q

Check for
updates

An Improved and Efficient Distributed
Computing Framework with Intelligent Task
Scheduling

Pruthvi Raj Venkatesh® and P. Radha Krishna®™

Department of Computer Science and Engineering, National Institute of Technology, Warangal,
Telangana, India
pv712133@student.nitw.ac.in, prkrishna@nitw.ac.in

Abstract. Distributed Computing platforms involve multiple processing systems
connected through a network and support the parallel execution of applications.
They enable huge computational power and data processing with a quick response
time. Examples of use cases requiring distributed computing are stream process-
ing, batch processing, and client-server models. Most of these use cases involve
tasks executed in a sequence on different computers to arrive at the results. Numer-
ous distributed computing algorithms have been suggested in the literature, focus-
ing on efficiently utilizing compute nodes to handle tasks within a workflow on
on-premises setups. Industries that previously relied on on-premises setups for
big data processing are shifting to cloud environments offered by providers such
as Azure, Amazon, and Google. This transition is driven by the convenience of
Platform-as-a-Service offerings scuh as Batch Services, Hadoop, and Spark. These
PaaS services, coupled with auto-provisioning and auto-scaling, reduce costs
through a Pay-As-You-Go model. However, a significant challenge with cloud
services is configuring them with only a single type of machine for performing
all the tasks in the distributed workflow, although each task has diverse compute
node requirements. To address this issue in this paper, we propose an Infelligent
task scheduling framework that uses a classifier-based dynamic task scheduling
approach to determine the best available node for each task. The proposed frame-
work improves the overall performance of the distributed computing workflow
by optimizing task allocation and utilization of resources. Although Azure Batch
Service is used in this paper to illustrate the proposed framework, our approach
can also be implemented on other PaaS distributed computing platforms.

Keywords: Distributed Computing - Azure Batch - Decision Tree - PaaS - CSP

1 Introduction

Cloud transformation and distributed computing are two major fields that organizations
presently emphasize to attain high efficiency in processing large amounts of data. The
use of cloud resources and distributed computing as a PaaS (Platform as a Service)
service has significantly reduced the implementation cost because of the pay-as-you-go

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Devismes et al. (Eds.): ICDCIT 2024, LNCS 14501, pp. 18-33, 2024.
https://doi.org/10.1007/978-3-031-50583-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50583-6_2&domain=pdf
http://orcid.org/0000-0001-5778-4940
http://orcid.org/0000-0002-2764-2818
https://doi.org/10.1007/978-3-031-50583-6_2

An Improved and Efficient Distributed Computing Framework 19

model and techniques such as auto-scaling to optimize resource utilization. While these
techniques are useful in reducing costs, there is a necessity for job scheduling algorithms
that are efficient and adaptable to mitigate the following challenges:

1. Diverse Computing Resource Demands: Distributed computing (DC) jobs involve
various tasks such as data ingestion, processing, and computation, each with dif-
ferent resource needs. While some tasks can work well on low-resource machines,
others require high-memory, multi-core nodes. Distributed computing PaaS services
lack flexibility in dynamically selecting compute nodes based on task type. These
services only allow node initialization at job creation, thus limiting node type diver-
sity. This restriction means tasks must use the same node type, irrespective of their
resource requirements. This inability to dynamically change node type forces plat-
form administrators to use the most optimal node for all tasks thus increasing costs.
Figure 1 shows that only one option can be selected in the “VM Size” dropdown.

2. Inflexible Autoscaling Parameters: Although autoscaling is a useful method for
managing sudden increases in workload, it cannot be handled at the task level. Certain
tasks may require a greater number of nodes, while others may require fewer nodes.
Figure 1 shows an example of Azure Batch where the only option available for
autoscaling during pool creation is to select the total number of nodes using the
“Target Dedicated Nodes” field. The value can be static or dynamically changed
(auto-scaling) based on the number of tasks in the job, processor, or memory.

Below are some of the impacts due to the above limitations:

1. High Execution Cost: High costs arise in distributed job execution when low-
compute tasks are assigned to high-compute machines. For instance, a web service
call that consumes time can be executed on a low-compute machine. However, if this
call is allocated to a high-compute VM, the cost of execution increases.

2. High Execution Time: To achieve cost optimization, the development team would
prefer the most optimal compute node or Virtual Machine (VM) to perform all the
tasks in the job pool. This cost optimization may lead to high execution time as high
compute requirements tasks are executed on low-compute machines.

NODE SIZE

VM size (View full pricing details) * @ :> I Standard D2s_v3

SCALE

Mode (m Auto scale)
Target dedicated nodes @ :> I 0 |

Fig. 1. Configuration screen for adding pool in Azure Batch

20 P. R. Venkatesh and P. Radha Krishna

The Intelligent Task Scheduling (ITS) framework addresses the outlined constraints
by using a decision tree classifier to determine the optimal compute node for a specific
task and its corresponding job pool. For data transfer between tasks, the framework
leverages Message Queue [1] for smaller data blocks, such as text messages and JSSON
objects, while the Blob service [1] is employed for larger blob objects, such as files,
images, and videos.

The main contributions of the paper are as follows:

1. Proposed a novel framework for dynamically allocating compute resources to the DC
tasks called ITS

2. Provided a decision tree classifier to determine the node type of a task. This approach
is extensible as more parameters can be added to the model depending on the task
requirement or through incremental learning.

3. Developed a task-driven node pool to streamline the restricted autoscaling setup.
The auto-scaling configuration at the pool level is utilized to flexibly adjust node
quantities, enabling dynamic expansion or reduction.

The rest of the paper is organized as follows. The related work is described in Sect. 2.
Section 3 discusses the basic components of the PaaS batch service. Section 4 presents
the proposed approach. In Sect. 5, we present the implementation approach in the cloud.
Section 5 discusses the experimental results. Section 6 concludes the paper.

2 Related Work

Researchers have done considerable work in algorithms that optimize the compute
resource utilization time in a distributed computing platform. However, little work has
been done on optimizing resource utilization in a PaaS environment.

Chen et al. [2] proposed an autoencoder-based distributed clustering algorithm that
helped cluster data from multiple datasets and combined the clustered data into a global
representation. The approach highlights the challenges of handling huge and multiple
datasets from different computing environments. Daniel et al. [3] proposed different
distributed computing cloud services that can be used for machine learning in big data
scenarios. Nadeem et al. [4] proposed a machine-learning ensemble method to predict
execution time in distributed systems. The model takes various parameters, such as
input and distributed system sizes, to predict workflow execution time. Sarnovsky and
Olejnik [5] proposed an algorithm for improving the efficiency of text classification in a
distributed environment. Ranjan [6] provided an in-depth analysis of cloud technologies
focusing on streaming big data processing in data center clouds.

Al-Kahani and Karim [7] provided an efficient distributed data analysis framework
for big data that includes data processing at the data collecting nodes and the central
server, in contrast to the common paradigm that provides for data processing only at
the central server. This process was very efficient for handling stream data from diverse
sources. Nirmeen et al. [8] proposed a new task scheduling algorithm called Sorted Nodes
in Leveled DAG Division (SNLDD), which represents the tasks executing in a distributed
platform in the form of Directed Acyclic Graph (DAG). Their approach divides DAG into
levels and sorts the tasks in each level according to their computation size in descending

An Improved and Efficient Distributed Computing Framework 21

order for allocating tasks to the available processors. Jahanshahi et al. [9] presented
an algorithm based on learning automata as local search in the memetic algorithm for
minimizing Makespan and communication costs while maximizing CPU utilization. Sri-
raman et al. [10] proposed an approach called SoftSKU that enables limited server CPU
architectures to provide performance and energy efficiency over diverse microservices
and avoid customizing a CPU SKU for each microservice. Pandey and Silakari [11] pro-
posed different platforms, approaches, problems, datasets, and optimization approaches
in distributed systems.

The approaches in the literature primarily focus on a) optimizing source data orga-
nization for efficient processing, b) task allocation based on execution order to available
resources, and c) utilizing cloud services for distributed computing. However, these
methods do not address the limitations of PaaS DC services. Our proposed framework
tackles the deficiencies of PaaS DC services and offers strategies for enhanced processor
utilization.

3 Batch Basic Concepts

This section introduces the core batch service concepts provided by various cloud
providers. Figure 2 illustrates the components of the batch service.

1. Batch Orchestration: Batch Service provides a comprehensive set of APIs for devel-
opers to efficiently create, manage, and control batch services. This API empow-
ers developers to handle every aspect of a batch, encompassing pool creation, task
allocation, task execution, and robust error handling.

2. Task: A task is a self-contained computing unit that takes input, executes operations
and generates subsequent task results. Configured during batch service creation, tasks
run scripts or executables, forming the core of a DC job which is a sequence of tasks
working toward specific goals. Batch facilitates parallel execution of tasks via its
service APIs.

3. Job Pool: A job pool is a collection of tasks. Any task that must be executed must
be added to the job pool. The batch service orchestrates the execution of this task on
any of the compute nodes available in the node pool.

4. Node Pool: VMs or compute nodes in the job pool are managed by the batch service,
overseeing their creation, task tracking, and provisioning. It offers both fixed VM
numbers and dynamic auto-scaling based on criteria. In batch service, VMs are also
known as compute nodes.

5. Batch Storage: Blob storage is created by the batch service to manage the internal
working of the service. Batch storage is used for storing task execution logs and
binaries. The batch service orchestrates the installation of these binaries on all the
VMs in the node pool.

6. Start-Up Task: The Start-Up task is the first task executed on the VM provisioned
in the Node Pool. It contains the command to download binaries from batch storage
and install them on the provisioned VM.

7. Cloud Services: The VMs in the node pool have access to all the services provided
by the CSP. The VM commonly accesses services such as blob storage or message
queue as a common store to persist and retrieve sharable data among the various tasks
executed in parallel.

22 P. R. Venkatesh and P. Radha Krishna

—»|Create Batch Storage|[———StartUp Task

Cloud Services

Ag N Upload Application
£ Packages
8
%
g A \d
| > g Nodel Node2 Node3 ... Noden Toa
5 CHIECHEECH R
% |- Crate Node Pool |—> Ljr‘ Z
«© A A A Y 1; §
o—| |o—| |o— o—| |[o— 8
—> Create Jobs > |lo—| |loa—| lo—]| lo—| |o—| =
o—| |o—| |o—| |o—| |o— <
Taskl Task2 Task3 Taskn -

Fig. 2. Components of Batch Service

4 Proposed Approach

In this section, we describe the proposed approach that is used for scheduling tasks in
a PaaS distributed computing environment. We use an example of document processing
from an external source to explain the proposed approach. Document processing involves
document download (Task ?#¢), text extraction (Task #;), image extraction and optical
character recognition (OCR)[12] (Task t) for images present in the document, entity
extraction [13] from OCR output (Task 73), text summarization of the text extracted
(Task t4), and updating extracted information to the database (Task ¢5).

4.1 Initialization

The first step in the proposed approach is to identify the different tasks involved. All the
tasks follow a specific sequence of execution called workflow to arrive at the results.
These workflows can be represented as a directed acyclic graph (DAG) [14]. The graph
nodes represent the tasks t € T where T is a set of n tasks in the workflow. The edge
between the nodes e € E represents the tasks’ execution or the message flow between
the tasks. Figure 3 shows the DAG containing 6 tasks and 6 edges. The individual tasks
are represented as #; € T, and the edge between task #; and ¢ is represented as (¢, t;) €
E, which indicates that the #; can be started after #; is completed. It also indicates that
t; sends a message to ¢;. The first task (¢p) with no incoming edge is the starting task,
and a task (¢5) with no outgoing edge is called an exit fask. It can be noted from Fig. 3
that document download is the first task in the workflow. The downloaded file is sent
simultaneously to text extraction and image extraction. The output of text extraction is
sent for text summarization and the text output of image extraction and OCR is sent to
entity extraction. Once both activities are completed the last task would be to store the
extracted summarized text and the entities extracted into a single record in the database.

A message m;; € M is sent between node #; and #; and it is associated with each
edge (t;, t;). Here M is the set of all the messages exchanged between the nodes in the

An Improved and Efficient Distributed Computing Framework 23

workflow. m; ; contains a set of attributes created by the task #; and sent to #; for further
processing. A message m;; comprises of {Mmjngex, ti, mdo, md;, md>,...., md,} where
Mindex 1S @ unique value created by the starting task to uniquely identify all the tasks
in the complete workflow, ¢; is the reference to the source task and md (g ;o) include
all message data attributes required to execute the task ;. Each task #; is associated
with the PaaS queue service gj, created to store the message m; ;, which comes from the
task #; Each task is associated with a compute node attribute set a; = { a;y, a2, ai3,
..., ain } Where a;; represents the compute node properties required to execute task ;.
Table 1 shows task attributes and their values for the tasks shown in Fig. 3. The attributes

include.
to = Document
Download 9o @ a
mO 1 mO 2
t1 =Text G, a, g9, d, tz =Image extraction
Extraction and OCR
tg =Text s t3 = Entity
Summarization Extraction
ts = Database
Update
Fig. 3. DAG Task Processing Order
Table 1. Task Attributes

Task Avg Exec | Avg Exec |Processor Memory External Operating
Name | Time(s) Time Requirement | Requirement | Dependency | System

Bucket
Task tg | 23 (0-25) Low Low Yes Windows
Task £7 | 12 (0-25) Low Low No Windows
Task ¢, | 200 (>50) High High No Linux
Task 73 | 50 (25-50) Medium High No Windows
Task ¢4 | 123 (>50) High High No Linux
Task t5 | 35 (25-50) Medium High No Windows

1. Avg Execution Time: Average time required to execute the task
2. Processor Requirement: The possible values are High, Medium, and Low
3. Memory Requirement: The possible values are High, Medium, and Low

24 P. R. Venkatesh and P. Radha Krishna

4. External Dependency: Jobs that wait for external dependencies like web requests
or API calls.
5. Operating System: The host operating system is required to perform the task.

These attribute sets are gathered during the development phase of the project. It can be
noted from Table 1 that tasks t; (Image extraction and OCR) and t4 (Text summarization)
require high memory, processor, and Linux systems, whereas the rest of the tasks can
be executed on Windows machines. All the distinct attribute set a; are consolidated into
an attribute set A = {aj,a2,a3,...., an}, used for classifier training. Table 2 shows the
distinct attribute set obtained from Table 1.

Table 2. Distinct Attribute Set

Avg Exec Time Processor Memory External Operating
Bucket Requirement Requirement Dependency System
(0-25) Low Low Yes Windows
(0-25) Low Low No Windows
(25-50) Medium High No Windows
(>50) High High No Linux

4.2 C(lassifier Training and Compute Node Mapping

In the second step, a decision tree classifier is trained by taking the distinct compute
node attribute set A and mapping them to a compute node type c; € C, where C = {c,
€2, €3,....,Cp } 18 a set of all the compute node types provided by the CSP. Table 3 shows
the mapping between the attribute set and the compute node types.

The decision tree classifier model takes task attributes A and generates the predictions
C represented as P(A) = C. After the training, the model is used to create tuples (7, C).
The tuple contains the elements (¢;, ¢;), which indicates that task ¢; € T requires predicted
compute node ¢; € C to execute. Table 3 shows the example of the task and compute
node mapping generated from the model.

4.3 ITS Framework

The source documents are represented by the set X = {1, 2, 3, ...n}, where n is the total
number of items in the source dataset. The ITS framework contains three separate flows
that execute in parallel. Figure 4 shows the working of the ITS for the tasks shown in
Fig. 3.

1. Job Initializer: Responsible forinitiating the workflow’s first task by processing input
data. Pseudocode 1 outlines the job initializer steps. It reads and extracts necessary
details from the source data, creating messages in gg for each item. In the example
of Fig. 4, the Job Initializer processes files f0 to fn in the source data repository,

An Improved and Efficient Distributed Computing Framework 25

Table 3. Task Compute Node Mapping

Task Name Compute Node Type

Task 9 Document Download Compute node Type 1
Task ¢; Text Extraction Compute node Type 1
Task ¢, Image Extraction and OCR Compute node Type 2
Task 73 Entity Extraction Compute node Type 3
Task ¢4 Text Summarization Compute node Type 2
Task t5 Database Update Compute node Type 3

generating messages in queue (o containing the location details of the file. The first
message for file f0 in queue g is represented using m)p where (0) in parenthesis
represents the file number similarly for file f7 it is m;).

VM Type 1 B B B . B
_Pool__Jobs ‘ @" n
@ i i tgJobs
: | Job Inltlallzer q0 MO0 M1 M20 .. mmpo
i 4 AN mf0
s H \
i mo 1tu"l(n)o ,1M(1)0,4M(2)0,4| ... M(n)o,1
VM Type 2
Pool Jobs
| [ty Jobs rv-o Zqzmw)oz m(1)02™M(2)02| .. M(n)o,2
- > q3M©0)23M(1)23M(2)23| - M(n)2,3
m2,3
F=—>qa[M0)1,4M(1)1.4M2)1,4 .. |M(n)14
VM Type 3 s daTOnAmNAInER) (n)
Pool Jobs
g
i @_@ @ — s m(0)3.4M(1)4,5M(0)34 .. Mn)4s
= | - -
ts Jobs (3] 3,5
@ o
HCH
O

Fig. 4. ITS Execution and Data Flow

26

P. R. Venkatesh and P. Radha Krishna

Pseudocode 1. Job Initializer Procedural Flow

Input: Input data that need to be processed.
Output: Populate input queue qowith mg)o messages.

1. Begin

2. for all x; € X do

3. Add message mio to the queue qo
4. end for

5. End

2. ITS: Responsible for scheduling the tasks in multiple job pools to ensure optimal
utilization of resources at the task level. The ITS looks for messages in all the queues
and schedules the tasks in the predicted job pool. Pseudocode 2 captures the steps in
the ITS, which are explained below:

a.

b.

ITS keeps monitoring the queues for any messages. In Fig 4 the ITS is monitoring
qo 10 gs.

For the first task in the workflow, messages m) are read from the queue g after
it is populated from the Job Initializer. In Fig. 4 the ITS will read messages mg)o
to mm)o from qo.

. For subsequent tasks message my); ; is read from the queue g; populated from the

task #;. In Fig. 4, the ITS reads messages m)0, t0 my)0,; from g; similarly from
other queues such as myg);, 2 will read from g> and m)2 3 will be read from g3.

. ITS checks the DAG in Fig. 3 to find parents for tasks t;. If multiple parents exist,

the queue g is searched for message myy); for all the parent task t; using the unique
task identifier mingex, and parent tasks #; and merged before executing the task t;. In
example Fig. 4 the tasks 7 to 4 have single parents so message my)y is consumed
by task tg, m(s,1 is consumed by task t;, m) 3 is consumed by task #3, and so on.
In the case of g5, task ts has parent z4 and #3 so the messages m 4 5 and mp3 5 are
merged before executing ¢s.

. ITS identifies the best suitable VM Type required to run the task ¢;.
. ITS creates the task in the ¢; job pool. The message data(imd) in the message are

passed as parameters to task ;.

3. Task Executor: The Task Executor is responsible for executing and writing the
output message back to the child task message queue for the next task execution.
Pseudocode 3 captures the steps in the Task Executor. The flow involves consuming
the parameters sent through message data md, executing the binaries associated with
the task, and writing the results to the child task message queue. The following are
the task executions that happen (see Fig. 4):

An Improved and Efficient Distributed Computing Framework 27

WoOoNAN B W=

_— =
N=or

13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

Pseudocode 2. Tree Optimizer Flow

Input: Messages read from all the queues associated with the tasks.
Output: Create a task in the job pool to process the message read.
Begin
for all gi € Q do
Read message m
Read mindex
¢i = Find compute node for ti in tuple (T,C)
P = Get list of all the parents for task t;
tp = Get the source task from where m is recieved
If length(P) == 1 then
Add the task ti to the pool ci with message contents m
Remove the message m from q;
else
for all p- € P do /* if a task has multiple parents look for message from all the
parents, consolidate and send to the task */
If p. != tp then /* Ignore the message currently read */
mzi = read message with mindex and parent p-
m = merge the message data md from myi to the message m /*this will
combine all the messages from the parent into a single message*/
Remove the message mzi from q;
messagesFound++
endIf
endfor
If length(P) == messagesFound then /* Add task only if all the parent message
are found*/
Add the task ti to the pool ci with message contents m
endIf
endIf
endfor
End

28

P. R. Venkatesh and P. Radha Krishna

PN R LD

Pseudocode 3. Task Execution Flow

Input: Messages read from all the queues associated with the tasks.

Output: Create a task in the job pool to process the message read.
Begin

Read message data md from the task properties

Perform the task t;

Generate the results of task t;

j = Find the next task of ti for DAG

m;j = Create a message from the results of task t;

Add the message mij to the queue qj
End

g.

. 10 (Document Download) downloads the file after reading the external file location

in the message queue g0. The task stores the file in a common location in the local
store and populates the message m0,I in gl and m0,2 in g2 with the location of
the local store in the message.

. t1 (Text Extraction) extracts the text from the document by reading the local file

store location and populates the message g4 with the contents of the extracted text.

. 12 (Image Extraction and OCR) extracts all the images from the document performs

an OCR to extract the text and populates the message g3 with the contents of the
extracted text.

. 13 (Entity Extraction) extracts entities from the message received from #2 con-

taining OCR text output and populates the message in g5 with the entities
extracted.

. t4 (Text Summarization) summarizes the text output obtained from 7; and populates

the message in g5 with the summarized text.

. ITS merges the message data from ¢, containing entities extracted and 4 containing

the summarized text and triggers ¢s.
t5 (Database Update) updates the extracted information into the database.

5 Experimental Results

5.1 Dataset Details

We illustrate our approach for the Oil Industry domain to extract structured and unstruc-
tured data from images. The dataset was sourced from the BSEE website [15], an open
repository of oil and gas industry data. The goal was to make images searchable based on
text content and well-data attributes. The experiment involved processing 1000 images
in Azure, involving tasks such as image download, classification, attribute extraction,
OCR, NLP, and search index update. Figure 5 shows the image categories in the dataset.

5.2 Azure Setup for the Experiment

Figure 6 shows the experimental setup in Azure [1].

An Improved and Efficient Distributed Computing Framework 29

Well Bore Sketch ~ Sun Dry Notice Completion Report Well Reports

Fig. 5. Image Categories of Test Data Set

Azure Storage: Azure blobs are used to store the images.

Processing Layer: Consists of Azure Batch and Scheduled Jobs. Azure Batch is
a distributed computing PaaS platform provided by Azure and Schedule Jobs are
services that run scripts on a schedule. They are configured to execute Job Initialization
and ITS.

Search Layer: Consists of Azure cognitive search service that provides metadata
and free text search from the extracted content.

ML Studio: Hosts the classification model that derives the VM size required for the
task.

Forms Service: Used to extract structured data(attributes) from images. Figure 7
shows attributes such as well name, and lease name extracted from the forms services.
Custom Vision: Used for categorizing the images present in the source dataset, as
shown in Fig. 5.

Storage Table: Used to store the log table containing the task compute node
requirement.

5.3 Experiment Steps

The execution steps are:

1

. Classifier Training: This step involved training the classifier model with training

data containing the task resource requirements. Table 4 contains the training data
with a compute node requirement column containing the Azure VM [1] size most
suitable for running the task.

. Task Attribute Update: This step involved adding task attributes along with

execution times into the storage table. Table 5 shows the entries in the Storage Table.

. Compute Node Prediction: Run the classification model against the entries in the

table storage (Table 5) to determine the VM size required for running the tasks. Table 6
contains the compute node mapping obtained for each task in the Job. The entries in
Table 6 are updated to the Storage Table for scheduling the tasks.

. Run distributed Job using Azure Batch: The experiment involved creating two

pools, Low-Cost Pool containing Standard_A4_v2 [16] (4 core, 8 GB RAM) VM
and High-Cost Pool containing Standard_A8_v2 [16] (8 core, 16 GB RAM) VM. The

30

P. R. Venkatesh and P. Radha Krishna

=

Unstructured | | Microsoft Azure
Data ' Azure Storage | | Processing | | Azure
Layer .| Cogpnitive Skills |

= s

Storage Blob * . Azure Batch H PAN

P P ML Studio
. @ P

| PDF |
ﬂ o
Azure P =
3 ioraos Quee Schisduisd. fabs ! Forms Service |
[

! @ . | Searchlayer | |
Storage Table H 0

| i Azure Cognitive | | Computer Vision!
! Lo Search ! i

Fig. 6. Experimental setup of Azure Batch

FIELD: ST-54 LEASE: OCSG-019 | WELL: G-14 {
»y [

DATE: 20095

"Eield":[
“ST-54"

1,
“Lease":[
"0CSG-019"

1

“well”:[
"G-14"

1,

“BoreDepth™: [
"20\" - 3

53"
1,
"TopDepth™: [
"19-3/4\" - 2496'"
]
}

Fig. 7. Structured Data Extraction

number of machines used in the experiment was limited, considering the execution

cost involved. The experiment involved three execution modes.

a) Low Cost — High Execution Time Approach: In this mode, we allocated
three Standard_A4_v2 VMs in the Low Compute Pool and allocated the task
of extracting data from 1000 images.

b) High Cost — Low Execution Time Approach: In this mode, we allocated
three Standard_A8_v2 VMs in the High Compute Pool and allocated the task
of extracting data from 1000 images.

c) ITS Approach: In this mode, we allocated two Standard_A1_v2 VMs in the Low
Compute Pool and a single Standard_A8_v2 VM in the High Compute VM pool.

An Improved and Efficient Distributed Computing Framework 31

Table 4. Classifier Training Data

Avg Exec | Processor Memory External Operating | Compute Node
Time Requirement | Requirement | Dependency | System Requirement
Bucket

(0-10) Low Low Yes ‘Windows Standard_A4_v2
(0-10) Low Low No Windows Standard_A4_v2
(10-50) High High No Windows | Standard_AS8_v2

Table 5. Task Attributes

Task Avg Exec | Avg Exec |Processor Memory External Operating

Name Time(s) Time Requirement | Requirement | Dependency | System
Bucket

Classify |1.23 (0-10) Low Low No Windows

Image

Extract |7.11 (0-10) Low Low No Windows

Fields

OCR 16.13 (10-50) High High No Windows

Text

Search 0.19 (0-10) Low Low No Windows

Service

Update

Table 6. Task Compute Node Mapping

Task Name Compute Node Requirement
Load Standard_A4_v2
Classify Image Standard_A4_v2
Extract Fields Standard_A4_v2
OCR Text Standard_AS8_v2
Search Service Update Standard_A4_v2

We used the classification model to predict the task job pool. The allocation of
tasks to the pool depended on the output of the prediction model and the number of
jobs in the pool. If the job pool length is less than the threshold set to 10 tasks, any
job will be allocated to the respective pool. The OCR extraction task was primarily
allocated to the high compute pool, whereas all the other tasks were allocated to
the low compute pool. This allocation procedure ensures that no processor is idle
during the data extraction.

32 P. R. Venkatesh and P. Radha Krishna

Table 7 shows the execution time in all three modes. There is an 8% decrease in
execution time of the ITS Approach compared to the Low Cost- High Execution Time
Approach and a total reduction of 68% in cost when the ITS Approach is compared with
the High Cost — Low Execution Time Approach. The percentage reduction in time is
calculated using the total execution time captured in Table 7. The total reduction in cost
is obtained by multiplying the execution time with the unit price for VM usage from the
Azure VM price sheet [16]. A similar experimental setup can be done on batch services
provided by other CSPs such as AWS [17] and Google [18].

Table 7. Batch Execution Results

Activity Low Cost — High Execution High Cost — Low Execution ITS Approach

(in secs) Time Approach Time Approach
Low Low Low High High High Low Low High
Compute | Compute | Compute | Compute | Compute | Compute | Compute | Compute | Compute
VM VM VM VM VM VM VM VM VM

Classify 9.76 9.01 9.95 9.20 8.87 9.89 13.25 13.56 1.10

Image

Form 42.17 43.7 43.0 42.03 43.87 42.87 60.52 61.1 5.04

Data

Extraction

OCR 131.3 132.4 130 93.85 94.61 94.21 86.72 85.92 157.67

Search 1.58 1.34 1.44 1.18 1.45 1.37 1.70 1.56 0.14

Service

Update

Total 9.28 7.39 8.14

Execution

(min)

6 Conclusion

Distributed systems are computing platforms that can be used to handle large amounts of
data processing. However, they can be costly depending on the time it takes to complete
a job. This paper introduces a new framework that optimizes both the execution time
and cost associated with running data processing tasks on a massive scale. The sug-
gested technique includes the dynamic identification of the compute nodes to execute
the task based on the classification model’s output. This model can be trained to optimize
execution cost and execution time or additionally, it can be easily retrained with new
parameters to enhance the system’s flexibility in accommodating new rules.

References

1. Directory of Azure Cloud Services | Microsoft Azure. https://azure.microsoft.com/en-in/pro
ducts/

https://azure.microsoft.com/en-in/products/

10.

11.

12.
13.
14.
15.

17.

18.

An Improved and Efficient Distributed Computing Framework 33

. Chen, C.-Y., Huang, J.-J.: Double deep autoencoder for heterogeneous distributed clustering.

Information 10(4), 144 (2019). https://doi.org/10.3390/info10040144

. Pop, D., luhasz, G., Petcu, D.: Distributed platforms and cloud services: enabling machine

learning for big data. In: Mahmood, Z. (ed.) Data Science and Big Data Computing, pp. 139—
159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31861-5_7

. Nadeem, F., Alghazzawi, D., Mashat, A., Fageeh, K., Almalaise, A.: Using machine learn-

ing ensemble methods to predict execution time of e-science workflows in heterogeneous
distributed systems. IEEE Access 7, 25138-25149 (2019). https://doi.org/10.1109/ACCESS.
2019.2899985

. Sarnovsky, M., Olejnik, M.: Improvement in the efficiency of a distributed multi-label text

classification algorithm using infrastructure and task-related data. Informatics 6(12), 1-15
(2019). https://doi.org/10.3390/informatics6010012

. Ranjan, R.: Streaming big data processing in datacenter clouds, pp-78—83. IEEE Computer

Society (2014)

. Al-kahtani, M.S., Karim, L.: An efficient distributed algorithm for big data processing. Arab.

J. Sci. Eng. 42(8), 3149-3157 (2017). https://doi.org/10.1007/s13369-016-2405-y

. Bahnasawy, N.A., Omara, F., Koutb, M.A., Mosa, M.: Optimization procedure for algorithms

of task scheduling in high performance heterogeneous distributed computing systems. Egypt.
Inform. J. 12(3), 219-229 (2011). https://doi.org/10.1016/j.ij.2011.10.001. ISSN 1110-8665

. Jahanshahi, M., Meybodi, M.R., Dehghan, M.: A new approach for task scheduling in

distributed systems using learning automata. In: 2009 IEEE International Conference on
Automation and Logistics, pp. 62—67 (2009). https://doi.org/10.1109/ICAL.2009.5262978
Sriraman, A., Dhanotia, A., Wenisch, T.F.: SoftSKU: optimizing server architectures for
microservice diversity @scale. In: 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), pp. 513-526 (2019)

Pandey, R., Silakari, S.: Investigations on optimizing performance of the distributed comput-
ing in heterogeneous environment using machine learning technique for large scale data set.
Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.07.089. ISSN 2214-7853
Optical character recognition. https://en.wikipedia.org/wiki/Optical_character_recognition
Entity Extraction. https://en.wikipedia.org/wiki/Named-entity_recognition

Directed acyclic graph — Wikipedia. https://en.wikipedia.org/wiki/Directed_acyclic_graph
Scanned Well Files Query. https://www.data.bsee.gov/Other/DiscMediaStore/ScanWellFiles.
aspx

. Pricing - Windows Virtual Machines | Microsoft Azure. https://azure.microsoft.com/en-in/pri

cing/details/virtual-machines/windows/

Getting Started with AWS Batch - AWS Batch. https://docs.aws.amazon.com/batch/latest/use
rguide/Batch_GetStarted.html#first-run-step-2

Batch service on Google Cloud. https://cloud.google.com/blog/products/compute/new-batch-
service-processes-batch-jobs-on-google-cloud

https://doi.org/10.3390/info10040144
https://doi.org/10.1007/978-3-319-31861-5_7
https://doi.org/10.1109/ACCESS.2019.2899985
https://doi.org/10.3390/informatics6010012
https://doi.org/10.1007/s13369-016-2405-y
https://doi.org/10.1016/j.eij.2011.10.001
https://doi.org/10.1109/ICAL.2009.5262978
https://doi.org/10.1016/j.matpr.2021.07.089
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://www.data.bsee.gov/Other/DiscMediaStore/ScanWellFiles.aspx
https://azure.microsoft.com/en-in/pricing/details/virtual-machines/windows/
https://docs.aws.amazon.com/batch/latest/userguide/Batch_GetStarted.html#first-run-step-2
https://cloud.google.com/blog/products/compute/new-batch-service-processes-batch-jobs-on-google-cloud

	An Improved and Efficient Distributed Computing Framework with Intelligent Task Scheduling
	1 Introduction
	2 Related Work
	3 Batch Basic Concepts
	4 Proposed Approach
	4.1 Initialization
	4.2 Classifier Training and Compute Node Mapping
	4.3 ITS Framework

	5 Experimental Results
	5.1 Dataset Details
	5.2 Azure Setup for the Experiment
	5.3 Experiment Steps

	6 Conclusion
	References

