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Abstract. Most developers consider that microservice-based applica-
tion design and development can improve scalability and maintainabil-
ity. The microservices are developed as small independent modules and
deployed in containers. The containers are deployed in virtual machines
(VMs), which in turn run in hosts. Effective consolidation of the service
requests to the containers may reduce the number of active hosts in a
cloud environment, resulting in lesser power consumption of the cloud
data centers. This research aims to maximize the resource utilization of
the hosts by effectively allocating the containers to the VMs and VMs
to the hosts. In this scheduling, a few additional containers and VMs are
kept in the available resource pool so that during peak demand for ser-
vices, the users get their service at the earliest (preferably without any
delay). This paper presents a heuristic algorithm for microservice allo-
cation in a containerized cloud environment to achieve these objectives.
The performance of the proposed algorithm is validated and justified
through the extensive experimental results. We have compared the per-
formance of the proposed technique with the existing state-of-the-art.
The number of container deployments in the proposed policy is reduced
by 12.2–17.36% compared to the Spread policy and 6.13–10.57% com-
pared to First-Fit and Best-Fit policies.

Keywords: Microservices · Cloud Computing · Container ·
Scheduling Technique · Resource Allocation

1 Introduction

With the fundamental shift in software development, service-oriented comput-
ing has become an attractive choice among software developers for its agility
and efficiency. In a service-oriented architecture (SOA) [5,16], web services are
small independent computing tasks (loosely coupled [16,20,23]) published as a
service over the Internet. Web services make the business functionalities of one
application accessible to other applications through web interfaces. These ser-
vices can easily be integrated into client applications for low-cost development
and deployment.
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In a microservice architecture, an enterprise application is split into small
self-contained modules, where a microservice is designated to perform a spe-
cific task. These microservices communicate among themselves using the Simple
Object Access Protocol (SOAP). Hence, instead of working on the shared code-
base, the developers can be divided into many smaller groups who can work
on developing business functions in different modules independently. It gives
benefits for improving code re-usability and maintainability. More importantly,
microservice-based applications should be scalable because of the highly fluctu-
ating nature of demands.

The distributed deployment and fluctuating demand of the microservices
require scalable resource provisioning for cost-effective deployment and execu-
tion. In this regard, cloud computing deals with the scenario by providing the
backbone infrastructure as pay-per-use on-demand services. Furthermore, the
Cloud Service Providers (CSPs) offer different pricing models for the end-users,
depending on shared or dedicated resources. Hence, policy designing for resource
allocation becomes a challenging task. Moreover, the cloud service providers want
to reduce the energy consumption of the data centers and are facing challenges
for dynamic resource provisioning of multiple clients within minimum infras-
tructural resources [11–14]. At the same time, service providers should ensure
maintenance of the service level agreement of the users, like deadlines and qual-
ity of services [3,3,28]. This paper focuses on microservice deployment in Docker
containers in Amazon EC2 on-demand instances to achieve these objectives.

Thus, this paper proposes a model for microservice-based task deployment
and a heuristic algorithm for performance improvement. In this algorithm design,
we try to minimize end-to-end delay for improved quality of services (QoS).
Moreover, we ensure that the tasks are completed within their deadlines while
keeping the monetary cost of task deployment low. Hence, the main contributions
of this work are as follows:

– A microservice-based task deployment model.
– A heuristic algorithm to schedule the services to the containers.
– Extensive experimental results to analyze the performance of the proposed

algorithm with existing techniques using benchmark data.

The rest of this paper is organized as follows. Section 2 illustrates a microser-
vice architecture in a cloud environment. Later, we discuss the system model
and formulate the problem in Sect. 3. Section 4 illustrates the proposed policy
for task deployment. Section 5 presents and analyzes the experimental results.
Finally, Sect. 6 concludes the paper with some future direction of research in this
domain.

2 Literature Review

With the emergence of architectural patterns, microservice architecture has
become necessary for achieving high flexibility in designing and implementing
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modern applications. Hence, in the recent past, various microservice architec-
tures have evolved and are standardized.

In [1], authors provide a benchmark analysis for master-slave and nested-
container-based microservice architecture. They analyze the performance of the
models in terms of CPU resource usage and network communication. In a keynote
speech [8], Wilhelm Hasselbring discussed the importance of microservices over
monolithic architecture. Several studies have shown that microservice architec-
ture improves performance and DevOps development cycle over monolithic archi-
tecture [18,35].

However, SOA faces challenges using existing communication mechanisms
with very high workload scenarios [2,9]. To overcome this challenge, a new tech-
nology, Enterprise Service Bus (ESB), was introduced [19,25]. It can achieve low
latency and high scalability of the application. However, ESB is unsuitable for
a cloud environment as virtual machine deployment is elastic, i.e., the number
of virtual machines may vary based on service demand. Hence, to avoid this
problem in SOA, a microservice architecture pattern has emerged that helps in
developing lightweight services [4,21].

Furthermore, in recent days, microservice deployments in the cloud envi-
ronment have gained attention to achieve the benefits of acquiring inherently
scalable cloud resources whose billing is dependent on resource usage. High adap-
tation of cloud services is possible by deploying microservices in a VM instance,
which can scale as per the user’s demand. However, in recent days, contain-
ers have been preferred instead of VM instances as containers are lightweight,
quickly migratable, and scalable. These containers, in turn, are deployed in
VM instances. Microservices use container technology, which provides operating
system-level virtualization [10,17,22]. One such container technology is Docker
[6], developed as a lightweight virtualization platform [22,27].

In the SOA aspect, container-based application deployment has received con-
siderable attention, and different companies have taken the initiative. CoreOS
defined Application Container (appc)1 specification by the image format, the
runtime environment, and discovery protocol. Another notable runtime con-
tainer engine project is runC 2, started by Docker. In 2015, Docker, Google,
IBM, Microsoft, Red Hat, and many other partners formed Open Container Ini-
tiative (OCI)3 for further enhancement and standardized container specification.
OCI consists of two specifications, namely Runtime Specification (runtime-spec)
and Image Specification (image-spec). In brief, an OCI image is downloaded and
unpacked into an OCI runtime environment to create a container service. The
Cloud Native Computing Foundation4 designed an open-source software stack
that allows the deployment of applications as microservices packed into con-
tainers. Furthermore, this software stack performs dynamic orchestration of the
containers for optimizing resource utilization.

1 https://coreos.com/rkt/docs/latest/app-container.html.
2 https://blog.docker.com/2015/06/runc/.
3 https://www.opencontainers.org/.
4 https://www.cncf.io/.

https://coreos.com/rkt/docs/latest/app-container.html
https://blog.docker.com/2015/06/runc/
https://www.opencontainers.org/
https://www.cncf.io/
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In container-based microservices, each microservice, along with the required
libraries and databases is packaged in a container deployed on a platform that
supports container technology. Containerized microservices are isolated execu-
tion environments and can be instantiated at runtime based on service demand.
These containers may run in one or more virtual machine(s) depending on the
resource demand, virtual machine configuration, and availability of resources.
Deployment of different containers on different virtual machines may improve
performance when the resource demand is high. However, this incorporates more
communication delay, as the virtual machines can be scattered within the data
center or across data centers placed in different geographical areas.

2.1 Standard Data Formats, APIs and Protocols

Deployment of microservices in different containers, running in the same or dif-
ferent virtual machines, requires information exchange among the containers.
Information exchange requires standard data representation and standard pro-
tocols. However, XML is a well-known and widely used data format for message
exchange, JSON becomes more popular in recent days. Data Format Description
Language (DFDL) supports a variety of data input, output formats and is used
in both open source and proprietary tools [7,34]. Besides these, the Open API
Initiative standardized RESTful API Markup Language (RAML), which can be
used for a variety of data formats [30,31].

The microservice architecture uses standard HTTP and HTTPS protocols for
information exchange. Along with standard TCP and UDP protocols, Stream
Control Transmission Protocol (SCTP) is used for streaming services [24,26].
In the context of the machine to machine communication, the Organization for
Advanced Structured Information Systems (OASIS)5 standardized the Message
Queuing Telemetry Transport (MQTT) protocol for publishing and subscribing
messages at high speed [29,32].

3 System Model and Problem Formulation

Most software applications use microservices to deliver diverse functionalities to
the end users. Hence, microservices are to be deployed in heterogeneous contain-
ers. Furthermore, the heterogeneity of underlying cloud data center resources
and pricing models makes microservice allocation much harder. In this regard,
the system is modeled based on the following assumptions:

– the containers can migrate to other VMs for consolidating them in a minimum
number of VMs

– the VMs do not migrate as the time and monetary cost involved in VM
migration is very high.

However, if the utilization of a container is too low and the environment is
underutilized, newly arrived microservice requests are not allocated to it, which
results in the termination of the container without any running service migration.
5 https://www.oasis-open.org/.

https://www.oasis-open.org/
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3.1 System Model

Let us consider a set of microservice requests S = {s1, s2, s3, . . . , sm}, where
each request is associated with a deadline, are to be deployed in a containerized
cloud environment. We consider a set of container images CI = {ci1, ci2, . . . ,
cix}, where each container is configured for a specific type of microservice. The
microservice containers C = {c1, c2, . . . , cn} are instantiated using the container
images. The containers are deployed into the VMs, V = {v1, v2, . . . vq}, which
in turn are deployed into physical machines/hosts, P = {p1, p2, . . . , pr}.

The service requests are routed to the containers, where the corresponding
microservice runs. An increase or decrease in the number of microservice requests
causes the creation of new instances of containers or the termination of existing
containers while keeping the resource utilization of containers within a desired
range. The decision to scale the containers depends on the demand for container
resources and the current utilization of the containers. Similarly, the VMs, that
deploy the containers, are also scaled as per the current utilization of the run-
ning VMs. However, a container or VM is not shut down/stopped as soon as
utilization becomes low. The scale-down occurs only if the containers or VMs
are under-utilized for a certain period. The resource utilization of the containers
and VMs is calculated as follows:

Resource Utilization of a Container. Let us represent service request allo-
cation in a container using matrix Xi,j,t where a request si is allocated to a
container cj at clock t. The utilization of the container cj at time t is calculated
as

uc
j,t =

∑m
i=1(mipssi · Xi,j,t)

mipscj
(1)

where Xi,j,t is defined as

Xi,j,t =
{

1, if si is allocated to container cj at time t
0, otherwise

and mipssi is the MIPS (million instructions per second) needed by the service
request si, mipscj is the capacity of the container in MIPS.

Resource Utilization of Virtual Machine. Similarly, we represent the con-
tainer allocation to VMs using matrix Yj,k,t, considering the container cj is
allocated to the VM vk at time t. Thus, the utilization of a VM vk at time t is
measured as

uv
k,t =

∑n
j=1(mipscj · uc

j,t · Yj,k,t)
mipsvk

(2)

where Yj,k,t is defined as

Yj,k,t =
{

1, if cj is allocated to VM vk at time t
0, otherwise
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and mipsvk
is capacity of the VM vk in terms of million instructions per second.

The service requests allocated to a container are kept in the reservation table of
the container.

Resource Utilization of Host. The VMs are deployed in hosts of a cloud
data center. Zk,l,t represents the allocation of vk in pl at time t. That is,

Zk,l,t =
{

1, if vk is allocated to host pl at time t
0, otherwise

Hence, utilization of a host pl at time t is measured as

up
l,t =

∑q
k=1(mipsvk

· uv
k,t · Zk,l,t)

mipspl

(3)

where q is number of VM instances, mipsvk
and mipspl

are capacity of VM vk
and host pl in terms of MIPS.

Energy Model of Host. The power consumption of a host is dependent on
its utilization. This literature considers a linear power model shown below. The
power consumption of a host pl is calculated as:

Enl,t =

{
Enidle

l,t + (Enbusy
l,t − Enidle

l,t ) · up
l,t, if up

l,t ≥ 0
Enoff

l,t , if host is shut down
(4)

where Enidle
l,t is the power consumption of an idle host and Enbusy

l,t is the power
consumption of a fully utilized host.

3.2 Pricing Models of Different Platforms

Amazon AWS offers infrastructure services at different pricing schemes like (i)
reserved, (ii) on-demand, and (iii) spot instance for the same instance type. The
CSUs (cloud service users) can avail of on-demand instances at a fixed hourly
rate with a guarantee of uninterrupted service. On the other hand, the price of
spot instances varies with time, and availability depends on the bid price and
overall demand for resources. The CSP can reclaim the spot instance whenever
the price exceeds the bid. Nowadays, Amazon has changed its policy regarding
the bid where the default bid is the on-demand price, and whenever the spot
price is about to exceed the on-demand price, it issues a warning and revokes
the spot instance after a short period (a few minutes). Thus, spot instances are
generally cheaper than on-demand but come with a risk of revocation by CSPs
(cloud service providers). We choose spot instances for microservice deployment
as it is cost-effective and describe in Sect. 4 the techniques used to handle the
problems arising out of revocation by CSPs.
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3.3 Problem Formulation

Given a set of microservice requests S = {s1, s2, . . ., sm}, a set of container
images CI = {ci1, ci2, . . . , cix}, a set of virtual machines V = {v1, v2, . . . vq}
and a set of physical machines/hosts, P = {p1, p2, . . . , pr}, determine a schedule
f : si → cj where service request si is being allocated to container cj, which
are deployed in VMs g : cj → vk, which in turn are deployed in physical hosts
h : vk → pl in such a way that satisfies deadlines, minimizes the resource renting
cost of the VMs, and achieves energy efficiency by minimizing the number of
active hosts.

Algorithm 1: Service Allocation to Microservice Container
input : S = {s1, s2, s3, . . . , sm}; CI = {ci1, ci2, ci3, . . . , cix};

C = {c1, c2, c3, . . . , cn}; V = {v1, v2, v3, . . . , vq}
output: Service request allocation to the Containers

1 keep un-allocated services of previous clock at the beginning of S.
2 foreach si ∈ S do
3 determine image type cig for service request si
4 determine containers Ca which can serve service request si
5 sort Ca in descending order of uc

j,t · uv
k,t, where uc

j,t uv
k,t are obtained

from Eq. 1 and 2
6 set flag isServiceDeployed ← false
7 foreach cj ∈ Ca do
8 status ← isDeployableContainer(si, cj)
9 if status = true then

10 update reservation table of cj ; isServiceDeployed ← true
11 break;

12 if isServiceDeployed = false then
13 rearrange the VMs V in descending order of resource utilization
14 select a container configuration c for si based on cia;
15 set flag isContainerDeployed ← false
16 foreach vk ∈ V do
17 if isDeployableV M(c, vk) then
18 instantiate container c in vk based on container image cia
19 update C ← C ∪ c; isContainerDeployed ← true

20 if isContainerDeployed = false then
21 instantiate a new VM v
22 instantiate container c in v based on container image cia
23 update V ← V ∪ v; C ← C ∪ c

24 call Algorithm 2 to manage pool of containers and VMs.
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Algorithm 2: Resource Pooling of Containers and VMs
input : service request, si; deadline of service request, dlsi ; container, cj ;

reservation table, rtcj
output: allocation status

1 rearrange the VMs V in descending order of resource utilization
2 for a = 1 to x do
3 select the containers Ca intantiated using container image cia
4 rearrange Ca in descending order of utilization

5 calculate utilization of microservice containers uci
a,t using Eq. 8

6 if uci
a.t > µch then

7 add �(uci
a − µch) ∗ |Ca|� number of containers, say C′

a, are to be
deployed

8 foreach cj ∈ C′
a do

9 set flag ← false
10 for v ∈ V do

11 if uv
k,t + mipscj/mipsvk < µvh as per Eq. 9 then

12 instantiate cj in vk; update flag ← true

13 if flag = false then
14 instantiate a new VM v and add it to V

15 else if uci
a,t < µcl then

16 while uci
a,t < µcl do

17 remove the containers from Ca in which service is not allocated
and the container is running in a most underutilized VM

4 Proposed Algorithm

The proposed algorithm deals with independent microservice requests for alloca-
tion in a set of containers C to run on a set of virtual machines V . A container, by
design, can run only a specific type of microservice. Hence, the service requests S
can be classified based on their attributes and mapped to the respective contain-
ers. Based on users’ service demand, multiple containers instantiated from the
same container image may provide the same microservice. On the other hand,
we must instantiate at least one container for each type of microservice. These
containers and VMs are to be scaled to reduce monetary costs. Thus, the pro-
posed policy has two phases: (i) Service request allocation, (ii) Containers and
VMs Pool management, as presented below.

4.1 Service Request Allocation

In a scheduling clock, the resource provisioner receives a set of service requests S
and routes the requests to the containers. Before allocating any service request,
the containers are to be rearranged in descending order of resource utilizations
so that the resource provisioner allocates service requests to maximally utilized
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but not overloaded containers. If we combine with this, the policy of freeing
underutilized containers when demand for services reduces, we can decrease the
number of container deployments. However, the monetary cost is not associ-
ated with the number of container deployments but with the number of VM
deployments. Also, the resource utilization of the VMs impacts the energy con-
sumption of the data center. Hence, to ensure the concentration of the containers
in a lower number of VMs, the containers are sorted in descending order of the
product of container and VM utilization (uc

j,t · uv
k,t) as shown in line no. 4 of

Algorithm 1. Here, ucj, t and uv
k,t are computed by Eqs. 1 and 2. Using line no 7–

11, a container is selected for the service request si if uc
j,t is less than the upper

threshold of container utilization μch and if si is deployable in the container
cj , i.e., mipssi + ucj · mipscj ≤ mipscj . If the service request is not deployable
in any existing container, a container must be instantiated using the container
image cia on a suitable VM. A container is deployable in a VM if it has enough
resources available. The resource availability of a VM vk at time t is given by:

Rv
k,t = mipsvk

· μvh −
∑

j

uc
j,t.mipscj .Xj,k,t (5)

where μvh is upper threshold of VM utilization.
To avoid resource contention among the containers, we assume that resources

are fully reserved for a container irrespective of its utilization. Thus, the resource
availability of vk is redefined by substituting 1 for uc

j,t as

Rv
k,t = mipsvk

· μvh −
∑

j

mipscj .Xj,k,t. (6)

The function isDeployableV M(cj , vk) returns true if the VM vk can satisfy the
resource requirement of the new container, i.e. mipscj ≤ Rv

k,t.
Each container maintains a reservation table for the service requests.

The reservation table of container cj at time t (rtcj ) has the tuples
<si, stsi lsi , atsi> | ∀ Xi,j,t = 1. Here, stsi is the start time, lsi is the ser-
vice execution time, and atsi is the arrival time. In every scheduling clock, the
reservation table is updated according to the arrival of new service requests and
completion of existing service requests.

4.2 Resource Pooling of Containers and VMs

At the end of each scheduling clock, the algorithm investigates the health of
container instances of each service type (container image type) and analyzes
resource utilization to make scaling decisions.

The utilization of the containers uci
a,t of container image type cia at time t is

calculated as

uci
a,t =

∑
j uc

j,t.mipscj
∑

j mipscj
∀cj ∈ Ca (7)
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where uc
j,t is utilization of container cj and Ca is the set of containers instantiated

from container image cia. If the average utilization for a certain period t′ to t
is higher than the upper threshold μch, we should increase the size of Ca (a
scale-up). The average utilization for a certain period is calculated as

uci
a,t =

1
t − t′

∫ t

t′
uci
a,tδt (8)

If the average utilization uci
a,t is greater than μch, �(uci

a,t − μch) ∗ |Ca|	 number
of containers are to be instantiated. While instantiating a container in an exist-
ing VM vk, we must check that its new utilization does not exceed utilization
threshold μvh as per the following equation:

uv
k,t +

mipscj
mipsvk

< μvh (9)

Other resource constraints such as memory etc., are also considered while
deploying a container in vk. If the container does not fit in any existing VM, we
must instantiate a new VM to allocate the container. As the VM instantiation
takes 1–2 min, to avoid any delay in launching the container, at the end of every
scheduling clock, VMs are also scaled up to keep them in a reserved pool to allow
immediate deployment of containers in them.

The containers are scaled down if the average utilization of the containers
uci
a,t is less than the lower threshold μcl. The idle containers (maximum μcl −

uci
a,t.|Ca| of them are selected for shutting down). Similarly, the VMs are scaled

down if resource average utilization uv
t is less than the lower threshold μvl. The

VMs without any allocated containers are selected for shutting down (maximum
μvl − uv

t .|V | number of VMs).
The VMs are deployed in hosts using a polynomial-time heuristic technique,

Resource Affinity-based VM Placement (RAbVMP), aiming for a reduction of
active hosts (presented in [15]).

The rearrangement of containers and VMs according to the descending order
of resource utilization ensures that during scale-up, allocation of microservices
to the containers is such that utilization of the containers is highest at the front
of the list and least at the tail. This approach ensures that the VMs at the tail
of the list become idle. Similarly, the containers at the tail of the list, if idle, can
be considered for shutting down. A priority queue based implementation for the
lists of VMs and containers minimizes computational time.

5 Experimental Results and Discussion

In our experiment, we simulated the microservice deployment environment as
presented in this article and obtained the results. In the simulation, different
parameters act as input to the algorithms. The simulation environment assumes
the continuous arrival of microservice requests from multiple users at runtime.
Thus, the algorithm works as an online algorithm to manage dynamic arrivals
of microservice requests.
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Fig. 1. Arrival of Microservice Requests in a Simulation, where the average arrival rate
of microservices is 5000 per scheduling clock.
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Fig. 2. Number of active VMs clock-wise, during a simulation where the arrival rate
of microservice requests is 25000 in a minute.
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Fig. 3. Number of running Containers clockwise during a simulation where the arrival
rate of microservice requests is 25000 in a minute.

5.1 Simulation Environment Setup

The simulation environment is designed based on the Fat-Tree data center net-
work topology that uses 8-ary switches. The environment consists of 128 physical
machines (hosts), where each host can accommodate 8 medium-sized VMs. The
average number of container deployments in a VM is 4; this number may vary
based on the resource availability of the VMs. Hence, the environment consists
of approximately 1024 VMs in which nearly 4096 containers may run simulta-
neously.

In this simulation, the containers are deployed on c7g.xlarge (a compute-
intensive VM type) with 4 vCPU and 8 GiB memory that supports up to 12.5
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Gbps network bandwidth. As per the Microsoft Azure reference manual, one
vCPU supports nearly 150 MIPS6. We consider that a container provides support
upto 120 MIPS. Thus a VM may contain 4 containers at a time if the containers
run at their maximum capacity because a VM is permitted to run at a maximum
85% utilization. If the containers are tuned to a lower MIPS, a VM can deploy
more of them.

Furthermore, we consider that the average execution time of a microservice
request in a container (running in maximum capacity) is 490 ms where microser-
vice execution time varies within the range of 0.05 s to 2.0 s. Thus, every minute,
an average of 122 microservices can be executed. Then, on average, a VM can
complete 122 × 4 = 488 microservice requests per minute. In our simulation, we
vary the number of microservice requests from 5000 to 25000 per minute.

For evaluating the performance of the proposed scheduling policy, we com-
pared with the well-known common industrial strategies –Spread, BinPack, Ran-
dom7,8, and some state-of-the-art strategies– First-Fit and Best-Fit [33].

5.2 Result Analysis

In this simulation, the average arrival rate of microservice requests varies between
5000 and 25000 per minute. The arrival of the microservice requests is dynamic
and follows the Poisson distribution. In this regard, Fig. 1 depicts the arrivals of
microservice requests for a 300-min period where the arrival rate of requests is
5000. Figure 2 shows the number of active VMs using the proposed algorithm in
a simulation where the arrival rate of the microservices is 25000. Figure 3 depicts
the number of containers running in the VMs during a simulation period using
the proposed algorithmic policy.

The results, shown in Fig. 4a, depict that the proposed policy significantly
reduces the number of containers. The number of containers required for the
execution of the microservices is a little high in the Spread policy, and the per-
formances of the First-Fit/Best-Fit policies are close. The number of container
deployments in the proposed method is lower than that for the Spread policy by
12.2–17.36%, and that for First-Fit/Best Fit policies by 6.13–10.57%.

Figure 4b shows the number of active VMs, and we observe that a decrease in
the number of containers deployed results in fewer active VMs. The proposed pol-
icy reduces the number of active VMs by 11.23–15.42% compared to the Spread
policy and 6.43–8.76% compared to First-Fit and Best-Fit policies. Reduction in
the number of active VMs results in significant improvement in monetary cost,
shown in Fig. 4c. This lower cost results from very high VM utilization caused by
efficient consolidation of the containers. In this simulation, the upper threshold
of VM utilization is 85% with a relaxation of 5%.

6 https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-
rehosting/concepts/mainframe-compute-azure.

7 https://docs.docker.com/engine/swarm/.
8 https://github.com/docker-archive/classicswarm/tree/master/scheduler/strategy.

https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/mainframe-compute-azure
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/mainframe-compute-azure
https://docs.docker.com/engine/swarm/
https://github.com/docker-archive/classicswarm/tree/master/scheduler/strategy


46 K. Karmakar et al.

 0

 50

 100

 150

 200

 250

5000 10000 15000 20000 25000

A
ve

ra
ge

 N
um

be
r 

of
 C

on
ta

in
er

s

Arrival rate of Microservices

Spread
First Fit
Best Fit

Proposed

(a) Average number of containers

 0

 10

 20

 30

 40

 50

 60

 70

 80

5000 10000 15000 20000 25000

A
ve

ra
ge

 n
um

be
r 

of
 a

ct
iv

e 
V

M
s

Arrival rate of Microservices

Spread
First Fit
Best Fit

Proposed

(b) Average number of active VMs
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(c) Monetary cost of VM reservation
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(d) Average utilization of containers
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Fig. 4. Results of microservice deployment in containers with varying arrival rate of
microservice requests.

6 Conclusion and Future Scope

This paper presented a policy for allocating the microservice requests to the
containerized cloud environment and auto-scaling the containers and underlying
VMs. The objective is to reduce the monetary cost of task execution and mini-
mize resource usage by maximizing resource utilization of the active VMs. More
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specifically, the microservice requests are categorized based on their types and
consolidated in a minimum number of containers that are deployed in a minimum
number of VMs. We compared the performances of the proposed algorithm with
Spread, First-Fit, and Best-Fit policies. The results of extensive experiments
show that the proposed method significantly reduces the number of containers
and active VMs.

Though the proposed policy improves the utilization of the resources in cloud
infrastructure, there is a scope for further improvement in microservice deploy-
ment. Moreover, we plan to analyze workflow-based microservice deployment
considering communication overhead among the containers. Furthermore, there
is a need to develop a policy that allocates dependent microservices at proximity
to improve performance.
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