE sample (b, a) of m ∈ T

(N)[X], evaluate and output:

(b′, a′) ←
(
g−1(b)
g−1(a)

)T

· BK =: BK � (b, a), (14)

which is an RLWE sample of s · m ∈ T
(N)[X]; in TFHE also referred to as the

external product.
◦ TFHE.BlindRotate

(
c̄, {BKi}n

i=1, tv
)
: Given c̄ = (b, a1, . . . , an) ∈ T

1+n, an
LWE sample of μ ∈ T under key s ∈ B

n; (BKi)ni=1, RGSW samples of si under
RLWE key z (aka. blind-rotate keys); and RLWE z(tv) ∈ T

(N)[X]2, (usually triv-
ial) RLWE sample of tv ∈ T

(N)[X] (aka. test vector), evaluate:
1: b̃ ← �2Nb�, ãi ← �2Nai� for 1 ≤ i ≤ n

2: ACC ← X b̃ · RLWE (tv)
3: for i = 1, . . . , n do
4: ACC ← ACC+ Prod

(
BKi,X

ãi · ACC − ACC
)

� ACC or X ãi · ACC if
si = 0 or si = 1, resp.

Output ACC = RLWE z(X ϕ̃ ·tv), an RLWE encryption of test vector “rotated”
by ϕ̃, where ϕ̃ = �2Nb� + s1�2Na1� + . . . + sn�2Nan� ≈ 2N(s̄ · c̄) ≈ 2Nμ.
◦ TFHE.KeyExtract(z): Given RLWE key z ∈ Z

(N)[X], output z∗ ←
(z0,−zN−1, . . . ,−z1).
◦ TFHE.SampleExtract(b, a): Given RLWE sample (b, a) ∈ T

(N)[X]2 of m ∈
T
(N)[X] under RLWE key z ∈ Z

(N)[X], output LWE sample (b′,a′) ← (b0, a0, . . . ,
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aN−1) ∈ T
1+N of m0 ∈ T (the constant term of m) under the extracted LWE

key z∗ = KeyExtract(z).
◦ TFHE.KeySwitchKeyGen(): For j ∈ [1, N ], evaluate and output a key-switching
key for zj and s: KSj ← LweSymEncr

(
z∗

j · g′), where z∗ ← KeyExtract(z). KSj

is a d′-tuple of LWE samples of g′-respective fractions of z∗
j under the key s.

◦ TFHE.KeySwitch
(
c̄′, {KSj}N

j=1

)
: Given LWE sample c̄′ = (b′, a′

1, . . . , a
′
N ) ∈

T
1+N (extraction of an RLWE sample), which encrypts μ ∈ T under the extrac-

tion of an RLWE key z∗ = KeyExtract(z), and a set of key-switching keys for z
and s, evaluate and output

c̄′′ ← (b′,0) +
N∑

j=1

g′−1(a′
j)

T · KSj , (15)

which is an LWE sample of the same μ ∈ T under the LWE key s.
◦ TFHE.Bootstrap

(
c̄, tv, {BKi}n

i=1, {KSj}N
j=1

)
: Given LWE sample c̄ of μ ∈ T

under LWE key s, test vector tv ∈ T
(N)[X] that encodes a LUT, and two sets

of keys for blind-rotate and for key-switching (aka. bootstrapping keys – the
evaluation keys of TFHE), evaluate:
1: c̄′ ← BlindRotate

(
c̄, {BKi}n

i=1, tv
)
;

2: c̄′′ ← KeySwitch
(
SampleExtract(c̄′), {KSj}N

j=1

)
.

Output c̄′′, which is an LWE sample of—vaguely speaking—“evaluation of
the LUT at μ”, under the key s, with a refreshed noise. Details on the encoding
of the LUT are out of the scope of this paper.
◦ TFHE.Add(c1, c2): Output c1+c2, which encrypts the sum of input plaintexts.
Using just “+”.
◦ TFHE.NAND

(
c1, c2, {BKi}n

i=1, {KSj}N
j=1

)
: Given encryptions of bools b1 and

b2 under LWE key s, and bootstrapping keys for s and z, set the test vector
as tv ← 1/8 · (1 + X + X2 + . . . + XN−1). Output c̄′′ ← Bootstrap

(
1/8 − c1 −

c2, tv, {BKi}n
i=1, {KSj}N

j=1

)
, which is an encryption of ¬(b1∧b2) under the key s.
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Abstract. Deniable encryption (Canetti et al. in CRYPTO ’97) is an
intriguing primitive, which provides security guarantee against coercion
by allowing a sender to convincingly open the ciphertext into a fake
message. Despite the notable result by Sahai and Waters in STOC ’14
and other efforts in functionality extension, all the deniable public key
encryption (DPKE) schemes suffer from intolerable overhead due to the
heavy building blocks, e.g., translucent sets or indistinguishability obfus-
cation. Besides, none of them considers the possible damage from leakage
in the real world, obstructing these protocols from practical use.

To fill the gap, in this work we first present a simple and generic app-
roach of sender-DPKE from ciphertext-simulatable encryption, which can
be instantiated with nearly all the common PKE schemes. The core of
this design is a newly-designed framework for flipping a bit-string that
offers inverse polynomial distinguishability. Then we theoretically and
experimentally expound on how classic side-channel attacks (timing or
simple power attacks), can help the coercer break deniability, along with
feasible countermeasures.

Keywords: Deniable encryption · Simulatable encryption ·
Side-channel attacks · Leakage resilience

1 Introduction

DENIABLE ENCRYPTION, firstly introduced by Canetti et al. [6], is a seemingly
contradictory primitive which allows a coerced user to produce fake (but valid-
looking) random coins that could open the original ciphertext to another mes-
sage. More detailedly, there is an additional fake algorithm, which on inputting
the original plaintext m, used randomness r, and any fake message m∗, returns
some fake coins r∗. In this way, the sender can claim the questioned ciphertext
to be the encryption of m∗ under r∗, and the coercer can not detect the lie.
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Compared with the traditional encryption notions that provide security
against only passive attacks, deniable encryption provides more shields since
it is coercion-resistant and non-committing in the context of active attacks. In
this sense, deniable public key encryption (DPKE) can be deployed in systems
where strong privacy-preserving is required, e.g., electronic voting [12], unco-
ercible multiparty computation [6,21], cloud storage service [11] and searchable
encryption [27].

PRIOR WORKS ON DENIABILITY. Over the last decades, many approaches have
been proposed to build deniable encryption. The seminal work [6] provided two
schemes for bit encryption using a well-defined primitive called translucent sets
(TS). Following this blueprint, O’Neill et al. [32] explored non-interactive bi-
deniable encryption under the weak model where both sides can fake simultane-
ously, along with constructions from lattice-based bi-TS. A notable breakthrough
was achieved by Sahai and Waters [33], where they presented the first and only
known construction supporting negligible detection probability by use of indis-
tinguishability obfuscation (iO) [20,23] and puncturable PRFs [3]. Recently,
Agrawal et al. [1] tackled deniability by equipping fully homomorphic encryp-
tion (FHE) [22] (e.g., the BGV scheme [4]) with biased decryption. As extensions
of DPKE, Gao et al. [19] studied the stronger notation of CCA-secure DPKE
and provided an instantiation from extended hash proof systems; Caro et al.
[9,10] built deniable function encryption by combining iO and delayed trapdoor
circuit; Besides, Coladangelo et al. [14] explored the possible quantum setting
where the encryption program is implemented under quantum circuits, and gave
efficient constructions from LWE. There has also been work on fully interactive
DPKE [7], where negligible bi-deniability was achieved based on iO and OWFs.

CURRENT LIMITATIONS OF DPKE. Although the aforementioned works settled
the issue in various aspects, they all bear somewhat heavy building blocks, e.g.,
TS-based schemes [2,6,32] only support bit-encryption; FHE-derived one [1] has
the runtime of encryption being linear of both the inverse detection probability
and the size of message space; the only scheme with negligible detection prob-
ability [33] is built on the powerful iO which however requires sub-exponential
assumptions and huge storage cost. These facts make them fall short of being
deployment-friendly, let alone integrate with other cryptosystems into synthet-
ical programs. Therefore, there has still been a challenging gap between theo-
retical prototypes and pragmatic systems on deniability. In other words, it is
more desirable to construct deniable encryption from handy methods and with
as practical as possible overhead (ciphertext size or runtime).

On the other side, there has been lots of work paying close attention to
another security notion of PKE. Namely, the resilience to the leakage from phys-
ical hardware that encapsulates the related algorithms, e.g., side-channel attacks
(SCA) from timing or power analysis [17,18,25,26], which are common threats
to the cryptographic applications in real-world [5,30]. Previous works have also
provided various manners to avoid such leakage including general models or spe-
cific countermeasures. However, there has been no headway yet that sheds light
on the potential damage to deniable schemes. That is, we have no idea that, with
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some available side-channel information of programs where the sender operates,
can the coercer distinguish the claimed randomness from the real ones, so as to
breach the deniability of the target system? Thus, towards the practical use of
DPKE, it is encouraging to explore deniability in the context of SCA.

OUR CONTRIBUTIONS. This work addresses the above two limitations of existing
deniable encryption schemes. Our contributions are summarized in the following.

– We propose a generic construction of DPKE from ciphertext-simulatable PKE,
an underpinning that can be instantiated with nearly all the common PKE
schemes. In particular, we devise a subtle bit-flipping framework within a bit
string to support inverse polynomial detection probability.

– We formalize the SCA-equipped coercion model for timing and simple power
attacks, under which we show how deniability can be breached, as well as pro-
vide suitable countermeasures, we then evidence these results by performing
relative experiments.

Table 1. Comparison between known schemes and ours.

Scheme Methods Mess. space Deniability SCA Cipher. size Runtime

[6] TS {0, 1} O( 1
λ
) � O(λ · τl) O(λ · τt)

[33] iO + PKE {0, 1} negl(λ) � O(τl) O(τt)

[1] FHE poly(λ) O( 1
λ
) � O(τl) τt · poly(λ)

Ours CS -PKE 2λ O( 1
λ
) Against O(λ · τl) O(λ · τt)

For security parameter λ, Table 1 gives an overall comparison of some known
sender-DPKE and ours, where τl and τt denote the element size and runtime of
the underlying methods, respectively, e.g., the ciphertext size and en/decryption
runtime of the PKE used in [33]. As we will expound in Sect. 2, nearly all the
common PKE schemes (e.g., ElGamal, Cramer-Shoup, Kyber) are inherently
ciphertext-simulatable (CS ), which demonstrates the superiority of our scheme
in availability. Besides, the notation 2λ in the third column means that our
scheme supports the inherent message space of the used PKE scheme, while [6,33]
only admits encryption of bit under whatever methods, and [1] has encryption
runtime being linearly dependent of the message space. Finally, our scheme for
the first time considers the issue of SCA, along with some basic countermeasures,
which is a fundamental guidance towards practical applications of DPKE.

OVERVIEW OF OUR TECHNIQUES. In the following, we provide more technical
details of our contributions.

Generic Approach of DPKE. We begin with sketching CS -PKE (see the formal
definition in Sect. 2.2), where an oblivious algorithm OEnc samples a random
ciphertext ctr relative to a public key using some randomness r, without know-
ing the corresponding plaintext. Its inverting algorithm IEnc, on inputting the
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original message and encryption randomness, simulates the above process by
returning a simulated randomness r∗. Our core idea is to utilize the ability of
interpreting an encryption as a randomly sampled one in CS -PKE to deceive
the coercer. In this sense, we have to make sure that the receiver can distin-
guish between these two types of ciphertexts. Thus, we tag every ciphertext
with an OWF (H) value. Namely, the encryption of a message m is a pair
(Enc(pk,m||u),H(u)), while the oblivious sample is (ctr,H(u)), where u is a
random nonce.

Then we give an abstract of the newly-designed bit-flipping framework. The
main layout is that the encryption of a message m contains n sub-ciphertexts
{cti} binding to the pattern of a random bit-string s ∈ {0, 1}n. In particular,
for s[i] = 0, generate an obliviously sampled pair

ci := (c(1)i , c
(2)
i ) ← (OEnc(pk; ri),H(ui)).

while for s[i] = 1, produce an honest encryption of message mi as

ci := (c(1)i , c
(2)
i ) ← (Enc(pk,m||ui; ri),H(ui)),

where mi is random over the valid message space, except for one random index
t = select(s;v) where select is a publicly random map into the “1”-set of the
input string and v is an auxiliary nonce, mt is the real message m. The final
ciphertext ct for m is ({cti},v). In this way, the receiver first decodes {cti} in
sequence to recover s, i.e., set s[i] = 1 iff c

(2)
i is the OWF image of ui, which

is decrypted from c
(1)
i ; then locates the index t = select(s;v) to obtain the real

message mt = m. The negligible decryption error comes from that for “0”-mode
pair, ui will not be the preimage of c(2)i due to the one-wayness of H.

To fake, the sender first samples from IEnc(pk,m, rt) a simulated randomness
r∗
t , which cloaks c(1)t as a random sample from OEnc(pk; r∗

t ). Then she/he flips st

from 1 to 0 to output a faking s∗ and provides all the other original randomness
{mi, ri, ui}. In this way, the sender can explain ct as the encryption of mt∗ for
t∗ = select(s∗;v). Further, the detection probability of a coercer is scaled by
the statistical difference of s and s∗, which is essentially the distance between
random and one-bit-flipping sampling of a bit-string. We step forward to prove
it is bounded by an inverse polynomial 1√

n
in Theorem 1, thus our scheme shares

the same security level of known schemes [1,6,8] from standard assumptions.

SCA to Deniability. We mainly consider the basic types of SCA (timing attacks
[25] and simple power analysis [26]). The failure of deniability is based on a
theoretical observation: there is an inherent disparity between fake opening and
honesty of all the known schemes, e.g., the ways of sampling used randomness,
the count of times that a subprogram is invoked. This disparity will result in
the difference in operating time or power consumption within the encryption
program. Then a coercer can first record such side-channel information during
the execution of encryption, and demand the sender to rerun the encryption
under the claimed randomness and plaintext, then detect the lie if the records
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of two operations have a significant change. Formally, we model the behaviors
of a coercer as two steps: (passively) monitor to collect the target ciphertext ct
and its SC information; (actively) coerce to obtain the internal plaintext and
randomness, along with the fresh SC information.

Under the above enhanced coercion model, we examine most known DPKE
schemes and ours, demonstrating that a denial of the original message can always
be distinguished with polynomial overhead. To further evidence these theoretical
conclusions, we instantiate the schemes of [6] and ours with ElGamal encryption,
then compare the consumption of CPU cycles between the honest encryption and
fake opening, the experiment results (Fig. 3) show the gap is stable and effective
(mostly >54.6µs). Finally, we provide some countermeasures to such SCA, i.e.,
we make encryption algorithm conduct some tiny redundancy operations, such
that honesty and faking execute the very same instruction stream. Simulations
on these updated schemes exhibit that now the variation of time/power con-
sumption changes to be less than 10 ns (Fig. 4), meaning the fixing is indeed
feasible. In summary, our work mounts the practical security of deniable encryp-
tion when applied in real-world systems.

ORGANIZATION. In the forthcoming sections, we first recall some necessary
preliminaries in Sect. 2. Then we provide a generic approach of DPKE from
ciphertext-simulatable PKE in Sect. 3. Finally Sect. 4 depicts how to break deni-
ability of known schemes and ours under the SCA-enhanced coercion model,
together with suitable countermeasures.

2 Preliminaries

In this section, we define the notation and preliminaries required in this work.

Notations. Let λ denote the security parameter throughout the paper. Function
f(λ) is said to be negligible if it is O(λ−c) for all c > 0, and use negl(λ) to
denote such a function of λ. f(λ) is said to be polynomial if it is O(λ−c) for
some constant c > 0, and use ploy(λ) to denote such a function of λ. Event X
is said to occur with overwhelming probability in λ if Pr[X] = 1 − negl(λ). Let
F(x; r) denote a randomized algorithm F runs on input x and randomness r.

Use [n] to denote the integer set {1, . . . , n}. Use bold lower-case letters (e.g.,
s) to denote a bit-string. For s, denote its i-th element as s[i], the index of
its (j + 1)-th “1” as L(s, j), its hamming weight as w(s), its decimal as dec(s),
its 0 and 1-index sets as S0 and S1, respectively. For a finite set X , denote by
x ← X sampling x uniformly from X , and by y ← D sampling y according to
the distribution D. The statistical Distance between two distributions D1 and
D2 over X is SD(D1,D2) = 1

2

∑

x∈S
|D1(x) − D2(x)| .

2.1 Sender-Deniable Public Key Encryption

We first recall the model of sender-deniable public key encryption introduced in
[6], such a scheme DE = (KGen,Enc,Dec,Fake) has the following syntax:
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• KGen(1λ) → (pk, sk): With the security parameter λ, generate the public and
secret key pair (pk, sk).

• Enc(pk,m; r): On inputting the public key pk and a message m, use random-
ness r to produce a ciphertext ct.

• Dec(sk, ct): On inputting the secret key sk and a ciphertext ct, output a
message m or ⊥.

• Fake(pk,m, r,m∗): On inputting the public key pk, original message m, ran-
domness r, and a fake message m∗, output a fake randomness r∗.

Correctness. DE is correct if, for any security parameter λ, message m,
(pk, sk) ← KGen(1λ), it holds that Pr [Dec(sk,Enc(pk,m; r)) = m] = 1−negl(λ).

Definition 1 (IND-CPA). DE is IND-CPA secure if for all PPT adver-
sary A, the absolute difference of probability of outputting 1 between experiment
ExpCPA−0

A and ExpCPA−1
A is negligible.

Experiment: ExpCPA−b
A (λ)

(pk, sk) ← KGen(1λ).
(m0,m1, st) ← A1(pk).
Compute ct ← Enc(pk,mb; r), return ct to A.
b′ ← A2(pk, ct, st). Output b′.

Definition 2 (Deniability). DE satisfies deniability if for any PPT adver-
sary A, the absolute difference of probability of outputting 1 between experiment
ExpDe−0

A and ExpDe−1
A is negligible.

Experiment: ExpDe−b
A (λ)

(pk, sk) ← KGen(1λ).
(m,m∗, st) ← A1(pk).
Sample r and r∗ ← Fake(pk,m, r,m∗).
If b = 0 : return D0 = (m∗, r,Enc(pk,m∗; r)) to A.
Else if b = 1 : return D1 = (m∗, r∗,Enc(pk,m; r)) to A.
b′ ← A2(pk,Db, st). Output b′.

2.2 Ciphertext-Simulatable Public Key Encryption

Ciphertext-simulatable PKE is a relaxed version of simulatable PKE [15], in the
sense that 1) it only admits the oblivious sampling of ciphertexts; 2) the cor-
responding inverting algorithm additionally takes the encryption-used plaintext
and randomness as input to return a randomness relative to oblivious sampling.

Formally, such PKE consists of universal algorithms (KGen,Enc,Dec), aug-
mented with (OEnc, IEnc) for obliviously sampling and inverting ciphertexts:

• OEnc(pk; ro): On inputting the public key pk, use randomness ro to sample a
ciphertext ct.

• IEnc(pk,m, re): On inputting the public key pk, message m, randomness re

used in the original encryption, output a randomness r∗
o .



30 Z. An et al.

Definition 3 (Ciphertext-Simulatability [13,15]). For CS-PKE, it holds
that for all PPT distinguisher D, message m, public key pk ← KGen(1λ),

∣
∣
∣ Pr[D(Enc(pk, m; re), IEnc(pk, m, re)) = 1] − Pr[D(OEnc(pk; ro), ro) = 1]

∣
∣
∣ ≤ negl(λ).

As noted in [13,32], ciphertext-simulatability implies IND-CPA. Besides, the
ongoing works [13,15,16,28,32] have shown that simulatable encryption can
be realized from nearly all the standard cryptographic assumptions, e.g., DDH
(ElGamal and Cramer-Shoup), RSA (PKE from RSA-based trapdoor permuta-
tions), as well as worst-case lattice assumptions (LWE-based encryptions), these
results also apply to ciphertext-simulatable PKE as it is a weaker variant.

3 Generic Construction of DPKE

In this section, we give the generic approach of DPKE from any ciphertext-
simulatable PKE scheme. The sketchy roadmap is: first sample a uniform random
bit-string s, then use another randomness v to select a random index t of “1”
in s and encrypt m at t. For i ∈ S1 \ {t}, encrypt a random message mi;
otherwise, obliviously sample a random cipher. In particular, all the encryptions
are operated on the message plus a random tag, whose evaluation of an OWF
is also dispatched. In this way, the receiver could decrypt all the n ciphers to
reassemble s, so as to locate the index t binding to m. To fake, the sender flips
st to obtain a fake string s∗ and index t∗, then invert-samples ct as a random
pair, so to interpret the ciphertext as the encryption of the fake message mt∗ .

The faking probability of this design mainly hinges on the statistical distance
between s and s∗. Thus, below we first clarify how flipping one bit influences the
randomness of a string, then give the description and analysis of our scheme.

3.1 Warm-Up: Bit Flipping

We consider the issue of the remaining randomness of a made string from flipping
a “1” of a random string. Specifically, we prove that s and s∗ are within an inverse
polynomial distance, as the following theorem shows.

Theorem 1 (Randomness of bit-flipping). Given two distributions U and
F for a bit-string, the first is the uniformly random sampling from the finite set
S = {0, 1}n, and the latter is the flipping case where it first samples s from S,
if s = 0n, outputs ⊥; else it outputs a string from randomly flipping one bit in
s from 1 to 0. The statistical distance between U and F is Θ( 1√

n
).

Proof. W.l.o.g, assume n = 2m + 1. Consider the count k of 1 of s, i.e.,∑n
i=1 x[i] = k for k ∈ [0, n], then the probability of s for each k in R is 1

2n ·
(
n
k

)
;

The probability F (s) is more complicated. Observe that s must be obtained by
flipping a “1” (indexed as i) of a string s′ from S whose count of “1” is k+1. Thus,
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there are n− k possible s′ when fixing s. Further, the probability of flipping s[i]
in s′ is 1

k+1 . Therefore, we get F (s) = 1
2n ·

(
n
k

)
n−k
k+1 and the following equation:

SD(U,F ) =
1
2

·
∑

x∈S
|U(x) − F (x)| + 1

2
· F (⊥)

=
1
2

·
n∑

k=0

∣
∣
∣
∣
1
2n

(
n

k

)(

1 − n − k

k + 1

)∣
∣
∣
∣ +

1
2n+1

=
1

2n+1
·
(

n∑

k=m+1

(
n

k

)(

1 − n − k

k + 1

)

+
m∑

k=0

(
n

k

) (
n − k

k + 1
− 1

)

+ 1

)

.

Note that n−k
k+1 = 1 for k = m and

(
n
k

)
=

(
n

n−k

)
, thus the above equation can

be further simplified into

SD(U,F ) =
1

2n+1
·
(

m∑

k=0

(
n

k

) (
n − k

k + 1
− k

n − k + 1

)

+ 1

)

=
1

2n+1
·
(

n +

(
m∑

k=1

(
n

k + 1

)

−
(

n

k − 1

))

+ 1

)

=
1
2n

·
(

n

m

)

.

(1)

By applying Stirling’s approximation, we obtain SD(U,F ) ≈ 1√
πn

= Θ( 1√
n
). ��

In Appendix A, we further prove the optimality of the above one-bit flipping
case, i.e., it reserves the most randomness of s under all the possible flipping
manners.

3.2 The New Framework

The underlying methods are an OWF H : U → {0, 1}�t for U = {0, 1}�h , and a
ciphertext-simulatable PKE E with message space M′ = {0, 1}�m′ where �m′ =
�m + �h, randomness space Re ⊂ {0, 1}�e and Ro ⊂ {0, 1}�o for encryption
and oblivious sampling, respectively, w.l.o.g., we assume Ro = Re = R. For
ease of notation, we suppress the polynomial dependence on λ of the associated
parameters. Our framework of DPKE DE for message space M = {0, 1}�m is as
follows:

• KGen(1λ): Sample (pk, sk) ← E .KGen(1λ), and output dpk := pk, dsk := sk.
• Enc(dpk,m): Upon inputting dpk and m ∈ M, conduct the following:

1. Sample s,v ← {0, 1}n. Abort if s = 0n; Else, determine the index t =
L(s, dec(v) mod w(s)).

2. For i ∈ [n]: sample ri ← R, ui ← U ; further if i ∈ S1, sample mi ← M,
except that take mt = m for i = t. The internal randomness is

Rand := (s, {mi}i∈S1\{t}, {ri, ui}i∈[n]).
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3. Finally, generate n ciphertexts {ci}i∈[n] under the pattern of s:
① If i ∈ S0, set the masking ciphertext as

ci := (c(1)i , c
(2)
i ) ← (E .OEnc.(pk; ri),H(ui)). (1)

② Else, produce the real encryption of mi as

ci := (c(1)i , c
(2)
i ) ← (E .Enc(pk,mi||ui; ri),H(ui)). (2)

4. Output dct := ({ci}i∈[n],v).
• Dec(dsk, dct): Parse dct as (c1, . . . , cn,v), for i ∈ [n], do the following:

1. Run mi := E .Dec(dsk, c(1)i ). If mi =⊥, set e[i] = 0 and move to i := i+1;
2. Parse mi as mi||ui, set e[i] = 1 if H(ui)

?= c
(2)
i , or 0 otherwise.

Output ⊥ if w(e) = 0. Else, compute te = L(e, dec(v) mod w(e)), and output
m := mte .

• Fake(dpk,m,Rand,m∗): Upon inputting the public key dpk, real message m
and used randomness Rand, along with the fake message m∗ ∈ {mi}i∈S1\{t},
conduct as follows to produce a fake randomness Rand∗:
1. If m∗ = m, output Rand∗ = Rand.
2. Else, set s∗ = (. . . s[t−1] 0 s[t+1] . . .) and t∗ = L(s∗, dec(v) mod w(s∗)).
3. For i ∈ [n]: if i = t, generate r∗

i := E .IEnc(pk,m, ri) and set u∗
i = ui; else,

set r∗
i = ri and u∗

i = ui, additionally set m∗
i = mi if i ∈ S1 \ {t∗}.

4. Return Rand∗ = (s∗, {m∗
i }i∈S1\{t,t∗}, {r∗

i , u∗
i }i∈[n]).

Remark 1. The above scheme is pre-planning, in the sense that the sender must
choose the fake message mt∗ at the beginning of the encryption.

Theorem 2. Suppose that E is correct and H is one-way, then DE is correct.

Proof. We prove the correctness of DE by showing that the recovered e in Dec
is the exact s used in Enc. Note that for any honestly generated ciphertext
dct : {ci}, it holds that for i ∈ [n]:

1. If i ∈ S1, ci is produced as Eq. (2), the honest encryption of mi, then by
correctness of E we have that E .Dec(dsk, c(1)i ) is equal to mi||ui, thus H(ui) =
c
(2)
i and so e[i] = s[i] = 1.

2. If i ∈ S0, ci is generated as Eq. (1) from oblivious sampling. Below we expound
that if e[i] is assigned as 0 with non-negligible probability ε, then we can
break the one-wayness of H with the same probability ε. A PPT adversary
A first generates (pkA, skA) ← E .KGen(1λ), then produces a random cipher
cA ← E .OEnc(pkA; r). Next, A requests a challenge for the one-wayness game
and receives H(u) for random u ∈ U , and decrypts cA as mA using skA. If
mA =⊥, A also outputs ⊥ and aborts. Else, A parses mA as m′||u′ and
outputs u′. Note that (cA,H(u)) is generated in the same way as Eq. (1),
meaning the success of A in the one-wayness game of H (i.e., H(u′) = H(u))
is equivalent to assigning e[i] to 1 in this sub-case.

After the above analysis, we have e = s holds with overwhelming probability, so
te = t = L(s, dec(v) mod w(s)) and DE .Dec always outputs mte = m. ��
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3.3 Security Analysis

Below we prove DE satisfies IND-CPA and 1√
n
-deniability.

Theorem 3. Suppose that E is IND-CPA, then DE is IND-CPA.

Proof. We prove CPA security by contradiction. Suppose that A succeeds in
ExpCPA−b

A of DE with probability 1
2 + ε for non-negligible ε, then we can build

a PPT algorithm B that breaks CPA security of E with also advantage ε. Let
(pk, sk) ← E .KGen(1λ), given pk, B plays with A as follows:

• Setup. B sends dpk := pk to A.
• Challenge. A picks two different messages m0,m1 ← M and submits them

to B. Then B samples u ← U and sends (m0||u,m1||u) to the challenger.
In this way, the challenger flips a random coin b ∈ {0, 1}, picks randomness
r ← R and outputs a challenging ciphertext c ← Enc(pk,mb||u; r). Finally,
B performs as DE .Enc to produce the trick ciphertexts for A as follows:
1. Pick s,v ← {0, 1}n. Abort if s = 0n; Else, set t = L(s, dec(v) mod w(s)).
2. Set ct := (c,H(u)), and for i ∈ [n] \ t, do the following:

① If i ∈ S0, pick ri, ui ← R × U and obtain ci ← (E .OEnc.(pk; ri),
H(ui)).

② Else, sample mi ← M and ri, ui ← R×U , then generate ci ← (E .Enc
(pk,mi||ui; ri),H(ui)).

3. Return dct = (c1, . . . , cn,v) to A.
• Guess. A outputs a guess bit b′, B also outputs b′ as the guess of b.

From the above construction, we know that the only difference between the
distributions of ExpCPA−0

A and ExpCPA−1
A is the target ciphertext c. Thus, the

fact that A wins with probability 1
2 + ε implies that B’s advantage of breaking

CPA security of E is also ε, which concludes the proof. ��

Theorem 4. DE is 1√
n
-deniable.

Proof. Let A and B be PPT algorithms, playing the role of adversary and chal-
lenger in ExpDe−b

A , respectively. For a fake claim under coercion, consider the
following hybrid games, where Ri is the output of the adversary in game i.

Game 0. This is the honest encryption case, the distribution from A’s view is

D0 = (dpk,m∗,Rand, ct0),

where ct0 ← DE .Enc(dpk,m∗;Rand,v), Rand and v are sampled as follows:

1. Pick s,v ← {0, 1}n. Abort if s = 0n; Else, set t = L(s, dec(v) mod w(s)).
2. For i ∈ [n]: sample ri ← R, ui ← U ; further if i ∈ S1, sample mi ← M,

except that take mt = m for i = t.
3. Return Rand := (s, {mi}i∈S1\{t}, {ri, ui}i∈[n]) and v.

Game 1. This game turns to generate the randomness Rand′ and v as follows:
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1. Select s,v ← {0, 1}n. Abort if s = 0n; Else, set t = L(s, dec(v) mod w(s)).
2. Flip s into s′ = (. . . st−1 0 st+1 . . .), if s′ = 0n, which occurs with negligible

probability n
2n , abort; else, set t′ = L(s′, dec(v) mod w(s′)).

3. For i ∈ [n]: sample r
′
i ← R, u

′
i ← U , further if i ∈ S ′

1 \ {t′}, sample m′
i ← M.

4. Return Rand′ := (s′, {m′
i}i∈S′

1\{t′}, {r
′
i, u

′
i}i∈[n]) and v.

In this way, the output distribution from A’s view is

D1 = (dpk,m∗,Rand′, ct1),

where ct1 ← DE .Enc(dpk,m∗;Rand′,v). Note D0 and D1 only differ in the ran-
dom seed s and s′. Further, the distance between the distribution of s′ and F
in Theorem 1 is at most n

2n , which is exactly the maximum difference between
selecting the flipping index t from random and as L(s′, dec(v) mod w(s′)). In
this sense, we conclude that SD(s, s′) is Θ( 1√

n
). Hence, it holds that Pr[R1 =

1] − Pr[ExpDe−0
A = 1] ≤ Θ( 1√

n
).

Game 2. This is the faking case, the distribution from A’s view is

D2 = (dpk,m∗,Rand∗, ct2),

where ct2 ← DE .Enc(dpk,m;Rand,v), the real randomness Rand and v are
sampled in the same way as that in Game 0, while the fake randomness Rand∗

is sampled as DE .Fake operates:

1. Set s∗ = (. . . s[t − 1] 0 s[t + 1] . . .) and t∗ = L(s∗, dec(v) mod w(s∗)).
2. For i ∈ [n]: if i = t, generate r∗

i := E .IEnc(pk,m, ri) and set ui = ui; Else, set
r∗
i = ri and u∗

i = ui, additionally set m∗
i = mi if i ∈ S1 \ {t∗}.

3. Return Rand∗ = (s∗, {m∗
i }i∈S1\{t,t∗}, {r∗

i , u∗
i }i∈[n]).

After the above steps, ct2 can also be explained as DE .Enc(dpk,m∗;Rand∗).
Therefore, the only difference between D1 and D2 is the fake randomness Rand∗

and Rand′. To evaluate this distance, consider their components:

a). s is uniformly random over {0, 1}n, s∗ is indeed sampled from one-bit flip-
ping frame F . Thus, SD(s, s∗) ≤ n

2n = negl(λ), as the above game scales.
b). All the masking messages and the relative randomness are uniformly random

over M × R × U , for i ∈ [n] \ t.
c). r∗

t from E .IEnc is computationally indistinguishable from r′
t ∈ R, both u∗

t

and u′
t are uniformly random over U .

The above shows Rand∗ and Rand′ are computationally indistinguishable from
each other. Hence, it holds that Pr[R1 = 1] − Pr[ExpDe−1

A = 1] = negl(λ).
Taking in all the cases, we have Pr[ExpDe−1

A = 1] − Pr[ExpDe−0
A = 1] ≤

Θ( 1√
n
), so the theorem holds. ��
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4 SCA on Deniable Encryption

As noted in Sect. 1, none of the existing DPKE considers the issue of SCA. In this
section, we make an initial attempt towards leakage-resilient DPKE. We begin
with formalizing the SCA-equipped coercion model for timing and simple power
attacks [25,26,29,34], then show how such SCA could break deniability of known
schemes and ours, along with giving some heuristic countermeasures.

4.1 SCA-Equipped Coercion Model

In the original attack model [6], the coercer Eve first intercepts a dispatched
package (ciphertext) from the sender Alice, then obtains the claimed plaintext
and randomness from Alice. In this sense, deniability (Definition 2) asks that Eve
has no extra advantage in distinguishing between the honest and fake opening.
Now, Eve can resort to SCA when performing attacks. In particular, Eve can
additionally collect the SC information (time or power consumption) about the
operations of the original encryption and that under the claimed data. Below we
formalize this enhanced coercion model for Eve.

Definition 4 (SCA-Coercion Model). For any deniable public key encryp-
tion system, a coercer can perform the following attack steps on a system user:

1. Passively capture the transmitted ciphertext ct and SC information T (e.g.,
time or power consumption) of the encryption execution that produces ct;

2. Actively demand the internal message m and randomness r relative to ct and
collect new SC information T of the encryption execution on feeding (m, r).

Remark 2. We assume that there are no external operations, e.g., ones profiled
in more advanced trace [31] or collision attacks [24], are to be executed in running
deniable encryption. Besides, to avoid systematic error, a coercer may demand
the posterior SC information poly(λ) times.

4.2 Break Deniability of Known Schemes

Below we depict how deniable schemes can be breached under the above
enhanced hostile model. The core point is that we observe the internal instruc-
tion lines take on some constant difference between the original call of encryption
and that of fake opening, which will result in the perceptible gap between T and
T . In this sense, the coercer can use such flavor of distinguishability to tell if a
user is lying, details of these attacks to the known schemes are as follows:

• Translucent-set-based. Note that the instantiations (e.g., trapdoor permuta-
tion [6], simulatable encryption, or lattice-based methods [32]) of translucent
set S, are much more complicated than the uniform random set R which can
be built-in. Based on this fact, sampling from S always takes more operation
than sampling from R, indicating more time or power is consumed. Then the
coercer can tell that the sender is lying if T is statistically higher than T .
More specifically, consider the pioneering work [6] (Fig. 1) for bit encryption.
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– The sender encodes the bit into the parity of the number i of S-elements.
To fake, the sender just claims to have chosen i′ = i−1. Then the count of
S-elements during the rerun of encryption always decreases by 1. Hence,
the coercer can first get the prior value T and many posterior values {T },
and decides that the claimed randomness is fake if the percentage of {T }
which is lower than T is significant, e.g., >80%.

Fig. 1. Sketch of the scheme in [6].

• iO-based [33]. From Fig. 2, we know that the honest encryption executes step
3 of Encrypt which is a call of the underlying PKE, while the faking random-
ness leads to step 2 which are just two evaluations of two PRFs. This fact
implies that the prior time or power consumption T is always higher than the
posterior one T even under the obfuscated setting (recall that iO only ensures
the obfuscated programs for circuits of the same size and functionality are
indistinguishable). Thus, the coercer could apply the same strategy as above,
i.e., demand τ posterior values {T } with respect to the claimed data (m, r′)
and identify the lie if 80% of {T } is lower than T .

Fig. 2. Sketch of the schemes in [33].
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• FHE-based. The FHE-based design for bits [1] modifies the line of [6] via build-
ing a biased decryption to “0” on random input, while it still encodes the bit
message into the parity of the count i of “1”-encryptions in the final cipher-
text. To fake, the sender reveals i′ = i − 1 by randomly interpreting one of
“1”-encryptions into “0”-encryption. Further, compared with a “1”-encryption
that needs several homomorphic evaluations, a “0”-encryption is done by a
random sampling, thus the time consumption of dishonest opening must be
less than that of the honest case, implying T is always higher than T .

• Our schemes. The issue of DE is akin to that of [6]. Encryption at “1” invokes
a more time (power)-consuming call of the encryption of the underlying CS -
PKE, than the single oblivious sampling for encryption at “0”. To fake, the
sender reveals s∗, whose count of “1” always decreases by 1 than that of the
real s, leading to T being lower than T with overwhelming probability.

Experimental Results. To evidence that the above attacks are workable, we
instantiate the scheme of [6] and ours with ElGamal over Zq in Python on the
Intel Kaby Lake i7-7700T processor, where we use CPU instruction “rdtsc” to
compute the consumption of clock cycles (3.6GHz) for an encryption execution.
More detailedly, for a TS, S-element is a triple (m, c1, c2) ∈ Z

3
q where (c1, c2)

is the ElGamal encryption of m, and R-element a random triple over Z
3
q; Our

scheme is derived from the ciphertext-simulatability of ElGamal, i.e., OEnc out-
puts (c1, c2) ← Z

2
q and IEnc trivially simulates sampling over Z

2
q (see [15]).

For parameters, we set λ = 128, log q = 2048, �h = 1024, �t = 512, �m = 1024,
OWF H as SHA3-512. Then for detecting probability n = 22k, k ∈ [5, 15], we
take 103 times of random encryption execution for both schemes, and term one
execution as a success for a coercer if T − T ≥ μ + δ ms, where μ = 0.0506 is
the expected difference of time consumption between one execution of ElGamal
encryption and random sampling from Z

2
q, and δ = 0.0040 is the system error.

Table 2. Success probability (%) of SCA-equipped coercion attacks for different n. I:
scheme in [6]. II: our scheme.

log n 10 12 14 16 18 20 22 24 26 28 30

succ_prob_I 87.2 91.0 94.6 91.7 96.6 94.3 92.7 82.5 94.6 91.8 94.2
cont_prob_I 3.7 3.4 8.3 5.6 9.2 3.5 1.1 1.3 7.4 4.1 7.3
succ_prob_II 92.4 99.5 88.1 80.8 92.3 90.6 86.7 90.2 83.0 91.4 95.1
cont_prob_II 8.3 1.5 6.7 12.6 2.1 11.3 6.5 3.8 9.0 10.9 1.2
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Fig. 3. Distributions of difference in time consumption for n = 230. Top: scheme in
[6]. Bottom: our scheme.

Table 2 lists the running results of a simulated coercer who is equipped with
SCA, rows “cont_prob I/II” represent the success probability for the control
experiment where each T is recorded feeding the real randomness and plain-
text used for encryption (i.e., the sender is honest). In particular, for n = 230,
Fig. 3 shows the distributions of the difference in time consumption between the
original call and the honest/fake opening (black/blue colored) of 103 encryption
executions, where the trace for fake is apparently under the threshold μ = 0.0546
ms, while the trace for honesty mainly fluctuates around the zero point1. Fur-
ther, from Table 2, we learn that: 1) the success probability for a fake opening is
significant (>80%); 2) the success probability for an honest opening (the control
group) is inappreciable (<15%). Then we can conclude that the above-described

1 Due to the page limits, we omit the graphics for other values of n that show the
similar grades as that of n = 230.
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attacks under the enhanced model (Definition 4) are practically effective, signi-
fying the damage of deniability from SCA.

4.3 Feasible Therapies

One can take some random and functionless instructions on the hardware layer
to perturb SC information. However, as noted in [25], such system noise can
be compensated by collecting more records. A more substantial way is to add
some redundancy operations into the original encryption algorithm, making hon-
esty and faking execute the very same instruction stream, so to eliminate the
difference in the context of SC knowledge. Below we give the concrete fixing:

• Translucent-set-based. To encrypt a bit m, first sample λ elements {si} from
S and λ elements {ri} from R, then pick a random even (resp., odd) number
i ∈ [n] for m = 0 (resp., m = 1) and output ct := (s1, . . . , si, ri+1, . . . , rλ).

• iO-based. Let step 2 of Encrypt in Fig. 2 additionally conduct a plain encryp-
tion E .Enc(pk,m;F2.Eval(k2,m||r)), which is exactly what step 3 executes.

• FHE-based : For the scheme [1], always produce n encryptions of bit 1 and
sample n random elements from the ciphertext space of the underlying FHE.

• Our scheme. Both encryptions at “1” and “0” now conduct a plain encryption
and an oblivious sampling. Namely, in algorithm Enc, step 3.① additionally
performs mi ← M, c

(3)
i ← E .Enc(pk,mi||ui; ri), and step 3.① extraly runs

c
(3)
i ← E .OEnc.(pk; ri). The sender will not transmit the auxiliary ciphertexts

{c(3)i } and just keep the masks ({mi}i∈S0 , {c
(3)
i }i∈[n]) in her internal state.

To show the feasibility of these measures, we carry the above experiments
to the upgraded variants of the scheme [6] and ours, and profile the results in
Table 3 and Fig. 4 below, where we can learn that now the success probability for
a fake opening is also reduced to be invisible (<15%), and the time consumptions
of honesty and fake are almost the same as that of the original encryption (both
traces fluctuate around zero). These facts testify that the redundancy operations
really conceal the difference in SC information between the honest encryption
and fake opening, so that deniability is maintained.

Table 3. Success probability (%) of SCA-equipped coercion attacks for different n. I:
upgraded variant of scheme in [6]. II: upgraded variant of our scheme.

log n 10 12 14 16 18 20 22 24 26 28 30

succ_prob_I 1.1 0.8 3.7 4.8 8.5 1.2 5.3 4.9 10.8 2.9 0.8
cont_prob_I 2.4 1.6 4.3 3.3 7.2 2.5 4.6 8.3 13.4 4.1 0.6
succ_prob_II 3.7 3.9 6.2 8.1 4.6 1.4 8.8 0.7 5.9 7.0 2.7
cont_prob_II 5.1 1.7 3.0 11.9 7.3 5.6 7.6 3.9 8.2 3.9 4.4



40 Z. An et al.

Fig. 4. Distributions of difference in time consumption for n = 230. Top: upgraded
variant of scheme in [6]. Bottom: upgraded variant of our scheme.
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A Towards Optimal Flipping Sampling

One natural question raised from the above design of DPKE is: are there any
other ways of flipping bits of s that result in a closer distance from U , leveraging
which we can devise a DPKE with better deniability? Below we give the negative
answer by showing that flipping one bit is actually the optimal way, by proving
that it is superior to any t-bit flipping (t > 1) or uniformly random flipping. For
simplicity, hereafter we assume

(
n
k

)
= 0 for k > n.



Deniable Cryptosystems 41

Theorem 5. For t ∈ [1, n], let Ft be the flipping case where it first samples s
from S, if the count of 1 in s is less than t, outputs ⊥; else randomly flips t bits
in s from 1 to 0. It holds SD(U,Ft) > SD(U,F ) for t ≥ 2.

Proof. Observe that s must be obtained by flipping t bit 1 of some string s′ from
S whose count of bit 1 is k + t. Thus, there are

(
n−k

t

)
possible s′ when fixing s.

Further, the probability of exactly flipping the corresponding 1 of s′ is 1/
(
k+t

t

)
.

Then ∀s ∈ S, F (s) = 1
2n ·

(
n
k

)(
n−k

t

)
/
(
k+t

t

)
, and the distance between R and Ft is

SD(R,Ft) =
1
2

·
n∑

k=0

∣
∣
∣
∣
∣

1
2n

(
n

k

)(

1 −
(
n−k

t

)

(
k+t

t

)

)∣
∣
∣
∣
∣
+

1
2

· Ft(⊥)

=
1

2n+1
·
(

n∑

k=0

∣
∣
∣
∣

(
n

k

)

−
(

n

k + t

)∣
∣
∣
∣ +

t−1∑

k=0

(
n

k

))

.

(2)

To prove SD(R,Ft) > SD(R,F ) for t ≥ 2, it suffices to argue that SD(R,F1)
is the minimum value regarding SD(R,Ft) as a discrete function of t, for which
we consider the following two cases:

– For 1 ≤ t ≤ m, Eq. (2) can be simplified into 1
2n ·

�n+t
2 �−1∑

k=�n−t
2 �

(
n
k

)
, being mono-

tonically increasing on t. So t = 1 is the minimum point in this interval.
– For m + 1 ≤ t ≤ n, Eq. (2) can be simplified into

1
2n+1

·

⎛

⎝
�n+t

2 �−1∑

i=t

(
n

i

)

+
�n+t

2 �−1∑

i=�n−t
2 �

(
n

i

)

−
�n−t

2 �−1∑

i=0

(
n

i

)

+
t−1∑

k=0

(
n

k

)
⎞

⎠ .

To estimate the scale of the above equation, observe that
⎛

⎝
�n+t

2 �−1∑

i=t

(
n

i

)

−
�n−t

2 �−1∑

i=0

(
n

i

)
⎞

⎠ ≥ 0,

⎛

⎝
�n+t

2 �−1∑

i=�n−t
2 �

(
n

i

)

+
t−1∑

k=0

(
n

k

)
⎞

⎠ > 2·
(

n

m

)

.

Thus we can deduce that SD(R,Ft) > SD(R,F ) also holds in this interval.

Based on the above analysis, it is clear that SD(R,Ft) > SD(R,F ) for t ≥ 2. ��

Theorem 6. Let F ′ be the flipping case where it first samples s from S \ {0n}
and then randomly flips some bits of s (not all of 1) from 1 to 0, it holds
SD(U,F ′) > SD(U,F ).

Proof. Any s from F ′ must be obtained by flipping j bits 1 of some s′ for
j ∈ [1, n−k], meaning the count of 1 of s′ is k+ j. So the generation of s can be
divided into two steps: 1) choose the indexes of i bits 1 to fix s′; 2) flip the target
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indexes of s′. Hence, the total possible way of sampling s is 1
2n ·

n−k∑

j=1

(
n−k

j

)
·2−(k+j).

Then by traversing all the possible s (
(
n
k

)
values), we have that

SD(R,F ′) =
1
2

·
n∑

k=0

∣
∣
∣
∣
∣
∣

1
2n

(
n

k

)
⎛

⎝1 −
n−k∑

j=1

(
n − k

j

)

· 2−(k+j)

⎞

⎠

∣
∣
∣
∣
∣
∣

=
1

2n+1
·

n∑

k=0

(
n

k

)
∣
∣
∣
∣
∣
∣
1 − 2−k ·

n−k∑

j=1

(
n − k

j

)

· 2−j

∣
∣
∣
∣
∣
∣
.

(3)

To estimate the relative scale of Eq. (3), we first consider the item of the abso-

lute value

∣
∣
∣
∣
∣
1 − 2−k ·

n−k∑

j=1

(
n−k

j

)
· 2−j

∣
∣
∣
∣
∣
. Denote the sum of the involved sequence

as Sm =
m∑

j=0

(
m
j

)
· 2−j , a simple calculation shows that Sm+1 = 3

2Sm (geometric

progression), further arriving at the simplified expression
∣
∣
∣1 − 3n−k

2n + 1
2k

∣
∣
∣. For

large n, e.g., n > 25, we obtain the following inequality:

n∑

k=0

(
n

k

) ∣
∣
∣
∣1 − 3n−k

2n
+

1
2k

∣
∣
∣
∣ >

n∑

k=0

(
n

k

) ∣
∣
∣
∣1 − n − k

k + 1

∣
∣
∣
∣ ,

which implies that SD(R,F ′) > SD(R,F ). ��
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Abstract. Fully homomorphic encryption (FHE) enables arithmetic
operations to be performed over plaintext by operations on undecrypted
ciphertext. The Chillotti-Gama-Georgieva-Izabachene (CGGI) scheme is
a typical FHE scheme, has attracted attention because of its fast boot-
strapping and the availability of open-source implementation software.

A threshold FHE (ThFHE) scheme has protocols for distributed key
generation and distributed decryption that are executed cooperatively
among the parties while keeping the decryption key distributed among
them. It is useful for secure computations with inputs from multiple par-
ties. However, a ThFHE scheme based on CGGI has yet to be proposed.

In this paper, we propose a client-aided ThFHE scheme based on
CGGI. Our scheme achieves the same bootstrapping as CGGI without
affecting the noise analysis or any CGGI parameter. Therefore, existing
open-source software implementing CGGI can easily be extended to our
scheme, a ThFHE variant of the CGGI scheme, without changing the
implementation part regarding homomorphic operations.

Keywords: Threshold fully homomorphic encryption · CGGI · Secret
sharing scheme · Multiparty computation · Client-aided model

1 Introduction

1.1 Background

Secure computation (SC) enables parties to compute a function using each
party’s input and obtain only the computation results without revealing the
other parties’ inputs. SC has attracted widespread attention because of its use-
fulness in analysing sensitive data, e.g., secure outsourced computation and
cross-organizational data analysis. There are two cryptographic technologies for
achieving the SC: multiparty computation (MPC) and fully homomorphic encryp-
tion (FHE).
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A typical MPC scheme is a secret-sharing-based MPC (SS-MPC) [6,20], in
which each party distributes its input among the parties so that it is indistin-
guishable from a random value in an algebraic structure. The distributed values
are called the shares. An SS-MPC scheme enables parties to compute a function
by computation (without communication) using the shares and communication
between parties without revealing the parties’ inputs. Some SS-MPC schemes
use a helper called client to aid in the computation [5,35]. In client-aided SS-
MPC schemes, the client participates in the computation only during the offline
phase, during which the parties and the client can execute computable processes
independent of the actual parties’ inputs. In the online phase, during which
the parties run processes dependent on the actual parties’ inputs. Since MPC
schemes involve a trade-off between the number of communication rounds and
the communication volumes, their performance depends on the communication
environment among parties.

The FHE scheme [8,13,19] enables arithmetic operations to be performed
over plaintext by operations on undecrypted ciphertext. An operation on cipher-
text that performs an arithmetic operation over plaintext without decrypting the
ciphertext is called a homomorphic operation. In SC using an FHE scheme, a
user computes a function represented by a circuit by performing homomorphic
operations on encrypted inputs gate by gate. Unlike SC with MPC, SC with FHE
does not involve any communication dependent on the function to be computed
in the computation process. Since it is costly to establish a good communication
environment, we focus on FHE schemes.

A typical FHE scheme is the Chillotti-Gama-Georgieva-Izabachene (CGGI)
scheme proposed by Chillotti et al. [13]. Compared with other FHE schemes,
CGGI has faster bootstrapping, which is an operation that refreshes a cipher-
text by generating a new ciphertext of the same plaintext, that is, a ciphertext
containing less noise than the ciphertext, which contains noise accumulated dur-
ing homomorphic operations. In addition, various open-source software (OSS)
implementing CGGI have been released [4,14,21,27].

A threshold FHE (ThFHE) scheme [3,32,33] has protocols for distributed key
generation and distributed decryption that are executed cooperatively among the
parties while keeping the decryption key distributed among them. In SC using
a ThFHE scheme, each party encrypts its input using the common encryption
key. The joint (public) encryption key generation algorithm generates a common
encryption key while keeping the decryption key distributed among parties. Each
party then sends its encrypted input to a computing serve, which computes a
function by homomorphic operations on the encrypted inputs. Finally, the parties
decrypt the encrypted results using their share of the decryption key without
reconstructing the key. A ThFHE scheme is useful for SC with inputs from
multiple parties because only one can reconstruct the decryption key if a certain
number of shares of the decryption key are collected.

However, to the best of our knowledge, a CGGI-variant ThFHE scheme has
yet to be proposed.
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1.2 Our Contributions

We propose a CGGI-variant ThFHE scheme in a client-aided model. Our scheme
has the following three features, and a comparison between existing schemes and
ours is summarized in Table 1:

1. CGGI-Based Scheme. Our scheme is the first ThFHE one based on CGGI.
It supports distributed decryption key generation and distributed encryp-
tion1/decryption protocols with the same bootstrapping of CGGI. Hence,
our scheme is useful for SC in the multiparty setting.

2. Distributed Bootstrapping Key Generation for Binary Decryp-
tion Key Distribution. To the best of our knowledge, our scheme is the
only ThFHE scheme supporting distributed bootstrapping key generation for
binary decryption key distribution.

3. Parameters Unaffected by Noise Smudging. In the distributed decryp-
tion protocol of the existing ThFHE schemes, each party needs to add an
extra noise to the sending value to prevent leakage of the decryption key.
This technique is called noise smudging [3]. By the smudging lemma [3], the
additional noise is proportional to 2λ where λ is a security parameter. Hence,
parameters such as ciphertext modulus size must be increased to prevent
noise from affecting the decryption success probability. Then, the difference
in error evaluation between the original FHE scheme and its threshold variant
when achieving the same security level makes it difficult for developers of SC
applications to transparently use the original FHE scheme and its threshold
variant.
To avoid increasing the parameter values, we introduce a client into our
scheme. The client computes the smudging noise and sends a share of it
to each party in the offline phase. Since the client generates the smudging
noise instead of each party, the size of the noise is not proportional to the
number of parties. We show that it is sufficient to add the noise whose size is
the same as the noise in the original ciphertext.

We implement our scheme and compare its execution times for key genera-
tion, encryption, decryption and homomorphic NAND computation with those
of existing schemes based on CGGI [11,13]. Although our scheme has a longer
execution times for key generation, encryption, and decryption, the execution
time for homomorphic NAND operation is comparable to that of the original
CGGI scheme [13] even when the number of parties is increased. Hence, in the
case of SC for a complex function in a multiparty setting, our scheme is superior
to existing schemes in terms of execution time.

1 We propose the ThFHE in a private-key setting as well as the original CGGI [13].
Hence, our scheme supports a distributed encryption protocol instead of joint (pub-
lic) encryption key generation. By using this distributed encryption protocol, parties
can generate CGGI-ciphertext in a distributed manner. They can then run the dis-
tributed generation of (public) encryption keys by using the conversion method [22].
Our scheme can thus be converted into a scheme in the public-key setting.
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Table 1. Comparison of Proposed Scheme with Existing Ones

Schemes Base Scheme Distributed Bootstrapping Key Generation Parameters Unaffected by Noise Smudging

[3,7] LWE-based scheme No No

[33] BFV [17] Interactive bootstrapping No

[15] CGGI No No

[25] LWE-based scheme Yes No

Ours CGGI Yes Yes

1.3 Related Work

FHE. FHEW [16], CGGI [13], and FINAL [8] were designed to provide faster
bootstrapping. Among them, the bootstrapping of FINAL is the fastest. How-
ever, as far as we know, there is no OSS for implementing FINAL, except for
the experimental code2 implemented by the authors of FINAL. We focus on the
CGGI scheme, which has the second fastest bootstrapping, because the method
is more mature than FINAL, and it is implemented in several publicly available
OSS, including a transpiler [21] to assist developers.
Multi-Key FHE (MK-FHE). An FHE scheme that can perform homomor-
phic operations between ciphertexts encrypted with different encryption keys is
called multi-key FHE (MK-FHE) [11,12,26]. MK-FHE based on CGGI (MK-
CGGI) has also been proposed [11].

In MK-FHE, the execution time of homomorphic operations and the size
of the ciphertext increase as the number of encryption keys involved in the
computation increases. Therefore, as the number of parties increases, the less
efficient the SC using the MK-FHE becomes. For the efficiency of the SC in a
multiparty setting, we focus on ThFHE, not MK-FHE.
ThFHE. Asharov et al. were the first to propose a ThFHE scheme [3]. Mouchet
et al. [33] proposed ThFHE schemes based on BFV [17]. Chowdhury et al.
recently proposed a CGGI scheme with distributed decryption [15]. Boudgoust
and Scholl proposed an LWE-based FHE scheme supporting distributed decryp-
tion with polynomial modulus [9]. These schemes do not have a protocol to
generate a (public) key for bootstrapping while keeping the decryption key dis-
tributed.

Lee et al. proposed a bootstrapping procedure supporting arbitrary decryp-
tion key distribution [25]. They applied it to the ThFHE scheme of Asharov et
al. [3] and constructed a protocol to generate a (public) key for bootstrapping
while keeping the decryption key distributed. However, their scheme and the
ThFHE of [3] are affected by noise smudging. If we are to achieve the same level
of security in these schemes as the base FHE scheme, we must set the parame-
ters of the security assumption, e.g., ciphertext modulus, larger than those of the
base FHE because the noise smudging affects the noise analysis of the scheme.

2 https://github.com/KULeuven-COSIC/FINAL.

https://github.com/KULeuven-COSIC/FINAL
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2 Preliminaries

2.1 Notations

Let the number of parties and corruptions by an adversary be N ′ and t, respec-
tively. The i-th party is Pi (i = 0, . . . , N ′ − 1), and the set of parties is
P = {Pi}N ′−1

i=0 . C is the client. We assume that an adversary cannot corrupt
C. Let SM and π ∈ SM be the set of random permutations for M and a random
permutation, respectively. For a distribution denoted as D, sampling the value
x in accordance with the distribution is denoted as x ← D. For a set denoted
as A, let a

U←− A be a uniformly random sampling of elements a from A. We
denote a vector by placing a vector arrow over the character, e.g., �x. We denote
an exclusive OR operator as ⊕.

Let T = R/Z denote the torus, the set of real numbers contained in [0, 1). In
other words, T is the set of real numbers modulo 1. Note that T has a Z-module
structure. Loosely speaking, T defines additions between elements and integer
multiplication of elements, but not the multiplication of elements. For example,
1.5 · 0.3 mod 1 �= (1.5 mod 1) · (0.3 mod 1). We also denote {0, 1} and the set of
integers as B and Z, respectively.

We let the set of polynomials modulo XN +1 with coefficients in T be TN [X]
where N is a power of 2. Note that TN [X] is a ZN [X]-module structure where
ZN [X] is the polynomial ring modulo XN + 1 with coefficients in Z. Loosely
speaking, it defines addition between elements of TN [X] and multiplication of
elements of TN [X] by elements of ZN [X], but not multiplication of elements
of TN [X] by each other. We also let the polynomial ring modulo XN + 1 with
coefficients in B and Z be BN [X] = B[X]/(XN +1) and ZN [X] = Z[X]/(XN +1),
respectively. We denote polynomials in bold, e.g., x.

Let |S| be the bit length of the element of S where S ∈ {B,T,TN [X]}. For
example, |B| is 1. |TN [X]| is N |T|. If we represent the elements of T by z bits,
then |T| is z.

Let σ and σ′ be positive real values. We denote the error distribution induced
by a normal distribution with mean 0 and variance σ2 (resp. σ′2) over T (resp.
TN [X]) as χ(0,σ2) (resp. χ̂(0,σ′2)).

2.2 Security Assumption

As with CGGI [13], we make the security assumption that LWE problems over
T and TN [X] (called TLWE and TRLWE problems, respectively) cannot be
solved by any probabilistic polynomial-time adversary. For more details, see
Appendix A.

2.3 N ′-Out-of-N ′ Additive Secret Sharing ((N ′, N ′)-ASS)

We denote binary operators for the addition and multiplication of shares by +
and ·, respectively, as in the case of the addition and multiplication of values. In
(N ′, N ′)-ASS, no one can know partial information about the secret value unless
N ′ shares are collected.
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For a secret element x ∈ S, where S ∈ {B,T,TN [X]}, we denote the (N ′, N ′)-

ASS share of x over S as
S
[x] = (

S
[x]0, . . . , S

[x]N ′ −1) where x =
∑N

′ −1
i=0 xi (with

performing the modulus operation in accordance with S), xi ∈ S, and Pi’s share
is

S
[x]i = xi for i = 0, . . . , N ′ − 1.
Let

S
[x] and

S
[y] be the shares of (N ′, N ′)-ASS over S. Parties can perform

addition between shares,
S
[x + y] =

S
[x] +

S
[y] by Pi’s setting

S
[x ⊕ y]i =

S
[x]i+ S

[y]i for i = 0, . . . , N ′−1. Let c0 and c1 be the clear constant elements over
S obtained by all parties. Parties can perform scalar addition,

S
[c0+x] = c0+ S

[x]
by P0’s setting

S
[c0 + x]0 = c0 +

S
[x]0 and Pi′ ’s setting

S
[c0 + x]i′ =

S
[x]i′ for

i′ = 1, . . . , N ′ − 1. Parties can perform scalar multiplication on B,
B
[c0 · x] =

c0 ·
B
[x] by Pi’s setting

B
[c0 · x]i = c ·

B
[x]i for i = 0, . . . , N ′ − 1.

However, parties cannot perform multiplication of shares and constant ele-
ments over T and TN [X] because T and TN [X] have Z-module and ZN [X]-
module structures, respectively. For (N ′, N ′)-ASS over T and TN [X], parties
can perform multiplication of shares and constant elements over Z and ZN [X],
respectively.

2.4 Building Blocks of SS-MPC Based on (N ′, N ′)-ASS

We assume an honest majority in our protocol, i.e., t < N ′/2. We also assume
a semi-honest adversary who tries to learn as much information about the par-
ties’ inputs as possible without deviating from the protocol specifications. Each
party is connected via a point-to-point secure and synchronous communication
channel. We use the following subprotocols as building blocks.

–
S
[x] ← Share(S, PI , x) : Let PI be an input dealer. PI obtains an input element

x ∈ S where S ∈ {B,T,TN [X]}. Share takes S, PI , and x as inputs and outputs

S
[x]. In Share, PI generates x1, . . . , xN ′ −1

U←− S and sets x0 = x −
∑N

′ −1
i′=1

xi′

with the modulo operation according to S. Then, PI sends
S
[x]i = xi to Pi

for i = 0, . . . , N ′ − 1. If PI ∈ P, Share requires one round and (N ′ − 1) · |S|
bits as communication cost.

– (PR, x) ← Open(
S
[x]): Let PR ∈ P be a receiver. Open takes

S
[x] as an

input and outputs x to PR where S ∈ {B,T,TN [X]}. In Open, the parties in
P \ {PR} send their shares to PR. PR reconstructs x by using PR’s share and
the shares received from the other parties. Hence, Open requires one round
and (N ′ − 1)|S| bits as communication cost.

– [r] ← RandGen(S,P): RandGen takes S ∈ {B,T,TN [X]} and P as inputs and
outputs a share of a random element r ∈ S,

S
[r]. In RandGen, Pi generates

ri
U←− S and sets

S
[r]i = ri for i = 0, . . . , N ′ − 1. By setting r =

∑N
′ −1

i=0 ri

with the modulus operation in accordance with S, parties get
S
[r].

– ([�x
′
0], . . . , [�x

′
R−1]) ← TableShuffle(([�x0], . . . , [�xR−1])): Let R and C be the num-

ber of rows and columns, respectively. We denote the input share vector and
the shuffled share vector as [�xi′ ] = (

S0
[xi′ ,0], . . . , SC−1

[xi′ ,C−1]) and [�x
′

i′ ] =
(
S0

[x′
i′ ,0], . . . , SC−1

[x′
i′ ,C−1]) where x′

i′ ,j′ = xπ(i′ ),j′ , Si′ ∈ {B,T,TN [X]}
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(for i′ = 0, . . . , R − 1; j′ = 0, . . . , C − 1) and π ∈ SR respectively. Note that
no party knows π. TableShuffle takes ([�x0], . . . , [�xR−1]) as inputs and outputs
([�x

′
0], . . . , [�x

′
R−1]). We can construct TableShuffle straightforwardly by run-

ning the resharing-based shuffle [24] in parallel. If let CS be the number of
columns containing the share over S, TableShuffle requires 2 ·

(
N ′

t

)
rounds and

(N ′ + t − 1)(N ′ − t)
(
N ′

t

)
(CB + CT|T| + CTN [X]|T|N) bits as communication

cost where
(
N ′

t

)
is a binomial coefficient, i.e., N ′!

(N ′−t)!t! .

3 Client-Aided ThFHE Based on CGGI

3.1 Naive Methods and Our Approach

Before explaining our approach, we describe three naive methods for constructing
a ThFHE scheme on the basis of CGGI and the resulting problems:

1. Use Additive Homomorphic Property of Keys. Let (ski, pkski) be the
pair of secret decryption and public encryption keys generated by Pi. In many

ThFHE starting with [3], it holds that pk∑N
′ −1

i=0 ski
=

∑N
′ −1

i=0 pkski because of

the additive homomorphic property of keys and those schemes use pk∑N
′ −1

i=0 ski

as a common (public) encryption key. However, we cannot use this approach
to construct ThFHE based on CGGI. As explained in [22], the public encryp-
tion key of CGGI is on T while the decryption key of CGGI is on B. Hence,

pk⊕N
′ −1

i=0 ski
and

∑N
′ −1

i=0 pkski are not equal in CGGI. For more details, it is

impossible to compute the product of the elements on T with the distributed
decryption key on B in a straightforward manner. For example, we set that
�s = �s0 ⊕�s1 where �s is the decryption key, �s0 and �s1 is the distributed decryp-
tion keys, and ⊕ is the element-wise XOR of the vector. Then, it holds that
�a · �s = �a · (�s0 ⊕ �s1) �= �a · �s0 + �a · �s1.

2. Use SS-MPC Over T. To the best of our knowledge, an SS-MPC scheme
over T has not been proposed. Hence, we cannot straightforwardly extend
CGGI to a ThFHE scheme on the basis of CGGI by using SS-MPC over T.

3. Use Ring-Based SS-MPC. We consider T as the residue ring of powers of
2, Z2k because CGGI is implemented on Z2k in OSS [4,14,21,27]. We explain
ideas that use Beaver’s multiplication triple (BMT), which is correlated ran-
domness for share multiplication, and those that do not use it.
(a) Use BMT. To generate BMT, we need asymmetric-key primitives, e.g.

oblivious transfer [34]. It is not desirable to introduce new assumptions
other than T(R)LWE problem in constructing a ThFHE scheme on the
basis of CGGI. There is another method for computing BMT using CGGI,
but it is inefficient. BMT can also be generated by using the client instead
of asymmetric-key primitives [5]. However, it is necessary to generate as
many BMTs as there are multiplication gates in the computed circuit,
which is not desirable because it overly burdens the client.
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(b) Do Not Use BMT. Maurer proposed SS-MPC by using only secret
sharing over arbitrary rings [28]. However, in [28], the size of each party’s
share increases up to O(

(
N ′

t

)
). Even when using field-based SS-MPC [6],

the sizes of the field and each party’s share grow in proportion to N ′.
In the case of creating a ciphertext for one-bit plaintext, methods that
increase the space complexity are inefficient and undesirable.

We propose a new SS-MPC building block to construct a client-aided ThFHE
scheme: bridging multiplexer (BMUX). As inputs, BMUX takes a share of selec-
tor s ∈ B of (N ′, N ′)-ASS over B and the shuffled table with two rows of shares
of (N ′, N ′)-ASS over T (or TN [X]). It outputs the shares of either of the two
rows in the shuffled table on the basis of selector value. If we use the BMUX by
passing the result of the multiplication to the BMUX as a shuffled table, we can
compute the share multiplication between the shares of (N ′, N ′)-ASS on B and
T (or TN [X]) and overcome the problem described in 1 above.

To shuffle the table of shares, we use TableShuffle, which is based on the
resharing-based shuffle protocol [24] by assuming t < N ′/2 and a semi-honest
adversary. The shuffle of [24] uses only the (N ′, N ′)-ASS, applying the random
permutation and resharing shares. Hence, it can deal with the (N ′, N ′)-ASS
shares on B, T, and TN [X] without increasing the size of shares in proportion to
N ′. Therefore, our approach overcomes the problems of naive methods described
in 2, 3(a), and 3(b) above.

In addition, we introduce an honest client C for efficient noise sampling.
Several SS-MPC schemes introduce clients to improve computational efficiency
[5,31,35], but we are the first to introduce the client in the ThFHE. Similar to
the assumption in [5,31,35], we assume that C does not collude with parties and
is not corrupted by an adversary. In our scheme, C performs a single noise sam-
pling in distributed decryption and encryption. C also performs kNt times and
n(k+1)� times noise sampling in the distributed generation of key-switching and
bootstrapping keys, respectively. Compared to [5] in the naive method described
in 3(a) above, our protocol reduces the burden on the client. Even if the client
of [5] performs noise sampling as in our scheme, the client still needs to gen-
erate BMT for the multiplication gates involved in distributed key generation,
distributed decryption, and distributed encryption.

3.2 Syntax

Our scheme consists of the following algorithms. Note that our scheme is based
on CGGI in the private-key setting.

1. param ← Setup(1λ): Let λ be a security parameter. Setup takes 1λ as inputs
and outputs a public parameter param = (n,N, k, σ, σks, σ

′, B,B′, �, t). Note
that n is the dimension of the vector of the decryption key. N and k is the
dimensions of TRLWE problem. σks is a standard deviation of the normal
distribution with mean 0, χ(0,σks

2) for the key-switching key generation. B
and Bg are the base for the gadget decomposition. t and � are the number of
digits for the gadget decomposition.
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2. [�s] ← DistDKGen(param,P): The distributed decryption key generation algo-
rithm DistDKGen takes param and P as inputs and outputs shares of �s =
(s0, . . . , sn−1) ∈ B

n,
B
[�s] = (

B
[s0], . . . , B

[sn−1]).
3. c ← DistEnc(param,

B
[�s], (m,PI)): The distributed encryption algorithm

DistEnc takes param,
B
[�s], and (m,PI) as inputs where m ∈ B is the input

from the input dealer PI . DistEnc outputs a ciphertext c.
4. (ksk, bsk) ← DistEKGen(param,

B
[�s]): The distributed key generation algo-

rithm for key-switching key and bootstrapping key, DistEKGen takes param
and

B
[�s] as inputs and outputs (ksk, bsk) where ksk and bsk are the key-

switching key and the bootstrapping key, respectively.
5. c′ ← Eval(param, c0, c1, op., bsk, ksk): The gate evaluation algorithm, Eval

takes param, bsk and ksk as inputs. Eval also takes encrypted inputs c0 and
c1 and the logic gate op.. Eval outputs the encrypted result from computing
op. for c0 and c1 by a homomorphic operation.

6. (PR,m) ← DistDec(param, c,
B
[�s], PR): The distributed decryption algorithm

DistDec takes param, a ciphertext c,
B
[�s], and the receiver PR as inputs and

outputs the plaintext of c, m to PR.

3.3 Our Protocols

Algorithm 1. BMUX ΠBMUX

Input: Share of selector
B
[s] and shuffled table of shares ST �xidx,�xidx⊕1 =

((
B
[ idx],

S
′ [�xidx]), ( B

[ idx ⊕ 1],
S

′ [�xidx⊕1])) where s, idx ∈ B,
S

′ [�xidx] =
(
S

′ [xidx,0], . . . , S
′ [xidx,C−1]), S

′ [�xidx⊕1] = (
S

′ [xidx⊕1,0], . . . , S
′ [xidx⊕1,C−1]),

and S
′ ∈ {T,TN [X]}

Output:
S

′ [�xs⊕idx]
1: for i = 0, . . . , N ′ − 1 do in parallel
2: By Open(

B
[s]⊕

B
[ idx], Pi), Pi obtains s⊕ idx. Then, Pi sets

S
′ [outputj′ ]i =

S
′ [xs⊕idx,j′ ]i for j′ = 0, . . . , C − 1.

3: end for
4: Return (

S
′ [output0], . . . , S

′ [outputC−1]).

Intuition of BMUX. Algorithm 1 describes the BMUX ΠBMUX. It takes
B
[s]

and ST �xidx,�xidx⊕1 as inputs and outputs the selected vector of shares
S

′ [�xs⊕idx]
from ST �xidx,�xidx⊕1 . To select the vector of shares, parties obtains s ⊕ idx by Share
in line 2. Note that s⊕ idx gives parties only the information whether s matched
idx or not because idx ∈ B and ST �xidx,�xidx⊕1 is the table shuffled by rows. That
is, s ⊕ idx does not leak confidential information from ST �xidx,�xidx⊕1 or the value
of s to parties.
Intuition of Each Algorithm. We describe each algorithm of our scheme.
Since Setup and Eval are identical to the setup algorithm and homomorphic
operations with the gate-bootstrapping in [13], we omit the explanation. We
adopt μ = m/4 (m ∈ B) as the plaintext encoded on T as in [11,13].
DistDKGen: By RandGen(B,P), parties obtain

B
[si] for i = 0, . . . , n − 1. Parties

set
B
[�s] = (

B
[s0], . . . , B

[sn−1]) as shares of the decryption key �s ∈ B
n.
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Algorithm 2. DistEnc ΠDistEnc

Input: Public parameters param, shares of decryption key
B
[�s] = (

B
[s0], . . . ,

B
[sn−1]), plaintext m ∈ B, input dealer PI

Output: Ciphertext c = (�a = (a0, . . . , an−1), b = �a · �s + μ + e) ∈ T
n+1 where

μ = m/4, �a
U←− T

n, and e
U←− χ(0,σ2)

1: (Offline phase)
2: C samples e ← χ(0,σ2). By Share(T, e, C), C distributes

T
[e] to parties.

3:
T
[ai′ ] ← RandGen(T,P) for i′ = 0, . . . , n − 1

4: for i = 0, . . . , N ′ − 1; i′ = 0, . . . , n − 1 do in parallel
5: By Open(

T
[ai′ ], Pi), Pi obtains ai′ .

6: end for
7: for i′ = 0, . . . , n − 1 do in parallel
8: ST 0,a

i
′ ← TableShuffle((

B
[0],

T
[0]), (

B
[1],

T
[ai′ ]))

9: By ΠBMUX(
B
[si′ ],ST 0,a

i
′ ), parties obtain

T
[ai′ · si′ ].

10: end for
11:

T
[�a · �s] =

T
[
∑n−1

i′=0
ai′ · si′ ] =

∑n−1
i′=0 T

[ai′ · si′ ]
12: (Online phase)
13: By Share(T, μ = m/4, PI), PI distributes

T
[μ] to parties.

14:
T
[b] =

T
[μ] +

T
[�a · �s] +

T
[e]

15: for i = 0, . . . , N ′ − 1 do in parallel
16: By Open(

B
[b], Pi), Pi obtains b and gets c = (�a, b).

17: end for
18: Return c = (�a, b).

DistEnc: Algorithm 2 describes the distributed encryption algorithm ΠDistEnc.
We divide ΠDistEnc into the offline phase and the online phase and explain it.

The goal of the offline phase is to perform computable processing independent
of the actual input, m. In line 2, C samples the noise contained in the ciphertext
of CGGI, e and distributes it to parties as

T
[e]. In lines 3 to 6, parties compute

a part of the ciphertext, �a. Then, in lines 7 to 11, parties compute
T
[�a · �s] by

TableShuffle and ΠBMUX. Note that ΠBMUX outputs
T
[0] if si′ = 0 and

T
[ai′ ]

otherwise in line 9. That is, ΠBMUX outputs
T
[ai′ · si′ ].

The goal of the online phase is to generate the ciphertext by using an actual
input m. By Share, PI distributes the encoded plaintext μ to parties as

T
[μ] in

line 13. Then, parties compute
T
[b] =

T
[μ] +

T
[�a ·�s] +

T
[e] and reconstruct b by

Open. Finally, parties set the ciphertext of CGGI as c = (�a, b) ∈ T
n+1.

Algorithm 3. Distributed key generation for key-switching key ΠDKSK

Input: Public parameters param, shares of decryption keys
B
[�s] = (

B
[s0], . . . ,

B
[sn−1]) and

B
[ �K] = (

B
[K0], . . . , B

[KkN−1])
Output: Key-switching key ksk = {kskJ,j′ }kN−1,t−1

J=0,j′=0

1: P0 sets
T
[1/Bj′+1]0 = 1/Bj′+1 and Pi′′ ∈ P \ {P0} sets

T
[1/Bj′+1]i′′ = 0

for j′ = 0, . . . , t − 1 and i′′ = 1, . . . , N ′ − 1.
2: for J = 0, . . . , kN − 1; j′ = 0, . . . , t − 1 do in parallel
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3: ST 0,1/Bj′+1 ← TableShuffle((
B
[0],

T
[0]), (

B
[1],

T
[1/Bj′+1]))

4: By ΠBMUX(
B
[KJ ],ST 0,1/Bj′+1), parties obtain

T
[KJ/Bj′+1].

5: end for
6: Parties consider

T
[KJ/Bj′+1] as the share of plaintext in line 13 of Algo-

rithm 2 and generate the ciphertext as in Algorithm 2 with sampling noise
from χ(0,σ2

ks)
, not from χ(0,σ2). Then, parties set the generated ciphertext as

kskJ,j′ (for J = 0, . . . , kN − 1; j′ = 0, . . . , t − 1 in parallel).
7: Return ksk = {kskJ,j′ }kN−1,t−1

J=0,j′=0
.

Algorithm 4. Distributed key generation for bootstrapping key ΠDBSK

Input: Public parameters param, shares of decryption keys
B
[�s] = (

B
[s0], . . . , B

[sn−1]) and

B
[ �Kh] = (

B
[KhN+0], . . . , B

[KhN+(N−1)]) for h = 0, . . . , k − 1

Output: Bootstrapping key bsk = {bsk
i
′ }n−1

i
′
=0

1: C samples e
i
′
,j

′ ← χ̂(0,σ′2). By Share(TN [X], C, e
i
′
,j

′ ), C distributes
TN [X][ei

′
,j

′ ] to

parties for i′ = 0, . . . , n − 1; j′ = 0, . . . , (k + 1)� − 1 in parallel.
2: Let

TN [X][B(Bg, �)] be the vector of shares (
TN [X][B

−1
g ], . . . ,

TN [X][B
−�
g ])T . P0 sets

TN [X][B
−w
g ]0 = B−w

g and P
i
′′ ∈ P \ {P0} sets

TN [X][B
−w
g ]

i
′′ = 0 for i′′ = 1, . . . , N ′ −

1;w = 1, . . . , �.

3: Pi sets
TN [X][0]i = 0 for i = 0, . . . , N ′ − 1. Then, parties set

TN [X][
�0] =

(
TN [X][0], . . . , TN [X][0]).

4: for i′ = 0, . . . , n − 1 do in parallel
5: ST �0,B(Bg,�) ← TableShuffle((

B
[0],

TN [X][
�0]), (

B
[1],

TN [X][B(Bg, �)]))

6: By ΠBMUX( B[si
′ ], ST �0,B(Bg,�)), parties obtain

TN [X][si
′ · B(Bg, �)].

7: end for
8: for h = 0, . . . , k − 1; j = 0, . . . , N − 1; i′ = 0, . . . , n − 1; j′ = 0, . . . , (k + 1)� − 1 do in

parallel

9: By RandGen(TN [X], P), parties obtain
TN [X][ah,i

′
,j

′ ]. Then, parties compute

TN [X][X
j · a

h,i
′
,j

′ ] = Xj ·
TN [X][ah,i

′
,j

′ ] for j = 0, . . . , N − 1.

10: ST 0,Xj ·a
h,i

′
,j

′ ← TableShuffle((
B
[0],

TN [X][0]), (
B
[1],

TN [X][X
j · a

h,i
′
,j

′ ]))

11: By ΠBMUX( B[KhN+j ], ST 0,Xj ·a
h,i

′
,j

′ ), parties obtain
TN [X][KhN+j · Xj · a

h,i
′
,j

′ ].

12: end for
13:

TN [X][bi
′
,j

′ ] =
∑k−1

h=0 TN [X][Kh · a
h,i

′
,j

′ ] +
TN [X][ei

′
,j

′ ] =
∑k−1;N−1

h=0;j=0 TN [X][KhN+j ·
Xj · a

i
′
,j

′ ] +
TN [X][ei

′
,j

′ ] for i′ = 0, . . . , n − 1; j′ = 0, . . . , (k + 1)� − 1.

14: Parties set
TN [X][zi

′
,j

′ ] = ((
TN [X][a0,i

′
,j

′ ], . . . ,
TN [X][ak−1,i

′
,j

′ ]),
TN [X][bi

′
,j

′ ]) for

i′ = 0, . . . , n − 1; j′ = 0, . . . , (k + 1)� − 1.

15: For i′ = 0, . . . , n − 1,
TN [X][bsk

i
′ ] =

⎛

⎜
⎜
⎝

TN [X][si
′ · B(Bg, �)] · · · 0

.

.

.
. . .

.

.

.
0 · · ·

TN [X][si
′ · B(Bg, �)]

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

TN [X][zi
′
,0
]

.

..

TN [X][zi
′
,(k+1)�−1

]

⎞

⎟
⎟
⎠

16: By Open, parties reconstruct bsk
i
′ from

TN [X][bsk
i
′ ] for i′ = 0, . . . , n − 1.

17: Return bsk = {bsk
i
′ }n−1

i
′
=0

.
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DistEKGen: Since key-switching and bootstrapping keys can be computed only
by P and C, independently of the plaintext, which is the actual input to be
computed, we assume that DistEKGen is computed in the offline phase. First,
by RandGen(B,P), parties obtain

B
[KJ ] for J = 0, . . . , kN − 1. Parties set

(K0, . . . ,Kk−1) ∈ (BN [X])k as the secret of the TRLWE problem by setting
that Kh =

∑N−1
j=0 KhN+j · Xj for h = 0, . . . , k − 1; j = 0, . . . , N − 1.

Next, we describe the distributed key generation for key-switching key ΠDKSK

in Algorithm 3. In lines 1 to 5, parties compute
T
[KJ/Bj′+1] by TableShuffle,

ΠBMUX, and using
B
[KJ ] and B ∈ param. ΠBMUX outputs

T
[0] if KJ = 0 and

T
[1/Bj′+1] otherwise. That is, ΠBMUX outputs

T
[KJ/Bj′+1]. Then, as described

in line 6, parties compute the encryption of
T
[KJ/Bj′+1] in the almost same

way as Algorithm 2 as kskJ,j′ . Finally, parties obtain the key-switching key
ksk = {kskJ,j′ }kN−1,t−1

J=0,j′=0
.

Algorithm 4 describes the distributed key generation for bootstrapping key
ΠDBSK. We set B(Bg, �) = (B−1

g , . . . , B−�
g )T . ΠDBSK is divided into three parts:

1. Computing shares of the product of the decryption key and the gadget matrix
(in lines 2 to 7)

2. Computing shares of the TRLWE encryptions of zero (in lines 8 to 14)
3. Merging shares computed in previous parts and generating bsk = {bski′ }n−1

i′=0
by Open (in lines 15 to 17)

Note that parties use TableShuffle and ΠBMUX in parts 1 and 2 to compute the
product of shares on B (resp. BN [X]) and T (resp. TN [X]).

Algorithm 5. DistDec ΠDistDec

Input: Public parameters param, ciphertext c = (�a = (a0, . . . , an−1), b = �a ·�s +
μ+ e) ∈ T

n+1, shares of decryption key
B
[�s] = (

B
[s0], . . . , B

[sn−1]), receiver
PR

Output: PR receives the plaintext of c, m(= 4·μ) where m ∈ B and μ ∈ {0, 1/4}
1: (Offline phase)
2: C samples e′ ← χ(0,σ2). By Share(T, e′, C), C distributes

T
[e′] to parties.

3: (Online phase)
4: P0 sets

T
[ai′ ]0 = ai′ . Pi′′ ∈ P \{P0} sets

T
[ai′ ]i′′ = 0 for i′′ = 1, . . . , N ′ − 1.

5: In the same way as lines 7 to 11 of Algorithm 2, parties compute
T
[�a · �s].

6:
T
[μ + e + e′] = b −

T
[�a · �s] +

T
[e′]

7: By Open(
T
[μ+e+e′], PR), PR obtains μ+e+e′. Then, PR rounds μ+e+e′

to the nearest 0 or 1/4, whichever is closer. Let μ̂ be the rounded value.
8: Return m = 4μ̂.

DistDec: Algorithm 5 describes the distributed decryption ΠDistDec. In the offline
phase of ΠDistDec at line 2, C samples the smudging noise e′ from χ(0,σ2) and
distributes it to parties as

T
[e′]. In the online phase of ΠDistDec (in lines 4 to 8),

by using �a, parties set
T
[ai′ ] from i′ = 0 . . . , n−1. Then, parties compute

T
[�a ·�s]
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in the same way as Algorithm 2. After that, parties compute
T
[μ + e + e′] and

reconstruct it to PR by Open. Finally, PR rounds μ + e + e′ as μ̂ ∈ {0, 1/4} and
gets the plaintext of c, m = 4μ̂.
Observations on the Impact of Smudging Noise. Adding the smudging
noise e′ to b in line 6 of Algorithm 5 is equivalent to adding a trivial ciphertext
for a plaintext of 0 where random values are all zero, i.e., c′ = ((0, . . . , 0), 0 +
e′) ∈ T

n+1 to c. Due to the constraints imposed by the gate-bootstrapping in
CGGI [13], it holds that |e|, |e′| < 1/16 and |e + e′| < 1/8 where |e| and |e′|
are the absolute values of e and e′, respectively. Note that the plaintext space
encoded on T is {0, 1/4}. Hence, PR can correctly perform the rounding at line
7 of Algorithm 5. Therefore, in our scheme, the noise smudging does not affect
the decryption or the noise analysis.

Note that PR can compute e+ e′ = (μ+ e+ e′)−m/4 by using m at line 8 of
Algorithm 5. Even if PR computes b − (e + e′), PR can only get the ciphertext
replacing e by (−e′). Since e′ is sampled from the same distribution as χ(0,σ2)

from which e was sampled, PR cannot solve the TLWE problem or break our
scheme. Hence, it is sufficient that the smudging noise is sampled from χ(0,σ2).
Validity of Client-Aided Model. A natural question is which entity will play
the role of C in real-world services. The most straightforward way to assume C
is to add a new entity or server that plays the role of C.

Without adding a new dedicated entity, during DistDec, an honest comput-
ing server that does not collude with P and performs homomorphic operations
between ciphertexts can play the role of C. During DistEnc, like the client-server
model [2], an input dealer who is not in P can play it. During DistEKGen, if the
computing server (not parties) reconstructs the keys, then one of the parties can
play it. In other words, an entity other than the entity that obtains the output of
each distributed algorithm can play the role of C. If the noise-making C gets the
output of each distributed protocol, it may leak partial information about the
decryption key or plaintext to C because C can remove the noise from outputs.

In this way, there are several practical ways to assume C. Hence, we believe
that it is reasonable to introduce a client-aided model at our scheme.
Optimization of Round Complexities and Corruption Rate. While the
number of communication rounds for distributed key generation and distributed
decryption in many ThFHEs is constant, those in our scheme require O(

(
N ′

t

)
)

times of communication rounds. In addition, while most ThFHEs assume t < N ′,
our scheme assumes t < N ′/2. These drawbacks are caused by using TableShuffle
based on the resharing-based shuffle [24] in our scheme.

One way to improve our round complexities and our corruption rate is to
have C shuffle the table of shares in exchange for an increased load on C. As
described in Algorithms 2, 3, 4, and 5, the inputs of TableShuffle are the indices
and the B(Bg, �) or the random values (or random polynomials) of ciphertext.
In other words, TableShuffle does not take any secrets as inputs. Hence, instead
of TableShuffle, C can generate and distribute the shares of the shuffled table to
P by Share in exchange for one communication round between C and P and for
the number of bits communicated about the shares of the shuffled table. This
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method does not leak secrets and does not affect security unless C colludes with a
party in P. Since this method removes TableShuffle from our scheme, our scheme
can achieve constant rounds and assume t < N ′. Note that if this method is also
used for DistDec, C must also participate in the online phase since it must shuffle
the random vector �a of the input ciphertext.
Security Proof Sketch. The security of Eval and ciphertext is the same as in
the CGGI [13]. In other words, our scheme is as secure as the CGGI as long as
we assume that any probabilistic polynomial-time adversaries cannot solve the
TLWE and TRLWE problems.

In addition, we can prove that the BMUX, DistDKGen, DistEKGen, DistEnc,
and DistDec are secure by assuming that (N ′, N ′)-ASS and the resharing-based
shuffle [24] are secure. Since these protocols are composed of (N ′, N ′)-ASS, the
resharing-based shuffle [24], and operations without communications, these pro-
tocols achieve universal composability (UC) [10] by assuming input availabil-
ity [23] as long as building blocks are secure. Hence, we can combine these
protocols with CGGI and extend CGGI to the ThFHE variant without compro-
mising security. For more details, see Appendix B.

4 Experiments

We evaluate our scheme against the original CGGI [13] and MK-CGGI [11] in
terms of execution time.
Experimental Setting. We implement CGGI [13] and our scheme by C++.
As an implementation of the MK-CGGI, we use the authors’ one that is publicly
available. We emphasize that we can only compare the relative execution times
because different libraries are used for internal operations, and there is room for
optimization. For example, we use the Randen library [36] to generate random
numbers, while MK-CGGI uses the C++ standard library function, which is
faster but not designed to be cryptographically secure. In addition, we use FFTW
library [18] to multiply polynomials, while MK-CGGI uses Spqlios3, which is
optimized for CGGI.

Table 2 shows the ciphertext parameters we used. Our scheme keeps the same
parameters as CGGI and, as described earlier, achieves the same security level
even if the number of parties is increased.

We measured the execution time for key generation, encryption, decryption,
and homomorphic evaluation on a server machine (Intel Xeon Silver 4114 CPU
with 96 GB of DDR4-2400 memory). For simplicity, we executed the multiparty
operations of all of the parties serially on a single core of this single machine. In a
real-world setting, each party may be assigned to a different machine connected
to a network. In this case, some of the operations (e.g., decryption key genera-
tion) can be processed in parallel, but the parties need to communicate over the
network. Therefore, the network’s bandwidth and latency may affect the perfor-
mance. In the results shown below, we also give the estimated communication

3 https://github.com/tfhe/tfhe/tree/master/src/libtfhe/fft processors/spqlios.

https://github.com/tfhe/tfhe/tree/master/src/libtfhe/fft_processors/spqlios
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Table 2. Parameter settings derived from the original papers [11,13]. We denote the
security level estimated by lattice-estimator [1] (as of 23 Jan. 2023) as λ and λ′. Both
schemes use N = 1024 and k = 1 as TRLWE dimension. For Bg and � in MK-
CGGI, values when the maximum allowed number of parties is two, four, and eight,
respectively, are shown.

Scheme TLWE TRLWE

n σ B t λ σ′ Bg � λ′

CGGI [13] and ours 500 2−7 2 16 150 2.16 ×10−5 1024 2 191

MK-CGGI [11] 560 3.05 ×10−5 4 8 107 3.72 ×10−9 512, 256, 64 3, 4, 5 112

Table 3. Measured execution time and estimated communication time (s) of our imple-
mentation of the original CGGI [13] (column #Parties=1 and #Corrupt.=N/A) and
our scheme (the other cases).

Execution Communication

#Parties 1 3 4 8 3 4 8

#Corrupt. N/A 1 1 1 2 3 1 1 1 2 3

Key gen. 0.85 224 602 5521 18195 33118 LAN 83.9 164 755 2541 4703

WAN 11649 22840 104905 352967 653251

Enc. 0.00 0.00 0.00 0.01 0.01 0.02 LAN 0.01 0.01 0.06 0.19 0.35

WAN 0.86 1.73 8.07 27.2 50.4

Dec. 0.00 0.00 0.00 0.01 0.01 0.02 LAN 0.01 0.01 0.06 0.19 0.35

WAN 0.94 1.81 8.16 27.4 50.6

Eval. (NAND) 0.62 LAN No comm.

WAN

time. Specifically, we adopt two settings: one is over a local area network (LAN;
10 Gbps throughput and 0.5 ms latency) [29], and the other is over a wide area
network (WAN; 72 Mbps throughput and 72 ms latency) [30], which is based on
a measurement between the AWS US East and West regions.
Experimental Results. Table 3 shows the time for the original CGGI and
our scheme, and Table 4 shows the time for MK-CGGI. In Tables 3 and 4, the
key generation time is the sum of decryption key, key-switching key, and boot-
strapping key. Values are rounded, thus 0.00 means that the time is less than 5
ms. Execution time for each operation is averaged over multiple runs so that the
total time reaches 0.5 s. For ours and MK-CGGI, key generation, encryption, and
decryption get slower as the number of parties increases. Notably, our scheme
also becomes slower along with a larger number of corruptions since the number
of shuffle operations increases. Because the internal operations (e.g. polynomial
multiplication) are implemented differently, our CGGI implementation’s evalua-
tion is even slower than MK-CGGI’s two-party setting. However, the evaluation
of MK-CGGI gets slower when the number of parties increases. In contrast, our
scheme’s evaluation keeps the same time as CGGI, and it becomes faster than
MK-CGGI when the number of parties is more than two.
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Table 4. Measured execution time and estimated communication time (s) of the
authors’ implementation in MK-CGGI [11].

Computation Communication

#Parties 2 4 8 2 4 8

Key gen. 3.08 7.08 16.0 LAN No comm.

WAN

Enc. 0.00 0.00 0.00 LAN No comm.

WAN

Dec. 0.00 0.00 0.00 LAN 0.00 0.00 0.00

WAN 0.00 0.00 0.00

Eval. (NAND) 0.28 1.20 5.90 LAN No comm.

WAN

Note that the key generation of our current implementation is relatively
slower in terms of execution and estimated communication time. Quick profiling
showed that random number generation by the Randen library occupies more
than half of the time, and the shuffle operation follows next. One may offload
the shuffle operation onto the client to reduce the execution time and the com-
munication overhead. However, since the number of parties is fixed in the setup
phase in the threshold setting, key updates seldom occur. In addition, as sug-
gested earlier, we can generate the keys independently of the input plaintext.
Hence, the key generation can be performed in the offline phase and does not
affect the response time of the SC in the online phase. Therefore, the perfor-
mance of the homomorphic operation, of which procedure and execution time
are identical to CGGI in our scheme, is more critical for the whole application.

5 Conclusions

We proposed the client-aided ThFHE based on CGGI [13]. By implementing
and experimenting with our scheme, we compared the performance between
CGGI [13] and MK-CGGI [11] and our scheme.

Our scheme has the same bootstrapping as CGGI and the performance of our
homomorphic operations is independent of the number of parties. Hence, in the
multiparty setting, our scheme is superior to MK-CGGI, where the performance
degrades with the number of keys involved in the homomorphic operation. In
addition, the noise analysis and security in our scheme is identical to CGGI
because it is not affected by the noise smudging.

Hence, we can extend existing OSS implementing CGGI to our scheme, i.e.,
ThFHE variant of CGGI without changing the implementation part regarding
homomorphic operations. While the standardisation on FHE4 and threshold

4 https://www.iso.org/standard/83139.html.

https://www.iso.org/standard/83139.html
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cryptography5 is going on, we believe that our scheme is a good candidate from
a standardization perspective, since the discussion of security for CGGI can be
applied to our scheme as well.

A TLWE and TRLWE Problems

Definition 1 (LWE Problem Over T (TLWE Problem)). We call the pair
of (�a, b) ∈ T

n+1 TLWE sample where �a
U←− T

n, �s
U←− B

n, e ← χ(0,σ2), and
b = �a · �s + e. For the TLWE sample, we define the following two problems:

– Decisional TLWE Problem: The problem of distinguishing between a given
TLWE sample (�a, b) and uniformly randomly sampled elements from T

n+1,
when the secret �s is fixed.

– Search TLWE Problem: The problem of finding the (common) secret �s
from a given arbitrary number of TLWE samples.

Definition 2 (LWE Problem Over TN [X] (TRLWE Problem)). We
call the pair of ((a0, . . . ,ak−1), b) ∈ (TN [X])k+1 TRLWE sample where
(a0, . . . ,ak−1)

U←− (TN [X])k, (K0, . . . ,Kk−1)
U←− (BN [X])k, e ← χ̂(0,σ′2), and

b =
∑k−1

i=0 ai ·Ki +e. For the TRLWE sample, we can define the decisional and
search TRLWE problems as well as the TLWE problem.

B Security Definition and Proof

FOpen - (Ideal functionality for opening
S
[x])

1. Let PR ∈ P be the receiver. Pi sends the message (Open,
S
[x]i, Pi, PR)

to FOpen for i = 0, . . . , N ′ − 1.

2. FOpen computes x =
∑N′−1

i=0 xi by performing the modulus operation
according to S. Then, FOpen sends x to PR.

Our protocols, BMUX, DistDKGen, DistEKGen, DistEnc, and DistDec are
secure in the presence of corrupted parties by a semi-honest adversary if the
view of corrupted parties in a real-world protocol execution can be generated
by a probabilistic polynomial-time simulator S given only the corrupted parties’
inputs and outputs of a function f . Let xi and fi(�x) be Pi’s input and output
where �x = (x0, . . . , xN ′−1), respectively. Let VIEWΠ

i (�x) and OutputΠ(�x) be Pi’s
view (including Pi’s inputs, outputs, and random coins) of execution of protocol
Π on �x and the output of all parties from the execution of Π, respectively.

5 https://csrc.nist.gov/Projects/threshold-cryptography.

https://csrc.nist.gov/Projects/threshold-cryptography
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FBMUX - (Ideal functionality for BMUX)

1. We set the share of the selector
B
[s] and the shuffled table of shares

ST �xidx,�xidx⊕1 = ((
B
[ idx],

S
′ [�xidx]), ( B

[ idx ⊕ 1],
S

′ [�xidx⊕1])) where
S

′ [�xidx] =
(
S

′ [xidx,0], . . . , S
′ [xidx,C−1]), S

′ [�xidx⊕1] = (
S

′ [xidx⊕1,0], . . . , S
′ [xidx⊕1,C−1]),

and S
′ ∈ {T,TN [X]}.

2. Pi sends the message (BMUX,
B
[s]i, B

[ idx]i, {
S

′ [xi
′
,j

′ ]}i
′
=0,1;j

′
=0,...,C−1

Pi) to FBMUX for i = 0, . . . , N ′ − 1.

3. FBMUX computes idx ⊕ s =
∑N′−1

i=0 B
[ idx]i ⊕

B
[s]i mod 2 and xidx⊕s,j

′ =
∑N′−1

i=0 S
′ [xidx⊕s,j

′ ]i by performing the modulus operation according to

S
′ for j′ = 0, . . . , C − 1. Then, FBMUX generates xidx⊕s,j

′
,i

′
U←− S

′ for

i′′ = 1, . . . , N ′ − 1 and sets xidx⊕s,j
′
,0 = xidx⊕s,j

′ −
∑N′−1

i
′′
=0

xidx⊕s,j
′
,i

′ by

performing the modulus operation according to S
′ for j′ = 0, . . . , C − 1.

4. FBMUX sets
S

′ [xidx⊕s,j
′ ]i = xidx⊕s,j

′
,i and sends it to Pi for i = 0, . . . , N ′ −

1; j′ = 0, . . . , C − 1.

Definition 3 (Perfect Security) . Let f : ({0, 1}∗)N ′ → ({0, 1}∗)N ′
be a

probabilistic N ′-ary functionality. We say that Π computes f with perfect secu-
rity in t(< N ′/2) corruptions by a semi-honest adversary for f if there exists S
for every corrupted party and every �x ∈ ({0, 1}∗)N ′

where |x0| = · · · = |xN ′ −1|
as follows.

{(S(xi, fi(�x)), f(�x))} ≡ {(VIEWΠ
i (�x),OutputΠ(�x))} (1)

We prove that our protocols achieve UC-security [10] by assuming input
availability [23] and hybrid model. Loosely speaking, in the hybrid model, a
protocol can replace calls to subprotocol by invocations of ideal functionalities
F . By replacing the subprotocols with ideal functionalities of subprotocols, we
prove that our protocols compute its ideal functionalities with perfect security
in t corruptions by a semi-honest adversary in a classic stand-alone setting.
Then, as shown in [23], we can prove that our protocols achieve UC-security
automatically by assuming input availability (i.e., the property that the inputs
of all parties are fixed before protocol executions).

For example, we can prove that ΠBMUX in the FOpen-hybrid model computes
FBMUX with perfect security in t corruptions by a semi-honest adversary. ΠBMUX

is composed of invoking Open and operations among shares without communica-
tions. Hence, if Open computes FOpen with perfect security in t corruptions by a
semi-honest adversary, we can replace Open by FOpen and S can be composed in
the t corruptions by a semi-honest adversary. Since our other protocols are com-
posed of invoking subprotocols written in Sect. 2.4 and operations among shares
without communications, S for our other protocols can also be composed as long
as building blocks are secure, that is, as long as building blocks can compute
its ideal functionalities with perfect security in t corruptions by a semi-honest
adversary.
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Abstract. In public key encryption (PKE), anonymity is essential to
ensure privacy by preventing the ciphertext from revealing the recipi-
ent’s identity. However, the literature has addressed the anonymity of
PKE under different attack scenarios to a limited extent. Benhamouda
et al. (TCC 2020) introduced the first formal definition of anonymity
for PKE under corruption, and Huang et al. (ASIACRYPT 2022) made
further extensions and provided a generic framework.

In this paper, we introduce a new security notion named enhanced
decryption key exposure resistance (En-DKER) for revocable identity-
based encryption (RIBE). This notion ensures that the exposure of
decryption keys within any time period will not compromise the confi-
dentiality and anonymity of ciphertexts encrypted during different peri-
ods. Meanwhile, we construct the first RIBE scheme with En-DKER
and prove its security under the learning with errors (LWE) assumption.
Our scheme offers several advantages. Firstly, the periodic workload of
the key generation center (KGC) in our scheme is nearly zero. Secondly,
the encryptor does not need to handle real-time revocation information
of users within the system. Thirdly, the size of user secret keys remains
constant in multi-bit encryption.

Additionally, we present a novel approach to delegate a lattice basis.
Diverging from the work of Cash et al. (J CRYPTOL 2012), our app-
roach allows for the outsourcing of subsequent sampling operations to
an untrusted server. Leveraging this approach, our scheme significantly
reduces the periodic workload for users to generate decryption keys.
Finally, we efficiently implemented our scheme using the number theory
library (NTL) and multi-threaded parallel program. The experimental
results confirm the advantages of our scheme.

Keywords: Revocable identity-based encryption · Anonymity ·
Decryption key exposure · Lattice-based cryptography · Lattice basis
delegation
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1 Introduction

Identity-based encryption (IBE) is an advanced form of public key encryption
(PKE) that eliminates the need for certificates by allowing any string to serve
as a user’s public key. This simplifies the traditional PKE process but presents a
challenge when it comes to revoking malicious users without a certificate inval-
idation mechanism. Boneh and Franklin [9] proposed a solution in which the
key generation center (KGC) periodically generates and broadcasts keys for all
non-revoked users. However, their scheme incurs a periodic workload of O(N −r)
for the KGC, which can become the system’s bottleneck as the number of users
grows, where N is the maximum number of users and r is the number of revoked
users. Boldyreva et al. [8] proposed an indirect revocation model, that employs a
binary tree structure and subset-cover framework, to reduce the periodic work-
load of the KGC to O(r log(N/r)).

In order to ensure the comprehensive utilization of the revocable identity-
based encryption (RIBE) scheme, it is imperative to consider additional attack
scenarios and privacy requirements. Key exposure happens frequently due to
external attacks or user errors. Seo and Emura [24] introduced an important secu-
rity notion called decryption key exposure resistance (DKER), which requires
that the exposure of decryption keys for any time period cannot compromise
the confidentiality of ciphertexts that are encrypted for different time periods
within RIBE schemes. Furthermore, they constructed the first RIBE scheme
with DKER by re-randomizing the decryption keys in Boldyreva et al.’s indirect
revocation IBE scheme [8]. Subsequently, more efficient and secure schemes have
been proposed [13,14,27].

However, the above-mentioned RIBE schemes with DKER are all based on
number theoretical assumptions, such as bilinear maps and multilinear maps.
The algebraic structure of lattices, which is believed to be resistant against
quantum attacks, has traditionally been considered unsuitable for the key re-
randomization property. This is because if a user generates a new decryption
key that satisfies the correctness without knowledge of the trapdoor, he can
also solve the small integer solution (SIS) problem. Therefore, constructing a
lattice-based RIBE scheme with DKER without the ability to re-randomize the
decryption keys in [8] has become an open problem.

Until 2019, Katsumata et al. [17] combined the first lattice-based indirect
revocation IBE scheme by Chen et al. [12] and the lattice basis delegation scheme
by Cash et al. [11], thereby achieving a two-level structure and successfully con-
structing the first lattice-based RIBE scheme with DKER. Specifically, lattice
basis delegation scheme allows for the extension of any short basis from a lat-
tice A to a short basis of any higher-dimensional lattice [A|B]. In [17], the
decryption key of the first level, similar to [12], cannot be re-randomized, while
the other level is generated through extended lattice basis sampling and can be
reduced to random values over the field during security proofs. This partial key
re-randomization ensures the DKER property. By following the idea, Wang et
al. [26] constructed a more efficient scheme, and Zhang et al. [28] proposed a
lattice-based server-aided RIBE with DKER.
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IBE allows using a user’s identity information (such as email address or user-
name) as the public key. This eliminates the need for a traditional public key
infrastructure (PKI) to distribute and maintain separate key pairs for each user.
In this scenario, anonymity becomes crucial because users’ identity information
is typically sensitive and should not be exposed in the ciphertext [6]. Neverthe-
less, if the decryption key for any time period is exposed, the two-level structure
proposed in [17] fails to ensure the anonymity of ciphertexts encrypted dur-
ing different time periods. Takayasu and Watanabe [25] explained this point in
detail and constructed an anonymity RIBE scheme with bounded decryption key
exposure resistance (B-DKER) which is a weaker version of DKER, ensuring the
security of RIBE schemes in the case of a-priori bounded number of decryption
keys exposure.

Open Problem: If decryption key exposure for any time period, is it possible
to construct an RIBE scheme that ensures the confidentiality and anonymity of
ciphertexts encrypted for different time periods?

Not only under lattice assumptions but also under number theoreti-
cal assumptions, Boyen and Waters [10] mentioned that anonymity appears
unattainable when re-randomization elements are included in the public param-
eters. Moreover, the anonymity of PKE under different attack scenarios is less
studied in the literature. Recently, Benhamouda et al. [7] introduced the first for-
mal definition of anonymity for PKE under corruption. Then, Huang et al. [16]
provided a generic framework of the anonymous PKE scheme under corruption.
To the best of our knowledge, there is currently no RIBE scheme that can address
the aforementioned problem.

1.1 Related Works

Following the work of Boldyreva et al. [8], Attrapadung and Imai [5] introduced
a direct revocation model that eliminates the need for periodic key updates by
both the KGC and users. Under this model, data owners can manage the revo-
cation list and generate ciphertext that can only be decrypted by non-revoked
users within specific scenarios. However, aside from its limited applicability,
this model is restricted to fine-grained revocable encryption schemes, such as
revocable attribute encryption (RABE) [19] and revocable predicate encryption
(RPE) [18]. For a single recipient, the data owner can verify the non-revocation
status of the recipient and share data using IBE schemes without needing RIBE
schemes. In 2015, Qin et al. [22] proposed a server-aided revocation model in
which almost all user workloads are delegated to an untrusted server. However,
the periodic workload of the KGC is still remains logarithmic.

1.2 Technical Overview

Because under lattice assumptions, the decryption keys in the indirect revocation
model cannot be re-randomized, our scheme is improved based on the direct
revocation model.
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First, we need to address the issue of incongruence between the direct revo-
cation model and RIBE schemes. Specifically, in the direct revocation model
proposed by Attrapadung and Imai [5], the encryptor uses the revocation list
RLt to generate the set KUNodes(RLt) which represents the smallest nodes sub-
set of non-revoked users on time period t. What is interesting is that the set
KUNodes(RLt) does not reveal any information about the revocation list RLt

since the adversary is unable to determine which user corresponds to each leaf
node. Therefore, in our model, the KGC periodically generates and broadcasts
the set KUNodes(RLt), thereby eliminating the encryptor’s need to handle any
revocation list information and making our model free from specific scenarios.
Moreover, our model inherits the benefits of the direct revocation model, and
the periodic workload of the KGC is nearly zero.

Second, by combining the lattice-based delegation algorithm with our
improved revocation model, we utilize the extended lattice basis as the user’s
secret key. Simultaneously, users employ this extended lattice basis for sampling
to generate decryption keys, which can be reduced to random values in the field
during security proofs. Consequently, we achieve complete re-randomization of
decryption keys, thereby ensuring the confidentiality and anonymity of cipher-
texts from different time periods in the event of decryption key exposure in any
time period.

1.3 Our Contributions

This paper presents three significant contributions.
First, we propose a stronger security notion named enhanced decryption

key exposure resistance (En-DKER). Simultaneously, we define the scheme and
security model for the RIBE scheme with En-DKER. For details, see Sect. 3.

Second, this paper presents a novel approach to achieving the lattice basis
delegation, which enables the outsourcing of subsequent sampling operations to
an untrusted server. For details, see Sect. 4.1.

Third, we construct the first RIBE scheme with En-DKER, which is suitable
for multi-bit encryption and scenarios where the KGC has a high computa-
tional workload. In addition, we outsource the majority of user’s workload to
an untrusted server. At the same time, we prove the security of our scheme
under the LWE assumption. For details, see Sect. 4. Moreover, our scheme is
efficiently implemented through the number theory library (NTL) and multi-
threaded parallel programming. The experimental results validate the benefits
of our revocation model and scheme. See Sect. 5.1 for details.

2 Preliminaries

2.1 Notations

Throughout this paper, we denote λ as the security parameter. For two dis-
tributions D and D′, the statistical distance between D and D′ is defined as
SD(D,D′). A family of distributions D = {Dλ}λ∈N and D′ = {D′

λ}λ∈N are said
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to be statistically indistinguishable if there is a negligible function negl(·) such
that SD(Dλ,D′

λ) ≤ negl(λ) for all λ ∈ N, where negl(·) represents a function that
for every constant c > 0 there exists an integer Nc satisfying negl(λ) ≤ λ−c for
all λ > Nc. Let PPT denote probabilistic polynomial time.

If n is a positive integer, we let [n] = {1, . . . , n}. For a column vector x ∈ Zn,
||x|| denotes the standard Euclidean norm of x. For a matrix A ∈ R

n×m, denote
˜A as the Gram-Schmidt orthogonalization of matrix A and denote ||A|| as the
Euclidean norm of the longest column in A.

Smudging. The given lemma, originally established in [4], asserts that adding
large noise can “smudges out” any small values.

Definition 1 (B-Bounded). For a family of distributions D = {Dλ}λ∈N over
the integers and a bound B = B(λ) > 0, if for every λ ∈ N it holds that
Prx←Dλ

[|x| ≤ B(λ)] = 1, we say that D is B-bounded.

Lemma 1 (Smudging Lemma). Let B1, B2 be two polynomials over the inte-
gers, and let D = {Dλ}λ be any B1-bounded distribution family. Let U = {Uλ}λ

be the uniform distribution over [−B2(λ), B2(λ)]. The family of distributions
D + U and U are statistically indistinguishable if there exists a negligible func-
tion negl(·) such that for all λ ∈ N it holds that B1(λ)/B2(λ) ≤ negl(λ).

Leftover Hash Lemma. Here, we recall the leftover hash lemma from [1].

Lemma 2. Suppose that m > (n + 1) log q + ω(log n), and k = k(n) be some
polynomial in n. Then, the distribution (A,AR) is statistically indistinguishable
to the distribution (A,B), where A and B are uniformly matrices in Z

n×m
q and

Z
n×k
q , and R is a uniformly matrix in {−1, 1}n×k.

Full-Rank Different Map. We need this tool to encode identities and time
periods as matrices in Z

n×n
q .

Definition 2. A function H : Z
n
q → Z

n×n
q is a full-rank different map if the

matrix H(u) − H(v) ∈ Z
n×n
q is full rank, for all distinct u,v ∈ Z

n
q , and H is

computable in O(n log q).

2.2 Background on Lattices

Lattice. An m-dimensional lattice L is a discrete subgroup of Rm. Let L⊥
q (A)

denote the q-ary lattice {x ∈ Z
m | Ax = 0 mod q}, where n, m, q are positive

integers and A is a matrix in Z
n×m
q . For any u in Z

n
q , let Lu

q (A) denote the
coset {x ∈ Z

m | Ax = u mod q}.

Discrete Gaussians. For any parameter σ > 0, the discrete Gaussian distri-
bution ρL,σ(x) = ρσ(x)/ρσ(L), where ρσ(x) = exp(−π||x||2/σ2) and ρσ(L) =
∑

x∈L ρσ(x). The following lemmas are important properties of discrete Gaus-
sian [15].
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Lemma 3. Let n, m, q be positive integers with m > n, q > 2, and A be a
matrix in Z

n×m
q . Then, there is a negligible function negl(·) such that Pr[||x|| >

σ
√

m : x ← DL⊥
q (A),σ] ≤ negl(n), when σ = Ω̃(n).

Lemma 4. Let n, m, q be positive integers with m > 2n log q. Then, for
A ← Z

n×m
q and e ← DZm,σ, the distribution of u = Ae mod q is statistically

close to the uniform distribution over Z
n
q .

Sampling Algorithms. We review some sampling algorithms from [2,3,20].
Lemma 5. Let n ≥ 1, m ≥ 2n �log q	, q ≥ 2, we have the following polynomial
time algorithms:
– TrapGen(1n, 1m, q) → (A,TA ): On input n, m, q, output a matrix A ∈ Z

n×m
q

and its trapdoor TA ∈ Z
m×m, satisfying ||TA || ≤ O(n log q).

– SamplePre(A,TA , σ,u) → s: On input a matrix A ∈ Z
n×m
q and its trapdoor

TA , a vector u ∈ Z
n
q , and a parameter σ ≥ || ˜TA || ·ω(

√
log m), output a vector

s ∈ Z
m
q , satisfying A · s� = u� and ||s|| ≤ √

mσ.
– SampleLeft(A,M ,TA , σ,u) → s: On input a matrix A ∈ Z

n×m
q and its

trapdoor TA , a matrix M ∈ Z
n×m0
q , a vector u ∈ Z

n
q , and a parameter

σ ≥ || ˜TA || · ω(
√

log(m + m0)), output a vector s ∈ Z
m+m0
q distributed statis-

tically close to DLu
q ([A |M ]),σ.

– There is a gadget matrix G, which is a full rank matrix in Z
n×m
q and has a

publicly known trapdoor TG with || ˜TG || ≤
√

5.
– SampleRight(A,G,R,TG , σ,u) → s: On input a matrix A ∈ Z

n×m
q , the

gadget matrix G and its trapdoor TG , a uniform random matrix R ←
{−1, 1}m×m, a vector u ∈ Z

n
q , and a parameter σ ≥ || ˜TG || · √m · ω(

√
log m),

output a vector s ∈ Z
2m
q distributed statistically close to DLu

q ([A |AR+G ]),σ.

LWE Assumption. Our RIBE scheme is based on the learning with errors
(LWE) assumption.

Assumption 1 (Learning with Errors [23]). Let n, q be positive integers, and
a parameter σ ∈ R, for any PPT adversary A, there exists a negligible function
negl(·) that satisfies |Pr[A(α, s�α + e) = 1] − Pr[A(α, γ) = 1]| ≤ negl(λ), where
α ← Z

n
q , s ← Z

n
q , γ ← Zq, and e ← DZ,σ.

2.3 The Complete Subtree Method

The complete subtree (CS) method, proposed by Naor et al. [21], effectively
improves the efficiency of the revocation schemes. In this method, the system
will build a complete binary tree BT. For a non-leaf node θ ∈ BT, θl and θr

denote the left and right child node of θ, and η denote the leaf node in BT.
Path(η) denote the set of nodes on the path from η to the root. Inputting the
revocation list RLt on the time period t, then the KUNodes algorithm proceeds
as follows: sets two empty sets X and Y ; adds Path(η) to X, for each η ∈ RLt;
for each θ ∈ X, adds θl to Y if θl /∈ X, adds θr to Y if θr /∈ X; if Y is still the
empty set, then adds root to Y ; finally, outputs Y which is the smallest nodes
subset of non-revoked users on the time period t.
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3 Formal Definition for RIBE with En-DKER

Definition 3 (En-DKER). The exposure of users’ decryption keys for any
time period does not compromise the anonymity and confidentiality of ciphertexts
that are encrypted for different time periods.

It should be noted that En-DKER is different from achieving both DKER and
anonymity since current anonymous IBE schemes are constructed under the
assumption that the user’s decryption keys will not be exposed. In other words,
RIBE with En-DKER scheme cannot be constructed by simply combining the
RIBE with DKER scheme with an anonymous IBE scheme. Therefore, it is
necessary to define a new security notion to avoid confusion for readers.

3.1 Scheme Model of RIBE with En-DKER

Our RIBE scheme consists of the six algorithms (Setup, GenSK, NodesUp, GenDK,
Enc, Dec) with associated message space M, identity space ID, and time period
space T . The KGC maintains a revocation list RL which is dynamically updated
following the time period t.

– Setup(λ,N): This algorithm is run by the KGC. Input a security parameter
λ and a maximal number N of users, output public parameters PP and a
master secret key MSK.

– GenSK(PP,MSK, ID): This algorithm is run by the KGC. Input the public
parameters PP, the master secret key MSK, and an identity ID ∈ ID, output
a secret key SKID for the user with the identity ID.

– NodesUp(BT,RLt): This algorithm is run by the KGC. Input the binary
tree BT and the revocation list RLt, the KGC generates and broadcasts a
node set KUNodes(RLt) for the time period t.

– GenDK(PP,SKID,KUNodes(RLt)): This algorithm is run by the receiver.
Input the public parameters PP, the secret key SKID, and the set
KUNodes(RLt), output a decryption key DKID,t.

– Enc(PP, ID, t,KUNodes(RLt), μ): This algorithm is run by the sender. Input
the public parameters PP, an identity ID ∈ ID, a time period t ∈ T , the set
KUNodes(RLt), and message μ, output a ciphertext CTID,t.

– Dec(CTID,t,DKID,t): This algorithm is run by the receiver. Input the cipher-
text CTID,t and the decryption key DKID,t, output message μ′ ∈ M.

Correctness. An RIBE scheme is correct if for all λ ∈ N, N ∈ N, (PP,MSK) ←
Setup(λ, l,N), μ ∈ M, ID ∈ ID, t ∈ T and revocation lists RL it holds that

Pr

⎡

⎢

⎢

⎢

⎢

⎣

SKID ← GenSK(PP,MSK, ID)
KUNodes(RLt) ← NodesUp(BT,RLt)

μ′ = μ DKID,t ← GenDK(PP,SKID,KUNodes(RLt))
CTID,t ← Enc(PP, ID, t,KUNodes(RLt), μ)

μ′ ← Dec(CTID,t,DKID,t)

⎤

⎥

⎥

⎥

⎥

⎦

=1-negl(λ).
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3.2 Security Model of RIBE with En-DKER

Now, we give a formal security definition for RIBE with En-DKER by the game
between adversary A and challenger C. Different from the security definition of
RIBE with DKER, we replace the challenge identity ID with ID(0) and ID(1).
When C randomly chooses a bit b, the challenge plaintext μ(b) will be encrypted
with the identity ID(b). Assuming the scheme does not satisfy anonymity, the
adversary can distinguish between ID(0) and ID(1), then get the value of challenge
bit b and win the game. So in this setting, our security definition can verify the
anonymity while proving the security of the RIBE schemes.

In addition, since the revocation list RL is dynamically updated following the
time period t, so we set a global variable tcu ∈ T , whose initial value is 1, to
assist in generating the decryption key DKID,t of any time period queried by A.

Initialize: A sets the challenge identities ID(0) and ID(1), the challenge time
period t∗, and the challenge node set KUNodes(RLt∗)∗.
Setup Phase: C runs Setup and gives the public parameters PP to A.
Query Phase: A adaptively makes a polynomial number queries to C:
1. A sets Q0 = {ID} for the establishment of the binary tree BT. C randomly

picks an unassigned leaf node ηID for ID.1 At the end of the quiry, C obtains
RL∗

t∗ based on KUNodes(RLt∗)∗ and BT, and sends it to A.
2. A sets Q1 = {ID} for the secret key queries, subject to the restriction:

ID ∈ Q0; if ID = ID(0) or ID(1), ID ∈ RL∗
t∗ . C replies with the corresponding

secret key SKID ← GenSK(PP,MSK, ID).
3. Let tcu = 1, and loop through the following steps:

(a) A sets Q2 = {(ID, tcu)} for the decryption key queries, sub-
ject to the restriction: ID ∈ Q0; ID /∈ RLtcu

; if tcu = t∗,
ID 
= ID(0) and ID(1). C replies with the decryption key DKID,t ←
GenDK(PP,SKID,KUNodes(RLt)).

(b) A sets Q3 = {(ID, tcu)} for revocation queries, subject to the restric-
tion: ID ∈ Q0; ID(0) and ID(1) are either queried at the same time
period t or neither,2; RLt∗ = RL∗

t∗ . C adds ID to the revocation list
RL, and updates RLtcu+1 = RL. Then, C sent KUNodes(RLtcu+1) to
A.

(c) tcu = tcu + 1.
Challenge Phase: A outputs the challenge plaintexts μ(0) and μ(1). Then C
chooses a random bit b ← {0, 1} and replies with the corresponding ciphertext
CTID(b),t∗ ← Enc(PP, ID(b), t∗, {μ

(b)
i }i∈[l]).

Guess: A outputs a guess b′ of b.

Definition 4. An RIBE with En-DKER scheme is selectively secure if the
advantage AdvSEL-En-CPARIBE,A (λ) is at most negligible for any PPT adversaries A,
where AdvSEL-En-CPARIBE,A (λ) = |Pr[b = b′] − 1/2|.
1 This step moves from the algorithm GenSK to the Query Phase.
2 If the two challenge identities are revoked at different time periods, the adversary

can distinguish them in the subsequent key queries phase.
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Remark 1. According to the challenge identities ID(0) and ID(1), and the chal-
lenge time period t∗, it needs to be divided into two cases:

– If ID(0) and ID(1) are revoked before t∗, adversary A can perform the secret
key queries and decryption key queries according to the corresponding restric-
tions.

– If ID(0) and ID(1) have not been revoked before t∗, A can perform decryption
key queries according to the corresponding restrictions. It is important to
note that the RIBE without En-DKER schemes cannot support queries in
this case.

4 Revocable IBE with En-DKER from Lattices

In this section, we present our proposed lattice-based RIBE scheme with En-
DKER. We begin by introducing our approach for lattice basis delegation in
Sect. 4.1. We present our scheme in Sect. 4.2 and prove the security in Sect. 4.3.

4.1 Lattice Basis Delegation

Lattice basis delegation enables the extension of a short basis from a lattice A
to a short basis of any higher-dimensional lattice [A|BID]. This extension basis
must not disclose any information about the short basis of A. Subsequently, the
user ID can employ the extension basis to generate decryption keys. Our novel
approach can outsource this sampling calculation to an untrusted server. The
details are as follows.

First, the KGC runs the algorithm TrapGen to generate a pair of matrix
with trapdoor (A,TA ), where A is the public parameters PP and TA is the
master secret key MSK. Additionally, we need to use a gadget matrix G and
a publicly known trapdoor TG as defined in Lemma 5. Then, by utilizing the
SampleLeft algorithm and TA , the KGC generates KID, satisfying [A|BID]KID =
G. Meanwhile, KID can serve as the short basis for the user ID, because for any
vector x ∈ Z

n
q , the user can also calculate a bounded small key k by using KID,

satisfying [A|BID]k = x. The difference is that the majority of the workload to
generate k can be outsourced to an untrusted server. Specifically, by utilizing the
SampleLeft algorithm and the public trapdoor TG , the server generates k′ and
sends it to the user, satisfying Gk′ = x. Then, the user only needs to calculate
KIDk′ as the key k.

However, KIDk′ is only a bounded small key. To make the key k satisfy
the re-randomization property, we introduce an important tool called smudging
lemma [4]. Specifically, the user first uniformly select an random vector K′ in
a relatively large distribution, and set x′ = x − [A|BID]K′. Subsequently, by
employing the sampling outsourcing approach, the server can generate the key
k′, satisfying Gk′ = x′. The user can obtain the key k by adding K ′ and KIDk′

in a component-wise fashion, satisfying [A|BID]k = x. Smudging lemma can
guarantee the randomness of the decryption key.
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Correctness. Now, we analyze the correctness of our approach.

[A|BID] k = [A|BID]K ′ + [A|BID]KIDk′

= [A|BID]K ′ + Gk′

= [A|BID]K ′ + x − [A|BID]K′ = x.

Furthermore, given the untrusted nature of the server, users must verify
whether Gk′ is equal to x′ after receiving k′. We will no longer mention this in
the subsequent scheme construction.

4.2 Construction

In our scheme, we set the message space M = {0, 1}, the identity space ID ⊂
Z

n
q \ {0n}, and the time period space T ⊂ Z

n
q . For any B ∈ N, let UB denote the

uniform distribution on Z∩ [−B,B]. In addition, our system parameters satisfy
the following constraints: m > 2n log q and σ >

√
m · ω(

√
m) (for sampling);

O(m3/2Bσ) < q/4 (for correctness); n = O(λ), χLWE = DZ,σ (for security);
χbig = UB , where B > (mσ2 + 1)2λ (for smudging).

Multi-bit Encryption. Agrawal et al. [1] proposed an approach for multi-bit
encryption, in which encrypts l bits message using a single random vector s ∈ Z

n
q .

Specifically, they set l vectors (u1, . . . ,ul) from Z
n
q into the public parameters

PP, as opposed to the basic scheme which utilizes only a single vector u. Message
bit number i is encrypted using the vector ui.

However, in current lattice-based RIBE schemes, changing the vector u from
one column to l column results in the size of user secret keys, update keys, and
decryption keys growing by a factor of l. The workload for the KGC and users
also increases by a factor of l. Fortunately, in our scheme, the size of user secret
keys remains constant, periodic workload of the KGC remains nearly zero, and
the majority of the workload for generating decryption keys is outsourced to the
server with the advantages of our lattice basis delegation approach.

Now, we describe our lattice-based RIBE with En-DKER construction.

Setup(λ, l,N): On input a security parameter λ, number of encryption bits
l, and maximum number of users N . The specific process is as follows:
1. Choose an LWE modulus q and dimensions n,m.
2. Run the algorithm TrapGen(1n, 1m, q) to generat a pair of matrix with

trapdoor (A,TA ).
3. Select uniformly random matrices B, and W in Z

n×m
q , and uniformly

random vectors {ui}i∈[l] in Z
n
q .

4. Build a binary tree BT with at least N leaf nodes. For each node θ ∈ BT,
select a uniformly random matrix Dθ in Z

n×m
q .

5. Output PP = {A,B,W , {ui}i∈[l], {Dθ}θ∈BT}, MSK = {TA ,BT}.
GenSK(PP,MSK, ID): On input the public parameters PP, the master secret
key MSK, and an identity ID ∈ ID. The specific process is as follows:
1. Randomly pick an unassigned leaf node ηID from BT and store ID in it.
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2. Set BID = B +H(ID)G, where H(·) is a full-rank different map defined in
Definition 2 and G is a gadget matrix defined in Lemma 5.

3. For each θ ∈ Path(ηID), generate KID,θ satisfying [A|BID|Dθ]KID,θ = G.
(a) Set ZID = [A|BID]K ′

ID, where K ′
ID is a uniformly random matrix

selected in χ2m×m
LWE .

(b) Sample K ′′
ID,θ ← SampleLeft(A,Dθ,TA , σ,G − ZID).

(c) Split K ′
ID and K ′′

ID,θ into two parts, K ′
1,ID, K ′

2,ID and K ′′
1,ID,θ, K ′′

2,ID,θ,
m rows per part. Then, generate

KID,θ =
[

(

K ′
1,ID + K ′′

1,ID,θ

)� (

K ′
2,ID

)� (

K ′′
2,ID,θ

)�
]�

∈ Z
3m×m
q .

4. Output SKID = {KID,θ}θ∈Path(ηID).
NodesUp(BT,RLt): On input the binary tree BT and the revocation list RLt,
the KGC generates and broadcasts a set KUNodes(RLt) for the time period
t.
GenDK(PP,SKID,KUNodes(RLt)): On input the public parameters PP, the
secret key SKID, and the node set KUNodes(RLt). The specific process is as
follows:
1. Perform node matching, and let θ∗ = Path(ηID)∩KUNodes(RLt). If θ∗ = ∅,

outputs ⊥. Otherwise, continue the following steps.
2. For i ∈ [l], generate dki,ID,θ∗,t satisfying [A|BID|Dθ∗ |Wt]dki,ID,θ∗,t = ui,

where dki,ID,θ∗,t ∈ Z
4m
q .

(a) Set hi,ID,t = [A|BID|Dθ∗ |Wt]ki,t and send to the server, where ki,t is
a uniformly random vector selected in χ4m

big , Wt = W + H(t)G.
(b) The server samples k′

i,ID,t ← SamplePre(G,TG , σ,ui − hi,ID,t) and
sends to the user.

(c) Compute k′′
i,ID,θ∗,t = KID,θ∗k′

i,ID,t, satisfying [A|BID|Dθ∗ ]k′′
i,ID,θ∗,t =

ui − hi,ID,t, where k′′
i,ID,θ∗,t ∈ Z

3m
q .

(d) Split ki,t into four parts, k1,i,t, k2,i,t, k3,i,t, k4,i,t, and k′′
i,ID,θ∗,t into

three parts k′′
1,i,ID,θ∗,t, k′′

2,i,ID,θ∗,t, k′′
3,i,ID,θ∗,t, m rows per part. Then,

generate

dki,ID,θ∗,t =

[(
k1,i,t + k′′

1,i,ID,θ∗,t

k2,i,t + k′′
2,i,ID,θ∗,t

)� (
k3,i,t + k′′

3,i,ID,θ∗,t

k4,i,t

)� ]�
∈ Z

4m
q .

3. Output DKID,t = {dki,ID,θ∗,t}i∈[l].
Enc(PP, ID, t,KUNodes(RLt), {μi}i∈[l]): On input the public parameters PP,
an identity ID ∈ ID, a time period t ∈ T , the set KUNodes(RLt), and message
μi ∈ M, where i ∈ [l]. The specific process is as follows:
1. Select uniformly random matrices R, Sθ, and V in {−1, 1}m×m, where

θ ∈ KUNodes(RLt), and a uniformly random vector s in Z
n
q .

2. Choose noise ei ← χLWE and a noise vector e′ ← χm
LWE, where i ∈ [l].

3. Set Ci = s�ui +
⌊

q
2

⌋

· μi + ei, where i ∈ [l].
4. Set cID,θ,t = s�[A|BID|Dθ|Wt]+e′�[Im|R|Sθ|V ], where Im is an identity

matrix, θ ∈ KUNodes(RLt).
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5. Output CTID,t = {{Ci}i∈[l], {cID,θ,t}θ∈KUNodes(RLt)}.
Dec(CTID,t,DKID,t): On input the ciphertext CTID,t and the decryption key
DKID,t. The specific process is as follows:
1. Compute C ′

i = Ci − cID,θ∗,tdki,ID,θ∗,t, where i ∈ [l].
2. For each i ∈ [l], output μi = 1 if |C ′

i −
⌊

q
2

⌋

| <
⌊

q
4

⌋

, otherwise μi = 0.

Correctness. Now, we analyze the correctness of our scheme,

C ′
i = Ci − cID,θ∗,tdki,ID,θ∗,t

= s�ui +
⌊q

2

⌋

· μi − s�[A|BID|Dθ∗ |Wt]dki,ID,θ∗,t + noisei

=
⌊q

2

⌋

· μi + noisei,

for each i ∈ [l], where

noisei = ei − e′�[Im|R|Sθ∗ |V ]dki,ID,θ∗,t

= ei − e′�[Im|R|Sθ∗ |V ]

⎡

⎢

⎢

⎣

k1,i,t + K ′
1,IDk′

i,ID,t + K ′′
1,ID,θ∗k′

i,ID,t

k2,i,t + K ′
2,IDk′

i,ID,t

k3,i,t + K ′′
2,ID,θ∗k′

i,ID,t

k4,i,t

⎤

⎥

⎥

⎦

.

Correctness now follows since noisei is small and should not affect
⌊

q
2

⌋

· μi.
Moreover, the following inequalities hold except with negligible probability:

– From Lemma 2, we have ||R||, ||Sθ∗ ||, and ||V || ≤ O(
√

m).
– From Lemma 1, we have ||k1,i,t||, ||k2,i,t||, ||k3,i,t||, and ||k4,i,t|| ≤ √

mB.
– From Lemma 5, we have ||K ′

1,IDk′
i,ID,t||, ||K ′′

1,ID,θ∗k′
i,ID,t||, ||K ′

2,IDk′
i,ID,t||, and

||K ′′
2,ID,θ∗k′

i,ID,t|| ≤ m3/2σ, and ||ei|| ≤ σ, ||e′|| ≤ √
mσ.

||noisei|| = ||ei − e′�[Im|R|Sθ∗ |V ]dki,ID,θ∗,t||
≤ ||ei|| + ||e′�|| · ||[Im|R|Sθ∗ |V ]dki,ID,θ∗,t||
≤ σ + (

√
mσ)[(2m3/2σ +

√
mB) + (2m3/2σ + 3

√
mB)O(

√
m)]

≤ O(m3/2Bσ) < q/4,

and we can get μi by judging |C ′
i −

⌊

q
2

⌋

| = |
⌊

q
2

⌋

· μi + noisei −
⌊

q
2

⌋

| <
⌊

q
4

⌋

.

4.3 Security Analysis

Theorem 1. If the LWE assumption holds, the proposed RIBE scheme with En-
DKER is selectively secure.

Proof. We set a series of games, and A’s advantage changes only by a negligible
amount between each adjacent games. The first game corresponds to the real
selective security for the proposed RIBE scheme, and the final game’s ciphertext
is independent of the bit b, whereby the advantage of A is zero. The proof of
Theorem 1 is completed.
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The Series of Games. Let A be the adversary in the security definition of the
RIBE with En-DKER. We consider the following series of games.

Game(b)0 : This game corresponds to the real selective security game for the
proposed RIBE scheme. B chooses a random bit b ← {0, 1}.
Game(b)1 : This game is analogous to Game

(b)
0 except the generation of matrices

B, {Dθ}θ∈BT, and W during the Setup phase.
1. Select uniformly random matrices R∗, S∗

θ and V ∗ in {−1, 1}m×m, where
θ ∈ BT.3

2. Set B = AR∗ − H(ID(b))G, W = AV ∗ − H(t∗)G, and

Dθ =
{

AS∗
θ , if θ ∈ KUNodes(RLt∗)∗,

AS∗
θ + G, otherwise.

Game(b)2 : This game is analogous to Game
(b)
1 except the generation of the

secret key SKID while answering the Q1 key queries during the Query phase.
We divide the generation of K ′

ID and K ′′
ID,θ into the following cases, and other

steps are the same as Game
(b)
1 .

– Case 1: ID = ID(b). In this case, due to the Q1 key queries restric-
tion in the security definition, the user with the identity ID must
have been revoked before the challenge time period t∗. So Path(ηID) ∩
KUNodes(RLt∗)∗ = ∅, and Dθ = AS∗

θ + G for each node θ ∈ Path(ηID).
1. Perform the operation 3.(a) in algorithm GenSK.
2. Sample K ′′

ID,θ ← SampleRight(A,S∗
θ ,G,TG , σ,G − ZID), θ ∈

Path(ηID).
– Case 2: ID 
= ID(b) and Path(ηID) ∩ KUNodes(RLt∗)∗ 
= ∅.

1. Sample K ′′
ID,θ∗ ← χ2m×m

LWE and set ZID = [A|Dθ∗ ]K ′′
ID,θ∗ .

2. K ′′
ID,θ ← SampleRight(A,S∗

θ ,G,TG , σ,ZID), where θ ∈ Path(ηID)(
=
θ∗).

3. K ′
ID ← SampleRight(A,R∗, (H(ID) − H(ID(b)))G,TG , σ,G − ZID).

– Case 3: ID 
= ID(b) and Path(ηID) ∩ KUNodes(RLt∗)∗ = ∅. In this case,
Dθ = AS∗

θ + G for each node θ ∈ Path(ηID).
1. Select uniformly random matrix ZID in Z

n×m
q for the identity ID.

2. Sample K ′′
ID,θ ← SampleRight(A,S∗

θ ,G,TG , σ,ZID), where θ ∈
Path(ηID).

3. K ′
ID ← SampleRight(A,R∗, (H(ID) − H(ID(b)))G,TG , σ,G − ZID).

Game(b)3 : This game is analogous to Game
(b)
2 except the generation of the

decryption key DKID,t while answering the Q2 key queries during the Query
phase when ID = ID(b), Path(ηID) ∩ KUNodes(RLt∗)∗ 
= ∅ and t 
= t∗.4

1. Sample ˜Kt ← SampleRight(A,V ∗, (H(t) − H(t∗))G,TG , σ,G).
2. Perform the operation 2.(a) and 2.(b) in algorithm GenDK.

3 This step moves from the algorithm Enc to the Setup phase.
4 In this case, challenger C cannot simulate the secret key {KID,θ}θ∈Path(ηID), but C can

construct a secret key K̃t that satisfies [A|Wt]K̃t = G.
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3. Compute ˜k′′
i,ID,t = ˜Ktk

′
i,ID,t, satisfying [A|Wt]˜k′′

i,ID,t = ui − hi,ID,t, where
˜k′′

i,ID,t ∈ Z
2m
q .

4. Split ki,t into four parts, k1,i,t, k2,i,t, k3,i,t, k4,i,t, and ˜k′′
i,ID,t into two

parts ˜k′′
1,i,ID,t, ˜k′′

2,i,ID,t, m rows per part. Then, generate

dki,ID,θ∗,t =

[

(

k1,i,t + ˜k′′
1,i,ID,t

k2,i,t

)� (

k3,i,t

k4,i,t + ˜k′′
2,i,ID,t

)� ]�
∈ Z

4m
q .

Game(b)4 : This game is analogous to Game
(b)
3 except the generation of the

matrix A and the ciphertexts.
1. Select a uniformly random matrix A in Z

n×m
q .

2. Choose C ′
i ← Zq and cID(b),θ,t∗ ← Z

4m
q , where θ ∈ KUNodes(RLt∗)∗,

i ∈ [l].

Analysis. Set function PA,x(λ): N → [0, 1] denote the probability that A cor-
rectly guesses the challenge bit b on input the security parameter λ ∈ N in the
game Game(b)x . From the definition of Game

(b)
0 , it follows that the advantage of A

is AdvSEL-En-CPARIBE,A (λ) = |PA,0(λ)− 1/2|. In addition, PA,4(λ) = 1/2 since we make
the ciphertext independent of bit b through the LWE assumption in Game

(b)
4 . So

for all λ ∈ N, we have

AdvSEL-En-CPARIBE,A (λ) ≤
∑

x∈[4]

|PA,x−1(λ) − PA,x(λ)| ≤
∑

x∈[4]

neglx(λ)

We will demonstrate that the difference between successive games is only by a
negligible amount neglx(λ), as proven in a series of lemmas in Appendix A.

5 Implementation and Evaluation

In this section, we first compare our scheme with existing revocation models
in theory. Then, the performance of our scheme is further evaluated by using
simulation experiments.

Table 1. Revocation model comparison. Where SK and CT represent the size of secret
key and ciphertext, KGC’s pw represents the KGC’s periodic workload, and RL per-
mission refers to the entity responsible for managing real-time revocation information
of users in the system.

Revocation model SK KGC’s pw CT RL permission

Indirect [8] O(logN) O(r log(N/r)) O(1) KGC
Direct [5] O(logN) – O(r log(N/r)) Encryptor
Server-aided [22] O(1) O(r log(N/r)) O(1) KGC
Ours O(logN) ≈ 0 O(r log(N/r)) KGC
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5.1 Theoretical Evaluation

As shown in Table 1, we compare our scheme with three existing revocation mod-
els, indirect revocation [8], direct revocation [5], and server-aided revocation [22].
It can be observed that our scheme has two main advantages, periodic workload
of the KGC is nearly zero, and the encryptor is not required to handle real-time
revocation information of users within the system.

5.2 Experimental Evaluation

Our scheme runs on a Ubuntu laptop with an AMD Ryzen7 6800HS CPU and
16GB of memory. For better portability, we implement our program using the
NTL library and C++ language. Based on the limitations of m > 2n log q,
O(m3/2Bσ) < q/4, and B > (mσ2 +1)2λ, we set two sets of parameters: n = 64,
m = 390, q = 220, and n = 128, m = 774, q = 223.

The Sampling Algorithms. This paper mainly employs three sampling algo-
rithms: TrapGen, SamplePre, and SampleLeft, which are the cornerstone of our
scheme and also the most time-consuming in the implementation. To ensure effi-
cient algorithm execution, we concentrate on two optimizations: extracting the
Schmidt orthogonalization operation as a preprocessing step to eliminate redun-
dant calculations during each sampling, and harnessing parallel programming to
improve computational efficiency. As shown in Table 2, we provide the average
runtime of these algorithms over ten executions.

Our Scheme. Now, we compare the runtime overhead of our scheme with
Katsumata et al.’s lattice-based RIBE scheme with DKER [17]. Our scheme
consists of the six algorithms (Setup, GenSK, NodesUp, GenDK, Enc, Dec), where
Setup and Dec is similar to other schemes, and we record the runtime in Table 2.
The NodesUp algorithm only involves one KUNodes operation, so the runtime is
nearly zero.

As shown in Fig. 1a, the runtime overhead for the KGC to generate secret
keys remains constant in multi-bit encryption. Referring to Fig. 1b, as the num-
ber of encrypted bits increases, the workload for users to generate decryption

Table 2. The running time of sampling, Setup, and Dec algorithms.

Time(ms) TrapGen SamplePre SampleLeft Setup Dec

n = 64 114 159 167 323 0.1386
n = 128 396 314 330 1362 0.342
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keys in our system grows slowly. It only involves some matrix operations, while
the time-consuming sampling process is completely outsourced to the server.

Fig. 1. The main runtime of our scheme.

In our scheme, the runtime overhead of the Enc algorithm can be divided into
two parts: Ci, which is related to the plaintext, and cID,θ,t, which is unrelated to
the plaintext. As shown in Fig. 1c, we set the maximum number of users N is
5000, and the number of revoked users r is 100, the shaded area represents the
time overhead of the cID,θ,t part of the encryption, which remains constant as
the number of encrypted bits increases. Moreover, Ci part takes 0.006ms when
encrypting one bit.

6 Conclusion

In this paper, we propose a lattice-based RIBE scheme with En-DKER, which is
the first RIBE scheme to ensure confidentiality and anonymity under decryption
key exposure. Additionally, we introduce a novel approach to delegate a lattice
basis. Leveraging this approach, our scheme significantly reduces the periodic
workload for users to generate decryption keys. We prove the security of our
scheme under the LWE assumption and efficiently implemented through the
NTL and multi-threaded parallel program. The experimental results show that
our scheme is suitable for multi-bit encryption and scenarios where the KGC
has a high computational workload. Lastly, how to construct an adaptive secure
RIBE with En-DKER is the direction of our future research.
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A The Series of Lemmas

Lemma 6. For any adversary A, there exists a negligible function negl1(·) sat-
isfying |PA,0(λ) − PA,1(λ)| ≤ negl1(λ).

Proof. The difference between Game
(b)
0 and Game

(b)
1 is the generation of matrices

B, {Dθ}θ∈BT, and W . For the matrix B, by Lemma 4, AR∗ is statistically close
to the uniform random matrix in Z

n×m
q , and the difference between AR∗ and

AR∗ −H(ID(b))G are merely syntactic. So in the adversary’s view, the matrix B

in Game
(b)
0 and Game

(b)
1 are statistically indistinguishable. Moreover, the proof of

the matrices W and {Dθ}θ∈BT are similar. The proof of Lemma 6 is completed.

Lemma 7. For any adversary A, there exists a negligible function negl2(·) sat-
isfying |PA,1(λ) − PA,2(λ)| ≤ negl2(λ).

Proof. The difference between Game
(b)
1 and Game

(b)
2 is the generation of matrices

K ′
ID, K ′′

ID,θ and ZID. For the matrix K ′
ID, by the properties of sampling algo-

rithms, sampled via algorithm SampleLeft is statistically close to randomly cho-
sen in χ2m×m

LWE and also statistically close to sampled via algorithm SampleRight.
So in the adversary’s view, the matrix K ′

ID in Game
(b)
1 and the three cases in

Game
(b)
2 are statistically indistinguishable. The proof of the matrix K ′′

ID,θ is sim-
ilar. So we can also derive that ZID = [A|BID]K ′

ID and ZID = [A|Dθ∗ ]K ′′
ID,θ∗

are statistically indistinguishable from a uniformly random matrix selected in
Z

n×m
q . The proof of Lemma 7 is completed.

Lemma 8. For any adversary A, there exists a negligible function negl3(·) sat-
isfying |PA,2(λ) − PA,3(λ)| ≤ negl3(λ).

Proof. The difference between Game
(b)
2 and Game

(b)
3 is the generation of the

decryption key DKID,t. In Game
(b)
2 and Game

(b)
3 ,

dki,ID,θ∗,t =

[

(

k1,i,t + k′′
1,i,ID,θ∗,t

k2,i,t + k′′
2,i,ID,θ∗,t

)� (

k3,i,t + k′′
3,i,ID,θ∗,t

k4,i,t

)� ]�
∈ Z

4m
q ,

dki,ID,θ∗,t =

[

(

k1,i,t + ˜k′′
1,i,ID,t

k2,i,t

)� (

k3,i,t

k4,i,t + ˜k′′
2,i,ID,t

)� ]�
∈ Z

4m
q ,

respectively. By the triangle inequality for statistical distance and Lemma 1,
since B > (mσ2+1)2λ holds, we can argue that there exists a negligible function
neglsmudge(·) such that for all λ ∈ N,

SD(k1,i,t + k′′
1,i,ID,θ∗,t,k1,i,t + ˜k′′

1,i,ID,t)

≤ SD(k1,i,t + k′′
1,i,ID,θ∗,t,k1,i,t) + SD(k1,i,t,k1,i,t + ˜k′′

1,i,ID,t)

≤ m · neglsmudge(·) + m · neglsmudge(·)
= 2m · neglsmudge(·).
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Other 3m dimensional vector proves the same. So in the adversary’s view,

|PA,2(λ) − PA,3(λ)| ≤ 5m · neglsmudge(·).

The proof of Lemma 8 is completed.

Lemma 9. If the LWE assumption holds, for any adversary A, there exists a
negligible function negl4(·) satisfying |PA,3(λ) − PA,4(λ)| ≤ negl4(λ).

Proof. Proof by contradiction, assuming there exists a non-negligible function
δ(·) such that |PA,3(λ) − PA,4(λ)| ≥ δ(·). We can use A to construct an LWE

algorithm B such that AdvLWE
B (λ) ≥ δ(λ) for all λ ∈ N.

Initialize: A sets the challenge identities ID(0) and ID(1), the challenge time
period t∗, and the challenge node set KUNodes(RLt∗)∗.
Setup Phase: B uses LWEn,q,σ challenger to define the matrix A ∈ Z

n×m
q

and the vector u ∈ Z
n
q in public parameters PP. B makes m + l times queries

and receives {αi, γi}i∈[m+l] ⊂ Z
n
q × Zq from LWEn,q,σ challenger, where γi =

s�αi + ei mod q, ei ← χLWE. Then set the matrix A = (α1| · · · |αm) and the
vector ui = αm+i, where i ∈ [l]. Other steps are the same as Game

(b)
3 .

Query Phase: B replies to the corresponding secret key, decryption key, and
revocation queries as in Game

(b)
3 .

Challenge Phase: B performs the following computation and replies. Ci =
γm+i+

⌊

q
2

⌋

·μ(b)
i and cID(b),θ,t∗ = γ�[Im|R∗|S∗

θ |V ∗], where γ = (γ1, . . . , γm) ∈
Z

m
q , i ∈ [l], and θ ∈ KUNodes(RLt∗)∗.

Guess: A outputs a guess b′ of b. Then B outputs A’s guess as the answer
to the LWEn,q,σ challenge. Note that

Ci = γm+i +
⌊q

2

⌋

· μ
(b)
i = s�ui +

⌊q

2

⌋

· μ
(b)
i + ei,

cID(b),θ,t∗ = γ�[Im|R∗|S∗
θ |V ∗] = s�[A|BID(b) |Dθ|Wt∗ ] + e′�[Im|R∗|S∗

θ |V ∗],

where ei = em+i and e′ = (e1, . . . , em). So the game simulated by the
reduction algorithm B coincides with Game

(b)
3 . Simultaneously, based on LWE

assumption, Ci and cID(b),θ,t∗ are uniformly and independently distributed
over Zq and Z

m
q , so the game simulated by the reduction algorithm B coin-

cides with Game
(b)
4 . Hence, the advantage of B in solving LWEn,q,σ problem is

the same as the advantage of A in distinguishing Game
(b)
3 and Game

(b)
4 . The

proof of Lemma 9 is completed.
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Abstract. Secure multi-party computation (MPC) enables multiple dis-
trusting parties to compute a function while keeping their respective
inputs private. In a threshold implementation of a symmetric primitive,
e.g., of a block cipher, each party holds a share of the secret key or of the
input block. The output block is computed without reconstructing the
secret key. This enables the construction of distributed TPMs or tran-
sciphering for secure data transmission in/out of the MPC context.

This paper investigates implementation approaches for the lightweight
primitives SKINNY and PHOTON in arithmetic circuits. For these prim-
itives, we identify arithmetic expressions for the S-box that result in
smaller arithmetic circuits compared to the Boolean expressions from
the literature. We validate the optimization using a generic actively
secure MPC protocol and obtain 18% faster execution time with 49%
less communication data for SKINNY-64-128 and 27% to 74% faster
execution time with 49% to 81% less data for PHOTON P100 and P288.
Furthermore, we find a new set of parameters for the heuristic method of
polynomial decomposition, introduced by Coron, Roy and Vivek, special-
ized for SKINNY’s 8-bit S-box. We reduce the multiplicative depth from
9 to 5.

Keywords: S-box · SKINNY · PHOTON · Secure Multi-Party
Computation · Arithmetic Circuit

1 Introduction

Recent improvements in advanced cryptographic protocols, such as secure multi-
party computation (MPC), fully homomorphic encryption (FHE), or zero-know-
ledge proof systems, made computation on encrypted data practical. This devel-
opment enables privacy-preserving and GDPR compliant data processing and
utilization in many areas, such as in public sector services, in smart cities, or
healthcare. With added privacy benefits for users and data providers, various
use cases emerge where cryptographic primitives are needed, including proofs
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over correct hashing, ciphertext-compression for FHE schemes, and secure out-
sourcing of computation and data storage for MPC.

Applications of Symmetric Primitive Evaluation in MPC. The applica-
tions of MPC evaluation of symmetric-key primitives are numerous. We briefly
sketch a selection of them. In a distributed TPM, instead of relying on trusted
hardware, trust is distributed among multiple servers. Generation of secret keys
is distributed and each server only ever obtains a secret share. The key shares
are used in collaborative (or distributed) computations, e.g., encryption or sign-
ing, using MPC without reconstructing the secret key. Symmetric-key encryption
can also be paired with MPC to enable flexible, secure and privacy-preserving
data collection and processing [1]. Collected data can be encrypted at the
source, stored and once MPC-based processing is desired, the data is decrypted in
MPC and then processed. Since MPC creates a secure context for data process-
ing, the input that is moved into this context and the output data that is moved
out of this context may be encrypted to facilitate secure input/output with
parties that do not participate in the MPC protocol [23,24]. Addition-
ally, in the same way, MPC computation can be paused and continued later by
encrypting intermediate data for secure storage. Finally, symmetric primitives in
MPC may be used as oblivious PRFs, to bootstrap secure database queries
or to create MPC-in-the-head zero-knowledge proofs and post-quantum
signatures [10].

Related Work. Dedicated PRFs [18,23,24], block and stream ciphers [2–
4,9,17,21,32], and hash functions [20,22] have been proposed that focus on min-
imizing multiplicative depth. However, in a real-world scenario, cryptographic
mechanisms and constructions need to interoperate between traditional comput-
ing systems (e.g., IoT devices, mobile phones, commodity and server CPUs) and
these advanced cryptographic protocols. Traditional symmetric primitives, such
as AES [33] and SHA-2 [34], are widely used in real-world applications and are
widespread in internet and industry standards. For instance, the correct pro-
cessing of financial transaction data in MPC requires the usage of standardized
constructions from that real-world domain since the information is not pro-
tected under non-standard cryptographic mechanisms that are MPC-friendly.
These standards almost exclusively specify traditional symmetric primitives at
the core. Further, thresholdization of primitives, i.e., where the secret key is
split among multiple parties who then jointly compute the relevant operation
without reconstructing the secret key, is recently being investigated by NIST for
standardization [8]. The important key part of thresholdization is that a thresh-
old and a non-threshold implementation have to be interoperable, such that,
e.g., systems managing keys in a threshold fashion can seamlessly interact with
systems not using thresholdization.

While thresholdized AES implementations have been studied, e.g., [12,13,
16,19,27], other traditional primitives have not received that much attention.
In this work, we want to study threshold implementations of lightweight primi-
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tives that may be used in applications where AES is undesirable. Lorünser and
Wohner [30] implement several symmetric ciphers using two MPC frameworks,
namely, MP-SPDZ and MPyC, to facilitate a better understanding of the two
MPC frameworks. However, they treat the primitives as black boxes with little
optimization of the primitive’s performance. Motivated partly by the interop-
erability of privacy-enhancing protocols and lightweight cryptography, Mandal
and Gong [31] study the Boolean circuit complexity of the core primitives in
the NIST Lightweight Cryptography Competition (LWC)1 round 2 candidates.
However, their study is limited to Boolean circuits using the two-party garbling
scheme HalfGates [35] for the MPC evaluation of the ciphers.

Contribution. To complement this effort, we move to the arithmetic circuit
setting where variables are elements of, e.g., a finite field or ring, and basic gates
are addition and multiplication gates. We investigate whether such a represen-
tation results in benefits, such as reduced circuit size, faster execution, or less
communication data, over a straight-forward emulation of Boolean arithmetic
paired with known Boolean circuits of lightweight primitives. A possible avenue
in the arithmetic setting is to identify operations and structure in the primitive
where groups of bits can be encoded as field/ring elements and equivalent arith-
metic operations can replace bit-oriented functionality. For this purpose, we ana-
lyze the ten LWC finalists, but we limit our study to substitution-permutation
network (SPN) designs of the underlying primitives which excludes SPARKLE,
Grain-128AEAD, and TinyJambu. Moreover, we rule out the permutations used
in sponge-based AEADs (Ascon, ISAP, and Xoodyak) for two reasons. First,
the sponge structure creates highly serial circuits with high multiplicative depth
that results in poor performance in non-constant round MPC protocols. Second,
the permutation’s round function operates over lanes, sheets, and columns of the
state, mixing bits over all dimensions. This makes grouping bits within the state
costly without a foreseeable benefit for arithmetic purposes. Further, the SPN
primitives of Elephant and GIFT-COFB involve a bit-level permutation making
the linear layer costly (when grouped). Ultimately, we identify two primitives,
SKINNY and PHOTON, stemming from the finalists Romulus and PHOTON-
Beetle, respectively, where all operations on the state can be expressed as cell-
wise operations and no intra-cell operations occur. We can therefore group the
bits of each cell into one field/ring element and then investigate the cost of all
operations in the arithmetic circuit. While SKINNY serves as the main demon-
stration example, we also apply our findings to PHOTON. Our contributions
can be summarized as follows:

– We provide several program representations for the SKINNY primitive in
arithmetic circuits over F2k (see Sect. 3) optimized for usage in MPC proto-
cols. We identify a trade-off between multiplications and pre-processed ran-
dom bits for the evaluation of polynomials, resulting in a reduced number of
multiplications for all 4-bit S-boxes.

1 https://csrc.nist.gov/Projects/Lightweight-Cryptography.

https://csrc.nist.gov/Projects/Lightweight-Cryptography


Arithmetic Circuit Implementations of S-boxes 89

– We benchmark the promising candidates of the trade-off in the secret shar-
ing based “SPDZ-like” protocol MASCOT in the active security setting (see
Sect. 4). We confirm the trade-off in practice and obtain improved perfor-
mance for SKINNY variants with 64-bit block size, i.e., faster execution and
lower communication cost, compared to the baseline.

– We show how the results for SKINNY carry over to a threshold implemen-
tation of PHOTON (see Sect. 4.3). We obtain similar performance improve-
ments for 4-bit S-boxes and can apply well-known optimizations of the AES
S-box used in the 8-bit PHOTON instance.

The rest of this paper is organized as follows. We give an introduction and
background information on SKINNY, PHOTON and on the MPC protocol in
Sect. 2. Then, we investigate the representation of SKINNY in arithmetic circuits
in Sect. 3. The results of the experimental benchmark are detailed and discussed
in Sect. 4. We conclude the paper in Sect. 5.

2 Background on Primitives and MPC

In the following, we give background details on the SKINNY lightweight block
cipher family (Sect. 2.1), the permutations defined in PHOTON (Sect. 2.2) and
discuss one MPC protocol for arithmetic circuits (Sect. 2.3).

2.1 SKINNY

SKINNY [6] is a lightweight tweakable block cipher with a SPN structure similar
to AES. Its different variants process 64-bit or 128-bit blocks, and 64–384-bit
tweakeys which is the concatenation of a (secret), e.g., 64- or 128-bit key and
a (public) tweak. Table 1 lists the number of rounds specified for each variant.
The round function alters the internal state, a 4 × 4 array of s-bit cells. For a
block size of 64-bit, s = 4, for 128-bit block size, s = 8. The initial state is the
message block. Let the message be a sequence of s-bit values s0 s1 . . . s15, then
the 4 × 4 array is filled row-wise:(

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

)
.

The resulting ciphertext is the state after all rounds have been computed. The
tweakeys are loaded into 4 × 4 arrays, TK1,TK2,TK3, in the same manner.
TK1, present in all variants, is loaded with tweakey bits 0 · · · (16s − 1). TK2
and TK3 are loaded with tweakey bits 16s · · · (32s − 1) and 32s · · · (48s − 1)
respectively, if needed. The round function applies five steps in series: SubCells,
AddRoundConstants, AddRoundKey, ShiftRows and MixColumns.

SubCells. SubCells applies the S-box to each cell in the state. For s = 4, the 4-
bit S-box is used (see Fig. 1a), for s = 8, the 8-bit S-box is used (see Fig. 1b).
Both S-boxes are computed by repeating XOR and NOR operations, and bit
permutations. For the S-box definition as a truth table, we refer the reader
to the original specification document [6].
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AddRoundConstants. This step XORs public constants to three cells:

s′
0 ← s0 ⊕ c0, s′

4 ← s4 ⊕ c1, s′
8 ← s8 ⊕ 0x2.

The constants c0 and c1 are defined for each round, whereas the operand for
s8 remains 0x2.

AddRoundKey. In each round, the first two rows of the state are XORed cell-
wise with the first rows of each available round tweakey. Let ai..j ⊕ bi..j be a
short-hand notation for ai ⊕ bi . . . aj ⊕ bj , then

s′
0..3 ← s0..3 ⊕ TK10..3 ⊕ TK20..3 ⊕ TK30..3,

s′
4..7 ← s′

4..7 ⊕ TK14..7 ⊕ TK24..7 ⊕ TK34..7.

ShiftRows. Shift rows applies a cell-wise permutation PS on the state where

PS(0, ..., 15) = (0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12).

This rotates each row by 0, 1, 2 and 3 elements to the right.
MixColumns. The MixColumns step multiplies the state with the matrix(

s′
0 s′

1 s′
2 s′

3
s′
4 s′

5 s′
6 s′

7
s′
8 s′

9 s′
10 s′

11
s′
12 s′

13 s′
14 s′

15

)
←

(
1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

) (
s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

)
.

Key Schedule. The key schedule describes how a round key is derived from
the cipher’s key. The first round key is the tweakey itself. Round keys for
subsequent rounds are obtained by applying the permutation PT cell-wise on
the 4 × 4 array representation of each tweakey. Each cell in TK2 and TK3 is
further updated by a linear feedback shift register (LFSR). In short, denoting
the round key for the next round by TKi′, i = 1, 2, 3, we have

TK1′ ← PT (TK1), TK2′ ← LFSR2◦PT (TK2), TK3′ ← LFSR3◦PT (TK3),

where PT (0, .., 15) = (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7) and LFSR2/
LFSR3 are defined in Table 2. PT swaps the first two rows with the last two
rows of the state and applies a permutation to the now first two rows.

Table 1. The number of rounds for each variant of SKINNY. Variants are denoted by
SKINNY-b-tk where b is the block size in bits and tk is the tweakey size in bits. Note
that the key size equals the block size in all variants.

Variant Block Size Rounds

SKINNY-64-64
64

32
SKINNY-64-128 36
SKINNY-64-192 40

Variant Block Size Rounds

SKINNY-128-128
128

40
SKINNY-128-256 48
SKINNY-128-384 56
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Table 2. Linear feedback shift registers LFSR2 and LFSR3 defined in the key schedule
of SKINNY for tweakeys TK2 and TK3, respectively.

Cell size

LFSR2 4-bit (x3, x2, x1, x0) → (x2, x1, x0, x3 ⊕ x2)

8-bit (x7, x6, x5, x4, x3, x2, x1, x0) → (x6, x5, x4, x3, x2, x1, x0, x7 ⊕ x5)

LFSR3 4-bit (x3, x2, x1, x0) → (x0 ⊕ x3, x3, x2, x1)

8-bit (x7, x6, x5, x4, x3, x2, x1, x0) → (x0 ⊕ x6, x7, x6, x5, x4, x3, x2, x1)

2.2 PHOTON

We briefly describe the internal permutations Pt, t ∈ {100, 144, 196, 256, 288},
of the PHOTON hash function [25]. Similarly to SKINNY, the internal state is
a d × d array of s-bit cells that is transformed by applying the following round
function steps 12 times: AddConstant, SubCells, ShiftRows, MixColumnsSerial.
Since Pt is a permutation, it has no secret key addition layer. Table 3 lists the
parameters for each variant.

AddConstant. Public round constants and instance-specific internal constants
are XORed to the first column of the state.

SubCells. If s = 4, the PRESENT S-box [7] is applied to each cell in the state.
If s = 8, the AES S-box is applied.

ShiftRows. This applies a cell-wise permutation on the state where row i is
rotated by i columns to the left.

MixColumnsSerial. Each column of the state is multiplied with a matrix At

d times. The multiplication is defined over F2[X]/X4 + X + 1 for s = 4 and
over F2[X]/X8 + X4 + X3 + X + 1 for s = 8.

Table 3. State size d, cell size s and modulus of PHOTON Pt.

Instance d s Modulus

P100 5 4
P144 6 4 X4 + X + 1

P196 7 4
P256 8 4
P288 6 8 X8 + X4 + X3 + X + 1

2.3 A Multi-party Computation Protocol for Arithmetic Circuits

In this and the following sections, we denote a uniform random sampling from
a finite set A with $← A. We now briefly discuss the SPDZ-style, dishonest-
majority MPC protocol on arithmetic circuits that achieves active security using
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information-theoretically secure MACs. The communication model in the pro-
tocol assumes secure point-to-point channels and a synchronous network. If we
later refer to a round of communication, this means each party broadcasts one or
more local values to all other parties. In this model, the broadcast based on point-
to-point connections costs O(n2) values to send for n players. In the protocol,
the computation is split into a pre-processing, a.k.a. offline, phase and an online
phase. In the offline phase, the players jointly create correlated randomness for
multiplication and bit-decomposition. Since neither the individual party’s inputs
nor the concrete function to compute2 have to be known, this phase can take
place well before the online phase and is usually computationally much heav-
ier. In the online phase, the parties know their own inputs and the arithmetic
circuit. This phase consumes the correlated randomness from the offline phase.
Since we only consider binary extension fields in this paper, we adapt the nota-
tion for the MPC protocol accordingly. Recall that F2k = F2[X]/Q(X) is a
finite field with 2k elements, where k > 0. Each element can be represented as a
polynomial of degree at most k − 1 whose coefficients are in F2 and Q(X) is an
irreducible polynomial of degree k. Addition g(X)+h(X), for g(X), h(X) ∈ F2k ,
is performed coefficient-wise. Multiplication g(X)h(X) is the ordinary polyno-
mial multiplication modulo Q(X). Every variable in the arithmetic circuit is an
element in F2k . During execution, each player holds or obtains an additive secret
share of every variable. We denote the additive share of x ∈ F2k of player i with
x(i), i.e.,

∑
x(i) = x. A SPDZ-like share of the same player is denoted with

[[x]]i = 〈x(i),m(i)〉 which carries a MAC share m(i) that authenticates the secret
share to enable active security where m is created using the global secret MAC
key Δ ∈ F2k .

Offline Phase. The offline phase implements the functionalities FTriple and
FBit by using somewhat homomorphic encryption SHE (e.g. in [14,15,29]) or
oblivious transfer [28]. While the offline phase dominates the total runtime of
the MPC protocol, its details are less important for the purpose of this paper.
We invite the reader to consult the aforementioned references for further details.

The functionality FTriple produces Beaver multiplication triples [5] of the

form ([[a]], [[b]], [[c]]) where c = ab and a, b
$← F2k . The functionality FBit produces

random bits [[r]] with r
$← {0, 1}.

Online Phase. Before detailing the addition and multiplication of shares, we
have to describe the concept of (partially) opening a share. In general, if a share
[[x]] is opened, each player i broadcasts x(i) and then sums up all shares to obtain
x. For active security, the players first commit to the MAC shares m(i)−Δ(i)x(i)

before opening them. Later it is checked whether m − Δx = 0. The core idea of
SPDZ is to defer the checking of the MAC values to the very end of the protocol,
resulting in a so-called partial open. Before the final output is revealed, all MACs
2 However, the players must know an upper bound on the number of required multi-

plication triples resp. random bits.



Arithmetic Circuit Implementations of S-boxes 93

of partially opened shares are checked in one go. If this check passes, the output
value is reconstructed.

Let [[x]] = 〈x(i),m
(i)
x 〉, [[y]] = 〈y(i),m

(i)
y 〉 be shares and e ∈ F2k a public con-

stant, then addition of shares, public constants and multiplication by public
constants can be performed locally by each player:

e + [[x]] = [[e + x]] :

{
〈x(0) + e,m

(0)
x + eΔ(0)〉 if i = 0,

〈x(i),m
(i)
x + eΔ(i)〉 else,

e · [[x]] = [[e · x]] : 〈e · x(i), e · m
(i)
x 〉,

[[x]] + [[y]] = [[x + y]] : 〈x(i) + y(i),m
(i)
x + m

(i)
y 〉.

Given a multiplication triple ([[a]], [[b]], [[c]]) from FTriple, we compute the multi-
plication [[x]] · [[y]] = [[x · y]] in two steps.

1. The players partially open [[x − a]] as γ and [[y − b]] as ε.
2. Each player computes locally [[x · y]]i = [[c]]i + γ · [[b]]i + ε · [[a]]i + γ · ε.

The partial open requires one round of communication, unlike the linear opera-
tions mentioned before.

We can also compute a bit-decomposition of a shared x ∈ F2k into k shares
of the bits of x, b0, . . . , bk−1 where x =

∑k−1
j=0 bjX

j . Note that the resulting bit
bi is still shared over F2k . Given k random bits [[r0]], . . . , [[rk−1]] from FBit,

1. The players locally compute [[r]] =
∑k−1

j=0 [[rj ]]Xj and partially open [[x− r]] as
γ.

2. Let γ0, . . . , γk−1 ∈ {0, 1} be the (clear text) decomposition of γ. Each player
then computes [[b0]] = [[γ0 + r0]], . . . , [[bk−1]] = [[γk−1 + rk−1]].

In summary, multiplying two secret-shared values, i.e., [[x ·y]] ← [[x]] · [[y]], requires
one multiplication triple from FTriple and one round of communication. A bit-
decomposition of [[x]] into k bits [[b0]], . . . , [[bk−1]] requires k random bits from
FBit and one round of communication. Note that both for multiplication and bit-
decomposition, data of independent operations can be sent in the same round.

3 Arithmetic Circuit Implementation

We aim to explore possible performance gains of an arithmetic representation of
the circuit where we utilize properties of the underlying field over an emulation
of Boolean arithmetic. Thus in the following, variables are elements of a finite
field. The cell-focused nature of SKINNY allows the representation of each cell
as a finite field element. Thus, the state consists of 16 field elements.

Concretely, we define two fields3 of size 24 and 28,

F24 = F2[X]/(X4 + X3 + 1),

F28 = F2[X]/(X8 + X7 + X6 + X5 + X4 + X2 + 1). (1)
3 Since the SKINNY reference does not specify operations in a field, we are free to

pick a suitable one.
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For SKINNY versions with a 64-bit state, we pick the field F24 and for a 128-bit
state, we use F28 . We encode s-bit cell values bs−1 . . . b0 into field elements as
bs−1 . . . b0 ↔ ∑s−1

i=0 biX
i. We express values from this correspondence as hex-

adecimal literals, e.g., 0xa3 ↔ X7 + X5 + X + 1. With this correspondence,
XOR of two s-bit values translates to addition of two field elements in F2s . As a
result, all parts of the round function except for SubCells become linear and can
be computed locally by each player. The fields defined in Eq. (1) entail a mini-
mal number of multiplications to implement the respective S-box via polynomial
interpolation. We give more details later in Sect. 3.2. From Table 2, we can see
that if the tweakey is available in shared bits, the LFSR computation, and thus
the whole key schedule, is also linear and incurs no communication rounds.

Furthermore, we recall that squaring is a linear operation in fields of charac-
teristic two, i.e., (

s−1∑
i=0

biX
i

)2

=
s−1∑
i=0

(biX
i)2. (2)

Given the bits of such a field element as vector b = (b0, . . . , bs−1), the output bit
vector for squaring is sq : {0, 1}s 	→ {0, 1}s = Mb where M ∈ F

s×s
2 is a matrix

depending on the irreducible polynomial. Thus, given the bit-decomposition b
of x ∈ F2s , any power of the form x2j can be computed without any multipli-
cation triples since sq is a linear function. We stress, however, that the initial
bit-decomposition requires one opening in the online phase, so computing any
number of squares in {x2, x4, x8, ...} costs one round of communication and s
random bits.

In the following, we describe approaches to express the non-linear part of
SubCells, the S-box. Section 3.1 describes the baseline approach that emulates
Boolean arithmetic. Then, we study approaches via polynomial interpolation.
Section 3.2 details the interpolation and Sect. 3.3 improves the evaluation by
utilizing the free squaring property. In Sect. 3.4, we apply a polynomial decom-
position to compute the S-box. Table 4 lists the cost of each S-box implementa-
tion approach in terms of multiplication triples, random bits and communication
rounds.

3.1 Binary S-box

The Boolean operations AND, XOR and NOT can be naturally emulated in
any field with characteristic two. If the values are a sharing of 0 or 1, AND
is expressed as multiplication, XOR as addition and NOT is addition with the
constant 0x1. In this approach, each bit in an s-bit cell is encoded as a field
element and we compute the S-box as given in the SKINNY specification [6]
emulating Boolean operations (see Fig. 1). We will further use this approach as
baseline for the comparison.



Arithmetic Circuit Implementations of S-boxes 95

(a) The 4-bit S-box. (b) The 8-bit S-box.

Fig. 1. The 4-bit and 8-bit S-box of the SKINNY cipher. The cell bit xi is transformed
into x′

i.

3.2 S-box via Polynomial Interpolation

Another representation of the (s-bit) S-box is via a polynomial Ps(z) =∑2s−1
i=0 aiz

i, where ai ∈ F2s . Then, the computation of the S-box on a given
value x is the evaluation of Ps at x. We can obtain the coefficients ai by asso-
ciating (x,Ss(x)) for all x ∈ F2s and computing the interpolating polynomial
by means of Lagrange interpolation, or by solving the following linear system of
equations ⎛

⎜⎝
0x1 0x01 . . . 0x02

s−1

0x10 0x11 . . . 0x12
s−1

...

⎞
⎟⎠

⎛
⎜⎝

a0

...
a2s−1

⎞
⎟⎠ =

⎛
⎜⎝

Ss(0x0)
Ss(0x1)

...

⎞
⎟⎠ . (3)

This approach primarily motivated the choice for the irreducible polynomials
in Eq. (1). The chosen modulus entails a maximally sparse interpolating polyno-
mial for the respective S-box, i.e., for this modulus, Ps(z) contains the maximal
number of coefficients ai = 0x0.

The interpolating polynomial for SKINNY’s 4-bit S-box S4 is

P4(z) = 0xc+ 0x8z + 0x3z2 + 0xdz3 + 0xfz4 + 0x4z5 + 0x8z6 + 0x6z7

+ 0x1z8 + 0x9z9 + 0x8z10 + 0xez12 + 0xcz13 + 0xbz14. (4)

The inverse S−1
4 is slightly sparser, with one less non-zero coefficient. For the

8-bit S-box S8, P8(z) is more unwieldy with degree 252 and 244 non-zero coeffi-
cients. Its inverse S−1

8 has degree 252 with 241 non-zero coefficients.
For a direct evaluation of P (z), we need to compute the powers zi that occur

in P (z). The remaining linear combination
∑

aiz
i is free. In order to minimize

the number of sequential multiplications, we express the computation through
the shortest addition chain of the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14} for P4 (see
Fig. 2a). This approach is marked as MUL in Table 4. Analogously for S8, we
find a chain that requires 242 multiplications in 8 rounds and for S−1

8 , we use
239 multiplications in 8 rounds.

3.3 S-box via Polynomial Interpolation with Free Squaring

We may use bit-decomposition and then repeated free squaring to compute more
powers in a single round. This creates a trade-off between multiplicative depth,
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(a) Only via multiplications (MUL).

(b) Using free squares 2,4,8 (SQ1).

Dashed arrows denote free squaring via

bit-decomposition.

Fig. 2. Shortest addition chain for powers in the interpolating polynomial for
SKINNY’s 4-bit S-box. Each level in the tree denotes one communication round.

the number of multiplications and the number of required pre-processed random
bits for the bit-decomposition. We explore this trade-off for the 4-bit S-box in
detail since the number of powers to compute is significantly smaller than for the
8-bit S-box. We denote this approach SQ1, SQ2, . . . where one, two, . . . base
values are used for free squaring. Table 4 lists the cost for each combination. For
S4 and SQ1, we first square z1 to obtain z2, z4, z8. This is illustrated in Fig. 2b.
For SQ2, we compute z3 normally and also square it to obtain z6, z12, z9 for free.
For SQ3, z5 is squared to obtain z10 and for SQ4 squaring z7 yields z14, z13, z11.
While squaring once/twice, e.g., SQ1 and SQ2, decreases the number of rounds
that are necessary for the computation, SQ3 and SQ4 require one more round.
The reason for the additional required round is that some powers can no longer
be computed in the original round since the prerequisite powers are no longer
both available in the previous round because they are computed later for free.
Concretely, power 14 can no longer be computed in round 3 by using powers 6
and 8 since power 6 is computed for free at the earliest in round 3. Figure 5a in
Appendix A illustrates this by showing the addition chain for SQ3.

We visualize the trade-off in the 8-bit case in Fig. 5b in Appendix A. Three
configurations may be of interest. The plain multiplication approach requires
242 multiplications in 8 rounds but no random bits. Using only the square chain
1 → 2 → 4 → 8 → . . . requires 236 multiplications, 8 random bits in 4 rounds.
On the other end, if as many values are computed via squaring as possible, the
computation requires 33 multiplications and 264 random bits in 5 rounds.

3.4 Decomposition

We can use the decomposition method, CRV, by Coron, Roy and Vivek [11] to
reduce the number of multiplications to evaluate the interpolating polynomial
P (z). In short, P (z) is decomposed into the sum of products of polynomials pi(z)
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Table 4. Cost of implementation approaches for SKINNY’s 4-bit and 8-bit S-boxes.
MUL denotes the direct evaluation of the interpolating polynomial, BIN is the emu-
lation of Boolean arithmetic, SQi denotes utilization of i free square chains and CRV
denotes the polynomial decomposition.

S4 S−1
4

Mult. Bits Depth Mult. Bits Depth

MUL 12 0 4 11 0 4

BIN 4 0 2 4 0 4

SQ1 9 4 3 8 4 3
SQ2 6 8 3 6 8 3
SQ3 5 12 4 5 12 4
SQ4 3 16 4 3 16 4

CRV 2 8 4 2 8 4

S8 S−1
8

Mult. Bits Depth Mult. Bits Depth

MUL 242 0 8 239 0 8

BIN 8 0 4 8 0 4

SQ1 236 8 4 233 8 4
SQ33 33 264 5 32 256 5

CRV 10 40 5 10 40 5

and qi(z),

P (z) =
t−1∑
i=1

pi(z)qi(z) + pt(z), (5)

where each polynomial pi, qi only has monomials za with a ∈ L where

L = Cα1 ∪ · · · ∪ Cαl
. (6)

The set L is constructed from a number of cyclotomic bases Cαj
constructs the

consecutive squares starting from αj : Cαj
= {2iαj mod 2s − 1 | ∀0 ≤ i < 2s}.

With a good choice of l cyclotomic bases, all powers za for a ∈ L can be
computed with l − 2 multiplications. Naturally, α1 = 0 and α2 = 1, i.e., z0

and z1, which don’t require any computation. Essentially, zαj is computed as
the product of previous values, while z2

iαj is computed for free since squaring
is linear in our chosen field. Therefore, the entire polynomial can be evaluated
with l − 2 + t − 1 multiplications by first computing the monomials defined by
L and then computing the product pi(z)qi(z).

The CRV method is heuristic as one chooses the cyclotomic bases and coeffi-
cients for polynomials qi to solve the resulting linear system for coefficients of pi.
The authors of [11] give α values for 4- and 8-bit polynomials for which random
choices for qi lead to a system with a solution.

Their parameter choice was motivated by finding higher-order masking to
protect implementations against side-channel attacks and has a minimal number
of multiplications. For our scenario, we also attempt to reduce the multiplicative
depth since this reduces the number of communication rounds in the protocol.
Table 5 lists our parameter choice and the heuristics given in [11]. For the 4-bit
case, the choice αj ∈ {0, 1, 3} is also minimal in terms of communication rounds.
For the specific S-boxes S8 and S−1

8 , we find a new set of cyclotomic bases with a
lower multiplicative depth and less random bits which only increases the number
of linear operations.
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Table 5. Parameter choices for the polynomial decomposition in F2s and the evalua-
tion cost in terms of multiplication triples, random bits and multiplicative depth. The
parameter t denotes the number of pi/qi polynomials in Eq. (5).

s t Base α Mult Bits Depth

CRV [11] 4 2 {0, 1, 3} 2 8 4
CRV [11] 8 6 {0, 1, 3, 7, 29, 87, 251} 10 48 9
Ours for S8 and S−1

8 8 7 {0, 1, 3, 5, 7, 11} 10 40 5

Using this approach, any 4-bit S-box can be implemented requiring 2 mul-
tiplications and 8 random bits in 4 rounds. Our new parameters implement
SKINNY’s 8-bit S-boxes with 10 multiplications and 40 random bits in 5 rounds,
however, they don’t allow the implementation of any 8-bit S-box4.

4 Experimental Results

We implemented two cipher variants, SKINNY-64-128 and SKINNY-128-256, in
the forward and inverse direction. In Sect. 4.1 we evaluate all S-box approaches
for SKINNY’s 4-bit S-box and in Sect. 4.2, we investigate the BIN and CRV
variant for SKINNY’s 8-bit S-box. Finally, we apply the results to PHOTON
in Sect. 4.3. Table 6 shows the gate counts for the complete primitives. In all
comparisons, BIN denotes the baseline.

We benchmark in a three-party LAN setting5 using the MASCOT MPC
protocol [28] in the MP-SPDZ framework [26]. MASCOT provides active security
for a dishonest majority. In the MP-SPDZ implementation, shares are elements
of the field F240 defined as F240 = F2[Y ]/(Y 40+Y 20+Y 15+Y 10+1). We therefore
embed both F24 and F28 into F240 . This also achieves 40-bit statistical security.
Let E4 and E8 denote the embedding F24 ↪→ F240 and F28 ↪→ F240 , respectively.
We use E4(Y ) = Y 35+Y 20+Y 5+1 and E8(Y ) = Y 35+Y 30+Y 25+Y 20+Y 10+Y 5

as they require the lowest number of linear operations to be computed among
all available embeddings. Note that decomposing an embedded element from F2s

still only costs s random bits (see Table 7 in Appendix A for more details). A
different modulus for F240 would require different embeddings from F24 and F28

but has otherwise no impact on the performance.
We compute 100 circuits (key schedule, if applicable, and block encryption/

decryption) in parallel to allow for amortization effects in the pre-processing
phase. Both the input block and the key are secret inputs and not entirely
known by any party. Note that if one party fully knows the key, it may be
more efficient to compute the key schedule locally and input each round key
separately. We compute the key schedule within the MPC protocol to make our

4 The parameters cannot be used to decompose the AES S-box, for instance.
5 Each party runs on a separate machine with 4 cores and 16 GB RAM connected with

a bandwidth of 10 Gbit/sec and <1 ms latency.
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Table 6. Gate counts of SKINNY-64-128, SKINNY-128-256, PHOTON P100, PHO-
TON P288 and AES-128 (for context). Add/Cmul denote the number of local linear
operations.

Mult. Random Bits Add/Cmul Comm. Rounds

SKINNY-64-128 (BIN) 2304 0 10238 72
SKINNY-64-128 (CRV) 1152 4608 82764 144
SKINNY-128-256 (BIN) 6144 0 27465 145
SKINNY-128-256 (CRV) 7680 30720 1545744 240
PHOTON P100 (BIN) 1200 0 13862 48
PHOTON P100 (CRV) 600 2400 56520 48
PHOTON P288 (BIN) 13824 0 135648 72
PHOTON P288 (AES) 2592 6912 207072 60
AES-128 [13] 1200 3200 45149 53

experiments more broadly usable, if, e.g., the key is the result of a previous MPC
computation or each party inputs a key share as in the case for transciphering
or OPRF evaluation.

4.1 SKINNY-64-128

We choose the SKINNY-64-128 variant to assess the performance of all 4-bit
S-box implementation approaches. Any performance gains for SKINNY-64-64 or
SKINNY-64-192 will be similar since these variants only differ in the number of
rounds and the linear key schedule.

Figure 3a visualizes the total, i.e., pre-processing and online, runtime and
total communication data per player per encryption/decryption and S-box imple-
mentation approach for SKINNY-64-128. We note that the number of multipli-
cations in the circuit seems to dominate the total performance regarding time
and data. The more free squares are used, the lower the time and data.

While the SQ4 approach uses fewer multiplications than BIN, we measure
fewer data but a slower total time, presumably due to the two additional rounds
and four bit-decompositions. The CRV implementation performs best in time
and data compared to all other approaches, including the baseline Boolean arith-
metic emulation BIN. At least in our setting, trading-off two multiplications with
two bit-decompositions (and thus eight random bits) leads to better overall per-
formance. SQ4 is around 24% slower but uses 23% less data than BIN. CRV is
approx. 18% faster and uses 49% less data than BIN.



100 A. Abidin et al.

(a) SKINNY-64-128. (b) SKINNY-128-256 and AES-128.

Fig. 3. Total, i.e., pre-processing and online, execution time and communication data
for multiple S-box implementation approaches of SKINNY-64-128 and SKINNY-128-
256 amortized with 100 executions in parallel. The legend symbol o denotes the forward
direction while × denotes the inverse direction.

4.2 SKINNY-128-256

We implemented the BIN and CRV approach for the 8-bit S-boxes since the
MUL or SQ1/SQ33 approaches are not better than CRV or BIN in any metric,
i.e., number of multiplications, number of random bits or multiplicative depth.
We evaluate BIN and CRV in SKINNY-128-256 and report the total time and
communication data per player in Fig. 3b. In the same figure, we also give total
time and communication data of an AES forward and inverse computation in
the same setting following the implementation from Damgård et al. [13].

As already visible in the gate counts (cf. Table 4), the CRV approach does
not create a favourable trade-off for the 8-bit S-box. This means that the BIN
baseline approach is faster and uses less data than CRV. Furthermore, for the
block size of 128 bits, AES outperforms SKINNY-128-256. The S-box of AES
is much cheaper to implement arithmetically, via 6 multiplications and two bit-
decompositions than the Boolean implementation that would require 32 mul-
tiplications. In addition, AES only has ten rounds while SKINNY-128-256 has
more than four times more rounds.

4.3 PHOTON

Finally, we transferred the results to PHOTON. The four defined permutations
P100, P144, P196 and P256 use the 4-bit S-box of PRESENT [7] while P288 uses
the AES S-box. The PHOTON permutations have mixing layers where the state
is multiplied with a mixing matrix in a pre-defined finite field. While it may
seem that this complicates the implementation approaches, a fixed modulus is
not a problem since the CRV method (for the 4-bit case) applies to any field
with the same cost. Further, any AES S-box implementation may be applied to
P288. To illustrate how our results carry over, we implemented P100 and P288.
For P100, we apply the CRV decomposition approach, and for P288 we apply the
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Fig. 4. Total, i.e., pre-processing and online, execution time and communication data
for PHOTON P100 and P288 amortized with 100 executions in parallel.

known AES S-box optimizations from [13]. Figure 4 illustrates the benchmark
results. For P100, we note a 27% faster execution with 49% less data. For P288,
we observe a 74% faster execution with 81% less data.

5 Conclusion

We investigated and identified improvements of an arithmetic circuit represen-
tation of the most costly component of the SKINNY cipher, namely, the S-box,
over an emulation of its Boolean circuit for MPC evaluation. Our approaches
implement SKINNY’s S-boxes over F24 and F28 .

In the 4-bit case, we identified a favourable trade-off between the Boolean
implementation, a direct interpolation of the S-box with squaring, and a poly-
nomial decomposition approach. Choosing the decomposition approach saves
50% of multiplications in the circuit, traded-off with pre-processed random bits,
compared to the Boolean implementation. Our practical benchmark confirms
the trade-off. Moving to the arithmetic circuit setting indeed offers increased
performance benefits of ≈18% faster execution with ≈49% less data.

In the 8-bit case, we observe that the S-box cannot be more efficiently
expressed using our techniques. Our benchmark shows no improvement over
the baseline Boolean circuit approach. Nonetheless, we find new parameters for
the polynomial decomposition approach specific to SKINNY’s 8-bit S-boxes that
reduces the multiplicative depth of an evaluation from 9 to 5.

Further, we apply our technique to PHOTON and obtain an improved circuit
representation with 50% fewer multiplications for the variants with 4-bit cells.
For the 8-bit cell-based variant P288 with the AES S-box optimization, we achieve
a circuit with ≈81% fewer multiplications. A practical benchmark confirms the
optimization effort over a Boolean circuit emulation with 27% and 74% faster
execution and 49% and 81% less data for P100 and P288, respectively.

Finally, we note that the identified polynomial decomposition approach will
likely achieve similar improvements for other primitives with 4-bit S-boxes, such
as Midori, TWINE, LED, KLEIN, QARMA, or KNOT.
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A Appendix

We detail the used (inverse) embeddings in Table 7. The inversion of the embed-
ding of F24 and F28 only costs 4 and 8 random bits from FBit, respectively.

Table 7. The used embeddings from F24 and F28 into F240 on a bit level. Let b3X
3 +

b2X
2+b1X+b0 be an element in F24 and b7X

7+b6X
6+b5X

5+b4X
4+b3X

3+b2X
2+

b1X + b0 be an element in F28 . An element in F240 is
∑39

i=0 b′
iY

i. Bits b′
i that are not

set below are 0.

Embedding F24/F28 to F240 F240 to F24/F28

F24 ↪→ F240 via
Y 35 + Y 20 + Y 5

+1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′
0

b′
5

b′
10

b′
15

b′
20

b′
30

b′
35

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0

0 1 1 0

0 0 0 1

0 0 1 0

0 1 0 0

0 0 0 1

0 1 0 0

⎞

⎟
⎟
⎟
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⎜
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⎟
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(a) Shortest addition chain for powers in

the interpolating polynomial for S4 suing

free squares (2,4,8), (6,12,9) and (10)

(SQ3). Note that since 6 is no longer av-

ailable in round 2,14 has to be computed

in round 4.

(b) Trade-off between the number of

multiplications and free squares for 

the interpolation polynomial of S8.

Fig. 5. Additional figures for shortest addition chain and the trade-off between multi-
plication and free squares.
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Abstract. Secret handshake (SH) allows two users to authenticate each
other anonymously only when they are in the same group. Recently,
due to the concern of developments on large-scale quantum computers,
designing post-quantum SH has been investigated and three construc-
tions were proposed: One is code-based [21] and two others are lattice-
based [1,2]. However, it turns out that the code-based construction [21]
has a security flaw that the adversary easily impersonates an honest user
to activate a handshake.

In this paper, we show how to construct a code-based SH scheme in the
framework of CA-oblivious encryption by utilizing the recently proposed
code-based signature scheme, called LESS-FM, whose security is based
on the hardness of the code equivalence problem. Our proposed scheme
is the first secure code-based SH and has the smallest communication
cost among all known post-quantum SH schemes. For example, for 80-
bit security, our scheme has communication costs of about 260 KB and
3.4 KB when instantiated with Classic McEliece and BIKE, respectively,
while other existing post-quantum constructions have communication
costs of megabytes or gigabytes.

Keywords: secret handshake · CA-oblivious encryption · code-based
construction · code equivalence problem · LESS-FM signatures

1 Introduction

A secret handshake scheme (SHS) allows two users to authenticate each other
anonymously if they belong to the same group, but does not learn any other
information than the result, otherwise. For example, suppose that Alice is a
CIA agent and wants to communicate securely with Bob if he is also a CIA
agent. On the other hand, if Bob is not a CIA agent, Alice may not want to leak
any information that she is a CIA agent. The solution to this problem was firstly
introduced by Balfanz et al. [4] in 2003. They formalized a notion of the SHS
and then provided an instantiation of the SHS based on bilinear maps. Later, by
considering its diverse application scenarios, there have been proposed various
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 106–125, 2024.
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SHSs [11,14–16,19,20,22] under different cryptographic primitives. We refer to
[1,21] for the details of related work on SHSs.

However, to the best of our knowledge, all existing solutions are not secure
against quantum attacks by Shor’s algorithm [18], except three constructions:
One is in the code-based setting [21] and the other two are in the lattice-based
setting [1,2]. Among them, unfortunately, the security flaw [2] was found in the
code-based construction that the adversary can easily impersonates an honest
user to activate a handshake. In [2], the authors discussed how to prevent an
impersonating attack for the code-based construction [21], but they did not
provide a concrete description of modification and its detailed security analysis.
In particular, their solution needs a Diffie-Hellman-style key exchange, but as
far as we know, there is no known way to design it in the code-based setting.

In this paper, we provide the first secure code-based SHS using the generic
approach from certificate authority (CA)-oblivious encryption, proposed by
Castelluccia et al. [11], where a certificate for each identity is issued by the
CA and other users send ciphertexts to the receiver of that identity by recov-
ering the public key from the certificate. To that end, we first design a new
CA-oblivious encryption scheme that achieves the one-wayness under chosen
plaintext attacks (OW-CPA) by combining a public key encryption scheme and
a modification of the recently proposed code-based signature scheme, called
LESS-FM [5]. In CA-oblivious encryption, it is required to not only achieve
the OW-CPA security, but also hide any information about the CA to sender
and receiver: (1) the sender does not get any information about the CA who
certified the receiver from the receiver’s identity and certificate, (2) the receiver
does not learn any information about the CA that the sender took in generating
the ciphertext.

For the former, i.e., to hide any information about the CA from the receiver’s
identity and certificate, the CA in our construction issues a certificate by gener-
ating a signature of given identity using the modified LESS-FM. In our modifi-
cation, the public key pkPKE of the receiver which is independent from the CA
is concealed in the certificate, and the sender just recovers the public key pkPKE
from the certificate, but cannot check the validity of the recovered outcome.
For the latter, i.e., to hide any information about the CA that the receiver
took in generating the ciphertext, we exploit a public key encryption scheme
that achieves the indistinguishability of key under chosen plaintext attacks (IK-
CPA) [8]. Informally, the IK-CPA security means that the adversary cannot
distinguish between two ciphertexts of the same message generated by different
public keys. Thus, the adversary cannot obtain any information about the CA
who certified as well as the public key from the target ciphertext.

In order to complete obtaining code-based CA-oblivious encryption schemes,
we employ a code-based public key encryption scheme for our CA-oblivious con-
struction. For this purpose, we identify that Classic McEliece [9] and BIKE [3],
which are the 4th round candidate algorithms of the NIST Post-Quantum Cryp-
tography Standardization project, are appropriate candidates for our construc-
tion by confirming that both they achieve the IK-CPA security as well as the
OW-CPA security, as already known.
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Finally, we obtain a new code-based SHS by instantiating Castelluccia et
al.’s generic construction with our new code-based CA-oblivious encryption
schemes. Our instantiations have the smallest communication costs among all
known post-quantum SHS. For 80-bit security, our SHS instantiating with Clas-
sic McEliece [9] has 56.96 KB, 261.4 KB, and 261.5 KB for the group public key,
a credential, and a transcript of handshake, respectively. By instantiating with
BIKE [3], the sizes of credential and transcript of handshake can be further
reduced to 1.85 KB and 3.41 KB, respectively. It improves by about 1923 and
655 times with Classic McEliece, and about 1923 and 50234 times with BIKE,
for the sizes of the group key and a transcript of handshake, respectively, com-
pared to the existing (insecure) code-based SHS, while the size of our credential
with Classic McEliece is about 4 times longer. Ours instantiating with Classic
McEliece and BIKE also outperform the recent lattice-based construction [1] by
about 27.8 and 2137 times, respectively, in the size of transcript of handshake,
while the sizes of group public key and credential are comparable.

Organization of the Paper. The next section introduces some preliminaries,
including definitions for SHS and CA-oblivious encryption, and the description of
LESS-FM signatures. Section 3 provides a new CA-oblivious encryption with its
security analysis. In Sect. 4, we review Castelluccia et al.’s generic construction
and investigate our instantiations of SHS obtained by instantiating the generic
construction with our new CA-oblivious encryption. Some supplementary mate-
rials for readers are presented in Appendices.

2 Preliminaries

In this section, we first introduce several definitions for SHS and CA-oblivious
encryption. Next, we recall the recently proposed code-based signature scheme,
called LESS-FM, which will be used in our new CA-oblivious encryption scheme.

Notations. Throughout the paper, matrices and vectors are denoted by boldface
uppercase and lowercase letters, respectively. A → a denotes that an algorithm A
outputs a. Let [a, b] denote the set of all integers x satisfying a ≤ x ≤ b. Let

wt(x) denote the number of nonzero components of vector x. For a set S, s
$← S

denotes that an element s is sampled uniformly at random from S. In a two-party
protocol P executing between A and B, by the notation P(xA;xB) → (yA; yB)
we mean that xA and xB are A’s input and B’s input, respectively, and at the
end of executing the protocol yA and yB are given to A and B, respectively, as
their outputs.

2.1 Definition for Secret Handshake Schemes

We first look at the definition of SHS. The SHS consists of the following four
polynomial time algorithms and two protocols:

– SHS.Setup: This takes a security parameter λ as an input and generates the
public parameter params common to all subsequently generated groups.
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– SHS.CreateGroup: This can be seen as a key generation algorithm for group
authority (GA) to establish a group G. It takes the public parameter params
and returns a pair of group public key and secret key (gpkG, gskG).

– SHS.AddMember: This is a two-party protocol between a user and the GA.
A user and the GA participate in the protocol with an identity ID and
(gpkG, gskG), respectively. After executing the protocol, the user obtains the
user’s group credential credID and group public key gpkG.

– SHS.Handshake: This is a two-party authenticating protocol run by two users
(A,B). Each party joins the protocol with his/her secret credential and
some other public parameters. After executing the protocol, each party has
1 (accept) and a session key K between two participating users if they belong
to the same group. Otherwise, they have 0 (reject) each.

– SHS.TraceMember: This is a polynomial time algorithm executed by the GA.
It outputs the identity of the user A once a transcript of secret handshake
between the user A and the other user is submitted.

– SHS.RemoveMember: This is also a polynomial time algorithm executed by
the GA. It takes its current credential revocation list (CRL) and a user’s
revocation token as inputs and returns an updated CRL.

In general, an SHS is required to satisfy four security properties, complete-
ness, impersonator resistance, detector resistance, and unlinkability. Informally,
the completeness is that two users in the SHS.Handshake protocol should have
1 (accept) and the same session key if they belong to the same group. The imper-
sonator resistance is that an adversary who is not legitimate cannot impersonate
a legitimate user. The detector resistance is that an adversary cannot identity
an honest user’s affiliation by executing the SHS.Handshake protocol. Finally,
the unlinkability is that an adversary cannot associate two executions of the
SHS.Handshake protocol involving the same honest user. See [2,11,21] for the
formal security definitions for SHS.

2.2 Definitions for PKI-Enabled CA-Oblivious Encryption

Now, we present the definition of PKI-enabled encryption scheme, and review
its security notions, including correctness, one-wayness, and CA-obliviousness.

PKI-Enabled Encryption. A PKI-enabled encryption scheme consists of the
following five polynomial time algorithms and one protocol:

– Initialize(λ) → params: It takes a security parameter λ as an input and gen-
erates the public parameter params common to all subsequently generated
CAs. It is assumed that all other algorithms and protocol below take params
as input, even though it is not clearly stated.

– CAInit(params) → (pkCA, skCA): It takes the public parameter params as an
input, and returns a pair of public key and secret key (pkCA, skCA) for CA.

– Certify((pkCA, skCA); ID) → (∅; (trID, certID)): This protocol is executed
between a CA and a user. The CA and the user join the protocol with inputs
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the pair of public key and secret key (pkCA, skCA) and the ID string ID, respec-
tively. After executing the protocol, the user obtains a trapdoor trID and a
certificate certID as outputs.

– Recover(pkCA, ID, certID) → pkID: It is executed by a sender, who wants to
send a message as encrypted to a user ID, to obtain a public key of ID. It
takes a public key pkCA of CA, a receiver’s identity ID and certificate certID,
and returns the public key of ID, pkID.

– Enc(pkID,m) → CT: It takes the public key pkID of ID and a message m ∈ M
as inputs for the message space M. It returns a ciphertext CT.

– Dec(trID,CT) → m: It takes the trapdoor trID of ID and the ciphertext CT as
inputs, and returns a message m.

Correctness. A PKI-enabled encryption scheme is correct if for any security
parameter λ, certificate authority CA, ID string ID, and message m ∈ M, it
always holds that

Dec(trID,Enc(pkID,m)) = m

where Initialize(λ) → params, CAInit(params) → (pkCA, skCA), Certify((pkCA,
skCA); ID) → (∅; (trID, certID)) and Recover(pkCA, ID, certID) → pkID.

One-Wayness. Next, we adapt the standard security notation for public key
encryption to PKI-enabled encryption schemes. A PKI-enabled encryption
scheme is one-way under chosen plaintext attacks (OW-CPA) if for any prob-
abilistic polynomial time (PPT) adversary A, its advantage in the following
experiment is negligible in the security parameter λ:

ExpOW-CPA
A (λ)

Initialize(λ) → params, CAInit(params) → (pkCA, skCA)

AOCertify((pkCA,skCA);·)
(params, pkCA) → (IDA, certIDA)

m
$← M, Recover(pkCA, IDA, certIDA) → pkIDA , Enc(pkIDA , m) → CT∗

AOCertify((pkCA,skCA);·)
(CT∗) → m′

where OCertify((pkCA,skCA);·) indicates the Certify oracle that takes an identity IDi

as an input, and returns the corresponding pair of trapdoor and certificate
(trIDi , certIDi) under the public key pkCA and secret key skCA for CA. In the
above experiment, there is a restriction for A that IDA cannot be queried to
OCertify((pkCA,skCA);·). The advantage of A in the above experiment is defined as
AdvOW-CPA

A (λ) := Pr[m = m′].

CA-Obliviousness. The CA-obliviousness can be considered by dividing into two
categories, (1) receiver CA-obliviousness and (2) sender CA-obliviousness. On
the one hand, informally speaking, the receiver CA-obliviousness means that
the receiver’s message (IDR, certIDR

) to the sender does not reveal the identity
of the CA who certified IDR. On the other hand, the sender CA-obliviousness
means that the sender’s message, i.e., ciphertext, to the receiver does not leak
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any information about the CA that the sender took in computing the receiver’s
public key and the ciphertext.

We first look at the receiver CA-obliviousness. A PKI-enabled encryption
scheme is receiver CA-oblivious if for any PPT adversary A, its advantage in
the following experiment is negligible in the security parameter λ:

ExpRCA
A (λ)

Initialize(λ) → params, CAInit(params) → (pkCA, skCA)

AOCertify((pkCA,skCA);·)
(params, pkCA) → IDA

b
$← {0, 1}

if b = 0: Certify((pkCA, skCA); IDA) → (∅; certIDA)
if b = 1: CAInit(params) → (pkCA′ , skCA′), Certify((pkCA′ , skCA′); IDA) → (∅; certIDA)

AOCertify((pkCA,skCA);·)
(certIDA) → b′

The definition of OCertify((pkCA,skCA);·) and the restriction on IDA for A are the
same as in the experiment ExpOW-CPA

A (λ). The advantage of A in the above
experiment is defined as AdvRCA

A (λ) :=
∣
∣Pr[b = b′] − 1

2

∣
∣.

Next, we define the sender CA-obliviousness. A PKI-enabled encryption
scheme is sender CA-oblivious if for any PPT adversary A, its advantage in
the following experiment is negligible in the security parameter λ:

ExpSCA
A (λ)

Initialize(λ) → params, CAInit(params) → (pkCA, skCA)

AOCertify((pkCA,skCA);·)
(params, pkCA) → (IDA, certIDA)

b
$← {0, 1}, m

$← M
if b = 0: Recover(pkCA, IDA, certIDA) → pkIDA , Enc(pkIDA , m) → CT∗

b

if b = 1: CAInit(params) → (pkCA′ , skCA′), Recover(pkCA′ , IDA, certIDA) → pk′
IDA ,

Enc(pk′
IDA , m) → CT∗

b

AOCertify((pkCA,skCA);·)
(CT∗

b) → b′

Similarly, the definition of OCertify((pkCA,skCA);·) and the restriction on IDA for A
are the same as in the experiment ExpOW-CPA

A (λ). The advantage of A in the
above experiment is defined as AdvSCA

A (λ) :=
∣
∣Pr[b = b′] − 1

2

∣
∣.

2.3 LESS-FM: Code-Based Signature Schemes

Recently, there have been proposed new code-based signature schemes based on
the hardness of the code equivalence problem (CEP) [5,10]. Biasse et al. [10]
designed a new zero-knowledge identification scheme, where the secret infor-
mation that the prover has is a solution to an instance of the CEP. Then,
they obtained signature schemes, called LESS, by applying the Fiat-Shamir
transformation [13] to the proposed zero-knowledge identification scheme. Later,
Barenghi et al. [5] considered several variants of LESS signature schemes for
performance optimizations by either extending the challenge string part from a
bit to a multi-bit, or changing the range of the challenge strings into the set of
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fixed low Hamming weight vectors, and combining both optimization techniques.
Among them, in this paper, we will exploit LESS-FM signature schemes, which
are obtained by applying the above two optimization techniques both. However,
one can easily obtain several variants of our CA-oblivious encryption and SHS
by replacing LESS-FM signature schemes with their variants.

Before looking at the details of LESS-FM signature schemes, we introduce
several definitions and notations first. An [n, k]-linear code C of length n and
dimension k over Fq is a k-dimensional subspace of Fn

q . A linear code C has a
generator matrix G ∈ F

k×n
q whose rows consist of a basis of C. Let us write

G as G = [G1|G2] where G1 ∈ F
k×k
q , G2 ∈ F

k×(n−k)
q and assume that G1

is invertible. It then can be transformed into a matrix of form [Ik|M] for k × k
identity matrix Ik and some k×(n−k) matrix M by calculating the row-reduced
echelon form of the generator matrix. We call this type of matrices systematic
form and denote by SF an algorithm that returns the systematic form of an input
matrix. Let Permn denote the set of all n×n permutation matrices and Monon,q

denote the set of all matrices of the form Q = DP where D is an invertible
diagonal matrix in F

n×n
q and P ∈ Permn. We say that a matrix in Monon,q is

monomial. We also write GLk,q for the set of all invertible matrices in F
k×k
q . The

following lemma introduces a useful property about the distribution of monomial
matrices and will be used in the proof of our CA-oblivious encryption.

Lemma 1 (Lemma 3.3 of [6]). If A ∈ Monon,q is fixed and B is selected uni-
formly at random from Monon,q, then AB is uniformly distributed over Monon,q.

It is clear that the above lemma is also true if Monon,q is replaced by Permn.
Now, we introduce the linear code equivalence problem (LEP) below. For

more general definition for code equivalence, we refer to [10]. We say that two
linear codes C1,C2 are linearly equivalent if there exists Q ∈ Monon,q such that
C2 = {xQ : x ∈ C1}.

Definition 1 (Linear Code Equivalence Problem). Given two generator
matrices G1,G2 ∈ F

k×n
q for linearly equivalent codes C1,C2, respectively, find

S ∈ GLk,q and Q ∈ Monon,q such that G2 = SG1Q.

We note that the permutation code equivalence problem (PEP) is defined simi-
larly by restricting Q ∈ Permn.

LESS-FM Signatures. Recently, Barenghi et al. presented a new code-based
signature scheme, LESS-FM [5], obtained by constructing a new code-based
zero-knowledge identification scheme under the hardness of the CEP and then
applying the Fiat-Shamir transformation [13] to the new identification scheme.
Below is the detailed description of the LESS-FM signature scheme. We assume
that parameters pp = (q, n, k, r, t, w), a generator matrix G ∈ F

k×n
q , and a

weight-restricted hash function Ĥ : {0, 1}∗ → Z
t
r+1,w are publicly given where

Z
t
r+1,w denotes the set of all vectors in Z

t
r+1 that have exactly w nonzero com-

ponents for w ∈ [0, n] and Z
t
r+1,w = Z

t
r+1 for w =⊥. We also denote G0 = G

and Q0 = In.
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– LESSFM.KeyGen(pp,G, λ) → (sk, pk): On input a public parameter pp =
(q, n, k, r, t, w), a generator matrix G, and a security parameter λ, it performs
as follows:
1. For each i = 1, . . . , r, select Qi

$← Monon,q and compute Gi = SF(GQi).
2. Output sk = (Q1, . . . ,Qr) and pk = (G1, . . . ,Gr).

– LESSFM.Sign(sk,msg) → σ: Given a secret key sk = (Q1, . . . ,Qr) and a
message msg, it performs as follows:
1. For each i = 1, . . . , t, select Q̃i

$← Monon,q and compute G̃i = SF(GQ̃i).
2. Compute h = (h1, . . . , ht) := Ĥ(G̃1, . . . , G̃t,msg) ∈ Z

t
r+1,w.

3. For each i = 1, . . . , t, compute Ri = Q−1
hi

Q̃i.
4. Output σ = (R1, . . . ,Rt,h).

– LESSFM.Verify(pk, σ,msg) → 1/0: Given a public key pk = (G1, . . . ,Gr), a
signature σ, and a message msg, it performs as follows:
1. Parse σ as (R1, . . . ,Rt,h) and then h as (h1, . . . , ht).
2. For each i = 1, . . . , t, compute G̃′

i = SF(Ghi
Ri).

3. Output 1 if h = Ĥ(G̃′
1, . . . , G̃

′
t,msg). Otherwise, output 0.

The LESS-FM signature is EUF-CMA secure under the hardness of LEP in
the random oracle model. In the above description of the LESS-FM signature, if
Monon,q is replaced by Permn, then it is EUF-CMA secure under the hardness
of PEP. Due to the space limitation, we relegate the definition for EUF-CMA
to Appendix A and refer to [5] for the detailed security analysis of LESS-FM.

3 New CA-Oblivious Encryption from Codes

In this section, we provide a new CA-oblivious encryption scheme that will be
utilized in our SHS and analyze its security.

3.1 Our New CA-Oblivious Encryption from Codes

Now, we present a new CA-oblivious encryption scheme from codes. Our new
CA-oblivious encryption employs a public key encryption that is OW-CPA and
IK-CPA secure. A public key encryption scheme PKE = (PKE.KeyGen, PKE.Enc,
PKE.Dec) consists of the following three polynomial-time algorithms:

– PKE.KeyGen(λ) → (pk, sk): On input the security parameter λ, it returns a
pair of public and secret keys (pk, sk).

– PKE.Enc(pk,m) → CT: On input the public key pk and a message m, it
returns a ciphertext CT.

– PKE.Dec(sk,CT) → m: On input the secret key sk and the ciphertext CT, it
returns a message m.

A public key encryption scheme is OW-CPA secure if for any PPT adver-
sary A, its advantage in the following experiment is negligible in the security
parameter λ:
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ExpOW-CPA
A,PKE (λ)

PKE.KeyGen(λ) → (pk, sk), m
$← M, PKE.Enc(pk, m) → CT∗

A(pk,CT∗) → m′

The advantage of A in the above experiment is defined as AdvOW-CPA
A,PKE (λ) :=

Pr[m = m′].
We also define the IK-CPA0 security of the public key encryption. Informally,

the IK-CPA0 security means that the adversary cannot distinguish between two
ciphertexts of the same message generated by two different public keys. We say
that a public key encryption scheme is IK-CPA0 secure if for any PPT adver-
sary A, its advantage in the following experiment is negligible in the security
parameter λ:

ExpIK-CPA0
A,PKE (λ)

PKE.KeyGen(λ) → (pk0, sk0), PKE.KeyGen(λ) → (pk1, sk1)

b
$← {0, 1}, m

$← M, PKE.Enc(pkb, m) → CT∗
b

A(pk0, pk1,CT
∗
b) → b′

The advantage of A in the above experiment is defined as AdvIK-CPA0
A,PKE (λ) :=

∣
∣Pr[b = b′] − 1

2

∣
∣. Note that the IK-CPA0 security notion is a relaxed version of

the original IK-CPA security [8] where the plaintext m of the challenge ciphertext
CT∗ is chosen by the adversary. In particular, the IK-CPA security implies the
IK-CPA0 security.

We note that any (OW-CPA and IK-CPA0 secure) public key encryption
scheme can be exploited in our proposed scheme. However, the goal of this
work is to design a new code-based CA-oblivious encryption and we will employ
appropriate public key encryption schemes from codes in our instantiation.

Description of Our CA-oblivious Encryption. Below we provide the full descrip-
tion of our CA-oblivious encryption scheme.

– Initialize(λ): On input the security parameter λ,
1. Set a parameter pp = (q, n, k, r, t, w) for the LESS-FM scheme.
2. Pick a generator matrix G ∈ F

k×n
q .

3. Generate a hash function H1 : {0, 1}∗ → {0, 1}� where the set of all
possible public keys of the exploited PKE is included in {0, 1}�.

4. Generate a weight-restricted hash function H2 : {0, 1}∗ → Z
t
r+1,w.

5. Output the public parameter params = (λ, pp,G,H1,H2).
– CAInit(params): Given the public parameter params, it performs as follows:

1. For each 1 ≤ i ≤ r, select Qi
$← Monon,q and compute Gi = SF(GQi).

2. Set and output skCA = (Qi)1≤i≤r and pkCA = (Gi)1≤i≤r.
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– Certify((pkCA, skCA); ID): On input a pair of public and secret keys (pkCA, skCA)
from the CA and an identity ID from the user,
1. Run PKE.KeyGen(λ) → (pkID, skID).

2. For each 1 ≤ i ≤ t, pick Q̃i
$← Monon,q and compute G̃i = SF(GQ̃i).

3. Compute c = pkID ⊕ H1((G̃i)1≤i≤t, ID).
4. Compute h = (hi)1≤i≤t = H2(c, ID).
5. Compute Ri = Q−1

hi
Q̃i for all 1 ≤ i ≤ t.

6. Output trID = skID and certID = (c, (Ri)1≤i≤t).
– Recover(pkCA, ID, certID): On input a public key pkCA for the CA, an iden-

tity ID, and a certificate certID for ID, it performs as follows:
1. Calculate h = (hi)1≤i≤t = H2(c, ID).
2. For each 1 ≤ i ≤ t, compute G̃i = SF(Ghi

Ri).
3. Compute and output pkID = c ⊕ H1((G̃i)1≤i≤t, ID).

– Enc(pkID,m) → CT: On input the public key pkID for identity ID and a mes-
sage m, run PKE.Enc(pkID,m) → CT and output CT.

– Dec(trID,CT) → m: On input the secret key trID for identity ID and the
ciphertext CT, run PKE.Dec(trID,CT) → m and return m.

Correctness of Our CA-Oblivious Encryption. Since the Enc and Dec algorithms
are the same as PKE.Enc and PKE.Dec, respectively, it is sufficient to show that
the Recover algorithm returns pkID correctly from certID that is corresponding to
trID = skID, if the exploited PKE is correct. Suppose that (trID, certID) is generated
by the Certify protocol with inputs (pkCA, skCA) and ID. Then it has the form of

c = pkID ⊕ H1((G̃i)1≤i≤t, ID) and Ri = Q−1
hi

Q̃i for all 1 ≤ i ≤ t

where Q̃i’s are randomly selected from Monon,q in the Certify protocol, G̃i =
SF(GQ̃i), and h = (h1, . . . , ht) = H2(c, ID). Then, in the Recover algorithm, it
first has the same h = (h1, . . . , ht) = H2(c, ID) and recovers the same pkID from
computing c ⊕ H1((G̃i)1≤i≤t, ID) by the relation

SF(Ghi
Ri) = SF(Ghi

Q−1
hi

Q̃i) = SF(SF(GQhi
)Q−1

hi
Q̃i) = SF(GQ̃i) = G̃i

for all 1 ≤ i ≤ t. We remark that SF(GQhi
) = SGQhi

for some matrix S ∈ GLk,q

and SF(AGQ̃i) = SF(BGQ̃i) for any A,B ∈ GLk,q.

3.2 Security Analysis of Our CA-Oblivious Encryption from Codes

Now, we look into the OW-CPA security and CA-obliviousness of our proposed
PKI-enabled encryption scheme.

Theorem 1. The proposed PKI-enabled encryption scheme in Sect. 3.1 is OW-
CPA secure in the random oracle model under the assumptions that the under-
lying public key encryption PKE is OW-CPA secure and LESS-FM signature
scheme is EUF-CMA secure.
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Proof. Suppose there exists a PPT adversary A who breaks the OW-CPA secu-
rity of the proposed PKI-enabled encryption scheme described in Sect. 3.1 with
non-negligible probability. We construct a PPT adversary B using A that breaks
the OW-CPA security of the public key encryption PKE used in the proposed
scheme.

1. Once the target public key pk∗ of PKE is given to B, it runs Initialize(λ) →
params and CAInit(params) → (pkCA, skCA). It passes params and pkCA to A.

2. For A’s queries, B responds as follows: The lists ListH1 and ListH2 are ini-
tialized as empty sets.

– H1 queries: On input ((G̃j,i)1≤i≤t, IDj), if it is in ListH1 , it returns the
corresponding rvj . Otherwise, it selects a random rvj from {0, 1}�, stores
〈(G̃j,i)1≤i≤t, IDj , rvj〉 at ListH1 and returns rvj .

– H2 queries: On input (cj , IDj), if it is in ListH2 , it returns the corre-
sponding rvj . Otherwise, it selects a random rvj from Z

t
r+1,w, stores

〈cj , IDj , rvj〉 at ListH2 and returns rvj .
– Certify queries: For A’s request on (trIDj

, certIDj
) of any ID string IDj

under pkCA, it runs the protocol Certify((pkCA, skCA); IDj) to obtain (trIDj
,

certIDj ). B returns it to A.
3. Once A submits a pair of target ID string and certificate (IDA, certIDA) where

certIDA = (cIDA , (RIDA,i)1≤i≤t), B first obtains the challenge ciphertext CT∗

by requesting to the challenger of the OW-CPA security experiment for PKE.
Then,
(a) Check whether (cIDA , IDA) is in ListH2 . If it does not exist, select a random

rvA from Z
t
r+1,w and store 〈cIDA , IDA, rvA〉 at ListH2 .

(b) Let rvA = (h1, . . . , ht) be the corresponding hash value to (cA, IDA)
stored at ListH2 . Compute Q̃i = RIDA,iQhi

and G̃i = SF(GQ̃i) for all
1 ≤ i ≤ t. Then, search ((G̃i)1≤i≤t, IDA) from ListH1 . If ((G̃i)1≤i≤t, IDA,
rvA) already exists and rvA is different from cIDA ⊕ pk∗, then B aborts
this experiment, selects and returns a random message m′. Otherwise,
continue to proceed with A.

4. For A’s queries, B responds as Step 2.
5. Finally, once A outputs m′, B forwards it to the challenger of the OW-CPA

experiment for PKE.

Let us calculate the advantage of B. It is clear that B breaks the OW-CPA
security of PKE if A succeeds in breaking the OW-CPA security of our PKI-
enabled encryption scheme unless B aborts in the above simulation. Thus, the
advantage of B is the same as that of A if B does not abort.

Suppose that the event that B aborts at Step 3 (b) occurs. Then, there
exists ((G̃i)1≤i≤t, IDA) such that Q̃i = RIDA,iQhi

and G̃i = SF(GQ̃i) for some
h = (h1, . . . , ht). Here, ((RIDA,i)1≤i≤t,h) has the form of the LESS-FM signature
of message IDA, except that h is H2(c, IDA), not H1((G̃i)1≤i≤t, IDA). However,
we can construct a PPT adversary that breaks the EUF-CMA security of the
LESS-FM signature scheme using this event by adjusting hash queries appropri-
ately. The following lemma shows it and the full proof of this lemma is given in
Appendix B.
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Lemma 2. The probability that B aborts is negligible in the security parameter
if LESS-FM is EUF-CMA secure.

To sum up, our proposed PKI-enabled encryption scheme is OW-CPA secure
if the exploited PKE is OW-CPA secure and LESS-FM is EUF-CMA secure. ��
Theorem 2. The proposed PKI-enabled encryption scheme in Sect. 3.1 is CA-
oblivious in the random oracle model under the assumption that the employed
public key encryption PKE is IK-CPA0 secure.

Proof of Sketch. (Receiver CA-oblivious) We can easily confirm that certID does
not reveal any information about the CA who certified ID. Recall that certID is
the form of

c = pkID ⊕ H1((G̃i)1≤i≤t, ID) and Ri = Q−1
hi

Q̃i

where pkID is a public key of PKE for ID generated in the Certify protocol, Qhi

is included in the secret key skCA of CA, each Q̃i was randomly selected in the
Certify protocol, and G̃i = SF(GQ̃i) for 1 ≤ i ≤ t. Since we assume random
oracle heuristics, c looks random. In addition, for each 1 ≤ i ≤ t, Ri is uni-
formly distributed over Monon,q from Lemma 1. Thus, certID = (c, (Ri)1≤i≤t) is
indistinguishable from (c′, (R′

i)1≤i≤t) where c′ is randomly selected from {0, 1}�

and each R′
i is randomly selected from Monon,q for 1 ≤ i ≤ t.

(Sender CA-oblivious) At the challenge phase of the sender CA-oblivious
security experiment, C first tosses the unbiased coin b ∈ {0, 1} and selects a
random message m ∈ M. If b = 0, then C runs PKE.Enc(pkIDA ,m) → CT∗

b where
Recover(pkCA, IDA, certIDA) → pkIDA and returns CT∗

b to A. Otherwise, C gener-
ates a new public key pk′ by running PKE.KeyGen(λ) → (pk′, sk′) and returns
CT∗

b by running PKE.Enc(pk′,m) → CT∗
b . Since it is assumed that the employed

PKE is IK-CPA0 secure, in the sender CA-oblivious security experiment, A can-
not distinguish between these two cases. Thus, our proposed encryption is sender
CA-oblivious. ��

4 New Code-Based Secret Handshake Scheme

In this section, we first introduce a generic construction for SHS from a CA-
oblivious encryption scheme, proposed by Castelluccia et al. [11]. We then adapt
our CA-oblivious encryption to this generic construction to obtain a code-based
SHS.

4.1 Generic Construction for SHS from CA-Oblivious Encryption

We review Castelluccia et al.’s generic construction for SHS from CA-oblivious
encryption. Assume that a CA-oblivious encryption (Initialize,CAInit,Certify,
Recover,Enc,Dec) and a hash function H : {0, 1}∗ → {0, 1}λ are given. Algo-
rithms SHS.Setup, SHS.CreateGroup, SHS.AddMember are executed by running
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Initialize, CAInit, and Certify, respectively. We additionally assume that in the
Certify protocol the CA also has the same output as the user and the GA in the
SHS.AddMember protocol records it to the CRL whenever executing the proto-
col. The SHS.Handshake protocol between users A and B works as follows (here
we regard that cert in the CA-oblivious encryption is the same as cred in SHS):

1. Once A receives IDB and credIDB
from B, A does as follows:

(a) Obtain pkIDB
by running Recover(pkCA, IDB , credIDB

) → pkIDB
.

(b) Select rIDA

$← M and chIDA

$← {0, 1}λ.
(c) Compute CTIDA

by running Enc(pkIDB
, rIDA

) → CTIDA
.

(d) Send IDA, credIDA
,CTIDA

, chIDA
to B.

2. Once B receives IDA, credIDA
,CTIDA

, chIDA
from A, B does as follows:

(a) Obtain pkIDA
by running Recover(pkCA, IDA, credIDA

) → pkIDA
.

(b) Obtain rIDA
by running Dec(trIDB

,CTIDA
) → rIDA

.

(c) Select rIDB

$← M and chIDB

$← {0, 1}λ.
(d) Compute CTIDB

by running Enc(pkIDA
, rIDB

) → CTIDB
.

(e) Compute respIDB
= H(rIDA

, rIDB
, chIDA

).
(f) Send CTIDB

, respIDB
, chIDB

to A.
3. Once A receives CTIDB

, respIDB
, chIDB

from B, A does as follows:
(a) Obtain rIDB

by running Dec(trIDA
,CTIDB

) → rIDB
.

(b) Check if respIDB
= H(rIDA

, rIDB
, chIDA

). If it does not hold, output 0.
(c) Otherwise, compute respIDA

= H(rIDA
, rIDB

, chIDB
), set K = H(rIDA

, rIDB
).

(d) Send respIDA
, and output 1 (accept) and K.

4. Once B receives respIDA
from A, B does as follows:

(a) Check if respIDA
= H(rIDA

, rIDB
, chIDB

). If it does not hold, output 0.
(b) Set K = H(rIDA

, rIDB
), and output 1 (accept) and K.

Castelluccia et al.’s generic construction does not consider SHS.TraceMember
and SHS.RemoveMember algorithms. Beyond their generic construction, we pro-
vide those algorithms as follows:

– SHS.TraceMember: Given a transcript of secret handshake, it extracts an iden-
tity of users from the input and returns it.

– SHS.RemoveMember: On input a user’s revocation token and the current CRL,
it updates the CRL by removing the corresponding identity of user, and
returns the updated CRL.

As in [4,20,21], we follow the fundamental strategy to achieve the unlinka-
bility that allows to use the credential only once in this paper. We leave it as a
future work to design efficient code-based SHSs that allow to reuse credentials.

4.2 Concrete Instances

In this subsection, we present concrete instances of the proposed SHS as well as a
comparison with the existing post-quantum SHSs [1,2,21]. We select parameter
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sets for 80-bit quantum security such that the code parameters n, k, q achieve the
160-bit classical security for solving the code equivalence problem (CEP). We
consider quantum algorithms for solving the CEP by just doubling the classical
security. One reason is that not enough research has been done for quantum
algorithms for solving the CEP: As far as we know, the only known quantum
solvers for the CEP were presented in the extended version [6] of [7]. More
seriously, it is unclear how much quantum speedup is possible in practice, due to
heavy overhead from quantum walk or Grover search. As a result, the proposed
parameter sets are very conservative and far from optimal, but these excessive
parameter sets are enough to demonstrate that our construction is superior to
other post-quantum constructions.

Parameter Sets for CEP. The code parameters n, k, q are determined based
on the security estimates for the CEP proposed in [7]. We suggest two kinds of
parameter sets in Table 1: One is based on the PEP for weakly self-dual codes,
and the other is based on the LEP.

Performance Evaluation. Let Q = log2 q�+1, N = log2 n�+1, and |·| denote
the bit-length of input argument. A matrix in systematic form can be represented
by k(n − k)Q bits by storing the non-identity part only. A permutation matrix
in F

n×n
q can be encoded with nN bits, and a monomial matrix in F

n×n
q can

be encoded with n(N + Q) bits by additionally storing n elements in Fq. When
hi = 0, we send λ-bit seeds used to generate monomial matrices Ri = Q̃i instead
of sending Ri itself.

The following shows the (expected) bit-size of group public key, trapdoor,
and credentials.

– |gpk| = rk(n − k)Q
– |tr| = |skPKE|
– |cred| =

∑t
i=1 |Ri| + |pkPKE| where

t∑

i=1

|Ri| =

⎧

⎪⎪⎨

⎪⎪⎩

t
r+1λ + (t − t

r+1 )nN if w =⊥, PEP
t

r+1λ + (t − t
r+1 )n(N + Q) if w =⊥, LEP

(t − w)λ + wnN if w �=⊥, PEP
(t − w)λ + wn(N + Q) if w �=⊥, LEP

Note that
(

t
ω

)

rω ≥ 2λ for ω �=⊥ and (r+1)t ≥ 2λ for ω =⊥, and we set |ID| = λ.
Table 1 reports the relevant result.

Table 1. Parameter sets and sizes for our SHS (r = 3, t = 113, w = 14)

n k q |gpk| ∑
i |Ri| Type Security level

322 152 127 67.83 KB 184 Bytes PEP 80

295 140 127 56.96 KB 297 Bytes LEP 80
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Combined Public Key Encryption. We present two encryption algorithms
as examples of combined public key encryption schemes: One is from Classic
McEliece [9] and the other is from BIKE [3]. Both are the 4th round candidate
algorithms of the NIST Post-Quantum Cryptography Standardization project.
Below we describe the encryption algorithm only, and refer to [3,9] for more
detailed information.

For the Classic McEliece case, we use the underlying trapdoor one-way func-
tion and so the encryption algorithm works as PKE.Enc(pk,m) = Hm where
pk = H = [In′−k′ |T],T ∈ F

k′×(n′−k′)
2 and m ∈ M = {e ∈ F

n′
2 : wt(e) = t′}.

Assuming that T is random which is in general stated in the form of the
Goppa Code Distinguishing (GCD) problem and combining it with the pseudo-
randomness of [In′−k′ |R]m which can be derived from [17, Theorem 1], we can
show that the described encryption scheme is IK-CPA0 secure. Note that there
is no known efficient algorithms for solving the GCD problem unless the Goppa
code is high-rate [12], i.e., k′

n′ is very close to 1. For 80-bit quantum security, we
use a parameter set mceliece348864 where n′ = 3488, k′ = 2720, t′ = 64, and
in this case we have |pkPKE| = 255 · 213 and |CTPKE| = 768, and the code rate is
k′
n′ ≈ 0.78 which is far from 1.

As Classic McEliece, BIKE is also a Niederreiter-type encryption scheme, and
in particular it is instantiated with QC-MDPC codes. Here are some notations
relevant to BIKE:

– R = F2[X]/(Xr′′− 1),
– HWw = {(h0,h1) ∈ R2 : wt(hi) = w′′/2},
– M = {(e0, e1) ∈ R2 : wt(e0) + wt(e1) = t′′}.

We take the encryption algorithm PKE0 described in [3, Appendix C.1] which is
proved to be OW-CPA secure under appropriate assumptions. The encryption
algorithm works as PKE0(pk,m = (m0,m1)) = m0 + m1h where pk = h =
h1h−1

0 , (h0,h1) ∈ HWw, and m ∈ M. Similar to Classic McEliece, we can show
that PKE0 is IK-CPA0 secure by assuming that h1h−1

0 and m0+m1h are random,
which are also assumed in [3, Appendix B-C] as QCCF indistinguishability and
QCSD indistinguishability, respectively. For 80-bit quantum security, we use the
Level 1 parameter where r′′ = 12323, w′′ = 142, t′′ = 134, and so |pkPKE| =
|CTPKE| = 12323.

Comparison. Table 2 reports a comparison of the data sizes between known
post-quantum SHSs. There are only three post-quantum SHSs: One is code-
based and the other two are lattice-based. In Table 2, |handshake| denotes the
bit-length of all outgoing transcripts generated by a user in the SHS.Handshake
protocol. In our scheme, |handshake| is computed as |handshake| = |ID|+ |cred|+
|CTPKE| + |resp| + |ch| =

∑

i |Ri| + |pkPKE| + |CTPKE| + 3λ.
The only known code-based SH construction which is known to be insecure

has much larger communication costs in all aspects than ours, and it is not
changed even if it is possible to fix the SHS as proposed in [2]. This is the same for
a lattice-based construction in [2]. Our scheme instantiated with Classic McEliece
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Table 2. Communication costs among known post-quantum SHSs and ours

Scheme |gpk| |cred| |handshake| Security level

[21] 109.58 MB 64.1 KB 171.3 MB 80 (classic)

[2] 947.69 MB 579 KB 7.8 GB 80 (quantum)

[1] 0.53 KB 1.54 KB 7.29 MB 80 (quantum)

Ours (PEP)c 67.83 KB 261.3 KB 261.4 KB 80 (quantum)

Ours (LEP)c 56.96 KB 261.4 KB 261.5 KB 80 (quantum)

Ours (PEP)b 67.83 KB 1.73 KB 3.29 KB 80 (quantum)

Ours (LEP)b 56.96 KB 1.85 KB 3.41 KB 80 (quantum)
c instantiated with Classic McEliece, b instantiated with BIKE

has larger credential size than [1], but it can be reduced to be comparable by
using other code-based encryption schemes, such as BIKE. On the other hand,
two lattice-based constructions offer additional properties like dynamicity.

5 Conclusion

In this paper, we presented the first secure code-based SHS by using Castelluc-
cia et al.’s generic construction from CA-oblivious encryption [11]. For this pur-
pose, we provided a new CA-oblivious encryption scheme by combining a public
key encryption scheme and a modification of the recently proposed code-based
signature scheme. Then, we instantiated the code-based CA-oblivious encryp-
tion by exploiting the recent code-based public key encryption schemes. Our
instantiations of SHS have the smallest communication costs among the existing
post-quantum SHSs.

To achieve the unlinkability in our SHS, the credential should be used only
once and it is quite inefficient in practice. It would be worthwhile to con-
struct code-based SHSs that allow to reuse the credential. Furthermore, our
CA-oblivious encryption can be obtained by exploiting any (OW-CPA and IK-
CPA0 secure) public key encryption. Based on this feature, it would be also
interesting to develop generic approaches to design new CA-oblivious encryp-
tion and SHS.

Acknowledgements. The authors thank the anonymous reviewers for their helpful
comments. H. T. Lee was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korea government (MSIT) (No. NRF-2021R1A2C1007484,
NRF-2022R1A4A5034130).

A Definitions for Digital Signatures

A signature scheme Sig = (KeyGen,Sign,Verify) consists of the following three
polynomial-time algorithms:
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– KeyGen(λ) → (sk, pk): On input a security parameter λ, it returns a pair of
secret and public keys (sk, pk).

– Sign(sk,msg) → σ: Given the secret key sk and a message msg, it returns a
signature σ.

– Verify(pk, σ,msg) → 1/0: Given the public key pk, a signature σ, and a mes-
sage msg, it returns 1 (accept) or 0 (reject).

We say that a signature scheme Sig = (KeyGen,Sign,Verify) is correct if for any
security parameter λ and message msg, it always holds that

Verify(pk, σ,msg) = 1

where KeyGen(λ) → (sk, pk) and Sign(sk,msg) → σ.

EUF-CMA Security. A digital signature scheme is existentially unforgeable
against chosen message attacks (EUF-CMA) if for any PPT adversary A its
advantage in the following experiment is negligible in the security parameter λ:

ExpEUF-CMA
A,Sig (λ)

KeyGen(λ) → (sk, pk)

AOSign(sk,·)
(pk) → (msg∗, σ∗)

where OSign(sk,·) is the signing oracle that takes a message as an input and returns
a signature of input message under the secret key sk. There is a restriction that
msg∗ should not be queried to OSign(sk,·). The advantage of A in the above
experiment is defined as AdvEUF-CMA

A,Sig (λ) := Pr[Verify(pk, σ∗,msg∗) → 1].

B Proof of Lemma 2

Consider the OW-CPA security experiment between A and S where A may
generate the event that B aborts as in the security game of the proof of Theorem 1
and S is a PPT adversary who wants to break the EUF-CMA security of LESS-
FM. Let CL be the challenger who interacts with S in the EUF-CMA security
experiment of LESS-FM.

1. Once the target parameter pp,G and public key pk∗ = (G1, . . . ,Gr) of LESS-
FM are given to S, set params = (λ, pp,G) and pkCA = pk∗. Then, S passes
params and pkCA to A.

2. For A’s queries, S responds as follows:
– H1 and H2 queries: For H1 and H2 queries, the list List is initialized as

an empty set and S performs as follows:
• H1 queries: On input ((G̃j,i)1≤i≤t, IDj),

(a) Request a Ĥ query on ((G̃j,i)1≤i≤t, IDj) to CL and obtain hj which
is corresponded to Ĥ((G̃j,i)1≤i≤t, IDj) in LESS-FM.

(b) Search the list List if a pair of (pkIDj
, skIDj

) was already generated.
If it exists, take and use it for the following steps. Otherwise, run
and use PKE.KeyGen(λ) → (pkIDj

, skIDj
).
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(c) Pick a random rvj from {0, 1}� and compute cj = rvj ⊕ pkIDj
.

(d) Store 〈IDj , pkIDj
, skIDj

, (Gj,i)1≤i≤t, cj , rvj ,hj〉 at List and return
rvj to A.

We note that at this point H2(cj , IDj) is determined as hj as well as
H1((G̃j,i)1≤i≤t, IDj) is determined as rvj .

• H2 queries: On input (cj , IDj), S checks if a tuple 〈IDj , ·, ·, ·, cj , ·,hj〉
already exists. If it exists, return the corresponding hj . Otherwise, S
performs as follows:
(a) Check the list List if a pair of (pkIDj

, skIDj
) was already generated.

If it exists, take and use it for the following step. Otherwise, run
and use PKE.KeyGen(λ) → (pkIDj

, skIDj ).

(b) Pick hj
$← Z

t
r+1,w, store 〈IDj , pkIDj

, skIDj
,−, cj ,−,hj〉 at List

where − indicates an empty string, and return hj to A .
– Certify queries: For A’s request on (trIDj

, certIDj
) of any ID string IDj

under pkCA, S performs as follows:
(a) Request a signing query on message IDj to obtain the LESS-FM sig-

nature ((Rj,i)1≤i≤t,hj) for message IDj .
(b) Check the list List if a tuple 〈IDj , pkIDj

, skIDj , ·, ·, ·, ·〉 is stored. If it
exists, take and use (pkIDj

, skIDj
) for the following steps. Otherwise,

run and use PKE.KeyGen(λ) → (pkIDj
, skIDj

).
(c) Pick a random rvj from {0, 1}� and compute cj = pkIDj

⊕ rvj .
(d) Store 〈IDj , pkIDj

, skIDj
,−, cj , rvj ,hj〉 at List. Set and return trIDj

=
skIDj

, certIDj
= (cj , (Rj,i)1≤i≤t).

3. Once A submits a pair of target ID string and certificate (IDA, certIDA) where
certIDA = (cIDA , (RIDA,i)1≤i≤t), S performs as follows:
(a) Check the list List if 〈IDA, pkIDA , skIDA , ·, ·, ·, ·〉 is stored. If it exists, take

and use (pkIDA , skIDA) for the following steps. Otherwise, run and use
PKE.KeyGen(λ) → (pkIDA , skIDA).

(b) Store 〈IDA, pkIDA , skIDA ,−, cIDA ,−,−〉 at List.
(c) Select a random message m ∈ M and run PKE.Enc(pkIDA ,m) → CT∗.

Return CT∗ to A.
4. For A’s queries, S responds as Step 2.
5. Finally, once A outputs m′, S selects h randomly in the last column of List

and returns a message IDA and a pair of ((RIDA,i)1≤i≤t,h) as the correspond-
ing signature.

We first consider the case that the above simulation fails. It may occurs
when H1 and H2 queries are operated incorrectly. In the simulation, suppose
that (cj , IDj) was requested to the H2 oracle first, and a value for H2(cj , IDj)
was assigned. Later, once ((Gj,i)1≤i≤t, IDj) is requested to the H1 oracle, S
requests a value to CL and receives h′. Then, S selects a random rvj , computes
cj = rvj ⊕ pkIDj

, and returns rvj . In this process, if (cj , IDj) was already stored
and the value for H2(cj , IDj) is different from h′, then the simulation fails. On
the one hand, rvj ’s are randomly selected from {0, 1}� whose cardinality 2� is
exponential in the security parameter λ and so the probability that a collision
occurs among up to 2�/2 randomly selected elements is less than 1/2. On the
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other hand, the number of queries allowed to A is polynomial in the security
parameter. Thus, the probability that the above simulation fails is less than 1/2.

Suppose that the event that B aborts occurs in the previous OW-CPA secu-
rity experiment between A and B. That is, when A submits a pair of target ID
string and certificate (IDA, certIDA) where certIDA = (cIDA , (RIDA,i)1≤i≤t), each
RIDA,i satisfies Q̃i = RIDA,iQhi

and G̃i = SF(GQ̃i) where Qhi
’s are in the tar-

get secret key of LESS-FM and h = (h1, . . . , ht) = H2(cIDA , IDA). So, it holds
that

G̃′
i := SF(Ghi

RIDA,i) and h = H1(G̃′
1, . . . , G̃

′
t, IDA)

for some h = (h1, . . . , ht), which is the same as the verification algorithm of
LESS-FM with input signature ((RIDA,i)1≤i≤t,h) of message IDA. Such the h
should appear in List since h is a hash value if the simulation does not fail.

Now, let us calculate the advantage of S. Let E be the event that B aborts
and F be the event that the simulation fails. Then, the advantage of S is

AdvEUF-CMA
S,LESS-FM(λ) =

1
qH1 + qH2

(Pr[E|F ] Pr[F ] + Pr[E|F c] Pr[F c])

≥ 1
qH1 + qH2

Pr[E|F c] Pr[F c] ≥ 1
2(qH1 + qH2)

εA

where εA is the probability of the event that B aborts, and qH1 and qH2 are
the numbers of queries on H1 and H2 oracles, respectively. Thus, if LESS-FM is
EUF-CMA secure, the probability that the event that B aborts is negligible in
the security parameter.
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12. Faugère, J.-C., Gauthier-Umanã, V., Otmani, A., Perret, L., Tillich, J.-P.: A distin-
guisher for high rate McEliece cryptosystems. In: 2011 IEEE Information Theory
Workshop, pp. 282–286 (2011)

13. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

14. Jarecki, S., Kim, J., Tsudik, G.: Authentication for paranoids: multi-party secret
handshakes. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,
pp. 325–339. Springer, Heidelberg (2006). https://doi.org/10.1007/11767480 22

15. Jarecki, S., Kim, J., Tsudik, G.: Group secret handshakes or affiliation-hiding
authenticated group key agreement. In: Abe, M. (ed.) CT-RSA 2007. LNCS,
vol. 4377, pp. 287–308. Springer, Heidelberg (2006). https://doi.org/10.1007/
11967668 19

16. Jarecki, S., Liu, X.: Unlinkable secret handshakes and key-private group key man-
agement schemes. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp.
270–287. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-
5 18

17. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece
cryptosystem without random oracles. Des. Codes Crypt. 49(1), 289–305 (2008)

18. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science (FOCS)
1994, pp. 124–134. IEEE Computer Society (1994)

19. Wen, Y., Zhang, F., Wang, H., Gong, Z., Miao, Y., Deng, Y.: A new secret hand-
shake scheme with multi-symptom intersection for mobile healthcare social net-
works. Inf. Sci. 520, 142–154 (2020)

20. Wen, Y., Zhang, F., Xu, L.: Secret handshakes from ID-based message recovery
signatures: a new generic approach. Comput. Elect. Eng. 38(1), 96–104 (2012)

21. Zhang, Z., Zhang, F., Tian, H.: CSH: a post-quantum secret handshake scheme
from coding theory. In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS
2020. LNCS, vol. 12309, pp. 317–335. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-59013-0 16

22. Zhou, L., Susilo, W., Mu, Y.: Three-round secret handshakes based on ElGa-
mal and DSA. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006.
LNCS, vol. 3903, pp. 332–342. Springer, Heidelberg (2006). https://doi.org/10.
1007/11689522 31

https://doi.org/10.1007/3-540-45682-1_33
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-540-30539-2_21
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/11767480_22
https://doi.org/10.1007/11967668_19
https://doi.org/10.1007/11967668_19
https://doi.org/10.1007/978-3-540-72738-5_18
https://doi.org/10.1007/978-3-540-72738-5_18
https://doi.org/10.1007/978-3-030-59013-0_16
https://doi.org/10.1007/978-3-030-59013-0_16
https://doi.org/10.1007/11689522_31
https://doi.org/10.1007/11689522_31


Beyond Volume Pattern: Storage-Efficient
Boolean Searchable Symmetric

Encryption with Suppressed Leakage

Feng Li1, Jianfeng Ma1, Yinbin Miao1, Pengfei Wu2, and Xiangfu Song2(B)

1 Xidian University, Xi’an 710071, China
feng.li@stu.xidian.edu.cn, {jfma,ybmiao}@xidian.edu.cn

2 School of Computing, National University of Singapore, Singapore 119391,
Singapore

{wupf,songxf}@comp.nus.edu.sg

Abstract. Boolean Searchable Symmetric Encryption (BSSE) enables
users to perform retrieval operations on the encrypted data while sup-
porting complex query capabilities. This paper focuses on addressing the
storage overhead and privacy concerns associated with existing BSSE
schemes. While Patel et al. (ASIACRYPT’21) and Bag et al. (PETS’23)
introduced BSSE schemes that conceal the number of single keyword
results, both of them suffer from quadratic storage overhead and neglect
the privacy of search and access patterns. Consequently, an open ques-
tion arises: Can we design a storage-efficient Boolean query scheme that
effectively suppresses leakage, covering not only the volume pattern for
singleton keywords, but also search and access patterns?

In light of the limitations of existing schemes in terms of storage
overhead and privacy protection, this work presents a novel solution
called SESAME. It realizes efficient storage and privacy preserving based
on Bloom filter and functional encryption. Moreover, we propose an
enhanced version, SESAME+, which offers improved search performance.
By rigorous security analysis on the leakage functions of our schemes,
we provide a formal security proof. Finally, we implement our schemes
and demonstrate that SESAME+ achieves superior search efficiency and
reduced storage overhead.

Keywords: Searchable symmetric encryption · Boolean search ·
Volume pattern · Search pattern

1 Introduction

Amidst the current explosive growth of data, outsourcing data to a cloud server is
considered as a judicious choice for resource-constrained individuals or organiza-
tions. It provides them access to professional, efficient, reliable, and cost-effective
computing and storage services, while also providing ubiquitous data accessibil-
ity. However, a crucial concern is how to effectively protect sensitive information
while maintaining the utility.
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Searchable Symmetric Encryption (SSE) [14,20,32] plays a vital role in secure
search over encrypted data and facilitates data outsourcing by individuals and
organizations. It allows users to retrieve interested documents stored on the
cloud server while preserving the privacy of both queries and document contents.
Thus far, the SSE research community has proposed many practical approaches,
ranging from efficient and expressive query functionality [6,12,13,15] to secure
searching using privacy-preserving methods capable of withstanding security
threats [9,10,25,31].

One of the most attractive features of SSE functionality is Boolean query. A
naive Boolean query construction can be derived from a single keyword scheme,
where the user receives all single keyword results in a Boolean formula Φ and eval-
uates Φ locally using union and intersection operations. However, such a scheme
has the worst performance in terms of efficiency and leakage. That is, it requires
returning all query results for each single keyword and revealing the result sizes
for all keywords. The Boolean query scheme with sub-linear search complexity
was originally proposed by Cash et al. [12], however, it requires the Boolean
formula to be in a searchable normal form (w1 ∧ Φ(w2, · · · , wq)). Kamara et
al. [21] proposed a non-interactive SSE scheme that enables the processing of
arbitrary Boolean queries with worst-case sub-linear search complexity. Unfortu-
nately, these schemes failed to consider the leakage of some sensitive information,
including the disclosure of volume pattern for some keywords.

Recently, Patel et al. [29] made advancements regarding the security of
Boolean queries by introducing a novel construction that specifically addresses
the protection of the volume pattern for any singleton keywords. Bag et al. [6]
developed a general Boolean query scheme from any conjunctive schemes. But
both of them come with significant storage overhead and do not consider the
potential leakage of search and access patterns.

Leakage-Abuse Attacks. Numerous studies have extensively investigated leak-
age abuse attacks in SSE. For instance, access pattern leakage [19,27,30] or
search pattern leakage [24,26,28] has been shown to enable adversaries to infer
the underlying keyword based on prior knowledge. Furthermore, when equipped
with knowledge of volume pattern, adversaries can even reconstruct the range
query database [17,18,22]. Although these works primarily concentrate on single
keyword or range queries, it is possible to apply them to Boolean queries as well.

In scenarios where a Boolean query reveals search pattern for certain key-
words, adversaries can potentially employ inference attacks to recover the under-
lying keywords. For example, in the case of BIEX [21], the search pattern for each
singleton keyword in the first clause can be exposed. Similarly, even in the case
of CNFFilter [29], where tokens are constructed using keyword pairs, the access
pattern could still be exploited to compromise the confidentiality of the underly-
ing keyword pairs. Furthermore, existing attacks targeting exact or range queries
can also potentially exploit the leakage of access and volume patterns to infer
sensitive information or even the underlying keywords.

This naturally leads us to pose the following question: Can we design a
storage-efficient Boolean query scheme that effectively suppresses leakage, cov-
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ering not only the volume pattern for singleton keywords, but also search and
access patterns?

Challenges. This paper focuses on addressing privacy concerns and storage
overhead related to Boolean queries. Specifically, the proposed construction aims
to prevent the leakage of the result size (i.e., volume pattern) of any single
keyword in a Boolean formula. For example, in the case of the Boolean formula
Φ = (w1 ∧ w2) ∨ (w3 ∧ w4), the volume pattern of any keyword wi in Φ is
protected. We are also concerned about the leakage of access and search patterns,
which are often neglected by existing schemes, yet they pose comparable threats.
Furthermore, the construction should exhibit linear growth in storage overhead
instead of quadratic growth.

Solutions Overview. In order to conceal the volume pattern associated with
any single keyword in a Boolean query, we have to avoid operations that reveal
information about a single keyword within a Boolean query. To accomplish this,
we utilize a forward index based on a vector representation. In particular, each
document is encoded as a Bloom filter, encompassing all the keywords it con-
tains. Each plaintext Boolean query is represented as a Disjunctive Normal Form
(DNF). Such a DNF query consists of a disjunction of several conjunctive queries,
where each conjunctive query can be represented as a Bloom filter as well. In
doing this, Boolean query can be divided into several conjunctive queries where
each conjunctive query can be done by computing the inner product between
two Bloom filters and checking if the result is over a threshold.

To protect the forward indexes, we leverage inner product functional encryp-
tion (IPFE). An IPFE scheme enables a party, who holds a decryption key skx

corresponding to a vector x, to decrypt a ciphertext Enc(y) encrypted from a
vector y and learn the inner product 〈x,y〉. We use IPFE to encrypt the forward
indexes and the server stores the encrypted ciphertexts of all documents. Dur-
ing a search, the client generates an IPFE decryption key for the Bloom filter
associated with a conjunctive query and sends the decryption key to the server.
Using the key, the server, for each encrypted forward index, computes the inner
product by decryption and compares it with a threshold to find matches.

It is possible to use a function hiding IPFE [7,23] to protect the query further,
which reveals no information about the query x at the cost of heavy computing
overhead. In our constructions, we adopt a more practical approach. Our idea is
that the client can add dummy keywords when generating a Bloom filter associ-
ated with a conjunctive query. This approach not only fulfills the aforementioned
security requirements but also circumvents the use of function hiding functional
encryption for the inner product computation.

Our Contribution. We present a novel storage-efficient Boolean searchable
symmetric encryption scheme that effectively mitigates the leakage of volume,
search, and access patterns. Meanwhile, it incurs small communication and lin-
ear storage overheads. Compared with prior works, our scheme demonstrates a
smaller base query set of leakage, which refers to the disclosure of the result set
of Boolean queries, as introduced by Patel et al. [29]. This leakage only includes
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the result set of each clause within the Boolean formula, rather than keywords
or keyword pairs. Specifically, our contributions can be summarized as follows:

– We propose a basic Boolean SSE scheme based on forward indexing struc-
ture of vector representation and inner product functional encryption, which
restricts the base query set of leakage to the clauses within the Boolean for-
mula, and improves the security by introducing dummy keywords.

– We enhance the basic scheme with optimizations. Typically, queries involve a
small number of keywords, but the requirement for token length to match the
index length during computations can introduce substantial computational
overhead without meaningful contributions. To mitigate this issue, we employ
a token pruning technique, improving efficiency by over tenfold.

– We provide a formal security analysis of our proposed scheme and substanti-
ate its superior security compared to existing schemes that support Boolean
queries. Additionally, we implement a series of experiments to empirically
demonstrate the enhanced efficiency of our scheme in terms of search and
storage capabilities.

1.1 Related Works

Curtmola et al. [14] were the first to provide a formal definition of SSE and estab-
lish indistinguishability and simulation-based security definitions in the static
setting. Subsequently, Kamara et al. [20] extended the work of [14] by introduc-
ing the capability of efficient addition and deletion of files, commonly referred to
as dynamic SSE (DSSE). To enhance the query function of SSE, Cao et al. [11]
proposed a scheme based on TF-IDF to support multi-keyword ranking. Wang et
al. [33] introduced multi-keyword fuzzy search that can tolerate minor typos in
keywords. Fu et al. [16] presented a scheme to enable content-aware search by
constructing conceptual graphs. Moreover, Cash et al. [12] designed a general
Boolean query scheme with sub-linear search time complexity.

While [12] efficiently handles queries in searchable normal form, it exhibits
linear time complexity for processing arbitrary Boolean queries. In response to
this limitation, Kamara et al. [21] proposed a generic Boolean query scheme with
worst-case sub-linear search. This scheme constructs a global multi-map and a
dictionary as an index structure, where each multi-map maps each keyword v
that co-occurs with a given keyword w ∈ W to a tuple of DB(w) ∩ DB(v).
However, this scheme inadvertently reveals the result size for each singleton
keyword in the first clause of the Boolean formula. To address this vulnerability,
Patel et al. [29] presented an improved construction with significantly reduced
leakage by building indexes using any combination of two keywords as meta-
keywords. Bag et al. [6] also employed the construction of meta-keywords to
build indexes and allowed any scheme supporting conjunctive queries could be
smoothly scaled to support any Boolean queries. Regrettably, these schemes
entail substantial storage overhead and expose noteworthy information leakages.

The study of access pattern leakage was first initiated by Islam et al. [19] who
proposed inference attacks for recovering the underlying keywords given prior
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knowledge. Pouliot et al. [30] presented a combinatorial optimization problem
based on graph matching to attack access pattern leakage. Ning et al. [27] fur-
ther designed attacks under different types of assumptions. Grubbs et al. [17]
exploited the leakage of volume pattern in range queries to reconstruct the
database. Gui et al. [18] further investigated attacks on volume pattern leakage
and reduced the required prior knowledge. Kornaropoulos et al. [24] exploited
search pattern leakage to develop value reconstruction attacks that succeeded
without any knowledge about the query or data distribution. Oya et al. [28] pro-
posed an attack on SSE against hidden access pattern and leaked search pattern,
which successfully recovered the underlying keywords.

1.2 Organization

This paper is organized as follows. In Sect. 2, we introduce the cryptographic
primitives that underpin our construction. Section 3 provides definitions for
Boolean searchable symmetric encryption and security notions. In Sect. 4, we
present the details of our constructions, SESAME and SESAME+. Security anal-
ysis and experimental analysis are presented in Sect. 5 and Sect. 6, respectively.
Finally, Sect. 7 concludes this paper.

2 Preliminaries

This section presents cryptographic primitives utilized in our constructions.
Table 1 summarizes commonly used symbols.

2.1 Bloom Filter

Bloom filter is a data structure used to represent a set, which is a bit vector of
length l with a family of hash functions H = {hi |hi : {0, 1}∗ → [l], 1 ≤ i ≤ s}.
Specifically, given a set S = {a1, · · · , an} of elements, initialize a bit vector
of length l and set all positions in the vector to 0. Use s independent hash
functions hi to map each element in the set S to the vector by setting the
corresponding positions to 1. To verify if a given element a exists in the set
S, compute the mapping positions of a using the s hash functions hi. If all
corresponding positions in the vector are 1, then a is possibly in the set (with
some false positive probability), otherwise a is definitely not in the set. The false
positive rate for an l-bit Bloom filter is approximately (1 − e− sn

l )s.

2.2 Functional Encryption for Inner Product

Functional Encryption (FE) [8] extends traditional public key encryption,
enabling the retrieval of partial information from ciphertexts without the need
to decrypt them entirely. Specifically, by leveraging a decryption key associated
with a designated function F and a ciphertext Enc(x), an authorized user can
retrieve the value of F (x) using a decryption key corresponding to F , without
revealing the underlying message x itself.
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Table 1. Summary of Notations

Notation Description

λ The computational security parameter

l The length of a vector (i.e., Bloom filter)

indi The identifier of the i-th document

Wi The list of keywords for the i-th document

α The number of non-zero elements in the token q

β The positions of all non-zero elements in the token q

w′ Dummy keyword, which satisfies w′ /∈ ⋃d
i=1 Wi

skq The decryption key of vector q for functional encryption

R The result set

Q A Boolean query in the disjunctive normal form

vi The Bloom filter (or vector) corresponding to the i-th document

evi The encrypted Bloom filter (or vector) corresponding to the vi

A A matrix consisting of encrypted vectors

q The search token corresponding to the conjunctive query q

r The result vector

R The result matrix

Q A matrix consisting of tokens

U A token set that has been pruned

Functional encryption for inner product [4,5] is a form of functional encryp-
tion that restricts F to the inner product operation, enabling the decryption
key holder with a vector x to decrypt the ciphertext vector Enc(y) and obtain
〈x,y〉 without revealing any other information about y. Next, we introduce a
functional encryption for inner product based on the Decisional Diffie-Hellman
(DDH) assumption, which serves as a fundamental building block in our con-
struction. Formally, the cryptographic scheme [5] consists of four algorithms,
denoted as IPFE = (Setup,Keygen,Encrypt,Decrypt), formally defined as follows:

– (msk,mpk) ← Setup(1λ, 1l) : Choose a cyclic group G with a prime order p >
2λ and generate two generators g, h ← G. Then randomly sample si, ti ← Zp

for each i ∈ {1, · · · , l}, and compute hi = gsi · hti . The msk and the mpk are
defined as, msk := {(si, ti)}l

i=1 and mpk := (G, g, h, {hi}l
i=1), respectively.

– skx ← Keygen(msk,x) : Take the msk and the vector x = (x1, · · · , xl) as
input, where xi ∈ Zq, compute the decryption key skx = (sx , tx) = (

∑l
i=1 si ·

xi,
∑l

i=1 ti · xi) = (〈s,x〉, 〈t,x〉).
– Cy ← Encrypt(mpk,y) : Given the mpk and a vector y = (y1, · · · , yl) as

input, where yi ∈ Zq, the algorithm randomly samples r ← Zp and encrypts
the vector y as C = gr,D = hr, {Ei = gyi · hr

i }l
i=1. The resulting ciphertext

is denoted as Cy = (C,D, {Ei}l
i=1).
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– 〈x,y〉 ← Decrypt(mpk, skx , Cy ) : Given the input of mpk, the decryption
key skx , and the ciphertext Cy , the algorithm proceeds to compute Ex =
(
∏l

i=1 Exi
i )/(Csx · Dtx ). The inner product of the vectors x and y can be

recovered from computing the discrete logarithm of Ex as regards the base g.

2.3 Pseudorandom Function

A keyed function F : K × X → Z is a two-input function, where the first
input is referred to as the key. If there exists a polynomial time algorithm that
can compute F (k, x) for any given k ∈ K and x ∈ X , and for all probabilistic
polynomial time adversaries A satisfy |Pr[AF (k,·)(1λ) = 1]−Pr[Af(·)(1λ) = 1]| ≤
negl(λ), where negl(λ) is negligible in the security parameter λ, k

$←− K and f is a
random function from X to Z, then it is called Pseudorandom Function (PRF).

3 Boolean Searchable Symmetric Encryption

Boolean Searchable Symmetric Encryption (BSSE) supports arbitrary Boolean
queries on encrypted data. Typically, BSSE involves three entities: the Data
Owner (DO), the Data User (DU)1, and the Cloud Service Provider (CSP). The
DO encrypts the database DB = {(indi,Wi)}d

i=1 and generates the corresponding
encrypted index. The CSP stores the encrypted data and index and handles
query requests. The DU generates a query request and transmits it to the CSP.
A generic BSSE scheme can be outlined with three algorithms:

– (msk,EDB) ← Setup(1λ,DB): The Setup algorithm takes a security parameter
1λ and a database DB as input and produces the master secret key msk as
well as the encrypted database EDB, which encompasses both encrypted data
and index.

– tokQ ← Token(Q,msk): The Token algorithm receives the master secret key
msk and a Boolean query Q as input and generates the search token tokQ.

– R ← Search(tokQ,EDB): This algorithm takes the search token tokQ and
the encrypted database EDB as input. It performs a search on the encrypted
index and retrieves the documents that satisfy the given Boolean query Q.
The results are stored in the result set R and returned as the output.

3.1 Security Notions

We provide a security model for BSSE following the definition of Curtmola et
al. [14]. The adversary’s knowledge of leakage is defined as L = (LSetup, LToken,
LSearch), where the leakage function of LSetup captures the leakage information
of BSSE in the Setup stage, the leakage function of LToken captures the leakage
information from the token learned by the adversary (i.e., the server), and the
leakage function LSearch captures the leakage in the Search stage.

1 The data owner and the data user can be the same entity.
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To formally describe the security notion of BSSE, we present a simulation-
based Real-Ideal game against adversaries. In this game, A represents the adver-
sary and S represents the simulator.

– RealBSSE
A (λ): The stateful adversary A chooses a database DB and sends it

to the challenger C. C runs Setup(1λ,DB;msk,EDB) and returns EDB to A.
Then A randomly selects a series of Boolean queries {Q1, · · · } at once and
sends them to C. For each Qi, C runs the Token(Qi,msk; tokQi

) and returns
tokQi

to A. A sends tokQi
to C, who performs the Search(tokQi

,EDB;Ri) and
returns the result set Ri to A. Finally, A outputs a bit b ∈ {0, 1}.

– IdealBSSE
A,S (λ): The stateful adversary A chooses a database DB and sends it to

the challenger C. The simulator S runs SimSetup(L;EDB) based on the leakage
information L and returns EDB to A. Subsequently, A randomly selects a
series of Boolean queries {Q1, · · · } at once and sends them to C, which S
processes through SimToken(L; tokQi

), returning the corresponding token tokQi

to A. After A forwards the token tokQi
to C, S executes SimSearch(L;Ri) to

obtain the result set Ri, which is returned to A. Finally, A produces a bit
b ∈ {0, 1} to complete the experiment.

The security of BSSE is defined as the advantage of A in distinguishing between
two worlds: in the real world, A interacts with a real BSSE system, and in the
ideal world, A interacts with a stateful simulator S that receives the same input
as A and simulates the response of the ideal functionality. BSSE is L-secure if
for any probabilistic polynomial-time (PPT) adversary A, there exists a PPT
simulator S such that |Pr[RealBSSE

A (λ) = 1] − Pr[IdealBSSE
A,S (λ) = 1]| ≤ negl(λ).

Definition 1 (Search Pattern). The search pattern is a sequence over n queries
Q that can be inferred whether two queries are the same, and is defined as
sp(Qi) = {ui | (ui, Qi) ∈ Q}.
Definition 2 (Access Pattern). The access pattern is a sequence over n queries
Q that reveals the results of the queries (including the number of results, named
volume pattern) and is defined as ap(Qi) = {DB(Qi)}.

4 Constructions

In this section, we present our fundamental scheme, SESAME (Storage-Efficient
Boolean SeArchable SyMmetric Encryption with Suppressed Leakage)2, as well
as its enhancement SESAME+. We first introduce a construction that facilitates
conjunctive queries, and subsequently extend it to support arbitrary Boolean
queries. Finally, we propose an enhanced construction with improved efficiency.

4.1 Overview

Before presenting our constructions, we provide an overview of the core ideas
behind them. As mentioned, the focus of this paper is to balance storage overhead

2 SESAME implies a mystical code that unlocks the treasure.



134 F. Li et al.

and privacy protection while maintaining search efficiency and single-keyword
search ability. To achieve linear storage overhead, we utilize the Bloom filter to
represent the forward index structure of the document and protect the number
of single keyword results. To address functional encryption leakage from queries
and protect the search pattern, we introduce dummy keywords in the token
generation process, which also safeguards the access pattern of the query. Lastly,
to improve search efficiency, we prune tokens as the number of keywords in a
query is usually small.

4.2 Basic Construction

Conjunctive Protocol. We start by describing our building block for con-
junctive queries, which comprises a tuple of algorithms, denoted as ΣConj =
(Setup,Token,Search). The formal description of ΣConj is presented in Algo-
rithm1.

Setup. Given an input database DB, the Setup algorithm initializes and gener-
ates master public key mpk and the master secret key msk, with inputs of the

Algorithm 1: Conjunctive Protocol ΣConj

@ Setup(1λ, 1l, DB; mpk,msk,EDB)
1 Choose a cyclic group G with a prime order p > 2λ and parse DB as

{(indi, Wi)}d
i=1;

2 Generate two generators g, h ← G and randomly sample si, ti ← Zp for each

i ∈ {1, · · · , l} and k ← {0, 1}λ, then compute hi = gsi · hti . Finally, let
msk := (skIPFE = {(si, ti)}l

i=1, k) and mpk := (G, g, h, {hi}l
i=1);

3 for i ∈ {1, · · · , d} do
4 Construct a Bloom filter vi by mapping each kwj into vi, where

kwj ← F (k, wj) and wj ∈ Wi;
5 Encrypt the Bloom filter vi by using functional encryption for inner

product, evi = IPFE.Encrypt(mpk, vi );

6 Combine all encrypted Bloom filters into a matrix A = {ev1, · · · , evd};
7 Define EDB = A, then output (mpk,msk,EDB).

@ Token(msk, q; q, skq , α)
1 Construct a Bloom filter q by mapping each kwj into q and count the number

of non-zero elements α, where kwj ← F (k, wj) and wj ∈ q;
2 Add an extra kw′ into q, where kw′ ← F (k, w′) and w′ is a dummy keyword;
3 Generate a key for the vector q, skq = IPFE.Keygen(skIPFE, q);
4 Send (q, skq , α) to the server.

@ Search(EDB,mpk, q, skq , α; R)
1 Compute the inner product between the vector q and the matrix A,

r = IPFE.Decrypt(mpk, skq , A);
2 for ei ∈ r do

if ei ≥ α then put corresponding document identifier indi into the result
set R;

3 return query result set R.
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security parameter λ and the predefined vector length l. Then the algorithm
parses the DB as {(indi,Wi)}d

i=1.
For each document indi, the algorithm initializes a Bloom filter vi of length

l by mapping each masked keyword kwj into corresponding bit positions in the
filter, and then encrypts it using functional encryption. All encrypted Bloom
filters are combined into a matrix A to form the encrypted database EDB. The
output of the algorithm is denoted as (mpk,msk,EDB).

Token. The Token algorithm takes the master secret key msk and a conjunctive
query q = (w1 ∧ · · · ∧ wq) as input. To compute the inner product with evi, the
length of the token needs to match that of vi. The algorithm initializes a Bloom
filter of length l, maps each keyword in q to the Bloom filter using the same
method as in the Setup algorithm, and records the number of non-zero elements
in the Bloom filter q. Essentially, the client can generate the decryption key skq

from the vector q and then send it to the server for retrieval.
However, it exposes the q in plaintext during the decryption of the functional

encryption, which requires both the decryption key skq and q. Even though q
is a Bloom filter that does not reveal the underlying keywords to an adversary,
it still leaks the search pattern, allowing the adversary to distinguish whether
the same query is repeated or not. To protect the search pattern, we incorporate
the addition of random dummy keywords during token generation that do not
correspond to any document. It is worth noting that the client has the flexi-
bility to choose the dummy keyword and its quantity randomly, or has them
randomly generated by the protocol when generating the token, so the proto-
col does not explicitly take the dummy keyword as input. Adding more dummy
keywords increases query obfuscation but also raises the false positive matching
probability; so, we note there is a trade-off between security and accuracy.

Search. The Search algorithm takes as input the encrypted database EDB, the
master public key mpk, the search token q, the decryption key skq and the num-
ber of non-zero elements α. The server begins by computing the inner product
between the vector q and the matrix A3, resulting in the vector r. It then scans
each element of r and checks whether the value exceeds or equals to a threshold
α. If the condition is satisfied, the corresponding document identifier is added
to the result set R.

Boolean Protocol. We extend conjunctive construction to support arbitrary
Boolean queries. We now give a description of an extended variant that supports
arbitrary Boolean queries and refer to it as SESAME. Algorithm 2 provides a
more detailed illustration of the extended version.

Recall that any Boolean query can be written as a DNF query Q = q1 ∨
· · · ∨ qm, where each qi = wi,1 ∧ · · · ∧ wi,mi

is a conjunction. Therefore, for any
Boolean query, the client first parses it as disjunctive normal form, and then
uses ΣConj.Token to generate the token and the decryption key for each qi. To
obtain the resulting matrix R, we treat all tokens as a matrix Q and multiply

3 Representing all encrypted vectors as a matrix is a matter of convenience for notation
purposes, and the actual computation still relies on the inner product operation of
vectors.
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them by A4. For each column ri in R, if any element is greater than or equal to
the threshold αj , the corresponding document indi is added to the result set R.

Algorithm 2: SESAME

@ Token(msk, Q; Q, skQ , α)
1 for qi ∈ Q do
2 Construct a Bloom filter qi by mapping each kwj into qi and count the

number of non-zero elements αi, where kwj ← F (k, wj) and wj ∈ qi;
3 Add an extra kw′ into qi, where kw′ ← F (k, w′) and w′ is a dummy

keyword;
4 Generate a key for the vector qi, skq i

= IPFE.Keygen(skIPFE, qi);

5 Define Q = {q1, · · · qm}, skQ = {skq1 , · · · , skqm
}, α = {α1, · · · , αm};

6 Send (Q, skQ , α) to the server.
@ Search(EDB,mpk, Q, skQ , α; R)

1 Compute the matrix multiplication between the matrix Q and the matrix A,
R = IPFE.Decrypt(mpk, skQ , A);

2 for ri ∈ R do
if ∃ ej ∈ ri, ej ≥ αj then put document identifier indi into the result set R;

3 return query result set R.

4.3 Enhanced Construction

We observe that the number of queried keywords is typically much smaller than
the total number of keywords in the universal keyword set, i.e., |qi| � |∪d

i=1Wi|.
Consequently, a significant amount of unnecessary computational overhead arises
since the 0 elements in the query vector are meaningless for the computation.
Therefore, the primary objective of the SESAME+ enhancement construction
is to improve query efficiency. The extended version of the proposed scheme is
illustrated in more detail in Algorithm3, which depicts the various components
and operations involved in supporting arbitrary Boolean queries.

To improve the efficiency of the scheme, SESAME+ eliminates all the 0 ele-
ments in the vector qi, which is a straightforward yet effective approach. How-
ever, directly removing the 0 elements from the vector qi would render encryption
and decryption infeasible. SESAME+ makes changes to the Token and Search
algorithms, where the setup phase remains the same as that of SESAME. In
the Token algorithm, it is necessary to record the number of non-zero elements,
denoted as αi, for clause qi before adding the dummy keyword w′ and the posi-
tion set βi of the non-zero elements for the modified query q′

i = qi ∧ w′ after
adding the dummy keyword (line 3, Algorithm 3); suppose there are α′

i non-zero
elements after adding the dummy keyword and α′

i ≥ αi, then the server doesn’t
know which αi non-zero elements out of α′

i are introduced by non-dummy key-
words, hence reducing leakage. Then, the 0 elements in qi are removed to obtain

4 Similarly, it is represented as a matrix solely for descriptive purposes.
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the pruned vector ui and generate the corresponding decryption key. Similarly,
in the Search algorithm, the server needs to prune A according to the received βi

to obtain the matrix A′ corresponding to ui. The inner product ri from ui and
A′ is then computed to filter the documents that satisfy the query condition.

Algorithm 3: SESAME+

@ Token(msk, Q; U , skU , α, β)
1 for qi ∈ Q do
2 Construct a Bloom filter qi by mapping each kwj into qi and count the

number of non-zero elements αi, where kwj ← F (k, wj) and wj ∈ qi;
3 Add an extra kw′ into qi, where kw′ ← F (k, w′) and w′ is a dummy

keyword, record the positions of all non-zero elements in qi, denoted as βi,
and then remove the 0s in qi to get a new vector ui with all 1s;

4 Generate a key for the vector ui,

sku i = (su i , tu i) = (Σ
|u i|
j=1sβi,j · ui,j , Σ

|u i|
j=1 tβi,j · ui,j);

5 Define U = {u1, · · · um}, skU = {sku 1 , · · · , skum}, α = {α1, · · · , αm},
β = {β1, · · · , βm};

6 Send (U , skU , α, β) to the server.
@ Search(EDB,mpk, U , skU , α, β; R)

1 for ui ∈ U do
2 Select the corresponding rows from matrix A according to βi to form a new

matrix A′;
3 Compute the inner product between the vector ui and the matrix A′,

ri = IPFE.Decrypt(mpk, sku i , A
′);

4 for ej ∈ ri do
if ej ≥ αi then put corresponding document identifier indj into the
result set R;

5 return query result set R.

5 Security Analysis

We overview the security of our enhanced construction SESAME+. We only
provide the security of SESAME+ since all optimizations in SESAME+ do not
downgrade the security of SESAME. We first present an informal discussion of
the leakage functions, and then show the security of SESAME+ in Theorem 1,
with the proof from AppendixA.

The Setup protocol securely encrypts the input database DB and subse-
quently outsources it to the server for storage. As the adversary only has access
to the stored data, the leakage function LSetup is defined as LSetup = (d, l), where
d denotes the number of vectors and l denotes the length of each vector.

For the Token protocol, the input Boolean query Q is converted into a token
that can be computed on the encrypted database and sent to the server. Hence,
the adversary’s view includes U , skU , α, and β. However, since β reveals the
positions of all non-zero elements and the number of Boolean query clauses, the
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leakage function can be defined as LToken = (m,α,β), where m represents the
number of clauses in the query Q.

For Search protocol, the server computes the inner product between the token
and the encrypted database to determine whether a document satisfies the search
criteria, enabling the server to learn this information. The leakage function can
be defined as LSearch = ({r1, · · · , rm},R), which contains the inner-product
result ri for the i-th clause and the final search result R.

Theorem 1. SESAME+ is an L-secure Boolean Searchable Symmetric Encryp-
tion scheme with non-adaptive security5 that supports arbitrary Boolean queries,
if the inner-product functional encryption is secure.

6 Experimental Evaluation

In this section, we report the implementation and performance of SESAME
and SESAME+. We evaluate the performance on real-world data set and com-
pare the storage overhead and search efficiency of SESAME+ with those of
TWINSSEOXT

6 [6] in conjunctive normal form. Furthermore, we evaluate the
storage overhead of CNFFilter [29] and present an efficiency comparison with
TWINSSEOXT (in CNF and DNF form) and SESAME+.

Data Set and Platform. We utilize the Enron email data set [1], comprising a
total of 515,705 documents (emails). To ensure a more enriched and meaningful
set of keywords in each document, we chose 17,006 documents that are greater
than 10 KB in size. The experiments are conducted using Python3 on a system
running macOS Monterey 12.4 with an Intel Core i7 2.9 GHz CPU.

Implementation Details. We extract 500 keywords from the Enron dataset
with a total of 2,553,585 document-keyword pairs. For cryptographic primitives,
we implement PRF and encryption using HMAC and AES algorithms, respec-
tively, as provided by the Crypto library [2]. In our implementation, we set the
prime order p of functional encryption to 256 bits. In the implementation of
scheme TWINSSEOXT, we use the Pairing-Based Cryptography Library [3] and
set both qbits and rbits to 256. Additionally, we set the bucket size to 10, which
is consistent with the configuration used in [6]. For CNFFilter, we take the first
8 bytes for the output of PRFs, which is the same as the setting in [29].

6.1 Evaluation of Our Constructions

We present the performance evaluation of both our basic construction, SESAME,
and its enhanced version, SESAME+, in terms of search efficiency and accuracy.

5 Adaptive security denotes that the adversary can issue queries depending on previous
queries, whereas non-adaptive security means that the adversary must prepare all
the queries at the beginning of the BSSE security game.

6 In this paper, unless explicitly specified, TWINSSEOXT is used to represent a scheme
specifically designed for processing Boolean queries in CNF form.
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This evaluation includes various configurations of Bloom filters, where we vary
the filter length and the number of hash functions. The results are summarized
in Table 2. In the experimental setting, we consider Boolean queries of the form
D1 ∨ D2, where Di represents a conjunction of three labels.

Table 2. Performance Comparison: Search Efficiency and Accuracy

1200 1800 2400

SESAME SESAME+ SESAME SESAME+ SESAME SESAME+

time acc time acc time acc time acc time acc time acc

2 78.678 0.942 3.256 0.942 115.477 0.947 3.290 0.947 156.806 0.989 3.326 0.989

3 79.770 0.739 4.157 0.739 118.784 0.957 4.269 0.957 160.209 0.827 4.328 0.827

4 77.025 0.587 5.000 0.587 118.532 0.878 5.105 0.878 163.714 0.844 5.273 0.844

5 73.810 0.503 5.679 0.503 119.807 0.827 6.053 0.827 162.508 0.807 6.174 0.807
1 Search time is measured in seconds and “acc” stands for “accuracy”.
2 The leftmost column corresponds to the number of hash functions, while the top row
denotes the length of the Bloom filter.

Within our proposed schemes, alongside the documents that satisfy the query,
the query results also encompass certain erroneous documents, which are evalu-
ated using accuracy as a metric. The occurrence of errors can be attributed to
two factors. Firstly, the utilization of the Bloom filter as an indexing mechanism
inherently introduces errors, which can be adjusted through parameter modifi-
cations. Secondly, to protect access and search patterns, we have incorporated a
dummy keyword, which simultaneously increases the false positive rate.

Based on the empirical findings presented in Table 2, we observe that when
the length of the Bloom filter remains constant, the accuracy of the query
results decreases with an increasing number of hash functions. On the other
hand, increasing the length of the Bloom filter improves the performance of
our constructions. Therefore, our proposed constructions allow for parameter
adjustments within the Bloom filter to achieve the desired level of accuracy.

Through a comparative analysis of SESAME and SESAME+, notable distinc-
tions emerge. SESAME+ demonstrates a search time that is at least ten times
faster than that of SESAME and is unaffected by the length of the Bloom filter. In
contrast, the search time of SESAME escalates with the expansion of the Bloom
filter’s length. The discrepancy arises from SESAME+ selectively computing rel-
evant vector elements, ignoring nonsensical ones, compared to SESAME that
calculates the entire vector regardless of element relevance. This enhancement
in our construction leads to a substantial improvement in search efficiency.

6.2 Performance Comparison

We evaluate and compare the search and accuracy performance of SESAME+
and TWINSSEOXT by varying queries. Each query is composed of two clauses,
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with each clause containing 2 or 3 keywords, as depicted in Fig. 1(a) and (b),
respectively. The resulting size is varied by carefully selecting the keywords. For
our implementation, we employ a Bloom filter with a length of 2400 bits and a
hash family with two hash functions.

Fig. 1. Search Efficiency and Accuracy Performance

Our proposed construction, SESAME+, exhibits superior performance com-
pared to TWINSSEOXT in terms of both search efficiency and result accuracy.
In terms of search efficiency, SESAME+ achieves a more than tenfold improve-
ment, which remains consistent regardless of the number of results or changes in
query formulas. This is attributed to the linear search nature of our construction,
where the number of elements involved in the computation is typically small. In
contrast, TWINSSEOXT utilizes meta-keywords that often contain numerous ele-
ments, requiring individual verification and resulting in search times that fluctu-
ate with the number of results or changes in query formula. Our construction also
outperforms in result accuracy, as our scheme allows for enhanced accuracy by
adjusting the parameters of the Bloom filter. On the other hand, TWINSSEOXT

introduces errors through meta-keywords, which are query-dependent and con-
sequently limit improvements in accuracy across all queries. Figure 2 illustrates
the comparison of our scheme with TWINSSEOXT and CNFFilter in terms of
search time. CNFFilter achieves faster search efficiency at the expense of storage
overhead and information leakage.

In addition, we conduct a comparison of storage overhead and token size,
as illustrated in Table 3. The storage overhead is determined by serializing the
encrypted database using the pickle library, while the token size is computed
using the getsizeof() function from the sys library. It is important to note
that the token size solely captures the information transmitted from the client
to the server and does not account for any information returned by the server.

From the comparison, we observe that SESAME+ demonstrates significantly
lower storage overhead compared to other constructions. This is attributed to the
linear relationship between the storage overhead of SESAME+ and the number
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Fig. 2. Efficiency Comparison

of documents, which is independent of the number of keywords present in each
document. In contrast, the storage overhead of the other two constructions is
influenced by the number of document-key pairs, and the generation of meta-
keywords results in an expansion of storage space.

Table 3. Performance Comparison: Storage Overhead and Token Size

Storage Size
(GB)

Token Size (KB)

1000 2000 3000 4000 5000

SESAME+ 1.55 416 416 416 416 416

TWINSSEOXT 6.69 147816 295264 295264 295264 295264

CNFFilter 23.0 208 208 208 208 208

Furthermore, we observe SESAME+ shows a smaller token size due to its
linear relationship with the number of keywords in the Boolean formula. In
contrast, the token size of CNFFilter is quadratically related to the number of
keywords in the Boolean formula, as it necessitates the generation of double tag
seeds. The search protocol of TWINSSEOXT involves two rounds of interaction,
resulting in a token size that is influenced not only by the number of keywords
in the Boolean formula but also by the number of results in the first clause.

7 Conclusion

This paper further advanced the design of Boolean Searchable Symmetric
Encryption (BSSE) schemes with a focus on reducing leakage and improving
storage efficiency. Our proposed scheme, SESAME+, addresses the issue of vol-
ume leakage and provides enhanced protection for search and access pattern leak-
age that previous works have overlooked. Regarding storage overhead, SESAME+
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demonstrates superiority over existing schemes, offering a more efficient solution.
Additionally, the token size in SESAME+ exhibits a linear relationship with the
number of keywords in the Boolean formula. These results highlight the effec-
tiveness of our approach in achieving improved security and efficiency in BSSE
schemes. However, our current constructions do not consider dynamic aspects,
nor forward privacy or backward privacy. The efficiency of these constructions
is primarily influenced by the functional encryption for inner product primitive
and linear search time. We leave the design of a BSSE scheme with the same
merits and properties meanwhile enhancing its functionality and efficiency, as
our future work.

Acknowledgement. This work was supported in part by the National Key Research
and Development Program of China under Grant No. 2021YFB3101100; in part by
China Scholarship Council.

Appendix A Proof of Theorem 1

We provide a formal security proof of our construction SESAME+. We consider
a database DB and a sequence of DNF queries Q = {Q1, · · · , Qn}, where Qi =
qi,1 ∨ · · · ∨ qi,m consists of m conjunctions.

The leakage function LSetup captures information that is leaked from the Setup
algorithm. In our construction, we use Bloom filters to represent documents
and encrypt them using functional encryption. As the adversary is restricted to
access only the encrypted vectors, the acquired information is confined to the
total number of encrypted vectors and their respective lengths, represented as d
and l, respectively. Hence, the Setup leakage function is defined as LSetup = (d, l).

The leakage function LToken is a summary of the information that an adver-
sary can acquire in the context of the Token algorithm. It is noteworthy that
both the vector α, which records the number of non-zero elements, and the vec-
tor β, which records the positions of non-zero elements, are sent to the server
as auxiliary query information, thereby making them susceptible to the adver-
sary. Additionally, U can be derived from β, which means that it is not part
of LToken. Furthermore, β discloses the number of clauses in the query Q as m.
Consequently, the Token leakage function is represented as LToken = (m,α,β).

Regarding the information that is leaked in the Search algorithm, it is impor-
tant to note that the output from the Token is received by the server, and this
output has already been included in the LToken. During query execution, the
server prunes the matrix A based on βi to derive A′ for each clause in Q, where
A represents the ciphertext vectors encrypted by functional encryption gener-
ated in the Setup, and its security is guaranteed by functional encryption. Subse-
quently, the server decrypts A′ to obtain the inner product result ri, which can
be acquired by the adversary. Additionally, the server discloses the query’s result
set R, which constitutes information accessible to the adversary. Therefore, the
Search leakage function is defined as LSearch = ({r1, · · · , rm},R).
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Proof. To demonstrate that RealSESAME+
A (λ) and IdealSESAME+

A,S (λ) are computa-
tionally indistinguishable, we characterize a probabilistic polynomial-time simu-
lator S capable of simulating the three protocols in our SESAME+ scheme. The
simulator S must be able to regenerate the encrypted database and tokens from
the leakage information L, with the regenerated tokens satisfying the dependen-
cies among the leakage functions LSetup, LToken, and LSearch, in order to prevent
the adversary A from distinguishing between the real world and ideal world sce-
narios. The adversary A has access to the simulated encrypted database and can
retrieve data using the simulated tokens.

Provided the leakage information L = (LSetup,LToken,LSearch), the simulations
can be formulated as follows:

To simulate the Setup protocol, S selects a cyclic group G of prime order
p > 2λ. Then, S randomly samples si, ti ← Zp for each i ∈ {1, · · · , l}, where l is
determined by LSetup, randomly samples k ← {0, 1}λ and computes hi = gsi ·hti ,
where g and h are two randomly generated generators in G. As a result, S
simulates the master secret key and master public key as msk := (skIPFE =
{(si, ti)}l

i=1, k) and mpk := (G, g, h, {hi}l
i=1), respectively.

For simulating the EDB, S generates d Bloom filters vi of length l. These
vectors are constructed to maintain dependencies with the leakage functions
LToken and LSearch, ensuring that the adversary’s verification using simulated
tokens remains valid. The adversary can only learn the length l of the vectors
and the number of vectors d, as they only have access to the encrypted vectors.
Finally, the simulator S employs functional encryption for inner product with
the mpk to encrypt the vectors and simulate the encrypted database EDB.

In the context of the Setup protocol, given the leakage information L, the sim-
ulator S generates simulated outputs, including the encrypted database EDB, the
master public key mpk, and the master secret key msk. The difference between
the simulated EDB and the real-world scenario lies in the selection of vi. Instead
of obtaining vi based on the document mapping, S selects vi using the leak-
age functions LToken and LSearch, followed by its encryption. The advantage of
distinguishing them is negligible if functional encryption is fully secure. The
simulations of the mpk and msk are equivalent with those of the real world.

In the simulation of the Token protocol, S simulates tokens for Boolean
queries based on the leakage function LToken and ensures that these tokens can
operate on the simulated encrypted database EDB. The leakage information
provided by LToken reveals the positions of non-zero elements in the vector for
each Boolean query clause, as well as the number of clauses for each Boolean
query. Consequently, S can generate tokens that are identical to those in the real
experiment. For simulating the decryption key, S leverages the leaked positions
information to simulate the decryption key using the Keygen algorithm of func-
tional encryption. The advantage of A in distinguishing between the real world
and the ideal world becomes negligible if the functional encryption is secure.

When simulating the Search protocol, S retrieves documents from the
encrypted database EDB based on a given Boolean query. Upon receiving the
simulated token tok, S prunes the simulated EDB according to the correspond-
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ing β, then performs the decryption process on the pruned EDB to obtain the
identifiers of documents that satisfy the query. Since both EDB and tok are sim-
ulated based on the leakage function L, the search process performed on the
simulated token leaks the same information as LSearch. Consequently, A cannot
distinguish between the real world and the ideal world with more than negligible
probability.

In the above proof, we describe a probabilistic polynomial-time simulator S
that simulates the real experiment by using a given leakage information from
L. Assuming that functional encryption for inner product is secure, then our
scheme SESAME+ achieves L-secure, that is

|Pr[RealSESAME+
A (λ) = 1] − Pr[IdealSESAME+

A,S (λ) = 1]| ≤ negl(λ).

Remark. Due to subtle issues from the underlying inner product functional
encryption, we prove SESAME+ with non-adaptive security, i.e., the adversary
issues all queries before running the game. Designing an adaptively secure BSSE
scheme with similar properties as SESAME+ seems to require fundamentally
different primitives and proof techniques, for which we leave as a future work.
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Abstract. Password-based credentials (PBCs), introduced by Zhang
et al. (NDSS’20), provide an elegant solution to secure, yet convenient
user authentication. Therein the user establishes a strong cryptographic
access credential with the server. To avoid the assumption of secure stor-
age on the user side, the user does not store the credential directly, but
only a password-protected version of it. The ingenuity of PBCs is that
the password-based credential cannot be offline attacked, offering essen-
tially the same strong security as standard key-based authentication.
This security relies on a secret key of the server that is needed to verify
whether an authentication token derived from a password-based creden-
tial and password is correct. However, the work by Zhang et al. assumes
that this server key never gets compromised, and their protocol loses all
security in case of a breach. As such a passive leak of the server’s stored
verification data is one of the main threats in user authentication, our
work aims to strengthen PBC to remain secure even when the server’s key
got compromised. We first show that the desired security against server
compromise is impossible to achieve in the original framework. We then
introduce a modified version of PBCs that circumvents our impossibility
result and formally define a set of security properties, each being optimal
for the respective corruption setting. Finally, we propose a surprisingly
simple construction that provably achieves our stronger security guaran-
tees, and is generically composed from basic building blocks.

1 Introduction

Password-based authentication is still the most common form of user authenti-
cation online. Their main benefit is convenience: users can access their accounts
from any device based on human-memorizable information only. On the down-
side, passwords provide weak security guarantees. The biggest threats are server
compromise, i.e., an attacker gaining access to the password data stored on the
server side, and weak passwords that can be (online) guessed.

To provide better security for users, strong authentication solutions such as
FIDO [18,23] see an increasing interest in the industry and among standardiza-
tion communities. In these solutions, the user typically owns a cryptographically
strong signing key, and authenticates by signing a challenge provided by the
server who stores the corresponding public key. This solution eliminates both
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 147–167, 2024.
https://doi.org/10.1007/978-3-031-50594-2_8
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the risk of guessing attacks (the user now has a high-entropy key) and server
compromise (the information on the server side is only the user’s public key,
i.e., not sensitive). However, this strong security comes for the price of reduced
usability, as the user must securely manage cryptographic key material. This is
particularly challenging when users want to access the key from many, and pos-
sibly low-security, devices. A common approach therefore is to rely on tamper-
resistant hardware tokens, e.g. Yubikey [25], which is desirable from a security
perspective, but clearly not ideal in terms of usability [19].

Password-Based Credentials. To combine the best of both worlds, Zhang et
al. [26] recently proposed the concept of password-based credentials (PBC) that
provide similarly strong security as the key-based solution, but without having
to store sensitive key material on the user side. In the PBC-system, the user
establishes a cryptographically strong access credential with the server upon
registration. To avoid the need of secure hardware on the user side, the user does
not store the sensitive credential directly, but only a password-protected version
of it. When authenticating to the server, the user needs both the credential and
her password. The twist of their solution is that this password-based credential
is resistant to offline brute-force attacks against the password, and thus could
even be synced via (untrusted) cloud providers or simply copied on many (low-
security) devices. This offline-attack resistance is achieved by relying on a high-
entropy key of the server for verifying whether an authentication token derived
from the credential and password is correct. Thus, verifying whether a password
guess was correct requires interaction with the server, which reduces the attack
surface from offline to online attacks if an attacker knows the password-based
credential. If the adversary does not possess the user’s password-based credential,
the security is essentially equivalent to strong authentication. Their security
comes with one significant limitation though – it assumes the server never gets
compromised.

Importance of Server Compromise. Server compromise is a major threat to
password-based authentication, and refers to an attack where the adversary gains
access to the authentication information maintained by the server, such as pass-
word hashes. The server itself is considered to be honest, but an attacker can
now recover the users’ access details to either gain access to a user’s account at
the compromised server or, if the same password is re-used across multiple ser-
vices, even impersonate the user on different sites. Even major companies such as
Yahoo [24], PayPal [10], Linkedin [1], Blizzard [20] or LastPass [22] have suffered
from such attacks, resulting in millions of password hashes or password-protected
files being compromised.

Thus, considering the threat of server compromise and building solutions
that maintain security in such scenarios is crucial for end-user authentication.
Surprisingly, despite having server compromise as a core motivation for their
work, Zhang et al. [26] do not include server compromise attacks in their model.
In fact, their PBC protocol loses all security if the server’s data gets compro-
mised, as the attacker can then impersonate any user who has registered with
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the server. This even holds regardless of the user’s chosen password, as it does
not require any additional offline attack to recover the password.

1.1 Our Contributions

We address the problem of password-based credentials that remain secure in the
presence of server compromise. We show that the desired security is impossible
to achieve in the framework proposed by Zhang, Wang and Yang [26] (hence-
forth called the ZWY framework). We adapt this framework to circumvent the
impossibility result and propose a generic protocol that provably satisfies our
stronger notion – and is even simpler than the one by Zhang et al.

Following the work by Zhang et al. [26], we formalize PBC as a password-
based token scheme, i.e., the actual authentication protocol is abstracted away.
On a high-level, the user registers with the server, obtaining a credential that is
protected under her password. After registration, the user can generate a token
by “signing” her username and message (which typically will be a fresh nonce
in the actual authentication protocol) using the credential and password as a
secret key input. The server verifies that token using it’s secret verification key.

We extend and strengthen the ZWY security framework to capture the fol-
lowing high-level security guarantees:

Strong Unforgeability: An attacker without knowledge of the user’s creden-
tial should not be able to forge an authentication token – thus essentially
guaranteeing the same level as classic key-based strong authentication. This
property must also hold when the adversary knows the user’s password, and
when the server is compromised, i.e., even if the adversary knows the server’s
verification key.

Online Unforgeability: When the adversary knows the user’s credential (but
not the server’s verification key), tokens remain unforgeable as long as the
adversary has not guessed the correct password. The strength of this property
is that the adversary must not be able to offline attack the password but run
an online attack against the honest server. Requiring participation of the
server for each password guess, enables the server to notice suspicious access
patterns and impose throttling on the affected account.

Offline Unforgeability: If both the user’s credential and the server’s key are
compromised, the attacker can unavoidably test passwords in an offline way.
However, we require the attacker to perform such an offline attack on each
password. This adds a last layer of security for users with strong passwords.

The ZWY framework captures a security definition for a combined version
of online unforgeability and a weaker form of strong unforgeability where the
server could not be compromised. Their work did not cover or achieve offline
unforgeability.

Impossibility of Security Against Server-Compromise in Single-Key Setting. In
the ZWY framework [26], the server only has a single verification key for all
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users. The high-level idea of their concrete construction is as follows: the server
has a global MAC key, and the credential is essentially a server’s (algebraic)
MAC on the username which the user encrypts under her password. The core
idea of authentication is decrypting the credential with the password, recovering
the MAC and sending it back to server (and bound to the message). Without
knowing the server’s high-entropy key, one cannot verify if the decrypted value
is indeed a correct MAC, ensuring the desired online unforgeability. It is easy to
see that this construction is not secure if the server’s key got compromised, as
the adversary can simply create MACs for all users he wants to impersonate.

In fact, we show that this is not merely a weakness of their scheme but inher-
ent in the overall single-key setting. That is, we show that strong unforgeability
and offline unforgeability are impossible to achieve when the server owns a single
verification key for all users.

Framework for Multi-key Password-Based Credentials. As two of the three desired
security properties are impossible to achieve in the single-key ZWY frame-
work [26], we propose a new variant – Multi-key Password-based Credentials
(mkPBC) – where the server maintains an individual verification key for every
user. Moving to a setting where the server maintains individual verification infor-
mation for each user requires an additional property also concerned with server
compromise, yet not captured by any of the three properties listed above:
Pw-Hiding: The server’s verification key for a user should not leak any infor-

mation about the user’s password.

The reason this property is not covered by the unforgeability notions dis-
cussed above is that learning the password in the mkPBC scheme does not allow
the server to impersonate the user (this still requires the user credential). How-
ever, as users tend to reuse their passwords across different sites, we want the
password to remain fully hidden in case the server gets compromised.

We formally define all four properties through game-based security defini-
tions, capturing the optimal security guarantees for a mkPBC scheme.

Simple Construction From Standard Building Blocks. Finally, we present a sur-
prisingly simple generic mkPBC scheme (PBCStE) constructed from standard
building blocks – a pseudorandom function, public-key encryption and signature
scheme. The challenge is in formally proving that it achieves all our security
notions. To do so, we require the signature scheme to satisfy two properties
in addition to unforgeability – complete robustness and randomness injectivity.
Both are natural properties, and we show that they are achieved by standard
signature schemes, such as Schnorr and DSA.

Interestingly, our construction does not only provide stronger security than
the original scheme, but is also much simpler and generic: Whereas Zhang et
al. [26] gave a concrete discrete-logarithm based construction that required the
q-SDH and q-DDHI assumptions, our PBCStE only requires basic building blocks,
and thus can be easily implemented using standard cryptographic libraries. The
generic approach also allows to obtain a quantum-safe variant of our scheme if
the generic building blocks are instantiated with PQC-variants.
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2 Single-Key Password-Based Credentials

This section presents the idea and security of the ZWY framework by Zhang et
al. [26], to which we refer to as single-key password-based credentials (skPBC).
We show that no skPBC can achieve security in the presence of server com-
promise, which we consider a crucial goal and which motivates our switch to
multi-key PBCs in the following section.

We start by presenting the definition of single-key PBCs before we present
the impossibility result. We adopted the ZWY framework to our notation for
consistency with our main result. For completeness, we summarize our editorial
changes to the ZWY syntax and security definitions in Appendix A and explain
that they do not change the technical aspects of [26].

Syntax. A (single-key) password-based credential system skPBC consists of five
algorithms (KGen, 〈RegU,RegS〉,Sign,Vf) used in two main phases – a registra-
tion phase and an authentication phase – and involves two parties: a server S
and a user U who wishes to authenticate to the server. In the single-key setting,
the server is assumed to have a single long-term key KGen(1λ) → (ssk, spk) that
is used to register and verify all users. In the interactive registration protocol
〈RegU(spk, uid, pw),RegS(ssk, uid)〉 → (ask;−) the user registers herself at the
server with a username uid and password pw from password space Dpw. The
server issues her a credential ask (= authenticated secret key) using a server key
ssk and stores her username in his database.

While the overall goal is to use PBC for user authentication, where U and
S engage in a challenge-response protocol, this is abstracted away in PBCs by
modelling a special type of authentication token τ . This token is created through
Sign(uid, ask, pw,m) → τ by the user for a (challenge) message m and username
uid, using the user’s credential ask and password pw. Verification is a secret-key
operation and allows the server with key ssk to verify whether the message m
was indeed signed by user uid. This is defined through Vf(ssk, uid,m, τ) → 0/1.

2.1 Security Model of ZWY [26]

Zhang et al. [26] proposed the security definition Existential Unforgeability under
Chosen Message and Chosen Verification Queries Attack (EUF-CMVA). This
definition comes with two independent winning conditions and guarantees, (1)
classic unforgeability if the adversary only knows the user’s password but none
of the keys (neither of server nor user) and (2) online unforgeability if the user’s
key got compromised.

Thus, this can be seen as a combined version of the strong and online unforge-
ability we described in the introduction, with one significant limitation though:
the ZWY model does not allow for server compromise in the strong unforgeabil-
ity game, thus we refer to their version as weak unforgeability. In fact, we show
that strong unforgeability is impossible in their setting.

Furthermore, their work does not capture offline unforgeability, again due to
the absence of server compromise, and we show that this is also impossible in
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Fig. 1. Weak and Strong (including the highlighted text) Unforgeability for skPBC.
The oracles use the values (i, uidi, aski, pwi) established during registration.

their setting. Note that the pw-hiding property is not needed in skPBC, as the
server does not maintain user-specific state which could depend on the password.

For consistency and ease of presentation, we split the EUF-CMVA game
along the two independent winning conditions which correspond to weak and
online unforgeability. In the following we only focus on the weak unforgeability
and the impossibility of strong unforgeability.

Weak Unforgeability. Weak unforgeability guarantees that the adversary cannot
forge a valid authentication token for a user if he does not know the user’s
credential ask. This provides standard security for users whose credential have
not been compromised.

This property is modelled as a game played between a challenger and an
adversary. The adversary chooses the usernames of all users. The challenger
registers them with randomly chosen passwords with the honest server. The
adversary is given the passwords of all users and can then ask arbitrary honest
users to sign messages of his choice (via OSign) and ask the server to verify
tokens of his choice (via OVf , recall that this is necessary as verify is a secret-
key operation). He can also corrupt users via the ORevCred oracle, which returns
the credential aski of a user i of his choice. The adversary wins if he can forge
an authentication token on a fresh message for a user whose credential he has
not obtained. The security experiment ExpweakUNF

A,skPBC(λ) is given in Fig. 1 and the
security definition is as follows:

Definition 1 (skPBC Weak/Strong Unforgeability). A skPBC scheme is
x-unforgeable, for x ∈ {weakly , strongly}, if for all PPT adversaries A, it holds
that Pr[ExpxUNF

A,skPBC(λ) = 1] ≤ negl(λ).

2.2 Impossibility of Strong (and Offline) Unforgeability

Lifting the security definition from weak to strong unforgeability is straightfor-
ward: to model server compromise, we give the adversary access to the server’s
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secret state – here ssk – after registering honest users. We require the same
unforgeability for users whose individual credentials he never learned (see Fig. 1).

However, we now show that achieving this notion is impossible in the single-
key setting. The idea of the attack is simple: once the adversary has learned the
server’s secret key, he re-runs the registration of an arbitrary honest user with a
password of his choice to obtain a valid user credential and creates tokens in her
name. More precisely, the following adversary A wins the strong unforgeability
game for skPBC with probability 1:

A(spk)

Pick uid1
r←− Duid, send (uid1, st) to the challenger, receive (st, pw1, ssk);

Pick pw′ r←− Dpw and run (ask′; −) ← 〈RegU(spk, uid1, pw′),RegS(ssk, uid1)〉
Choose m∗ r←− M; compute τ∗ ← Sign(uid1, ask′, pw′, m∗) and output(uid1, m

∗, τ∗)

Success Analysis of A: By the correctness definition it holds that Vf(ssk, uid1,
m∗,Sign(uid1, ask′, pw′,m∗)) = 1 since ask′ is obtained by running the registra-
tion protocol with (uid1, pw′) and the correct issuer secret key ssk. The adver-
sary did neither query OSign(1,m∗) nor ORevCred(1), and thus wins the security
experiment ExpstrongUNF

A,skPBC (λ) with probability 1.
The attack exploits the fact that a single key ssk is used to both register users

and verify their tokens, and never gets updated when a user registers. Hence,
the authentication cannot depend on any user-provided input, but solely on the
server key (and the secrecy thereof). This attack also extends to the context of
offline unforgeability since an adversary who knows ssk can forge authentication
tokens for any user without offline dictionary attacks.

3 Multi-key Password-Based Credentials

Motivated by the impossibility of strong unforgeability in the single-key setting,
we now introduce our concept of multi-key password-based credentials. The cru-
cial difference is that the server no longer has a single secret key to issue user
credentials and verify their tokens. Instead, he generates a user-specific verifica-
tion key for each registered user and uses that user-specific key when verifying
a user’s token. We modify the original PBC syntax to the multi-key setting and
then formalize the desired security properties.

Syntax. While the overall idea and concept remain the same in the multi-key
setting, we change how the server stores user-specific verification information.
We do not assume that the server has a single key pair (ssk, spk). Instead, in
the registration phase, the server will output a user-specific verification key avk
which allows him to verify the user’s authentication token.

Definition 2 (Multi-key Password-based Credential). A multi-key PBC
scheme mkPBC = (Setup, 〈RegU,RegS〉,Sign,Vf) with message space M, user-
name space Duid and password space Dpw is defined as follows.
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Setup(1λ) → pp: Outputs public parameters pp. We assume all algorithms get
the public parameters pp as implicit input.

〈RegU(uid, pw),RegS(uid)〉 → (ask; avk): An interactive protocol between U
with (uid, pw) ∈ Duid × Dpw and S. After successful registration, the user
outputs a credential ask, and the server outputs a user-specific verification
key avk.

Sign(uid, ask, pw,m) → τ : Generates an authentication token τ on message
m ∈ M and username uid, using ask and pw.

Vf(uid, avk,m, τ) → 0/1: Outputs 1 if authentication token τ is valid on uid
and m under avk and 0 otherwise.

We require all honestly generated authentication tokens using the correct combi-
nation of ask and pw to pass validation under the corresponding avk. A formal
correctness definition is given in Appendix C.

3.1 Security Model

We now provide a formal model for the following security properties motivated
in Sect. 1.1 and partially inspired by the ZWY model [26].

Strong Unforgeability: An adversary who does not know a user’s ask cannot
forge an authentication token for that user, even when he knows the user’s
password pw and the server’s verification key avk.

Online Unforgeability: An adversary who knows ask but not pw or avk can-
not forge an authentication token more efficiently than through online guess-
ing attacks, interacting with the server who has avk.

Offline Unforgeability: If the adversary knows both ask and avk of a user,
he has to conduct a brute-force offline dictionary attack on the password pw
in order to forge an authentication token.

Pw-Hiding: The avk does not leak any information about the underlying pw.

Optimal Security. We stress that all security guarantees are optimal for the
respective corruption setting, i.e., achieve the strongest level of full/online/offline
attack-resistance for each combination of corrupted keys and passwords. When
defining these properties through formal security models, it is important to give
the adversary therein as much “access” to honest parties as possible. In fact, this
was not properly captured in the ZWY model: therein corrupt users where not
allowed to register with an honest server, which allows entirely insecure schemes
to be proven secure. See Appendix A for a discussion of that shortcoming. Inter-
estingly, our choice of letting the server maintain independent key material for
all users, simplifies the modelling significantly: since the server in mkPBC does
not have any long-term secret key used during registration or verification, the
adversary can internally simulate the registration of any corrupt user (expressed
through any combination of uid and pw) that he wants. Thus, for our security
model (Fig. 2), it suffices to consider only a single honest target user and let the
adversary (internally) handle all other (corrupt) users in the system.
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Fig. 2. Security experiments and oracles for mkPBC. The overall goal of the adversary
in our three unforgeability games is the same, and is shown in the combined xUNF
experiment, where only the set of revealed keys and oracles differ depending on x.

Strong Unforgeability. Without knowing the user’s credential ask, we want the
strongest security in the sense that an adversary can forge tokens in the name of
an honest user uid with negligible probability only. This is modelled by letting
the challenger run the registration for an honest user uid with password pw,
obtaining ask and avk. It then hands avk, pw to the adversary, and grants A
access to a sign oracle OSign, which returns tokens created with ask (and pw) for
messages mi of his choice. The adversary wins if he can produce a valid token
τ∗ for a fresh message m∗ that verifies for the honest users uid and avk.

Definition 3 (Strong Unforgeability). A mkPBC scheme is strongly
unforgeable, if for all PPT adversaries A: Pr[ExpstrongUNF

A,mkPBC (λ) = 1] ≤ negl(λ).

Online Unforgeability. If the adversary knows the user’s high-entropy credential
ask it is impossible to achieve strong unforgeability anymore. As soon as A
has correctly guessed the user’s password, there is no security. The best we can
hope for is security against online attacks, relying on the server’s user-specific
verification key avk as a second defense, i.e. the honest server’s participation
must be required to verify each of A’s password guesses.

In the security game, this is modelled by giving A the credential ask of the
honestly registered user uid, but neither avk nor pw. Consequently, we grant
A access to avk through a verify oracle OVf that allows the adversary to verify
message-token pairs (mi, σi) of his choice under the server’s avk. Given that
the adversary knows ask, he can use OVf as a password test oracle, submitting
tokens generated for the correct ask and different password guesses pw′.

It might look surprising that we grant A access to a sign oracle too – as he
does know ask here – but this oracle is necessary since he does not know the
corresponding pw and must be able to observe valid tokens by the honest user.
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The adversary’s goal is still to forge an authentication token for the honest
user. The security definition needs to be weakened to online attacks though, and
states that the adversary cannot win the experiment significantly better than
through testing qVf +1 of the |Dpw| passwords where qVf is the number of queries
made to the OVf oracle. The additional constant 1 is added because the forgery
which A outputs in the end, can itself be seen as a password guess.

Definition 4 (Online Unforgeability). A mkPBC scheme is online unforge-
able, if for all PPT adversaries A it holds that Pr[ExponlineUNF

A,mkPBC(λ) = 1] ≤
qVf+1
|Dpw| + negl(λ), where qVf is the number of queries to the OVf oracle.

Offline Unforgeability. If both keys, ask and avk, related to an honest user are
compromised, the unforgeability solely relies on the strength of the user password
pw. The best we can hope for in this setting are offline attacks: the adversary can
test passwords by signing a message using the corrupted ask and password guess
pw′ and verify the resulting token using the key avk. As soon as the adversary
has correctly guessed pw, there is no secret left, and he can create tokens for
arbitrary messages. Offline attacks are unavoidable in this case, but we also want
them to be the best possible attack. This means that choosing a strong password
adds an additional (albeit weak) layer of security for the user.

To quantify the offline amount of work the adversary has to perform, we
took inspiration from security models of other password-based protocols [6–8]
and introduce an oracle OTestPW which takes the adversaries password guess pw′

and returns 1 if pw = pw′ and 0 else. The adversary’s goal stays the same –
forging an authentication token for the honest user – which he must not be able
to do significantly better than through testing qf of the |Dpw| passwords where
qf is the number of queries made to the OTestPW oracle.

Note that proving a concrete scheme to satisfy this property inherently
requires some idealized assumption such as the random oracle, which needs to
get invoked on the user’s password – otherwise we could simply not count the
offline password guesses.

Definition 5 (Offline Unforgeability). A mkPBC scheme is offline unforge-
able, if for all PPT adversaries A it holds that Pr[ExpofflineUNF

A,mkPBC(λ) = 1] ≤
qf

|Dpw| + negl(λ), where qf is the number of queries to the oracle OTestPW.

PW-Hiding. This property guarantees that a malicious server learns nothing
about the user’s password, or rather that a user-specific key avk – despite being
derived from a user password pw – does not leak any information about pw.

To model this property, we follow the classic indistinguishability approach.
The adversary chooses two passwords pw0 and pw1 for a user uid. The challenger
randomly chooses a bit b and runs the registration protocol for user uid and pwb,
yielding ask and avk. It hands avk to the adversary, whose goal is to output
the correct bit b better than through guessing. To model any possible leakage
through other parts of the PBC system, we also grant the adversary access to
an OSign oracle which is keyed with ask and pwb.
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Definition 6 (Pw-Hiding). A mkPBC scheme is pw-hiding, if for all PPT
adversaries A it holds that Pr[ExpPW−Hiding

A,mkPBC (λ) = 1] ≤ 1/2 + negl(λ).

4 Our Instantiation: Sign-Then-Encrypt Based Scheme

In this section, we describe PBCStE which securely realizes all security guaran-
tees described in Sect. 3. Our scheme is conceptually entirely different from the
one proposed by Zhang et al. [26], which essentially relied on a DL-based alge-
braic MAC. Our scheme is generic and soley relies on basic building blocks: a
signature scheme, encryption scheme and a pseudorandom function. In order to
prove security, we need two less common properties from the signature scheme
in addition to unforgeability: complete robustness and randomness injectivity.
We stress that both are natural assumptions and argue that they are satisfied
by standard signatures schemes such as Schnorr, DSA and BLS. We start by
defining the main building blocks and their required security properties before
describing our provably secure construction.

4.1 Building Blocks

We now introduce the building blocks needed for our construction, focusing on
the lesser known properties that we will require from the signature scheme.

Notation. Since our construction depends on a signature scheme with determinis-
tic key generation algorithm using explicit randomness, we write “y := A(x; r)”
to highlight that the output y is derived deterministically by algorithm A on
input x with randomness r. Conversely, when we write “y ← A(x)”, the output
y may be derived either deterministically or probabilistically by algorithm A
from input x. We utilize “s r←− S” to denote the uniformly random sampling of
a value s from the set S.

Pseudorandom Function. We require a secure PRF F : {0, 1}λ × X → Y. In
some of our security experiments, the adversary will be in possession of the PRF
key, and we still want unpredictability of outputs – we then resort to assuming
F to be a random oracle for the combined input domain of {0, 1}λ × X .

Public-Key Encryption. A public-key encryption (PKE) scheme ΠEnc :=
(KGenE , Enc,Dec) consisting of key generation (pkEnc, skEnc) ← KGenE(1λ), an
encryption c ← Enc(pkEnc,m) and decryption algorithm m ← Dec(skEnc, c). We
require ΠEnc to be indistinguishable against chosen-ciphertext attacks (IND-
CCA).

Signature Scheme. A signature scheme ΠSign := (SetupS ,KGenS ,SignS ,VfS)
with setup pp ← Setup(1λ), key generation (pkSig, skSig) := KGen(pp; r) for
randomness r, sign algorithm σ ← SignS(skSig,m), and verify algorithm b ←
VfS(pkSig,m, σ). Note that we make the randomness used in key generation
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explicit and assume KGen to be a deterministic function when given random-
ness r ∈ Rλ as input. Rλ is part of the public parameters pp and denotes the
randomness space. We require the scheme to be existentially unforgeable under
chosen-message attacks (EUF-CMA): It must be infeasible for an adversary given
pkSig from (skSig, pkSig) := KGen(pp; r) for random r

r←− Rλ and access to a sign
oracle to produce a valid signature on a fresh message. Our construction requires
two additional properties: complete robustness and randomness injectivity.

Complete Robustness. Géraud and Naccache [12] formalized the notion of com-
plete robustness which requires that it should be hard for an adversary to find
a message-signature-pair which verifies under two different public keys.

Definition 7 (Complete Robustness). A signature scheme ΠSign := (Setup,
KGen,Sign,Vf) achieves complete robustness (CROB) or is CROB-secure
if for pp ← Setup(1λ) it holds that for every PPT A, the probability
Pr[(pk, pk′,m, σ) ← A(pp) : pk �= pk′ ∧ Vf(pk,m, σ) = Vf(pk′,m, σ) = 1] is
negligible in λ.

Randomness Injectivity. The second property we need is randomness injectivity
which requires that the KGen algorithm is injective on the randomness space.
We call a signature scheme randomness injective if it is hard for an adversary to
find two distinct values r, r′ ∈ R, which, when given to KGen, map to the same
sk or pk. This also implies that for every public key there exists only one secret
key. In Appendix C, we give a formal definition of randomness injectivity.

4.2 Our PBCStE Protocol

The idea of our protocol – referred to as PBCStE – is surprisingly simple and turns
classic signature-based authentication into a secure mkPBC. In the following, we
describe the intuition and give the full description in Fig. 3.

Upon registration, the user generates a signature key pair (pkSig, skSig) and
sends the public key pkSig to the server. Such a key pair enables strong authen-
tication through signing (uid,m), but all security will be lost when an attacker
gets access to the user’s signing key. We therefore do not store (or even gen-
erate) the key normally, but derive it deterministically as (pkSig, skSig) :=
KGenS(pp;F (k, pw)) from a PRF key k and the user’s password pw. The user
now only stores the PRF key k and re-derives the signature key pair when she
wants to generate an authentication token.

This solution already satisfies strong and offline unforgeability as well as
password hiding. The challenge is to also guarantee online unforgeability, i.e.,
ensuring that the knowledge of the user’s key and an authentication token does
not allow to brute-force the password. So far, this isn’t achieved as an attacker
who knows k and a valid signature σ can mount an offline password test by
computing possible key-pairs (pk′

Sig, sk
′
Sig) from password guesses pw′ until he

has found the correct pw′ under which σ verifies.
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Preventing Offline Attacks. We prevent this offline attack by hiding the actual
signature σ in the token. Therefore, we let the user encrypt σ under an encryption
public-key pkEnc to which the server knows the corresponding secret key skEnc.
More precisely, (pkEnc, skEnc) is a key pair that the user normally generated upon
registration, where she keeps pkEnc as part of her credential, i.e., ask = (k, pkEnc)
and sends the secret decryption key to the server, i.e., avk = (skEnc, pkSig). Now,
only the server knowing skEnc can recover the signature from the authentication
token and verify its validity. Thus, this encryption finally turns the verification
into a secret-key operation, which is essential for the desired online unforgeability.
We stress that this additional and explicit encryption layer is essential for our
security and cannot be achieved from assuming secure channels between the user
and server: honest user’s can be subject to phishing attacks, and accidentally
send authentication tokens to a malicious server.

The Challenge of Proving Online Unforgeability. While the additional encryption
immediately removes the obvious offline attack, proving that this is sufficient to
achieve online unforgeability is not straightforward.

The challenge is that the adversary knows the PRF key k and can offline
attack the password and thereby recover the secret signing key (pkSig, skSig) :=
KGenS(pp;F (k, pw)). Once he knows the correct secret key there is no security
left. And indeed, we cannot rely on any unforgeability guarantees of the signature
for this proof. The reason why our scheme is still secure stems from the fact that
the adversary does not know which key is the correct one: he does not know pkSig

(this is part of the server’s secret key) nor any signature value (they are encrypted
under the server’s key). The only way for A to learn whether a recovered key is
correct, is to compute a signature and send it for validation to the server. The
crucial part in our proof is to show that every interaction with the honest server
for such a verification is bound to a single password guess only, ensuring the
desired online unforgeability.

To illustrate how the signature scheme could allow multiple password tests
in one interaction, consider a signature σ on m which verifies under two differ-
ent public keys pk1 and pk2 constructed from passwords pw1 and pw2. If the
adversary sends (m,σ) to the server and learns that the signature is not valid,
he concludes that the server’s public key is neither pk1 nor pk2 and has ruled
out the two passwords pw1 and pw2 with one interaction. Hence, we require that
every signature verifies under at most one public key which is achieved through
complete robustness. Another way how the signature scheme could allow mul-
tiple password tests is if the public key pk1 can be constructed from multiple
passwords pw1 and pw2. Therefore, we require that every password maps to a
unique secret key and unique public key. This is achieved if F is injective, and
if the signature scheme has randomness injectivity.

4.3 Security Analysis

In this section, we provide the main security theorems for our PBCStE scheme
and sketch their proofs. The detailed proofs are given in the full version of the
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paper [9]. Table 1 provides an overview of the different security properties and
the necessary assumptions on the building blocks of PBCStE.

Fig. 3. Our PBCStE scheme.

Theorem 1. If F is a secure PRF and ΠSign is an EUF-CMA secure signature
scheme, then PBCStE is strongly unforgeable.

Proof (Sketch). In the strong unforgeability game, the adversary knows the
verification key avk = (pkSig, skEnc) and password pw of a user uid, but not
the user credential ask = (k, pkEnc). He does have access to a sign oracle
OSign that creates tokens for ask, and A wins if he can create an authen-
tication token τ∗ which verifies under avk on a fresh message m∗. In this
proof, we can ignore the encryption, as the adversary knows skEnc, i.e., for all
tokens returned by OSign, he can recover the contained signature derived from
(pkSig, skSig) := KGenS(pp;F (k, pw)). Thus, the task of the adversary boils down
to forging a standard signature under the unknown skSig. This is infeasible if the
signature scheme is unforgeable (EUF-CMA) under the assumption that the
PRF-derived secret key is indistinguishable from a randomly chosen one. The
latter follows from the pseudorandomness of F which concludes our proof.

Theorem 2. If F is a random oracle, ΠSign is completely robust and random-
ness injective, and ΠEnc is CCA-secure, then PBCStE is online unforgeable.

Proof (Sketch). Here, the adversary knows the high-entropy credential ask =
(k, pkEnc) of a user uid, but neither her password pw nor the corresponding ver-
ification key avk = (pkSig, skEnc). Both are accessible through the OSign and OVf

oracle though. We must show that if A outputs a valid token τ∗ for a fresh message
m∗ for uid, he must have conducted a successful online-attack on the password. In
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this proof, we first show that, due to the CCA-security of encryption, the OSign ora-
cle does not give the adversary any information about the underlying signature.
Then, we argue that the adversary knows the PRF key k and may offline guess
passwords to create possible key pairs (pk′

Sig, sk
′
Sig) := KGenS(pp;F (k, pw′)) and

forge signatures under sk′
Sig. However, in order to create a valid authentication

token, he needs to use the correct secret key skSig. As the correct pkSig is part of
the secret avk and A never sees any signature σi, his only chance of learning which
key is correct, is by using the verify oracle OVf . Complete robustness of the sig-
nature ensures that every interaction with OVf only leaks whether pkSig = pk′

Sig,
allowing a single public-key guess per query. The injectivity of F and the random-
ness injectivity of ΠSign ensure that this pk′

Sig maps to a single password guess,
thus the adversary can only guess one password per interaction with OVf . This
concludes our proof.

Theorem 3. If F is a random oracle and if ΠSign is EUF-CMA secure and
randomness injective, then PBCStE is offline unforgeable.

Proof (Sketch). In the offline unforgeability game, the adversary now knows
all keys, i.e.,. ask = (k, pkEnc) and avk = (pkSig, skEnc) of a user uid. The
only secret left is her password pw, and we must show that forging a fresh
token m∗, τ∗ for uid requires to (at least) offline-attack the password. Note that
the adversary is given k here, but not the actual signature key (pkSig, skSig) :=
KGenS(pp;F (k, pw)), which still depends on the password. Thus the task of A
again boils down to forging a valid signature under pkSig. He could either aim
at forging the signature directly, i.e., without trying to recover the secret key, or
brute-force the password to compute skSig, as then creating a signature is trivial.
The former is infeasible if the signature is unforgeable, and the latter is bounded
by the number of password guesses if the signature is randomness injective (RI)
and F a random oracle. RI guarantees that there is only one value r = F (k, pw)
such that (pkSig, skSig) = KGenS(pp; r), i.e., there is only a single password that
leads to the correct key. Since the password pw was chosen uniformly at random
from Dpw, the adversary needs to query the random oracle F for each password
guess, and after qF queries his success probability is bounded by qF /|Dpw|.
Theorem 4. If F is a secure PRF, then PBCStE is pw-hiding.

Proof (Sketch). Recall that in the pw-hiding game the adversary receives a ver-
ification key avk = (pkSig, skEnc) that is either derived for pw0 or pw1, and his
task is to determine the underlying password. In our scheme, the only password-
dependent information is (pkSig, skSig) := KGenS(pp;F (k, pwb)). The adversary
knows pkSig, but not the PRF key k, and has access to the key through the sign
oracle for ask = (k, pkEnc). As k is chosen at random from {0, 1}λ, it imme-
diately follows from the PRF property that the adversary cannot distinguish
whether pkSig was created from r = F (k, pwb) or r chosen at random from Rλ.
Since in the latter case, the avk is independent of the password, the pw-hiding
property follows. Note that we do not require any property from the signature
scheme here, as the pw-hiding concerns confidentiality of the password instead
of unforgeability as the other three properties.
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Concrete Instantiation of Building Blocks. The requirements for both the PRF
and PKE are standard, so we only focus on how randomness injectivity and
complete robustness can be achieved by a signature scheme. In Appendix D, we
show that the DL-based standard signature schemes DSA [16], Schnorr [21] and
BLS [5] all achieve both properties (apart from being (EUF-CMA) unforgeable).

Notable signature schemes which are not completely robust include RSA,
GHR and Rabin signatures (see [17]). Nevertheless, Géraud and Naccache [12]
show a generic method to transform any signature scheme into a completely
robust scheme by appending a hash of the public key to the signature. This
transformation also preserves the unforgeability property of the scheme.

5 Related Work

While our work builds upon the novel PBC work by Zhang et al. [26], we also
put it in a bigger context of password-based authentication schemes.

Works Without Online Unforgeability. Isler and Küpcü [14] give an overview of
existing schemes where a user authenticates with the combination of a password
and a password-based credential. As in PBCs, the password-based credential
is not directly the user’s secret key but only a password-protected version of
it. They analyzed several existing works [2–4,13,15] and argued that most are
not resistant against server-compromise and proposed a new scheme. The main
drawback of all schemes (except DE-PAKE [15], discussed below) is that they do
not achieve the same strong online unforgeability as [26] and our work. Roughly,
when the password-based credential got compromised, their model only guar-
antees security when the adversary never sees any authentication token from
the honest user, thus excluding phishing attacks from their model. Our work
provides online unforgeability without assuming full secrecy of tokens.

DE-PAKE. Device Enhanced PAKE by Jarecki et al. [15] is a variant of
password-authenticated key exchange where a user and a server derive a shared
key based on the user’s knowledge of a strong key (stored on an auxiliary device)
and a password. Jarecki et al. show a generic solution which uses the Ford-
Kaliski method [11] to strengthen her password into a strong key using a PRF
and uses this strong key in an asymmetric PAKE protocol to derive a shared
key with the server. Our work uses the same PRF-based method to strengthen
a password into a key. Similarly to the work of Jarecki et al., we aim to achieve
optimal protection against online and offline attacks, albeit in the context of
pure user authentication instead of key exchange. Our PBCStE scheme uses sim-
pler building blocks than the solution presented in [15]. As our scheme allows
for non-interactive generation of challenge messages (e.g., by hashing the user
id with a current timestamp), we can even achieve the optimal solution of user
authentication with one message.
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6 Conclusion

We revisited the existing framework of password-based credentials from Zhang
et al. [26] and found that an important security property was missing – the
resistance to server compromise. We showed that achieving this level of security
is impossible in their single-key framework. While the attack is simple, it is of
practical relevance considering that data breaches happen frequently. This moti-
vated us to propose a new framework called multi-key password-based credentials
which remain secure in the presence of server compromise. We established formal
definitions for the optimal security levels and proposed a solution that utilizes
generic building blocks and satisfies all desirable security properties.

Given the simplicity of our construction, an immediate question is whether
our multi-key setting is somehow weakening the overall security guarantees, when
compared with the single-key ZWV version. We argue in Appendix B that the
opposite is true by showing how a secure mkPBC can be transformed into a
secure skPBC scheme.

A The ZWY Framework

In order to improve the clarity and the consistency with our framework of mkPBC
we made some minor changes to the syntax and security definitions of Zhang
et al. [26]. We explain the changes and why this does not affect the technical
result. Further, we highlight one of the shortcomings of the ZWY framework: It
does not consider the registration of corrupt users.

Changes to the Syntax. We made the following minor changes to the syntax
of ZWY [26]: (1) We do not explicitly describe the behaviour of the registration
protocol if a party aborts. (2) We do not enforce the registration protocol to
keep a registry Reg with uid’s but assume this happens on the application level.

Changes to the Security Experiments. The ZWY framework models pass-
word compromise through an oracle which reveals honest users’ passwords. Since
in the weak and strong unforgeability definition, the win condition of the adver-
sary is independent of his knowledge of pw, we did not model this oracle but
instead hand the adversary all user passwords directly.

Furthermore, the ZWY framework considers the forgery of a user who has
not registered with the server a valid attack, while we removed this condition
from the security experiment. We argue that this type of forgery is not a concern
as it will be caught on the application level. This change was made to focus on
attacks that are relevant to the security of the system.

No Registration Oracle. We note that the ZWY security model [26] has
another weakness: it does not allow corrupt users to register, which allows to
prove entirely insecure schemes secure (e.g. the server sends his secret key ssk
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to the user during registration). We stress that this is primarily an oversight
in the security model, and can be easily fixed by granting the adversary such
registration access. We do not see any issue in the concrete skPBC scheme pro-
posed in [26] and conjecture that it can be proven secure in this adjusted security
model.

B Comparison of mkPBC and skPBC

Given the simplicity of our construction, an immediate question is whether our
multi-key setting is somehow weakening the overall security guarantees, when
compared with the single-key ZWV version. We show that the opposite is true by
showing how a secure mkPBC can be transformed into a secure skPBC scheme.
Our transformation additionally requires symmetric authenticated encryption
(AE) scheme, thus can only be seen as a relativized comparison.

Table 1. Overview of the different security properties and the security assumptions
needed for the building blocks of our PBCStE scheme. CROB stands for complete robust-
ness and RI is randomness injectivity.

Security Property Leaked Values Assumptions

User Server

ask = (k, pkEnc) pw avk = (pkSig, skEnc) F Signature Encryption

Strong Unforgeability × � � Secure PRF Unf ×
Online Unforgeability � × × RO CROB & RI CCA

Offline Unforgeability � × � RO Unf & RI ×
Pw-Hiding × × � Secure PRF × ×

The high-level idea of the transformation is as follows: In order to transform
the mkPBC to have only one key, the server outsources storage of the user-
specific verification keys avk to the users. In the tranformation, the server in
the skPBC scheme has a single long-term key ssk which is the secret key kAE of
an AE scheme. In the registration phase, the server and user run the mkPBC
registration, but instead of letting the server store the obtained avk it returns its
encryption c ← AE.Enc(kAE, (uid, avk)) to the user. During authentication, the
user passes c back to the server by appending it to the authentication token τ
which is computed via the mkPBC process. The server can decrypt c to obtain the
verification key avk and verify the user’s token. For the security of the scheme, it
is crucial that the user does not learn avk from c otherwise she could run offline
attacks. Furthermore, it is important that users cannot pass the valid ciphertext
of a different verification key avk′ to the server as this would allow forgeries.
Both, confidentiality and integrity, is achieved by using a secure authenticated
encryption scheme.

In the full version, we prove that his transforms yields an online and weakly
unforgeable skPBC, if mkPBC is online and strongly unforgeable and AE is a
secure authenticated encryption scheme.
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C Formal Definitions

In this section, we give formal definitions for the correctness of a mkPBC scheme,
and for the randomness injectivity of a signature scheme.

Definition 8 (Correctness of mkPBC). A mkPBC scheme is correct, if for all
pp ← Setup(1λ), (uid, pw) ∈ Duid × Dpw, m ∈ M it holds that: Vf(uid, avk,m,
Sign(uid, ask, pw,m)) = 1 where (ask; avk) ← 〈RegU(uid, pw),RegS(uid)〉.
Definition 9 (Randomness Injectivity). A signature scheme Π := (Setup,
KGen,Sign,Vf) is called randomness injective if for pp ← Setup(1λ) with Rλ ∈
pp, it holds that for every PPT A, the following probability is negligible in λ:

Pr[(r, r′) ← A(pp) : r, r′ ∈ Rλ ∧ r �= r′ ∧ (sk = sk′ ∨ pk = pk′)
for (pk, sk) ← KGen(pp; r), (pk′, sk′) ← KGen(pp; r′)]

D Signatures with Complete Robustness

In this section, we show that DSA [16], Schnorr [21] and BLS [5] signatures
achieve complete robustness and randomness injectivity.

Theorem 5. The DSA, Schnorr and BLS signature scheme all achieve ran-
domness injectivity information-theoretically. DSA and Schnorr are CROB-
secure assuming a collision-resistant hash function, and BLS is information-
theoretically CROB-secure.

Proof. For the randomness injectivity, observe that DL-based signature schemes
where it holds that pk = gsk for sk

r←− Zq achieve randomness injectivity by
setting Rλ = Zq and (gr, r) := KGen(pp; r).

Since the complete robustness only considers the verification algorithm we
can ignore the key generation and signing algorithms. We argue about complete
robustness for each of the signatures individually:

DSA: In DSA, a signature σ := (r, s) verifies for m under pk if F (gH(m)·s−1 ·
pkr·s−1

) = r for two hash functions F and H. Thus, σ verifies under a second
public key pk′ only if F (gH(m)·s−1 · pkr·s−1

) = F (gH(m)·s−1 · (pk′)r·s−1
) which

happens only with negligible probability if F is collision resistant.
Schnorr: In Schnorr signatures, a signature σ = (r, s) verifies under pk for

message m if H(gs · pk−r,m) = r for a hash function H. Thus, σ verifies
under a second public key pk′ only if H(gs · pk−r,m) = H(gs · (pk′)−r,m)
which happens only with negligible probability if the hash function H is
collision resistant.

BLS: In BLS signatures, a signature σ verifies under pk for message m if
e(σ, g) = e(H(m), pk). Thus, it verifies under a second public key pk′ only if
e(H(m), pk) = e(H(m), pk′). But this means that pk = pk′ and the signature
only verifies under a single public key pk = pk′.
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Abstract. The KHAPE-HMQV protocol is a state-of-the-art highly effi-
cient asymmetric password-authenticated key exchange protocol that
provides several desirable security properties, but has the drawback
of being vulnerable to quantum adversaries due to its reliance on dis-
crete logarithm-based building blocks: solving a single discrete logarithm
allows the attacker to perform an offline dictionary attack and recover the
password. We show how to modify KHAPE-HMQV to make the protocol
quantum-annoying : a classical adversary who has the additional ability
to solve discrete logarithms can only break the protocol by solving a
discrete logarithm for each guess of the password. While not fully resis-
tant to attacks by quantum computers, a quantum-annoying protocol
could offer some resistance to quantum adversaries for whom discrete
logarithms are relatively expensive. Our modification to the protocol is
small: encryption (using an ideal cipher) is added to one message. Our
analysis uses the same ideal cipher model assumption as the original
analysis of KHAPE, and quantum annoyingness is modelled using an
extension of the generic group model which gives a classical adversary a
discrete logarithm oracle.

Keywords: password-authenticated key exchange ·
quantum-resistant · quantum-annoying · generic group model

1 Introduction

A wide-spread method for authentication in client-server situations involves a key
exchange where the server is authenticated through a public key infrastructure,
while the client authenticates themselves with a password by transmitting the
password directly over the encrypted channel. This method is suboptimal since
the user’s password is exposed to the server.

A password authenticated key exchange (PAKE) protocol enables two parties
to perform a key exchange, authenticated using mutual knowledge of a shared
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password, without revealing the password to the network or to each other. The
setting of PAKEs allows two kinds of attacks: online attacks (the adversary
interacting with either party), and offline attacks (the adversary operating locally
based on what is has observed from previous online interactions). Password-
based protocols are always vulnerable to online dictionary attacks, where the
adversary can rule out one password guess with each online interaction with
a party. The goal of a PAKE is to ensure that offline dictionary attacks are
infeasible, for example because of an intractability assumption. While PAKEs
have been known for decades, there was little progress in adoption for many
years, but there is renewed interest in adoption of PAKEs via a variety of recent
and ongoing standardization efforts [1,2,6,18,19].

This paper focuses on KHAPE [10], a compiler that turns a key hiding
authenticated key exchange (KH-AKE) and a PAKE into an asymmetric PAKE
(aPAKE). Asymmetric PAKEs improve upon regular PAKEs by forcing an
attacker to perform an exhaustive search on the password even after server com-
promise, since the value stored by the server cannot be used to impersonate the
client. The OPAQUE framework [13] introduced the notion of strong asymmet-
ric PAKEs (saPAKE), which further guarantees that no pre-computation can
be performed to aid in the exhaustive search for the password in the case of
server compromise. This is achieved by combining an oblivious pseudo-random
function (OPRF) and a PAKE.

Most PAKEs are based on the hardness of solving the discrete logarithm prob-
lem (see [11] for an overview), making them vulnerable to attacks by quantum
computers, thus motivating the question of building PAKEs that are quantum-
resistant. The obvious answer is to build new PAKEs that rely on post-quantum
intractability assumptions, and post-quantum PAKEs are starting to emerge
in the literature. These new PAKEs (e.g., see [4]) are based on key encapsu-
lation mechanisms to match the standardized quantum-secure encryption [15].
However, there may be other interim options requiring fewer modifications by
augmenting existing protocols.

Quantum-Annoying PAKEs. During the CFRG PAKE standardization process
in 2019, it was observed [20] for one of the Diffie–Hellman-based candidates that
even if an attacker could solve discrete logarithms, they could not immediately
recover the password. Instead, an attacker seemed to have to do a discrete log-
arithm for each guess of the password even during an offline dictionary attack:
this property was named “quantum-annoying”. If solving such a problem remains
reasonably expensive, then a moderate level of security can still be achieved.

Eaton and Stebila [7] developed a formalization of the quantum-annoying
property for PAKEs by considering a classical adversary working in the generic
group model who is given the additional power of a discrete logarithm oracle.
They showed that the base version of the symmetric PAKE protocol CPace [3]
was quantum-annoying in the generic group model. One main characteristic of
CPace that lead to it being quantum-annoying is that the password π shared by
the client and server is used to derive a generator gπ of the group, and then a
Diffie–Hellman key exchange is performed using that generator (gxy

π ). But from
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the perspective of an adversary who only sees Diffie–Hellman public keys (gx
π

and gy
π), no information is gained about the password π since for each π′ there

is an x′ such that gx′
π′ = gx

π.

Our Contributions. Whereas CPace is a symmetric PAKE, the KHAPE-HMQV
protocol constructed by the KHAPE compiler [10] is an asymmetric PAKE, so
compromise of a server using KHAPE-HMQV does not enable the adversary to
impersonate a user without first performing an offline dictionary attack. How-
ever, the protocol is not quantum-annoying: after seeing just a single transcript,
a single discrete logarithm computation suffices to enable an offline dictionary
attack to recover the user’s password. We address this vulnerability by presenting
the QA-KHAPE protocol, a quantum-annoying variant of KHAPE-HMQV. As
shown in Fig. 1, our modifications entail encapsulating an additional key into the
server-stored credentials, which is later used by the principals to encrypt their
Diffie–Hellman key-pairs prior to exchanging messages. This effectively means
that each guess of the password causes the transcript to decrypt (under a sym-
metric key dependent on the password) to a different pair of Diffie–Hellman
public keys, so a new discrete logarithm must be performed each time.

The changes to the protocol require only minimal computational and commu-
nication overhead, with the same number of rounds as KHAPE-HMQV and only
a single additional ideal cipher ciphertext (increasing the server-client cipher-
text from three to four elements). The client-server communication remains
unchanged, and the protocol requires two additional ideal cipher computations,
one encryption, and one decryption.

We show that QA-KHAPE is quantum-annoying following the methodology
of [7]: the adversary is a classical adversary in the generic group model with the
addition of a discrete logarithm oracle. In Sect. 3.1, we define a security game
in the generic group model tailored to capturing the core quantum annoying
property of the QA-KHAPE protocol. In Sect. 4, we apply this to show that
QA-KHAPE is secure in a quantum-annoying variant of the standard Bellare–
Pointcheval–Rogaway (BPR) security model for asymmetric password authenti-
cated key exchange.

Limitations. Just as in the original security proof of KHAPE by [10], our analysis
also relies on the ideal cipher assumption. Care must be taken for an instantiation
of the IC, which is discussed in [10, Section 8].

Further, we wish to highlight for the reader that the “quantum annoying”
security notion is an intermediate notion below fully quantum-resistant. One
limitation of the quantum annoying security notion is that it has a narrow view
of quantum capabilities: by using a formalism in the generic group model with
a discrete logarithm oracle, we are effectively assuming that the only quantum
operation an adversary will do is run Shor’s algorithm, which is certainly less
than the full power available to a polynomial time quantum computer.

Even just considering security against quantum computers running Shor’s
algorithm, a protocol “secure” in the quantum-annoying model is still vulnerable
to attacks by quantum computers, it is just that the attack scales in the size of



Making an Asymmetric PAKE Quantum-Annoying 171

the password space. This leads to the question of the cost of computing a discrete
logarithm on a quantum computer. While it is impossible to predict the efficiency
of quantum computers in the far future, current research suggests that the first
generations of quantum computers capable of solving cryptographically relevant
discrete logarithm problems will require significant resources in order to do so
[8,9,16,17]. These estimates are undoubtedly coarse and may be off by several
orders of magnitude, but it is plausible that even for early cryptographically
relevant quantum computers, computing a single discrete logarithm will not be
cheap, and that computing millions of discrete logarithms to find the password
in a quantum-annoying PAKE may be prohibitively expensive.

More recently, a preprint has examined the “multiple discrete logarithm”
problem induced by the quantum annoying model [12]. In this work, the authors
show that it is possible to (asymptotically) solve m discrete logarithm prob-
lems (in a generic group) with a quantum computer more efficiently than m
times the cost of a single Shor’s instance. In particular, their algorithm solves
m discrete logarithms with around log m times fewer quantum group opera-
tions (if m = Ω(log p), where p is the size of the group). This comes at the
expense of requiring large quantum memory to compute everything simultane-
ously. Whether this represents a concrete improvement to the ability of an adver-
sary to break quantum annoying security (and if so, how large the grouping m
should be) is an interesting open question. Our proofs bound the adversary’s
success probability in terms of the number of discrete logarithm oracle queries
made. If it is a practical improvement to group such queries, this does not affect
our proofs, only how the induced bounds translate to real-world estimates of
adversary cost.

2 Preliminaries

2.1 Quantum Annoying-ness in the Generic Group Model

In the normal generic group model there is a multiplicative public representation
of group elements taken uniformly from {0, 1}κ, and an additive secret repre-
sentation in Zp. The public representations have no intrinsic structure, and so
any information about the group is obtained through the group operation oracle.
Let 〈g〉 = G be a generic group of size p with group operation ◦. When gw ◦ gv

is queried, for example (gv, gw) �→ gv+w, a table Tggm is used to retrieve the
secret representations of gv and gw, v, w ∈ Zp. Then v + w (mod p) is the secret
representation of gv+w. If gv+w has already been given a public representation,
that is returned. Otherwise, a uniformly random string is sampled from {0, 1}κ,
assigned as a new public representation to gv+w in the table Tggm, and provided
back to the querier. Similarly, the discrete logarithm oracle Dlog : G×G → Zp

takes as input two group elements and outputs the discrete logarithm. The query
Dlog(gv, gw) can be responded to by looking up gv and gw in Tggm and returning
w · v−1 (mod p).

The generic group model is a powerful tool, but limited in its ability to reason
about whether the adversary’s interactions with the discrete logarithm oracle are
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sufficient to determine Dlog(g, gt) for a specific group element gt. Naturally, if
they have made exactly this query, the discrete logarithm is known. But other
queries, such as Dlog(g, g2t ), are also sufficient to make Dlog(g, gt) knowable.

The framework of [7] simulates the generic group model in such a way that
such specific statements can be made. Let G1, G2, . . . Gμ be a collection of (pub-
lic representations of) group elements whose discrete logarithm (with respect to
the group generator g) are of potential interest to the adversary. When we main-
tain the group, rather than imbuing these group elements with specific secret
representations in Zp, we instead denote each as a formal independent variable
χ1, . . . , χμ. Group operations now correspond to addition over a vector space of
dimension μ+1. For example, in computing (G1◦G1)◦G2 we would calculate the
secret representation as 2χ1 +χ2 and give this a unique public representation in
{0, 1}κ. Thus, secret representations can now be written as a linear combination
of the χi variables, i.e., α0 +

∑
i αiχi.

Thinking about how these secret representations interact with the Dlog

oracle is how we can start to reason about what discrete logarithms are. Say the
adversary queries Dlog(A,B), and the secret representation of A is α0+

∑
αiχi

(respectively with β for B). If the adversary is given the response δ (so that
Aδ = B), this imposes a constraint on our variables. Specifically, it says that
δ (α0 +

∑
αiχi) = β0 +

∑
βiχi, which we can rewrite as

μ∑

i=1

(δαi − βi)χi = β0 − δα0. (1)

This linear constraint lets us define an equivalence relation: if two secret repre-
sentations are the same ‘modulo’ the linear constraints imposed by responses to
Dlog, they should have the same public representation. Consequently, if, mod-
ulo these constraints, a secret representation χi is equivalent to some a ∈ Zp,
then Dlog(g,Gi) has taken on a definite value a, whether or not it was actually
queried. Otherwise, it can still take on any possible value.

By taking the coefficients of the χi variables in Eq. 1 we can construct a
matrix D and a vector �r (we write vectors as column vectors), so that the set
of constraints is easily summarized as D�χ = �r. Similarly, a secret representation
a0 +

∑
aiχi can be written as the pair (a0,�a). In more detail, the equivalence

relation can be defined as follows:

Definition 1. For group elements ga, gb with secret representation (a0,�a) and
(b0,�b), we say that ga is (D,�r)-equivalent to gb if there exists an �ω ∈ Z

qD
p such

that �ωT D = �aT −�bT and �ωT�r = b0 − a0.

Note that this is indeed an equivalence relation (reflexivity is proven by taking
�ω = �0, symmetry is proven by taking −�ω, and transitivity is proven by taking
�ω1+�ω2). The reason that this definition gives us what we want is that when it is
satisfied, we have that b0−a0 = �ωT�r = �ωT D�χ = (�aT −�bT )�χ = �aT �χ−�bT �χ, telling
us that a0 +

∑
aiχi = b0 +

∑
biχi, as we expect. We can now describe how the

G and the Dlog oracle are simulated in full detail. Note that the simulation
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is not efficient [7, Sec. 4], since the simulation requires to search through all
previous queries to check if a linear relationship exists. However, the purpose of
the framework is to give an information-theoretic bound (in the generic group
model) relative to the number of discrete logarithm queries to define a specific
discrete logarithm, thus the exact efficiency is not relevant.

Dlog(gV , gW ): If gV or gW do not exist in Tggm, then abort. Otherwise, let
(v0, �v), (w0, �w) be secret representations of gV , gW respectively. Sample a random
vector �s such that D�s = r and compute δ = (w0 + 〈�w,�s〉)/(v0 + 〈�v,�s〉). Add the
row δ�vT − �wT to D, and value w0 − δv0 to vector �r. Then δ is the discrete
logarithm that is returned. This corresponds to [7, Alg. 2].

◦(gV , gW ): If gV or gW do not exist in Tggm, then abort. Otherwise, for the
secret representations (v0, �v), (w0, �w), let (z0, �z) = (v0 + w0, �v + �w). If z appears
in Tggm, return the corresponding public representation. Otherwise, check if there
exists an entry (f0, �f) of Tggm that is (D,�r)-equivalent to (z0, �z). If so, return
the public representation of that entry. If no such (D,�r)-equivalent entry exists,
sample a new public representation, add the entry Tggm[gZ ] = (z0, �z) and return
gZ . This corresponds to [7, Alg. 5].

With this setup, we can prove Lemma 1, which is a generalization of [7,
Lemma 1] and an instantiation of which is used in a game hop in Sect. 3.2.

Lemma 1 (Unique Solutions). Let ga and gb be public representations of
group elements, with corresponding secret representations (a0,�a), (b0,�b). Let
(D,�r) be the current set of constraints on discrete logarithms. Then the dis-
crete logarithm of gb with respect to ga is defined if and only if [�bT |b0] is in the

rowspace of the matrix
[−D �r

�aT a0

]

.

Proof. The discrete logarithm is defined if and only if there exists an α such
that gα

a is (D,�r)-equivalent to gb. By definition, this is the same as the existence
of α, �ω such that �ωT D = α�aT −�bT , and �ωT�r = b0 − αa0. We can rewrite this

relation as
[
�bT | b0

]
=

[−�ωT D + α�aT | �ωT�r + αa0

]
=

[
�ω
α

]T
[−D �r

�aT a0

]

.

This establishes that if the discrete logarithm is defined, [�b | b0] is indeed in
the rowspace, and if it is in the rowspace that the discrete logarithm is defined
(and equal to the α value that is the scalar for the ‘a’ row). �	
Corollary 1. Let gb be the public representation of a group element and (b0,�b)
the corresponding secret representation. Let g be the generator of the group, which
has secret representation (1,�0). Then the discrete logarithm of gb with respect to
g is defined if and only if �b is in the row span of D.

Proof. We apply Lemma 1 with �a = �0. Since the zero vector cannot affect the
row span, we can conclude that �bT must be in the row span of D.

For the other direction we know that there exists some �ω such that �ωT D = �bT .
Then we claim that the discrete logarithm between g and gb is b0 + �ωT�r. This is
because we want (b0 + �ωT�r,�0) to be (D,�r)-equivalent to gb, and indeed we can
see that −�ω satisfies −�ωT D = −�bT and −�ωT�r = b0 − (b0 + �ωT�r) as desired. �	
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2.2 Security Model for Asymmetric PAKE

The BPR00 model [5] for security of an asymmetric password-authenticated
key exchange protocol is defined by the interaction of a set of instances Πi

P of
principals P , which are either a client C or server S, and i denotes the i-th such
instance. Each principal takes as input a long-lived (LL) secret. The client’s
LL secret is a password π; the server’s secrets are the credentials credS [C] that
are established during a Registration phase. The model further defines a set
of oracles that correspond to an adversary’s interaction with principals that
run the protocol in question. The adversary may receive a passive transcript
(Execute queries), or actively engage (Send queries) in the communication.
They may further request the session key (Reveal queries) or corrupt instances
(Corrupt queries) which effectively returns the principal’s long-lived keys (weak
corruption). The security is defined by the adversary’s probability to decide if
they received a session key or a random string after submitting a Test query
to a fresh instance. In the setting of quantum-annoying-ness, fresh means that
neither the instance nor any partnered instance may be corrupted. A challenge
bit that is sampled uniformly random before any interaction takes place decides
which of the two (i.e., real-or-random) is the case. In the generic group model, the
adversary additionally gets access to the group operation and discrete logarithm
oracle (cf. Sect. 2.1). A protocol is quantum-annoying in the BPR00 model, if
the adversary’s advantage to output the challenge bit is bounded by the number
of Send queries (qSend) and discrete logarithm queries (qDlog),

AdvQA-BPR
Protocol(A) =

∣
∣
∣
∣Pr [A guesses challenge bit] − 1

2

∣
∣
∣
∣ ≤ qSend + qDlog

N
+ ε , (2)

with a password space of size N and ε negligible in the security parameter κ.

2.3 KHAPE-HMQV

The KHAPE compiler [10] transforms a key-hiding authenticated key exchange,
a PAKE, a random oracle, and an ideal cipher into an asymmetric PAKE which
provides key establishment with key integrity and confirmation, mutual authen-
tication and forward secrecy. A highly efficient instantiation [10, Fig. 14] uses
the HMQV [14] protocol, the security of which is based on the computational
Diffie–Hellman problem.

KHAPE is split into a registration and an aPAKE phase. During registra-
tion the server generates the KH-AKE key-pairs (a,A := ga), (b,B := gb),
partially encrypts them using the password as a key, e ← IC.E(π, a,B), and
stores the ciphertext along with (A, b). All other values are discarded. In the
aPAKE phase the server generates a key-pair (y, Y ) and sends (Y, e) to the
client. The client decrypts e using their password and generates a key pair
(x,X). A Diffie–Hellman session is computed from (a, x,B, Y ) which is used
to derive a key-confirmation value τ , and later the session key. The key confir-
mation is sent along with the value X to the server, who computes the equivalent
Diffie–Hellman session from (b, y, A,X), verifies the key confirmation, and either
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Fig. 1. QA-KHAPE: quantum-annoying variant of KHAPE-HMQV [10, Fig 14], with
our changes compared to KHAPE-HMQV highlighted.

computes a session key and a new key confirmation (which is send to the client),
or sets both to ⊥. The client checks the key confirmation and computes the
session key, or sets it to ⊥.

In the quantum-annoying setting, KHAPE-HMQV is susceptible to an offline
attack on the password using a single discrete logarithm query. Given a transcript
(e, Y,X, τ) an adversary can determine a list of possible values for KH-AKE
key-pairs: each password guess πi gives a pair of candidate values (ai, Bi) ←
IC.D(πi, e). Additionally, they can query the discrete logarithm oracle once on
the value X, receiving x. Then for each password guess (i.e., for each ai, Bi), they
can verify if the Diffie–Hellman completion results in the key-confirmation value
τ from the transcript, effectively providing an offline method to check passwords.

2.4 Quantum-Annoying KHAPE-HMQV

Our QA-KHAPE protocol, presented in Fig. 1, is a quantum-annoying aPAKE.
The construction is based on KHAPE-HMQV and requires only minimal
changes, which are highlighted in the figure. During the registration phase the
server generates an additional secret key sk which is then encrypted using the
π and stored as part of the credentials. Correspondingly, during the aPAKE
phase the client decrypts e obtaining this key sk, which they use to encrypt the
ephemeral value X, resulting in the ciphertext c, which is then sent to the server.
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Briefly speaking, QA-KHAPE is quantum-annoying because an adversary receiv-
ing a transcript must now solve a discrete logarithm for every decryption of c or e
to verify if a password guess was correct. This comes at the cost of an additional
secret key to be stored as credentials, which increases the size of first message
from server to client. The client has to perform one additional decryption and
encryption, while the server has to perform one additional decryption.

Security. The QA-KHAPE protocol is a quantum-annoying aPAKE in the
generic group (cf. Sect. 2.1), ideal cipher and random oracle model and features
mutual authentication and key confirmation. No perfect forward secrecy can be
achieved in the setting of quantum-annoying for KHAPE-HMQV, because com-
promise of any party releases a static secret that, together with the public value e,
removes all the ambiguity on the group elements in question (i.e., A,B,X). This
enables an offline attack on the password using only a single discrete logarithm
query. Note that a quantum-annoying PAKE achieving perfect forward secrecy
would mean to establish a secure, authenticated key without taking advantage
of the password or credentials, which seemingly contradicts the main point of a
PAKE; establishing this formally is an interesting question for future work.

All other properties of KHAPE-HMQV are preserved, for example, security
based on the computational Diffie–Hellman assumption against purely classical
attackers, and thus a full fall back to security of KHAPE-HMQV. The quantum-
annoying security is summarized in our main contribution, Theorem 1.

Theorem 1. Let G be a cyclic group of size p, H1,H2 be random oracles and
IC1, IC2 ideal ciphers with ciphertext space {0, 1}n1 , {0, 1}n2 respectively. Let
qSend, qExec, qHi

, qICi
, q◦, qDlog be the number of queries to the QA-BPR oracles,

and let εprf an adversary’s chance to distinguish prf from a random function. Let
N be the size of the password space for π. Then the advantage of an adversary
to win the QA-BPR game for the QA-KHAPE protocol in Fig. 1 is bounded by

AdvQA-KHAPE
QA-BPR ≤ qDlog + qSend

N
+ ε (3)

ε :=
qExec + qSend

ε−1
prf

+
(qIC1 + qIC2 + q◦)2 + (qDlogq

2
◦)

p
+

qExec

2n1
+

qExec + qSend

2n2

+
qSend · (q◦ + 1)

p
+

(2qIC1 + qIC2)
p

+
(qIC1)

2κ
+

(2q2IC1
+ q2IC2

)
p

+
(q2IC1

)
2κ

+
qH2

p

We prove Theorem 1 in two steps: first, in Sect. 3.1, we introduce
the KHAPECORE-game that captures the quantum-annoying property of
QA-KHAPE in the generic group model. Briefly speaking, the game models the
aPAKE without key-confirmation values and is defined such that any adversary
can only win if they query the correct Diffie–Hellman completion to the ran-
dom oracle. This allows us to quantify the number of discrete logarithm queries
required, and to prove that every password guess requires either an online inter-
action, or a respective discrete logarithm query. Formally, this is captured in



Making an Asymmetric PAKE Quantum-Annoying 177

Theorem 2 which we prove in Sect. 3.2. Second, we reduce the QA-BPR-security
of the QA-KHAPE protocol to the KHAPECORE-game, which is represented by
Theorem 1 and which we prove in Sect. 4. Together, these yield the proof of the
quantum-annoying property.

3 Generic Group Security: KHAPECORE

We define a game KHAPECORE that captures the quantum annoying property
of the protocol in Fig. 1, namely the indistinguishability of the keys k1, k2 from
random, which translates the approach of [7, Sec 3] into the setting of an aPAKE.

3.1 Security Game

The game is defined over a set [L] registrants; each l ∈ [L] is associated with
static, secret variables πl, skl, al, Bl and a static, public variable el. The vari-
ables are set on initialization of the KHAPECORE-game via the Registration

oracle, along with uniformly random sampled challenge bit s. Additionally, each
registrant l is associated with a counter ctrl initialized to 0 corresponding to
the interaction with the lth set of static variables. Each interaction is called an
instance. The adversary may interact with an arbitrary number of registrants and
instances through a set of oracles, eventually allowing the adversary to obtain
the keys k1, k2. The challenge bit determines if these keys are real (if s = 0), in
which case they are computed from Diffie-Hellman session, or random (if s = 1).

Interface. The oracles take as input a value l matching a set of static variables
which are used by the game to respond to a query. Ephemeral variables for an
instance (l, ctrl) are stored for consistent use by the other oracles. The Passive-

Exec oracle (cf. Algorithm 2) corresponds to a passive execution of the protocol
in Fig. 1, excluding the key confirmation values. The ActiveC or ActiveS ora-
cles (cf. Algorithms 4 and 5), correspond to interacting with, or impersonating,
either party in the QA-KHAPE protocol, and thus at most one of the two may be
queried for each instance. The Active oracles compute, depending on the value
of the challenge bit s, either a key value kl,ctrl,i from the input and the static
variables or output a uniformly random string. The GetStatic oracle mimics
the corruption of parties, which causes the game to reprogram the outputs of the
Active oracles into the respective positions before it returns the secret static
variables. Finally, the adversary is given access to the random oracles H1,H2,
the block-ciphers IC1, IC2 modeled by ideal ciphers and access to an interface
of the generic group model.

Output. The KHAPECORE-game outputs 1 if the adversary’s output matches
the challenge bit s or if they if they query H2(l,m,X, Y, σl,C) (respectively
H2(l,m,X, Y, σl,S)) after submitting a query ActiveC(l, e, Y ) (respectively
ActiveS(l, c)), but before querying GetStatic(l) on the instance. The adver-
sary is then said to win the game. The restriction on the GetStatic oracle
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mimics the fact that forward secrecy cannot be achieved in the quantum annoy-
ing model. The conditions under which the game outputs 1 are analogous to the
winning conditions of [7, Sec. 3.1].

Theorem 2 (Security of KHAPECORE). Let qAEC
, qAES

be the number
of queries to the Active and qPE the number of queries to the PassiveExec

oracle. Let qICi
, qHi

, q◦, qDlog be the number of queries to the ideal cipher, random
oracle, group operation and discrete logarithm oracles respectively. Then A’s
probability to win the KHAPECORE-game is bounded by

Pr [KHAPECORE ⇒ 1] ≤ 1
2

+
qAEC

+ qAES
+ qDlog

N
+ εCORE (4)

εCORE :=

// G0 � G1

(qIC1 + qIC2 + q◦)2 + (qDlogq
2
◦ )

p
+

// G3 � G4

(qAEC
+ qAES

) · (q◦ + 1)
p

+
qPE

2n1
+

qPE + qAE

2n2

// G2 � G3

+
(2qIC1 + qIC2)

p
+

(qIC1)
2κ

+
(2q2IC1

+ q2IC2
)

p
+

(q2IC1
)

2κ

// G1 � G2

.

(5)

3.2 Proof of Theorem 2

The proof of Theorem 2 shows, informally, that the adversary’s chance to win
the KHAPECORE-game is limited by their ability to query the Dlog oracle



Making an Asymmetric PAKE Quantum-Annoying 179

on the correct group element, or any of the Active oracles on a ciphertext
encoding a group element the discrete logarithm of which is known to them. In
the KHAPECORE-game, the group elements in question are computed as

σC =
(
Y · BhY

)x+hX ·a
=

(
X · AhX

)y+hY ·b
= σS , (6)

where computing σC , σS depends on either the knowledge of Dlog(g,B) or
Dlog(g,X). The framework presented in Sect. 2.1, allows us to quantify if these
element are knowable based on the number of discrete logarithm queries. This
is possible, because the relevant group elements X,B are encrypted under the
ideal cipher. On a decryption query the ideal cipher can return a public repre-
sentations that does not admit a relation to a previously received group element
known by the adversary. To learn any such relation, the adversary then has to
query the Dlog oracle. Specifically, the relevant group elements {Bl,i,Xl,i}i∈[N ]

correspond to decryptions of (e, c) using a password guess πi and ski as keys
respectively. In the KHAPECORE-game, the correct pair Bl,i,Xl,i is chosen dur-
ing the Registration phase and in the Active oracles. Due to the values being
encrypted by the ideal ciphers, the simulation does not need to commit to any
actual pair Bi,Xi.

We prove this by presenting a sequence of game hops where the initial game
G0 is the KHAPECORE-game as defined in Sect. 3.1, and G4 is modified such that
the keys k1, k2 are chosen uniformly random for every instance, and where the
discrete logarithm of g and the group elements B,X remain undefined unless suf-
ficiently constrained by queries to the Dlog and Active oracles. They are unde-
fined because the ciphertexts (e, c) are indistinguishable from random strings,
and the key pair (π, sk) is no longer defined from the PassiveExec or Active

oracles. That means that the correct values for (B,X) may correspond to any
of the N possible pairs. As long as there is a degree of freedom left for these
representations, the discrete logarithm relative to g is also not defined, and the
random oracle cannot be queried on the respective Diffie–Hellman completion.
These are only defined either if an instance is corrupted, or if sufficiently many
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discrete logarithms have been queried, allowing to quantify the adversary’s prob-
ability to win relative to the number of Dlog queries.

G0 (KHAPECORE-game). This is the KHAPECORE as described in Sect. 3.1.

G1 (GGM). We modify the responses to the group operation ◦ and Dlog oracle
by simulating the generic group as described in Sect. 2.1. The generator initially
given to the adversary is g1 = g, which corresponds to the secret representation
1. The secret representation of the neutral element is 0. Recall that the password
space is of size N . The secret variables are represented as a set {χl,i, χl,i}i∈[N ]

corresponding to the pairs Bl,i,Xl,i that can be obtained when querying the ideal
ciphers on possible values for πl or skl. The ideal cipher ICi is maintained via a
table TICi

. On query IC1.D(π, e), if TIC1 [π, e] is defined, return TIC1 [π, e]. Other-
wise, sample a random index j $←− [N ] for the secret representation and a public
representation gV

$←− {0, 1}n, both of which are added the table Tggm[χi,j ] := gV ;
Then return gV . The simulation of IC2 is analog.

The modification changes the distribution of the group elements: public rep-
resentations returned from the ideal ciphers (on new inputs) in the simulation
are unique, whereas the adversary would expect a collision after √

p new queries.
Additionally, the adversary would expect to see collisions between random pub-
lic representations, and the elements returned from (sufficiently many) group
operations. This happens with probability (qIC1 + qIC2 + q◦)2/p.

Further, a group element may be assigned two distinct public representations,
if first computed from group operations and then returned from an IC query (or
vice versa). For example, if the public representation gx was returned from an
IC query, and the representation gx̄ = gx was assigned from group operations,
then the adversary may detect the modification by computing Dlog(g1, gx) = x.
The probability that this happens for group elements randomly assigned by the
ideal cipher and for all Dlog queries is qDlogq

2
◦/p. Overall, the adversary can

distinguish the two games with probability at most ((qIC1+qIC2+q◦)2+qDlogq2
◦)/p.

G2 (Ideal Ciphers Output). We change the ideal ciphers to output unique, ran-
dom values when queried on a new input. On query IC1.D(π, e), if TIC1 [π, e] is
not defined, the ideal cipher IC1 samples key pairs a, b $←− Zp and sk ← {0, 1}κ,
generates public keys A = ga, B = gb and a key sk ← {0, 1}κ, and programs
TIC1 [π, e] := a,B, sk. In the case of a collision, i.e., if (a,B, sk) has been assigned
to a value in the map TIC1 [π, ·] for any value ·, G2 aborts. Since (a,B, sk)
are independent random variables, the probability for an abort is bounded by
2qIC1/p+qIC1/2κ, neglecting the a deduction for a simultaneous collision of all vari-
ables. Since the values a,B, sk are unique, two different queries will never output
the same values, whereas the adversary would eventually expect a collision in
G1. The same argument applies to IC2. In total, the divergence is bounded by
(2qIC1+qIC2 )/p + (qIC1 )/2κ + (2q2

IC1
+q2

IC2
)/p + (q2

IC1
)/2κ.

G3 (Random Ciphertexts). We modify the game to not sample any keys π and
sk and to output random strings e $←− {0, 1}n1 , c $←− {0, 1}n2 in the Passive-

Exec and ActiveC oracles, which removes the game’s commitment to any
value stored in (e, c). Analogous to the modification in G2, the game aborts if
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the values were previously assigned. At the same time the GetStatic oracle is
changed to reflect the modification: the simulation first decrypts the ciphertext
using freshly sampled keys π and sk. The Dlog oracle provides the values neces-
sary to compute the Diffie–Hellman session such that the output of the Active

oracles can be programmed into the correct position of the ideal cipher. For a
detailed algorithm of the modified (and “final”) PassiveExec and GetStatic

oracle we refer the reader to Appendix A1. The distribution of (e, c) returned by
PassiveExec and ActiveC is the same as in G2 unless it aborts. Since (e, c)
are sampled uniformly random from the ciphertext space, the probability for
this to happen is bounded by qPE/2n1 + (qPE+qAEC )/2n2 .

G4 (Embed Random Keys). The Active oracles are modified to always return
random strings k $←− {0, 1}κ for non-corrupted instances. To notice this change,
the adversary must query H2(ctr,X, Y, σi), where the Diffie–Hellman completion
σi depends on either the knowledge of Dlog(g,X) and B, or the knowledge of
Dlog(g,B) and X, both of which are not defined by the game unless GetStatic

has been queried, in which case the adversary cannot win the game anymore.
The probability that Dlog(g,X) or Dlog(g,B) are knowable to the adver-

sary is bounded by Corollary 1, which tells us that the discrete logarithms are
defined if an only if �b, �x are in the row span of D. Both, �b and �x, are basis vectors
with a 1 at the position of the random index associated with the respective secret
variable. The number of basis vectors that can appear in the row span are upper
bounded by the rank of the matrix D, which is increased by 1 for each Dlog

query. Therefore, the probability that the adversary can force the definition for
any one value out of N many of these is bounded by qDlog/N.

Remark: Only public representations returned from the ideal ciphers, and pos-
sibly group elements that come from group operation applied to these group
elements, provide useful input to the Dlog oracle, since the discrete logarithm
relation for group elements originating purely from g is already known to the
adversary. Therefore, the probability is min(qIC1+qIC2 ,qDlog)/N ≤ qDlog/N.

Additionally, the adversary may submit a query with a group element, the
discrete logarithm of which is known to them. The input ê to the ActiveC oracle
is either a value formerly returned from a previous query to PassiveExec, in
which case the adversary must also query the ideal cipher and the Dlog oracle
and there is a chance of (q◦+1)/p that the discrete logarithm of the group element
decrypted by ActiveC is known to them. If ê was crafted by the adversary, i.e.,
if they queried the ideal cipher on values â, B̂, ŝk such that the discrete logarithm
of B̂ is known to them, then they expect an 1/N chance that there choice of p̂w

was correct, and that ActiveC used b̂ to compute the Diffie–Hellman session.
In total, this result in a divergence for ActiveC queries bounded by

qAEC
·(q◦+1)/p + qAEC/N. For ActiveS , the adversary may submit a value ĉx for

which the same arguments hold, resulting in a total probability for either of both
occurring of (qAEC

+qAES
)·(q◦+1)/p + (qAEC

+qAES )/N.
Finally, the adversary’s advantage to distinguish the simulation from

the real game based on Dlog queries depends on the knowledge of at
least one key from a Active oracle, resulting in a factor of min(qAEC

+
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qAES
, 1), thus bounding the overall divergence by min(qAEC

+ qAES
, 1) ·(

(qAEC
+qAES

)·(q◦+1)/p + (qAEC
+qAES

+min(qIC1+qIC2 ,qDlog))/N
)
, which is less or

equal to (qAEC
+qAES

)·(q◦+1)/p + (qAEC
+qAES

+qDlog)/N.
After G4, the PassiveExec and ActiveC oracle output random values as

ciphertexts e, c that do not commit to any values a,B, π or X. Particularly,
the values Dlog(g,X),Dlog(g,B) are defined only upon corruption or after a
number of Active and Dlog queries relative to the password space N . The
Active∗ oracles further output a random key independent of the challenge bit
s = 0. The adversary is left with either guessing the challenge bit, or querying
values to H2. This concludes the proof of Theorem 2. �	

4 aPAKE Security: Sketch of Proof of Theorem 1

The security of the QA-KHAPE protocol (cf. Fig. 1) is proven in the QA-BPR (cf.
Sect. 2.2) model. Recall that the adversary may interact through the Execute,
Send, Reveal, Corrupt and Test oracles after the Registration phase, where
the protocol defines how the principals respond. Additionally, the adversary has
access to the group operation, Dlog and random oracle, ideal cipher and pseudo-
random function prf , as described in Sect. 2.1, and is bounded by Theorem 1. In
this section we offer a summary of the proof’s main ideas and provide a complete
description in Appendix A2.

We consider a sequence of games starting with G0, which corresponds to
the QA-KHAPE protocol illustrated in Fig. 1. As we progress to G3, the ses-
sions keys are chosen independent and uniformly at random, ensuring that the
adversary A is reduced to a simple guessing attack. Throughout this reduction
process, we present a an adversary B on the KHAPECORE-game, which main-
tains a mapping between instances of the KHAPECORE-game and instances of
principals in the QA-BPR-model. To achieve this, we utilize a procedure called
CoreMap, which bears resemblance to the getUV procedure described in [7,
App. B.2] (cf. Appendix A1 for further details). Intuitively, two counters ctrC,S

and ctrC,S,sid, are employed to either map to a set of static variables indexed by
l or to an instance ctrl in the KHAPECORE-game. The oracles provided by the
KHAPECORE challenger are referred to as KHAPECORE.Oracle.

In the sequence of games, the first modification occurs in G1, where we replace
the keys k1, k2 in the Execute oracle with random strings. This change is
reflected in the Corrupt oracle, which now programs the random string instead
of the actual keys into the random oracle. The distinction between G0 and G1 can
be reduced to an attacker on the KHAPECORE-game. To differentiate between
these two games, we can provide an extractor for a winning query: utilizing
the CoreMap, the calls to the Execute and Send oracles can be forwarded
to the KHAPECORE.PassiveExec, which returns (eC,S,sid, YC,S,sid, cC,S,sid),
These outputs can be queries to KHAPECORE.Active∗, which provides
(cC,S,sid, kC,S,1) or kC,S,2. Using from these keys, the confirmation values (τ, γ)
that genuinely follow the protocol are computed.
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In the modified game, all calls to the ideal cipher are simulated perfectly by
forwarding queries to, and responses from, the KHAPECORE-game. However,
queries to the random oracle are not simulated perfectly, because the adversary
can submit a query not associated with an instance in the KHAPECORE, and
that gets mapped to different value in the KHAPECORE-game later on. Nonethe-
less, in every call to H2 in the KHAPECORE, either the group element X or Y
is chosen uniformly at random from the group, ensuring that the adversary’s
probability of querying the same group element beforehand is at most qH2/p.

The Test queries in G1 are simulated perfectly, since the keys are chosen uni-
formly at random, ensuring that the key confirmation values follow the expected
distribution. In the non-Test queries, as the KHAPECORE instances are real-
or-random based on the respective challenge bit. Specifically, the keys (k1, k2)
are real-or-random values. However, the adversary can only detect this if they
can query the random oracle H2 for the position of the programmed random
keys. Such a query would immediately be a winning query in the KHAPECORE-
game. Therefore, the adversary’s ability to distinguish between the two games
can be limited by their capability to win the KHAPECORE-game, which can be
quantified relative to the number of Dlog queries they submit.

In game G2, the modification is extended to the active queries (i.e., Send).
The extractor for the KHAPECORE-game acts nearly identical. The only differ-
ence is that the quantification of KHAPECORE advantage is now also impacted
by the adversary’s ability to query ciphertexts (e, c), the discrete logarithm of the
decryption of which is knowable to them. This adds an additional term for the
number of Send queries. The probability to detect the modifications from the
non-Test queries in game G1 and G2 result in the term (qDlog+qSend)/N + εCORE.

The last modification occurs in game G3, where we exchange the sessions keys
with random values. Since the keys (k1, k2) are already random strings, and the
session key is the output of the prf, this can be reduced to the adversary’s ability
to distinguish prf from a random function, i.e., εprf. This adds an additional
divergence of (qExecute + qSend)εprf and concludes the proof.

Acknowledgements. M.T. was supported by funding from the topic Engineer-
ing Secure Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs. D.S. was supported by Natural Sciences and Engineering Research
Council of Canada (NSERC) Discovery grant RGPIN-2022-03187 and NSERC Alliance
grant ALLRP 578463-22.

A1 Oracles for Proof of Theorem 2

Algorithms 6 to 8 are detailed oracles for the proof of Theorem 2 in Sect. 3.2.
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A2 Full Proof of Theorem 1

We offer the complete proof of Theorem 1 as a sequence of game hops.
First, the function CoreMap(C, S, sid) uses the counter l̄ mapping to the
static variables indexed with l, and ctrl̄, ctrC,S , ctrC,S,sid corresponding to
the instances using these static variables. All variables are initialized to zero.
The CoreMap works as follows: if the ctrC,S,sid > 0, the respective tran-
script ectrC,S

, YctrC,S ,ctrC,S,sid , cctrC,S ,ctrC,S,sid has been generated before and is
returned. Otherwise, if ctrC,S = 0, then this is the first interaction with
registrant l. The reduction sets ctrC,S ← l̄, ctrl̄ ← 1, increments l̄, cor-
responding to ctrl in the KHAPECORE, and sets ctrC,S,sid ← 1. The ora-
cle KHAPECORE.PassiveExec(ctrC,S) is queried; the output stored and
returned. If ctrC,S > 0, The reduction sets ctrC,S,sid ← ctrl̄, increments
ctrl̄ and queries KHAPECORE.PassiveExec(ctrC,S). The output is stored in
ectrC,S

, YctrC,S ,ctrC,S,sid , cctrC,S ,ctrC,S,sid and returned.

G0 (Figure 1). This is the real protocol.

G1 (Passive Sessions). On input Execute(C,S, sid), we set k1 = k2 ← {0, 1}κ

and compute the key confirmation values τ, γ and sessions keys using the prf .
The adversaries oracle calls to all instances l for which Execute has been called
are simulated as follows: First, the simulation invokes CoreMap(C,S, sid) to
obtain k1, c

′
X from KHAPECORE.ActiveC(ctrC,S,sid, e, Y ), is used to compute

the confirmation values τ, γ. On a Corrupt(C,S) query, the extraction calls
KHAPECORE.GetStatic(ctrC,S) returning πl, skl, which programs the key k1
returned by a KHAPECORE.Active oracle into the correct position of the ran-
dom oracle H2. The extraction receives a,B, sk from the ideal cipher on query
IC1.D(sk1, e) as well as the discrete logarithm b from KHAPECORE.Dlog(B).
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It then computes A ← ga. Let P be a table corresponding to all N passwords.
The extraction sets π ← P[sk1], i.e., the sk1’th entry of the table and returns
π, (e,A, b, sk), which is a perfect simulation. For the queries H1(sid, C, S, ∗), if the
entry ctrC,S,sid is defined, the query is forwarded to the KHAPECORE-challenger,
and the result is returned. Otherwise, a random value is sampled uniformly at
random from the range of H1, and a table is maintained for consistent responses.
H2(sid, C, S, ∗) is simulated analogous to H1. All queries to IC1 and IC2 are for-
warded to the KHAPECORE-challenger. In Sect. 4 the divergence qH2/p from this
simulation, i.e., the random oracle and ideal cipher queries, has already been
discussed.

Finally, the adversary may query a Test or Reveal query, receiving the
session key from the KHAPECORE is returned. In the first case, In the second
case, extraction either simulates either G0, if the KHAPECORE challenge bit is
zero, or G1, if the KHAPECORE challenge bit s is one. When s = 0, the values
of e, cX as well as τ, γ are distributed as expected (i.e., as in G0), since the keys
k1 = k2 are identical and thus γ can also be computed from k1. On the other
hand, if s = 1, the key k1 is chosen uniformly random as expected, and thus the
key confirmation values also have the expected distribution.

In the second case, key k1 returned from the simulation is real-or-random, but
would be expected to always be real. However, from an adversary detecting this
change an extraction of a winning query to the KHAPECORE can be provided:
In order to notice the change, the adversary A has to query the random oracle on
H2(sid, C, S,X, Y, σC) or H2(sid, C, S,X, Y, σS), both of which allow to instantly
win the KHAPECORE-game. Note that the key confirmation values returned by
the aPAKE impact the advantage to win the KHAPECORE, since even a passive
execution allows to verify if a derived session key is correct. Therefore, the term
min(qAEC

+ qAES
, 1) is 1. Further, the inputs to CoreMap.Active∗ are sampled

in KHAPECORE.PassiveExec such that no new group elements, the discrete
logarithm of which is knowable to the adversary, have to be considered in the
probability to win the KHAPECORE-game. Consequently, the number of these
queries is exactly the number of Execute queries. The probability to detect the
difference between game G0 and G1 is then bounded by qDlog/N + εpassiv + qH2/p

with εpassiv := (qIC1+qIC2+q◦)2+(qDlogq2
◦)/p + q2

IC1
+qExecute/2n1 + q2

IC2
+qExecute/2n2 .

G2 (Active Sessions). In G2, the modifications are extended to active ses-
sions: On input Send(C, l,M = (S, sid)) the simulation responds with the val-
ues e, Y retrieved from KHAPECORE.PassiveExec. On input Send(C, l,M =
(S, sid, cX , τ)) we sample the k2 ← {0, 1}κ uniformly at random and computes
τ ′ ← prf(k2, 1). The session key and the key confirmation value are generated
from k1, k2 based on τ = τ ′ as in an genuine execution of the protocol. On input
Send(C, l,M = (S, sid, e, Y )) the simulation samples a uniformly random value
for k1 ← {0, 1}κ and computes the key confirmation value τ using the prf. On
input Send(C, l,M = (S, sid, γ)) we compute γ′ ← prf(k1, 2) and set the session
key conditionally on the outcome of γ = γ′ (i.e., as in the real protocol). On
queries to the random oracle, ideal cipher, Reveal and Corrupt the reduction
behaves identical to G1, and thus the divergence is identical.
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Eventually, the adversary may query a Test or Reveal query receiving a
session key from the KHAPECORE. To bound the adversaries chance to detect
the modification, a similar extractor of a winning query to the KHAPECORE-
game is provided. Similarly to Appendix A2, the reduction calls CoreMap to
map instances of the QA-BPR-game to instances of the KHAPECORE-game.

Impersonation of Clients: On Send(C, l,M = (S, sid)) the extraction calls
CoreMap(C,S, sid), which causes ctrC,S to become defined if it previously
was not, and the retrieved values e, Y are returned. On Send(C, i,M =
(S, sid, cX , τ)) the reduction calls CoreMap(C,S, sid) to subsequently obtain
k2 ← KHAPECORE.Active(ctrC,S , cX). The key confirmation value τ ′ is com-
puted from the obtained key using the prf . The session key and key confirmation
value are set conditioned on τ = τ ′ as in the real protocol.

Impersonation of Server : On Send(S, i,M = (C, sid, j, e, Y )), the reduction calls
CoreMap(C,S, sid), which causes ctrC,S to become defined it it previously was
not. Then the reduction calls k1 ← KHAPECORE.Active(ctrC,S , e, Y ) and com-
putes the key confirmation value τ genuinely using the prf , and returns cX , τ .
On Send(S, i,M = (C, j, γ, sid)), the reduction computes γ′ from the key k2
using the prf and compares this to γ. If they match, the session key is set to
K1 ← prf(k1, 0), and otherwise, to ⊥.

For Send the arguments are analogous to G1: If Test was queried, the reduc-
tion simulates G1 (and thus G0) perfectly if the KHAPECORE challenge bit s = 0,
and simulates G2 if s = 1. Otherwise, the adversary can detect the change only
by querying the random oracle on either of the two inputs H2(sid, C, S,X, Y, σC)
or H2(sid, C, S,X, Y, σS), both of which are winning queries for the reduction
in KHAPECORE. The number of Active queries for which the adversary may
choose the input is bounded by the number of Send queries, bounding the
difference between game G1 and G2 by (qDlog+qSend)/N + εactiv + qH2/p with
εactiv := (qIC1+qIC2+q◦)2+(qDlogq2

◦)/p + q2
IC1

+qSend/2n1 + q2
IC2

+qSend/2n2 .

G3 (Random Sessions Keys). The final modification in G3 was discussed in
Sect. 4, resulting in the term (qExec + qSend)εprf. The sessions keys are now uni-
formly random and independent of the password and credentials leaving adver-
sary to a guessing attack. The probability that the adversary can distinguish
G0 from G3 is bounded by (qDlog+qSend)/N + qH2/p + (qExec + qSend)εprf + ε, with
ε ≤ (qIC1+qIC2+q◦)2+(qDlogq2

◦)/p + (q2
IC1

+qSend+qExec)/2n1 + (q2
IC2

+qSend+qExec)/2n2 . This
conclude the proof. �	
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Abstract. We present a cryptographic string commitment scheme that
is computationally hiding and binding based on (modular) subset sum
problems. It is believed that these NP-complete problems provide post-
quantum security contrary to the number theory assumptions currently
used in cryptography. Using techniques recently introduced by Feneuil,
Maire, Rivain and Vergnaud, this simple commitment scheme enables an
efficient zero-knowledge proof of knowledge for committed values as well
as proofs showing Boolean relations amongst the committed bits. In par-
ticular, one can prove that committed bits m0, m1, ..., m� satisfy m0 =
C(m1, ..., m�) for any Boolean circuit C (without revealing any informa-
tion on those bits). The proof system achieves good communication and
computational complexity since for a security parameter λ, the protocol’s
communication complexity is Õ(|C|λ+λ2) (compared to Õ(|C|λ2) for the
best code-based protocol due to Jain, Krenn, Pietrzak and Tentes).

1 Introduction

A commitment scheme [7] is a cryptographic protocol that enables one party to
commit to a value (or set of values) without revealing it, while ensuring that
this value cannot be modified. In constructing sophisticated cryptographic pro-
tocols, it can be necessary to prove some property of a committed message with-
out revealing anything more than the property itself. This is usually achieved
through the use of zero-knowledge proofs of knowledge [14]. This commit-and-
prove paradigm [11,20] is used in many areas of applied cryptography (anony-
mous credentials, blockchains, electronic voting, . . . ).

In 1994, Shor [26] introduced a quantum algorithm that could break cryp-
tosystems based on the hardness of factoring large integers or solving discrete
logarithm problems. This has emphasized the need for new cryptographic sys-
tems, leading to the emergence of a new field, known as post-quantum cryptogra-
phy, which focuses on creating cryptographic algorithms that are secure against
quantum (and classical) computers.

The (modular) subset sum problem is to find, given integers t and q, a subset
of given integers γ1, . . . , γn, whose sum is t modulo q. This NP-complete problem
was used in the 1980 s, following [22], for the construction of several public-key
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encryption schemes. The majority of those schemes were broken using lattice-
based techniques (see [23]), but the problem itself remains unsolvable for spe-
cific parameters and is even thought to be intractable for quantum computers.
A plethora of cryptographic constructions have been proposed whose security
is based on the difficulty of the subset sum problem [1,15,21]. In a celebrated
paper, Impagliazzo and Naor [15] presented in particular a pseudo-random gen-
erator and an elegant bit commitment scheme. We extend the latter to a simple
string commitment scheme and provide efficient zero-knowledge proofs for any
relation amongst committed values using the recent zero-knowledge proof system
proposed by Feneuil, Maire, Rivain, and Vergnaud and based on the MPC-in-
the-head paradigm.

Contributions of the Paper

Commitment scheme. We first present a modified version of the bit-commitment
based on the subset sum problem proposed in [15]. This new scheme enables com-
mitments to bit-strings and is related to the one from [15] in a similar manner to
how the well-known Pedersen commitment scheme [24] is related to preliminary
discrete-logarithm based bit-commitments from [9,10].

The design principle is simple but seems to have been overlooked for more
than 30 years (even if similar ideas have been used in lattice-based cryptography).
For a security level λ ∈ N (i.e. against an adversary making 2λ bit-operations
using a 2λ/2-bits memory), it enables to commit to bit-strings of length � ≤
2λ using a 2λ-bits modulus q and (� + 2λ) integers smaller than q. The setup
thus requires O(λ2) random or pseudo-random bits that can be generated easily
using a so-called extendable-output function (XOF). A commitment is a sum
of a (randomized) subset of these integers modulo q; therefore, it is of optimal
bit-length 2λ and can be computed in O(λ2) binary operations. The hiding
property (i.e. one cannot learn anything about the committed message from the
commitment) relies on the hardness of the subset-sum problem, while its binding
property (i.e. one cannot open a commitment to two different messages) relies
on the hardness of the related weighted knapsack problem. With the proposed
parameters, both problems are believed to be resistant to a quantum adversary
that makes at most 2λ/2 qubits operations.

Zero-Knowledge Protocols. Very recently, Feneuil, Maire, Rivain, and
Vergnaud [13] proposed zero-knowledge arguments for the subset sum problem.
They introduced the idea of artificial abort to the so-called MPC-in-the-head
paradigm [16] and achieved an asymptotic improvement by producing arguments
of size O(λ2). Their protocol readily gives a way to prove knowledge of the com-
mitted bit-string without revealing anything about it.

We extend their work to prove that a committed triple (b1, b2, b3) ∈ {0, 1}3
satisfy a Boolean relation (e.g. b1 ∧ b2 = b3 or b1 ⊕ b2 = b3) without revealing
any additional information about them. The bits can be in arbitrary positions
in the same or in different commitments and the proof of the Boolean relation
does not add any overhead compared to the basic opening proof. This flexibility
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allows proving that committed bits m0,m1, ...,m� satisfy m0 = C(m1, ...,m�) for
any Boolean circuit C with good communication and computational complexity.
Indeed, by packing the commitments of bits on the circuit wires, we obtain a
protocol with communication complexity Õ(|C|λ + λ2) where |C| denotes the
number of AND/XOR gates of C. This has to be compared with the code-based
protocol due to Jain, Krenn, Pietrzak, and Tentes [17]. They provide a commit-
ment scheme with zero-knowledge proofs from the LPN-assumption (or hardness
of decoding a random linear code). This scheme has Õ(|C|λ2) communication
complexity and allows only proving Boolean relations bit-wise on binary strings
(which may result in a large overhead depending on the circuit considered).
There also exist lattice-based constructions of commitment schemes with zero-
knowledge proofs [2,3,6] but the messages committed are small integers. They
can be used to prove the satisfiability of arithmetic circuits but proving the satis-
fiability of a Boolean circuit with these schemes results in an important overhead
in communication and computation.

2 Preliminaries

2.1 Notations

All logarithms are in base 2. We denote the security parameter by λ, which
is given to all algorithms in the unary form 1λ. Unless otherwise stated, algo-
rithms are randomized, and “PPT” stands for “probabilistic polynomial-time”
in the security parameter. Random sampling from a finite set X according to
the uniform distribution is denoted by x

$←− X. The symbol $←− is also used for
assignments from randomized algorithms, and the symbol ← is used for assign-
ments from deterministic algorithms and calculations. For the sake of simplicity,
we denote the set of integers {1, . . . , N} by [1, N ].

We denote integer vectors in bold print. A vector composed only of 1’s or 0’s
is denoted as 1 or 0 respectively (its length will be clear within the context).
Given two integer vectors of the same length γ and x, 〈γ,x〉 denotes their inner-
product. For two bit-strings x ∈ {0, 1}n and y ∈ {0, 1}m, (x‖y) ∈ {0, 1}n+m

denotes the concatenation of x and y, and x · y denotes the component-wise
product.

Two distributions {Dλ}λ and {D̃λ}λ are deemed (t, ε)-indistinguishable if,
for any algorithm A running in time at most t(λ), we have

|Pr[A(1λ, x) = 1 | x
$←− Dλ] − Pr[A(1λ, x) = 1 | x

$←− D̃λ]| ≤ ε(λ).

A (�, t, ε)-pseudo-random generator (PRG) is a deterministic algorithm G that, for
all λ ∈ N, on input a bit-string x ∈ {0, 1}λ outputs G(x) ∈ {0, 1}�(λ) with �(λ) >

λ such that the distributions {G(x) | x
$←− {0, 1}λ}λ and {r | r

$←− {0, 1}�(λ)}λ

are (t, ε)-indistinguishable. From such a generator, with �(λ) = 2λ, it is possible to
construct a tree PRG [19], which takes a root x ∈ {0, 1}λ as input and generates
N = 2t pseudo-random λ-bit strings in a structured fashion as follows: x is the
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label of the root of a depth-t complete binary tree in which the right/left child of
each node is labeled with the λ most/least significant bits of the output of the PRG
applied to the root label. This structure allows revealing N − 1 pseudo-random
values of the leaves by revealing only log(N) labels of the tree (by revealing the
labels on the siblings of the paths from the root to this leaf).

2.2 Commitments

Definition 1. (Commitment scheme). A commitment scheme is a triple of PPT
algorithms (Setup,Com,Ver) such that:

– Setup(1λ) → pp. On input λ, the setup algorithm outputs the public parame-
ters pp containing a description of the message space M.

– Com(pp,m) → (c, aux). On input pp and m ∈ M, the commit algorithm
outputs a commitment-opening pair (c, aux).

– Ver(pp,m, c, aux) → b ∈ {0, 1}. On input pp, m ∈ M and (c, aux), the verify-
ing (or opening) algorithm outputs a bit b ∈ {0, 1}.

Moreover, it satisfies the following correctness property: we have for all λ ∈ N,

Pr[Ver(pp,m, c, aux) = 1 | pp $←− Setup(1λ),m $←− M, (c, aux) $←− Com(pp,m)] = 1.

There are two security notions underlying a commitment scheme.

Definition 2. Let t : N → N and ε : N → [0, 1]. A commitment scheme
(Setup,Com,Ver) is said:

– (t, ε)-computationally hiding if for all two-phases algorithm A = (A1,A2),
we have for all λ ∈ N:

Pr

[
b = b′

∣∣∣∣∣ pp
$←− Setup(1λ), (m0,m1, s)

$←− A1(pp), b
$←− {0, 1}

(c, aux) $←− Com(pp,mb), b′ $←− A2(c, s)

]
≤ 1

2
+ ε(λ)

when A runs in time at most t(λ) in this probabilistic computational game.
– (t, ε)-computationally binding if for all algorithm A, we have for all λ ∈ N:

Pr

⎡
⎣ m1 �= m2

Ver(pp,m1, c, aux1) = 1
Ver(pp,m2, c, aux2) = 1

∣∣∣∣∣ pp
$←− Setup(1λ),

(m1,m2, aux1, aux2, c)
$←− A(1λ, pp)}

⎤
⎦ ≤ ε(λ)

when A runs in time at most t(λ) in this probabilistic computational game.

2.3 Zero-Knowledge Arguments

A zero-knowledge protocol for a polynomial-time decidable binary relation R is
defined by two interactive algorithms, a prover P and a verifier V. Both algo-
rithms are given a common input x, and P is given an additional witness w such
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that (x,w) ∈ R. The two algorithms then exchange messages until V outputs a
bit b, with b = 1 meaning V accepts P’s claim and b = 0 meaning V rejects it.
This sequence of messages and the answer b is referred to as a transcript and
denoted View(P(x,w), Ṽ(x)). In this paper, we consider zero-knowledge argu-
ment of knowledge which are protocols that allow a PPT prover to convince
a PPT verifier that they knows a witness w. There are three security notions
underlying a zero-knowledge argument of knowledge.

Definition 3. Let t : N → N, ε, α, ζ : N → [0, 1], and R be a polynomial-time
decidable binary relation. A zero-knowledge argument (P,V) for R achieves:

– α-completeness, if for all λ ∈ N and all (x,w) ∈ R, with x ∈ {0, 1}λ,
Pr[View(P(x,w),V(x)) = 1] ≥ 1 − α(λ) ( i.e. P succeeds in convincing V,
except with probability α).

– ε-(special) soundness, if for all PPT algorithm P̃ such that for all λ ∈ N

and all x ∈ {0, 1}λ, ε̃(λ) := Pr [View(P̃(x),V(x)) = 1] > ε(λ), there exists
a PPT algorithm E (called the extractor) which, given rewindable black-box
access to P̃ outputs a witness w such that (x,w) ∈ R in time poly(λ, (ε̃−ε)−1)
with probability at least 1/2.

– (t, ζ)-zero-knowledge, if for every PPT algorithm Ṽ, there exists a PPT algo-
rithm S (called the simulator) which, given the input statement x ∈ {0, 1}λ

and rewindable black-box access to Ṽ, outputs a simulated transcript whose
distribution is (t, ζ)-indistinguishable from View(P(x,w), Ṽ(x)).

2.4 Subset Sum Problems

We define hereafter two variants of the subset sum problem on which the security
of our commitment scheme relies. The first one is the standard subset sum prob-
lem mentioned in the introduction, while the second one is a slightly stronger
assumption that has already been used in cryptography (see, e.g. [5,27]).

Definition 4. Let t : N → N and ε : N → [0, 1]. Let �,m : N → N and modulus
be an algorithm which given λ ∈ N outputs an integer q of bit-length m(λ). We
consider the two following assumptions:

– (t, ε)-(decision) subset-sum assumption for (�,m,modulus): for every algo-
rithm A, we have for all λ ∈ N:

Pr

⎡
⎢⎣ b = b′

∣∣∣∣∣∣∣
q

$←− modulus(1λ),γ $←− [0, q − 1]�(λ),x $←− {0, 1}�(λ),

t0 = 〈γ,x〉 mod q, t1
$←− [0, q − 1], b $←− {0, 1},

b′ $←− A(1λ, q,γ, tb)

⎤
⎥⎦ ≤ 1

2
+ε(λ)

when A runs in time at most t(λ) in this probabilistic computational game.
– (t, ε)-weighted knapsack assumption for (�,m,modulus): for every algorithm

A, we have for all λ ∈ N:

Pr

[
〈γ,y〉 = 0 mod q

y �= 0 ∈ {−1, 0, 1}�(λ)

∣∣∣∣∣ q
$←− modulus(1λ),γ $←− [0, q − 1]�(λ),

y
$←− A(1λ, q,γ)

]
≤ ε(λ)
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when A runs in time at most t(λ) in this probabilistic computational game.

The search version of the subset sum assumption is polynomial-time equiva-
lent to the decision version stated above. The hardness of these problems depends
greatly on the density defined as d(λ) = �(λ)/m(λ). If the density is too small
(e.g. d(λ) < 1/�(λ)) or too large (e.g. d(λ) > �(λ)) then both problems can be
solved in polynomial time (see e.g. [12] and references therein). Coster, Joux,
LaMacchia, Odlyzko, Schnorr, and Stern [12] proved that the subset sum prob-
lem can be solved in polynomial-time with a single call to an oracle that can
find the shortest vector in a special lattice of dimension �(λ)+1 if d(λ) < 0.9408
and Li and Ma proved a similar result for the weighted knapsack problem if
d(λ) < 0.488. It is worth mentioning that these results do not break the assump-
tions in polynomial time since the best algorithm for finding the shortest vector
in these lattices has computational complexity 2Θ(�(λ)) (and cryptographic pro-
tocols relying on these problems with much smaller densities have been proposed,
e.g. [21]).

In our construction, we will consider instances of these problems with den-
sity d(λ)  1 (i.e. q  2�(λ)) for the subset sum problem since they are arguably
the hardest ones [15]. This will result in instances for the weighted knapsack
problem with density d(λ) > 1 and for conservative security, we will restrict
ourselves to d(λ) ≤ 2. In this case, lattice-based algorithms do not work and the
best-known algorithms use very clever time-memory tradeoffs with the best algo-
rithm due to Bonnetain, Bricout, Schrottenloher, and Shen [8] having time and
memory complexities Õ(20.283�(λ)). These algorithms neglect the cost to access
an exponential memory but even with this optimistic assumption, for �(λ) = 256,
all known algorithms require at least a time complexity lower-bounded by 2128

operations or a memory of size at least 264 bits. There also exists a vast liter-
ature on quantum algorithms for solving these problems (see [8] and references
therein) and for �(λ) = 256, the best quantum algorithm requires about 264

quantum operations and quantum memory.

3 String Commitments from Subset Sum Problems

3.1 Design Principle

In this section, we present our modified version of the bit-commitment based on
the subset sum problem proposed in [15]. This new scheme enables commitments
to bit-strings.

In [10], Brassard, Chaum, and Crépeau introduced the notion of blob, which
is very similar to bit commitment, and presented an elegant construction based
on the discrete-logarithm problem in groups of known prime order q (see also
[9]). The commitment of a single bit consists of a group element (see Fig. 1 (a) for
an equivalent form of their commitment). Shortly afterward, Pedersen [24] intro-
duced his celebrated commitment scheme that enables committing to an integer
in Zq with a single group element (see Fig. 1 (c)). Impagliazzo and Naor [15] pro-
posed a bit-commitment whose hiding and binding security properties rely on the
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subset sum problem. It has many similarities with the discrete-logarithm-based
blob from [9,10] (see Fig. 1 (b)).

Fig. 1. Illustration of the Similarities between Commitment Schemes

To build our string commitment scheme, we push this analogy and propose
a variant of Pedersen’s protocol based on the subset sum (see Fig. 1 (d)). The
design principle is simple and maybe folklore but does not seem to have been
published in this form (even if similar ideas have been used in lattice-based
cryptography).

3.2 Formal Description and Security Analysis

Let �, n,m : N → N and let modulus be an algorithm which given λ ∈ N outputs
an integer q of bit-length m(λ). Typically, modulus outputs a random m(λ)-bit
prime number or the unique integer q = 2m(λ)−1. The function � defines the
message length while the function n defines the randomness length.

Setup(1λ) → pp. On input λ, the setup algorithm generates a modulus q by
running modulus(1λ) and picks uniformly at random w ∈ Z

�(λ)
q and s ∈ Z

n(λ)
q .

It outputs the public parameters pp = (q,w, s) and the message space is
M = {0, 1}�(λ).

Com(pp,m) → (c, aux). On input pp and m ∈ M, the commit algorithm picks
aux = r ∈ {0, 1}n(λ) uniformly at random, computes c=〈w,m〉+〈s, r〉modq
and outputs (c, aux).

Ver(pp,m, c, aux) → b ∈ {0, 1}. On input pp, m ∈ M and (c, aux), the verifier
outputs 1 if c = 〈w,m〉 + 〈s, r〉 mod q where r = aux ∈ {0, 1}n(λ), and 0
otherwise.
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We prove that our commitment scheme is hiding and binding assuming the
hardness of the subset sum and the weighted knapsack problems (respectively)
for different lengths in the subset sum problems.

Theorem 1. Let �, n,m : N → N and let modulus be an algorithm which given
λ ∈ N outputs an integer of bit-length m(λ). This commitment scheme above is:

1. (t, ε)-computationally hiding if the (t + O(�(λ)m(λ)), ε)- subset-sum assump-
tion holds for (�,m,modulus);

2. (t, ε)-computationally binding if the (t + O(�(λ) + n(λ)), ε)-weighted knapsack
assumption holds for (� + n,m,modulus).

Proof. Both security reductions are simple.

1. Let A be a (t, ε)-adversary against the hiding property of the commitment
scheme. We construct a (t+O(�(λ)m(λ)), ε) adversary B breaking the decision
subset sum assumption as follows. The algorithm B is given as inputs (q,γ, t)
where γ ∈ Z

n(λ)
q . The algorithm B picks uniformly at random w ∈ Z

�(λ)
q ,

sets s = γ, and runs A1 on input pp = (q,w, s). When A1 outputs two
messages m0,m1 ∈ {0, 1}�(λ) and some state information s, the algorithm B
picks uniformly at random a bit b ∈ {0, 1} and runs A2 on c = 〈w,mb〉 +
t mod q and s. Eventually, when A2 outputs some bit b′, B outputs 0 if b′ = b
and 1 otherwise. A routine argument shows that the advantage of B for the
decision subset sum problem is identical to the one of A for breaking the
hiding property.

2. Let A be a (t, ε)-adversary against the binding property of the commitment
scheme. We construct a (t + O(�(λ) + n(λ)), ε) adversary B breaking the
weighted knapsack assumption as follows. The algorithm B is given as inputs
(q,γ) where γ ∈ Z

�(λ)+n(λ)
q . It sets w = (γ1, . . . , γ�(λ)) ∈ Z

�(λ)
q and s =

(γ�(λ)+1, . . . , γ�(λ)+n(λ)) ∈ Z
n(λ)
q and runs A on input pp = (q,w, s). When A

outputs (m1,m2, aux1, aux2, c), we have m1 �= m2 and Ver(pp,m1, c, aux1) =
Ver(pp,m2, c, aux2) = 1 with probability ε(λ). In this case, since m1 �= m2

and (m1, aux1), (m2, aux2),∈ {0, 1}�(λ)+n(λ), if B outputs the vector y =
(m1, aux1) − (m2, aux2) (where the substraction is done coordinate-wise), it
belongs to {−1, 0, 1}�(λ)+n(λ), is non-zero and satisfies 〈γ,y〉 = 0 mod q (and
is thus a solution to the weighted knapsack problem (q,γ)).

��
The hiding property thus relies on the hardness of the subset sum prob-

lem with density n(λ)/m(λ) while its binding property on the hardness of the
weighted knapsack problem with density (�(λ) + n(λ))/m(λ). In the following,
to simplify the protocols, we consider the case where n(λ) = m(λ) (i.e. density
1 subset sum) and �(λ) = n(λ) (i.e. density 2 weighted knapsack). To lighten
the notations, we henceforth denote n = n(λ) = �(λ).
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3.3 Zero-Knowledge Arguments for Our Commitment

In this section, we present a zero-knowledge argument of knowledge for our
string commitment. We apply readily the protocol recently proposed by Feneuil
et al. [13] for the subset sum problem. It is based on the MPC-in-the-Head
paradigm and is described in Protocol 1. We provide an explicit description of
the protocol as we use it in the following sections but refer to [13] for details and
precise security analysis.

Prover P Verifier V
w, s ∈ Z

n
q

m, r ∈ {0, 1}n, t = 〈w, m〉 + 〈s, r〉 mod q w, s, t

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:
�a�i, �m�i, �r�i, �c�i ← PRG(seedi) � a ∈ Z

2n
q′ , c ∈ Zq′ , �m�i, �r�i ∈ [0, A − 1]n

comi = Com(seedi; ρi)
Δm = m − ∑

i�m�i

Δr = r − ∑
i�r�i

Δc = 〈a, m||r〉 − ∑
i�c�i

h = H1(Δm, Δr, Δc, com1, . . . , comN )
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z

2n
q′

ε←−−−−−−−−−−−−−−−−−−
The parties locally set

- �t� = 〈w, �m�〉 + 〈s, �r�〉
- �α� = ε · (1 − (�m�||�r�)) + �a� � α ∈ Z

2n
q′

The parties open �α� to get α.
The parties locally set

�v� = 〈α, �m�||�r�〉 − �c� � v ∈ Zq′

h′ = H2(�t�, �α�, �v�)
h′−−−−−−−−−−−−−−−−−−→

i∗ $←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If there exists j ∈ [1, n] such that:
- either �mj�i∗ = 0 with mj = 1
- or �mj�i∗ = A − 1 with mj = 0,
- or �rj�i∗ = 0 with rj = 1
- or �rj�i∗ = A − 1 with rj = 0,

then abort.
ym = m − �m�i∗

yr = r − �r�i∗

(seedi, ρi)i�=i∗ , comi∗ ,
ym , yr , Δc, �α�i∗

−−−−−−−−−−−−−−−−−−→
For all i �= i∗,

�a�i, �m�i, �r�i, �c�i ← PRG(seedi)
Δm = ym − ∑

i�=i∗�m�i

Δr = yr − ∑
i�=i∗�r�i

For all i �= i∗,
Rerun the party i as the prover (i.e. compute �t�i, �α�i, �v�i)
and compute comi.

Check h = H1(Δm, Δr, Δc, com1, . . . , comN )
Δt = 〈w, Δm〉 + 〈s, Δr〉
Δv = 〈α, Δm||Δr〉 − Δc
�t�i∗ = t − Δt − ∑

i�=i∗�t�i

�v�i∗ = −Δv − ∑
i�=i∗�v�i

Check h′ = H2(�t�, �α�, �v�)
Return 1

Protocol 1: Zero-knowledge argument for string-commitment using batch prod-
uct verification to prove binarity.
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Context. We consider the binary relation R = {(q,w, s, t), (m, r)) | 〈w,m〉 +
〈s, r〉 = t mod q} where q ∈ N, w, s ∈ Z

n
q , t ∈ Zq, and m, r ∈ {0, 1}n. Both

the prover P and the verifier V know (q,w, s, t) and P knows (m, r) and wants
to convince the verifier of this fact. The protocol makes use of a PRG, a tree
PRG [19], a commitment scheme (Setup,Com,Ver) (the one proposed in the
previous section or any other efficient scheme) and two collision-resistant hash
functions H1 and H2. The protocol involves two integer parameters A and a
prime q′ (that depends on n) that are known by P and V.

MPC-in-the-Head. Feneuil et al.’s protocol [13] relies on the MPC-in-the-head
paradigm [16]. The binary relation R defines an NP language and the member-
ship of (q,w, s, t) can be checked easily thanks to the knowledge of (m, r) by
verifying the relations (1) 〈w,m〉 + 〈s, r〉 = t mod q and (2) m, r ∈ {0, 1}n. To
convince V, P emulates “in their head” a (N − 1)-private multi-party compu-
tation (MPC) protocol with N parties for the relations (1) and (2) where the
witness (m, r) is shared among the N parties (for some parameter N ∈ N).

To shorten the communication, shares and random coins used in the protocol
are generated using the Tree PRG: P randomly and uniformly chooses a master
seed mseed and constructs a tree of depth �log N� by expanding mseed into
N subseeds as explained in Sect. 2. From these N subseeds seed1, . . . , seedN , P
constructs some additive integer secret sharing with shares in [0, A − 1] denoted
as �·� for the sharing itself and �·�i for the share of the i-th virtual player (i.e.
a secret integer x is shared as �x� = (�x�1, . . . , �x�N ) ∈ [0, A − 1]N such that
�x�1 + · · · + �x�N = x). Computation is done over Zq′ where q′ is the smallest
prime larger than A.

The verifier V challenges P to reveal the views of a random subset of (N −1)
parties by sending a challenge i∗ ∈ [1, N ] to P who reveals all-but-one subseeds
corresponding to parties i �= i∗. In Feneuil et al.’s protocol [13], the integer
secret sharing may reveal information and to avoid this P may abort but with
probability at most (1 − 1/A)n (when sharing a n-coordinates vector). The size
of A (and thus of q′) has to be properly chosen to make this probability small
in practice. Eventually, V recomputes the MPC protocol to check the views of
the parties i �= i∗ and the commitments. If all tests pass, V accepts the proof
and the soundness error is close to 1/N . To decrease it to a soundness error less
than 2−λ, the protocol is simply repeated about τ ≈ λ/ log(N) times.

The verification of (1) is linear modulo q′ and is therefore free but proving (2)
requires performing some multiplications in the MPC protocol (using the simple
fact that x ∈ {0, 1} if and only if x(1−x) = 0 mod q′). The verification of these
multiplications can be realized following [4]. This implies a communication cost
of 2 log(q′) bits to prove one multiplication. Using a batched version of this
verification protocol [18], one gets a communication cost of (n + 1) log2 q′ for n
multiplications. The soundness error of this protocol follows from the Schwartz-
Zippel Lemma [25,28].

Security analysis. The following theorem from [13] states the completeness,
soundness and zero-knowledge of Protocol 1.
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Theorem 2 (Protocol 1). Let the PRG used in Protocol 1 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. Protocol 1 is a zero-
knowledge proof of knowledge for the relation R with (1 − 1/A)2n-completeness,
1/q′ + 1/N − 1/Nq′ soundness and (t, εPRG + εCom)-zero-knowledge.

Communication complexity. The communication cost (in bits) of the Protocol 1
with τ repetitions is

4λ + τ [2n(log2(A − 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ] .

Since the rejection rate after τ repetitions (i.e. that any of the τ repetition
aborts) is given by 1 − (1 − 1/A)2nτ  2nτ/A where the approximation is tight
when A is sufficiently large. Thus by taking A = Θ(nτ), we get a (small) constant
rejection probability.

Remark 1. Feneuil et al.’s [13] proposed a second approach to prove (2) using
“cut-and-choose”. It can be used to prove the knowledge of a commitment open-
ing but does not adapt well for proving Boolean relations of committed values.

Remark 2. It is worth mentioning that our commitment and argument of knowl-
edge of opening can be easily generalized to a proof of partial opening by reveal-
ing bits of the committed message, modifying the value of the commitment
accordingly and proving the knowledge of the remaining hidden bits. This enables
to provide a range proof of the committed message at no additional cost.

4 Zero-Knowledge Arguments for Boolean Relations

Using a batched version of the verification protocol [4,18] for multiplications of
the form xy = c with x, y, c ∈ Zq′ and c a public value, one gets a commu-
nication cost of (n + 1) log2 q′ bits for n multiplications. In the following, we
deal with multiplications of the form xy = z, where z is a linear combination of
shared elements, and the communication cost remains (n + 1) log2 q′ bits for n
multiplications.

4.1 AND Gate

Coordinate-wise AND Gates. We first consider the case where three n-bits vec-
tors m1,m2,m3 are committed and P wants to prove that m1 · m2 = m3.
Note that proving that m1 and m2 are binary and that m1 ·m2 = m3 mod q′

implies that m3 is binary and m1 · m2 = m3. In addition, P has to prove that
the three random vectors r1, r2, r3 used in the commitment are all binary (since
no relation is proved between them). Using this approach, P has to prove 6n
multiplications and therefore the argument requires sending 6n + 1 integers in
Zq′ via [4,18].

Actually, it is possible to batch some verification equations and reduce this
number from 6n+1 to 5n+1. Indeed, checking m1 ·m2 = m3 mod q′ and (for
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instance) the binarity of m2 is equivalent (with a small soundness error coming
from the Schwartz-Zippel Lemma) to check that

λ1m
2 · (1 − m2) + λ2m

1 · m2 = λ2m
3 mod q′ (1)

for λ1, λ2 ∈ Zq′ random elements chosen by V. Hence, we can batch all the
multiplications checking by verifying the component-wise product

(m1||r1||r2||r3||m2) ·((1−(m1||r1||r2||r3))||λ1(1−m2)+λ2m
1) = (0||λ2m

3)

and obtain Protocol 2.

Arbitrary AND Gates. Protocol 2 is similar to the protocols from [2,3,6,17] since
it can be used only to prove multiplication coordinate-wise. We generalize it to
obtain a more flexible protocol able to prove relations such as m1

i ∧ m2
j = m3

k

for arbitrary coordinates i, j, k ∈ [1, n].
Assume P has to prove the satisfiability of K ≥ 1 AND gates with compo-

nents belonging to L ≥ 1 committed vectors {m�}1≤�≤L ∈ {0, 1}n. Suppose that
there are M ≤ K AND gates such that each of them has at least one coordinate of
a fixed committed vector m� as input (for some � ∈ [1, L]). Assume these M gates
are of the form m�

xk
∧ m�k

yk
= m

�′
k

zk for k ∈ [1,M ], �k, �′
k ∈ [1, L], xk, yk, zk ∈ [1, n]

(again, we fix the vector m�). Moreover, as seen previously to check that m�

is binary, V can verify m� ◦ (1 − m�) = 0 mod q′. Then we can batch these
verifications as

m� · [−λ0m
� +

M∑
k=1

λkm�k
yk

exk
] = −λ0m

� +
M∑

k=1

λkm
�′
k

zkexk
mod q′ (2)

where ei is the i-th vector of the canonical basis of Zn
q′ and {λk}0≤k≤M ∈ Zq′

are random elements chosen by V. Thus, P can batch all the gates’ evaluation
checking satisfying that at least one input for each of these gates belongs to
the same committed vector. This batching can include the binary verification of
this specific vector. In other words, the number of equations does not depend
anymore on the number of gates (i.e. is independent of the distribution of AND
gates over the committed bits). We obtain the generalized Protocol 3 as a direct
extension of Protocol 2 (essentially the batching part is slightly different) which
can be found in Appendix A.

Security analysis. The following theorems state the completeness, soundness,
and zero-knowledge of Protocol 2 and Protocol 3. The proofs are similar to
those in [13] and are omitted due to lack of space.

Theorem 3 (Protocol 2). Let the PRG used in Protocol 1 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. Protocol 2 is a zero-
knowledge proof of knowledge for the relation R with (1 − 1/A)6n-completeness,
1/q′ + 1/N − 1/Nq′ soundness and (t, εPRG + εCom)-zero-knowledge.
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Prover P Verifier V
w, s ∈ Z

n
q , mk , rk ∈ {0, 1}n for 1 ≤ k ≤ 3

m1 · m2 = m3, tk = 〈w, mk 〉 + 〈s, rk 〉 w, s, tk

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

�a�i, �c�i, {�mk �i, �r
k �i}1≤k≤3

← PRG(seedi) � a ∈ Z
5n
q′ , c ∈ Zq′ , �mk �i, �r

k �i ∈ [0, A − 1]n

comi = Com(seedi; ρi)
For 1 ≤ k ≤ 3:

Δmk = mk − ∑
i�m

k �i

Δrk = rk − ∑
i�r

k �i

Δc = −〈a, m1||r1||r2||r3||m2〉 − ∑
i�c�i

h = H1({Δmk , Δrk }1≤k≤3, Δc,
com1, . . . , comN )

h−−−−−−−−−−−−−−−−−−→
ε

$←− Z
5n
q′ , λ1, λ2

$←− Zq′
ε←−−−−−−−−−−−−−−−−−−

The parties locally set

- �tk� = 〈w, �mk �〉 + 〈s, �rk �〉 for 1 ≤ k ≤ 3
- �α� = ε · ((1 − �m1||r1||r2||r3�)||
λ1(1 − �m2�) + λ2�m

1�) + �a� � α ∈ Z
5n
q′ (computation in Zq′)

The parties open �α� to get α.
The parties locally set

�v� = 〈α, �m1||r1||r2||r3||m2�〉 − �c�−
〈ε,0||λ2�m

3�〉 � v ∈ Zq′ (computation in Zq′)

h′ = H2({�tk�}1≤k≤3, �α�, �v�)
h′−−−−−−−−−−−−−−−−−−→

i∗ $←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If there exists k ∈ [1, 3] and j ∈ [1, n] such that:

- either �mk
j �i∗ = 0 with mk

j = 1

- or �mk
j �i∗ = A − 1 with mk

j = 0,

- or �rk
j �i∗ = 0 with rk

j = 1

- or �rk
j �i∗ = A − 1 with rk

j = 0,
then abort.

ym k = mk − �mk �i∗ and

yr k = rk − �rk �i∗ for k ∈ [1, 3]

(seedi, ρi)i�=i∗ , comi∗ ,
{ym k , yr k }1≤k≤3, Δc, �α�i∗

−−−−−−−−−−−−−−−−−−→
For all i �= i∗,

�a�i, �c�i, {�mk �i, �r
k �i}1≤k≤3

← PRG(seedi)
For all i �= i∗,

Rerun the party i as the prover
and compute the commitment comi.

For 1 ≤ k ≤ 3,

Δmk = ym k − ∑
i�=i∗�mk �i

Δrk = yr k − ∑
i�=i∗�rk �i

Δtk = 〈w, Δmk 〉 + 〈s, Δrk 〉
�tk�i∗ = tk − Δtk − ∑

i�=i∗�tk�i

Δv = 〈α, Δm1||Δr1||Δr2||Δr3||Δm2〉
−Δc − 〈ε,0||λ2Δm3; 〉
�v�i∗ = −Δv − ∑

i�=i∗�v�i

Check h = H1({Δmk , Δrk }1≤k≤3, Δc,
com1, . . . , comN )

Check h′ = H2({�tk�}1≤k≤3, �α�, �v�)
Return 1

Protocol 2: Zero-knowledge argument for AND.
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Theorem 4 (Protocol 3). Let the PRG used in Protocol 1 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. Protocol 3 is a zero-
knowledge proof of knowledge for the relation R with (1 − 1/A)2Ln-completeness,
1/q′ + 1/N − 1/Nq′ soundness and (t, εPRG + εCom)-zero-knowledge.

Remark 3. Note that Protocol 2 and 3 have the same soundness as Protocol 1.
This follows from the Schwartz-Zippel Lemma, since the underlying multinomial
still has the same degree after batching, and so it does not impact the soundness
error.

The communication cost (in bits) of Protocols 2 and 3 are respectively:

4λ + τ [n(6 log2(A − 1) + 5 log2(q
′)) + log2(q

′) + λ log2 N + 2λ] ,

4λ + τ [2Ln(log2(A − 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ] .
We notice that it does not depend on the number K of AND gates to prove.

4.2 XOR Gate

Coordinate-wise XOR Gates. We first consider, as above, the case where three
n-bits vectors m1,m2,m3 are committed and P wants to prove that m1⊕m2 =
m3 (coordinate-wise).

Let f be the polynomial f(x) = 2x − x2 defined over Zq′ with q′ ≥ 3 a
prime number. One can easily check that if m1 and m2 are binary vectors, then
f(m1 + m2) mod q′ = m1 ⊕ m2 ∈ {0, 1}. Thus, proving that f(m1 + m2) =
m3 mod q′ in conjunction with the argument of knowledge of opening of the
corresponding commitments, implies m1 ⊕ m2 = m3.

Arbitrary XOR Gates. Again, this protocol is not enough flexible and can not
be used to prove relations such as m1

i ⊕ m2
j = m3

k for arbitrary i, j, k ∈ [1, n],
but we outline how to generalize it.

Assume that P has to prove the satisfiability of K XOR gates with input-
s/output belonging to L committed vectors {m�}1≤�≤L ∈ {0, 1}n. As for the

AND gates, suppose that there are M ≤ K gates of the form m�
xk

⊕ m�k
yk

= m
�′
k

zk

for k ∈ [1,M ], �k, �′
k ∈ [1, L], xk, yk, zk ∈ [1, n]. We assume the binarity of each

committed vector is checked during the protocol, so that

f(m�
xk

+ m�k
yk

) = 2(m�
xk

+ m�k
yk

) − (m�
xk

+ m�k
yk

)2 = m�
xk

⊕ m�k
yk

= m
�′
k

zk mod q′.

Moreover, as seen previously, to check that m� is binary, V can verify m� ·
(1 − m�) = 0 mod q′. If the binarity of m�k and m� is proven elsewhere, V is
convinced that m�k

yk
m�k

yk
= m�k

yk
mod q′ and m�

xk
m�

xk
= m�

xk
mod q′. Hence, the

batching equation becomes

m� · [−λ0m
� − 2

M∑
k=1

λkm�k
yk

exk
]

= −λ0m
� +

M∑
k=1

λk

(
m

�′
k

zk − m�k
yk

− m�
xk

)
exk

mod q′, (3)
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where ei is the i-th vector of the canonical basis of Zn
q′ and {λk}0≤k≤M ∈ Zq′

are random elements chosen by V.

Security analysis. The theorems stating the completeness, soundness and zero-
knowledge of the protocol for the bit-wise XOR and its generalization are the
same as Theorems 3 and 4 (respectively). This follows directly from Remark 3.

The communication complexity (in bits) of the protocol for arbitrary XOR
gates with τ repetitions is:

4λ + τ [2Ln(log2(A − 1) + log2(q
′)) + log2(q

′) + λ log2 N + 2λ] ,

while the one for the bit-wise XOR is a subcase when L = 3. We notice that the
size is the same as Protocol 3 and is independent of K.

4.3 Instantiation and Performances

We present sets of parameters for an instantiation of our commitment scheme
with m(λ) = �(λ) = n(λ) = 256 (i.e. with security based on density 1 subset-sum
and density 2 weighted knapsack). We present performances for the component-
wise protocols for AND and XOR gates. To decrease the rejection rate, we use
a strategy introduced in [13] that consists in allowing P to abort in 0 ≤ η < τ
out of the τ iterations and V accepts the proof if the prover can answer to τ − η
challenges among the τ iterations. This relaxed proof has a significantly lower
rejection rate (at the cost of a small increase of the soundness error) (Table 1).

Table 1. Comparison of performances with n = 256 and q ≈ 2256.

Protocol Parameters Proof size Rej. rate Soundness err.

τ η N A

Protocol 1 (Opening) 21 3 256 213 35.4 KB 0.035 133 bits

Protocol 1 (Opening) 19 2 256 213 33.3 KB 0.104 128 bits

Protocol 2 (AND) 21 3 256 215 98.9 KB 0.014 133 bits

Protocol 2 (AND) 19 2 256 215 93.4 KB 0.054 128 bits

Protocol XOR 21 3 256 215 107.4 KB 0.014 133 bits

Protocol XOR 19 2 256 215 101.3 KB 0.054 128 bits

5 Verification of Circuit Evaluation

Let C be a Boolean circuit with |C| gates (AND or XOR) and T input bits.
Let m ∈ {0, 1}T and v1, . . . , v|C| ∈ {0, 1} be committed elements such that m
is an input that satisfy C and the v’s are the outputs of each gates of C when
evaluated on m, i.e. C(m1, . . . , mT ) = v|C| = 1. The prover P wants to prove
that m indeed satisfies C. For this purpose, we will use protocols that have been
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presented in the previous sections. For simplicity, we assume without loss of gen-
erality that T ≤ n. Since n bits can be committed via the same commitment
(n is the size of the subset-sum instance), we need |C|/n + 1 string commit-
ments. We introduce the following notation to simplify the batching equation: for
k ∈ [0, |C|/n], v0 = (m||v1|| . . . ||vn−T ), . . . ,v|C |/n = (v|C|−T+1|| . . . ||v|C|||0).
Following the batching from Equation (2) and Equation (3), we can set x,y,z
as follows so that the circuit satisfiability verification consists in checking that
x · y = z:

y = (v0|| . . . ||v|C |/n ||r0|| . . . ||r|C |/n ),

x =

⎛
⎝−λ0v

0 +
n∑

i=1

|C|/n∑
j=0

n∑
k=1

λvj
k

(
δ0,i,j,kvj

k − 2ζ0,i,j,kvj
k

)
ei || . . .

|| − λ|C|/nv|C |/n +
n∑

i=1

|C|/n∑
j=0

n∑
k=1

λvj
k

(
δ|C|/n,i,j,kvj

k − 2ζ|C|/n,i,j,kvj
k

)
ei

||1 − r1|| . . . ||1 − r|C |/n
)

where r0, . . . , r|C |/n is the randomness used in the commitment and the vector
z can be computed as a linear combination of v0, . . . ,v|C |/n . As above, ei is the
i-th vector of the canonical basis of Zn

q′ , λ’s are random public values chosen by
the verifier V, and the binary elements ζ and δ depend on the circuit structure,
i.e. δ�,i,j,k = 1 if and only if v�

i ∧ vj
k = vu

p for some u ∈ [0, |C|/n] and v ∈ [1, n]
(and ζ�,i,j,k = 1 if and only if v�

i ⊕ vj
k = vu

p ). Hence, V has to check x · y = z to
be convinced of the binarity of the vectors, and of the satisfiability of the circuit.
The full protocol is given as Protocol 4 in Appendix A.

Theorem 5 (Protocol 4). Let the PRG used in Protocol 4 be (t, εPRG)-
secure and the commitment scheme Com be (t, εCom)-hiding. The protocol 4 is
a zero-knowledge proof of knowledge for the relation R with (1 − 1/A)2(|C|+n)-
completeness, 1/q′+1/N−1/Nq′ soundness and (t, εPRG+εCom)-zero-knowledge.

The communication cost (in bits) of Protocol 4 with τ repetitions is:

4λ + τ [2(|C| + n)(log(A − 1) + log(q′)) + log(q′) + λ log N + 2λ] .

With n = 2λ and A = Θ((|C|+n)τ) (for a small constant rejection probability),
its asymptotic complexity is Θ

(
λ(|C|+λ)

log N log
(

λ(|C|+λ)
log N

)
+ λ2

)
. With N = Θ(λ)

to minimize, we get asymptotic complexity Θ̃(λ|C| + λ2) to be compared with
Θ̃(|C|λ2) in [17] (which can only prove Boolean relations bit-wise on binary
strings and may result in a large overhead depending on the circuit considered).

A Description of Protocols 3 and 4

In order to describe the circuit during Protocol 3, we set S ← ∅. Then construct
S as follows: if m�

xk
∧m�k

yk
= m

�′
k

zk for k ∈ [1,M ], {�, �k, �′
k} ∈ [1, L]3, {xk, yk, zk} ∈

[1, n]3, then S = S ∪ {(�, xk; �k, yk; �′
k, zk)}.
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Prover P Verifier V
w, s ∈ Z

n
q , S

For 1 ≤ � ≤ L,

m� , r� ∈ {0, 1}n

t� = 〈w, m�〉 + 〈s, r�〉 ∈ Zq t� for 1 ≤ � ≤ L
x · y = z as described in Section 4 S, w, s

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

�a�i, �c�i, {�m��i, �r
��i}1≤�≤L

← PRG(seedi) � a ∈ Z
2Ln
q′ , c ∈ Zq′ , �m��i, �r

��i ∈ [0, A − 1]n

comi = Com(seedi; ρi)
For 1 ≤ � ≤ L:

Δm� = m� − ∑
i�m

��i

Δr� = r� − ∑
i�r

��i

Δc = −〈a, y〉 − ∑
i�c�i

h = H1({Δm� , Δr�}1≤�≤L, Δc, com1, . . . , comN )
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z

2Ln
q′ , {λi}1≤i≤L+K

$←− Zq′
ε←−−−−−−−−−−−−−−−−−−

The parties locally set

- �t�� = 〈w, �m��〉 + 〈s, �r��〉 for � ∈ [1, L]
- �α� = ε · �x� + �a� � α ∈ Z

2Ln
q′

The parties open �α� to get α.
The parties locally set

�v� = 〈α, �y�〉 − �c� − 〈ε, z〉 � v ∈ Zq′

h′ = H2({�t��}1≤�≤L, �α�, �v�)
h′−−−−−−−−−−−−−−−−−−→

i∗ $←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If ∃ � ∈ [1, L] and j ∈ [1, n] such that:

- either �m�
j�i∗ = 0 with m�

j = 1

- or �m�
j�i∗ = A − 1 with m�

j = 0,

- or �r�
j�i∗ = 0 with r�

j = 1

- or �r�
j�i∗ = A − 1 with r�

j = 0,
then abort.

ym � = m� − �m��i∗ and yr � = r� − �r��i∗ for � ∈ [1, L]

(seedi, ρi)i�=i∗ , comi∗ ,
{ym � , yr � }1≤�≤L, Δc, �α�i∗

−−−−−−−−−−−−−−−−−−→
For all i �= i∗:

�a�i, �c�i, {�m��i, �r
��i}1≤�≤L ← PRG(seedi)

Rerun the party i as the prover and compute comi.
For � ∈ [1, L]:

Δm� = ym � − ∑
i�=i∗�m��i

Δr� = yr � − ∑
i�=i∗�r��i

Δtk = 〈w, Δm�〉 + 〈s, Δr�〉
�t��i∗ = t� − Δt� − ∑

i�=i∗�t��i

Δv = 〈α, Δx〉 − Δc − 〈ε, Δz〉
�v�i∗ = −Δv − ∑

i�=i∗�v�i

Check h = H1({Δm� , Δr�}1≤�≤L,
Δc, com1, . . . , comN )

Check h′ = H2({�t��}1≤�≤L, �α�, �v�)
Return 1

Protocol 3: Zero-knowledge argument for arbitrary AND gates.
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Prover P Verifier V
C, w, s ∈ Z

n
q′

For 0 ≤ � ≤ |C|/n

v� , r� ∈ {0, 1}n

t� = 〈w, v�〉 + 〈s, r�〉
x · y = z as described in Section 5 C, w, s, t� for 0 ≤ � ≤ |C|/n

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ [1, N ]:

�a�i, �c�i, {�v��i, �r
��i}0≤�≤|C|/n

← PRG(seedi) � a ∈ Z
2(|C|+n)

q′ , c ∈ Zq′ , �r��i, �v
��i ∈ [0, A − 1]n

comi = Com(seedi; ρi)
For 0 ≤ � ≤ |C|/n:

Δr� = r� − ∑
i�r

��i

Δv� = v� − ∑
i�v

��i

Δc = −〈a, y〉 − ∑
i�c�i

h = H1({Δr� , Δv�}0≤�≤|C|/n, Δc, com1, . . . , comN )
h−−−−−−−−−−−−−−−−−−→

ε
$←− Z

2(|C|+n)

q′

{λi}0≤i≤|C|(1+1/n)
$←− Zq′

ε←−−−−−−−−−−−−−−−−−−
The parties locally set

- �t�� = 〈w, �v��〉 + 〈s, �r��〉 for � ∈ [0, |C|/n]

- �α� = ε · �x� + �a� � α ∈ Z
2(|C|+n)

q′
The parties open �α� to get α.
The parties locally set �v� = 〈α, �y�〉 − �c� − 〈ε, �z�〉 � v ∈ Zq′

h′ = H2({�t��}0≤�≤|C|/n, �α�, �v�)
h′−−−−−−−−−−−−−−−−−−→

i∗ $←− [1, N ]
i∗←−−−−−−−−−−−−−−−−−−

If ∃ � ∈ [0, |C|/n], j ∈ [1, n] such that:

- either �v�
j�i∗ = 0 with v�

j = 1

- or �v�
j�i∗ = A − 1 with v�

j = 0,

- or �r�
j�i∗ = 0 with r�

j = 1

- or �r�
j�i∗ = A − 1 with r�

j = 0,
then abort.

yv � = v� − �v��i∗ and yr � = r� − �r��i∗

(seedi, ρi)i�=i∗ , comi∗ ,
{yv � , yr � }0≤�≤|C|/n, Δc, �α�i∗

−−−−−−−−−−−−−−−−−−→
For all i �= i∗,

�a�i, �c�i, {�v��i, �r
��i}0≤�≤|C|/n ← PRG(seedi)

Rerun the party i as the prover and compute comi.
For 0 ≤ � ≤ |C|/n,

Δv� = yv � − ∑
i�=i∗�v��i, Δr� = yr � − ∑

i�=i∗�r��i

Δt� = 〈w, Δv�〉 + 〈s, Δr�〉
�t��i∗ = t� − Δt� − ∑

i�=i∗�t��i

Δv = 〈α, Δx〉 − Δc − 〈ε, Δz〉, �v�i∗ = −Δv − ∑
i�=i∗�v�i

Check h = H1({Δv� , Δr�}0≤�≤|C|/n, Δc, com1, . . . , comN )

Check h′ = H2({�t��}�, �v�)
Return 1

Protocol 4: Zero-knowledge argument for Circuit Satisfiability.
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10. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: 34th ACM STOC, Montréal, Québec,
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Abstract. Modern e-voting systems provide what is called verifiability,
i.e., voters are able to check that their votes have actually been counted
despite potentially malicious servers and voting authorities. Some of
these systems, called tally-hiding systems, provide increased privacy by
revealing only the actual election result, e.g., the winner of the election,
but no further information that is supposed to be kept secret. However,
due to these very strong privacy guarantees, supporting complex voting
methods at a real-world scale has proven to be very challenging for tally-
hiding systems.

A widespread class of elections, and at the same time, one of the most
involved ones is parliamentary election with party-based seat-allocation.
These elections are performed for millions of voters, dozens of parties,
and hundreds of individual candidates competing for seats; they also use
very sophisticated multi-step algorithms to compute the final assignment
of seats to candidates based on, e.g., party lists, hundreds of electoral
constituencies, possibly additional votes for individual candidates, over-
hang seats, and special exceptions for minorities. So far, it has not been
investigated whether and in how far such elections can be performed in
a verifiable tally-hiding manner.

In this work, we design and implement the first verifiable (fully) tally-
hiding e-voting system for an election from this class, namely, for the
German parliament (Bundestag). As part of this effort, we propose sev-
eral new tally-hiding building blocks that are of independent interest. We
perform benchmarks based on actual election data, which show, perhaps
surprisingly, that our proposed system is practical even at a real-world
scale. Our work thus serves as a foundational feasibility study for this
class of elections.

1 Introduction

E-voting is of rising interest. In order to ensure secure and correct elections,
modern e-voting systems are designed to be (end-to-end) verifiable [1–3,6–8,16–
18,20,24], that is, voters should be able to check that their votes/ballots were
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submitted correctly, and voters, election officials, and even external observers
should be able to check that the election result corresponds to the votes that
were cast. A stronger notion of verifiability is accountability, which states that,
if the result turns out to be incorrect, then a misbehaving party causing this
mistake can be identified and be held accountable. A very common method for
election systems to achieve verifiability is by publishing the full tally, which
consists of all (potentially aggregated) individual votes, along with additional
evidence, such as zero-knowledge proofs (ZKPs), which proves that the tally
was computed correctly. With the knowledge of the full tally, everyone is able
to compute the actual election result, e.g., the winner of the election, and check
whether this corresponds to the claimed election result.

More recently, verifiable tally-hiding e-voting systems (e.g. [4,5,9,12,14,15,
19,23,27]), have been proposed that defer from revealing the full tally. They
are rather designed to only publish the actual election result, e.g., the win-
ning candidate(s) of an election, and as little further information as possible
(ideally none), while the correctness of the election result can still be verified.
Following the terminology of [15], tally-hiding systems can be divided into three
classes: Fully tally-hiding systems (e.g., [5,9,14,19]) are the strongest ones as
they reveal only the election result. Publicly or partially tally-hiding systems
(see, e.g., [15,23]) are more relaxed in that they reveal some information beyond
the election result, possibly only to certain parties. As discussed for exam-
ple in [9,14,15,19], tally-hiding systems offer several attractive features such
as improved ballot privacy for voters, avoiding embarrassment or weakening of
candidates, protection against a specific class of coercion attacks called Italian
attacks [4,13], and preventing Gerrymandering. So far, it has been shown that
simple election schemes can be performed at a large scale, even in a fully tally-
hiding manner. However, due to the strong privacy requirements, more complex
voting methods have proven to be a challenge for all types of tally-hiding sys-
tems, with some types of elections even turning out to be practical only for very
few candidates and/or voters (cf. Sect. 6).

A very important class of elections in practice is parliamentary election with
party-based seat allocation as carried out by many countries around the world.
These are among the most complex types of elections: They usually involve
millions of voters, dozens of parties, hundreds of individual candidates, and hun-
dreds of electoral constituencies. In some cases, voters have not just one but
multiple votes that they can distribute among parties and possibly also indi-
vidual candidates. Sophisticated multi-step algorithms are used to compute the
election result, i.e., the assignment of seats to individual candidates. An impor-
tant component for this process is a so-called seat allocation method, which takes
as input a number of available seats and a set of parties with their total number
of votes and then computes the number of seats assigned to each party. While a
crucial part this seat allocation method is only a small step in the computation
of the actual election result. Additional steps are taken, e.g., to combine the
results of different constituencies to distribute seats that are directly allocated
to individual candidates instead of just parties, to take into account minimum
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vote counts for parties before they are assigned any seats, and to include special
exceptions for minorities. Furthermore, the seats assigned to each party need to
be mapped to individual candidates, typically according to party candidate lists
for each constituency and weighted by how many votes a party has obtained in
the respective constituency. In some cases, even the size of the parliament is mod-
ified while computing the election result, possibly only after the seat allocation
method has already been computed to more closely reflect the vote distribution.

Perhaps due to this intimidating complexity, so far, it has not been inves-
tigated whether and in how far this class of elections can be performed in a
tally-hiding manner, and whether this is possible even at the same scale in terms
of voters, parties, candidates, and constituencies as needed in real-world elec-
tions. There are only a few existing works that propose tally-hiding algorithms
for computing certain seat allocation methods, namely, the d’Hondt method [9]
and the Hare-Niemeyer method [14]. As explained above, while seat allocation
methods are important components, they constitute just a small portion of the
entire election scheme, and hence, these prior works do not answer the above
question. In this work, we therefore, for the first time, investigate this open
research question.

Contributions. More specifically, we design, implement, and benchmark the
first verifiable (and even accountable) fully tally-hiding e-voting system for a
major real-world party-based parliamentary election, namely, the election of the
German parliament (Bundestag). Perhaps surprisingly, and as our main insight,
with this system, we are able to show that such a parliamentary election scheme
with party-based seat allocation can actually be performed in a verifiable, fully
tally-hiding manner at a real-world scale. Our system supports the strongest
level of tally-hiding, namely full tally-hiding. That is, if desired, one can reveal
only the allocation of individual candidates to seats and the number of voters
who cast a vote and nothing else to anybody. But one can also easily relax the
kind of information that is revealed, e.g., by additionally publishing the winners
of individual constituencies.

On a technical level, to obtain our voting system, we follow and slightly
modify a generic approach for constructing verifiable fully tally-hiding systems,
namely the Ordinos framework [19]. The Ordinos framework provides a general
blueprint for the structure of such systems. Some components in this blueprint
are unspecified and have to be filled in by protocol designers on a case-by-case
basis to obtain a concrete instantiation of Ordinos that can perform an election
for a specific voting method. It has been shown in [19] that, as long as those com-
ponents meet specific requirements, the overall system/instantiation is a secure
verifiable, fully tally-hiding e-voting system. The main challenge lies in con-
structing those components for a specific voting method in such a way that they
provide all expected security properties while achieving practical performance.

The most important and also most difficult to design component is a pub-
licly verifiable secure multi-party computation (MPC) protocol that computes
the election result for the German parliament from the set of (encrypted) ballots.
Due to the inherent complexity and scale of this election, this requires special
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care to obtain not just a theoretically secure but also a practically efficient sys-
tem. Specifically, we first propose several MPC building blocks, including the
first MPC subroutine for computing the Sainte-Laguë seat allocation method
used for parliamentary elections, not just in Germany but also in, e.g., Indone-
sia, New Zealand, Nepal, Sweden, Norway, and Kosovo. Based on these building
blocks, we then construct an efficient MPC protocol that performs the entire elec-
tion evaluation for the German parliament. Along the way, we evaluate different
options for designing our algorithms and propose several novel optimizations
to improve the overall efficiency. We note that many of our ideas and building
blocks, such as our MPC protocol for the Sainte-Laguë method, are of inter-
est also for other parliamentary election schemes since such elections often use
similar concepts and components.

The overall practicality of e-voting systems following the Ordinos approach is
determined essentially only by the performance of the MPC component. Hence,
to evaluate the performance and identify potential limitations of our system, we
have implemented our full MPC protocol for electing the German parliament
and performed extensive benchmarks based on actual real-world election data
consisting of the votes of all respective constituencies. Our solution needs about a
day to compute the election result, which is within the usual time frame expected
for this election, thus demonstrating that our MPC protocol is practical even for
such a complex large-scale political election.

Altogether, our results serve as a foundational feasibility study for (fully)
tally-hiding elections for the important class of parliamentary elections with
party-based seat allocation. Of course, as can be seen in countries already using
or aiming at online elections, establishing and actually deploying a full-fledged
ready-to-use system in the real world requires a huge effort beyond studying
feasibility. Future deployments can build on our results by considering further
aspects of parliamentary elections that are out of scope of this work, such as
deciding which parties run the election in a distributed fashion, tackling the risk
of voter coercion, establishing procedures for handling voter complaints, etc.

Structure. We recall the Ordinos framework in Sect. 2. In Sect. 3, we present
novel building blocks that we have constructed to realize the voting methods
in this work. In Sect. 4, we present the Sainte-Laguë method, including a novel
variant to compute the Sainte-Laguë seat allocation and different tally-hiding
algorithms to compute the Sainte-Laguë method. We present our voting system
for the German Bundestag in Sect. 5. We discuss related work and conclude
in Sect. 6. Our implementation is available at [26]. A full version of this paper
with complete details for all of our results is available at [25].

2 Preliminaries

Notation. We write [n] to denote the set {0, . . . , n−1}. Let ncand be the number
of candidates/parties/choices, and let nvotes be the (maximal) number of votes.
We will use nseats to denote the number of seats that are being distributed
among nparties parties. With nj

votes we denote the number of votes, and with
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nj
seats the number of seats that party j has received. The format of a plain,

i.e., unencrypted, ballot is defined via a finite choice space C ⊆ N
ncand , i.e., a

ballot assigns each candidate a number subject to constraints defined by C.
For example, a single vote election where a plain ballot contains one vote for
a single candidate/party/choice can be modeled via the choice space Csingle :=
{(b0, . . . , bncand−1) ∈ {0, 1}ncand | ∑

i bi = 1}. For voter j we denote her plain
ballot by vj := (vj

i )i∈[ncand] ∈ C.

The Ordinos Framework. The Ordinos framework was introduced in [19] as a
general blueprint for constructing verifiable, fully tally-hiding e-voting systems.
Systems following the Ordinos approach use a voting authority, an arbitrary
number of voters, nt trustees, an authentication server, and an append-only
bulletin board (B) and roughly work as follows. In an initial setup phase, param-
eters of the election are generated and published on B, including a public key
and corresponding secret key shares for an additively homomorphic t-out-of-nt

threshold public key encryption scheme E = (E,D). Each trustee has one secret
key share and publishes a non-interactive zero-knowledge proof of knowledge
(NIZKP) πKeyShareGen to prove knowledge of their key share. The choice space
C and the result function fres of the election are published on B as well, where
fres takes as input a tally and outputs the corresponding election result, e.g.,
the candidate with the most votes. In the following voting phase, the voters first
encrypt their ballots and then publish them on B, authenticating themselves as
eligible voters with the help of the authentication server and the authentication
server adds a signature to the ballot. An encrypted ballot of voter j has the form
(Epk(v

j
i ))i∈[ncand], i.e., each component of the plain ballot is encrypted separately.

The encrypted ballot comes with a NIZKP πEnc that proves validity of the plain
ballot, i.e., vj = (vj

i )i∈[ncand] ∈ C. The published encrypted ballots can be homo-
morphically (and publicly) aggregated to obtain an encryption of the aggregated
full tally, i.e., one obtains one ciphertext on each vi :=

∑
j∈[nvotes]

vj
i , where vi

is the total number of votes/points that candidate/choice i obtained in the elec-
tion. In the tallying phase, the trustees run a publicly verifiable MPC protocol
PMPC to compute fres. This protocol takes as (secret) inputs the secret key shares
of the trustees and the (public) encrypted aggregated tally and outputs the elec-
tion result res = fres(v0, . . . , vncand−1). This result, along with any material that
is needed to allow external parties to verify the MPC computation, is published
by the trustees on B. Finally, in the verification phase, voters can check that
their ballots appear on B, and everyone can verify that the election result res
was computed correctly from the encrypted ballots by re-computing the homo-
morphic aggregation, checking all NIZKPs, and checking the MPC computation
(which typically involves additional NIZKP verifications).

Many of the above components are not fixed by the Ordinos framework
because they strongly depend on the specific election method that is to be imple-
mented. Specifically, the following parameters and components have to be spec-
ified or constructed by a protocol designer to create an instantiation of Ordinos
for a concrete election method: (i) the choice space C and election result function
fres, (ii) a threshold encryption scheme E , (iii) NIZKPs πKeyShareGen and πEnc,
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(iv) a EUF-CMA-secure signature scheme S, and (v) an MPC protocol PMPC for
computing the election result function fres.

Voting systems following the Ordinos approach are intended to provide verifi-
ability and full tally-hiding. As already mentioned, verifiability intuitively means
that everyone can check whether the election result returned by the voting sys-
tem corresponds to the actual votes. Full tally-hiding intuitively means that no
one, including attackers, learns anything besides the number of submitted ballots
and the final election result; this property, therefore, also implies the security
notion of ballot privacy. We refer interested readers to [19] for formal definitions
of both verifiability and full tally-hiding. Küsters et al. [19] have shown that
if the above components defined by protocol designers meet certain properties,
then the resulting Ordinos instance, indeed achieves both security notions:

Theorem 1 (Verifiability and Full Tally Hiding [19], informal). Let
E be an additively homomorphic threshold public-key encryption scheme E,
πKeyShareGen and πEnc be secure NIZKPs for E, S be an EUF-CMA-secure sig-
nature scheme, and PMPC be a publicly verifiable secure MPC protocol for com-
puting fres, i.e., if the result does not correspond to the input, then this can be
detected, and at least one misbehaving trustee can be identified; this must hold
even if all trustees running the MPC protocol are malicious. Then, the resulting
instance of Ordinos is verifiable and fully tally-hiding.1

Existing Building Blocks. In this work, we will use a threshold variant of the
Paillier encryption scheme [10] to implement E . Given a public key pk for this
encryption scheme, there exist publicly verifiable MPC building blocks [10,14,22]
that allow the owners of the corresponding secret key shares to compute the
following basic operations for a, b, c ∈ Zn (all operations are mod n where n is
determined by pk):

– Epk(c) = fadd(Epk(a), Epk(b)) s.t. c = a + b; for brevity, we denote this oper-
ation by ⊕.

– Epk(c) = fmul(Epk(a), Epk(b)) s.t. c = a·b, for brevity, we denote this operation
by �.

– Epk(c) = fgt(Epk(a), Epk(b)) s.t. c = 1 iff a ≥ b and 0 otherwise.
– Epk(c) = feq(Epk(a), Epk(b)) s.t. c = 1 iff a = b and 0 otherwise.
– (Epk(si))ni=1 = fmax((Epk(vi))ni=1) s.t. si ∈ {0, 1} and si = 1 means that

vi = maxj∈{1,...,n} vj ∧ ∀j ∈ {i + 1, . . . , n} : vj < vi.
– c = fdec(Epk(c)) s.t. Epk(c) is an encryption of c.

The MPC building blocks for computing the above operations have a useful
property, namely, encrypted outputs from one building block can be used as
inputs for another building block such that the resulting combined protocol is
still a secure, publicly verifiable MPC protocol [22]. In other words, they allow

1 Full tally-hiding requires that at most t− 1 trustees are malicious, verifiability does
not require any honest trustees at all. This theorem uses further standard e-voting
assumptions, such as honesty of B. We refer interested readers to [19] for full details.
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for building more complex protocols such as PMPC for Ordinos that meet the
requirements of Theorem 1. We further note that the MPC building blocks for
computing fgt() and feq() proposed by [22] offer sublinear runtime as long as an
upper bound < n for both input values a and b is known; hence, performance
drastically increases as long as a, b are known to remain small. This, in turn,
also improves performance of MPC protocols based on these two building blocks,
including the MPC building block for computing fmax() [14].

3 New MPC Building Blocks

In this section, based on the primitives introduced in Sect. 2, we describe several
new publicly verifiable MPC building blocks that we need for constructing our
PMPC, with full details provided in [25]. We note that these building blocks are
of independent interest.

Election methods for parliamentary elections often make use of divisions that
produce fractions, which is an issue for encryption schemes and MPC protocols
which operate on natural numbers, such as those from Sect. 2. One common
approach [9,14] to deal with this is to multiply all values by the least common
multiple of all divisors used in a computation such that divisions are guaran-
teed to always produce natural numbers. This can drastically increase the size of
numbers, which in turn severely reduces the efficiency gain of the sublinear com-
parisons protocols fgt(), feq() from Sect. 2. Therefore, we instead take an alter-
native approach to deal with fractions by representing our values, where needed,
as rational numbers consisting of a numerator n and denominator d. Encrypted
rational numbers are denoted as Efrac

pk (a) := (Epk(a.n), Epk(a.d)) where a.n is
the numerator and a.d the denominator of a. We denote by Fraction(n, d)
the operation that creates an encrypted rational number with numerator n and
denominator d (if the inputs n and/or d are not already encrypted, then they are
first encrypted with public constant randomness). Based on this representation,
we design and implement MPC components for basic arithmetic computations
on encrypted rational numbers, including addition, multiplication, and compar-
isons.

Based on fmax() (see Sect. 2), we propose the method getMaxFraction that
takes a list of k encrypted fractions and returns another list of the same length
with Epk(1) at the index of the maximal fraction and Epk(0) everywhere else,
where if there are multiple maxima, only the last one in the list is marked Epk(1).

Election methods often need to deal with breaking ties. For this purpose,
Cortier et al. [9] proposed an algorithm that finds the maximum in a list and
additionally takes care of tie-breaking by scaling values and adding small tie-
breaking values. While this scaling idea is conceptually simple, care must be
taken to obtain a correct implementation. As we discuss in the full version [25],
we found cases where directly applying the tie-breaking mechanism described
in [9] in our setting, where fractions are represented by their numerator and
denominator, which leads to an incorrect output. We address this problem in our
implementation getMaxFractionByRank shown in Fig. 1. This algorithm addi-
tionally takes encrypted ranks r = (Epk(ri))ki=1 as input, where the (r1, . . . , rk)
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Fig. 1. Algorithm to find a maximum in a list of fractions, including tie breaking by
rank.

Fig. 2. Floor Division to calculate Epk(
⌊
a
b

⌋
) where u is a known upper bound.

form a permutation of 0, . . . , k −1, and first scales all ciphertexts qi by a certain
value, adds the encrypted ranking ri to the scaled qi, and then continues just as
getMaxFraction. By the scaling the addition of ri does not change the output
if the qi are not tied. But, if any of the inputs qi are equal, then the party with
the highest rank ri will have the greater (encrypted) value after the addition.

Finally, in Fig. 2 we introduce a new MPC algorithm for computing the floor
division Epk(

⌊
a
b

⌋
) from two encrypted natural numbers Epk(a), Epk(b) and a pub-

licly known upper bound u ≥ ⌊
a
b

⌋
of the result. Compared to the floor division

MPC algorithm presented in [14], we require u but can be much more efficient
by performing a binary search instead of iterating over a full set of values.

4 MPC Protocol for the Sainte-Laguë Method

The Sainte-Laguë method (also called Webster method) is a seat allocation
method, i.e., a procedure that describes how a given number of seats is allocated
to a set of parties depending on the number of votes each party has received.
The Sainte-Laguë method is used by parliamentary elections in many coun-
tries, for example, Indonesia, New Zealand, Nepal, Sweden, Norway, Germany,
and Kosovo. As part of computing the election result, these elections run the
Sainte-Laguë method multiple times on different inputs. For example, the offi-
cial evaluation of the final seat distribution of the German Bundestag of the
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election in 2021 required running the Sainte-Laguë method 23 times (in addi-
tion to several other steps, as explained in Sect. 1). Hence, in order to obtain an
efficient tally-hiding voting system for these elections, it is crucial to design a
heavily optimized MPC component for computing the Sainte-Laguë method. In
this section, we first give both a general overview of the Sainte-Laguë method
and then present our efficient tally-hiding MPC algorithm, including several
optimizations and variations.

4.1 Computing a Sainte-Laguë Distribution

There are essentially two distinct (but provably equivalent [21]) algorithms for
computing the seat allocation following the Sainte-Laguë method, one based on
highest quotients and one on finding suitable denominators. Both algorithms
take as input the number of seats nseats to be distributed and, for each party
j ∈ [nparties], the total number of votes nj

votes that party j has received. They
return the number of seats assigned to each party.

– Highest-Quotients. For i ∈ [nseats], j ∈ [nparties] compute the quotients

qji := nj
votes
2i+1 . Let M be the list of the nseats highest quotients. Then party j is

assigned k seats, where k is the number of quotients in M that belong to j,
i.e., quotients of the form qji , i ∈ [nseats].

– Suitable-Denominator. Given a suitable denominator d, the number nj
seats

of seats assigned to party j is computed as nj
seats = 	nj

votes
d 
, where 	·
 denotes

rounding to the closest integer (rounding of .5 can be chosen to be either up or
down and can be chosen differently for each j). A denominator d is suitable if
the result of this computation leads to the number of desired total seats, i.e.,
if

∑
j nj

seats = nseats. To find a suitable denominator, one generally starts with

an arbitrary denominator d, e.g., d =
⌊∑

j nj
votes

nseats

⌉

, checks the corresponding

number of seats that would be assigned, and then tweaks d until a suitable
value has been found.

For both algorithms, there might be ties that would need to be resolved. E.g., in
the highest-quotients algorithm, there might be two equal quotients while there
is only enough space left in M for one of them. In the suitable-denominator algo-
rithm, it can happen that all suitable denominators are such that the quotients of
multiple parties end on .5 and some of which need to be rounded up while others
need to be rounded down to achieve an overall sum of nseats. The Sainte-Laguë
method does not define any specific tie-breaking mechanism. Instead, elections
using this method additionally need to specify how they handle ties.
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Fig. 3. One iteration step of SLQBasic.

4.2 Tally-Hiding MPC Realization of Sainte-Laguë

We want to construct a tally-hiding MPC component that takes as inputs
Epk(n

j
votes) for each party as well as publicly known values nparties and nseats

2,
and computes the encrypted Sainte-Laguë seat distribution Epk(n

j
seats). As

an initial insight, we observe that basing the MPC protocol on the suitable-
denominator algorithm is generally very inefficient: This algorithm has to iter-
ate over several potential denominators d until a suitable one is found. Since
the number of iterations required to find d would reveal non-trivial information
about the secret inputs, the MPC protocol would rather have to be constructed
such that it always uses an apriori fixed number m of iterations (some of which
will discard their results if a suitable divisor has already been found by a previous
iteration) where m must be chosen sufficiently large such that, for all possible
input sequences, a suitable divisor d is guaranteed to always be found. This worst
case approximation introduces a lot of additional overhead.

Therefore, we have constructed a basic tally-hiding MPC realization
SLQBasic of the Sainte-Laguë method following the highest-quotients approach:
each party j is assigned its current quotient qcurrent (see the description of the
highest-quotients algorithm) and seats nj

seats thus far. Figure 3 shows this excerpt
of a single iteration step. Note that this SLQBasic uses the fast getMaxFraction
algorithm in all iterations, and hence, breaks ties via a fixed mechanism that
always assigns the seat to the party with the highest index j.

Support for Breaking Ties by Lot. Many elections use more involved
tie-breaking algorithms than the default one implemented by SLQBasic. For
example, for many parliamentary elections, e.g., elections in Indonesia, Swe-
den, and Germany, whenever several parties are tied for a seat, then a new lot
is drawn to resolve the tie. A more general tally-hiding MPC implementation
SLQCustomTiebreaking for this election does not only have to support this tie-
breaking mechanism but also has to keep secret whether any lots were drawn
and what the result was. In particular, to build such a SLQCustomTiebreaking
we need to first extend/modify the iteration step AddSeatBasic shown in Fig. 3,
obtaining a new subroutine AddSeatTieBreaking which takes as additional input
2 As we explain in our full version [25], all MPC algorithms presented in this and the

next section can be extended to run with a secret number of seats nseats, as long as
an upper limit of seats is known.
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an encrypted ranking of parties r = (Epk(r0), . . . , Epk(rnparties−1)) where r is a
uniformly chosen permutation of 0, . . . , nparties − 1, and then resolves ties based
on that ranking.

We construct AddSeatTieBreaking by making use of getMaxFractionByRank
as presented in Sect. 3. That is, we replace the call to getMaxFraction in Line 2
of AddSeatBasic by our algorithm getMaxFractionByRank which takes as addi-
tional input the ranking r. Based on this AddSeatTieBreaking, we have con-
structed two versions of a SLQCustomTiebreaking MPC component which imple-
ment Sainte-Laguë. In essence, these MPC components first compute, in each
iteration, an encrypted ranking r that encodes the result of tie-breaking and then
use AddSeatTieBreaking with that r. There are two main optimizations that we
introduce in both cases: First, for tie-breaking by lot, we run a distributed ran-
domness generation protocol [22] for each iteration to then compute r based on
the results. Since this step is input/vote independent, it can be pre-computed
even before the election. Secondly, observe that if a tie occurs between m parties
in one iteration of the quotient approach while there are at least m seats to be
distributed, then all parties in the tie will obtain a seat in the next m iterations,
i.e., it does not actually matter how this tie is broken. Hence, only ties during
the last nparties − 1 iterations need to be handled by AddSeatTieBreaking, while
otherwise we use the faster AddSeatBasic algorithm.

4.3 Sainte-Laguë Based on Floor Division

While our MPC algorithms SLQBasic and SLQCustomTiebreaking based on the
highest-quotients approach are already practical in terms of efficiency, they
always use nseats iterations to assign all seats and thus do not scale overly well for
elections where a high number of seats nseats needs to be allocated. To improve
performance in such cases, we propose a new algorithm for computing the Sainte-
Laguë method which we call floor division method. Our floor division method is
different from the highest-quotient and the suitable-denominator methods and
allows us to construct an MPC component, called SLQFloorDiv, that requires
nparties instead of nseats many iterations, and thus, is more efficient in the com-
mon case that the number of seats exceeds the number of parties. In what follows,
we first present the floor division method and then describe our MPC component
SLQFloorDiv.

Description of Our Method. Intuitively, the main idea of our floor division
method is to replace the initial iterations and hence seat assignments of the
quotient method by computing an under- and an overestimation of the final seat
allocation, and then run only the final (at most nparties many) iterations of the
quotient method to add/remove a seat from both of these initial estimations
until exactly nseats many seats are assigned. As we prove one of the resulting
final seat distributions will be the correct Sainte-Laguë distribution, and it can
be determined efficiently which one is correct.

Concretely, for each party j compute mj := 	nj
votes·nseats
nvotes

�. For the under-
estimation case, we start by assigning mj seats to party j. Note that smin

initial :=
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∑
j∈[nparties]

mj might be smaller than nseats, but not smaller than nseats−nparties.
Hence, in order to distribute exactly nseats seats in total, we distribute the
remaining nseats − smin

initial (≤ nparties) seats to the parties by executing the final
iterations of the highest-quotients method (and the desired tie-breaking mecha-

nism). That is, starting from the intermediate quotients qjmj
:= nj

votes
2mj+1 instead

of starting from the initial qj0 for each party j. For the overestimation case, we
start by assigning mj + 1 seats to party j, which might result in at most nparties

additional seats being assigned beyond the desired total of nseats. To remove
those seats, we use a reverse variant of the highest-quotients algorithm. For this
purpose, we again initialize the quotients as qjmj

and then, in each iteration
step, determine the minimal current quotient and remove a seat from the cor-
responding party (using the desired tie-breaking mechanism). Then, we update
the quotient of that party by reducing the denominator by 2.3 This continues
until only a total of nseats seats is distributed.

Finally, to figure out which result is the correct Sainte-Laguë distribution,
we evaluate the underestimation case an additional time to compute the next
seat that would be assigned. If the corresponding quotient is less than all the
initial quotients qjmj

of the underestimation, then the result computed based
on the underestimation is the correct seat distribution. Otherwise, the result
computed based on the overestimation is the correct seat distribution. In the
full version [25], we show the following result for our algorithm:

Lemma 1 (Correctness of SLQFloorDiv). The algorithm SLQFloorDiv as pre-
sented above is correct, i.e., always outputs the seat allocation according to the
Sainte-Laguë method with the desired tie-breaking.

Tally-Hiding MPC Component. Using our building blocks described in
Sect. 3 and the other building blocks from Sect. 2, most of our tally-hiding MPC
protocol for computing the above algorithm for Sainte-Laguë is straightforward.
The main issue left to be solved is that the number of iterations that our algo-
rithm needs to add/subtract seats from the MPC protocol reveals initial seat
assignment (this would reveal non-trivial information about the inputs/votes).
We solve this by always using nparties iterations in our MPC protocol, which is
an upper bound on the number of iterations that are needed.

Our benchmarks of single runs of the Sainte-Laguë algorithms show that this
variant of the Sainte-Laguë method is indeed faster than SLQCustomTiebreaking
for larger numbers of seats and smaller numbers of parties. For example,
we have the following runtime for ten parties: To distribute 60 resp. 100
seats using SLQCustomTiebreaking, the runtime is 6.7 h resp. 12.6 h while
SLQFloorDiv only needs 4.7 h resp. 5 h. However, for smaller numbers of, say, 20
seats, SLQCustomTiebreaking is faster with 1.6 h instead of SLQFloorDiv, which
3 It might happen that all mj + 1 seats are removed from a party j. In that case, this

party is ignored in the following iterations. Note that this special case is non-trivial
to implement in our SLQFloorDiv MPC component since we cannot reveal the values
mj or the quotients.
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needs 4.6 h. We compare benchmarks for further values of nseats and nparties

in AppendixA.2.

5 Election of the German Parliament (Bundestag)

The election of the German federal parliament, the Bundestag, which consists of
at least 598 seats is a combination of proportional representation and first-past-
the-post voting. Each voter has two votes: a constituency vote (called first vote)
given towards an individual candidate, who is typically but not necessarily also
a member of a party, and a vote for state-specific party lists (called second vote)
which determines the proportions of parties in the parliament. The first votes
are evaluated for each of the 299 constituencies individually: The candidate with
the most votes wins the constituency and is guaranteed a seat in the parliament,
called a direct mandate.4 Each constituency belongs to exactly one of the 16
German states, say state l ∈ L where L is the set of all states. We denote by sdj,l
the total number of direct mandates that candidates of party j win in state l.

Let vj,l be the number of second votes for party j in state l and vj :=
∑

l∈L vj,l
the total number of second votes for party j. In the next step, the baseline of 598
seats of the parliament are assigned to the states in proportion to their number
of inhabitants; we call this the first top distribution and refer to these seats as
state seats. A party j can obtain state seats if vj is at least 5% of all second votes,
j has obtained at least

∑
l∈L sdj,l ≥ 3 direct mandates, or j represents a special

minority. Let S be the set of parties that are allowed to obtain state seats. Then,
for each state l, the state seats are assigned to parties j ∈ S following the Sainte-
Laguë method based on vj,l. The resulting seats are called quota seats, denoted
by sqj,l for party j and state l. We call this distribution the first low distribution. It
usually happens in several states l that a party j ∈ S wins more direct mandates
and hence guaranteed seats for their candidates than the party actually receives
in terms of quota seats, i.e., sdj,l > sqj,l. In such cases, the overall size of the
parliament is increased, and the seat assignment to parties is updated such that
(i) parties have enough seats for all their candidates with direct mandates and
(ii) the number of seats given to party j in the final parliament is “close” to
the Sainte-Laguë seat distribution based on vj (up to 3 additional seats, called
overhang seats, are tolerated). This is computed via the following procedure.

Let smin
j :=

∑
l∈L

(

max( sdj,l+sqj,l
2 
, sdj,l)

)

be a lower bound for the seats

that party j ∈ S will receive. Compute dno := minj∈S

(
vj

smin
j −0.5

)
. Then, for

each party j ∈ S, it is determined whether there is a state l ∈ L such that
t(j, l) := sdj,l − sqj,l > 0. This value is also called the threatening overhang of
party j in state l. Based on these values, one computes a set of divisors: Doverh =

4 Ties for the first place and hence the direct mandate are resolved by lot. Ties in any
of the following iterations of the Sainte-Laguë method are also resolved by lot with
one exception discussed below.
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{ vj

smin
j −i

| i ∈ {0.5, 1.5, 2.5, 3.5}, j ∈ S and ∃l : t(j, l) > 0, t(j, l) + 1 > i}. Let

doverh be the fourth smallest element of Doverh and set d := min(dno, doverh).
Then, as in the suitable-denominator algorithm (c.f. Sect. 4), party j ∈ S

receives nj
seats := 	nj

votes
d 
 seats, where .5 is always rounded up, i.e., in this step,

ties are resolved by giving every tied party a seat. The resulting distribution is
called the second top distribution. Next, for each party j ∈ S, these nj

seats are
assigned to individual states following the Sainte-Laguë method weighted by vj,l,
resulting in the second low distribution.

In addition to those nj
seats seats, (some) parties further receive αj :=

smin
j − nj

seats(≤ 3) overhang seats to cover a possibly remaining surplus of direct
mandates. These overhang seats are then also distributed to states according
to the smallest αj many values from the following set: Oj

overh = { vj,l

smin
j,l −i

| i ∈
{0.5, 1.5, 2.5}, l ∈ L, i < αj}.

All seats assigned to party j ∈ S in state l are then assigned to candidates as
follows. First, candidates of party j that won a direct mandate in a constituency
of state l obtain a seat. The remaining seats, if any, are assigned to the party
candidate list for that state, starting with the first one and skipping any can-
didates that have already obtained a direct mandate. Finally, if there are any
direct mandates for candidates that do not belong to a party from S, then each
of these candidates receives a seat that is added to the parliament. The resulting
set of seats defines the updated size of the parliament.

Our Tally-Hiding Realization. We construct our e-voting system by following
the general Ordinos approach, except for one difference. The original Ordinos
framework proposed in [19] was designed for elections without electoral con-
stituencies or with just a single constituency where all votes are treated equally.
We capture the existence of several constituencies in the German parliamentary
elections, where the result also depends on the constituency that a vote was
submitted in, via the following small changes: The list of eligible voters that
is published during the setup phase now additionally assigns each voter to a
constituency. Ballots are extended to additionally contain (in plain) the identi-
fier of the constituency they were cast in such that everyone can check whether
ballots were cast for the correct constituency. Encrypted ballots are aggregated
per constituency and then evaluated via (the MPC component for) fres. We
note that this difference in settings also slightly changes the meaning of full
tally-hiding: For elections without electoral constituencies, only the number of
submitted votes (since this is public on B) and the final result become known.
In the setting with electoral constituencies, only the number of submitted votes
per constituency and the final result becomes known. As part of our security
proof (cf. Theorem 2), we define full tally-hiding for our setting and verify that
the original proofs of Theorem1 carry over in a natural way to our setting using
the same preconditions.

We hence instantiate the (modified) Ordinos approach for the German
election by using the threshold Paillier encryption scheme E , choice space
Csingle × Csingle, standard NIZKPs πKeyShareGen and πEnc [10] and any standard
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EUF-CMA-secure signature scheme from the literature, result function fres-Ger

for the German parliamentary election as described above, and importantly our
new MPC protocol PMPC-Ger for fres-Ger described next.

Constructing PMPC-Ger. We have constructed PMPC-Ger using the components
from Sects. 2 and 3 to compute the full evaluation procedure for German parlia-
ment, as described above. This includes all small details and special cases, e.g.,
computing and changing the final parliament size, determining and distributing
up to 3 overhang seats per party, and exempting parties from obtaining state
seats iff they did not win 5% of the total second votes, won less than 3 direct
mandates, and are not representing a special minority.

Of course, capturing the full complexity of the election evaluation of the Ger-
man parliament in an MPC protocol PMPC-Ger comes at a hefty cost in terms of
performance and hence runs the risk of becoming impractical. We have therefore
spent considerable effort into carefully optimizing PMPC-Ger by, among others,
the following: (i) Computing the election result requires multiple iterations of
Sainte-Laguë. We use both SLQCustomTiebreaking and SLQFloorDiv, depending
on the number of seats and candidates that has to be processed in the current
iteration. (ii) We have constructed PMPC-Ger in such a way that, as far as possi-
ble, substeps such as repeated state-wise operations can be computed in parallel.
We have performed benchmarks for various numbers of threads, which demon-
strate that this is a major factor in improving performance, see Table 1. (iii) We
first compute and reveal the set of parties that will obtain at least one seat in the
parliament. This allows us to tailor the following computations to this specific
set of parties and thus save time by not having to perform the same operations
for (dozens of) parties that will not obtain a seat. As part of Theorem2, we argue
that this construction is still a secure MPC protocol as, intuitively, the interme-
diate output can be computed from/is part of the final result. (iv) By proposing
a different algorithm for computing the final number of seats for each party in
the German parliament based on an encrypted divisor d = min(dno, doverh), we
can use an efficient binary search on encrypted data to obtain this value.

We provide full details of PMPC-Ger, including all of our optimizations in the
full version [25]. We have the following:

Theorem 2 (Security). Let PMPC-Ger be our MPC protocol from above. Then,
the Ordinos instance using the components mentioned above is a verifiable5 and
fully tally-hiding e-voting system for the election of the German parliament.

We prove this theorem in the full version [25]. As part of this, we define full
tally-hiding for elections with constituencies, re-verify the original proofs of the
Ordinos framework for our setting, and show that our PMPC-Ger is a secure,
publicly verifiable MPC protocol for fres-Ger.

Benchmarks: We have benchmarked our system using the election data for
the German parliament in 2021 available at [11]. This election had 61, 181, 072
5 We actually show that our voting system achieves the stronger notion of account-

ability as well. That is, if the result turns out to be incorrect, then a misbehaving
party causing this mistake can be identified and be held accountable.
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eligible voters, 46, 854, 508 valid submitted ballots, and 47 parties with 6211
candidates running in 299 constituencies. With each trustee running on an ESP-
RIMO Q957 (64 bit, i5-7500T CPU @ 2.70 GHz, 16 GB RAM) using 8 cores, we
can evaluate (and verify, as explained in Appendix A.4) the German parliamen-
tary elections based on this real-world data in about a day. For more details on
our setup and further benchmarks,see Appendix A and our full version [25].

6 Related Work and Conclusion

Various tally-hiding e-voting systems for a wide variety of election types have
been proposed so far, e.g., [4,5,9,12,14,15,19,23,27]. For simple types of elec-
tions such as single vote (every voter submits a single vote for the candidate of
their choice with the winner(s) being the candidate(s) with the most votes), it
has been demonstrated that they can be performed in a verifiable tally-hiding
manner, even at a large scale (see, e.g., [9,14,15,19]). However, many real-world
elections, notably political ones, are much more complex and have proven to be
a challenge for tally-hiding systems.

Preferential Elections: An important class of complex real-world elections
are preferential ones. Tally hiding has already been studied for several voting
methods from this class, with such systems typically being viable at a small
to medium scale but often being impractical for large-scale applications. For
example: (i) Recent advances in tally-hiding e-voting have managed to support
instant-runoff voting (IRV) for small numbers of candidates [15,23]. However,
none of these systems remain practical for more than 6 candidates. (ii) Cortier
et. al [9] have proposed the first MPC component that can be used to construct a
fully tally-hiding voting system for single transferable vote (STV), a preferential
voting method somewhat similar to IRV. However, they state that the compu-
tational cost of the resulting system would be too high for large-scale elections.
(iii) For the Condorcet Schulze election scheme, Hertel et.al. [14] proposed an
Ordinos instantiation that can handle small numbers of candidates, however,
already needs about 9 days to compute an election result for 20 candidates (and
essentially arbitrary numbers of voters). Cortier et. al [9] proposed an alternative
tally-hiding MPC component for computing Condorcet Schulze, which is faster
for small numbers of voters but can be extrapolated to also require 9 days for
20 candidates as soon as there are ∼32.000 voters.

Parliamentary Elections With Party-Based Seat Allocations: As already
explained in the introduction, prior to our work, it had not been investigated
for any election from this class, whether and in how far, it can be performed in
a tally-hiding manner. In this work, we have proposed several new tally-hiding
building blocks, as well as the first verifiable tally-hiding voting system for an
election from this class, namely, the German parliament. Our results serve as
an important foundational feasibility study, which, perhaps surprisingly and for
the first time, demonstrates that even such a complex and large-scale real-world
election can, in principle be performed in a verifiable fully tally-hiding manner.
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It is interesting future work to use our building blocks and ideas to construct
tally-hiding voting systems for further elections from this class.

Acknowledgements. This research was supported by the DFG through grant KU
1434/11-1, by the Carl Zeiss Foundation, and by the Centre for Integrated Quantum
Science and Technology (IQST).

A Appendix

A.1 Details of the Setup for Our Benchmarks

We use a Paillier key of size 2048 bits. The setup for our benchmarks consists
of three trustees communicating over a local network. Each trustee ran on an
ESPRIMO Q957 (64 bit, i5-7500T CPU @ 2.70 GHz, 16 GB RAM). As in [19],
the benchmarks of our MPC protocols start with an already aggregated tally.
Küsters et al. [19] showed for the MPC protocols in their Ordinos instances that
the number of trustees does not influence the benchmarks in a noticeable way
and that, due to the sublinear communication complexity of the comparison
protocols, there is no significant difference between a local network and the
Internet. Since our MPC protocols are based on the same primitives and basic
building blocks as used by [19], the same is also true for our MPC protocols. Our
benchmarks therefore focus mostly on the number of candidates/parties which
is the main factor for the performance of our protocols.

A.2 Comparison of SLQCustomTiebreaking and SLQFloorDiv

We present benchmarks for both SLQFloorDiv and SLQCustomTiebreaking (cf.
Sect. 4) in Fig. 4. As the figure shows, SLQCustomTiebreaking is linear in the
number of seats. While SLQFloorDiv has a larger overhead depending on the
number of parties, it is nearly constant in the number of seats.

Fig. 4. Benchmarks for one execution of SLQFloorDiv and SLQCustomTiebreaking from
Sect. 4.
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A.3 Benchmarks of the Evaluation of the Elections for the German
Bundestag in 2021

In Table 1 we present our benchmarks of the evaluation of the elections for the
German Bundestag in 2021 using real-world data available at [11]. Each row
in the table represents one main step of the algorithm, where each of these
main steps is executed in sequence. Within each individual step, it is possible
to leverage parallelism. We show the resulting runtime for various numbers of
threads/cpu cores. Further benchmarks are presented in the full version [25].

Table 1. Benchmarks of the election for the German Bundestag in 2021 using real-
world data available at [11] with different numbers of available parallel threads for each
trustee.

# Threads per Trustee 1 2 4 8 16 32

Single-member constituency seats 40.03 h 20.04 h 10.06 h 5.06 h 2.56 h 1.32 h

Determine which parties enter the Bundestag 71 min 36 min 18min 9 min 5 min 3min

First low distribution 23.38 h 11.77 h 6.07 h 3.25 h 1.82 h 1.1 h

Minimal number of seats per party 11.68 h 5.84 h 2.93 h 1.46 h 0.74 h 0.36 h

Second top distribution 2.81 h 2.0 h 1.42 h 1.19 h 1.19 h 1.19 h

Second low distribution 77.06 h 38.53 h 19.4 h 12.34 h 6.3 h 5.93 h

Assigning overhang seats 6.67 h 3.33 h 2.2 h 1.14 h 1.14 h 1.14 h

Computing the final result 4 min 2 min 1min 1 min 0 min 0min

Total Runtime 163 h 82 h 42 h 24.3 h 13.8 h 11.1 h

A.4 Verification of the Election

Verification of an election following the Ordinos approach essentially consists of
two main tasks: Firstly, checking the correctness of the ballots submitted to B
including verification of the ballot NIZKPs πEnc for the choice space. Secondly,
verifying that the MPC protocol PMPC was executed correctly.

The first task can be performed on the fly for each new ballot submitted to B
while the election is still running. Notably, we use a NIZKP πEnc from [10] that
is standard and employed by many e-voting systems since it is very efficient and
fast to verify. The second step requires checking certain data, including further
NIZKPs, that is published on B while PMPC-Ger is running. Notably, all trustees
also perform all of the same verification checks as part of running PMPC-Ger.
Hence, not only is it possible for an external observer to perform verification of
PMPC-Ger in parallel to PMPC-Ger being executed. An external observer will also
be done with this verification as soon as the end result is returned by PMPC-Ger

because he has to perform strictly less work than the trustees running PMPC-Ger.
We therefore only had to benchmark the runtime of PMPC-Ger to obtain the
overall time for both computing and verifying the election result of our system
proposed in Sect. 5.
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Abstract. In this paper, we propose Rocca-S, an authenticated encryp-
tion scheme with a 256-bit key and a 256-bit tag targeting 6G applica-
tions bootstrapped from AES. Rocca-S achieves an encryption/decryp-
tion speed of more than 200 Gbps in the latest software environments. In
hardware implementation, Rocca-S is the first cryptographic algorithm to
achieve speeds more than 2 Tbps without sacrificing other metrics such
as occupied silicon area or power/energy consumption making Rocca-S
a competitive choice satisfying the requirements of a wide spectrum of
environments for 6G applications.
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1 Introduction

The imminent global standardization of 5G telecommunication networks marks
an important turning point for the involved research community whose gaze
should hereafter be directed beyond the 5G era. The 6Genesis project kickstarted
this endeavour with a white paper [9] in which 6G channels are projected to
provide throughput rates upwards of 100 Gbps in software eclipsing their 5G
counterparts by more than an order of magnitude. Concerning peak throughput,
the paper further illuminates potential avenues that would allow for rates in the
Terabit range and states: “6G research should look at the problem of transmitting
up to 1 Tbps per user.”

Naturally, performance only covers half of the requirements for a prospec-
tive 6G standard with the other one being security as discussed by the 3GPP
standardization organization which examined the possible impacts of quantum
computing in the coming years especially due to Grover’s algorithm. The moti-
vation is to design a cipher that provides 256-bit classical security and 128-bit
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quantum security for key recovery. Apart from the 256-bit key size, proposing
an AEAD scheme with a suitable tag length is also important to ensure the
security against the state-recovery attack. Specially, if the tag size is smaller
than 256 bits, it is possible to use the decryption oracle to mount a fast state-
recovery attack with time complexity smaller than 2256 [6,22], especially when
each message block is absorbed by a weak permutation as in AEGIS-256 [22]
and Rocca [19]. By using a keyed permutation for the initialization phase as in
AEGIS-256 and the revised version of Rocca [20], while the key-recovery attack
can be prevented even if the state-recovery attack succeeds, it may be still a
potential threat to the AEAD scheme since attackers can extract more informa-
tion from the full secret state with this state-recovery attack. In this sense, we
believe it is meaningful to design an AEAD scheme with a 256-bit tag.

Motivation. To the best of our knowledge, none of the existing algorithms ded-
icated to 5G and beyond provide throughput rates of more than 1 Tbps, more
than 100 Gbps in software, and support 256-bit tags, including the AEGIS [22],
Tiaoxin-346 [17], and Rocca [19,20] as well as 5G ciphers such as ZUC-256 [21]
and SNOW-V [3]. This fact motivates a search for new algorithms which meets
all three of these requirements for 6G applications.

Contributions and Organization

In this paper, we propose Rocca-S, which is an AES-based authenticated encryp-
tion scheme with a 256-bit key and a 256-bit tag, which provides 256- and 128-bit
security for key recovery attacks against classical and quantum adversary, respec-
tively. One of the main contribution is to design new round functions supporting
256-bit tags, without sacrificing performance. Rocca-S achieves more than 200
Gbps in latest software environments and more than 1 Tbps in hardware. Rocca-
S is the first algorithm that achieves both requirements for 6G, namely a 256-bit
tag and throughput rates beyond 1 Terabit. The specification of Rocca-S is given
in Sect. 2.

– The design rationale is explained in Sect. 3. The most difficult challenge is
to design round functions supporting 256-bit tag without sacrificing perfor-
mance. To accomplish it, we take advantage of an interesting insight that
while increasing the number of aesenc from 4 (Rocca’s case) to 6 in the round
function, the overhead in software performance can be made negligible by
reducing state size from 8 to 7. From a hardware point of view, as these are
executed in parallel, there is no overhead regarding throughput, and small
state size rather reduces the circuit area. This allows us to add more nonlin-
ear operations into each round and open up new design space to increase the
security against forgery attacks while keeping the performance. Our compre-
hensive large-scale search with MILP-aided tools enables finding a very small
class of round functions that guarantee the sufficient level of security against
forgery attacks and competitive performance in software and hardware.
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– We discuss the security analysis of Rocca-S in Sect. 4. We show that Rocca-S
is secure against several classes of attacks by classic and quantum adversaries.

– The software performance is discussed in Sect. 5. We show that Rocca-S out-
performs existing algorithms and achieves a throughput of 205 Gbps in AEAD
mode on a machine equipped with an Intel(R) Core(TM) i9 12900K.

– Ultimately, we meticulously explore the design space of ASIC implementa-
tions by proposing several constructions ranging from round-based circuits to
unrolled variants in Sect. 6. In particular, the round-based and unrolled cir-
cuits achieve throughput rates that exceed 1 Terabit per second (even crossing
the 2 Tbps barrier for some instances) and thus eclipse related AEAD circuits
by at least 50% without sacrificing other metrics such as occupied silicon area
or power/energy consumption making Rocca-S a competitive choice satisfying
the requirements of a wide spectrum of environments.

2 Specification

Throughout this paper, a block denotes a 16-byte value. S is the state of Rocca-
S, which is composed of 7 blocks of the form S = (S[0], S[1], . . . , S[6]), where
S[i] (0 ≤ i ≤ 6) are blocks and S[0] is the first block. AES(X,Y ) is defined as:

AES(X,Y ) = (MixColumns ◦ ShiftRows ◦ SubBytes(X)) ⊕ Y,

where MixColumns, ShiftRows, and SubBytes are the same operations as that
of AES. A(X) is A(X) = MixColumns ◦ShiftRows ◦SubBytes(X). R(S,X0,X1)
is the round function used to update the state S. We utilize the same constants
as in Tiaoxin-346 [17], namely Z0 = 428a2f98d728ae227137449123ef65cd and
Z1 = b5c0fbcfec4d3b2fe9b5dba58189dbbc.

Fig. 1. Round function of Rocca-S (RF-1)

2.1 The Round Update Function

The input of the round function R(S,X0,X1) of Rocca-S consists of the state
S and two blocks (X0,X1). Snew ← R(S,X0,X1) is illustrated as Fig. 1 and
defined as:
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Snew[0] = S[6] ⊕ S[1], Snew[1] = AES(S[0],X0),Snew[2] = AES(S[1], S[0]),
Snew[3] = AES(S[2], S[6]), Snew[4] = AES(S[3],X1),Snew[5] = AES(S[4], S[3]),
Snew[6] = AES(S[5], S[4]).

2.2 Specification of Rocca-S

Rocca-S is an authenticated-encryption with associated-data scheme composed
of four phases: initialization, processing the associated data, encryption and final-
ization. The input consists of a 256-bit key K0||K1 ∈ F

128
2 ×F

128
2 , a 128-bit nonce

N , the associated data AD and the message M , where X||Y is the concatenation
of X and Y . The output is the corresponding ciphertext C and a 256-bit tag T .
|X| is the length of X in bits. Define X = X||0l where 0l is a zero string of length
l bits, and l is the minimal non-negative integer such that |X| is a multiple of
256. In addition, write X as X = X0||X1|| . . . ||X |X|

256 −1
with |Xi| = 256. Further,

Xi is written as Xi = X0
i ||X1

i with |X0
i | = |X1

i | = 128.

Initialization. First, (N,K0,K1) is loaded into the state S in the following way:

S[0] = K1, S[1] = N,S[2] = Z0, S[3] = K0, S[4] = Z1, S[5] = N ⊕ K1, S[6] = 0

Here, two 128-bit constants Z0 and Z1 are encoded as 16-byte little endian
words and loaded into S[2] and S[3] respectively. Then, 16 iterations of the
round function R(S,Z0, Z1) is applied to the state S. After 16 iterations of the
round function, two 128-bit keys are XORed with the state S in the following
way;

S[0] = S[0] ⊕ K0, S[1] = S[1] ⊕ K0, S[2] = S[2] ⊕ K1, S[3] = S[3] ⊕ K0,

S[4] = S[4] ⊕ K0, S[5] = S[5] ⊕ K1, S[6] = S[6] ⊕ K1.

Processing the Associated Data. If AD is empty, this phase will be skipped.
Otherwise, AD is padded to AD and the state is updated as R(S,AD

0

i , AD
1

i )
for i = 0 to d − 1, where d = |AD|

256 .

Encryption. If M is empty, the encryption phase will be skipped. Otherwise,
M is first padded to M and then M will be absorbed with the round function.
During this procedure, the ciphertext C is generated. If the last block of M is
incomplete and its length is b bits, i.e., 0 < b < 256, the last block of C will be
truncated to the first b bits. Each encryption round unfolds as follows:

C0
i = AES(S[3] ⊕ S[5], S[0]) ⊕ M

0
i , C

1
i = AES(S[4] ⊕ S[6], S[2]) ⊕ M

1
i , R(S,M

0
i ,M

1
i ),

where i = 0 to m − 1, and m = |M |
256 .
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Finalization. The state S will again pass through 16 iterations of the round
function R(S, |AD|, |M |) and then the 256-bit tag is computed:

T =
3⊕

i=0

S[i]||
6⊕

i=4

S[i].

The length of associated data and message is encoded as a 16-byte little endian
word and stored into |AD| and |M |, respectively. A illustration corresponding
to the presented procedures is shown in Fig. 2

Fig. 2. Overview of Rocca-S

A Raw Encryption Scheme. If the phases of processing the associated data and
finalization are removed, a raw encryption scheme is obtained.

A Keystream Generation Scheme. If the phases of processing the associated
data and finalization are removed and there is no message injection into round
function such that R(S, 0, 0), a keystream generation scheme is obtained.

2.3 Security Claims

Classical Setting. Rocca-S provides 256-bit security against key-recovery and
192-bit security against forgery attacks in the nonce-respecting setting. Rocca-
S does not claim security against nonce-misuse setting. We do not claim its
security in the related-key and known-key settings. The message length for a
fixed key and the number of different messages that are produced for a fixed key
are limited to at most 2128. The length of associated data of a fixed key is up
to 264.

Quantum Setting. Rocca-S provides 128-bit key-recovery and forgery security
against quantum adversaries with classical online queries. Rocca-S does not claim
security against online superposition attacks.
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3 Design Rationale

3.1 General Design

The general design of Rocca-S follows the key features of AEGIS family [22],
Tiaoxin-346 [17] and Rocca [19,20], i.e., SIMD-friendly round function and effi-
cient permutation-based structure. To further increase the resistance against sev-
eral attacks on AEGIS and Tiaoxin-346 [11,15] while keeping the performance, we
carefully design the nonce and key loading scheme at the initial state and output
function. Furthermore, we add key-forward operations in the initialization phase
as similar to the suggestion by the recent attacks on Rocca [6],

In our design, we utilize only aesenc as one of the AES-NI instructions, which
executes one round of AES with an input state S and a 128-bit round key K:

aesenc(S,K) = (MixColumns ◦ ShiftRows ◦ SubBytes(S)) ⊕ K.

Fig. 3 shows the general design of our round function, where A and M denote
aesenc and inserted message block, respectively. To maximize the performance
in software and minimize the critical path of round functions in hardware, we
focus on a class of round functions with the following features.

– Applying only either aesenc or XOR to each block in one round.
– Applying a state-wise permutation before operations of aesenc or XOR.

Fig. 3. General Design for the Round Function of Rocca-S.

In hardware, since a state-wise permutation does not cause any delay, the
critical path of this round function is the execution of a single aesenc module.
This delay is the lower bound for AES-based round functions, meaning that the
delay of the round function cannot be reduced any further.

Design Challenge. The existing round functions of AEGIS [22], Tiaoxin-346 [17],
Rocca [19,20] and all of Jean and Nikolić’s ones [7] can be categorized into this
type of class, however, these support only 128-bit tags, i.e., they ensure only 128-
bit security against forgery attacks in the classic setting. We should also note
here that the bound of forgery attack of Rocca is 2−144, meaning the security
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margin is only 16 bits [19,20]. Therefore, our main challenge in this paper is to
support a 256-bit tag while maintaining high performance in both software and
hardware. To be more specific, the number of active S-boxes for forgery attacks
should be much more than that of Rocca [19,20] without sacrificing performance.

Fig. 4. Relationship between the number of AES-NI and performance.

Our Solution. Our core insights to accomplish this challenge is as follows: (1)
smaller state is more efficient and (2) even if increasing #aesenc from 4 to 6, the
overhead is marginal in software, as shown in Fig. 4. This allows us to add more
nonlinear operations into each round, and then open up new design space of AES-
based round functions while keeping the software’s performance. Interestingly,
the speed of Rocca parameters (#aesenc = 4 and #state size = 8) is almost same
as those of Rocca-S (#aesenc = 6 and #state size = 7).

From a hardware point of view, as these are executed in parallel, there is
no overhead regarding throughput. Beside, smaller #state leads to be smaller
circuit scale and low energy consumption in hardware.

3.2 Requirements of Round Function for Performance and Security

This section clarifies the requirements for finding optimal parameters of AES-
based round functions for our purpose.

Performance. The performance of AES-NI can be measured d by latency and
throughput. Latency means the number of clock cycles that are required for
the execution of an instruction. Throughput means the number of clock cycles
required to wait before the responsible ports can accept the same instruction
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again. Dispa These depend on the CPU architectures [18]. This paper focuses
on the latest architectures after Intel Ice-lake series CPU where latency and
throughput of aesenc are 3 and 0.5, respectively. Let #state, #aesenc, and
#message be the number of states, aesencs, and inserted message blocks in
a single round, respectively.

Jean and Nikolić introduced rate to estimate the approximate speed of the
round function [7], and smaller rate leads to a more efficient round function.

Definition 1 (Rate [7]) Rate is the required number of aesenc calls to encrypt
a 128-bit message, which is defined as rate = #aesenc / #message.

They also discussed the number of aesenc in each round to fully take advan-
tage of parallel execution [7], which is expressed by the following equation:

#aesenc ≥ latency/throughput.

If #aesenc is less than (latency)/(throughput), there exist empty cycles in a
parallel process of aesenc. To fully take advantage of the parallel processing,
#aesenc should be the same or more than (latency)/(throughput), and there are
no empty cycles. In the case of our target architectures, it should be #aesenc ≥
latency/throughput = 3/0.5 = 6. Note that since our output function utilizes
two aesenc to be secure against linear attacks [15], as is discussed in Sect. 3.4,
#aesenc in the round function should be 4 and more.

Security. We estimate the security against forgery by the lower bound for the
number of differentially active S-boxes. Since the maximum differential proba-
bility of an S-box is 2−6, we aim at finding round functions in which the lower
bound for the number of active S-boxes in the forgery setting is at least 43 so
that the differential probability is less than 2−256.

Summary of Requirements. Taking these issues into consideration, we clarify
requirements for the AES-based round function for our purposes as follows:

Req 1. Rate (= #aesenc/#message) is as small as possible.
Req 2. #aesenc is 4 or more in each round function.
Req 3. #state is as small as possible.
Req 4. The lower bound for the number of active S-boxes is ≥ 43.

3.3 Finding Optimal Parameters of Round Functions

In this section, we search for optimal parameters that satisfy the requirements.
Let s, a, and m be #state, #aesenc, and #message, respectively.

Search Method. Once we select rate and s according to Req 1 and 3, then we
can properly choose pairs of a and m by Req 2. Specifically, we search for all
15 candidates with parameters such that rate = 2 to 3 and s = 6, 7, 8 as shown
in Table 1. For each parameter, we try to search for candidates that satisfy
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Req 4 for all patterns of block permutations and the combinations of positions
of inserted messages and aesenc/XOR in the target class of Fig. 3 by MILP-
aided evaluation. Sakamoto et al. estimated the total number of search space
as s! × (

s
a

) × (
s
m

)
[19]. However, this search space includes equivalent class of

round functions. Considering such equivalent classes, we can reduce it by the
formula of s!

m! × (
s
m

) × (
s
a

)
. For example, the candidates of the class of s = 7,

a = 4, and m = 2 can be reduced from 221.82 in Sakamoto et al. [19], to 220.82.
In our evaluation, if the total number of candidates in the class exceeds 223, we
randomly choose 220 candidates and evaluate these due to the limitations of the
computational power.

Table 1. Candidate of round func-
tions for each class.

#state #aesenc #message rate Total # of searched # of found

6 4 2 2.0 216.31 All 0

6 6 3 2.0 211.23 All 0

6 5 2 2.5 216.98 All 0

6 6 2 3.0 212.40 All 0

7 4 2 2.0 220.82 All 0

7 6 3 2.0 217.65 All 0

7 7 3 2.33 214.84 All 0

7 5 2 2.5 220.08 All 0

7 6 2 3.0 218.50 All 14

8 4 2 2.0 225.24 220 0

8 6 3 2.0 223.33 220 0

8 7 3 2.33 221.52 All 0

8 5 2 2.5 224.91 220 0

8 8 3 2.67 218.52 All 0

8 6 2 3.0 223.91 220 784

Table 2. Lower bound of differentially
active S-boxes, maximum rounds of the
integral distinguisher, and speeds.

Target # of active S-boxes Integral
distinguisher

Speed
(cycles / Byte)

6R 7R 8R 9R 10R

AEGIS-128L 85 86 94 111 120 6R 0.188985

Tiaoxin-346 53 93 99 123 134 15R 0.200404

Rocca 54 62 82 85 93 7R 0.123258

RF-1 (Rocca-S) 94 113 122 134 152 5R 0.122219

RF-2 76 88 103 115 131 6R 0.129443

RF-3 96 101 114 129 136 6R 0.118518

RF-4 80 100 108 120 145 5R 0.122185

RF-5 81 86 95 121 141 5R 0.122286

RF-6 97 113 122 139 151 6R 0.129258

RF-7 97 110 128 132 137 6R 0.129523

Table 3. The lower bound of differentially active S-boxes and # rounds for full diffusion
.

# of active S-boxes # rounds for full diffusion # of candidates

44 6 7

46 5 7

Results. Table 1 shows the summary of our search. We found 14 candidates in
s = 7, a = 6, and m = 2 and 784 candidates in s = 8, a = 6, and m = 2 which
satisfy Req 4. Due to Req 3, we choose 14 candidates of the class of s = 7, a = 6,
and m = 2. This evaluation requires about 45 d on three computers equipped
with AMD Ryzen Threadripper 3990X (64-Core) and 256 GB RAMs.

Selecting Best Round Function for Rocca-S . To determine one round function
from 14 candidates of s = 7, a = 6, and m = 2, we evaluate the security and
performance of these.

– Table 3 shows the required number of rounds for full diffusion and the lower
bound for the number of active S-boxes for forgery setting. We choose seven
candidates which attain 46 active S-boxes and achieve the full diffusion after
5 rounds named as RF-1, 2, 3, . . . , 7.
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– Table 2 shows the security of the initialization phase of these candidates
against differential attacks and integral attacks by a byte-based MILP, assum-
ing that the adversary can control only nonce. In addition, Table 2 compares
the speed of the round function of 7 candidates and Rocca, where the speed
is measured as the average of the round function executed 223.25 times with
64 kB messages on Intel(R) Core(TM) i7-1068NG7 CPU @ 2.30GHz.

Considering results of Table 2, we finally adopt RF-1 as shown in Fig. 1.

3.4 On the Loading Scheme and Output Functions

For the loading scheme of the nonce and key, we mainly want to avoid the
case occurring in Tiaoxin-346. Specifically, we expect that after some number of
rounds, the whole state words cannot be expressed only in terms of A(N) and
(K0,K1). If this happens, there will be a useless round and it opens a door for
more powerful attacks [11]. By setting S[5] = N ⊕ K1, such a case is avoided.

To resist the linear attacks on output function, that has been successfully
applied to AEGIS [15], we use the MILP model [2] to search for secure ones. For
efficiency and security, we choose the output functions of the following form:

C0
i = AES(S[j0] ⊕ S[j1], S[j2]) ⊕ M

0

i ,

C1
i = AES(S[j3] ⊕ S[j4], S[j5]) ⊕ M

1

i ,

where ju1 �= ju2 for u1 �= u2 and 0 ≤ j0, j1, j2, j3, j4, j5 ≤ 6.
Then, with the truncated MILP model [2], for each choice of the tuple

(j0, j1, j2, j3, j4, j5), we can compute the lower bound of the number of active
S-boxes for a exploitable linear trail that can be used for attacks. For our choice,
the lower bound of the number of active S-boxes is 45. Hence, the time com-
plexity of the linear attack will be higher than 245×6 = 2270. Note that there is
a big gap between the truncated model and the bit-wise model and the actual
linear trail that can be used for attacks may be of much lower bias and the time
complexity may be much higher than 2270.

3.5 The Key Feed-Forward Operation

It has been observed by the designers of AEGIS-256 that the internal state can
be fully recovered by using the decryption oracle for about 2t times, where t is
the tag size in bits. Specifically, after making 2t calls to the decryption oracle,
the attacker can expect to find another plaintext-ciphertext pair under the same
(N,K). Then, a trivial state-recovery attack can be launched since only 1 round
of AES is used to update the state at the keystream phase. In Rocca-S, t = 256
ensures that the time complexity of this attack is bounded by 2256. Moreover,
even if the state is recovered with some other methods, we expect that the key
cannot be recovered. In AEGIS-256, this is ensured by using a keyed permutation
for the initialization phase. In Rocca-S, we adopt the similar idea, also mentioned
in [6]. Specifically, we simply use a key feed-forward operation to prevent the
further key-recovery attack because the attackers cannot invert the initialization
phase without knowing the key even if the state after this phase is fully known.
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4 Security Evaluation

4.1 Differential/Linear Attack

In order to evaluate the security against differential and linear attacks, we com-
pute the lower bound for the number of active S-boxes in the initialization phase
by a MILP-aided method [16]. Since the maximal differential/linear probability
of the S-box of AES is 2−6, it is sufficient to guarantee the security against differ-
ential/linear attacks if there are 43 active S-boxes, as it gives 2(−6×43) < 2−256

as an estimate of the differential/linear probability. Our evaluation shows that
there are 68 active S-boxes over 5 rounds in the single-key setting and 53 active
S-boxes over 8 rounds in the related-key setting in the initialization phase.

4.2 State-Recovery Attack

At the keystream phase, with the knowledge of plaintexts and ciphertexts, it
is possible to recover the internal state with some guess-and-determine (GnD)
strategies. To recover the whole internal state, we need to consider at least 4
consecutive rounds at the keystream phase. Specifically, we need to solve the
following nonlinear equation system in terms of S[i] (0 ≤ i ≤ 6) where αj

(0 ≤ j ≤ 7) are known values:

α0 = A(S[3] ⊕ S[5]) ⊕ S[0], α1 = A(S[4] ⊕ S[6]) ⊕ S[2],
α2 = A(A(S[2]) ⊕ S[6] ⊕ A(S[4]) ⊕ S[3]) ⊕ S[1] ⊕ S[6],
α3 = A(A(S[3]) ⊕ A(S[5]) ⊕ S[4]) ⊕ A(S[1]) ⊕ S[0],
α4 = A(A(A(S[1]) ⊕ S[0]) ⊕ A(S[5]) ⊕ S[4] ⊕ A(A(S[3])) ⊕ A(S[2]) ⊕ S[6])

⊕A(S[0]) ⊕ A(S[5]) ⊕ S[4],
α5 = A(A(A(S[2]) ⊕ S[6]) ⊕ A(A(S[4]) ⊕ S[2]) ⊕ A(S[3]))

⊕A(A(S[0])) ⊕ S[1] ⊕ S[6],
α6 = A(A(A(A(S[0])) ⊕ S[1] ⊕ S[6]) ⊕ A(A(S[4]) ⊕ S[3]) ⊕ A(S[3])

⊕A(A(A(S[2]) ⊕ S[6])) ⊕ A(A(S[1]) ⊕ S[0]) ⊕ A(S[5]) ⊕ S[4])
⊕A(s[1] ⊕ S[6]) ⊕ A(A(S[4]) ⊕ S[3]) ⊕ A(S[3]),

α7 = A(A(A(A(S[1]) ⊕ S[0]) ⊕ A(S[5]) ⊕ S[4])
⊕A(A(A(S[3])) ⊕ A(S[1]) ⊕ S[0]) ⊕ A(A(S[2]) ⊕ S[6]))
⊕A(A(S[1] ⊕ S[6])) ⊕ A(S[0]) ⊕ A(S[5]) ⊕ S[4].

It can be found that for (α2, α3) 2 rounds of AES, for (α4, α5), 3 rounds of AES
and for (α6, α7), 4 rounds of AES are involved. Indeed, for the state-recovery
attack on Rocca discussed in [19], the attacker also needs to consider 4 con-
secutive rounds and similar 8 equations in 8 variables. However, for all those 8
equations, at most 2 rounds of AES are involved and Rocca still has a strong
resistance against this attack. This implies that recovering the state of Rocca-S
becomes much more difficult. As 2 rounds of AES can achieve the full diffusion, it
soon implies the GnD attack is not a threat and Rocca-S has a strong resistance
against this type of state-recovery attack.
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4.3 The Linear Bias of the Keystream

It has been discussed in Sect. 3 that the used output functions are chosen in
such a way that it can resist the linear attack proposed in [15]. Specifically,
by computing the lower bound of the active S-boxes, we expect that the time
complexity of the linear attack [15] is higher than 2256.

4.4 Forgery Attack

It has been shown in [17] that the forgery attack is a main threat to the con-
structions like Tiaoxin-346 and AEGIS as only one-round update is used to absorb
each block of associated data and message. Such a concern has been taken into
account in our design phase, as reported in Sect. 3. Specifically, in the forgery
attack, the aim is to find a differential trail where the attackers can arbitrarily
choose differences at the associated data and expect that such a choice of differ-
ence can lead to a collision in the internal state after several number of rounds.
The resistance against this attack can be efficiently evaluated with an automatic
method [16]. As Rocca-S is based on the AES round function, it suffices to prove
that the number of active S-boxes in such a trail is larger than 43 as the length
of the tag is 256 bits. With the MILP-based method, it is found that the lower
bound is 46. However, these estimates do not take into consideration additional
constant factors of improvements and optimizations, e.g. using clustering effect,
which is why we reduce our security claims. Consequently, Rocca-S can provide
192-bit security against the forgery attack.

4.5 Security Against Quantum Attacks

A quantum adversary has the ability to leverage Grover’s algorithm [5] to per-
form an exhaustive key search given a limited number of plaintext-ciphertext
pairs. In the case of Rocca-S, this would require 2256/2 = 2128 iterations, with
each iteration involving the evaluation of the quantum implementation of Rocca-
S (similar to AES as described in [4]). According to [8], if there exists a classical
distinguisher (such as a differential or linear distinguisher) with a probability of
2−p, a quantum adversary can utilize this to mount a distinguishing attack with
a time and data complexity of 2p/2.

However, as demonstrated in the previous sections, the probability p for
the distinguishers (differential or linear) of Rocca-S exceeds 256. Therefore, a
quantum distinguishing attack would require a time and data complexity of at
least 2128. Hence, Rocca-S claims to provide 128-bit quantum security against
key recovery and forgery when the adversary is restricted to classical online
queries only. It is important to note that Rocca-S does not claim security against
quantum adversaries with access to online superposition queries.

5 Software Implementation

In this section, we evaluate the performance of Rocca-S and show that modi-
fications only incur small overhead to the performance, despite the increase of
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number of AES round functions in one round of state update. For the compari-
son to existing algorithms, we included Rocca-S as well as AEGIS, SNOW-V, and
Tiaoxin to OpenSSL 3.1.0-dev and measured their performances with speed com-
mand. The implementation of SNOW-V is published in [3], and implementations
of Tiaoxin-346 and AEGIS are publicly available.1. As shown in Table 4, Rocca-S
exhibits the highest performance and achieves a throughput of 205 Gbps, which
is the fastest in our comparison even compared to 128-bit key and tag algorithms.

Table 4. Software performance evaluation.

Algorithms Key length Tag length Size of input (bytes)

16384 8192 1024 256 64

AEAD (Gbps)

AEGIS-128 128-bit 128-bit 46.76 45.42 32.42 16.32 5.38

AEGIS-128L 151.53 137.49 60.37 20.68 5.40

Tiaoxin-346 v2 176.94 159.51 68.13 22.90 5.92

AEGIS-256 256-bit 47.96 46.50 33.29 16.72 5.52

AES-256-GCM 60.29 57.67 36.23 15.86 5.06

ChaCha20-Poly1305 22.40 21.71 15.25 6.15 2.15

SNOW-V-GCM 37.87 36.60 25.15 12.15 3.97

Rocca ∗ 199.88 177.41 68.98 22.33 6.01

Rocca-S 256-bit 205.68 183.22 74.33 24.78 6.65
∗: Updated version of Rocca [20], which is secure against the attack [6]

6 Hardware Implementation

The design of Rocca-S lends itself well to hardware implementations as, apart
from the state registers and the AES modules of the round and encryption func-
tions, little additional circuitry is required. In this section, we commence by
investigating two separate round-based implementations of the Rocca-S specifi-
cation and compare them to related AES-based AEAD constructions that also
feature a key size of 256 bits. Our approach follows a similar structure to what
was established in the work by Caforio et al. [1] for the SNOW-V stream cipher
In particular, the authors investigated several micro-architectural directions to
implement the AES round function components.

– S-Box. The substitution table can be synthesized in a straightforward fashion
by providing the look-up table specification (LUT) to the circuit compiler and
letting the tool choose the actual implementation in terms of logic gates. The
Decode-Switch-Encode (DSE) architecture mitigates the power overhead of
the S-box look-up table by encoding and decoding the inputs and outputs

1 https://github.com/floodyberry/supercop.

https://github.com/floodyberry/supercop
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to the look-up table in order to reduce the switching activity of each wire.
The combinatorial optimization space of the S-box was explored in a work by
Maximov and Ekdahl [13] in which the currently smallest description of the
S-box in terms of logic gates was proposed S alongside a low-depth variant F
and a trade-off alternative T between the former two.

– MixColumns. We can similarly distinguish several ways to implement the
linear layer. The currently smallest circuit comprised of 92 two-input XOR
gates is due to Maximov [12]. In a separate work, Li et al. [10] demonstrated
a low-depth implementation consisting of 103 XOR gates. For the sake of
conciseness we will limit ourselves to the low-depth circuit of [10].

– T-Table. The T-table approach is particularly efficient in software implemen-
tations but can also be emulated in hardware similarly to the approach of
synthesizing the S-box look-up table mentioned beforehand. Henceforth, the
T-table configuration will be denoted by the abbreviation TT.

Simulation Environment. All presented designs were synthesized using the Syn-
opsys Design Compiler (version 2017.09) using two standard cell libraries, i.e.,
NanGate 15 nm process and the more industry-grade TSMC 28 nm process. The
power and energy consumption was then extracted in post-synthesis using the
Synopsys Power Compiler via back-annotation.

6.1 Circuits

A round-based implementation of Rocca-S computes one invocation of the round
update function R in one clock cycle, hence sixteen cycles are required to execute
both the initialization and finalization routines and, in the same vein, the circuit
absorbs 256-bit data blocks and outputs 256-bit ciphertext blocks per clock
cycle. The approach we follow for the round-based implementation is relatively
elementary and can be deduced from the original schematic in Fig. 1. Six AES
modules, whose plaintext inputs are directly fed from the state registers, are
placed in parallel. Their computed outputs are wired back to the corresponding
register inputs thus taking care of the permutation without additional circuitry.

Unrolled Round Function. The round update function of Rocca-S can easily
be replicated and chained together in order to compute multiple invocation in a
single clock cycle. Although the area increase quickly reaches prohibitive regions,
the length of the critical path usually rises at slower pace thus yielding designs
that admit the highest throughput.

6.2 Synthesis Results

Our round-based Rocca-S hardware implementations are compared against other
AEAD schemes with a key size of 256 bits, namely AEGIS-256, AES-256-GCM
and SNOW-V-GCM [3,14,22]. Note that actual published ASIC implementations
of said algorithms are hard to come by, hence we chose to devise them for this
comparison section. AEGIS-256 is reminiscent of Rocca-S in design and thus can
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be adapted accordingly, on the other hand, AES-256-GCM and SNOW-V-GCM
require a Galois field multiplication module over 128 bits for which we opted for
a straightforward Karatsuba architecture which is then attached to a AES-256
module extracted and extended from the Rocca-S round function and a SNOW-V
stream cipher core whose implementation is available in [1].

Circuit Area. The lion’s share of gate area in Rocca-S is due to the eight AES
round function cores that compose its round function and ciphertext generation
function. This induces a significant overhead in comparison to the other schemes.
AEGIS-256 requires only six cores whereas AES-256-GCM and SNOW-V-GCM are
equipped with only and two core respectively. The Galois field multiplication
module, a notoriously difficult function to map to hardware, found in the latter
two has an area footprint of roughly 30000 GE across cell libraries and thus
constitutes a sizeable percentage of their overall area. Across all implementation
choices the area of our round-based Rocca-S circuit remains competitive.

Throughput. The premise of Rocca-S is a high-speed construction that improves
on other known schemes in terms of throughput i.e., how many bits per second
can be processed. In hardware, this figure is inextricably tied to the length of
the critical path which specifies the maximum clock frequency at which a design
can be run. In both Rocca-S and AEGIS-256 the critical path is due to the AES
modules, thus it is highly variable regarding the choice of round function imple-
mentation, whereas in AES-256-GCM and SNOW-V-GCM it is imposed by the
field multiplication thus constant across implementation choices. This means
that for both AES-256-GCM and SNOW-V-GCM unrolling the round function
exerts only marginal effects on the overall throughput. Excluding the initializa-
tion and finalization phases, Rocca-S processes 256 bits of data with each clock
cycle. Similarly AEGIS-256 and SNOW-V-GCM are able to process one 128-bit
data block in one clock cycle whereas AES-256-GCM requires a full AES-256
encryption for each 128-bit plaintext block hence asymptotically for large plain-
texts AES-256-GCM only processes roughly 8 bits per clock cycle. Consequently,
the ability to accept larger data blocks paired with a competitive critical path
allows Rocca-S to reach a throughput well beyond 1 Terabit per second for the
NanGate 15 nm cell library regardless of the choice of round function implemen-
tation, outperforming the other schemes by at least 50%. Also, a throughput
rate beyond 2 Terabits is reached for 2-round unrolled circuits, marking Rocca-S
as the first cryptographic algorithm that crosses this barrier as shown in Table 5.

Table 5. Maximum throughput (Tbps) comparison using a TT AES module for round-
based and 2-round unrolled circuits.

Rocca-S AEGIS-256 AES-256-GCM SNOW-V-GCM

NanGate 15 nm 1.653/2.019 0.970/1.028 0.023/0.024 0.365/0.442

TSMC 28 nm 0.373/0.409 0.188/0.190 0.007/0.007 0.088/0.106
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Power/Energy Consumption. Our power/energy experiments were conducted on
two workloads. A short workload describes the processing of 1024 bits of asso-
ciated data and 2048 bits of plaintext whereas a long workload consists of 1024
bits of associated data and 1.28 Megabits of plaintext. Again, the round-based
Rocca-S circuit stands as competitive choice regarding its power and energy con-
sumption. A list of all obtained power/energy measurements is given in Table 7.

7 Conclusion

In this paper, we proposed the AES-based authenticated encryption scheme
Rocca-S with a 256-bit key and a 256-bit tag. Rocca-S achieves a speed of more
than 200 Gbps in software. In hardware implementation, Rocca-S is the first
cryptographic algorithm to achieve speeds consistently between 1 and 2 Ter-
abits per second without sacrificing other metrics.
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Appendix

See Fig. 5.

Fig. 5. Rocca-S round function circuit.
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Table 6. Circuit area (GE) and Throughput (Critical Path and Max TP) comparison
of the investigated AEAD scheme for two cell libraries and several round function
implementations. Note that the T-table approach of implementing the round function
offers the overall best choice for both Rocca-S and AEGIS-256. This phenomenon was
already observed in [1].

(a) Rocca-S

LUT DSE S F T TT

Round-Based

NanGate 15 nm

GE 116130 116638 56889 61918 56728 145364

Critical Path (ns) 0.179 0.177 0.232 0.208 0.207 0.154

Max TP (Tbps) 1.431 1.451 1.102 1.229 1.234 1.653

TSMC 28 nm

GE 100689 110273 58688 63681 57452 134220

Critical Path (ns) 0.95 0.81 1.00 0.83 0.93 0.71

Max TP (Tbps) 0.269 0.316 0.256 0.308 0.275 0.373

2-Round Unrolled

NanGate 15 nm

GE 218629 220428 100814 110802 99728 277691

Critical Path (ns) 0.321 0.322 0.412 0.383 0.388 0.253

Max TP (Tbps) 1.590 1.589 1.241 1.333 1.319 2.019

TSMC 28 nm

GE 188199 208045 104876 114861 102402 255938

Critical Path (ns) 1.78 1.48 1.84 1.53 1.73 1.25

Max TP (Tbps) 0.287 0.348 0.279 0.334 0.294 0.409

(b) AEGIS-256

LUT DSE S F T TT

Round-Based

NanGate 15 nm

GE 88521 89116 44266 48009 43854 110591

Critical Path (ns) 0.167 0.165 0.21 0.196 0.198 0.132

Max TP (Tbps) 0.766 0.776 0.610 0.653 0.646 0.970

TSMC 28 nm

GE 75608 83081 44392 48137 43465 101043

Critical Path (ns) 0.88 0.73 0.92 0.76 0.86 0.68

Max TP (Tbps) 0.145 0.175 0.139 0.168 0.149 0.188

2-Round Unrolled

NanGate 15 nm

GE 167333 168650 78939 86426 78125 211599

Critical Path (ns) 0.321 0.318 0.409 0.381 0.384 0.249

Max TP (Tbps) 0.798 0.805 0.626 0.672 0.667 1.028

TSMC 28 nm

GE 143435 158156 80779 88269 78925 194077

Critical Path (ns) 1.72 1.46 1.79 1.49 1.69 1.35

Max TP (Tbps) 0.149 0.175 0.143 0.172 0.151 0.190

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

NanGate 15 nm

GE 50980 51381 42038 42816 41951 64082

Critical Path (ns) 0.349 0.349 0.349 0.349 0.349 0.349

Max TP (Tbps) 0.023 0.023 0.023 0.023 0.023 0.023

TSMC 28 nm

GE 50908 52447 44384 45166 44192 62450

Critical Path (ns) 1.23 1.23 1.23 1.23 1.23 1.23

Max TP (Tbps) 0.007 0.007 0.007 0.007 0.007 0.007

2-Round Unrolled

NanGate 15 nm

GE 98058 98307 79615 81177 79447 123739

Critical Path (ns) 0.673 0.673 0.674 0.674 0.674 0.674

Max TP (Tbps) 0.024 0.024 0.024 0.024 0.024 0.024

TSMC 28 nm

GE 98398 101517 85394 86957 85010 121520

Critical Path (ns) 2.14 2.15 2.15 2.13 2.13 2.16

Max TP (Tbps) 0.007 0.007 0.007 0.007 0.007 0.007

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

NanGate 15 nm

GE 75729 75912 60964 62205 60827 83074

Critical Path (ns) 0.351 0.351 0.351 0.351 0.351 0.351

Max TP (Tbps) 0.365 0.365 0.365 0.365 0.365 0.365

TSMC 28 nm

GE 71396 73860 60966 62214 60656 79846

Critical Path (ns) 1.45 1.45 1.45 1.45 1.45 1.45

Max TP (Tbps) 0.088 0.088 0.088 0.088 0.088 0.088

2-Round Unrolled

NanGate 15 nm

GE 136139 136622 106715 109212 106445 150935

Critical Path (ns) 0.579 0.577 0.579 0.577 0.579 0.579

Max TP (Tbps) 0.442 0.444 0.442 0.444 0.442 0.442

TSMC 28 nm

GE 131342 136269 110477 112974 109857 148241

Critical Path (ns) 2.41 2.41 2.41 2.41 2.41 2.41

Max TP (Tbps) 0.106 0.106 0.106 0.106 0.106 0.106
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Table 7. Power/energy consumption comparison of the investigated AEAD scheme for
two cell libraries and several round function implementations. All figures were obtained
by clocking the designs at constant frequency of 10 MHz.

(a) Rocca-S

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 44 44 44 44 44 44

Lat. Long (Cycles) 5036 5036 5036 5036 5036 5036

NanGate 15 nm

Power (mW) 1.401 0.765 1.255 1.314 1.134 0.881

Energy Short (nJ) 6.165 3.368 5.522 5.780 4.985 3.876

Energy Long (nJ) 705.6 385.5 632.1 661.6 570.5 443.7

TSMC 28 nm

Power (mW) 0.830 0.389 0.754 0.709 0.690 0.373

Energy Short (nJ) 3.650 1.709 3.316 3.119 3.034 1.642

Energy Long (nJ) 417.8 195.6 379.5 357.0 347.2 187.9

2-Round Unrolled

Lat. Short (Cycles) 22 22 22 22 22 22

Lat. Long (Cycles) 2518 2518 2518 2518 2518 2518

NanGate 15 nm

Power (mW) 6.254 2.140 5.631 5.824 5.248 2.202

Energy Short (nJ) 13.76 4.70 12.39 12.81 11.55 4.85

Energy Long (nJ) 1574.1 538.8 1417.8 1466.5 1321.5 554.6

TSMC 28 nm

Power (mW) 3.963 1.345 3.293 2.985 2.922 1.074

Energy Short (nJ) 8.720 2.959 7.244 6.568 6.429 2.364

Energy Long (nJ) 998.1 338.7 829.1 751.7 735.9 270.5

(b) AEGIS-256

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 48 48 48 48 48 48

Lat. Long (Cycles) 10032 10032 10032 10032 10032 10032

NanGate 15 nm

Power (mW) 1.106 0.613 1.014 1.081 0.954 0.691

Energy Short (nJ) 5.309 2.945 4.868 5.184 4.579 3.317

Energy Long (nJ) 1109 615.6 1017 1083 956.9 693.3

TSMC 28 nm

Power (mW) 0.619 0.297 0.564 0.531 0.518 0.288

Energy Short (nJ) 2.975 1.426 2.707 2.549 2.488 1.380

Energy Long (nJ) 621.8 298.1 565.8 532.8 520.1 288.4

2-Round Unrolled

Lat. Short (Cycles) 24 24 24 24 24 24

Lat. Long (Cycles) 5016 5016 5016 5016 5016 5016

NanGate 15 nm

Power (mW) 4.147 1.674 3.779 3.887 3.539 1.670

Energy Short (nJ) 9.953 4.018 9.069 9.328 8.494 4.008

Energy Long (nJ) 2080.1 839.7 1895.3 1949.5 1775.3 837.8

TSMC 28 nm

Power (mW) 2.483 0.918 2.115 1.925 1.901 0.915

Energy Short (nJ) 5.958 2.202 5.077 4.621 4.562 2.196

Energy Long (nJ) 1245.3 460.22 1061.0 965.78 953.49 459.06

(c) AES-256-GCM

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 266 266 266 266 266 266

Lat. Long (Cycles) 160010 160010 160010 160010 160010 160010

NanGate 15 nm

Power (mW) 0.521 0.417 0.502 0.515 0.490 0.577

Energy Short (nJ) 13.85 11.09 13.36 13.69 13.04 15.33

Energy Long (nJ) 8328 6674 8035 8235 7843 9224

TSMC 28 nm

Power (mW) 0.326 0.249 0.312 0.303 0.304 0.329

Energy Short (nJ) 8.661 6.645 8.291 8.070 8.076 8.759

Energy Long (nJ) 5209 3997 4987 4854 4857 5269

2-Round Unrolled

Lat. Short (Cycles) 133 133 133 133 133 133

Lat. Long (Cycles) 80005 80005 80005 80005 80005 80005

NanGate 15 nm

Power (mW) 1.356 1.145 1.313 1.339 1.287 1.461

Energy Short (nJ) 18.03 15.23 17.46 17.80 17.11 19.43

Energy Long (nJ) 10845 9159.8 10505 10710 10293 11689

TSMC 28 nm

Power (mW) 0.825 0.671 0.795 0.778 0.777 0.831

Energy Short (nJ) 10.97 8.930 10.58 10.35 10.34 11.05

Energy Long (nJ) 6599.6 5369.9 6362.8 6226.8 6219.6 6645.2

(d) SNOW-V-GCM

LUT DSE S F T TT

Round-Based

Lat. Short (Cycles) 42 42 42 42 42 42

Lat. Long (Cycles) 10026 10026 10026 10026 10026 10026

NanGate 15 nm

Power (mW) 0.726 0.602 0.689 0.704 0.676 0.634

Energy Short (nJ) 3.047 2.528 2.895 2.958 2.840 2.662

Energy Long (nJ) 727.4 603.5 691.2 706.0 678.1 635.3

TSMC 28 nm

Power (mW) 0.408 0.333 0.396 0.389 0.386 0.334

Energy Short (nJ) 1.714 1.399 1.663 1.634 1.619 1.402

Energy Long (nJ) 409.2 333.9 397.1 390.2 386.5 334.8

2-Round Unrolled

Lat. Short (Cycles) 21 21 21 21 21 21

Lat. Long (Cycles) 5013 5013 5013 5013 5013 5013

NanGate 15 nm

Power (mW) 1.947 1.520 1.862 1.902 1.820 1.551

Energy Short (nJ) 4.089 3.192 3.910 3.994 3.822 3.257

Energy Long (nJ) 976.13 761.73 933.57 953.62 912.57 777.62

TSMC 28 nm

Power (mW) 1.090 0.827 1.029 0.996 0.992 0.805

Energy Short (nJ) 2.289 1.736 2.161 2.091 2.082 1.691

Energy Long (nJ) 546.32 414.32 515.89 499.24 497.04 403.65
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Abstract. Fully Homomorphic Encryption (FHE) is a powerful cryp-
tographic tool that enables the handling of sensitive encrypted data
in untrusted computing environments. This capability allows for the
outsourcing of computational tasks, effectively addressing security and
privacy concerns. This paper studies the secure matrix multiplication
problem, a fundamental operation used in various outsourced com-
puting applications such as statistical analysis and machine learning.
We propose a novel method to solve the secure matrix multiplication
Am×l × Bl×n with arbitrary dimensions, which requires only O(l) rota-
tions and min(m, l, n) homomorphic multiplications. In comparison to
the state-of-the-art method [14], our approach stands out by achiev-
ing a remarkable reduction in the number of rotations by a factor of
O(logmax(l, n)), as well as a reduction in the number of homomor-
phic multiplications by a factor of O(l/min(m, l, n)). We implemented
[14,21], and our method using the BGV scheme supported by the HElib
library. Experimental results show that our scheme has the best per-
formance for matrix multiplication of any dimension. For example, for
A16×128 ×B128×4 = C16×4, the runtime of our method is 32 s, while both
[14,21] take 569 seconds.

Keywords: Secure outsourced computation · Fully homomorphic
encryption · Matrix multiplication

1 Introduction

In the era of cloud computing, accessing storage and computing resources
through network-based services has become an economical alternative to con-
struct and maintain costly IT systems. However, the protection of data privacy
poses a significant challenge, particularly when dealing with sensitive informa-
tion in domains such as economics and medicine. Fully Homomorphic Encryption
(FHE) offers a natural solution by enabling computations to be performed on
encrypted data, thereby ensuring data privacy guarantees for outsourced com-
puting tasks in cloud-based applications.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 249–269, 2024.
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FHE has emerged as a promising post-quantum cryptography, primarily due
to the security assumptions it relies on, such as the Learning with Errors (LWE)
problem. In contrast, other privacy-preserved computing technologies like tradi-
tional secure multi-party computation depend on additional security assump-
tions and offer relatively weaker data protection. Gentry [8] introduced the
groundbreaking FHE scheme, which theoretically allows for the evaluation of
any function on ciphertexts. Since then, extensive research efforts have been
devoted to enhancing the efficiency of FHE schemes both in theory and prac-
tice (e.g., [1–4,15,23,26]). Second-generation FHE schemes, including BFV [6],
BGV [1], and CKKS [3], have gained widespread support from mainstream FHE
libraries(e.g., SEAL [18], HElib [13]), owing to their support for SIMD (Single
Instruction Multiple Data) batch processing.

Matrix multiplication is a fundamental operation extensively utilized in sci-
entific, engineering, and machine learning applications, and often demands sub-
stantial computational resources. However, outsourcing matrix computations
to untrusted servers raises concerns about data confidentiality. Consequently,
the development of an efficient and highly secure matrix multiplication scheme
becomes imperative for secure outsourced data processing. Based on FHE, this
paper investigates this problem, and an efficient matrix multiplication scheme
that can adapt to any matrix dimension is proposed.

1.1 System Model

To perform matrix multiplication, a client with limited computational resources
first encrypts the two input matrices with a public key and sends the ciphertexts
with evaluation keys to the computationally powerful cloud server. Then, the
cloud server computes the secure matrix multiplication by performing a series
of homomorphic operations on the ciphertexts. Finally, the client receives the
computation result from the cloud server, and decrypts it by the private key.
In this paper, we adopt a semi-honest model [10], where the server executes the
protocol correctly but tries to obtain additional information from the client data.

1.2 Fully Homomorphic Encryption and Hypercube Structure

In this paper, we specifically study the Ring-LWE variant [9] of the BGV scheme
[1], which is worked over a polynomial ring modulo a cyclotomic polynomial
A = Z[X]/φM (X), where φM (X) is the M -th cyclotomic polynomial. Given a
plaintext space M and a ciphertext space C, an FHE scheme is specified by five
algorithms: KeyGen, Enc, Dec, Add and Mult, which represent key generation,
encryption, decryption, homomorphic addition and multiplication, respectively.
We use Add(ct1, ct2) = ct1 ⊕ ct2 and Mult(ct1, ct2) = ct1 � ct2 to denote the
homomorphic addition and multiplication, respectively, where ct1, ct2 ∈ C. In
addition, the symbol � is also used to represent scalar multiplication between
ct and U , denoted as CMult(ct, U), where ct ∈ C and U ∈ M is scalar.

An important property of RLWE-based FHE schemes is the packing tech-
nique [24], which enables SIMD homomorphic operations. Using this method,
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every homomorphic operation over ciphertexts implies element-wise operations
over plaintext slots. The packing technique also supports a basic data move-
ment operation called rotation. Utilizing these operations can reduce space and
time complexity while avoiding the need to repack plaintext data. The BGV
scheme incorporates the hypercube structure for organizing plaintext and its
associated rotation operation [11]. This operation rotates hypercolumns in spe-
cific dimension within a multi-dimensional hypercube structure. This paper
uses a two-dimensional hypercube structure to represent the plaintext matrix.
Rotate1D(ct, 0, k) denotes each column of the matrix rotated down by k posi-
tions, and Rotate1D(ct, 1, k) denotes each row of the matrix rotated right by
k positions. Note that k can also be negative, resulting in the plaintext slots’
upward or leftward rotation. Figure 1 describes the operations mentioned above.
Among these operations, Mult and Rotate1D are the most expensive. Therefore,
to design efficient algorithms, our priority is to reduce the number of Mult and
Rotate1D.

Fig. 1. Typical operations on plaintext slot data in the hypercube structure

1.3 Related Works

For secure matrix multiplication Am×l × Bl×n = Cm×n, a straightforward app-
roach is to encrypt each matrix element into a ciphertext. However, this method
requires a significant number of element-wise multiplication operations, totaling
mln. Recognizing that each element of C is the inner product of a row of A and a
column of B, [25] encrypts each row/column of the matrix into a ciphertext in the
SIMD environment. The number of rotations and homomorphic multiplications
required are mn log l and mn, respectively.

By applying the encoding methods [20,27] to an RLWE-based FHE scheme,
[5] proposed a scheme that encodes a matrix into a constant polynomial in the
plaintext space. This method requires only a single homomorphic multiplication
operation. Subsequently, [19] proposed an improved scheme built upon this work.
However, this approach results in meaningless terms in the resulting ciphertext.
When performing more computations, decryption, and re-encoding procedure
are required to remove these terms, resulting in limited performance in practical
applications.
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[16] proposed an efficient square matrix multiplication scheme, which exploits
a row ordering encoding map to transform an l × l matrix as a vector of dimen-
sion l2. This method requires O(l) rotations and homomorphic multiplication
operations. Although [16] extends the square matrix multiplication to rectangu-
lar matrix multiplication Am×l ×Bl×n = Cm×n, it considers only the case where
m | l and l = n. By exploiting the idle slots of the ciphertext, [22] reduces the
number of homomorphic multiplications of [16] to O(1). However, a disadvantage
of this method is that it only works with very few available matrix entries.

The most relevant works [14,17,21], which are based on the Fox Matrix
multiplication method [7], can be regarded as an extension of the diagonal-
order method for solving matrix-vector multiplication [11]. Specifically, given
two l × l square matrices A and B and a hypercube structure, the method first
extracts the i-th diagonal of A, i.e., Ai = {a0,i, a1,i+1, ..., al−1,i+l−1} , where i =
{0, 1, ..., l − 1}. Then, Ai is replicated along the row to get Âi, and each column
of B is rotated upward by i positions to get Bi, i.e., Bi = Rotate1D(B, 0,−i).
The multiplication of A and B is obtained by A · B =

∑l−1
i=0 Âi � Bi. Below we

give an example with l = 3.
⎛

⎝
a00 a01 a02

a10 a11 a12

a20 a21 a22

⎞

⎠ ·
⎛

⎝
b00 b01 b02
b10 b11 b12
b20 b21 b22

⎞

⎠ =

⎛

⎝
a00 a00 a00

a11 a11 a11

a22 a22 a22

⎞

⎠ �
⎛

⎝
b00 b01 b02
b10 b11 b12
b20 b21 b22

⎞

⎠

⊕
⎛

⎝
a01 a01 a01

a12 a12 a12

a20 a20 a20

⎞

⎠ �
⎛

⎝
b10 b11 b12
b20 b21 b22
b00 b01 b02

⎞

⎠ ⊕
⎛

⎝
a02 a02 a02

a10 a10 a10

a21 a21 a21

⎞

⎠ �
⎛

⎝
b20 b21 b22
b00 b01 b02
b10 b11 b12

⎞

⎠ .

[17,21] use the above method to compute the secure square matrix multipli-
cation, with the difference that the former packs each row of each matrix into a
ciphertext with a linear array structure, while the latter packs the entire matrix
into a ciphertext with a two-dimension hypercube structure. [14] extends the
method to rectangular matrix multiplication. Although the replication proce-
dure for calculating Âi can be implemented by CMult, Rotate1D and Add, this
procedure requires high rotations and space complexities. Motivated by this, we
revisit the secure matrix multiplication problem in this paper.

1.4 Our Contribution

We propose a novel scheme for square matrix multiplication of dimension l
using the hypercube structure based on FHE. Compared to existing meth-
ods [14,21], our scheme asymptotically reduces the number of rotations from
O(l log l) to O(l). Moreover, we extend the square matrix multiplication to rect-
angular matrix multiplication. For matrix multiplication Am×l × Bl×n = Cm×n

of arbitrary dimensions, our scheme requires only O(l) rotations and min(m, l, n)
homomorphic multiplications, while [14] requires O(l logmax(l, n)) rotations and
l homomorphic multiplications. The experimental results also demonstrate the
superiority of our algorithms.
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2 Secure Matrix Multiplication Scheme with FHE

For general matrix multiplication Am×l × Bl×n = Cm×n, we discuss the fol-
lowing four cases and give different strategies for each: (1) m = l = n; (2)
l = min{m, l, n}; (3) l = median{m, l, n}; (4) l = max{m, l, n}.

2.1 Square Matrix Multiplication

Suppose the input matrices are Al×l and Bl×l, we let the hypercube structure be
an l×l matrix, then A and B can be put exactly into their hypercube structures.
Based on the most efficient scheme [16], the following equality describes the
square matrix multiplication using the hypercube structure for the case of l = 3.

⎛

⎝
a00 a01 a02

a10 a11 a12

a20 a21 a22

⎞

⎠ ·
⎛

⎝
b00 b01 b02
b10 b11 b12
b20 b21 b22

⎞

⎠ =

⎛

⎝
a00 a01 a02

a11 a12 a10

a22 a20 a21

⎞

⎠ �
⎛

⎝
b00 b11 b22
b10 b21 b02
b20 b01 b12

⎞

⎠

⊕
⎛

⎝
a01 a02 a00

a12 a10 a11

a20 a21 a22

⎞

⎠ �
⎛

⎝
b10 b21 b02
b20 b01 b12
b00 b11 b22

⎞

⎠ ⊕
⎛

⎝
a02 a00 a01

a10 a11 a12

a21 a22 a20

⎞

⎠ �
⎛

⎝
b20 b01 b12
b00 b11 b22
b10 b21 b02

⎞

⎠ .

(1)

The homomorphic scheme is described as follows.
Step 1: Denote by ct.A and ct.B the two ciphertexts of input matrices A and

B after being encrypted, respectively. This step obtains ct.A0 by rotating the
k-th row of ct.A by k positions, and obtains ct.B0 by rotating the k-th column
of ct.B by k positions (k = {0, 1, ..., l − 1}).

Taking the calculation of ct.A0 as an example, in round k, we first extract the
k-th row of ct.A using the multiplication mask operation to get ct.dk, and then
rotate ct.dk by k positions per row. Finally, all ct.dk are summed by homomorphic
addition to get ct.A0. The calculation of ct.A0 can be represented as

ct.A0 =
∑

k

ct.dk =
∑

k

Rotate1D(Uk � ct.A, 1,−k),

where k = {0, 1, ..., l − 1}, Uk is an l × l plaintext matrix and is defined by

Uk[I][J ] =

{
1 If I = k;
0 otherwise.

.

For the convenience of later discussion, we propose a general algorithm in
Algorithm 1. We denote by RotateAlign(ct.X, 1, l) the rotation of the k-th row of
ct.X by k mod l positions, which can be achieved by Algorithm 1. Similarly, we
use RotateAlign(ct.X, 0, l) to denote the rotation of the k-th column of ct.X by k
mod l positions. The complexity of this step is about 2l additions, 2l constant
multiplications, and 2l rotations.

For step 1, here is an example when l = 3. Let

ct.A =
a00 a01 a02
a10 a11 a12
a20 a21 a22

, ct.B =
b00 b01 b02
b10 b11 b12
b20 b21 b22

.
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Algorithm 1: Rotate k-th row(column) of ct.X by k mod l positions
1 procedure RotateAlign(ct.X, dim, l)

Input: ct.X: a ciphertext with D0 × D1 hypercube structure
Input: ct.X0: ciphertext with D0 × D1 hypercube structure padded by zeros
Output: ct.X0: Rotate the k-th row(column) of ct.X by k mod l positions

2 for k = 0 to l − 1 do

3 U [I][J ] ←

⎧
⎪⎨

⎪⎩

1 if dim = 1 and I = k (mod l)

1 if dim = 0 and J = k (mod l)

0 otherwise
4 ct.d = U � ct.X � U : a D0 × D1 plaintext matrix
5 ct.d =Rotate1D(ct.d, dim,−k)
6 ct.X0 = ct.X0 ⊕ ct.d

7 end
8 return ct.X0

then

ct.d0 =
a00 a01 a02
0 0 0
0 0 0

, ct.d1 =
0 0 0

a11 a12 a10
0 0 0

, ct.d2 =
0 0 0
0 0 0

a22 a20 a21

.

By performing homomorphic addition on all ct.dk, we get

ct.A0 =
a00 a01 a02
a11 a12 a10
a22 a20 a21

, similarly, ct.B0 =
b00 b11 b22
b10 b21 b02
b20 b01 b12

.

In fact, RotateAlign requires only O(
√

l) rotations by utilizing the baby-
step/giant-step approach (BSGS) [12]. If we select the good dimensions for the
hypercube structure, Rotate1D(ct, d, k) applies one automorphism denoted by
ρkgd . RotateAlign can be rewritten as

∑l−1
k=0 Ukρ

k
gd
(ct) =

∑h−1
i=0 ρfigd

[∑f−1
j=0 U ′

j+fi·
ρjgd(ct)

]
, where h, f ≈ √

l and U ′
j+fi = ρ−fi

gd
(Uj+fi) = Uj+fi. Then we compute

ρjgd(ct) only once during the inner loop for baby steps.
Step 2: There are l rounds in this step. In round i, where i = {0, 1, ..., l −

1}, two rotations and a homomorphic multiplication operation are performed
to calculate Rotate1D(ct.A0, 1,−i) � Rotate1D(ct.B1, 0,−i). Then the results of
these l rounds are summed by the homomorphic addition operation, i.e.,

ct.A · ct.B =
∑

i

Rotate1D(ct.A0, 1,−i) � Rotate1D(ct.B0, 0,−i). (2)

The complexity of this step is about l homomorphic multiplications, l additions,
and 2l rotations. An example of step 2 is Eq. (1).

Actually, the above two steps with slight adjustments are also used heav-
ily in the case of rectangular matrix multiplication. Therefore, for simplicity,
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we call the above two steps the fully homomorphic encryption matrix mul-
tiplication main procedure. Assuming that the input matrices are Am×l and
Bl×n and the hypercube structure is D0 × D1, we present FHE-MatMultMain
(ct.A, ct.B,m, l, n,D0,D1) in Algorithm 2, which implements step 1 and step 2.
Table 1 summarizes the time complexity and depth of each step in Algorithm
2. When m = l = n = D0 = D1, Algorithm 2 is the secure square matrix
multiplication algorithm.

Table 1. Time Complexity and Depth of Algorithm 2

Step Add CMult Rot Mult Depth

1 2l 2l 2l - 1Cmult
2 min(m, l, n) - 2min(m, l, n) min(m, l, n) 1Mult
Total 2l +min(m, l, n) 2l 2l + 2min(m, l, n) min(m, l, n) 1CMult+1Mult

∗ When m = l = n, Algorithm 2 is the secure square matrix multiplication algorithm.

Algorithm 2: FHE matrix multiplication main procedure
1 procedure: FHE-MatMultMain (ct.A, ct.B,m, l, n,D0, D1)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C: ciphertext with D0 ×D1 hypercube structure and padded by zeros
Output: ct.C

2 [Step 1:]
3 ct.A0=RotateAlign(ct.A, 1, l) � computing ct.A0

4 ct.B0=RotateAlign(ct.B, 0, l) � computing ct.B0

5 [Step 2:]
6 for i = 0 to min(m, l, n) do
7 ct.C = ct.C ⊕ ct.A0 � ct.B0 � computing ct.C
8 ct.A0 = Rotate1D(ct.A0, 1,−1)
9 ct.B0 = Rotate1D(ct.B0, 0,−1)

10 end
11 return ct.C

2.2 Rectangular Matrix Multiplication

Suppose the input matrices are Am×l and Bl×n, for different matrix dimensions
we divide into three cases and give efficient schemes for each. Consider that for
any matrix, we can transform it into a matrix whose two dimensions are both
to the power of 2 by zero padding. The matrix size increases by up to 4 times
after zero-padding. For the sake of simplicity, we assume that the dimensions m,
l, and n are all to the power of 2.

Rectangular Matrix Multiplication with l = min{m, l, n}. Let the hyper-
cube structure be m×n in this case. Let Am×l be put into the m×n hypercube
structure by padding the right of A with zeros, and let the Bl×n be put into
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the m × n hypercube structure by padding the bottom of B with zeros. The
homomorphic scheme is described as follows.

Step 1: This step replicates ct.A along the rows to get ct.A0 and ct.B along
the columns to get ct.B0. Specifically, let the hypercube structure of a ciphertext
ct.A be D0 × D1 and its dim-th dimension has ddim non-zero elements, where
dim = {0, 1} and ddim ≤ Ddim. We denote by Replicate1D(ct, dim, ddim) the
replicating of ddim non-zero elements to the whole hypercube structure along
the dim-th dimension. We give a scheme description in Algorithm 3, which uses
a “repeated doubling” method. Note that in line 3, log(Ddim/ddim)) is an integer
since Di and di are all to the power of 2. Since there are l non-zero elements in
each row of ct.A, this step takes about log n

l rotations and additions to get ct.A0.
Similarly, this step takes about log m

l rotations and additions to get ct.B0.

Algorithm 3: Replicate a ciphertext along the row/column
1 procedure: Replicate1D(ct.X, dim, ddim)

Input: ct.X: ciphertext with D0 × D1 hypercube structure and the number of
non-zero elements is d0 × d1

Output: ct.X0: ciphertext got by replicating ct.X along the dimension dim
2 ct.X0 = ct.X
3 for k = 1 to log(Ddim/ddim) do
4 ct.X0 = ct.X0 ⊕ Rotate1D(ct.X0, dim, k · ddim)
5 end
6 return ct.X0

For step 1, here is an example when m = 4, l = 2, and n = 8. Let A be a
4×2 matrix and B be a 2×8 matrix, then the hypercube structure is 4×8, and

ct.A =

⎛

⎜
⎜
⎝

a00 a01 0 0 0 0 0 0
a10 a11 0 0 0 0 0 0
a20 a21 0 0 0 0 0 0
a30 a31 0 0 0 0 0 0

⎞

⎟
⎟
⎠ , ct.B =

⎛

⎜
⎜
⎝

b00 b01 b02 b03 b04 b05 b06 b07
b10 b11 b12 b13 b14 b15 b16 b17
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎠ . (3)

Given ct.A and ct.B in Eq. (3), ct.A0 and ct.B0 are

ct.A0 =
⎜

a00 a01 a00 a01 a00 a01 a00 a01
a10 a11 a10 a11 a10 a11 a10 a11
a20 a21 a20 a21 a20 a21 a20 a21
a30 a31 a30 a31 a30 a31 a30 a31

⎟

, ct.B0 =
⎜

b00 b01 b02 b03 b04 b05 b06 b07
b10 b11 b12 b13 b14 b15 b16 b17
b00 b01 b02 b03 b04 b05 b06 b07
b10 b11 b12 b13 b14 b15 b16 b17

⎟

.

(4)

Step 2: This step performs the FHE matrix multiplication main pro-
cedure with ct.A0 and ct.B0 as input, i.e., ct.C ←FHE-MatMultMain
(ct.A0, ct.B0,m, l, n,m, n). The complexity of this step is about l homomorphic
multiplications, 3l additions, 2l constant multiplications, and 2l rotations (see
Table 1). For example, given ct.A0 and ct.B0 in Eq. (4), ct.C is obtained as
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Table 2. Time Complexity and Depth of Algorithm 4 (l = min{m, l, n})

Step Add CMult Rot Mult Depth

1 log mn
l2

- log mn
l2

- -
2 3l 2l 4l l 1CMult
Total 3l + log mn

l2
2l 4l + log mn

l2
l 1CMult+1Mult

a00 a01 a00 a01 a00 a01 a00 a01
a11 a10 a11 a10 a11 a10 a11 a10
a20 a21 a20 a21 a20 a21 a20 a21
a31 a30 a31 a30 a31 a30 a31 a30

b00 b11 b02 b13 b04 b15 b06 b17
b10 b01 b12 b03 b14 b05 b16 b07
b00 b11 b02 b13 b04 b15 b06 b17
b10 b01 b12 b03 b14 b05 b16 b07

a01 a00 a01 a00 a01 a00 a01 a00
a10 a11 a10 a11 a10 a11 a10 a11
a21 a20 a21 a20 a21 a20 a21 a20
a30 a31 a30 a31 a30 a31 a30 a31

b10 b01 b12 b03 b14 b05 b16 b07
b00 b11 b02 b13 b04 b15 b06 b17
b10 b01 b12 b03 b14 b05 b16 b07
b00 b11 b02 b13 b04 b15 b06 b17

We describe the homomorphic matrix multiplication scheme with l =
min{m, l, n} in Algorithm 4. Table 2 summarizes the time complexity and depth
of each step in Algorithm 4.

Algorithm 4: Homomorphic matrix multiplication (l = min{m, l, n})
1 procedure: FHE-RecMatMultl=min{m,l,n} (ct.A · ct.B)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C: ciphertext with m × n hypercube structure and padded by zeros
Output: ct.C: ct.A · ct.B

2 [step 1:]
3 ct.A0 = Replicate1D(ct.A, 1, l) � computing ct.A0

4 ct.B0 = Replicate1D(ct.B, 0, l) � computing ct.B0

5 [step 2:]
6 ct.C ←FHE-MatMultMain (ct.A0, ct.B0,m, l, n,m, n)
7 return ct.C

Rectangular Matrix Multiplication with l = median{m, l, n}. In this
case, if m ≥ l ≥ n, we let the hypercube structure be m × l. Otherwise, if
n ≥ l ≥ m, we let the hypercube structure be l × n. For simplicity, we discuss
the case of m ≥ l ≥ n in detail, and the case of n ≥ l ≥ m is similar.

For m ≥ l ≥ n, let Am×l be put into the m × l hypercube structure, and
let Bl×n be put into the m × l hypercube structure by padding the right and
bottom of B with zeros. The homomorphic scheme is described as follows.

Step 1: This step first replicates ct.B along the rows to get ct.d0, and then
replicates ct.d0 along the columns to get ct.d1. The generation of ct.d0 and ct.d1
can be achieved by Algorithm 3. Since there are n non-zero elements in each
row of ct.B, this step takes about log l

n additions and rotations to get ct.d0.
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Similarly, this step takes about log m
l additions and rotations to get ct.d1. For

step 1, here is an example when m = 4, l = 4, and n = 2. Let A be an 8 × 4
matrix and B be a 4 × 2 matrix, then the hypercube structure is 8 × 4, and

ct.A =

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33
a40 a41 a42 a43
a50 a51 a52 a53
a60 a61 a62 a63
a70 a71 a72 a73

, ct.B =

b00 b01 0 0
b10 b11 0 0
b20 b21 0 0
b30 b31 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.ct.d0 =

b00 b01 b00 b01
b10 b11 b10 b11
b20 b21 b20 b21
b30 b31 b30 b31
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, ct.d1 =

b00 b01 b00 b01
b10 b11 b10 b11
b20 b21 b20 b21
b30 b31 b30 b31
b00 b01 b00 b01
b10 b11 b10 b11
b20 b21 b20 b21
b30 b31 b30 b31

.

(5)

Step 2: This step performs the FHE matrix multiplication main proce-
dure with ct.A and ct.d1 as input, i.e., ct.C0 ←FHE-MatMultMain (ct.A, ct.d1,
m, l, n,m, l). The complexity of this step is about n homomorphic multiplica-
tions, 2l + n additions, 2l constant multiplications, and 2l + 2n rotations (see
Table 1). For example, given ct.A and ct.d1 in Equation (5), ct.C0 is obtained as

a00 a01 a02 a03
a11 a12 a13 a10
a22 a23 a20 a21
a33 a30 a31 a32
a40 a41 a42 a43
a51 a52 a53 a50
a62 a63 a64 a60
a73 a70 a71 a72

b00 b11 b20 b31
b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21
b00 b11 b20 b31
b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21

a01 a02 a03 a00
a12 a13 a10 a11
a23 a20 a21 a22
a30 a31 a32 a33
a41 a42 a43 a40
a52 a53 a50 a51
a63 a64 a60 a62
a70 a71 a72 a73

b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21
b00 b11 b20 b31
b10 b21 b30 b01
b20 b31 b00 b11
b30 b01 b10 b21
b00 b11 b20 b31

=

a00b00 + a01b10 a01b11 + a02b21 a02b20 + a03b30 a03b31 + a00b01
a11b10 + a12b20 a12b21 + a13b31 a13b30 + a10b00 a10b01 + a11b11
a22b20 + a23b30 a23b31 + a20b01 a20b00 + a21b10 a21b11 + a22b21
a33b30 + a30b00 a30b01 + a31b11 a31b10 + a32b20 a32b21 + a33b31
a40b00 + a41b10 a41b11 + a42b21 a42b20 + a43b30 a43b31 + a40b01
a51b10 + a52b20 a52b21 + a53b31 a53b30 + a50b00 a50b01 + a51b11
a62b20 + a63b30 a63b31 + a60b01 a60b00 + a61b10 a61b11 + a62b21
a73b30 + a70b00 a70b01 + a71b11 a71b10 + a72b20 a72b21 + a73b31 (6)

Step 3: The m × l ciphertext ct.C0 can be divided into l
n column blocks,

where each block has size m × n. By rotation and homomorphic addition opera-
tions, this step adds all other column blocks to a column block by exploiting the
“repeated doubling” method, and gets a ciphertext ct.C that encrypts the m×n
matrix C = AB in each column block. This step talks about log l

n rotations and
log l

n additions to get ct.C. For example, given ct.C0 in Eq. (6), ct.C is obtained
as

3
k=0 a0kbk0

3
k=0 a0kbk1

3
k=0 a0kbk0

3
k=0 a0kbk1

3
k=0 a1kbk0

3
k=0 a1kbk1

3
k=0 a1kbk0

3
k=0 a1kbk1

3
k=0 a2kbk0

3
k=0 a2kbk1

3
k=0 a2kbk0

3
k=0 a2kbk1

3
k=0 a3kbk0

3
k=0 a3kbk1

3
k=0 a3kbk0

3
k=0 a3kbk1

3
k=0 a4kbk0

3
k=0 a4kbk1

3
k=0 a4kbk0

3
k=0 a4kbk1

3
k=0 a5kbk0

3
k=0 a5kbk1

3
k=0 a5kbk0

3
k=0 a5kbk1

3
k=0 a6kbk0

3
k=0 a6kbk1

3
k=0 a6kbk0

3
k=0 a6kbk1

3
k=0 a7kbk0

3
k=0 a7kbk1

3
k=0 a7kbk0

3
k=0 a7kbk1

C
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Algorithm 5: Summing a ciphertext along the row(column)
1 procedure: Sum1D(ct, dim, ddim)

Input: ct: ciphertext with D0 × D1 hypercube structure
Input: c̄t: ciphertext with D0 × D1 hypercube structure and padded by zeros
Output: c̄t: the ciphertext obtained by summing every d0(d1) rows(columns)

of ct along the columns(rows)
2 for k = log(Ddim/ddim) to 1 do
3 c̄t = c̄t ⊕ Rotate1D(c̄t, dim, k · ddim)
4 end
5 return c̄t

which encrypts the 8 × 2 matrix C = AB in its first two columns.
For the convenience of later discussion, we give a general algorithm in Algo-

rithm 5. Let the hypercube structure of a ciphertext ct be D0 × D1, which can
be viewed as D1

d1
matrice blocks of size D0 × D1

d1
(D1 ≥ d1 and d1 | D1 ). We

denote by Sum1D(ct, 1, d1) the summation of these D1
d1

matrices along the rows.
Similarly, we denote by Sum1D(ct, 0, d0) the summation of D0

d0
matrices with size

D0
d0

× D1 along the columns. The summation can be achieved by Algorithm 5

Table 3. Time Complexity and Depth of Algorithm 6 (m ≥ l ≥ n)

Step Add CMult Rot Mult Depth

1 log m
n

- log m
n

- -
2 2l + n 2l 2l + 2n n 1CMult+1Mult
3 log l

n
- log l

n
- 1CMult

Total 3l + log ml
n2 2l 4l + log ml

n2 n 1CMult+1Mult

From the above description, we give the homomorphic matrix multiplica-
tion algorithm with m ≥ l ≥ n in Algorithm 6. Table 3 summarizes the time
complexity and depth of each step in Algorithm 6.

Rectangular Matrix Multiplication with l = max{m, l, n}. In this case,
let the hypercube structure be l × l, a natural scheme is to transform it into a
square matrix multiplication by zero padding, and then call Algorithm 2. From
Table 1, the homomorphic multiplication of this scheme is l = max{m, l, n}.

We give an improved scheme, which requires only min{m, l, n} homomorphic
multiplications. We discuss in detail the case of l ≥ m ≥ n below, and the case
of l ≥ n ≥ m is similar.

Step 1: This step replicates ct.A along the columns to get ct.A0, and repli-
cates ct.B along the rows to get ct.B0. Since there are m non-zero elements in
each column of ct.A, this step takes about log l

m rotations and additions to get
ct.A0. Similarly, this step takes about log l

n rotations and additions to get ct.B0.
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Algorithm 6: Homomorphic matrix multiplication (m ≥ l ≥ n)
1 procedure: FHE-RecMatMultm≥l≥n (ct.A · ct.B)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C0, ct.C: two ciphertexts with m × l hypercube structure and padded
by zeros

Output: ct.C: ct.A · ct.B
2 [step 1:]
3 ct.d0 = Replicate1D(ct.B, 1, n) � computing ct.d0
4 ct.d1 = Replicate1D(ct.d0, 0, l) � computing ct.d1
5 [step 2:]
6 ct.C0 ←FHE-MatMultMain (ct.A, ct.d1,m, l, n,m, l)
7 [step 3:]
8 ct.C = Sum1D(ct.C0, 1, n) � computing ct.C
9 return ct.C

For step 1, here is an example when m = 2, l = 4, and n = 1. Let A be a 2 × 4
matrix and B be a 4 × 1 matrix, then the hypercube structure is 4 × 4, and

ct.A =

a00 a01 a02 a03
a10 a11 a12 a13
0 0 0 0
0 0 0 0

, ct.B =

b00 0 0 0
b10 0 0 0
b20 0 0 0
b30 0 0 0

, ct.A0 =

a00 a01 a02 a03
a10 a11 a12 a13
a00 a01 a02 a03
a10 a11 a12 a13

, ct.B0 =

b00 b00 b00 b00
b10 b10 b10 b10
b20 b20 b20 b20
b30 b30 b30 b30

.

(7)

Step 2: This step performs the FHE matrix multiplication main pro-
cedure with ct.A0 and ct.B0 as input, i.e., ct.C0 ←FHE-MatMultMain
(ct.A0, ct.B0,m, l, n, l, l). The complexity of this step is about n homomorphic
multiplications, 2l+n additions, 2l constant multiplications, and 2l+2n rotations
(see Table 1). For example, given ct.A0 and ct.B0 in Eq. (7), ct.C0 is obtained as

a00 a01 a02 a03
a11 a12 a13 a10
a02 a03 a00 a01
a13 a10 a11 a12

b00 b10 b20 b30
b10 b20 b30 b00
b20 b30 b00 b10
b30 b00 b10 b20

a00b00 a01b10 a02b20 a03b30
a11b10 a12b20 a13b30 a10b00
a02b20 a03b30 a00b00 a01b10
a13b30 a10b00 a11b10 a12b20

.

(8)

Table 4. Time Complexity and Depth of Algorithm 7 (l ≥ m ≥ n)

Step Add CMult Rot Mult Depth

1 log l2

mn
- log l2

mn
- -

2 2l + n 2l 2l + 2n n 1CMult+1Mult
3 log l

n
- log l

n
- 1CMult

Total 3l + log l3

mn2 2l 4l + log l3

mn2 n 1CMult+1Mult

Step 3: The l×l ciphertext ct.C0 is divided into l
n matrices by column where

each matrix has size l ×n. This step gets ct.C by summing these l
n blocks along

the rows, which can be achieved by Algorithm 5. The complexity of this step is
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about log l
n additions and log l

n rotations. For example, given ct.C0 in Eq. (8),
by Algorithm 5,

ct.C =

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a0kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

3
k=0 a1kbk0

C

,

which encrypts the 2 × 1 matrix C = AB in its first two rows and first column.
We describe the scheme in Algorithm 7. Table 4 summarizes the time com-

plexity and depth of each step in Algorithm 7.

Algorithm 7: Homomorphic matrix multiplication (l ≥ m ≥ n)
1 procedure: FHE-RecMatMultl≥m≥n (ct.A · ct.B)

Input: ct.A, ct.B: two ciphertexts of the input matrices Am×l and Bl×n

Input: ct.C0: ciphertext with l × l hypercube structure and padded by zeros
Output: ct.C: ct.A · ct.B

2 [step 1:]
3 ct.A0 = Replicate1D(ct.A, 0,m) � computing ct.A0

4 ct.B0 = Replicate1D(ct.B, 1, n) � computing ct.B0

5 [step 2:]
6 ct.C0 ←FHE-MatMultMain (ct.A0, ct.B0,m, l, n, l, l)
7 [step 3:]
8 ct.C = Sum1D(ct.C0, 1, n) � computing ct.C
9 return ct.C

3 Complexity Analysis

In this section, we give a comparison of the complexity between our algorithm
and the state-of-the-art algorithms [14,16,21]. Note that [16,21] deal mainly
with secure square matrix multiplication. For rectangular matrix multiplication,
a trivial method is to transform rectangular matrices into square matrices by
zero padding and then solve the problem using the existing method. Suppose
the input matrices are Am×l and Bl×n, we denote by k1 = max{m, l, n}, k2 =
median{m, l, n}, k3 = min{m, l, n}, and t = max{l, n}. Table 5 summarizes the
complexities of existing methods and our scheme. It can be found that in all cases,
the number of Mult of our method is the lowest, as k3 = min{m, l, n}. Compared
to [14,21], the Rot of our method is asymptotically reduced by k1 log k1

l and log t
times, respectively.

4 Experimental Evaluation

4.1 Experimental Setup

Our experiments were conducted on a machine equipped with an Intel(R)
Xeon(R) Platinum 8475B@2.5 GHz(16 Cores), accompanied by 128 GB of
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Table 5. Complexity comparison between our method and existing methods

Method Add CMult Rot Mult Depth

[16] 6k1 4k1 3k1 + 5
√
k1 k1 2CMult+1Mult

[21] k1 log k1 + k1 k1 k1 log k1 + k1 k1 1CMult+1Mult
[14] l log t+ l l l log t+ l l 1CMult+1Mult

Ours (square) 3l 2l 4l k3 1CMult+1Mult

Ours (rectangular) 3l + log
k3
1

k2k
2
3

2l 4l + log
k3
1

k2k
2
3

k3 1CMult+1Mult

memory. The machine is operated on Ubuntu 22.04.2. Our implementation of
secure matrix computation was built upon the foundation provided by the BGV
scheme in HElib, and the code was compiled using g++ version 11.3.0. We utilized
the openMP library to implement a multi-threaded version, and the number of
threads in the implementation is up to 32.

For any given matrix dimensions, we compare the running time of our method
with [14,21]. Both methods are implemented using HElib and perform better
than [16]. Since [21] is a secure square matrix multiplication method, we adopt
the zero padding strategy utilized in [14] for rectangular matrices. For the choice
of parameters p, M and (m0,m1), we follow the method of [21], where p is the
plaintext modulus, M defines the M -th cyclotomic polynomial, (m0,m1) is the
actual dimensions of the hypercube structure. Based on the conditions specified
in [21]: (1) M = k · m0 · m1 + 1; (2) k,m0 and m1 are pairwise coprime; (3)
ord(p) = k. We can find two generators g1 and g2 with orders m0 and m1

in Z
∗
M such that Z

∗
M/〈p〉 = 〈g0, g1〉. Thus we achieve a hypercube with two

good dimensions m0 and m1. More details can be found in [21]. The Appendix
A.1 contains a discussion of implementation challenges and their corresponding
solutions arising from choosing good dimensions.

The selection of other parameters in HElib maintains the default, except for
setting bits = 600 for the minimal bit length of the ciphertext modulus and H =
120 for the Hamming weight of the secret key. The value of H differs from the
experiments of other work(i.e., 64) in order to meet the minimum requirements
of the latest HElib version. For all the experiments, these settings ensure a
minimum security level of 80 bits. (We remark that the assessment of the security
level in HElib is more stringent and distinct from the homomorphic encryption
standard. It encompasses not only considerations related to polynomial degrees
and ciphertext modulus.)

4.2 Results and Analysis

We compare the performance of our method with existing methods in Fig. 2. It
can be found that for all cases, the execution time (MatMult) of our algorithm
is the lowest. In the case of square matrix multiplication, [14,21] have equal
MatMult time, and our method has the best performance because it requires
O(log l) times fewer rotations (see Table 5). For the same reason, we have a
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Fig. 2. The running time (s) of [14,21], our method and speedup ([14] vs. our method).

higher speedup as the matrix dimension increases. In the case of rectangular
matrix multiplication, the MatMult time of [14,21] and our method are positively
correlated with max(m, l, n), l and min(m, l, n), respectively. This is because
different methods require different numbers of Mult (see Table 5). Since our
method requires l/min(m, l, n) times fewer homomorphic multiplications, when
l/min(m, l, n) is maximum ((m, l, n) = (16, 128, 4)), we can achieve the highest
speedup, up to 18X.

Fig. 3. Operating-level runtime breakdown (%).

Figure 3 shows the runtime breakdown at the operational level. The analysis
reveals that a significant portion of the runtime in [14,21] is dedicated to rotation
operations. Due to 2 times more CMult operations than the other methods, the
percentage of CMult runtime is greater in our method. We also provide noise
testing and analysis, interested readers can refer to Appendix A.3.

In addition to the single-threaded implementation shown in Fig. 2, we also
utilize multi-threaded (MT) to implement our method in parallel. We mainly
parallelize the most time-consuming rotations in RotateAlign, and the degree of
parallelism is at most l. Therefore, when the number of threads is greater than
l, the increase in the number of threads does not further reduce the running
time of MatMult. When the number of threads is less than l, the running time
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of MatMult decreases almost linearly with the number of threads, which means
that our method has high scalability (Fig. 4).

Fig. 4. Multi-threaded runtime of our method.

5 Conclusion

In this work, we propose an efficient secure matrix multiplication of arbitrary
dimensions based on BGV fully homomorphic encryption scheme. This method
leverages the plaintext slots of the hypercube structure and special homomorphic
operations on them. We conducted extensive microbenchmark tests, employ-
ing parameters closely aligned with real-world applications. The results demon-
strated significant performance enhancements when compared to the state-of-
the-art methods.

It is worth noting that applications built upon the hypercube structure not
only encompass one-dimensional linear structures but also hold potential for
further optimization at the algorithmic complexity level. When our proposed
algorithm serves as a building block in a larger secure computation, temporarily
adjusting parameters is infeasible. It demonstrates scalability on par with one-
dimensional linear structures, coupled with additional options. For instance, in
situations where there are many non-data dependent matrix multiplications, and
the parameters allow encoding multiple matrices at once, the algorithm can be
easily adapted to enable single-ciphertext multi-matrix computations. In situa-
tions where only one single small matrix multiplication is involved, the extended
version can be used to achieve slight performance improvements. Furthermore,
due to the characteristics of hypercube encoding, such an adaptation simplifies
the implementation of general homomorphic linear transformation with fewer
homomorphic operations, leading to asymptotic reductions in computationally
expensive homomorphic operations such as homomorphic multiplication and
rotation throughout the entire application. Consequently, we posit that this work
can serve as a valuable source of inspiration for subsequent work utilizing hyper-
cube structure packing techniques.
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In our future work, we aim to expand the algorithm’s capabilities to handle
considerably large matrices, thereby facilitating its utility in big data privacy
applications that involve massive datasets as inputs.

Acknowledgements. This work was supported in part by National Key Research and
Development Program of China (Grant No. 2022YFB4501500 and 2022YFB4501502).

A Appendix

A.1 Practical Implementation Issues and Solutions

Choosing the good dimensions in the hypercube can minimize the overhead of
a Rotation1D. Therefore, for performance reasons, the implementation always
prioritizes the hypercube with good dimensions. However, to meet this require-
ment, the actual hypercube size chosen is usually larger than the expected min-
imum size. For example, when using Algorithm 2 to calculate a 3 × 3 square
matrix multiplication, the expected hypercube size is 3 × 3, while the actual
size that fulfills the requirement is 3 × 4 (refer to the first matrix in Fig. 5a).
Calling RotateAlign directly becomes incorrect due to the presence of redundant
columns. By observing the terminal error state(i.e., the second matrix in Fig. 5a),
it becomes apparent that the correction can be performed in a single step, utiliz-
ing 2 CMult, 1 Rotate1D, and 1 Add(see the changes brought by the first arrow in
Fig. 5b). Subsequent operations of Rotate1D can also be corrected by employing
an additional CMult and Add, as illustrated in Fig. 5b. These corrections only
introduce a few constant operations.

One alternative is to expand the dimensions of the hypercube, although this
may not always be feasible. Specifically, we can set the expected value of m1 to
3m∗

1 −2(m∗
1 denotes the minimum number of columns required in the aforemen-

tioned algorithm), thereby ensuring the correctness of all subsequent steps with-
out requiring the correction steps shown in Fig. 5b. Figure 6 depicts the state

Fig. 5. An overview of the error in raw RotateAlign and the modified algorithms
addressing the issue in subsequent steps.
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of the extended version after performing a raw RotateAlign. All the columns
required for subsequent steps have been prepared. This extension may seem to
degrade performance due to an increase in M . However, the constraints of k,
m0, and m1 as mentioned in Sect. 4.1, allow for generating similar values of M
when the expected size is selected as (m∗

0, 3m
∗
1−2) or (m∗

0,m
∗
1). More details and

suggestions for leveraging the extended version can be found in Appendix A.2.

Fig. 6. Modified algorithm in the extended version.

A.2 Speedup of Extended and Non-extended Versions

In practical implementations, a minimum value for M is typically set to meet
security requirements. This leads to selecting p of ord(p) is large when the matrix
dimension is small. When ord(p) ≥ 3, switching to an extended version provides
the opportunity to fully utilize the potential of generating a larger hypercube
structure with a large M , thereby achieving a certain degree of performance
improvement. The performance comparison results and parameter sets P1 and
P2 for the two scenarios are shown in Table 6. The extended version achieved
3.1× speedup compared to [21] when the dimension is 64. The slight improvement
over the non-extended version indicates that the correction steps have a limited
impact. Considering the potential performance improvement, it is applicable
in real-world applications to generate parameters using two different expected
hypercube sizes: (m∗

0,m
∗
1) and (m∗

0, 3m
∗
1 − 2). If the value of M generated by

the extended version parameter setting is similar to that of the non-extended
version, the extended version can offer performance benefits.

A.3 Noise Testing and Analysis

The experiments originally aimed to test larger matrix dimensions, such as a
hypercube size exceeding 256 × 256. However, when maintaining the aforemen-
tioned parameter settings, [21] encountered decryption failures due to excessive
noise. Consequently, we examined how the noise varied with the increase in
matrix dimensions for different methods. In HElib, the logarithm of the ratio of
the modulus to the noise bound is referred to as capacity. Here, we use noise to
represent the difference between the initial capacity and the remaining capacity.
The breakdown of the initial capacity is illustrated in Fig. 7, with the shaded
part representing the noise generated by evaluation and the light part represent-
ing the remaining capacity. While [11] asserts that Rot introduces less noise than
Mult and CMult, the depth of Rot also significantly contributes to noise growth,
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Table 6. Performance(seconds) of homomorphic square matrix multiplication and
speedup S( [21] and non-extended version vs. extended version). The parameter sets
P1 and P2 correspond to (m0,m1, ord(p)) and M for the non-extended and extended
versions, respectively.

dimension 4 8 16 32 64

(m0,m1, ord(p)) (4, 5, 1001) (8, 9, 281) (16, 17, 95) (32, 35, 27) (64, 71, 5)
}

P1
M 20021 20233 25841 30241 22721

(m0,m1, ord(p)) (4, 11, 455) (8, 23, 117) (16, 47, 35) (32, 95, 9) (64, 315, 1)
}

P2
M 20021 21529 26321 27361 20161

Method T(s) S T(s) S T(s) S T(s) S T(s) S
[21] 4.469 1.32 11.704 1.54 35.895 1.86 109.140 2.19 219.199 3.11

}

Non-Ext
Ours 4.253 1.25 8.784 1.16 23.170 1.20 49.882 1.04 115.616 1.64

Extend 3.394 - 7.593 - 19.279 - 49.882 - 70.381 -

particularly in the case of the prominently dominant Rot illustrated in Fig. 3.
Compared to [21], our method increases Add but heavily decreases Rot, resulting
in slower growth of noise with increasing matrix dimension.

Fig. 7. Noise generation volume. The bottom (shaded) part represents generated noise,
while the top (light) part represents the remaining capacity.
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Abstract. With Dilithium and Falcon, NIST selected two lattice-based
signature schemes during their post-quantum standardization project.
Whereas Dilithium follows the Fiat-Shamir with Aborts (Lyubashevsky,
Asiacrypt’09) blueprint, Falcon can be seen as an optimized version of
the GPV-paradigm (Gentry et al., STOC’06). An important question
now is whether those signatures allow additional features such as the
aggregation of distinct signatures. One example are sequential aggre-
gate signature (SAS) schemes (Boneh et al., Eurocrypt’04) which allow
a group of signers to sequentially combine signatures on distinct mes-
sages in a compressed manner. The present work first reviews the state
of the art of (sequentially) aggregating lattice-based signatures, points
out the insecurity of one of the existing Falcon-based SAS (Wang and
Wu, PROVSEC’19), and proposes a fix for it. We then construct the
first Fiat-Shamir with Aborts based SAS by generalizing existing tech-
niques from the discrete-log setting (Chen and Zhao, ESORICS’22) to
the lattice framework. Going from the pre-quantum to the post-quantum
world, however, does most often come with efficiency penalties. In our
work, we also meet obstacles that seem inherent to lattice-based signa-
tures, making the resulting scheme less efficient than what one would
hope for. As a result, we only achieve quite small compression rates.
We compare our construction with existing lattice-based SAS which all
follow the GPV-paradigm. The bottom line is that none of the schemes
achieves a good compression rate so far.

1 Introduction

Aggregate signature (AS) schemes, introduced by [7], allow N signers to indi-
vidually produce signatures σ1, . . . , σN on distinct messages m1, . . . , mN , and
later combine them into a single, compact signature σAS. Such σAS can be ver-
ified with respect to the participants’ verification keys pk1, . . . , pkN . Classical
applications of aggregate signatures include certificate chains: in a public key
infrastructure one has to include their certificate in every sent message, which
itself comes from a chain of certificates issued by different authorities. Since the
naive concatenation of single-user signatures significantly adds to the certificate
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
G. Tsudik et al. (Eds.): ESORICS 2023, LNCS 14344, pp. 270–289, 2024.
https://doi.org/10.1007/978-3-031-50594-2_14
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chain (e.g., [7] reports 15% of a typical X.509 certificate length is occupied by the
signature), it is paramount to replace them with a compact, aggregated signa-
ture to save bandwidth. In the literature, essentially two different paradigms of
fully compact aggregate signatures have been proposed: (1) dedicated construc-
tions based on bilinear pairings [3,7], and (2) generic solutions exploiting iO [30]
or non-interactive arguments [2,17,46], where a signature aggregator produces
a succinct proof of knowledge of N valid signatures.

There also exists the slightly restricted notion of sequential aggregate signa-
tures (SAS) [34]. In this setting, signing and aggregation are carried out alto-
gether: signer i associated with pki receives from signer i−1 aggregate so-far σi−1
with a key-message list Li−1 = (pk1, m1, . . . , pki−1, mi−1), adds a signature on
the message mi of their own choice to produce σi, and then passes along σi

and Li = Li−1||(pki, mi) to the next signer i + 1. Unlike general aggregate sig-
natures, SAS require round-robin communication among signers, which however
fits well in typical application scenarios such as a certificate chain. A plethora
of work proposed highly efficient, constant-size SAS using pairings [3,6,23,33] or
assuming the existence of trapdoor permutations [12,26,34,41].

Half-Aggregation of Fiat-Shamir Signatures. Perhaps unsurprisingly, not
many aggregation methods tailored to Fiat-Shamir signatures [22] such as
Schnorr [44] are known.1 Fiat-Shamir signatures are typically constructed from
three-round Σ-protocols [15]: the signer invokes the underlying Σ-protocol
prover to generate the first-round commit value u, samples random challenge c
by hashing u together with the message m to be signed, creates response z, and
outputs σ = (c, z) as a signature. The verifier then reconstructs u from (pk, c, z)
through certain algebraic operations and checks the recomputed hash against c.
Equivalently, the signer can set σ = (u, z) and the verifier recomputes the hash c,
while checking if a certain relation between c and (pk, u, z) holds. The difficulty
of aggregating Fiat-Shamir mainly lies in the challenge hash function: since its
typical instantiation such as SHA-256 has no algebraic structure, it does not
blend well with nice homomorphic properties of the underlying Σ-protocol tran-
script. This is why the existing approaches (e.g., [4,19,42]) require (at least) two
rounds of interaction so that all signers can first agree on a combined u that
leads to the same challenge c, from which they compute shares of z.

To avoid interaction, recent papers proposed half-aggregation of Schnorr/Ed-
DSA [13,14,31]. These are middle ground solutions where only the u or the z
component gets aggregated, and the other part consists of a concatenation of N
partial signatures. Although it is asymptotically no better than the trivial con-
catenation of N signatures, reducing the signature size by a constant factor has
meaningful implications in practice, e.g., in certain cases the entire certificate
chain of size O(N) needs to be transmitted anyway.

1 It is well known that interactive multi-signatures can be generically converted to
interactive aggregate signatures by asking all participants to sign a concatenation
of N messages and public keys [4,19,42]. However, this requires the signers to agree
on all N messages and who they co-sign with in advance, and does not fit in the
typical use cases of aggregate signatures such as a certificate chain.
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Another possible approach would be adapting one of the aforementioned
generic solutions and having an aggregator node to prove the knowledge of N
tuples of the form (u, c, z) satisfying the verification conditions descried as a
circuit. However, the prover’s complexity likely hinges on mixture of algebraic
operations and non-algebraic hash computation in verification. Another issue
with such a generic solution applied to typical Fiat-Shamir signatures is that
the security proof would likely rely on heuristics. Since an aggregator of the
generic method requires a concrete description of the hash function, its security
is only guaranteed assuming the security of the underlying signature scheme in
the standard model, whereas the majority of existing Fiat-Shamir signatures are
only proven in the random oracle model.
Aggregate Signatures from Lattices. Given that NIST has announced in
their post-quantum cryptography standardization project two signature final-
ists, Falcon [43] and Dilithium [37], based on (structured) lattice assumptions, a
natural question is whether tailor-made aggregate signatures can be instantiated
using lattices (instead of generic solutions such as [2,17]). Both finalists represent
the two major design principles to build lattice-based signatures: Dilithium fol-
lows Lyubashevsky’s Fiat-Shamir with Aborts (FSwA) paradigm [35,36] and Fal-
con is a GPV-type signature using preimage sampleable trapdoor functions [27].

There are a limited number of proposals within the FSwA paradigm. Boneh
and Kim [8] presented a lattice-based instantiation of [4] but it requires three
rounds of interactions. Boudgoust and Roux-Langlois [10] are the first to securely
instantiate non-interactive half-aggregation of FSwA. From a high level per-
spective, they adapt the half-aggregation of Schnorr [13] to the lattice-setting.
Whereas in Schnorr, it does not really matter whether we output σ = (u, z)
or σ = (c, z), it makes a big difference in the lattice setting. The signature size
significantly decreases in the second case. During the half-aggregation of [10],
only the z-parts are aggregated, but all the u-parts are transmitted. Note that
it is not sufficient to transmit all the c-parts, as we cannot recover the dif-
ferent commitments anymore from an aggregated response. However, we need
every single commitment in order to verify an aggregate signature. In con-
sequence, the provably secure version of their construction outputs a signa-
ture σAS = (u1, . . . , uN , z) which is always larger than the naive concatenation
of N signatures σcon = (c1, z1, . . . , cN , zN ). The MMSAT scheme [18] is a candi-
date half-aggregate signature scheme based on a non-standard lattice problem,
called the Partial Fourier Recovery problem. However, it turned out that the
security proof is flawed and even simple forgery attacks exist [10]. Regarding
sequential aggregation, the only known lattice-based solutions we are aware of
follow the GPV-paradigm [20,45], of which the latter turns out to be insecure as
we sketch below. Given all this, we are motivated to ask the following question
in this paper:

Can we construct a non-interactive sequential half-aggregate FSwA signa-
ture scheme (1) with a signature size smaller than the naive concatenation,
and (2) without invoking expensive generic solutions?
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1.1 Our Contributions

In this work, we positively answer this question. In Sect. 3, we present a sequen-
tial half-aggregate signature based on the Fiat-Shamir with Aborts framework.
The aggregation paradigm closely follows recent Schnorr-based SAS due to Chen
and Zhao [14]. As elaborated before, the main obstacle in previous works is that
without interaction it is difficult to aggregate the commitments u1, . . . , uN that
are responsible for the large aggregate signature size in [10]. If, however, we place
ourselves in the sequential aggregate model, we can aggregate over the u-parts
by letting the parties sign one after each other. A sequential aggregate signa-
ture of our construction now is of the form σSAS = (u, z1, . . . , zN ). Once the size
of (c1, . . . , cN ) is larger than the size of u, our SAS produces signatures that are
indeed smaller than the trivial concatenation σcon. Unfortunately, when looking
at the ratio between σSAS and σcon, it is the (z1, . . . , zN )-part (that both have
in common) that makes up for most of the signature size and hence the com-
pression rate is close to 1. Although our concrete parameter estimates in Sect. 4
indicate the output signature is only ∼1% smaller than the naive concatena-
tion, we believe ours to be an important step towards better understanding the
possibilities and limits of lattice-based aggregate signatures.

The security of our scheme tightly reduces to the existential unforgeability
of the standard single-user FSwA scheme instantiated with structured lattices.
We prove security in the so-called full history setting of SAS. In the full version
of this paper [11, App. A], we also discuss its security in a new model that has
been introduced in [14], which we call the partial-signature history-free security
model. Although our construction closely follows the one of [14], our security
proof is more involved because of subtleties that arise in the lattice setting.
We have to consider several bad events that might happen and bound their
probability. In Sect. 4, we also compare our scheme with the two existing lattice-
based SAS [20,45] following the GPV-paradigm. As in the lattice setting we
only have so-called preimage sampleable trapdoor functions (and no trapdoor
permutation), they cannot achieve constant-size SAS either. The upshot is that
neither of them saves more than 4% of signature size if a fair comparison is made
against the naive concatenation and taking recent advances [21] into account.

As a separate contribution, we point out the insecurity of one of the exist-
ing Falcon-based SAS [45]. We show in Sect. 5 that their construction does not
guarantee the claimed security property due to the existence of a forgery attack.
As an independent contribution, we provide another attack on the Dilithium-
based interactive multi-signature of [25] (which can be generically turned into an
aggregate signature using [4]’s trick). The description of the attack can be found
in the full version of this paper [11, Sec. 5.2]. The latter attack highlights that,
even after knowing how to aggregate signatures that follow a general paradigm,
it is not trivial to make the aggregation work for optimized instantiations.

Given the above attacks on existing solutions and the concrete parameter
estimates of our construction, we conclude that concretely efficient aggregation
of the lattice-based NIST finalists is still an unexplored area and mark it as an
interesting direction for future work.
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1.2 Other Related Work

Imposing a sequential way of signing is not the only way how to restrict the model
of aggregate signatures. Other works look for instance at a synchronous model
[1,28], where signatures are aggregated together if they have been issued at the
same time interval. One recent result studies lattice-based aggregate signatures
in the synchronous model [24]. As already mentioned before, a related concept
are multi-signatures [5,39], where we allow the parties to interact with each
other. There are several recent results on lattice-based multi-signatures [9,16]
and we refer to the references therein.

2 Preliminaries

Notations. For any positive integer N , we denote by [N ] the set {1, . . . , N}.
For a finite set S, we denote its cardinality by |S| and the uniform distribution
over S by U(S). We simply write s

$← S to indicate sampling s from U(S). For a
probability distribution D , we write s ← D to indicate sampling s from D ; for a
randomized (resp. deterministic) algorithm A we write s ← A (resp. s := A) to
indicate assigning an output from A to s. Throughout, the security parameter is
denoted by λ. The abbreviation PPT stands for probabilistic polynomial-time.

Throughout the paper, we work over the ring R =: Z[X]/〈Xn + 1〉, where n
is a power of 2. For any ring element r ∈ R, we define ‖r‖2 , ‖r‖1 and ‖r‖∞ to be
the respective norms of its coefficient vector. For some prime q, we define Rq :=
R/(qR) and for some positive integer γ, we set Sγ := {r ∈ R : ‖r‖∞ ≤ γ}.

2.1 Fiat-Shamir with Aborts Signatures

In this paper, we build a sequential aggregate signature FSwA-SAS starting from
a well-studied signature scheme FSwA-S = (Setup,Gen,Sign,Ver) whose defini-
tion we recall in Algorithm 1. It follows the so-called Fiat-Shamir with Aborts
paradigm [35,36] and can be seen as the module variant of [29] or the ‘vanilla’
flavor of Dilithium.

Modification. A difference to the standard design is that instead of out-
putting σ = (c, z), we output σ = (u, z). For a single signature, both cases
are equivalent, as u defines c via the hash function H (and the public key t and
the message m) and c defines u via the equation u = Āz − c · t. However, this
is not the case for a (sequential) aggregate signature scheme and we thus need
to transmit the information u.

Distribution D. During the signing algorithm Sign, the FSwA-S scheme uses a
distribution D to sample a vector of ring elements of short norm over R. In the
literature, mainly two different ways of instantiating D are studied. The first
uses discrete Gaussian distributions (as for instance in [36]) and the second uses
the uniform distribution over a bounded set, i.e., D = U(Sγ) for some γ 	 q (as
for instance in [29]). The concrete instantiation of D then influences the choice
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Algorithm 1: Description of the FSwA-S Signature

The challenge space is Ch :=
{

c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ
}

and the message
space is M = {0, 1}l. The random oracle is H : {0, 1}∗ → Ch.

Setup(1λ)

1: A $← Rk×�
q

2: Ā := [A|Ik]
3: return Ā

Sign(sk, m)
1: s := sk
2: t := Ās mod q
3: z := ⊥
4: while z := ⊥ do
5: y ← D�+k

6: u := Āy mod q
7: c := H(u, t, m)
8: z := c · s + y
9: z := RejSamp(z, c · s)

10: σ := (u, z)
11: return σ

Gen(Ā)

1: s $← S�+k
η

2: t := Ās mod q
3: sk := s
4: pk := t
5: return (sk, pk)

Ver(pk, σ, m)
1: (u, z) := σ
2: t := pk
3: c := H(u, t, m)
4: if ‖z‖∞ ≤ B ∧ Āz = c · t + u

then
5: return 1
6: else
7: return 0

of the rejection algorithm RejSamp during signing and of the bound B during
verification. In this paper, we focus on the latter as this is the choice commonly
used in practice, as for instance in Dilithium. In this case, the algorithm RejSamp
outputs ⊥ if ‖z‖∞ > γ − κ · η =: B, else it outputs z.

Security. Overall, the UF-CMA security of the scheme FSwA-S as specified in
Algorithm 1 is based on the hardness of M-LWE and M-SIS [32]. Definitions of
both hardness assumptions can be found in the full version [11, Sec. 2.2]. For
the reason of space limits, we refer the interested reader to the original security
proofs in [29,36] in the random oracle model.

2.2 Sequential Aggregate Signatures

Sequential aggregate signatures (SAS) were first introduced in [34]. We recall
now the syntax of a (full-history) SAS scheme, together with the definitions of
correctness and security following the notations of Gentry et al. [26].

Definition 2.1 (SAS). A sequential aggregate signature scheme (SAS) for a
message space M consists of a tuple of PPT algorithms SAS = (Setup,Gen,
SeqSign,SeqVerify) defined as follows:

Setup(1λ) → pp: On input the security parameter λ, the setup algorithm outputs
the public parameters pp.
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Game 1: Description of the FH-UF-CMASAS(A, λ) Security Game

1: pp ← Setup(1λ)
2: (pk, sk) ← Gen(pp)
3: Q := ∅

4: (L∗
N , σ∗

N ) ← AOSeqSign(pp, pk)
5: if SeqVerify(L∗

N , σ∗
N ) ∧ ∃i∗ ∈

[N ] : (pki∗ = pk ∧ (mi∗ , Li∗−1) /∈ Q)
then

6: return 1
7: else
8: return 0

OSeqSign(mi, σi−1, Li−1)
1: σi ← SeqSign(sk, mi, Li−1, σi−1)
2: Q := Q ∪ {(mi, Li−1)}
3: return σi

Gen(pp) → (sk, pk): On input the public parameters pp, the key generation algo-
rithm outputs a pair of secret key sk and public key pk.

SeqSign(ski, mi, Li−1, σi−1) → σi: On input a secret key ski, a message mi ∈ M ,
a list Li−1 with Li−1 := (pk1, m1)|| . . . ||(pki−1, mi−1), and a so-far signa-
ture σi−1, the sequential signing algorithm outputs a new so-far signature σi.

SeqVerify(LN , σN ) → {0, 1}: On input a list LN of N message-public-key pairs
and a sequential aggregate signature σN , the sequential verification algorithm
either outputs 1 (accept) or 0 (reject).

For convenience, given a list Lj = (pk1, m1)|| . . . ||(pkj , mj), we denote by Li

its ith prefix Li := (pk1, m1)|| . . . ||(pki, mi) for 1 ≤ i < j.

Definition 2.2 (Correctness). Let SAS = (Setup,Gen,SeqSign,SeqVerify) be
a sequential aggregate signature scheme for a message space M . It is called cor-
rect if for all λ, N ∈ N it yields where mi ∈ M , pp ← Setup(1λ), (ski, pki) ←
Gen(pp), Li = (pk1, m1)|| . . . ||(pki, mi) and σi ← SeqSign(ski, mi, Li−1, σi−1)
for all i ∈ [N ]. Let L0 = ∅ and σ0 = (0,0).

Informally, full history unforgeability against chosen message attacks cap-
tures the following security notion. An adversary is given a challenge public key
and has access to a sequential signing oracle that, on input a message, a so-far
signature and a list of public keys and messages (called ‘history’) provides the
next so-far signature using the secret key corresponding to the challenge key.
A forgery is composed of an sequentially aggregate signature together with a
history (i.e., a list of message-key pairs). The forgery is successful if it passes
verification, if one of the public keys is the challenge key and if the signing oracle
has not yet been queried on the same message and history.

Definition 2.3 (FH-UF-CMA Security). A SAS scheme satisfies full history
unforgeabilty against chosen message attacks, if for all PPT adversaries A,

AdvFH-UF-CMA
SAS (A) := Pr

[
FH-UF-CMASAS(A, λ) = 1

]
= negl(λ),

where the FH-UF-CMASAS game is described in Game 1.
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3 Sequential Half-Aggregation of FSwA Signatures

3.1 Definition and Correctness of the Scheme

Our scheme is described in Algorithm 2. The overall structure closely follows the
one by Chen and Zhao [14]. We remark that, for the sake of security proof, the
key generation algorithm slightly differs from the original one in Algorithm 1.
It keeps regenerating a key pair until the public key t contains at least one
invertible element. This terminates relatively quickly in practice. Let pinv be the
probability that t = Ās has at least one invertible coefficient over Rq, where s is
uniformly sampled from S�+k

η . Then the expected running time of Gen is 1/pinv.
One can experimentally find pinv for each parameter set.

Remark 3.1. Whereas it seems to be hard to give unconditionally provable lower
bounds for pinv (at least in our parameter setting), it is possible to bound
it assuming the hardness of M-LWE (which is also used in the security proof
of FSwA-S). Let pRq

denote the probability that an element of Rq sampled uni-
formly at random is invertible. There exist exact formulas to express this number,
depending on the splitting behavior of the ideal generated by q in the ring R.
For the fully splitting case, i.e., q = 1 mod 2n, it yields pRq

= (1 − 1/q)n, see
for instance [38, Claim 2.25]. Assuming the hardness of M-LWE, it yields pinv =
pRq

+ negl(λ). If not, an adversary against M-LWE could simply test a given
instance for invertibility.

Remark 3.2. In its current presentation, all secret-public key pairs are using the
same matrix A. However, this is not required in our construction, and actually
every party could use their own matrix. In that case, the public key would need
to contain not only t, but also A, requiring larger storage. This, in turn, could
be reduced by computing the matrix via some small seed and a pseudorandom
function (as done in Dilithium). We highlight that using different matrices for dif-
ferent parties is not possible in all other proposed (non-interactive or interactive)
aggregate signature schemes following the Fiat-Shamir with aborts paradigm.
As they compute a linear combination of (parts of) the single signatures, every
party must use the same A. Using the same matrix A for every party leads to an
instance of multi-secret M-LWE and its security is implied by standard M-LWE
via some simple hybrid argument [40, Lemma 8].

Lemma 3.3 (Correctness). The scheme FSwA-SAS = (Setup,Gen,SeqSign,
SeqVerify) as specified in Algorithm 2 is correct.

Proof. We inductively show that, if an i-th so-far signature σi = (ũi, z1, . . . , zi)
with 1 ≤ i < N is correct, the (i + 1)-th signature σi+1 = (ũi+1, z1, . . . , zi+1)
is also correct. As zi+1 has been correctly computed by the (i + 1)-th signer, it
yields Ā · zi+1 − ti+1 · ci+1 = ui+1. Hence, ũi can be recovered via ũi+1 − ui+1
and thus σi = (ũi, z1, . . . , zi) verifies by the induction hypothesis. Now, let’s
consider the base case i = 1. It yields ‖z1‖∞ ≤ B and Ā · z1 = t1 · c1 + ũ1
because of the linearity of matrix-vector multiplication over Rq. ��
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Algorithm 2: Description of the FSwA-SAS Sequential Aggregate Signature

The challenge space is Ch :=
{

c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ
}

and the message
space is M ′ = {0, 1}l. The random oracle is H : {0, 1}∗ → Ch. The starting point
is i = 1. Let L0 = ∅ and σ0 = (0,0). Setup is as in Algorithm 1.

Gen(Ā)
1: t := 0
2: while t has no invertible coef-

ficient do
3: s $← S�+k

η

4: t := Ās mod q

5: sk := s
6: pk := t
7: return (sk, pk)

SeqSign(ski, mi, Li−1, σi−1)
1: (ũi−1, z1, . . . , zi−1) := σi−1
2: si := ski

3: ti := Āsi mod q
4: Li := Li−1||(ti, mi)
5: zi := ⊥
6: while zi := ⊥ do
7: yi ← D�+k

8: ui := Āyi mod q
9: ũi := ũi−1 + ui mod q

10: ci := H(ũi, Li, zi−1)
11: zi := ci · si + yi

12: zi := RejSamp(zi, ci · si)
13: σi := (ũi, z1, . . . , zi)
14: return σi

SeqVerify(LN , σN )
1: (t1, m1)|| . . . ||(tN , mN ) := LN

2: (ũN , z1, . . . , zN ) := σN

3: z0 := 1
4: if ∃i such that ti has no invertible

element then
5: return 0
6: for i = N, . . . , 1 do
7: if ‖zi‖2 > B then
8: return 0
9: Li := (t1, m1)|| . . . ||(ti, mi)

10: ci := H(ũi, Li, zi−1)
11: ui := Āzi − citi mod q
12: ũi−1 := ũi − ui mod q

13: if ũ1 = u1 then return 1

3.2 Security Proof

We now prove the FH-UF-CMA security (as in Definition 2.3) of Algorithm 2. For
completeness, we also sketch in the full version of this paper [11, App. A] the
security of our scheme in a new model that has been introduced in [14], which
we call the partial-signature history-free security model.

Theorem 3.4 (FH-UF-CMA security). Let k, �, n, q, η, γ, l ∈ N such that n

is a power of 2, q is prime and � ≥ k · log2 q
log2(2γ+1) + O

(
log2 q

log2(2γ+1)

)
. Let pinv be

the probability that Ās has at least one invertible coefficient over Rq, where s
is uniformly sampled from S�+k

η and Ā = [A|Ik] with A is uniformly sampled
from Rk×�

q , respectively. If the signature scheme FSwA-S with message space M =
{0, 1}l, as described in Algorithm 1, is UF-CMA secure, then is the sequential
aggregate signature FSwA-SAS, as described in Algorithm 2, FH-UF-CMA secure.
Concretely, for any adversary A against FH-UF-CMA security that makes at
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most Qh queries to the random oracle H, Qs queries to the OSeqSign oracle
and outputs a forgery with a history of length N , there exists an adversary B
against UF-CMA security such that

AdvFH-UF-CMA
FSwA-SAS (A) ≤ AdvUF-CMA

FSwA-S (B)
pinv

+ O

(
Qs(Qh + Qs)

qnk/2

)

+ (Qh + Qs + 1)2

|Ch| + Qs(2Qh + 1)
2l

,

and Time(B) = Time(A) + O((N + Qh)k�tpmul), where tpmul is the time of poly-
nomial multiplication in Rq.

Proof Sketch. Due to space limitations, definitions of technical lemmas, hardness
assumptions, and the complete security proof are deferred to the full version [11].
We sketch the high level ideas of the reduction B.

The random oracle and the signing oracle in the FH-UF-CMA game (resp.
UF-CMA game) are denoted by H and OSeqSign (resp. H′ and OSign). On
receiving the public parameter A and the challenge public key t∗, B checks
that t∗ ∈ Rk

q contains at least one invertible element. If so, B forwards (A, t∗)
to A. OSeqSign replies to queries by asking OSign for a signature on uniformly
chosen m and programs H such that it outputs c returned by the outer random
oracle H′. Here we cannot just forward mi to OSign, because it might be that
a forgery submitted by A later reuses the same mi. Then submitting a forgery
w.r.t. mi is not valid in the UF-CMA game, causing B to lose.

At the core of reduction is simulation of responses to H queries (obtained
through a sequence of hybrid games). Suppose the message-key list LN as part
of the forgery tuple contains (ti, mi) such that ti = t∗. Then B must have
extracted the corresponding ui and forwarded ui to H′ together with a random
message m (Step 8 in [11, Alg. 3]), so that (m, (ui, zi)) qualifies as a valid forgery
in the UF-CMA game. This extraction operation crucially makes use of zi−1 when
(ũi, Li, zi−1) is queried to H. Intuitively, zi−1 serves as a look-up key to obtain
the previous aggregated ũi−1, which allows B to extract ui = ũi − ũi−1.

4 Performance Estimates and Comparison

4.1 Performance Estimates

In the following, we provide some concrete sample parameters and performance
estimates for the FSwA-SAS from Sect. 3. We provide a formula for the com-
pression rate τ and a lower bound for N , from which on our SAS signature σN

is smaller than the trivial solution of concatenating N independent single sig-
natures σcon. The compression rate is defined as τ(N) = len(σN )

len(σcon) , where len(·)
denotes the bit size of an element.

A FSwA-SAS signature after N steps is given by σN = (ũN , z1, . . . , zN )
and the concatenation of N single FSwA-S signatures by σcon =



280 K. Boudgoust and A. Takahashi

Table 1. Tipping point N0 (where aggregate signatures start to be smaller than triv-
ial concatenations) and some τ values of our FSwA-SAS (Algorithm 2) for the three
different parameter sets of Dilithium.

Parameter Level 2 Level 3 Level 5
q 8380417 8380417 8380417
n 256 256 256
(k, �) (4, 4) (6, 5) (8, 7)
B = γ − κ · η 130994 524092 524168
N0 92 138 184
τ(200) 0.9961 0.9985 0.9997
τ(250) 0.9954 0.9979 0.9991
τ(500) 0.9941 0.9966 0.9978
τ(1000) 0.9934 0.9959 0.9971
τ(1, 000, 000) 0.9927 0.9952 0.9965

(c1, . . . , cN , z1, . . . , zN ). Here, we have applied the standard trick to
shorten FSwA-S signatures by replacing the commitment u by the challenge c.
Thus, its compression rate is

τ(N) = len(u) + N · len(z)
N · len(c) + N · len(z) = kn�log2 q� + N(k + �)n�log2 B�

Nn + N(k + �)n�log2 B� (1)

= 1 − 1
1 + (k + �)�log2 B� + k�log2 q�

N + N(k + �)�log2 B� , (2)

where u ∈ Rk
q , z ∈ S�+k

B and c ∈ Ch :=
{

c ∈ R : ‖c‖∞ = 1 ∧ ‖c‖1 = κ
}

. An
element c ∈ Ch can be represented by n bits [37, Sec. 5.3].

The SAS signature starts to be smaller than the concatenation as soon
as len(u) < N · len(c), hence, the tipping point is N0 > kn�log2 q�

n = k�log2 q�.
In Table 1, we provide concrete numbers for N0 and τ for different parameter

sets. More precisely, we take the same parameters as the ones provided for dif-
ferent security levels of Dilithium, denoted by Level 2, Level 3 and Level 5.
We can clearly see that in Eq. 2 the compression rate asymptotically goes
towards 1 − 1/(1 + (k + �)�log2 B�) and for example for the Level 2 parameters
of Dilithium this is exactly the rate 0.9927 that we observe at N = 1, 000, 000.

Unlike other proposals to aggregate lattice-based signatures (either interac-
tive [9,16] or non-interactive [10]), the modulus q doesn’t need to be increased
in our construction. This is due to the fact that we aggregate over the u-parts
of the signature (which are uniform modulo q), and not over the z-parts (which
are small and hence the size of their sum increases).

We remark that the needed time to sequentially aggregate N signatures is
linear in N . This is unavoidable when sequentially aggregating, as signing can-
not be parallelized. As mentioned before, our sequential aggregate signature
scheme FSwA-SAS can be seen as the vanilla version of Dilithium, ignoring sev-
eral optimizations of the latter to further improve efficiency. Hence, the given
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numbers in Table 1 are only valid for our scheme and do not directly apply
to Dilithium.

4.2 Comparison with SAS Using Trapdoors

In this part, we compare our lattice-based SAS scheme with existing proposals
of lattice-based SAS schemes [20,45]. As summarized in the introduction, they
can be seen as sequential aggregate versions of GPV-signatures. In the following,
we take Falcon as a concrete instantiation for such a signature.

As for the FSwA-S signature, the size of a single GPV-signature can be sig-
nificantly reduced by applying a small trick. More precisely, a Falcon signature
of a message m is defined as σ = (s1, s2, r), where (s1, s2) ∈ R × R is a pair of
short polynomials such that s1h + s2 = H(m, r), where H is a random oracle, r
is some randomness salt and h ∈ Rq defines the public basis of the underlying
NTRU lattice. Here, R is again the ring Z[X]/〈Xn + 1〉 for n a power of 2 and q
some prime integer. As s2 is determined by m and s1 (given the public key h and
the salt r), one can omit s2 in the signature and only set σ = (s1, r). Intuitively,
this (roughly) halves the signature size.

Unfortunately, this trick can’t be used in the (sequential) aggregate signature
setting. Thus, when assessing the compactness of an aggregate signature, one has
to compare it with the trivial concatenation of all single signatures, where each
is only composed of the second polynomial. This fair comparison has been done
in [20], but not in [45].

Recently, Espitau et al. [21] used exactly this trick to make Falcon signatures
even shorter. By using elliptical instead of spherical Gaussians, the norm of s1
can be made smaller. At the same time, the norm of s2 gets larger, accordingly.
Again, this trick does not apply to (sequential) aggregate signatures, as the total
size of (s1, s2) stays the same.

In the existing SAS schemes that aggregate GPV-style signatures, the main
bottleneck is that in the lattice setting there are no known trapdoor permu-
tations. To circumvent this, they replace the trapdoor permutations from the
RSA setting by so-called preimage sampleable trapdoor functions [27]. How-
ever, those functions have different domain Do and range Ra spaces. In the
case of Falcon, the domain is given by Rq, i.e., any element x ∈ Ra is of bit
length len(x) = n�log2 q�. The range, however, is given by pairs of polynomials
of degree less than n with coefficients that come from a discrete Gaussian dis-
tribution. Naively, one could apply the Gaussian tail bound to argue that the
coefficient’s absolute values are bounded by some parameter β, and hence any
element y ∈ Do can be represented by a bit string of length len(y) = 2n�log2 β�.2
The specifications of Falcon [43, Sec. 3.11.2] propose a more intelligent repre-
sentation of elements in the domain by using the Huffman encoding. Note that
in both cases it yields len(Ra) > len(Do). As the output of one preimage sam-
pleable function serves as the input for the next preimage sampleable function
(of the same domain as before), existing constructions [20] pack as many bits

2 This analysis has been done by [20].
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of the so-far signature as they can into a vector that serves as the new input.
The remaining bits (b := len(Ra) − len(Do)) are stored in some vector α and
appended (at every step) to the so-far signature and appear at the end in the
final sequential aggregate signature. Clearly, they can’t achieve a constant-size
aggregate signature.

For concreteness, take the sample parameters of Falcon-512, i.e., q = 12289
and n = 512. It yields len(Do) = n�log2 q� = 7168 and len(Ra) = 2 · 5000,
and hence b = 2832.3 The final sequential aggregate signature after N steps
is given by σN = (sN,1, sN,2, α1, . . . , αN−1, r1, . . . , rN ), where (sN,1, sN,2) ∈
Ra, len(αi) = b and len(ri) = 328 for i ∈ [N ]. On the other side, the concatena-
tion of N single Falcon signatures is given by σcon = (s1,1, . . . , sN,1, r1, . . . , rN ),
where we applied the ‘omit the second polynomial’ trick. Thus, its compression
rate is given by

τ(N) = len(s1) + len(s2) + (N − 1) · len(α) + N · len(r)
N · len(s1) + N · len(r)

= 2 · 5000 + (N − 1)b + N · 328
N · 5000 + N · 328 = 1 − 5000 − b

5000 + 328 + 10000 − b

N(5000 + 328) ,

where (s1, s2) ∈ Ra, α is the carry-over information and r the salt.
We provide the number N0 and some τ values for the two different security

parameters of Falcon in Table 2. From the equations above, we can clearly see
that the compression rate asymptotically goes towards 1−(5000−b)/5328, which
is exactly the rate 0.5931 that we observe at N = 1, 000, 000.

In the following, we explain how the recent results of Espitau et al. [21]
extremely leverage the benefit of GPV-style SAS. Overall, they significantly
reduce the size of the trivial concatenation by replacing spherical Gaussians
by elliptical Gaussians. The main idea is that there are now two different
lengths, len(s1) and len(s2), where the first holds for s1 and the latter for s2
for every pair (s1, s2) ∈ Ra. Whereas before both s1 and s2 followed a Gaussian
distribution of width σ, they now introduce a distortion factor γ and set σ1 = σ/γ
and σ2 = σγ. One can see that the total size of (s1, s2) is preserved as it
yields 2 log2 σ = log2 σ1 + log2 σ2. If one takes γ = 8 (as suggested by Espi-
tau et al. [21, Table 1]), one can see that len(s1) = 2952, by again using the
formulas of the Falcon specifications.

The compression rate in the elliptical Gaussian case is

τ(N) = len(s1) + len(s2) + (N − 1) · len(α) + N · len(r)
N · len(s1) + N · len(r)

= 2 · 5000 + (N − 1)b + N · 328
N · 2952 + N · 328 = 1 − 2952 − b

2952 + 328 + 10000 − b

N(2952 + 328) ,

where (s1, s2) ∈ Ra, α is the carry-over information and r the salt. Here, we
can clearly see that the compression rate asymptotically goes towards 1 −
(2952 − b)/(2952 + 328), which is exactly the rate 0.9634 that we observe
at N = 1, 000, 000.
3 We compute len(Ra) as 2 · (8 · sbytelen−328) with sbytelen taken from [43, Table 3.3].
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Table 2. Tipping point N0 (where aggregate signatures start to be smaller than trivial
concatenations) and some τ values for SAS based on Falcon-512, for spherical and
elliptical Gaussians (distortion factor γ = 8).

Parameter Falcon-512 (spherical) Falcon-512 (elliptical)
q 12289 12289
n 512 512
len(Do) 7168 7168
len(s1) 5000 2952
len(s2) 5000 7048
b 2832 2832
len(r) 328 328
N0 4 60
τ(150) 0.6021 0.9780
τ(200) 0.5998 0.9743
τ(250) 0.5985 0.9722
τ(500) 0.5958 0.9678
τ(1000) 0.5944 0.9656
τ(1, 000, 000) 0.5931 0.9634

5 Attack on [45]

In the following, we identify an insecurity of the history-free sequential aggregate
signature from Wang and Wu [45], published in the proceedings of the PROVSEC
conference from 2019. More precisely, Lemma 5.1 gives an attack that breaks its
security in the history-free setting. Intuitively, a history-free SAS does not require
each signer i to take a so-far message-key pair list Li−1 as input. The winning
condition in the HF-UF-CMA game (formally recalled in the full version [11,
App. A.1]) is adjusted such that they win as long as the forged message associated
with a challenge public key pk has never been queried to the signing oracle.
From a high level perspective, the signing procedure of [45] closely follows SAS2
of [26] in the so-called ideal cipher model, except one crucial optimization that
reduces the signature size: it deterministically derives ephemeral randomness
from the message to be signed and an aggregate so-far, whereas the original SAS2
requires each signer to append fresh randomness to an aggregate signature. We
observe this small change does not sufficiently randomize the scheme and leads
to a variant of simple forgery attacks in the history-free setting, which were
already pointed out by Brogle et al. [12, App. A] and Gentry et al. [26, Sec. 4.3].
Recall that their construction focuses on lattice signatures that follow the GPV-
paradigm. For simplicity, we adapt in the rest of the section the syntax of Falcon,
as in Sect. 5 of [45].

Let us (again) briefly recap how Falcon works. As before, we are working over
the ring Rq = Zq[X]/〈Xn + 1〉 for some power-of-two integer n and some prime
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Algorithm 3: Description of History-Free SAS′ [45]

The message space is M = {0, 1}l. The two random oracles are H1,H2 : {0, 1}∗ → {0, 1}λ

and the ideal cipher is π : {0, 1}∗ × Rq → Rq with inverse π−1 : {0, 1}∗ × Rq → Rq.
Let σ0 = ((0, 0), 0).

Gen(1λ)
1: (h, Th) ← TrapGen(1λ)
2: pk := h
3: sk := (h, Th)
4: return (pk, sk)

SeqSign(ski, mi, σi−1)
1: (xi−1, αi−1) := σi−1
2: (hi, Thi

) := ski

3: Ki := hi||H1(mi)||H2(αi−1)
4: (si−1, s′

i−1) := xi−1
5: αi := αi−1||s′

i−1
6: yi := π−1(Ki, si−1) ∈ Rq

7: xi ← SamplePre(Thi
, yi) ∈ Do

8: return σi := (xi, αi)

SeqVerify(LN , σN )
1: {(h1, m1), . . . , (hN , mN )} := LN

2: (xN , αN ) := σN

3: (s′
1, . . . , s′

N ) := αN

4: for i = N, . . . , 1 do
5: αi = (s′

1, . . . , s′
i)

6: Ki = hi||H1(mi)||H2(αi)
7: si−1 = π(Ki, fhi

(xi))
8: xi−1 = (si−1, s′

i−1)
9: if xi−1 /∈ Do then

10: return 0
11: if x0 = (0, 0) then
12: return 1
13: else
14: return 0

modulus q. The key generation algorithm invokes a function TrapGen which out-
puts a ring element h ∈ Rq, together with an associated trapdoor Th. This
trapdoor is needed to invert the function fh : Do ⊂ Rq × Rq → Rq = Ra,
where fh(s, s′) = hs + s′, with the help of a pre-image sampleable func-
tion SamplePre(Th, ·). Without specifying the domain Do precisely, we remark
that it only contains pairs of short ring elements. The trapdoor defines the secret
key, whereas the element h defines the public key. In order to sign a message m,
a random oracle H : {0, 1}∗ → Rq is invoked on m which outputs a ring ele-
ment in Rq. Then, the function SamplePre is used to compute (s, s′) ∈ Do such
that fh(s, s′) = hs + s′ = H(m). The signature is defined as x = (s, s′). In order
to verify a signature x = (s, s′) for a message m, one simply checks if (s, s′) ∈ Do
and if the equation hs + s′ = H(m) holds in Rq.

The main idea of the history-free sequential aggregate signature SAS′ by
Wang and Wu [45] is to adapt the framework for trapdoor-permutation-based
sequential aggregate signatures by Gentry et al. [26] to the lattice setting. As
in [26], the scheme is making use of an ideal cipher. Additionally, and in contrast
to [26], the scheme in [45] also uses two random oracles. As the domain Do ⊂
Rq × Rq is larger than the range Ra = Rq, we don’t have trapdoor permutations
in the case of lattice signatures, but only pre-image sampleable functions [27].
This is why a so-far signature σi−1 has to be split into a first part (denoted
by xi−1) that contains the output of a previous call on SamplePre, and a second
part (denoted by αi−1) which stores the information of the previous signatures
that didn’t fit into the sequential signing process. This part grows linearly in the
number of signed messages.



Sequential Half-Aggregation of Lattice-Based Signatures 285

We summarize the SAS′ scheme of [45] in Algorithm 3 (assuming enc and
dec are instantiated with simple split and merge functions as in [45, §5]) and
present the attack in Lemma 5.1. The key idea of the attack is that an adversary
can predict the one-time key Ki for a message mi and public key hi, even though
Ki is randomized due to random oracles.

Lemma 5.1. The history-free SAS′ described in Algorithm 3 is
not HF-UF-CMA.

Proof. Let A be a PPT adversary. Their goal is to generate an aggregate signa-
ture σ∗ for a list L∗ claiming that signer i signed message mi (where the public
key hi of signer i is the challenge public key pk given to A) without having
queried the signing oracle OSeqSign on input mi. A proceeds as follows.
1 Compute σi−1 = (xi−1, αi−1) for arbitrary and self-chosen key pairs and mes-

sages, defining Li. Let (si−1, s′
i−1) := xi−1.

2 Choose some mi �= m̃i and let Ki := hi||H1(mi)||H2(αi−1) and K̃i :=
hi||H1(m̃i)||H2(αi−1).

3 Compute s̃i−1 := π(K̃i, π−1(Ki, si−1)).
4 Let x̃i−1 := (s̃i−1, s′

i−1). Query OSeqSign with input σ̃i−1 := (x̃i−1, αi−1) and
m̃i.

The oracle responds with σ̃i = (xi, αi), such that (1) αi = αi−1||s′
i−1 and (2)

π(K̃i, fhi
(xi)) = s̃i−1. The adversary outputs σ∗ := σ̃i and L∗ := Li ∪{(hi, mi)}.

Recall from Step 3 that π−1(K̃i, s̃i−1) = π−1(Ki, si−1) while mi has never been
queried to OSeqSign. This is a valid forgery as π(Ki, fhi

(xi)) = si−1. ��
Remark 5.2. An easy fix against this attack, at the expense of larger sequential
aggregate signatures, is to make the key for the ideal cipher unpredictable for the
adversary. One possible strategy is to freshly sample a truly random string r ∈
{0, 1}λ and append it to the public key h and the message m to obtain the ideal
cipher key K := h||m||r. Besides, this makes the use of the random oracles H1
and H2 superfluous. However, the randomness r has to be carried over throughout
the sequential signing process, increasing the size of the final signature by λ · N
bits, where N is the number of involved signatures. This strategy has already
been formalized in the second construction of Gentry et al. [26, Sec. 4.2]. One
may think that the scheme instantiated with Falcon can be patched by having
each signer reject si−1 with too large norm, since maliciously crafted s̃i−1 in
the above attack is uniform in the range Rq of the ideal cipher π. This ad-hoc
countermeasure however does not make the scheme provably secure: since the
ideal cipher key Ki = hi||H1(mi)||H2(αi−1) can still be predicted by querying the
random oracle, the ideal cipher table can be determined before any signing query
is made, whereas the abort probability analysis in the simulation of aggregate
signing oracle in the proof of [45, Theorem 1] crucially requires the input of the
ideal cipher to be unpredictable. In fact, Gentry et al. instead suggest using tag-
based trapdoor permutations [26, Sec. 4.3] as a provable secure way to maintain
deterministic signing. It would be interesting to study whether this approach
can be adapted to pre-image sampleable functions.
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Abstract. We study the problem of biometric-based authentication
with template privacy. Typical schemes addressing this problem, such
as Fuzzy Vaults (FV) and Fuzzy Extractors (FE), allow a server, aka
Authenticator, to store “random looking” Helper Data (HD) instead of
biometric templates in clear. HD hides information about the correspond-
ing biometric while still enabling secure biometric-based authentication.
Even though these schemes reduce the risk of storing biometric data,
their correspondent authentication procedures typically require sending
the HD (stored by the Authenticator) to a client who claims a given iden-
tity. The premise here is that only the identity owner – i.e., the person
whose biometric was sampled to originally generate the HD– is able to
provide the same biometric to reconstruct the proper cryptographic key
from HD. As a side effect, the ability to freely retrieve HD, by simply
claiming a given identity, allows invested adversaries to perform offline
statistical attacks (a biometric analog for dictionary attacks on hashed
passwords) or re-usability attacks (if the FE scheme is not reusable) on
the HD to eventually recover the user’s biometric template.

In this work, we develop Oblivious Extractors: a new construction
that allows an Authenticator to authenticate a user requiring neither the
user to send a biometric to the Authenticator, nor the server to send the
HD to the client. Oblivious Extractors provide concrete security advan-
tages for biometric-based authentication systems. From the perspective
of secure storage, an oblivious extractor is as secure as its non-oblivious
fuzzy extractor counterpart. In addition, it enhances security against
aforementioned statistical and re-usability attacks. To demonstrate the
construction’s practicality, we implement and evaluate a biometric-based
authentication prototype using Oblivious Extractors.

1 Introduction

Biometric-based authentication systems have grown in popularity especially due
to their ease of use and potential for increased security. In contrast with other
traditional modes/factors of authentication, such as passwords/PINs (“some-
thing you know”) and physical authentication tokens (“something you have”),
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biometrics do not require additional burden (e.g., to memorize a password or
carry an authentication token around) on the users. Biometrics are a reason-
ably unique part of the user (“something you are”) and therefore their usage for
authentication is convenient.

Despite its tangible advantages, the use of biometrics for authentication also
introduces unique security challenges. The storage of stable biometrics (stable
refers to not changing much through the life-span of an individual – e.g., finger-
prints, iris scans) also represents a privacy and security risk. In contrast with
passwords/PINs or authentication tokens, stable biometrics cannot be changed.
Therefore, leakage of biometric templates is a serious threat which unfortunately
has already happened in large scale [1]. In addition, typical measures used to
protect the confidentiality of passwords/PINs, such as salted hashing, are not
applicable to biometrics. This is because all biometric samples are always slightly
different from each other, due to noise and imperfections in the biometric sensor
hardware and sensing process. Consequently, even with small noises, crypto-
graphic hashes applied to biometrics result is completely different digests, mak-
ing the matching of hashed templates infeasible.

Fuzzy Extractors (FE) [2] are cryptographic constructions that allow prov-
ably secure biometric storage and matching of noisy samples, thus enabling
secure biometric-based authentication with biometric template confidentiality
(we overview a concrete construction for a Fuzzy Extractor in Sect. 2.2). In
a nutshell, an FE embeds a reference Biometric Template (BT) and a cryp-
tographic key (K) into random looking helper data (HD). Given that BT has
sufficient entropy, then computation of K from HD is intractable. However, dur-
ing authentication, if one is able to provide BT′ such that BT′ is “close enough”
(within some configurable distance function and threshold) to BT, BT′ can be
used in conjunction with HD to reconstruct K, i.e., the same cryptographic key
chosen during HD’s generation. This property, in turn, allows a client and a
server to agree upon a common secret if and only if the client is able to pro-
vide the same biometric registered to the server during user enrollment. Figure 1
depicts a typical user authentication procedure utilizing FE-generated HD.

Fig. 1. Typical authentication using FE

As shown in Fig. 1, a user who wishes to authenticate starts by claiming
an identity (e.g., a user ID). Authenticator then sends back to the user the
HD corresponding to this identity. To reconstruct the authentication key (K)
from HD, the user provides a new sample of its own biometric. If the matching
succeeds, K is reconstructed and can be used in a standard challenge-response
authentication protocol. By authenticating in this way, the user’s BT is never
visible to the Authenticator.
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We argue that this authentication approach has an intrinsic problem: anyone
is able to retrieve HD by simply claiming an identity. The ability to retrieve HD
allows invested attackers to perform offline attacks on HD to recover K and/or
BT, e.g., [3,4]. These attacks are analogous to a password-server sending the
hashed password to a client which in turn would allow them to mount an offline
dictionary attack.

Another possible attack is based on the lack re-usability of several practi-
cal FE schemes [5–8]. If an FE is not reusable, anyone able to obtain two (or
more) instances of the scheme, i.e, HD1 and HD2, generated using the same
template BT, is able to reconstruct BT in clear. In this case, an attacker could
claim the user’s identity at two different service providers, Authenticator1 and
Authenticator2, to learn BT.

Considering these problems, this work proposes a construction for Oblivious
Extractors (OEs). OEs enjoy the same security guarantees as typical fuzzy extrac-
tors with respect to secure storage of biometric templates. However, theHD gener-
ation algorithm is constructed such that the corresponding authentication phase
does not require the Authenticator to send the HD to the client nor the client to
send the BT to the Authenticator. In such a setting, offline statistical attacks are
not possible and online attacks can be throttled by having Authenticator to limit
the maximum number of authentication attempts per user per time interval. Con-
versely, re-usability attacks are only possible if two or more enterprise databases
(that store two or more HD for the same user) are simultaneously breached, given
that the HD is no longer revealed during authentication. As it will become clear
in Sect. 2.2, generic secure 2-party computation techniques (e.g., garbled circuits)
are too heavyweight for authentication using FE. Instead, we propose a protocol,
specific to FE-based authentication, based on cheaper and widely used primitives,
namely oblivious programmable PRFs [9] and polynomial secret-sharing [10]. In
summary we make the following contributions:

– We define a primitive called Oblivious Extractor (OE) along with a corre-
sponding definition for its ideal functionality FOE.

– We present an OE construction and analyze it, showing that it fulfills FOE.
In our construction, security of the HD to be persistently stored by the
Authenticator is equivalent to that of a standard (non-oblivious) fuzzy extrac-
tor construction. In addition, our OE construction does not reveal any infor-
mation about HD to passively corrupt clients. Against actively malicious
clients – that deviate from the OE protocol specification – we show that
leakage about HD is minimal and, whenever it happens, adversarial behavior
on the client’s part is detected by the Authenticator with high probability.
We stress that even in these cases no information is leaked about BT itself,
but only about HD. Upon detection, Authenticator can take further measures,
e.g., reporting and blacklisting the malicious client.

– We implement an OE-based biometric authentication system using human
fingerprints. We evaluate our prototype considering computation and com-
munication requirements. Furthermore, we show that our scheme does not
affect the accuracy of the underlying biometric matching.
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1.1 Design Principles

In addition to the principal goal of providing better security via oblivious eval-
uation of the authentication function, our construction and system are designed
with a set of secondary goals in mind. We believe that, by attaining this goals, our
construction will have better usability and deployability, in addition to increased
security:

(1) Biometric Agnostic: While some FE constructions work for specific dis-
tance functions (that are used to compare the features extracted from specific
biometrics), our scheme can be used with any distance function. Compatibility
with any distance function makes the scheme flexible and applicable to different
types of biometrics, as long as the their features can be encoded into a met-
ric space. This encoding has been demonstrated for several popular types of
biometric [11–13] with high matching accuracy.

(2) No Trusted Hardware Requirements: Several commercial biometric-
based authentication systems, especially those deployed on smart-phones (e.g.
FIDO [14]), rely on trusted hardware to perform the biometric matching. In these
systems, the reference BT is stored in clear by the trusted hardware module and
the matching is performed also in clear during authentication. The assumption
is that the trusted hardware can not be breached and that its manufacturer can
be trusted not to violate the user’s privacy. We emphasize that, in a setting
where this assumption is acceptable, our scheme can be used seamlessly as an
additional layer of security. Furthermore, hardware-based approaches do not
scale to settings with multiple users and multiple authentication entry points,
such as enterprise settings (see below). In these settings our construction might
be especially applicable.

(3) Stateless Authentication Terminals: Ideally, the system should not
require that users always use the same (or a restricted set of) device(s) to authen-
ticate. Consider, for example, the setting where Authenticator is a company that
uses biometric-based authentication to grant physical access to its buildings and
the users are the employees. Users must be able to authenticate from differ-
ent physical entry points. This requires authentication terminals (i.e, the sensor
devices that sample the biometric during authentication) to be stateless. Other-
wise, only terminals persistently storing the authentication meta-data would be
able to authenticate the corresponding user.

2 Preliminaries

2.1 Biometric Template Matching

A Biometric Template (BT) is composed of features identifying the individual.
In biometric matching applications (e.g., biometric-based authentication), first a
BT is sampled and stored. This initial process is referred to as enrollment. Later,
when a matching is required, the same feature extraction procedure is applied
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to collect a second BT′. This new BT′ is compared to the one stored and, if their
similarity exceeds a pre-defined threshold, the matching succeeds. We represent
a BT corresponding to a user as a vector:

BT = (b1, ..., bm) ∈ D
m (1)

where b1, ..., bm ∈ D are data points in some set D representing details of U ’s
biometric. For instance, in fingerprints, each bi ∈ BT typically represents the
location and orientation of one of the fingerprint’s minutiae. Minutiae, in turn,
are regions in the fingerprint image in which fingerprint lines merge and/or split.
In turn, each minutiae point is encoded as:

bi = (xi, yi, θi) , (2)

where, D = Z
3, xi, yi ∈ Z are Cartesian coordinates and θi ∈ Z is the angle

representing the orientation of the minutiae bi. Similar encoding techniques can
be used for other biometric modalities [11–13], such as iris scans and faces.
We note that other representations are possible, for example, BT could be an
embedding output by an appropriately trained neural network.

Fuzzy Vaults (FV) and more generally Fuzzy Extractors (FE) are crypto-
graphic schemes that use an input BT to generate Helper Data (HD). HD encodes
a secret k. It is hard to recover the secret k or BT from HD, unless prompted
with BT′ close/similar enough to the original BT used to generate the HD. It
then follows that even if the HD is leaked or made public, the BT is also hard
to recover. Section 2.2 overviews a concrete example of such a construction and
discusses its shortcoming against offline attacks.

2.2 Fuzzy Vault Scheme

A Fuzzy Vault (FV) [15] is a practical construction designed to work with BTs
that are represented as unordered sets of data points as shown earlier, in Eq. 1.
The scheme has two components:

1. the points BT = (b1, ..., bm) are obfuscated by shuffling them with n random
points, r1, ..., rn ∈ D. The security of the scheme relies on the difficulty of
identify the bi points given the set {b1, ..., bm, r1, ..., rn} (in random order).
For this to hold it is critical that the ri values are sampled from the same
distribution as the bi values.

2. a mechanism to recover a hidden key k if the user can identify exactly d + 1
of bi points (see the definition of parameter d below).

In more detail, the FV scheme consists of two algorithms, (FVGEN , FVOPEN ).
The former is defined as a randomized algorithm

FVGEN (BT, k) : D
m × Fp → H (3)

which takes U ’s biometric template BT as input, along with a key k sampled
from large prime field Fp. It outputs an instance of the helper data HD ∈ H.
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The scheme is further parameterized by some public parameters m,n, d, w, p ∈ Z

and requires that ∀i,j : dist(bi, bj) > w for distinct i, j ∈ [m] where dist is some
distance function (i.e., some metric). This is because points within distance w
are in some sense considered to be the same across different impressions of the
same biometric.

The generation algorithm samples n so called “chaff points” r1, ..., rn ∈ D

from the same distribution as bi ∈ BT. Let ˜BT = (b̃1, ..., b̃m+n) ∈ D
m+n consist

of the bi, ri points in a random order. As with the bi values, the ri values are
sampled such that ∀i, j : dist(b̃i, b̃j) > w for distinct i, j.

The algorithm then samples a random polynomial P ∈ F[x] of degree d < m
such that P (0) = k, similar to the polynomial in a Shamir secret sharing scheme,
where k is the secret being shared. For b̃i ∈ B̃T, if b̃i ∈ BT then let1 vi = P (b̃i)
and otherwise uniformly sample vi ← F. Finally, the algorithm outputs the
helper data as HD = ((b̃1, v1), ..., (b̃m+n, vm+n),H(k)) ∈ H where H = (D ×
F)m+n × {0, 1}κ and H : {0, 1}∗ → {0, 1}κ is a random oracle.

The FVOPEN algorithm can then recover the key k ∈ Fp given a close enough
biometric BT′ and HD:

FVOPEN (BT′
,HD) : Fp (4)

Close enough here means that more than d points (where d is the polynomial
degree) in BT’s are less than w apart from points in the original BT, i.e.:

|{b
′
i ∈ BT′

, s.t.∃[bj ∈ BT ∧ dist(b′
i, bj) ≤ w]}| > d. (5)

As such, the parameters w, d control how similar the two biometrics must be for
it to be considered a match and therefore also control the trade-off between false
positive/negative rates during authentication.

In FVOPEN , first the set S = {(b′
i, vi) ∈ HD s.t. ∃[bj ∈ BT′ ∧dist(b′

i, bj) ≤ w]}
is computed. Then for each subset S′ of S s.t. |S′| = d + 1, the algorithm
interpolates the points (b̃i, vi) ∈ S′ to obtain the polynomial P (x). If H(P (0)) =
H(k), then the algorithm will output P (0). If no such subset S′ exists, then the
algorithm outputs ⊥.

If we apply this scheme in the traditional manner, the overall protocol then
consists of:

1. Enrollment – the user U enrolls by interacting with a trusted enrollment
device. The enrollment device generates fresh k ← Fp and HD from U ’s
BT and sends k ← Fp and HD ← FVGEN (BT, k) to the Authenticator.
Authenticator persistently stores this data associated with the newly created
user identity.

2. Authentication – Later, when a client wishes to authenticate as U , the
Authenticator will send the associated HD back to the client. The authen-
tication will succeed if the client can successfully answer a challenge which
requires knowledge of the key k, e.g., standard challenge-response protocols
based on the encryption of nonces.

1 Here, we assume that b̃i ∈ D can be interpreted as an element of F. This can be
achieved by defining an injective or random function φ : D → F and defining vi =
P (φ(b̃i)).
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Ideally, this protocol would achieve the following security guarantees. When
the user U enrolls, the helper data HD reveals no information about BT to
Authenticator (nor any other entities aside from the trusted enrollment device
itself – e.g., a biometric sensor). Similarly, the online authentication proce-
dure would not reveal information about the newly supplied biometric BT′ to
Authenticator, apart from whether it matched or not.

One method of formalizing this is with an indistinguishably based security
definition. For example, given two distinct biometrics (BT1,BT2), the adversary
should not be able to distinguish the distribution of HD1 ← FVGEN (BT1, k) from
HD2 ← FVGEN (BT2, k). However, these two are trivial to distinguish since the
FVOPEN algorithm must be efficient. Moreover, BT1,BT2 are directly contained
in HD1,HD2 respectively. And yet, given that there are sufficiently many chaff
points, HD does to some extent obfuscate the original biometric BT. In particu-
lar, this allows a weaker security notion. Let us assume that all BT = (b1, ..., bm)
are generated such that each bi is sampled iid from some distribution D over D.
Then it follows that the adversary has a negligible in k probability of outputting
k given HD alone. To see why, recall that HD = ((b̃1, v1), ..., (b̃m+n, vm+n),H(k))
and since all bi, rj are iid (by assumption), so are all of the b̃i values. As such,
the adversary is tasked with identifying a set of m-out-of-(m + n) points (b̃i, vi)
which lay on a degree-d polynomial where each b̃i ← D and all but m−d vi values
are uniform in F. For appropriately set parameters, this problem is conjectured
to be intractable [15].

We note however that, in practical deployments, biometrics might have signif-
icantly less entropy than the computational security parameter k [3,4]. As such,
statistical guessing of the biometric template BT could allow for an adversary
to recover k from HD with noticeable probability. Moreover, since HD contains
a hash of the k (and m > d + 1 points that lie in the polynomial), the adversary
can perform such an attack in an offline setting (after receiving HD in clear) and
check whether or not the correct k (or the correct polynomial) was obtained.

Definition 1 (Fuzzy Vault (FV) Syntax)
A Fuzzy Vault is defined as FV = (FVGEN , FVOPEN , Φ), where Φ is a set of parameters
Φ = (m, n, d, F,M, dist, w):
- m is the number of biometric features, referred to as minutiae points.
- n is the number of randomizing features, referred to as chaff points.
- d is a polynomial degree;
- Fp is a prime field with size p − 1;
- M is a metric space;
- dist is some distance function defined over M;
- w is a distance threshold;
FVGEN and FVOPEN are algorithms:

– FVGEN :
• Inputs: k and BT, s.t., k ∈ Fp.
• Output: HD

– FVOPEN :
• Inputs: HD and BT′

U• Output: k′ ∈ Fp.
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Definition 2 (FV-Completeness)
FV = (FVGEN , FVOPEN , Φ) is complete with (w, d)-fuzziness if for every possible k and
every pair BT, BT′ such that,

|{b
′
i ∈ BT′

, s.t.∃[bj ∈ BT ∧ dist(b′
i, bj) ≤ w]}| > d, (6)

it holds that:
FVOPEN (FVGEN (k,BT),BT′

) = k (7)
with overwhelming probability.

Definition 3 (FV-Security)
FV = (FVGEN , FVOPEN , Φ) is p-secure if a Probabilistic Polynomial Time (P.P.T.) adver-
sary with access to HD, where:

HD = FVGEN (k,BT) (8)
is able to guess either, BT or k, with success probability of at most p.

Looking forward, we will mitigate this attack by not sending the helper data
HD to the each user U ′ that claims an identity and requests to authenticate.
This limits the exposure of HD to only the Authenticator. Since in many cases
we can assume the Authenticator is honest, they will not perform such brute
force attacks (this assumption is equivalent to that in current password-based
authentication servers storing salted hashes). However, in the unlikely event
that they do become corrupted, e.g. hacked, then the adversary is still tasked
with performing a potentially expensive offline attack in order to recover the
underlying biometric BT and key k. This can give the organization the crucial
amount of time to mitigate the potential fallout.

The syntax for the FV construction and respective notation are summa-
rized in Definition 1. Definitions 2 and 3 state FV’s completeness and security
guarantees.

2.3 Oblivious Programmable PRF

An Oblivious Programmable PRF (OPPRF) is a two party functionality consist-
ing of a sender and receiver. The functionality is shown in Fig. 2. The sender has
a set of input pairs (y1, z1), ..., (yn, zn) with distinct yi. The functionality samples
a key k such that Fk(yi) = zi and at all other input points it outputs a random
value. The receiver on input points x1, ..., xn then obtains Fk(xi) for all i.

Fig. 2. Ideal functionality Fopprf of Oblivious Programmable PRF.

This functionality can be realized from a standard OPRF along with poly-
nomial interpolation or a similar encoding method. Loosely speaking, the sender
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samples a normal OPRF key k and sends the minimum degree polynomial P such
that P (yi) = zi −Fk(yi). The parities compute the final output as Fk(x)+P (x)
where Fk is evaluated via the OPRF protocol. See [9] for efficient constructions.

As we explain in Sect. 3, our OE construction leverages OPPRFs to enable
efficient oblivious computation of FVOPEN while keeping input BT’ private to
the Client and input HD private to Authenticator.

3 Oblivious Extractor: Intuition

Our Oblivious Extractor (OE) construction is based on a few simple observations
that we discuss through the rest of this section. This section omits some protocol
details in order to convey the general idea. Detailed specifications are presented
in Sect. 4.

First, we note that checking if two points are within a certain distance thresh-
old from each other is equivalent to generating the set of all points that are within
a certain threshold from the first point and checking for existence of the second
point in the generated set. More formally, for any distance function dist and
two elements a and b in F:

dist(a, b) < w ≡ |{b} ∩ A| = 1 where A = {ai | dist(a, ai) < w} (9)

This is because set A contains all points in F that are sufficiently close (given
threshold w and metric dist) to a, therefore, b must exist in set A if it is
within this proximity. We note that this approach works because F is discrete
(as opposed continuous spaces such as real numbers in R), and |A| = O(poly(k))
is reasonably small for our application.

This observation allows us to use an oblivious set membership operation to
obliviously perform distance-based matching of each b′

1, ..., b
′
m in BT′ to each

b̃1, ..., ˜bm+n in HD. This matching is equivalent to the one performed in clear
by the regular FV. More importantly, Eq. 9 is independent of the particular
dist used for the feature matching. Thus, distance matching based on oblivious
set membership testing can in principle be used to match biometric features of
multiple biometric modalities, e.g., iris scans, faces, etc.

In addition to minutiae-to-minutiae matching, the regular FV also verifies if
at least d minutiae are matched correctly, where d is the threshold defined by
the polynomial degree (see Sect. 2 for details). To achieve the same property, our
scheme relies on Shamir’s secret sharing.

In a nutshell, the modified HD is generated by OEGEN (BT, k) via the follow-
ing process:

1. OEGEN generates ˜BT = (b̃1, ..., b̃n+m) where a random subset of ˜BT is in
BT while the remainder are random chaff points. As such, it obfuscates the
original BT in the exact same way as in the original FV scheme.

2. For each chaff point, uniformly sample an associated random pair (xi, yi) ←
F
2. For each b̃j ∈ ˜BT that is a real minutiae in BT, sample a random point



Oblivious Extractors and Improved Security 299

that lies on a d − 1 degree polynomial P (i.e., P (xj) = yj for all j such that
b̃j ∈ BT) and require that P (0) = k.
That is, every pair (xj , yj) that is associated with a real biometric point from
BT forms one Shamir secret share of k.

3. Output HD = ( ˜BT,X, Y,H(k)) as the helper data, where ˜BT = (b̃1, ..., b̃n+m),
X = [x1, ..., xn+m] and Y = [y1, ..., yn+m]. By construction, it holds that for
all j ∈ [n + m] such that b̃j ∈ BT, yj = P (xj). In other words, every position
j that is associated with a real minutiae is also associated with a secret share
of k. On the other hand, positions that contain chaff points are associated to
random (x′, y′) pairs that do not lie in the polynomial P .

Given HD and a sufficiently similar biometric BT′ = {b′
1, ..., b

′
m}, k can be

recovered by interpolating the correct (xj , yj) pairs which are identified based
on the condition that dist(b′

j , b̃i) < w for some b′
j ∈ BT′. Given that there may

be several degree at most d − 1 polynomials which fit this criteria, the correct
one can be identified by requiring H(P (0)) = H(k).

We note, however, that there are several challenges when converting this basic
idea into an oblivious protocol. First is how to evaluate the distance function.
A näıve method would be for all O(m2) possible i, j to check if dist(b′

j , b̃i) < w

either using a generic 2PC scheme or via the idea of directly turning b̃i into a
set A and performing a set membership test (e.g., using off-the-shelf protocols
for private set operations ). Though possible, this would be very inefficient.

Secondly, it is critical that the Client does not learn if the binary result of
dist(b′

j , b̃i) < w since this would leak if some information about each b̃i in HD.
For example, a Client could query the Authenticator many times and enumerate
all elements in A = {aj | dist(aj , b̃i) < w} and therefore learn a b̃i exactly.

We address both of these issues simultaneously with the use of an OPPRF.
The idea is that, during authentication, Authenticator will sample an OPPRF
key k′ such that for all i ∈ [n + m] and aj ∈ {aj | dist(aj , b̃i) < w}, the OPPRF
outputs Fk′(aj) = (xi, yi). Recall that when the Client evaluates the OPPRF,
they will receive either the programmed (xi, yi) value if they input one of the
corresponding aj values or they will receive a uniformly random (x′, y′) pair.

Let us assume that BT,BT′ are not similar. Therefore the Client learns at
most d pairs (xi, yi) which correspond to the actual biometric BT. These (xi, yi)
pairs lay on the degree d polynomial P while all others are uniformly random.
Recall that it takes d + 1 pairs to reconstruct P and therefore the key k = P (0)
remains uniformly distributed in the view of the Client, since they are lacking
at least one pair. Moreover, the Client can not distinguish if they obtained a
programmed point (xi, yi) or a uniformly random point (x′, y′) since both are
distributed uniformly random. Critically, we require that the Client only inputs
b′
j ∈ BT′ values which are at least distance 2w apart to ensure that no two b′

j

fall into the same set A = {aj | dist(aj , b̃i) < w}.
Now consider the case in which BT,BT′ are similar. From the OPPRF eval-

uation, the Client will learn at least d + 1 pairs (xi, yi) which indeed lay on the
degree d polynomial P (in addition to possibly some points that do not lay in
P, because there might a small number of chaff points that are coincidentally
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close to some of the points in BT′). As such, the client can use the obtained set
of points to try to interpolate all subsets of d + 1 points, resulting in a degree
d polynomial P ′ at each attempt. For each interpolation, the client checks if
H(P ′(0)) = H(k). If so, it learns that P = P ′ and outputs k = P ′(0).

4 Oblivious Extractor in Detail

4.1 Definitions

Fig. 3. OE authentication combining HD, OPPRF-based set membership test, and
secret sharing.

OE consists of two sub-protocols: Enroll and Auth. Each sub-protocol instance
involves a Client and an Authenticator. Figure 4 presents OE ideal functionality
FOE. It answers to two queries, modeling the ideal behavior of sub-protocols
Enroll and Auth.

A query to Enroll is accompanied by a reference biometric template BT
(obtained securely during initial user enrollment) and parameter c, determining
the maximum number of authentication attempts possible within the life-time of
the particular HD to be generated. It outputs a user ID i to Client and generates
a user credential in the system, represented by the Client’s ID i, an associated
HD and c, to be stored by Authenticator. The ideal functionality records BT ,
and HD and k, computed using FV′.Gen(BT).

A query to Auth is initiated by Client and must contain a claimed user ID
i and corresponding input biometric template BT′. The functionality verifies
if there exists a registered user with ID i and if the limit c′ of authentication
attempts for that particular user has not been exceeded. If these checks suc-
ceed, the query returns k if BT ′ is sufficiently close to the reference BT and ⊥
otherwise. k and BT used in this step are the same recorded during Enroll
for ID i. Every Auth query decrements associated c to record the authentica-
tion attempt. Figure 3 shows illustrates the OE authentication protocol, with a
detailed construction in Fig. 5.



Oblivious Extractors and Improved Security 301

Fig. 4. Ideal oblivious extractor functionality FOE.

4.2 Construction

This section presents an OE construction fulfilling FOE (Fig. 4) in the honest-
but-curious model. The protocol is specified in Fig. 5.

Public parameters include two random oracles H and H’ and the FV scheme
described in Sect. 2.2, including the FV parameters themselves (e.g., a metric
dist, a distance threshold w, polynomial degree d, etc.). Before any sub-protocol
interactions, Authenticator initializes a monotonically increasing counter id := 0
representing unique IDs assigned to users upon successful enrollment.

Enroll:

The first part of the enrollment protocol (up to the generation of ˜BT) remains
similar to the regular FV scheme, discussed in Sect. 2.2. BT is sampled from the
user yielding m biometric data points, sufficiently distant from each other by
threshold 2w for chosen metric dist. A set of n chaff points are randomly sampled
following the same distribution as real biometric points and also obeying the
sparsity restriction (for threshold 2w and dist). The set of real biometric data
points and chaffs are shuffled according to permutation π selected uniformly at
random. The resulting shuffled list of pairs is denoted ˜BT.

Following generation of ˜BT, Enroll will sample randomness r ←$F and c
random polynomials defined over F. The independent/constant term in all c
random polynomials is set to r (i.e., for j ∈ [c], Pj(0) = r). Each Pj is used
as an independent instance of a Shamir secret sharing scheme to sample m
shares of r (in the form (x ←$F, Pj(x))). For each Pj , two lists Xj and Yj are
created using the m shares. Xj and Yj are constructed such that if index i of
˜BT (after shuffling) contains a real biometric data point (i.e., b̃i ∈ BT), then
Yj,i = Pj(Xj,i) – where Xj,i and Yj,i are used to denote the i-th element of Xj

and Yj , respectively. For all other indices, elements of Xj and Yj are selected
independently, uniformly at random. The HD is then given to (and persistently
stored by) Authenticator composed of ˜BT, X := (X1, ...,Xc), Y := (Y1, ..., Yc),
h := H(r), e := H′(r) ⊕ k. As it will become clear, a pair of lists Xc′ , Yc′ is
consumed on each Auth interaction.
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Fig. 5. Oblivious extractor protocol ΠOE.

Given random shuffling of ˜BT, sufficiently large number of chaff points, and
indistinguishability between Shamir secret shares and random elements in F×F

(present in X and Y ), HD produced by OE hides BT and k from Authenticator.
More formally, FV security can be reduced to OE security.

Auth:

To authenticate, a user initiates an interaction with Authenticator by claim-
ing an identity id′ and locally sampling BT′ := (b′

1, ..., b
′
m) at the Client machine.

Authenticator looks up HD based on claimed id′. Authenticator also checks if the
maximum number of authentication attempts allowed for the lifetime of the asso-
ciated HD has not been exceeded, aborting otherwise. In practical systems that
employ throttling to prevent online guessing, an additional check should occur
to determine if the maximum number of attempts within a pre-defined time-
window (e.g., 10 attempts per day) has been exceeded. This step is omitted from
the protocol for simplicity. If the aforementioned checks succeed, Authenticator
will initiate an instance of the oblivious biometric matching phase, based on BT′

(in possession of Client) and HDid′ = ( ˜BT,X, Y, h, e) (stored by Authenticator
associated to id′).

The c′-th instance of Auth consumes list X ′
c ∈ X and list Y ′

c ∈ Y . To prevent
information leakage across multiple executions of Auth, each X ′

c and Y ′
c pair is
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only used once, hence the cap c on the number of Auth interactions per HD.
For each element b̃i ∈ ˜BT – including both chaff and real biometric points (recall
that Authenticator cannot distinguish between them) – Authenticator generates
the set of all points in F that are sufficiently close to b̃i, i.e., all b ∈ F such that
dist(b, b̃i) < w. All such b close to b̃i are associated to the same pair (Xc′,i, Yc′,i)
and added to a list L, where each l ∈ L is in the form (b, (Xc′,i, Yc′,i)), i.e.,
l ∈ (F,F2). As a result, L contains all points b in F that are sufficiently close
to any b̃i ∈ ˜BT. By construction (recall Enroll sub-protocol), all b̃i ∈ BT and
close enough points appear in L associated to a secret share of randomness r.
On the other hand, all b̃i /∈ BT (i.e., chaff points) and close enough points are
associated to random pairs in (F × F).

To perform oblivious authentication, Client and Authenticator invoke FOPPRF

on their respective inputs: BT′ = (b′
1, ..., b

′
m) and L. For each b′

u ∈ BT′, if b′
u is

sufficiently close to any point in ˜BT (real or chaff), it also exists in L, thus Client
receives an associated pair (Xc′,v, Yc′,v), for some index v ∈ [m + n]. If b′

u is in
fact close to a real biometric data point from BT (the reference template used to
construct HD in Enroll), it is also the case that Yc′,v = P ′

c(Xc′,v), i.e., Client
receives a secret share of randomness r (recall from Enroll that P ′

c(0) = r). If
b′
u does not exist in L (b′

u is close neither to real biometric data points nor chaff
points), FOPPRF returns a random element from (F × F).

Given the degree d of P ′
c, if at least d + 1 points in BT′ are sufficiently close

to points in BT, Client retrieves enough shares of r to reconstruct k. Most impor-
tantly, if less than d+1 points are sufficiently close to points in the original BT,
Client cannot distinguish any of the received elements from random in (F × F),
irrespective of whether each element was generated as a share of r, as random
pair during construction of Xc′ and Yc′) (see Enroll), or as a result of FOPPRF

evaluation on an element that does not exist in L and thus has not been pro-
grammed by the OPPRF. It follows that, if Client fails to authenticate, nothing
is learned by Client about BT or HD. At the same time, BT and BT’ are hidden
from Authenticator.

Upon completion of Auth, Authenticator decrements c′. This assures that
fresh Xc′ and Yc′ are used in different Auth sessions even with the same HD, pre-
venting leakage/linkability across multiple/successive authentication attempts.

4.3 OE Security Analysis and Actively Malicious Cases

OE security analysis and the discussion on how to handle actively malicious
Client and Authenticator are deferred to Appendix A due to space constraints.

5 Implementation and Evaluation

5.1 Fingerprint Pre-processing and Parameters

Pre-processing and extraction procedures generate a biometric template BT from
a fingerprint image. As discussed in Sect. 2, each data point in BT is the position
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and orientation (xi, yi, θ) of a fingerprint minutiae. To extract the BT we use
NIST Biometric Image Software (NBIS) [16]. NBIS returns a set of identified
minutiae points with corresponding confidence levels. From NBIS output, we
select 20 points with the highest confidence and encode them as data points
in F. Following the FV implementation guidelines from [17] and [18], in our
prototype, we implement OE using the following set of public parameters Φ =
(m,n, d,F,M, w):

– Number of minutiae m = 20; Number of chaff points n = 200; Polynomial
degree d = 9; F is a prime field with prime of at least 128 bits; Distance threshold
w = 20.

In addition, the distance function (dist) used to compare fingerprint features
(based on the empirical characterization from [18]) and generate the sets is given
by:

D(bi, bj) =
√

(xi − xj)2 + (yi − yj)2 + 0.2 × min(|θi − θj |, 360 − |θi − θj |) (10)

The OE polynomial degree is set to 9 (also based on [18]). Finite field polyno-
mial operations were implemented using the Number Theory Library (NTL) [19].

In Auth, points are matched from HD based on their distance to minutiae
points in the new template BT′ sampled from the user. Similar to [18], we the
distance function between pi ∈ HD and p′

j ∈ BT′ defined as in Eq. 10. These
parameters must be empirically calibrated to yield the best accuracy results. We
rely on these parameters based the work by Nandakumar et al. [18], that focuses
on biometric matching accuracy with FVs. To improve accuracy results for noisy
fingerprint readings before extracting the template, during the biometric sam-
pling,

Fig. 6. Fingerprint pre-processing and identified minutiae

we also run the fingerprint pre-alignment algorithm from [20]. Figure 6 illus-
trates the result of the template extraction for two pre-aligned fingerprint images.
White squares highlight the n = 20 minutiae points detected in these finger-
prints.
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Remark: We implement our own BT extraction to have a fully working pro-
totype and report on its accuracy. We stress that there is no difference in the
accuracy of oblivious versus regular FVs, which is determined by the underlying
biometric pre-processing techniques. These techniques are orthogonal and not
affected by our work.

5.2 Performance Analysis

Setup: Results presented in this section reflect measurements performed on
an Intel Core i7-3770 octa-core CPU @3.40 GHz, with 16 GB of RAM, running
Linux (Ubuntu 18.04LTS). Client and Authenticator were implemented as inde-
pendent processes communicating though TCP sockets. An artificial delay of 10
milliseconds is introduced in order to simulate a typical communication delay
for a local area network (LAN).

Fig. 7. OE evaluation results: computational cost and prototype accuracy

Figure 7 presents the evaluation results. Our protocol has two main costs,
the OPPRF and the Client performing interpolation. We implement the OPPRF
based on the protocol of [21] with optimizations provided by [22,23]. The result-
ing overhead is that a OPPRF with n programmed points has communication
overhead of 32×1.3×n bytes plus a small setup cost of [23]. Using the parameter
specified above this results in programming approximately n = 154000 points
with an overhead 5.6 MB per authentication and requires 0.34 s. The successive
interpolation operations to reconstruct k take on average 876 ms for the selected
parameters.

Accuracy of the underlying biometric matching is not affected by our use-
case. Improving its accuracy is an orthogonal effort. Nonetheless, for complete-
ness, we report on the accuracy considering the implementation used in our
prototype. Similar accuracy analysis for biometric matching using fuzzy vaults
(also considering other biometrics modalities) can be found in [11,17,18]. We
report on our prototype’s accuracy considering metrics for:
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– Genuine Acceptance Rate (GAR): Percentage of biometric samples cor-
rectly matched to other samples acquired from the same biometric.

– False Acceptance Rate (FAR): Percentage of biometric samples incor-
rectly matched to any sample not acquired from the same biometric.

We conducted accuracy experiments using FVC2000 publicly available2 finger-
print database. FVC2000 includes multiple fingerprint images (10 different noisy
images of each fingerprint) acquired using 4 types of low-cost biometric sensors.
As discussed in Sect. 2.2, the polynomial degree allows configuring the number
of matching data points in two biometric samples necessary to consider that the
samples belong to the same user. Therefore, accuracy results are presented as a
function of FV polynomial degree in Table 7c. Per Table 7c, an ideal choice would
be degree 9 with zero false acceptances. The same degree results in GAR of 80%,
meaning that 1 out of 5 times a genuine user would be rejected and required to
attempt authentication again.

6 Related Work

Fuzzy Vaults (FVs) [15] were developed (and implemented in [18]) to ensure
privacy of reference biometric templates (BTs). An FV generates random looking
data from BTs, only storing such data (HD) in the back-ends, and is still able
to authenticate users from HD. Subsequently, the notion of Fuzzy Extractors
(FE) was formalized, and derived from secure sketches [24], and also applied
to biometrics [25]. Most FV/FE provide statistical security. Computational FE
schemes were only recently introduced [26]. These computational FE schemes
rely on hardness of the Learning With Errors (LWE) problem. FE re-usability
was identified as an important issue to ensure security for repeated usage with
the same biometric. Re-usability enables one to extract multiple HD from the
same biometric without leaking any additional information. Not every FE/FV
can be reused and still ensure security (illustrated in [7,8]). In fact, from the
two Helper Data HD-1 and HD-2, created with two instances of the scheme on
the same biometric, an attacker can learn the original biometric inputs. New
(indistinguishability based) definitions for re-usability were presented [5] and
theoretical analysis demonstrated that the computational FE scheme in [26] is
not (weakly or strongly) reusable.

Secure two/multi-party computation (2PC/MPC) protocols enable mutually
distrusting parties to compute functions of their private inputs, while guaran-
teeing output correctness and input privacy, against misbehaving parties. Prior
work [27–29] used 2PC/MPC to verify whether a biometric exists in a database,
a problem commonly referred to as “identification”. We target the related yet
different problem of oblivious authentication with template privacy “vis-a-vis”
Authenticator, which demands not only oblivious fuzzy matching of templates,
but also subsequent key agreement for cryptographic operations (e.g., challenge-
response protocols, decryption).

2 Database available at: http://bias.csr.unibo.it/fvc2000/.

http://bias.csr.unibo.it/fvc2000/
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The problem of strengthening password-based user authentication has also
been well-studied under the common umbrella of Password-Authenticated Key
Agreement (PAKE) protocols [30,31]. Since they work with passwords, PAKE
protocols typically rely on Client and Authenticator sharing and storing the exact
same secret (either in clear or hashed form). Therefore, they are not appropriate
for authentication using biometrics, in which Authenticator and Client inputs are
always slightly different. The notion of fuzzy PAKE (fPAKE) was introduced
in [32]. However, fPAKE protocols do not handle the case where the reference
secret (e.g., the biometric) must also be cryptographically protected when stored
at the Authenticator. OE bridges this gap by enabling oblivious biometric-based
authentication from HD, instead of requiring a reference BT to be stored in clear
by Authenticator.

7 Conclusion

In this work we defined a new primitive called Oblivious Extractor (OE). We
argued that OEs could be used to enhance the security of existing biometric-
based authentication systems and provide examples of such applications. Finally,
we implemented and evaluated a concrete construction for OEs to demonstrate
its practicality.

Acknowledgments. We thank ESORICS 2023 reviewers for valuable feedback. Part
of this work was performed while the first and third authors were at Visa Research.

Appendix

A OE Security Analysis

Our OE construction does not affect the FV-Completeness and FV-Security guar-
antees provided by the original FV scheme. For completeness, this follows from
the equivalence in Eq. 9 (implying that the accuracy of the distance-based match-
ing of individual elements in BT and BT′ is not affected) and the fact that secret
shares used in our scheme are generated with the same polynomial degree (there-
fore, the number of individual matches required to reconstruct k is the same).
For security, we note that the only difference in the HD stored by Authenticator in
OEs versus that stored by Authenticator in FVs is that the polynomial is evaluated
on additional randomly generated points during enrollment. The obfuscation of
BT, by shuffling minutiae and chaff points, which yields FV security notion (per
analysis in [15]) is still performed in the exact same way as in the original scheme.

Therefore, in the remainder of this section, we stress to prove that our ΠOE

protocol securely realizes the FOE functionality of Fig. 4 in the semi-honest UC
model [33]. In practical terms this means that the messages received during the
protocol can be simulated given only the input of that party and the output of
the ideal functionality FOE.
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Proof. Corrupt Authenticator.
First, we consider a semi-honest Authenticator. When interacting with the

ideal functionality, Authenticator receives (i, c,HD) each time a Client enrolls. By
definition this is effectively the same information that Authenticator receives from
the Client in the real interaction, i.e. the simulator outputs HD to Authenticator.

As discussed in Sect. 2.2, it is the case that HD reveals some information
about BT. However, the functionality explicitly allows Authenticator to learn
this information. Moreover, this leakage is inherently required for this type of
functionality due to the possibility of Authenticator running the Auth protocol
with themselves and thereby learn information about BT.

In the ideal world Authenticator participates in the Auth protocol by sending
(Auth, i) to the ideal functionality. They receive no output from the function-
ality. In the real protocol the view of Authenticator consists of the FOPPRF query,
which they also receive no output from. Therefore the simulation follows directly.

Proof. Corrupt Client.
For a corrupt Client, the view of the Enroll protocol is trivial to simulate.

Effectively, it consists of the Client receiving their identifier id. This is also pro-
vided by the ideal functionality which the simulator can forward to the Client.

For proving the security of the Auth protocol we consider two cases. The first
is the corrupt Client is authenticating on a id which they registered or one which
an honest party registered. In the former, the simulation is to simply run the
real protocol. Observe that this is secure due to the adversary already knowing
the underlying HD value.

The most interesting case is the latter, when a corrupt Client requests to
authenticate on an id which was registered by an honest user. The view of the
Client in the ideal worlds is either k if their biometric BT′ matches and otherwise
⊥.

Let us assume that the biometric does not match and therefore the simulator
obtained ⊥ from FOE. In the real protocol recall that Xc′ , Yc′ consists of m + n
values in F . Out of these a random set of m lay on a degree d − 1 polynomial.
Since the functionality would have output ⊥, the Client would have received at
most d−1 of the points which lay on the degree d−1 polynomial. Critically, the
distribution of these points (and all others) are uniformly random. Therefore,
the simulator will simply sample a uniformly random set of points and use these
in place of Xc′ , Yc′ . The view of the Client is identical when modeled in the
FOPPRF-hybrid.

In the case that there is a match, the simulator learns the key k and the
d′ ≥ d biometric points BT∗ which matched from the functionality. With this
the simulator can identify which of the Xc′ , Yc′ points should lay on a degree
d − 1 polynomial. Since there was a match there are d′ ≥ d such points. The
simulator samples Xc′ , Yc′ such that these points lay on a random degree d − 1
polynomial P which has P (0) = k while all other points are uniform. The Client
will then reconstruct k as described by the protocol.
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A.1 Active Malicious Authenticator

We argue that an actively malicious Authenticator does not gain any advantage.
To see why, note that no message sent by Client depends on Authenticator behav-
ior. Hence, an actively malicious Authenticator does not learn Client’s inputs that
an honest-but-curious Authenticator would not.

The remaining possibility is to deviate from the protocol to tamper with
Client’s output (i.e., k). At best, this case prevents Client from authenticating
itself to Authenticator, hence causing Authenticator to refuse access/service to
Client. However, a malicious Authenticator can always refuse service to a Client,
irrespective of the OE scheme (e.g., by simply ignoring Client’s request to authen-
ticate).

A.2 Active Malicious Client

Leakage in the case where Client may deviate from the protocol is due to the fact
that a malicious Client may not respect the restriction that, for a new biometric
sample provided for authentication (b′

1, ..., b
′
m) = BT′, it must hold that for

distinct i, i′ ∈ [m], dist(b′
i, b

′
i′) > w. As a consequence, different instance of the

OPPRF for different b′
i and b′

i′ in the same BT′ may yield the same result if
both points lie close enough to the same point in ˜BT. In turn, this allows Client
to learn whether or not a point close to b′

i and b′
j (either real biometric point or

chaff point) exists in ˜BT. Though strictly better than sending HD as a whole to
Client, this still reveals some small amount of information about HD’s structure,
which may be undesirable.

To prevent this, the Client should always be required to prove to Authenticator
usage of sufficiently distant b′

i and b′
i′ for all distinct i, i′. Importantly, this proof

should not reveal anything about b′
i and b′

i′ to Authenticator, which can be hard
and expensive to achieve in practice and may significantly complicate the pro-
tocol.

Instead, we suggest a simpler approach based on a slightly modified version of
the protocol presented in Sect. 4.2. Instead of preventing, it allows Authenticator
to detect Client’s malicious behavior whenever a Client learns that small piece of
information about HD. Upon detection, a malicious Client device can be black-
listed and banned from the system. This modified version of the protocol works
as follows:

1. Let S be the set of all points that are not sufficiently close to any point in
˜BT, i.e., if (b, (X,Y )) /∈ L for some X and Y (see L in [Program OPPRF]
step in Fig. 5), then b ∈ S.

2. Before the start of the protocol Authenticator generates an additional key Km

and produces |S| + m + n shares of Km in an m out of (|S| + m + n) Shamir
secret sharing scheme.

3. L in [Program OPPRF] step of Fig. 5 is augmented to also include every
element in S. Each b ∈ S is programmed with a distinct random pair (X,Y ) ∈
F
2.
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4. All elements in the new augmented L are also programmed with a secret
share of Km restricted that: for all (bi, (Xi, Yi)) and (bi′ , (Xi′ , Yi′)) in L, if
(Xi, Yi) = (Xi′ , Yi′), then bi and bi′ are programmed to yield the same share
of Km.

5. Conversely, for all (bi, (Xi, Yi)) and (bi′ , (Xi′ , Yi′)) in L, if (Xi, Yi) �= (Xi′ , Yi′),
then bi and bi′ are programmed to yield different shares of Km.

The basic idea behind this approach is that any honest Client authentica-
tion terminal that follows the protocol will always receive m secret shares [Km]
and will be able to reconstruct it and prove knowledge of Km to Authenticator
irrespective of whether the user succeeded in authenticating herself using the
biometric.

On the other hand, a Client authentication terminal that cheats by selecting
b′
i and b′

j close to each other and learns that in fact a corresponding point
exists in ˜BT (because both of them return the same (X,Y ) pair) will also be
unable to reconstruct Km. This client will obtain at most m − 1 shares of Km,
because at least one of the shares will be repeated. Hence, the Client will fail to
prove knowledge of Km. Therefore, Authenticator is able to detect this malicious
behavior and block/ban the malicious Client authentication terminal accordingly.
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Abstract. We present a multi-party exchange protocol that achieves
optimal partial fairness even in the presence of a dishonest majority.
We demonstrate how this protocol can be applied to any type of multi-
party exchange scenario where the network topology is complete. When
combined with standard secure multi-party computation techniques, our
protocol enables SMPC with partial fairness when a dishonest majority
is involved. Fairness optimality is proven in an abstract model which
applies to all protocols based on the concept of concealing the point
when the secrets are exchanged. Our protocol improves known results
via the use of timed-release encryption and commutative blinding.

Keywords: Multi-party fair exchange · Timed-release encryption ·
Commutative encryption · Secure multi-party computation · Fair
exchange · Partial fairness

1 Introduction

A multi-party fair exchange protocol allows any number of parties to exchange
items in an arbitrary way while guaranteeing fairness: either everyone receives all
the items they expected or nobody obtains anything. The problem of fair exchange
has primarily been studied in the two-party setting where it was already known
to be impossible in 1986 thanks to Cleve [8] and later to Pagnia and Gärtner [21].
Fair exchange is often solved with the aid of a trusted party either being present
(e.g. [13]) or acting only as a judge in case of misbehaviour (e.g. [3,12]). The pro-
tocols following the latter approach are called optimistic since they assume that
most of the time the parties involved will all be honest. Among these, a recent
approach involves the use of crypto currencies as collateral for failed exchanges
(e.g. [2]). Alternative solutions require stronger assumptions such as similarity in
general or sequential computing power [6,11]. A more satisfactory approach is the
weakening of the fairness requirement to allow a small but not negligible chance of
failure [5,9,24]. Other approaches to multi-party fair exchange without introduc-
ing trust are based on rationality assumptions [1]. A related research field is the
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study of Secure Multi-Party Computation (SMPC). The problem tackled by this
branch of computer science is how a group of parties, each with a private input, can
compute a function on these inputs without revealing them. This problem appears
to be more general than the simple fair exchange, yet SMPC do not always require
fairness, instead it mainly focuses on ensuring that the outputs are correct. In par-
ticular, in the presence of a dishonest majority, SMPC protocols allow the com-
putation of an arbitrary functionality guaranteeing privacy, correctness but not
fairness [15]. That is, the private inputs are kept private, the outputs are guaran-
teed to be correct, but the dishonest parties can choose not to let the honest parties
receive the outputs. This is clearly unsatisfactory in the context of fair exchange,
yet the theory of SMPC proves that fairness cannot be achieved in this scenario.
In a brief summary, SMPC can be achieved with “standard assumptions” under
the following circumstances [15,22]:

– in the presence of any number of passive adversaries;
– in the presence of an active adversary controlling only a minority of the

parties;
– in the presence of an active adversary controlling a majority of the parties if

early abortion is not a security violation.

The above results show that the fair exchange problem can be solved in the
presence of an honest majority (e.g. via the use of secret sharing), but it is not
possible otherwise. To escape this impossibility result, we follow the approach of
partial fairness set out by Gordon and Katz [16] and applied in the multi-party
setting by Beimel et al. [4].

1.1 Our Contribution

In this paper, we propose a protocol that achieves optimal partial fairness1 in
the presence of a dishonest majority. In particular, we design a protocol where
the fairness requirement is weakened so that there is a small probability that the
exchange is not fair. This protocol follows the blueprint of other protocols (e.g. [4,
9,16,24]) where the secrets are hidden among other dummy messages so that no
party knows when the secrets are truly exchanged. By hiding the secrets among
other items, the parties can exchange messages without anyone knowing whether
they have received or sent any secret. This lack of information leads to the
guarantee of partial fairness, i.e. only a lucky guess will break fairness. Moreover,
the specific way in which the secrets are distributed leads to the optimality
result. We vastly improve the round complexity of [4] as well as escape their
impossibility results via the use of Timed-Release Encryption [23]. In particular,
Beimel et al.’s protocols that are fair with probability 1− 1

p against an arbitrary
number m of malicious entities require at least O(mp2

m

) rounds, while ours
is roughly mp. The impossibility result presented in [4] states that, for some
parameter depending on the number of malicious entities and the functionality
1 See Appendix A and [16] for a formal definition of partial fairness and Sect. 3 for an

intuitive description.
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to compute, fairness cannot be guaranteed with probability higher than 1
2 +

negl(λ). By assuming the existence of Timed-Release Encryption, our protocol
can achieve fairness with any user-defined probability regardless of the context in
which it is used. In particular, our protocol can be rendered fair against malicious
adversaries with standard zero-knowledge proofs techniques [14,15,22] and fair
exchange can be used to achieve fairness in SMPC [18,19].

We also present a general model to easily describe the exchange protocols
based on hiding and, within this model, prove an upper bound on partial fairness
as well as a protocol that can achieve this bound. Our impossibility result has
no assumptions on the cryptographic primitives used, and therefore it is much
stronger than the previous ones we circumvent in this paper. Therefore, our
contribution to the body of knowledge is a twofold:

1. An abstract and theoretical analysis of multi-party protocols based on hiding
the actual exchange of secrets;

2. An efficient protocol that achieves optimal fairness.

In the next section, we describe the setting of a multi-party fair exchange as
well as the adversarial model we consider. Section 3 is dedicated to the security
definitions and requirements of the cryptographic primitives used in our protocol,
which is described in Sect. 4. The security of the protocol is sketched in the
Appendix A. The paper concludes with an extensive abstract analysis of the
multi-party protocols based on hiding, which also proves the optimality of our
protocol.

2 Multi-party Fair Exchange

In this section, we describe the context of our study as well as the adversarial
model. We follow the most general definition of Asokan et al. [3]. We assume
the presence of K parties P1, . . . ,PK, and we define a matrix Σ to describe an
arbitrary exchange. In particular, Σi,j is the secret that Pi is meant to send to
Pj. In this model, we set no restriction on the type of exchange, but we do assume
that the network is a complete graph, i.e. any party can communicate with any
other party. Intuitively, we say that an exchange is fair if and only if either all
parties receive all the items they expect or nobody receives anything. Even if
the exchange Σ is built from two separate sub-exchanges, by requiring that the
whole of Σ is fair, the completion of one sub-exchange requires the completion
of the other sub-exchange. Although this constraint might seem unreasonable in
the abstract model, it is quite common in the real world, e.g. when moving to
new house the two separate transactions of buying the new place and selling the
old one typically depend on each other. In Sect. 4, we will show that this complex
model for fair exchange can be reduced to a much simpler one. In particular,
each of the K parties is given a secret si, and the aim of the exchange is for
all parties to know all secrets. We assume that knowing all but one secret is of
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no use. This is justified by thinking about these secrets as shares of some larger
secret (often the case in SMPC). In this simpler model, the exchange is fair if
and only if whenever a party discloses their secret, they receive all the other
secrets.

2.1 Adversarial Model

We assume that the network topology is complete, but communication channels
do not need to be secure. However, we require them to guarantee confidential-
ity; stronger properties are not needed since adversaries are passive. Delivery is
not guaranteed, and we assume the use of agreed-upon timeouts to universally
establish if the protocol is aborted. We are only interested in the case where at
least one honest party is involved in the protocol, and we assume that corrup-
tions are static (non-adaptive adversary), i.e. the coalitions of malicious parties
do not change after the protocol starts. In our discussions, we talk about a
group of malicious parties which coordinate and share knowledge as a coalition.
Alternatively, the reader can think of a coalition of parties as a group of entities
controlled by a single malicious actor. Crucially, we allow the presence of a dis-
honest majority, but adversaries are passive, i.e. they will follow the protocol,
but can abort communication at any point in time without detection.

3 Preliminaries

In this section, we introduce all the cryptographic primitives used in our protocol
as well as the security requirements they need to satisfy.

3.1 Notation

We write an n-length vector (or array) from a set X as v ∈ Xn, and we denote its
ith element by v[i] where 1 ≤ i ≤ n. If we have a function f : X → Y and a vector
v ∈ Xn, then we write f∗(v) to mean the vector 〈f(v[i]) | 1 ≤ i ≤ n〉 where f is
applied to each element. We use Sn for the group of permutations over the set
{1, . . . , n}, but for σ ∈ Sn and v ∈ Xn, we will write σ(v) to mean the vector
w = 〈v[σ−1(i)] | 1 ≤ i ≤ n〉. That is, if σ(a) = b, then w[b] = v[a]. We write Rn

for the subset of rotations in Sn: {τ ∈ Sn | ∀i τ(i + 1) = (τ(i) + 1 mod n)}. If
σ ∈ SK

n and M is a K × n matrix, then σ(M) is the result of applying σ[i] to
the ith row of M . We use a‖b for the concatenation of a and b where these are
interpreted as bitstrings.

3.2 Partial Fairness

We define fairness in the usual idea vs real world setting. Assume an ideal world
where we have an incorruptible trusted party which acts as an intermediary
collecting and delivering the secrets. We say that our protocol is 1

p -fair if for
any adversary to our protocol there is a simulator in the ideal world so that the



Optimally-Fair Multi-party Exchange Without Trusted Parties 317

two runs are computationally indistinguishable with probability 1 − 1
p − negl(λ)

(where negl(λ) is a negligible function of the security parameter λ). The above
means that our 1

p -fair protocol can be unfair with probability at most 1
p +negl(λ).

See Appendix A for a formal definition.

3.3 Symmetric Encryption

Our protocol will take advantage of a symmetric encryption scheme
(KGen,Enc,Dec) which we only require to be COA (Ciphertext Only Attack)
secure, and each key will only be used once. However, in order to formally
prove the security of our protocol, we require the encryption scheme to be non-
committing [10]. This means that we require the additional property that for
any message-message-key (m1,m2, k1) triple there is another key k2 so that
Deck2(Enck1(m1)) = m2. For simplicity, the reader can assume that the scheme
used is the one-time-pad.

3.4 Delay Encryption

Delay encryption (sometimes called Timed-Release Encryption [23]) is an
unusual cryptographic primitive whose aim is not to provide confidentiality of a
message from other parties, but to hide the message from anyone for some pre-
defined amount of time. For the reader accustomed to timed-release encryption,
what we use and define is a “delay” time-lock-puzzle-based encryption scheme
rather than time-specific schemes using trusted parties. This is justified because
we don’t want to introduce trust in the fair exchange context.

More formally, a delay encryption scheme is a triple of algorithms
(Pgen,Delay,Open) with associated sets M, C,P such that

Pgen : {1}∗ × N → P Delay : M × P → C Open : C × P → M

Intuitively, Pgen(1λ, T ) generates public parameters params that are used to
delay a message for time T . We omit params and write DelayT (m) for the cipher-
text delaying m for elapsed time T . Similarly, we omit params and write Open(c).
Practically speaking, DelayT (m) will create a puzzle c so that Open(c) can solve
the puzzle and obtain m only after at least T (sequential) time. Thus, Open will
most likely not be a PPT algorithm. However, an honest party with moderate
computational power should be able to run Open(c) in sequential time not much
longer than T . This might be μT for a small integer μ such as 10 or 20.

In order for our scheme to make sense, we set the following requirement

∀m ∈ M ∀T ∈ N Open(DelayT (m)) = m

We say that a delay encryption is COA-secure if for any family of circuits A
of conceivable size and depth at most μ(λ)T , we have

Prm ←$ M
T ←$N

[
m ← A(c, T, params)

∣
∣ c ← DelayT (m) ∧ params ← Pgen(1λ, T )

]

<
1

|M| + negl(λ)
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Intuitively, a COA-secure delay encryption scheme correctly hides encrypted
messages for the expected amount of time. We remark that the size of such
circuits will depend on the current state of technology. As noted in [20], allowing
all polynomially-sized circuits could lead to misleading results with circuits much
larger than what is feasible at the time of writing.

3.5 Commutative Blinding

A feature of our protocol is the use of commutative blinding (a.k.a. commutative
encryption) to efficiently shuffle the secrets. The need for commutativity arises
because the first party blinding the message cannot ever reveal their blinding
key. Therefore, they need to unblind such message after it has been blinded by
the other parties. We firstly present a definition that is easy to understand, but
it is stricter than what is needed by the protocol. We use this definition for ease
of presentation, but discuss the more general one in this section since it will be
used in the formal proof of security.

Definition 1. We call a pair of PPT algorithms (Blind,Unblind) a commutative
blinding scheme if

Blind : M × K → C Unblind : C × K → M

∀m ∈ M ∀k ∈ K Unblind(Blind(m, k), k) = m

Moreover the commutativity property is given by

∀m ∈ M ∀k1, k2 ∈ K Blind(Blind(m, k1), k2) = Blind(Blind(m, k2), k1)

In its fully generality, to run a protocol with K parties, we only require K + 1
pairs (Blind0,Unblind0), . . . , (BlindK ,UnblindK), such that

UnblindK(. . . Unblind0(BlindK(. . . Blind0(m, k0) . . . , kK), k0), . . . , kK) = m

Writing the protocol and security requirements using the above will result in a
hardly readable script. Therefore, we use the stronger commutativity property
and simplify the exposition of the protocol. In terms of security requirements,
we need the blinding to satisfy the usual IND-CPA definition. In particular, we
require each Blindi to be IND-CPA secure. As an example, this primitive could
be instantiated using ElGamal and the re-encryption procedure often used in
voting schemes (e.g. [17]). A proof the above, together with a more precise and
slightly more relaxed security definition, is given in the full version of the paper.

4 The Protocol

Firstly, we show a reduction from the general fair exchange we described before
to a simpler context that we will consider in the rest of this paper. Recall that
we consider K parties {P1, . . . ,PK} and that all items exchanged are encoded
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in the matrix Σ so that Σi,j is what Pi sends to Pj. Recall from Sect. 2.1
that we assume the communication channels provide privacy. We now go one
step further and assume that privacy is implemented using some (symmetric or
asymmetric) encryption scheme. In our exchange protocol, Pi holds only one
secret si = 〈Encki,j

(Σi,j) | j �= i〉 where ki,j is the key Pi uses to communicate
confidentially with Pj. Therefore, in the rest of this script, we assume that each
party holds only one compound secret, and that this should be revealed to all
the other participants.

Our protocol follows the idea of concealing from all the point where the
secrets are exchanged. Therefore, the protocol can be split into two phases: a
setup phase where the shuffling of the secrets occurs, and an exchange phase
where the secrets (and dummy values) are exchanged.

In this scenario, we assume the K parties have agreed on a number N of
exchange messages as well as a number L which represents the size of the coalition
the protocol should be optimal against. We expect that in most cases L =
K −1, but some contexts may wish to lower such value. As we will see in Sect. 6,
the secrets might not be uniformly distributed, instead there are only a few
“configurations” or “states” where those should be. We define 〈π1, . . . , πδ〉 to
be the permutations that send the lists of secrets and dummies to those valid
configurations. Formulae for those permutations and the value δ are described in
Sect. 6. For ease of notation, we assume that all parties send n exchange messages
(i.e. N = nK).

4.1 Protocol Overview

A crucial aspect of our protocol is that the parties involved will not exchange the
secrets directly as in [4,16], instead they will encrypt the secrets and exchange
keys for the used encryption scheme. Since the ciphertext is delayed to the end of
the protocol using Timed-Release Encryption, any auxiliary information about
the secrets is rendered useless. The parties will only be able to test the exchanged
keys when the delayed message opens after the protocol is terminated. This is
what allows us to escape the impossibility results of [4,16] as well as drasti-
cally improving the efficiency of the protocol. Before analysing what should be
included in the delayed messages, we describe how the keys are shuffled.

Initially, all parties will construct a list of n random keys where the first ele-
ment is the one used to encrypt the secret. All those lists are blinded and sent to
P1 who will collate them in a matrix so that the xth row is the list sent by Px. It
is worth remarking that P1 is not a trusted party, but one of parties involved in
the exchange. Since this matrix will need to end up in one of the δ valid config-
urations (as defined in Sect. 6), P1 creates δ pairs (M1, f1), . . . , (Mδ, fδ) so that
{fi(Mi) | 1 ≤ i ≤ δ} is the set of all the valid configurations. This decoupling
allows us to shuffle the pairs uniformly. Hence, starting from P1, each party will
randomly rotate the list of these δ pairs and pass it to the next participant. In
order to keep those rotations secret, each party will need to mask all the pairs.
Masking (M,f) will be done in the following way: each element of M is blinded
using a commutative blinding scheme, while f is masked by computing f ◦ g−1 for
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Fig. 1. Fair exchange protocol.
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some randomly picked permutation g. The resulting pair (Blind∗(M, b), f ◦ g−1)
might not satisfy the property that (f ◦ g−1)(Blind∗(M, b)) is a valid configura-
tion, therefore, we apply g to the matrix M as well. Hence, (M,f) is transformed
into (g(Blind∗(M, b)), f ◦ g−1) for some random permutation g and blinding key
b. For security reasons, g will need to be different for each pair. In Fig. 1, the
above transformation is encoded in the function F and Sx indicates the list of
pairs after being rotated x times. The random permutations g are called σj [i]
where j indicates which party picked it and i indicates which of the δ matrices
the permutation should be applied to.

The last party PK will receive the list of pairs rotated by all the other parties.
Therefore, they will simply rotate and blind one last time as well as pick the
first element (M,f) of the list. By computing f(M), PK obtains a random valid
configuration, called EK in Fig. 1. The resulting matrix will have its elements
blinded by all the parties, moreover, each xth row is blinded by Px twice.2 All
that is left to do is for PK to send back to each party Px their list (the xth row
of EK ). Now all parties can remove their first blinding and proceed to exchange
the items in the list one by one.

In order to retrieve the secret, one needs to unblind the exchanged messages
and identify which keys were used to encrypt the secrets. Therefore, the delayed
message must include the rotation used by each party as well as all of the keys
used for the blindings that are not removed. In particular, the setup messages
are blinded with keys which are never revealed {b1[1], . . . , bK [1]}. This prevents
any malicious adversary from extracting the secrets by looking only at the setup
phase. After the setup phase, the parties will exchange the items of their list one
at a time.

4.2 Protocol Analysis

In this brief subsection, we analyse the setup phase to understand its result. We
note the following (ignoring blinding)

EK = π(τ−1
1 ◦ ... ◦ τ−1

K )(1)(E)

If there is at least one honest party, then there is at least one truly random τi

meaning that the permutation πi picked is uniformly distributed. If during the
exchange phase no further information is leaked3, then the coalition of corrupted
parties has no knowledge on when the ki [1] are exchanged. Hence, the corrupted
coalition can attack the protocol only by aborting the exchange phase at an
arbitrary point. Their strategy is successful only if they stop after having received
all the honest parties’ secret keys but without having revealed all of theirs. In
Sect. 6, we will prove that the permutations πi’s can be picked so that this
strategy has the smallest possible success rate.

2 This is why we need K + 1 blinding functions in the general definition of Sect. 3.5.
3 See Appendix A for a proof of this fact.
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We note that the round complexity of the setup phase is K + 2 with 3K
messages sent overall. The exchange phase is run in N rounds with NK messages
overall. These numbers are a large improvement over the protocol by Beimel
et al. [4].

5 Security Proof

We only have space to give a brief overview the security proof of our protocol.
More details are in Appendix A.

Let Fex be the ideal functionality where all K parties perform the fair
exchange by handling their secrets to a central trusted party which redistributes
them.

Definition 2. Let IDEALFex,S(aux)(Σ, 1λ) be the random variable consisting of
the output of the K parties involved in an ideal-world run of the functionality
Fex, where Σ represents the matrix of secrets to exchange and S(aux) is a non-
uniform PPT adversary with auxiliary information aux.

Definition 3. Let REALΠ,A(aux)(Σ, 1λ) be the random variable consisting of the
output of the K parties involved in a real-world run of the protocol Π, where Σ
represents the matrix of secrets to exchange and A(aux) is a non-uniform PPT
adversary with auxiliary information aux.

Definition 4. We say that a protocol Π implements the ideal functionality Fex

with 1
p -partial fairness, if for every non-uniform PPT adversary A there exists

a non-uniform PPT simulator S such that

{
IDEALFex,S(aux)(Σ, 1λ)

} 1
p≈

{
REALΠ,A(aux)(Σ, 1λ)

}

i.e. the two probability ensembles are computationally indistinguishable with
probability 1 − 1

p − negl(λ) for some negligible function negl(λ).

For ease of presentation, we only consider the scenario where the adversary
controls all but one honest party PH. Furthermore, we assume that 1 �= H �= K.4

We prove the security of the protocol in a 3-step process. Firstly, we prove
that retrieving the secret sH is the equivalent to obtaining kH[1] (Theorem 1).

Theorem 1. If Delay is COA secure, Enc is COA secure and Blind is IND-CPA,
then no non-uniform PPT adversary A can obtain sH unless DH is opened, and
they have received the message containing kH[1] during the exchange phase.

Working in the hybrid model [7], we assume the existence of an ideal func-
tionality Fsetup where each party submits their secret s and receives back the
shuffled and blinded list EK [i] together with the delayed messages Di of all the
other parties. The configuration picked by Fsetup is chosen uniformly among the
δ possibilities. We assume that this functionality is secure-with-abort, i.e. the
4 The other cases are a simplification of what presented here, hence omitted for brevity.
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corrupted parties can stop the honest parties from receiving their outputs, but
not alter the output. In this context, we prove that our protocol achieves partial
fairness (Theorem 2).

Theorem 2. Let Πhyb be the protocol of Fig. 1 where the setup phase has
been replaced by an ideal functionality Fsetup. Assume that the delay encryp-
tion scheme is COA secure and that the symmetric encryption scheme is non-
committing and COA secure, then Πhyb implements the fair exchange ideal func-
tionality Fex with K−1

N+1−K -partial fairness.

To complete the security proof, we show that the setup phase described in
Fig. 1 implements the ideal functionality. In Sect. 4.2, we have already shown
that our protocol already computes the setup phase correctly, so we only need
to show that it does so privately (Theorem 3).

Theorem 3. If Blind is IND-CPA and Delay is COA secure, then the setup
phase of Fig. 1 does not reveal any information about τH while DH is not opened.

6 Fairness Optimality

We represent a protocol of N messages and K = {p1, . . . , pK} parties by a pair
Π = (M,P), where

– M : N → {1, . . . , K} is a map indicating in which order the parties are
sending messages, i.e. M(i) = j means that message i is sent by party pj .

– a “configuration” t : {1, . . . , K} → N is a function such that t(i) = j means
that pi’s secret is in the jth message.

– P is a function which associates to each configuration its probability of hap-
pening.

We set the constraint: t(i) = j =⇒ M(j) = i. That is, if pi’s secret is disclosed
at the jth message, then such message must be sent by pi. This is due to the
principle that if a secret is disclosed to someone, it is disclosed to everyone. When
we say “pi’s secret is in the jth message” or “pi’s secret is disclosed at the jth

message” we do not mean that the jth message gives immediate knowledge of
pi’s secret, but that knowledge is guaranteed to happen. Looking at the exchange
protocol of Sect. 4, si is “disclosed” when the blinded ki [1] is sent by Pi during
the exchange phase. However, the other parties will have knowledge of si only
after the delay message Di is opened.

Given a protocol Π = (M,P), we define the probability that a coalition of
parties I “wins” by stopping at S ∈ N to be

PrΠ [I, S ] =
∑

t∈T (Π,I,S)

P(t)

where T (Π, I, S) = {t | ∃i ∈ I t(i) > S ∧ ∀j /∈ I t(j) ≤ S}
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Intuitively, I wins by stopping at S if someone in I has not released their secret
after the Sth message but all parties not in I have already sent their secrets. For
ease of presentation we write t < S if for 1 ≤ i ≤ K t(i) < S and similarly for
t > S.

In our search for an optimal protocol, we assume that no party sends con-
secutive messages.

We measure the unfairness of a protocol Π against coalitions of size L by
computing

max
I,S

|I|=L

PrΠ [I, S ]

Lemma 1. Let Πb = (Mb,Pb) be a protocol with a configuration tb. Let tg be
a configuration such that max tg = max tb and ∀i tg(i) ≥ tb(i). Define Πg =
(Mb,Pg) where Pg(tb) = 0, Pg(tg) = Pb(tg) + Pb(tb) and Pg(t) = Pb(t) for any
other t. Then for any L

max
I,S

|I|=L

PrΠb
[I, S ] ≥ max

I,S
|I|=L

PrΠg
[I, S ]

Proof. We prove the statement by showing that for all I, S we have

PrΠb
[I, S ] ≥ PrΠg

[I, S ] (1)

Note that T (Πg, I, S) = T (Πb, I, S). Hence, the inequality above becomes:
∑

t∈T (Πb,I,S)

Pb(t) ≥
∑

t∈T (Πb,I,S)

Pg(t)

Therefore, it is enough to show that tg ∈ T (Πb, I, S) =⇒ tb ∈ T (Πb, I, S),
i.e. if I wins by stopping at S when tg happens, then I wins by stopping at S
also when tb happen. Assume that tg ∈ T (Πb, I, S), then ∀i /∈ I tg(i) ≤ S.
Therefore, ∀i /∈ I tb(i) ≤ tg(i) ≤ S. Moreover, j = arg max tg ∈ I ∧ tg(j) > S.
Since max tb = max tg, we have that tb(j) > S. Hence tb ∈ T (Πb, I, S). ��

For every x such that there is a configuration t with max t = x, there is
exactly one configuration tx such that for all other configurations t′ ∀i tx(i) ≥
t′(i). Such tx is constructed by setting tx(i) to be the largest (valid) integer
up to x. The above lemma proves that we only need to consider those “short”
configurations because longer ones are always worse.

Let ΠL
g = (Mg,Pg) be a protocol where

– Mg(i) = (i − 1 mod K) + 1
– Pg(ti) = αi

– Pg(t) = 0 for other configurations
– the αi’s are picked to minimise: max I,S

|I|=L

PrΠL
g

[I, S ]
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Lemma 2. Consider a protocol Πx
g as described above for some x and pick

L < K, then

max
I,S

|I|=L

PrΠx
g
[I, S ] = max{αi + · · · + αi+L−1 | K ≤ i ≤ N + 1 − L}

Proof. The short configurations ti can be described as the map y �→ i−((M(i)−
y) mod K). That is, the secrets are sent in messages {i−K +1, i−K +2, . . . , i}.
All the short configurations of the protocol Πx

g are exactly the ti configurations
described above where K ≤ i ≤ N . Note that

max
I,S

|I|=L

PrΠx
g
[I, S ] = max{ max

I;|I|=L
PrΠx

g
[I, S ] | 1 ≤ S ≤ N}

Fix an S. Consider the configurations T = {tS+1, tS+2, . . . , tS+L}.5 Pick any
other configuration ti, one of two scenarios can happen

1. i ≤ S, i.e. all secrets are exchanged up to (including) the Sth message
2. i > S + L, i.e. more than L secrets are exchanged after Sth message

In both scenarios, there is no coalition of size L that can win by stopping at S in
those configurations. Pick any configuration t ∈ T , then any coalition containing
{pj | t(j) > S} can win in t by stopping at S. In particular, only the coalition J =
{pj | j = M(i), S + 1 ≤ i ≤ S + L} wins in all such configurations. Therefore,
maxI;|I|=L PrΠx

g
[I, S ] = PrΠx

g
[J, S ] = αS+1 + · · ·+αS+L.6 By iterating over the

possible S, we obtain the following set of sums:

{αK , αK + αK+1, αK + αK+1 + αK+2, . . . , αK + · · · + αK+L−1}
∪ {αi + · · · + αi+L−1 | K ≤ i ≤ N + 1 − L}
∪ {αN+1−L + · · · + αN , αN+2−L + · · · + αN , . . . , αN}

Note that the sums in the first and third set are all “sub-sums” of sums in the
second set. Therefore, the maximum over the above three sets is the same as the
maximum over the second set. The lemma follows. ��

Theorem 4. Let Π = (M,P) be any protocol, then

max
I,S

|I|=L

PrΠ [I, S ] ≥ max
I,S

|I|=L

PrΠL
g

[I, S ]

Proof. First, we construct an intermediate protocol Πb = (Mb,Pb) such that

– Mb = M
– Pb(ti) = βi, where ti are the “short” configurations in Mb

5 Some of these configurations may not exist if S + L > N , so they can be removed
from the set.

6 Once again, some of this α might refer to non-existing configurations, in such scenario
those values can be considered to be zero.
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– Pb(t) = 0 for other t’s
– the β’s minimise: max I,S

|I|=L

PrΠb
[I, S ]

We first point out that max I,S
|I|=L

PrΠ [I, S ] ≥ max I,S
|I|=L

PrΠb
[I, S ] due to

Lemma 1 and the definition of Pb. Therefore, we can prove the theorem by show-
ing the same inequality between Πb and ΠL

g .
By the previous lemmas, we have that the α’s minimise

max{αi + · · · + αi+L−1 | K ≤ i ≤ N + 1 − L}

⎛

⎝= max
I,S

|I|=L

PrΠL
g

[I, S ]

⎞

⎠

Recall that βi is the probability of the configuration ti which is the unique
shortest one with max ti = i.7 We have constructed the set {βK , . . . , βN}. We
prove the result by showing that:

max
I,S

|I|=L

PrΠb
[I, S ] ≥ max{βi + · · · + βi+L−1 | K ≤ i ≤ N + 1 − L}

≥ max{αi + · · · + αi+L−1 | K ≤ i ≤ N + 1 − L}

The second inequality comes straight from the definition of the α’s and Lemma 2.
Fix any i and consider the configurations T = {ti, ti+1, . . . , ti+L−1} and the
coalition I = {pj | Mb(max t) = j for t ∈ T} of the parties sending the messages
from i to i+L− 1.8 Set S = i− 1. By the definition of I, all messages sent after
S up to (including) i+L−1 are sent by parties in I. Therefore, I wins in all the
coalitions in T by stopping at S. Hence PrΠb

[I, S ] ≥ βi + · · · + βi+L−1. Since i
was arbitrary, we have

max
I,S

|I|=L

PrΠb
[I, S ] ≥ max{βi + · · · + βi+L−1 | K ≤ i ≤ N + 1 − L}

and the theorem follows. ��
As a result of the above theorem, we know that ΠL

g is optimal against coali-
tions of size L. We now analyse ΠL

g to find out exactly the values of the α’s.

Lemma 3. Given n non-negative numbers α1, . . . , αn whose sum is 1 and any
l ≤ n, set λ = �n

l �, then

max{αi + · · · + αi+l−1 | 1 ≤ i ≤ n + 1 − l} ≥ 1
λ

(2)

7 It might be the case that for all small i up to some x, ti does not exist. For instance,
say that the first K messages are all sent by two parties, then “earliest” configuration
t will have max t ≥ 2K−2 and therefore t = tK doesn’t exist. If ti as described above
doesn’t exist, we let it be one of the many configurations where max ti is minimal
(dropping the constraint of it being short).

8 T might contain configurations ti, tj with Mb(i) = Mb(j), then I will not have size
L. If this is the case, I can be extended to a coalition of size L arbitrarily, therefore
we assume |I| = L.
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Proof. Assume for a contradiction that Eq. 2 doesn’t hold. Let vi =
{αl(i−1)+1, αi+1, . . . , αli} for 1 ≤ i ≤ �n

l �. If n mod l �= 0, then set vλ =
{αn+1−l, . . . , αn}. Since Eq. 2 doesn’t hold, we have that for all 1 ≤ i ≤ λ,
the inequality

∑
α∈vi

α < 1
λ holds. However,

1 =
n∑

i=1

αi ≤
λ∑

i=1

∑

α∈vi

α <
λ∑

i=1

1
λ

= 1

��

Theorem 5. Given n non-negative numbers α1, . . . , αn whose sum is 1 and any
l ≤ n, set λ = �n

l �, then

min
α

max{αi + · · · + αi+l−1 | 1 ≤ i ≤ n + 1 − l} =
1
λ

(3)

Proof. By the previous Lemma 3, it is enough to exhibit a set of α’s so that

max{αi + · · · + αi+l−1 | 1 ≤ i ≤ n + 1 − l} =
1
λ

For 1 ≤ i < λ, set αl(i−1)+1 = 1
λ and let αn = 1

λ . Every other α is zero. Note
that these values are picked so that non-zero values have at least l − 1 zero
values between each other. Therefore, any sum αi + · · · + αi+l−1 will contain at
most 1 non-zero value and all the non-zero sums will be 1

λ . The theorem follows
immediately. ��

This last theorem tells us that the optimal fairness is 1
λ and also how this can

be achieved. It is easy to see that there are other values of α’s for which this
optimal fairness can be achieved, so what we have proved so far is not enough for
a complete classification. Nevertheless, it contains enough information to obtain
an optimally-fair protocol.

Corollary 1. Let N + 1 − K be a multiple of lcm{2, 3, . . . ,K − 1}. Then Π1
g is

optimally fair against coalitions of any size.

Proof. By our definition of Π1
g = (M1,P1) and Lemma 2, we have that the αi’s

minimise
max{αi | K ≤ i ≤ N}

Hence, αi = 1
N+1−K for all i. In particular, all the N + 1 − K shortest configu-

rations are equally likely.
Pick any L < K. We already know from Theorem4, that ΠL

g = (ML,PL)
is optimally fair against coalitions of size L. Let PL(ti) = βi. Note that the
shortest configurations in Π1

g and ΠL
g are the same, therefore βi and αi refer to

the same configuration ti. We know from Lemma 2 that these β’s minimise

max
I,S

|I|=L

PrΠL
g

[I, S ] = max{βi + · · · + βi+L−1 | K ≤ i ≤ N + 1 − L}
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By Theorem 5, we know that the above has value 1

�N+1−K
L � = L

N+1−K since L

divides N + 1 − K. Finally, by Lemma2 the theorem follows:

max
I,S

|I|=L

PrΠ1
g
[I, S ] = max{αi + · · · + αi+L−1 | K ≤ i ≤ N + 1 − L} =

L

N + 1 − K

��
With this corollary we show how to construct a protocol which is optimally fair
against any coalition size. The protocol we described in Sect. 4 can be used to
achieve this fairness. In particular, using the notation of Fig. 1 and assuming
the parties agreed on an N for which Corollary 1 applies, P1 needs to construct
a permutation πi for each of the N + 1 − K “shortest” configurations. Hence,
πi[x] = i − 1 + ((x − i) mod K), i.e. πi rotates the xth row forward by πi[x].
We also note that the protocol of Fig. 1 can be used to achieve the distribution
of ΠL

g for any L. Thus, for large values of K, since using values of N suitable
for Corollary 1 is prohibitive, the protocol of Fig. 1 can be tuned to be optimal
against specific values of L (rather than all).

7 Conclusions and Future Developments

In this paper, we have proposed an efficient exchange protocol which achieves
optimal partial fairness even in the presence of a dishonest majority. This is
achieved by concealing when the exchange actually happens among a linear
amount of dummy messages. Our concrete instantiation of the protocol takes
advantage of delay encryption and commutative blinding and provides security
against passive adversaries. Using our protocol in conjunction with other SMPC
protocols improves the known bounds of partial fairness in the presence of a
dishonest majority. In this regard, we provide a large improvement over the
current state of the art [4,9,16]. We also provide a deep and abstract analy-
sis of the protocols achieving partial fairness by concealing the point where the
secrets are exchanged. Since our analysis does not involve any assumption on the
cryptographic primitives used, it proves a very general impossibility result and
shows the optimality of our protocol. However, our research leaves a couple of
unanswered questions. Our abstract analysis does not provide a complete classi-
fication of the optimally-fair protocols. Therefore, could a protocol be designed
to achieve optimal fairness without the use of delay encryption? Moreover, the
protocols of [4] achieves complete fairness if an honest majority is present. This
leaves open the question of whether our method could be modify to obtain the
same feature.

Appendix A Formal security proof

In this section, we provide some proof sketches for the theorems presented in
Sect. 5. More details are available in the full version of the paper. We assume
the setting described in Sect. 3 as well as only considering the exchange in its
simplest form after the reduction of Sect. 4.
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Proof (Theorem 1 proof). Consider the function described in Fig. 2. It computes
the view of the protocol of an adversary A controlling all parties but PH. For
brevity, Fig. 2 only shows how the messages that depends on PH are computed.
If Delay is COA secure and DH is not opened yet, then A has no access to sH.
So assume that the content of DH are known to A, then A must obtain kH[1].
By using the commutativity property of Blind, we can remove the appearance
of bH[1] from the computation of MH. Now modify ColView into ColView2

which only outputs the messages of MH up to (excluding) the message con-
taining kH[1]. Since Blind is IND-CPA and bH[1] only appears in LH, ColView2

is computationally indistinguishable from ColView3 which behaves the same but
constructs LH using some random (and known by A) key ε instead of kH[1].
In ColView3, A cannot obtain sH. Thus, A can obtain sH only if DH is opened
and the part of MH containing kH[1] is exchanged. ��

Fig. 2. View of a maximal malicious coalition.

Proof (Theorem 2 proof). To prove the statement we need to construct a simu-
lator S in the ideal world for any non-uniform PPT adversary A in the hybrid
model. So, fix an adversary A, the simulator S will work as follows:

– S runs a local instance of A to which passes the secrets of the corrupted
parties as well as the auxiliary information;

– whenever A aborts, so does S;
– when A interacts with the functionality performing the setup phase, S picks

a random input s′
H and carries out the functionality Fsetup;

– during the exchange phase S acts as PH and behaves accordingly to the
output they produced when simulating the functionality Fsetup;

– when S should send the exchange message containing kH[1], S will interact
with Fex to carry out the exchange in the ideal world and obtain the real
secret sH. Using the non-committing property of the encryption scheme, S
can compute a key which will decrypt the ciphertext EnckH[1](s′

H) that A
holds into the real secret sH. S will use this key in the exchange message;
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– when A returns, S will output the same result.

Firstly, the view of A in its interaction with S is the same as it would be in
the real world. This follows from Theorem1 and the non-committing property
of the encryption scheme. Hence, the output of S in the ideal world is the same
as the output of A in the real world. However, the output of PH might differ. If
A aborts the communication when one of the corrupted party would have sent
a message that reveals their secret, then such secret is kept confidential in the
real world, while it is not in the ideal world. Thanks to Sects. 4.2 and 6, and the
use of ideal functionality Fsetup, we know that A will abort at such a point with
probability at most K−1

N+1−K . ��

Before proving the correctness of our setup phase, we show that the helper
function F defined in Fig. 1 is an IND-CPA encryption scheme.

Lemma 4. If Blind is IND-CPA, then function F (M,f, b, g) defined in Fig. 1 is
an IND-CPA encryption scheme of (M,f) provided that g is not fixed.9

Proof (sketch) Consider the Impossible game of Fig. 3. Intuitively, A wins the
impossible game if they can pick a permutation τ so that they can tell if a list
of unknown values has been permuted with τ or not. We rely on the fact that
k is kept confidential, so Blind∗(ε, k) is an unpredictable n × K matrix of values
for A (note that if Blind is deterministic, then the impossibility of the game is
glaring). Now assume that B is a PPT adversary so that IND-CPAB

F (1λ) = 1
with probability greater than 1

2 + negl(λ) for all negligible functions negl(λ). We
then argue that ReductionB(1λ) = 1 with the same probability. In particular,
note that R(M0,M1, f1, f0) = O(M0,M1, f1, f0). However, solving the Reduction
games means solving the Impossible game since, in ReductionB(1λ), the bit b is
used (implicitly) only in the call to shuffle. Therefore, no such B can exist. ��

Fig. 3. Proof that F is IND-CPA.

9 See Fig. 3 for a precise definition of the IND-CPA game for F .
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Proof (Theorem 3 proof). Consider Fig. 2, the function ColView returns the view
of the dishonest entity A controlling all parties but PH. For brevity, Fig. 2 only
shows how the messages that depends on PH are computed. Firstly, since we
assume the security of the time-release encryption, we ignore the delayed mes-
sages. By using the fact that F is IND-CPA, we note that ColView is compu-
tationally indistinguishable from ColView2 which behaves the same but SH is
replaced by 〈F (Mε, oε, bH[2],σ′

H[i] | 1 ≤ i ≤ δ〉 for some fixed (and known by
A) Mε, oε and fresh σ′

H[i]. This is enough to show that the setup phase doesn’t
leak any information about τH (since τH doesn’t appear at all in ColView2). ��
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Abstract. Homomorphic encryption (HE) is a promising technique for
preserving the privacy of sensitive data by enabling computations to be
performed on encrypted data. However, due to the limitations of arith-
metic HE schemes, which typically only support addition and multiplica-
tion, many nonlinear operations must be approximated using these basic
operations. As a result, some nonlinear operations cannot be executed in
the same manner as they would be in the plain domain. For instance, the
matrix inverse can be calculated using the Gaussian elimination method
in the plain domain, which is not possible using only the usual arithmetic.
Therefore, much literature has turned to iterative matrix inverse algo-
rithms such as the Newton method, which can be implemented using
only additions and multiplications. In this paper, we propose a new
matrix inversion method with better performance and prove that the
new method outperforms the existing method; the number of depths
of the new method is fewer than that of the existing method. Thus,
we can evaluate more operations and design the algorithm efficiently
since the number of operations is limited in HE. We experiment on ML
algorithms such as linear regression and LDA to show that our matrix
inverse operation is more efficient than Newton’s in HE. Our approach
exhibits approximately twice the performance improvement compared to
the Newton’s method.

Keywords: inverse matrix · homomorphic encryption · machine
learning

1 Introduction

Privacy-preserving data mining (PPDM) is becoming significantly vital as more
and more data is collected, analyzed, and shared. In addition to this trend,
privacy regulations such as the General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA) have boosted the significance of
privacy-preserving techniques by necessitating organizations to protect sensitive
and personal information. In this regard, various techniques such as differential
privacy and homomorphic encryption (HE) are proposed to protect sensitive
information. Among these techniques, homomorphic encryption, which is based
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on lattice-based cryptography, is considered a post-quantum resistant encryption
algorithm and one of the most promising solutions to attacks from quantum
computers. The technique is often referred to as the “holy grail” of cryptography,
as it allows for computation on encrypted data. Hence, much literature [3–5] has
focused on the execution of privacy-preserving data analysis using homomorphic
encryption.

However, homomorphic encryption is often considered impractical due to its
poor time performance, albeit with its promising properties. Specifically, the
computation of HE circuits typically requires more time at least by the several
order of magnitude compared to the construction of plain circuits. In [3], the
evaluation of a logistic regression model on the Edinburgh Myocardial Infarction
dataset, which consists of 1,253 observations and 10 features, has been reported
to require 116 min when implemented within the HE scheme. In contrast, the
same process in the plain domain, utilizing a personal computer, can be com-
pleted in a matter of seconds. In light of this limitation, much of the recent
research has focused on algorithmically [14,15] improving the time performance
of HE, as well as on the use of parallel structures [6] in the hardware construction
of HE schemes, in an effort to make the technique practical for deployment.

The most efficient and practical implementation of a fully homomorphic
encryption scheme based on the Learning with Errors (LWE) problem is the
CKKS scheme with leveled homomorphic encryption (LHE) setting. While the
CKKS scheme offers the ability to perform arbitrary computations through the
use of bootstrapping techniques, its practical deployment is limited to the LHE
setting. In this context, the depth of the circuit must be pre-determined, with
the number of multiplications per ciphertext serving as the determining factor.
Furthermore, as the scheme is based on arithmetic homomorphic encryption, the
majority of algorithms must be approximated using only the basic operations of
addition and multiplication.

The primary concern when executing privacy-preserving data mining algo-
rithms in HE is the low latency of matrix operations. Among these operations,
the most challenging and time-consuming task to construct within HE is the
inverse operation. In the plain domain, the inverse of a matrix can be easily
obtained through the use of Gaussian elimination. However, in the encrypted
domain, all HE circuits must be designed for the worst-case scenario. Addition-
ally, the encrypted elements in a matrix necessitate comparison operations for
all elementary row (or column) operations and time-consuming divisions.

In order to overcome this problem, there are several attempts at designing
matrix inverse operations in the context of HE. However, they have been met
with limited success due to their näıve implementation, resulting in a significant
increase in computational time and multiplicative depth. Cheon et al. [7] use
a matrix version of Goldschmidt’s algorithm described in [8] since it can only
be operated using additions and multiplications. However, it is not practical to
use as it requires knowledge of a threshold value in advance, which is infeasible
in the encrypted domain. Therefore, much literature generally uses Newton’s
method [9] for matrix inversion in HE [11,12] because it obtains an approximate



336 T. M. Ahn et al.

matrix inverse using only additions and multiplications in an iterative manner.
However, it also has a drawback as it requires many iterations and multiplica-
tions.

The issue of multiplicative depth is also crucial when designing homomor-
phic circuits, as most algorithms in practice use leveled homomorphic encryption
(LHE), in which the multiplicative depth is predetermined. In the encrypted
domain, the matrix inverse must be approximated using a sequence of matrix
multiplications, which significantly increases the multiplicative depth of the cir-
cuit. For example, the Newton method requires a multiplicative depth of 43
to approximate the inverse matrix, taking up most of the circuit’s depth and
preventing further operations. Although a technique called bootstrapping can
increase the multiplicative depth of the ciphertext, it requires a much greater
amount of time and is therefore avoided in practical circuit construction.

Therefore, it is crucial to design an efficient matrix inverse operation with
fewer depths in leveled homomorphic encryption (LHE). By reducing the number
of multiplications per ciphertext in the matrix inverse algorithm, one can design
an HE circuit with a shallower multiplicative depth. Additionally, with the same
security parameter set, more operations can be added for further computations
within a leveled homomorphic encryption scheme or smaller parameters can be
chosen for more efficient computation of the circuit.

In short, our contributions are summarized as the following:

– We present a novel iterative matrix inverse operation. Our technique can
reduce the number of depths by nearly a half compared to the Newton’s
method, mostly used algorithms in the current literature.

– We provide mathematical proofs and experimental result comparing two
approaches—ours and Newton’s method. Specifically, we demonstrate the
convergence speed and required depths of both approaches in theory and
implementation.

– Our matrix inverse algorithm seamlessly integrates with the inverse matrix
in HE. We substantiate our claim by presenting experimental results.

2 Background

2.1 Homomorphic Encryption

Homomorphic encryption (HE) is a technique that allows for computations to
be performed on the encrypted data without the need for decryption, utilizing a
one-to-one model between the client and the server. This is achieved by designing
the encryption scheme based on the Learning with Errors (LWE) problem [10],
which uses noise as a means of ensuring security. However, as computations are
performed on the encrypted data, the noise in the ciphertext accumulates, and if
this noise exceeds a certain threshold, the correctness of the decryption process
can no longer be guaranteed.

Let M and C denote the spaces of plaintexts and ciphertexts, respectively.
The process of HE is typically composed of four algorithms: key generation,
encryption, decryption, and evaluation.
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1. Key generation: Given the security parameter λ, this algorithm outputs a
public key pk, a public evaluation key evk and a secret key sk.

2. Encryption: Using the public key pk, the encryption algorithm encrypts a
plaintext m ∈ M into a ciphertext ct ∈ C.

3. Decryption: For the secret key sk and a ciphertext ct, the decryption algo-
rithm outputs a plaintext m ∈ M.

4. Evaluation: Suppose a function f : Mk → M is performed over the
plaintexts m1, · · · ,mk. Then, the evaluation algorithm takes in ciphertext
c1, · · · , ck corresponding to m1, · · · ,mk and the evaluation key evk to output
c∗ such that Dec(c∗) = f(m1, · · · ,mk).

In the field of homomorphic encryption, there are two primary categories
of encryption schemes: fully homomorphic encryption (FHE) and leveled homo-
morphic encryption (LHE). FHE permits any computation to be executed on
the encrypted data, while LHE is more restricted in the types of computations
that can be performed. These distinctions are due to the various methods used
to handle the accumulation of noise in the ciphertext.

FHE utilizes a specialized technique known as bootstrapping to reduce the
noise in the ciphertext and increase the multiplicative level of the ciphertext,
allowing for further computations to be performed on the encrypted data. How-
ever, the use of bootstrapping is a computationally expensive technique and
can be time-consuming. In practical applications, LHE is often preferred for its
faster performance when working with limited depth circuits. This is because
LHE does not rely on the use of bootstrapping and thus is less computationally
intensive.

Homomorphic encryption can be categorized in terms of evaluation based
on the type of computations that can be performed on the encrypted data.
Arithmetic homomorphic encryption allows for basic arithmetic operations such
as addition and multiplication to be performed on the encrypted data. Two
popular examples are CKKS encryption [1] and BFV [13] encryption schemes,
where the CKKS encryption scheme is the latest and the most practical HE solu-
tion providing real number arithmetics. Boolean-based homomorphic encryption
allows for Boolean operations, such as AND, OR, and NOT, to be performed on
the encrypted data. TFHE [15] and FHEW [14] are two examples. The choice
of the homomorphic encryption scheme depends on the specific application and
the type of computations that need to be performed on the data.

2.2 Arithmetic HE

Arithmetic HE generally uses the usual arithmetic such as addition and mul-
tiplication within the limited multiplicative depth which is pre-defined by the
encryption parameters. Therefore, one needs to consider the depth of the cir-
cuit in advance for the optimal performance since the more depth of the circuit
requires larger parameter set resulting in the performance degradation. In the
BFV and CKKS schemes, the depth of the circuit is mostly determined by the
number of multiplications per chiphertext required for the HE circuit.
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Moreover, the multiplication operation is more complex designed than the
addition in HE. In BFV and CKKS, the multiplication between two cipher-
texts entails auxiliary procedures such as relinearization and modulus switching.
Therefore, the time gap between such operations differs in a significant amount.
As an illustration, within the CKKS scheme, the computational time required
for multiplication exceeds that of addition by a factor greater than 46 (time
for mult. : 649ms, add: 14ms)1. Hence, it is important to note that reducing
number of multiplication is crucial in HE circuit design.

One of the key features of the CKKS scheme is the use of the Single Instruc-
tion Multiple Data (SIMD) structure. SIMD [17] is a structure that enables the
packing of vector plaintexts into a single ciphertext, and operations are per-
formed in vector units. Another feature is additional functionalities such as slot
rotation. Rotations enable us to interact with values located in different cipher-
text slots. These features allow for efficient operations on vectors and matrices.
Halevi et al. [16] introduce a matrix encoding method based on diagonal decom-
position, where the matrix is arranged in diagonal order. This method requires
O(n) ciphertexts to represent the matrix, and the matrix multiplication can be
computed using O(n2) rotations and multiplications and two circuit depths given
the multiplication of two square matrices of size n.

Additionally, Jiang et al. [18] propose the matrix multiplication method that
reduces the complexity of multiplications and rotations to O(n) by employing
three levels of computational depth. These approaches are beneficial in terms
of computational efficiency. Nevertheless, within the scope of this paper, we
employ a naive matrix multiplication approach that necessitates O(n3) multi-
plicative operations for the computation of the inverse matrix. The evaluation
of an inverse matrix typically entails substantial computational depth. Utiliz-
ing a naive matrix multiplication method is advantageous in this regard, as it
necessitates only a single depth.

2.3 Circuit Depth

In leveled homomorphic encryption, the total count of multiplication evaluations
for a single ciphertext is predetermined by the initial depth parameter of the
HE system. For example, when a ciphertext is assigned a depth level denoted
as L, it is intrinsically constrained to execute a maximum of L multiplicative
operations. Beyond this specified threshold of L multiplications, the ciphertext
ceases to support further multiplication operations.

The design of HE circuits can significantly influence the multiplicative depths,
making it a crucial consideration. To illustrate this point, consider four distinct
ciphertexts denoted as x, y, z, and w, each initially possessing a depth level of L.
When these ciphertexts are multiplied sequentially, it consumes 3 depth levels,
resulting in a ciphertext denoted as xyzw with a reduced depth of L − 3.

Alternatively, we can initially perform a multiplication between x and y,
yielding xy with a depth decrement of 1; likewise, we can evaluate a multipli-

1 λ = 128, N = 216, Δ = 250, L = 50.
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cation on z and w. Finally, the multiplication of xy and zw results in a cipher-
text xyzw with a reduced depth of L − 2. Importantly, both approaches yield
equivalent results and require an identical count of 3 multiplication operations.
However, the depth level of the resulting ciphertext differs by a factor of 1.

Note that when multiplying ciphertexts with different levels, the multiplica-
tion operations are executed based on the lowest level among them.

2.4 Conventional Iterative Matrix Inverse

There are mainly two approaches in implementing the iterative matrix inverse
operation: Goldschmidt’s method [8] and Newton’s method.

Goldschmidt Algorithm. (See the details in Algorithm 3) Let A be an invert-
ible square matrix that satisfies ‖Ā‖ ≤ ε < 1 for Ā = I − 1

2t A for some non-
negative integer t. It follows that

1
2t

A(I + Ā)(I + Ā2) · · · (I + Ā2r−1
) = I − Ā2r

where I is the identity matrix. Additionally, we note that ‖Ā2r‖ ≤ ‖Ā‖2r ≤ ε2
r

,
which implies that 1

2t

∏r−1
i=0 (I + Ā2i) = A−1(I − Ā2r ) is an approximate inverse

of A when ε2
r � 1.

The algorithm is able to correctly output the approximate matrix inverse for
some sufficiently large r ∈ N. Using the Goldschmidt algorithm, Cheon et al.
propose a matrix inverse method over HE schemes [7].

Newton’s Method. (See the details in Algorithm 4) Likewise, let A ∈ R
n×n be

any invertible square matrix, and let α be the reciprocal of the dominant eigen-
value of AAT . Newton’s method computes the following sequence of matrices
{Xk}k≥0 as:

X0 = αAT and Xk+1 = Xk(2I − AXk),

until Xk converges to A−1. We will dive into the details including the proof for
convergence in Theorem 1.

Newton’s method for obtaining an approximate inverse matrix consists of
three steps: (1) computing AAT , (2) computing the dominant eigenvalue of
AAT , and (3) calculating a sequence of Xn to approximate the inverse of A. It
is worth noting that α is the reciprocal of a dominant eigenvalue of AAT which
can be approximated using the Goldschmidt’s algorithm through a combination
of addition and multiplication operations.

In fact, it is difficult to directly obtain the dominant eigenvalue from homo-
morphic encryption. However, in this paper, we demonstrate that convergence
can be proven even when a larger value is used rather than the exact value of the
dominant eigenvalue. Therefore, some literature uses a trace instead of a domi-
nant eigenvalue when obtaining the inverse matrix in homomorphic encryption
by Newton’s method [12]. The trace of a square matrix is the sum of its main
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diagonal elements. Thus, the trace of AAT is always greater than the domi-
nant eigenvalue of AAT since the trace is the sum of eigenvalues and AAT is
positive-definite.

3 Problems in Two Popular Methods

In this section, we will delve into the details and challenges associated with the
implementation of the iterative matrix inverse operation in HE using two distinct
approaches: Goldschmidt’s method and Newton’s method.

First, a major limitation of Goldschmidt’s method is that the value of Ā must
be known in advance in order to satisfy the condition where ‖Ā‖ is less than 1.
This is infeasible, as all values—including input, intermediate, and output—are
processed in an encrypted state. In other words, it is not possible to find t such
that ‖Ā‖ = ‖I − 1

2t A‖ < 1. As a result, the algorithm cannot be initiated at
all. It may be suggested to raise the value of t sufficiently large to match the
condition of ‖Ā‖ < 1, however, this would highly likely zero out the elements of
Ā = I− 1

2t A, thus the approach cannot provide the approximate matrix inverse
for all A.

Next, a drawback of Newton’s method is the significant computational com-
plexity in terms of overall time consumption. Upon examination of Newton’s
method, the sequence of Xn requires two matrix multiplications in one itera-
tion; assuming that the process converges in r iterations, the time complexity of
step (3) in Sect. 2.4 is O(n2r). Additionally, step (3) consumes 2r circuit-depth.
As a result, the time complexity of Newton’s method and its depth-consumption
are significant. To provide an intuitive example, for a small matrix of size n = 10
and iteration number r = 15, the total number of multiplications in a HE setting
is 4,500. If we assume that each multiplication takes 649 ms, the expected time
for the inverse matrix operation would be at least 2,920 s.

4 Proposed Approach

We propose a novel matrix inverse method by combining elements from both
Goldschmidt’s method and Newton’s method.

4.1 Motivation

Goldschmidt’s approach requires the value of t for the convergence of Ā =
I − 1

2t A, however, as previously mentioned, finding this value in the encrypted
domain is infeasible.

In contrast, Newton’s method relates the dominant eigenvalue of AAT to
the scaling of AAT , where the scaling by α ensures that the norm of AAT is
less than 1.
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4.2 Efficient Matrix Inverse

Based on this observation, we posit that the dominant eigenvalue λ1 is correlated
with the role of t in Goldschmidt’s method. To address this issue, (1) we first find
the dominant eigenvalue of AAT , and (2) scale AAT by its dominant eigenvalue.
(3) We then use the normalized AAT to iteratively approximate the matrix
inverse using the Goldschmidt’s sequence for Yi, as detailed in Algorithm 1.

Algorithm 1. Our Approach
1: Input: n × n invertible matrix A, iteration number r
2: Output: approximate inverse matrix Yr

3: λ1 ← a dominant eigenvalue or trace of AAT

4: Y0 ← 1
λ1

AT

5: Ā0 ← In×n − 1
λ1

AAT

6: for i = 1 to r do
7: Yi ← Yi−1(In×n + Āi−1)
8: Āi ← Ā2

i−1

9: end for

In summary, our approach diverges from Newton’s method in two fundamen-
tal ways: (1) we employ the Goldschmidt algorithm to approximate the inverse
of matrix A, and (2) our technique incurs a multiplicative depth of only 1 per
iteration, while Newton’s method entails a depth of 2 per iteration.

It is worth emphasizing that both methods involve the same number of multi-
plications per iteration, namely, 2. However, the discrepancy in depth utilization
per iteration between the two methods arises from the fact that our approach
permits the computation of multiplications independently, incurring a depth cost
of 1 for each operation. In contrast, Newton’s method conducts matrix multipli-
cations sequentially, incurring a depth cost of 2 per iteration.

Furthermore, it is crucial to note that both Newton’s method and our app-
roach require an equivalent number of iterations to achieve convergence. Conse-
quently, given that Newton’s method necessitates a depth of 2 per iteration, our
approach ultimately requires only half the depth cost to achieve convergence
compared to Newton’s method. Further details regarding this matter will be
addressed in the subsequent proof section.

The reason for finding the dominant eigenvalue of AAT , instead of A itself,
is because not all eigenvalues of the input matrix A are necessarily positive.
For convergence, it is essential that the norm of Ā0 (the matrix used in the
Algorithm 1) be less than 1. AAT has the property that all of its eigenvalues
are positive. By using the dominant eigenvalue of AAT , we ensure that the norm
of Ā0 remains less than 1 for any invertible matrix A. In the case that the input
matrix A is positive definite, it is unnecessary to calculate AAT . Under such
circumstances, we can directly evaluate the inverse matrix using the following
approach.
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Algorithm 2. Our Approach
1: Input: n × n positive-definite invertible matrix A, iteration number r
2: Output: approximate inverse matrix Yr

3: λ1 ← a dominant eigenvalue or trace of A
4: Y0 ← 1

λ1
In×n

5: Ā0 ← In×n − 1
λ1

A
6: for i = 1 to r do
7: Yi ← Yi−1(In×n + Āi−1)
8: Āi ← Ā2

i−1

9: end for

5 Convergence and Depth Analysis

In this work, we demonstrate that our proposed method converges to the inverse
matrix, and it does so at the same rate as Newton’s method. To support our
claim, we provide the following lemma, which establishes the convergence of a
matrix A under a specific condition.

Lemma 1. Suppose A is an n × n complex matrix with spectral radius ρ(A).
Then, lim

k→∞
Ak = 0 if ρ(A) < 1.

5.1 Proof of Convergence

Suppose that the eigenvalues of an n×n matrix A by λi(A), i = 1, . . . , n. When
A is positive-definite, we can order its eigenvalues in a non-decreasing order as
follows:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) > 0.

It is worth noting that the eigenvalues of a positive definite matrix are real and
positive.

We first state the convergence of Newton’s iterative algorithm. We provide
details of the proof of Theorem 1 in Appendix B.1 since it is used in other
theorems.

Theorem 1. Let A ∈ R
n×n be an invertible matrix and define the sequence

{Xk}k≥0 of matrices as follows:
{

X0 = αAT ,

Xk+1 = Xk(2I − AXk).

where α = 1
λ1(AAT )

. Then, Xk → A−1 as k → ∞.

Next, we prove that the sequence in our approach (in Algorithm 1) converges
to an inverse matrix, i.e., Yi → A−1.
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Theorem 2. Let A ∈ R
n×n be an invertible matrix and define the sequence

{Yk}k≥0 of matrices as follows:
⎧
⎪⎨

⎪⎩

Y0 = αAT , with α = 1
λ1(AAT )

,

Ā = I − αAAT ,

Yk+1 = Yk(I + Ā2k).

Then, Yk → A−1 as k → ∞.

Proof. From the definition of Theorem 2, we get

Yk = αAT (I + Ā)(I + Ā2) · · · (I + Ā2k−1
) = A−1(I − Ā2k). (1)

We show that ρ(Ā) = ρ(I − αAAT ) < 1. We note that the eigenvalues λi(Ā)
are given by, λi(Ā) = 1 − αλi(AAT ). Since AAT is positive-definite and α =

1
λ1(AAT )

, we have |λi(Ā)| < 1. Thus, we can get ρ(Ā) < 1. Therefore, by Lemma

1 we have limk→∞ Āk = 0. We note that Yk = αAT
∏k−1

i=0 (I + Ā2i) = A−1(I −
Ā2k) follows from Eq. (1). Therefore,

lim
k→∞

Yk = αAT
∞∏

i=0

(I + Ā2i) = A−1(I − lim
k→∞

Ā2k) = A−1.

In the context of our method, we posit the use of the trace of AAT in place of
the dominant eigenvalue of AAT . Our method still guarantees convergence of
the iterative process, as the spectral radius of the modified matrix Ā, denoted
as ρ(Ā), remains less than one under this assumption.

5.2 Convergence Comparison

We prove that our method has the same convergence rate as Newton’s method.

Theorem 3. Let A ∈ R
n×n be an invertible matrix. Suppose {Xk}k≥0 is the

sequence of matrices generated from Newton’s method of Theorem 1 and {Yk}k≥0

generated from Theorem 2 with A. Then for any 0 < ε � ‖A−1‖, let R1, R2 ∈
N be the smallest integers that satisfy ‖A−1 − Xi‖ < ε for all i > R1 and
‖A−1 − Yj‖ < ε for all j > R2 respectively. Then we have R1 = R2. That
is, the method illustrated in Theorem 2 converges with the same iterations as
Newton’s method.

Proof. From the proofs of Theorem 1 and Theorem 2, we have

Xk = A−1(I − Rk) = A−1

(

I −
(

I − 1
λ1(AAT )

AAT

)2k
)

,

Yk = A−1(I − Ā2k).
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We first prove that R1 and R2 always exist for 0 < ε < ‖A−1‖. Define two
sequences {xk}k≥0 and {yk}k≥0 with xk = ‖A−1 − Xk‖ and yk = ‖A−1 − Yk‖.

For simplicity, we denote the greatest eigenvalue of AAT as λ1, and the
smallest eigenvalue as λn. Then we have

xk = ‖A−1 − Xk‖ =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

AAT

)2k
∥
∥
∥
∥
∥

≤ ∥
∥A−1

∥
∥ ·

∥
∥
∥
∥I − 1

λ1
AAT

∥
∥
∥
∥

2k

=
∥
∥A−1

∥
∥ ·

(
λ1 − λn

λ1

)2k

.

Also for yk, we have

yk =
∥
∥A−1 − Yk

∥
∥ =

∥
∥
∥
∥A

−1 ¯AAT
2k

∥
∥
∥
∥ =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

· AAT

)2k
∥
∥
∥
∥
∥

≤ ∥
∥A−1

∥
∥ ·

∥
∥
∥
∥I − 1

λ1
· AAT

∥
∥
∥
∥

2k

=
∥
∥A−1

∥
∥ ·

(
λ1 − λn

λ1

)2k

.

Then by the definition of λ1 and λn, we have the inequality

0 <
λ1 − λn

λ1
< 1.

From the results, we can observe that both sequences xn and yn monotonically
decrease and both converge to 0 as k → ∞. Thus, for any 0 < ε � ∥

∥A−1
∥
∥, there

always exist R1, R2 ∈ N such that

xi < ε for all i > R1, and yj < ε for all j > R2.

We further investigate the behavior of xk and yk to compare the minimal itera-
tion required, namely R1 and R2:

xR1 =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

AAT

)2R1
∥
∥
∥
∥
∥

< ε,

yR2 =

∥
∥
∥
∥
∥
A−1

(

I − 1
λ1

AAT

)2R2
∥
∥
∥
∥
∥

< ε.

It is readily evident that, for a given ε value, R1 is equal to R2.

Our proposed method, despite relying on the trace instead of the dominant
eigenvalue when compared to Newton’s method, demonstrates an equivalent
convergence rate. The proof for this is similar to Theorem 3.
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5.3 Depth Comparison

From Theorem 3, we confirm that our method converges at the same rate as
Newton’s method. It implies that our method uses less multiplicative depth for
matrix inverse operation.

Specifically, let tdiv denote the iteration number required for the division
algorithm method. Moreover, let Xk and Yk represent the previous two algo-
rithms, and assume that Xk and Yk converge at iterations of R1 and R2,
respectively. Then, the total number of multiplications required for Xk is 2tdiv

+n3 + n2 + 2n3R1 and the total number of multiplications required for Yk is
2tdiv + 2n2 + 2n3R2. Since the division algorithm requires the same amount
of multiplications for both algorithms, we only compare the remaining terms.
Hence, Yk requires almost the same number of multiplications since R1 = R2.

For a depth comparison, we analysis the sequence equation Xk+1 = Xk(2I−
AXk) in Theorem 1 and the sequence equation Yk+1 = Yk(I + Ā2k) in Theo-
rem 2. First, assuming the depth level of the input matrix A is denoted as L, and
the level of X0 is assumed to be L − 5, we can observe that X1 is computed by
multiplying A and X0, then subtracting it from 2I, followed by another multipli-
cation with X0. Considering only the multiplication operations (since addition
and subtraction do not affect the level), the level of AX0 becomes L − 6, and
after another multiplication with X0, the resulting matrix X1 has a level of L−7.
Following this pattern, we can see that X2 has a L − 9 level, X3 has a L − 11
level, and so on. Since the level difference between Xk and Xk+1 (k ≥ 0) is 2,
we can conclude that the Newton method consumes 2 depths per iteration.

Next, assuming the level of Y0 is L, then Ā has a L−1 level. Y1 is computed
by adding Ā and I and then multiplying it by Y0, resulting in a L − 2 level.
Ā2 is the square of Ā, which has L − 2 level. Y2 is the result of multiplying Y1

and Ā2, which makes its level L−3. This pattern continues, and we can observe
that Y3 has a L − 4 level, Y4 has a L − 5 level, and so on. The level difference
between Yk and Yk+1 (k ≥ 1) is always 1. Therefore, our method consumes 1
depth per iteration.

Based on the observation, the total depths required for Xk is tdiv + 2 + 2R1

and the total depths required for Yk is tdiv + 3 + R2. Since R1 = R2, and
assuming that R1 = R2 ≥ 2, our method can achieve the inverse matrix with
fewer depths compared to the Newton method.

6 Experiment

In this section, we conduct a comparative analysis to evaluate the performance
of the proposed algorithm and Newton’s method when applied to invertible
matrices in both the plain and encrypted domains. The evaluation focuses on two
critical metrics: circuit depth and iteration number. Subsequently, the proposed
algorithm is applied to linear regression and LDA in the encrypted domain to
validate its computational efficiency.
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6.1 Experiment Setting

Environment. In our cryptographic experiments, we employed OpenFHE [2]
library for implementing the CKKS scheme. All experiments were evaluated on
a system consisting of Intel Core i9-9900K CPU 3.60GHz × 16, 62.7 GiB RAM,
Ubuntu 20.04.4 LTS.

CKKS Scheme Setting. We employed a 128-bit security level for all CKKS
implementations. The other encryption parameters, including the ring dimen-
sion N , scaling factor Δ, and circuit depth D, were pre-determined to perform
the inverse matrix operations or machine learning algorithms. Furthermore, we
exclusively used a leveled approach and avoided the use of bootstrapping during
the evaluation of homomorphic circuits.

6.2 Invertible Matrix and Machine Learning

Fig. 1. The distribution of iteration numbers required for convergence to the inverse
matrix across various dimensions for two algorithms—ours and Newton method.

Iteration Number Distribution. Figure 1 demonstrates the distributions of
the iteration numbers for our proposed algorithm and the Newton’s method. We
conducted 100 experiments for matrix dimensions of 10, 20, . . . , 50 and depicted
their distributions using box plots. We randomly generated square invertible
matrices of varying sizes, with the smallest eigenvalue greater than 10−7 to
avoid being recognized as zero. We recorded the iteration numbers at which
convergence was achieved, with ε set to 0.001 and compared the approaches in
the plain domain using Matlab R2022b. The results of our experiments show that
our proposed algorithm converges identically to Newton’s method regardless of
dimension.
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Time and Memory w.r.t. Circuit Depth. The reduction in depths has a
significant impact on both the multiplication time and the memory size of cipher-
text and keys in the encrypted domain. For example, in the CKKS scheme, with
the same parameter set (λ, N , Δ), the multiplication time increases propor-
tionally with respect to the depth D of the circuit (see Table 1). Specifically,
multiplication time for D = 1 is 0.037, while 0.649 for D = 50; the latter is
approximately 17 times greater.

Table 1. Impact of circuit depth on the multiplication and key generation time in the
CKKS encryption scheme with fixed encryption parameters (λ, N , Δ).

λ N Δ Depth Mult. Time (s) KeyGen Time (s)

128 216 250 1 0.037 0.225

128 216 250 10 0.14 0.763

128 216 250 20 0.251 1.323

128 216 250 30 0.361 1.884

128 216 250 40 0.486 2.461

128 216 250 50 0.649 3.062

Additionally, in the leveled-CKKS scheme, the size of the ciphertext and key
are linearly determined by the circuit depth. This is due to the fact that the
CKKS scheme uses rescaling (or similarly modulus-reduction in other schemes)
procedure, which reduces the ciphertext size (modulus) after multiplication. Con-
sequently, a larger initial ciphertext size is necessary to accommodate the entire
circuit multiplications. Therefore, the depth of the circuit is a crucial factor that
determines both the time performance and memory capacity in leveled encryp-
tion schemes.

Comparison of Implementation in Encrypted Domain: Time and
Depth. We compare our proposed algorithm with the Newton’s method for
a randomly generated square matrix of size 5 with regards to error at specific
iterations, under varying circuit depths (as seen in Table 2) in the encrypted
domain. We use the same set of parameters (λ, N , Δ) as in Table 1 and measure
the error of the approximated inverse matrix using the spectral norm. For the
convergence of the approximated inverse, we set ε = 0.001.

The results indicate that our algorithm converges at iteration number 16,
which can be efficiently implemented with a circuit depth of D = 27. In contrast,
the Newton’s method converges at the same iteration number 16; however, it
requires a circuit depth of D = 43.

Therefore, we conclude that our proposed algorithm has the same conver-
gence speed as the Newton’s method in the encrypted domain. However, as our
algorithm can be implemented with a smaller circuit depth, its total execution
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Table 2. Evaluation of our approach and Newton’s method in the encrypted domain
based on iteration number, circuit depth, and error (both use trace instead of dominant
eigenvalue).

Our Method Newton Method

Depth #Iter Error Time(s) #Iter Error Time(s)

20 9 0.4957 242.36 4 2.3868 177.97

25 14 0.0036 442.15 7 1.5761 301.48

27 16 4.59e−6 596.62 8 1.0687 409.17

35 16 4.59e−6 1054.35 12 0.1296 791.84

40 16 4.59e−6 1242.98 14 0.0036 1042.87

43 16 4.59e−6 1410.56 16 4.59e−6 1256.37

time is about 596 s, whereas the Newton’s method’s execution time is about
1,256 s, making our method 2.1 times faster.

Table 3. Comparison of our proposed approach and Newton’s method in perform-
ing ML algorithms—linear regression and LDA (both use trace instead of dominant
eigenvalue).

Our Method Newton Method

ML. Alg. Iter. (Depth) Time (s) Iter. (Depth) Time (s)

Linear 22(58) 14921.42 22(58) 13352.61

Regression 22(37) 7541.7 N/A N/A

LDA 9(36) 1902.33 9(36) 1884.76

9(28) 1481.71 N/A N/A

Application to ML Algorithms. We demonstrate the efficiency of our app-
roach through two popular ML algorithms, linear regression and LDA, that uti-
lize a positive definite matrix as input to evaluate its inverse. We compare the
efficiency of our method with the Newton’s algorithm in terms of circuit depth
and time performance in the encrypted domain; we show that our algorithm
significantly enhances the overall performance.

For our evaluation of linear regression in the encrypted domain, we employed
100 samples with 8 features from the well-known public dataset “Diabetes
dataset”. We used the same encryption parameters λ,N,Δ and set ε = 0.001
for the convergence of the matrix inverse operation. The linear regression of the
dataset requires an inverse of a 8 × 8 square matrix. Our method and Newton’s
method both required 22 iteration number (see Table 3). However, our method
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requires less depth per iteration than Newton’s method. This results in a cir-
cuit depth optimization of 37 for our method, compared to 58 for the Newton’s
method.

Initially, we conducted an experiment using the same circuit depth of 58 for
both our method and Newton’s method. Our approach closely resembles New-
ton’s method in terms of the number of iterations required for convergence.
However, it is noteworthy that as the depth level of the ciphertext decreases, the
ciphertext modulus decreases as well, resulting in an increase in multiplication
speed. In contrast to our method, which consumes only one depth in a single
iteration, Newton’s method consumes two depths in a single iteration. Conse-
quently, even when performing the same number of operations, the multiplication
of ciphertexts with a relatively lower depth level in Newton’s method takes less
time than in our approach. This phenomenon results in a decrease in the total
execution time of Newton’s method, reducing it by 1568.81 s compared to the
execution time of our method. However, our method can perform additional 21
multiplications followed by the acquisition of the inverse matrix. Conversely, in
the case of the Newton’s method, further multiplication was no longer feasible
upon obtaining the inverse matrix.

Subsequently, we measured the execution time of our approach with an opti-
mal circuit depth of 37. Our approach demonstrated approximately 1.8 times less
execution time compared to the Newton’s method. It is important to note that
the Newton’s method cannot be implemented with a depth of 37; a minimum
circuit depth of 58 is required to ensure correctness of the result.

In the evaluation of LDA, we used a subset of 150 samples from Iris flower
dataset, which consists of 4 features and 3 species. With the same setting as
in the linear regression, the LDA algorithm has to compute over an inverse of
4 × 4 matrix. Our method and Newton’s method both required 9 iterations.
Hence, the total depth required for each approach was 28 and 36, respectively,
for constructing the optimal circuit. The evaluation time for the optimal circuit
for each approach was approximately 1481.71 s for our method and 1884.46 s for
the Newton’s method, indicating a 1.27 times improvement in time performance
of our proposed algorithm.

7 Conclusion

This paper presents a novel iterative matrix inverse algorithm that reduces mul-
tiplicative depths compared to the widely used Newton’s method in the homo-
morphic encryption domain. Our algorithm offers significant improvements in
computational time efficiency, with about 2 times reduction, and is advanta-
geous in machine learning algorithms requiring the inverse of matrices.
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A Iterative Matrix Inverse Methods

A.1 Goldschmidt’s Matrix Inverse Method

Algorithm 3. Goldschmidt’s Matrix Inverse Approach
1: Input: n × n invertible matrix A, iteration number r
2: Output: approximate inverse matrix Br

3: t ← 1
4: while true do
5: Ā0 ← In×n − 1

2t
A

6: if ‖Ā0‖ < 1 then
7: break;
8: end if
9: t ← t + 1
10: end while
11: B0 ← 1

2t
In×n

12: for i = 1 to r do
13: Bi ← Bi−1(In×n + Āi−1)
14: Āi ← Ā2

i−1

15: end for

A.2 Newton’s Matrix Inverse Method

Algorithm 4. Newton’s Matrix Inverse Approach
1: Input: n × n invertible matrix A, iteration number r
2: Output: approximate inverse matrix Br

3: λ1 ← a dominant eigenvalue of AAT

4: B0 ← 1
λ1

A
T

5: for i = 1 to r do
6: Bi ← Bi−1(2In×n − ABi−1)
7: end for

B Detailed Proof

B.1 Proof of Theorem 1

Proof. Let Rk = I−AXk. Then, we note that Xn+1 = Xk(I+Rk). We first show
that ρ(R0) = ρ(I − αAAT ) < 1. We note that the eigenvalues λi(R0) are given
by, λi(R0) = 1 − αλi(AAT ). Since AAT is positive-definite and α = 1

λ1(AAT )
,

we have |λi(R0)| < 1. Thus, we get ρ(R0) < 1. Therefore, by Lemma 1, we have

lim
k→∞

Rk
0 = 0. (2)
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Next, we note that,

Rk = I − AXk = I − AXk−1(I + Rk−1)
= I − AXk−1 − AXk−1Rk−1

= Rk−1 − AXk−1Rk−1

= (I − AXk−1)Rk−1 = (Rk−1)2.

Therefore, inductively, we have Rk = R2k

0 . Hence, lim
n→∞Rk = lim

k→∞
R2k

0 = 0,

where the last equality follows from Eq. (2). Finally, from the definition of Rk,
we note that Xk = A−1(I − Rk). Therefore,

lim
n→∞ Xk = lim

n→∞ A−1(I − Rk) = A−1.

Consider the scenario in which the trace of the matrix product AAT is
utilized in place of the dominant eigenvalue. Despite the replacement of the
scalar parameter alpha with the reciprocal of the trace of AAT , the spectral
radius of the matrix R0 remains less than one. This ensures that the iterative
process converges.
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Abstract. Gadget decomposition is widely used in lattice based cryptog-
raphy, especially homomorphic encryption (HE) to keep the noise growth
slow. If it is randomized following a subgaussian distribution, it is called
subgaussian (gadget) decomposition which guarantees that we can bound
the noise contained in ciphertexts by its variance. This gives tighter and
cleaner noise bound in average case, instead of the use of its norm. Even
though there are few attempts to build efficient such algorithms, most
of them are still not practical enough to be applied to homomorphic
encryption schemes due to somewhat high overhead compared to the
deterministic decomposition. Furthermore, there has been no detailed
analysis of existing works. Therefore, HE schemes use the deterministic
decomposition algorithm and rely on a Heuristic assumption that every
output element follows a subgaussian distribution independently.

In this work, we introduce a new practical subgaussian gadget decom-
position algorithm which has the least overhead (less than 14%) among
existing works for certain parameter sets, by combining two previous
works. In other words, we bring an existing technique based on an uni-
form distribution to a simpler and faster design (PKC’ 22) to exploit
parallel computation, which allows to skip expensive parts due to pre-
computation, resulting in even simpler and faster algorithm. When the
modulus is large (over 100-bit), our algorithm is not always faster than
the other similar work. Therefore, we give a detailed comparison, even
for large modulus, with all the competitive algorithms for applications
to choose the best algorithm for their choice of parameters.

Keywords: Subgaussian Decomposition · Randomized Gadget
Decomposition · Homomorphic Encryption

1 Introduction

Gadget decomposition algorithm is an essential building block for lattice based
cryptography which leads to various applications such as identity based encryp-
tion (IBE) [8,20], attributed based encryption (ABE) [4,15], homomorphic
encryption (HE) [21] and more. A Gadget matrix is defined as G = In ⊗ g,
where g := (1, b, b2, . . . , bk−1) is called a gadget vector, and In is a n-by-n iden-
tity matrix for some positive integer n. A gadget decomposition algorithm was
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firstly introduced by Micciancio et al. [24] as preimage sampling for fG(x) = Gx
mod q. For an input u, the algorithm samples a point x in Λ⊥

u (G) which is a
coset of Λ⊥

q (G). We consider the case n = 1 so that the algorithm samples a
point in Λ⊥

u (g
t) for an input u ∈ Zq. Depending on a distribution which the out-

put follows, applications may differ. Specifically, if the output x is a subguassian
random variable, we call it a subgaussian gadget decomposition (subgaussian
sampling for short, throughout this paper).

The subgaussian distribution has an important role in lattice based cryptosys-
tems due to its Pythagorean additivity. Informally, any distribution of which tails
are bounded by tails of a Gaussian distribution is a subgaussian distribution.
Therefore, a discrete Gaussian distribution also belongs to a subgaussian distri-
bution. In particular, the property, Pythagorean additivity, enables to tightly
analyze the noise growth of average case in many lattice based homomorphic
encryption (HE) schemes like [5,7,12,16,17,21]. A ciphertext of HE schemes
has the noise term which becomes larger whenever homomorphic evaluation is
performed, leading to decryption failure if it is not refreshed at some point.
Therefore, Gentry et al. [21] firstly introduce the use of the gadget decomposi-
tion to keep the noise growth small, hence, their scheme allows more operations
before decryption failure occurs. Towards more practical use, there have been
many HE schemes [5,12,16] which basically were built on top of this strategy,
and they have been called GSW-like schemes in the related literature. If such
schemes use a randomized gadget decomposition, there are more advantages for
them: 1) one can analyze the noise contained in ciphertexts with cleaner and
tighter bound than the use of other measures such as Euclidean/infinite norm
[2], and 2) circuit privacy can be achieved almost for free [6]. That is why we
need practical randomized gadget decomposition since FHE schemes and their
applications are becoming more practical.

Analyzing the noise growth precisely as much as possible in homomorphic
encryption is highly important since the noise growth is closely related to choos-
ing the right parameters of applications based on HE schemes to achieve the
best performance. Moreover, one can estimate how many homomorphic opera-
tions are possible before decryption fails based on the analysis. More importantly,
the parameters of HE schemes determine the bit security of the schemes based
on well known attacks. Therefore, the noise analysis can be a tool to justify their
choice of parameters which makes the schemes safe from the attacks as in [5].

1.1 Subgaussian Sampling in Homomorphic Encryption

GSW-like schemes [5,11,16,21] which implement gate operations consisting of
linear operation over ciphertexts can model their noise coefficient as subgaussian
random variable due to linearity. Hence, Ducas and Micciancio [16] started to
use subgaussian analysis to estimate how much the noise grows after evaluating
a complicated circuit on average. Nevertheless, the follow-up schemes heuristi-
cally assume that their final noise elements independently follow a subgaussian
distribution (called independence Heuristic in [11]), then use a deterministic
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gadget decomposition in their implementation for the sake of practical perfor-
mance.1 The main reason is that 1) subgaussian sampling was studied only in a
theoretical way previously so that such work did not receive much attention in
practical fields and 2) the only existing algorithm they could employ for their ran-
domized decomposition algorithm was discrete Gaussian sampling [18,24] which
might cause huge computational overhead in implementations. Afterwards, all
the follow-up works and applications based on HE keep relying on the Heuris-
tic assumption and using the deterministic algorithm in their implementations.
Therefore, it had seemed that this was the only solution to achieve both prac-
ticality and such tight noise analysis until Genise et al. [19] presented the first
efficient randomized digit decomposition, recently. We denote their algorithm by
GMP19 in this paper.

They focus on subgaussian sampling itself which can be implemented more
efficiently than the discrete Gaussian sampling in practice mainly due to its
relaxed probability condition. As a result, they presented the first subgaus-
sian sampling which outperforms existing discrete Gaussian sampling, so that it
became closer to practical algorithm for GSW-like schemes [5,11,16,21]. Despite
of their efforts, the computational overhead, which is the extra running time
after running deterministic decomposition algorithm, is not negligible. Later,
Jeon, Lee, and Park [22] observed that the main two subalgorithms of GMP19
were sequential so that they parallelized the two with a uniform distribution
and showed that their uniform distribution is subgaussian. With this approach,
one algorithm can be considered as a pre-computation, hence, their solution
performs over 50% better than GMP19.

Moreover, Zhang and Yu [29] also improved GMP19 when q is not a power of b,
introducing a plausible idea by calling the simpler algorithm of [19] for q = bk for
some positive integer k as a subalgorithm. In more detail, Genise et al. presented
two different subgaussian samplings depending on the relation between q and b
due to different basis structures of the lattice. The algorithm when q �= bk has
more complicated steps than the other one for q = bk, hence it takes more time
than the other. Zhang and Yu focused on the similarity of the two bases. In
other words, the two bases look exactly same up to the (k − 1)-th column, and
the last column of them only differs. Therefore, they run the faster algorithm to
obtain the result up to the (k − 1)-th digit of the final result by reducing the
modulus q such that bk−1 < q < bk to q′ = bk−1, then determine the last digit by
checking all the previous outcome. Due to the use of simpler and faster algorithm,
they could have better computation time than GMP19. However, the algorithm
is still not practical enough in terms of the actual computation time. In reality,
the main computation overhead of evaluating a homomorphic circuit would be
caused by this randomized gadget decomposition algorithm. Furthermore, no
detailed comparison between the two different techniques [22,29], both of which
outperform [19], has been addressed in any literature. In fact, it is important
to compare these existing algorithms to see the trade-offs in different parameter

1 Note that the deterministic gadget decomposition takes a uniform random ciphertext,
hence its output follows a uniform random distribution.
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settings for those who is interested in HE and its applications. It is because the
performance of the gadget decomposition and the noise growth of the output
highly depend on the choice of b and k for a fixed q. In detail, the larger k, the
lower noise is added to the output ciphertext, but also the slower computation
time the algorithm has.

1.2 Our Contribution

In this work, we present a faster randomized gadget decomposition (subgaussian
sampling) with the least computation overhead compared to the deterministic
decomposition among the existing works. We bring the technique of Zhang-Yu
[29] (denoted by ZY22 for short) to the subgaussian sampling of Jeon-Lee-Park
[22] (denoted by JLP21) which uses a uniform distribution, so that we can fully
exploit the advantage of precomputation of JLP21 in the structure of ZY22. In
other words, we replace the call of GMP19 by the call of JLP21 in Zhamg-Yu’s
structure, so we could already gain a little improvement because JLP21 is faster
than GMP19. And the last step of this algorithm, which checks all the previous
outcome to determine the last digit, becomes simpler than ZY22 since we can
skip this step by checking the only one precomputed value. Consequently, our
results range between 5x to 14x faster compared to Zhang-Yu’s.

In addition, we give a detailed analysis and comparison among the existing
such algorithms [19,22,29], which has not been covered in the previous literature.
In more detail, our experimental result shows that our algorithm outperforms
ZY22 and slightly faster than JLP21 for small q (≈ 260). We note that the value
k increases as b decreases for a fixed q. Our algorithm is 82% faster than ZY22
at most and 35% faster than JLP21 with the large k. JLP21 becomes similar
to ours as k gets smaller since one of its subalgorithms which depends on k
becomes faster than one of ours which takes constant time. Also, we have the
least computational overhead (from 2% to 14% depending on k) among existing
works, which means that it takes only a little bit longer time than deterministic
algorithm.

For larger q such as q ≈ 2102, the computation cost of four different algo-
rithms are almost same due to the use of BigInteger type which represents a
number over 64-bit in implementation. However, both JLP21 and our algorithm
are slightly faster thanks to the uniform distribution. When q is large and k is
small, JLP21 outperforms our algorithm due to the same reason as q is small.
Hence, it is suitable for applications which require low multiplication depth when
the modulus q is large. We note that most of applications of HE which require
large q such as [7,10] use CRT/RNS technique to avoid multi-precision as dis-
cussed in [19], so that the result with smaller q would be more helpful for such
applications.

We also note that the tighter bound of the noise is still preserved when non-
centered distribution is used in HE since the extra term is much smaller than
the dominant term in the variance (discussed in Sect. 4.2). Therefore, the non-
centered case has slightly larger size of output, so does the noise in ciphertexts
of HE, but it does not directly influence on the most significant bit of the noise.
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1.3 Technical Overview

Let’s say that we want to obtain a decomposition of u ∈ Zq where q �= bk, given a
gadget vector g = (1, b, b2, . . . , bk−1). JLP21 works as follows: 1) sample a vector
y uniformly at random and 2) compute (x0, . . . , xk−1) =: x = Sqy+u, where u is
a deterministic digit decomposition of u. Since sampling y is totally independent
of the input u in their algorithm, this step can be computed previously as a
preprocessing. We observed that the last component of y, say yk−1, determines
if x is a decomposition of u or u − q in JLP21 since yk−1 is a coefficient of the
last column of the basis. Therefore, the algorithm already knows that whether
the composed value will be u or u − q by checking the precomputed value yk−1.

Then, we let the algorithm fix a value denoted by u′ for depending on yk−1,
that is, u′ = u mod bk−1 if yk−1 = 0 and u′ = u − q mod bk−1 if yk−1 = −1.
Next, we use the trick of ZY22 to compute from x0 to xk−2 of x by running the
subgaussian sampling of JLP21 for power of b case taking u′ and q′ = bk−1 on
input. Now, it is time to decide the last component of x, xk−1. As [29] observed
already, the last component xk−1 is determined by the value of 〈x′,g′〉, where
x = (x′, xk−1) and g = (g′, bk−1).

Due to sequential process of ZY22, it is necessary to compute the dot product,
however, we can already check the value by checking the second last component
of the precomputed vector y, yk−2, by our observation of JLP21 structure. Con-
sequently, we can more quickly determine the last component of x than the
previous work.

2 Preliminaries

Notation: Numbers are denoted as small letters, such as a ∈ Z, vectors as
bold small letters, a ∈ Z

n, and matrices as capital bold letters, A ∈ R
n×n. We

denote the inner product of two vectors v,w by 〈v,w〉. We use the �2 norm
as a default norm for a vector x. [u]kb = (u0, . . . , uk−1) denotes a vector, where
ui ∈ {0, . . . , b − 1}, which is b-ary decomposition of u such that

∑
i b

iui = u for

an integer base b > 0. A notation a
$←− S means that a is chosen uniformly from

a set S.

2.1 Subgaussian Random Variables

We explain subgaussian random variables and their significant properties in this
section. We describe the general definition for a univariate δ-subgaussian random
variable for some δ ≥ 0 as in [24].

Definition 1. A random variable V over R is δ-subgaussian (δ ≥ 0) with param-
eter s > 0 if its moment generating function satisfies, for all t ∈ R,

E[exp(2πtV )] ≤ exp(δ) exp(πs2t2).
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We call the parameter s the standard parameter. It is easy to see that if X is
δ-subgaussian with parameter s, then cX is also δ-subgaussian with parameter
|c|s for any c ∈ R. In addition, if a random variable V is centered at 0 and
bounded with B, then V is 0-subgaussian with parameter B

√
2π [28]. If there

exists a 0-subgaussian random variable, we can make it into a δ-subgaussian
random variable for nonzero δ by shifting the variable with some real number as
stated in Lemma 1. Therefore, we can deal with δ-subgaussian distribution by
considering a shifted centered subgaussian distribution.

Lemma 1 (Lemma 7 in [26]). If V is a 0-subgaussian with parameter s, then
the real-valued shifted random variable V = V + α for α ∈ R is a δ-subgaussian
with parameter s such that s > s for some non-negative real-valued δ such that
δ ≥ α2π/(s2 − s2).

In other words, a subgaussian distribution centered at nonzero is δ-subgaussian
where δ > 0. Informally speaking, a distribution is more centered at 0 if δ is
closer to 0.

Lemma 2 says that δ(> 0)-subgaussian random variable with parameter s has
variance bounded by s2. Informally, the tails of V are dominated by a Gaussian
function with standard deviation s.

Lemma 2 (Lemma 8 in [26]). If V is a univariate real-valued δ-subgaussian
with parameter s ≥ 0, then Var(V ) ≤ s2, where Var(V ) is the variance of V .

The sum of independent subgaussian variables is easily seen to be subgaussian.
It is also proved that the sum of subgaussian variables is also subgaussian even
when random variables are conditioned on the other random variables. And we
use this property to prove that our algorithm follows a subgaussian distribution.

Lemma 3 (Claim 2.1 in [23]). Let δi, si ≥ 0 and Xi be random variables
for i = 1, . . . , k. Suppose that for every i, when conditioning on any values of
X1, . . . , Xi−1, the random variable Xi is δi-subgaussian with parameter si. Then∑

Xi is
∑

δi-subgaussian with parameter
√∑

s2i .

Using Lemma 3, we can prove that a vector with subgaussian coordinates is
also subgaussian, which is a general extension from Lemma 2.2 in [19]. To do this,
we use the fact that a random vector x ∈ R

n is δ-subgaussian with parameter
s > 0 if 〈x,u〉 is δ-subgaussian with parameter s for all unit vectors u, given in
[24]. The proof of this lemma is in Appendix A.

Lemma 4 (The general version of Lemma 2.2 in [19]). Let x be a dis-
crete random vector over R

n such that each coordinate xi is δi-subgaussian with
parameter si given the previous coordinates take any values. Then x is a

∑
δi-

subgaussian vector with parameter maxi{si}.

2.2 Gadget and Lattices

We use the same gadget g = (1, b, . . . , bk−1) defined in [24] for a positive integer
b. A lattice Λ with the rank k and basis B = [b1, . . . ,bk] is a set of all linear
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combinations of the basis vectors with coefficients in Z. A coset of a lattice Λ
is a set c + Λ = {c + z : z ∈ Λ}. In this work, we focus on the gadget lattice
Λ⊥
q (g

t) = {z ∈ Z
k
q : 〈g, z〉 = 0 mod q} for q ≤ bk. For any u ∈ Zq, Λ⊥

u (g
t) =

{z ∈ Z
k : 〈g, z〉 = u mod q} is a coset of Λ⊥

q (g
t) since Λ⊥

u (g
t) = u + Λ⊥

q (g
t)

where u is a vector such that 〈g,u〉 = u mod q. A basis of the gadget lattice
Λ⊥
q (g

t) is like the following:

Sq =

⎡

⎢
⎢
⎢
⎣

b q0

−1
. . .

...
b qk−2

−1 qk−1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

S′

−1

q

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

b

−1
. . .

b
−1 b

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

1 d0
. . .

...
1 dk−2

dk−1

⎤

⎥
⎥
⎥
⎦
= SD,

where q is a b-decomposition of q, and S′ ∈ Z
(k−1)×(k−1) and S ∈ Z

k×k is a
basis of the gadget lattice for q = bk−1 and q = bk respectively. The efficiency of
the algorithm highly depends on the structure of the basis of the gadget lattice.
When q < bk, which is the general case, the basis Sq looks similar to S, but has
additional elements on its last column, hence the sampling algorithm is more
complicated than the special case when q is a power of b. Therefore, [19] uses
the factorization Sq = SD where S and D are sparse and triangular matrix. And
then the algorithm requires the linear transformation.

3 New Practical Subgaussian Sampling

In this section, we present our new gadget subgaussian decomposition algorithm
for the general case when q < bk. We substitute the call of GMP19 in Zhang- Yu’s
structure by the call of JLP21 when the modulus q is reduced to q′ = bk−1.

x = u+ Sqy =

⎡

⎢
⎢
⎢
⎣

u0

...
uk−2

uk−1

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎣

b q0

−1
. . .

...
. . . b qk−2

−1 qk−1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

y0
...

yk−2

yk−1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

u0

...
uk−2

uk−1

⎤

⎥
⎥
⎥
⎦
+ yk−1

⎡

⎢
⎢
⎢
⎣

q0
...

qk−2

qk−1

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎢
⎣

b

−1
. . .
. . . b

−1

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

y0
...

yk−2

⎤

⎥
⎦

= u+ yk−1q+ [S′y′| − yk−2]

(1)

We observed that the last component of y, denoted by yk−1 actually determines
whether the output is going to be a decomposition of u or u − q in JLP21. Here
each component of y is chosen as either −1 or 0 at uniformly random. If q = bk

and yk−1 is −1, the last component of Sqy(= Sy) has −b term as seen in Eq. (1)
(especially the left red part of Sq). So when it is composed to an integer in Zq



360 S. Jeon et al.

with the gadget vector g, it contains −bk which is −q. Moreover, when q < bk

and yk−1 = −1, it influences on every component of Sqy due to the structure
of Sq (see the right purple part of the Eq. (1)). In other words, each component
of Sqy has a decomposition element q, and then it outputs −q after the inner
product with g. Therefore, the last column means that a composition value
becomes u − q.

Algorithm 1. Precompute(b, q)
Input: q, b
Output: k = �logb q�, y ∈ {−1, 0}k, z = Sy

1: k = �logb q�
2: for i ← 0, . . . , k − 1 do
3: yi

$←− {−1, 0}
4: z ← Sy
5: return k,y, z

Now, we use the above observation for our algorithm to improve the efficiency.
Our algorithm firstly samples y by running Algorithm 1 in advance and employ
it for online phase as JLP21 does. Like ZY22, we also sample x′ where x :=
(x′, xk−1) for the reduced modulus q′ = bk−1. To do this, we first need to fix u′

and a, which are an input and the candidate of xk−1, by checking yk−1. In other
words, u′ = u mod bk−1 and a = � u

bk−1  if yk−1 = 0, u′ = u − q mod bk−1 and
a = � u−q

bk−1  otherwise. It is because the last component of y determines if the
final output x is going to be a decomposition of u or u − q due to the structure
of the base of Λ⊥

q (g
t) as we observed above.

Next it runs Subgaussian′ (Algorithm 2), which is JLP21 for a power-of-base
modulus, on input (b, q′, u′) and the first k − 1 components of y.

Algorithm 2. Subgaussian′(b, q, k,y, u): subgaussian sampling for q = bk of [22]

Input: u ∈ Zq, (k,y, z) ← Precompute(b, q)
Output: x ∈ Λ⊥

u (g
t) distributed uniformly in a bounded set.

1: Let u := [u]kb ([u]kb is u’s b-ary decomposition)
2: x ← z+ u
3: return x

Then we obtain x′ from Subgaussian′. Since the subgaussian sampling is a
randomized decomposition, x′ can be such that 〈g′,x′〉 = u′ or u′ − bk−1 where
g′ = (1, b, . . . , bk−2). It is correct for the reduced modulus bk−1 since u′ −bk−1 ≡
u′ mod bk−1. However, what we want to obtain is the vector for the modulus q
which is not a power of b. Hence, we should compute the last component with a.
To determine the last component of output x, ZY22 verifies whether 〈g′,x′〉 = u′



Practical Randomized Lattice Gadget Decomposition 361

or u′ − bk−1 by computing the dot product. Unlike their approach, we can verify
this by only checking yk−2 based on the same observation. As a result, we can
skip the last step of ZY22 which computes 〈g′,x′〉, thus we can quickly determine
xk−1 based on yk−2.

Algorithm 3. Subgaussian(b, q, k,y, u): our subgaussian sampling for q < bk

Input: u ∈ Zq, (k,y, z) ← Precompute(b, q)
Output: x ∈ Λ⊥

u (g
t) distributed uniformly in a bounded set.

1: if yk−1 = 0 then
2: u′ ← u mod bk−1

3: a ← � u
bk−1 �

4: else
5: u′ ← u − q mod bk−1

6: a ← � u−q

bk−1 �
7: x′ = Subgaussian′(b, bk−1, k − 1,y′, u′) where y = (y′, yk−1)
8: if yk−2 = 0 then
9: return x = (x′, a)

10: else
11: return x = (x′, a + 1)

We show that our algorithm outputs a δ-subgaussian vector with a standard
parameter which is slightly larger compared to the previous sequential algorithms
in Theorem 1.

Theorem 1. Let b, q ∈ N, k = �logb q�, and u ∈ Zq. Then the output vector x
of Algorithm 3 is k+3

6 -subgaussian with parameter b
√
2π.

Proof. First, we will show that xk−1 is a subgaussian and find the parameter
for xk−1. xk−1 has four possible value {a0, a0 + 1, a1, a1 + 1}. Since we use a
uniform distribution, E[xk−1] = 1

4 (a0 + a0 + 1 + a1 + a1 + 1) = a0+a1+1
2 . Let

α = E[xk−1] = a0+a1+1
2 , then |α| ≤ b − 1

2 ≤ b since −b ≤ a0, a1 < b. Let
x = xk−1 − α, then x is a random variable centered at 0 (i.e., E[x] = 0) and
|x| ≤ b

2 . Hence x is 0-subgaussian with parameter s = b
2

√
2π. By Lemma 1, if

s > s and δ ≥ α2π/(s2−s2), then xk−1 is δ-subgaussian with parameter s. Since

α2π

s2 − s2
≤ b2π

b22π − (b2/4)2π
=

2
3
,

xk−1 is 2
3 -subgaussian with parameter b

√
2π.

Since x′ is the output of Subgaussian′(b, bk−1, k−1,y, u), and in proof of Theo-
rem 1 of [22], x0, . . . , xk−2 are 1

6 -subgaussian with parameter b
√
2π. Analogously

to the proof of Lemma 4,

E[exp(2πt〈x,u〉)] ≤ exp(
k + 3
6

) exp(πt2(b
√
2π)2).

Therefore, x = (x′, xk−1) is k+3
6 -subgaussian with parameter b

√
2π. ��



362 S. Jeon et al.

4 Comparison with Previous Works

Experimental Setup. All experiments are performed on a laptop with Apple
M1 @ 3.2GHz (8 cores). We used PALISADE Library [1] to implement our
algorithm.

4.1 Randomness

GMP19 uses k log q = O(k2 log b) random bits to sample an output with a cer-
tain probability. It is better to generate less number of random bits to achieve
faster implementation result. ZY22 has improved the number of random bits
which is O(k log b) due to the randomness-efficient subroutine for a modulus
bk−1. Since our algorithm follows a uniform distribution over {−1, 0}, we only
generate k log 2 = O(k) random bits. Therefore, we have faster implementation
result than the others. However, in the offline phase when we sample y, we store
k random bits for being used in the online phase, hence we have additional small
memory overhead.

4.2 Magnitude Comparison

Remark 1. Unlike other previous works employing centered distributions, the
output of our algorithm has non-zero mean value. Therefore, we note that the
noise analysis with our algorithm in homomorphic encryption is less simple than
the one with centered distribution. In more detail, the (average-case) noise anal-
ysis of HE (especially GSW-like schemes) highly relies on the variance of the
product of two independent polynomials x, y of degree N . The two random vari-
able x and y are δ-subgaussian with parameter s. Then the variance of x · y is
bounded as follows: Var(x ·y) ≤ N ·Var(x) ·Var(y)+E(x)2 ·Var(y)+E(y)2 ·Var(x).
If x and y have both zero mean, then it has clear and simple bound (the last two
terms are eliminated). However, in our case, the mean of x and y are non-zero
but less than b (since it is a digit decomposition with the base b). In GSW-like
schemes [5,12], for example, N � b and Var(x) · Var(y) is the dominant term of
the noise after homomorphic operation. After bootstrapping of TFHE, the final
noise contained in the output has the variance of the sum of

∑
i∈[n] Var(xi · yi),

hence the dominant term is still unchanged, where xi’s and yi’s are independent
subgaussian variables, where |E(xi)| ≤ b and |E(yi)| = 0 for all i. As a result,
the bound is still tighter than the bound of worst-case with Euclidean/infinite
norm.

As we see from the remark above, the variance of the noise will have slightly
larger bound if an FHE scheme uses a δ-subgaussian distribution, than the one
using 0-subgaussian distribution, but the tighter bound is still preserved. We
show the size of output in each case in the figure above. Figure 1 shows the
magnitude of output of each algorithm. We executed the experiment for 10000
runs with the base b = 2, and an uniform random input u by increasing the
modulus q.
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Fig. 1. The magnitude average of 10000 runs with b = 2, uniform random input u, and
different moduli.

In Sect. 3, we show that our algorithm outputs a δ-subgaussian vector with
the parameter δ = k+3

6 and the standard parameter s = b
√
2π. Our standard

parameter s is similar to other algorithms, and s is the upper bound of the
standard deviation of the distribution. The variance of ours is also bounded by
standard parameter 2b2π by Lemma 2 like other non-uniform algorithms. Since
our δ is nonzero unlike other sequential algorithms GMP19 and ZY22, the mean of
the distribution is also nonzero. Therefore, ours is expected to have larger size
of output than the others since ours has slightly larger mean (still less than b).

The experimental result shows that the magnitude of the output is a little bit
larger than them as we expected. But, in practice, we see that the output is much
smaller than the least upper bound b

√
k of Euclidean norm of outputs. Moreover,

we have similar magnitude to JLP21 because we have the similar values of δ and
s due to the use of the same uniform distribution. As discussed in [29], GMP19
has slightly larger s than ZY22 with the same δ = 0, hence they have smaller
magnitude in general.

4.3 Complexity Comparison

In order to analyze the complexity of each subgaussian algorithm in detail, we
divide each into its main subalgorithms and compute complexity of each subal-
gorithm in terms of the number of bit operations (see Table 1).

First, we briefly recall the subalgorithms of each algorithm. GMP19 consists
of Decomposition, Transformation, Sampling, and Addition. Decomposition is the
deterministic algorithm which outputs b-ary decomposition of u. Transformation
computes t = S−1u where u is the output of Decomposition to use D. Sam-
pling chooses a vector in Λ⊥

q (g
t) with a subgaussian distribution centered at −u.

Addition combines the output vectors of Decomposition and Sampling to obtain
a vector in Λ⊥

u (g
t).
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JLP21 consists of Sampling, Decomposition, and Addition. Here, Sampling, of
which the complexity is O(k), is done during offline due to a uniform distribu-
tion. Hence, it is not included in the time cost. Our algorithm also have the
same algorithm, Algorithm 1, in offline phase. We divide ZY22 into four subalgo-
rithms; Probability, Compute, Subgaussian′, and Check. The algorithm Probability
computes the first probability u

q to determine which u′ and a are used. Com-
pute computes u′ and a which is same with the line 2–3 or 5–6 in Algorithm 3.
Subgaussian′ randomly outputs a vector x′ such that 〈g′,x′〉 = u′ mod bk−1.

In fact, the algorithm Subgaussian′ is the power-of-base algorithm in [19]
which is efficient and easy to be implemented. Check checks whether 〈g′,x′〉 = u′

or u′ − bk−1. Ours follows the structure in [29], thus we also have the same
process as Compute of ZY22 does but our algorithm is much simpler. In addition,
Subgaussian′ of our case is the power-of-base algorithm in [22].

Table 1. The number of bit operations of the subalgorithms of each sampler for fixed
q ≈ bk, where k = �logb q� and � = log2 b. T is the running time for computing
each entry of t. P denotes the computation time of sampling from given distribution.
p denotes the computation time of computing the probability of ZY22. c1, c2 are for
computing u′ and a of the modulus reduction sampler. P, p, c1, c2 are constants which
do not depend on k for given u and q.

Decomposition Sampling Transformation Addition

GMP19 O(k2(�2 + �)) k · P k · T k(�2 + 3�)

JLP21 O(k2(�2 + �)) N/A N/A k(2�2 + 5�)

Subgaussian′ Probability Compute Check

ZY22 O(k2(�2 + �) + k�) p c1 O(k�)

Ours O(k2(�2 + �) + k�) N/A c2 N/A

Decomposition has the complexity O(k2(�2+�)) in terms of the number of bit
operations since they compute each component of a k-dimensional vector using
u and q whose the bit length is k times bit lengths of b (i.e., k times computation
with k� bit lengths numbers). Subgaussian′ runs Decomposition up to the (k −1)-
th component of the output for the modulus bk−1. Additionally, it contains the
addition of two vectors of dimension of k − 1.

On the other hand, Addition and Check require k times arithmetic operations
over Zb, so that they depend on k and log b. Transformation and Sampling also
require computation of each component of k-dimensional vector, but of floating-
point operations which consume constant cost. The operations are independent
of a fixed q, hence, we denote the complexity of floating-point operations in
Transformation and Sampling constant, denoted by T and P respectively, for
convenience.

Similarly, the complexity of Probability, Compute of ZY22, and our Compute
is denoted by constants p, c1 and c2 respectively, since both only compute u

q , u′
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and a on floating-point numbers. Subgaussian′ of ZY22 consists of Decomposition,
Sampling, and Addition which adds the output of Decomposition and Sampling of
GMP19’s power-of-base case, whereas the one of ours consists of Decomposition
and Addition of JLP21’s power-of-base case.

Overall, the dominant complexity comes from Decomposition , which is highly
depends on the choice of parameters � and k. Moreover, ZY22 and ours has
constant factor in one of subalgorithms, in practice, the constant time can be a
key factor which decides shortest running time in total.

4.4 Computation Cost Comparison

We compare the actual time cost of existing subgaussian decomposition algo-
rithms [22,29] and ours. We do not include the experimental result of GMP19
for small modulus q since the comparison to GMP19 is already covered in [22,29].
For larger modulus q ≥ 2100, we included GMP19 as well since there has been
no analysis about the algorithm with such q. We note that all our experiments
consider the case that the modulus q is not a power of the base b (general case).

Table 2. Average runtimes for 10000 runs of subgaussian sampling for log2 q ≈ 60 and
uniformly random input u ∈ Zq with the different base b

b k = �logb q� ZY22[μs] JLP21[μs] Ours[μs]

21 60 1.2709 0.5439 0.3539
22 30 0.6634 0.1888 0.1547
23 20 0.4723 0.1077 0.1008
24 15 0.3650 0.0762 0.0692
26 10 0.2628 0.0502 0.0477
28 8 0.1431 0.0441 0.0412

Table 3. Average runtimes of 10000 runs of each subalgorithm for log2 q ≈ 60 and
uniformly random input u with the different b (as a result with the different k)

(b, k) (2, 60) (22, 30) (24, 15) (28, 8)

ZY22[μs] Subgaussian′ 1.2163 0.6152 0.3165 0.0959
Compute 0.0192 0.0170 0.0167 0.0163
Check 0.0180 0.0156 0.0152 0.0154
Probability 0.0174 0.0156 0.0167 0.0154

JLP21[μs] Decomposition 0.3355 0.1349 0.0553 0.0263
Addition 0.2084 0.0540 0.0210 0.0178

Ours[μs] Subgaussian′ 0.3358 0.1383 0.0529 0.0253
Compute 0.0181 0.0163 0.0163 0.0159
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For Small Modulus q. As we already checked the complexity in Table 1, Decom-
position has the dominant complexity, so it takes the dominant time in our experi-
mental result. We can see that Decomposition of JLP21 and Subgaussian′ of both
ZY22 and Ours takes the dominant time in the detailed time cost of Table 2
and Table 3. Despite of all the plausible tricks of ZY22, the computation time of
JLP21 outperforms ZY22 due to the benefit of the precomputation.

Even though Subgaussian′ of Ours runs one less iterations of deterministic
decomposition algorithm, it includes additional operations (we refer Algorithm
1 of [22]), hence it takes slightly longer than Decomposition of JLP21. However,
when k is large, Addition of JLP21 is significantly slower than our other subal-
gorithm Compute which is independent of k. That is why there is the biggest
performance gap between JLP21 and Ours with the largest k, i.e., our algorithm is
35% faster than JLP21. As k decreases, the computation time of Addition becomes
small as k decreases, even similar to Compute of Ours. Therefore, there becomes
almost no difference between JLP21 and Ours as k significantly decreases. The
reason why Ours is faster than ZY22 is that our algorithm makes use of precom-
puted value as JLP21 does, hence the dominant part, Subgaussian′ of Ours, is
faster than the one of ZY22. Moreover, Ours has faster Compute, and it does
not need additional subalgorithms like Check and Probability. As a result, our
algorithm is 77%–82% faster than ZY22.

Many applications of homomorphic encryption [9,14,25,27] use various value
of k to achieve both the best performance and correctness. As we explained in
Sect. 1, increasing k in subgaussian sampling causes lower noise growth resulting
in supporting more homomorphic operations, but also slower performance at the
same time. Therefore, the choice of parameter k is highly depends on the applica-
tion. With our experimental result, we can conclude that for those applications
which uses large k for q ≈ 260, our algorithm is highly recommended.

Table 4. Average runtimes for 10000 runs of subgaussian sampling for BigInteger q
such that log2 q ≈ 102 and uniformly random input u with the different base b

b k = �logb q� GMP19[μs] ZY22[μs] JLP21[μs] Ours[μs]

21 102 20.6274 22.3322 19.3688 19.0677
22 51 12.1608 13.5447 11.5216 11.3985
23 34 9.6771 10.7968 9.1633 9.1606
24 26 6.4006 7.2784 6.0475 6.0294
26 17 4.9778 5.6145 4.7116 4.7783
28 13 3.2420 3.6676 3.0062 3.0776

For Large Modulus q. Zhang and Yu [29] and Jeon et al. [22] compared the
running time of their algorithm and GMP19 only when q ≈ 260. We provide the
experimental result with larger q ≈ 2102, which shows that ZY22 is not always
faster than GMP19 with such larger modulus.
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Table 5. Average runtimes of 10000 runs of each subalgorithm for BigInteger q such
that log2 q ≈ 102 and uniformly random input u with the different b (as a result with
the different k)

(b, k) (2, 102) (22, 51) (24, 26) (28, 13)

GMP19[μs] Decomposition 18.9774 11.3175 5.9694 2.9893
Sampling 1.1783 0.6206 0.3133 0.1758
Transformation 0.3864 0.1813 0.0923 0.0568
Addition 0.0854 0.0413 0.0256 0.0200

ZY22[μs] Subgaussian′ 22.0206 13.2311 6.9424 3.3370
Compute 0.2743 0.2793 0.3024 0.2970
Check 0.0161 0.0159 0.0155 0.0154
Probability 0.0212 0.0184 0.0181 0.0182

JLP21[μs] Decomposition 18.9793 11.3154 5.9718 2.9814
Addition 0.3896 0.2062 0.0757 0.0248

Ours[μs] Subgaussian′ 18.7783 11.0823 5.7161 2.7584
Compute 0.2895 0.3162 0.3132 0.3192

The total running time increases significantly compared to the smaller q case
(See Table 4). It is mainly because computation over numbers of BigInteger
type, which was used in PALISADE library [1], takes more time than the other
smaller bit length setting. Therefore, as you can see Table 5, Decomposition
which deals with large bit length has the dominant computation time, so do
Subgaussian′ of ZY22 and Ours. However, Sampling of GMP19 deals with floating-
point numbers which has the length less than 64-bits, so that there is a huge
computation gap between Sampling and Decomposition of GMP19. Subgaussian′

of ZY22 contains Sampling and Decomposition of GMP19. But Sampling in their
implementation is done over larger integer type BigInteger to compute prob-
ability, hence it takes longer time than GMP19. Therefore, ZY22 is slower than
GMP19 with larger q in total when k is small.

Apart from ZY22, all the algorithms take similar time, it is because Sampling
which samples a bit for each element takes negligible time comparing to Decom-
position for large q, so the precomputation does not make any difference in this
case. Interestingly, Compute of Ours takes more time than the case when q is
small since it depends of q. Consequently, as mentioned above, there is a point
that Addition of JLP21 becomes faster than Compute when k is small. This small
difference makes JLP21 take the shortest time in total.

However, since all implementations of homomorphic encryption we are aware
of use RNS technique to use 64-bit machine language for large ciphertext mod-
ulus in practice, the result of Table 2 is helpful for such cases.

The gadget decomposition of homomorphic encryption takes n-dimensional
vector u on input and outputs x such that Gx = u for G = In ⊗ gt. We run
the deterministic decomposition, which is same with Decomposition, and sub-
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Table 6. Comparison of performance results between the deterministic decomposition
and subgaussian samplings. The number of trial: 10000 for a 60-bits modulus q and
n-dimensional input where n = 2048, with the different base b.

b k Decomposition[μs] ZY22[μs] JLP21[μs] Ours[μs]

21 60 640.7155 2418.6132 1050.4242 647.5024
22 30 311.9202 1346.4805 395.8116 315.4322
24 15 145.9810 695.3398 162.1303 148.0831
28 8 50.0841 381.8072 73.8022 57.6720

gaussian algorithms for a 60-bits modulus q and a 2048-dimensional input with
the different base b (see Table 6). We note that these parameters are commonly
used in many HE based applications [3,9,13,14,27] to achieve high security level
(larger than 110 bits of security). Obviously, the subgaussian algorithms take
more time than the deterministic decomposition since they need more process
to sample a random output.

We can check the computational overhead which shows how much the extra
step costs than just running deterministic decomposition in order to see which
one is suitable for the practical use. As we can see that from the table above, ZY22
has the largest computational overhead, whereas Ours has the least overhead in
any choice of k. The overhead varies from 2% to 14% depending on k.

5 Conclusion

We propose a faster subgaussian decomposition by combining ZY22 and JLP21.
To incorporate ZY22 and JLP21, we replace the call of GMP19 by the call of JLP21
in the structure of ZY22. And we also prove that a bounded uniform distribution
is also subgaussian in the structure of ZY22. Previous works, GMP19, JLP21, and
ZY22, also output actual subgaussian vectors so that they can be applied to HE
schemes to analyze the noise growth without a Heuristic assumption. However,
in the perspective of efficiency, they are too slower than the deterministic decom-
position as shown in Table 6. In contrast, our algorithm has the lowest overhead
only in the range from 2% to 14% to obtain actual subgaussian outputs. In
addition, we give a detailed comparison, even for large modulus, with all the
competitive algorithms, allowing applications to choose the best algorithm for
their choice of parameters.
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A Proof of Lemma 4

Lemma (The general version of Lemma 2.2 in [19]). Let x be a dis-
crete random vector over R

n such that each coordinate xi is δi-subgaussian with
parameter si given the previous coordinates take any values. Then x is a

∑
δi-

subgaussian vector with parameter maxi{si}.
Proof. The moment generating function of 〈x,u〉 is

E[exp(2πt〈x,u〉)] = E[exp(2πt
∑

xiui)]

≤ exp(
∑

δi) exp(πt2
∑

s2iu
2
i )(∵ Lemma 3)

≤ exp(
∑

δi) exp(πt2(max si)2
∑

u2
i )

= exp(
∑

δi) exp(πt2(max si)2||u||2)
= exp(

∑
δi) exp(πt2(max si)2(∵ unit vector u).

References

1. PALISADE Lattice Cryptography Library (release 1.11.6), January 2022. https://
palisade-crypto.org/

2. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 297–314.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_17

3. Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and
amortized query processing. In: 2018 IEEE Symposium on Security and Privacy,
pp. 962–979. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/
SP.2018.00062

4. Boneh, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and com-
pact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5_30

5. Bonte, C., Iliashenko, I., Park, J., Pereira, H.V.L., Smart, N.P.: FINAL: faster FHE
instantiated with NTRU and LWE. Cryptology ePrint Archive, Paper 2022/074
(2022). https://eprint.iacr.org/2022/074

6. Bourse, F., Del Pino, R., Minelli, M., Wee, H.: FHE circuit privacy almost for
free. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 62–89.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_3

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS 2012, pp. 309–325. Association for Computing
Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2090236.2090262.
https://doi-org.kuleuven.e-bronnen.be/10.1145/2090236.2090262

8. Chatterjee, S., Menezes, A.: Type 2 structure-preserving signature schemes revis-
ited. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 286–
310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_13

https://palisade-crypto.org/
https://palisade-crypto.org/
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://eprint.iacr.org/2022/074
https://doi.org/10.1007/978-3-662-53008-5_3
https://doi.org/10.1145/2090236.2090262
https://doi-org.kuleuven.e-bronnen.be/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-662-48797-6_13


370 S. Jeon et al.

9. Chen, H., Chillotti, I., Ren, L.: Onion ring ORAM: efficient constant bandwidth
oblivious RAM from (leveled) TFHE. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) ACM CCS 2019, pp. 345–360. ACM Press, November 2019. https://doi.
org/10.1145/3319535.3354226

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part
I. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-70694-8_15

11. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6_1

12. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomor-
phic encryption over the torus. J. Cryptol. 33(1), 34–91 (2020). https://doi.org/
10.1007/s00145-019-09319-x

13. Cong, K., Das, D., Nicolas, G., Park, J.: Panacea: non-interactive and stateless
oblivious RAM. Cryptology ePrint Archive, Paper 2023/274 (2023). https://eprint.
iacr.org/2023/274

14. Cong, K., Das, D., Park, J., Pereira, H.V.: SortingHat: efficient private decision
tree evaluation via homomorphic encryption and transciphering. In: Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2022, pp. 563–577. Association for Computing Machinery, New York, NY,
USA (2022). https://doi.org/10.1145/3548606.3560702

15. Dai, W., et al.: Implementation and evaluation of a lattice-based key-policy ABE
scheme. IEEE Trans. Inf. Forensics Secur. 13(5), 1169–1184 (2018)

16. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46800-5_24

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

18. Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10820, pp. 174–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78381-9_7

19. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit:
subgaussian sampling and more. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT
2019. LNCS, vol. 11477, pp. 655–684. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17656-3_23

20. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008). https://doi.org/10.
1145/1374376.1374407

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40041-4_5

22. Jeon, S., Lee, H.S., Park, J.: Efficient lattice gadget decomposition algorithm with
bounded uniform distribution. IEEE Access 9, 17429–17437 (2021). https://doi.
org/10.1109/ACCESS.2021.3053288. https://eprint.iacr.org/2021/048

https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1145/3319535.3354226
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2023/274
https://eprint.iacr.org/2023/274
https://doi.org/10.1145/3548606.3560702
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-319-78381-9_7
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1007/978-3-030-17656-3_23
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1109/ACCESS.2021.3053288
https://doi.org/10.1109/ACCESS.2021.3053288
https://eprint.iacr.org/2021/048


Practical Randomized Lattice Gadget Decomposition 371

23. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

24. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_41

25. Mughees, M.H., Chen, H., Ren, L.: OnionPIR: response efficient single-server PIR.
In: Vigna, G., Shi, E. (eds.) ACM CCS 2021, pp. 2292–2306. ACM Press, November
2021. https://doi.org/10.1145/3460120.3485381

26. Murphy, S., Player, R.: δ-subgaussian random variables in cryptography. In: Jang-
Jaccard, J., Guo, F. (eds.) ACISP 2019. LNCS, vol. 11547, pp. 251–268. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21548-4_14

27. Park, J., Tibouchi, M.: SHECS-PIR: somewhat homomorphic encryption-based
compact and scalable private information retrieval. In: Chen, L., Li, N., Liang, K.,
Schneider, S. (eds.) ESORICS 2020. LNCS, vol. 12309, pp. 86–106. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59013-0_5

28. Stromberg, K.: Probability For Analysts. Chapman & Hall/CRC Probability Series,
Taylor & Francis (1994). https://books.google.co.kr/books?id=gQaz79fv6QUC

29. Zhang, S., Yu, Y.: Towards a simpler lattice gadget toolkit. In: Hanaoka, G.,
Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022, pp. 498–
520. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-97121-2_18

https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1145/3460120.3485381
https://doi.org/10.1007/978-3-030-21548-4_14
https://doi.org/10.1007/978-3-030-59013-0_5
https://books.google.co.kr/books?id=gQaz79fv6QUC
https://doi.org/10.1007/978-3-030-97121-2_18


Covercrypt: An Efficient Early-Abort
KEM for Hidden Access Policies

with Traceability from the DDH and LWE
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Abstract. Attribute-Based Encryption (ABE) is a very attractive prim-
itive to limit access according to specific rights. While very powerful
instantiations have been offered, under various computational assump-
tions, they rely on either classical or post-quantum problems, and are
quite intricate to implement, generally resulting in poor efficiency; the
construction we offer results in a powerful efficiency gap with respect to
existing solutions. With the threat of quantum computers, post-quantum
solutions are important, but not yet tested enough to rely on such prob-
lems only. We thus first study an hybrid approach to rely on the best of
the two worlds: the scheme is secure if at least one of the two underlying
assumptions is still valid (i.e. the DDH and LWE). Then, we address the
ABE problem, with a practical solution delivering encrypted contents
such that only authorized users can decrypt, without revealing the tar-
get sets, while also granting tracing capabilities. Our scheme is inspired
by the Subset Cover framework where the users’ rights are organized as
subsets and a content is encrypted with respect to a subset covering of
the target set. Quite conveniently, we offer black-box modularity: one
can easily use any public-key encryption of their choice, such as Kyber,
with their favorite library, to combine it with a simple ElGamal variant
of key encapsulation mechanisms, providing strong security guarantees.

1 Introduction

Key Encapsulation Mechanisms (KEM) enable the transmission of symmetric
keys at the beginning of an interaction while retaining trust that only the
intended recipient will be able to get access to this encapsulated key. Once
this trusted transmission has been established, users can privately communicate
using this encapsulated secret key with the advantages of symmetric encryp-
tion, granting compact ciphertexts of similar size as corresponding cleartexts.
Namely, they can be used to build Public-Key Encryption (PKE) schemes in
the KEM-DEM (for Data Encapsulation Mechanism) paradigm [18].

In organizations with complex structures, one will want to have more func-
tionalities, namely being able to share a key among all users verifying a policy on
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a set of attributes, all at once. To this aim, KEMs constructed out of Attribute-
Based Encryption (ABE) have been designed, in which keys can be encapsulated
by being encrypted with these schemes for which all users verifying the specified
attributes policy will be able to decrypt and thus decapsulate the key. These
ABE primitives (stemming from [12]) are very powerful as they can cover any
possible logical combination of the attributes, however this comes at an effi-
ciency cost, and for practical use-cases, one will only need to encrypt for some of
these existing combinations, for a limited number of attributes; this work is in
this setting’s scope, in which one can actually replace ABE constructions with
encryption with respect to a union of attribute subsets. In these use-cases, it can
also be relevant to get anonymity, meaning that a user should never know for
which policy a ciphertext was produced, except if it is the policy they are using to
successfully decrypt. In the case of ABE, this is called attribute hiding. This can
also be used to get anonymous authentication (for instance in mobile network
contexts) to service providers sending encapsulations without users needing to
send out requests that would identify them.

Additionally, with current preoccupations with respect to the threat of quan-
tum computers on classical cryptography, granting resistance to these for data
that needs to be kept private on the long term is becoming a necessity. How-
ever, post-quantum cryptographic schemes are newer and only beginning to be
used, one should try to keep current schemes’ security properties. In fact, several
security agencies are handing out guidelines for pre- and post-quantum security
hybridization, meaning that cryptographic schemes should retain all their secu-
rity properties even if one of the two pre- or post-quantum schemes is broken.

Another area of interest in this context in which users share some common
keys, is the ability to still identify them uniquely, in case they choose to send
some of there decapsulation capabilities to another party. Thus, if someone leaks
some secret information they were supposed to keep to themselves, we would like
to trace these so-called traitors, with traceability.

Related Work. This work combines many desirable properties for the use of
KEMs in practical contexts, that other previous works had not, and since it
covers only the practical contexts in which one would wish for ABE-based con-
structions, it compares favorably in efficiency with respect to such post-quantum
schemes built from ABE, in addition with providing traceability and post- and
pre-quantum hybridization.

Anonymous Broadcast Encryption. Our simplified access structure with strong
privacy has a similar flavor as previous works [10,15,16] on broadcast encryption
with anonymity, with optimizations on the decryption time. However, they do
not handle black-box post-quantum security nor traceability.

Post-Quantum Key-Policy ABE. Then, providing post-quantum resistance, the
closest related works are Key-Policy ABEs (KP-ABE) based on LWE. Some the-
oretical works such as [19] provide results with good asymptotic bounds, but are
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unsuited for use with practical parameters, and others, like [8], provide imple-
mentable results, but even with their comparable lowest policy circuit depth,
their encryption time is about a hundred times bigger than ours, their decryp-
tion time about ten times bigger, and their RLWE parameters lead to bigger
ciphertext sizes than ours. Also, they do not provide anonymity nor traceability.

Hybridization for Pre and Post-Quantum Security. Our work, in the line of
security agency and standardization organizations recommendations, enables
the hybridization of both pre- and post-quantum schemes, so that its secu-
rity holds if it does either one of the underlying schemes. The use of the post-
quantum scheme is totally black-box, enabling combinations with other seman-
tically secure public-key encryption schemes. This is in the line of previous work
to combine KEMs to get the best security out of the individual ones combined,
such as [11], and in [4], where the specific problem of combining pre- and post-
quantum schemes against various types of classical or quantum adversaries was
studied.

Our Contributions. Our final instantiation called Covercrypt provides an
efficient KEM for hidden access policies with traceability, ensuring both pre-
and post-quantum securities, along with a Rust implementation of the scheme1.

An Efficient KEM with Hidden Access Policies. Our scheme provides efficiency
with respect to the state-of-the-art in KP-ABE schemes by restricting its scope
to depth-one policy circuits. The attributes for which a key is encapsulated are
kept hidden, providing anonymity. Also, we gain time on the decryption with an
early-abort paradigm, in which one can quickly test whether a ciphertext was
encrypted for one of their attributes, using a tag, and retaining the anonymity
properties of the scheme. Our ciphertexts are of size 96 + #B × 1088 Bytes,
where B is the list of attribute-subsets the key is encapsulated for. On the other
hand, user’s keys are of size (#A+1)×64 Bytes, where A is the list of attributes
for the user. For #B ranging from 1 to 5, encapsulation takes from 350 to 950
microseconds, and decapsulation, from 230 to 480 microseconds, with an affine
dependency in the user’s attributes (see Sect. 7).

Traceability. As an optional feature, the pre-quantum ElGamal part of our
scheme provides traceability under the Decisional Diffie-Hellman (DDH) assump-
tion. It makes sense to consider traceability with pre-quantum security as this is
a short-term security requirement, if users are currently misbehaving, whereas
the post-quantum security preserves the privacy property, which is important
on the long-term, as ciphertexts can be stored until their security is broken in
the future. Our implementation covers the case were traitors do not collude; we
also show how the scheme can be instantiated for arbitrarily t-large collusions,
but the tracing time then grows exponentially in t. A KEM can be used to
broadcast symmetric encryption keys, but also for authentication, and in such
an interactive context, implementing tracing requests is easily done in practice.
1 https://github.com/Cosmian/cover crypt.

https://github.com/Cosmian/cover_crypt
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2 Definitions

Public-Key Encryption (PKE) allows the transmission of hidden information
that only the intended recipient will be able to uncover. To make the scheme
independent of the format of the cleartext message, the usual paradigm for
encryption is the KEM-DEM [18], where one first encapsulates a session key
that only the recipient can recover, and then encrypts the payload under that
key. The former step uses a Key Encapsulation Mechanism (KEM) and the latter
a Data Encapsulation Mechanism (DEM), that is usually instantiated with an
Authenticated Encryption, such as AES256-GCM2, providing both privacy and
authenticity of plaintexts. We hereafter recall some formal definitions.

Notations. Henceforth, many security notions will be characterized by the
computational indistinguishability between two distributions D0 and D1. It will
be measured by the advantage an adversary A can have in distinguishing them:

Adv(A) = Pr
D1

[A(x) = 1] − Pr
D0

[A(x) = 1] = 2 × Pr
Db

[A(x) = b] − 1.

Then, we will denote Adv(τ) the maximal advantage over all the adversaries with
running-time bounded by τ . A first pair of distributions is used in the famous
ElGamal encryption scheme, with Diffie-Hellman tuples in G = 〈g〉, a group of
prime order p, spanned by a generator g, and denoted multiplicatively:

Definition 1 (Decisional Diffie-Hellman Problem). The DDH assumption
in a group G (DDHG) of prime order p, with a generator g, states that the
distributions D0 and D1 are computationally hard to distinguish, where

D0 = {(ga, gb, gab), a, b
$← Zp} D1 = {(ga, gb, gc), a, b, c

$← Zp}

and we will denote AdvddhG (A) the advantage of an adversary A.

When studying the Kyber post-quantum encryption scheme, we will also need
another algebraic structure, with indistinguishable distributions. We will denote
R = Z[X]/(Xn + 1) (resp. Rq = Zq[X]/(Xn + 1)) the ring of polynomials of
degree at most n − 1 with integer coefficients (resp. with coefficients in Zq, for a
small prime q). We take n as power of 2, where Xn + 1 is the n

2 -th cyclotomic
polynomial. We denote Bη the centered binomial distribution of parameter η.
When a polynomial is sampled according to Bη, it means each of its coefficient
is sampled from that distribution. We will also use vectors e ∈ Rk

q and matrices
A ∈ Rm×k

q in Rq:

Definition 2 (Decisional Module Learning-with-Error Problem). The
DMLWE assumption in Rq (DMLWERq,m,k,η) states that the distributions D0 and
D1 are computationally hard to distinguish, where

D0 = {(A,b),A $← Rm×k
q , (s, e) $← Bk

η × Bm
η ,b ← As + e}

D1 = {(A,b),A $← Rm×k
q ,b $← Bm

η }
2 https://docs.rs/aes-gcm/latest/aes gcm/.

https://docs.rs/aes-gcm/latest/aes_gcm/
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We will denote Advdmlwe
Rq,m,k,η(A) the advantage of an adversary A.

Pseudorandom Generators (PRG). A long line of cryptographic works consider
PRGs [1,13], as one of the theoretical foundations of modern cryptography.
A PRG PRG : {0; 1}μ → {0; 1}ν is deterministic function which should have
the property that uniformly distributed inputs on {0; 1}μ should have outputs
through PRG indistinguishable from uniformly random samples of {0; 1}ν with
respect to a PPT adversary. The bigger ν is with respect to μ, the more chal-
lenging constructing such a PRG becomes. We define a PRG’s security as:

Definition 3 (IND-security of a PRG). Let PRG : {0; 1}μ → {0; 1}ν be a
deterministic function. Then PRG is an IND-secure PRG if the distributions D0

and D1 are computationally hard to distinguish, where

D0 = {y, x
$← {0; 1}μ, y ← PRG(x)} D1 = {y, y

$← {0; 1}ν}

We will denote AdvindPRGμ,ν
(A) the advantage of an adversary A.

Key Encapsulation Mechanism. A Key Encapsulation Mechanism KEM is
defined by three algorithms:

– KEM.KeyGen(1κ): the key generation algorithm outputs a pair of public and
secret keys (pk, sk);

– KEM.Enc(pk): the encapsulation algorithm generates a session key K and an
encapsulation C of it, and outputs the pair (C,K);

– KEM.Dec(sk, C): the decapsulation algorithm outputs the key K encapsulated
in C.

Correctness. A correct KEM satisfies AdvcorKEM(κ) = 1 − PrD[Ev] = negl(κ), for

D = {(pk, sk) ← KEM.KeyGen(1κ), (C,K) ← KEM.Enc(pk) : (sk, C,K)}
Ev = [KEM.Dec(sk, C) = K]

Session-Key Privacy. On the other hand, such a KEM is said to provide session-
key privacy (denoted SK-IND) in the key space K, if the encapsulated key is
indistinguishable from a random key in K. More formally, a KEM is SK-IND-
secure if for any adversary A, Advsk-indKEM (A) = negl(κ), in distinguishing D0 and
D1, where

Db =
{

(pk, sk) ← KEM.KeyGen(1κ),
(C,K0) ← KEM.Enc(pk),K1

$← K : (pk, C,Kb)
}

Public-Key Privacy. One can additionally expect anonymity of the receiver, also
known as public-key privacy (denoted PK-IND), if the encapsulation does not leak
any information about the public key, first defined in [3]. More formally, a KEM
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is PK-IND-secure if for any adversary A, Advpk-indKEM (A) = negl(κ), in distinguishing
D0 and D1, where

Db =

⎧⎨
⎩

For i = 0, 1 :
(pki, ski) ← KEM.KeyGen(1κ),
(Ci,Ki) ← KEM.Enc(pki)

: (pk0, pk1, Cb)

⎫⎬
⎭

ElGamal-based KEM. In a group G of prime order p, with a generator g:

– EG.KeyGen(1κ): sample random sk = x
$← Zp and set pk = h ← gx;

– EG.Enc(pk): sample a random r
$← Zp and set C ← gr together with K ← hr;

– EG.Dec(sk, C): output K ← Cx.

Under the DDH assumption in G, this KEM is both SK-IND and PK-IND with
K = G. The formal security proofs for an extended version of this scheme will
be given later, we thus postpone the analysis of this scheme.

Key Encapsulation Mechanism with Access Control. A KEM with
Access Control allows multiple users to access the encapsulated key K from
C, according to a rule R applied on X in the user’s key usk and Y in the
encapsulation C. It is defined by four algorithms:

– KEMAC.Setup(1κ) outputs the global public parameters PK and the master
secret key MSK;

– KEMAC.KeyGen(MSK, Y ) outputs the user’s secret key usk according to Y ;
– KEMAC.Enc(PK,X) generates a session key K and an encapsulation C of it

according to X;
– KEMAC.Dec(usk, C) outputs the key K encapsulated in C.

Correctness. A KEMAC is correct if AdvcorKEMAC(κ) = 1 − PrD[Ev] = negl(κ), for

D =

⎧⎪⎪⎨
⎪⎪⎩

∀(X,Y ) such that R(X,Y ) = 1,
(PK,MSK) ← KEMAC.KeyGen(1κ),
usk ← KEMAC.KeyGen(MSK, Y ),
(C,K) ← KEMAC.Enc(PK,X)

: (usk, C,K)

⎫⎪⎪⎬
⎪⎪⎭

Ev = [KEMAC.Dec(usk, C) = K].

Session-Key Privacy. As for the basic KEM, one may expect some privacy prop-
erties. Session-key privacy is modeled by indistinguishability of ciphertexts, even
if the adversary has received some decryption keys, as soon as associated Yi are
incompatible with X (R(X,Yi) = 0). Such a KEMAC is said to be SK-IND-secure
in the key space K if for any adversary A, that can ask any key uski, using oracle
OKeyGen(Yi) that stores Yi in the set Y and outputs KEMAC.KeyGen(MSK, Yi),
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Advsk-indKEMAC(A) = negl(κ), for b
$← {0; 1} and

Db =

⎧⎨
⎩

(PK,MSK) ← KEMAC.Setup(1κ),
(state,X) ← AOKeyGen(·)(PK),
(C,K0) ← KEMAC.Enc(PK,X),K1

$← K
: (state, C,Kb)

⎫⎬
⎭

BadXY = [∃Yi ∈ Y,R(X,Yi) = 1]

Advpk-indKEMAC(A) = 2 × Pr
Db

[AOKeyGen(·)(state, C,Kb) = b | ¬BadXY] − 1.

We note the bad event BadXY (decided at the end of the game) should be avoided
by the adversary, as it reduces its advantage: this indeed leads to a trivial guess,
and this is considered as a non-legitimate attack.

Access-Control Privacy. In addition, one could want to hide the parameter X
used in the encapsulation C even if the adversary A can ask any key uski for Yi

such that R(X0, Yi) = R(X1, Yi) = 0 for all i, using oracle OKeyGen(Yi) that
stores Yi in the set Y and outputs KEMAC.KeyGen(MSK, Yi). A KEMAC is said to
be AC-IND-secure if for any adversary A, that can ask any key uski, using oracle
OKeyGen(Yi) that stores Yi in the set Y and outputs KEMAC.KeyGen(MSK, Yi),
Advac-indKEMAC(A) = negl(κ), for b

$← {0; 1} and

Db =

⎧⎨
⎩

(PK,MSK) ← KEMAC.Setup(1κ),
(state,X0,X1) ← AOKeyGen(·)(PK),
(Ci,Ki) ← KEMAC.Enc(PK,Xi), for i = 0, 1

: (state, Cb)

⎫⎬
⎭

BadXY = [∃Yi ∈ Y,R(X0, Yi) = 1 ∨ R(X1, Yi) = 1]

Advac-indKEMAC(A) = 2 × Pr
Db

[AOKeyGen(·)(state, Cb) = b | ¬BadXY] − 1,

where we again condition the advantage to legitimate attacks only.

Traceability. In any multi-user setting, to avoid abuse of the decryption keys, one
may want to be able to trace a user (or their personal key) from the decryption
mechanism, and more generally from any useful decoder, either given access to
the key material in the device (white-box tracing) or just interacting with the
device (black-box tracing). Without any keys, one expects session-key privacy,
but as soon as one knows a key, one can distinguish the session-key. Then, we will
call a useful pirate decoder P a good distinguisher against session-key privacy,
that behaves differently with the real and a random key. But of course, this
pirate decoder can be built from multiple user’ keys, called traitors, and one
would like to be able to trace at least one of them.

A weaker variant of traceability is just a confirmation of candidate traitors,
and we will target this goal: if a pirate decoder P has been generated from
a list T = {Yi} of traitors’ keys, a confirmer algorithm C can output, from a
valid guess G for T , at least one traitor in T . More formally, let us consider
any adversary A that can ask for key generation through oracle OKeyGen(Yi),
that gets uski ← KEMAC.KeyGen(MSK, Yi), outputs nothing but appends the
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new user Yi in U , and then corrupt some users through the corruption oracle
OCorrupt(Yi), that outputs uski and appends Yi in T , to build a useful pirate
decoder P, then there is a correct confirmer algorithm C that outputs a traitor
T , with negligible error : for b

$← {0; 1} and

D =

⎧⎪⎪⎨
⎪⎪⎩

(PK,MSK) ← KEMAC.Setup(1κ),P ← AOKeyGen(·),OCorrupt(·)(PK),
X such that ∀Yi ∈ T ,R(X,Yi) = 1,
(C,K0) ← KEMAC.Enc(PK,X),K1

$← K :
(MSK,P,U , T , C,K0,K1)

⎫⎪⎪⎬
⎪⎪⎭

,

we denote:

– P as useful, if 2 × PrD,b[P(C,Kb) = b] − 1 is non-negligible;
– C as correct, if PrD[T ∈ T T ← CP(·,·)(MSK, T )] is overwhelming;
– C as error-free if for any G ⊂ U , PrD[T �∈ T T ← CP(·,·)(MSK,G) ∧ T �= ⊥] is

negligible.

More concretely, we say that the decoder P is useful if it can distinguish the
real key from a random key with significant advantage. Then, from such a useful
decoder, the confirmer C is correct if it outputs a traitor with overwhelming
probability, when it starts from the correct set T of candidates. Eventually, it
should be error-free: T does not output an honest user, but with negligible
probability. The t-confirmation limits the number of corrupted users in T to t.

Hybrid KEM. While one can never exclude an attack against a cryptographic
scheme, combining several independent approaches reduces the risks. This is the
way one suggests to apply post-quantum schemes, in combination with classical
schemes, in order to be sure to get the best security.

Hybrid KEM Construction. Let us first study the combination of two KEMs
(KEM1 and KEM2), so that as soon as one of them achieves SK-IND security, the
hybrid KEM achieves SK-IND security too.

We need both KEMs to generate keys in K, with a group structure and
internal law denoted ⊕:

– KEM.KeyGen(1κ) calls (pki, ski) ← KEMi.KeyGen(1κ), for i ∈ {1, 2} and out-
puts pk ← (pk1, pk2) and sk ← (sk1, sk2);

– KEM.Enc(pk) parses pk as (pk1, pk2), calls (Ci,Ki) ← KEMi.Enc(pki) for i ∈
{1, 2}, and outputs (C = (C1, C2),K = K1 ⊕ K2);

– KEM.Dec(sk, C) parses sk as (sk1, sk2) and C as (C1, C2), then calls both
Ki ← KEMi.Dec(ski, Ci), and outputs K = K1 ⊕ K2.

Security Properties. As expected, we can prove that as soon as one of them
achieves SK-IND security, the hybrid KEM achieves SK-IND security too. This
also follows from [11]’s first lemma. However, for PK-IND security of KEM, we
need both the underlying schemes to be PK-IND secure. This second property is
not as crucial as the first one: none of the other security properties we show for
the schemes depend on it, and here the only property at stake is the anonymity
of the receiver of the encapsulated keys, not the keys themselves.
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Theorem 1 (Session-Key Privacy). If at least one of the underlying KEM1

and KEM2 is SK-IND-secure, the hybrid KEM is SK-IND-secure:

Advsk-indKEM (τ) ≤ min{Advsk-indKEM1
(τ),Advsk-indKEM2

(τ)}.

Theorem 2 (Public-Key Privacy). If both underlying KEM1 and KEM2 are
PK-IND-secure, the hybrid KEM is PK-IND-secure:

Advpk-indKEM (τ) ≤ Advpk-indKEM1
(τ) + Advpk-indKEM2

(τ).

We will also use Public-Key Encryption (PKE), which is recalled in the
Appendix A.

3 Authenticated Key Encapsulation Mechanism

With public-key privacy, one cannot know who is the actual receiver, and needs
to check the decapsulated session key with an authenticated encryption scheme
to know whether they were a recipient or not. The latter check can be time-
consuming when applied on a large data content (or when there are multiple
decryption keys to try). We can hope to have quick key confirmation, if the
additional Authentication (AUTH) property is satisfied.

Authentication. A KEM provides authentication (denoted AUTH) if it satisfies
AdvauthKEM(κ) = 1 − PrD[Ev] = negl(κ), for

D =
{

∀i ∈ {0; 1}, (pki, ski) ← KEM.KeyGen(1κ),
(C,K) ← KEM.Enc(pk0) : (sk1, C)

}

Ev = [KEM.Dec(sk1, C) =⊥].

We stress this is a weak authentication definition, but strong enough for our
further early-abort technique. We indeed just want to exclude a ciphertext to be
valid under two keys, at random. There is no malicious behavior.

We present a generic conversion to add the AUTH property to any KEM,
while retaining previous properties (SK-IND and PK-IND). To this aim, we use
a PRG.

Key Encapsulation Mechanisms with Authentication. We present below
a KEM′ with authentication from a KEM that outputs κ-bit keys, with two
security parameters: k, the length of the new encapsulated key, and �, the length
of the verification tag. We also use a PRG PRG : {0; 1}κ → {0; 1}k+�. We require
that in KEM.Enc’s outputs (C,K), with K looking uniform in {0; 1}κ.

– KEM′.KeyGen(1κ) runs (pk, sk) ← KEM.KeyGen(1κ);
– KEM′.Enc(pk) runs (c, s) ← KEM.Enc(pk) and gets U‖V ← PRG(s). One then

outputs C ← (c, V ) together with the encapsulated key K ← U ;
– KEM′.Dec(sk, C = (c, V )) runs s ← KEM.Dec(sk, c), gets U ′‖V ′ ← PRG(s),

and checks whether V = V ′. In the positive case, one outputs K ′ ← U ′,
otherwise one outputs ⊥.
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Correctness. If the KEM KEM is correct, then the derived KEM′ with authen-
tication is also correct, has the decapsulation of c outputs the same s as during
encapsulation, and then PRG(s) gives the same key and tag.

Security Properties. We will now show the previous security notions still hold,
and we really provide authentication. We can claim that the above KEM′ retains
the initial security properties of the KEM scheme, but as the proofs essentially
rely of the PRG properties, we defer the proofs to the full version [6].

Theorem 3 (Session-Key Privacy). If the KEM KEM is SK-IND-secure, and
outputs (C,K)’s of KEM.Enc have uniformly distributed K’s in {0, 1}κ, then its
derived KEM′ with authentication using the IND-secure PRG PRG : {0; 1}κ →
{0; 1}k+� is SK-IND-secure: Advsk-indKEM′(τ) ≤ 2 ·Advsk-indKEM (τ)+2 ·AdvindPRGκ,k+�

(τ), for
any running time τ .

Theorem 4 (Public-Key Privacy). If the KEM KEM is both SK-IND and
PK-IND-secure, outputs (C,K)’s of KEM.Enc have uniformly distributed K’s in
{0, 1}κ, and PRG : {0; 1}κ → {0; 1}k+� is an IND-secure PRG, then its derived
KEM′ using PRG is PK-IND-secure: Advpk-indKEM′ (τ) ≤ Advpk-indKEM (τ)+4 ·Advsk-indKEM (τ)+
4 · AdvindPRGκ,k+�

(τ), for any running time τ .

We develop the authentication property, with the proof in the Appendix B:

Theorem 5 (Authentication). If the KEM KEM is SK-IND, outputs (C,K)’s
of KEM.Enc have uniformly distributed K’s in {0, 1}κ, and PRG : {0; 1}κ →
{0; 1}k+� is an IND-secure PRG, then the corresponding authenticated KEM
KEM′ using PRG provides authentication: AdvauthKEM′(κ) ≤ 2−� + Advsk-indKEM (τ) +
AdvindPRGκ,k+�

(τ ′), for some small running times τ , τ ′.

4 Subset-Cover KEMAC

The above notion of access control is quite general and includes both key-policy
ABE and ciphertext-policy ABE, where one can have policies P and attributes
such that given a subset of attributes, this defines a list of Boolean B (according
to the presence or not of the attribute), and P(B) is either true or false.

For efficiency considerations, we will focus on the subset-cover approach:
during the Setup, one defines multiple sets Si; when generating a user key uskj ,
a list Aj of subsets if specified, which implicitly means user Uj ∈ Si for all i ∈ Aj ;
at encapsulation time, a target set T is given by B, such that T = ∪i∈BSi.

Intuitively, Si’s are subsets of the universe of users, and to specify the
receivers, one encapsulates the key K for a covering of the target set T . A
KEMAC, for a list Σ of sets Si, can then be defined from any KEM in K that is
a group with internal law denoted ⊕. We now describe a subset cover KEMAC
with anonymity and early aborts, our main contribution.

Anonymous Subset-Cover KEMAC with Early Aborts. To avoid sending
B together with the ciphertext, but still being able to quickly find the correct
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matching indices in the ciphertext and the user’s key, one can use a KEM′ with
authentication:

– KEMAC.Setup(Σ), for each Si ∈ Σ, runs (pki, ski) ← KEM′.KeyGen(1κ):
PK ← (pki)i and MSK ← (ski)i;

– KEMAC.KeyGen(MSK, Aj) defines the user’s secret key uskj ← (ski)i∈Aj
;

– KEMAC.Enc(PK, B) generates a random session key K
$← {0; 1}k, and, for

all i ∈ B, runs (Ci,Ki) ← KEM′.Enc(pki) and outputs C ← (Ci, Ei = K ⊕
Ki)i∈B together with the encapsulated key K;

– KEMAC.Dec(usk, C), for all ski in usk and all (Cj , Ej) in C, runs K ′
i,j ←

KEM′.Dec(ski, Cj). It stops for the first valid K ′
i,j , outputs K ← K ′

i,j ⊕ Ej .

For this above scheme, we can claim both the SK-IND security and the
AC-IND security, for selective key queries. But first, let us check the correct-
ness, thats fails if a wrong key, among the SASB possibilities, makes accepts:

Theorem 6 (Correctness). If the underlying KEM′ is AUTH-secure, the above
subset-cover KEMAC is correct: AdvcorKEMAC(κ) ≤ SASB × AdvauthKEM′(κ), where SA

and SB are the sizes of the user’ sets of attributes and the number of subsets in
the ciphertext, respectively.

About SK-IND and AC-IND security, the proofs follow the classical hybrid
technique, they are thus deferred to the full version [6].

Theorem 7 (Session-Key Privacy). If the underlying KEM′ is SK-IND-
secure, the above subset-cover KEMAC is also SK-IND-secure, for selective key-
queries: Advsk-indKEMAC(τ) ≤ 2qk×Advsk-indKEM′(τ), where qk is the number of key-queries.

Theorem 8 (Access-Control Privacy). If the underlying KEM′ is AC-IND-
secure, the above subset-cover KEMAC is AC-IND-secure, for selective key-queries
and constant-size sets B: Advac-indKEMAC(τ) ≤ 2SB × Advpk-indKEM (τ), where SB is the
constant-size of the sets B.

We stress that B must have a constant size to achieve access-control privacy.

5 Traceable KEM

In a subset-cover-based KEMAC, a same decapsulation key ski is given to multiple
users, for a public key pki. In case of abuse, one cannot trace the defrauder. We
offer an ElGamal-based KEM with traceability, in the same vein as [5].

Traceable ElGamal-based TKEM. Let G be a group of prime order q, with
a generator g, in which the Computational Diffie-Hellman problem is hard. We
describe below a TKEM with n multiple decapsulation keys for a specific public
key, allowing to deal with collusions of at most t users:

– TKEM.KeyGen(1κ, n, t, g,G, q): returns a public key pk, n secret keys uskj :
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• it samples random s, sk
$← Z

∗
q , for k = 1 . . . , t+1 and sets h ← gs as well

as hk ← gsk for each k;
• for users Uj , for j = 1 . . . , n, one samples random (vj,k)k

$← Z
t+1
q , such

that
∑

k vj,ksk = s, for j = 1 . . . , n. Then, pk ← ((hk)k, h), while each
uskj ← (vj,k)k.

– TKEM.Enc(pk = ((hk)k, h)): it samples a random r
$← Zq, and sets C =

(Ck ← hr
k)k, as well as K ← hr.

– TKEM.Dec(uskj = (vj,k)k, C = (Ck)k): it outputs K ←
∏

k C
vj,k

k

One notes:
∏

k C
vj,k

k =
∏

k h
rvj,k

k =
∏

k(gr)skvj,k = gr
∑

k skvj,k = gsr = hr = K.

Security Properties. First, we will show that the above TKEM construction
achieves both SK-IND and PK-IND security. But it also allows to confirm traitors,
from a stateless pirate decoder P (in particular, this means that P never blocks
itself after several invalid ciphertexts). The proofs of Theorems 9 and 10 are
deferred to the full version [6].

Theorem 9 (Session-Key Privacy). The above TKEM achieves SK-IND
security under the DDH assumption in G: Advsk-indTKEM(τ) ≤ AdvddhG (τ).

Theorem 10 (Public-Key Privacy). The above TKEM achieves PK-IND

security under the DDH assumption in G: Advpk-indTKEM(τ) ≤ AdvddhG (τ).

Theorem 11 (t-Confirmation). A collusion of at most t keys can be con-
firmed from a useful stateless pirate decoder P: starting from a correct guess
for T , the traitors’ keys used for building the pirate decoder P, by accessing the
decoder, one can confirm a traitor in T , with negligible error.

Proof. To prove this theorem, we first give a description of the confirmer algo-
rithm C, then we provide the indistinguishability analysis, and eventually prove
C will give a correct answer. This proof can be found in the Appendix C.

Corollary 1. In the particular case of t = 1, one can efficiently trace one
traitor, from a useful stateless pirate decoder: by trying G = {J} sequentially
for each J = 1, . . . , n, and evaluating pG, one should get either a significant
advantage (for the traitor) or 0 (for honest keys).

6 Our KEMAC Scheme

We have already presented a traceable KEM that is secure against classical adver-
saries. If we combine it with another scheme expected secure against quantum
adversaries, we can thereafter combine them into an hybrid-KEM, that inherits
security properties from both schemes, with still traceability against classical
adversaries. But we will actually exploit the properties of a Public-Key Encryp-
tion (PKE) scheme in order to improve efficiency of the combination. Given a
PKE, that is both indistinguishable and anonymous, we can trivially get a KEM
that is both SK-IND and PK-IND secure:
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– KEM.KeyGen(1κ) gets (pk, sk) ← PKE.KeyGen(1κ), and outputs (pk, sk);
– KEM.Enc(pk) gets K

$← K, C ← PKE.Enc(pk,K), and outputs (K,C);
– KEM.Dec(sk, C) outputs PKE.Dec(sk, C).

CRYSTALS-Kyber PKE We recall the algorithms of the CRYSTALS-Kyber
[2] public-key encryption whose both indistinguishability and anonymity rely on
the hardness of Module-LWE [14]. We identify Rq with Z

n
q that contains the

plaintext space K = {0; 1}n, and use two noise parameters η1 ≥ η2, for the
Gaussian distributions Bη1 and Bη2 :

– Kyber.KeyGen(1κ): sample random A $← Rk×k
q and (s, e) $← Bk

η1
× Bk

η1
, then

set pk ← (A,b = As + e) and sk ← s.
– Kyber.Enc(pk,K): r $← Bk

η1
, and (e1, e2)

$← Bk
η2

× Bη2 , then set u = AT r + e1
and v = bT r + e2 + � q

2� · K, and return C = (u, v).
– Kyber.Dec(sk, C): compute w ← v − sT u and output K = � 2

q · w�.

Theorem 12 follows from [2], and Theorem 13 is also in the scope of [17]:

Theorem 12 (Indistinguishability of Kyber.) Kyber is IND-secure under the
decisional Module-LWE assumption:

AdvindKyber(τ) ≤ Advdmlwe
Rq,k,k,η1

(τ) + Advdmlwe
Rq,k+1,k,η2

(τ) ≤ 2 × Advdmlwe
Rq,k+1,k,η2

(τ).

Theorem 13 (Anonymity of Kyber.) Kyber is PK-IND-secure under the deci-
sional Module-LWE assumption:

Advpk-indKyber (τ) ≤ 2 × Advdmlwe
Rq,k,k,η1

(τ) + Advdmlwe
Rq,k+1,k,η2

(τ) ≤ 3 × Advdmlwe
Rq,k+1,k,η2

(τ).

Hybrid KEM, from KEM and PKE. Using the ElGamal KEM that is both
SK-IND and PK-IND-secure under the DDH assumption, together with the Kyber
PKE that is both SK-IND and PK-IND-secure under the DMLWE assumption, the
hybrid KEM is:

– SK-IND-secure, as soon as either the DDH or the DMLWE assumptions hold;
– PK-IND-secure, under both the DDH and the DMLWE assumption.

according to Sect. 2. But with a PKE scheme, we can optimize a bit with:

– Hyb.KeyGen(1κ): generate both pairs of keys (pk1, sk1) ← KEM.KeyGen(1κ)
and (pk2, sk2) ← PKE.KeyGen(1κ), then output pk ← (pk1, pk2) and sk ←
(sk1, sk2);

– Hyb.Enc(pk): parse pk as (pk1, pk2), choose a random K
$← K, call (C1,K1) ←

KEM.Enc(pk1) and C2 ← PKE.Enc(pk2,K ⊕ K1). Output (C = (C1, C2),K);
– Hyb.Dec(sk, C): parse sk as (sk1, sk2) and C as (C1, C2), then call both K1 ←
KEM.Dec(sk1, C1), K2 ← PKE.Dec(sk2, C2), and output K = K1 ⊕ K2.
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Hybrid Traceable KEMAC. We can apply the above generic combination to
build an anonymous subset-cover KEMAC with early abort, with the traceable
ElGamal KEM and Kyber PKE to get a Key Encapsulation Mechanism with
Access Control and Black-Box traceability (without collusions, so with t = 1
using notations from Sect. 5), where message-privacy hold as soon as at least the
DDH or the DMLWE assumption holds, while the target-set privacy holds under
both the DDH and DMLWE, and traceability works under the DDH assumption.

To have authentication properties, the ElGamal TKEM is slightly modified
to fit Theorems 3, 4 and 5’s requirements, in which the element K output by
the encapsulation algorithm should be uniform in {0; 1}κ. This modification
can be done either in the Random Oracle Model (ROM) with a hash function
modelled as a random oracle, and outputting a hash of the original key into
{0; 1}κ, or, without the ROM, using a twist augmented technique from [7]. The
KEMs derived with these two techniques are deferred to the full version [6]. We
describe here the one in the ROM. Proofs for SK-IND and PK-IND-securities
follow immediately from the proofs that TKEM is SK-IND and PK-IND-secure.

Detailled Description. The straightforward construction of the hybrid trace-
able KEMAC with early abort is the simple instantiation of the KEMAC scheme
from Sect. 4 from a KEM with authentication (from Sect. 3), itself based on our
hybrid KEM from the previous subsection. A näıve instantiation would draw
independent keys in the hybrid schemes and send their ⊕’s with the encapsu-
lated key. But as K is chosen beforehand, the same K can be chosen for all
the subsets. This optimized version is described with the following algorithms,
where H is a hash function modeled as a random oracle with output length κ,
PRG : {0; 1}κ → {0; 1}k+� a PRG, where k is the length of the encapsulated key,
� the length of the verification tag, and Σ the set of subsets (Si)i (or attributes).
We instantiate it with the Kyber PKE, but it would work with any PKE that is
both indistinguishable and anonymous. We call this KEMAC Covercrypt:

– Covercrypt.Setup(Σ, 1κ):
1. For a group G of prime order p, generated by g, one samples s, s1, s2

$← Zp,
then sets h = gs, and g1 = gs1 , g2 = gs2 (for tracing purposes).

2. Then, for tracing, we set tsk = (s, s1, s2, ID), where ID is the set of
the users’ identifiers uid, initialized as an empty set here, and tpk =
(g, h, g1, g2).

3. For each Si ∈ Σ, one samples a random scalar xi
$← Zp, a (pki, ski) ←

Kyber.KeyGen(1κ), then sets pk′
i ← (hi = hxi , pki), and sk′

i ← (xi, ski).
4. Finally, the global public key is set to PK ← (tpk, {pk′

i}i), and the master
secret key to MSK ← (tsk, {sk′

i}i,UP), where UP is the set of user’s
secret keys, showing their permissions, but initialized as an empty set.
One returns (MSK,PK).

– Covercrypt.KeyGen(MSK, U,A):
1. For a user U , with attributes A (a list of subsets, or equivalently their

indices), one samples (α, β) ∈ Z
2
p such that αs1 + βs2 = s, and sets the

corresponding user secret identifier uid ← (α, β).
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2. The tracing secret key tsk is updated as tsk′ by adding (U, uid) in ID.
3. Finally, the user’s secret key is defined as usk ← (uid, {sk′

j}j∈A), and one
outputs it along with MSK′, the master secret key MSK updated with usk
added in UP, and tsk′ instead of tsk.

– Covercrypt.Enc(PK, B):
1. For a target set that covers all the users with an attribute in B (or

equivalently the indices of attributes, such that A∩B �= ∅), one generates
a random seed for the key to be encapsulated, S

$← {0; 1}κ, then draws
r

$← Z
∗
p, sets c = (C1 = gr

1, C2 = gr
2), and, for each i ∈ B, with pk′

i = (hi =
hxi , pki), sets Ki = H(hr

i ), and then sets Ei ← Kyber.Enc(pki, S ⊕ Ki)3.
2. One then computes K||V ← PRG(S), in order to grant the early aborts

paradigm, and sets the encapsulation as: C ← (c, {Ei}i∈B , V ), the encap-
sulated key as K, and outputs: (K,C).

– Covercrypt.Dec(usk = (uid = (α, β), {skj}j∈A), C = (c, {Ei}i∈B , V )): For i ∈
B, for each sk′

j = (xj , skj) in usk and (c, Ei, V ) in C, one decapsulates the
underlying hybrid KEM to get the potential seed S used for the key:

• first, K ′
i,j ← Kyber.Dec(skj , Ei);

• for ElGamal, from c = (C1, C2), one computes Kj ← H((Cα
1 Cβ

2 )xj );
• Si,j is then computed as Si,j ← K ′

i,j ⊕ Kj .
In the early-abort check, one computes U ′

i,j ||V ′
i,j ← PRG(Si,j), and checks

whether V ′
i,j = V . In the positive case, one returns K ← U ′

i,j , for this first
valid (i, j), as the session key. Else, if V ′

i,j �= V , the ciphertext is rejected and
the loop on the i, j indices goes on4.

Security Analysis. Our Covercrypt scheme inherits its security properties from
the underlying hybrid KEM scheme using both the Kyber PKE and the traceable
ElGamal KEM, and as such, is SK-IND-secure as soon as either the DDH or the
DMLWE assumptions hold, and PK-IND-secure under both the DDH and the
DMLWE assumptions. Correctness also follows from the authentication property
of the hybrid KEM, and thus under either the DDH or the DMLWE assumptions.

Traceability. The traceability is inherited from the underlying traceable ElGamal
KEM scheme, with t = 1 in Sect. 5’s notations; it relies on the DDH. To check
whether a user U with uid = (α, β) using the key sk – which is shared among her
and other users – is corrupted, one encapsulates a key that only this user can
decapsulate with sk, because the ElGamal encapsulations are group elements
with exponent a random linear combination of a vector which is orthogonal
to (α, β), following the confirmer construction from Sect. 5. We stress that our
construction with t = 1 does not allow collusions. But it can be extended to
confirm larger t-big collusions of traitors.
3 Note that this is the optimized version of a generic one where one would have drawn

|B| extra session keys K′
i, Ei would actually have been a Kyber encryption of these

K′
i’s instead of the S⊕Ki, and one would have had to send |B| extra Fi ← Ki⊕K′⊕S.

4 Again, this corresponds to our optimized version, taking advantage of the encrypting
properties of Kyber. For a generic hybrid KEMAC, one would have output U ′

i,j ⊕ Fi

when V ′
i,j = V (cf. previous footnote for the definition of Fi).
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7 Implementation

Parameters of Covercrypt. We have done an implementation in Rust of
Covercrypt (a pre- and post-quantum hybridized Anonymous Subset-Cover
KEMAC with Early-Aborts), with optimization for a security of 128 bits5. We
use Kyber-768 (and its pqd kyber library6) and ElGamal on the Curve25519, as
group that is of prime order p = 2255 − 19. The hash algorithm used to generate
the Early-Abort tags (256 bits) and the keys (256 bits) generated by the KEM
is SHAKE-256. Then we present the sizes of the keys and ciphertexts, according
to the sizes of A and B, in Table 1. We compare these with the sizes obtained
for a KEM based on a pre-quantum [12] ABE scheme7, way more efficient than
post-quantum ones such as [9]8.

Table 1. Sizes of keys and encapsulations (in Bytes) according the sizes of A and B.

Size of A 1 2 3 4 5

Covercrypt Secret Key usk 1250 2435 3620 4805 5990

Coverc. Pre-Quant. S. K. (uid, {xi}i) 98 131 164 197 230

User Secret Key with GPSW 340 504 668 832 996

Size of B 1 2 3 4 5

Covercrypt Encapsulation C 1171 2260 3349 4438 5527

Covercrypt Pre-Quant. Encaps. (c, V ) 115 148 181 214 247

GPSW KEM Encapsulation 400 452 504 556 608

5 https://github.com/Cosmian/cover crypt.
6 https://docs.rs/pqc kyber/latest/pqc kyber/.
7 Whose implementation can be found at: https://github.com/Cosmian/abe gpsw.
8 In this comparison, to translate the attribute setting into a subset-cover one, we con-

sider a context in which users hold |A|+1 attributes, corresponding to |A| subsets in
the subset-cover setting, the subsets being the intersection of one of these attributes
with each of the other ones, and that encapsulations are made in the same way with
respect to |B|+1 attributes corresponding to |B| subsets, and for the decapsulation
timings, we suppose there is always exactly one subset in the intersection of the ones
the user has access to and the ones in the encapsulation.

https://github.com/Cosmian/cover_crypt
https://docs.rs/pqc_kyber/latest/pqc_kyber/
https://github.com/Cosmian/abe_gpsw
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Table 2. Comparisons of Covercrypt and GPSW-based encapsulation/decapsulation
times. For decapsulation, the GPSW-based KEM has a constant runtime of approxi-
mately 3880 µs.

Size of B 1 2 3 4 5

Covercrypt 191 272 329 401 487

GPSW KEM 4793 5431 6170 6607 7245

Encapsulation time (in µs)

|A| ↓ \ |B| → 1 2 3 4 5

1 214 247 288 345 454

2 311 386 466 543 562

3 334 400 505 608 702

4 471 613 781 908 1072

5 467 646 831 1058 1212

Covercrypt decapsulation time (in µs)

Benchmarks The benchmarks in Table 2 are performed on an Intel Core Pro-
cessor (Haswell, no TSX) CPU @3MHz. The table shows the time required to
generate Covercrypt encapsulations and decapsulations for a 32-Byte symmetric
key, with the same definitions for the sizes |A| and |B| as in Table 1. These
performances are, as before, compared with the [12]-based KEM’s.

Acknowledgments. This work was supported in part by the France 2030 ANR
Project ANR-22-PECY-003 SecureCompute.

Appendix

A Public-Key Encryption

A Public-Key Encryption (PKE) scheme is defined by 3 algorithms:

– PKE.KeyGen(1κ): the key generation algorithm outputs a pair of public and
secret keys (pk, sk);

– PKE.Enc(pk,m): the encryption algorithm encrypts the input message m
under the public key pk and outputs the ciphertext C;

– PKE.Dec(sk, C): the decryption algorithm outputs the message m encrypted
in C.

We will use the classical notion of indistinguishability and of anonymity of such
a PKE scheme, similarly to the same notions for KEMs:

– Indistinguishability. For an honestly generated pk, if the adversary chooses
two messages m0 and m1, it cannot distinguish an encryption of m0 from an
encryption of m1, both under pk.
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– Anonymity. For two honestly generated pk0 and pk1, if the adversary chooses
a message m, it cannot distinguish an encryption of m under pk0 from the
encryption of m under pk1.

B Proof of Theorem 5

We present a sequence of games, from the AUTH security game against KEM′.

Game G0: In the initial game, one runs (pki, ski) ← KEM′.KeyGen(1κ), (c, s) ←
KEM.Enc(pk0) and K0‖V ← PRG(s). One then runs s′ ← KEM.Dec(sk1, c),
followed by U ′‖V ′ ← PRG(s′). We denote P0 the probability V ′ = V . This is
AdvauthKEM′(1κ).

Game G1: In this game, we just replace s
$← {0; 1}κ, that is drawn uniformly at

random from the session-key space of KEM, {0; 1}κ. The difference between
this game and the previous one is the SK-IND-game on the underlying KEM,
against a trivial adversary A0. Hence, P0 − P1 ≤ Advsk-indKEM (τ), τ the running
time of the trivial adversary A0 that runs two key generations, one encapsu-
lation, two PRG evaluations, and one decapsulation.

Game G2:In this game, one takes K0‖V
$← {0; 1}k+�. This is indistinguishable

from the previous game except with probability AdvindPRGκ,k+�
(τ ′). Hence, P1 −

P2 ≤ AdvindPRGκ,k+�
(τ ′), where τ ′ is the running time of another trivial adversary

A1 that runs two key generations, one encapsulation, one PRG evaluations,
and one decapsulation.
In this game, as V is drawn uniformly at random from {0; 1}�, the probability
that it is equal to V ′ ∈ {0; 1}� is equal to 2−�: P2 = 2−�.

Finally, from the above, one deducts that:

AdvauthKEM′(κ) ≤ 2−� + Advsk-indKEM (τ) + AdvindPRGκ,k+�
(τ ′)

C Proof of Theorem 11

To prove this theorem, we first give a description of the confirmer algorithm C,
then we provide the indistinguishability analysis, and eventually prove C will
give a correct answer.

Description of the Confirmer C: The confirmer algorithm C can proceed as fol-
lows, for a candidate subset G: {uskj = (vj,k)k}j∈G , for G of size at most t: it
chooses (uk)k orthogonal to the subvector-space spanned by {(vj,k)k}j∈G , which
means that:

∑
k ukvj,k = 0,∀j ∈ G. This is possible as (vj,k)k∈[1,t+1],j∈G is of

rank at most t in Z
t+1
q . Then the kernel is of dimension at least 1. One generates

a fake ciphertext C = (Ck)k, with Ck ← hr
k · guks′

, for random r, s′ $← Zq, and
then K ← hr:

– Any key uskj in G will lead to:
∏
k

C
vj,k

k =
∏
k

g(rsk+s′uk)·vj,k = gr
∑

k skvj,k+s′ ∑
k ukvj,k = grs+s′×0 = K;
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– and any key uskj outside G will lead to:
∏

k C
vj,k

k = K × (g
∑

k ukvj,k)s′ �= K.

we will show this allows to confirm at least one traitor from a candidat subset
of traitors.

Indistinguishability Analysis. The above remark about the output key from a
pirate decoder P assumes an honest behavior, whereas it can stop answering if
it detects the fake ciphertext. We first need to show that, with the public key
pk = ((hk)k, h) and only {uskj = (vj,k)k}j∈G , one cannot distinguish the fake
ciphertext from a real ciphertext, generated as above: from a Diffie-Hellman
tuple (A = ga, B = gr, C), one can derive, from random scalars s, s′

k, uk
$← Zq,

such that
∑

k vj,ks′
k = s and

∑
k vj,kuk = 0, for j = 1 . . . , n:

hk ← Auk · gs′
k = gauk+s′

k h ← gs uskj = (vj,k)k for j ∈ G

where we implicitly define sk ← auk + s′
k, that satisfy∑

k

vj,ksk =
∑

k

vj,k(s′
k + auk) =

∑
k

vj,ks′
k + a

∑
k

vj,kuk = s + 0 = s.

Then, one defines Ck ← Cuk · Bs′
k and K ← Bs.

Let us note C = gr−c, where c is either 0 (a Diffie-Hellman tuple) or random:

Ck = A(r+c)uk · grs′
k = (Auk · gs′

k)r · Acuk = hr
k · (Ac)uk .

One can remark that: when c = 0 (Diffie-Hellman tuple), C = (Ck)k is a normal
ciphertext; when c = s′ (random tuple), this is a fake ciphertext. Under the DDH
assumption, they are thus indistinguishable for an adversary knowing the keys
(uski)i∈G .

Confirmation of a Traitor. The above analysis shows that a pirate decoder P
built from (uski)i∈G cannot distinguish the fake ciphertext from a real ciphertext.
A useful pirate decoder should necessarily distinguish real key from random key.
Then, several situations may appear, according to the actual set T of traitors’
keys used to build the pirate decoder P by the adversary A:

– If T ⊆ G, a useful decoder P can distinguish keys;
– If T ∩ G = ∅, P cannot distinguish keys, as it can get several candidates,

independent from the real or random keys.

Let us now assume we started from G ⊇ T , then the advantage of P in distin-
guishing real and random keys, denoted pG , is non-negligible, from the usefulness
of the decoder. The following steps would also work if one starts with G ∩T �= ∅,
so that the advantage pG is significant.

One then removes a user J from G to generate G′ and new ciphertexts to
evaluate pG′ : if J �∈ T , uskJ is not known to the adversary, and so there is no
way to check whether

∑
k vJ,ks′

k = s and
∑

k vJ,kuk = 0, even for a powerful
adversary. So necessarily, pG′ = pG .

On the other hand, we know that p∅ = 0. So, one can sequentially remove
users until a significant gap appears: this is necessarily for a user in T . ��
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Abstract. A private information retrieval (PIR) scheme allows a client
to retrieve a data item xi among n items x1, x2, . . . , xn from k servers,
without revealing what i is even when t < k servers collude and try
to learn i. Such a PIR scheme is said to be t-private. A PIR scheme
is v-verifiable if the client can verify the correctness of the retrieved xi

even when v ≤ k servers collude and try to fool the client by sending
manipulated data. Most of the previous works in the literature on PIR
assumed that v < k, leaving the case of all-colluding servers open. We
propose a generic construction that combines a linear map commitment
(LMC) and an arbitrary linear PIR scheme to produce a k-verifiable PIR
scheme, termed a committed PIR scheme. Such a scheme guarantees that
even in the worst scenario, when all servers are under the control of an
attacker, although the privacy is unavoidably lost, the client won’t be
fooled into accepting an incorrect xi. We demonstrate the practicality of
our proposal by implementing the committed PIR schemes based on the
Lai-Malavolta LMC and three well-known PIR schemes using the GMP

library and blst, the current fastest C library for elliptic curve pairings.
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1 Introduction

In this work, we revisit private information retrieval (PIR), a classic tool in
cryptography, and investigate the extent that PIR can be used in a trustless
system in which participants can be corrupted. While the basic PIR only provides
privacy, i.e., making sure that a client can privately retrieve a data item of
interest without revealing it to any server that stores the collection of data,
we are interested in three extra security1 requirements, namely, verifiability,
accountability, and Byzantine-robustness. These requirements are made under
the assumption that a group of malicious servers are not only keen on learning
the retrieved data but also on making the client recover incorrect data to achieve
certain purposes. This type of security requirements are crucial to extend the
usage of PIR beyond trusted systems, which make sense mostly in theory, to the
more practical trustless systems, which are capable of governing both trusted
and malicious parties. Note that ‘trusted’ is also a very shaky status: even a
supposedly trusted party like a well-established bank or a government agency
can still be attacked and temporarily become a malicious party, which may cause
severe damage to the customers (see, e.g. devastating attacks on Australian
universities, Medibank, Optus, and Fire Rescue Victoria in 2022 [1,2]).

A basic private information retrieval (PIR) scheme allows a client to down-
load a data item xi among a collection of n items x1, x2, . . . , xn from k ≥ 1
servers without revealing the index i to any curious server. The very first pri-
vate information retrieval (PIR) scheme with two servers was introduced in the
seminal work of Chor-Kushilevitz-Goldreich-Sudan [3], which works as follows.
The two servers both store x1, x2, . . . , xn, which are elements from a finite field
F of characteristic 2. To privately retrieve xi, the client selects a random set
J ⊆ {1, 2, . . . , n} and requests

∑
j∈J xj from Server 1 and xi +

( ∑
j∈J xj

)
from

Server 2. As F has characteristic 2, the client can simply add the two answers to
extract xi. Moreover, as J is a random set, from the query, each server achieves
no information (in Shannon’s sense) about i. We refer to this as the CKGS
scheme and use it as a toy example to demonstrate our approach below.

The CKGS scheme, while providing privacy against an honest-but-curious
server, doesn’t protect the client against a malicious one: if the malicious server
sends an incorrect answer, the client will end up with an incorrect data item
x̂i �= xi. To construct a secure PIR scheme that can deal with malicious servers,
there are two approaches: the joint-design approach (a PIR scheme is designed
with built-in security) and the modular approach (combining a PIR and another
cryptographic primitive, both of which are separately designed). As far as we
know, most related works in the literature [4–11] (except for [12]) followed the
former. While the first approach requires more tailor-made designs, which are
harder to develop but potentially achieve better performance, the second pro-
vides greater simplicity and flexibility: an arbitrary PIR scheme and an arbitrary
1 In the PIR literature, ‘security’ was often used to refer to the concept of ‘verifiability’

defined in this work. However, in our opinion, ‘security’ is a rather broad term and
should not be used as the name of a specific property. We make an effort to fix that
terminology issue in this work, using ‘security’ as an umbrella term instead.



Committed Private Information Retrieval 395

commitment scheme will work together to achieve a secure PIR scheme. More-
over, any improvement in either PIR or commitment schemes will automatically
translate to an improvement to this approach. In the cope of this work, we focus
on the second approach, applying a commitment scheme on top of a PIR. The
gist of this approach is to publish a digest of the data, referred to as the commit-
ment, before the PIR session starts. Once the commitment has been produced
and made public, the client can use the commitment to confirm the correctness
of its desired data item, even when all servers are malicious.

An obvious commitment-based solution that allows the client to verify the
correctness of its derived data is using (cryptographic) hashes of the data as
the commitment: the hashes hj = h(xj), j = 1, 2, . . . , n are made public before
the PIR session starts, and then the client can download all the hashes2 and
perform a hash verification on the derived x̂i and accepts it if h(x̂i) = hi. This
solution, however, increases the download cost for the client due to the extra
sn hashes coming from s servers for some constant s. More importantly, this
makes the PIR protocol cumbersome and unsuitable to systems requiring com-
pact data-commitments such as the blockchains, where the commitment to the
data (transactions, chain states) is often a single 256-bit hash (the Merkle proof)
stored in a small block header of a rather limited size, e.g. 80 bytes in Bitcoin
and around 500 bytes in Ethereum. Here, a potential application in this context
is for a client to privately retrieve a transaction in a block.

Fig. 1. An example of a 2-server committed PIR scheme based on an LMC and the
CKGS PIR scheme [3] (see Example 1 for more details). The client privately requests
both x1 and h1 = h(x1), where the correctness of the retrieved hash ĥ1 can be verified
thanks to the LMC. It can then verify the correctness of the retrieved data x̂1 by

performing a hash verification h(x̂1)
?
= ĥ1. The size of the xj ’s can be arbitrarily large.

The commitment C(h) and the witnesses w1(a1(h)), w2(a2(h)) are of size only 384 bits
(equivalent to 1.5× SHA3-256 hash) if the Lai-Malavolta LMC [13] is used.

2 The client can gather the hashes by downloading them from the data owner, or
from a few random servers in a decentralized system (e.g. a blockchain) and using a
majority vote to determine the correct hi.
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We address the aforementioned drawback of the hash-based solution by using
linear map commitments with a constant-size commitment on top of linear PIR
schemes to provide verifiability. A linear map commitment (LMC) [13–16] allows
the prover to generate a commitment C(x) to a vector x = (x1, x2, . . . , xn) ∈ F

n

and a witness wa(x) based on which the verifier can verify that a retrieved
value y ∈ F is indeed the value of the linear combination a ·x =

∑n
j=1 ajxj . In a

compact LMC, e.g. [13], the sizes of the commitment C(x) and the witness wa(x)
(in bits) are constant, i.e. together their sizes are equivalent to a couple of field
elements only. To make the PIR scheme suitable to a database with large-size
data items, we let xi ∈ F

m where m can be arbitrarily large and the LMC can
be applied instead to the hashes h = (h1, h2, . . . , hn) of x ∈ F

m×n (see Fig. 1 for
a toy example). Our proposed scheme, referred to as the committed PIR scheme,
provides k-verifiability: even in the extreme case where all servers are attacked
and controlled by a malicious attacker, although the privacy is unavoidably lost,
the scheme is still capable of protecting the client from accepting fault data.

Our main contributions are summarized below.

– We propose a novel modular approach that combines a linear map commit-
ment scheme and a linear PIR scheme to construct a committed PIR scheme
that provides verifiability on top of the traditional privacy. Our proposed
scheme is capable of preventing the client from accepting an incorrect data
item, even when all k servers are malicious and send manipulated data. Most
previous works can only tolerate up to k − 1 malicious servers.

– We carry out three case studies discussing the constructions of committed
PIR schemes using a specific linear map commitment on top of the three
well-known representative PIR schemes: the CKGS scheme [3] (the very first
PIR scheme), the WY scheme [17] (lowest upload cost, aka query size), and the
BE scheme [18] (lowest download cost, aka answer size). The LMC primitive
incurs only a constant-size communication overhead.

– We implemented all three schemes in C on top of the GMP library (for efficient
handling of large numbers) and the blst library (the current fastest library for
elliptic curve operations and pairings). Two out of three achieved reasonably
fast running times, e.g. less than one second of computation for the client to
retrieve 3 MB from a 3 GB-database, demonstrating the practicality of our
proposal.

We want to highlight another advantage of LMCs as the primitive for the com-
mitted PIR: as more advanced LMCs are developed, new features will be auto-
matically added to the proposed scheme with no modifications to the underlying
PIR schemes. For example, the LMC introduced in [16] allows updatability, or
the lattice-based LMC developed in [15] provides post-quantum security.

The remainder of the paper is organized as follows. We first define formally
the PIR and committed PIR schemes as well as their performance metrics in
Sect. 2. We then introduce a generic construction for a committed PIR in Sect. 3.
In Sect. 4, we demonstrate the proposed method with three case studies in which
a linear map commitment is applied to three well-known PIR schemes. Section 5
is devoted to implementations and evaluations.
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2 Committed Private Information Retrieval

2.1 Basic Notations

We use F to denote a general finite field and Fp to denote a finite field of p
elements, where p is a prime power. Within the scope of this work, we usually
assume that p is a prime and hence, Fp ≡ Zp, the integers mod p. For implemen-
tation, we use a specific prime p of size about 256 bits (following the parameter
of the BLS12-381 elliptic curve). We use [n] to denote the set {1, 2, . . . , n}. The
data is represented by x = (x1, x2, . . . , xn), where xj ∈ F

m, j ∈ [m], and m ≥ 1
represents the size of each data item xj (in field elements). We call n the number
of items or the size of the data. The data can also be regarded as an m×n matrix
x ∈ F

m×n and each data item xj corresponds to the j-th column of the matrix.
Throughout this work we denote by λ ∈ N the security parameter, e.g. λ =

128, and negl(λ) the set of negligible functions in λ. A positive-valued function
ε(λ) belongs to negl(λ) if for every c > 0, there exists a λ0 ∈ N such that
ε(λ) < 1/λc for all λ > λ0. We use poly(λ) for the set of polynomials in λ.

Before introducing the notation of a committed PIR scheme, we discuss the
basic PIR and its performance metrics below.

2.2 Private Information Retrieval

A (replicated) PIR scheme has k servers, each of which stores the data x =
(x1, x2, . . . , xn), and one client, who is interested in retrieving xi for some i ∈ [n].

Definition 1 (PIR). A k-server n-dimensional PIR scheme Π0 over a field F

consists of three algorithms (QueriesGen,AnswerGen,Extract) defined as follows.

–
({qj}j∈[k], aux

) ← QueriesGen(n, k, i): run by the client, this randomized algo-
rithm takes as input n > 1, k ≥ 1, an index i ∈ [n], and outputs k queries to
be sent to k servers and an auxiliary information aux.

– aj ← AnswerGen(x, qj): run by a server, this deterministic algorithm takes as
input the data x ∈ F

n, the query qj, and outputs an answer aj to be sent to
the client.

– {xi} ← Extract
(
n, i, {aj}j∈[k], aux

)
: run by the client, this deterministic algo-

rithm takes as input n, i, the auxiliary information aux, the answers from all
k servers, and outputs xi.

A PIR scheme is called linear if each answer aj is a linear combination of x.
We define below the correctness and privacy of a PIR scheme.

Definition 2 (Correctness of PIR). The k-server n-dimensional PIR
scheme defined in Definition 1 is correct if for any i ∈ [n], x ∈ F

n,
({qj}j∈[k],

aux
) ← QueriesGen(n, i), and aj ← AnswersGen(x, qj), j ∈ [k], it holds that

Extract
(
n, i, {aj}j∈[k], aux

)
= xi.
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Definition 3 (Privacy of PIR). The k-server n-dimensional PIR scheme
defined in Definition 1 is (unconditionally) t-private if no collusion of up to
t servers can learn any information about i, or more formally, for any i, i′ ∈ [n],
and any subset T � [k] of size |T | ≤ t, the distributions of QueriesGenT (n, k, i)
and QueriesGenT (n, k, i′) are identical, where QueriesGenT (n, k, i) denotes the
concatenation of the |T | output queries {qj}j∈T generated by QueriesGen(n, k, i).

2.3 Communication and Computation Costs of PIR

The efficiency of a PIR scheme can be measured based on its communication
and computation costs. We first discuss the communication cost, which can be
formally defined as follows.

Definition 4 (Communication Cost of PIR). The communication cost of
a PIR scheme Π0 over a field F given in Definition 1 is defined as

comm(Π0) = up(Π0) + down(Π0)
�= max

i

∑

j∈[k]

|qj | + max
i

∑

j∈[k]

|aj |,

where |qj | and |aj | denote the sizes (in field elements) of qj and aj. The first
term is the upload cost whereas the second is the download cost.

For instance, in the aforementioned CKGS scheme [3], to represent a random
subset of {1, 2, . . . , n}, the client must use a vector of n bits, which means that
the upload cost is kn bits. Straightforward generalizations of this scheme to
k > 2 servers (see, e.g. [19]) require an upload cost of kn F-elements, which is
already significant for large n. The main goal of the majority of early works on
PIR was to optimize the communication cost. The lowest known communication
cost, namely, O(kn1/d), for any d ≥ 1, was achieved in the work of Woodruff
and Yekhanin [17]. Their idea is to transform the PIR problem into the secret
sharing problem while representing an index i ∈ {1, 2, . . . , n} by a vector of
length O(n1/d) of Hamming weight d. We refer to this as the WY scheme.

Download Rate. Another approach to reduce the communication cost is to
optimize the download cost, assuming that the data items are of large size and
hence the upload cost will be overshadowed by the download cost (see, e.g. Sun
and Jafar [20]). More precisely, one can aim for maximizing the download rate,
defined as maxi∈[n]

|xi|∑
j∈[k] |aj | , which is the ratio of the size of the desirable data

to the total amount of data downloaded by the client. Note that in the CKGS
scheme, as the client downloads k field elements from k servers to recover one
element, the download rate is 1/k, which is quite small. PIR schemes such as
BE [18] can achieve an asymptotically optimal rate of (k − 1)/k.

Computation Cost. The computation cost of a PIR scheme typically consists
of the computation time required by the client in generating the request and in
recovering the desired data xi, and the computation time required by the servers
in producing the answers (taking the average or maximum among all servers).
In general, as the client often has low computational capacity, its computation
load, ideally, should be much less than that of the servers.
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2.4 Committed Private Information Retrieval

Apart from the large amount of research aiming for optimizing the upload or
the download costs of a PIR scheme, there have also been a number of propos-
als in the literature that seek to extend the basic setting of the PIR problem
(see, e.g. [21] for a survey). In the scope of this work, we are interested in the
verifiablity, accountability, and Byzantine-robustness of a PIR scheme.

A k-server PIR scheme is v-verifiable if the client can verify the correctness of
the retrieved xi even when v ≤ k servers are colluding and try to fool the client
by sending manipulated data. A scheme is a-accountable if the client can identify
all servers that sent incorrect data when at most a ≤ k servers did so. A scheme
is b-Byzantine-robust if the client can recover the correct desired item xi when
at most b < k servers sent incorrect data. It is clear that Byzantine-robustness
implies accountability, which in turn implies verifiability. The converse is not
true. However, it seems that a b-Byzantine-robust scheme can be obtained from
a b-accountable scheme by increasing the number of servers communicated to
obtain extra data for recovery (discarding the data received from identified mali-
cious servers). Readers who are familiar with coding theory may notice that the
concepts of verifiability, accountability, and Byzantine-robustness defined above
correspond to the classical concepts of error detection, error-location identifica-
tion, and error correction, respectively, in the study of channel coding.

Following the notations of [12], we consider three types of participants: a data
owner3, k servers S1, . . . , Sk, and a client. The data owner owns the data x.
Although treated as a single trusted entity in theory, the data owner may also
consist of multiple decentralized entities, e.g. a blockchain, which is maintained
by a large number of miners. Although each individual miner should not be
trusted, the whole miner group are collectively trusted to produce valid com-
mitments to the data, i.e., the block headers or the Merkle roots of transac-
tions inside the block headers. The servers, on the other hand, are considered
untrusted.

We formally define the Committed Private Information Retrieval (Com-PIR)
scheme in Definition 5. Compared to the basic PIR (see Definition 1), we also
include one more dimension, m, to explicitly include the size of each data item.

Definition 5 (Com-PIR). A k-server m × n-dimensional committed PIR
scheme Π over a field F consists of six algorithms defined as follows.

– pp ← Setup(1λ, k,m, n): run by the data owner or a trusted setup4, this ran-
domized algorithm takes as input λ, k,m, n, where λ is the security parameter,
k is the number of servers, m is the size of each data item, n is the number
of data items, and outputs a public parameter pp known to everyone.

3 In PIR’s original setting, the servers are (implicitly) identical to the data owner. With
the ubiquity of cloud computing and the various benefits they offer, outsourcing
storage/computing tasks to hired servers has become the trend. Thus, it is more
practical to explicitly separate the data owner and the storage servers.

4 In practice, a trusted setup can be run by a group of many participants (the power-
of-τ ceremony [22]), and as long as one person discards their piece of data, the secret
key used in the setup remains secret and unrecoverable).
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– C(x) ← CommitmentGen(pp,x): run by the data owner, this deterministic
algorithm takes as input the public parameter and the data x ∈ F

m×n and
outputs the commitment C(x).

–
({qj}j∈[k], aux

) ← QueriesGen(pp, k,m, n, i): run by the client, this random-
ized algorithm takes as input the public parameter, k, m, n, i ∈ [n], and
outputs k queries to be sent to k servers and an auxiliary information aux.

– aj ← AnswerGen(pp,x, qj): run by a server, this deterministic algorithm takes
as input the public parameter, the data x, the query qj, and outputs an answer
aj to be sent to the client.

– wj ← WitnessGen(pp,x, qj): run by a server, this deterministic algorithm
takes as input the public parameter, the data x, and the query qj, and outputs
a witness wj to be sent to the client.

– {xi,⊥} ← Extract
(
pp, C,m, n, i, {aj , wj}j∈[k], aux

)
: run by the client, this

deterministic algorithm takes as input the public parameter, a commitment
C, m, n, i ∈ [n], the answers and witnesses from all servers, the auxiliary
information aux, and outputs either xi (successful) or ⊥ (unsuccessful). Note
that xi denotes the ith column of the matrix x.

A Com-PIR works as follows. First, the data owner or a trusted setup gener-
ates the public parameter pp, which is available to everyone. Next, the data owner
generates the commitment C(x), which is made publicly available to everyone,
e.g. by being embedded into a block header in a blockchain. The client, who
wants to retrieve xi privately, generates and sends queries to all servers. The
servers generate and send the answers and the witnesses of the answers back to
the client. Finally, the client recovers xi and also performs the verification of the
result using the commitment and the witnesses. The correctness, privacy, and
verifiability of a Com-PIR scheme are formally defined below.

Definition 6 (Correctness of Com-PIR). The k-server m×n-dimensional
Com-PIR scheme defined in Definition 5 is correct if the client can recover xi

when all servers are honest, or more formally, for any i ∈ [n], x ∈ F
m×n, and

pp ← Setup(1λ, k,m, n), and
({qj}j∈[k], aux

) ← QueriesGen(pp, k,m, n, i), and
aj ← AnswersGen(pp,x, qj), wj ← WitnessGen(pp,x, qj), j ∈ [k], it holds that

Extract
(
C(x),m, n, i, {aj , wj}j∈[k], aux

)
= xi.

Definition 7 (Privacy of Com-PIR). The k-server m×n-dimensional Com-
PIR scheme defined in Definition 5 is (unconditionally) t-private if no collusion
of up to t servers can learn any information about i, or more formally, for
any i, i′ ∈ [n], and any subset T � [k] of size |T | ≤ t, the distributions of
QueriesGenT (pp, k,m, n, i) and QueriesGenT (pp, k,m, n, i′) are identical, where
QueriesGenT (pp, k,m, n, i) denotes the concatenation of the |T | queries {qj}j∈T

output by QueriesGen(pp, k,m, n, i).

The verifiability property of a Com-PIR is defined through the notion of
a security experiment, in which an adversary A controls a group of Byzantine
servers {Sj}j∈B , B ⊆ [k], knows the data x, the index i (which means the privacy
can be lost), and crafts the answers {âj}j∈B after receiving the queries {qj}j∈B .
The goal of the adversary is to make the client accept an output x̂i /∈ {xi,⊥}.
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Definition 8 (Security Experiment for Verifiability). The Com-PIR sche-
me Π defined in Definition 5 is v-verifiable if for any probabilistic polynomial
time (PPT) adversary A, there exists a negligible function ε(λ) ∈ negl(λ) such
that for any i ∈ [n], any x ∈ F

m×n
q , and any subset B ⊆ [k], |B| ≤ v, it holds

that
Pr

[
EXPA,Π(k,m, n,x, i, B) = 1

] ≤ ε(λ),

where the security experiment EXPA,Π(k,m, n,x, i, B) between an adversary and
a challenger is described as follows.

– The challenger picks (sk, pp) ← Setup(1λ, k,m, n) and gives pp to A.
– The adversary picks an x ∈ F

m×n
q , an i ∈ [n], and a set B ⊆ [k], |B| ≤ v,

and gives x, i, and B to the challenger.
– The challenger generates C(x) ← CommitmentGen(pp,x) and

({qj}j∈[k], aux
)

← QueriesGen(pp, k,m, n, i) and gives {qj}j∈B to A.
– The adversary crafts and gives |B| answers and witnesses to the challenger

{âj , ŵj}j∈B ← A(pp, k,x, i, B, {qj}j∈B).

– The challenger computes {aj}j∈[k]\B ← AnswerGen(pp,x, {qj}j∈[k]\B) and
{wj}j∈[k]\B ← WitnessGen(pp,x, {qj}j∈[k]\B).

– The challenger runs the extraction algorithm

x̂i ← Extract
(
pp, C(x),m, n, i, {âj , ŵj}j∈B , {aj , wj}j∈[k]\B, aux

)
.

– If x̂i /∈ {xi,⊥} then set EXPA,Π(k,m, n,x, i, B) = 1, and 0, for otherwise.

Note that to allow accountability and Byzantine-robustness for Com-PIR,
one can include a set B ⊆ [k] in the output of the algorithm Extract(·) to list
identified Byzantine servers and then define corresponding security experiments.
We omit the details and focus on verifiability only.

3 A Generic Construction of k-Verifiable Committed
Private Information Retrieval Schemes

We propose a generic construction for k-verifiable committed PIR schemes based
on linear map commitment schemes and linear PIR schemes. The key idea is for
the client to privately retrieve both xi and it hash hi using the same PIR scheme,
where the correctness of the hash can be guaranteed by the linear map commit-
ment. The client then verifies if the hash matches the data in the verification
step. We first discuss the linear map commitment.

3.1 Linear Map Commitments

An n-dimensional linear map commitment allows a prover to first commit to a
vector x = (x1, x2, . . . , xn) and then prove to a verifier that a linear combination
of xi’s is correct, i.e. consistent with the commitment. We formally define the
linear map commitment schemes below, following [13,23].
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Definition 9 (Linear Map Commitments). An n-dimensional linear map
commitment (LMC) scheme Λ over a field F consists of four algorithms defined
as follows.

– pp ← Setup(1λ, n;ω): this randomized algorithm takes as input λ, n, and
ω, where λ is the security parameter, n is the number of data items, ω is a
random tape, and outputs a public parameter pp known to all parties.

– C ← CommitmentGen(pp,x): run by the prover, this deterministic algorithm
takes as input the public parameter pp and the data x = (x1, x2, . . . , xn) ∈ F

n

and outputs the commitment C = C(x).
– wj ← WitnessGen(pp,x, c, y): run by a prover, this deterministic algorithm

takes as input the public parameter pp, the data x = (x1, x2, . . . , xn) ∈ F
n,

the vector of coefficients c = (c1, c2, . . . , cn) ∈ F
n, a value y ∈ F, and outputs

a witness w that proves that y = c · x =
∑

j∈[n] cjxj.
– {0, 1} ← Verify

(
pp, C, c, y, w

)
: run by the verifier, this deterministic algorithm

takes as input the public parameter pp, a commitment C, a coefficient vector
c, an element y, a witness w, and outputs either 1 or 0 to accept or reject
that y = c · x, respectively.

There have been a few different constructions of LMC and vari-
ants/extensions recently proposed in the literature [13–16,23]. The LMC in [14] is
based on a ring and may not work immediately with a linear PIR scheme, which
is often based on a finite field. We use in this work the version of LMC introduced
in the work of Lai and Malavolta [13,23], which is the most straightforward to
implement and sufficient for our purpose. We refer to it as the Lai-Malavolta
(LM) linear map commitment. This LMC is based on an observation that the
inner product of c and x is equal to the coefficient of zn+1 in the product of the
polynomials fc(z) �=

∑
j∈[n] cjz

n+1−j and fx(z) �=
∑

j∈[n] xjz
j .

Algorithm 1. The Lai-Malavolta linear map commitment scheme [13,23].

Setup(1λ, n; ω)

BG ← BGGen(1λ; ω)

where BG
�
= (p, G1, G2, GT , G1, G2, e)

α ← Zp

pp =
(
BG, {Gαj

1 }j∈[n], {Gαj

2 }j∈[2n]\{n+1}
)

return pp

CommitmentGen(pp,x)

return C
�
=

∏
j∈[n]

(
Gαj

1

)xj

WitnessGen(pp,x, c)

w
�
=

∏
j∈[n]

∏
j′∈[n]\{j}

(
Gαn+1+j−j′

2

)cjxj′

return w

Verify(pp, C, c, y, w)

b0
�
=

(
y ∈ Zp

)

b1
�
=

⎛

⎜
⎜
⎝

e

(
C,

∏
j∈[n]

(
Gαn+1−j

2

)cj

)

= e

(
(
Gα

1

)y
, Gαn

2

)
e(G1, w)

⎞

⎟
⎟
⎠

return b0 AND b1

Lai-Malavolta Linear Map Commitment (Algorithm 1). Setup takes as
input the security parameter λ, the vector length n, and a (private) random tape
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ω and outputs the public parameter pp. First, BGGen generates a bilinear group
BG, which includes a prime p, three cyclic groups G1, G2, GT of order p (written
multiplicatively), where G1 and G2 are generators of G1 and G2, respectively,
and e : G1 × G2 → GT is a pairing satisfying the following properties:

– e is efficiently computable,
– e is non-degenerate: e(G1, G2) �= 1GT

,
– e is bilinear: e(Ax, By) = e(A,B)xy, for every A ∈ G1, B ∈ G2, and x, y ∈ Z.

Next, a random element α is sampled from Zp. The output pp consists of the
bilinear group, {Gαj

1 }j∈[n], and {Gαj

2 }j∈[2n]\{n+1}. The commitment of x and
the witness for a linear combination y = c · x are computed as illustrated in
Algorithm 1 (note that y is not used in WitnessGen in this scheme). Finally,
Verify checks if y is an element in Zp and verify if the first pairing is equal to
the product of the other two. It accepts that y = c · x if both checks pass.

Computational complexity of Lai-Malavolta LMC. The LMC scales lin-
early for the verifier and quadratically in n for the server. More specifically,
in our implementation, the prover performs O(n) elliptic curve operations and
O(n2) field operations (cheaper) per linear combination. The verifier performs
O(n) elliptic curve operations and three pairings per linear combinations. Note
that elliptic curve pairing e(G,H) is more expensive than exponentiation Gx,
which is more expensive than product GH, which in turn is more expensive than
operations on finite fields. The Lai-Malavolta LMC requires a trusted setup and
a linear-size public parameter, but provides a constant-size commitment and wit-
ness. Others constructions of LMC bring in different trade-offs, e.g. no trusted
setup but log-size commitment/witness, and additional properties [14–16].

3.2 A Generic Construction of Com-PIR

We now introduce a generic construction that combines an n-dimensional LMC
and a linear k-server m×n-dimensional PIR to produce a k-verifiable Com-PIR
(see Fig. 2 for an illustration). The construction first applies a cryptographic hash
function h∗(·) followed by a modulo operation to each column of the database
x to achieve hj = h∗(xj) (mod p), where xj denotes the jth column of x ∈
F

m×n = Z
m×n
p . It then applies an LMC to the vector h = (h1, h2, . . . , hn) ∈ F

n.
The client performs PIR requests for both xi and hi. As the correctness of the
received hi is guaranteed by the LMC, the verification hi

?= h(x̂i) is reliable.

A Generic Construction of Com-PIR. Let Π be the target Com-PIR
scheme, which will be constructed based on an LMC and a linear PIR scheme. We
use the ‘.’ sign to refer to the algorithm of each scheme, e.g. PIR.QueriesGen().

– pp ← Π.Setup(1λ, k,m, n): The algorithm invokes LMC.Setup(1λ, n), the
setup algorithm of the LMC.

– C ← Π.CommitmentGen(pp,x): The algorithm first computes hj = h∗(xj)
(mod p), j ∈ [n], where h∗(·) is a cryptographic hash function, e.g. SHA3-
256, and p is the order of the cyclic groups as part of pp. It then computes
C = C(h) ← LMC.CommitmentGen(pp,h), where h = (h1, h2, . . . , hn).
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Fig. 2. Illustration of a generic construction of Com-PIR using an LMC and a linear
PIR. When using SHA3-256 and the BLS12-381, each xj is first hashed by SHA3-256
to generate a 256-bit digest h∗(xj), which in turn is taken modulo p, a 255-bit prime,
to produce hj ∈ Zp. This only reduces the security of SHA3-256 by at most one bit.
The modulo operation is necessary to turn the hashes into valid input to the LMC.
The LMC computation is carried out over the n hashes only, making it independent of
the data item size m.

–
({qj}j∈[k], aux

) ← Π.QueriesGen(pp, k,m, n, i): The algorithm invokes the
corresponding PIR algorithm, namely, PIR.QueriesGen(pp, k,m, n, i).

– aj ← Π.AnswersGen(pp,x, qj): The algorithm invokes the corresponding PIR
algorithm on both x and h, i.e. aj(x) ← PIR.AnswersGen(pp,x, qj) and
aj(h) ← PIR.AnswersGen(pp,h, qj), and outputs aj

�= (aj(x), aj(h)). Note
that each server can compute h from x on its own just once.

– wj ← Π.WitnessGen(pp,x, qj): The algorithm first converts qj into a coef-
ficient vector c(qj) ∈ Z

n
p such that aj(h) = c(qj) · h. Then, it invokes

wj ← LMC.WitnessGen(pp,h, c, y), where y
�= c · h.

– {xi,⊥} ← Π.Extract
(
pp, C,m, n, i, {aj , wj}j∈[k], aux

)
: The algorithm first

parses each answer aj as
(
aj(x), aj(h)

)
. Next, it converts qj into a coeffi-

cient vector c(qj) ∈ Z
n
p such that aj(h) = c(qj) · h. Then, it verifies aj(h)

by running LMC.Verify(pp, C, c(qj), aj(h), wj), j ∈ [k]. If the verification fails
for j ∈ [k], it returns ⊥. Otherwise, it calls PIR.Extract

(
n, i, {aj(h)}j∈[k], aux

)

and PIR.Extract
(
n, i, {aj(x)}j∈[k], aux

)
to obtain ĥi and x̂i. It then performs

the final hash verification h(x̂i)
?= ĥi and returns x̂i if passes and ⊥ if fails.

Note that in the generic construction above, the PIR scheme is applied to
x ∈ Z

m×n
p instead of Z

n
p as in Definition 1. This can be done in a straightforward

manner in which the PIR scheme on Z
n
p is applied repeatedly m times to the

m rows of x ∈ Z
m×n
p using the same set of queries. The communication and

computation costs of a Com-PIR scheme based on the generic construction can
be calculated easily based on the costs of the underlying PIR and LMC. Note
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that the LMC doesn’t depend on m. Although the final hash check h(x̂i)
?= ĥi

depends on m because |x̂i| = m, h(·) is very efficient and its cost is negligible.

Lemma 1 (Correctness/Privacy). The Com-PIR constructed by the generic
construction is correct and t-private if the underlying LMC scheme is correct
and the underlying PIR scheme is both correct and t-private.

Proof. The correctness of the constructed Com-PIR scheme can be proved in a
straightforward manner, implied directly from the correctness of the underlying
LMC and PIR schemes. The privacy of the Com-PIR follows from the privacy of
the underlying PIR scheme because the queries sent from the client are identical
to those in the original PIR scheme.

Next, we prove (see AppendixA) that the generic construction generates a
k-server m × n-dimensional Com-PIR that is k-verifiable, assuming that the
Lai-Malavolta LMC is used in conjunction with an arbitrary linear PIR scheme.

Lemma 2 (Verifiability). Let k,m, n ∈ poly(λ) and 1/p ∈ negl(λ). Then
the k-server m × n-dimensional Com-PIR using the Lai-Malavolta LMC is k-
verifiable in the generic bilinear group model.

4 Three Case Studies

We discuss in detail how the generic construction proposed in Sect. 3.2 performs
for the Lai-Malavolta LMC and the three representative linear PIR schemes with
respect to the communication and computation costs.

Chor-Kushilevitz-Goldreich-Sudan (CKGS) Scheme [3]. This is a linear
2-server n-dimensional PIR scheme working over an arbitrary finite field F. We
also use 2-CKGS to refer to this scheme, while using k-CKGS to refer to its
straighforward generalization to the k-server setting (see [19, Section 3.2.1]).

–
({q1, q2}, aux

) ← QueriesGen(n, 2, i): the algorithm first picks a random subset
J ⊆ [n] and let q1 ∈ F

n be the characteristic vector for J , i.e., q1 has a ‘1’
at the jth component if j ∈ J , and 0 otherwise. Next, q2 is obtained from q1
by flipping its ith component (0 → 1 or 1 → 0). Then either ei = q1 − q2 or
ei = q2 − q1, where ei ∈ F

n is the unit vector with a ‘1’ at the ith component.
Set aux = 1 or aux = 2, respectively.

– aj ← AnswerGen(x, qj): The algorithm returns aj = qj · x.
– {xi} ← Extract

(
n, i, {aj}j∈[k], aux

)
: The algorithm returns a1 − a2 if aux = 1

or a2 − a1 if aux = 2.

The CKGS scheme and the Lai-Malavolta LMC scheme work together in a
straightforward manner.

Example 1. We consider in Fig. 1 a toy example of a 2-server m× 5-dimensional
Com-PIR based on an LMC and CKGS PIR scheme [3] (see Fig. 1 for an illus-
tration). The client, who wants x1, picks a random subset J = {1, 3, 4} ⊆ [5]
and creates the corresponding queries q1 = (1, 0, 1, 1, 0) and q2 = (0, 0, 1, 1, 0).
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Server 1, if acting honestly, sends back the answers a1(h) = h1 + h3 + h4,
a1(x) = x1 + x3 + x4, and the witness w1(a1(h)), which allows the client to
verify the correctness of a1(h). Server 2, if acting honestly, sends back the
answers a2(h) = h3 + h4, a2(x) = x3 + x4, and the witness w2(a2(h)), which
allows the client to verify the correctness of a2(h). The client, knowing the
LMC commitment C(h), can verify the correctness of both a1(h) and a2(h)
and then extract the (verifiably correct) ĥ1 = a1(h) − a2(h). It can also extract
x̂1 = a1(x)−a2(x) and verify the correctness of the result by performing a hash
verification h(x̂1)

?= ĥ1.

Woodruff-Yekhanin (WY) Scheme [17]. This is a linear k-server n-
dimensional PIR scheme working over an arbitrary finite field F. See AppendixB
for the detail. Note that each server generates � ∈ O(n1/d) linear combinations of
x. Although in Algorithm 1, we let the LMC verify just one linear combination
of x for simplicity, in its original form, Lai-Malavolta LMC can produce a single
witness for and verify multiple linear combinations.

Bitar-El Rouayheb (BE) Scheme [18]. We present a simplified version of this
scheme (dropping unnecessary properties like universality) in AppendixB (see,
also Goldberg [11]). Note that the LMC is applied on (k − t)n hashes instead of
n like in other schemes.

Table 1. Comparisons of different Com-PIR schemes with k-verifiability. For the com-
putation costs at each server and client, we count the number of field additions ‘+’
and multiplications ‘×’, elliptic curve additions ‘�’ and multiplications ‘�’, and pair-
ings ‘�’ in big-O notation (with � ∈ O(n1/d) for the WY-based scheme). The top
sub-row counts the operations on data while the bottom sub-row counts the opera-
tions related to verification. The verification time of the proposed Com-PIR schemes
(mostly) doesn’t depend on the size of the retrieved data m but on the size of the
database n and the number of servers k.

Upload Cost

(#Zp-elts)

Download

Rate

Server (#operations) Client (#operations)

Com-PIR

(2-CKGS)

2n bits 1/2 mn+ m+

n2+, n2×, n�, n� 2n�, 2n�, 6�
Com-PIR

(k-CKGS)

kn 1/k mn+, mn× km+

n2+, n2×, n�, n� kn�, kn�, 3k�
Com-PIR

(WY)

k� 1/k �mn+, �mnd× mt(k� + d3t2)+, mt(k� + d3t2)×

�n2+, �n2×, �n�, �n� k�n�, k�n�, 3k�
Com-PIR

(BE)

k(k − t)n (k − t)/k (k − t)mn+, (k − t)mn× k((k − t)(kn + m) + km)+,

k2((k − t)n + m)×
(k − t)2n2+, (k − t)2n2×,

(k − t)n�, (k − t)n�
k(k − t)n�, k(k − t)n�, 3k�

Comparison of the Three Com-PIR Schemes. We compare these schemes
based on their communication and computation complexities (Table 1).
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– LM-CKGS: this scheme has the lowest computation time among the three
for both servers and client. The reason is that each server only performs cheap
field additions for the data part and generates LMC witness for a single linear
combination of hashes. The client performs one LMC verification per server.

– LM-WY: although having the lowest upload cost, the computation cost of
this scheme is the highest among the three. The reason is that its running
time also depends on � ∈ O(n1/d). See AppendixC for more details.

– LM-BE: this scheme achieves the optimal download rate and has computa-
tion cost lying in between the other two. Computation-wise, the smaller the
difference k − t, the lower the running time of both servers and client. The
reason is that the LMC has to run not on n but on (k − t)n hashes.

Comparisons with Related Works. The work of Zhang-Safavi Naini [12] is
the closest to ours and provides k-accountability. Their idea is to apply a verifi-
able computing scheme [24] on top of WY [17], followed by several optimization
steps to improve the performance. Originally designed for a 1 × n database
(m = 1), the verification time of their main scheme Γ1 is in O

(
kmn1/d

)
, which

becomes very slow for large m. Moreover, while our scheme has a constant wit-
ness size (from each server), their witness size is in O

(
mn1/d

)
. All other works in

the literature, to our best knowledge, do not provide k-verifiability. For instance,
Ke and Zhang [4] constructed a 2-server PIR scheme that can (information theo-
retically) verify the correctness of the result given at most one malicious server.
Zhang and Wang [6] introduced k-server PIR schemes that are privately and
publicly v-verifiable for v < k. These schemes were also designed for m = 1.
Zhao et al. [5] proposed a construction of verifiable PIR scheme based on the
Learning with Errors problem. The main issue in their construction is that the
server can pass the client’s verification if using the same incorrect database in
generating the answer for the query and the response to the challenge (see [5,
Def. 7]). PIR schemes with Byzantine-robustness were investigated in [7–9,11].

5 Experiments and Evaluations

Experiment Setup. We implemented three Com-PIR schemes in C using the
libraries GMP 6.2.1, OpenSSL 2022, and blst v.0.3.10. We compiled the code with
GCC 11.3.0 and ran our experiments on Ubuntu 22.04.1 environment (Intel Core
i5-1035G1 CPU @1.00GHz×8, 15 GB System memory). The code is available on
GitHub at https://github.com/PIR-PIXR/CPIR.

Evaluations. The LMC component in the Com-PIR schemes incurs an extra
communication/computation overhead on top of the original PIR schemes [3,17,
18]. However, the LMC communication overhead is only O(k) while the compu-
tation overhead doesn’t grow with m, the size of each data item. Hence, as the
size of each data item increases, the LMC overhead becomes smaller and smaller
compared to the computation time of the PIR scheme (see Fig. 3). The compu-
tation time of LM-WY is significantly higher than the other two schemes (see
Fig. 3, Fig. 4), hence consistent with the theoretical analysis presented earlier.

https://github.com/PIR-PIXR/CPIR
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Figure 4 also demonstrates a trade-off between the download rate and the com-
putation time for LM-BE: larger t leads to smaller download rate but cheaper
computation. More evaluations of these Com-PIR schemes are in Appendix C.

Fig. 3. The average server and client computation times of LM-CKGS, LM-WY, and
LM-BE for k = 2, t = 1, n = 210, and m ∈ {20, 210, 212, 214, 216}.

Fig. 4. The average server and client computation times of LM-CKGS and LM-BE for
n = 210, m = 212, k ∈ {3, 4, 5, 6}, and t = 1 or k − 1.

6 Conclusions

We proposed a modular approach to combine a linear map commitment and
a linear PIR scheme to achieve a k-verifiable PIR scheme, which guarantees
that the client will never accept wrong data even in the extreme case when all
servers are malicious. By applying the commitment scheme on hashes of data
rather than on data themselves, the construction is reasonably practical, taking
less than one second to privately retrieve 3MB of data from a database of size
3 GB. A drawback of our approach is that the commitment scheme may incur
a significant computation overhead on top of the PIR scheme if the database
consists of a large number of small-sized items.
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Appendix A: Verifiability Proof of Com-PIR

For simplicity, we consider one linear combination of x in the definition below.

Definition 10 (Function Binding for LMC). [13] An LMC over F is func-
tion binding if for any PPT adversary A, any positive integer n ∈ poly(λ), there
exists a negligible function ε(λ) such that

Pr

⎡

⎣
y ∈ F ω ←$ {0, 1}λ

Verify(C, c, y, w) = 1 pp ← Setup(1λ, n;ω)
� ∃x ∈ F

n s.t.
∑

j∈[n] cjxj = y (C, c, y, w) ← A(pp)

⎤

⎦ ≤ ε(λ).

Lemma 3 ([13]). Let n ∈ poly(λ) and 1/p ∈ negl(λ). Then Lai-Malavolta LMC
is function binding in the generic bilinear group model.

Proof. [Proof of Lemma 2] According to the generic construction, the adversary
wins the security experiment, i.e., EXPA,Π(k,m, n,x, i, B) = 1, if and only if the
challenger extracts x̂i /∈ {xi,⊥}. This happens only when one of the following
two independent events occur: either ĥi = hi, i.e., the adversary finds a hash
collision h(x̂i) = h(xi) = hi, or ĥi �= hi but the adversary manages to fool
LMC.Verify() with at least one wrong linear combination of hi’s. Therefore,

Pr[EXPA,Π(k,m, n,x, i, B) = 1] = Pr[x̂i �= xi ∧ h(x̂i) = h(xi)]
+ Pr[At least one linear combination is wrong but still passes LMC.Verify()]
≤ ε1(λ) + ε2(λ) ∈ negl(λ),

as both events happen with probabilities negligible in λ assuming that 1/p is
negligible in λ and that the security is considered under the generic bilinear
group model (Lemma 3).

Appendix B: WY and BE PIR Schemes

Woodruff-Yekhanin (WY) Scheme [17]. This is a linear k-server n-
dimensional PIR scheme working over an arbitrary finite field F. Let 1 ≤ t < k
and d = (2k − 1)/t�. Let � ∈ O

(
n1/d

)
be the smallest integer satisfying

(
�
d

) ≥ n
and E : [n] → F

� a 1-to-1 mapping that maps an index j ∈ [n] to a vector in
F

� of Hamming weight d. Each x ∈ F
n is encoded by a multivariate polynomial

Fx(z), where z = (z1, . . . , z�), defined as follows.

Fx(z) �=
∑

j∈[n]

xj

∏

u∈[�] : E(j)u=1

zu.

Then, deg(F ) = d and xi = Fx(E(i)). Fix k distinct elements {βj}j∈[k] ⊆ F
∗
p.
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–
({qj}j∈[k], aux

) ← QueriesGen(n, k, i): The algorithm picks t random vectors
{v(s)}s∈[t] ⊆ F

� and outputs qj
�= E(i) +

∑
s∈[t] β

s
j vs and aux = {v(s)}s∈[t].

– aj ← AnswerGen(x, qj): The algorithm computes aj = (aj,0, aj,1, . . . , aj,�),
where aj,0

�= Fx(qj) and aj,u
�= ∂Fx

zu
|qj , u ∈ [�].

– {xi} ← Extract
(
n, i, {aj}j∈[k], aux

)
: The algorithm reconstructs the polyno-

mial f(y) �= Fx

(
E(i)+

∑
s∈[t] y

sv(s)
)

and outputs f(0) = Fx(E(i)) = xi. The
reconstruction of f is possible because deg(f) ≤ dt ≤ 2k − 1 while 2k linear
combinations of its coefficients, namely, {f(βj), f ′(βj)}j∈[k], can be extracted
from the answers {aj}j∈[k] and aux = {v(s)}s∈[t] as follows. For j ∈ [k],
f(βj) = Fx(qj) = aj,0, and

f ′(βj)=
∑

u∈[�]

∂F

∂zu

∣
∣
∣
∣
qj

∂

∂y

(

E(i)u +
∑

s∈[t]

ysv(s)
u

)∣
∣
∣
∣
βj

=
∑

u∈[�]

aj,u
∂

∂y

(

E(i)u +
∑

s∈[t]

ysv(s)
u

)∣
∣
∣
∣
βj

.

Note that each server generates � ∈ O(n1/d) linear combinations of x. Although
in Algorithm 1 we let the LMC verify just one linear combination of x for
simplicity, in its original form, Lai-Malavolta LMC can verify multiple linear
combinations using a single witness.

Bitar-El Rouayheb (BE) Scheme [18]. This scheme works slightly dif-
ferent from the previous ones in that the client retrieves a fixed block of
k − t components of x instead of a single component. All definitions of a PIR
scheme can be generalized to this block form in a straightforward manner. Let
x = (x1, . . . , x(k−t)n) ∈ F

(k−t)n and assume the client wants to retrieve the ith
block

(
x(i−1)(k−t)+1, . . . , xi(k−t)

)
for some i ∈ [n].

–
({qj}j∈[k], aux

) ← QueriesGen(n, k, i): The algorithm picks a k × k Vander-
monde matrix V =

(
βb−1

a

)
a,b∈[k]

, where {βs}s∈[t] is a set of k distinct elements

in F. It also picks t random vectors {v(s)}s∈[t] ⊆ F
(k−t)n and set the queries

to be the rows of the matrix Q = V M given as follows.

Q =

⎛

⎜
⎜
⎜
⎝

q1
q2
...
qk

⎞

⎟
⎟
⎟
⎠

�= V M = V

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

v(1)

...
v(t)

e(i−1)(k−t)+1

...
ei(k−t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

– aj ← AnswerGen(x, qj): The algorithm outputs aj
�= qj · x.

– {xi} ← Extract
(
n, i, {aj}j∈[k], aux

)
: The algorithm calculates V −1Qx = Mx,

which gives
(
x(i−1)(k−t)+1, . . . , xi(k−t)

)
.

The t-privacy is guaranteed because any set of t queries has t random vectors
{v(s)}s∈[t] well mixed (the submatrix of Q formed by any t rows and the first t
columns is always invertible) and hence appears completely random.
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Appendix C: Extra Performance Evaluations of Com-PIR

In Fig. 5, with a medium m and a growing n, the computation time of Com-PIR is
dominated by the LMC. Note that LMC on its own scales linearly for the verifier
and quadratically in n for the server. More specifically, in our implementation,
O(n) elliptic curve operations (expensive) and O(n2) field operations (cheaper)
are required for the server. Applied on top of a PIR, the LMC-related running
time also depends on k, t, and � ∈ O(n1/d). Lai-Malavolta LMC runs reasonably
fast on small and medium n (thousands) but slow on larger n. In Fig. 6, we plot
the running times of LM-WY as d increases, which means that k increases (to
satisfy 2k − 1 ≥ td for a fixed t) and � decreases. While the PIR time increases
for both servers and clients, the LMC time for servers (depending on �) decreases
as d grows. For the client, the LMC time fluctuates as it depends on k�.

Fig. 5. The comparison of the average server and client computation times of LM-
CKGS, LM-WY, and LM-BE for k = 2, t = 1, m = 210, and n ∈ {28, 210, 212}.

Fig. 6. The comparison of the average server and client computation times of LM-WY
for t = 1, n = 210, m ∈ {210, 212}, and (d, k) ∈ {(3, 2), (4, 3), (5, 3), (6, 4)}.
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16. Campanelli, M., Nitulescu, A., Ràfols, C., Zacharakis, A., Zapico, A.: Linear-
map vector commitments and their practical applications. In: Agrawal, S., Lin, D.
(eds.) ASIACRYPT 2022. LNCS, vol. 13794, pp. 189–219. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-22972-5 7

17. Woodruff, D., Yekhanin, S.: A geometric approach to information-theoretic pri-
vate information retrieval. In: 20th Annual IEEE Conference on Computational
Complexity (CCC 2005), pp. 275–284. IEEE (2005)

https://doi.org/10.1007/978-3-319-07536-5_5
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-26948-7_19
https://doi.org/10.1007/978-3-030-90456-2_16
https://doi.org/10.1007/978-3-031-22972-5_7


Committed Private Information Retrieval 413

18. Bitar, R., El Rouayheb, S.: Staircase-PIR: universally robust private information
retrieval. In: IEEE Information Theory Workshop (ITW), pp. 1–5. IEEE (2018)

19. Demmler, D., Herzberg, A., Schneider, T.: Raid-PIR: practical multi-server PIR.
In: Proceedings of the 6th Edition of the ACM Workshop on Cloud Computing
Security, pp. 45–56 (2014)

20. Sun, H., Jafar, S.A.: The capacity of robust private information retrieval with
colluding databases. IEEE Trans. Inf. Theory 64(4), 2361–2370 (2017)

21. Ulukus, S., Avestimehr, S., Gastpar, M., Jafar, S.A., Tandon, R., Tian, C.: Private
retrieval, computing, and learning: recent progress and future challenges. IEEE J.
Sel. Areas Commun. 40(3), 729–748 (2022)

22. Nikolaenko, V., Ragsdale, S., Bonneau, J., Boneh, D.: Powers-of-tau to the people:
decentralizing setup ceremonies. Cryptology ePrint Archive (2022)

23. Lai, R.W.: Succinct arguments: constructions and applications. Ph.D. dissertation,
Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany) (2022)

24. Papamanthou, C., Shi, E., Tamassia, R.: Signatures of correct computation. In:
Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 222–242. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 13

https://doi.org/10.1007/978-3-642-36594-2_13


Two-Message Authenticated Key
Exchange from Public-Key Encryption

You Lyu1,2 and Shengli Liu1,2(B)

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

{vergil,slliu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

Abstract. In two-message authenticated key exchange (AKE), it is nec-
essary for the initiator to keep a round state after sending the first round-
message, because he/she has to derive his/her session key after receiving
the second round-message. Up to now almost all two-message AKEs con-
structed from public-key encryption (PKE) only achieve weak security
which does not allow the adversary obtaining the round state. How to
support state reveal to obtain a better security called IND-AA security
has been an open problem proposed by Hövelmann et al. (PKC 2020).

In this paper, we solve the open problem with a generic construc-
tion of two-message AKE from any CCA-secure Tagged Key Encapsula-
tion Mechanism (TKEM). Our AKE supports state reveal and achieves
IND-AA security. Given the fact that CCA-secure public-key encryption
(PKE) implies CCA-secure TKEM, our AKE can be constructed from
any CCA-secure PKE with proper message space. The abundant choices
for CCA-secure PKE schemes lead to many IND-AA secure AKE schemes
in the standard model. Moreover, following the online-extractability tech-
nique in recent work by Don et al. (Eurocrypt 2022), we can extend the
Fujisaki-Okamoto transformation to transform any CPA-secure PKE into
a CCA-secure Tagged KEM in QROM. Therefore, we obtain the first
generic construction of IND-AA secure two-message AKE from CPA-
secure PKE in QROM. This construction does not need any signature
scheme, and this result is especially helpful in the post-quantum world,
since the current quantum-secure PKE schemes are much more efficient
than their signature counterparts.

Keywords: Authenticated key exchange · State reveal · PKE

1 Introduction

Authenticated Key Exchange (AKE) is an important technical tool of establish-
ing a secure channel for two communication parties, and is widely deployed in a
variety of information systems for security. Running with an AKE protocol, two
parties can compute a shared session key which is used for the later communi-
cations. The security of AKE requires pseudo-randomness of the session key in
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Fig. 1. Two-message AKE protocol.

case of passive attacks and (implicit or explicit) authentication in case of active
attacks. AKE is a well-studied topic and many generic AKE constructions are
available up to now [9,10,13,20]. Generally, AKE relies on public-key primitives
for security and its building blocks include public-key encryption (PKE), digital
signature (SIG) and key encapsulation mechanism (KEM).

Security Models for AKE. Bellare and Rogaway [3] introduced the original
security model, which was later developed to several different models, like CK
model, eCK model, CK+ model, etc. Lately, Hövelmanns et al. [10] proposed
the so-called IND-AA/IND-StAA models for two-message AKEs. IND-AA model
captures not only the classical security requirement of pseudo-randomness for
session keys, but also security against key compromise (KCI) attack, reflection
attack, state reveal attack, and weak forward security. IND-StAA model is sim-
ilar to but weaker than IND-AA model, since it does not consider state reveal
attack. As pointed by [5,10], IND-AA model is strictly stronger than the CK
model, but incomparable to eCK model.

AKE from PKE. There are two essential factors affecting the efficiency of
AKE. One is the number of rounds and the other is the efficiency of its build-
ing blocks. Clearly the optimal round number is 2 for AKE, so two-message
AKE has optimal round efficiency. Among the public key primitives, SIG is
often used to achieve authentication for AKE. However, generally SIG is not
as efficient as PKE, and this is especially true for PKE/SIG schemes with
security against quantum computers. For example, in the NIST post-quantum
competition, CRYSTALS-Dilithium (SIG) has key size two times larger than
CRYSTALS-Kyber (KEM), its signature size is three times larger than the
ciphertext size of CRYSTALS-Kyber (KEM), and its signing time is 10 times
slower than the encapsulation algorithm of CRYSTALS-Kyber. This motivates
the research [10,11,19] on designing AKE solely from PKE. The AKE schemes
proposed in [11,19] are constructed from KEM, but have at least three rounds.

The question of designing two-message AKE from PKE was partially solved
by Hövelmanns et al. [10]. Recall that a two-message AKE protocol for parties
Pi and Pj is captured by three PPT algorithms as shown in Fig. 1. Let (pki, ski)
(resp.(pkj , skj)) be the public/secret key pairs for Pi (resp.Pj).

(1) Init(ski, pkj). Initiator Pi invokes Init(ski, pkj) to generate the first-round
message M1 and a round state st.

(2) Derresp(skj , pki,M1). After receiving M1, responder Pj invokes Derresp
(skj , pki, M1) to generate the second-round message M2 and the session
key Kj .
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(3) Derinit(ski, pkj ,M2, st). Upon receiving M2, Pi invokes Derinit(ski, pkj ,
M2, st) to generate its session key Ki.

Compared with IND-StAA security, IND-AA security allows the adversary to
implement a so-called “state reveal attack”, which is an active attack with ini-
tiator Pi’s state sti. So IND-AA security is strictly stronger than IND-StAA
security. In [10], Hövelmanns et al. presented a generic construction of two-
message AKE from passively (i.e., CPA) secure PKE in the quantum random
oracle model (QROM). However, their AKE construction only achieves weak
IND-StAA security, so they left an open problem (Sect. 1.1.5 in [10]):

How to design a generic and efficient two-message
AKE protocol with IND-AA security?

Our Contribution. We solve the open problem in this paper. Our contribution
has two folds.

1. We propose a generic construction of IND-AA secure two-message AKE
from CCA-secure Tagged-KEM [1], CPA-secure PKE, target collision resis-
tant (TCR) hash function, and pseudo-random function (PRF). The IND-AA
security of AKE is proven in the standard model.

• The existence of one-way function implies PRF and TCR-Hash function,
and CCA-secure Tagged-KEM can be constructed by CCA-secure PKE.
So our AKE can essentially be constructed from CCA-secure PKE.

• Given many choices for the standard-model instantiations of the building
blocks, we obtain the first generic two-message AKE schemes from PKE
with IND-AA security in the standard model.

2. Following the online-extractability technique in [6], we extend the Fujisaki-
Okamoto transformation to transform any passively (i.e., CPA) secure PKE
into a CCA-secure Tagged KEM in the QROM model. As a result, we obtain
the first generic construction of two-message AKE from passively secure PKE
with IND-AA security proven in the QROM model.

Comparison. We compare our two AKE constructions, AKE1 in standard
model and AKE2 in the QROM model, with other AKEs constructed from PKE.
Comparing the FSXY scheme [7] in the standard model, our AKE1 has compa-
rable efficiency as FSXY, but shorter secret key and better security of IND-AA.
Comparing the AKEFO scheme [10] in the QROM model, our AKE2 has compa-
rable efficiency as AKEFO, but enjoys shorter secret key and better security of
IND-AA.

Technique Overview. First we review some security requirements for AKE.
Plain security means pseudo-randomness of session key but the adversary A is
neither allowed to corrupt users’ secret key nor reveal the initiator’s round state.
Weak forward security (wFS) asks pseudo-randomness of session key in case of
passive attacks but A may corrupt secret keys of both initiator and responder
(in this case A cannot reveal the initiator’s round state to avoid trivial attack).
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Table 1. Comparison of our AKE1 (in the standard model) and AKE2 (in QROM)
with AKEs constructed from PKE/KEM. Comm denotes the communication overhead
of the protocols, where “|C|” and “|pk|” denote the size of ciphertext and public key
of IND-CCA secure KEM. “|c|” denotes the size of ciphertext of IND-CPA secure
PKE/KEM. “λ” denotes the security parameter. (|c| + |C|) (w.r.t. (|c| + |c|)) in AKE1

(w.r.t. AKE2) denotes the size of ciphertext of IND-CPA secure PKE, because the
ciphertext is an (KEM + DEM) encryption of the ciphertext of IND-CCA (w.r.t. IND-
CPA) secure KEM. CompI and CompR denote the computational complexity of
initiator and responder. “E” and “D” denote one encapsulation and one decapsulation
of an IND-CCA secure KEM, and “e” and “d” denote one encapsulation and one
decapsulation of IND-CPA secure KEM. KeySize denotes the size of long-term secret
key per user. “|skcca|, |skcpa|, |skprf |, |skse|” denote the secret key sizes of IND-CCA secure
KEM, IND-CPA secure PKE/KEM, PRF and symmetric encryption, respectively.

AKE schemes Comm CompI CompR KeySize Security Model

FSXY [7] |pk| + 2|C| + |c| E + D + d E + D + e |skcca| + |skprf | IND-stAA Standard

Our AKE1 |pk| + |C| + (|c| + |C|) + λ E + D + d E + D + e |skcca| IND-AA Standard

JKRS [13] |pk| + 2|C| + |c| E + D + d E + D + e |skcca| + |skse| IND-AA ROM

AKEFO [10] |pk| + 3|c| 2e + 2d 3e + d |skcpa| + |skprf | IND-stAA QROM

Our AKE2 |pk| + |c| + (|c| + |c|) + λ 2e + 2d 3e + d |skcpa| IND-AA QROM

Fig. 2. Plain AKE (without gray box) and AKEFO [10] (with gray box).

State-reveal security requires that A is not able to implement successful active
attack to learn party’s session key even if it obtains the initiator’s round state.

We start with a plain construction of AKE which has plain security but has
neither forward security nor state-reveal security. Then we show why the AKEFO

scheme in [10] achieves wFS security but suffers from state-reveal attack. Lastly,
we describe how to design our AKE to resist the state-reveal attack while keeping
the wFS security, so that IND-AA security is achieved.

Plain AKE. Let PKE = (Gen,Enc,Dec) be a public key encryption scheme.
There is a plain construction of AKE. Pi and Pj just use its peer’s public key
to encrypt a random message. Let c1 ← Enc(pkj ,m1) and c2 ← Enc(pki,m2).
Pi has state sti := m1. After exchanging the ciphertexts c1 and c2, they can
decrypt the ciphertexts to recover m1 and m2 respectively. The final session key
is computed by Ki = Kj = H(m1|m2|c1|c2). See Fig. 2.
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Fig. 3. Our generic construction of AKE.

– Without the knowledge of ski and skj , the session key H(m1|m2|c1|c2) is
pseudo-random (assuming by now H is a random oracle). Therefore, this
plain AKE has plain security if the underlying PKE has CCA security. The
CCA security is required for PKE so that the security reduction algorithm is
able to compute session keys for other session instance of the same user.

– If Pi and Pj are corrupted, adversary A obtains ski and skj , then A is also
able to decrypt c1, c2 to obtain m1,m2. Obviously A also gets the session key
H(m1|m2|c1|c2). Therefore, this plain AKE has no wFS security.

– If state sti = m1 is exposed to A, then A can impersonate Pj to send
ĉ2 ← Enc(pki, m̂2) to Pi. Obviously A can compute Pi’s session key Ki :=
H(m1|m̂2|c1|ĉ2). Therefore, this plain AKE cannot resist state reveal attack.

AKEFO [10] with wFS Security. To obtain wFS security, an ephemeral pub-
lic/secret key pair (p̃k, s̃k) is augmented to the plain AKE, resulting in AKEFO

[10]. Pi also sends p̃k to Pj and Pj provides Pi a ciphertext c̃ encrypting another
random message m̃ under p̃k. The state of Pi is sti = (m1, s̃k). Then Pi and
Pj can share the ephemeral random m̃, and embed it in the input of the hash
function so that Ki = Kj = H(m1|m2|M1|M2|m̃), where M1 = (p̃k, c1) and
M2 = (c̃, c2). See also Fig. 2.

– Even if A obtains ski and skj by corruption, A cannot determine m̃ without
the knowledge of s̃k. Therefore, Ki = Kj = H(m1|m2|M1|M2|m̃) is still
random to A. So AKEFO achieves wFS security.

– If state sti = (m1, s̃k) is exposed to A, then A can impersonate Pj in the
protocol and share a session key with Pi, since it knows m1 and can choose m̃
and m̂2 so as to derive Pi’s session key Ki = H(m1|m̂2|M1|M2|m̃). Therefore,
AKEFO cannot resist state reveal attack.

Our Approach to IND-AA Security. In plain AKE and AKEFO, m1 has two
roles. One is used to derive the session key, and the other is used as a token to
authenticate Pj since only Pj is able to decrypt c1 to obtain m1 (when skj is
not corrupted). However, with state reveal, A obtains token m1 from sti, so it
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can always impersonate Pj in plain AKE and AKEFO. That is why they suffer
from the state-reveal attack and only achieve IND-StAA security.

To achieve IND-AA security, we have to deal with the above impersonation
attack due to the leakage of m1 from state reveal. Intuitively, we have to find a
way of authenticating Pj even if sti is leaked to A.

Now we briefly show how to construct our AKE from the plain AKE step by
step. Steps (1)–(5) show how to support state reveal to avoid the impersonation
attack, and (6) shows how to achieve wFS security.

(1) Partition m1 by functionality. In algorithm Init, m1 is divided into two
parts m11|m12, where m11 is used to derive the session key and m12 is used
as Pj ’s authenticating token.

(2) Limit information leakage of token m12 in state sti. We do not put
token m12 in sti. Instead, only the hash value σ := H(m12) (rather than
m12) is stored in state sti (where m11 is stored as well). Now even if A
obtains σ from sti, A can hardly recover the token m12.

(3) Protect token m12 in the second round-message M2. For explicit
authentication, Pj has to transmit the token m12 via M2. Thus we have
to protect m12 in M2 to avoid leakage. To this end, in Derresp, m2 is further
divided into two parts m21|m22, where m21 is used to derive the session key
and m22 is used to encrypt m22 via one-time pad. Now M2 = c2 (in the
plain AKE) is changed to M2 = (c2, C := m12 ⊕ m22).

(4) Authenticate Pj with σ = H(m12). Pi can decrypt c2 to obtain m22 and
recover m12 := C ⊕ m22. By retrieving σ from sti, Pi can authenticte Pj by
checking whether m12 is the hash pre-image of σ.

(5) Avoid leakage m12 from man-in-the-middle (MITM) attack. Now
that both M1 = c1 = Enc(pkj ,m11|m12) and M2 = (c2,m12 ⊕ m22) contain
the information of m12. But Pj is not able to authenticate Pi by M1. Then
it is possible for A to implement a MITM attack: copy c1 from M1 as its
own first round-message; Pj will output M2 = (ĉ2 = Enc(p̂k, m̂21|m̂22), C =
m12 ⊕ m̂22); A decrypts m̂21|m̂22 ← Dec(ŝk, ĉ2) with its own secret key ŝk.
Then A can recover the token m12 := C ⊕ m̂22 and then impersonate Pj

with the token. This MITM attack can be easily avoided by attaching Pi’s
identity i to m11|m12

1. So c1 ← Enc(pkj ,m11|m12|i). The CCA security of
PKE will guarantee that A’s MITM attack either results decryption failure
or a totally different decryption result.

(6) Encryption of c2 with ephemeral key for the wFS security. Pi puts
the ephemeral public key p̃k in M1 = (p̃k, c1) and the ephemeral secret key
s̃k in sti = (m11, s̃k, σ). Pj uses p̃k to encrypt c2 to obtain c̃ ← Enc(p̃k, c2).
So M2 = (c̃, C). Now we arrive at our final AKE construction.
With the protection of ephemeral key, even ski and skj are corrupted, c2
is still well-protected from A as long as A does not reveal state to obtain
s̃k. Consequently, A knows nothing about m21 and the final session key
Ki = Kj = H(m11|m21|M1|M2) is still random to A. In fact, as long as A

1 In our final generic construction of AKE, we use tagged KEM to generate c1 with
identity as the tag. Here PKE is only specific construction of tagged KEM.
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does not obtain both the initiator’s the long-term key and its round state
(to avoid trivial attack), the session key from a non-tampered session is
pseudo-random to the adversary. So our AKE achieves the wFS security.

In the session key generation, we can always change the hash function with PRF
function so that Ki = Kj = PRF(m11|M1|M2) ⊕ PRF(m21|M1|M2). In this way,
the IND-AA security is proven in the standard model. Our AKE construction is
shown in Fig. 3.

Moreover, we can also change PKE to tagged TKEM and KEM for the gener-
ation of c1 and c2. Since PKE can be considered a specific instantiation of KEM
(or TKEM), this change only makes our AKE construction more general.

Related Works. The FSXY scheme in [7] is a two-message AKE constructed
from KEM in the standard model. As noted in [10], its security is essentially the
IND-StAA security. As far as we know, the AKEFO [10] is the only generic two-
message AKE construction from PKE in QROM, achieving IND-StAA security.
The performances of FSXY and AKEFO are shown in Table 1.

There are also other AKE schemes [8,9,13] supporting state reveal (i.e.,
resisting state reveal attack). In [8,13], a symmetric encryption (SE) is employed
to encrypt the round state to support state reveal. As a result, the secret key of
SE has to be included into the long-term secret key. Besides, the AKE scheme
in [13] is based on the random oracle (RO) model and those in [8,9] rely on SIG
to provide authentication. We note that the SE approach to support state reveal
may also apply to AKEFO [10] but a rigorous proof in QROM is needed.

The HMQV protocol [14] also supports state reveal, but it is Diffie-Hellman
type AKE scheme in the RO model, rather than a generic construction. Its
solution to state reveal is specific to the Diffie-Hellman algebraic structure.

In ISO/IEC 11770-3 [12], there are standardized two-round PKE-based AKE
schemes. However, these AKE schemes do not consider state-reveal attacks (in
fact, they are susceptible to such attacks since the randomness used in the first
round-message must be kept to derive the final session key by the initiator).

2 Preliminary

Let ∅ denote the empty set. If x is defined by y or the value of y is assigned to
x, we write x := y. For μ ∈ N, define [μ] := {1, 2, . . . , μ}. Denote by x ←$ X
the procedure of sampling x from set X uniformly at random. Let |X | denote
the number of elements in X . All our algorithms are probabilistic unless states
otherwise. PPT abbreviates probabilistic polynomial time. We use y ← A(x)
to define the random variable y obtained by executing algorithm A on input
x. We use y ∈ A(x) to indicate that y lies in the support of A(x). We also
use y ← A(x; r) to make explicit the random coins r used in the probabilistic
computation. Let λ denote the security parameter. We assume all algorithms
take 1λ as an implicit input.

The definitions of PRG and PRF and the one-wayness and TCR property of
hash function are shown in Appendix A.
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2.1 Public Key Encryption

A public key encryption scheme consists of three algorithms PKE = (Gen,Enc,
Dec), where (pk, sk) ← Gen generates public/secret key pair, c ← Enc(pk,m)
encrypts plaintext m to ciphertext c and m/⊥ ← Dec(sk, c) decrypts ciphertext
c to recover the plaintext m. The (1 − δ) correctness of PKE requires decryption
error is bounded by δ, where the probability is over (pk, sk) ← Gen and c ←
Enc(pk,m).

Definition 1 (γ-Spreadness of PKE). PKE is γ-spread if for all key pairs
(pk, sk) ∈ Gen(ppPKE) and all messages m ∈ M, it holds that

max
c∈C

Pr [r ←$ R : Enc(pk, m; r) = c] ≤ 2−γ .

Definition 2 (γ-Key Diversity of PKE). PKE is γ-key diverse if

Pr

⎡
⎣

r1, r2 ←$ R
(pk1, sk1) ← Gen(ppPKE; r1)
(pk2, sk2) ← Gen(ppPKE; r2)

: pk1 = pk2

⎤
⎦ ≤ 2−γ .

Definition 3 (IND-CPA Security for PKE). For PKE, an adversary A’s
advantage is defined by AdvCPAPKE(A) :=

∣∣Pr
[
ExpCPA-0PKE,A ⇒ 1

] − Pr
[
ExpCPA-1PKE,A ⇒ 1

]∣∣,
where

Pr
[
ExpCPA-bPKE,A ⇒ 1

]
:= Pr

[
(pk, sk) ← Gen(ppPKE); (m0, m1, st) ← A(pk)

cb ← Enc(sk, mb); b
′ ← A(st, pk, cb)

: b′ = 1

]
.

The IND-CPA security of PKE requires AdvCPAPKE(A) = negl(λ) for all PPT A.

2.2 Tagged Key Encapsulation Mechanism

Definition 4 (TKEM). A tagged key encapsulation mechanism (TKEM)
scheme TKEM = (TKEM.Setup,TKEM.Gen,TKEM.Encap,TKEM.Decap) con-
sists of four algorithms.

– TKEM.Setup. The setup algorithm outputs public parameters ppTKEM, which
determine an encapsulation key space K, public key space PK, secret key space
SK, tag space T and a ciphertext space CT .

– TKEM.Gen(ppTKEM). Taking ppTKEM as input, the key generation algorithm
outputs a pair of public key and secret key (pk, sk) ∈ PK × SK.

– TKEM.Encap(pk, τ). Taking pk and a tag τ as input, the encapsulation algo-
rithm outputs a pair of ciphertext c ∈ CT and encapsulated key K ∈ K.

– TKEM.Decap(sk, c, τ). Taking as input sk and c and a tag τ , the deterministic
decapsulation algorithm outputs K ∈ K ∪ {⊥}.

The (1 − δ)-correctness of TKEM requires that for all tag τ ∈ T ,

Pr

[
(pk, sk) ← TKEM.Gen(ppKEM)
(c, K) ← TKEM.Encap(pk, τ)

: TKEM.Decap(sk, c, τ) �= K

]
≤ δ.

We recall the IND-CCA security of TKEM.
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Fig. 4. The IND-CCA security experiment ExpCCA-bKEM,A of Tagged-KEM.

Definition 5 (IND-CCA Security for TKEM[1]). To a tag key encapsula-
tion mechanism TKEM, the advantage functions of an adversary A is defined by
AdvCCATKEM(A) :=

∣
∣
∣Pr

[

ExpCCA-0TKEM,A ⇒ 1
]

− Pr
[

ExpCCA-1TKEM,A ⇒ 1
]∣
∣
∣, where the experi-

ments ExpCCA-bTKEM,A for b ∈ {0, 1} are defined in Fig. 4. The IND-CCA security of
tag KEM requires AdvCCATKEM(A) = negl(λ) for all PPT algorithm A.

When τ is null, TKEM becomes canonical KEM, and IND-CCA security can
be similarly defined for KEM. Now we define the output pseudo-randomness of
KEM w.r.t. its input randomness. Roughly speaking, output pseudo-randomness
requires the encapsulation key K is indistinguishable from a random key even if
A gets both pk and sk but has no information about ciphertext c .

Definition 6 (Output Pseudo-Randomness of KEM). A key encapsula-
tion mechanism KEM = (KEM.Setup,KEM.Gen,KEM.Encap,KEM.Decap) has
output pseudo-randomness if for any PPT adversary A,
AdvpsKEM(A) :=

∣
∣
∣Pr

[

Expps-0KEM ⇒ 1
]

− Pr
[

Expps-1KEM ⇒ 1
]∣
∣
∣ = negl(λ), where

Pr
[
Expps-bKEM ⇒ 1

]
:= Pr

⎡
⎢⎢⎣

ppKEM ← KEM.Setup
(pk, sk) ← KEM.Gen(ppKEM)

(c, K0) ← KEM.Encap(pk); K1 ←$ K
b′ ← A(pk, sk, Kb)

: b′ = 1

⎤
⎥⎥⎦ .

3 Two-Message AKE and Its IND-AA Security

A two-message AKE (see Fig. 1) is characterized by four algorithms. Each party,
say Pi, will invoke the key generation algorithm Gen(i) to generate its own
public/secret key pair (pki, ski). An initiator Pi then invokes the initialization
algorithm Init(ski, pkj) to generate the first round-message M1 and its state st.
Pi sends M1 to its responder Pj and stores the state st locally. Upon receiv-
ing M1, Pj invokes the responder-derivatation algorithm Derresp(skj , pki,M1)
to generate the second round-message M2 and its session key Kj . Pj sends
M2 to Pi. Upon receiving M2, Pi invokes the initiator-derivatation algorithm
Derinit(ski, pkj ,M2, st) to derive its session key Ki. The formal definition for
two-message AKE is given below.

Definition 7 (Two-Message AKE). A two-message AKE scheme AKE =
(Gen, Init,Derinit,Derresp) consists of the following four algorithms.
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– Gen(i). Taking a party identity i as input, the key generation algorithm out-
puts a key pair (pki, ski).

– Init(ski, pkj). Taking as input a secret key ski and a public key pkj, the ini-
tialisation algorithm outputs a message M1 and a state st.

– Derresp(skj , pki,M1). Taking as input a secret key skj, a public key pki and a
message M1, the responder derivation algorithm outputs a message M2 and
a session key Kj.

– Derinit(ski, pkj ,M2, st). Taking as input a secret key ski, a public key pkj,
a message M2 and a state st, the initiator derivation algorithm outputs a
session key Ki.

(1 − δ)-Correctness of AKE. For any distinct and honest parties Pi and Pj

with (pki, ski) ← Gen(i) and (pkj , skj) ← Gen(j), after their protocol execu-
tion of (M1, st) ← Init(ski, pkj), (M2,Kj) ← Derresp(skj , pki,M1) and Ki ←
Derinit(ski, pkj ,M2, st), the probability that Ki = Kj 	= ∅ is at least 1 − δ.

Remark 1. Note that in a two-message AKE, the initiator Pi has to invoke two
algorithms. Therefore, Pi has to transmit a round state sti from Init to Derinit.
However, responder Pj does not have to store any (secret) state, since Pj only
invokes one algorithm for session key.

We will use the IND-AA security model proposed in [10]. This model for-
malizes the adversary’s passive attack, active attack, state reveals of session
instances. Suppose there are at most μ users P1, P2, . . . , Pμ, and each user will
involve at most � sessions. The sessions run the protocol algorithms with access
to the party’s long-term key material, and also have their own local variables.
The local variables of each session, indexed by the integer sID, are shown below.

holder[sID] : the party running the session sID; peer[sID] : the intended
communication peer of holder[sID]; sent[sID] : the message sent by the ses-
sion sID; recv[sID] : the message received by the session sID; role[sID] ∈
{initiator, responder} : it indicates holder plays the role of initiator or responder;
st[sID] : round state in sID. If role[sID] = initiator, then st is output by Init,
otherwise, st = ⊥; sKey[sID] : the session key of sID.

Definition 8 (Matching Sessions). We say two sessions sID and sID′

are matching if the following requirements hold: 1. (holder[sID], peer[sID]) =
(peer[sID′], holder[sID′]); 2. (sent[sID], recv[sID]) = (recv[sID′], sent[sID′]); 3.
role[sID] 	= role[sID′].

Let M(sID) denote the set of session identities which match sID.

Definition 9 (Partner Sessions). We say two sessions sID and sID′

are partner if the following requirements hold: 1. (holder[sID], peer[sID]) =
(peer[sID′], holder[sID′]); 2. role[sID] 	= role[sID′]. Let P(sID) denote the set of
session identities which are partnered to sID.

Next, we formalize the oracles that deal with A’s queries as follows.
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EST(i, j): The query means that A wants to establish a new session sID for
holder i and its peer j. Upon such a query, oracle EST assigns a new session
identity sID := cnt and sets holder[sID] := i and peer[sID] := j for A.

INIT(sID): The query means that A wants to initiate session sID. Then the
oracle generates the first round message M ← Init(ski, pkj) and replies M
to A. Here ski is the secret key of holder[sID] and pkj is the public key of
peer[sID].

DERresp(sID, M): This query means that A asks session sID to respond the first-
round message M (so role[sID] = responder). The oracle will invoke M ′ ←
Derresp(skj , pki,M) and return M ′ as the second round message to A. Here
skj is the secret key of holder[sID] and pki is the public key of peer[sID].

DERinit(sID, M′): This query means that A asks session sID to respond the
second-round message M ′ (so role[sID] = initiator). The oracle will invoke
Ki ← Derinit(ski, pkj ,M, st[sID]) to generate the session key sKey[sID] := Ki.
Here ski is the secret key of holder[sID] and pkj is the public key of peer[sID].

REVEAL(sID): It means that A reveals the session key of session sID. The oracle
will return sKey[sID] to A.

REV-STATE(sID): It means that A reveals the state of session sID. The oracle
will return st[sID] to A

CORRUPT(i): It means that A reveals the long-term key of party Pi. The oracle
will return ski to A.

TEST(sID): It means that A chooses sID as the target session and the session
key of sID for challenge (test). The oracle will set K0 := sKey[sID], sample
K1 ←$ K, and return Kb to A.

Trivial(sID∗): It identifies whether A’s behavior leads to a trivial attack for the
target (test) session sID∗. The oracle will first create a list of all matching
sessions for sID∗. The list is denoted by M(sID∗). Then the oracle outputs 1
in case of the following trivial attacks.

– session sID∗ is tested but sKey[sID∗] is revealed to A.
– session sID∗ is tested and both long-term key ski of holder[sID∗] and secret

state st[sID∗] are revealed to A.
– session sID∗ is tested, there is only one matching session ptr (i.e.,
M(sID∗) = {ptr}), and the session key sKey[ptr] of matching session ptr
is revealed.

– session sID∗ is tested, there is only one matching session ptr (i.e.,
M(sID∗) = {ptr}), and both long-term key skj of peer[sID] = holder[ptr]
and secret state st[ptr] of session ptr are revealed to A.

– session sID∗ is tested, there is no matching session with sID∗ (i.e.,
M(sID∗) = ∅), and the long-term key skj of j := peer[sID∗] is revealed to
A.

Recall that μ is the number of users and � is the maximum number of sessions
per user. The security experiment ExpIND-AA-b

AKE,μ,�,A with b ∈ {0, 1} is played between
challenger C and adversary A.

1. For each party Pi, C runs Gen(i) to get the long-term key pair (pki, ski). Then
C provides A with the list of public keys (pk1, . . . , pkμ).
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2. A has access to oracles EST, INIT, DERresp, DERinit, REVEAL, REV-STATE,
CORRUPT, and TEST. Note that A can issue only one query to TEST. The
oracles will reply the corresponding answers to A.

3. At the end of the experiment, A terminates with an output b′.
4. If Trivial(sID∗) = true, the experiment returns 0. Otherwise, return b′.

Details of experiment ExpIND-AA-b
AKE,μ,�,A are given in Fig. 9 in Appendix C.

Definition 10 (IND-AA Security of AKE). In ExpIND-AA-b
AKE,μ,�,A with b ∈ {0, 1},

the IND-AA advantage function of an adversary A against AKE is defined as

AdvIND-AA
AKE,μ,�,A :=

∣∣∣Pr
[
ExpIND-AA-0

AKE,μ,�,A ⇒ 1
]

− Pr
[
ExpIND-AA-1

AKE,μ,�,A ⇒ 1
]∣∣∣ .

The IND-AA Security of AKE asks AdvIND-AA
AKE,μ,�,A ≤ negl(λ) for all PPT A.

4 Generic Construction of Two-Message AKE and Its
Security Proof

Fig. 5. Generic construction of two-message AKE.

We propose a generic construction of AKE = (Gen, Init,Derinit,Derresp) with ses-
sion key space K from the following building blocks.

– A tagged key encapsulation mechanism scheme TKEM = (TKEM.Gen,
TKEM.Encap, TKEM.Decap), where the encapsulation key space is K.

– A key encapsulation mechanism scheme KEM = (KEM.Gen,KEM.Encap,
KEM.Decap) with encapsulation key space is K and ciphertext space E .

– A public key encryption scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with
message space E .

– A pseudo-random generator PRG : K → K × K.
– A pseudo-random function PRF : K × {0, 1}∗ → K
– A target collision resistant hash function H : K → Σ, which is randomly

chosen from hash family H. Suppose K = Σ × Σ.

Our generic construction is given in Fig. 5.
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Correctness. Suppose the KEM,PKE,TKEM are all (1−δ)-correct, then the AKE
construction is (1 − 3δ)-correct.

Next we consider the security of our generic AKE construction.

Theorem 1 (Key Indistinguishablity of AKE). Suppose that KEM, TKEM,
PKE are (1 − δ)-correct, TKEM is an IND-CCA tagged-KEM scheme, KEM is
an IND-CCA secure KEM scheme with output pseudo-randomness, PKE is an
IND-CPA secure PKE scheme satisfying γ-spreadness and γ-key diverse, H is a
target collision resistant hash function (and also a one way function), PRG is a
pseudo-random generator, and PRF is a pseudo-random function. Then for any
PPT adversary A against AKE that establishes sessions among at most μ users
and at most � sessions per user, we have

AdvIND-AA
AKE,μ,�,A =2μ2� ·

(
(� + 2) · AdvCCAKEM(BKEM) + (� + 1) · AdvCCATKEM(BTKEM) + AdvtcrH (BH)

+� · AdvpsKEM(BKEM) + AdvowfH (BH) + (3� + 2) · AdvpsPRF(BPRF)

+� · AdvCPAPKE(BPKE) + (3� + 3) · AdvpsPRG(BPRG) + (4�2 + � + 5) · δ + 2−γ+1
)
.

Proof. The formal proof of Theorem 1 is given in the full version [15]. Here we
sketch the proof. We first guess sID∗ will be the test session, which holds with
probability 1

μ2� . Let M(sID∗) be the set of all session identities matching with
sID∗ and (i∗, j∗) := (holder[sID∗], peer[sID∗]). Then we can divide the proof into
the following cases:

Case 1: M(sID∗) = ∅ ∧ role[sID∗] = initiator. Since the test session sID∗ has no
partner session in this case, user j∗ cannot be corrupted due to the requirement
of trivial attack. Besides, the adversary cannot both corrupt user i∗ and reveal
the secret state of test session sID∗. Therefore, Case 1 can be further divided
into two subcases.
Case 1.1: ¬crp[i∗] ∧ ¬crp[j∗]. In Case 1.1, the long-term keys of both initiator
and responder are not corrupted. Since user j∗ is not corrupted, the ciphertext
c1 in the first message M1 = (p̃k, c1) leaks no information of m11 and m12 to the
adversary by CCA security of KEM and pseudo-randomness of PRG. Due to user
i∗ is not corrupted. the ciphertext c2 contained in c̃ of the second message M2 =
(c̃, C) leaks no information of m21 and m22 to the adversary by CCA security
of TKEM and pseudo-randomness of PRG. Then by one-time pad encryption, C
leaks no information of m12. Only σ = H(m12) contained in the secret state will
leak the information of m12. However, the adversary cannot pass the verification
of initiator sID∗ using a different m′

12 	= m12 because hash function H is collision
resistant. Thanks to the one-wayness of hash function H, the adversary cannot
recover m12 either. So if the adversary passes the verification of initiator sID∗,
then there must exist some session sID′ shares the same m21 and m22 with
sID∗. Since the adversary has no information of m21 and m22, by the pseudo-
randomness of PRF, session key sKey[sID∗] is uniform to the adversary.
Case 1.2: ¬stRev[sID∗] ∧ ¬crp[j∗]. In Case 1.2, both the secret state of initiator
and the long-term key of responder are not corrupted. Note that the second
message M2 is independent of m11 generated by sID∗. By CCA security of KEM
and pseudo-randomness of PRG, c1 leaks no information about m11. Since the
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adversary cannot reveal the secret state of sID∗, m11 is uniformly random in
the view of adversary. Due to the pseudo-randomness of PRF, the session key
sKey[sID∗] is uniform to the adversary.
Case 2: M(sID∗) = ∅ ∧ role[sID∗] = responder. Since the test session sID∗ has
no partner session in this case, user j∗ (initiator) cannot be corrupted due to
the requirement of trivial attack. By the CCA security of KEM and pseudo-
randomness of PRG, the message m21 is uniform in the view of adversary and
hence the session key sKey[sID∗] is uniform to the adversary from the pseudo-
randomness of PRF.
Case 3: M 	= ∅. Due to the γ-diversity and γ-spreadness, we can proof |M| = 1
with overwhelming probability. Let M = {sID′} be the partner session with
sID∗. We can guess sID′ with security loss �. Let (sIDI , sIDR) define the initia-
tor session and responder session in sID∗ and sID′ respectively. Define (I,R) =
(holder[sIDI ], peer[sIDR]). To avoid trivial attacks, the long-term key of initiator
party I and the secret state of I cannot be corrupted simultaneously. Therefore,
Case 3 can be further divided into two subcases.
Case 3.1: ¬crp[I]. In Case 3.1, the initiator party I remains uncorrupted, and
there are no active attacks on sID∗. As a result, the message m21 is uniformly
distributed due to the CCA security of KEM and the pseudo-randomness of PRG.
This uniform distribution of m21 and PRF further ensure the pseudo-randomness
of the session key sKey[sID∗].
Case 3.2: ¬stRev[sIDI ]. In Case 3.2, the secret state of session sID∗ is never
corrupted, and there are no active attacks on sID∗. Therefore, the secret key
s̃k stored in the state of sID∗ is not corrupted and hence the ciphertext c̃ hides
the information of c2 by the CPA security of PKE. Without the information of
ciphertext c2, the message m21 is still uniform even if the adversary has the
long-term key of party I due to the output pseudo-randomness of KEM and
pseudo-randomness of PRG. Finally, the uniform distribution of m21 and PRF
further guarantees the pseudo-randomness of the session key sKey[sID∗]. �

Note that if the building block PKE is replaced by an CCA-secure one, it is
possible for us to achieve unidirectional explicit authentication, i.e., the initiator
can authenticate the responder. The reason is as follows. For the second message
M2 = (c̃, C)), if c̃ is an invalid ciphertext, it either results in abort or leads
to a different message m′

22, where m′
22 ← Dec(ski,Dec(s̃k, c̃)). Consequently,

H(m′
22 ⊕ C) 	= σ unless the one-wayness or TCR property of H is broken.

5 Instantiations of Two-Message AKE

In this section, we will present instantiations of AKE in the standard model
and the quantum random oracle model (QROM) respectively. To this end, we
consider instantiations of the underlying building blocks of AKE.

In [1], Abe et al. presented a simple tranformation from any IND-CCA secure
PKE with proper plaintext ciphertext to an IND-CCA secure TKEM. So we will
seek IND-CCA secure PKE scheme instead of IND-CCA secure TKEM.
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5.1 Instantiation of AKE in the Standard Model

Here we show the instantiation of AKE from the LWE assumption.

– We take Peikeit’s LWE-based PKE [17] as the underlying CCA secure PKE.
– We take Regev’s LWE-based PKE [18] as the underlying CPA secure PKE.
– We take the LWE-based BPR-PRF [2] as the underlying PRF (PRG as well).
– We take the LMPR-Hash [16] as the underlying TCR hash function. Then

the TCR security is based on the Short-Interger-Solution (SIS) assumption.

Note that when PKE is used as KEM, the plaintext is uniformly chosen as
the encapsulation key and independent of the secret key and the public key.
Therefore, without the knowledge of ciphertext, the plaintext is uniform to the
adversary even if the adversary obtains the public/secret key pair. Consequently,
the output pseudo-randomness of KEM holds naturally in this case.

Since the LWE assumption implies the SIS assumption, we immediately
obtain an LWE-based two-message AKE in the standard model.

In fact, there are many other choices for the building blocks, so our generic
construction actually leads to many two-message AKE schemes from standard
assumptions in the standard model.

5.2 AKE from CPA-Secure PKE in the QROM

5.2.1 PRF and TCR
We simply take hash function as PRF and TCR.

– We take a hash function H1 : K × X → K as a PRF.
– We take a hash function H2 : K → Σ, where K = Σ × Σ as a TCR.

The securities of PRF and TCR have already proved in QROM, as shown in
Lemma 1 and Lemma 2.

Lemma 1 (PRF from QROM, Corollary 1 from [4]). Let H : K × X → Y
be a quantum-accessible random oracle. This function PRF(k, x) := H(k, x) may
be used as a quantum-accessible PRF with a key k ←$ K. For any PRF-adversary
A making at most q queries to H and any number of queries to Fk, its advantage
satisfies AdvpsPRF(A) ≤ 2q/

√

|K|.

Lemma 2 (TCR Hash from QROM, Theorem 3.1 from [21]). There is a
universal constant α such that the following holds. Let H : K → Σ be a quantum-
accessible random oracle. Then any algorithm making q quantum queries to H
outputs a collision for H with probability at most α(q + 1)3/|Σ|.

5.2.2 KEM and TKEM from FO Transformation in QROM
Lately, Don et al. [6] proved FO-transform with explicit rejection can be applied
in QROM. Hence, an IND-CCA secure KEM can be constructed from IND-CPA
secure PKE, via FO-transform. The constructed scheme KEMFO is shown in
Fig. 6 and its security is given in Lemma 3.
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Fig. 6. KEMFO from FO transformation (without gray box) and TKEMFO from FO
transformation (with gray box).

Lemma 3 (IND-CCA Security of KEMFO, Theorem 6.1 from [6]). If PKE
is a (1 − δ)-correct IND-CPA secure public key encryption scheme satisfying γ-
spreadness and G,H are quantum-accessible random oracles, then the KEMFO in
Fig. 6 is IND-CCA secure.

Lemma 1 implies output pseudo-randomness of KEMFO as shown below.

Lemma 4 (Output Pseudo-Randomness of KEMFO). For any adversary
A against output pseudo-randomness of KEMFO, issuing at most q (quantum)
queries to H, its advantage satisfies AdvpsKEM(A) ≤ 2q/

√

|M|.

Proof. The output pseudo-randomness of KEMFO requires the two distributions
{ H(m) | m ←$ M } and { K | K ←$ K } are computational indistinguishable
even if A makes at most q (quantum) queries to H. Lemma 1 already shows that
H can be used as a PRF. Consequently, H(m) is pseudo-random to A since m
is randomly chosen. �

Now we extend FO-transform to Tagged KEM in QROM. The construction
of Tagged KEM is almost the same as KEMFO. We just attach the tag τ to
message m (m′) as the input of G and H. Assume PKE is IND-CPA secure with
γ-spreadness. The construction of TKEMFO from PKE is shown in Fig. 6.

In Lemma 5, we show that the IND-CCA security of TKEMFO can be reduced
to IND-CPA security of PKE in QROM.

Lemma 5 (IND-CCA security of TKEMFO). If PKE is a (1 − δ)-correct
IND-CPA secure public key encryption scheme satisfying γ-spreadness and G,H
are quantum-accessible random oracles, then TKEMFO in Fig. 6 is IND-CCA
secure.

The intuition for the proof of Lemma 5 is as follows. Suppose that G :
M × T → K is a quantum-accessible random oracle, then for each τ ∈ T ,
Gτ : M → K defined by Gτ (m) := G(m, τ) is also a quantum-accessible random
oracle. Hence, the proof of Lemma 5 almost verbatim follows that of Lemma 3.
The formal proof of Lemma 5 is given in the full version [15]. We omit it here.

5.2.3 The Final AKE in QROM
Given the above instantiations of PRG, PRF, TCR Hash, and KEM and TKEM
constructed from CPA-secure PKE in QROM, we immediately obtain a generic
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construction of AKE from CPA-secure PKE in QROM. For further optimiza-
tion, we replace the computation of session key K := PRF(m11,M1|M2) ⊕
PRF(m21,M1|M2) with hash function K := H(m11|m21|M1|M2). With the fol-
lowing quantum-accessible random oracles, we obtain the final construction of
our AKE protocol in Fig. 8 (See Appendix B).

Acknowledgements. We would like to thank the reviewers for their valuable com-
ments. This work was partially supported by National Natural Science Foundation of
China under Grant 61925207, Guangdong Major Project of Basic and Applied Basic
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Appendix

A PRG, PRF, One-Wayness and TCR of Hash Function

Definition 11 (PRG). Pseudo-Random Generator (PRG) is a polynomi-
ally computable deterministic function PRG : K → K′, where K is seed
space and K′ is output space with |K| < |K′|. The pseudo-randomness of
PRG requires AdvpsPRG(A) = negl(λ) for all PPT A, where AdvpsPRG(A) :=
|Pr [s ←$ K; y ← PRG(x) : A(y) ⇒ 1] − Pr [y ←$ K′ : A(y) ⇒ 1]| .

Definition 12 (PRF). Pseudo-Random Function (PRF) is a polynomially
computable deterministic function PRF : K × X → Y, with key space K, input
space K and output space Y. the advantage function of an adversary A is defined
by

AdvpsPRF(A) :=
∣∣∣ Pr

[
k ←$ K, x∗ ← AOPRF(·); y ← PRF(k, x∗) : AOPRF(·)(x∗, y) ⇒ 1

]

− Pr
[
k ←$ K, x∗ ← AOPRF(·); y ←$ Y : AOPRF(·)(x∗, y) ⇒ 1

] ∣∣∣,

where OPRF(x) returns PRF(k, x) and x∗ is never queried to OPRF(·). The pseudo-
randomness of PRF requires AdvpsPRF(A) = negl(λ) for all PPT A.

Definition 13 (One-Wayness of Hash). A hash family H = {H : {0, 1}n →
{0, 1}�(n)} has One-Wayness if the advantage functions of an adversary A
defined by AdvowfH (A) := Pr

[

ExpowfH ⇒ 1
]

is negligible for all PPT A, where the

experiments ExpowfH are defined in Fig. 7 (left).

Definition 14 (TCR of Hash). A hash family H = {H : {0, 1}n → {0, 1}�(n)}
is Target Collision Resistant (TCR), if the advantage function of adversary A
defined by AdvtcrH (A) := Pr

[

ExptcrH ⇒ 1
]

is negligible for all PPT A, where the
experiments ExptcrH are defined in Fig. 7 (right).

When n − �(n) ≥ λ, TCR property of H implies one-wayness.
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Fig. 7. ExpowfH (left) and ExptcrH (right) for H.

B The Final AKE in QROM

– G : K × T → R, which is used to generate randomness in PKE.
– H : K → Σ, which is used as a target collision resistant hash function. Here

K = Σ × Σ,
– H1 : K × T → K, which is used to generate encapsulation key.
– H2 : K × {0, 1} → K, which is used as a pseudo-random generator.
– H : {0, 1}∗ → K, which is used to generate session key.

Fig. 8. Generic construction of AKE from CPA-secure PKE in QROM.

C The Security Experiment ExpIND-AA-b
AKE,μ,�,A

The security experiment ExpIND-AA-b
AKE,μ,�,A is shown in Fig. 9.
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Fig. 9. The security experiments ExpIND-AA-b
AKE,μ,�,A where b ∈ {0, 1}, where OAKE :=

{EST, INIT,DERresp,DERinit,REVEAL,REV-STATE,CORRUPT,TEST}.
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10. Hövelmanns, K., Kiltz, E., Schäge, S., Unruh, D.: Generic authenticated key
exchange in the quantum random oracle model. In: Kiayias, A., Kohlweiss, M.,
Wallden, P., Zikas, V. (eds.) PKC 2020. LNCS, vol. 12111, pp. 389–422. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-45388-6 14

11. Huguenin-Dumittan, L., Vaudenay, S.: On IND-qCCA security in the ROM and
its applications - CPA security is sufficient for TLS 1.3. In: Dunkelman, O., Dziem-
bowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp. 613–642. Springer,
Cham (2022)

12. Information security-Key management-Part 3: Mechanisms using asymmetric tech-
niques. Standard, International Organization for Standardization (2021). https://
www.iso.org/standard/82709.html

13. Jager, T., Kiltz, E., Riepel, D., Schäge, S.: Tightly-secure authenticated
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Abstract. We present a novel technique within the MPC-in-the-Head
framework, aiming to design efficient zero-knowledge protocols and dig-
ital signature schemes. The technique allows for the simultaneous use
of additive and multiplicative sharings of secret information, enabling
efficient proofs of linear and multiplicative relations. The applications of
our technique are manifold. It is first applied to construct zero-knowledge
arguments of knowledge for Double Discrete Logarithms. The resulting
protocol achieves improved communication complexity without compro-
mising efficiency. We also propose a new zero-knowledge argument of
knowledge for the Permuted Kernel Problem. Eventually, we propose
a short (candidate) post-quantum digital signature scheme constructed
from a new one-way function based on simple polynomials known as
fewnomials. This scheme offers simplicity and ease of implementation.

1 Introduction

Zero-knowledge protocols have emerged as a pivotal tool in ensuring robust
computer security and enhancing cryptographic protocols. They offer a power-
ful solution by allowing one party to prove knowledge of certain information to
another party, without revealing any additional details. With the rapid advance-
ments in quantum computing technology, the need for post-quantum security
in cryptography and computer security has become of paramount importance.
Post-quantum cryptography aims to develop communication protocols that can
withstand attacks from both classical and quantum computers.

Secure multi-party computation (MPC) enables a group of n ≥ 2 parties,
who do not trust each other, to collaboratively compute a joint function using
their private inputs. In 2007, Ishai, Kushilevitz, Ostrovsky, and Sahai [IKOS07]
demonstrated that semi-honest multiparty computation (i.e. where adversaries
follow the protocol description but may try to learn arbitrary information) is
sufficient for constructing zero-knowledge protocols. This theoretical paradigm,
deemed MPC-in-the-Head, has received considerable practical attention recently
since it enables the construction of efficient and succinct protocols with good
security properties. It has been used in particular to propose several innovative
signature schemes with (alleged) post-quantum security. The goal of this article is
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to add another string to the MPC-in-the-Head ’s bow by integrating secret shar-
ing conversion, a technique that has already been used in general MPC [GPS12].
We show that this technique finds applications for (1) zero-knowledge arguments
of knowledge of Double Discrete Logarithms, (2) zero-knowledge arguments of
knowledge of Permuted Kernel Problem solutions, and (3) constructing a (candi-
date) post-quantum digital signature scheme from a new somewhat minimalistic
one-way function in finite fields.

Related Works and Contributions of the Paper. The MPC-in-the-Head
(MPCitH) framework [IKOS07] has gained considerable popularity in recent
times. This framework leverages secure MPC techniques, where the prover men-
tally shares its secret information and emulates a semi-honest MPC protocol
involving N parties and independently commits each party’s view. The verifier
then challenges the prover to reveal the views of a randomly selected subset of
N − 1 parties. By design, no information about the original input is exposed,
thereby achieving the zero-knowledge property. Besides, a malicious prover would
need to deceive at least one party, which the verifier is likely to detect, ensur-
ing the soundness property. In most practical applications, the secret is shared
additively among the N parties, which makes proving linear relations easy but
proofs of multiplicative relations more costly. Several techniques were introduced
recently to improve the practical efficiency of the resulting schemes, for instance,
the MPCitH with a helper as formalized in [Beu20], the MPCitH with abort intro-
duced in [FMRV22] or the recent hypercubing optimization technique proposed
in [MGH+23].

We present a new technique to expand this toolbox further by allowing a
prover to use simultaneously in the MPC protocol additive sharings and multi-
plicative sharings of its secret information. The former are used for linear rela-
tions, while the latter are used to prove efficiently multiplicative relations. To
ensure consistency, we propose a simple technique to transform a multiplicative
share into an additive share of the same value. Converting shares from one type
of secret sharing scheme into another is ubiquitous in MPC [GPS12] and the idea
has already been used in the MPCitH realm [DGH+21] (but for different shar-
ings). Our technique finds several applications in (post-quantum) zero-knowledge
arguments and digital signature schemes.

Double Discrete Logarithm Problem (DDLP): A double discrete logarithm of an
element y �= 1G in a cyclic group G of prime order q with respect to bases g ∈ G

and h ∈ F
∗
q (generators of G and F

∗
q respectively) is an integer x ∈ {0, . . . , q − 1}

such that y = ghx

. Initially introduced by Stadler [Sta96] for verifiable secret-
sharing, this computational problem has found applications in various crypto-
graphic protocols, including group signatures [CS97], blind signatures [ASM10],
e-cash systems [CG07], credential systems [CGM16], and verifiable randomness
generation [BTV20]. Stadler proposed a zero-knowledge protocol, which has a
computational and communication complexity of Ω(log q) (in terms of group
elements). However, in the recent work [BTV20], Blazy, Towa, and Vergnaud
presented a new protocol that outputs arguments with only O(log log q) group
elements. It relies on the “Bulletproofs” technique proposed by Bünz, Bootle,
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Boneh, Poelstra, Wuille and Maxwell in 2018 [BBB+18]. This reduced commu-
nication complexity comes at a security price since the security analysis should
rely on stronger idealized assumptions [GOP+22] or achieve only non-meaningful
concrete security [DG23]. For a use-case considered in [BTV20], the length of
Stadler arguments are 24.6 Kilobytes (KB) and those of Blazy et al. are 10.2
KB long. As a first simple application of our conversion in the head technique,
we present (for similar prover and verifier efficiency) arguments of size about
16.6 KB (depending on the parameters). Even if this is longer than the previous
approach, this still improves the communication complexity of Stadler’s protocol
by about 30%. By increasing the prover and verifier computational complexity,
it is possible to decrease the communication complexity to 7.2 KB (with better
security guarantees than [BTV20]). It is worth mentioning that even by increas-
ing the prover/verifier running times, the arguments of [Sta96,BTV20] cannot
be shortened.

Permuted Kernel Problem (PKP): The Permuted Kernel Problem (PKP) is a
classical NP-hard computational problem, where, given a matrix and a vector
(of matching dimensions) defined over a finite field, one has to find a permutation
of the vector coordinates that belongs to the matrix kernel. This problem was
introduced in cryptography by Shamir [Sha90], who designed a zero-knowledge
argument of knowledge of a solution of a PKP problem (and used it for a crypto-
graphic (post-quantum) identification scheme). This protocol was improved sub-
sequently in a long series of work [Ste94,BFK+19,Beu20,FJR23,Fen22,BG22].
We apply our technique to this problem and obtain a zero-knowledge argument
of knowledge protocol which does not involve permutations that are not easy to
implement securely, in particular in the presence of side-channel attacks.

One-Way Functions From “Fewnomials”: A cryptographic one-way function
f : S → S is a function that is computationally easy to compute but com-
putationally difficult to invert. If S is a finite field (e.g. S = Fp for some prime
number p), then it is well-known that f can be represented as a polynomial in
Fp[X] (with degree upper-bounded by (p − 1)). Ad hoc examples of such func-
tions are cryptographic hash functions or functions derived from block ciphers
(using for instance the Davies-Meyer construction [Win84]). Still, the polynomial
representations of such functions are usually of very high complexity (which
makes them not convenient for the MPCitH paradigm). Several works were
devoted to designing efficient symmetric cryptographic primitives suitable for
efficient implementation using MPCitH (e.g. the Picnic [CDG+20,KZ22] and the
Rainier [DKR+22] signature schemes). As a third application of our technique,
we propose a reverse approach to design a cryptographic system with simplicity
and minimal complexity. The motivation is to remove potential points of failure
and to obtain schemes easier to implement correctly. To do so, we consider the
simplest polynomials defined over a finite field Fp that are good one-way function
candidates. The simplest polynomials are certainly the monomials f1 : Fp → Fp,
x �→ f1(x) = xn mod p but they are trivially not one-way. If n is coprime with
(p−1), this is a permutation on which one can apply the Davies-Meyer construc-
tion to obtain the binomials f2 : Fp → Fp, x �→ f2(x) = xn + x mod p which
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seem difficult to invert (the best-known algorithm for n = Ω(p) has arithmetic
complexity O(p1/2) [BCR13]). More generally, a fewnomial is a term used in
algebraic geometry and computational algebra, to describe a polynomial with
a few terms (i.e. with a relatively low number of monomials compared to its
degree). If one considers a fewnomial of high degree with t ≥ 2 monomials over
Fp, the best known algorithm has arithmetic complexity O(p(t−1)/t) [BCR13].
These candidate one-way functions are not suitable for symmetric cryptogra-
phy (since evaluating them is much more costly than popular hash functions
and block ciphers) but they are particularly interesting for our new conversion
technique. In particular, we propose (candidate) post-quantum signatures with
lengths of about 10.5 KB. The produced signatures are thus not the shortest
ones, but our goal with this application is to propose a new simpler, and cleaner
one-way function suitable for the MPCitH paradigm with competitive perfor-
mances and to motivate future research in this area.

Other Results: We present two additional results inspired by this work but using
alternative approaches. We first describe a zero-knowledge argument of knowl-
edge of an RSA plaintext for a small public exponent that significantly improves
the state-of-the-art communication complexity [GQ90]. The scheme is very sim-
ple but seems to have been overlooked. Following a recent idea proposed by
Joux [Jou23], we also propose a more efficient construction for the DDLP (with-
out using our conversion in the head technique) achieving arguments about 6.6
KB long. This improves the communication complexity of Stadler’s protocol by
about 75% (for the same security guarantees and overall efficiency).

2 Preliminaries

We denote Fq the finite field with q elements (for q some prime power). Let
N ≥ 2 be some integer. We make use of N -out-of-N additive and multiplicative
sharing of field elements x ∈ Fq and x ∈ F

×
q (respectively); they are vectors

in Fq
N and F

×
q

N denoted �x� = (�x�1, . . . , �x�N ) and 〈x〉 = (〈x〉1, . . . , 〈x〉N )
(respectively) such that

x = �x�1 + · · · + �x�N mod q and x = 〈x〉1 · · · · · 〈x〉N mod q.

We use the same notations for the sharing of vectors. All logarithms are in
base 2. We denote the security parameter by λ. The designation PPT stands
for probabilistic polynomial-time in the security parameter. Random sampling
from a finite set X according to the uniform distribution is denoted by x

$←− X,
whereas the symbol ← is used for assignments from deterministic algorithms.
We write [0, n] to denote the set {0, . . . , n}.

Two distributions {Dλ}λ and {D̃λ}λ are called (t, ε)-indistinguishable if, for
any algorithm A running in time at most t(λ), we have

|Pr[A(1λ, x) = 1 | x
$←− Dλ] − Pr[A(1λ, x) = 1 | x

$←− D̃λ]| ≤ ε(λ).
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A (�, t, ε)-pseudo-random generator (PRG) is a deterministic algorithm G that,
for all λ ∈ N, on input a bit-string x ∈ {0, 1}λ outputs G(x) ∈ {0, 1}�(λ) with

�(λ) > λ such that the distributions {G(x) | x
$←− {0, 1}λ}λ and {r | r

$←−
{0, 1}�(λ)}λ are (t, ε)-indistinguishable. From such a generator, with �(λ) = 2λ,
it is possible to construct a tree PRG [KKW18], which takes a root x ∈ {0, 1}λ as
input and generates N = 2t pseudo-random λ-bit strings in a structured fashion
as follows: x is the label of the root of a depth-t complete binary tree in which the
right/left child of each node is labeled with the λ most/least significant bits of
the output of the PRG applied to the root label. This structure allows revealing
N − 1 pseudo-random values of the leaves by revealing only log(N) labels of the
tree (by revealing the labels on the siblings of the paths from the root to the one
remaining leaf).

2.1 Commitment Scheme

We define a commitment scheme as a pair of algorithms (Com,Verif) where:

– Com is a PPT taking as input a message m, that computes a commitment C
of m and returns C and opening information ρ.

– Verif is a deterministic polynomial-time algorithm taking as input a message
m, a commitment C and the opening information ρ, and returns a bit.

For all message m we have: ∀(C, ρ) $←− Com(m),Verif(m,C, ρ) = 1. A com-
mitment scheme is said (t, ε)-computationally hiding if, for any two messages

m1,m2, the distributions {c | c
$←− Com(m1)} and {c | c

$←− Com(m2)} are (t, ε)-
indistinguishable. A commitment scheme is computationally binding if there
exists a negligible function ν such that, for every PPT algorithm A, the proba-
bility that the event{

m1 �= m2 ∧
Verif(,m1, C, ρ1) = Verif(m2, C, ρ2) = 1

∣∣∣ (m1,m2, ρ1, ρ2, C) $←− A(1λ)

}

occurs is upper-bounded by ν(λ). In the following, we consider a commitment
scheme that outputs a 2λ bit-long commitment.

2.2 Zero-Knowledge Arguments

A zero-knowledge protocol for a polynomial-time decidable binary relation R is
defined by two interactive algorithms, a prover P and a verifier V. Both algo-
rithms are given a common input x, and P is given an additional witness w such
that (x,w) ∈ R. The two algorithms then exchange messages until V outputs a
bit b (b = 1 to accept P’s claim and b = 0 to reject). This sequence of messages
and the answer b is referred to as a transcript and denoted View(P(x,w), Ṽ(x)).
In this paper, we consider zero-knowledge argument of knowledge which are pro-
tocols that allow a PPT prover to convince a PPT verifier that they know a
witness w. There are three security notions underlying a zero-knowledge argu-
ment of knowledge.
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Definition 1. Let t : N → N, ε, α, ζ : N → [0, 1], and R be a polynomial-time
decidable binary relation. A zero-knowledge argument (P,V) for R achieves:

– α-completeness, if for all λ ∈ N and all (x,w) ∈ R, with x ∈ {0, 1}λ,
Pr[View(P(x,w),V(x)) = 1] ≥ 1 − α(λ) ( i.e. P succeeds in convincing V,
except with probability α).

– ε-(special) soundness, if for all PPT algorithm P̃ such that for all λ ∈ N

and all x ∈ {0, 1}λ, ε̃(λ) := Pr [View(P̃(x),V(x)) = 1] > ε(λ), there exists
a PPT algorithm E (called the extractor) which, given rewindable black-box
access to P̃ outputs a witness w such that (x,w) ∈ R in time poly(λ, (ε̃−ε)−1)
with probability at least 1/2.

– (t, ζ)-zero-knowledge, if for every PPT algorithm Ṽ, there exists a PPT algo-
rithm S (called the simulator) which, given the input statement x ∈ {0, 1}λ

and rewindable black-box access to Ṽ, outputs a simulated transcript whose
distribution is (t, ζ)-indistinguishable from View(P(x,w), Ṽ(x)).

2.3 MPC in the Head

MPC in the Head. The concept of MPC-in-the-Head (MPCitH) [IKOS07] pro-
vides a method for constructing zero-knowledge protocols using secure MPC
protocols. Let f be some (one-way) function and assume we have an MPC pro-
tocol where N parties securely compute f on a secret input x encoded as an
N -out-of-N secret sharing. A prover P given a secret input x, generates a ran-
dom sharing of x and mentally simulates all the parties of the MPC protocol. P
sends commitments of each party’s view in the protocol (including input share,
secret random tape, and sent/received messages) and the output shares of f(x)
to the verifier V. V selects N −1 parties randomly and requests P to reveal their
views. Upon receiving them, V verifies their consistency with an honest execu-
tion of the MPC protocol and the commitments. Since the views of only N − 1
parties are disclosed, this does not disclose any information about the secret x.

MPCitH with Helper. In this paper, we use the MPCitH with Helper paradigm
introduced in [Beu20] by Beullens. This approach adds a trusted third party
(called the helper) to the MPC protocol which runs a pre-processing phase. To
then remove the helper, one uses a cut-and-choose strategy. This approach is typ-
ically useful when some correlated randomness has to be generated in the MPC
protocol. This randomness structure is actually needed for our sharing conver-
sion. Indeed, for each sharing conversion, P needs to produce a couple of sharing
(�r�, 〈s〉) with r = s. To prove the validity of this couple (i.e. r = s), we follow a
cut-and-choose approach. P produces M couples of sharing (�r[�]�, 〈s[�]〉)�∈[1,M ]

and commits to them. Then V asks to open all the couples except one and checks
that each couple encodes an identical value. Hence, V can trust the unopened
sharing with a soundness error of 1/M .

Hypercube Optimization. In [MGH+23], Melchor, Gama, Howe, Hülsing, Joseh,
and Yue developed a geometrical approach for the MPC emulation phase. When
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dealing with additive and multiplicative secret sharing in finite fields, this opti-
mization fits pretty well (due to the commutativity of the addition and multi-
plication laws). In the traditional approach of MPCitH, P simulates N parties
during one emulation of one MPC protocol. By this hypercube approach, this
number of parties can be reduced to 1 + log2 N , with the same soundness error
(see [MGH+23] for more details). This optimization makes the MPC emulation
less costly and allows us to take a larger number of parties (and get smaller sizes).
For example, for the same soundness error, when the traditional approach needs
to simulate 28 parties, we only need to emulate 9 parties. The computational
gain is attenuated by the number of repetitions since the total number of parties
to emulate is τ(1 + log2 N) ≈ λ(1 + 1/ log2 N).

Sharing on the Integers. Finally, we also make use of a technique developed in
[FMRV22] by Feneuil, Maire, Rivain, and Vergnaud, to encode a binary secret
x ∈ Fq over the integers in the MPCitH paradigm, i.e. x =

∑N
i=1�x�i + Δx with

�x�i
$←− [0, A − 1]n (with no modular reduction). To avoid information leakage,

Feneuil et al. introduced the possibility for P to abort in the MPC protocol. This
induces a rejection rate in the MPC protocol that can be decreased by increas-
ing A (but this increases the communication complexity). Then they generalized
this sharing to encode non-binary elements throughout the construction of a digi-
tal signature from Boneh-Halevi-Howgrave-Graham pseudo-random function. In
this paper, we use this sharing to share on the integers some element in Fq. We
take A > q, and the rejection rate of the sharing becomes 1 − (

1 − q−1
A

)n
. This

approach is only used when constructing a PKP argument of knowledge.

3 Sharing Conversion and Design Principle

RSA-in-the-Head. In the MPCitH paradigm, when the secret is shared addi-
tively, multiplicative relations are costly to prove, and vice versa. Whence con-
verting secret sharing in-the-Head naturally comes to mind. However, there
exists a natural application where the conversion is not necessary, which seems
to have been overlooked in the literature. Indeed, assume that we want to prove
the knowledge of an RSA plaintext for a public exponent e, i.e. xe = y mod n
where n is some RSA modulus. Then we could imagine sharing x multiplicatively
as x =

∏N
j=1〈x〉j mod n and the corresponding MPC protocol consists simply

in locally computing 〈x〉e. Using straightforward techniques from MPCitH, this
simple observation improves the communication complexity of the seminal pro-
tocol from Guillou and Quisquater [GQ90] for the public exponent e = 3 from
around 20.4 KB to 6.6 KB for a 2048-bit modulus n and has similar efficiency.
The communication complexity could be made even smaller by increasing N
(but at the cost of an increased computational complexity). Interestingly, even
if the hypercube technique [MGH+23] could be applied here, this would result
in worse computation complexity. Details can be found in the full version of the
paper.
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Sharing Conversion. Let 〈x〉 be a multiplicative sharing of some field element
x ∈ Fq. The aim is to securely compute an additive sharing �x� of x. For the
sharing conversion considered in the following, we need a uniformly random pre-
computed couple of sharing (�r�, 〈s〉) such that r = s ∈ F

×
q . As explained in

Sect. 2, we work in the MPCitH with Helper paradigm, and follow a cut-and-
choose approach. The protocol is the following:

Input: The parties have 〈x〉.
Output: The parties get �x�.

Preprocessing phase:

A trusted dealer generates t
$←− F

×
q , and random sharings r =

∑N
i=1�r�i, s =

∏N
i=1〈s〉i,

such that r = s = t. They give (�r�i, 〈s〉i) to party Pi for i ∈ [1, N ].
Online phase:
1. The parties compute 〈α〉 = 〈x〉/〈s〉 and broadcast it.
2. The parties locally compute α�r� := �x�.

Protocol 1: Sharing conversion protocol Πconv

The pre-processing phase consists of generating {�r�i, 〈s〉i} $←− Fq ×F
×
q for i ∈

[1, N ]. Then define r =
∑N

i=1�r�i, and compute Δs such that r = Δs
∏N

i=1〈s〉i :=
s. If r = s = 0, i.e. Δs = 0, we start again. From the point of view of zero-
knowledge proofs based on MPC, this offline step introduces one auxiliary value
Δs to communicate. Since there is also the value α to communicate when running
Πconv, the sharing conversion protocol needs 2 field elements to communicate in
total (we can not reuse the couple of sharing for another conversion).

General Protocol. We develop a 5-round protocol with helper. It is presented
in a general manner, we explain later how to adapt it to each of the problems
considered in this work. Let x ∈ Fq be a solution to an instance of some problem
with f the underlying function, and let Πf be the MPC protocol that securely
computes f . Πf takes as input a secret sharing of x which is either �x�, 〈x〉, or a
sharing on the integers as in [FMRV22]. It also takes as input a couple (or many
couples) of secret sharing (�r�, 〈s〉) with r = s ∈ F

×
q that is generated during

a pre-processing phase. For the PKP application, Πf takes as additional input,
some prime number q′ greater than q. Πf outputs either �f(x)� or 〈f(x)〉.

Soundness Error. Let ε be the soundness of the protocol. We perform τ parallel
repetitions of the protocol to get a soundness error ετ < (1/2)λ. As explained in
the previous paragraph, each of these repetitions uses a cut-and-chose phase to
prove the helper. Instead of performing τ ≈ λ/ log2(N) parallel cut-and-chose
phases each resulting in trusting one couple of sharing (�r[�]�, 〈s[�]〉) among M ,
we follow the more efficient approach from [KKW18] and perform a global cut-
and-choose phase resulting in τ trusted sharing among a larger M . The idea is
that V asks to reveal M − τ out of M master seeds. The remaining τ executions
of the pre-processing phase are used to emulate τ independent instances of the
MPC protocol. When opening all but one seed, a wrong couple of sharing will
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not be detected with probability 1
N +

(
1 − 1

N

)·β, where β is a real between 0 and
1. This β will be zero when considering the DDLP and the fewnomial pre-image
problem. If a cheating prover produces M − k ≤ τ wrong couples of sharing,
they will not be detected during the first phase (when revealing M − τ master
seeds) with probability

(
k

M−τ

) · (
M

M−τ

)−1
. This leads to the soundness error

ε = max
M−τ≤k≤M

{(
k

M−τ

) · (
1
N + (1 − 1

N ) · β
)k−M+τ

(
M

M−τ

)
}

(see [KKW18] for additional details).
We describe the zero-knowledge protocol that is used in the remainding of

the paper. The protocol makes use of a pseudo-random generator PRG, a tree-
based pseudo-random generator TreePRG, four collision-resistant hash functions
Hi for i ∈ [1, 4] and a commitment scheme (Com, Verif). The red part of the
protocol has to be adapted depending on the problem considered, further details
are provided in the following. We choose to use �·� in the protocol for the sharing
of x and f(x), but it can be easily substituted by 〈·〉.

Parameters Selection. Recall that we are dealing with a pre-processing phase,
that is proved with a cut-and-choose strategy. The total number of parties to set
up being M · N , this impacts the prover/verifier computational complexity. We
choose sets of parameters to keep a reasonable signing time. We start by fixing
a number of parties N to be either 25 or 28. Then we look for the best trade-off
between τ,M while keeping a soundness error below 2−λ. Decreasing τ leads to
better sizes but to higher M and so slower signatures. The MPC emulation does
not impact a lot the signing speed since the hypercube optimization is consistent
with our scheme (see Sect. 2).

Prover’s Computational Cost. Since we use the cut-and-choose approach, the
tree expansion, randomness generation, share preparation, and commitments
computation are affected by the factor M . However, the MPC protocol is run τ
times and the hypercube approach is applied, so this emulation is quite efficient.
In the following, for each application, we estimate the computation speed with
the benchmark proposed in [Fen22], assuming a 4-core processor.

4 Proving Knowledge of a Double Discrete Logarithm

We present the Double Discrete Logarithm Problem (DDLP) which has found
numerous applications in cryptography [CS97,ASM10,CG07,CGM16,BTV20].

Double Discrete Logarithm Problem (DDLP).

Let G be a cyclic group of prime order q with some generator g ∈ G, and
let h ∈ F

∗
q of prime order p with p|(q − 1). Given (y, g, h) ∈ G \ {1G} ×

G × F
∗
q , the DDLP asks to find some x ∈ F

×
p such that y = ghx

.
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Prover P Verifier V
x ∈ Fq y = f(x)

mseed[0]
$←− {0, 1}λ

(mseed[e])e∈[1,M ] ← TreePRG(mseed[0])
For each e ∈ [1, M ]:

(seed
[e]
i , ρ

[e]
i )i∈[1,N ] ← TreePRG(mseed[e])

For each i ∈ [1, N ]:

(�x[e]�i, �r
[e]�i, 〈s[e]〉i) ← PRG(seed

[e]
i ) � �x[e]�i, �r

[e]�i ∈ Fq, 〈s[e]〉i ∈ F
×
q

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

Δx[e] = x − ∑
i�x�

[e]
i

r[e] =
∑

i�r�
[e]
i

Δs[e] = r[e]/
∏

i〈s〉[e]i

s[e] = Δs[e]
∏

i〈s〉[e]i

he = H1(Δs[e], com
[e]
1 , . . . , com

[e]
N )

h = H2(h1, . . . , hM )
h−−−−−−−−−−−−−−−−−−→

J
$←− {J ⊂ [1, M ] ; |J | = τ}(�)

J←−−−−−−−−−−−−−−−−−−

For each e ∈ J :

The parties computes Πf (�x[e]�, Δx[e])

= �y[e]�

h′
e = H3(Δx[e], �y[e]�, α[e]) � α[e] is the broadcasted value in

Πconv called in Πf

h′ = H4((h
′
e)e∈J)

h′, (mseed[e])e∈[1,M]\J−−−−−−−−−−−−−−−−−−→
L = {	e}e∈J

$←− [1, n]τ

L←−−−−−−−−−−−−−−−−−−⎛
⎜⎝

(seed
[e]
i , ρ

[e]
i )i�=�e

Δx[e], Δs[e], α[e], com
[e]
�e

⎞
⎟⎠

e∈J−−−−−−−−−−−−−−−−−−→
For each e �∈ J :

Compute he using mseed[e]

For each e ∈ J :
For all i �= 	e

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

Rerun the party i

as the prover to get �y[e]�i

�y[e]��e = y − ∑
i�=�e

�y[e]�i

he = H1(Δs[e]

com
[e]
1 , . . . , com

[e]
N )

h′
e = H3(Δx[e], �y[e]�, α[e])

Check h = H2(h1, . . . , hM )
Check h′ = H4((h

′
e)e∈J)

Return 1

Protocol 2: Zero knowledge protocol for proving the knowledge of a pre-image
of a function f .

We first propose a direct application of our sharing conversion technique. How-
ever, even if it improves the state-of-the-art in terms of communication com-
plexity (compared to schemes with the same assumptions), we present this
scheme primarily for pedagogical purposes. Indeed, we then build another zero-
knowledge argument of knowledge with a forward-backward technique that
achieves more efficient performances.
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First Construction. Consider the function f : F×
p → G, x �→ f(x) = ghx

realizing
the “double discrete exponentiation”. We present the MPC protocol ΠDDLP to
securely compute a multiplicative sharing of f(x) ∈ G, given an additive secret
sharing of x ∈ F

×
p .

Input: y �= 1G in a cyclic group G of prime order q, h ∈ F
∗
q of prime order p with

p|(q − 1). An additive sharing �x� of x ∈ F
×
p such that y = ghx

.

Output: 〈ghx〉
1. Parties locally compute a multiplicative sharing 〈hx〉 via hx =

∏N
j=1 h�x�j mod q.

2. Parties convert it into an additive sharing �hx� over Fq using Πconv (protocol 1).

3. Parties locally compute 〈ghx〉 via ghx

=
∏N

j=1 g�hx�j mod q.

Protocol 3: MPC protocol ΠDDLP

The correctness of ΠDDLP comes from the fact that hx = h
∑N

j=1�x�j mod p =∏N
j=1 h�x�j since h has order p. The same reasoning holds for Step 3 because g

has order q. Plugging ΠDDLP into the red part of protocol 2, with α[e] = h[e]/s[e],
we readily get a zero-knowledge argument of knowledge of a solution to the
given DDLP instance. Note that we should also slightly adapt protocol 2 since
x ∈ Fp (with p ≤ q), and y[e] := ghx [e]

is shared multiplicatively, but this is
straightforward.
The next theorems state the achieved security guarantees of the previous scheme.
Proofs can be found in Appendix A.

Theorem 1 (perfect completeness). A prover P who knows a solution to a
DDLP instance and who follows the steps of protocol 3 convinces the verifier V
with probability 1.

Theorem 2 (special soundness). Suppose that there is an efficient prover P̃
that, on input (g, h, y), convinces the honest verifier V on input (g, h, y) to accept
with probability ε̃ := Pr[View(P̃(g, h, y),V(g, h, y)) = 1] > ε for a soundness
error ε equal to

max
M−τ≤k≤M

{ (
k

M−τ

)
(

M
M−τ

)
Nk−M+τ

}
.

Then, there exists an efficient probabilistic extraction algorithm E that, given
rewindable black-box access to P̃, produces either a witness x such that ghx

= y,
or a commitment collision, by making an average number of calls to P̃ which is
upper bounded by

4
ε̃ − ε

(
1 + ε̃

8M

ε̃ − ε

)
.

Theorem 3 (honest verifier zero knowledge). Let the PRG used in pro-
tocol 3 be (t, εPRG)-secure and the commitment scheme Com be (t, εCom)-hiding.
There exists an efficient simulator S which, given random challenges J and L
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outputs a transcript which is (t, τεPRG + τεCom)-indistinguishable from a real
transcript of protocol 3.

To estimate the communication complexity, we remark that for each iteration of
the protocol, three values have to be communicated: the auxiliary value Δx ∈ Fp

to fix the secret, and (Δs, α) ∈ F
2
q from the sharing conversion protocol 1 (there

is a sole conversion). This leads to a total communication cost of at most:

4λ + λτ log2
M

τ
+ τ [2 log2(q) + log2 p + λ log2 N + 2λ] bits.

In [BTV20], the authors considered the case of a group G of prime order q =
(4p+18)p+1 where p is the Sophie Germain prime p = 21535+554415 that divides
q − 1. Their arguments involve 2�log2(2(�log2(�)� + 1)� + 8 elements in G and 5
elements in Fq. Taking G as the subgroup of order q in F

∗
� for � = 1572q +1, one

obtains an argument of size 10.2 KB for [BTV20] and of size 24.6 KB for [Sta96]
(for a soundness error of 2−128). Our arguments are always shorter than those
from [Sta96] and provide better security guarantees than [BTV20] (as mentioned
in the introduction). Contrary to [BTV20], we could compress our argument size
and construct parameter sets with argument size below 10 KB (but at the cost
of an increase in computational complexity for the prover and the verifier).

Second Construction. Actually, we could greatly improve the performance of our
zero-knowledge argument of knowledge by considering another approach. This
is based on an idea of Joux [Jou23], a forward-backward technique. Again, we
start by sharing x additively. Then the prover P commits to the values

yi :=

⎛
⎜⎝

((
gh�x�1

)h�x�2
). .

.
⎞
⎟⎠

h�x�i

mod q for i ∈ [1, N ].

The correctness of this approach relies on the fact that yN = y mod q. The
verifier V sends a challenge i∗ $←− [1, N ]. The prover P answers by sending the
seeds {seedi}i�=i∗ (i.e. opens all the shares of x except the i∗-th) and the value
Com(yi∗) to V. This last can check all the other committed values by a forward-
backward technique: they iteratively compute yi as

– yh�x�i

i−1 mod q if 2 ≤ i ≤ i∗ − 1;
– yh−�x�i+1

i+1 mod q if i∗ + 1 ≤ i ≤ N − 1;

with y1 = gh�x�1 mod q and yN = y mod q. This leads to a (�N/2� − 1)-rounds
MPC protocol, where a party Pi uses the output of Pi−1 or Pi+1 to compute
their own output (for 1 < i < N). The security of this second construction is
analyzed in the full version of the paper.
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Performances. Since no more cut-and-choose has to be produced, the argument
size is shortened compared to the sharing conversion approach (and only one
element field has to be communicated). This leads to the following performances,
where the communication complexity of the argument proof is reduced by 77%
compared to [Sta96], and beats the bulletproof approach of [BTV20]. Indeed,
protocol 3 achieves 17.2 KB for a 2048-bit prime with N = 28,M = 1744, τ = 17,
whereas this protocol achieves 6.6 KB for a 3072-bit prime for the same number
of parties.

5 Proving Knowledge of a IPKP Solution

We denote Sn the symmetric group of degree n. For a permutation π ∈ Sn and
a vector v ∈ F

n
q , π(v) is the action of the permutation on the coordinates of v.

Permuted Kernel Problem (PKP/IPKP).

Let (q,m, n) be positive integers, H ∈ F
m×n
q a random matrix, and a

vector v ∈ F
n
q . The PKP is to find a permutation π ∈ Sn, such that

Hπ(v) = 0. The inhomogeneous version of the problem (IPKP) is, given a
target vector y ∈ F

m
q , to find a permutation π ∈ Sn, such that Hπ(v) = y.

We want to prove the knowledge of a solution to a IPKP instance, i.e., some
x ∈ F

n
q such that Hx = y and π(v) = x. For this purpose, we adapt the protocol

2 as follows:

– the input x ∈ F
n
q is a vector, so we should consider one conversion by coordi-

nate;
– the sharing of x is over the integers so �x[e]�j ∈ [0, A − 1]n for some A > q.

Thus, we should add a rejection rule as explained in Sect. 2;
– V sends an additional challenge g

$←− F
×
q′ at the same time as the challenge J ,

where q′ is a prime greater than q whose choice is explained afterward.

Proving the Knowledge of a Permutation. Consider the polynomial fx,v(X) =∑n
i=1 Xxi − ∑n

i=1 Xvi of degree at most q − 1 (xi, vi are the components of the
vectors x, v), and some uniformly random element g ∈ Fq′ . If x = π(v) for some
π ∈ Sn, then fx,v is identically zero. If there is no permutation π ∈ Sn such that
π(v) = x, then via the Schwartz-Zippel Lemma [Sch80,Zip79], the probability
that fx,v(g) = 0 mod q′ is bounded by (q − 1)/q′. Indeed, the probability that a
random polynomial in Fq′ [X] of degree at most q − 1 be vanished by a random
element in Fq′ is at most (q − 1)/q′.

When computing fx,v(g) over Fq′ in a distributed way, the challenge g may
not satisfy gq = 1 mod q′ and then the modular sharing would lead to a wrong
computation. This is the motivation for using a sharing over the integers for x.
However, for each coordinate of the vector x, the verifier knows that �xi�j ∈
[0, A − 1] for each j ∈ [1, N ] (this is verified for open parties) and checks that
−A + q ≤ xi − �xi�j∗ ≤ 0 (otherwise they aborts). This implies that they knows
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that −A+q ≤ xi ≤ A−1. In particular, the degree of the polynomial is bounded
by A − 1, whence the slack. Indeed, the degree should be bounded by q − 1, but
a malicious prover may choose some x whose coordinates are upper bounded
by A − 1. But this is not a problem as long as the modulus is large enough
compared to A−1 (for the Schwartz-Zippel Lemma). If a cheating prover shares
some coordinate q ≤ xi ≤ A− 1, then x can not the image of v under the action
of some permutation, and so the probability that fx,v(g) = 0 is bounded by
(A − 1)/q′.

MPC Protocol. We describe the MPC protocol ΠIPKP to plug in the red part of
protocol 2. As input, x is shared among the parties via a secret sharing over the
integers, i.e., �x�j

$←− [0, A − 1]n for j ∈ [1, N ]. The rejection rate of the sharing
is 1 − (

1 − q−1
A

)n
(see Sect. 2). Parties also get some g ∈ F

×
q′ with q′ a prime

number greater than β(A − 1). ΠIPKP allows parties to securely compute an
additive secret sharing of (Hx, fx,v(g)).

Input: x ∈ F
n
q shared over the integers as x =

∑N
j=1�x�j such that Hx = 0 mod q,

and π(x) = v for some π ∈ Sn.

g
$←− F

×
q′ with q′ the next prime after β(A − 1).

Output: �fx,v(g)� and �Hx� secret sharing modulo q′.
1. From the sharing over the integers of each xi, parties locally compute 〈gxi〉, a

multiplicative sharing of gxi =
∏N

j=1 g�xi�j mod q′, for each i ∈ [1, n].

2. Parties convert it into an additive sharing �gxi� using Πconv 1, for each i ∈ [1, n].
3. Parties locally compute their share of �fx,v(g)� =

∑n
i=1�g

xi� − ∑n
i=1 gvi mod q′.

4. Parties locally compute their share of �Hx� = H�x� mod q′.

Protocol 4: MPC protocol ΠIPKP to prove the knowledge to a IPKP solution

Notice that the correctness of gxi = g
∑N

j=1�xi� mod q′ follows from the sharing
on the integers. For each coordinate, there is one conversion (so two values over
Fq′) and one auxiliary value for the secret (over [0, A − 1]). Hence, the obtained
argument size is

4λ + λτ log2
M

τ
+ τ [n(2 log2 q′ + log2(A − 1)) + λ log2 N + 2λ] bits,

where τ is the number of parallel repetitions and M the number of parallel
phases in the cut-and-choose.

Security Proofs. Because of the rejection rate, the completeness is no longer
perfect. Indeed, a prover P who knows a solution to a IPKP instance and who
follows the steps of the protocol 2 adapted to the IPKP convinces the verifier
V with probability

(
1 − q−1

A

)τn
. The proofs of the soundness and the zero-

knowledge property can be found in the full version.
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Performances. The security of the PKP/IPKP has been well-studied for many
years (see Sect. 1). We consider the parameter sets proposed in [BFK+19] to
achieve 128 bits of security, i.e. n = 61,m = 28, q = 997. The choice of the
remaining parameters τ and M are chosen as a trade-off between argument size
and signing speed. We fix β = 28, i.e., q′ is the next prime after 28(A−1). Hence,
the rate of false-positive when checking the existence of a permutation is smaller
than 1/28. With A = 213, N = 28,M = 1289, τ = 19, we get an argument of size
16.8 KB.

6 Proving Knowledge of a Fewnomial Pre-image

In this section, we propose a new (candidate) post-quantum one-way function
and a digital signature scheme constructed as an argument of knowledge of a
pre-image of the public key using the MPCitH paradigm. Our goal is to design
a simple and somewhat minimalistic scheme.

We consider a prime number p and the simplest one-way polynomials defined
over the finite field Fp. Those polynomials are called fewnomials and are simply
polynomials with a relatively low number of monomials compared to their degree.
If one considers a fewnomial with t ≥ 2 monomials of large degrees over Fp, the
best known classical algorithm has arithmetic complexity O(p(t−1)/t) [BCR13].
Combining this algorithm with Grover’s algorithm [Gro96], leads to the best-
known quantum algorithm with complexity O(p(t−1)/2t).

Fewnomial Inversion Problem (FIP).

Let q be a Sophie Germain prime number where p = 2q+1 is also a prime
number. Let t ≥ 2 be an integer and f : Fp → Fp be a fewnomial with t
monomials defined as f(X) =

∑
i∈S Xi where S is a set of t integers in

[�q/2�, q − 1]. The Fewnomial Inversion Problem is given y = f(x) ∈ Fp

to find x′ ∈ Fp such that y = f(x′).

We construct a digital signature scheme based on the hardness of the FIP.
Note that we consider the case of unitary monomials but adding non-zero (pub-
lic) coefficients does not change the following analysis and performances. We
discuss later the choice of t and p. It is worth mentioning that if one uses instead
a monomial Xn mod p, it would be easy to invert except if we replace the prime
p by a modulus with unknown factorization, and this would be essentially an
RSA instance with a larger modulus (and we can use the construction outlined
in Sect. 3)

MPC Protocol. The prover/signer shares x multiplicative (to adapt in proto-
col 2). Using the MPC protocol ΠFIP to plug in protocol 2, parties compute an
additive secret sharing of f(x).

Proofs of security of the zero-knowledge protocol 2 adapted with the MPC
protocol 5 are similar to those in appendix A and can be found in the full version.
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Input: x ∈ F
×
p shared multiplicative, i.e. x =

∏N
j=1〈x〉j mod p.

A fewnomial f : X → ∑
i∈S Xi, with a finite subset S ⊂ N

t.
Output: �f(x)�.

1. Parties locally compute 〈xi〉 via xi =
∏N

j=1〈x〉i
j mod p for i ∈ S×.

2. For each i ∈ S×, parties convert 〈xi〉 into an additive sharing �xi� using Πconv 1.
3. Parties locally compute �f(x)� =

∑
i∈S�xi�.

Protocol 5: MPC protocol ΠFIP

Fiat-Shamir Heuristic. We apply the Fiat-Shamir transform [FS87] to get a
non-interactive protocol, and so a signature scheme. Since our protocols have 5
rounds, we have to take into consideration the attack of [KZ20] for the security
of the signature. The forgery cost of the signature scheme is then given by

min
M−τ≤k≤M

{(
M

M−τ

)
(

k
M−τ

) + Nk−M+τ

}
.

Signature Scheme. To build a signature, we choose x ∈ F
×
p as the private key

and y = f(x) mod p as the public key. To achieve a forgery cost of 1/ε, we could
increase τ , but this would not lead to an efficient scheme. Instead, we transform
our 5-round protocol into a 3-round before applying the Fiat-Shamir transform,
hence [KZ20] attack does not apply anymore. The 5-to-3-round convert’s idea is
to emulate M MPC protocols before the first round of communication, i.e. before
getting the challenges. After values are committed, V sends both challenges
during the same round. There is an overhead in terms of signing speed, i.e., there
are M(1+log2(N)) parties to emulate instead of τ(1+log2 N), but the hypercube
optimization attenuates it. Moreover, the communication cost is slightly greater
for the 3-round version, the size of the signature scheme is then

4λ + 3λτ log2
M

τ
+ τ [(1 + 2 s) log2 p + λ log2 N + 2λ] ,

with s is the size of S×. Indeed, parties apply the conversion protocol for each
i ∈ S× and each conversion requests to communicate 2 field elements. The
resulting 3-round protocol is also an honest-verifier zero-knowledge protocol with
the same soundness. It can be checked that the round reduction described here
does not impact the proofs of theorems in Appendix A.

Performances. As said above, considering a fewnomial with t ≥ 2 monomi-
als over Fp, the best known algorithm has arithmetic complexity O(p(t−1)/t)
[BCR13]. Hence, there is a trade-off between the size of the modulus p and the
number of monomials t to consider achieving (classical) 128 bits of security. The
optimal one to minimize the proof size is a trinomial over a prime of 170 bits.
The achieved signature length is 12.2 KB for τ = 28, N = 25,M = 389, and 10.6
KB for τ = 18, N = 28,M = 1251.
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A Security Proofs

Proof (Theorem 1). For any sampling of the random coins of P and V, if the
computation described in the protocol 3 is honestly performed, all the checks of
V pass. The completeness is hence perfect. �

Proof (Theorem 2). To prove the special soundness, one has to build an efficient
knowledge extractor that returns a solution of the DDLP instance. We first show
how to extract a DDLP solution from 3 specific transcripts. Then we explain how
to get such transcripts from rewindable black-box access to P̃. First, assume
that we can get three transcripts Ti = (Com(i),Ch

(i)
1 ,Rsp

(i)
1 ,Ch

(i)
2 ,Rsp

(i)
2 ) for

i ∈ {1, 2, 3} from P̃, with Ch
(i)
1 := J (i), Ch

(i)
2 := {�

(i)
j }j∈J(i) , which satisfy the

conditions:

1. Com(1) = Com(2) = Com(3) = h,

2. there exists j0 ∈ (J (1) ∩ J (2)) \ J (3) s.t. �
(1)
j0

�= �
(2)
j0

3. T1 and T2 are success transcripts (i.e. which pass all the tests of V),

4. seed[j0] from Rsp
(3)
1 is consistent with the (x[j0], r[j0], s[j0]) from T1 and T2.

We show how to extract a solution of the DDLP instance (g, h, y) from the
three transcripts. First, we can assume that all the revealed shares are mutually
consistent between the three transcripts. Otherwise, we find a hash collision
via condition 1. Thus, we know all the shares for the iteration j0 from T1 and
T2 using condition 2. For the sake of clarity, we only consider the variables
of the iteration j0. Thus, this notation is omitted in the following. Consider
x′ :=

∑N
j=1�x�j mod p as a natural candidate solution for x. Via the multi-party

computation, we know

– hx′
= h

∑N
j=1�x�j =

∏N
j=1 h�x�j =

∏N
j=1〈hx〉j mod q

– the broadcasting of 〈α〉 = 〈hx〉
〈s〉 i.e. α = hx

s mod q

– an additive sharing of hx via α�r� = hx

s �r� = �hx�, since from the checked
equations at the end of T3 we get that r = s.

– y =
∏N

j=1〈y〉j mod q with 〈y〉j = g�hx�j mod q.

Hence, ghx′
= g

∏N
j=1〈hx〉j = g

∑N
j=1�hx�j =

∏N
j=1 g�hx�j =

∏N
j=1〈y〉j = y mod q.

Therefore, x′ is a solution of the considered DDLP. Now, the extractor for the
three transcripts can be the one described in appendix E of [FJR23]. �

Proof (Theorem 3). We build a simulator that outputs transcripts indistinguish-
able from real transcripts without knowing the secret. It has oracle access to
some probabilistic polynomial time Ṽ.

1. Sample J
$←− {J ⊂ [1,M ]; |J | = τ} and L = {�e}e∈J

$←− [1, N ]τ

2. Sample mseed[0]
$←− {0, 1}λ

3. (mseed[e])e∈[1,M ] ← TreePRG(mseed[0])
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4. For e ∈ [1,M ]\J , follow honestly the protocol and deduce he

5. For e ∈ J ,
– Compute (seed[e]1 , ρ

[e]
1 ), . . . , (seed[e]N , ρ

[e]
N ) with TreePRG(mseed[e])

– For each party j ∈ [1, N ]\{�e} : (�x[e]�j , �r
[e]�j , 〈s[e]〉j) ←

PRG(seed[e]j ), com[e]
j = Com(seed[e]j ; ρ[e]j )

– Sample Δx[e] $←− Fp, �r
[e]��e

$←− Fq, 〈s[e]〉�e
$←− F

×
q

– Δs[e] =
∑N

j=1�r
[e]�j/

∏
j〈s〉[e]j mod q

– α[e] = h
∑N

j=1�x[e]�j+Δx[e]
/(Δs[e]

∏N
j=1〈s[e]〉j) mod q

– 〈ghx[e] 〉j = gα[e]�r[e]�j mod q

– Adapt the output of the party �e: 〈ghx[e] 〉�e = y/
∏

j �=�e
〈ghx[e] 〉j mod q

– Sample a random commitment com
[e]
�e

.

– Compute he = H1(Δs[e], com
[e]
1 , . . . , com

[e]
n ), h′

e = H3(Δx[e], 〈ghx[e] 〉, α[e])
6. Compute h = H2(h1, . . . , hM ), h′ = H4((h′

e)e∈J )
7. Outputs the transcript

(
h, h′, (mseed[e])e∈[1,M ]\J , ((seed[e]i , ρ

[e]
i )i�=�e , com

[e]
�e

,Δx[e],Δs[e], α[e])e∈J

)
.

The distribution of the output transcript is identical to a real one, except for
the commitment of the party �e in each execution e ∈ J . Distinguishing them
means breaking the commitment hiding property or the PRG security. �
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Abstract. Mobile contact discovery is a convenience feature of messen-
gers such as WhatsApp or Telegram that helps users to identify which of
their existing contacts are registered with the service. Unfortunately, the
contact discovery implementation of many popular messengers massively
violates the users’ privacy as demonstrated by Hagen et al. (NDSS ’21,
ACM TOPS ’23). Unbalanced private set intersection (PSI) protocols
are a promising cryptographic solution to realize mobile private contact
discovery, however, state-of-the-art protocols do not scale to real-world
database sizes with billions of registered users in terms of communication
and/or computation overhead.

In our work, we make significant steps towards truly practical
large-scale mobile private contact discovery. For this, we combine
and substantially optimize the unbalanced PSI protocol of Kales et
al. (USENIX Security ’19) and the private information retrieval (PIR)
protocol of Kogan and Corrigan-Gibbs (USENIX Security ’21). Our
resulting protocol has a total communication overhead that is sublin-
ear in the size of the server’s user database and also has sublinear online
runtimes. We optimize our protocol by introducing database partition-
ing and efficient scheduling of user queries. To handle realistic change
rates of databases and contact lists, we propose and evaluate different
possibilities for efficient updates. We implement our protocol on smart-
phones and measure online runtimes of less than 2 s to query up to 1 024
contacts from a database with more than two billion entries. Further-
more, we achieve a reduction in setup communication up to factor 32×
compared to state-of-the-art mobile private contact discovery protocols.

Keywords: mobile contact discovery · PSI · PIR

1 Introduction

The number of users of mobile messengers such as WhatsApp, Telegram, and Sig-
nal has been rising for over a decade. In 2020, WhatsApp reached two billion
monthly active users [25]. Messengers connect these users by presenting them a
selection of their existing address book contacts who are registered with the same
service. This convenient feature is called mobile contact discovery and requires
matching users’ contact lists with the service’s database. The address book of
users is also checked regularly to ensure an up-to-date list of possible contacts.
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However, a recent survey [33] showed that five out of eleven studied messen-
gers, including WhatsApp and Telegram, implement contact discovery by obtain-
ing their users’ contact lists in plaintext. Thus, service providers not only learn
about mutual contacts, but also information of unregistered contacts. Based on
this, the entire social graph of users, possibly containing sensitive information,
can be inferred. Even if a user has never signed up with a messenger or social
media platform, contact discovery services might have already stored their per-
sonal data. Meta, WhatsApp’s and Facebook’s parent company, which acquired
WhatsApp in 2014 for 16 billion USD [58], has acknowledged this with a tool that
lets non-users check, delete, and block their data from several of their services’
contact discovery databases, however, excluding WhatsApp [29]. It is currently
unclear how these block lists are implemented and which privacy implications
they entail. Due to the availability of information, access to it might be enforced
legally (by governments) or illegally (by hackers).

A naive approach used by some messengers to protect privacy is to apply
a cryptographic hash function before uploading phone numbers. However, due
to the clearly defined structure and low entropy of phone numbers, the reversal
of a single hash is possible in less than 0.1 ms on commodity hardware [33].
The privacy-preserving messenger Signal thus uses hardware enclaves, specifi-
cally Intel SGX, to securely realize mobile contact discovery. However, the secu-
rity of enclaves is not trivial as even code without vulnerabilities can be subject
to various types of attacks [9,21,64,72].

The cryptographic approach for mobile private contact discovery is to apply
protocols for unbalanced private set intersection (PSI). In our setting, the
server’s user database DB and the client’s phone contacts X each represent
one set (|X| � |DB|) while only the client learns about the mutual elements.

Recent works [15,28,57,65] show promising results for fast and communi-
cation-efficient PSI in different use cases, but are still impractical for mobile
private contact discovery at large scale due to the required online computa-
tion performed by the server. With over two billion WhatsApp users [25], the
unbalanced PSI protocol by Cong et al. [15] requires less than 80 MiB of total
communication, but more than 35 s online time with multi-threading (T=24
threads) to query |X| = 210 client contacts. Hence, the protocol by Kales et
al. [43] based on oblivious pseudorandom functions (OPRFs) is still state of the
art for private contact discovery due to its fast online runtimes (linear in |X| and
less than 3 s for |DB| = 228, |X| = 210 [43]) and optimization for mobile devices.
However, this protocol has setup communication and client storage costs linear
in the database size – 8 GiB for |DB| = 231 – which also makes it impractical for
large-scale messengers. To make such protocols viable, communication sublinear
in the database size is necessary. The authors of [23,43] thus recommend using
a protocol for multi-server private information retrieval (PIR) in PSI to achieve
sublinear communication.

Our Contributions. In this work, we make big steps towards truly practical
mobile private contact discovery by reducing the setup communication to be
sublinear in the size of the server’s database. The authors of [23] already achieved
this, however, their protocol requires online computation linear in the database
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size. We achieve both, total communication and online computation sublinear in
the database size. For this, we survey the current literature and select the offline
online PIR (OO-PIR) protocol by Kogan and Corrigan-Gibbs [46] as a building
block for its sublinear complexities. By combining the state-of-the-art protocol
for unbalanced PSI on mobile devices [43] with OO-PIR [46], we obtain an
asymptotically and concretely efficient mobile private contact discovery protocol.

We further extend our protocol to handle large sets, i.e., databases with up
to |DB| = 231 items, to meet the requirements of real-world messengers. To
our knowledge, we are the first to consider a database with more than a billion
records in unbalanced PSI (8× more than related works [23,43,45,66,70]). For
this setting, we reduce the setup communication by up to factor 32× over the
state-of-the-art protocol of [43]. To prevent the inefficient processing of a large
database as a whole, we let multiple instances of the PIR protocol operate on
smaller database partitions. Queries to these partitions should not reveal to
the server which database partitions are of interest to the client. Therefore, we
schedule these queries based on a balls-to-bin analysis similar to [23,60,62]. This
reduces communication by a factor up to 24× compared to the naive approach
of sending the maximum possible number of queries to all partitions to hide the
information which partitions are of interest.

We also study ways to efficiently handle updates to client contact lists and
server databases. For this, we evaluate solutions for dynamic databases proposed
by recent literature [23,43,46,51] and improve on their ideas for our protocol
design. With less than 3 MiB/day for processing a realistic number of 221 daily
updates [32,33], our resulting protocol has the lowest communication cost.

Finally, we implement our protocol on smartphones to demonstrate feasibility
and obtain concrete runtime measurements in realistic WiFi and LTE network
settings. Over WiFi, we achieve an online runtime of less than 2 s for |DB| =
231 database records and |X| = 210 phone contacts. Further highlights of our
implementation include containerized builds for improved reproducibility, multi-
threading for additional runtime improvements, and significant optimizations of
the original PIR implementation of [46]. Our implementation “DISCO” (short
for “DIScover COntacts”) is available at https://encrypto.de/code/disco.

To summarize, our main contributions are as follows:

– New mobile private contact discovery protocol based on unbalanced PSI [43]
and private information retrieval (PIR) [46] with sublinear total communica-
tion and online runtime.

– Reproducible, multi-threading-capable implementation on mobile clients.
– Large-scale evaluation for databases with more than two billion records and

online runtime of less than 2 seconds over WiFi.
– Efficient update strategy with less than 3 MiB / day of additional communi-

cation costs.

2 Preliminaries

In this section, we describe the basic concepts used in our work, specifically
protocols for oblivious pseudorandom function (OPRF), private set intersection

https://encrypto.de/code/disco
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(PSI), and private information retrieval (PIR). We also explain Cuckoo filters
(CFs), a probabilistic data structure used in our protocol.

Oblivious Pseudorandom Function. An oblivious pseudorandom function
(OPRF) is a secure two-party computation (STPC) protocol where the computed
public function f is a keyed pseudorandom function (PRF). Party P2 inputs
key k and P1 inputs a value x for which P1 obtains the PRF output fk(x).
Both parties stay oblivious about the other party’s input and only P1 obtains
the OPRF output. OPRF constructions can be used to realize PSI protocols, as
shown in a variety of works, including [27,34,43,45,61]. We focus on the Naor-
Reingold PRF (NR-PRF) [56] and PRFs that evaluate block ciphers such as AES
and the STPC-friendly cipher LowMC [1] using Yao’s garbled circuit (GC) [73],
a generic protocol for STPC. These OPRFs offer malicious client security [45,
61] and their implementations were already optimized for mobile devices [43].
While recent works [12,65,67] improve over our selected OPRFs, we leave their
evaluation as future work and focus on reducing the setup communication and
client storage of the state-of-the-art protocol for mobile private contact discovery.

Cuckoo Filter. A Cuckoo filter (CF) is a probabilistic data structure for fast
membership testing. A CF stores tags (i.e., short representations of items),
where each tag is located in one of h possible buckets and each bucket con-
tains up to b tags. The tag of x with length v is computed using hash func-
tion Ht: tx = Ht(x) ∈ {0, 1}v and its possible positions are determined by h
hash functions [26]. CFs are similar to Bloom filters (BFs) [7], but have better
performance, reduced storage, and allow item deletion. Hash collisions for tags
can result in false positives. We follow the parameter recommendations in [43]
with bucket size b = 3 and tag size v = 32 for a false positive probability (FPP)
of ε ≤ 2b/2v ≈ 2−29.

Private Set Intersection. In protocols for private set intersection (PSI), two
parties P1 and P2 hold sets X1 and X2, respectively. They want to know their
mutual items (i.e., X1 ∩ X2) without revealing anything else about their sets.
State-of-the-art PSI protocols for large sets build on the oblivious key-value
store (OKVS) data structure [28,57,65]. However, they require online communi-
cation linear in the size of the larger set. Another line of work on unbalanced PSI
based on fully homomorphic encryption (FHE) [13–15] has a small communica-
tion footprint, but is not well suited for large-scale contact discovery as the server
online computation is linear in the database size for each client.

In this work, we thus focus on unbalanced OPRF-based PSI protocols [20,
34,43,45,61] for mobile private contact discovery. The high-level idea requires
server S, holding the larger set DB, to sample a secret key k and to encrypt
its input using a PRF and k to obtain PRFk(DB[i]) for i ∈ {1, . . . , |DB|}. This
encrypted set is sent to the client C who stores it. Both parties then run the
corresponding OPRF protocol on C’s input X[i] for i ∈ {1, . . . , |X|} and S’s
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key k such that C obtains the encrypted values PRFk(X[i]) and locally checks
which of them are contained in the server’s encrypted set. The performance of
such PSI protocols is great in the online phase (independent of |DB|), but suffers
from high setup communication and client storage requirements (linear in |DB|),
which prohibits applicability for mobile private contact discovery at large scale.
In this work, we make significant steps towards practicality by replacing the
download in the setup phase with a protocol for PIR for reduced communication
and storage requirements.

Private Information Retrieval. Protocols for PIR enable a client C to pri-
vately obtain a record from a public database with NPIR records while the server
stays oblivious about the requested item. The server’s computational cost must
be inherently linear in the database size, as the server would otherwise learn
which elements the client is not interested in [6]. PIR with preprocessing is thus
critical to achieve online complexities sublinear in the database size NPIR by
shifting the linear costs to an offline phase. We comprehensively surveyed single-
and multi-server PIR protocols with preprocessing for our use case (cf. Sect. A).
The state-of-the-art single-server PIR protocols [22,37,53,55] are based on FHE:
The client uses FHE to hide their query from the server while also enabling the
server to answer their query under encryption. In a large-scale deployment sce-
nario, the client-independent preprocessing in [22,37] offers a significant advan-
tage as server costs otherwise depend on the high number of clients. While these
protocols are most promising in the single-server setting, the parties still perform
online computation linear in NPIR. Also, online communication costs with query
batching are impractically high at large scale. Moreover, FHE-based protocols
have yet to be implemented and evaluated for this use case on mobile devices.

In the setting with multiple non-colluding servers (see Sect. 4.2 for a detailed
discussion), different strategies have been proposed [10,18,31,46,51,68]. We
select the two-server OO-PIR protocol in [46] for its sublinear online complex-
ities (communication in O(log NPIR) and computation in O(

√
NPIR)), existing

mobile implementation, and database update strategies [46,51]. We refer to the
required servers as offline server Soff and online server Son, and give an informal
protocol description of the protocol in [46]: In the offline phase, Soff randomly
samples NSets sets, each containing

√
NPIR database indices, calculates the par-

ity of each set, and sends sets and parities as hints to client C. The parame-
ter NSets = λ

√
NPIR log 2 is chosen to ensure that any database index appears

in at least one set with overwhelming probability [46] based on the statistical
security parameter λ. In the online phase, the client finds a set that contains
the index idx they want to query, and they remove it from the set in a pro-
cess called puncturing, i.e., Set′i = Seti \ {idx}. The client sends the punctured
set Set′i to the online server Son, which returns the parity of the received set.
The requested database record DB[idx] is reconstructed from the punctured
and the unpunctured sets’ parities, i.e., yidx = pSeti ⊕ pSet′i . Reusing the set Seti
leaks information about the queries to the server. Thus, the client generates a
new set containing the requested index to ensure that the set remains random
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while at least one set still contains index idx. The client obtains the parity for
the new set by puncturing it, requesting the punctured set’s parity from the
offline server, and adding the database record they just retrieved for idx to the
parity. The sublinear communication cost of [46] is achieved by transmitting the
sets in compressed form as set keys, which are puncturable PRF keys.

3 Related Work

We focus our discussion of related works on unbalanced PSI for mobile private
contact discovery. Nevertheless, we acknowledge the existence of further unbal-
anced PSI protocols based on FHE [13–15], which are not suitable for large-scale
contact discovery because the server performs computation linear in the large
database for each client in the online phase (cf. Sect. 2).

Our protocol is based on the mobile private contact discovery protocols in [23,
43,45]. In [45], the authors improve PSI for the unbalanced setting and mobile
clients by shifting the required setup computation and communication costs that
depend linearly on the database size |DB| to a novel precomputation phase. They
further reduce the communication and storage costs by storing the larger set in
a Bloom filter, a probabilistic data structure similar to Cuckoo filters (CFs).
The authors of the state-of-the-art unbalanced PSI protocol for mobile private
contact discovery [43] build on the promising results of [45] and optimize the
performance as well as communication cost of two OPRF-based PSI protocols
with malicious client security. By integrating and optimizing a two-server PIR
protocol [46] in the protocol design of [43], we achieve a reduction in setup
communication by 32× at only marginally higher online costs (cf. Sect. 5).

A combination of two-server PIR and PSI for private contact discovery was
first proposed in [23] with PIR-PSI. Their protocol also achieves sublinear com-
munication complexity in the database size. However, due to a lack of PIR-
preprocessing, the servers in PIR-PSI perform online computation linear in the
database size for each query, which prohibits large-scale deployments. Further-
more, the constructions and base protocols differ: The authors of [23] improve the
performance of the balanced PSI protocol of [47] by running PIR based on dis-
tributed point functions (DPFs) [10,11] to reduce the input set sizes. Instead,
we use OO-PIR by [46] to reduce the communication of unbalanced OPRF-
based PSI [43] for mobile devices. PIR-PSI, similar to our work, models query
scheduling as a ball-to-bins problem (cf. Sect. 4.3). In contrast to our proto-
col, PIR-PSI requires inter-server online communication (32 kiB for |X| = 210

for each client), which incurs 8× higher financial costs compared to computa-
tion [41].

In addition to mobile contact discovery, contact tracing and compromised
credential checking (C3) are two other use cases for our protocol. Epione [70]
combines public key (PK)-based PSI with keyword-PIR for efficient privacy-
preserving contact tracing. Epione also achieves sublinear online communication
but requires online computation linear in |DB| and has a high online inter-server
communication cost. Protocols for C3 are deployed in web browsers to check
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if one credential is in a database of leaked credentials (|DB| ≈ 12.5 billion [31,
46,71]). For this, PK-based PSI protocols are used in practice; however, to reduce
communication overhead, a hash prefix is leaked to the server to indicate which
partition of the encrypted database must be downloaded [49,69]. PIR protocols
such as [31,46], as well as our work, could be used to mitigate attacks that
leverage this leakage.

4 Our Protocol

Our protocol (Fig. 1) provides computational security and assumes a semi-honest
setting with two non-colluding servers, Soff and Son (we discuss malicious client
security in Sect. 4.2). Client C inputs their set of phone contacts X of size |X|,
and the messaging service inputs their user database DB of size |DB|, which is
encrypted and encoded in a Cuckoo filter CF. We divide the database of the PIR
protocol into NPart partitions, where CFp ∈ {CF1, . . . ,CFNP art

}, to allow for
large databases. This requires a scheduling of queries to reduce communication
while preventing leakage (cf. Sect. 4.1).

Our protocol is divided into base, setup, and online phase, as introduced
by [45]. The client-input-independent parts of the protocol, i.e., base and setup
phase, are considered to be offline. The base phase of our protocol is input-
independent and contains the OPRF precomputation between C and Soff as
well as the server’s generation of the secret key k. This phase is identical to the
base phase in [43]; it has a communication complexity of O(|X|pre) and allows
the client to check up to |X|pre contacts in the online phase. We split the server-
input-dependent setup phase into client-independent setup and per-client setup.
The server setup is run only once and includes the encoding of the database
and CF creation by Soff. Son receives no cleartext data, only the CF containing
the encrypted and hashed values. The per-client setup has to be executed once
for each client and consists of the offline phase of our extended PIR protocol [46].

Our protocol’s online phase combines those of [43] and [46]. C and Soff run
the OPRF protocol on their respective inputs xi ∈ X and k, and C obliviously
obtains ei = PRFk(xi) for i ∈ {1, . . . , |X|}. C simulates the offline server’s data
placement in the CF for their encrypted inputs to learn which CF buckets to
retrieve via PIR. The encrypted value ei is in one of two possible CF buckets
if xi ∈ DB, and C retrieves both to locally check if ei ∈ CF, i.e., xi ∈ DB.
PIR queries to Soff and Son are generated for each index based on the stored
hints for CFPart. Sending only those actual queries reveals to the server which
partitions interest the client. We show in Sect. 4.1 how to avoid this by sending
dummy queries in a communication-efficient manner.
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Fig. 1. Protocol phases for communication-efficient OPRF-based unbalanced PSI
with two-server PIR. Offline server Soff marked with †, online server Son with �.

4.1 Database Partitioning and Querying

We assume messenger services with up to |DB| = 231 users and CFs with up
to NCF = 2�log2(|DB|/b)� = 230 buckets. To our knowledge, this work is the first to
consider a database of this size in the context of mobile private contact discovery.
Our selected PIR protocol [46] requires offline computational cost linear in the
database size and parties have to process sets with

√
NPIR items. Using the CF

as PIR database (i.e., NPIR = NCF) thus leads to poor performance and high
memory requirements. Additionally, sets of this size are not supported by the
existing OO-PIR implementation [46].

We avert these limitations by partitioning the database and running the
protocol on smaller database partitions at a time. The PIR database size now
depends on the number of partitions NPart where NPIR = NCF/NPart. A smaller
number of partitions generally requires less communication since less PIR exe-
cutions are needed, but higher computational cost due to the increased database
size NPIR. We consider this trade-off in the parameter selection for our partition-
ing. Database partitioning further allows us to distribute the workload between
multiple servers to improve the performance and scalability of our protocol.

With database partitioning, if the client would only query the desired indices,
the server would learn which partitions are of interest to the client. This
leakage could easily be prevented with dummy queries to all other partitions
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to conceal the actual queries. However, this naive approach requires in the
worst case 2|X|NPart queries – more than 73 MiB of online communication
for |DB| = 231, |X| = 210.

The literature presents various approaches for scheduling queries [3,36,42],
also called batching, to reduce communication or computational cost. In [74],
the feasibility of using batching techniques in OO-PIR protocols is studied, and
a lower bound for communication and time in the preprocessing phase of t · r =
Ω(NPIRk) is proven for batch size k, hint size r, and online time t. The authors
show that server performance improves at the cost of higher client runtime, and
communication. They conclude that the benefits of PIR protocols in the offline-
online model and batching are not compatible. Probabilistic batch codes [3]
in OO-PIR achieve this lower bound, but due to the high storage requirements
and client costs of this technique, we conclude that (probabilistic) batch codes
are not practical for our use case.

Instead of optimizing the query scheduling with batch codes, we focus on
leveraging our protocol’s underlying data structure: Cuckoo filters. Items in a CF
are distributed uniformly under the assumption of uniformly random hash func-
tions, and that the items are chosen independently from the hash functions and
from each other (note that our items are encrypted set elements) [24]. This allows
us to represent the query scheduling as a balls-to-bin problem, where we ask for
the maximum number of balls in any bin when placing n balls independently
into β bins chosen uniformly at random. We assume β = NPart bins (i.e., DB
partitions) and n = 2|X| balls (i.e., queries), and use Eq. (1) based on [62,63]
to calculate the probability p of any bin containing more than k balls after
inserting n balls into β bins.

p = 1 −
(∑k−1

i=0

(
n
i

)
·
(

1
β

)i

·
(
1 − 1

β

)n−i
)β

. (1)

We require this probability to be negligible, i.e., p < 2−40. Based on this
formula, we determine k via a Mathematica script as the maximum number of
queries made to each of NPart partitions for 2|X| actual queries, and achieve
a reduction in communication in the worst case by up to factor 24×, and only
require 3 MiB instead of 73 MiB for |DB| = 231, |X| = 210. We note that [63] pro-
vide a closed-form solution for the balls-to-bin problem (but with an unspecified
constant γ), which we leverage for our asymptotic analysis in Sect. 4.2.

4.2 Complexity and Security Analysis

We now discuss our protocol’s communication complexity and analyze its secu-
rity.

Complexity. Our protocol consists of OPRF and PIR invocations. The con-
sidered parameters are the client contact list with size |X| and at most |X|pre
precomputed entries; the server database has |DB| entries, which are processed
in our protocol in NPart database partitions of size NPIR. The asymptotic com-
munication complexity for OPRF is the same as in [43], namely O(|X|pre) in
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Table 1. Comparison of asymptotic communication complexities considering database
size |DB|, client set size |X| with at most |X|pre elements, and the number of database
partitions NPart = NCF/NPIR for partition size NPIR.

Phase [43] Ours

Base O(|X|pre) O(|X|pre)
Setup O(|DB|) O(NPart

√
NPIR)

Online O(|X|) O((|X| +
√|X|NPart log NPart) log NPIR)

the base and O(|X|) in the online phase. In our PIR protocol, each CF bucket
with b = 3 tags of size v = 32 bit is one record of length � = v · b = 96 bit.
The concrete communication cost for running PIR on NPart partitions of
size NPIR = |DB|/NPart, |X| client inputs, record length �, and a constant
factor γ is as follows:

– offline communication: NPart · λ(�
√

NPIR + 1) bits.
– online communication:

NPart ·
⎛
⎝ 2|X|

NPart
+ γ

√
2|X|
NPart

· log2 NPart

⎞
⎠

︸ ︷︷ ︸
num. queries to each partition [60,62,63]

· (2(λ + 1) log2 NPIR + 4�)︸ ︷︷ ︸
bits per PIR query [46]

bits.

Based on this, we can compare the asymptotic communication complexi-
ties of our full protocol with the state-of-the-art protocol in [43] in Table 1.
Our protocol achieves sublinear communication cost in the setup phase, improv-
ing significantly over the linear costs in [43]. The online phase of our protocol
includes the communication cost of [43] in addition to the PIR protocol being
executed for |X| client items on NPart partitions. The amortized total communi-
cation cost per client item is still significantly smaller in our protocol compared
to [43] (cf. Sect. 5.3).

Security. We now discuss the security of our protocol provided by the under-
lying OPRF and PIR building blocks. We first discuss malicious client behavior
and then assumptions required for the server side.

The OPRF protocols used in this work, NR-ECC-OPRF [27,34,43,56]
and GC-LowMC-OPRF [1,20,43,61], guarantee malicious client security when
using maliciously secure oblivious transfer (OT) [59] and OT extension [5,44]
protocols. PIR protocols generally assume a public database with possible leak-
age to the client, hence there are no concerns regarding privacy leakage caused
by malicious behavior of clients. Furthermore, our protocol’s underlying struc-
ture prevents clients (and additional servers) from obtaining cleartext database
records as they only ever receive encrypted and hashed values as part of the CF.
However, in [51], the authors describe an attack on updated databases that
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enables a malicious client to obtain deleted database records. Therefore, no for-
mal malicious client security is possible for our protocol with updates via in-place
edits (cf. Sect. 4.3). We note that clients can generally monitor the database
to learn about added and deleted items, so we consider the attack by [51] as
irrelevant in our setting and leave the task of formally establishing malicious
client security for OO-PIR without updates as future work. Malicious clients
can also easily test if the database includes a certain number by running the PSI
protocol. Due to the limited entropy of phone numbers, rate limiting of client
queries is recommended to restrict the possibility of misuse via large-scale crawl-
ing attacks [32,33,43].

A malicious server could sabotage the OPRF and PIR sub-protocols by send-
ing incorrect information or by using another input set. As only the client obtains
the intersection, this only affects correctness. However, the authors of [43] observe
that messengers will afterwards most likely receive the outcome of the inter-
section and could thus learn about non-registered users in the client’s contact
list in case they include additional entries in their database. Therefore, ser-
vice providers must be semi-honest, which is reasonable to assume as they are
bound by legal requirements and would face significant financial and reputa-
tional risk when detected cheating. As we operate in a multi-server PIR setting,
we furthermore have to assume two non-colluding servers. This is a prominent
assumption in multi-server protocols for reducing computation and communica-
tion costs. We see several successful real-world deployments of protocols utilizing
this assumption, e.g., the Internet Security Research Group (ISRG) is provid-
ing a non-colluding server for data aggregation and analysis with their “Divvi
Up” system [40] based on “Prio” [16] and “Poplar” [8]. The ISRG further runs
non-colluding servers for privacy-preserving COVID-19 analysis in North Amer-
ica [4,39]. The use of financial incentives [30] and the execution of secure crypto-
graphic protocols inside of trusted execution environments (TEEs) that provide
remote attestation (e.g., Intel SGX) could further strengthen the non-collusion
assumption between servers.

4.3 Updates

To design our protocol for real-world messaging applications, considering the
ever-changing user base and client contacts is essential. The authors of [32,33]
based on publicly available data assume daily change rates of CR ≈ 0.1% for Sig-
nal, 0.5% for Telegram, and only 0.05% for WhatsApp. We therefore assume a
slowly growing messenger user base with daily updates of at most 1%, which is
already very high given the real-world data of messengers [32,33].

Updates to the client’s phone contacts can include adding or deleting a phone
number, and updating a contact’s details. Since the client’s input is only relevant
in the online phase, the handling of updates is trivial: The client can simply run
the online phase of the contact discovery protocol for newly added or updated
phone numbers to obtain the information if these numbers are registered with a
service. Deleted phone numbers are no longer included in the client’s set.
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Database updates in our protocol could be handled by rerunning the PIR
setup and online phase. While this strategy would be simple, the costs would
significantly increase with realistic database growth rates, thus making this app-
roach impractical. We therefore propose and evaluate different update strategies
for offline-online PIR [46,51] and PSI for mobile contact discovery [23,32].

Waterfall Updates. The authors of our selected PIR protocol [46] propose
waterfall updates, an update strategy with tiered sub-databases (called buck-
ets) of increasing size. The database is initially stored in one bucket for which
the client obtains hints. Updates are inserted into the smallest bucket until
this bucket reaches its maximum capacity and overflows into the next larger
bucket. The client obtains new hints for all buckets that changed. With this
strategy, hints for smaller buckets must be computed and communicated fre-
quently, while larger buckets change less often. With frequent updates, the per-
formance decreases and the client-dependent computational and communication
costs increase significantly, which makes this strategy impractical for large-scale
messengers and is thus excluded from further evaluations.

Updates via In-place Edits. The authors of [51] propose a different update
strategy for OO-PIR [46,68] that avoids additional databases by updating the
client hints to include the updated records. Within our protocol, PIR takes
the static-sized CF as a database such that each bucket is a database record
in PIR. Updates to the CF do not increase the number of buckets NCF, only
their contents and the CF’s load factor, which indicates the occupancy level of the
filter. Thanks to our protocol’s underlying data structure, CFs, we can simplify
the approach in [51] by only considering bucket changes, i.e., in-place edits. With
this strategy, the server applies updates to the CF and sends the corresponding
bucket index idx and content change Δ to the client. The client updates all set
parities that contain idx by adding the received change, i.e., p ← p ⊕ Δ. While
this approach seems straightforward, there is one caveat with the use of CFs:
an insertion to the CF can cause a chain of reinsertions where every affected
bucket changes and is thus another in-place edit, which potentially increases
this strategy’s communication cost a lot.

To better understand the impact of reinsertions to the CF, we simulate the
growing user base of messengers by inserting a certain percentage CR of the
initial database size |DB| to the CF over multiple days. Our simulation shows
that more than 80% of CF insertions are immediately successful during the
first days. This number decreases with an increasing load factor α, and at α ≈
0.92 insertions start to fail – independent of the change rate CR. Thus, in the
following, we focus on the finer-grained change rate of 0.1% for a detailed analysis
of how many positions in the CF must be changed over time.

In Fig. 2a, we give the daily percentage of insertions that initially failed and
thus caused reinsertions. We see polynomial growth in the number of reinsertions
with increasing load factor in Fig. 2b. With a decreasing number of empty slots,
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Fig. 2. Simulation of updates to a CF for database size |DB| = 231, NCF = 230 CF
buckets, and a change rate of CR = 0.1%/day.

more reinsertions are necessary to insert an item, decreasing the filter’s perfor-
mance. Our simulation shows that most insertions require only few reinsertions to
be successful, even when the CF is almost full, however, the number of long rein-
sertion chains is significantly increasing. We calculate the communication cost
of updates based on our simulation (cf. Table 2). Transmitting the in-place edits
of a single bucket requires bucket size + index length bit, here 128 bit, with an
average of 13.52 MiB/day for |DB| = 231, CR = 0.1, and 30 d.

Updates via in-place edits allow the client to update their already stored
hints and to run the PIR protocol on the original CF. The daily download cost
of CF updates is thus the only additional cost to our PSI protocol. The server-
side computation of CF updates is client-independent and requires only XOR
operations. In comparison, the client-side hint updates require higher compu-
tational costs as all set keys must be evaluated to identify sets with updated
indices. Thus, the update procedure can either be applied at once or during the
regular online phase (which requires more client storage).

Additional Update Database. Next to updates to the PIR database, we
evaluate the strategy of incremental contact discovery [23,32], where updates
are stored in an additional smaller database on which another PSI instance is
run. The client then has to query each of their contacts on the original and the
update database. With our PSI protocol, communication and client storage of
updates require less than 3 MiB per day for |X| = 210 contacts with a change
rate of CR = 0.1% / day for |DB| = 231.

We also evaluate the cost of running a simple public key (PK)-based PSI
protocol [19,52] due to its trivial implementation and reasonable communica-
tion cost as well as computational efficiency for smaller set sizes [35]. How-
ever, this turns out to be significantly less efficient for the considered growth
rates (cf. Table 2). With less updates and smaller set sizes, PK-based PSI and
the state-of-the-art balanced PSI protocols could be more efficient though.
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Table 2. Comparison of average update communication costs per day consider-
ing |DB| = 231, |X| = 210. Best results marked in bold.

Update Strategies ∅ Comm./day [MiB]

0.1%/day 0.5%/day 1.0%/day

1 day 30 days 1 day 30 days 1 day 30 days

In-place edits (Ours, Sect. 4.3) [51] 12.24 13.52 62.05 107.77 126.23 486.37

Additional database (Ours, Sect. 4.3) [23,32] 2.90 2.90 5.63 5.63 7.65 7.65

Additional database (PK-based PSI) [19,52] 65.60 65.54 327.74 327.68 655.42 655.36

Comparison and Privacy Considerations. We compare the proposed
update methods in Table 2. Clearly, combining our PIR-based PSI protocol with
the incremental contact discovery strategy of [23,32] is the most efficient solu-
tion. We note that updates via in-place edits leak some information to the client
about the server’s change rate. Likewise, the size of additional update databases
clearly indicates this value. Also, when the client repeats the online phase of the
protocol for new contacts, this leaks information to the server about the number
of changes experienced by the client. Such information leakage can be prevented
using dummy insertions and dummy queries.

5 Evaluation

We implemented our protocol in C++ and Go (based on the implementa-
tions of [43] and [46]) and describe our evaluation for large-scale set parame-
ters next. Our implementation supports multi-threading on partition level for
clients and servers, and introduces optimizations that reduce the client setup
time by factor 2.8× over [46] (cf. Sect. 5.2). As described in Sect. 4.1, database
partitioning is implemented to circumvent hardware and computational limi-
tations of the underlying PIR protocol for large database sizes. For enhanced
reproducability, the server-side implementation is containerized. Our implemen-
tation called “DISCO” (short for “DIScover COntacts”) is available at https://
encrypto.de/code/disco.

5.1 Experimental Setup

To meet the requirements of large-scale messengers, we evaluate server database
sizes |DB| ∈ {228, 231} and client contact list sizes |X| ∈ {1, 210}. The
client is a OnePlus 8T smartphone with Snapdragon 865 octa-core CPU
(1× 2.84 GHz Cortex-A77, 3× 2.42 GHz Cortex-A77, 4× 1.80 GHz Cortex-A55)
and 12 GiB RAM. Our protocol requires two servers that we set up as Linux VMs
on a KVM host with two Intel Xeon Gold 6144 CPUs @ 3.50 GHz. Each VM
has 8 logical cores (mapped to 4 physical ones) and 128 GiB RAM. In the multi-
threaded benchmarks, denoted with T=4/8, the server uses 4 and the mobile
client 8 threads. The number of threads is based on the number of available

https://encrypto.de/code/disco
https://encrypto.de/code/disco
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physical cores as we did not see sufficient performance increase on the server
side when putting all logical cores under maximum load.

We consider two network settings: WiFi with 566 MBit/s down-/upload
speed and 12.4 ms RTT, and LTE with 30 MBit/s down-/upload speed
and 49.3 ms RTT. The settings are simulated in a real WiFi network by limiting
bandwidth and introducing delay using tcconfig [38]. We evaluate the perfor-
mance of our PSI protocol for the NR-ECC - and GC-LowMC -OPRF. The OPRF
performance was measured on a single thread, the PIR costs on a single and mul-
tiple threads.

We benchmarked the impact of different partition sizes and select the best-
performing size for each database size considering the trade-off between offline
communication and online time.

5.2 Profiling and Optimizations

Via profiling we observed that a bottleneck in the online phase is the client’s
search for a hint/set that contains the desired index, which requires them to
expand each set key until the index is found. The implementation of [46] there-
fore adds a precomputation step that accelerates this search significantly by
generating a mapping between database indices and sets. We optimize the run-
time of this client setup by covering not all but only a certain percentage of
indices. This significantly reduces offline costs while the online computational
costs increase only marginally in the rare case that an index is not found in the
mapping table. Considering this trade-off and the requirement of a fast online
phase, we use a threshold of 99.99% for the client preprocessing, reducing the
one-time client setup time by 2.8× compared to [46] (286.78 s for |DB| = 231).

Another bottleneck in the protocol is the required one-time computation in
the setup phase, including the server’s CF creation and client-dependent prepro-
cessing. With parallelization, we reduce the client-dependent setup costs signif-
icantly by up to 3.8× with T=4/8 over our protocol’s single-threaded setting.

Overall, we achieve a PIR online runtime of less than 1 s for |X| ≤ 210 client
contacts in the WiFi setting and an improvement of up to factor 8.3× with
multiple threads compared to the original single-threaded implementation.

5.3 Comparison to Related Work

We compare our protocol with the state-of-the-art mobile private contact dis-
covery protocol in [43] and PIR-PSI [23] (cf. Sect. 3).

Mobile Private Contact Discovery [43] (Table 3). Our protocol replaces
the costly CF download in [43] – including its communication cost linear in
the database size – with a more communication-efficient PIR protocol. We give
the benchmark results of these protocols for NR-ECC-OPRF and GC-LowMC-
OPRF in Table 3. Since both protocols have the same OPRF and CF setup
costs, we report these based on our Go implementation and calculate the CF
transmission time in the setup phase of [43] based on our connection speeds. With
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Table 3. Comparison of runtime and communication costs. Runtimes for [43] based
on our Go implementation’s CF setup and OPRF results. We set |X|pre = |X|. Best
results marked in bold.

Parameters Base Setup Online

Protocols Time [s] Comm. Time Comm. Time [s] Comm.

[MiB] Server Server [s] Client [s] [MiB] [kiB]|DB| |X|
PRF PSI Parameters WiFi LTE

[min] (Per-Client) WiFi LTE
WiFi LTE

[44] T = 1 0.07 0.29 0.04 590.46 – 15.17 285.95 1072.14 0.06 0.12 4.05

Ours NPart = 32, T = 1 0.07 0.29 0.04 590.46 216.47 109.63 129.57 66.00 0.83 5.23 38.79NR-ECC

Ours NPart = 32, T=4/8 0.07 0.29 0.04 590.46 63.71 35.26 57.76 66.00 0.39 0.76 38.79

[44] T = 1 0.09 0.36 0.06 33.26 – 15.17 285.95 1072.14 0.04 0.07 2.02

Ours NPart = 32, T = 1 0.09 0.36 0.06 33.26 216.47 109.63 129.57 66.00 0.81 5.18 36.76

1

GC-LowMC

Ours NPart = 32, T=4/8 0.09 0.36 0.06 33.26 63.71 35.26 57.76 66.00 0.37 0.71 36.76

[44] T = 1 0.15 0.52 2.04 590.46 – 15.17 285.95 1072.14 2.20 2.29 4145.00

Ours NPart = 32, T = 1 0.15 0.52 2.04 590.46 216.47 109.63 129.57 66.00 5.59 12.17 6097.25NR-ECC

Ours NPart = 32, T=4/8 0.15 0.52 2.04 590.46 63.71 35.26 57.76 66.00 2.65 3.47 6097.25

[44] T = 1 1.26 5.39 21.56 33.26 – 15.17 285.95 1072.14 0.63 1.22 2064.00

Ours NPart = 32, T = 1 1.26 5.39 21.56 33.26 216.47 109.63 129.57 66.00 4.02 11.10 4016.25

228

210

GC-LowMC

Ours NPart = 32, T=4/8 1.26 5.39 21.56 33.26 63.71 35.26 57.76 66.00 1.08 2.40 4016.25

[44] T = 1 0.07 0.29 0.04 4752.34 – 121.23 2286.98 8576.00 0.06 0.12 4.05

Ours NPart = 64, T = 1 0.07 0.29 0.04 4752.34 1988.81 961.48 1035.53 264.00 1.93 10.78 77.54NR-ECC

Ours NPart = 64, T=4/8 0.07 0.29 0.04 4752.34 525.09 286.78 392.35 264.00 0.49 1.43 77.54

[44] T = 1 0.09 0.36 0.06 269.82 – 121.23 2286.98 8576.00 0.04 0.07 2.02

Ours NPart = 64, T = 1 0.09 0.36 0.06 269.82 1988.81 961.48 1035.53 264.00 1.91 10.73 75.51

1

GC-LowMC

Ours NPart = 64, T=4/8 0.09 0.36 0.06 269.82 525.09 286.78 392.35 264.00 0.47 1.38 75.51

[44] T = 1 0.15 0.52 2.04 4752.34 – 121.23 2286.98 8576.00 2.20 2.29 4145.00

Ours NPart = 64, T = 1 0.15 0.52 2.04 4752.34 1988.81 961.48 1035.53 264.00 8.31 21.50 6801.49NR-ECC

Ours NPart = 64, T=4/8 0.15 0.52 2.04 4752.34 525.09 286.78 392.35 264.00 2.94 4.68 6801.49

[44] T = 1 1.26 5.39 21.56 269.82 – 121.23 2286.98 8576.00 0.63 1.22 2064.00

Ours NPart = 64, T = 1 1.26 5.39 21.56 269.82 1988.81 961.48 1035.53 264.00 6.75 20.43 4720.49

231

210

GC-LowMC

Ours NPart = 64, T=4/8 1.26 5.39 21.56 269.82 525.09 286.78 392.35 264.00 1.37 3.61 4720.49

our PIR-based protocol, we achieve total communication costs of 272.68 MiB
for |DB| = 231, NPart = 64, and |X| = 210 (cf. Table 3). This is an improvement
by factor 32× compared to ≈8 GiB in [43] at only marginally higher runtimes.

PIR-PSI [23] (Table 4). We further compare our protocol implementation
with PIR-PSI based on the results in [23, Table 2]. The authors of [23] evaluate
their performance on a single server with two 18-core Intel Xeon E5-2699 CPUs
at 2.30 GHz, 156 GiB RAM, and simulated LAN setting with 10 GB/s bandwidth
and 0.02 ms RTT. In comparison, our results are obtained in our WiFi setting
using a mobile client and two virtual servers with fewer cores, i.e., 8 vs 18 per
machine, and less RAM. Our comparison in Table 4 excludes the OPRF costs
of our protocol as these would also have to be applied to [23] to strengthen
their protocol’s non-collusion assumption. As server setup costs are not reported
in [23], we exclude them from this comparison.

We compare the runtimes for both protocols using a single (T=1) and multi-
ple threads (T=4/8) in Table 4. While PIR-PSI does not require an offline phase,
marked with “–”, our protocol has client-dependent one-time costs, which can be
amortized over all online queries. The DPF-PIR protocol [10,11] used in PIR-PSI
requires online computation linear in the database size, whereas OO-PIR [46]
in our protocol has sublinear complexity. For |DB| = 228, our implementation’s
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Table 4. Comparison to PIR-PSI [23]. Results for PIR-PSI are from [23, Table 2] with
parameters block size b and β = c · |DB|/ log2(|DB|) bins, where c is a scaling factor.
The protocols are compared in a single- (T=1) and multi-threading (T=4/8) setting.
Best results in the online phase are marked in bold.

Parameters Offline Online

|DB| |X| Protocols Time [s] Comm. Time [s] Comm.

PSI Param. T=1 T=4/8 [MiB] T=1 T=4/8 [kiB]

[23] c = 1, b = 32 – – – 1.21 – 30.72
1

Ours NPart = 32 326.10 98.97 66.00 0.77 0.33 34.74

[23] c = 0.25, b = 1 – – – 33.02 13.22 5048.32

[23] c = 4, b = 16 – – – 4.07 1.60 28979.20

228

210

Ours NPart = 32 326.10 98.97 66.00 3.39 0.45 1952.25

online runtime is significantly faster for single- and multi-threading, especially
considering the hardware and network limitations in our setting. We expect the
benefit of our protocol’s low online costs to become even more visible for larger
database sizes (|DB| = 231), for which PIR-PSI does not report results.

FHE-based PSI [15]. The authors of [15] consider their protocol for the use
case of mobile private contact discovery and acknowledge increasing hardware
requirements for large-scale database sizes. Based on their recommendation to
partition the database, as done in our work, their protocol has 76.2 MiB online
communication for |DB| = 231, |X| = 210. Our protocol requires 16.5× less
online communication – only 4.61 MiB per online phase – but has additional
one-time offline costs, which amortize over many queries. Based on [15, Tab. 2],
the runtimes for a single partition of size 228 with T=24 threads are 2487 s offline
and 4.54 s online, which is significantly higher than those of our work. These
additional costs, and the lack of a mobile implementation, currently hinder the
use of FHE-based protocols for mobile private contact discovery.

6 Conclusion

In this work, we proposed a new communication-efficient unbalanced PSI pro-
tocol by combining and further optimizing OPRF-based unbalanced PSI [43]
with two-server PIR [46]. With this, we take big steps towards practicality
of large-scale mobile private contact discovery. While our protocol achieves a
significant reduction in communication and thus outperforms the state-of-the-
art protocol mobile private contact discovery [43] in this regard, the client-
dependent setup and update costs are still limiting factors for real-world prac-
ticality with large-scale messengers. Continuing research on PIR protocols with
client-independent preprocessing is thus a crucial area of future work.
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Appendix

A PIR Survey

In Table 5, we summarize our survey of recent PIR protocols for their use
in OPRF-based PSI based on which we selected the OO-PIR by Kogan
and Corrigan-Gibbs [46].

Table 5. Surveyed PIR protocols for OPRF-based PSI. Complexities are simplified.
We distinguish between client C’s and server(s) S’s computational costs where possible.
Table entries are left empty when complexities are not clear from the original paper or
related work.

Offline Online
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SealPIR [3] RLWE ✓ ✗ ✓ ✓ – N – N dN1/d

MulPIR [2] RLWE ✓ ✗ ✓ ✓ – N – dN1/d

[55] RLWE ✓‡ ✗ ✓ ✓ – N – B/pN
2/d
B

BN
1/d
B

/p

Spiral (family) [53] RLWE ✓ ✗ ✓ ✓ – N log N

PIRANA [50] RLWE ✓ ✗ ✓ ✓ – N N/M N/M N/M

[18] LWE ✓† ✗ ✗ ✗
√

N N
√

N
√

N
√

N

OnionPIR [54] RLWE ✓† ✗ ✓ ✓ N N N N N

[48] LWE ✓† ✗ ✗ ✗ N N N
√

N
√

N
√

N

[75] LWE ✓† ✗ ✓ ✗ N
√

N
√

N
√

N 1

[17] RLWE ✓† ✗ ✓ ✗ N N N N N N

SimplePIR [37] LWE ✓†‡ ✓ ✓ ✓ N/M N
√

N N
√

N

DoublePIR [37] LWE ✓†‡ ✓ ✓ ✓ N d2
l

√
N

1

FrodoPIR [22] LWE ✓†‡ ✓ ✓ ✓ N N 1 N 1 N

DPF-PIR [10] OWF ✗ – ✓ ✓ – – – log N N n log N

CIP-PIR [31] OWF ✓‡ ✓‡ ✓ ✓ – N –
√

N/n N/n n
√

N/n

[18] OWF ✓† ✗ ✗ ✗
√

N N
√

N
√

N
√

N n log N

[46] OWF ✓† ✓¶ ✓ ✓� √
N N

√
N

√
N

√
N n log N

[68] LWE ✓† ✗ ✓ ✗
√

N N
√

N
√

N
√

N n log N

iCK [51] OWF ✓† ✓‖ ✓ ✓
√

N N
√

N
√

N
√

N n
√

N

2+

iSACM [51] LWE ✓† ✓‖ ✓ ✓
√

N N
√

N
√

N
√

N n
√

N

Database size N , number of servers n, plaintext size p, lattice dimension dl, database
hypercube dimension d, encryption parameter M , number of buckets B and bucket
size NB , † Stateful / offline-online, ‡ client-independent, ¶ waterfall updates, ‖ in-place
edits, � includes mobile implementation.
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