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Abstract. Multi-access Edge Computing (MEC) technology offers
promising support for modern, computation-intensive, and time-sensitive
applications. Many of these applications are generated by resource-
constrained handheld or mobile UE. Due to limited resources, offloading
certain parts of these applications (tasks) to connected MEC servers
becomes essential. However, MEC servers also have limited resources
compared to cloud servers, highlighting the need for efficient task offload-
ing policies for UE devices and optimal resource allocation policies
for MEC servers. This paper introduces ELITE (Energy and Latency-
optimized Task Offloading and Resource Allocation for DVFS-Enabled
devices), a novel solution to the energy and latency minimization prob-
lem in a cooperative heterogeneous MEC architecture. The proposed
policy aims to minimize the energy consumption of the UE devices and
the latency of the applications while satisfying application deadlines and
dependency constraints. Furthermore, we consider the UEs to be enabled
by dynamic voltage and frequency scaling (DVFS). Through extensive
simulations using a real dataset, we demonstrate that our proposed strat-
egy surpasses the state-of-the-art policy, achieving a remarkable 10%
reduction in latency and an impressive 2× reduction in energy consump-
tion of UE devices.

Keywords: Multi-access Edge Computing (MEC) · DVFS ·
cooperative MEC system · Mobile Edge Computing (MEC) · energy
and latency

1 Introduction

With the rise of compute-intensive and latency-sensitive applications like real-
time online games, virtual reality (VR), image processing, and IoT applications,
there is a growing need for a new network and computing paradigm to cater
to these demands. Mobile Cloud Computing (MCC) has been a popular solu-
tion, forwarding resource-intensive tasks to powerful cloud servers [20]. However,
the geographical distance between UE and cloud servers introduces significant
delays. To address this latency issue, the Multi-access Edge Computing (MEC)
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framework has emerged as a promising approach, offering cloud computing capa-
bilities at the edge of the network [14,29]. This enables the execution of resource-
intensive, latency-sensitive applications, leading to improved performance and
reduced delays [23].

With MEC servers possessing limited computing resources unlike central
cloud, efficient resource management becomes crucial to maximize the bene-
fits of the MEC framework. Addressing three key challenges [1] is essential: 1)
Offloading, which determines whether an application should be executed locally
or remotely (MEC or cloud); 2) Resource allocation, responsible for efficiently
allocating computing resources to applications; and 3) Task scheduling, decid-
ing the order of processing applications or tasks while meeting constraints like
deadlines.

Various researchers have explored different system models in the existing lit-
erature. For example, two-tier models have been studied in [6], three-tier models
in [27,30], and four-tier models in [2,5]. Some authors have also explored SDN-
based models in [1]. However, most of these models focus either on the MEC
server alone (two-tier) or on the cooperation between the MEC server and the
cloud server (three-tier). The existing literature has not considered cooperation
among neighbouring MEC servers regarding task offloading, even though coor-
dination and cooperation among MEC servers are considered in the context of
caching [7]. In our research, we propose a cooperative MEC server architec-
ture in conjunction with the cloud, where MECs hosted in different base sta-
tions cooperate with each other. This approach is essential for two reasons: i)
It facilitates efficient resource management for MEC servers, which are typically
resource-constrained compared to the cloud, and ii) It helps reduce task latency
by executing a larger number of tasks in neighbouring base stations instead of
forwarding them to the cloud. In addition to the cooperative MEC system, we
have also considered the heterogeneity of MEC servers in terms of CPU capacity
(in MIPS), memory size, and storage size [9].

The existing literature on task offloading in MEC has focused on various
objectives, including energy optimization, latency optimization, or both, with
many works adopting independent task offloading strategies to minimize UE
energy consumption and application latency. Very recently, in [4], the authors
utilize dependent task modeling to optimize energy consumption and task
latency, but they do not account for the latency deadline in their approach.
Additionally, the consideration of DVFS-enabled UE devices has been largely
overlooked in the literature, despite its potential to significantly reduce energy
consumption by adjusting the CPU frequency, which is particularly beneficial
for energy-constrained devices like battery-powered devices [22].

In this study, we embrace a comprehensive approach to executing applications
within the cooperative heterogeneous MEC framework, aiming to minimize both
the energy consumption of UEs and the overall latency. This is achieved by
considering dependent task modeling. We summarize the contribution of this
paper below.
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1. We consider DVFS-enabled UE devices in our cooperative heterogeneous sys-
tem model.

2. We put forth a series of strategies to efficiently execute applications within an
MEC framework, optimizing both the energy consumption of the UE devices
and the latency of the applications while considering deadline-aware depen-
dent task models.

3. Extensive simulations based on real-world datasets were conducted using a
standard simulator.

The paper is structured as follows: Sect. 2 presents the literature review. In
Sect. 3, we introduce the cooperative heterogeneous system model considered in
this work. The application model, energy consumption model of UEs, commu-
nication model, and computation model are presented in Sect. 4, 5, 6, and 7
respectively. Section 8 provides a detailed problem formulation. Our solution for
the latency and energy optimization problem is described in Sect. 9. The sim-
ulation and evaluation of our proposed strategy are presented in Sect. 10, and
finally, we conclude the paper in Sect. 11.

2 Literature Review

In recent years, computation offloading in Mobile Edge Computing (MEC) has
attracted significant attention from researchers, leading to the proposal of various
task offloading schemes. Among the crucial objectives of these schemes is the
energy-latency tradeoff in MEC server tasks. Different authors have approached
the task offloading problem, formulating it as energy optimization [12,27,30],
latency optimization [19,25,28], or jointly optimizing both energy and latency [2,
8,26].

Various authors have explored diverse system models as part of their task-
offloading schemes. Based on existing literature, we can broadly categorize these
models into different architectures: two-tier [6,15,26], three-tier [17,27,30], four-
tier [2,5], and SDN-based [1] architectures. In the two-tier architecture, UE is at
the first layer, MEC servers attached to a Base Station (BS) are at the second
layer, and the remote cloud is absent. In the three-tier architecture, the remote
cloud forms the third layer. The four-tier architecture includes an additional
layer, where UEs communicate with the MEC server via an access point or an
edge controller. In the SDN-based architecture, a centralized control plane acts
as the backbone of the entire network.

In task offloading schemes, tasks can possess various properties and may
be offloaded wholly or partially. While some existing works primarily consider
input data size and CPU cycle requirements for task formulation [12,26], others
also take into account task latency deadline and output size [27]. The literature
often aims to optimize either energy consumption or latency, leading to the use
of binary or partial offloading schemes. Some works focus on optimizing both
energy and latency but still adopt a binary offloading model. When representing
subtasks for partial offloading, most authors employ Directed Acyclic Graphs,
while others divide tasks into multiple fractions.
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Various authors have employed diverse methodologies to formulate and tackle
the task offloading problem. Many of them have expressed the task offloading
scheme as a mixed-integer program problem and demonstrated its NP-hardness.
To solve the optimization problem, a significant number of authors have trans-
formed the nonconvex nature of the problem into a convex one, achieved either
by decomposing the original problem or without decomposing it. For solving
the convex problem, different approaches have been utilized, such as Karush-
Kuhn-Tucker (KKT) conditions, 0–1 integer programming problem, Lagrange
dual decomposition, and the subgradient method. Additionally, several alter-
native methods, including greedy algorithms, approximate solutions, machine
learning, heuristics, genetic algorithms, artificial fish swarm algorithms, and ε-
bounded approximate algorithms, among others, have been employed to address
these optimization challenges.

3 System Model

We are adopting a three-tier architecture for our MEC system, as depicted in
Fig. 1. In this architecture, UE devices reside in the first layer, a cluster of base
stations (DC) in the second layer, and a remote cloud operates in the third
layer. To effectively manage the energy consumption of UE devices and adhere
to task latency deadlines, we are incorporating DVFS-enabled UE devices [22],
which enable us to control the CPU frequency [16]. The DCs in each of the
BS that are part of a cluster cooperate with each other. Additionally, we have
also considered the heterogeneity of MEC servers in terms of CPU capacity (in

Fig. 1. System model
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MIPS), memory size, and storage size. The UEs establish connections with the
nearest base station through wireless communication links. These UE devices
operate independently, giving them the flexibility to execute tasks locally or
offload them to a remote server hosted in the base station. Consequently, MEC
servers within these base stations receive tasks continuously from various UE
devices.

The decision to adopt a 3-tier cooperative distributed architecture is
grounded in two key factors. Firstly, the limited resource capacity of MEC servers
compared to the central cloud necessitates a cooperative approach. Secondly, the
increasing task sensitivity to latency in modern applications highlights the sig-
nificance of an optimized cooperative architecture. By utilizing the resources
of neighbouring MEC servers, we aim to meet latency deadlines, as the central
cloud is often located far from the UE device. In situations where MEC servers in
the nearest or neighbouring base stations cannot meet a task’s resource require-
ments, we route the task to the cloud, assuming it possesses abundant compu-
tational resources. This 3-tier architecture achieves a balance between resource
constraints, latency sensitivity, and resource availability, ensuring efficient task
processing within latency requirements while optimizing resource utilization.

In each data center (BS), one of the nodes performs the coordinator function
known as the coordinator node. The coordinator node ensures high availability,
while the container for task execution is dynamically launched as needed. Peri-
odically, every coordinator node updates its resource status to all other coor-
dinators within the cluster. As part of its responsibilities, a coordinator node
schedules a task to a compute node within its base station (DC) or forwards the
task to another base station (DC). If a task cannot be executed in MEC, it will
be forwarded to the remote cloud through a backhaul network. The set of base
stations and UEs is denoted as Bn and Wn, respectively, with n = 1, 2, 3, · · · , n.

4 Application Model

We consider an application comprising interdependent tasks, represented by a
Directed Acyclic Graph (DAG) as the DAG representation is widely used in
the literature to model various applications such as cognitive assistance [13],
healthcare [11], data analytics [24] etc. In the DAG, each node represents a task,
while the edges depict the dependencies between tasks. Each task in the DAG is
characterized by a quadruplet Ti = <di, ci, IOi, t

d
i >, where di denotes the input

data size, ci indicates the CPU cycle requirement in million instructions (MI),
IOi represents the number of IO operations needed for the task, and tdi denotes
the latency deadline. The application comes with a latency deadline of Ld

k. This
deadline is distributed among all the tasks of that application (as explained in
Sect. 9.2). To ensure a single terminal node in the application DAG when there
are multiple terminal tasks, we create a dummy terminal task that depends on
all the existing terminal nodes. This consolidation results in a single terminal
node in each application DAG.

A scheduling plan for the DAG G is represented as Di:n = δ1, δ2, δ3, · · · , δn,
where n = |V | is the number of tasks, and δi indicates the offloading decision
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for task Ti. The decision variable δi = {0, 1, 2, 3}, where 0 for local, 1 for the
nearest BS, 2 for the neighbor BS, and 3 for the remote cloud execution. A task
can be forwarded to another base station only once.

5 Energy Consumption Model for a UE

We adopt a power consumption model based on complementary metal-oxide
semiconductor (CMOS) logic circuits [18] for the UE devices. Specifically, we
focus on CMOS circuits-based UE devices, where the total power consumption
consists of two main components: static and dynamic power consumption. Con-
sidering that dynamic power consumption significantly dominates the overall
power usage [10,16], we concentrate solely on it. The dynamic power consump-
tion is directly related to the supply voltage and frequency, and since the fre-
quency usually scales with the supply voltage, the processor’s dynamic power
consumption is expressed as ρc = K.f3, where K is a proportional coefficient.

Let us consider a task in an application that takes an execution time of t
when running on a CPU with a frequency of fmax. If the processor operates
at a different frequency level f (0 < f ≤ fmax), the execution time is defined
as t/ f

fmax
. Thus, the dynamic power consumption during the task execution is

defined by Eq. (1) as considered in [16].

E =
∫ t/ f

fmax

0

ρc dt = K.t.fmax.f
2 = ω.t.λ2, where λ =

f

fmax

(1)

where ω is a coefficient and λ is the relative processor speed for the CPU while
running at frequency f .

6 Communication Model

Let Bw be the bandwidth between UE devices and the base station, and Bb be
the bandwidth between two base stations. The backhaul network, facilitating
task forwarding from a base station to the remote cloud, has a bandwidth of βc.
For wireless and wired links, we consider data rates Ru and Rp, respectively.

Let the latency to upload a task Ti from UEs to the nearest BS be Tu
i . The

total latency Tnb
i for offloading a task to a neighbour base station will be the

combination of task uploading latency Tu
i and the latency of forwarding a task

to another BS. Similarly, T rc
i is the latency of a task Ti when offloaded to the

centralized remote cloud. It is the combination of latency of uploading tasks
from UEs to BS and from BS to the remote cloud.

7 Computation Model

The task offloading decisions determine whether a task is executed locally at the
UEs, at the Mobile Edge Computing (MEC) server, or at the remote cloud. Var-
ious computation models based on the task’s offloading decision are elaborated
in the following subsections.



56 A. Islam and M. Ghose

7.1 Local Computation

During local task execution, the task utilizes the UE’s local processing unit. Let
fk
l denote the computational capacity of the kth UE in million instructions per

second (MIPS). Let IOt
i be the time required for IO operations then local task

execution time and the UE energy consumption for task Ti can be represented
as T l

i = ci
fk
l

+ IOt
i and El

i = α.T l
i .λ

2 respectively.

7.2 Remote Computation

When a task is offloaded by a UE device, it can be executed either in a MEC
server or a remote central cloud. During task offloading, the UE device utilizes
its processing unit to transfer the tasks to a remote server. As a result, the energy
consumption of the UE is influenced by the CPU cycle required to upload the
tasks to the remote server. Let Tul

i represent the time taken by a UE device to
offload a task to a remote server. The energy consumption for the offloaded task
Ti can be expressed as Eu

i = α.Tu
i .λ2.

The latency computation model remains consistent for tasks executed at the
nearest Base Station (BS), a remote BS, or in the cloud. If F k

m and F k
c represent

the CPU capabilities of the kth MEC and the cloud servers then the latency at
MEC and the cloud can be represented as in Eq. (2).

Tmec
i =

ci
Fmk

+ IOt
i , T c

i =
ci
F k
c

+ IOt
i (2)

8 Problem Formulation

The primary goal is to minimize both the energy consumption of the UEs and
the overall latency of the application. The total latency of a task Ti in a DAG
for the application can be formulated using Eq. (3).

Li =
(1 − δi)(2 − δi)(3 − δi)

6
T l
i +

δi(2 − δi)(3 − δi)
2

(Tu
i + Tmec

i )

+
di(δi − 1)(3 − δi)

2
(Tnb

i + Tmec
i ) +

δi(δi − 1)(δi − 2)
6

(T rc
i + T c

i )
(3)

The energy consumption for the UE remains constant regardless of whether a
task is executed at the nearest Base Station (BS), a neighbouring BS, or the
cloud, as the UE device always offloads the task to the nearest BS. Thus, the
energy consumption of a task Ti can be expressed using Eq. (4) below.

Ei =
(1 − δi)(2 − δi)(3 − δi)

6
(El

i) +
δi(2 − δi)(3 − δi)

2
(Eu

i )

+
di(δi − 1)(3 − δi)

2
(Eu

i ) +
δi(δi − 1)(δi − 2)

6
(Eu

i )
(4)

The total latency and energy consumption of a UE for an application is
represented as Lapp = Lft and Eapp =

∑n
i=1 Ei respectively where the Lft
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is the completion time of the terminal task of an application. If there are N
applications in the system, then the total energy consumption at UEs and the
latency can be represented as in Eq. (5).

Ltot =
N∑
i=1

Lapp , Etot =
N∑
i=1

Eapp (5)

The objective of the problem is to minimize the overall system cost, encom-
passing the total execution delay and UE energy consumption for all applica-
tions in the system. We express the total cost as a weighted sum of the total UE
energy consumption and application latency. Thus, the minimization problem is
represented as shown in Eq. (6) subject to the constraint defined in Equation
(7).

minimize (ALtot + BEtot) (6)

n∑
i=1

Li ≤ Ld ,
∑
i=1

ci ≤ Fl , ci ≤ F i
m ,

n∑
i=1

ci ≤
Bi∑
i=1

m∑
j=1

F j
m (7)

The constraints presented in Eq. (7) apply to both the UE device and the MEC
servers. The first constraint ensures that the total latency of an application
must not surpass its latency deadline. The second constraint ensures that the
total CPU cycle requirements of all the parallel tasks executing locally must
not exceed the available CPU cycles of the UE. The third constraint guarantees
that the CPU requirements for a task cannot exceed the available capacity of
the MEC server. Lastly, the fourth constraint ensures that the total CPU cycle
requirements of all tasks running in the MEC cluster at any given time must not
surpass the total CPU capacity of the MEC cluster.

9 ELITE: The Task Offloading and Resource Allocation
Strategy

The optimization problem stated in Eq. (6) is a challenging multi-objective
mixed-integer programming (MIP) problem, proven to be NP-hard [31]. As a
result, we propose an efficient heuristic algorithmic (Layered Scheduling Algo-
rithm) approach to tackle this optimization problem. In the proposed strategy,
we first rank the tasks of an application represented by a DAG for effective
scheduling, as described in Sect. 9.1. Additionally, we compute the sub-deadline
of all tasks within an application’s DAG, using the total deadline for the entire
application, as elaborated in Sect. 9.2

9.1 Task Ranking

We need to rank the tasks for scheduling and it is helpful in prioritizing multiple
tasks that can be executed in parallel. Let CTnbs

i , CT rbs
i , and CT c

i be the latency
in worst case time for a task Ti if it executes in the nearest base station, remote
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base station, and remote cloud server respectively. So the rank of a task is
calculated based on Eq. (8);

Savg
i =

CTn
i bs + CT r

i bs + CT c
i

3
, T avg

i =
CTm

i + Savg
i

2
R(Ti) = T avg

i + max(PredkT
avg
k )

(8)

where max(PredkT
avg
k ) represents the maximum of the average latency of all

the predecessor tasks of Ti and CTm
i is the local execution latency of task Ti.

Fig. 2. An application DAG

9.2 Sub-deadline Calculation

In our approach, we divide the total latency deadline of an application and
allocate sub-deadlines to its individual tasks. To achieve this, we compute the
label-ratio ∂l as in Eq. (9) and employ a modified version of the breadth-first
traversal (MBFS) algorithm to assign ratios to each level in the DAG as depicted
in Fig. 2. The label ratio signifies the maximum average execution time of tasks
within a particular level. As tasks between levels can be executed in parallel, we
determine the maximum waiting time for the next level based on the maximum
latency of the previous level. Consequently, we assign equal sub-deadlines to all
tasks within each level, taking into account the maximum average latency of
tasks from the preceding level. The sub-deadline Dl of a task is calculated using
Eq. (9), with Dtotal representing the total deadline of the application.

∂l = maxl(T
avg
l ) , Dl =

Dtotal∑l
i=1 ∂l

∂l (9)

Let’s consider the instance of level L1, encompassing three tasks: T1, T2, and
T3. In accordance with the data presented in Fig. 2, the average execution times
for T1, T2, and T3 are 6, 10, and 8 respectively. Consequently, the label ratio for
level L1 becomes max(6, 10, 8), yielding 10. Analogously, the label ratios for L0,
L2, and L3 are 5, 20, and 15 respectively. Utilizing Eq. (9), the sub-deadlines
for tasks T1, T2, and T3 are calculated as 100∗10

(5+10+20+15) , resulting in 20. It’s
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worth noting that the total deadline for the analyzed application is denoted as
100. The full calculation of the sub-deadline for the application represented by
a DAG in Fig. 2 is given in Table 1.

Table 1. Sub deadline calculation

level Tasks Label ratio Sub Deadline Total Deadline

L0 T0 5 10 100
L1 T1, T2, T3 10 20
L2 T4, T5, T6 20 40
L3 T7 15 30

9.3 Task Offloadability

We have categorized the tasks of a workflow into three categories as given below.

1. Remote Tasks: A task is called a remote task if it is compute-intensive or
IO-intensive as described in Algorithm 2.

2. Local Tasks: Tasks that require the UE to interact directly with the environ-
ment such as mage capturing cannot be offloaded.

3. General Tasks: The third type of tasks can be executed either in UE devices
or in remote servers, and we have the flexibility to schedule these tasks based
on various parameters.

9.4 Layered Scheduling Algorithm

The layered scheduling algorithm involves two levels of scheduling algorithms:
one operating at the UE and the other at the coordinator node of the MEC,
hosted in the nearest base station.

Scheduling Algorithm at UE. The scheduling algorithm, outlined in Algo-
rithm 1, handles the execution of an application on the UE device, that includes
multiple tasks. The algorithm makes decisions to either schedule these tasks
locally or offload them to the MEC server hosted in the nearest base station.
Three queues are maintained in the algorithm: TaskPool, TaskReadyQueue, and
TaskInProgress. Initially, the TaskPool contains all tasks (St) except for the entry
task (Tentry) of the applications, while the entry tasks of all running applications
at the UE are added to the TaskReadyQueue. The algorithm then selects one
task from the TaskReadyQueue and schedules it either locally or offloaded to a
remote server. Once a task is scheduled, whether locally or remotely, it is added
to the TaskInProgress. The steps in the algorithm are summarized below.
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Algorithm 1. Task Scheduling Algorithm at UE device
1: TaskInProgressl← φ
2: TaskPool← St − Tentry

3: TaskReadyQueue ← Tentry

4: while (TaskPool.size() > 0 or TaskReadyQueue.size() > 0 or
TaskInProgress.size()> 0) do

5: while TaskReadyQueue.size() > 0 do
6: Taski ← dequeue from TaskReadyQueue
7: if Taski is remote then
8: Offload the task to the nearest BS.
9: else if Taski is local then

10: Schedule the task for local execution
11: else
12: ET i ← Worst-case execution time of the task in the MEC server.
13: if ET i ≤ Task deadline then
14: Offload the tasks to the nearest BS.
15: else
16: Schedule the task for local execution
17: end if
18: end if
19: TaskInProgress.push(Taski)
20: end while
21: for Taskj in TaskInProgress do
22: if Taskj is finished executing then
23: ChildrenTasksj ← get all children tasks of Taskj

24: Sort the ChildrenTasksj based on the descending order of its
rank

25: for k ← 0 to ChildrenTasksj .size() do
26: childk ← ChildrenTasksj .get(i)
27: if All parent tasks of childk is finished executing then
28: TaskReadyQueue.Enqueue(childk)
29: TaskPool.Remove(childk)
30: end if
31: end for
32: TaskInProgress.remove(Taskj)
33: end if
34: end for
35: end while

1. A task is offloaded to the nearest BS if it is a remote task.
2. A local task is scheduled for local execution.
3. A general tasks: Offload the task to the MEC server if the worst-case execution

time of the task in the MEC server is less than the latency deadline or else
schedule for local execution.
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Upon completion of a task’s execution, we iterate through all its child tasks.
If all the parent tasks of a child task have also finished, we add the child tasks
to the ReadyQueue and remove the current from the TaskPool and TaskExecu-
tionProgressQueue.

Algorithm 2. Task Categorization Algorithm
Input: CPU time(CT i), IO time (IOi)
Output: Task category
Ttot ← CT i + IOi

if CT i

Ttot
≥ 0.5 then

Return CPU-intensive
else if IOi

Ttot
≥ 0.5 then

Return IO-intensive
else

Return Normal
end if

Scheduling at MEC. The algorithm presented in Algorithm 3 is responsible
for scheduling tasks to one of three locations: locally (nearest BS), neighbour
BS, or a remote cloud. The coordinator node selects tasks from its task queue
and checks if there is a suitable server in the current DC to execute the task.
If a suitable server is found, the task is scheduled to the selected server. If no
suitable server is available in the current DC, the coordinator node looks for a
suitable server in the neighbouring DC. To determine the appropriate neighbour
DC, we sort the neighbour DCs based on Euclidean distance and try to find the
best-suited server, starting with the closest neighbour. If no suitable server is
present in the MEC cluster, the task is forwarded to the central cloud. To find
the best server in a particular DC we have used the following steps:

1. Enumerate the servers that have available CPU cores and a task latency less
than the task deadline. If the list is not empty, return the server that executes
a task with minimum latency.

2. Enumerate the servers where the task completion time is within the task
deadline limit. If the list is not empty, return the server that executes a task
with minimum latency.
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Algorithm 3. Task Scheduling Algorithm at MEC coordinator node
function GetFeasibleServer(serverList, Taski)

for server in serverList do
latency ← calculateLatency(server, Taski)
if latency <= task deadline then

return server
end if

end for
end function
function GetBestServer(Datacenter dc, Taski)

svrsWithFreeCore ← get all servers with free available cores.
server ← GetFeasibleServer(svrsWithFreeCore, Taski)
if server != φ then

return server
end if
otherServers ← get all servers with a free available core.
server ← GetFeasibleServer(otherServesr, Taski)
if server != φ then

return server
end if

end function
dc ← nearest DC
server ← GetBestServer(dc, Taski)
if server ! = φ then

scheduleTask(Taski, server)
else

neighborDCs ← get all the neighbour MEC DCs in the cluster
neighborDCs ← sort neighborDCs on the distance from the current DC

in ascending order.
for dc in neighborDCs do

server ← GetBestServer(dc)
if server ! = φ then

scheduleTask(Taski, server)
Break

end if
end for

end if

10 Simulation and Result Analyses

Our proposed strategy was simulated using the PureEdgeSim simulator [21].
The simulation area covered a 2000× 2000 square meter space, containing three
edge data centers (DCs), each with three physical servers. We incorporated three
types of edge devices in the simulation, namely smartphones, Raspberry Pi, and
laptops. Each edge device is connected to its nearest edge DC based on Euclidean
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distance. To facilitate the simulation, we utilized the Zenodo dataset [3], which
comprises 50,000 jobs containing 1.3 million tasks. This dataset represents vari-
ous applications represented by DAGs generated by IoT nodes.

Fig. 3. UE Energy Consumption Fig. 4. Average Task Latency

Fig. 5. Task Failure Rate Fig. 6. Edge CPU Utilization

In order to assess the performance of our proposed layered algorithm, we
conducted a benchmark comparison with two existing algorithms: “Intelligent
task offloading for dependent tasks” presented by Chen et al. in [4] and the
“Adaptive Random Round Robin Algorithm” described in Sect. 10.1.

10.1 State-of-Art Approach

1. Intelligent task offloading for dependent tasks [4]: In their work,
researchers propose an energy and latency-optimized task offloading strat-
egy for dependent tasks. They utilize a two-step process: organizing tasks
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into layers based on dependencies using a layered algorithm and employing a
cost function that considers task latency and UE device energy consumption
for making offloading decisions. This approach allows for efficient task exe-
cution, choosing between local execution and offloading to a remote server
based on the most favourable cost considerations.

2. Adaptive Random Round Robin Scheme: We adopted the same system
model described in the ELITE algorithm except for the DVFS-enabled UE
device. We offloaded all CPU-intensive and IO-intensive tasks to the MEC
server, while normal tasks were randomly scheduled for either MEC execu-
tion or local execution. For MEC DC selection, we employed a Round-Robin
algorithm, and the server selection within the DC was done randomly. The
task categorization is the same as the ELITE algorithm.

Table 2. Simulation Parameters

Iteration Applications Total Tasks UE devices

1 10 481 5
2 20 903 10
3 30 1314 15
4 40 1746 20
5 50 2194 25
6 60 2629 30
7 70 2973 35
8 80 3387 40
9 90 3855 45
10 100 4294 50

10.2 Results and Analyses

We performed the experiment using the parameters specified in Table 2. In Fig. 3,
we plotted the average energy consumption of UE devices, which increases as the
number of applications rises. This behaviour is attributed to the growing num-
ber of tasks executed on UE devices. Notably, our proposed layered algorithm
outperforms the state-of-the-art by a factor of 2× in terms of UE energy con-
sumption. This improvement can be attributed to two main factors: Firstly, our
system model incorporates dynamic voltage and frequency scaling (DVFS) in UE
devices, and secondly, our offloading decision algorithm demonstrates superior
performance compared to others.

In Fig. 4, we presented the average latency of a task, which shows an increas-
ing trend with the growing number of tasks. This increase is primarily due
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to the longer queue times experienced by both UE and MEC servers as the
task load rises. Notably, our proposed model exhibits approximately 10% lower
latency than the state-of-the-art algorithm. This improved performance can be
attributed to two key factors: Firstly, our superior task offloading algorithm,
and secondly, the resource allocation algorithm we introduced, which effectively
reduces task latency by minimizing task waiting times.

As shown in Fig. 5, the task failure rate increases with the number of tasks,
as the queue time for each task also increases, leading to task failures due to
higher latency, considering the latency deadline of each task. In this aspect, our
proposed layered algorithm outperforms the benchmarking algorithm. The CPU
utilization of the MEC server is also plotted in Fig. 6, and it increases with the
number of tasks. The results indicate that the average edge CPU utilization of
the state-of-the-art model is approximately 55% higher than that of our proposed
algorithm.

11 Conclusion

This research paper addresses the challenge of minimizing the latency of the
applications and energy consumption of UE devices by employing dependent
task modelling. Our proposed 3-tier system model incorporates a cluster of het-
erogeneous MEC servers in the MEC layer. In our model, we have considered
DVFS-enabled UE devices, which aid in reducing their energy consumption by
dynamically adjusting the CPU operating frequency. To optimize the problem,
we formulate it as a bi-objective mixed integer programming (MIP), which is
known to be NP-hard. To overcome this complexity, we introduce a near-optimal
heuristic solution strategy that efficiently addresses both task offloading and
resource allocation problems. Tasks are classified into local, remote, and gen-
eral categories, with further subcategories based on their characteristics such as
CPU-intensive, IO-intensive, and normal tasks. Our simulation results demon-
strate the superior efficiency and performance of our approach compared to
existing benchmarking algorithms.
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