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Abstract. The increasing number of wireless devices has raised signif-
icant global concerns regarding energy efficiency and spectrum scarcity.
To address this, wireless energy harvesting technology has emerged as
a potential solution. By utilizing conventional radio frequency trans-
missions, this technology can extend the battery life of mobile devices
and improve the operational period of energy-constrained wireless net-
works. This study focuses on a wireless energy harvesting and infor-
mation transfer protocol within cognitive radio relay networks. In this
setup, an energy-constrained secondary user shares the spectrum and
simultaneously harvests energy while assisting with the primary trans-
mission. To optimize the allocation of transmission time and harvested
power, a challenging computational problem is formulated. The goal is
to enhance the utility of the secondary user. To tackle this computation-
ally hard problem, a heuristic solution based on a joint time-and-power
allocation strategy is proposed. This approach achieves an impressive
98.5% accuracy while comparing the utility of the secondary users to the
optimal benchmark results.

Keywords: Primary users · Secondary users · Energy Harvesting ·
Optimal Allocation · Utility

1 Introduction

Due to growing environmental concerns and the rising demand for wireless ser-
vices, energy efficiency and spectral efficiency are two crucial design criteria in
wireless communications [11]. Energy harvesting (EH) has recently gained pop-
ularity as a way to extend the lifespan of wireless networks with limited energy
source. When compared to conventional energy sources like batteries, which
have limited operating times, energy harvesting from the environment could
offer wireless networks an endless source of power [20]. Radio frequency (RF)
signals hold a promising future for wireless energy harvesting (WEH) in addition
to other widely used energy sources like solar and wind, because it can also be
used to simultaneously transmit wireless information. Recently, it is shown that
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simultaneous wireless information and power transfer (SWIPT) becomes appeal-
ing since it realizes both useful utilization of RF signals at the same time, and
thus potentially offers great convenience to mobile users [12,21]. On the other
hand, cognitive radio (CR) is a promising solution concept to improve spectrum
utilization by allowing spectrum sharing, where unlicensed or secondary users
(SUs) can use the unused portion of licensed spectrum resources of licensed or
primary users (PUs) [1,2]. Thus, merging of CR technology with energy harvest-
ing provides an efficient way of utilizing both spectrum and energy to prolong
the operational time of SUs.

Many of the recent works have studied energy efficient communication in
Cognitive Radio Network (CRN) using either the popular Time Switching (TS)
based or Power Splitting (PS) based SWIPT technology. In [21], TS as well as
PS based SWIPT techniques were separately applied on SU receiver side, and
the rate-energy trade-off analysis in both techniques was investigated. Another
work based on PS and TS receiver architectures at the relay node was stud-
ied in [19], and proposed a PS-based relaying protocol and a TS-based relaying
protocol separately to enable wireless information transferring and EH at the
battery-free relay node. Here, the end-to-end error performance and through-
put of the proposed protocol during secondary transmission were investigated.
In [18], an optimal power allocation problem using a PS-based approach within
an energy-constrained CRN was proposed. This investigation encompassed sev-
eral key aspects, including assessing outage probabilities for both PUs and SUs,
evaluating system energy efficiency, and examining the trade-off between data
rate and energy consumption. Another work addressed in [9], a PS-based SWIPT
technology was implemented within a cooperative CRN. In this scenario, energy-
constrained SUs harnessed energy not only from the primary transmitter’s (PT)
received signal but also from interfering sources. The research delved into the
performance of two relay cooperation schemes, examining the tradeoff between
the PU’s and SU’s performance, particularly concerning outage probabilities. In
[17], author addressed an optimization problem involving transmitting time and
transmission power of SU within an underlay RF energy-harvesting CRN. Their
objective was to maximize the energy efficiency of the secondary network by
enabling the SUs to reserve the residual energy after previous slots for upcom-
ing transmissions. A rapid iterative algorithm based on Dinkelbach’s method was
proposed to achieve optimal resource allocation as well the QoS of SUs. In [6],
a hybrid TS-PS model was established for EH in a bidirectional relay assisted
communication and explored an end-to-end outage probability of the network.
Primarily, this work solved an optimization problem of outage probability with
respect to relay placement and time allocation factor. Another work [8] explored
techniques for simultaneous EH and information transfer within an EH-based
CRN model. This approach combined both TS and PS receiver architectures
to derived and analyzed optimal expressions for transmission power and energy
harvesting power to attain maximum energy efficiency within the secondary net-
work. Finally, in the work [14], a radio-frequency (RF) energy harvesting enabled
CRN adopts a PS-based SWIPT architecture. The study addresses two signif-
icant challenges: prolonging network lifetime and enhancing link reliability by
accounting for transceiver hardware impairments.
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The majority of the works cited above focus on either TS or PS SWIPT
technology separately during the optimization of harvested energy and primary
information decoding rates at SU. To the best of our knowledge, there is limited
research, such as [6] and [8], where integration of TS and PS techniques is used
in the CRN framework to harvest energy from RF signal. However, these studies
do not tackle the vital issue of optimizing the utility and operational duration of
energy-constrained SUs. By simultaneously employing both of these techniques
during energy harvesting phase, SUs can accumulate a greater amount of energy
compared to their separate uses, which in turn contributes to extending the lifes-
pan of the secondary network. Therefore, this research introduces a unified model
that integrates TS and PS SWIPT technology for EH in energy-constrained SUs
within a cognitive radio relay network. Subsequently, it optimizes the allocation
of harvested power to enhance the effectiveness of the secondary network. Each
SU harvests maximum energy from the received primary signal and successfully
forwards primary and secondary information to the intended receivers. Accord-
ingly, we formulate an optimization problem to achieve the optimal allocation
of TS-PS factors and harvested power. Heuristic approach is applied to obtain
a near-optimal solution for this problem. Simulation-based results demonstrate
that the heuristic solution succeeds in attaining the maximum possible utility
for both the energy-constrained SUs and PUs.

The rest of the paper is organized as follows. Section 2 outlines the sys-
tem model and the formulated optimization problem. The solution concept for
the proposed optimization problem is discussed in Sect. 3. In Sect. 4, numerical
results are analyzed, and finally, the paper is concluded in Sect. 5.

2 System Model and Assumptions

We consider a cognitive radio network framework with a set of M PU transceiver
pairs, denoted as M = {(PT1, PR1), .., (PTi, PRi), .., (PTM , PRM )} and a
set of N SU transceiver pairs, denoted as N = {(ST1, SR1), .., (STj , SRj),
.., (STN , SRN )}. The assumption is that the physical distance between PT
(transmitter) and PR (receiver) exceeds the effective transmission range. Con-
sequently, a relay node (ST ) is needed to forward primary information to PR in
order to attain at least the target rate Rtar

pt . At the same time, ST accepts the
offer from the PU, exchanging the rendered relay service for a spectrum oppor-
tunity to enable secondary communication towards SR. It is important to note
that ST s are energy-constrained nodes, operating in an energy-harvesting data-
transmission mode with a minimum target rate requirement of Rtar

st . Moreover,
ST s are equipped with rechargeable batteries and feature a non-linear energy
harvester [4,7,14], which allows them to harvest energy from the received pri-
mary signal. In this paper, the terms SU and ST , and PU and PT , are used
interchangeably.

The proposed work considers information transmission between PT and PR
as illustrated in Fig. 1. In this scenario, a single PU transmits primary informa-
tion to PR with the assistance of a suitable ST acting as a relay node. The entire
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Fig. 1. Time-slot division of a PU band for EH and ID

time duration T of the PU band is subdivided into three sub-slots: T1, T2, and T3.
In the T1 sub-slot (referred to as Phase 1), PT transmits its information towards
the appropriate ST .Upon receiving the primary signal, ST harvests energy from
it while simultaneously decoding it for further processing. During the T2 time
(termed as Phase 2), ST uses a portion of its harvested energy to forward the
primary signal to PR through the Decode and Forward (DF) relaying technique.
Finally, in the T3 time (termed as Phase 3), ST performs secondary transmission
using the remaining harvested energy.

Drawing on the principles of SWIPT and Dynamic Power Splitting (DPS)
technology [13,21] a joint TS-PS technique is applied during the T1 time slot,
as depicted in Fig. 1. The T1 time is further subdivided into two parts to serve
the purposes of energy harvesting and information decoding. The time-switching
factor α (0 < α < 1) determines the duration αT1 allocated for energy harvesting,
during which ST utilizes the entire signal power solely for this purpose. The
remaining time (1−α)T1, is divided into two power streams with a power ratio
of ρ : (1−ρ). Here, ρ (0 < ρ < 1) is used for energy harvesting, and (1−ρ) is used
to decode the primary information at ST . Therefore, in the proposed technique,
ST can harvest energy during both αT1 and (1−α)T1 time fractions, utilizing
two different power values. However, information can only be decoded during
the (1−α)T1 time fraction.
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2.1 Utility of PUs and SUs

During the T1 time, when PT transmits its information to ST , the received
signal at ST , denoted as Y I

pt,st, can be expressed as shown in Eq. (1) [17].

Y I
pt,st =

√
Ppthpt,stX

I
pt + na + ncov (1)

Here, Ppt represents the transmit power of PT , and hpt,st is the channel
gain between PT and ST . The channel gain is calculated as hpt,st = |dpt,st|−2,
where 2 corresponds to the pathloss index [15]. Additionally, XI

pt represents the
transmitted signal from PT intended for PR. The term na ∼ CN (0, σ2

1) denotes
the narrowband Gaussian noise introduced by the antenna at ST , while ncov ∼
CN (0, σ2

cov) refers to the RF band to baseband signal conversion noise at ST .
Taking inspiration from [21] and [18], we model the maximum possible harvested
energy (EHmax

st ) at ST (in Joule) and the maximum achievable instantaneous
decoding rate (Rmax

T1
) at ST (in bps) during the T1 time using Eqs. (2) and (3).

EHmax
st = T1ηPpt |hpt,st|2 (2)

where η is the energy conversion efficiency (0 < η < 1) at ST .

Rmax
T1

= B ∗ T1 ∗ log2(1 + SNRpt,st)

= B ∗ T1 ∗ log2(1 +
Ppt |hpt,st|2
n2

a + n2
cov

)
(3)

where B is the available bandwidth in PU band.
Now, building upon the proposed joint TS-PS technique shown in Fig. 1, the

harvested energy at ST (Eq. (2)) can be reformulated for this work as given in
Eq. (4) below.

EHprop
st = αT1ηPpt |hpt,st|2 + (1 − α)T1ηρPpu |hpt,st|2

= (α + (1 − α)ρ)T1ηPpt |hpt,st|2
(4)

Likewise, the information decoding rate at ST (Eq. (3)) can be reformulated
for this work as given in Eq. (5) below.

Rprop
T1

= B ∗ T1 ∗ log2(1 + SNRpt,st)

= B ∗ (1 − α)T1 ∗ log2(1 +
(1 − ρ)Ppt |hpt,st|2
(1 − ρ)n2

a + n2
cov

)
(5)

Drawing inspiration from [14] and [4], the harvested power at ST (HP prop
st )

can be derived from the harvested energy, as expressed in Eq. 4. This harvested
power is then utilized by ST for relaying primary information and transmitting
secondary information.

During the T2 time, ST forwards (1 − ρ)Y I
pt,st towards PR using a portion

of the harvested power, specifically x.HP prop
st , and reserves y.HP prop

st power for
secondary transmission during Phase 3. Here, 0 < x, y < 1. Consequently, the
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received signal-to-noise ratio (SNR) at PR can be modeled as given in Eq. (6)
below.

SNRst,pr =
x.HP prop

st
|hst,pr|2

x.n2
a + n2

cov

(6)

Likewise, the instantaneous achievable rate at PR for the proposed work
during T2 time (Rprop

T2
) can be formulated as given in Eq. (7).

Rprop
T2

= B ∗ T2 ∗ log2(1 + SNRst,pr) (7)

At this juncture, we can analyze the cooperative capacity (Ccoop
pu ) achieved

by PT through DF relaying assistance from ST over the duration of T1 + T2.
Building on insights from [16], the attained cooperative capacity (Ccoop

pu ) over
bandwidth B and the time duration of T1+T2 can be modeled using the Shannon-
Hartley theorem [10,13] as shown in Eq. (8).

Ccoop
pu = B ∗ (T1 + T2) ∗ log (1 + SNRpt,st + SNRst,pr) (8)

Therefore, the utility of PU (Upu in bps/Joule) can be represented as a frac-
tion of the achieved Ccoop

pu , relative to the energy consumption of PU during T1

time, as defined in Eq. (9) below.

Upu =
Ccoop

pu ∗ a

ECpuT1

(9)

where a is the gain per unit of cooperative capacity achieved at the Maximal
Ratio Combining output.

Lastly, in the duration of T3 time, ST engages in secondary communication
by transmitting its signal towards SR with a power of y.HP prop

st . Consequently,
the received SNR at SR is formulated as presented in Eq. (10) below.

SNRst,sr =
y.HP prop

st
|hst,sr|2

x.n2
a + n2

cov

(10)

Likewise, the instantaneous achievable rate at SR for the proposed work
during T3 time (Rprop

T3
) can be formulated as shown in Eq. (11).

Rprop
T3

= B ∗ T3 ∗ log2(1 + SNRst,sr) (11)

The utility of SU (Usu in bps/Joule) is now expressed as a fraction of the
achieved instantaneous achievable rate of ST during Phase 3, relative to the
total energy consumption (EC) of ST throughout T2 and T3 time. This model is
formulated as shown in Eq. (12) below.

Usu =
Rprop

T3

x.HP prop
st︸ ︷︷ ︸

EC during T2

+ y.HP prop
st︸ ︷︷ ︸

EC during T3

(12)
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2.2 Formulation of Optimization Problem

In this context, we present the optimization problem aimed at optimizing the
allocation of transmission time and harvested power to enhance the utility of the
secondary user. The objective of this optimization is to maximize Usu, achieved
by maximizing Rprop

T3
, while minimizing the total energy consumption by ST .

This optimal allocation is determined by the decision variables α, ρ, x, and y.
The key to achieving the maximum Rprop

T3
lies in increasing SNRst,sr (as

shown in Eq. (11)), which can be attained through three primary factors: (i)
increasing HP prop

st , (ii) optimizing |hst,pr|, and (iii) finding the optimal allocation
for power allocation factors x and y. By effectively managing these variables, we
can significantly enhance the utility of the secondary user and optimize the
resource consumption by ST . To achieve factor (i), we can maximize EHprop

st

at ST by allocating larger values of α and ρ as given in Eq. (4). However,
while maximizing EHprop

st , ST must simultaneously monitor the obtained Rprop
T1

to meet Rtar
pt . Hence, optimal allocation of α and ρ is crucial at this stage. In

contrast, factor (ii) depends solely on the distance between PT and ST and
remains independent of any decision variables discussed in this paper. For factor
(iii), ST naturally prefers to allocate the maximum possible y during T3 time
by assigning the minimum possible x for T2 time. However, in the process of
reducing x, ST must be attentive to the gradual reduction of Rprop

T2
(Eq. (7))

while ensuring it satisfies Rtar
pt . Additionally, allocating a larger y increases the

energy consumption of ST during T3 time, which consequently reduces Usu (Eq.
(12)). As a result, trade-offs arise that necessitate the optimal allocation of
decision variables α, ρ, x, and y, satisfying PU constraints while maximizing
Usu. Hence, we formulate the optimization problem for the same, as depicted in
Eq. (13) below.

OP: max
α,ρ,x,y

Usu

s.t. (a) 0 < α, ρ < 1
(b) 0 < x, y < 1

(c) (1 − (x + y)).HP prop
st ≤ Pmin

st

(d)Rtar
pt ≤ Rprop

T1

(e)Rtar
pt ≤ Rprop

T2

(f)Rtar
st < Rprop

T3

(13)

where Pmin
st represents the minimum required power for an ST to remain active

in the network.
However, it should be noted that the proposed optimization problem (Eq.

(13)), exhibits a non-linear nature, and solving nonlinear systems is well-known
to be an NP-hard problem [3]. In a related study [5], Gaganov demonstrated that
nonlinear systems with polynomial equations having rational coefficients also
fall under the NP-hard category. The proposed objective function (Eq. (13))
has polynomial equations, and the decision variables, viz. α, ρ, x, and y all
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act as coefficients with rational boundaries (each of them within the range (0,
1)). Therefore, inspired by [3,5] it can be stated that the proposed problem
is also a hard problem that is intractable and difficult to solve in polynomial
time. Such a non-linear and NP-hard nature of the optimization problem calls
for advanced optimization techniques to find approximate or optimal solutions
efficiently. Heuristic approaches are found widely used to address such problems.
Therefore, a numerical analysis-based quick iterative heuristic approach can be
applied to decide the near optimal solution of α, ρ, x and y with the aim of
maximizing Usu as well as Upu in polynomial time.

3 Proposed Heuristic Solutions

To tackle the formulated optimization problem involving decision variables α,
ρ, x, and y, we propose two iterative heuristic solutions based on conventional
numerical methods. These solutions aim to achieve near-optimal resource allo-
cation points α∗, ρ∗, followed by x∗ and y∗. For simplicity, we divide the entire
optimization problem into two phases. In the first phase, we focus on analyzing
the maximum harvested energy at ST by optimally allocating α and ρ values
based on Eq. (4) and (5). Subsequently, in the second phase, we achieve opti-
mal allocation of x and y, effectively utilizing the harvested energy to maximize
Usu while adhering to all the associated constraints given in Eq. (13). The basic
steps involved in both heuristic solutions are illustrated through flowcharts, as
provided in Subsects. 3.1 and 3.2. These heuristic approaches offer quick itera-
tive solutions to efficiently tackle the optimization problem, providing practical,
near-optimal solutions for the resource allocation variables.

3.1 Flowchart for Allocation of α∗ and ρ∗

The range of α and ρ is confined within the interval (0, 1). The underlying
principle of the proposed strategy revolves around iteratively narrowing down
this (0, 1) range towards the optimal α∗ and ρ∗ points, where the maximum
EHprop

st can be attained. The step-wise flow of the proposed allocation scheme
for α∗ and ρ∗ is presented as shown in Fig. 2.

3.2 Flowchart for Allocation of x∗ and y∗

The ranges of both x and y are constrained within (0, 1). The fundamental con-
cept behind the proposed strategy entails partitioning the given (0, 1) range into
two sub-ranges for x and y dynamically. As the sub-range of x narrows towards
the left (i.e., towards 0) in the quest for x∗, the sub-range of y simultaneously
expands in search of y∗ that maximizes Usu. The step-wise flow of the proposed
allocation scheme for x∗ and y∗ is presented as shown in Fig. 3.
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Start

Range of α and ρ = (0, 1).
Set, low = 0, high = 1, ρnew = 0.5 and Δρ = 0.05.

Calculate:  αm= (low+high)/2,
αm-1= (low+high)/2,  αm+1= (low+high)/2.

Calculate EH() and R() for αm-1, αm, 
αm+1 points based on Eq. (4) and (5).  

IF (EHαm+1 and Rαm+1 >> EH()

and R() values obtained for 
both αm, αm)?

Set, low = αm+1, high = 1,            
ρnew = ρnew + (ρnew - Δρ).

Calculate:  αm= (low+high)/2,
αm-1= (low+high)/2,  αm+1= (low+high)/2.

IF difference between 

reach negligible value?? 

1.
2. Termed the point as α for which MAX(EH) is achieved.
3. Extract corresponding ρnew for obtained α and termed it as ρ*.

YES

YES

Set, low = αm, high = αm+1,            
ρnew = ρnew + (ρnew + Δρ).

No

IF (EHαm and Rαm

>> EHαm-1 and 
R αm-1)?

YES

No

Set, low = 0, high = αm-1,            
ρnew = ρnew + (ρnew + Δρ).

No

End

Fig. 2. Flowchart for the allocation of α∗ and ρ∗
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Start

Range of x = (0, 1).
Set, xlow = 0, xhigh = 1.

Calculate:  xm= (xlow + xhigh)/2,
xm-1= (xlow + xm)/2, xm+1= (xm + xhigh)/2

Calculate RT2() for xm-1, xm, xm+1 points based on Eq. 
(7) and selects the one among the three points for 

which RtarPT 

IF difference between 
xm+1 and ym-1 reach 
negligible value?? 

Declare previous USU as the 
maximum obtainable USU

and termed the associated 
xm+1 as x* and ym-1 as y*.

No

Update xlow = xlow, xhigh= xm+1, 
ylow= xhigh and yhigh= yhigh.

IF current USU is >> 
previous USU stored 

in the array??

No

Yes

Set that x point as xhigh and keep xlow as 
it is. Set ylow= xhigh and yhigh= 1.

Calculate xm, xm-1, xm+1 as step 2 and apply 
same concept to calculate ym, ym-1, and ym+1.

Calculate USU for xm+1 and ym-1 points 
based on 
rate constraint of RT2() and RT3() and store 

corresponding USU in an array. 

Declare current USU as the 
maximum obtainable USU

and termed the associated 
xm+1 as x* and ym-1 as y*.

Yes

End

Fig. 3. Flowchart for the allocation of x∗ and y∗

3.3 Proof of Convergence of the Proposed Solutions

In the formulated optimization problem, all decision variables are confined within
the range (0, 1). The proposed heuristic solutions aim to determine optimal
points for each decision variable within this range. In the first solution, the
search for α∗ and ρ∗ is designed such that as the number of iterations increases,
the range (0, 1) progressively narrows towards the optimal α and ρ values. These
values enable ST to achieve maximum EHprop

st .
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In the second solution, the ranges of x and y are managed within a single
(0, 1) range. As the number of iterations increases, the new range of x ∈ (0, 1)
starts to contract in search of x∗, while the new range of y ∈ (0, 1) begins to
expand in pursuit of the optimal y∗ point. This iterative process continues until
the x and y values of the current iteration yield a higher Usu than the values
obtained in the previous iteration. This approach allows the solution to converge
towards the optimal allocation of x and y that maximizes the utility Usu within
the given range constraints.

At each iteration, ST calculates EHprop
st and Usu for the corresponding allo-

cation points αm−1, αm, αm+1, xm+1, and ym−1. It then verifies their intervals
on a per iteration basis. The process continues until the difference between the
allocation points reaches a negligible value, approaching zero. As the proposed
solutions reach this negligible difference, they terminate, yielding the maximum
achievable EHprop

st and Usu for their respective allocation points. Thus, we can
conclude that the proposed heuristic solutions terminate when the difference
between αm−1, αm, αm+1, and xm+1, ym−1 approaches almost zero or becomes
zero.

4 Simulation Results and Comparison Analysis

The proposed solutions are evaluated through a simulation study conducted
using MATLAB 7 (R2017a) on a 64-bit PC powered by a core i5 processor and
8 GB of RAM. The simulation is based on a Cognitive Radio (CR) network
comprising M PUs and N SUs. Both the PUs and SUs are randomly distributed
in a square area measuring 1000 × 1000 m2. In the simulation setup, the trans-
mission power of PT is fixed at 1 W, and each time slot’s duration is set to
T1 = T2 = T3 = 10 s. Also the PU band’s bandwidth is maintained at 1 MHz
[16]. Moreover, the PU transceiver pairs are set at an average distance of approx-
imately 30 m, while the SU transceiver pairs are spaced at an average distance of
about 20 m. Furthermore, PU channels are modeled as Additive White Gaussian
Noise (AWGN) channels, with the noise variance set to 1 mW. These parameters
and settings provide the basis for the comprehensive evaluation of the proposed
solutions in the context of the CR network under study..

The proposed solution technique, as discussed in Subsect. 3.1, is employed
to obtain the graph for maximum energy harvesting at ST through appropri-
ate allocation of α∗ and ρ∗. The corresponding results are presented in Fig. 4,
achieving an accuracy of 97.7% compared to the optimal (benchmark) result.
Furthermore, when considering the individual values of α∗ and ρ∗, the proposed
solution demonstrates 96% and 95% correctness, respectively, in comparison to
the benchmark α∗ and ρ∗. These findings highlight the effectiveness and reliabil-
ity of the proposed solution technique in obtaining near-optimal allocation points
for α and ρ, thus leading to significant improvements in the energy harvesting
at ST.

Once more, the graph depicting the maximum Usu, attained by suitably
allocating x∗ and y∗ utilizing the solution technique discussed in Subsect. 3.2,
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Fig. 4. Max. Harvested Energy vs. optimal allocation of α∗ and ρ∗ with η = 1

Fig. 5. Max. Utility of SU vs. optimal allocation of x∗ and y∗

is presented in Fig. 5. This approach achieved a high accuracy of 98.5% when
compared to the optimal result. Furthermore, in the case of x∗ and y∗ allocation,
the proposed technique demonstrated 97.8% and 98% correctness, respectively,
when compared to the optimal x and y. These results affirm the efficacy of the
proposed solution technique, showcasing its ability to efficiently allocate near-
optimal points for x and y, thereby significantly enhancing the Usu performance.

Finally, we analyze the impact of the distance between PT and ST on the
allocation of x∗ and y∗ to achieve Usu and Upu, as illustrated in Fig. 6. The figure
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reveals that when the distance between PT and ST is very small (say 6 m in the
figure) or when ST is in close proximity to PT, the hpt,st value is significantly
favorable. Consequently, allocating a small fraction of total power (x = 0.0715)
during T2 time allows Rprop

pt to be easily satisfied in this phase. As a result, ST
can allocate a large fraction of total power (y = 0.53) during Phase 3, achieving
the maximum possible Usu = 0.05986.

On the other hand, as the distance between ST and PT gradually increases
(say 15 m in the figure), the quality of hst,pr begins to deteriorate. Consequently,
ST needs to invest more power during T2 time by increasing the value of x, as
depicted in Fig. 6, to meet Rtar

pt . However, this increase in x leads to higher energy
consumption by ST during T2 time, consequently reducing the achievable Usu.

Similarly, the gradual decrease in distance between PT and ST results in a
gradual increment of Upu. However, the rate of increment in Upu is found to
be less than that of Usu. This is due to the smart strategy adopted by ST,
which allocates the minimum required fraction (x) of total power during T2 only
to meet Rtar

pt . This strategic approach ensures efficient power utilization by ST
while optimizing the performance of both Usu and Upu.

5 Conclusion

This paper presents an energy harvesting technique for energy-constrained Cog-
nitive Radio Relay Networks, aimed at improving the utility of SUs. The study
formulates an optimization problem to maximize the achieved utility of SUs
through optimal allocation of time-switching and power-splitting factors. Given
the computationally challenging nature of the problem, a heuristic approach is
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proposed, which provides a near-optimal solution by optimally allocating all the
decision variables. Simulation results demonstrate that the proposed solution
achieves high accuracy, with approximately 97.7% and 98.5% accuracy in terms
of harvested energy and utility of SUs, respectively, compared to the benchmark
result.

Additional simulation research, taking into account various parameter con-
figurations to simulate different real-world deployment scenarios, is planned for
future work. These findings will be incorporated into an expanded version of this
study.
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