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Preface

This volume contains the papers selected for presentation at the 20th International
Conference on Distributed Computing and Intelligent Technology (ICDCIT 2024),
held during January 17–20, 2024, at Kalinga Institute of Industrial Technology (KIIT),
Bhubaneswar, India.

Starting from its first edition in 2004, the ICDCIT conference series has grown
to an annual conference of international repute and has become a global platform for
computer science researchers to exchange research results and ideas on the foundations
and applications of distributed computing and intelligent technology. ICDCIT 2024 was
the 20th meeting in the series. ICDCIT strives to provide an opportunity for students and
young researchers to get exposed to topical research directions in distributed computing
and intelligent technology.

ICDCIT is generally organized into two tracks: Distributed Computing (DC) and
Intelligent Technology (IT). The DC track solicits original research papers contributing
to the foundations and applications of distributed computing,whereas the IT track solicits
original research papers contributing to the foundations and applications of Intelligent
Technology. Each track has a separate program committee (PC) including PC chairs,
who evaluate the papers submitted to that track.

This year we received 116 full paper submissions – 31 papers in the DC track and
85 papers in the IT track. Each submission considered for publication was reviewed by
at least three PC members, with the help of reviewers outside of the PC. Based on the
reviews, the PC decided to accept 24 papers for presentation at the conference, with an
acceptance rate of 21%. The DC track PC accepted 9 papers, with an acceptance rate of
29%. The IT track PC accepted 15 papers, with an acceptance rate of 18%. ICDCIT 2024
adopted a double-blind review process to help PCmembers and external reviewers come
to a judgment about each submitted paper without possible bias. Additionally, each paper
that was in conflict with a chair/PC member was handled/reviewed by another chair/PC
member who had no conflict with the paper.

We would like to express our gratitude to all the researchers who submitted their
work to the conference. Our special thanks go to all colleagues who served on the PC,
as well as the external reviewers, who generously offered their expertise and time which
helped us select the papers and prepare the strong conference program.

This year, we were able to award best paper as well as best student paper awards
in both DC and IT tracks. The awards were announced during the conference. Notice
that the best paper awardee in each track received 50,000 Indian Rupees in total and
the best student paper awardee in each track received 25,000 Indian Rupees in total. We
congratulate the authors of the selected papers for their outstanding research.

We were fortunate to have seven distinguished invited speakers – Nicola Santoro
(Carleton University, Canada), C. Pandurangan (Indian Institute of Science, India),
Bud Mishra (New York University, USA), Krishna Kummamuru (Accenture, India),
Janardhan Rao Doppa (Washington State University, USA), Sivaramakrishnan R.
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Guruvayur (Aaquarians.ai, UAE), and Atul Kumar (IBM Research, India). Their talks
provided us with the unique opportunity to hear about research advances in various fields
of DC and IT from the leaders in those respective fields. The abstracts of the invited
talks are included in this volume.

Wewish to express our thanks to the local organizing committee who worked hard to
make this conference a success, especially our organizing chairHrudayaKumarTripathy.
We also wish to thank the organizers of the satellite events as well as the many student
volunteers. The School of Computer Engineering of KIIT, the host of the conference,
provided excellent support and facilities for organizing the conference and its associated
events.

Finally, we enjoyed institutional and financial support from KIIT, for which we are
indebted. We express our appreciation to all theSteering/Advisory Committee members,
and in particular Sathya Peri, Sandeep Kulkarni, and Samaresh Mishra, whose counsel
we frequently relied on. Thanks are also due to the faculty members and staff of the
School of Computer Engineering of KIIT for their timely support.

January 2024 Stéphane Devismes
Partha Sarathi Mandal

Vijaya Saradhi
Bhanu Prasad

Anisur Rahaman Molla
Gokarna Sharma



Organization

Chief Patron

Achyuta Samanta KIIT & KISS, India

General Chairs

Anisur Rahaman Molla ISI Kolkata, India
Gokarna Sharma Kent State University, USA

Program Committee Chairs

Stéphane Devismes (DC Track) Université de Picardie Jules Verne, France
Partha Sarathi Mandal (DC Track) IIT Guwahati, India
Vijaya Saradhi (IT Track) IIT Guwahati, India
Bhanu Prasad (IT Track) Florida A&M University, USA

Conference Management Chair

Krishna Chakravarty KIIT, India

Organizing Chair

Hrudaya Kumar Tripathy KIIT, India

Finance Chairs

Santosh Kumar Baliarsingh KIIT, India
Ramakanta Parida KIIT, India



viii Organization

Publicity Chairs

Bindu Agarwalla KIIT, India

Registration Chairs

Harish Kumar Patnaik KIIT, India
Pratyusa Mukherjee KIIT, India

Session Management Chairs

Kunal Anand KIIT, India
Roshni Pradhan KIIT, India

Publications Chairs

Mainak Bandyopadhyay KIIT, India
Junali Jasmine Jena KIIT, India

Student Symposium Chairs

Sushruta Mishra KIIT, India
Subhasis Dash KIIT, India

Industry Symposium Chair

Prachet Bhuyan KIIT, India

Project Innovation Chairs

Satya Ranjan Dash KIIT, India
Jagannath Singh KIIT, India
Saurabh Bilgaiyan KIIT, India



Organization ix

Workshop Chairs

Rajat Kumar Behera KIIT, India
Manas Ranjan Lenka KIIT, India

Ph.D. Symposium Chairs

Himansu Das KIIT, India
Arup Abhina Acharya KIIT, India

Hackathon Chairs

Chittaranjan Pradhan KIIT, India
Abhaya Kumar Sahoo KIIT, India
Namita Panda KIIT, India
Bhaswati Sahoo KIIT, India

Advisory Committee

Saranjit Singh KIIT, India
Sathya Peri IIT Hyderabad, India
Sandeep Kulkarni Michigan State University, USA

Steering Committee

Raj Bhatnagar University of Cincinnati, USA
Rajkumar Buyya University of Melbourne, Australia
Diganta Goswami IIT Guwahati, India
Samaresh Mishra KIIT, India

Program Committee

Distributed Computing Track

Giuseppe Antonio Di Luna Sapienza University of Rome, Italy
Kaustav Bose Jadavpur University, India



x Organization

Romaric Duvignau Chalmers University of Technology, Sweden
Volker Turau Hamburg University of Technology, Germany
Srabani Mukhopadhyaya BIT, Mesra, India
Subhash Bhagat Indian Institute of Technology Jodhpur, India
Kaushik Mondal Indian Institute of Technology Ropar, India
Debasish Pattanayak LUISS Guido Carli, Italy
Yuichi Sudo Hosei University, Japan
Barun Gorain Indian Institute of Technology Bhilai, India
Anaïs Durand LIMOS, Université Clermont Auvergne, France
Nabanita Das Indian Statistical Institute, India
Andrew Berns University of Northern Iowa, USA
Sayaka Kamei Hiroshima University, Japan
Sushanta Karmakar Indian Institute of Technology Guwahati, India
Krishnendu Mukhopadhyaya Indian Statistical Institute, India
Doina Bein California State University, Fullerton, USA
Quentin Bramas ICUBE, Université de Strasbourg, France
Sruti Gan Chaudhuri Jadavpur University, India
Anissa Lamani ICUBE, Université de Strasbourg, France

Intelligent Technology Track

Amit Awekar IIT Guwahati, India
Rashmi Dutta Baruah IIT Guwahati, India
Jhansi Rani CMR Institute of Technology, India
Puneet Gupta IIT Indore, India
Arul Valan National Institute of Technology, Nagaland, India
Achyut Mani Tripathi IIT Guwahati, India
Gayathri Ananthanarayanan IIT Dharwad, India
Kaustuv Nag Indian Institute of Technology Guwahati, India
Anshul Agarwal Visvesvaraya National Institute of Technology,

Nagpur, India
Ashish Kumar National Institute of Technology, Jamshedpur,

India
Ramachandra Reddy National Institute of Technology, Jamshedpur,

India
Karthik Kannan Indian Institute of Technology Guwahati, India
Amit Majumder National Institute of Technology, Jamshedpur,

India
Yadunath Pathak Visvesvaraya National Institute of Technology,

Nagpur, India
Nidhi Lal Visvesvaraya National Institute of Technology,

Nagpur, India



Organization xi

Shoubhik Chakraborty Indian Institute of Technology Guwahati, India
Hrudaya Kumar Tripathy Kalinga Institute of Industrial Technology, India
Ashish Anand Indian Institute of Technology Guwahati, India
Vibhav Prakash Singh Motilal Nehru National Institute of Technology

Allahabad, India
Om Jee Pandey Indian Institute of Technology (BHU) Varanasi,

India
Shafiz Yusof Ajman University, UAE
Ramanajum E. National Institute of Technology, Silchar, India
Suganya Devi National Institute of Technology, Silchar, India
Priyanka Kumar University of Texas at San Antonio, Texas
Gopal Krishna REVA University, India
Deepak Gupta National Institute of Technology, Arunachal

Pradesh, India
Radhakrishna Bhat Manipal Institute of Technology, India

Additional Reviewers

Debaditya Barman
Subhasis Bhattacharjee
Parama Bhaumik
Abhinav Chakraborty
Bibhuti Das
Prasenjit Dey
Bibhas Chandra Dhara
Rathindra Nath Dutta
Mathew Francis
Bishakh Chandra Ghosh

Rui Gong
Frédéric Hayek
Krishnandu Hazra
Saswata Jana
Dipankar Kundu
Partha Sarathi Paul
Maxime Puys
Sujoy Saha
Laltu Sardar



Invited Talks



Exploiting Synergies Between AI and Computing Systems
for Sustainable Computing

Janardhan Rao Doppa

School of EECS, Washington State University, USA
jana.doppa@wsu.edu

Abstract. Advanced computing systems have long been enablers for
breakthroughs in science and engineering applications including Artifi-
cial Intelligence (AI) either through sheer computational power or form-
factor miniaturization. However, as algorithms become more complex
and the size of datasets increase, existing computing platforms are no
longer sufficient to bridge the gap between algorithmic innovation and
hardware design. To address the computing needs of emerging applica-
tions from the edge to the cloud, we need high-performance, energy-
efficient, and reliable computing systems targeted for these applica-
tions. Developing these application-specific hardware must become easy,
inexpensive, and as seamless as developing application software.

In this talk, I will argue that synergistically combining the domain
knowledge from hardware designers and AI algorithms will allow us
to make faster progress towards this overarching goal. The key driving
principle will be to learn appropriate models for performing intelligent
design space exploration to significantly reduce the overall engineering
cost and design time of application-specific hardware. I will also discuss
how designingAI algorithmswith the knowledge of underlying hardware
will allow us to perform resource-efficient computing. I will conclude the
talk with some open challenges in the quest for sustainable computing.



Building Gen AI Systems

Kummamuru Krishna

AI Innovations & Products, Accenture
Operations at Accenture Bengaluru, Karnataka, India

krishna.kummamuru@accenture.com

Abstract.GenerativeAI (GenAI) is a rapidly developingfield of artificial
intelligence that has the potential to revolutionize many aspects of our
lives. Gen AI systems are able to generate new and creative content, such
as text, images, music, and code, based on their understanding of existing
data.

Building Gen AI systems is a complex and challenging task, but
it is one that is becoming increasingly feasible thanks to advances in
machine learning and artificial intelligence. This talk will discuss the key
challenges and opportunities involved in building Gen AI systems, and
will provide an overview of some of the latest research in this area.



Modality Games with Distributed Fictitious Plays using
Evolving Kripke Machines

Bhubaneswar (Bud) Mishra1,2, Jointly with Foy Savas1, Surya Dheeshjith1, 2,
Sophia Chou1, Pradeep Mouli1, Claudia Pecorella1, Jean Post1, and Shibo Xu1

1 dotcontract.org
2 Courant Inst, NYU

Graphical Abstract

Fig. 1. Players in a modality game take actions, add rules, and evolve a governing model. Modality
is a formal language for such games with evolving rules [1]. The interplay between actions, rules
(e.g., for “guard rails”) and a governing model enables mechanism design.

Abstract. Modality is a formal language for games with evolving rules
[1]. It is reasonably expressive for a wide range of practical use cases and
able to be embedded within governance or control systems [2]. Players
specify rules as an evolving set of rights and obligations in temporal
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modal logic. For a new rule to be added, a playermust provide a governing
model where all rules remain satisfied. Players are free to strategically
reinterpret the rules by replacing the governing model as allowed.

This approach allows Modality to formally verify and preserve spec-
ified properties across both use and revision [3], while leaving room
for ambiguity and information-asymmetry about the unspecified proper-
ties of models. As a multi-agent system, Modality can enable iterative
decision coordination through the establishment of evolutionary stable
social conventions over time. A prototype embodiment of Modality has
been implemented and exemplified by an efficient, non-trivial use-case
of repositories for digital agreements.

References

1. DotContract | digital contract platform and standard— dotcontract.org. https://www.
dotcontract.org/ (2023), Accessed 29 Aug 2023

2. Antoniotti, M., Mishra, B., et al.: Np-completeness of the supervisor synthesis
problem for unrestricted CTL specifications. In: WODES (1996)

3. 3. Mishra, B., Clarke, E.M.: Hierarchical verification of asynchronous circuits using
temporal logic. Theor. Comput. Sci. 38, 269–291 (1985)

https://www.dotcontract.org/


Genesis, Growth, and Future of Blockchains
via Trilemmas

C. Pandurangan

Kotak Mahindra Visiting Chair Professor, IISc, Bangalore 560012, India
rpandu@iisc.ac.in

Abstract. Informally, a trilemma is a situation where you want three
things, all the time and all together, but you cannot have more than two of
them at any time! Thus, you compromise a bit and manage to get as many
as you can When we started with these kinds of choices in the context of
a decentralized computation, Blockchain technology is born. Blockchain
technology continued to thrive on other solutions and innovations on
dealing with other trilemmas. From genesis to growth to research trends,
trilemmas are guiding force behind every innovation in the blockchain
technology. I attempt to present the foundation aspects of these trilemmas
in a simpler way.



Computing in Highly Dynamic Distributed Systems

Nicola Santoro

School of Computer Science, Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

Abstract.The advent of highly dynamic distributed systems (e.g., ad-hoc
wirelessmobile networks, robotic swarms, vehicular networks, social net-
works), where changes in the interconnection structure are continuously
occurring normal events, has motivated, in the field distributed comput-
ing, extensive investigations on the computational and complexity issues
arising in such systems. In spite of the wide diversity of these systems,
most investigations use a common representation to model the temporal
dynamics of the topological changes. A wide variety of factors influ-
ence computability and complexity in these systems; a crucial one is the
(amount and type of) a-priori knowledge that the system entities have
about the dynamics of the changes. This lecture will focus on the basics
of computing in such systems, starting from the representation of the
temporal dynamics of the topological changes, to the discussion of some
problems recently examined in the literature (e.g., exploration, search).
Through these problems, I will describe some solution techniques as well
as methodological insights, and highlight the factors that have an impact
on computability and complexity.

https://orcid.org/0000-0002-7954-3918


Key Considerations in Implementing Ethical &
Responsible AI with Generative AI Usecases

Sivaramakrishnan R. Guruvayur

aaquarians.ai
Dubai, UAE

gr_shibu@hotmail.com

Abstract. Artificial Intelligence (AI) is advancing at an unprecedented
pace, and generative AI, in particular, is revolutionizing various domains
such as Banking, Health, Retail, Education, Fine arts, Smart Cities and
so on. However, with this technological prowess comes a myriad of eth-
ical and responsible concerns that are now being addressed through a
global wave of AI governance regulations. This keynote presentation
delves into the intricate technical aspects of ethical and responsible AI,
with a specific focus on generative AI use cases, and how these con-
siderations should align with AI Regulatory compliance landscape. The
Key note discussions would revolve around the following key themes: 1)
Ethical Frameworks and AI Regulations: 2) Bias and Fairness; 3) Data
Privacy and Security; 4) AI Governance and Regulation compliance; 5)
Explainability, Transparency and Interpretability; 6) Case Studies and
Real-World Applications; 7) Global AI Regulatory Landscape; The pre-
sentation will explore the ethical challenges and opportunities inherent to
generative AI applications, including natural language processing, image
generation, and creative content production. It will emphasize the impor-
tance of aligning AI development with ethical values, human rights, and
societal norms, while addressing the potential biases, discrimination, and
privacy concerns that may arise.

An attempt would be made to provide a detailed walkthrough of the
technical nuances of ethical and responsible AI, with a specific focus
on generative AI applications. Participants would gain technical insights
into the evolving regulatory landscape, ethical imperatives, and the pivotal
role of governance in shaping the future of AI. This key note would also
provide a discussion on multiple global AI governance landscape such
as EU AI Act, UNESCO AI guidelines & other AI governance & laws
emerging from countries such as India, USA, China & others.

We will discuss the role of governance structures, best practices,
and the need for collaborative efforts among governments, industry, and
academia to develop responsible AI guidelines and policies. We will
also discuss the technical requirements and compliance measures stip-
ulated by AI regulations, highlighting their impact on the design and
implementation of generative AI systems.
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Attendees will gain insights into practical strategies for developing
ethical AI systems and managing the risks associated with Generative AI
deployment. This keynote presentation is designed to empower AI pro-
fessionals, policymakers, and stakeholders to make informed decisions
about generative AI technologies and drive the evolution of responsi-
ble AI governance. It will inspire attendees to shape a future where AI
enhances human potential and ensures equitable, just, and transparent AI
innovation in generative use cases.



Shaping the Future of Enterprise Computing: Confluence
of AI, Hybrid Cloud, and Quantum Technologies

Atul Kumar

Senior Research Scientist and Manager, IBM Research,
Bengaluru, Karnataka, India
atulkumar@gmail.com

Abstract. Recent advances in AI, particularly the generative AI, large
language models (LLMs) and foundation models have democratized the
use of cutting edge AI systems. Rapid adoption of some of these tech-
nologies in enterprise software systems is taking place at a pace greater
than ever. In this talk we will touch on some of the intelligent tools and
services relevant to enterprises such as code generation, translation, AI
testing, etc.

Some of the recent advances in hybrid cloud technologies have
changed the software development lifecycle drastically. Container based
software development and deployment tools allowing seamless orches-
tration and management have made it possible to rapidly develop, test
and deploy enterprise grade software at a very fast pace. We will also dis-
cuss some of the recent advances in Quantum Computing and how it can
transform the computing landscape not just for the scientific community
and labs but for the common users and enterprises.Moreover, some of the
guarantees such as strong encryption now require serious rethinking and
redesign when quantum computing covers more and more application
areas.
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Abstract. The increasing number of wireless devices has raised signif-
icant global concerns regarding energy efficiency and spectrum scarcity.
To address this, wireless energy harvesting technology has emerged as
a potential solution. By utilizing conventional radio frequency trans-
missions, this technology can extend the battery life of mobile devices
and improve the operational period of energy-constrained wireless net-
works. This study focuses on a wireless energy harvesting and infor-
mation transfer protocol within cognitive radio relay networks. In this
setup, an energy-constrained secondary user shares the spectrum and
simultaneously harvests energy while assisting with the primary trans-
mission. To optimize the allocation of transmission time and harvested
power, a challenging computational problem is formulated. The goal is
to enhance the utility of the secondary user. To tackle this computation-
ally hard problem, a heuristic solution based on a joint time-and-power
allocation strategy is proposed. This approach achieves an impressive
98.5% accuracy while comparing the utility of the secondary users to the
optimal benchmark results.

Keywords: Primary users · Secondary users · Energy Harvesting ·
Optimal Allocation · Utility

1 Introduction

Due to growing environmental concerns and the rising demand for wireless ser-
vices, energy efficiency and spectral efficiency are two crucial design criteria in
wireless communications [11]. Energy harvesting (EH) has recently gained pop-
ularity as a way to extend the lifespan of wireless networks with limited energy
source. When compared to conventional energy sources like batteries, which
have limited operating times, energy harvesting from the environment could
offer wireless networks an endless source of power [20]. Radio frequency (RF)
signals hold a promising future for wireless energy harvesting (WEH) in addition
to other widely used energy sources like solar and wind, because it can also be
used to simultaneously transmit wireless information. Recently, it is shown that

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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simultaneous wireless information and power transfer (SWIPT) becomes appeal-
ing since it realizes both useful utilization of RF signals at the same time, and
thus potentially offers great convenience to mobile users [12,21]. On the other
hand, cognitive radio (CR) is a promising solution concept to improve spectrum
utilization by allowing spectrum sharing, where unlicensed or secondary users
(SUs) can use the unused portion of licensed spectrum resources of licensed or
primary users (PUs) [1,2]. Thus, merging of CR technology with energy harvest-
ing provides an efficient way of utilizing both spectrum and energy to prolong
the operational time of SUs.

Many of the recent works have studied energy efficient communication in
Cognitive Radio Network (CRN) using either the popular Time Switching (TS)
based or Power Splitting (PS) based SWIPT technology. In [21], TS as well as
PS based SWIPT techniques were separately applied on SU receiver side, and
the rate-energy trade-off analysis in both techniques was investigated. Another
work based on PS and TS receiver architectures at the relay node was stud-
ied in [19], and proposed a PS-based relaying protocol and a TS-based relaying
protocol separately to enable wireless information transferring and EH at the
battery-free relay node. Here, the end-to-end error performance and through-
put of the proposed protocol during secondary transmission were investigated.
In [18], an optimal power allocation problem using a PS-based approach within
an energy-constrained CRN was proposed. This investigation encompassed sev-
eral key aspects, including assessing outage probabilities for both PUs and SUs,
evaluating system energy efficiency, and examining the trade-off between data
rate and energy consumption. Another work addressed in [9], a PS-based SWIPT
technology was implemented within a cooperative CRN. In this scenario, energy-
constrained SUs harnessed energy not only from the primary transmitter’s (PT)
received signal but also from interfering sources. The research delved into the
performance of two relay cooperation schemes, examining the tradeoff between
the PU’s and SU’s performance, particularly concerning outage probabilities. In
[17], author addressed an optimization problem involving transmitting time and
transmission power of SU within an underlay RF energy-harvesting CRN. Their
objective was to maximize the energy efficiency of the secondary network by
enabling the SUs to reserve the residual energy after previous slots for upcom-
ing transmissions. A rapid iterative algorithm based on Dinkelbach’s method was
proposed to achieve optimal resource allocation as well the QoS of SUs. In [6],
a hybrid TS-PS model was established for EH in a bidirectional relay assisted
communication and explored an end-to-end outage probability of the network.
Primarily, this work solved an optimization problem of outage probability with
respect to relay placement and time allocation factor. Another work [8] explored
techniques for simultaneous EH and information transfer within an EH-based
CRN model. This approach combined both TS and PS receiver architectures
to derived and analyzed optimal expressions for transmission power and energy
harvesting power to attain maximum energy efficiency within the secondary net-
work. Finally, in the work [14], a radio-frequency (RF) energy harvesting enabled
CRN adopts a PS-based SWIPT architecture. The study addresses two signif-
icant challenges: prolonging network lifetime and enhancing link reliability by
accounting for transceiver hardware impairments.
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The majority of the works cited above focus on either TS or PS SWIPT
technology separately during the optimization of harvested energy and primary
information decoding rates at SU. To the best of our knowledge, there is limited
research, such as [6] and [8], where integration of TS and PS techniques is used
in the CRN framework to harvest energy from RF signal. However, these studies
do not tackle the vital issue of optimizing the utility and operational duration of
energy-constrained SUs. By simultaneously employing both of these techniques
during energy harvesting phase, SUs can accumulate a greater amount of energy
compared to their separate uses, which in turn contributes to extending the lifes-
pan of the secondary network. Therefore, this research introduces a unified model
that integrates TS and PS SWIPT technology for EH in energy-constrained SUs
within a cognitive radio relay network. Subsequently, it optimizes the allocation
of harvested power to enhance the effectiveness of the secondary network. Each
SU harvests maximum energy from the received primary signal and successfully
forwards primary and secondary information to the intended receivers. Accord-
ingly, we formulate an optimization problem to achieve the optimal allocation
of TS-PS factors and harvested power. Heuristic approach is applied to obtain
a near-optimal solution for this problem. Simulation-based results demonstrate
that the heuristic solution succeeds in attaining the maximum possible utility
for both the energy-constrained SUs and PUs.

The rest of the paper is organized as follows. Section 2 outlines the sys-
tem model and the formulated optimization problem. The solution concept for
the proposed optimization problem is discussed in Sect. 3. In Sect. 4, numerical
results are analyzed, and finally, the paper is concluded in Sect. 5.

2 System Model and Assumptions

We consider a cognitive radio network framework with a set of M PU transceiver
pairs, denoted as M = {(PT1, PR1), .., (PTi, PRi), .., (PTM , PRM )} and a
set of N SU transceiver pairs, denoted as N = {(ST1, SR1), .., (STj , SRj),
.., (STN , SRN )}. The assumption is that the physical distance between PT
(transmitter) and PR (receiver) exceeds the effective transmission range. Con-
sequently, a relay node (ST ) is needed to forward primary information to PR in
order to attain at least the target rate Rtar

pt . At the same time, ST accepts the
offer from the PU, exchanging the rendered relay service for a spectrum oppor-
tunity to enable secondary communication towards SR. It is important to note
that ST s are energy-constrained nodes, operating in an energy-harvesting data-
transmission mode with a minimum target rate requirement of Rtar

st . Moreover,
ST s are equipped with rechargeable batteries and feature a non-linear energy
harvester [4,7,14], which allows them to harvest energy from the received pri-
mary signal. In this paper, the terms SU and ST , and PU and PT , are used
interchangeably.

The proposed work considers information transmission between PT and PR
as illustrated in Fig. 1. In this scenario, a single PU transmits primary informa-
tion to PR with the assistance of a suitable ST acting as a relay node. The entire
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Energy Harvesting (EH) at ST

+

Information Decoding (ID) at 

ST

Relay based communication Secondary Communication

T
T1 T2 T3

T1
α (1-α)

Primary signal (XPT)
Only EH

T1

Only EHOnly EHOnly EH

Fig. 1. Time-slot division of a PU band for EH and ID

time duration T of the PU band is subdivided into three sub-slots: T1, T2, and T3.
In the T1 sub-slot (referred to as Phase 1), PT transmits its information towards
the appropriate ST .Upon receiving the primary signal, ST harvests energy from
it while simultaneously decoding it for further processing. During the T2 time
(termed as Phase 2), ST uses a portion of its harvested energy to forward the
primary signal to PR through the Decode and Forward (DF) relaying technique.
Finally, in the T3 time (termed as Phase 3), ST performs secondary transmission
using the remaining harvested energy.

Drawing on the principles of SWIPT and Dynamic Power Splitting (DPS)
technology [13,21] a joint TS-PS technique is applied during the T1 time slot,
as depicted in Fig. 1. The T1 time is further subdivided into two parts to serve
the purposes of energy harvesting and information decoding. The time-switching
factor α (0 < α < 1) determines the duration αT1 allocated for energy harvesting,
during which ST utilizes the entire signal power solely for this purpose. The
remaining time (1−α)T1, is divided into two power streams with a power ratio
of ρ : (1−ρ). Here, ρ (0 < ρ < 1) is used for energy harvesting, and (1−ρ) is used
to decode the primary information at ST . Therefore, in the proposed technique,
ST can harvest energy during both αT1 and (1−α)T1 time fractions, utilizing
two different power values. However, information can only be decoded during
the (1−α)T1 time fraction.
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2.1 Utility of PUs and SUs

During the T1 time, when PT transmits its information to ST , the received
signal at ST , denoted as Y I

pt,st, can be expressed as shown in Eq. (1) [17].

Y I
pt,st =

√
Ppthpt,stX

I
pt + na + ncov (1)

Here, Ppt represents the transmit power of PT , and hpt,st is the channel
gain between PT and ST . The channel gain is calculated as hpt,st = |dpt,st|−2,
where 2 corresponds to the pathloss index [15]. Additionally, XI

pt represents the
transmitted signal from PT intended for PR. The term na ∼ CN (0, σ2

1) denotes
the narrowband Gaussian noise introduced by the antenna at ST , while ncov ∼
CN (0, σ2

cov) refers to the RF band to baseband signal conversion noise at ST .
Taking inspiration from [21] and [18], we model the maximum possible harvested
energy (EHmax

st ) at ST (in Joule) and the maximum achievable instantaneous
decoding rate (Rmax

T1
) at ST (in bps) during the T1 time using Eqs. (2) and (3).

EHmax
st = T1ηPpt |hpt,st|2 (2)

where η is the energy conversion efficiency (0 < η < 1) at ST .

Rmax
T1

= B ∗ T1 ∗ log2(1 + SNRpt,st)

= B ∗ T1 ∗ log2(1 +
Ppt |hpt,st|2
n2

a + n2
cov

)
(3)

where B is the available bandwidth in PU band.
Now, building upon the proposed joint TS-PS technique shown in Fig. 1, the

harvested energy at ST (Eq. (2)) can be reformulated for this work as given in
Eq. (4) below.

EHprop
st = αT1ηPpt |hpt,st|2 + (1 − α)T1ηρPpu |hpt,st|2

= (α + (1 − α)ρ)T1ηPpt |hpt,st|2
(4)

Likewise, the information decoding rate at ST (Eq. (3)) can be reformulated
for this work as given in Eq. (5) below.

Rprop
T1

= B ∗ T1 ∗ log2(1 + SNRpt,st)

= B ∗ (1 − α)T1 ∗ log2(1 +
(1 − ρ)Ppt |hpt,st|2
(1 − ρ)n2

a + n2
cov

)
(5)

Drawing inspiration from [14] and [4], the harvested power at ST (HP prop
st )

can be derived from the harvested energy, as expressed in Eq. 4. This harvested
power is then utilized by ST for relaying primary information and transmitting
secondary information.

During the T2 time, ST forwards (1 − ρ)Y I
pt,st towards PR using a portion

of the harvested power, specifically x.HP prop
st , and reserves y.HP prop

st power for
secondary transmission during Phase 3. Here, 0 < x, y < 1. Consequently, the
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received signal-to-noise ratio (SNR) at PR can be modeled as given in Eq. (6)
below.

SNRst,pr =
x.HP prop

st
|hst,pr|2

x.n2
a + n2

cov

(6)

Likewise, the instantaneous achievable rate at PR for the proposed work
during T2 time (Rprop

T2
) can be formulated as given in Eq. (7).

Rprop
T2

= B ∗ T2 ∗ log2(1 + SNRst,pr) (7)

At this juncture, we can analyze the cooperative capacity (Ccoop
pu ) achieved

by PT through DF relaying assistance from ST over the duration of T1 + T2.
Building on insights from [16], the attained cooperative capacity (Ccoop

pu ) over
bandwidth B and the time duration of T1+T2 can be modeled using the Shannon-
Hartley theorem [10,13] as shown in Eq. (8).

Ccoop
pu = B ∗ (T1 + T2) ∗ log (1 + SNRpt,st + SNRst,pr) (8)

Therefore, the utility of PU (Upu in bps/Joule) can be represented as a frac-
tion of the achieved Ccoop

pu , relative to the energy consumption of PU during T1

time, as defined in Eq. (9) below.

Upu =
Ccoop

pu ∗ a

ECpuT1

(9)

where a is the gain per unit of cooperative capacity achieved at the Maximal
Ratio Combining output.

Lastly, in the duration of T3 time, ST engages in secondary communication
by transmitting its signal towards SR with a power of y.HP prop

st . Consequently,
the received SNR at SR is formulated as presented in Eq. (10) below.

SNRst,sr =
y.HP prop

st
|hst,sr|2

x.n2
a + n2

cov

(10)

Likewise, the instantaneous achievable rate at SR for the proposed work
during T3 time (Rprop

T3
) can be formulated as shown in Eq. (11).

Rprop
T3

= B ∗ T3 ∗ log2(1 + SNRst,sr) (11)

The utility of SU (Usu in bps/Joule) is now expressed as a fraction of the
achieved instantaneous achievable rate of ST during Phase 3, relative to the
total energy consumption (EC) of ST throughout T2 and T3 time. This model is
formulated as shown in Eq. (12) below.

Usu =
Rprop

T3

x.HP prop
st︸ ︷︷ ︸

EC during T2

+ y.HP prop
st︸ ︷︷ ︸

EC during T3

(12)
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2.2 Formulation of Optimization Problem

In this context, we present the optimization problem aimed at optimizing the
allocation of transmission time and harvested power to enhance the utility of the
secondary user. The objective of this optimization is to maximize Usu, achieved
by maximizing Rprop

T3
, while minimizing the total energy consumption by ST .

This optimal allocation is determined by the decision variables α, ρ, x, and y.
The key to achieving the maximum Rprop

T3
lies in increasing SNRst,sr (as

shown in Eq. (11)), which can be attained through three primary factors: (i)
increasing HP prop

st , (ii) optimizing |hst,pr|, and (iii) finding the optimal allocation
for power allocation factors x and y. By effectively managing these variables, we
can significantly enhance the utility of the secondary user and optimize the
resource consumption by ST . To achieve factor (i), we can maximize EHprop

st

at ST by allocating larger values of α and ρ as given in Eq. (4). However,
while maximizing EHprop

st , ST must simultaneously monitor the obtained Rprop
T1

to meet Rtar
pt . Hence, optimal allocation of α and ρ is crucial at this stage. In

contrast, factor (ii) depends solely on the distance between PT and ST and
remains independent of any decision variables discussed in this paper. For factor
(iii), ST naturally prefers to allocate the maximum possible y during T3 time
by assigning the minimum possible x for T2 time. However, in the process of
reducing x, ST must be attentive to the gradual reduction of Rprop

T2
(Eq. (7))

while ensuring it satisfies Rtar
pt . Additionally, allocating a larger y increases the

energy consumption of ST during T3 time, which consequently reduces Usu (Eq.
(12)). As a result, trade-offs arise that necessitate the optimal allocation of
decision variables α, ρ, x, and y, satisfying PU constraints while maximizing
Usu. Hence, we formulate the optimization problem for the same, as depicted in
Eq. (13) below.

OP: max
α,ρ,x,y

Usu

s.t. (a) 0 < α, ρ < 1
(b) 0 < x, y < 1

(c) (1 − (x + y)).HP prop
st ≤ Pmin

st

(d)Rtar
pt ≤ Rprop

T1

(e)Rtar
pt ≤ Rprop

T2

(f)Rtar
st < Rprop

T3

(13)

where Pmin
st represents the minimum required power for an ST to remain active

in the network.
However, it should be noted that the proposed optimization problem (Eq.

(13)), exhibits a non-linear nature, and solving nonlinear systems is well-known
to be an NP-hard problem [3]. In a related study [5], Gaganov demonstrated that
nonlinear systems with polynomial equations having rational coefficients also
fall under the NP-hard category. The proposed objective function (Eq. (13))
has polynomial equations, and the decision variables, viz. α, ρ, x, and y all
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act as coefficients with rational boundaries (each of them within the range (0,
1)). Therefore, inspired by [3,5] it can be stated that the proposed problem
is also a hard problem that is intractable and difficult to solve in polynomial
time. Such a non-linear and NP-hard nature of the optimization problem calls
for advanced optimization techniques to find approximate or optimal solutions
efficiently. Heuristic approaches are found widely used to address such problems.
Therefore, a numerical analysis-based quick iterative heuristic approach can be
applied to decide the near optimal solution of α, ρ, x and y with the aim of
maximizing Usu as well as Upu in polynomial time.

3 Proposed Heuristic Solutions

To tackle the formulated optimization problem involving decision variables α,
ρ, x, and y, we propose two iterative heuristic solutions based on conventional
numerical methods. These solutions aim to achieve near-optimal resource allo-
cation points α∗, ρ∗, followed by x∗ and y∗. For simplicity, we divide the entire
optimization problem into two phases. In the first phase, we focus on analyzing
the maximum harvested energy at ST by optimally allocating α and ρ values
based on Eq. (4) and (5). Subsequently, in the second phase, we achieve opti-
mal allocation of x and y, effectively utilizing the harvested energy to maximize
Usu while adhering to all the associated constraints given in Eq. (13). The basic
steps involved in both heuristic solutions are illustrated through flowcharts, as
provided in Subsects. 3.1 and 3.2. These heuristic approaches offer quick itera-
tive solutions to efficiently tackle the optimization problem, providing practical,
near-optimal solutions for the resource allocation variables.

3.1 Flowchart for Allocation of α∗ and ρ∗

The range of α and ρ is confined within the interval (0, 1). The underlying
principle of the proposed strategy revolves around iteratively narrowing down
this (0, 1) range towards the optimal α∗ and ρ∗ points, where the maximum
EHprop

st can be attained. The step-wise flow of the proposed allocation scheme
for α∗ and ρ∗ is presented as shown in Fig. 2.

3.2 Flowchart for Allocation of x∗ and y∗

The ranges of both x and y are constrained within (0, 1). The fundamental con-
cept behind the proposed strategy entails partitioning the given (0, 1) range into
two sub-ranges for x and y dynamically. As the sub-range of x narrows towards
the left (i.e., towards 0) in the quest for x∗, the sub-range of y simultaneously
expands in search of y∗ that maximizes Usu. The step-wise flow of the proposed
allocation scheme for x∗ and y∗ is presented as shown in Fig. 3.
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Start

Range of α and ρ = (0, 1).
Set, low = 0, high = 1, ρnew = 0.5 and Δρ = 0.05.

Calculate:  αm= (low+high)/2,
αm-1= (low+high)/2,  αm+1= (low+high)/2.

Calculate EH() and R() for αm-1, αm, 
αm+1 points based on Eq. (4) and (5).  

IF (EHαm+1 and Rαm+1 >> EH()

and R() values obtained for 
both αm, αm)?

Set, low = αm+1, high = 1,            
ρnew = ρnew + (ρnew - Δρ).

Calculate:  αm= (low+high)/2,
αm-1= (low+high)/2,  αm+1= (low+high)/2.

IF difference between 

reach negligible value?? 

1.
2. Termed the point as α for which MAX(EH) is achieved.
3. Extract corresponding ρnew for obtained α and termed it as ρ*.

YES

YES

Set, low = αm, high = αm+1,            
ρnew = ρnew + (ρnew + Δρ).

No

IF (EHαm and Rαm

>> EHαm-1 and 
R αm-1)?

YES

No

Set, low = 0, high = αm-1,            
ρnew = ρnew + (ρnew + Δρ).

No

End

Fig. 2. Flowchart for the allocation of α∗ and ρ∗
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Start

Range of x = (0, 1).
Set, xlow = 0, xhigh = 1.

Calculate:  xm= (xlow + xhigh)/2,
xm-1= (xlow + xm)/2, xm+1= (xm + xhigh)/2

Calculate RT2() for xm-1, xm, xm+1 points based on Eq. 
(7) and selects the one among the three points for 

which RtarPT 

IF difference between 
xm+1 and ym-1 reach 
negligible value?? 

Declare previous USU as the 
maximum obtainable USU

and termed the associated 
xm+1 as x* and ym-1 as y*.

No

Update xlow = xlow, xhigh= xm+1, 
ylow= xhigh and yhigh= yhigh.

IF current USU is >> 
previous USU stored 

in the array??

No

Yes

Set that x point as xhigh and keep xlow as 
it is. Set ylow= xhigh and yhigh= 1.

Calculate xm, xm-1, xm+1 as step 2 and apply 
same concept to calculate ym, ym-1, and ym+1.

Calculate USU for xm+1 and ym-1 points 
based on 
rate constraint of RT2() and RT3() and store 

corresponding USU in an array. 

Declare current USU as the 
maximum obtainable USU

and termed the associated 
xm+1 as x* and ym-1 as y*.

Yes

End

Fig. 3. Flowchart for the allocation of x∗ and y∗

3.3 Proof of Convergence of the Proposed Solutions

In the formulated optimization problem, all decision variables are confined within
the range (0, 1). The proposed heuristic solutions aim to determine optimal
points for each decision variable within this range. In the first solution, the
search for α∗ and ρ∗ is designed such that as the number of iterations increases,
the range (0, 1) progressively narrows towards the optimal α and ρ values. These
values enable ST to achieve maximum EHprop

st .
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In the second solution, the ranges of x and y are managed within a single
(0, 1) range. As the number of iterations increases, the new range of x ∈ (0, 1)
starts to contract in search of x∗, while the new range of y ∈ (0, 1) begins to
expand in pursuit of the optimal y∗ point. This iterative process continues until
the x and y values of the current iteration yield a higher Usu than the values
obtained in the previous iteration. This approach allows the solution to converge
towards the optimal allocation of x and y that maximizes the utility Usu within
the given range constraints.

At each iteration, ST calculates EHprop
st and Usu for the corresponding allo-

cation points αm−1, αm, αm+1, xm+1, and ym−1. It then verifies their intervals
on a per iteration basis. The process continues until the difference between the
allocation points reaches a negligible value, approaching zero. As the proposed
solutions reach this negligible difference, they terminate, yielding the maximum
achievable EHprop

st and Usu for their respective allocation points. Thus, we can
conclude that the proposed heuristic solutions terminate when the difference
between αm−1, αm, αm+1, and xm+1, ym−1 approaches almost zero or becomes
zero.

4 Simulation Results and Comparison Analysis

The proposed solutions are evaluated through a simulation study conducted
using MATLAB 7 (R2017a) on a 64-bit PC powered by a core i5 processor and
8 GB of RAM. The simulation is based on a Cognitive Radio (CR) network
comprising M PUs and N SUs. Both the PUs and SUs are randomly distributed
in a square area measuring 1000 × 1000 m2. In the simulation setup, the trans-
mission power of PT is fixed at 1 W, and each time slot’s duration is set to
T1 = T2 = T3 = 10 s. Also the PU band’s bandwidth is maintained at 1 MHz
[16]. Moreover, the PU transceiver pairs are set at an average distance of approx-
imately 30 m, while the SU transceiver pairs are spaced at an average distance of
about 20 m. Furthermore, PU channels are modeled as Additive White Gaussian
Noise (AWGN) channels, with the noise variance set to 1 mW. These parameters
and settings provide the basis for the comprehensive evaluation of the proposed
solutions in the context of the CR network under study..

The proposed solution technique, as discussed in Subsect. 3.1, is employed
to obtain the graph for maximum energy harvesting at ST through appropri-
ate allocation of α∗ and ρ∗. The corresponding results are presented in Fig. 4,
achieving an accuracy of 97.7% compared to the optimal (benchmark) result.
Furthermore, when considering the individual values of α∗ and ρ∗, the proposed
solution demonstrates 96% and 95% correctness, respectively, in comparison to
the benchmark α∗ and ρ∗. These findings highlight the effectiveness and reliabil-
ity of the proposed solution technique in obtaining near-optimal allocation points
for α and ρ, thus leading to significant improvements in the energy harvesting
at ST.

Once more, the graph depicting the maximum Usu, attained by suitably
allocating x∗ and y∗ utilizing the solution technique discussed in Subsect. 3.2,
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Fig. 4. Max. Harvested Energy vs. optimal allocation of α∗ and ρ∗ with η = 1

Fig. 5. Max. Utility of SU vs. optimal allocation of x∗ and y∗

is presented in Fig. 5. This approach achieved a high accuracy of 98.5% when
compared to the optimal result. Furthermore, in the case of x∗ and y∗ allocation,
the proposed technique demonstrated 97.8% and 98% correctness, respectively,
when compared to the optimal x and y. These results affirm the efficacy of the
proposed solution technique, showcasing its ability to efficiently allocate near-
optimal points for x and y, thereby significantly enhancing the Usu performance.

Finally, we analyze the impact of the distance between PT and ST on the
allocation of x∗ and y∗ to achieve Usu and Upu, as illustrated in Fig. 6. The figure
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Fig. 6. Utility of SU vs. Utility of PU at obtained x∗ and y∗ for different distances
between PT and ST

reveals that when the distance between PT and ST is very small (say 6 m in the
figure) or when ST is in close proximity to PT, the hpt,st value is significantly
favorable. Consequently, allocating a small fraction of total power (x = 0.0715)
during T2 time allows Rprop

pt to be easily satisfied in this phase. As a result, ST
can allocate a large fraction of total power (y = 0.53) during Phase 3, achieving
the maximum possible Usu = 0.05986.

On the other hand, as the distance between ST and PT gradually increases
(say 15 m in the figure), the quality of hst,pr begins to deteriorate. Consequently,
ST needs to invest more power during T2 time by increasing the value of x, as
depicted in Fig. 6, to meet Rtar

pt . However, this increase in x leads to higher energy
consumption by ST during T2 time, consequently reducing the achievable Usu.

Similarly, the gradual decrease in distance between PT and ST results in a
gradual increment of Upu. However, the rate of increment in Upu is found to
be less than that of Usu. This is due to the smart strategy adopted by ST,
which allocates the minimum required fraction (x) of total power during T2 only
to meet Rtar

pt . This strategic approach ensures efficient power utilization by ST
while optimizing the performance of both Usu and Upu.

5 Conclusion

This paper presents an energy harvesting technique for energy-constrained Cog-
nitive Radio Relay Networks, aimed at improving the utility of SUs. The study
formulates an optimization problem to maximize the achieved utility of SUs
through optimal allocation of time-switching and power-splitting factors. Given
the computationally challenging nature of the problem, a heuristic approach is
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proposed, which provides a near-optimal solution by optimally allocating all the
decision variables. Simulation results demonstrate that the proposed solution
achieves high accuracy, with approximately 97.7% and 98.5% accuracy in terms
of harvested energy and utility of SUs, respectively, compared to the benchmark
result.

Additional simulation research, taking into account various parameter con-
figurations to simulate different real-world deployment scenarios, is planned for
future work. These findings will be incorporated into an expanded version of this
study.
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Abstract. Distributed Computing platforms involve multiple processing systems
connected through a network and support the parallel execution of applications.
They enable huge computational power and data processing with a quick response
time. Examples of use cases requiring distributed computing are stream process-
ing, batch processing, and client-server models. Most of these use cases involve
tasks executed in a sequence on different computers to arrive at the results. Numer-
ous distributed computing algorithms have been suggested in the literature, focus-
ing on efficiently utilizing compute nodes to handle tasks within a workflow on
on-premises setups. Industries that previously relied on on-premises setups for
big data processing are shifting to cloud environments offered by providers such
as Azure, Amazon, and Google. This transition is driven by the convenience of
Platform-as-a-Service offerings scuh asBatch Services,Hadoop, and Spark. These
PaaS services, coupled with auto-provisioning and auto-scaling, reduce costs
through a Pay-As-You-Go model. However, a significant challenge with cloud
services is configuring them with only a single type of machine for performing
all the tasks in the distributed workflow, although each task has diverse compute
node requirements. To address this issue in this paper, we propose an Intelligent
task scheduling framework that uses a classifier-based dynamic task scheduling
approach to determine the best available node for each task. The proposed frame-
work improves the overall performance of the distributed computing workflow
by optimizing task allocation and utilization of resources. Although Azure Batch
Service is used in this paper to illustrate the proposed framework, our approach
can also be implemented on other PaaS distributed computing platforms.

Keywords: Distributed Computing · Azure Batch · Decision Tree · PaaS · CSP

1 Introduction

Cloud transformation and distributed computing are two major fields that organizations
presently emphasize to attain high efficiency in processing large amounts of data. The
use of cloud resources and distributed computing as a PaaS (Platform as a Service)
service has significantly reduced the implementation cost because of the pay-as-you-go
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model and techniques such as auto-scaling to optimize resource utilization. While these
techniques are useful in reducing costs, there is a necessity for job scheduling algorithms
that are efficient and adaptable to mitigate the following challenges:

1. Diverse Computing Resource Demands: Distributed computing (DC) jobs involve
various tasks such as data ingestion, processing, and computation, each with dif-
ferent resource needs. While some tasks can work well on low-resource machines,
others require high-memory, multi-core nodes. Distributed computing PaaS services
lack flexibility in dynamically selecting compute nodes based on task type. These
services only allow node initialization at job creation, thus limiting node type diver-
sity. This restriction means tasks must use the same node type, irrespective of their
resource requirements. This inability to dynamically change node type forces plat-
form administrators to use the most optimal node for all tasks thus increasing costs.
Figure 1 shows that only one option can be selected in the “VM Size” dropdown.

2. Inflexible Autoscaling Parameters: Although autoscaling is a useful method for
managing sudden increases in workload, it cannot be handled at the task level. Certain
tasks may require a greater number of nodes, while others may require fewer nodes.
Figure 1 shows an example of Azure Batch where the only option available for
autoscaling during pool creation is to select the total number of nodes using the
“Target Dedicated Nodes” field. The value can be static or dynamically changed
(auto-scaling) based on the number of tasks in the job, processor, or memory.

Below are some of the impacts due to the above limitations:

1. High Execution Cost: High costs arise in distributed job execution when low-
compute tasks are assigned to high-compute machines. For instance, a web service
call that consumes time can be executed on a low-compute machine. However, if this
call is allocated to a high-compute VM, the cost of execution increases.

2. High Execution Time: To achieve cost optimization, the development team would
prefer the most optimal compute node or Virtual Machine (VM) to perform all the
tasks in the job pool. This cost optimization may lead to high execution time as high
compute requirements tasks are executed on low-compute machines.

Fig. 1. Configuration screen for adding pool in Azure Batch
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The Intelligent Task Scheduling (ITS) framework addresses the outlined constraints
by using a decision tree classifier to determine the optimal compute node for a specific
task and its corresponding job pool. For data transfer between tasks, the framework
leverages Message Queue [1] for smaller data blocks, such as text messages and JSON
objects, while the Blob service [1] is employed for larger blob objects, such as files,
images, and videos.

The main contributions of the paper are as follows:

1. Proposed a novel framework for dynamically allocating compute resources to the DC
tasks called ITS

2. Provided a decision tree classifier to determine the node type of a task. This approach
is extensible as more parameters can be added to the model depending on the task
requirement or through incremental learning.

3. Developed a task-driven node pool to streamline the restricted autoscaling setup.
The auto-scaling configuration at the pool level is utilized to flexibly adjust node
quantities, enabling dynamic expansion or reduction.

The rest of the paper is organized as follows. The related work is described in Sect. 2.
Section 3 discusses the basic components of the PaaS batch service. Section 4 presents
the proposed approach. In Sect. 5, we present the implementation approach in the cloud.
Section 5 discusses the experimental results. Section 6 concludes the paper.

2 Related Work

Researchers have done considerable work in algorithms that optimize the compute
resource utilization time in a distributed computing platform. However, little work has
been done on optimizing resource utilization in a PaaS environment.

Chen et al. [2] proposed an autoencoder-based distributed clustering algorithm that
helped cluster data from multiple datasets and combined the clustered data into a global
representation. The approach highlights the challenges of handling huge and multiple
datasets from different computing environments. Daniel et al. [3] proposed different
distributed computing cloud services that can be used for machine learning in big data
scenarios. Nadeem et al. [4] proposed a machine-learning ensemble method to predict
execution time in distributed systems. The model takes various parameters, such as
input and distributed system sizes, to predict workflow execution time. Sarnovsky and
Olejnik [5] proposed an algorithm for improving the efficiency of text classification in a
distributed environment. Ranjan [6] provided an in-depth analysis of cloud technologies
focusing on streaming big data processing in data center clouds.

Al-Kahani and Karim [7] provided an efficient distributed data analysis framework
for big data that includes data processing at the data collecting nodes and the central
server, in contrast to the common paradigm that provides for data processing only at
the central server. This process was very efficient for handling stream data from diverse
sources.Nirmeen et al. [8] proposed a new task scheduling algorithmcalled SortedNodes
in LeveledDAGDivision (SNLDD),which represents the tasks executing in a distributed
platform in the formofDirectedAcyclicGraph (DAG). Their approach dividesDAG into
levels and sorts the tasks in each level according to their computation size in descending
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order for allocating tasks to the available processors. Jahanshahi et al. [9] presented
an algorithm based on learning automata as local search in the memetic algorithm for
minimizingMakespan and communication costs while maximizing CPU utilization. Sri-
raman et al. [10] proposed an approach called SoftSKU that enables limited server CPU
architectures to provide performance and energy efficiency over diverse microservices
and avoid customizing a CPU SKU for each microservice. Pandey and Silakari [11] pro-
posed different platforms, approaches, problems, datasets, and optimization approaches
in distributed systems.

The approaches in the literature primarily focus on a) optimizing source data orga-
nization for efficient processing, b) task allocation based on execution order to available
resources, and c) utilizing cloud services for distributed computing. However, these
methods do not address the limitations of PaaS DC services. Our proposed framework
tackles the deficiencies of PaaS DC services and offers strategies for enhanced processor
utilization.

3 Batch Basic Concepts

This section introduces the core batch service concepts provided by various cloud
providers. Figure 2 illustrates the components of the batch service.

1. BatchOrchestration:Batch Service provides a comprehensive set of APIs for devel-
opers to efficiently create, manage, and control batch services. This API empow-
ers developers to handle every aspect of a batch, encompassing pool creation, task
allocation, task execution, and robust error handling.

2. Task: A task is a self-contained computing unit that takes input, executes operations
and generates subsequent task results. Configured during batch service creation, tasks
run scripts or executables, forming the core of a DC job which is a sequence of tasks
working toward specific goals. Batch facilitates parallel execution of tasks via its
service APIs.

3. Job Pool: A job pool is a collection of tasks. Any task that must be executed must
be added to the job pool. The batch service orchestrates the execution of this task on
any of the compute nodes available in the node pool.

4. Node Pool:VMs or compute nodes in the job pool are managed by the batch service,
overseeing their creation, task tracking, and provisioning. It offers both fixed VM
numbers and dynamic auto-scaling based on criteria. In batch service, VMs are also
known as compute nodes.

5. Batch Storage: Blob storage is created by the batch service to manage the internal
working of the service. Batch storage is used for storing task execution logs and
binaries. The batch service orchestrates the installation of these binaries on all the
VMs in the node pool.

6. Start-Up Task: The Start-Up task is the first task executed on the VM provisioned
in the Node Pool. It contains the command to download binaries from batch storage
and install them on the provisioned VM.

7. Cloud Services: The VMs in the node pool have access to all the services provided
by the CSP. The VM commonly accesses services such as blob storage or message
queue as a common store to persist and retrieve sharable data among the various tasks
executed in parallel.
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Fig. 2. Components of Batch Service

4 Proposed Approach

In this section, we describe the proposed approach that is used for scheduling tasks in
a PaaS distributed computing environment. We use an example of document processing
from an external source to explain the proposed approach.Document processing involves
document download (Task t0), text extraction (Task t1), image extraction and optical
character recognition (OCR)[12] (Task t2) for images present in the document, entity
extraction [13] from OCR output (Task t3), text summarization of the text extracted
(Task t4), and updating extracted information to the database (Task t5).

4.1 Initialization

The first step in the proposed approach is to identify the different tasks involved. All the
tasks follow a specific sequence of execution called workflow to arrive at the results.
These workflows can be represented as a directed acyclic graph (DAG) [14]. The graph
nodes represent the tasks t ∈ T where T is a set of n tasks in the workflow. The edge
between the nodes e ∈ E represents the tasks’ execution or the message flow between
the tasks. Figure 3 shows the DAG containing 6 tasks and 6 edges. The individual tasks
are represented as ti ∈ T, and the edge between task ti and tj is represented as (ti, tj) ∈
E, which indicates that the tj can be started after ti is completed. It also indicates that
ti sends a message to tj. The first task (t0) with no incoming edge is the starting task,
and a task (t5) with no outgoing edge is called an exit task. It can be noted from Fig. 3
that document download is the first task in the workflow. The downloaded file is sent
simultaneously to text extraction and image extraction. The output of text extraction is
sent for text summarization and the text output of image extraction and OCR is sent to
entity extraction. Once both activities are completed the last task would be to store the
extracted summarized text and the entities extracted into a single record in the database.

A message mi,j ∈ M is sent between node ti and tj and it is associated with each
edge (ti, tj). Here M is the set of all the messages exchanged between the nodes in the
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workflow. mi,j contains a set of attributes created by the task ti and sent to tj for further
processing. A message mi,j comprises of {mindex , ti, md0, md1, md2,…., mdn} where
mindex is a unique value created by the starting task to uniquely identify all the tasks
in the complete workflow, ti is the reference to the source task and md(0 to n) include
all message data attributes required to execute the task tj. Each task tj is associated
with the PaaS queue service qj, created to store the message mi,j, which comes from the
task ti. Each task is associated with a compute node attribute set ai = { ai1, ai2, ai3,
…., ain} where aij represents the compute node properties required to execute task ti.
Table 1 shows task attributes and their values for the tasks shown in Fig. 3. The attributes
include.

Fig. 3. DAG Task Processing Order

Table 1. Task Attributes

Task
Name

Avg Exec
Time(s)

Avg Exec
Time
Bucket

Processor
Requirement

Memory
Requirement

External
Dependency

Operating
System

Task t0 23 (0–25) Low Low Yes Windows

Task t1 12 (0–25) Low Low No Windows

Task t2 200 (>50) High High No Linux

Task t3 50 (25–50) Medium High No Windows

Task t4 123 (>50) High High No Linux

Task t5 35 (25–50) Medium High No Windows

1. Avg Execution Time: Average time required to execute the task
2. Processor Requirement: The possible values are High, Medium, and Low
3. Memory Requirement: The possible values are High, Medium, and Low
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4. External Dependency: Jobs that wait for external dependencies like web requests
or API calls.

5. Operating System: The host operating system is required to perform the task.

These attribute sets are gathered during the development phase of the project. It can be
noted fromTable 1 that tasks t2 (Image extraction andOCR) and t4 (Text summarization)
require high memory, processor, and Linux systems, whereas the rest of the tasks can
be executed on Windows machines. All the distinct attribute set ai are consolidated into
an attribute set A = {a1,a2,a3,…., an}, used for classifier training. Table 2 shows the
distinct attribute set obtained from Table 1.

Table 2. Distinct Attribute Set

Avg Exec Time
Bucket

Processor
Requirement

Memory
Requirement

External
Dependency

Operating
System

(0–25) Low Low Yes Windows

(0–25) Low Low No Windows

(25–50) Medium High No Windows

(>50) High High No Linux

4.2 Classifier Training and Compute Node Mapping

In the second step, a decision tree classifier is trained by taking the distinct compute
node attribute set A and mapping them to a compute node type ci ∈ C, where C = {c1,
c2, c3,….,cn} is a set of all the compute node types provided by the CSP. Table 3 shows
the mapping between the attribute set and the compute node types.

The decision tree classifiermodel takes task attributesA and generates the predictions
C represented as P(A) = C. After the training, the model is used to create tuples (T, C).
The tuple contains the elements (ti, ci), which indicates that task ti ∈ T requires predicted
compute node ci ∈ C to execute. Table 3 shows the example of the task and compute
node mapping generated from the model.

4.3 ITS Framework

The source documents are represented by the set X = {1, 2, 3, …n}, where n is the total
number of items in the source dataset. The ITS framework contains three separate flows
that execute in parallel. Figure 4 shows the working of the ITS for the tasks shown in
Fig. 3.

1. Job Initializer:Responsible for initiating theworkflow’sfirst task byprocessing input
data. Pseudocode 1 outlines the job initializer steps. It reads and extracts necessary
details from the source data, creating messages in q0 for each item. In the example
of Fig. 4, the Job Initializer processes files f0 to fn in the source data repository,
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Table 3. Task Compute Node Mapping

Task Name Compute Node Type

Task t0 Document Download Compute node Type 1

Task t1 Text Extraction Compute node Type 1

Task t2 Image Extraction and OCR Compute node Type 2

Task t3 Entity Extraction Compute node Type 3

Task t4 Text Summarization Compute node Type 2

Task t5 Database Update Compute node Type 3

generating messages in queue q0 containing the location details of the file. The first
message for file f0 in queue q0 is represented using m(0)0 where (0) in parenthesis
represents the file number similarly for file f1 it is m(1)0.

Fig. 4. ITS Execution and Data Flow
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2. ITS: Responsible for scheduling the tasks in multiple job pools to ensure optimal
utilization of resources at the task level. The ITS looks for messages in all the queues
and schedules the tasks in the predicted job pool. Pseudocode 2 captures the steps in
the ITS, which are explained below:
a. ITS keeps monitoring the queues for any messages. In Fig 4 the ITS is monitoring

q0 to q5.
b. For the first task in the workflow, messages m(f)0 are read from the queue q0 after

it is populated from the Job Initializer. In Fig. 4 the ITS will read messages m(0)0

to m(n)0 from q0.
c. For subsequent tasks message m(f)i,j is read from the queue qj populated from the

task ti. In Fig. 4, the ITS reads messages m(0)0,1 to m(n)0,1 from q1 similarly from
other queues such as m(0)1,2 will read from q2 and m(0)2,3 will be read from q3.

d. ITS checks the DAG in Fig. 3 to find parents for tasks tj. If multiple parents exist,
the queue qj is searched for messagem(f)ij for all the parent task ti using the unique
task identifier mindex, and parent tasks ti andmerged before executing the task tj. In
example Fig. 4 the tasks t0 to t4 have single parents so message m(f)0 is consumed
by task t0,m(f)0,1 is consumed by task t1,m(f)2,3 is consumed by task t3, and so on.
In the case of q5, task t5 has parent t4 and t3 so the messages m(f)4,5 and m(f)3,5 are
merged before executing t5.

e. ITS identifies the best suitable VM Type required to run the task tj.
f. ITS creates the task in the tj job pool. The message data(md) in the message are
passed as parameters to task tj.

3. Task Executor: The Task Executor is responsible for executing and writing the
output message back to the child task message queue for the next task execution.
Pseudocode 3 captures the steps in the Task Executor. The flow involves consuming
the parameters sent through message data md, executing the binaries associated with
the task, and writing the results to the child task message queue. The following are
the task executions that happen (see Fig. 4):
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a. t0 (Document Download) downloads the file after reading the external file location
in the message queue q0. The task stores the file in a common location in the local
store and populates the message m0,1 in q1 and m0,2 in q2 with the location of
the local store in the message.

b. t1 (Text Extraction) extracts the text from the document by reading the local file
store location and populates the message q4with the contents of the extracted text.

c. t2 (ImageExtraction andOCR) extracts all the images from the document performs
an OCR to extract the text and populates the message q3 with the contents of the
extracted text.

d. t3 (Entity Extraction) extracts entities from the message received from t2 con-
taining OCR text output and populates the message in q5 with the entities
extracted.

e. t4 (Text Summarization) summarizes the text output obtained from t1 andpopulates
the message in q5 with the summarized text.

f. ITSmerges themessage data from t2 containing entities extracted and t4 containing
the summarized text and triggers t5.

g. t5 (Database Update) updates the extracted information into the database.

5 Experimental Results

5.1 Dataset Details

We illustrate our approach for the Oil Industry domain to extract structured and unstruc-
tured data from images. The dataset was sourced from the BSEE website [15], an open
repository of oil and gas industry data. The goal was tomake images searchable based on
text content and well-data attributes. The experiment involved processing 1000 images
in Azure, involving tasks such as image download, classification, attribute extraction,
OCR, NLP, and search index update. Figure 5 shows the image categories in the dataset.

5.2 Azure Setup for the Experiment

Figure 6 shows the experimental setup in Azure [1].
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Fig. 5. Image Categories of Test Data Set

1. Azure Storage: Azure blobs are used to store the images.
2. Processing Layer: Consists of Azure Batch and Scheduled Jobs. Azure Batch is

a distributed computing PaaS platform provided by Azure and Schedule Jobs are
services that run scripts on a schedule.They are configured to execute Job Initialization
and ITS.

3. Search Layer: Consists of Azure cognitive search service that provides metadata
and free text search from the extracted content.

4. ML Studio: Hosts the classification model that derives the VM size required for the
task.

5. Forms Service: Used to extract structured data(attributes) from images. Figure 7
shows attributes such aswell name, and lease name extracted from the forms services.

6. Custom Vision: Used for categorizing the images present in the source dataset, as
shown in Fig. 5.

7. Storage Table: Used to store the log table containing the task compute node
requirement.

5.3 Experiment Steps

The execution steps are:

1. Classifier Training: This step involved training the classifier model with training
data containing the task resource requirements. Table 4 contains the training data
with a compute node requirement column containing the Azure VM [1] size most
suitable for running the task.

2. Task Attribute Update: This step involved adding task attributes along with
execution times into the storage table. Table 5 shows the entries in the Storage Table.

3. Compute Node Prediction: Run the classification model against the entries in the
table storage (Table 5) to determine theVMsize required for running the tasks. Table 6
contains the compute node mapping obtained for each task in the Job. The entries in
Table 6 are updated to the Storage Table for scheduling the tasks.

4. Run distributed Job using Azure Batch: The experiment involved creating two
pools, Low-Cost Pool containing Standard_A4_v2 [16] (4 core, 8 GB RAM) VM
andHigh-Cost Pool containing Standard_A8_v2 [16] (8 core, 16 GBRAM)VM. The
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Fig. 6. Experimental setup of Azure Batch

Fig. 7. Structured Data Extraction

number of machines used in the experiment was limited, considering the execution
cost involved. The experiment involved three execution modes.
a) Low Cost – High Execution Time Approach: In this mode, we allocated

three Standard_A4_v2 VMs in the Low Compute Pool and allocated the task
of extracting data from 1000 images.

b) High Cost – Low Execution Time Approach: In this mode, we allocated
three Standard_A8_v2 VMs in the High Compute Pool and allocated the task
of extracting data from 1000 images.

c) ITS Approach: In this mode, we allocated two Standard_A1_v2 VMs in the Low
Compute Pool and a single Standard_A8_v2 VM in the High Compute VM pool.
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Table 4. Classifier Training Data

Avg Exec
Time
Bucket

Processor
Requirement

Memory
Requirement

External
Dependency

Operating
System

Compute Node
Requirement

(0–10) Low Low Yes Windows Standard_A4_v2

(0–10) Low Low No Windows Standard_A4_v2

(10–50) High High No Windows Standard_A8_v2

Table 5. Task Attributes

Task
Name

Avg Exec
Time(s)

Avg Exec
Time
Bucket

Processor
Requirement

Memory
Requirement

External
Dependency

Operating
System

Classify
Image

1.23 (0–10) Low Low No Windows

Extract
Fields

7.11 (0–10) Low Low No Windows

OCR
Text

16.13 (10–50) High High No Windows

Search
Service
Update

0.19 (0–10) Low Low No Windows

Table 6. Task Compute Node Mapping

Task Name Compute Node Requirement

Load Standard_A4_v2

Classify Image Standard_A4_v2

Extract Fields Standard_A4_v2

OCR Text Standard_A8_v2

Search Service Update Standard_A4_v2

We used the classification model to predict the task job pool. The allocation of
tasks to the pool depended on the output of the prediction model and the number of
jobs in the pool. If the job pool length is less than the threshold set to 10 tasks, any
job will be allocated to the respective pool. The OCR extraction task was primarily
allocated to the high compute pool, whereas all the other tasks were allocated to
the low compute pool. This allocation procedure ensures that no processor is idle
during the data extraction.
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Table 7 shows the execution time in all three modes. There is an 8% decrease in
execution time of the ITS Approach compared to the Low Cost- High Execution Time
Approach and a total reduction of 68% in cost when the ITS Approach is compared with
the High Cost – Low Execution Time Approach. The percentage reduction in time is
calculated using the total execution time captured in Table 7. The total reduction in cost
is obtained by multiplying the execution time with the unit price for VM usage from the
Azure VM price sheet [16]. A similar experimental setup can be done on batch services
provided by other CSPs such as AWS [17] and Google [18].

Table 7. Batch Execution Results

Activity
(in secs)

Low Cost – High Execution
Time Approach

High Cost – Low Execution
Time Approach

ITS Approach

Low
Compute
VM

Low
Compute
VM

Low
Compute
VM

High
Compute
VM

High
Compute
VM

High
Compute
VM

Low
Compute
VM

Low
Compute
VM

High
Compute
VM

Classify
Image

9.76 9.01 9.95 9.20 8.87 9.89 13.25 13.56 1.10

Form
Data
Extraction

42.17 43.7 43.0 42.03 43.87 42.87 60.52 61.1 5.04

OCR 131.3 132.4 130 93.85 94.61 94.21 86.72 85.92 157.67

Search
Service
Update

1.58 1.34 1.44 1.18 1.45 1.37 1.70 1.56 0.14

Total
Execution
(min)

9.28 7.39 8.14

6 Conclusion

Distributed systems are computing platforms that can be used to handle large amounts of
data processing. However, they can be costly depending on the time it takes to complete
a job. This paper introduces a new framework that optimizes both the execution time
and cost associated with running data processing tasks on a massive scale. The sug-
gested technique includes the dynamic identification of the compute nodes to execute
the task based on the classificationmodel’s output. This model can be trained to optimize
execution cost and execution time or additionally, it can be easily retrained with new
parameters to enhance the system’s flexibility in accommodating new rules.

References

1. Directory of Azure Cloud Services | Microsoft Azure. https://azure.microsoft.com/en-in/pro
ducts/

https://azure.microsoft.com/en-in/products/


An Improved and Efficient Distributed Computing Framework 33

2. Chen, C.-Y., Huang, J.-J.: Double deep autoencoder for heterogeneous distributed clustering.
Information 10(4), 144 (2019). https://doi.org/10.3390/info10040144

3. Pop, D., Iuhasz, G., Petcu, D.: Distributed platforms and cloud services: enabling machine
learning for big data. In: Mahmood, Z. (ed.) Data Science and Big Data Computing, pp. 139–
159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31861-5_7

4. Nadeem, F., Alghazzawi, D., Mashat, A., Faqeeh, K., Almalaise, A.: Using machine learn-
ing ensemble methods to predict execution time of e-science workflows in heterogeneous
distributed systems. IEEE Access 7, 25138–25149 (2019). https://doi.org/10.1109/ACCESS.
2019.2899985

5. Sarnovsky, M., Olejnik, M.: Improvement in the efficiency of a distributed multi-label text
classification algorithm using infrastructure and task-related data. Informatics 6(12), 1–15
(2019). https://doi.org/10.3390/informatics6010012

6. Ranjan, R.: Streaming big data processing in datacenter clouds, pp-78–83. IEEE Computer
Society (2014)

7. Al-kahtani, M.S., Karim, L.: An efficient distributed algorithm for big data processing. Arab.
J. Sci. Eng. 42(8), 3149–3157 (2017). https://doi.org/10.1007/s13369-016-2405-y

8. Bahnasawy, N.A., Omara, F., Koutb, M.A., Mosa, M.: Optimization procedure for algorithms
of task scheduling in high performance heterogeneous distributed computing systems. Egypt.
Inform. J. 12(3), 219–229 (2011). https://doi.org/10.1016/j.eij.2011.10.001. ISSN 1110-8665

9. Jahanshahi, M., Meybodi, M.R., Dehghan, M.: A new approach for task scheduling in
distributed systems using learning automata. In: 2009 IEEE International Conference on
Automation and Logistics, pp. 62–67 (2009). https://doi.org/10.1109/ICAL.2009.5262978

10. Sriraman, A., Dhanotia, A., Wenisch, T.F.: SoftSKU: optimizing server architectures for
microservice diversity @scale. In: 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA), pp. 513–526 (2019)

11. Pandey, R., Silakari, S.: Investigations on optimizing performance of the distributed comput-
ing in heterogeneous environment using machine learning technique for large scale data set.
Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.07.089. ISSN 2214-7853

12. Optical character recognition. https://en.wikipedia.org/wiki/Optical_character_recognition
13. Entity Extraction. https://en.wikipedia.org/wiki/Named-entity_recognition
14. Directed acyclic graph – Wikipedia. https://en.wikipedia.org/wiki/Directed_acyclic_graph
15. ScannedWell Files Query. https://www.data.bsee.gov/Other/DiscMediaStore/ScanWellFiles.

aspx
16. Pricing -Windows Virtual Machines | Microsoft Azure. https://azure.microsoft.com/en-in/pri

cing/details/virtual-machines/windows/
17. Getting Started with AWSBatch - AWSBatch. https://docs.aws.amazon.com/batch/latest/use

rguide/Batch_GetStarted.html#first-run-step-2
18. Batch service onGoogleCloud. https://cloud.google.com/blog/products/compute/new-batch-

service-processes-batch-jobs-on-google-cloud

https://doi.org/10.3390/info10040144
https://doi.org/10.1007/978-3-319-31861-5_7
https://doi.org/10.1109/ACCESS.2019.2899985
https://doi.org/10.3390/informatics6010012
https://doi.org/10.1007/s13369-016-2405-y
https://doi.org/10.1016/j.eij.2011.10.001
https://doi.org/10.1109/ICAL.2009.5262978
https://doi.org/10.1016/j.matpr.2021.07.089
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://www.data.bsee.gov/Other/DiscMediaStore/ScanWellFiles.aspx
https://azure.microsoft.com/en-in/pricing/details/virtual-machines/windows/
https://docs.aws.amazon.com/batch/latest/userguide/Batch_GetStarted.html#first-run-step-2
https://cloud.google.com/blog/products/compute/new-batch-service-processes-batch-jobs-on-google-cloud


Scheduling of Containerized Resources
for Microservices in Cloud

Kamalesh Karmakar1,2(B) , Shramana Dey2, Rajib K. Das2,
and Sunirmal Khatua2

1 Future Institute of Technology, Kolkata, WB, India
k.karmakar.ju@gmail.com

2 University of Calcutta, Kolkata, WB, India

Abstract. Most developers consider that microservice-based applica-
tion design and development can improve scalability and maintainabil-
ity. The microservices are developed as small independent modules and
deployed in containers. The containers are deployed in virtual machines
(VMs), which in turn run in hosts. Effective consolidation of the service
requests to the containers may reduce the number of active hosts in a
cloud environment, resulting in lesser power consumption of the cloud
data centers. This research aims to maximize the resource utilization of
the hosts by effectively allocating the containers to the VMs and VMs
to the hosts. In this scheduling, a few additional containers and VMs are
kept in the available resource pool so that during peak demand for ser-
vices, the users get their service at the earliest (preferably without any
delay). This paper presents a heuristic algorithm for microservice allo-
cation in a containerized cloud environment to achieve these objectives.
The performance of the proposed algorithm is validated and justified
through the extensive experimental results. We have compared the per-
formance of the proposed technique with the existing state-of-the-art.
The number of container deployments in the proposed policy is reduced
by 12.2–17.36% compared to the Spread policy and 6.13–10.57% com-
pared to First-Fit and Best-Fit policies.

Keywords: Microservices · Cloud Computing · Container ·
Scheduling Technique · Resource Allocation

1 Introduction

With the fundamental shift in software development, service-oriented comput-
ing has become an attractive choice among software developers for its agility
and efficiency. In a service-oriented architecture (SOA) [5,16], web services are
small independent computing tasks (loosely coupled [16,20,23]) published as a
service over the Internet. Web services make the business functionalities of one
application accessible to other applications through web interfaces. These ser-
vices can easily be integrated into client applications for low-cost development
and deployment.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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In a microservice architecture, an enterprise application is split into small
self-contained modules, where a microservice is designated to perform a spe-
cific task. These microservices communicate among themselves using the Simple
Object Access Protocol (SOAP). Hence, instead of working on the shared code-
base, the developers can be divided into many smaller groups who can work
on developing business functions in different modules independently. It gives
benefits for improving code re-usability and maintainability. More importantly,
microservice-based applications should be scalable because of the highly fluctu-
ating nature of demands.

The distributed deployment and fluctuating demand of the microservices
require scalable resource provisioning for cost-effective deployment and execu-
tion. In this regard, cloud computing deals with the scenario by providing the
backbone infrastructure as pay-per-use on-demand services. Furthermore, the
Cloud Service Providers (CSPs) offer different pricing models for the end-users,
depending on shared or dedicated resources. Hence, policy designing for resource
allocation becomes a challenging task. Moreover, the cloud service providers want
to reduce the energy consumption of the data centers and are facing challenges
for dynamic resource provisioning of multiple clients within minimum infras-
tructural resources [11–14]. At the same time, service providers should ensure
maintenance of the service level agreement of the users, like deadlines and qual-
ity of services [3,3,28]. This paper focuses on microservice deployment in Docker
containers in Amazon EC2 on-demand instances to achieve these objectives.

Thus, this paper proposes a model for microservice-based task deployment
and a heuristic algorithm for performance improvement. In this algorithm design,
we try to minimize end-to-end delay for improved quality of services (QoS).
Moreover, we ensure that the tasks are completed within their deadlines while
keeping the monetary cost of task deployment low. Hence, the main contributions
of this work are as follows:

– A microservice-based task deployment model.
– A heuristic algorithm to schedule the services to the containers.
– Extensive experimental results to analyze the performance of the proposed

algorithm with existing techniques using benchmark data.

The rest of this paper is organized as follows. Section 2 illustrates a microser-
vice architecture in a cloud environment. Later, we discuss the system model
and formulate the problem in Sect. 3. Section 4 illustrates the proposed policy
for task deployment. Section 5 presents and analyzes the experimental results.
Finally, Sect. 6 concludes the paper with some future direction of research in this
domain.

2 Literature Review

With the emergence of architectural patterns, microservice architecture has
become necessary for achieving high flexibility in designing and implementing
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modern applications. Hence, in the recent past, various microservice architec-
tures have evolved and are standardized.

In [1], authors provide a benchmark analysis for master-slave and nested-
container-based microservice architecture. They analyze the performance of the
models in terms of CPU resource usage and network communication. In a keynote
speech [8], Wilhelm Hasselbring discussed the importance of microservices over
monolithic architecture. Several studies have shown that microservice architec-
ture improves performance and DevOps development cycle over monolithic archi-
tecture [18,35].

However, SOA faces challenges using existing communication mechanisms
with very high workload scenarios [2,9]. To overcome this challenge, a new tech-
nology, Enterprise Service Bus (ESB), was introduced [19,25]. It can achieve low
latency and high scalability of the application. However, ESB is unsuitable for
a cloud environment as virtual machine deployment is elastic, i.e., the number
of virtual machines may vary based on service demand. Hence, to avoid this
problem in SOA, a microservice architecture pattern has emerged that helps in
developing lightweight services [4,21].

Furthermore, in recent days, microservice deployments in the cloud envi-
ronment have gained attention to achieve the benefits of acquiring inherently
scalable cloud resources whose billing is dependent on resource usage. High adap-
tation of cloud services is possible by deploying microservices in a VM instance,
which can scale as per the user’s demand. However, in recent days, contain-
ers have been preferred instead of VM instances as containers are lightweight,
quickly migratable, and scalable. These containers, in turn, are deployed in
VM instances. Microservices use container technology, which provides operating
system-level virtualization [10,17,22]. One such container technology is Docker
[6], developed as a lightweight virtualization platform [22,27].

In the SOA aspect, container-based application deployment has received con-
siderable attention, and different companies have taken the initiative. CoreOS
defined Application Container (appc)1 specification by the image format, the
runtime environment, and discovery protocol. Another notable runtime con-
tainer engine project is runC 2, started by Docker. In 2015, Docker, Google,
IBM, Microsoft, Red Hat, and many other partners formed Open Container Ini-
tiative (OCI)3 for further enhancement and standardized container specification.
OCI consists of two specifications, namely Runtime Specification (runtime-spec)
and Image Specification (image-spec). In brief, an OCI image is downloaded and
unpacked into an OCI runtime environment to create a container service. The
Cloud Native Computing Foundation4 designed an open-source software stack
that allows the deployment of applications as microservices packed into con-
tainers. Furthermore, this software stack performs dynamic orchestration of the
containers for optimizing resource utilization.

1 https://coreos.com/rkt/docs/latest/app-container.html.
2 https://blog.docker.com/2015/06/runc/.
3 https://www.opencontainers.org/.
4 https://www.cncf.io/.

https://coreos.com/rkt/docs/latest/app-container.html
https://blog.docker.com/2015/06/runc/
https://www.opencontainers.org/
https://www.cncf.io/
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In container-based microservices, each microservice, along with the required
libraries and databases is packaged in a container deployed on a platform that
supports container technology. Containerized microservices are isolated execu-
tion environments and can be instantiated at runtime based on service demand.
These containers may run in one or more virtual machine(s) depending on the
resource demand, virtual machine configuration, and availability of resources.
Deployment of different containers on different virtual machines may improve
performance when the resource demand is high. However, this incorporates more
communication delay, as the virtual machines can be scattered within the data
center or across data centers placed in different geographical areas.

2.1 Standard Data Formats, APIs and Protocols

Deployment of microservices in different containers, running in the same or dif-
ferent virtual machines, requires information exchange among the containers.
Information exchange requires standard data representation and standard pro-
tocols. However, XML is a well-known and widely used data format for message
exchange, JSON becomes more popular in recent days. Data Format Description
Language (DFDL) supports a variety of data input, output formats and is used
in both open source and proprietary tools [7,34]. Besides these, the Open API
Initiative standardized RESTful API Markup Language (RAML), which can be
used for a variety of data formats [30,31].

The microservice architecture uses standard HTTP and HTTPS protocols for
information exchange. Along with standard TCP and UDP protocols, Stream
Control Transmission Protocol (SCTP) is used for streaming services [24,26].
In the context of the machine to machine communication, the Organization for
Advanced Structured Information Systems (OASIS)5 standardized the Message
Queuing Telemetry Transport (MQTT) protocol for publishing and subscribing
messages at high speed [29,32].

3 System Model and Problem Formulation

Most software applications use microservices to deliver diverse functionalities to
the end users. Hence, microservices are to be deployed in heterogeneous contain-
ers. Furthermore, the heterogeneity of underlying cloud data center resources
and pricing models makes microservice allocation much harder. In this regard,
the system is modeled based on the following assumptions:

– the containers can migrate to other VMs for consolidating them in a minimum
number of VMs

– the VMs do not migrate as the time and monetary cost involved in VM
migration is very high.

However, if the utilization of a container is too low and the environment is
underutilized, newly arrived microservice requests are not allocated to it, which
results in the termination of the container without any running service migration.
5 https://www.oasis-open.org/.

https://www.oasis-open.org/
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3.1 System Model

Let us consider a set of microservice requests S = {s1, s2, s3, . . . , sm}, where
each request is associated with a deadline, are to be deployed in a containerized
cloud environment. We consider a set of container images CI = {ci1, ci2, . . . ,
cix}, where each container is configured for a specific type of microservice. The
microservice containers C = {c1, c2, . . . , cn} are instantiated using the container
images. The containers are deployed into the VMs, V = {v1, v2, . . . vq}, which
in turn are deployed into physical machines/hosts, P = {p1, p2, . . . , pr}.

The service requests are routed to the containers, where the corresponding
microservice runs. An increase or decrease in the number of microservice requests
causes the creation of new instances of containers or the termination of existing
containers while keeping the resource utilization of containers within a desired
range. The decision to scale the containers depends on the demand for container
resources and the current utilization of the containers. Similarly, the VMs, that
deploy the containers, are also scaled as per the current utilization of the run-
ning VMs. However, a container or VM is not shut down/stopped as soon as
utilization becomes low. The scale-down occurs only if the containers or VMs
are under-utilized for a certain period. The resource utilization of the containers
and VMs is calculated as follows:

Resource Utilization of a Container. Let us represent service request allo-
cation in a container using matrix Xi,j,t where a request si is allocated to a
container cj at clock t. The utilization of the container cj at time t is calculated
as

uc
j,t =

∑m
i=1(mipssi · Xi,j,t)

mipscj
(1)

where Xi,j,t is defined as

Xi,j,t =
{

1, if si is allocated to container cj at time t
0, otherwise

and mipssi is the MIPS (million instructions per second) needed by the service
request si, mipscj is the capacity of the container in MIPS.

Resource Utilization of Virtual Machine. Similarly, we represent the con-
tainer allocation to VMs using matrix Yj,k,t, considering the container cj is
allocated to the VM vk at time t. Thus, the utilization of a VM vk at time t is
measured as

uv
k,t =

∑n
j=1(mipscj · uc

j,t · Yj,k,t)
mipsvk

(2)

where Yj,k,t is defined as

Yj,k,t =
{

1, if cj is allocated to VM vk at time t
0, otherwise
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and mipsvk
is capacity of the VM vk in terms of million instructions per second.

The service requests allocated to a container are kept in the reservation table of
the container.

Resource Utilization of Host. The VMs are deployed in hosts of a cloud
data center. Zk,l,t represents the allocation of vk in pl at time t. That is,

Zk,l,t =
{

1, if vk is allocated to host pl at time t
0, otherwise

Hence, utilization of a host pl at time t is measured as

up
l,t =

∑q
k=1(mipsvk

· uv
k,t · Zk,l,t)

mipspl

(3)

where q is number of VM instances, mipsvk
and mipspl

are capacity of VM vk
and host pl in terms of MIPS.

Energy Model of Host. The power consumption of a host is dependent on
its utilization. This literature considers a linear power model shown below. The
power consumption of a host pl is calculated as:

Enl,t =

{
Enidle

l,t + (Enbusy
l,t − Enidle

l,t ) · up
l,t, if up

l,t ≥ 0
Enoff

l,t , if host is shut down
(4)

where Enidle
l,t is the power consumption of an idle host and Enbusy

l,t is the power
consumption of a fully utilized host.

3.2 Pricing Models of Different Platforms

Amazon AWS offers infrastructure services at different pricing schemes like (i)
reserved, (ii) on-demand, and (iii) spot instance for the same instance type. The
CSUs (cloud service users) can avail of on-demand instances at a fixed hourly
rate with a guarantee of uninterrupted service. On the other hand, the price of
spot instances varies with time, and availability depends on the bid price and
overall demand for resources. The CSP can reclaim the spot instance whenever
the price exceeds the bid. Nowadays, Amazon has changed its policy regarding
the bid where the default bid is the on-demand price, and whenever the spot
price is about to exceed the on-demand price, it issues a warning and revokes
the spot instance after a short period (a few minutes). Thus, spot instances are
generally cheaper than on-demand but come with a risk of revocation by CSPs
(cloud service providers). We choose spot instances for microservice deployment
as it is cost-effective and describe in Sect. 4 the techniques used to handle the
problems arising out of revocation by CSPs.
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3.3 Problem Formulation

Given a set of microservice requests S = {s1, s2, . . ., sm}, a set of container
images CI = {ci1, ci2, . . . , cix}, a set of virtual machines V = {v1, v2, . . . vq}
and a set of physical machines/hosts, P = {p1, p2, . . . , pr}, determine a schedule
f : si → cj where service request si is being allocated to container cj, which
are deployed in VMs g : cj → vk, which in turn are deployed in physical hosts
h : vk → pl in such a way that satisfies deadlines, minimizes the resource renting
cost of the VMs, and achieves energy efficiency by minimizing the number of
active hosts.

Algorithm 1: Service Allocation to Microservice Container
input : S = {s1, s2, s3, . . . , sm}; CI = {ci1, ci2, ci3, . . . , cix};

C = {c1, c2, c3, . . . , cn}; V = {v1, v2, v3, . . . , vq}
output: Service request allocation to the Containers

1 keep un-allocated services of previous clock at the beginning of S.
2 foreach si ∈ S do
3 determine image type cig for service request si
4 determine containers Ca which can serve service request si
5 sort Ca in descending order of uc

j,t · uv
k,t, where uc

j,t uv
k,t are obtained

from Eq. 1 and 2
6 set flag isServiceDeployed ← false
7 foreach cj ∈ Ca do
8 status ← isDeployableContainer(si, cj)
9 if status = true then

10 update reservation table of cj ; isServiceDeployed ← true
11 break;

12 if isServiceDeployed = false then
13 rearrange the VMs V in descending order of resource utilization
14 select a container configuration c for si based on cia;
15 set flag isContainerDeployed ← false
16 foreach vk ∈ V do
17 if isDeployableV M(c, vk) then
18 instantiate container c in vk based on container image cia
19 update C ← C ∪ c; isContainerDeployed ← true

20 if isContainerDeployed = false then
21 instantiate a new VM v
22 instantiate container c in v based on container image cia
23 update V ← V ∪ v; C ← C ∪ c

24 call Algorithm 2 to manage pool of containers and VMs.
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Algorithm 2: Resource Pooling of Containers and VMs
input : service request, si; deadline of service request, dlsi ; container, cj ;

reservation table, rtcj
output: allocation status

1 rearrange the VMs V in descending order of resource utilization
2 for a = 1 to x do
3 select the containers Ca intantiated using container image cia
4 rearrange Ca in descending order of utilization

5 calculate utilization of microservice containers uci
a,t using Eq. 8

6 if uci
a.t > µch then

7 add �(uci
a − µch) ∗ |Ca|� number of containers, say C′

a, are to be
deployed

8 foreach cj ∈ C′
a do

9 set flag ← false
10 for v ∈ V do

11 if uv
k,t + mipscj/mipsvk < µvh as per Eq. 9 then

12 instantiate cj in vk; update flag ← true

13 if flag = false then
14 instantiate a new VM v and add it to V

15 else if uci
a,t < µcl then

16 while uci
a,t < µcl do

17 remove the containers from Ca in which service is not allocated
and the container is running in a most underutilized VM

4 Proposed Algorithm

The proposed algorithm deals with independent microservice requests for alloca-
tion in a set of containers C to run on a set of virtual machines V . A container, by
design, can run only a specific type of microservice. Hence, the service requests S
can be classified based on their attributes and mapped to the respective contain-
ers. Based on users’ service demand, multiple containers instantiated from the
same container image may provide the same microservice. On the other hand,
we must instantiate at least one container for each type of microservice. These
containers and VMs are to be scaled to reduce monetary costs. Thus, the pro-
posed policy has two phases: (i) Service request allocation, (ii) Containers and
VMs Pool management, as presented below.

4.1 Service Request Allocation

In a scheduling clock, the resource provisioner receives a set of service requests S
and routes the requests to the containers. Before allocating any service request,
the containers are to be rearranged in descending order of resource utilizations
so that the resource provisioner allocates service requests to maximally utilized
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but not overloaded containers. If we combine with this, the policy of freeing
underutilized containers when demand for services reduces, we can decrease the
number of container deployments. However, the monetary cost is not associ-
ated with the number of container deployments but with the number of VM
deployments. Also, the resource utilization of the VMs impacts the energy con-
sumption of the data center. Hence, to ensure the concentration of the containers
in a lower number of VMs, the containers are sorted in descending order of the
product of container and VM utilization (uc

j,t · uv
k,t) as shown in line no. 4 of

Algorithm 1. Here, ucj, t and uv
k,t are computed by Eqs. 1 and 2. Using line no 7–

11, a container is selected for the service request si if uc
j,t is less than the upper

threshold of container utilization μch and if si is deployable in the container
cj , i.e., mipssi + ucj · mipscj ≤ mipscj . If the service request is not deployable
in any existing container, a container must be instantiated using the container
image cia on a suitable VM. A container is deployable in a VM if it has enough
resources available. The resource availability of a VM vk at time t is given by:

Rv
k,t = mipsvk

· μvh −
∑

j

uc
j,t.mipscj .Xj,k,t (5)

where μvh is upper threshold of VM utilization.
To avoid resource contention among the containers, we assume that resources

are fully reserved for a container irrespective of its utilization. Thus, the resource
availability of vk is redefined by substituting 1 for uc

j,t as

Rv
k,t = mipsvk

· μvh −
∑

j

mipscj .Xj,k,t. (6)

The function isDeployableV M(cj , vk) returns true if the VM vk can satisfy the
resource requirement of the new container, i.e. mipscj ≤ Rv

k,t.
Each container maintains a reservation table for the service requests.

The reservation table of container cj at time t (rtcj ) has the tuples
<si, stsi lsi , atsi> | ∀ Xi,j,t = 1. Here, stsi is the start time, lsi is the ser-
vice execution time, and atsi is the arrival time. In every scheduling clock, the
reservation table is updated according to the arrival of new service requests and
completion of existing service requests.

4.2 Resource Pooling of Containers and VMs

At the end of each scheduling clock, the algorithm investigates the health of
container instances of each service type (container image type) and analyzes
resource utilization to make scaling decisions.

The utilization of the containers uci
a,t of container image type cia at time t is

calculated as

uci
a,t =

∑
j uc

j,t.mipscj
∑

j mipscj
∀cj ∈ Ca (7)
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where uc
j,t is utilization of container cj and Ca is the set of containers instantiated

from container image cia. If the average utilization for a certain period t′ to t
is higher than the upper threshold μch, we should increase the size of Ca (a
scale-up). The average utilization for a certain period is calculated as

uci
a,t =

1
t − t′

∫ t

t′
uci
a,tδt (8)

If the average utilization uci
a,t is greater than μch, �(uci

a,t − μch) ∗ |Ca|	 number
of containers are to be instantiated. While instantiating a container in an exist-
ing VM vk, we must check that its new utilization does not exceed utilization
threshold μvh as per the following equation:

uv
k,t +

mipscj
mipsvk

< μvh (9)

Other resource constraints such as memory etc., are also considered while
deploying a container in vk. If the container does not fit in any existing VM, we
must instantiate a new VM to allocate the container. As the VM instantiation
takes 1–2 min, to avoid any delay in launching the container, at the end of every
scheduling clock, VMs are also scaled up to keep them in a reserved pool to allow
immediate deployment of containers in them.

The containers are scaled down if the average utilization of the containers
uci
a,t is less than the lower threshold μcl. The idle containers (maximum μcl −

uci
a,t.|Ca| of them are selected for shutting down). Similarly, the VMs are scaled

down if resource average utilization uv
t is less than the lower threshold μvl. The

VMs without any allocated containers are selected for shutting down (maximum
μvl − uv

t .|V | number of VMs).
The VMs are deployed in hosts using a polynomial-time heuristic technique,

Resource Affinity-based VM Placement (RAbVMP), aiming for a reduction of
active hosts (presented in [15]).

The rearrangement of containers and VMs according to the descending order
of resource utilization ensures that during scale-up, allocation of microservices
to the containers is such that utilization of the containers is highest at the front
of the list and least at the tail. This approach ensures that the VMs at the tail
of the list become idle. Similarly, the containers at the tail of the list, if idle, can
be considered for shutting down. A priority queue based implementation for the
lists of VMs and containers minimizes computational time.

5 Experimental Results and Discussion

In our experiment, we simulated the microservice deployment environment as
presented in this article and obtained the results. In the simulation, different
parameters act as input to the algorithms. The simulation environment assumes
the continuous arrival of microservice requests from multiple users at runtime.
Thus, the algorithm works as an online algorithm to manage dynamic arrivals
of microservice requests.
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Fig. 1. Arrival of Microservice Requests in a Simulation, where the average arrival rate
of microservices is 5000 per scheduling clock.
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Fig. 2. Number of active VMs clock-wise, during a simulation where the arrival rate
of microservice requests is 25000 in a minute.
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Fig. 3. Number of running Containers clockwise during a simulation where the arrival
rate of microservice requests is 25000 in a minute.

5.1 Simulation Environment Setup

The simulation environment is designed based on the Fat-Tree data center net-
work topology that uses 8-ary switches. The environment consists of 128 physical
machines (hosts), where each host can accommodate 8 medium-sized VMs. The
average number of container deployments in a VM is 4; this number may vary
based on the resource availability of the VMs. Hence, the environment consists
of approximately 1024 VMs in which nearly 4096 containers may run simulta-
neously.

In this simulation, the containers are deployed on c7g.xlarge (a compute-
intensive VM type) with 4 vCPU and 8 GiB memory that supports up to 12.5
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Gbps network bandwidth. As per the Microsoft Azure reference manual, one
vCPU supports nearly 150 MIPS6. We consider that a container provides support
upto 120 MIPS. Thus a VM may contain 4 containers at a time if the containers
run at their maximum capacity because a VM is permitted to run at a maximum
85% utilization. If the containers are tuned to a lower MIPS, a VM can deploy
more of them.

Furthermore, we consider that the average execution time of a microservice
request in a container (running in maximum capacity) is 490 ms where microser-
vice execution time varies within the range of 0.05 s to 2.0 s. Thus, every minute,
an average of 122 microservices can be executed. Then, on average, a VM can
complete 122 × 4 = 488 microservice requests per minute. In our simulation, we
vary the number of microservice requests from 5000 to 25000 per minute.

For evaluating the performance of the proposed scheduling policy, we com-
pared with the well-known common industrial strategies –Spread, BinPack, Ran-
dom7,8, and some state-of-the-art strategies– First-Fit and Best-Fit [33].

5.2 Result Analysis

In this simulation, the average arrival rate of microservice requests varies between
5000 and 25000 per minute. The arrival of the microservice requests is dynamic
and follows the Poisson distribution. In this regard, Fig. 1 depicts the arrivals of
microservice requests for a 300-min period where the arrival rate of requests is
5000. Figure 2 shows the number of active VMs using the proposed algorithm in
a simulation where the arrival rate of the microservices is 25000. Figure 3 depicts
the number of containers running in the VMs during a simulation period using
the proposed algorithmic policy.

The results, shown in Fig. 4a, depict that the proposed policy significantly
reduces the number of containers. The number of containers required for the
execution of the microservices is a little high in the Spread policy, and the per-
formances of the First-Fit/Best-Fit policies are close. The number of container
deployments in the proposed method is lower than that for the Spread policy by
12.2–17.36%, and that for First-Fit/Best Fit policies by 6.13–10.57%.

Figure 4b shows the number of active VMs, and we observe that a decrease in
the number of containers deployed results in fewer active VMs. The proposed pol-
icy reduces the number of active VMs by 11.23–15.42% compared to the Spread
policy and 6.43–8.76% compared to First-Fit and Best-Fit policies. Reduction in
the number of active VMs results in significant improvement in monetary cost,
shown in Fig. 4c. This lower cost results from very high VM utilization caused by
efficient consolidation of the containers. In this simulation, the upper threshold
of VM utilization is 85% with a relaxation of 5%.

6 https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-
rehosting/concepts/mainframe-compute-azure.

7 https://docs.docker.com/engine/swarm/.
8 https://github.com/docker-archive/classicswarm/tree/master/scheduler/strategy.

https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/mainframe-compute-azure
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/mainframe-rehosting/concepts/mainframe-compute-azure
https://docs.docker.com/engine/swarm/
https://github.com/docker-archive/classicswarm/tree/master/scheduler/strategy
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(b) Average number of active VMs
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(c) Monetary cost of VM reservation

 0

 20

 40

 60

 80

 100

5000 10000 15000 20000 25000

C
on

ta
in

er
 U

til
iz

at
io

n 
(%

)

Arrival rate of Microservices

Spread
First Fit
Best Fit

Proposed

(d) Average utilization of containers
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Fig. 4. Results of microservice deployment in containers with varying arrival rate of
microservice requests.

6 Conclusion and Future Scope

This paper presented a policy for allocating the microservice requests to the
containerized cloud environment and auto-scaling the containers and underlying
VMs. The objective is to reduce the monetary cost of task execution and mini-
mize resource usage by maximizing resource utilization of the active VMs. More
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specifically, the microservice requests are categorized based on their types and
consolidated in a minimum number of containers that are deployed in a minimum
number of VMs. We compared the performances of the proposed algorithm with
Spread, First-Fit, and Best-Fit policies. The results of extensive experiments
show that the proposed method significantly reduces the number of containers
and active VMs.

Though the proposed policy improves the utilization of the resources in cloud
infrastructure, there is a scope for further improvement in microservice deploy-
ment. Moreover, we plan to analyze workflow-based microservice deployment
considering communication overhead among the containers. Furthermore, there
is a need to develop a policy that allocates dependent microservices at proximity
to improve performance.
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Abstract. Multi-access Edge Computing (MEC) technology offers
promising support for modern, computation-intensive, and time-sensitive
applications. Many of these applications are generated by resource-
constrained handheld or mobile UE. Due to limited resources, offloading
certain parts of these applications (tasks) to connected MEC servers
becomes essential. However, MEC servers also have limited resources
compared to cloud servers, highlighting the need for efficient task offload-
ing policies for UE devices and optimal resource allocation policies
for MEC servers. This paper introduces ELITE (Energy and Latency-
optimized Task Offloading and Resource Allocation for DVFS-Enabled
devices), a novel solution to the energy and latency minimization prob-
lem in a cooperative heterogeneous MEC architecture. The proposed
policy aims to minimize the energy consumption of the UE devices and
the latency of the applications while satisfying application deadlines and
dependency constraints. Furthermore, we consider the UEs to be enabled
by dynamic voltage and frequency scaling (DVFS). Through extensive
simulations using a real dataset, we demonstrate that our proposed strat-
egy surpasses the state-of-the-art policy, achieving a remarkable 10%
reduction in latency and an impressive 2× reduction in energy consump-
tion of UE devices.

Keywords: Multi-access Edge Computing (MEC) · DVFS ·
cooperative MEC system · Mobile Edge Computing (MEC) · energy
and latency

1 Introduction

With the rise of compute-intensive and latency-sensitive applications like real-
time online games, virtual reality (VR), image processing, and IoT applications,
there is a growing need for a new network and computing paradigm to cater
to these demands. Mobile Cloud Computing (MCC) has been a popular solu-
tion, forwarding resource-intensive tasks to powerful cloud servers [20]. However,
the geographical distance between UE and cloud servers introduces significant
delays. To address this latency issue, the Multi-access Edge Computing (MEC)
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Devismes et al. (Eds.): ICDCIT 2024, LNCS 14501, pp. 50–67, 2024.
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framework has emerged as a promising approach, offering cloud computing capa-
bilities at the edge of the network [14,29]. This enables the execution of resource-
intensive, latency-sensitive applications, leading to improved performance and
reduced delays [23].

With MEC servers possessing limited computing resources unlike central
cloud, efficient resource management becomes crucial to maximize the bene-
fits of the MEC framework. Addressing three key challenges [1] is essential: 1)
Offloading, which determines whether an application should be executed locally
or remotely (MEC or cloud); 2) Resource allocation, responsible for efficiently
allocating computing resources to applications; and 3) Task scheduling, decid-
ing the order of processing applications or tasks while meeting constraints like
deadlines.

Various researchers have explored different system models in the existing lit-
erature. For example, two-tier models have been studied in [6], three-tier models
in [27,30], and four-tier models in [2,5]. Some authors have also explored SDN-
based models in [1]. However, most of these models focus either on the MEC
server alone (two-tier) or on the cooperation between the MEC server and the
cloud server (three-tier). The existing literature has not considered cooperation
among neighbouring MEC servers regarding task offloading, even though coor-
dination and cooperation among MEC servers are considered in the context of
caching [7]. In our research, we propose a cooperative MEC server architec-
ture in conjunction with the cloud, where MECs hosted in different base sta-
tions cooperate with each other. This approach is essential for two reasons: i)
It facilitates efficient resource management for MEC servers, which are typically
resource-constrained compared to the cloud, and ii) It helps reduce task latency
by executing a larger number of tasks in neighbouring base stations instead of
forwarding them to the cloud. In addition to the cooperative MEC system, we
have also considered the heterogeneity of MEC servers in terms of CPU capacity
(in MIPS), memory size, and storage size [9].

The existing literature on task offloading in MEC has focused on various
objectives, including energy optimization, latency optimization, or both, with
many works adopting independent task offloading strategies to minimize UE
energy consumption and application latency. Very recently, in [4], the authors
utilize dependent task modeling to optimize energy consumption and task
latency, but they do not account for the latency deadline in their approach.
Additionally, the consideration of DVFS-enabled UE devices has been largely
overlooked in the literature, despite its potential to significantly reduce energy
consumption by adjusting the CPU frequency, which is particularly beneficial
for energy-constrained devices like battery-powered devices [22].

In this study, we embrace a comprehensive approach to executing applications
within the cooperative heterogeneous MEC framework, aiming to minimize both
the energy consumption of UEs and the overall latency. This is achieved by
considering dependent task modeling. We summarize the contribution of this
paper below.
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1. We consider DVFS-enabled UE devices in our cooperative heterogeneous sys-
tem model.

2. We put forth a series of strategies to efficiently execute applications within an
MEC framework, optimizing both the energy consumption of the UE devices
and the latency of the applications while considering deadline-aware depen-
dent task models.

3. Extensive simulations based on real-world datasets were conducted using a
standard simulator.

The paper is structured as follows: Sect. 2 presents the literature review. In
Sect. 3, we introduce the cooperative heterogeneous system model considered in
this work. The application model, energy consumption model of UEs, commu-
nication model, and computation model are presented in Sect. 4, 5, 6, and 7
respectively. Section 8 provides a detailed problem formulation. Our solution for
the latency and energy optimization problem is described in Sect. 9. The sim-
ulation and evaluation of our proposed strategy are presented in Sect. 10, and
finally, we conclude the paper in Sect. 11.

2 Literature Review

In recent years, computation offloading in Mobile Edge Computing (MEC) has
attracted significant attention from researchers, leading to the proposal of various
task offloading schemes. Among the crucial objectives of these schemes is the
energy-latency tradeoff in MEC server tasks. Different authors have approached
the task offloading problem, formulating it as energy optimization [12,27,30],
latency optimization [19,25,28], or jointly optimizing both energy and latency [2,
8,26].

Various authors have explored diverse system models as part of their task-
offloading schemes. Based on existing literature, we can broadly categorize these
models into different architectures: two-tier [6,15,26], three-tier [17,27,30], four-
tier [2,5], and SDN-based [1] architectures. In the two-tier architecture, UE is at
the first layer, MEC servers attached to a Base Station (BS) are at the second
layer, and the remote cloud is absent. In the three-tier architecture, the remote
cloud forms the third layer. The four-tier architecture includes an additional
layer, where UEs communicate with the MEC server via an access point or an
edge controller. In the SDN-based architecture, a centralized control plane acts
as the backbone of the entire network.

In task offloading schemes, tasks can possess various properties and may
be offloaded wholly or partially. While some existing works primarily consider
input data size and CPU cycle requirements for task formulation [12,26], others
also take into account task latency deadline and output size [27]. The literature
often aims to optimize either energy consumption or latency, leading to the use
of binary or partial offloading schemes. Some works focus on optimizing both
energy and latency but still adopt a binary offloading model. When representing
subtasks for partial offloading, most authors employ Directed Acyclic Graphs,
while others divide tasks into multiple fractions.
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Various authors have employed diverse methodologies to formulate and tackle
the task offloading problem. Many of them have expressed the task offloading
scheme as a mixed-integer program problem and demonstrated its NP-hardness.
To solve the optimization problem, a significant number of authors have trans-
formed the nonconvex nature of the problem into a convex one, achieved either
by decomposing the original problem or without decomposing it. For solving
the convex problem, different approaches have been utilized, such as Karush-
Kuhn-Tucker (KKT) conditions, 0–1 integer programming problem, Lagrange
dual decomposition, and the subgradient method. Additionally, several alter-
native methods, including greedy algorithms, approximate solutions, machine
learning, heuristics, genetic algorithms, artificial fish swarm algorithms, and ε-
bounded approximate algorithms, among others, have been employed to address
these optimization challenges.

3 System Model

We are adopting a three-tier architecture for our MEC system, as depicted in
Fig. 1. In this architecture, UE devices reside in the first layer, a cluster of base
stations (DC) in the second layer, and a remote cloud operates in the third
layer. To effectively manage the energy consumption of UE devices and adhere
to task latency deadlines, we are incorporating DVFS-enabled UE devices [22],
which enable us to control the CPU frequency [16]. The DCs in each of the
BS that are part of a cluster cooperate with each other. Additionally, we have
also considered the heterogeneity of MEC servers in terms of CPU capacity (in

Fig. 1. System model
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MIPS), memory size, and storage size. The UEs establish connections with the
nearest base station through wireless communication links. These UE devices
operate independently, giving them the flexibility to execute tasks locally or
offload them to a remote server hosted in the base station. Consequently, MEC
servers within these base stations receive tasks continuously from various UE
devices.

The decision to adopt a 3-tier cooperative distributed architecture is
grounded in two key factors. Firstly, the limited resource capacity of MEC servers
compared to the central cloud necessitates a cooperative approach. Secondly, the
increasing task sensitivity to latency in modern applications highlights the sig-
nificance of an optimized cooperative architecture. By utilizing the resources
of neighbouring MEC servers, we aim to meet latency deadlines, as the central
cloud is often located far from the UE device. In situations where MEC servers in
the nearest or neighbouring base stations cannot meet a task’s resource require-
ments, we route the task to the cloud, assuming it possesses abundant compu-
tational resources. This 3-tier architecture achieves a balance between resource
constraints, latency sensitivity, and resource availability, ensuring efficient task
processing within latency requirements while optimizing resource utilization.

In each data center (BS), one of the nodes performs the coordinator function
known as the coordinator node. The coordinator node ensures high availability,
while the container for task execution is dynamically launched as needed. Peri-
odically, every coordinator node updates its resource status to all other coor-
dinators within the cluster. As part of its responsibilities, a coordinator node
schedules a task to a compute node within its base station (DC) or forwards the
task to another base station (DC). If a task cannot be executed in MEC, it will
be forwarded to the remote cloud through a backhaul network. The set of base
stations and UEs is denoted as Bn and Wn, respectively, with n = 1, 2, 3, · · · , n.

4 Application Model

We consider an application comprising interdependent tasks, represented by a
Directed Acyclic Graph (DAG) as the DAG representation is widely used in
the literature to model various applications such as cognitive assistance [13],
healthcare [11], data analytics [24] etc. In the DAG, each node represents a task,
while the edges depict the dependencies between tasks. Each task in the DAG is
characterized by a quadruplet Ti = <di, ci, IOi, t

d
i >, where di denotes the input

data size, ci indicates the CPU cycle requirement in million instructions (MI),
IOi represents the number of IO operations needed for the task, and tdi denotes
the latency deadline. The application comes with a latency deadline of Ld

k. This
deadline is distributed among all the tasks of that application (as explained in
Sect. 9.2). To ensure a single terminal node in the application DAG when there
are multiple terminal tasks, we create a dummy terminal task that depends on
all the existing terminal nodes. This consolidation results in a single terminal
node in each application DAG.

A scheduling plan for the DAG G is represented as Di:n = δ1, δ2, δ3, · · · , δn,
where n = |V | is the number of tasks, and δi indicates the offloading decision
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for task Ti. The decision variable δi = {0, 1, 2, 3}, where 0 for local, 1 for the
nearest BS, 2 for the neighbor BS, and 3 for the remote cloud execution. A task
can be forwarded to another base station only once.

5 Energy Consumption Model for a UE

We adopt a power consumption model based on complementary metal-oxide
semiconductor (CMOS) logic circuits [18] for the UE devices. Specifically, we
focus on CMOS circuits-based UE devices, where the total power consumption
consists of two main components: static and dynamic power consumption. Con-
sidering that dynamic power consumption significantly dominates the overall
power usage [10,16], we concentrate solely on it. The dynamic power consump-
tion is directly related to the supply voltage and frequency, and since the fre-
quency usually scales with the supply voltage, the processor’s dynamic power
consumption is expressed as ρc = K.f3, where K is a proportional coefficient.

Let us consider a task in an application that takes an execution time of t
when running on a CPU with a frequency of fmax. If the processor operates
at a different frequency level f (0 < f ≤ fmax), the execution time is defined
as t/ f

fmax
. Thus, the dynamic power consumption during the task execution is

defined by Eq. (1) as considered in [16].

E =
∫ t/ f

fmax

0

ρc dt = K.t.fmax.f
2 = ω.t.λ2, where λ =

f

fmax

(1)

where ω is a coefficient and λ is the relative processor speed for the CPU while
running at frequency f .

6 Communication Model

Let Bw be the bandwidth between UE devices and the base station, and Bb be
the bandwidth between two base stations. The backhaul network, facilitating
task forwarding from a base station to the remote cloud, has a bandwidth of βc.
For wireless and wired links, we consider data rates Ru and Rp, respectively.

Let the latency to upload a task Ti from UEs to the nearest BS be Tu
i . The

total latency Tnb
i for offloading a task to a neighbour base station will be the

combination of task uploading latency Tu
i and the latency of forwarding a task

to another BS. Similarly, T rc
i is the latency of a task Ti when offloaded to the

centralized remote cloud. It is the combination of latency of uploading tasks
from UEs to BS and from BS to the remote cloud.

7 Computation Model

The task offloading decisions determine whether a task is executed locally at the
UEs, at the Mobile Edge Computing (MEC) server, or at the remote cloud. Var-
ious computation models based on the task’s offloading decision are elaborated
in the following subsections.
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7.1 Local Computation

During local task execution, the task utilizes the UE’s local processing unit. Let
fk
l denote the computational capacity of the kth UE in million instructions per

second (MIPS). Let IOt
i be the time required for IO operations then local task

execution time and the UE energy consumption for task Ti can be represented
as T l

i = ci
fk
l

+ IOt
i and El

i = α.T l
i .λ

2 respectively.

7.2 Remote Computation

When a task is offloaded by a UE device, it can be executed either in a MEC
server or a remote central cloud. During task offloading, the UE device utilizes
its processing unit to transfer the tasks to a remote server. As a result, the energy
consumption of the UE is influenced by the CPU cycle required to upload the
tasks to the remote server. Let Tul

i represent the time taken by a UE device to
offload a task to a remote server. The energy consumption for the offloaded task
Ti can be expressed as Eu

i = α.Tu
i .λ2.

The latency computation model remains consistent for tasks executed at the
nearest Base Station (BS), a remote BS, or in the cloud. If F k

m and F k
c represent

the CPU capabilities of the kth MEC and the cloud servers then the latency at
MEC and the cloud can be represented as in Eq. (2).

Tmec
i =

ci
Fmk

+ IOt
i , T c

i =
ci
F k
c

+ IOt
i (2)

8 Problem Formulation

The primary goal is to minimize both the energy consumption of the UEs and
the overall latency of the application. The total latency of a task Ti in a DAG
for the application can be formulated using Eq. (3).

Li =
(1 − δi)(2 − δi)(3 − δi)

6
T l
i +

δi(2 − δi)(3 − δi)
2

(Tu
i + Tmec

i )

+
di(δi − 1)(3 − δi)

2
(Tnb

i + Tmec
i ) +

δi(δi − 1)(δi − 2)
6

(T rc
i + T c

i )
(3)

The energy consumption for the UE remains constant regardless of whether a
task is executed at the nearest Base Station (BS), a neighbouring BS, or the
cloud, as the UE device always offloads the task to the nearest BS. Thus, the
energy consumption of a task Ti can be expressed using Eq. (4) below.

Ei =
(1 − δi)(2 − δi)(3 − δi)

6
(El

i) +
δi(2 − δi)(3 − δi)

2
(Eu

i )

+
di(δi − 1)(3 − δi)

2
(Eu

i ) +
δi(δi − 1)(δi − 2)

6
(Eu

i )
(4)

The total latency and energy consumption of a UE for an application is
represented as Lapp = Lft and Eapp =

∑n
i=1 Ei respectively where the Lft
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is the completion time of the terminal task of an application. If there are N
applications in the system, then the total energy consumption at UEs and the
latency can be represented as in Eq. (5).

Ltot =
N∑
i=1

Lapp , Etot =
N∑
i=1

Eapp (5)

The objective of the problem is to minimize the overall system cost, encom-
passing the total execution delay and UE energy consumption for all applica-
tions in the system. We express the total cost as a weighted sum of the total UE
energy consumption and application latency. Thus, the minimization problem is
represented as shown in Eq. (6) subject to the constraint defined in Equation
(7).

minimize (ALtot + BEtot) (6)

n∑
i=1

Li ≤ Ld ,
∑
i=1

ci ≤ Fl , ci ≤ F i
m ,

n∑
i=1

ci ≤
Bi∑
i=1

m∑
j=1

F j
m (7)

The constraints presented in Eq. (7) apply to both the UE device and the MEC
servers. The first constraint ensures that the total latency of an application
must not surpass its latency deadline. The second constraint ensures that the
total CPU cycle requirements of all the parallel tasks executing locally must
not exceed the available CPU cycles of the UE. The third constraint guarantees
that the CPU requirements for a task cannot exceed the available capacity of
the MEC server. Lastly, the fourth constraint ensures that the total CPU cycle
requirements of all tasks running in the MEC cluster at any given time must not
surpass the total CPU capacity of the MEC cluster.

9 ELITE: The Task Offloading and Resource Allocation
Strategy

The optimization problem stated in Eq. (6) is a challenging multi-objective
mixed-integer programming (MIP) problem, proven to be NP-hard [31]. As a
result, we propose an efficient heuristic algorithmic (Layered Scheduling Algo-
rithm) approach to tackle this optimization problem. In the proposed strategy,
we first rank the tasks of an application represented by a DAG for effective
scheduling, as described in Sect. 9.1. Additionally, we compute the sub-deadline
of all tasks within an application’s DAG, using the total deadline for the entire
application, as elaborated in Sect. 9.2

9.1 Task Ranking

We need to rank the tasks for scheduling and it is helpful in prioritizing multiple
tasks that can be executed in parallel. Let CTnbs

i , CT rbs
i , and CT c

i be the latency
in worst case time for a task Ti if it executes in the nearest base station, remote
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base station, and remote cloud server respectively. So the rank of a task is
calculated based on Eq. (8);

Savg
i =

CTn
i bs + CT r

i bs + CT c
i

3
, T avg

i =
CTm

i + Savg
i

2
R(Ti) = T avg

i + max(PredkT
avg
k )

(8)

where max(PredkT
avg
k ) represents the maximum of the average latency of all

the predecessor tasks of Ti and CTm
i is the local execution latency of task Ti.

Fig. 2. An application DAG

9.2 Sub-deadline Calculation

In our approach, we divide the total latency deadline of an application and
allocate sub-deadlines to its individual tasks. To achieve this, we compute the
label-ratio ∂l as in Eq. (9) and employ a modified version of the breadth-first
traversal (MBFS) algorithm to assign ratios to each level in the DAG as depicted
in Fig. 2. The label ratio signifies the maximum average execution time of tasks
within a particular level. As tasks between levels can be executed in parallel, we
determine the maximum waiting time for the next level based on the maximum
latency of the previous level. Consequently, we assign equal sub-deadlines to all
tasks within each level, taking into account the maximum average latency of
tasks from the preceding level. The sub-deadline Dl of a task is calculated using
Eq. (9), with Dtotal representing the total deadline of the application.

∂l = maxl(T
avg
l ) , Dl =

Dtotal∑l
i=1 ∂l

∂l (9)

Let’s consider the instance of level L1, encompassing three tasks: T1, T2, and
T3. In accordance with the data presented in Fig. 2, the average execution times
for T1, T2, and T3 are 6, 10, and 8 respectively. Consequently, the label ratio for
level L1 becomes max(6, 10, 8), yielding 10. Analogously, the label ratios for L0,
L2, and L3 are 5, 20, and 15 respectively. Utilizing Eq. (9), the sub-deadlines
for tasks T1, T2, and T3 are calculated as 100∗10

(5+10+20+15) , resulting in 20. It’s
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worth noting that the total deadline for the analyzed application is denoted as
100. The full calculation of the sub-deadline for the application represented by
a DAG in Fig. 2 is given in Table 1.

Table 1. Sub deadline calculation

level Tasks Label ratio Sub Deadline Total Deadline

L0 T0 5 10 100
L1 T1, T2, T3 10 20
L2 T4, T5, T6 20 40
L3 T7 15 30

9.3 Task Offloadability

We have categorized the tasks of a workflow into three categories as given below.

1. Remote Tasks: A task is called a remote task if it is compute-intensive or
IO-intensive as described in Algorithm 2.

2. Local Tasks: Tasks that require the UE to interact directly with the environ-
ment such as mage capturing cannot be offloaded.

3. General Tasks: The third type of tasks can be executed either in UE devices
or in remote servers, and we have the flexibility to schedule these tasks based
on various parameters.

9.4 Layered Scheduling Algorithm

The layered scheduling algorithm involves two levels of scheduling algorithms:
one operating at the UE and the other at the coordinator node of the MEC,
hosted in the nearest base station.

Scheduling Algorithm at UE. The scheduling algorithm, outlined in Algo-
rithm 1, handles the execution of an application on the UE device, that includes
multiple tasks. The algorithm makes decisions to either schedule these tasks
locally or offload them to the MEC server hosted in the nearest base station.
Three queues are maintained in the algorithm: TaskPool, TaskReadyQueue, and
TaskInProgress. Initially, the TaskPool contains all tasks (St) except for the entry
task (Tentry) of the applications, while the entry tasks of all running applications
at the UE are added to the TaskReadyQueue. The algorithm then selects one
task from the TaskReadyQueue and schedules it either locally or offloaded to a
remote server. Once a task is scheduled, whether locally or remotely, it is added
to the TaskInProgress. The steps in the algorithm are summarized below.
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Algorithm 1. Task Scheduling Algorithm at UE device
1: TaskInProgressl← φ
2: TaskPool← St − Tentry

3: TaskReadyQueue ← Tentry

4: while (TaskPool.size() > 0 or TaskReadyQueue.size() > 0 or
TaskInProgress.size()> 0) do

5: while TaskReadyQueue.size() > 0 do
6: Taski ← dequeue from TaskReadyQueue
7: if Taski is remote then
8: Offload the task to the nearest BS.
9: else if Taski is local then

10: Schedule the task for local execution
11: else
12: ET i ← Worst-case execution time of the task in the MEC server.
13: if ET i ≤ Task deadline then
14: Offload the tasks to the nearest BS.
15: else
16: Schedule the task for local execution
17: end if
18: end if
19: TaskInProgress.push(Taski)
20: end while
21: for Taskj in TaskInProgress do
22: if Taskj is finished executing then
23: ChildrenTasksj ← get all children tasks of Taskj

24: Sort the ChildrenTasksj based on the descending order of its
rank

25: for k ← 0 to ChildrenTasksj .size() do
26: childk ← ChildrenTasksj .get(i)
27: if All parent tasks of childk is finished executing then
28: TaskReadyQueue.Enqueue(childk)
29: TaskPool.Remove(childk)
30: end if
31: end for
32: TaskInProgress.remove(Taskj)
33: end if
34: end for
35: end while

1. A task is offloaded to the nearest BS if it is a remote task.
2. A local task is scheduled for local execution.
3. A general tasks: Offload the task to the MEC server if the worst-case execution

time of the task in the MEC server is less than the latency deadline or else
schedule for local execution.
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Upon completion of a task’s execution, we iterate through all its child tasks.
If all the parent tasks of a child task have also finished, we add the child tasks
to the ReadyQueue and remove the current from the TaskPool and TaskExecu-
tionProgressQueue.

Algorithm 2. Task Categorization Algorithm
Input: CPU time(CT i), IO time (IOi)
Output: Task category
Ttot ← CT i + IOi

if CT i

Ttot
≥ 0.5 then

Return CPU-intensive
else if IOi

Ttot
≥ 0.5 then

Return IO-intensive
else

Return Normal
end if

Scheduling at MEC. The algorithm presented in Algorithm 3 is responsible
for scheduling tasks to one of three locations: locally (nearest BS), neighbour
BS, or a remote cloud. The coordinator node selects tasks from its task queue
and checks if there is a suitable server in the current DC to execute the task.
If a suitable server is found, the task is scheduled to the selected server. If no
suitable server is available in the current DC, the coordinator node looks for a
suitable server in the neighbouring DC. To determine the appropriate neighbour
DC, we sort the neighbour DCs based on Euclidean distance and try to find the
best-suited server, starting with the closest neighbour. If no suitable server is
present in the MEC cluster, the task is forwarded to the central cloud. To find
the best server in a particular DC we have used the following steps:

1. Enumerate the servers that have available CPU cores and a task latency less
than the task deadline. If the list is not empty, return the server that executes
a task with minimum latency.

2. Enumerate the servers where the task completion time is within the task
deadline limit. If the list is not empty, return the server that executes a task
with minimum latency.
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Algorithm 3. Task Scheduling Algorithm at MEC coordinator node
function GetFeasibleServer(serverList, Taski)

for server in serverList do
latency ← calculateLatency(server, Taski)
if latency <= task deadline then

return server
end if

end for
end function
function GetBestServer(Datacenter dc, Taski)

svrsWithFreeCore ← get all servers with free available cores.
server ← GetFeasibleServer(svrsWithFreeCore, Taski)
if server != φ then

return server
end if
otherServers ← get all servers with a free available core.
server ← GetFeasibleServer(otherServesr, Taski)
if server != φ then

return server
end if

end function
dc ← nearest DC
server ← GetBestServer(dc, Taski)
if server ! = φ then

scheduleTask(Taski, server)
else

neighborDCs ← get all the neighbour MEC DCs in the cluster
neighborDCs ← sort neighborDCs on the distance from the current DC

in ascending order.
for dc in neighborDCs do

server ← GetBestServer(dc)
if server ! = φ then

scheduleTask(Taski, server)
Break

end if
end for

end if

10 Simulation and Result Analyses

Our proposed strategy was simulated using the PureEdgeSim simulator [21].
The simulation area covered a 2000× 2000 square meter space, containing three
edge data centers (DCs), each with three physical servers. We incorporated three
types of edge devices in the simulation, namely smartphones, Raspberry Pi, and
laptops. Each edge device is connected to its nearest edge DC based on Euclidean
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distance. To facilitate the simulation, we utilized the Zenodo dataset [3], which
comprises 50,000 jobs containing 1.3 million tasks. This dataset represents vari-
ous applications represented by DAGs generated by IoT nodes.

Fig. 3. UE Energy Consumption Fig. 4. Average Task Latency

Fig. 5. Task Failure Rate Fig. 6. Edge CPU Utilization

In order to assess the performance of our proposed layered algorithm, we
conducted a benchmark comparison with two existing algorithms: “Intelligent
task offloading for dependent tasks” presented by Chen et al. in [4] and the
“Adaptive Random Round Robin Algorithm” described in Sect. 10.1.

10.1 State-of-Art Approach

1. Intelligent task offloading for dependent tasks [4]: In their work,
researchers propose an energy and latency-optimized task offloading strat-
egy for dependent tasks. They utilize a two-step process: organizing tasks
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into layers based on dependencies using a layered algorithm and employing a
cost function that considers task latency and UE device energy consumption
for making offloading decisions. This approach allows for efficient task exe-
cution, choosing between local execution and offloading to a remote server
based on the most favourable cost considerations.

2. Adaptive Random Round Robin Scheme: We adopted the same system
model described in the ELITE algorithm except for the DVFS-enabled UE
device. We offloaded all CPU-intensive and IO-intensive tasks to the MEC
server, while normal tasks were randomly scheduled for either MEC execu-
tion or local execution. For MEC DC selection, we employed a Round-Robin
algorithm, and the server selection within the DC was done randomly. The
task categorization is the same as the ELITE algorithm.

Table 2. Simulation Parameters

Iteration Applications Total Tasks UE devices

1 10 481 5
2 20 903 10
3 30 1314 15
4 40 1746 20
5 50 2194 25
6 60 2629 30
7 70 2973 35
8 80 3387 40
9 90 3855 45
10 100 4294 50

10.2 Results and Analyses

We performed the experiment using the parameters specified in Table 2. In Fig. 3,
we plotted the average energy consumption of UE devices, which increases as the
number of applications rises. This behaviour is attributed to the growing num-
ber of tasks executed on UE devices. Notably, our proposed layered algorithm
outperforms the state-of-the-art by a factor of 2× in terms of UE energy con-
sumption. This improvement can be attributed to two main factors: Firstly, our
system model incorporates dynamic voltage and frequency scaling (DVFS) in UE
devices, and secondly, our offloading decision algorithm demonstrates superior
performance compared to others.

In Fig. 4, we presented the average latency of a task, which shows an increas-
ing trend with the growing number of tasks. This increase is primarily due
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to the longer queue times experienced by both UE and MEC servers as the
task load rises. Notably, our proposed model exhibits approximately 10% lower
latency than the state-of-the-art algorithm. This improved performance can be
attributed to two key factors: Firstly, our superior task offloading algorithm,
and secondly, the resource allocation algorithm we introduced, which effectively
reduces task latency by minimizing task waiting times.

As shown in Fig. 5, the task failure rate increases with the number of tasks,
as the queue time for each task also increases, leading to task failures due to
higher latency, considering the latency deadline of each task. In this aspect, our
proposed layered algorithm outperforms the benchmarking algorithm. The CPU
utilization of the MEC server is also plotted in Fig. 6, and it increases with the
number of tasks. The results indicate that the average edge CPU utilization of
the state-of-the-art model is approximately 55% higher than that of our proposed
algorithm.

11 Conclusion

This research paper addresses the challenge of minimizing the latency of the
applications and energy consumption of UE devices by employing dependent
task modelling. Our proposed 3-tier system model incorporates a cluster of het-
erogeneous MEC servers in the MEC layer. In our model, we have considered
DVFS-enabled UE devices, which aid in reducing their energy consumption by
dynamically adjusting the CPU operating frequency. To optimize the problem,
we formulate it as a bi-objective mixed integer programming (MIP), which is
known to be NP-hard. To overcome this complexity, we introduce a near-optimal
heuristic solution strategy that efficiently addresses both task offloading and
resource allocation problems. Tasks are classified into local, remote, and gen-
eral categories, with further subcategories based on their characteristics such as
CPU-intensive, IO-intensive, and normal tasks. Our simulation results demon-
strate the superior efficiency and performance of our approach compared to
existing benchmarking algorithms.

References

1. Alameddine, H.A., Sharafeddine, S., et al.: Dynamic task offloading and scheduling
for low-latency IoT services in multi-access edge computing. IEEE J. Sel. Areas
Commun. 37(3), 668–682 (2019)

2. Alfakih, T., Hassan, M.M., et al.: Task offloading and resource allocation for mobile
edge computing by deep reinforcement learning based on SARSA. IEEE Access 8,
54074–54084 (2020)

3. Ali Rezaee, S.A.: Jobs (DAG workflow) and tasks dataset with near 50k job
instances and 1.3 millions of tasks (2020). https://doi.org/10.5281/zenodo.4667690

4. Chen, J., Leng, Y., Huang, J.: An intelligent approach of task offloading for depen-
dent services in mobile edge computing. J. Cloud Comput. 12(1), 1–14 (2023)

https://doi.org/10.5281/zenodo.4667690


66 A. Islam and M. Ghose

5. Chen, J., Chang, Z., et al.: Resource allocation and computation offloading for
multi-access edge computing with fronthaul and backhaul constraints. IEEE Trans.
Veh. Technol. 70(8), 8037–8049 (2021)

6. Chouhan, S.: Energy optimal partial computation offloading framework for mobile
devices in multi-access edge computing. In: International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), pp. 1–6. IEEE (2019)

7. Deka, V., Islam, A., Ghose, M.: Cloud-assisted dynamic and cooperative content
caching in mobile edge computing. In: IEEE 19th India Council International Con-
ference (INDICON), pp. 1–6 (2022)

8. Dinh, T.Q., Tang, J., et al.: Offloading in mobile edge computing: task allocation
and computational frequency scaling. IEEE Trans. Commun. 65(8), 3571–3584
(2017)

9. Ghose, M., Kaur, S., Sahu, A.: Scheduling real time tasks in an energy-efficient way
using VMS with discrete compute capacities. Computing 102(1), 263–294 (2020)

10. Ghose, M., Sahu, A., Karmakar, S.: Urgent point aware energy-efficient scheduling
of tasks with hard deadline on virtualized cloud system. Sustain. Comput.: Inform.
Syst. 28, 100416 (2020)

11. Gia, T.N., Jiang, M., et al.: Fog computing in healthcare internet of things: a case
study on ECG feature extraction. In: IEEE International Conference on Com-
puter and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Com-
puting, pp. 356–363 (2015)

12. Guo, H., Liu, J., Zhang, J.: Computation offloading for multi-access mobile edge
computing in ultra-dense networks. IEEE Commun. Mag. 56(8), 14–19 (2018)

13. Ha, K., Chen, Z., et al.: Towards wearable cognitive assistance. In: Proceedings of
the 12th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys 2014, pp. 68–81. Association for Computing Machinery, New
York (2014)

14. Islam, A., Debnath, A., et al.: A survey on task offloading in multi-access edge
computing. J. Syst. Architect. 118, 102225 (2021)

15. Ji, T., Luo, C., et al.: Energy-efficient computation offloading in mobile edge com-
puting systems with uncertainties. IEEE Trans. Wirel. Commun. 21, 5717–5729
(2022)

16. Kim, K.H., Beloglazov, A., et al.: Power-aware provisioning of virtual machines for
real-time cloud services. Concurr. Comput.: Pract. Exp. 23(13), 1491–1505 (2011)

17. Kuang, Z., Ma, Z., et al.: Cooperative computation offloading and resource allo-
cation for delay minimization in mobile edge computing. J. Syst. Architect. 118,
102167 (2021)

18. Lee, Y.C., Zomaya, A.Y.: Energy conscious scheduling for distributed computing
systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst.
22(8), 1374–1381 (2010)

19. Liao, Z., Peng, J.O.: Adaptive offloading in mobile-edge computing for ultra-dense
cellular networks based on genetic algorithm. J. Cloud Comput. 10(1), 1–16 (2021)

20. Liu, B., Xu, X., et al.: Task scheduling with precedence and placement constraints
for resource utilization improvement in multi-user MEC environment. J. Syst.
Architect. 114, 101970 (2021)

21. Mechalikh, C., Taktak, H., Moussa, F.: PureEdgeSim: a simulation framework for
performance evaluation of cloud, edge and mist computing environments. Comput.
Sci. Inf. Syst. 18(1), 43–66 (2021)



ELITE 67

22. Mokaripoor, P., Hosseini Shirvani, M.: A state of the art survey on DVFs techniques
in cloud computing environment. J. Multidiscip. Eng. Sci. Technol 3(5), 4740–4743
(2016)

23. Ranaweera, P., Jurcut, A.D., Liyanage, M.: Realizing multi-access edge computing
feasibility: security perspective. In: IEEE Conference on Standards for Communi-
cations and Networking (CSCN), pp. 1–7. IEEE (2019)

24. Reza, H., Diyanat, A., et al.: MIST: fog-based data analytics scheme with cost-
efficient resource provisioning for IoT crowdsensing applications. J. Netw. Comput.
Appl. 82, 152–165 (2017)

25. Song, F., Xing, H., et al.: Offloading dependent tasks in multi-access edge com-
puting: a multi-objective reinforcement learning approach. Futur. Gener. Comput.
Syst. 128, 333–348 (2022)

26. Tran, T.X., Pompili, D.: Joint task offloading and resource allocation for multi-
server mobile-edge computing networks. IEEE Trans. Veh. Technol. 68(1), 856–868
(2018)

27. Vu, T.T., Van Huynh, N., et al.: Offloading energy efficiency with delay constraint
for cooperative mobile edge computing networks. In: 2018 IEEE Global Commu-
nications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

28. Wang, J., Hu, J., Min, G., et al.: Computation offloading in multi-access edge
computing using a deep sequential model based on reinforcement learning. IEEE
Commun. Mag. 57(5), 64–69 (2019)

29. Wang, L., Deng, X., et al.: Microservice-oriented service placement for mobile edge
computing in sustainable internet of vehicles. IEEE Trans. Intell. Transp. Syst.
(2023)

30. Yu, H., Wang, Q., Guo, S.: Energy-efficient task offloading and resource scheduling
for mobile edge computing. In: 2018 IEEE International Conference on Networking,
Architecture and Storage (NAS), pp. 1–4. IEEE (2018)

31. Zhang, J., Liu, C., et al.: A survey for solving mixed integer programming via
machine learning. arXiv preprint arXiv:2203.02878 (2022)

http://arxiv.org/abs/2203.02878


Parking Problem by Oblivious Mobile
Robots in Infinite Grids

Abhinav Chakraborty1(B) and Krishnendu Mukhopadhyaya2

1 Department of Computer Science and Engineering, Institute of Technical Education
and Research, Siksha O Anusandhan University, Bhubaneswar, Odisha, India

abhinav.chakraborty06@gmail.com
2 Advanced Computing and Microelectronics Unit, Indian Statistical Institute,

Kolkata, India

Abstract. In this paper, the parking problem of a swarm of mobile
robots has been studied. The robots are deployed at the nodes of an infi-
nite grid, which has a subset of prefixed nodes marked as parking nodes.
Each parking node pi has a capacity of ki which is given as input and
equals the maximum number of robots a parking node can accommodate.
As a solution to the parking problem, robots need to partition themselves
into groups so that each parking node contains a number of robots that
are equal to the capacity of the node in the final configuration. It is
assumed that the number of robots in the initial configuration represents
the sum of the capacities of the parking nodes. The robots are assumed
to be autonomous, anonymous, homogeneous, identical and oblivious.
They operate under an asynchronous scheduler. They neither have any
agreement on the coordinate axes nor do they agree on a common chiral-
ity. All the initial configurations for which the problem is unsolvable have
been identified. A deterministic distributed algorithm has been proposed
for the remaining configurations, ensuring the solvability of the problem.

Keywords: Distributed Computing · Mobile Robots ·
Look-Compute-Move Cycle · Asynchronous · Infinite Grid · Parking
Nodes

1 Introduction

Robot swarms are groups of generic mobile robots that can collaboratively exe-
cute complex tasks. Such systems of mobile robots are assumed to be simple and
inexpensive and offer several advantages over traditional single-robot systems,
such as scalability, robustness and versatility. A series of research on the algorith-
mic aspects of distributed coordination of robot swarms has been reported in the
field of distributed computing (see [12] for a comprehensive survey). In the tra-
ditional framework of swarm robotics, the robots are assumed to be anonymous
(no unique identifiers), autonomous (there is no centralized control), identical
(no unique identifiers), homogeneous (each robot executes the same deterministic
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distributed algorithm) and oblivious (no memory of past information) compu-
tational entities. The robots are represented as points in the Euclidean plane.
They do not have access to any global coordinate system. However, each robot
has its own local coordinate system, with the origin representing the current
position of the robot. The robots do not have an explicit means of communica-
tion, i.e., they are assumed to be silent. They are disoriented, i.e., they neither
agree on a common coordinate axes nor do they have any agreement on chirality.
Each robot is equipped with visibility sensors, by which they can perceive the
deployment region.

In this paper, the deployment region of the robots is assumed to be an infinite
square grid, which represents a natural discretization of the plane. The robots are
deployed at the nodes of the input grid graph. The graph also consists of some
prefixed grid nodes, designated as parking nodes. When a robot becomes active,
it operates according to the Look-Compute-Move cycle. A robot takes a snapshot
of the entire graph, including the positions of the other robots and parking
nodes in the Look phase. Based on the snapshot, it computes a destination
node in the Compute phase according to a deterministic algorithm, where the
destination node might be its current position as well. Finally, it moves towards
the destination in the Move phase. In this paper, we have considered the most
general model, which is the asynchronous model (ASYNC). In this setting, there
is no common notion of time, and all the robots are activated independently.
Each of the Look, Compute and Move phases has a finite but unpredictable
duration. In the initial configuration, it has been assumed that the robots are
placed at the distinct nodes of the grid graph. During the look phase, the robots
can perceive the parking nodes using their visibility sensors. Each parking node
has a capacity, which is subjected to a constraint that it can accommodate a
maximum number of robots equal to its capacity. The capacity of a parking
node is given as an input to each robot. For simplicity, we have assumed that
the number of robots in the initial configuration is equal to the sum of the
capacities of the parking nodes. In this paper, we have assumed that the robots
have global-strong multiplicity detection capability. This means the robots are
able to determine the exact number of robots that make up the multiplicity in
each node. It has been proved later that the parking problem is unsolvable if the
robots do not have such capabilities.

1.1 Motivation

The fundamental motivation behind studying the parking problem is twofold.
Firstly, the parking problem can be viewed as a special case of the partitioning
problem [11], which requires the robots to divide themselves into m groups, each
consisting of k robots while converging into a small area. Unlike the partition-
ing problem, the parking problem requires that each parking node must contain
robots exactly equal to its given capacity in the final configuration. However,
the capacities of the parking nodes may be different. Moreover, if the capacities
of each of the parking nodes are assumed to be k, i.e., they are equal in the
initial configuration; the problem is reduced to the k-epf problem [3], which is
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a generalized version of the embedded pattern formation problem, where each
fixed point contains exactly k robots in the final configuration. Secondly, in the
traditional models, the robots are assumed to be points that can move freely on
the plane. The robots are assumed to move with high accuracy and by infinites-
imal distance in the continuous domain. Even if the area of robot deployment is
small, a dimensionless robot can move without causing any collision. In practice,
it may not always be possible to perform such infinitesimal movements with infi-
nite precision. However, in our paper, the robots are deployed at the nodes of
an infinite grid. The movements of the robots are restricted along the grid lines,
and a robot can move toward one of its neighbors at any instant of time. The
restrictions imposed by the grid model on the movements of the robots make it
challenging to design collision-less algorithms, as opposed to the movement of
the robots in a continuous environment. In addition to the theoretical benefits,
the parking nodes can also be seen as base stations or charging stations with
some allowable capacities.

1.2 Related Works

Most of the theoretical studies on swarm robotics have been concentrated on
arbitrary formation problem and gathering under different settings. The Arbi-
trary Pattern Formation or APF is a fundamental coordination problem in
Swarm Robotics, where the robots are required to form any specific but arbi-
trary geometric pattern given as input. The study of APF was initiated in [16].
The authors characterized the class of formable patterns by using the notion
of symmetricity, which is essentially the order of the cyclic group that acts on
the initial configuration. The APF was first studied in the ASYNC by Floc-
chini et al. [13], where the robots are assumed to be oblivious. While all the
previous studies considered the problem with unlimited visibility, Yamauchi et
al. [17] studied the problem where the robots have limited visibility. Cicerone et
al. [7] studied the APF problem without assuming common chirality among the
robots. Bose et al. [4] were the first to study the problem in a grid-based terrain.
D’Angelo et al. [9], studied the gathering problem on finite grids. Stefano et al.
studied the optimal gathering problem in infinite grids [15]. In this paper, they
proposed an optimal deterministic algorithm that minimizes the total distance
traveled by all the robots. The concept of fixed points was first introduced by
Fujinaga et al. [14] on the Euclidean plane. In this paper, the landmark cover-
ing problem was studied. The problem requires that each robot must attain a
configuration where all the robots must occupy a single fixed point or landmark.
They propose an algorithm based on the assumption that the robots agree on a
common chirality. The proposed algorithm minimizes the total distance traveled
by all the robots. In [8], Cicerone et al. studied the embedded pattern formation
problem without assuming any common chirality among the robots. The problem
necessitates a distributed algorithm in which each robot must occupy a unique
fixed point within a finite amount of time. The k-circle formation problem [3,10]
has been studied in the setting where the robots agree on the directions and ori-
entations of the Y - axis and on the disoriented setting. Given a positive integer
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k, the k-circle formation problem asks a swarm of mobile robots to form disjoint
circles. Each of these circles must be centered at one of the pre-fixed points on
the plane. Each circle must contain a total of k robots at distinct locations on
the circumference of the circles. Bhagat et al. [3] also studied the k- epf problem
in the continuous domain, which is a generalized version of the embedded pat-
tern formation problem. This problem necessitates the arrival and retention of
exactly k robots at each fixed point. Cicerone et al. [6] studied a variant of the
gathering problem, where each robot must gather at one of the prefixed meeting
points. The problem was defined as gathering on meeting points problem. The
authors proposed a deterministic algorithm that minimizes the total distance
traveled by all the robots and minimizes the maximum distance traveled by a
single robot. Gathering over meeting nodes problem was studied by Bhagat et
al. [1,2]. In this problem, the robots are deployed on the nodes of an infinite
square grid, which has a subset of nodes marked as meeting nodes. Each robot
must gather at one of the prefixed meeting nodes within a finite amount of time.

1.3 Our Contribution

This paper considers the parking problem over an infinite grid. The robots are
deployed at the nodes of an infinite grid, which also consists of some prefixed
parking nodes. Each parking node pi has a capacity ki, which is the maximum
number of robots it can accommodate at any moment of time. We assume that

the number of robots n is equal to
m∑

i=1

ki, where m is the total number of park-

ing nodes. We have characterized all the initial configurations and the values
of ki for which the problem is unsolvable. For the remaining configurations, a
deterministic algorithm has been proposed that ensures the solvability of the
problem.

2 Models and Definitions

2.1 Models

The robots are assumed to be dimensionless, anonymous, autonomous, identical,
homogeneous and oblivious. The robots are assumed to be disoriented, i.e., they
neither have any agreement on the coordinate axes nor have any agreement on
a common chirality. They do not have an explicit means of communication, i.e.,
they are assumed to be silent. Let P = (Z, E′) denote the infinite path graph
with the vertex set V corresponding to the set of integers Z and the edge set
is denoted by the ordered pair E′ = {(i, i + 1)|i ∈ Z}. Let R = {r1, r2 . . . rn}
denote the set of robots that are deployed at the nodes of G, where G is the
input infinite grid graph defined as the usual Cartesian Product of the graph
P × P . Let ri(t) denote the node occupied by the robot ri ∈ R at time t.
Assume that R(t) denotes the set of all such distinct nodes occupied by the
robots in R at time t. Since the robots are deployed at the nodes of an infinite
square grid, they have an agreement on a common measure of unit distance.
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The input grid graph also comprises some prefixed nodes designated as parking
nodes. Let P = {p1, p2, ..., pm} denote the set of parking positions. In the initial
configuration, the parking nodes are located at the distinct nodes of the grid. A
robot may be deployed at one of the parking nodes in the initial configuration.
The movements of the robots are restricted along the grid lines. At any instant of
time, a robot can move only to one of its four neighboring nodes. The movement
of the robot is assumed to be instantaneous, i.e., the robot can be observed only
at the nodes of the graph and not on the edges. In other words, no robot can be
seen while moving. A robot’s vision is assumed to be global, meaning that each
robot is equipped with visibility sensors that allow it to observe the whole grid
graph.

2.2 Terminologies and Definitions

– Distance between two nodes: Let d(u, v) denote the distance between two
nodes u and v.

– Capacity of a parking node: The capacity of a parking node given as
an input is defined as the maximum number of robots the parking node can
accommodate. A parking node is said to be saturated if it contains exactly
the number of robots equal to its capacity. A parking node is said to be
unsaturated if it is not saturated. Let μ : V → N ∪ {0} be defined as a
function, where:

μ(v) =

{
0 if v is not a parking node
capacity of the parking node otherwise

In the initial configuration, let ki be the capacity of a parking node pi, ∀i =
1, 2, . . . ,m.

– Symmetry of a configuration C(t): Two graphs G1 = (VG1 , EG1) and
G2 = (VG2 , EG2) are said to be isomorphic if there exists a bijection φ :
VG1 → VG2 such that any two nodes u, v ∈ VG1 are adjacent in G1 if and
only if φ(u), φ(v) ∈ VG2 are adjacent in G2. An automorphism on a graph
G is a permutation of its nodes mapping edges to edges and non-edges to
non-edges. Let λt be defined as a function that denotes the number of robots
residing on v at time t. Without any ambiguity, we denote the function λt

by λ. C(t) = (R(t), P, λ, μ) denotes the system configuration at any time
t. An automorphism of a graph can be extended to the automorphism of a
configuration. Two configurations are said to be isomorphic if there exists
an automorphism φ of the input grid graph such that λ(v) = λ(φ(v)) and
μ(v) = μ(φ(v)), for all v ∈ V . The set of all automorphisms of a configuration
forms a group which is denoted by Aut(C(t), λ, μ). If |Aut(C(t), λ, μ)| = 1,
then the configuration is asymmetric. Otherwise, the configuration is said to
be symmetric. We assume that the infinite grid is embedded in the Cartesian
plane. As a result, a grid can admit only three types of automorphism and
combinations of them, translation: defined by the shifting of the nodes to the
same extent, reflection: defined by the line of reflection axes and rotation:
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defined by the angle of rotation and the center of rotation. The reflection axis
can be horizontal, vertical or diagonal. It can either pass through the nodes
or edges of the grid. If a configuration admits rotational symmetry, then the
center of rotation can be either a node, the center of an edge or the center of
the area surrounded by four nodes. The angle of rotation can be either 90◦ or
180◦. Since the number of occupied nodes is finite, a translation symmetry is
not admissible. Let MER be the minimum enclosing grid containing all the
occupied nodes of C(t). Assume that the dimension of MER is a × b. The
number of grid edges on a side of MER is used to define its length.

– View: Starting from a corner of MER, scan the entire grid in a direction
parallel to the width of the rectangle. While scanning the grid, we associate
the pair (λ(v), μ(v)) to each node v that the string encounters. Similarly,
we can define the string associated with the same corner and encounter the
nodes of the grid in the direction parallel to the length of the grid. Consider
the eight senary strings of length ab that are associated with the corners of
MER, with two senary strings defined for each corner of MER. Let the two
strings defined for a corner i be denoted by sij and sik.

r1

r2

r3 r4

r5

r6

p1

p2 p3

p4

A B

CD

p5 p6

l

Fig. 1. The configuration is symmetric with respect to l. The crosses represent parking
nodes and the black circles represent robot positions

If MER is a non-square rectangle, we can distinguish between the two strings
associated with a given corner by looking at the string that runs parallel to
the side with the shortest length. Consider any particular corner i of MER.
Assume that |ij| < |ik|. We consider the direction parallel to ij as the string
direction associated to i. We define si = sij as the string representation asso-
ciated to the corner i. The direction parallel to the larger side is defined as
the non-string direction associated to the corner i. In the case of a square
grid, between the two strings associated to a corner, the string representation
is defined as the larger lexicographic string, i.e., si = max(sij , sik), where the
maximum is defined according to the lexicographic ordering of the strings. If
the configuration is asymmetric, we will always get a unique largest lexico-
graphic string. Without loss of generality, let si be the largest lexicographic
string among all the strings associated to the corners. Then we refer to i as
the key corner. If the configuration is asymmetric, the robots can be ordered
according to the key corner and the string direction. A non-key corner is
defined as one that is not a key corner. In Fig. 1, assume that the capacity
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of each parking node is 1. The lexicographic string associated with the cor-
ners C and D are sCB = sDA = ((0,0), (0,1), (0,0), (0,0), (0,0), (1,0), (0,0),
(0,1), (0,0), (1,0), (0,0), (1,0), (0,0), (0,0), (0,1), (0,0), (0,0), (0,0), (0,0), (0,0),
(0,0), (1,0), (0,0), (0,0), (0,1), (1,0), (0,0), (0,1), (0,0), (1,0), (0,0), (0,1), (0,0),
(0,0), (0,0)). The strings sCB = sDA are the maximum lexicographic strings
associated and hence C and D are the key corners. The configuration view
of a node is defined as the tuple (d′, x), where d′ denotes the distance of a
node from the key corner in the string direction and x denotes the type of
the node, i.e., x is either an empty node, parking node or a robot position.

r1

r2

r3 r4

r5

r6

p1

p2 p3

p4

A B

CD p5

p6

Fig. 2. Figure highlighting the definition of leading corner.

– Symmetricity of the set P: We may define the symmetry of the set P
in the same way as we define the symmetry of a configuration. The smallest
grid-aligned rectangle that includes all the parking nodes is denoted as MP .
We can define a string αi similar to si. The only difference is that each
node v is associated with μ(v) instead of the pair (λ(v), μ(v)). If the park-
ing nodes are asymmetric, a unique lexicographic largest string αi always
exists. If the parking nodes are not asymmetric, then the parking nodes
are said to be symmetric. The corner with which the lexicographic largest
string αi is associated is defined as the leading corner. In Fig. 2, assume
that the capacity of p1 = p2 = p3 = 3 and p4 = p5 = p6 = 2,
αDA = 03000003000000020200000000003002000 is the largest lexicographic
string among the α′

is and hence we have D as the leading corner. According
to this definition of symmetricity of the set P, the parking nodes that are
located in the symmetric positions must have equal capacities.

Definition 1. Let C(0) be any given initial configuration. A parking node pi
is said to have a higher order than the parking node pj if it appears after pj
in the string representation αk, associated to some leading corner k of MER.
Similarly, a robot ri has a higher order or has a higher configuration view than
rj if it appears after rj in the string representation sk, associated to some key
corner k of MER.

3 Problem Definition and Impossibility Results

3.1 Problem Definition

Let C(t) = (R(t), P, λ, μ) denote the system configuration at any time t. Each
parking node pi has a capacity ki. For each parking node pi, the capacity ki is
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given as an input. The number of robots is assumed to be equal to
m∑

i=1

ki, where

m is the total number of parking nodes. In an initial configuration, all the robots
occupy distinct nodes of the grid. The goal of the parking problem is to transform
any initial configuration at some time t > 0 into a configuration such that each
parking node pi is saturated, i.e., pi contains exactly ki robots on it and any
robot taking a snapshot in the look phase at time t will decide not to move.

3.2 Partitioning of the Initial Configurations

All the initial configurations can be partitioned into the following disjoint classes.

1. I1: The parking nodes are asymmetric (Fig. 2).
2. I2: The parking nodes are symmetric with respect to a unique line of sym-

metry l. This class of configurations can be further partitioned into:
I21: C(t) is asymmetric (In Fig. 3(a), if the capacity of each parking node
is the same, i.e., 1, the configuration is asymmetric with the parking nodes
symmetric with respect to l).

l

p1 p2

p3 p4

p5

A B

CD

r1 r2

r3

r4

r5

(a)

p1 p2

r1

r2

r3 r4

r5

r6

A

B C

D

l

p3

(b)

l

p1 p2

p3 p4

p5

A B

CD

r1 r2

r3

r4 r5

r6

(c)

Fig. 3. Examples of I21, I221 and I223 configuration

I22: C(t) is symmetric with respect to l. This can be further partitioned into
the following disjoint classes: (1) I221: There exists at least one robot position
on l (In Fig. 3(b), with the assumption that the capacity of each parking node
is 2, C(t) is symmetric with respect to l with robots r1 and r4 on l). (2) I222:
There does not exist any robot position on l. Also, there are no parking nodes
on l. (3) I223: There does not exist any robot position on l, but there exists at
least one parking node on l (In Fig. 3(c), if the capacity of each parking node
not on l is 1, C(t) is symmetric with respect to l and there exists parking
node p5 at l with capacity 2).

3. I3: The parking nodes are symmetric with respect to rotational symmetry,
with c as the center of rotational symmetry. This class of configurations can
be further partitioned into:
I31: C(t) is asymmetric (In Fig. 4(a) if the capacity of each parking node is
2, C(t) is asymmetric with the parking nodes being symmetric with respect
to rotational symmetry).
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Fig. 4. Examples of I31 configuration, I321 configuration and I323 configuration.

I32: C(t) is symmetric with respect to c. This can be further partitioned into
the following disjoint classes: (1) I321: There exists a robot position on c (In
Fig. 4(b), if the capacities of parking nodes p1, p2, p3 and p4 equal 1 and the
capacity of the parking node p5 equals 5, C(t) is symmetric with respect to
rotational symmetry. The robot r6 is at the parking node p5). (2) I322: There
does not exist a robot position or parking node on c. (3) I323: There exists
a parking node on c, but no robot on c (In Fig. 4(c) if the capacities of the
parking nodes p1, p2, p3 and p4 equal 1 and the capacity of the parking node
p5 equals 4, C(t) is symmetric with respect to rotational symmetry, with a
parking node p5 on c).

In the remainder of the paper, we assume that l is the line of symmetry if the
parking nodes admit a single line of symmetry. If the parking nodes admit rota-
tional symmetry, then c is the center of rotational symmetry. We also assume
that if the parking nodes admit rotational symmetry, then l and l′ are perpen-
dicular lines passing through c, which divide the grid into four quadrants.

3.3 Impossibility Results

Lemma 1. Let A be any algorithm for the parking problem in infinite grids. If
there exists an execution of A such that the configuration C(t) contains a robot
multiplicity at a node that is not a parking node, then A cannot solve the parking
problem.

This lemma ensures that during the execution of any algorithm that solves the
parking problem, the robots must perform a collision-less movement at all stages
of the algorithm. Suppose the robots are oblivious and not endowed with global-
strong multiplicity detection capability. In that case, they cannot detect whether
exactly the ki number of robots reaches the parking node pi. We formalize the
result in the following lemma:

Lemma 2. Without the global-strong multiplicity detection capability of the
robots, the parking problem is unsolvable.

Lemma 3. If the initial configuration C(0) ∈ I223 is such that the capacity of
a parking node on l is an odd integer. Then the parking problem is unsolvable.
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It follows from Lemma 3 that if C(t) admits multiple lines of symmetry and
if there exists a parking node on l with odd capacity, then also the problem is
unsolvable.1

Corollary 1. If the initial configuration C(0) ∈ I323, then the parking problem
is unsolvable if the capacity of the parking node at c is neither a multiple of 4
nor 2, depending on whether the angle of rotation is either 90◦ or 180◦.

Let U be the set of all configurations that are unsolvable according to Lemma 3
and Corollary 1.

4 Algorithm

In this section, the parking problem is solved using a deterministic distributed
algorithm Parking () for all initial configurations except those belonging to U .
The fundamental strategy of the proposed algorithm is to identify a specific
target parking node and permit a number of robots to move towards it, where
the number of robots is equal to the parking node’s capacity. The target parking
node is selected in a sequential manner and the procedure executes unless each
parking node becomes saturated. The proposed algorithm mainly consists of the
following phases: Guard Selection and Placement (GS) phase, Target Parking
Node Selection (TPS) phase, Candidate Robot Selection (CR) phase and Guard
Movement (GM) phase.

Note that according to the definition of the symmetry of the set P, there
exists a unique lexicographic string αi, when the parking nodes are asymmetric.
From this, we can observe that if the parking nodes are asymmetric, the parking
nodes can be ordered (say O1). Similarly, if the parking nodes are symmetric
with respect to l, with at least one parking node on l, then the parking nodes
on l are orderable (say O2). These orderings are necessary to identify a unique
parking node, which will be selected by the robots in order to initialize the
parking formation.

4.1 Guard Selection and Placement (GS)

Consider the case when the parking nodes are symmetric, but the configuration
is asymmetric. In this phase, a unique robot is selected as a guard and placed
in such a way that the configuration remains asymmetric during the execution
of the algorithm. The following notations are used in describing this phase:

– Condition C1: There exists at least one robot position outside the rectangle
MP .

– Condition C2: Each robot is inside the rectangle MP .
– Condition C3: There exists a unique farthest robot from l ∪ {c}.

1 The proofs of the Lemmas 1 and 3 are in the arxiv version of the paper [5].
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Depending on the class of configurations to which C(t) belongs, the phase is
described in Table 1. If there is more than one furthest robot from the key corner,
then since the configuration is asymmetric, a unique robot can always be selected
according to the view of the robots. Note that while the guard is selected and
placed, the guard is the unique farthest robot from l ∪ {c}. As a result, it does
not have any symmetric image with respect to l ∪ {c}, which implies that the
configuration remains asymmetric during the execution of the algorithm.

Table 1. Guard Selection and Placement

Guard Selection and Placement

Initial Configuration
(I21 ∪ I31)

Guard Position of the guard

C1 ∧ C3 The unique robot farthest
from l ∪ {c}

Current position of the guard

C1 ∧ ¬C3 The unique robot furthest
from l ∪ {c} and having the
maximum configuration view
among all the furthest robots

The unique robot moves
towards an adjacent node
away from l ∪ {c}

C2 ∧ C3 The unique robot furthest
from l ∪ {c}

The guard continues its
movement away from l ∪ {c},
unless the condition C1

becomes true

C2 ∧ ¬C3 The unique robot furthest
from l ∪ {c} and having the
maximum configuration view
among all the furthest robots

The guard continues its
movement away from l ∪ {c}
until the condition C1

becomes true

4.2 Half-Planes and Quadrants

First, consider the case when C(0) ∈ I21. The line of symmetry l divides the
entire grid into two half-planes. We consider the open half-planes, i.e., the half-
planes excluding the nodes on l. Let H1 and H2 denote the two half-planes
delimited by l. The following definitions are to be considered.

1. UP (t)- Number of parking nodes which are unsaturated at time t.
2. Deficit Measure of a parking node pi (Dfpi

(t)): The deficit measure Dfpi
(t)

of a parking node pi at time t is defined as the deficit in the number of robots
needed to have exactly ki robots on pi.

3. K1 =
∑

pi∈H1

Dfpi
(t) denotes the total deficit in order to have exactly

∑

pi∈H1

ki

number of robots at the parking nodes belonging to the half-plane H1.
4. K2 =

∑

pi∈H2

Dfpi
(t) denotes the total deficit in order to have exactly

∑

pi∈H2

ki

number of robots at the parking nodes belonging to the half-plane H2.
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Definition 2. Let C(t) be any initial configuration belonging to the set I21. C(t)
is said to be unbalanced if the two half-planes delimited by l contain an unequal
number of robots. Otherwise, the configuration is said to be balanced.

We next consider the following conditions.

1. Condition C4- There exists a unique half-plane that contains the minimum
number of unsaturated parking nodes.

2. Condition C5- K1 �= K2

3. Condition C6- The configuration is unbalanced.
4. Condition C7- The configuration is balanced and R ∩ l �= ∅.
5. Condition C8- The configuration is balanced and R ∩ l = ∅.

The half-plane Htarget or H+ is defined according to Table 2, where the parking
at the parking nodes initializes. The other half-plane is denoted by H−. In Fig. 5
(a), ABCD is the MP and AB′C ′D is the MER. Assume that the capacities of
the parking nodes p1, p2, p3 and p4 are 2, 2, 1 and 1, respectively. The half-plane
with more number of robots is selected as H+. In Fig. 5 (b), assume that the
capacities of the parking nodes p1, p2, p3 and p4 are 3, 3, 2 and 2, respectively.
Each of the half-planes contains the same number of robots. Therefore, the
configuration is balanced. The half-plane not containing the guard r5 is defined
as H+. Due to space constraints, the case when the parking nodes are symmetric
with respect to rotational symmetry has been included in the arxiv version of
the paper [5]. The quadrant Qtarget or Q++, where the parking is initialized, is
defined according to Table 3 in the arxiv version of the paper [5].

Table 2. Demarcation of the half-planes

Demarcation of the half-planes for fixing the target

Initial Configuration (I21) H+

C4 The unique half-plane which contains the
minimum number of unsaturated parked nodes

¬ C4 ∧ C5 ∧ K1 < K2 H1

¬ C4 ∧ C5 ∧ K2 < K1 H2

¬ C4 ∧ ¬C5 ∧ C6 The unique half-plane with the maximum
number of robot positions

¬ C4 ∧ ¬C5 ∧ ¬ C6 ∧ C7 The northernmost robot on l move towards an
adjacent node away from l. The unique
half-plane with the maximum number of robot
positions is defined as H+

¬ C4 ∧ ¬C5 ∧ ¬ C6 ∧ ¬ C7 ∧ C8 The unique half-plane not containing the guard
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Fig. 5. Example configuration showing demarcations of half-planes.

4.3 Target Parking Node Selection (TPS)

In this phase, the target parking node for the parking problem is selected.
Depending on the following classes of configurations, the phase is described in
Table 3. Let pguard be the closest parking node from the guard. If multiple such
parking nodes exist, the parking node closest to the guard and having maximum
order is selected as pguard. We first assume that the target parking nodes are
selected in P \ {pguard}. Due to space constraints, we have discussed the TPS
phase in the arxiv version of the paper for the case when the parking nodes
admit rotational symmetry [5]. We next consider the following conditions that
are relevant in understanding this phase.

1. C14- There exists an unsaturated parking node on l.
2. C16- All the parking nodes belonging to H+ are saturated.
3. C ′

16- All the parking nodes belonging to H− are saturated.

While all the parking nodes belonging to the set P \{pguard} become saturated,
pguard becomes the target parking node. Note that ¬C14 implies that the parking

Table 3. Target Parking Node Selection

Target Parking Node Selection

Initial Configuration C(0) Target Parking Node

I1 The parking node which is unsaturated and has
the highest order with respect to O1

I2 ∧ C14 The parking node on l which is unsaturated and
has the highest order with respect to O2

I21 ∧ ¬ C14 ∧ ¬ C16 The parking node, which is unsaturated and has
the highest order in H+ among all the
unsaturated nodes in H+

I21 ∧ ¬ C14 ∧ C16 ∧ ¬C′
16 The parking node, which is unsaturated and has

the highest order in H− among all the
unsaturated nodes in H−

I22 ∧ ¬ C14 The two parking nodes that have the highest
order among all the unsaturated parking nodes
and lying on two different half-planes
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nodes are symmetric with respect to l and there either does not exist any parking
node on l or each parking node on l is saturated. In Fig. 5, A and B are the
leading corners. p1 is the parking node in H+ which has the highest order. The
target parking nodes are selected in the order (p1, p3, p2, p4).

4.4 Candidate Robot Selection Phase

In view of Lemma 1, while a robot moves towards a parking node, it must ensure
collision-free movement. Otherwise, the problem becomes unsolvable. As a result,
a robot will move toward its target only when it has a path toward that target
that does not contain any other robot positions.

Definition 3. A path from a robot to a parking node is said to be free if it does
not contain any other robot positions.

A robot would move toward its target only when it has a free path toward it.
In this phase, the candidate robot is selected and allowed to move toward the
target parking node. Let p �= pguard be the target parking node selected in the
TPS phase. Depending on the different classes of configurations, the following
cases are to be considered.

1. C(t) is asymmetric. As a result, the robots are orderable. The robot that does
not lie on any saturated parking node and has the shortest free path to p is
selected as the candidate robot. If multiple such robots exist, the one with
the highest order among such robots is selected as the candidate robot.

2. C(t) is symmetric with respect to a single line of symmetry l. First, assume
that p is on l. If at least one robot exists on l, then the symmetry can be
broken by allowing a robot from l to move towards an adjacent node away
from l. As a result, assume that there is no robot position on l. The two closest
robots, which do not lie on any saturated parking node and have shortest free
paths towards p, are selected as the candidates for p. If there are multiple such
robots, the ties are broken by considering the robots that lie on different half-
planes and have the highest order among all such robots. Next, assume that
p is on the half-planes. The robot that does not lie on any saturated parking
node and has a shortest free path toward p is selected as the candidate robot.
Note that such candidates are selected in both half-planes.

3. C(t) is symmetric with respect to rotational symmetry. First, assume that p
is on c. If there exists a robot on c, the robot on c moves towards an adjacent
node, and the configuration becomes asymmetric. Assume the case when there
are no robots on c. The robots that are closest to p are selected as candidate
robots. In this case, depending on whether the angle of rotational symmetry
is 180◦ or 90◦, two or four robots are selected as candidates. Next, assume
that p is located either on a quadrant or on of the wedge boundaries. If the
target parking node lies on a quadrant, the robot that does not lie on any
saturated parking node and has a shortest free path toward p is selected as
the candidate robot. It should be noted that such candidates are chosen from
each of the four quadrants, for each target parking node. Otherwise, if the
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target parking node is on a wedge boundary, the robot(s) not lying on any
saturated parking node and having a shortest free path towards the target is
(are) selected as candidate robot(s).

Next, assume that pguard is the target parking node. The candidates are selected
as the robot which has shortest free path towards pguard. Finally, the guard
moves towards pguard. By the choice of p, there always exists a half-line starting
from p, which does not contain any robot position. As a result, a free path always
exists between the candidate robot and p.

4.5 Guard Movement

Assume the case when the parking nodes are symmetric and the configuration is
asymmetric. In the GM phase, the guard moves toward its respective destination
and the parking process is terminated. The guard moves only when it finds that,
except for one, all the parking nodes have become saturated. It moves towards
its destination p in a free path. The guard moves towards its destination and
each parking node becomes saturated, transforming the configuration into a final
configuration.

5 Correctness

Due to space constraints, the proofs of Lemmas 4–9 and Theorem 1 are men-
tioned in the arxiv version of the paper [5].

Lemma 4. In the GS phase, the guard remains invariant while it moves towards
its destination.

Lemma 5. During the execution of the algorithm Parking(), if the parking nodes
admit a single line of symmetry l, then H+ remains invariant.

Lemma 6. During the execution of the algorithm Parking(), if the parking nodes
admit rotational symmetry, then Q++ remains invariant.

Lemma 7. If the configuration is such that the parking nodes admit a unique
line of symmetry l, then during the execution of the algorithm Parking(), the
target parking nodes remain invariant.

Lemma 8. If the configuration is such that the parking nodes admit rotational
symmetry, then during the execution of the algorithm Parking(), the target park-
ing nodes remain invariant.

Lemma 9. During the CRS phase, the candidate robot remains invariant.

Theorem 1. Algorithm Parking() solves the Parking Problem in Infinite grids
for all initial configurations not belonging to the set U .
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6 Conclusion

This chapter proposed a deterministic distributed algorithm for solving the park-
ing problem in infinite grids. We have characterized all the initial configurations
and the values of ki for which the problem is unsolvable, even if the robots
are endowed with strong multiplicity detection capability. A deterministic algo-
rithm has been proposed under the assumption that the robots are endowed
with global-strong multiplicity detection capability. As a future work, it would
be interesting to investigate the problem in case the number of robots is not
equal to the sum of the capacities of the parking nodes. In case the number of
robots in the initial configuration is less than the sum of the capacities of the
parking nodes, one interesting study could be to investigate the problem with
the objective of maximizing the number of saturated parking nodes.

References

1. Bhagat, S., Chakraborty, A., Das, B., Mukhopadhyaya, K.: Gathering over meeting
nodes in infinite grid*. Fundam. Inform. 187(1), 1–30 (2022)

2. Bhagat, S., Chakraborty, A., Das, B., Mukhopadhyaya, K.: Optimal gathering over
weber meeting nodes in infinite grid. Int. J. Found. Comput. Sci. 34(1), 25–49
(2023)

3. Bhagat, S., Das, B., Chakraborty, A., Mukhopadhyaya, K.: k-Circle formation and
k-epf by asynchronous robots. Algorithms 14(2) (2021)

4. Bose, K., Adhikary, R., Kundu, M.K., Sau, B.: Arbitrary pattern formation on
infinite grid by asynchronous oblivious robots. Theor. Comput. Sci. 815, 213–227
(2020)

5. Chakraborty, A., Mukhopadhyaya, K.: Parking problem by oblivious mobile robots
in infinite grids (2023)

6. Cicerone, S., Stefano, G.D., Navarra, A.: Gathering of robots on meeting-points:
feasibility and optimal resolution algorithms. Distrib. Comput. 31(1), 1–50 (2018)

7. Cicerone, S., Stefano, G.D., Navarra, A.: Asynchronous arbitrary pattern forma-
tion: the effects of a rigorous approach. Distrib. Comput. 32(2), 91–132 (2019)

8. Cicerone, S., Stefano, G.D., Navarra, A.: Embedded pattern formation by asyn-
chronous robots without chirality. Distrib. Comput. 32(4), 291–315 (2019)

9. D’Angelo, G., Stefano, G.D., Klasing, R., Navarra, A.: Gathering of robots on
anonymous grids and trees without multiplicity detection. Theor. Comput. Sci.
610, 158–168 (2016)

10. Das, B., Chakraborty, A., Bhagat, S., Mukhopadhyaya, K.: k-circle formation by
disoriented asynchronous robots. Theor. Comput. Sci. 916, 40–61 (2022)

11. Efrima, A., Peleg, D.: Distributed algorithms for partitioning a swarm of
autonomous mobile robots. Theor. Comput. Sci. 410(14), 1355–1368 (2009). struc-
tural Information and Communication Complexity (SIROCCO 2007)

12. Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile entities.
Curr. Res. Mov. Comput. 11340 (2019)

13. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1–3),
412–447 (2008)



84 A. Chakraborty and K. Mukhopadhyaya

14. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern formation through opti-
mum matching by oblivious CORDA robots. In: Lu, C., Masuzawa, T., Mosbah,
M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17653-1 1

15. Stefano, G.D., Navarra, A.: Gathering of oblivious robots on infinite grids with
minimum traveled distance. Inf. Comput. 254, 377–391 (2017)

16. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. J. Field Robot. 13(3), 127–139 (1996)

17. Yamauchi, Y., Yamashita, M.: Pattern formation by mobile robots with limited vis-
ibility. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013. LNCS, vol. 8179,
pp. 201–212. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03578-
9 17

https://doi.org/10.1007/978-3-642-17653-1_1
https://doi.org/10.1007/978-3-319-03578-9_17
https://doi.org/10.1007/978-3-319-03578-9_17


The Computational Landscape
of Autonomous Mobile Robots:

The Visibility Perspective

Archak Das(B) , Satakshi Ghosh , Avisek Sharma , Pritam Goswami ,
and Buddhadeb Sau

Department of Mathematics, Jadavpur University, Kolkata, India
{archakdas.math.rs,satakshighosh.math.rs,aviseks.math.rs,
pritamgoswami.math.rs,buddhadeb.sau}@jadavpuruniversity.in

Abstract. Consider a group of autonomous mobile computational enti-
ties called robots. The robots move in the Euclidean plane and oper-
ate according to synchronous Look-Compute-Move cycles. The com-
putational capabilities of the robots under the four traditional mod-
els {OBLOT , FST A, FCOM, LUMI} have been extensively investi-
gated both when the robots had unlimited amount of energy and when
the robots were energy-constrained.

In both the above cases, the robots had full visibility. In this paper,
this assumption is removed, i.e., we assume that the robots can view up
to a constant radius Vr from their position (the Vr is same for all the
robots) and, investigates what impact it has on its computational capa-
bilities.

We first study whether the restriction imposed on the visibility has
any impact at all, i.e., under a given model and scheduler does there exist
any problem which cannot be solved by a robot having limited visibility
but can be solved by a robot with full visibility. We find that the answer
to the question in general turns out to be positive. Finally, we try to get
an idea that under a given model, which of the two factors, V isibility or
Synchronicity is more powerful and conclude that a definite conclusion
cannot be drawn.

Keywords: Mobile Robots · Limited Visibility ·
Look-Compute-Move · Robots with Lights

1 Introduction

In this paper, we consider systems of autonomous, anonymous, identical and
homogenous computational entities called robots moving and operating in the
Euclidean plane. The robots are viewed as points and they operate according to
the traditional Look-Compute-Move (LCM) cycles in synchronous rounds. In
Look phase robots take a snapshot of the space, in the Compute phase the robots
execute its algorithm using the snapshot as input, then move to the computed
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destination in Move phase. The robots are collectively able to perform some
tasks and solve some problems.

In recent times, exhaustive investigation has also been done [2,8] about
the issues of memory persistence and communication capability, have on the
solvability of a problem and computational capability of a system. In light of
these facts, four models have been identified and investigated, OBLOT , LUMI,
FST A and FCOM.

In the most common model OBLOT , in the addition to standard assumptions
of anonymity and uniformity, the robots are silent, i.e., without explicit means
of communication and oblivious, i.e., they have no persistent memory to record
information of previous cycles.

The other model which is generally considered as antithesis to OBLOT
model, is the LUMI model first formally defined in [4,5], where the robots
have both persistent memory and communication, although it must be noted
that the remembering or communicating can be done only in limited capacity,
i.e., the robots can remember or communicate finite number of bits.

Two new models have been introduced in [7] by eliminating one of the
two capabilities of LUMI model, in each case. These two models are FST A
and FCOM. In FST A model the communication capability is absent while in
FCOM model the robots do not have persistent memory. In [8] these models
have been considered to investigate the question is it better to remember or to
communicate?.

In this work we consider another factor, i.e., visibility, which helps to
investigate the matter from a different angle and is of interest from both
theoretical and practical point of view. If M denotes a model and σ is a
scheduler then traditionally Mσ denotes a model M under scheduler σ. Here
M ∈ {OBLOT ,FST A,FCOM,LUMI} and σ ∈ {FSY NCH,SSY NCH}.
We here define Mσ

V denotes a model M under scheduler σ and visibility state
V. Here V ∈ {F .V.,L.V.}. Here F .V. denotes the full visibility model and L.V.
denotes the limited visibility model. In limited visibility model, each robot can
view upto a constant radius of their position and the initial visibility graph is
connected.

All the works done till now had given the full visibility power to the robots.
So we try to answer a number of questions,

– Does restriction on visibility have a significant impact on the computational
power of a model? In other words, is any problem which is solvable in full
visibility model, solvable in limited visibility model also?

– If the answer to the second question mentioned above is no, then can the
impairment be always adjusted by minor adjustments, i.e., by keeping the
model intact but by making the scheduler more powerful?

– If the answer to the above question is also no, then what are the cases where
the lack of full visibility can be compensated? Can all the cases be classified?

We have shown the answer to the first question is no, e.g., we have proved
that FST AF

L.V. < FST AF
F.V.. This result turns out to be true for all the

four models {OBLOT , FST A, FCOM,LUMI}. After we got answer to our
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first question, we tried to answer our second question. A definite answer to
the second question shall give us some insight about whether any one of the
two parameters of visibility and synchronicity have any precedence over the
other. But as we shall see this does not happen. For e.g., we got the result that
FCOMF

L.V. ⊥ FCOMS
F.V., which effectively shows that both the capabilities

are important, and deficiency in one of the parameter cannot be compensated
by making the other parameter stronger. In the process, we have defined a new
problem EqOsc which we have shown to be unsolvable unless the scheduler is
fully synchronous, but solvable if the scheduler is fully synchronous, even under
limited visibility in FST A and FCOM models. The third question as of now,
yet remains unanswered, and subject to further investigations.

The results presented in this paper gives a whole new insight to the parameter
of visibility and its relevance relative to the parameter of synchronicity, one that
requires exhaustive analysis, even beyond the amount of investigation that had
been done in this paper.

1.1 Related Work

Investigations regarding the computational power of robots under synchronous
schedulers was done by the authors Flocchini et. al. in [8]. Main focus of the
investigation in this work was which of the two capabilities was more important:
persistent memory or communication. In the course of their investigation they
proved that under fully synchronous scheduler communication is more powerful
than persistent memory. In addition to that, they gave a complete exhaustive
map of the relationships among models and schedulers.

In [2], the previous work of characterizing the relations between the robot
models and three type of schedulers was continued. The authors provided a more
refined map of the computational landscape for robots operating under fully
synchronous and semi-synchronous schedulers, by removing the assumptions on
robots’ movements of rigidity and common chirality. Further authors establish
some preliminary results with respect to asynchronous scheduler.

The previous two works considered that the robots was assumed to have
unlimited amounts of energy. In [3], the authors removed this assumption and
started the study of computational capabilities of robots whose energy is limited,
albeit renewable. In these systems, the activated entities uses all its energy to
execute an LCM cycle and then the energy is restored after a period of inactivity.
They studied the impact that memory persistence and communication capabili-
ties have on the computational power of such robots by analyzing the computa-
tional relationship between the four models {OBLOT ,FST A,FCOM,LUMI}
under the energy constraint. They provided a full characterization of this rela-
tionship. Among the many results they proved that for energy-constrained
robots, FCOM is more powerful than FST A.

In all the three above mentioned works, the robots had full visibility. A robot
uses its visibility power in the Look phase of the LCM cycle to acquire informa-
tion about its surroundings, i.e., position and lights (if any) of other robots. The
biggest drawback of full visibility assumption is that it is not practically feasible.
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So, recently some of the authors [1,6,9,10] have considered limited visibility. For
example, in [6] they considered that the robots can see up to a fixed radius V
from it. So it was important to study the power of different robot models under
limited visibility.

1.2 Our Contributions

We first examine the computational relationship under a constant model and
scheduler between limited and full visibility conditions. We find that in both
fully synchronous and semi-synchronous cases, a model under full visibility is
strictly more powerful than a model under limited visibility. We get the following
results:

1. OBLOT F
F.V. > OBLOT F

L.V.

2. FST AF
F.V. > FST AF

L.V.

3. FCOMF
F.V. > FCOMF

L.V.

4. LUMIF
F.V. > LUMIF

L.V.

5. OBLOT S
F.V. > OBLOT S

L.V.

6. FST AS
F.V. > FST AS

L.V.

7. FCOMS
F.V. > FCOMS

L.V.

8. LUMIS
F.V. > LUMIS

L.V.

We then examine the computational relationship between the four models
{OBLOT ,FST A,FCOM,LUMI} under limited visibility between fully syn-
chronous and semi-synchronous schedulers. We find that under limited visibility
conditions each of the three models are more powerful under fully synchronous
scheduler.

9. OBLOT F
L.V. > OBLOT S

L.V.

10. FST AF
L.V. > FST AS

L.V.

11. FCOMF
L.V. > FCOMS

L.V.

12. LUMIF
L.V. > LUMIS

L.V.

Together with the three results mentioned immediately above, we also get an
idea which of the capabilities, visibility or synchronicity is more powerful. From
the previous results we generally conclude that MS

L.V. < MS
F.V. and MS

L.V. <
MF

L.V.. If we can prove that MF
L.V. ≥ MS

F.V., then it shall imply that by making
the scheduler stronger, the limitation in visibility can be compensated. Similarly
if we can prove that MS

F.V. ≥ MF
L.V., then it shall imply that by giving complete

visibility, the weakness in terms of scheduler can be compensated. But after our
detailed investigation it has been revealed that neither of the above cases happen
and in general MF

L.V. ⊥ MS
F.V.. Specifically the results are:

13. OBLOT F
L.V. ⊥ OBLOT S

F.V.

14. FST AF
L.V. ⊥ FST AS

F.V.

15. FCOMF
L.V. ⊥ FCOMS

F.V.

16. LUMIF
L.V. ⊥ LUMIS

F.V.
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1.3 Paper Organization

In Sect. 2 we define the computational model, visibility models and the other
technical preliminaries. In Sects. 3, we discuss the computational relationships
between the four models, OBLOT , FCOM, FST A and LUMI models respec-
tively, subject to variations in synchronicity and visibility. In Sect. 4, we try
to compare the strength of the capabilities of synchronicity and visibility. In
Sect. 5 we present the conclusion.

2 Model and Technical Preliminaries

2.1 The Basics

In this paper we consider a team R = {r0, . . . , rn} of computational entities
moving and operating in the Euclidean Plane R

2, which are viewed as points
and called robots. The robots can move freely and continuously in the plane.
Each robot has its own local coordinate system and it always perceives itself
at its origin; there might not be consistency between these coordinate systems.
The robots are identical: they are indistinguishable by their appearance and
they execute the same protocol, and they are autonomous, i.e., without any
central control.

The robots operate in Look − Compute − Move (LCM) cycles. When acti-
vated a robot executes a cycle by performing the following three operations:

1. Look: The robots activate its sensors to obtain a snapshot of the positions
occupied by the robots according to its co-ordinate system.

2. Compute: The robot executes its algorithm using the snapshot as input. The
result of the computation is a destination point.

3. Move: The robot moves to the computed destination. If the destination is
the current location, the robot stays still.

All robots are initially idle. The amount of time to complete a cycle is
assumed to be finite, and the Look is assumed to be instantaneous. The robots
may not have any agreement in terms of their local coordinate system. By
chirality, we mean the robots agree on the same circular orientation of the
plane, or in other words they agree on “clockwise” direction. In our paper, we
do not assume the robots to have a common sense of chirality.

2.2 The Computational Models

There are four basic robot models which are considered in literature, they are
namely, {OBLOT ,FST A,FCOM,LUMI}.

In the most common, OBLOT , the robots are silent: they have no explicit
means of communication; furthermore they are oblivious: at the start of the
cycle, a robot has no memory of observations and computations performed in
previous cycles.
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In the most common model, LUMI, each robot r is equipped with a persis-
tent visible state variable Light[r], called light, whose values are taken from a
finite set C of states called colors (including the color that represents the initial
state when the light is off). The colors of the lights can be set in each cycle by
r at the end of its Compute operation. A light is persistent from one compu-
tational cycle to the next: the color is not automatically reset at the end of a
cycle; the robots are otherwise oblivious, forgetting all other information from
previous cycles. In LUMI, the Look operation produces a colored snapshot; i.e.,
it returns the set of pairs (position, color) of the robots.

The lights provide simultaneously persistent memory and direct means of
communication, although both limited to a constant number of bits per cycle.
Two sub-models of LUMI have been defined and investigated, each offering
only one of these two capabilities.

In the first model, FST A, a robot can only see the color of its own light;
that is, the light is an internal one and its color merely encodes an internal
state. Hence the robots are silent, as in OBLOT , but are finite-state. Observe
that a snapshot in FST A is same as in OBLOT .

In the second model, FCOM, the lights external: a robot can communicate
to the other robots through its colored light but forgets the color of its own light
by the next cycle; that is, robots are finite-communication but are oblivious.
A snapshot in FCOM is like in LUMI except that, for the position x where
the robot r performing the Look is located, Light[r] is omitted from the set of
colors present at x.

2.3 The Schedulers

With respect to the activation schedule of the robots, and the duration of
their Look-Compute-Move cycles, the fundamental distinction is between the
asynchronous and synchronous settings.

In the asynchronous setting (ASYNCH), there is no common notion of time,
each robot is activated independently of others, the duration of each phase is
finite but unpredictable and might be different cycles.

In the synchronous setting (SSYNCH), also called semi-synchronous, time
is divided into discrete intervals, called rounds; in each round some robots are
activated simultaneously, and perform their LCM cycle in perfect synchroniza-
tion.

A popular synchronous setting which plays an important role is the fully-
synchronous setting (FSYNCH) where every robot is activated in every round;
the is, the activation scheduler has no adversarial power.

In all two settings, the selection of which robots are activated at a round is
made by an adversarial scheduler, whose only limit is that every robot must
be activated infinitely often (i.e., it is fair scheduler). In the following, for all
synchronous schedulers, we use round and time interchangeably.
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2.4 The Visibility Models

In our work we do comparative analysis of computational models with robots
having full and limited visibility. In full visibility model, denoted as F .V., the
robots have sensorial devices that allows it to observe the positions of the other
robots in its local co-ordinate system.

In limited visibility model, denoted as L.V., a robot can only observe upto a
fixed distance Vr from it. Suppose, rp(t) denote the position of a robot r at the
beginning of round t. Then we define the circle with center at rp(t) and radius
Vr to be the Circle of V isibility of r at round t. Here the radius Vr is same for
all the robots. The result of Look operation in round t will be the position of
the robots and lights(if any) of the robots inside the circle of visibility.

We now define the V isibility Graph, G = (V,E) of a configuration. Let C
be a given configuration. Then all the robot positions become the vertices of G
and we say an edge exists between any two vertices if and only if the robots
present there can see each other. The necessary condition for the problems we
have defined in the paper is that the V isibility Graph of the initial configuration
must be connected.

2.5 Some Important Definitions

We define our computational relationships similar to that of [8]. Let M =
{OBLOT ,FST A,FCOM,LUMI} be the robot models under investigation,
the set of activation schedulers be S = {FSY NCH,ASY NCH} and the set of
visibility models be V = {F .V.,L.V.}.

We denote by R the set of all teams of robots satisfying the core assumptions
(i.e., they are identical, autonomous, and operate in LCM cycles), and R ∈ R
a team of robots having identical capabilities (e.g., common coordinate system,
persistent storage, internal identity, rigid movements etc.). By Rn ⊂ R we denote
the set of all teams of size n.

By problem we mean a task where a fixed number of robots have to form
some configuration or configurations (which may be a function of time) subject
to some conditions, within a finite amount of time.

Given a model M ∈ M, a scheduler S ∈ S, visibility V ∈ V, and a team of
robots R ∈ R, let Task(M,S, V ;R) denote the set of problems solvable by R in
M , with visibility V and under adversarial scheduler S.

Let M , N ∈ M, S1, S2 ∈ S and V1, V2 ∈ V. We define the relationships
between model M with visibility V1 under scheduler S1 and model N with visi-
bility V2 under scheduler S2:

– computationally not less powerful (MS1
V1

≥ NS2
V2

), if ∀ R ∈ R we have
Task(M,S1;R) ⊇ Task(N,S2;R);

– computationally more powerful (MS1
V1

> NS2
V2

), if MS1
V1

≥ NS2
V2

and ∃R ∈ R
such that Task(M,S1, V1;R) \ Task(N,S2, V2;R) 	= ∅;

– computationally equivalent (MS1
V1

≡ NS2
V2

), if MS1
V1

≥ NS2
V2

and MS1
V1

≤ NS2
V2

;



92 A. Das et al.

– computationally orthogonal or incomparable, (MS1
V1

⊥ NS2
V2

), if ∃R1, R2 ∈
R such that Task(M,S1, V1;R1) \ Task(N,S2, V2;R1) 	= ∅ and
Task(N,S2, V2;R2) \ Task(M,S1, V1;R2) 	= ∅.

For simplicity of notation, for a model M ∈ M, let MF and MS denote
MFsynch and MSsynch, respectively; and let MF

V (R) and MS
V (R) denote the

sets Task(M,FSY NCH,V ;R) and Task(M,SSY NCH,V ;R), respectively.

2.6 Some Fundamental Comparisons

Trivially,

1. LUMI ≥ FST A ≥ OBLOT and LUMI ≥ FCOM ≥ OBLOT , when the
V isibility and Synchronicity is fixed.

2. FSYNCH ≥ SSYNCH ≥ ASYNCH when the model and V isibility is fixed.
3. F .V. ≥ L.V. when the model and Synchronicity is fixed.

3 Angle Equalization Problem

Definition 1. Problem Angle Equalization (AE): Suppose four robots r1,
r2, r3 and r4 are placed in positions A, B, C and D respectively, as given in
Configuration (I). The line AB makes an acute angle θ1 with BC and the line
CD makes an acute θ2 with BC. Here θ1 < θ2 < 90◦.

The robots must form the Configuration (II) without any collision. The robots
r2 and r3 must remain fixed in their positions.

Fig. 1. Configuration (I) of Problem
AE

Fig. 2. Configuration (II) of Problem
AE
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Fig. 3. Visibility Range Gap

3.1 Algorithm for AE Problem in OBLOT S
F .V

Under full visibility conditions, each robot can see all the robot locations in the
plane. Now each robot can uniquely identify its position in the plane. Therefore
whenever the robot r1 is activated, it will move to the position A′ such that the
∠A′BE = θ2. The rest of the robots will not move. After the robot r1 moves
all the robots can perceive that Configuration (II) is obtained and henceforward
there will be no further movement of the robots. Hence the problem is solved.

Lemma 1. ∀ R ∈ R4, AE ∈ OBLOT S
F.V .

Corollary 1. ∀ R ∈ R4, AE ∈ OBLOT F
F.V .

Proof. Follows from Lemma 1.

Corollary 2. ∀ R ∈ R4, AE ∈ FST AS
F.V .

Proof. Follows from Lemma 1.

Corollary 3. ∀ R ∈ R4, AE ∈ FST AF
F.V .

Proof. Follows from Corollary 1.

Corollary 4. ∀ R ∈ R4, AE ∈ FCOMS
F.V .

Proof. Follows from Lemma 1.

Corollary 5. ∀ R ∈ R4, AE ∈ FCOMF
F.V .

Proof. Follows from Corollary 1.

Corollary 6. ∀ R ∈ R4, AE ∈ LUMIS
F.V .

Proof. Follows from Lemma 1.

Corollary 7. ∀ R ∈ R4, AE ∈ LUMIF
F.V .

Proof. Follows from Corollary 1.
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3.2 Impossibility of Solving AE Problem in Limited Visibility
Model

Lemma 2. ∃ R ∈ R4, AE 	∈ LUMIF
L.V..

Proof. Let there exists an Algorithm A to solve the problem in LUMIF
L.V..

If Configuration (II) (see Fig. 2) has to be formed from Configuration (I) (see
Fig. 1) then the robot r1 must know the value of the angle it has to form. If
r1 has to move to the position A′ such that the ∠A′BE = θ2, then the robot
r1 must know the position of two robots r3 and r4 respectively in the initial
configuration, i.e., the positions C and D respectively. Unless the position C is
known, the robot r1 cannot perceive that it has to form the angle with respect
to the extended line of the line segment. And unless it knows the position D, it
cannot perceive the value θ2 that it has to form. But if Vr = BC + ε, then it
is not possible for the robot r1 to see them from the initial configuration. Also
according the requirement of the problem the robots r2 and r3 cannot move.
Therefore to solve the problem r1 must move. Now, if r1 has to move, unless r1
performs the required move to form Configuration (II) in one move, it has to
move preserving the angle θ1. This is because r1 does not know the fact that
θ1 < θ2. The argument holds for r4. And we have already seen that the initial
configuration does not give the required information to form Configuration (II)
in one move.

Now the only way the robot r1 can move preserving the angle, is by moving
along the line segment AB. Now note that if r1 reaches B, the angle becomes
0. Also as collisions are not allowed the robot r1 cannot cross B. Similarly, the
robot r3 can only move along line segment CD and it cannot cross the position
C. Now, by moving along the line segments AB and CD respectively, however
much the two robots r1 and r4 may come closer to B and C respectively, the
adversary may choose the value of ε in such a way that the position C is outside
the visibility range of r1 and B is outside the visibility range of r2 (see Fig. 3).
Note that the robots r2 and r3 cannot see r4 and r1 respectively, therefore
it is also unknown to them which robot should perform the required move to
form Configuration (II). Though r2 and r3 can measure the angles θ1 and θ2
respectively. It is not possible to store the value of the angles with finite number
of lights. Hence the problem cannot be solved.

From Lemma 2 follows:

Corollary 8. ∃ R ∈ R4, AE 	∈ LUMIS
L.V.

Corollary 9. ∃ R ∈ R4, AE 	∈ FST AF
L.V.

Corollary 10. ∃ R ∈ R4, AE 	∈ FST AS
L.V.

Proof. Follows from Corollary 8.

Corollary 11. ∃ R ∈ R4, AE 	∈ FCOMF
L.V.

Corollary 12. ∃ R ∈ R4, AE 	∈ FCOMS
L.V.
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Proof. Follows from Corollary 8.

Corollary 13. ∃ R ∈ R4, AE 	∈ OBLOT F
L.V.

Corollary 14. ∃ R ∈ R4, AE 	∈ OBLOT S
L.V.

Proof. Follows from Corollary 8.

We get the following results:

Theorem 1. OBLOT F
F.V. > OBLOT F

L.V.

Proof. From Corollary 1 and Corollary 13.

Theorem 2. OBLOT S
F.V. > OBLOT S

L.V.

Proof. From Lemma 1 and Corollary 14.

Theorem 3. FST AF
F.V. > FST AF

L.V.

Proof. From Corollary 3 and Corollary 9.

Theorem 4. FST AS
F.V. > FST AS

L.V.

Proof. From Corollary 2 and Corollary 10.

Theorem 5. FCOMF
F.V. > FCOMF

L.V.

Proof. From Corollary 5 and Corollary 11.

Theorem 6. FCOMS
F.V. > FCOMS

L.V.

Proof. From Corollary 4 and Corollary 12.

Theorem 7. LUMIF
F.V. > LUMIF

L.V.

Proof. From Corollary 7 and Lemma 2.

Theorem 8. LUMIS
F.V. > LUMIS

L.V.

Proof. From Corollary 6 and Corollary 8.

4 Equivalent Oscillation Problem

Definition 2. Problem Equivalent Oscillation (EqOsc): Let three robots
r1, r2 and r3 be initially placed at three points B, A and C respectively. AB =
AC = d. Let B′, C ′ be points collinear on the line such that AB′ = AC ′ = 2d

3 .
The robots r1 and r3 have to change their positions from B to B′ and back to
B, C to C ′ and back to C respectively, while always being equidistant from r2,
i.e., A (Equidistant Condition).

More formally speaking, if there is a round t such that the robots r1 and r3 is
at B and C respectively, then there must exist a round t′ > t, such that r1 and
r3 is at B′ and C ′ respectively. Similarly if at round t′, r1 and r3 is at B′ and
C ′ respectively, then there must exist a round t′′ > t′, such that r1 and r3 is at
B and C respectively (Oscillation Condition) (Fig. 4).
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Fig. 4. Illustration of EqOsc problem

We prove that this problem is not solvable in LUMIS
F.V..

Lemma 3. ∃ R ∈ R3, EqOsc 	∈ LUMIS
F.V..

Proof. Let the robots r1, r3 be able to successfully execute the movements sat-
isfying the conditions of the problem till round t. Let at the beginning of round
t + 1 the robots r1 and r3 be at the points B and C respectively. So next the
robots r1 and r3 must move to the points B′, C ′ respectively. Note that the
robots must move together or otherwise the equidistant condition is not satis-
fied. From round t + 1 we activate only one of the terminal robots alternatively.
Let at rounds t + 1, t + 3, t + 5,......., the robot r1 is activated and let at rounds
t + 2, t + 4, t + 6,......, the robot r3 is activated.

Now whenever r1 or r3 makes a movement(when they are activated) the
equidistant condition is violated. If neither r1 nor r3 makes any movement indef-
initely then the oscillating condition is violated.

The problem cannot be solved in LUMIS
F.V..

From Lemma 3 following result naturally follows,

Corollary 15. ∃ R ∈ R3, EqOsc 	∈ FST AS
F.V. and, ∃ R ∈ R3, EqOsc 	∈

FCOMS
F.V..

4.1 Solution of Problem Equivalent Oscillation in FST AF
L.V.

We now give an algorithm to solve the problem in FST AF
L.V.. The pseudocode

of the algorithm is given below.

Algorithm 1: Algorithm AlgEOSTA for Problem EqOsc executed by each robot r in

FST AF
L.V.

1 d = distance from the closer robot;
2 A = Position of the middle robot;
3 if not a terminal robot then
4 Remain static
5 else
6 if Light = Off or Light = F then
7 Light ← N

8 Move to a point D on the line segment such that AD = 2d
3

9 else
10 Light ← F

11 Move to a point D on the line segment such that AD = 3d
2
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Description and Correctness of AlgEOSTA. Let the three robots r1, r2 and
r3 be at B, A, and C respectively. Here Vr > AB, and Vr > AC, but Vr < BC.
So there are three robots among which there is one robot which can see two
other robots except itself, we call this robot the middle robot. The other two
robots can see only one other robot except itself. We call each of these two robots
terminal robot. The terminal robots are initially at a distance d from the middle
robot. Whenever a robot is activated it can understand whether it is a terminal
or a middle robot. Now, each of the robots save a light which is initially saved
to Off . If a robot perceives that it is a middle robot it does not do anything. If
it is a terminal robot and its light is set to Off or F , it changes its light to N
and moves closer a distance two-third of the present distance from the middle
robot, and if its light is set to N , it changes its light to F and moves further
to a distance 1.5 times of the present distance from the middle robot. As we
consider a fully synchronous system both the terminal robots execute the nearer
and further movement alternatively together, and hence our problem is solved.

Hence we get the following result:

Lemma 4. ∀ R ∈ R3, EqOsc ∈ FST AF
L.V..

Theorem 9. FST AF
L.V. > FST AS

L.V.

Proof. By Corollary 15 the problem cannot be solved in FST AS
L.V., and, trivially

FST AF
L.V. ≥ FST AS

L.V..

Theorem 10. FST AF
L.V. ⊥ FST AS

F.V.

Proof. By Corollary 15 and Lemma 4, EqOsc cannot be solved in FST AS
F.V.

but can be solved in FST AF
L.V..

Similarly, by Corollary 9 and 2 AE cannot be solved in FST AF
L.V. but can

be solved in FST AS
F.V.. Hence the result.

4.2 Solution of Problem Equivalent Oscillation in FCOMF
L.V.

We now give an algorithm to solve the problem in FCOMF
L.V.. The pseudocode

of the algorithm is given below.

Algorithm 2: Algorithm AlgEOCOM for Problem EqOsc executed by each robot r in

FCOMF
L.V.

1 d = distance from the closer robot;
2 A = Position of the middle robot;
3 if not a terminal robot then
4 Remain static
5 if Visible light = NIL or FAR then
6 Light ← FAR
7 else if Visible light = NEAR then
8 Light ← NEAR

9 else
10 if Visible light = NIL or Visible light = NEAR then
11 Light ← NEAR

12 Move to a point D on the line segment such that AD = 2d
3

13 else if Visible light = FAR then
14 Light ← FAR

15 Move to a point D on the line segment such that AD = 3d
2
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Description and Correctness of AlgEOCOM . Let the three robots r1, r2
and r3 be at B, A, and C respectively. Here Vr > AB, and Vr > AC, but
Vr < BC. So there are three robots among which there is one robot which can
see two other robots except itself, we call this robot the middle robot. The other
two robots can see only one other robot except itself. We call each of these
two robots terminal robot. Whenever a robot is activated it can understand
whether it is a terminal or a middle robot. Now, each of the robots has a light
which is initially saved to NIL. If a robot perceives that it is a middle robot
it can see the lights of the two terminal robots. If it perceives the lights of the
terminal robots to be set to NIL or FAR, it sets its own light to FAR. And if
it perceives the lights of the terminal robots to be set to NEAR, it sets its own
light to NEAR. The middle robot only changes its light but does not change its
position. If it is a terminal robot it can only see the light of the middle robot.
If the light of the middle robot is set to NIL or NEAR, the terminal robot
changes its light to NEAR and moves closer to a distance which is two-third
of the present distance from the middle robot. And if the light of the middle
robot is set to FAR, it changes its light to FAR and moves away to a distance
1.5 times the present distance from the middle robot. As we consider a fully
synchronous system both the terminal robots execute the nearer and further
movement alternatively together, and hence our problem is solved.

Hence we get the following result:

Lemma 5. ∀ R ∈ R3, EqOsc ∈ FCOMF
L.V..

Theorem 11. FCOMF
L.V. > FCOMS

L.V.

Proof. By Corollary 15 the problem cannot be solved in FCOMS
L.V., and, triv-

ially FCOMF
L.V. ≥ FCOMS

L.V.. Hence our theorem.

Theorem 12. FCOMF
L.V. ⊥ FCOMS

F.V.

Proof. By Corollary 15 and Lemma 5, EqOsc cannot be solved in FCOMS
F.V.

but can be solved in FCOMF
L.V..

Similarly, by Corollary 11 and 4 AE cannot be solved in FCOMF
L.V. but can

be solved in FCOMS
F.V.. Hence the result.

4.3 Similar Deductions in OBLOT and LUMI

Theorem 13. OBLOT F
L.V. ⊥ OBLOT S

F.V.

Proof. We have proved that the problem AE cannot be solved in OBLOT F
L.V.

but can be solved in OBLOT S
F.V..

Now we consider the problem Rendezvous which was proved to be impossible
in OBLOT S

F.V. in [11]. Now we claim that in our model the problem is possible
to solve in OBLOT F

L.V.. This is because in our model we assume the visibility
graph of the robots in the initial configuration to be connected. Now when there
are only two robots in the initial configuration this means, all the robots in the
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initial configuration can see each other. Hence in this case the problem reduces to
OBLOT F model. Now it is well known that rendezvous problem is solvable in
this model, as the robots just move to the mid-point of the line segment joining
them. Hence the result.

Theorem 14. OBLOT F
L.V > OBLOT S

L.V.

Proof. Trivially OBLOT F
L.V ≥ OBLOT S

L.V. and by Theorem 13 the problem
Rendezvous is solvable in OBLOT F

L.V but not in OBLOT S
L.V..

Lemma 6. ∀ R ∈ R3, EqOsc ∈ LUMIF
L.V..

Proof. From Lemma 4 and 5.

Theorem 15. LUMIF
L.V. ⊥ LUMIS

F.V.

Proof. By Lemma 2 and Corollary 7 the problem AE cannot be solved in
LUMIF

L.V. but can be solved in LUMIS
F.V..

By Lemma 3 and 6 , the problem EqOsc cannot be solved in LUMIS
F.V. but

can be solved in LUMIF
L.V.. Hence, the result.

5 Conclusion

In this paper we have initiated the analysis of computational capabilities of
mobile robots having limited visibility. Cross-model relationships under limited
visibility conditions and computational relationships when the scheduler is asyn-
chronous are interesting future directions.
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Abstract. IoT applications are ubiquitous and many of them are large
in scale, involving processing and storage of real-time sensor data and
various events. Many such applications are safety-critical in nature
demanding rigorous testing to eliminate as many errors as possible.
We propose a coverage criteria-based white-box testing framework for
large-scale IoT applications. Our criteria are derived from the underly-
ing architecture of these applications. We present two different views of
the IoT applications architecture and coverage criteria are defined based
on these two views Event coverage, functionality coverage, and end-to-
end flow coverage are some of the proposed criteria, we illustrate their
use in detecting subtle errors in the underlying IoT applications. Our
framework has been prototyped on the AWS IoT free-tier services, one
of the most popular IoT application development frameworks.

Keywords: Large-scale IoT applications · White-box testing ·
Coverage criteria

1 Introduction

Internet of Things (IoT) is an emerging paradigm that is growing to be ubiq-
uitous amongst our everyday lives. A recent report by Gartner [6] predicts that
IoT technologies and applications are set to grow exponentially in the coming
decade with several million devices connected to the internet. IoT applications
deal with devices called things that are connected to the internet and are capa-
ble of transmitting data. Using the data from a range of such connected devices,
a suite of applications has been developed in the areas of smart homes, smart
transportation, industrial IoT, etc. These systems interact with human users and
provide functionality to aid their various activities.

There are several platforms that are available for developing IoT applications
[7]— AWS IoT [1], Samsung SmartThings [5], Google Cloud IoT [3], Azure plat-
form [2] etc. Many of them provide features that replicate the functionality of
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things and a serverless application development platform to design and imple-
ment a full-fledged IoT application. The applications developed on the server-
less cloud platform can then be ported to an IoT platform seamlessly. Such
applications have been developed in several domains ranging from health care,
agriculture, smart homes, smart transport, industries etc. [1]. Apart from basic
functionality involving decision making based on sensor inputs, many IoT appli-
cations also provide sophisticated features like machine learning, signal/image
processing, and data analytics algorithms to make them adaptive in nature.

Many IoT applications are safety critical in nature and hence testing and
verification of these systems is of utmost importance. They deal with data that
is secure and need to satisfy several stringent security and privacy requirements
[8]. Typically, IoT applications are developed using different kinds of technolo-
gies including but not limited to, hardware devices like sensors and actuators,
communication protocols of different kinds, security policies and mechanisms,
programming languages like Java, JavaScript, Python, etc. databases, and their
supporting query languages like SQL, etc. Such a complex mix of technologies
makes it difficult to reuse existing testing and verification techniques smoothly.

There have been several different efforts toward formally verifying safety
critical IoT applications and the underlying technologies. Techniques for for-
mally verifying IoT applications have been proposed using abstraction and model
checking [7,8], theorem proving [10,11] etc. Most of these techniques are good
but, one needs a strong mathematical background in one or more formal meth-
ods based techniques and an IoT application developer using these techniques is
still far from becoming a reality.

Testing is a time-tested technique to find errors in software applications. It
can be used directly by developers and hence can scale to practical use. Testing
of IoT applications can be challenging due to the mix of technologies involved
in application development. In this paper, we propose a testing framework for
IoT applications based on their architectures. Our architecture framework is
generic and includes the various IoT application development platforms men-
tioned earlier [1,5], and [3]. We define two views of such a generic IoT appli-
cations architecture and propose coverage criteria based on the two views of
this architecture. The coverage criteria are defined to capture the unique fea-
tures of IoT applications and can be used to generate test cases for system level
functionality testing of the applications. A test case generation framework that
automatically generates test cases to test against the proposed coverage criteria
is also presented.

We have prototyped our framework to work on the architecture entities
derived from the AWS IoT platform. AWS IoT is one of the most popular IoT
application development platforms and provides several free-tier applications
[6]. Our prototype can be easily generalized to other platforms too. Our test-
ing framework and the associated coverage criteria are strong enough to detect
errors that occur due to complex interactions across IoT components [8].

The paper is structured as follows. We introduce large-scale IoT applica-
tions in the next section and list the important commonalities of the underlying
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platforms. Section 2.1 describes our generic architecture and the two views that
we discuss. Related work is presented in Sect. 3. Section 4 defines the proposed
coverage criteria for white-box testing based on the generic IoT architecture.
The test case generation framework along with the prototype implementation
is described in Sect. 5. We conclude the paper and describe the plans for future
work in Sect. 6.

2 Large-Scale IoT Applications

IoT applications work with several different kinds of sensors/sensor-embedded
devices that transfer telemetry data and take decisions/provide functionality
using programs that work on it. Such large-scale IoT applications are typi-
cally built using (serverless) cloud computing platforms where the developers
can focus solely on writing code to implement the desired functionality using a
standard programming language, while the platform takes care of provisioning,
scaling, and managing the underlying infrastructure. This approach allows devel-
opers to build and deploy applications without having to worry about traditional
server management tasks. As mentioned in the Introduction, several such cloud
infrastructure and platform service providers are available— [1,2,5]. Some of
these platforms provide a set of free-tier services that help developers to design
IoT applications including the sensors, computation, and actuation paradigm.

2.1 IoT Architecture

The IoT application platforms cater to the common goal of developing IoT
applications and provide mostly similar features for application development.
We identify and list the common features below, with the aim of using them to
derive an IoT application architecture.

– IoT devices or things, (sensor, sensor-embedded devices, actuators) connect
using communication protocols (like MQTT or HTTP) to send and/or receive
data. The protocols also help to connect and communicate the device’s data
throughout the IoT architecture for providing basic functionality including
storage and handling through user-defined rules.

– Data in an IoT application is the information generated by interconnected
devices as they interact with their surroundings. Data is represented using
the JSON format.

– An event refers to a significant occurrence or happening that takes place
within the system. Events are used to represent changes in the state of a
device, environment, or system, and they trigger specific actions or responses.
Events often come with associated data that provides context about the
event, e.g., a temperature sensor event might include the temperature reading,
timestamp, and the sensor identifier. The data values measured are typically
embedded in the event and transmitted as JSON objects.

– Security of data is managed through Identity and Access Management (IAM)
policies and through standard SSL/TLS X.509 certificates.



104 S. R. Nagalakshmi and M. D’Souza

– The platform is typically serverless and provides computing functions and
supports a variety of programming languages.

An IoT applications architecture, or IoT architecture or application archi-
tecture, in short, is one framework that includes all the above components and
depicts several details regarding their interactions encompassing the functional-
ity of the application. We consider two views of the architecture, the two views
will facilitate defining various coverage criteria for testing.

2.2 Component-Based View of IoT Architecture

In the component-based view, the architecture of an IoT application I is given
by AI = (CI , CnI , IntI ,Cf I) where

– CI is the set of all components of I. Each component in CI can have sub-
components which again, are in CI . For e.g., in AWS IoT, CI contains the
devices, API gateways that send and receive data, IoT core entities like rule
engine (RE), Lambda functions written by application developers, databases
(DynamoDB), storage entities (S3 and queues in SQS), cloud platform ser-
vices, and the third-party apps connected to the platform. Most of the com-
ponents are executable and put together with the connectors, define the func-
tionality of the underlying IoT application I.

– CnI is the set of all connectors of I. Connectors link components for providing
data and control transfer and can be communication channels, protocols,
etc. Connectors in IoT application architectures typically follow a publish-
subscribe mechanism (e.g. MQTT protocol with appropriate topics acting as
a channel to carry data).

– IntI is the set of all interfaces of I. They are used by connectors to connect
with one or more components. Message broker (MB), device-shadow service
(DSS), and simple notification services (SNS) are typical interfaces to attach
things to the cloud platform services. Message brokers are used to manage
communication by establishing publish-subscribe matches for data. Device
shadow holds the updated state, which can be retrieved by the actuator device
at any time. Notification services are used to notify end users/actuators/apps
regarding various alerts or actions through messages or emails.

– Cf I represents the configuration information that describes the properties
and structure of the data, the components, and the connectors. The con-
figuration also includes the descriptions of IoT core topic rules (TR), event-
source-mappings (ESM), event bridge rules (EBR), cloud watch logs, policies,
and their permissions attached to each service. They specify details on inte-
gration and accessibility for using other authorized services.

After analyzing different IoT platforms, we observe that AWS IoT [1] compre-
hensively encompasses the fundamental building blocks of an IoT architecture.
We use the free-tier services of AWS IoT to describe our work in detail. As given
in Fig. 1, data sent from the things (associated with a unique topic name) are
transferred through a message broker and the rule engine sub-components of the
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IoT core using the MQTT communication protocol (a connector). In the core,
the shadows (virtual replica) of the things/devices are created. Rules are associ-
ated with the IoT core (rule engine) and event bridge service to filter and route
data to invoke and execute Lambda functions that connect to cloud platform
services like database/storage (DynamoDB/S3/SQS), image/signal processing
components (Kinesis, in the case of AWS), and notification services that com-
municate back with the things.

Several large-scale IoT applications also involve components (signal/image
processing, machine learning components) that process the data to make infer-
ences involving perception, object detection, etc. We do not explicitly consider
the algorithms that run as a part of these components in this work.

2.3 Event-Driven View of IoT Architecture

Fig. 1. AWS IoT Generic Architecture

An event-driven architecture pattern
[15] is also well-suited for IoT systems
because it aligns with the real-time,
dynamic, and interconnected nature
of these applications. For IoT applica-
tions, event generation, routing, and
consumption are fundamental con-
cepts that help manage the flow of
information and actions within the
ecosystem of connected devices and
services.

Generally, an event-driven architecture has the following components: An
event generator is a component responsible for initiating events based on specific
conditions or triggers. An event router is responsible for directing events from
their source to appropriate destinations or consumers. An event consumer is a
component or service that receives, processes, and acts upon the events.

A publish-subscribe model is typically used in IoT applications for the distri-
bution of events. In this model, event generators (publishers) emit events, and
event consumers (subscribers) subscribe to specific types of events. An event
router or MB handles the distribution of events to appropriate subscribers. For
the AWS IoT application architecture, sensors generating and sending various
kinds of data (measurements, readings, status updates, etc.) are the event gener-
ators, MB generates/routes the events based on the underlying publish-subscribe
matches, and the subscribers react to the events by processing the data and tak-
ing appropriate actions. AWS also features TR and ESM services, cloud watch
events (EBR) services, step functions, and HTTP, to help connect event origins
to their destinations. Here, computational entities encompass Lambda functions
ensuring a cohesive flow.

Considering other service providers, in the Azure ecosystem [2], the IoT hub
serves as a data collection point, seamlessly integrating with Azure Event Grid to
initiate the subsequent processes. This orchestration facilitates event matching
through subscriptions, while the responsibility of computation lies with Azure
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functions and logic apps. Samsung SmartThings [5] also employs a subscription
management layer, forging connections between event generators, like device-
type handlers, and their corresponding consumers, Smart apps, resulting in a
harmonious interaction. The IoT proposed architecture is versatile enough to
seamlessly accommodate both component-based and event-driven views.

2.4 Paths in an IoT Architecture

Paths in an architecture AI typically start at a source component, pass through
one or more connectors using the interfaces, to a next component, and so on,
always ending in a destination component. Source components in IoT applica-
tions are things (sensor devices or applications triggering the flow), and desti-
nation components are actuators or applications performing some actions.

These are control flow paths that depict the transfer of control from one
component to another. We say that a particular component ci is reachable if
there is a control flow path that originates from one of the source components
and ends at ci. Similarly, data flow reachability involves the transfer of data
originating from the things to one or more components. It is important that the
data does not get modified during the transfer unless an application is meant to
do so. With the event-driven view, event flow reachability involves event paths
that originate from event generators, go through one or more event routers, and
end at an event consumer.

Fig. 2. Paths in an AWS IoT Architecture

We propose a set
of coverage criteria
considering both the
views that impose test
requirements on the
various features and
paths of an IoT appli-
cation architecture.
Our coverage crite-
ria can be used for
system-level testing of
IoT applications and
interestingly, find errors in IoT applications that result from non-trivial interac-
tions between components [8,9].

Coverage Criteria-Based White-box Testing. White-box testing is a powerful
testing methodology that can discover several coding and design errors in soft-
ware artifacts. It is typically applied to code to ensure that the desired portions
of the code (like statements, decisions, loops, function calls, etc.) are executed
by designing appropriate test cases with the aim of finding errors, if any. A test
requirement is specified as a coverage criterion and test cases are designed to
meet the coverage criterion. For example, statement coverage is a test require-
ment, and test cases that meet statement coverage will execute every reachable
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statement in the program under test. Such coverage criteria are defined for soft-
ware artifacts like requirements, design models [13], and architecture entities
too [12].

For IoT applications, the architecture contains all the necessary information
for complete application development. The configuration information and the
executable components can be parsed to extract the necessary information for
defining the test requirements for the various coverage criteria.

3 Related Work

Since several IoT applications are safety-critical in nature, there is prior work
available on testing and formal verification of IoT applications. [7,8] are on for-
mal verification and program analysis of IoT applications against security and
privacy properties. Their prototype is based on the Samsung SmartThings plat-
form which involves a proprietary language (Groovy) and they verify different
properties related to security violations. Our proposed coverage criteria can pre-
cisely check for the same properties that involve complex interactions between
components. Our work also can be used to detect several of the scenarios that
have been identified to be problematic in the context of IoT applications [9].
Other papers consider specific properties of IoT applications and work on elabo-
rate models using EventB theorem prover [10] and Maude verifier [11] and verify
properties of IoT communication protocols and applications respectively.

Our definition of IoT applications architecture and the test case generation
based on coverage over the architecture model is motivated by prior work on
formalizing event-driven behavior of serverless applications [15], the architec-
ture coverage criteria defined in [12] and applicability of coverage-criteria-based
testing on serverless applications [16]. Our proposed framework is specific to IoT
applications and our coverage criteria are motivated by some of the concepts pro-
posed in the above papers. Our framework also includes coverage criteria for all
the possible scenarios in IoT applications, as against specific paths considered in
[16]. Table 1 given in Sect. 5 includes applications that illustrate that our cover-
age criteria can find errors shown in [9] and also includes scenarios not considered
in [16].

4 Coverage Criteria for IoT Applications Architecture

We propose the following specific test requirements for coverage criteria-based
testing of IoT applications. Given an IoT application I, we consider the under-
lying architecture of I, AI . Test cases are defined based on the two views and
the paths of AI . For each of the coverage criteria below, a description of the test
requirement of the criterion is provided, followed by details regarding how a set
of test cases will satisfy the respective criterion.

1. Lambda coverage: Lambda functions run on the serverless cloud platform and
provide the main functionality of an IoT application. Execution of Lambda
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functions in response events results in specific actions like actuating one or
more devices, sending notifications to users, updating the database, or stor-
ing data, etc. The test requirement of Lambda coverage specifies that each
Lambda function be executed once at least by one of its invoker resources.
The test case is a path that includes at least one of the Lambda functions
used in an IoT application. We say that Lambda coverage is met or satisfied
by a set of test cases T if, for each Lambda function in the application under
test, there is at least one test case t ∈ T that executes the function.

2. End-to-end flow coverage: A behaviour of an IoT application is a flow from the
sensor end to the actuator end through at least one of the Lambda functions
(Sensor-Computation(Lambda)-Actuator). The test requirement of end-to-
end flow is a path/set of control flow paths from a sensor device, through one
or more computation components to an actuator device or another output.
We say that end-to-end flow coverage is met or satisfied by a set of test cases
T if there is at least one test case t ∈ T for each end-to-end path in the
architecture of the application under test.

3. Event coverage: The test requirement of event coverage is a path from the
event generator to the event consumer through at least one of the event
routers along with the event (represented as JSON object) that flows through
the router. We say that event coverage is met or satisfied by a set of test cases
T if there is at least one test case t ∈ T that contains each such path of the
application under test.

4. Decision coverage: As discussed earlier, events drive the interactions and flows
in an IoT applications. Different decisions are taken based on the arrival
of events. Lambda functions, acting as event handlers, receive events from
multiple sources and take decisions based on the nature of the events. The
underlying decisions can also originate from topic rules in the rule engine,
ESM criteria, etc., and play a crucial role in orchestrating the event flow
across the various components. The test requirement of decision coverage is
to list and write a set of test cases to execute all such decision statements.
A set of test cases satisfies a particular decision statement if the outcome of
the decision on executing a test case is true once and false once.

The above coverage criteria are defined considering the architecture models
and views as described in Sect. 2.1. In addition, we can consider the coverage
criteria involving individual components, their connectors, etc. along the lines
proposed in [12]. In fact, the end-to-end flow coverage criterion proposed above
subsumes the coverage criterion of “all-connected-components-path” (which in
turn, is a combination of “direct component-to-component path” and “indirect
component-to-component path”) defined in [12]. Every test case that satisfies
the end-to-end flow coverage criterion proposed above will also satisfy the all
connected components path criterion proposed in [12].



Coverage Criteria Based Testing of IoT Applications 109

5 Coverage Criteria-Based Test Case Generation
Framework

Fig. 3. Test case generation framework

Figure 3 provides an overview of
our proposed coverage criteria-
based test case generation frame-
work. The framework is pre-
sented as per a generic IoT
application architecture descri-
bed in the earlier section. Our
prototype of the framework and
certain terminologies are spe-
cific to the AWS IoT application
architecture [1].

Input to the test generation
framework is an IoT applica-
tion, I, a collection of files con-
sisting of executable code typi-
cally written in JavaScript along
with configuration information
files (in JSON format). Con-
figuration information includes
information on TR, ESM, and EBR descriptions as below, sample files are avail-
able in https://github.com/NagalakshmiAthreya/TestCase-Generation-Parser

– TR Description (TRD) file containing the descriptions of all IoT core Topic
Rules used in I. TR acts as the bridge between the source (MQTT topics
where devices publish messages) and the destination. Actions are taken at
the destination on satisfying conditions in the SQL rules.

– ESM Description (ESMD) file containing the descriptions of all the ESMs
associated with every Lambda function in I. An ESM defines the link between
an event source (like a stream or queue) and a Lambda function. It may
include filter criteria to impose conditions on events to trigger Lambda.

– EBR Description (ERD) file with the descriptions of all the EBR rules used in
I, in the context of showing the connection between event sources and targets.
It also contains an event pattern, which includes the constraints imposed on
the event.

– A list of all (AWS) services used, along with their associated policies and
exported cloud watch logs of the Lambda functions are also provided.

As shown in Fig. 3, to start with, specific parsers are invoked to extract the
common data required by the coverage criteria. The extracted information is
used to generate the test cases as per the chosen test requirement. The gener-
ated test cases can be executed by using a tool like Mocha [4], a widely used
JavaScript testing framework for Node.js and browsers. Algorithms 1 and 2

https://github.com/NagalakshmiAthreya/TestCase-Generation-Parser
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describe the process for extraction of common data from configuration infor-
mation like source, destinations, and data constraints from TRD, ESMD, ERD,
and the component information like deviceName, topics, JSON data (params)
from the sensors and actuator files. The Lambda functions connect to the actu-
ator directly by publishing data on MQTT topics to the device or the device
shadow or an app controlling some devices (HTTP). Algorithm 4 parses the
Lambda functions of I to extract information like sdkObject (connects with
Lambda destinations), params sent or received by querying cloudWatchlogs.
The algorithms for Lambda coverage, end-to-end flow coverage, event cover-
age, and decision coverage criteria are executed based on the tester’s choice.
The pseudo code for Lambda coverage is given here, details regarding the other
algorithms can be found in https://github.com/NagalakshmiAthreya/TestCase-
Generation-Parser. Algorithm 3 maps the topic names and the attributes
(params) of SQL statements of TTRD with device data and sensor information
to extract the triggering values to be used as test inputs.

Algorithm 1. Parser to extract common data
Require: TRD file,ESMD file, ERD file
Ensure: TTRD , TESM , TERD

1: Initialize TTRD with empty column entries for RuleName, ActionDestination,
and SQLQuery

2: for each description in TRD file do � Extract TTRD

3: Extract ruleName, actions & SQLStmt from TRD file
4: Append (RuleName, ActionDestination, SQLQuery) to TTRD

5: end for
6: return TTRD

7: Initialize TTRD with empty column entries for EventSource, EventDestination,
and FilterCriteria

8: for each description in ESMD file do � Extract TESM

9: Extract EventSourceArn, FunctionName & FilterCriteria from ESMD file
10: Append (EventSource, EventDestination, FilterCriteria) to TESM

11: end for
12: return TESM

13: Initialize TTRD with empty column entries for EventSource, EventDestination,
and Event

14: for each description in ERD file do � Extract TERD

15: Extract eventSource, eventName from EventPattern & Targets from ERD file
16: Append (EventSource, Event, EventDestination) to TERD

17: end for
18: return TERD

Lambda Coverage (LC). Lambda functions play a significant role in IoT archi-
tectures, enabling event-driven processing, data transformation, and seamless
integration with other services. A Lambda function can be invoked by the rules

https://github.com/NagalakshmiAthreya/TestCase-Generation-Parser
https://github.com/NagalakshmiAthreya/TestCase-Generation-Parser
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Algorithm 2. Parser to extract device information
Require: List of sensor.js, actuator.js files in the application
Ensure: A list of extracted sensor and actuator information
1: function ParseSensorFiles(sensorFiles)
2: Initialize sensorInfoList with (deviceName, topic, params) as empty list
3: for each sensorFile in sensorFiles do
4: Extract device name, topic-names & attributes sent
5: Append the entry to sensorInfoList
6: end for
7: return sensorInfoList
8: end function
9: function ParseActuatorFiles(actuatorFiles)

10: Initialize ActuatorInfoList with (deviceName, topic, params) as empty list
11: for each actuatorFile in actuatorFiles do
12: Extract device name, subscriptions
13: for each subscription in subscriptions do
14: Extract topic, attributes sent
15: Append the entry to actuatorInfoList
16: end for
17: end for
18: return actuatorInfoList
19: end function

of the rule engine, by several other services, or even by another Lambda func-
tion. Towards exercising the various Lambda functions, we need to fetch the
data attributes or events or the parameters between two services in a particular
control flow path. For services connected to the IoT core through a rule, we
use Algorithm 3. For dealing with events through EBR or ESM, we execute the
Lambda functions and get a query of the logs to extract the event formats.

Algorithm 3. Parser to get Core data
Require: sensorInfoList, Device-Data file and TTRD

Ensure: Core Data Values file
1: for each SQLQuery in TTRD do
2: Extract Topics, & params from SQLQuery,
3: if Topics ∈ sensorInfoList(topic) then
4: Extract value V for params from Device-Data file.
5: Append (RuleName, Topics, params,V ) to TTRD

6: end if
7: end for
8: return Core Data Valuesfile

Algorithm 5 starts with the list of Lambda functions provided and does
backward traceability to find the services that trigger those Lambda functions
(Lambda Invoker (LI)) in the first parse, later keeps looping to find the invoker’s
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invoker till it reaches the invoker as IoT core Topic Rule. The IoT Core compo-
nent routes sensor data (as it arrives) on selected topics of a rule, establishing
a connectivity to find source components. Such a traceability is done on a case-
by-case basis using the various features of the serverless framework, considering
all possible ways of executing Lambda functions to enable different kinds of
functionality. This way, the complete flow of control and data across the IoT
application architecture is taken into consideration by our framework. The same
represented in Fig. 4. The algorithm outputs LCtable (TLC), and each tuple of
TLC yields a test case for Lambda coverage.

Algorithm 4. Lambda Information Extraction
Require: LambdaFiles and Lambda logsfile
Ensure: LambdaInfoList
1: function ParseLambdaCode(LambdaFiles) � Parse Lambda code
2: Initialize LambdaInfoList as empty
3: for each LambdaFile in LambdaFiles do
4: LambdaName ← Name of Lambda in LambdaFiles
5: sdkObjects ← Extract Objects of AWS-SDK class
6: for sdkObject in sdkObjects do
7: targetService ← Identify target service in sdkObject
8: paramsSent ← Extract parameters sent with sdkObject
9: paramsRecieved ← Extract event info from Lambda logsfile

10: Append (LambdaName, targetService, paramsSent , paramsRecieved) to
LambdaInfoList

11: end for
12: end for
13: return LambdaInfoList
14: end function

Fig. 4. Lambda Coverage

End-to-end Flow Coverage. The
IoT application architecture,
if visualized from an event-
driven view, provides us with
paths that flow through the IoT
application, resulting in dif-
ferent behaviors. Control flow
paths in the architecture from
sensor devices pass through
interfaces, message handlers,
and rules to reach one or more
Lambda functions and finally reach actuator devices as control commands or
notification services. This end-to-end flow coverage criteria helps us to generate
test cases for system-level testing of an IoT application.
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Algorithm 5. Test Case Generation for Lambda Coverage
Require: TTRD , TESM , TERD

Require: LLC : List of Lambda Functions

Ensure: Table of test requirements for Lambda coverage TLC

1: Initialize Table TLC with columns LambdaFunctionName, LambdaInvoker (LI ) and TriggerInfo

2: for each Lambda function l in LLC do

3: if l ∈ ActionDestination(TTRD ) then

4: Mark Invoker = IoTCore

5: LI of l = RuleName(TTRD ),

6: TriggerInfo of l = SQLQuery(TTRD ),

7: Update TLC

8: Call Parser to get Core data with TriggerInfo of l

9: else

10: if l ∈ EventDestination(TESM ) then

11: Mark Invoker = AWSService

12: LI of l = EventSource(TESM )

13: Execute Procedure to find Invoker’s Invoker (II)

14: Update TLC

15: else

16: Invoker = HTTPRequest

17: LI of l = source of the HTTP request,

18: Querying logs of l Extract TriggerInfo

19: Update TLC

20: end if

21: end if

22: end for

23: Procedure to find Invoker’s Invoker (II)

24: for each LI ∈ TLC do

25: if LI ∈ AWSService then

26: if LI ∈ ActionDestination(TTRD ) then

27: Mark Invoker = IoTCore

28: II = RuleName(TTRD ),

29: TriggerInfo of l = SQLQuery(TTRD ),

30: Update TLC

31: Call Parser to get Core data,

32: else

33: if LI ∈ EventDestination(TESM ) then

34: Mark Invoker = AWSService

35: II = EventSource(TESM )

36: Extract TriggerInfo by querying logs of l

37: else

38: if LI ∈ EventDestination(TERD ) then

39: Mark Invoker = AWSService,

40: II = EventSource(TERD )

41: Extract TriggerInfo by querying logs of l

42: end if

43: Update TLC

44: end if

45: end if

46: end if

47: end for

48: return TLC

49: repeat Procedure to find Invoker’s Invoker

50: until II of each LI ∈ RuleName(TTRD )
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The algorithm for generating test cases for such paths uses the tables used
for Lambda coverage, invokes Algorithm 5 to get a path from the source end to
every Lambda used in the I, and for each such Lambda function it searches TESM ,
TERD and LambdaInfoList to trace their successors (Lambda Successor (LS)) in
the first parse. This is followed by forward traceability for finding successors’
successor (SS) until we reach one of the actuator services (device shadow/de-
vice/SNS) as the final successor (FS).

Event Coverage. The end-to-end flow coverage has been designed to identify
paths that incorporate at least one Lambda function as a part of the execution.
Basic IoT applications can exhibit simple behavior scenarios where a sensor
directly sends data to IoT Core for storage in DynamoDB and subsequently
triggers an SNS notification to a client, Lambda functions need not be integrated.
We introduce event coverage to include these scenarios. It uncovers all such
pathways that might have been unnoticed within the comprehensive end-to-end
flow. The configuration information outlines the way by which Event Consumers
(EC) and Event Generators (EG) are interconnected. Considering all possible
ways in which they can get connected in an event-driven architectural style, our
test case generation algorithm for event coverage finds every possible pair of
EG and EC along with events connecting them and returns a table with this
information. The table is then used to construct paths in the architecture that
span all the events.

Decision Coverage. We finally consider decision coverage criteria. Decisions come
as a part of executable components like Lambda functions, in the query state-
ments of TRD tables, in the filter criteria of the events in the event source map-
ping tables, and in the event pattern ERD tables. Testing decision points across
various components and resources helps us to validate the end-to-end behavior
of an IoT application, ensuring that the desired outcomes are achieved. We first
extract the predicates that span the decisions present in the various components.
The predicates are then used to define black-box test cases for Lambda coverage
based on standard black-box testing techniques like equivalence partitioning and
boundary value analysis [13].

We end this section with Fig. 5 that presents details on the expressiveness of
the four proposed coverage criteria.

Prototype Implementation. The framework proposed in Sect. 5 above has been
implemented within the NodeJS framework using JavaScript for IoT applica-
tions hosted on the AWS IoT framework [1]. All the architecture components
considered in this paper for test case generation are supported in the free-tier
AWS IoT framework and several other IoT application development platforms
also provide the same features. The definition of our generic IoT architecture
closely correlates with the architecture of serverless AWS IoT applications.
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Fig. 5. Subsumption of
Coverage Criteria

The TestCase-Generation-Parser extracts the rele-
vant information for each coverage criterion, and all the
steps as described in the algorithms above are imple-
mented for each of the coverage criteria. The source
code is available for use on the page https://github.com/
NagalakshmiAthreya/TestCase-Generation-Parser.

We have also developed several in-house examples
on the AWS IoT application development platform and
tested our coverage criteria-based framework on them.
Table 1 provides a summary of our experimental results.
All the generated test cases were executed using the
Mocha tool [4]. Mocha is an open-source tool for executing JavaScript test cases,
both client-side and server-side applications.

Table 1. Applications used for experimentation

IoT Application LoC Coverage Criteria Errors found

Smart lighting 220 All the coverage criteria No error

Smart vehicles [9] 172 All the coverage criteria Conflicting actions

Temp-pressure monitor [9] 175 All the coverage criteria Event chaining actions

Orphan event [14] 86 Event Coverage No event consumer

Useless Lambda [14] 28 Lambda Coverage No event source

Consecutive Lambda 175 All the coverage criteria No error

Consecutive data stores 144 All the coverage criteria No error

Trivial paths 70 Event Coverage No error

Event coverage plays a crucial role in identifying events that may lack con-
sumers, often referred to as orphan events. The identification of these orphan
events holds particular significance, especially in the context of safety-critical
systems, where the proper handling of every event is very important. Lambda
coverage ensures that any unreachable Lambda indicates the absence of a source-
generating event for that function, rendering it useless for the current applica-
tion. Eliminating such unreachable Lambdas can prove to be beneficial in terms
of optimizing costs and conserving resources.

6 Conclusion and Future Work

We have proposed a generic architecture for large-scale IoT applications and
a test case generation framework based on coverage criteria over the generic
architecture. Our coverage criteria are expressive enough to discover subtle errors
that arise from complex interactions of architecture components and connections
as explained in Sect. 3.

https://github.com/NagalakshmiAthreya/TestCase-Generation-Parser
https://github.com/NagalakshmiAthreya/TestCase-Generation-Parser
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We are currently working on expanding the framework to include asyn-
chronous events in NodeJS based IoT applications. We are also working on a
testing framework that includes image and signal processing algorithms that are
integrated as a part of the IoT application.
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Abstract. Many computational workloads do not require a constantly
high CPU. They generally have occasional peak computation needs
with low CPU utilization most of the time. Cloud service providers
have started providing burstable instances to cater to such workloads.
Burstable instances allow users occasional surges in utilization provided
the job’s CPU utilization remains below a certain baseline usage most
of the time. Instead of running a job by provisioning regular instances
based on peak usage, using burstable instances can significantly reduce
costs. Amazon EC2 provides t-instances (T2/T3/T4g etc.) with different
baseline usage (like 5%, 10%, 20%, 30%) to the users with two modes –
(standard and unlimited). Burstable instances have a credit mechanism
with a maximum capacity limit. When the usage is below the baseline,
a credit is earned that can be utilized later during peak demands. In the
present work, we attempt to utilize different types of burstable instances
for workloads with a provision to migrate from one baseline to another
to optimize (i) (minimize) surplus charges and (ii) (maximize) the use of
credit earned. We have implemented the proposed migration approach
on AWS burstable instances with real PlanetLab demand traces. We
show that even without prior knowledge of future CPU utilizations of
a job, our proposed online algorithm can achieve cost comparable to a
hypothetical future-aware algorithm that assumes future knowledge of
utilization values.

Keywords: AWS Burstable Instances · Cost Minimization · baseline
usage · VM migration · standard and unlimited mode

1 Introduction

Cloud services are now well accepted and used by users for various types of
applications. Due to the large number of well-established global and local cloud
service providers (CSPs), the service offerings have become more competitive and
user-centric. Several types of virtual machines (VM) are provisioned and offered
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Devismes et al. (Eds.): ICDCIT 2024, LNCS 14501, pp. 117–132, 2024.
https://doi.org/10.1007/978-3-031-50583-6_8
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to the cloud service users (CSUs) with different combinations of resources like
vCPU, RAM, and bandwidth. Based on the availability guarantee and long-term
commitment, Amazon EC2 offers reserved, on-demand and spot VM instances.
Reserved instances are for long-term users with large upfront payments, while
on-demand instances are available on demand without any long-term commit-
ment or upfront payments but with a higher price per hour. Spot instances are
available with a much discounted hourly rate but with the risk of revocation.
With many types of VMs and pricing schemes, it becomes challenging for a CSU
to choose a proper mix of VMs that reduce cost without compromising other
aspects like QoS or SLA.

Many researchers have proposed numerous job provisioning schemes to reduce
the cost of CSUs by mixing different VMs, check-pointing, and migration of jobs
[4,5,7–9,12,13,15].

Recently, CSPs offered another kind of VM known as burstable instances
[6] that does not provide a fixed amount of resources such as CPU or memory.
Instead, they have a baseline amount of CPU with the provision to burst for
a short time above the baseline utilization. It may be suitable for jobs with
low usage most of the time but an occasional requirement of higher resources.
Burstable instances are comparatively cheaper than the corresponding non-
burstable ones and come with a baseline percentage. If resource usage is less than
the baseline, then CSU earns net credit, and during any burst (sudden peak usage
of cloud resources), earned credit can be utilized. However, the credits cannot
accumulate beyond a certain limit [16] as fixed by the provider (Table 1). Amazon
EC2 offers two modes for burstable instances, namely, standard and unlimited.
In the unlimited mode, the user application does not suffer any resource con-
straint, but a surcharge may build up if the credit earned cannot satisfy the
demand in the burst period. In standard mode, once the earned credits finish,
CSP automatically limits the resource usage to the baseline, and the application
suffers SLA violation or QoS degradation. So, the unlimited mode is preferable
to users who are ready to pay the extra cost but are unwilling to sacrifice per-
formance degradation. For this reason, in the proposed scheme, we only consider
the unlimited mode of burstable instances.

The burstable instances offered by Amazon EC2, also known as T-instances,
are listed in Table 1. These instances are categorized based on the maximum
resource (RAM/CPU) and baseline usage percentage. The table also shows the
hourly cost when average utilization remains below baseline. It also shows the
applicable surcharge amount that has to be paid by the CSU if the job runs on
surplus credit in unlimited mode. We have also tabulated the corresponding non-
burstable VM instances and their prices. We observe that burstable instances are
much cheaper than equivalent regular instances if average usage remains within
the baseline with occasional peaks. It is worth mentioning that spot instances
also provide significantly reduced cost but with the unbounded risk of complete
failure and SLA violation due to revocation.

In the present work, we have used burstable instances with a flexible migra-
tion policy based on estimated resource utilization variation that allows work-
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Table 1. Amazon EC2 Burstable Instance attributes. sod denotes the On-demand
hourly rate of normal instances, sbod denotes the On-demand hourly rate of burstable
instances

T-instances vCPU Memory Baseline Corresponding
M-instances

sod sbod Surplus credit
price

Accrued credit
limit

Credit
validity

T3.nano 2 0.5 GiB 5% M6g.large $0.077 $0.0052
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T3.micro 2 1 GiB 10% M6g.large $0.077 $0.0104 288

T3.small 2 2 GiB 20% M6g.large $0.077 $0.0208 576

T3.medium 2 4 GiB 20% M6g.large $0.077 $0.0416 576

T3.large 2 8 GiB 30% M6g.large $0.077 $0.0832 864

T3.xlarge 4 16 GiB 40% M6g.xlarge $0.154 $0.1664 2304

T3.2xlarge 8 32 GiB 40% M6g.2xlarge $0.308 $0.3328 4608

T3a.nano 2 0.5 GiB 5% M6g.large $0.077 $0.0047 144

T3a.micro 2 1 GiB 10% M6g.large $0.077 $0.0094 288

T3a.small 2 2 GiB 20% M6g.large $0.077 $0.0188 576

T3a.medium 2 4 GiB 20% M6g.large $0.077 $0.0376 576

T3a.large 2 8 GiB 30% M6g.large $0.077 $0.0752 864

T3a.xlarge 4 16 GiB 40% M6g.xlarge $0.154 $0.1504 2304

T3a.2xlarge 8 32 GiB 40% M6g.2xlarge $0.308 $0.3008 4608

loads to self-migrate to new VMs to reduce the overall cost without impacting
QoS. We decide on migration heuristically. We compare the cost incurred over
a past window with the cost that may have occurred if the same job had run
on an alternative instance. Our technique monitors the cost of the workload and
places it in the appropriate burstable VM instance. It attempts to balance the
number of migrations and cost. We avoid using cheaper spot resources in the
proposed scheme due to its severe negative impact on SLA, deadline, and QOS.

The rest of the paper goes as follows. Section 2 discusses recent studies on cost
optimizations using burstable instances, followed by the problem formulation in
Sect. 3.2. The proposed scheme is discussed in Sect. 4 followed by the implemen-
tation details in Sect. 5.1. Section 5 presents the performance evaluation on real
data, and finally, Sect. 6 concludes the paper.

2 Related Work

Wei et al. [17] proposed a stochastic resource rate-based revenue model with
dynamic provisioning of the burstable instances. They employed a differential
evolution (DE) based solution approach to search for the optimal solution for
the resource scheduling problem with the objective of cost minimization for fluc-
tuating demands. The work focused on using demand as a distribution instead
of a mean value. They achieved a significant reduction in overall cost compared
to traditional VMs.

Park et al. [10] focused on the burstable storage use cases (based on data
longevity) for performance improvement without incurring extra costs. They
have showcased results on AWS gp2 volumes with more than a 90% reduction in
cost. Sharma et al. [11] proposed a token bucket-based approach named credit
aware resource scheduling (CASH) as a middleware cluster manager that uses
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rough knowledge of expected resource utilization during scheduling. They report
up to 22% cost savings on AWS t3 instances.

Teylo et al. [14] combined multiple tasks and scheduled using a mix of spot,
on-demand, and burstable resources with their proposed Burst-HADS (Burst
Hibernation-Aware Dynamic Scheduler). They considered job-mix with fixed
deadlines and minimized execution time and cost by employing their proposed
scheduler. Wang et al. [15] suggested burstable resources as a high-availability
backup while running jobs on failure-prone spot instances. It improves perfor-
mance, but still, revocations remain a concern.

Dantas et al. [3] proposed the BIAS auto scaler that combines regular and
burstable resources to cater to sudden queueing caused by traffic and flash
crowds. They applied it to real microservice demands and evaluated it on
Google’s compute engine to show up to 25% cost savings.

Ali et al. [1] proposed CEDULE for scheduling jobs in burstable instances
using quantile regression for workload profiling and prediction. They employed
a throttling mechanism that optimally used spare resources synergistically.

Jian et al. [6] have comprehensively modeled burstable resources and iden-
tified some key metrics. They have characterized the equilibrium behind CSU’s
responses to the CSP-provided prices for different burstable instances, consid-
ering the impact of CSU’s actions on the performance achieved by each service
category.

3 Preliminary Ideas and Problem Formulation

We first explain the charge a CSU has to pay while running a burstable instance
of a given base type and then formulate our problem. Table 2 mentions all the
notations and definitions ysed throughout the paper.

3.1 Cost Model for Burstable Resources

The burstable instances like t3-nano, t3-micro, and t3-small vary in resources
and costs. Let crih denote the credit earned per hour when we execute a job
on a burstable instance of type i. An instance of type i gets an initial credit
of maxi

c. The credit balance increases at every hour t by crih and decreases by
ut ∗vi ∗0.60 where ut is the average utilization percentage at the tth hour, and vi

is the number of vCPUs, for instance type i. So, if the credit balance at the start
of hour t is cib, the credit balance at the end of hour t is given by the equation

cib(t + 1) = cib(t) + crih − ut ∗ vi ∗ 0.60 (1)

The baseline utilization percentage bi of instance type i is related to crih by the
equation bi ∗ vi ∗ 0.60 = crih. So, when the utilization ut is the same as bi, credit
earned equals credit spent, and the user has to pay only the hourly cost coih.
If ut < bi, credit earned exceeds credit spent, and the credit balance increases,
and if ut > bi, the credit balance decreases. Also, the credit balance cib cannot
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Table 2. Notations

Symbol Definition

T Total number of submission hours

ut The CPU utilization at time t, 1 ≤ t ≤ T

I Set of burstable instances

crih Credit earned per hour for instance type i

vi Number of v-cpus for instance type i

bi Baseline CPU utilization for instance type i

coih Cost per hour for using instances type i

maxi
c Maximum CPU credit hours for instance type i

cbit Credit balance of instant type i at time t

pi penulty per hour for negative credit balance for instance type i

dti downtime for instance type i

timei number of hours the instant i is continuously running

exceed 2 ∗ maxi
c as the credit earned can be maximum maxi

c [16]. According to
the Amazon EC2 model, for burstable instances, at every hour, the user may
have to pay one, two, or three types of costs according to the following rules:

1. Rule a: Regular cost CostR given by

CostR = coih (2)

2. Rule b: Immediate negative balance cost caused by a sudden burst in uti-
lization. If credit balance cib becomes negative at hour t, the cost CostB due
to burst is given by

CostB = −cib ∗ pi (3)

where pi is the penalty per credit hour for a negative balance. The credit
balance cb is then reset to 0.

3. Rule c: Long-term low balance cost. As the initial value of cib, maxi
c is given

as credit, at the end of 24 h, if cib is below maxi
c, the user has to pay a long-

term cost CostL given by

CostL = (maxi
c − cib) ∗ pi (4)

After settling the long-term cost RL, cib increases to maxi
c. If cib ≥ maxi

c,
CostL is zero, and the credit balance (not reset to maxi

c) carries forward to
the next hour.

In our case, the instance types vary from 0 to 3, 0 corresponding to the smallest,
i.e., T3.nano, 1 to T3.micro, 2 to T3.small, and 3 to T3.large. We illustrate the
cost model with the following example.
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Example 1. Let us assume the instance type selected is 0, i.e., T3.nano. Then
v0 = 2, b0 = 5%, p0 = 0.1, cr0h = 5 ∗ 2 ∗ 0.60 = 6, and initially c0b = max0

c = 144.
If for the first hour, ut = 2%, credit earned is 6, credit spent is 2 ∗ 2 ∗ .60 = 2.4,
and the credit balance will increase by 6 − 2.4 = 3.6. If u increases in the
next hour to 9%, the credit balance will decrease by 9 ∗ 2 ∗ .60 − 6 = 4.8. If
sometimes, c0b becomes negative, say, −2, the user has to pay 2 ∗ 0.1 = 0.2$
immediately as per Eq. 3. If c0b = 140 after 24 h, the user has to pay a long-term
cost CostL = (144 − 140) ∗ 0.1 = 0.4$ (Eq. 4), and c0b will increase to 144.

3.2 Problem Statement

We have a set of computational jobs to run on the cloud with different job
profiles (compute-intensive/intermittent/fluctuating). At the time of submission,
the future utilization values of a job are unknown. The objective is to select a
suitable instance type for a job and, if required, switch instance types to reduce
the cost. When a job runs on an instance of i ∈ I, the credit balance and cost at
every hour are computed by applying Eqs. 1 to 4. Even though CostL is to be
paid at the end of every 24 h, if we switch to another instance before that, and
cb < maxi

c, we need to pay (maxc − cib) ∗ pi to the CSP. The cost optimization
problem for burstable instances (COB) can be formally stated as follows:

Definition 1. COB: Given a job with utilization values uj , j ∈ {1, 2, · · · , T},
while at any time t, uj , j ≥ t are unknown, and a set of instances I =
{i1, i2, . . . ik}, with their corresponding parameters, find the best instance i ∈ I
to use at time t to minimize the total cost of executing the job.

The problem COB is challenging because we must decide the best instance
at time t without knowing the utilization uj for j ≥ t, and the value of uj may
fluctuate unpredictably from hour to hour.

4 Proposed Scheme

Algorithm 3 decides the instance type on which to run the job at the next hour
every hour and also computes the total cost of executing the job. It takes the
help of Algorithm 1 and Algorithm 2. The first algorithm assumes knowledge of
ut over a window w = [start, end) and finds the cost if the job ran unchanged
over a given instance type i. The second algorithm takes as input the instance
type i and runs the job for one hour on that instance. It finds the cost at the
end of the hour. We now give a brief explanation of both algorithms.

Algorithm Calculate Cost: This algorithm first checks if the instance i was
down for more than 24 h. The variable dti denotes the downtime for the instance
i. If dti > 0, the credit balance cb is set to maxi

c (lines 7,8). Inside the for loop,
it computes the credit balance cb at every t ∈ [start, end) (Line 9) applying
Eq. 1. Since every instance starts with a credit of maxi

c and the maximum credit
earned cannot exceed maxi

c, c
i
b cannot be more than 2 ∗ maxi

c. Line 10 of the
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Algorithm 1: Calculate Cost
input : window : w = [start, end), utilizations : ut, start ≤ t < end;

instance-type: i
1 Costtotal, hour ← all initialized to 0 ;

2 cb ← cib;

3 if dti > 24 ∗ 7 then
4 cb ← maxi

c

5 end
6 foreach t ∈ [start, end) do
7 CostB ← 0; CostL ← 0;
8 hour ← hour + 1 ;

9 cb ← cb + coih − ut ∗ vi ∗ 0.6 ;

10 cb ← min(cb, 2 ∗ maxi
c);

11 CostR ← coih ; /* (Rule a) */

12 if cib < 0 then
13 CostB ← (−1) ∗ cib ∗ pi;
14 cb ← 0 ; /* (Rule b) */

15 end
16 if hour mod 24 = 0 then
17 Apply Rule c to compute CostL and cb
18 end
19 Costtotal ← Costtotal + CostR + CostB + CostL
20 end

21 if cb < maxi
c then

22 CostL ← (maxi
c − cb) ∗ pi

23 end
24 return (Costtotal + CostL)

algorithm sets cb to 2 ∗ maxi
c if it exceeds 2 ∗ maxi

c. Then, it applies Rules a
and b to compute regular cost CostR and negative balance cost CostB . It also
updates cb if it is negative and CostB > 0. Also, Rule c is applied every 24 h to
compute the long-term cost CostL. If the window size is not a multiple of 24 h,
it computes the long-term cost CostL outside the for loop (lines 17, 18) as the
cost to pay if we switch instances after completing execution over the window.

Algorithm Hourly Cost: This Algorithm runs the job for the next hour on the
given instance i. It increments the variable timei to keep track of the number of
hours it is currently executing in instance i. At the end of the hour, it computes
CostR, CostB and the credit balance cib. It returns two values, Costh and due,
where Costh is the cost of running the job over that hour and due is the amount
to be paid to the CSP if we switch to another instance after completing the
current hour.

Alternative Instances. When a job is running on instance type i ∈ I, the
set of alternative instances Alt(i) are instances immediately above and below
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Algorithm 2: Hourly Cost
input : utilization: ut; instance-type: i
output: hourly cost : Costh; Due:due

1 timei ← timei + 1;

2 if dti > 24 ∗ 7 then
3 cib ← maxi

c

4 end
5 Run the job for next 1 hour on instance type i
6 CostB ← 0; CostL ← 0;

7 cib ← cib + coih − ut ∗ vi ∗ 0.6 ;

8 cib ← min(cib, 2 ∗ maxi
c);

9 Apply Rules a,b to compute CostR, CostB , and cib
10 if timei mod 24 = 0 then
11 Apply Rule c to compute CostL and cib
12 end
13 Costh ← CostR + CostB + CostL
14 if cib < maxi

c then
15 due ← (maxi

c − cib) ∗ pi

16 end
17 return (Costh, due)

provided they exist. That is if I = {0, i, . . . k} where 0 is the smallest instance
(smallest baseline, least coh etc.) and k is the largest instance, then Alt(i) is
defined as follows:

Alt(i) =

⎧
⎪⎨

⎪⎩

{i + 1} if i = 0
{i − 1, i + 1} if i ∈ {1, . . . k − 1}
{i − 1} if i = k

(5)

Algorithm Burst Optimizer. This algorithm chooses instances for optimizing
the cost of running a job over burstable instances. During the lifetime of a job,
it may switch to an alternative instance at the end of each hour of its execution.
It uses a sliding window [start, end) of past utilizations to decide to switch. For
the first hour of the job’s execution, it chooses a random instance i type from
the pool of available burstable instance I to start the execution of the job (line
5). It calculates the cost and due of running the job for the first hour over the
random instance i type (line 7). The due is the cost one pays if she switches to
another instance in the next hour. At the end of each hour, it calculates the cost
of running the job for the past window on all the alternate instances (line 13)
determined as per Eq. 5. The variable wcost stores the cost incurred in the current
window. If the cost of running the job with the best alternate instance (in terms
of minimum cost) is less than wcost plus due (if any), it decides to switch to that
alternate instance (line 14–20). It updates the downtime dti, credit balance cbi,
and the total cost costtotal accordingly.
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Algorithm 3: Burst Optimizer
input : w size : window size in hours; ut: cpu utilization for hour t
parameters : set of instances : I
output : Total cost of running the job

1 foreach i ∈ I do
2 cib ← maxi

c; timei ← 0; dti ← 0
3 end
4 Costtotal ← 0
5 i type ← random instance from I
6 k ← 0
7 (cost0, due) ← HourlyCost(u0, i type); /* cost0 : cost at hour 0 */

8 wcost ← cost0
9 while job �= terminated do

10 k ← k + 1
11 end ← k; start ← max(k − w size, 0); window ← [start, end)
12 Alternatives ← Alt(i type)
13 Costalt ← {CalculateCost(window, u, j) : j ∈ Alternatives}
14 if min(Costalt) < wcost + due then
15 timei type ← 0
16 i type ← j where j ∈ Alternatives and

CalculateCost(window, u, j) = min(Costalt)
17 if due > 0 then
18 Costtotal ← Costtotal + due

19 cib ← maxi
c

20 end

21 end
22 (costk, due) ← HourlyCost(uk, i type); /* costk: cost at hour k */

23 Costtotal ← Costtotal + costk
24 dti ← dti + 1 for i ∈ I − {i type}
25 dti ← 0 for i = i type
26 wcost = wcost + costk
27 if k ≥ w size then
28 wcost = wcost − coststart
29 end

30 end
31 return (costtotal + due)

4.1 Benchmark Results for Comparison with the Proposed Online
Algorithm

We consider two other algorithms whose costs act as a benchmark for comparison
with the proposed method. In one, we assume that utilization values of the next
W (window size) hours are known. In another, we assume that the utilization
values averaged over the entire simulation period is known.

Algorithm Where Future Utilization Values Are Known: Here, at every
hour, we apply Algorithm 1 (Calculate Cost) to find the total cost if the job runs



126 S. Mandal et al.

on instance type i ∈ I. If the cost is minimum for a particular instance type i′,
the job runs for the next hour in the instance type i′. In the next hour, the
window slides forward by one hour, and we repeat the process. The total cost is
the sum of the costs over all hours plus the cost to be paid as due whenever we
switch instances.

Algorithm Where the Average Utilization over the Entire Period is
Known: Let the job duration be D days and average utilization over the entire
period is

∑24∗D
t=1 ut/(24 ∗ D) = uav. Here, based on uav, we select a specific

instance type and run the job throughout on that instance type. We call the cost
for this approach Fixed Instance Cost. For the instance types i ∈ {0, 1, 2, · · · k}
we have the baseline utilizations bi where b0 < b1 < · · · < bk. We find a set of
boundaries bri, bi < bri < bi+1 for i = 0, 1, · · · k − 1 and for a job with average
utilization uav, the instance type chosen is Choice(uav) given as follows:

Choice(uav) =

⎧
⎪⎨

⎪⎩

0, if uav < br0

i, if bri−1 ≤ uav < bri, 1 ≤ i ≤ k − 1
k, if uav ≥ brk−1

Suppose bi < uav < bi+1. Then we decide the instance to be i or i + 1
depending on uav < bri or uav ≥ bri. We get an estimate of bri on the following
assumptions:

1. The credit balance never becomes negative (CostB is always zero).
2. The average utilization over every 24 h remains between bi and bi+1.

Let us denote by TCi the total cost if the instance remains i throughout the
D days. The cost of running the job on instance i for hours 1 to 24 is
=

∑24
t=1 CostR + CostL

= coih ∗ 24 +
∑2

t=1 4(ut ∗ vi ∗ .6 − crih) ∗ pi.
This is because the credit spent per hour is ut ∗ vi ∗ .6, and the credit per
hour is crh. So, at the end of 24 h, the credit balance will fall below maxi

c by∑
t(ut ∗ vi ∗ .6 − crih), and the penalty is pi per credit hour.

If the simulation period is D days then total cost for instance i is
TCi = coih ∗ 24 ∗ D +

∑24∗D
t=1 ut ∗ vi ∗ .6 ∗ pi − crih ∗ pi ∗ 24 ∗ D

= (24 ∗ D)[coih + uav ∗ vi ∗ 0.6 ∗ pi − crih ∗ pi]
As uav < bi+1, and if we assume average utilization over every 24 h is less

than bi+1, there will be no long-term cost if we choose instance i + 1.
So, TCi+1 = 24 ∗ D ∗ coi+1

h .
Hence, TCi < TCi+1, if coih + uav ∗ vi ∗ .6 ∗ pi − crih ∗ pi] < coi+1

h

=⇒ uav <
coi+1

h −coih+crih∗pi

vi∗.6∗pi .
Thus, bri is given by the equation :

bri =
coi+1

h − coih + crih ∗ pi

vi ∗ .6 ∗ pi
(6)

As crih = bi ∗ vi ∗ .6, bri = bi + coi+1
h −coih
vi∗.6∗pi , i.e., slightly more than bi. We can

compute bri from the parameters of the instances i and i+1 and run the job on
Choice(uav) assuming uav is known.
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5 Results and Discussion

5.1 Implementation and Data Preparation

We use Python (Python v 3.5) to implement the proposed online algorithm (only
the cpu utilizations of the past hours are known), future known algorithm (future
utilizations are known), and the fixed instance algorithm (average utilization over
the entire job duration is known).

In a real-time scenario, a broker handles custom API calls for reallocation
and monitoring. The broker periodically computes the cost incurred in a past
window and the possible costs in alternative instances for the same window.
The broker compares these costs, decides if any change of instance is needed,
and if so, informs the VM provisioner which in turn executes the reallocation or
migration decision.

Data Preparation. This prototype is simulated and evaluated on a set of
Planetlab [2] node (instance) workload traces. PlanetLab is a global research
network that allows researchers to deploy and experiment with their applications
on a geographically distributed set of nodes. These workload traces represent
datasets of actual workload measurements collected from the PlanetLab network.
It captures the resource usage patterns of applications running on the PlanetLab
nodes over a certain period of time.

Ten workload folders are available under Planetlab in CloudSim for March
and April 2011. Each node’s raw workload traces contain 288 rows of usage per-
centages separated by a time frame of 5 min for 24 h (daily). Joining all the daily
datasets from each day’s folders, we obtain the penultimate aggregated workload
datasets of a time duration of 10 days each. Hence, such a dataset will contain
288 * 10 = 2880 rows of CPU usage percentages. Now, as per AWS’s official doc-
umentation of burstable instances, the cost is calculated hourly. Hence, the final
aggregated dataset is created by taking the hourly average of the penultimate
dataset, i.e., combining a window of 12 rows each time by taking their mean
(since 12 * 5 min = 60 min, i.e., 1 h). So, the final hourly usage dataset contains
2880/12 = 240 rows, where each row is now a representation of the average CPU
usage % per hour for the entirety of 10 days. There are 21 such instance work-
load CSV files formed that are used for the simulation of our prototype and cost
computation.

Performance of the Proposed Online Algorithm. We measure the per-
formance of the proposed online cost minimization algorithm in terms of two
metrics - the total cost of executing a job over ten days and the total num-
ber of migrations. Algorithm 3 uses a parameter w size (size of the window in
hours). Since the long-term cost CostL is to be paid every 24 h, it is logical to
use w size = 24. We have computed the cost by varying window size from 12 to
36 and found that w size = 24 gives minimum costs. Hence, we have presented
the results of Algorithm 3 only for w size = 24.
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Table 3. Statistical description of the datasets used during experiments

Dataset# AVG MAX MIN STD Dataset# AVG MAX MIN STD

1 2.21 4.92 0.5 0.85 12 9.08 26.83 1.83 4.47

2 2.53 7.08 0.83 0.97 13 9.56 30 1.5 6.04

3 2.91 8.33 0.67 1.18 14 10.05 25.42 2.42 4.57

4 4.58 8.67 0.17 2.02 15 10.77 24.33 2.08 3.63

5 4.59 7.83 0 1.68 16 10.79 28.5 1.5 5.13

6 4.78 22.25 0.83 2.30 17 12.02 32.33 1.5 4.52

7 5.46 21.33 0.83 4.31 18 12.91 29.75 2.42 4.27

8 6.4 13.5 1.17 2.30 19 13.54 44 0.17 12.30

9 7.06 13.17 3.5 1.67 20 15.32 34.08 9.33 4.50

10 8.1 14.42 1.5 2.37 21 22.39 47.58 6.08 8.15

11 8.36 19.83 2.5 3.02 – – – – –

Total Cost: For 21 different data sets, we computed the costs for the proposed
algorithm. We also have the costs corresponding to two benchmarks - future-
aware and fixed instance. Figure 1 shows the plot of all three costs. The set of
instances I is equal to {0, 1, 2, 3}, corresponding to T3.nano, T3.micro, T3.small
and T3.large. The values of base rates are b0 = 5%, b1 = 10%, b2 = 20%
and b3 = 30%. By applying Eq. 6, we compute boundary values br0 = 5.04%,
br1 = 10.09%, and br2 = 20.52%. For computing fixed instance cost, we com-
pute the average uav over ten days and select the instance by comparing uav

with boundary values. As expected, the future-aware algorithm has the mini-
mum costs. Even though while computing the fixed instance cost, we assume the
knowledge of the average utilization over the entire ten days and the proposed
online algorithm has no such knowledge, the total cost for fixed instances is
sometimes much higher than the proposed one (data sets 4, 5, 19, and 20). This
indicates that the proposed algorithm that switches instances is better suited to
handle the occasional surge in utilization values.
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Fig. 3. Number of migrations using the proposed BurstOptimizer for all datasets

Figure 2 plots the ratio of the cost for the proposed algorithm to that from
the benchmark corresponding to future known. This ratio is 2.42 for data set 19
and less than 2 for all other data sets. If we look at the statistics of data set 19
in Table 3, it has an average of 13.54 and a maximum of 44, i.e., the maximum
is more than three times the average. That means this data set has frequent
surges in cpu utilization that cause negative balances so that CostB and CostL
are high. As the proposed algorithm only makes decisions based on past costs,
it pays for such bursts before it can switch instances. So, we can conclude that
if the data set does not exhibit such a high variation, the performance of the
proposed algorithm is acceptable, considering it does not have prior knowledge
of the utilization values.

Table 4 shows the cost for each job and the total cost of running all 21 jobs
in the bottom row. We see that the total cost of the proposed algorithm is only
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Table 4. Cost comparison between future-aware, fixed instance and the proposed
BurstOptimizer

Dataset# BurstOptimizer Future Aware Fixed burstable
cost

Cost
Ratio

# of
Migrations

1 1.25 1.25 1.25 1.00 0

2 1.25 1.25 1.25 1.00 0

3 1.25 1.25 1.25 1.00 0

4 1.60 1.58 13.01 1.01 1

5 1.64 1.52 12.31 1.08 1

6 1.69 1.34 2.80 1.26 8

7 3.00 1.63 2.50 1.84 6

8 2.19 1.83 2.50 1.19 1

9 2.50 2.50 2.50 1.00 0

10 2.50 2.37 2.50 1.05 0

11 4.14 2.50 2.50 1.66 9

12 2.50 2.50 2.50 1.00 0

13 2.50 2.46 2.50 1.01 0

14 2.96 2.62 3.84 1.13 2

15 4.30 3.25 5.02 1.32 2

16 4.22 3.00 5.02 1.41 8

17 4.71 3.95 5.02 1.19 5

18 5.03 4.32 5.02 1.16 4

19 17.85 7.36 35.89 2.42 7

20 7.38 5.82 18.35 1.27 2

21 19.52 15.68 20.04 1.24 7

Total 93.96 69.97 147.52 1.34 63 (Avg. = 3)

1.34 times that of the hypothetical future-aware algorithm. The corresponding
total cost for a fixed instance is more than two times that of the future-aware
one.

Migrations: Figure 3 shows the number of migrations between instances for
each data set. We observe that the values vary between 0 to 9. Considering that
we ran each job for 240 h and there is a chance of migration at each hour based
on cost comparison, the number 9 is acceptable. Too many migrations can lead
to QoS violations because they may add delay. Table 4 shows that the average
number of migrations is only 3. We can conclude that the proposed algorithm
can handle variations in cpu utilization to reduce cost without causing too many
changes in instances.

6 Conclusion

This study presents an online algorithm for cost minimization by switching
between burstable instances of different base utilization rates. The algorithm
monitors the cost of resources for the current instance type and takes a reallo-
cation decision to another instance type it deems appropriate. We have taken
a window of 24 h, computed the cost incurred in that period, and compared it
with the cost if run on an alternative instance type. We perform this compari-
son at the end of every hour and switch to an alternative option if that seems
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more economical. Simulation of this algorithm on numerous real-life workloads
shows that our approach of switching between instances is more cost-effective
than running the entire job on a fixed base rate. However, it is difficult to give
an overall measure or metric of this cost minimization as the actual reduction
in cost depends on the specific workload and the selected instance types. We
can also safely ignore the overhead due to migration time, as the frequency of
switching over our simulation period (10 days) is negligibly small.
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Abstract. Dynamically changing access rights of users in large-scale
secure data sharing is an important challenge which designers of the
secure systems have to address. We focus efficient enforcement of the
dynamic access control using key-aggregate cryptosystem (KAC), an effi-
cient solution to secure data sharing. In this paper, we present a novel
KAC construction that, in addition to satisfying all key-aggregate effi-
ciency requirements, allows a data owner to enforce dynamic updates in
access rights of a user much more efficiently than the existing ones. In
particular, the proposed KAC construction handles the dynamic updates
at the level of public parameters, and does not require the data owner
to carry out any secure transmissions. This further means that none of
the data users, including the one(s) whose access rights are updated, has
to update their secrets. Thus, the dynamic update operation of the pro-
posed KAC scheme is free from the one-affects-all problem. We present
a formal security proof of the proposed KAC scheme and analyze its
performance to further support our claims.

Keywords: Dynamic Access Control · Secure Data Sharing ·
Key-Aggregate Cryptosystem · Cloud Computing

1 Introduction

With the advent of distributed computing, especially cloud computing, Internet
of Things (IoT), and Edge Computing, the world is generating and consuming
very large amount of data on a daily basis. At the center of technologies like these
is the “always online” enormous distributed storage and resourceful distributed
computing facility that performs the dual task of storing its users’ data and
allowing its users to share the data with selected parties in a secure manner. It
is practical to assume the cloud storage server to be semi-trusted [5]. So, the
data is usually encrypted by the user who owns the data, also called the data
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owner, before storing on to the cloud server. As a result, the task of data sharing
is reduced to selectively and securely sharing the decryption keys of the stored
data with the data users who the data owner wishes to authorize.

Each data user is authorized for a subset of data items stored by the data
owner on the cloud server. For all practical reasons, this authorization may keep
changing depending upon the system’s requirements. So, the data owner employs
a cryptosystem that efficiently enforces dynamic updates in the access autho-
rizations of the data users. One of the important and efficient public-key cryp-
tographic primitives suitable for this purpose is Key-Aggregate Cryptosystem
(KAC) [2,16]. Using a KAC, the data owner encrypts its data under different
classes 1, 2, . . . , n. In a practical setting, these classes correspond to the vari-
ous types of data items a person may own, e.g., personal, medical, educational
etc. Now suppose that the data owner wishes to authorize a user u to access a
subset Auth(u) ⊆ {1, 2, . . . , n} of the data classes. Using KAC, the data owner
generates a constant-size aggregate key denoted as Ku that is capable of success-
fully decrypting the data encrypted under any class i ∈ Auth(u). This aggregate
key is securely transmitted to the user and acts as the only constant-size secret
required by the user to decrypt a collection of data items for which the user is
authorized. The efficiency of KAC comes from the constant-size secret aggregate
key capable of decrypting a large subset of shared data items. However, we stress
that updating the authorization of any given user using a KAC is inefficient.

Suppose that the authorization of the user u is updated and it is no more
authorized for data class i. In other words, update Auth(u) = Auth(u)\{i}. As a
result, the data owner should carry out updates such that the user u is not able to
decrypt the data encrypted under data class i. This is called the KAC’s forward
secrecy [14]. The schematic representation of the operation and forward secrecy
requirement is presented in Fig. 1. In case user u, who was initially unauthorized
for a data class, say j, is now authorized for it, the updates carried out by the data
owner must be such that the user u can decrypt all future data encrypted under
class j. A KAC scheme satisfying this requirement is said to satisfy backward
secrecy.

A KAC should address the dynamically changing access rights of users and
allow the data owner to update the authorization set Auth(u) with minimal
effort. Ideally, it should not require the data owner to re-compute a large num-
ber of aggregate keys and securely transmit them to the users. Indeed, for a
highly dynamic environment, each user should not have to update their secret
aggregate key just because authorization of one among the large population
of users has changed. In other words, the KAC should be free from the one-
affects-all problem. However, we stress that there is no KAC construction in the
literature that does not require at least a “few” aggregate key updates. We also
emphasize that in most cases, this “few” is loosely bounded from the upper side
by the number of users in the system.

The contribution of this paper is summarized as follows. In this paper, we
address the problem of dynamic updates in key-aggregate cryptosystems and
present a novel construction that efficiently enforces dynamic updates in the
authorization sets of data users without compromising on the key-aggregate
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Fig. 1. (a) User can obtain plaintext encrypted under data class i using Ku as i ∈
Auth(u). (b) Forward secrecy in KAC: After removing the class i from Auth(u), the
user cannot obtain plaintext encrypted under data class i.

efficiency requirements. In particular, the proposed KAC for dynamic access
control requires no secret aggregate keys to be updated in case one or more
authorized sets are updated based on the data owner’s requirements. The pro-
posed construction works in the public-key setting and satisfies all key-aggregate
efficiency requirements, namely constant ciphertext size, constant-size aggregate
key, and linear (in the number of data classes) total public storage required. We
present the formal security proof and compare the performance of the proposed
construction with the state-of-the-art KAC schemes to support our claims.

The organization of the remainder of the paper is as follows. Section 2 summa-
rizes some important research in the area of KAC and its applications. Section 3
contains the basic definitions related to the proposed scheme. Section 4 defines
the mathematical and cryptographic tools along with complexity assumptions
used to design the proposed scheme. In Sect. 5, we present our proposed concrete
construction along with its correctness, security and performance analysis. We
conclude the paper in Sect. 6.

2 Related Work

The concept of key-aggregate cryptosystem (KAC) was first proposed by Chu
et al. [2]. The formal security definitions and security analysis were given by
Patranabis et al. [15,16]. Due to its efficiency, it became an immediate choice for
secure data sharing and access control [1,9]. There are several works in which
KAC is augmented or combined with other known cryptographic primitives to
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achieve the functional goals of various target application scenarios. KAC is com-
bined with searchable encryption to achieve fine-grained access control for out-
sourced data [3,7,8,10,11]. Broadcast encryption was used in conjunction with
KAC to design access control solutions for scalable systems [16]. Also, KAC was
combined with proxy re-encryption for designing flexible data sharing solution
tailor-made for distributed cloud scenario [13].

One of the major and widely addressed issues is enhancing the KAC primitive
so that it can enforce dynamic access control. The need for a dynamic KAC was
first realized by Patranabis et al. [15]. They designed a KAC scheme that is
dynamic but requires secure transmissions of aggregate keys whose number is
not too loosely upper bounded by the total number of aggregate keys distributed
in the system. Also, the cihertext size does not remain constant in case the KAC
operates in a highly dynamic environment. Later, Pareek et al. [14] overcame
some of the issues and designed a dynamic KAC with constant ciphertext size.
However, their scheme still requires large-size secure transmission to carry out
from the data owner to various data users in case of dynamic updates. The
scheme in [12] claims constant secure communication size, constant computation
cost of dynamic updates and constant ciphertext size in case all the authorized
sets are disjoint. The work further mentions that in case there are overlapping
(non-disjoint) authorized sets, both secure communication size and computation
cost in an event of dynamic update is upper bounded by the number of aggregate
keys in the system. Furthermore, we stress that the scheme in [12] is not designed
for public-key setting. Indeed, the encryption function takes the master-secret
keys as input to produce any valid ciphertext.

Several other schemes were proposed to address the dynamic access control
requirements in KAC. Guo et al. [6] claimed their scheme to be dynamic. How-
ever, Alimohammadi et al. [1] proved the scheme in [6] to be insecure. Gan
et al. [4] designed a dynamic KAC that requires no secure communication to
enforce dynamic access control. However, their scheme uses multilinear maps,
which limits the practical applicability of their scheme.

It is clear from the review of the literature given above that there is no KAC
construction that is suitable for efficiently enforcing dynamic access control. In
the process of making the KAC scheme dynamic, the existing schemes either have
to compromise on the storage efficiency or have to carry out a large number of
secure transmissions or both. We intend to design a KAC in a public key setting
and using bilinear maps that is secure and features dynamic update operations
in which there is no secure transmission required. It also satisfies all the key-
aggregate efficiency requirements, that is constant size aggregate key, constant
ciphertext size and public storage linear in the number of data classes.

3 Proposed Key-Aggregate Cryptosystem for Dynamic
Access Control

We present the construction syntax, and the formal definitions of correctness
and security of the proposed KAC for dynamic access control.
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3.1 Construction Syntax

We define the proposed KAC for dynamic access control Π as a collection of
procedures Π = {Initialize, Gen, Extract, Enc, Dec, UpdateSet} as follows:

1. Initialize(1λ, n) → params: This procedure takes as an input the secu-
rity parameter λ and the maximum number of data classes n supported by
the KAC. It outputs the set of public parameters params required for the
remaining of the operations in the KAC.

2. Gen(params) → {msk, mpk, dynK}: This procedure outputs the master
secret key msk, master public key mpk and dynamic key dynK. Here, the
master-public key and dynamic key are published and the master-secret key
is kept as secret.

3. Extract(params,msk,dynK, Auth(u)) → {Ku, pub(u)}: This procedure
has two sub-procedures AggExtract and PubExtract. It takes as input
the public parameters, master-secret, dynamic key and the authorized set.
While the sub-procedure AggExtract outputs the aggregate key Ku to be
securely transmitted to the users authorized for the set Auth(u), the sub-
procedure PubExtract outputs pub(u), the public parameter corresponding
to the authorized set Auth(u).

4. Enc(i, mpk, dynK,M) → Ci: This procedure takes the data class i under
which the message M is encrypted. It also takes public parameters params
and the dynamic key dynK as input to produce the ciphertext Ci corre-
sponding to the input message M under data class i.

5. Dec(Ci,Ku, pub(u), Auth(u)) → M : This procedure takes the ciphertext to
be decrypted, and aggregate key Ku, public parameter corresponding to the
authorized set Auth(u) and the set Auth(u) itself. The output is the under-
lying plaintext message M if and only if i ∈ Auth(u).

6. UpdateSet(i, Auth(u),params, type) → {dynK’, pub′(u), C ′
i} : This pro-

cedure adds or removes the data class i to/from the aggregate set Auth(u) as
indicated by the input type to the procedure. To ensure backward/forward
secrecy outputs the updated dynamic key dynk’, updated public parameters
pub′(u) corresponding to Auth(u) and all future ciphertexts under the data
class i are computed as C ′

i ← Enc(i,mpk,dynK’).

3.2 Correctness

The correctness requirement of the proposed dynamic KAC scheme requires that
given that the data class i ∈ Auth(u), the decryption procedure must output
the correct underlying plaintext message M encrypted under i. Formally,

Pr

⎡
⎢⎢⎣
Dec(Ci,Ku, pub(u), Auth(u))
= M

∣∣∣∣∣∣∣∣

Ci ← Enc(i,mpk,dynK),
{Ku, pub(u)} ← Extract
(params,msk, Auth(u)),
i ∈ Auth(u)

⎤
⎥⎥⎦ = 1
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3.3 Security Definition

Chosen-Plaintext Attack (CPA) security of the proposed KAC is defined as a
game between a probabilistic polynomial time (PPT) adversary A and challenger
C as follows:

1. Init: A outputs a target authorized set Auth(u) ⊆ {1, 2, . . . , n} and sends to
the challenger C. Then, the challenger C randomly selects a target data class
i∗ ∈ Auth(u).

2. Setup: The challenger C uses Initialize and Gen of the proposed KAC
construction Π and publishes params, mpk and dynK. It keeps the master
secret key msk secret.

3. Query-Phase-1: A issues to B Extract queries for sets Auth(k) ⊆ Auth(u).
Here, Auth(u) denotes an aggregate set containing all data classes which are
not in Auth(u).

4. Challenge: A picks two random messages M0,M1 from the message space
and sends them to B. Now, B chooses a random bit b ∈ {0, 1} and uses
the procedure Enc of the proposed construction Π to output the challenge
{Ci∗ ,M0,M1}, where Ci∗ is the ciphertext corresponding to Mb under the
target data class i∗. That is, Ci∗ ← Enc(i∗,mpk,dynK).

5. Query-Phase-2: A can further continue to issue Extract queries for all
authorized sets Auth(k) ⊆ Auth(u), to which B responds in the same way as
in Query-Phase-1.

6. Guess: A outputs the guess b′ and wins if b = b′.

We define the advantage of the adversary A of winning the game described above
against the challenger C as follows:

Adv
(ε,t,n)-CPA-sec
A,n =

∣∣∣∣Pr[b = b′] − 1
2

∣∣∣∣ .

Definition 1 ((ε, t, n)-CPA Secure KAC). A KAC construction over n data
classes is said to be (ε, t, n)-CPA-secure against all t-time non-adaptive PPT
adversaries if the advantage of such an adversary A is upper bounded by ε, i.e.,
Adv

(ε,t,n)-CPA-sec
A,n < ε.

4 Mathematical Preliminaries and Assumptions

Definition 2 (Bilinear Pairing). Consider a cyclic multiplicative group G1

of prime order ‘p’, g ∈ G1 its generator and G2 another cyclic multiplicative
group with order same as that of G1. A symmetric and efficiently computable
bilinear map e : G1 × G1 → G2 satisfies the following:

a) Bilinearity: e(gl, gk) = e(g, g)lk = e(gk, gl) = e(g, g)kl, ∀g ∈ G1, l, k ∈ Zp,
b) Non-degeneracy: e(g, g) �= 1.
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Definition 3 (Decision n-BDHE problem). Given an input (h, P =
(g, g1, . . . , gn, gn+2, . . . , g2n), Z), where h ∈ G1, g ∈ G1, gi = gαi ∈ G1 (for
α ∈ Zp and i = 1, 2, . . . , n, n + 2, . . . , 2n), Z ∈ G2 and e(., .) is an efficiently
computable bilinear pairing, decide if Z = e(h, gn+1).

Let A be an algorithm that runs in time τ and takes as input an n-BDHE
tuple. We say A has advantage ε in solving the decision n-BDHE problem if:

|Pr [A (h, P, e(h, gn+1)) = 0] − Pr [A (h, P, Z) = 0]| ≥ ε.

Definition 4 (Decision (τ, ε, n)-BDHE Assumption). The (τ, ε, n)-BDHE
assumption holds in (G1,G2) if no τ -time algorithm has advantage of at least ε
in solving the Decision n-BDHE problem in (G1,G2).

5 Concrete Proposed KAC for Dynamic Access Control

We present the concrete mathematical construction, correctness analysis and
security analysis of the proposed KAC for dynamic access control. We also ana-
lyze the computational and storage performance of the proposed scheme with
the important existing ones.

5.1 Basic Idea Behind Our Construction

In the proposed construction, the data owner outputs both public and private
parameter corresponding to an authorized set Auth(u). The public parameter is
denoted by pub(u), whereas the private parameter is nothing but the aggregate
key Ku which is securely transmitted to the user authorized for the set Auth(u) ⊆
{1, 2, . . . , n}. In the decryption procedure, pub(u) is used to partially decrypt the
ciphertext and the remaining partial decryption is done by the Ku kept securely
by the authorized user to obtain the underlying plaintext message.

To accomplish this, the proposed scheme outputs total 2n different gi’s for
identifying n data classes (total 4n different gi’s at the setup time). Out of
these, g1, . . . , gn are used to identify n data classes and computing pub(u). The
remaining gn+1, . . . , g2n are used for generating Ku. Note that in this case, g2n+1

is not published along with params as opposed to gn+1 not being published in
traditional KAC schemes. When the dynamic updates are to be made to any
authorized set, the data owner updates the public parameter pub(u) correspond-
ing to the set while the Ku remains unchanged. This way, the proposed scheme
requires updating only the public parameters and none of the secret aggregate
keys of any user. This means that there is no need for secure transmission of any
keys in an event of dynamic updates to authorized set(s).

5.2 Concrete Construction

As discussed earlier in Sect. 5.1, the proposed construction uses twice the number
of public parameters gi’s as the number of data classes it handles. We describe our
concrete construction for a KAC that handles n/2 data classes. This is because
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by doing so, the parts of the proposed construction will look comparable to the
traditional construction, which will facilitate better readability and understand-
ing of the construction. While g1, . . . , gn/2 identify the n/2 data classes and ar
used for computing the public parameter pub(u), the remaining gn/2+1, . . . , gn

are used to compute the secret aggregate key Ku. Note that it is straightforward
to extend the construction to a case of n data classes by simply doubling the
subscripts of all gi’s.

In short, to handle n data classes the proposed scheme uses twice the public
parameters as used in the traditional KACs. Note however that this number
is still a constant multiple of n and does not cause any significant overhead.
The only difference is seen in the security proof where we prove (ε, t, n/2)-CPA
security of the proposed construction, under the n–BDHE assumption. This is
because the number of data classes for which the KAC can be proved secure
under n–BDHE assumption has halved.

In what follows, we describe the proposed KAC for dynamic access control
handling n/2 data classes Π = {Initialize, Gen, Extract, Enc, Dec, UpdateSet}:
1. Initialize(1λ, n/2) → params: Sets up the KAC as follows:

– Select bilinear groups G1 and G2 both with prime order p where 2λ ≤
p ≤ 2λ+1 and a generator g ∈ G1 at random.

– Choose random α ∈ Zp secretly and for all i ∈ {1, 2, . . . , n, n+2, . . . , 2n},
compute gi = gαi

and remove α.
– Select a target collusion-resistant (TCR) hash function H : G2 → G1.
– Store params ← 〈g, p,G1,G2,H, g1, g2, . . . , gn, gn+2, gn+3, . . . , g2n〉

2. Gen(params) → {msk, mpk, dynK}: Generates the master-public and
master-secret keys along with the dynamic key as follows:

– Select two numbers γ1, γ2 ∈ Zp uniformly at random.
– Store msk← {γ1, γ2}, mpk ← gγ1 and dynK = gγ2 .

3. Extract(params, msk, dynK, Auth(u)) → {Ku, pub(u)}: Generates the
aggregate key using the sub-procedure AggExtract and public key cor-
responding to the authorized set Auth(u) ⊆ {1, 2, . . . , n} using the sub-
procedure PubExtract as follows:

(a) AggExtract: Compute Ku =

(
∏

b∈Auth(u)

gn/2+1−b

)γ1

and send it to the

authorized user over a secure communication channel. Also, compute and
publish pub0,u =

∏
j∈Auth(u)

gn/2+j . Both Ku and pubu,0 remain unchanged

throughout the system operation.
(b) PubExtract: Choose random values r, s

$← Zp, another random value

R1
$← G2 and use them to compute the public parameters pub(u) =

(pub1, . . . , pub5) corresponding to the aggregate key Ku as follows:

pub1 =

⎛
⎝ ∏

a∈Auth(u)

gn+1−a

⎞
⎠

γ1

.(dynK)s, pub2 =
(
gn/2

)r

pub3 = (mpk . pub0,u)r
, pub4 = R1.e(g1, gn)r, pub5 = gs.H(R1)
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4. Enc(i, mpk, dynK,M) → Ci: Encrypts the plaintext message M under a
data class i to produce ciphertext Ci〈C1, C2, C3, C4, C5〉 as follows:

– Choose a random value t
$← Zp, a random value R2

$← G2 and compute:

C1 = gt, C2 = (mpk.gi)
t
, C3 = R2.e(g1, gn)t, C4 = (dynK)t

,

C5 = M ⊕ H(R2)

5. Dec(Ci,Ku, pub(u), Auth(u)) → M : Use the aggregate key Ku and decrypt
the ciphertext Ci = 〈C1, C2, C3, C4, C5〉 to obtain the underlying plaintext
message M as follows:

– Compute A as:

A =

C3.e(pub1
∏

a∈Auth(u)
a�=i

gn+1−a+i, C1)

e(C2,
∏

a∈Auth(u)

gn+1−a)
= R2.e(gγ2s, gt)

– Compute B as:

B =

pub4.e(Ku, pub2).e(
∏

j∈Auth(u)

∏
b∈Auth(u)

b�=j

gn/2+1−b+j , pub2)

e(pub3,
∏

b∈Auth(u)

gn/2+1−b)

– Use A and B computed above to obtain M as follows:

M = H
(
A.e(pub5.(H(B))−1, C4)−1

)−1 ⊕ C5.

6. UpdateSet(i, Auth(u),params, type) → {dynK’, pub′(u), C ′
i} : Removes/

adds the data class i from/to the aggregate set Auth(u) and outputs the
updated dynamic key, public key and updated ciphertext to ensure for-
ward/backward security as follows:

– If type = ‘Revoke’, then set Auth′(u) ← Auth(u)\{i}. Otherwise, if type
= ‘Add’, then set Auth′(u) = Auth(u) ∪ {i}

– Select a random value γ′
2

$← Zp, compute the updated dynamic key
dynK’= gγ′

2 and update the master-secret key component γ2 with γ′
2.

The component γ1 of the master-secret key remains the same.
– Invoke Extract.PubExtract(params,msk,dynk’, Auth′(u)) with the

updated dynamic key dynK’ and the updated authorized set Auth′(u)
as input. It outputs the updated public parameter pub′(u) corresponding
to the authorized set that undergoes the update operation.

– All future ciphertexts under i are encrypted using the updated dynamic
key dynK’. That is, Ci ← Enc(i,mpk,dynK’).

Noteworthy is that the procedure for revoking the data class does not update
or securely transmit the aggregate key of the affected user.



142 G. Pareek and B. R. Purushothama

5.3 Correctness Analysis

We present the analysis of correctness of the proposed construction under the cor-
rectness definition given in Sect. 3.2. Firstly, the value A defined in the descrip-
tion of the Dec procedure of the proposed KAC construction as follows:

A =

C3.e(pub1
∏

a∈Auth(u)
a�=i

gn+1−a+i, C1)

e(C2,
∏

a∈Auth(u)

gn+1−a)

=

R2.e(g1, gn)te(
∏

a∈Auth(u)

gγ1
n+1−a.gγ2s.

∏
a∈Auh(u)

a�=i

, gt)

e(gγ1tgt
i ,

∏
a∈Auth(u)

gn+1−a)

=

R2.e(g1, gn)te(gγ2s, gt).e(gt,
∏

a∈Auth(u)
a�=i

gn+1−a+i)

e(gt,
∏

a∈Auth(u)

gn+1−a+i)

=
R2.e(g1, gn)t.e(gγ2s, gt)

e(gt, gn+1)
= R2.e(gγ2s, gt)

Next, the procedure Dec computes the value B, which simplifies as follows:

B =

R1.e(g1, gn)re(
∏

b∈Auth(u)

gγ1
n/2+1−b, g

r
n/2).e(

∏

j∈Auth(u)

∏

b∈Auth(u)
b�=j

gn/2+1−b+j , g
r
n/2)

e(gγ1r
∏

j∈Auth(u)

gr
n/2+j ,

∏

b∈Auth(u)

gn/2+1−b)

=

R1.e(g1, gn)re(
∏

j∈Auth(u)

∏

b∈Auth(u)
b�=j

gn/2+1−b+j , g
r
n/2)

e(
∏

j∈Auth(u)

gr
n/2+j ,

∏

b∈Auth(u)

gn/2+1−b)

=

R1.e(g1, gn)r ∏

j∈Auth(u)

e(
∏

b∈Auth(u)
b�=j

gn/2+1−b+j , g
r
n/2)

∏

j∈Auth(u)

e(gr
n/2+j ,

∏

b∈Auth(u)

gn/2+1−b)

= R1.e(g1, gn)r.
∏

j∈Auth(u)

⎛

⎜
⎜
⎜
⎝

e(
∏

b∈Auth(u)
b�=j

gn/2+1−b+j , g
r
n/2)

e(gr
n/2+j ,

∏

b∈Auth(u)

gn/2+1−b)

⎞

⎟
⎟
⎟
⎠

= R1.e(g1, gn)t.e(g1, gn)−t = R1.
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Finally, compute the following:

H
(
A.e(pub5.(H(B))−1, C4)−1

)−1 ⊕ C5

= H
(
R2.e(gγ2s, gt).e(gs.H(R1).H(R1)−1, gγ2t)−1

)−1 ⊕ M ⊕ H(R2)

= H(R2.e(gγ2s, gt).e(gγ2s, gt)−1) ⊕ M ⊕ H(R2)
= H(R2) ⊕ M ⊕ H(R2) = M.

Therefore, based on the analysis given above, we conclude that the proposed
KAC construction is correct.

5.4 Security Analysis

Theorem 1. The proposed KAC construction given in Sect. 5.2 is secure under
the (ε, t, n/2)-CPA-Security of Definition 1 given that the (ε, t, n)-BDHE assump-
tion holds in G1,G2 and a target collusion-resistant (TCR) hash function
H : G2 → G1 exists.

Proof. Let A be a t-time PPT adversary such that Adv
(ε,t,n/2)-CPA-sec
A,n > ε

for an instance of the proposed dynamic KAC construction handling n/2 data
classes. We build another adversary B that can decide the n-BDHE tuple with
an advantage at least ε′. The input for adversary B is (h,Q,Z) where h ∈ G1,
Q = {gi|i ∈ [1, n] and i �= n+1} and Z is either e(h, gn+1) or a random element
from G2.

During various stages of game simulation, the adversary issues queries and
stores the query results in an indexed table to maintain the state information
and use it in future. The table is defined as follows:

– AggPubList: Set of all aggregate keys and the corresponding public parameter
queried by the adversary A and computed by the challenger B. Each entry
is indexed by the authorized set identifier. For example, if the set queried is
Auth(u), then the entry is a 4-tuple 〈u,Auth(u),Ku, pub(u)〉.

The execution of B proceeds as follows:

– Init: B invokes A to obtain the set Auth(u∗) over which A wishes to be
challenged. Then, B chooses an index (data class) i∗ ∈ Auth(u∗) at random.

– Setup: B computes params, mpk and dynK and sends to A as follows:
• Choose a random α ∈ Zp and outputs the params = 〈g, p,G1,G2,H, g1,

g2, . . . , gn, gn+2, . . . , g2n〉 where each gi = gαi

.
• Select a target collusion-resistant hash function H : G2 → G1.
• Choose a random γ1 ∈ Zp and compute mpk = gγ1g−1

i∗ . This means
that the master-secret key msk = (γ1 −αi∗

). This master-secret is stored
secretly by B.

• B now selects a random x1 ∈ Zp and sends the dynamic key as dynK =
h1 = gx1 to A.
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– Query-Phase-1: A queries the collusion aggregate keys Ku by sending the
authorized set Auth(u) ⊆ {1, . . . , n}\Auth(u∗) to B. To this, B responds after
computing Ku and pub(u) as follows:

Ku =
∏

b∈Auth(u)

(
gγ1

n/2+1−b.g
−1
n/2+1−b+i∗

)

Here, the value r ∈ Zp is selected at random. B further selects a ran-
dom value s ∈ Zp, a random R1 ∈ G2, and sets h2 = hs

1, h3 = gr,

h4 =

(
g.(

∏
j∈Auth(u)

gn/2+j .g
−1
i∗ )1/γ1

)r

and h5 = H(R1). Then, B computes

the public key parameter corresponding to Ku as:

pub(u) = 〈pub1, . . . , pub5〉

pub1 =

⎛
⎝ ∏

a∈Auth(u)

gγ1
n+1−a.g−1

n+1−a+i∗

⎞
⎠ h2

pub2 = hαn/2

3 , pub3 = hγ1
4 , pub4 = R1.e(h3, gn+1), pub5 = h

1/x1
2 .h5

It is straightforward to verify that the values Ku and pub(u) computed above
are valid and can be computed by B using information available in its view.
These computed values are now stored in the list AggPubList. Since all the
values are chosen by B uniformly at random, the distribution of all the com-
puted Ku and pub(u) is the same as in the original construction.

– Challenge: When A decides to end the query phase, it chooses two random
messages M0,M1 and sends them to B. Then, B selects a bit b uniformly
at random and encrypts the message Mb under the target data class i∗ to
obtain Ci∗ = 〈C1, C2, C3, C4, C5〉 as follows. Compute y1 = gt for a random
t ∈ Zp, select a random R2 ∈ G2 and set the ciphertext components using
the information in B’s view as follows:

C1 = y1, C2 = yγ1
1 , C3 = R2.Z, C4 = yx1

1 , C5 = Mb ⊕ H(R2)

We can verify that all ciphertext components, if computed as above, take the
same form as in the actual construction.

– Query-Phase-2: A continues to issue Extract queries to B under the same
condition as the one mentioned in Query-Phase-1. B responds to these
queries in the same way as in Query-Phase-1 and sends valid Ku and pub-
lishes a valid pub(u) every time.

– Guess: The adversary A outputs a guess b′ of the guess b. If the guess b′

equals the bit b, then B outputs 0 indicating that Z = e(y1, gn+1). Otherwise,
it outputs 1 indicating that Z is a uniform and random element from G2.
This concludes the description of the game.

It can be seen that the algorithm B successfully simulates A’s view in the attack.
Also, it can be seen that the problem of deciding the (h,Q,Z) nicely reduces
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to the problem of distinguishing the challenge ciphertext Ci∗ . Formally, if Z
is an element chosen uniformly at random from G2, then Pr [B(Q,Z) = 0] =
1
2 − AdvTCR

A,H , where AdvTCR
A,H is the advantage for A of getting a collision in

the hash function H. On the other hand, if Z = e(h, gn+1), then the same
probability is at least 1

2 + ε′ − AdvTCR
A,H , i.e., Pr [B(Q,Z) = 0] ≥ 1

2 + ε′ − AdvTCR
A,H

or, Adv
(ε,t,n/2)-CPA-sec
A,n ≥ ε′ − AdvTCR

A,H . Hence, the proposed KAC construction
is (ε, t, n/2)-CPA-secure if the (ε, t, n)-BDHE assumption is hard in G1,G2.

5.5 Performance Analysis

In this section, we analyze and compare the efficiency of the proposed KAC with
respect to the existing constructions. In particular, we target the very first KAC
construction bu Chu et al. [2], a few works that claim to be dynamic [4,12,14,15],
and a recent construction by Alimohammadi et al. [1] that points out the security
issues with Guo et al.’s scheme [6] The analysis presented here focuses both
computational and storage efficiencies of the KAC constructions.

Table 1. Comparison of storage overhead

Scheme Private

Storage

Owner

Private

Storage User

Public Storage Ciphertext Size Dynamic?/

Assumption

[2] |Zp| |G1| (n + 1) |G1| 2 |G1| + |G2| No/n-BDHE

[15] |Zp| (|Auth(u)| +
1) |G1|

(n + 1) |G1| 2 |G1| + |G2| Yes/n-BDHE

[4] 2 |Zp| 2 |G1| log n(|Gi|) +
|G2n| + 2 |Gn|

2 |Gn| + |G2n| Yes/Multilinear

Maps

[1] |Zp| |G1| (3n + 1) |G1| 2 |G1| + |G2| No/n-BDHE

[14] 2 |Zp| 3 |G1| (2 + poly(λ)) |G1| 3 |G1| + |G2| Yes/poly(λ)

public storage

[12] (n + 2) |Zp| |G1| (4n + 1) |G1| nmax(3 |G1| +
|G2|)

Yes/requires

msk to

encrypt

Ours |Zp| |G1| n(6 |G1| + |G2|) 3 |G1| + 2 |G2| Yes/TCR

Hash function

n denotes the number of data classes

nmax denotes the maximum number of authorized sets of which any given data class can belong

to. Loosely, nmax = O(m)

|X| denotes the maximum size in bits of an element in the set X

Table 1 presents analysis of the storage performance of the proposed KAC
construction. Except the scheme in [12], all schemes including the proposed one
require constant private storage for data owner. The private storage requirements
for data user reflects the size of aggregate key. It can be seen that all schemes
require a constant size aggregate key to be stored by the data user except the
dynamic KAC given in [15], where the size of the aggregate key is upper bounded
by a linear function of the size of the authorized set Auth(u). Total public
storage is an important requirement as it may impact the total effective cost
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Table 2. Comparison of computation overhead

Scheme Enc cost Decrypt

Public cost

Decrypt

Private cost

Dynamic

Updates

Secure

Communication size

[2] 3te + 2tm (2n+1)tm+tp tp + 2tm Not Supported NA

[15] 3te + 2tm (2n+1)tm+tp tp + 2tm nmaxte nmax |G1|
[4] 3te∗ + 2tm∗ (2n + 2)tm∗ +

tmp

tmp + tm∗ log mtm∗ +

2 log mte∗
Not required

[1] (3te + 2)tm (3n + 2)tm +

te + tp

tp + tm Not Supported NA

[14] 4te + 2tm (2n+1)tm+tp 3(tp + tm) 2te + nmax(3te +

(n + 2)tm)

3nmax |G1|

[12] 4te + 2tm (2mn + n +

2)tm + tp

tp + tm 3nmax(te + tm) nmax |G1|

Ours 4te + 2tm (n2 + 2n +

5)tm + 4tp

tp + tm m(6te + 4tm) Not required

n and m denote the number of data classes and number aggregate keys, respectively.

tm, te and tp denote the time-costs of performing one modulo multiplication, exponentiation

and bilinear pairing operation, respectively.

tmp, tte∗ and tm∗ are time-costs of computing one multilinear pairing, one exponentiation

in multilinear group, and one multiplication in multilinear group.

of outsourcing an owner’s data to the Cloud storage. All the schemes, including
ours, require linear total public storage except [4] and [14]. Gan et al.’s scheme [4]
requires logarithmic public storage, which may seem efficient. However, their
scheme is constructed using multilinear maps. Since there is no known practical
instantiation of multilinear maps existing in the literature, Gan et al.’s scheme [4]
is less practical compared to the other schemes. Further, Pareek et al.’s KAC [14]
requires public storage which is upper bounded by a polynomial in the number of
data classes n. It can be seen that the proposed KAC construction for dynamic
access control satisfies all state-of-the-art key-aggregate efficiency requirements.

In Table 2, we compare the time-costs of various operations involved in the
proposed scheme with those involved in the existing ones. It can be seen that
in all the schemes compared in Table 2, majority of decryption operation is out-
sourceable to a semi-trusted third-party. Note that only those computations can
be outsourced that involve either publicly available components or the cipher-
text components. The user will have to perform the operations that involve its
secret, in this case the aggregate key Ku. We refer to the cost of the outsourceable
computational steps as public cost and those that have to be performed by the
data user as private cost of decryption. It is clear from Table 2 that all schemes
including the proposed one incur only a constant private cost for decryption.
An important cost depicted here is the cost of enforcing dynamic updates. This
includes the computation cost of the dynamic update and the size of the secure
communication required to complete the update. While former gives a fair idea
of computation overhead, the latter is an indication of the extent of the one-
affects-all problem in the scheme. For comparison, we consider the cost involved
in deletion of one data class from an aggregate set with forward secrecy. It is
clear that in all KAC schemes, the data owner has to perform roughly the same
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amount of computations and secure communications. However, there are only
two works that do not require any secure transmissions, namely Gan et al. [4]
and the proposed KAC scheme. As we have already pointed out, the scheme
in [4] is based on the multilinear maps, which makes it less practical than ours
which is designed using bilinear pairings. To conclude, the proposed scheme sup-
ports secure and efficient dynamic updates. Ours is the only KAC construction
so far that requires zero secure communication to ensure dynamic security while
not compromising on the key-aggregate computational efficiency requirements.

6 Conclusions and Future Work

Key-aggregate cryptosystems (KAC) have attracted attention in recent times
due to their efficiency and simplicity of enforcing access control on data out-
sourced to a cloud storage. However, enforcing dynamic updates in access rights
of users using the existing KAC constructions is computationally inefficient. In
this paper, we have successfully mitigated this problem by designing the first key-
aggregate cryptosystem using bilinear pairings that does not require any secure
communications to securely enforce dynamic updates in access rights. The aggre-
gate keys are assigned to the users only once. Any dynamic updates in access
rights of the users ar handled by only modifying the public parameters thereby
making the dynamic update procedure very efficient. We have proved security of
the proposed construction and compared its performance with the existing KAC
constructions. Our analyses have indicated that the proposed KAC satisfies all
key-aggregate efficiency requirements despite having the most efficient dynamic
update procedure of all the KAC constructions. An important future direction
is to use the notion of KAC and design lightweight authentication protocols that
suit the requirements of highly dynamic and pervasive computing environments.
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Abstract. This paper addresses the prediction of failures in the air pres-
sure system of Scania trucks to minimize associated operating costs. A
custom ensemble model is proposed combining random forest, XGBoost,
and multi-layer perceptron algorithms. By optimizing the classification
threshold, false positives and false negatives are reduced, effectively mini-
mizing costs. In comparison to previous studies, the model’s performance
is evaluated using metrics like accuracy, AUC, precision, recall, etc., and
it demonstrates superior performance across all these measures. This
research significantly contributes to predictive maintenance in the auto-
motive industry by offering valuable insights for effective failure manage-
ment, cost reduction, and enhanced operational efficiency.

Keywords: Scania trucks · ensemble model · classification threshold ·
cost optimization · predictive maintenance

1 Introduction

Scania vehicles are renowned for their dependability, durability, and performance
in the transportation industry. Heavy-duty applications, construction, and long-
distance transportation are just a few industries that use these trucks extensively.
An essential part of Scania trucks, the air pressure system is crucial to these
vehicles’ safe and effective running. Further, the air pressure system is significant
in ensuring Scania trucks’ smooth operation and safety. It maintains the proper
air pressure within the braking system, which is crucial for efficient braking
performance and overall vehicle stability. However, failures in the air pressure
system can lead to severe consequences, such as accidents, increased maintenance
expenses, and vehicle downtime, etc. [1]. In response to these challenges, this
research undertakes the development of a specialized failure prediction model
tailored specifically for the air pressure system of Scania trucks. This involves
leveraging advanced machine learning algorithms and predictive maintenance
techniques to anticipate potential failures before they occur accurately.

The prediction of air pressure system failures holds immense value in terms
of proactive maintenance planning and cost reduction. By identifying potential
issues ahead of time, fleet managers and maintenance teams can take prompt

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Devismes et al. (Eds.): ICDCIT 2024, LNCS 14501, pp. 151–166, 2024.
https://doi.org/10.1007/978-3-031-50583-6_10
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actions to prevent failures, minimize downtime, and optimize maintenance sched-
ules. This approach significantly enhances operational efficiency, reduces main-
tenance costs, and ultimately improves the overall safety of the vehicles.

Our paper’s main contribution.

– This study presents an ML-based approach to predict failure and minimize
the cost defined by C(t) = 10∗FP+500∗FN, where FP is number of instances
with type 1 error and FN is number of instances with type 2 error.

– We applied different imputation techniques and came up with the best tech-
niques for handling missing values.

– Along with Hyperparameter tuning, we applied threshold tuning to optimize
our failure prediction model.

– The model is evaluated using hybrid ML algorithms, and the results show that
our model outperforms other approaches in failure prediction by reducing cost
along with higher AUC, accuracy, sensitivity, and specificity scores.

2 Literature Review

Costa and Nascimento (2016) [5] propose a model with a more significant penalty
for false negatives than false positives, reducing misclassification costs. They
compare several classification techniques and find that the Random Forest algo-
rithm outperforms others, significantly reducing misclassification costs.

Ozan et al. (2016) [11] introduce an improved K-NN classification method
for missing data and unbalanced datasets. Their approach incorporates missing
value estimation and optimization strategies, outperforming conventional tech-
niques like SVM, AdaBoost, and Random Forests.

Gondek et al. (2016) [6] suggest various strategies for managing missing val-
ues, including median imputation, feature engineering, and feature selection.
Lastly, the Random Forest algorithm is employed for modeling, and the classifi-
cation threshold is 95.

Cerqueira et al. (2016) [4] present a data mining methodology for preven-
tive maintenance in heavy truck air pressure systems. Their approach involves
missing value filtering, meta-feature engineering, class imbalance correction, and
learning with boosted trees. Experimental results demonstrate the effectiveness
of XGBoost with meta-features.

Syed et al. (2021) [17] propose a method for binary classification issues, com-
bining Logistic Regression with SVM to optimize the AUC criteria. The goal is
to minimize the gap between the true positive rate (TPR) and the false posi-
tive rate (FPR) by pushing them as close as possible to the points (0, 1). They
evaluate several performance criteria to assess the approach’s performance.

Selvi et al. et al. (2022) [15] explore resampling techniques such as under-
sampling, oversampling, and SMOTE to preprocess unbalanced data to balance
the data distribution. They assess and compare the outcomes of various machine
learning algorithms using accuracy, precision, recall, and f1 score metrics.

Rafsunjani et al. (2019) [12] investigate missing value imputation methods
and compare the performance of classifiers such as Naive Bayes, KNN, SVM,
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Random Forest, and Gradient Boosted Tree. The study finds that random under-
sampling and MICE imputation enhance prediction accuracy.

Lokesh et al. (2020) [8] propose a methodology that combines the SMOTE
class imbalance technique with feature selection, missing data imputation, and
PCA. They evaluate the performance of Random Forest, SVM, Xgboost, and
Catboost, aiming to reduce maintenance costs.

Shivakarthik et al. (2021) [16] develop a system using OBD-II sensors, a
microcontroller, and a machine learning model for real-time defect prediction
in cars. They compare logistic regression, random forest, and gradient-boosting
tree classifiers with the gradient-boosting tree model, yielding the best results.

Akarte and Hemachandra (2018) [2] use the gradient boosting method to
apply predictive maintenance to Scania trucks’ air pressure systems. They
emphasize cost-sensitive learning to address the dataset’s imbalance and find
that the cost-sensitive classifier outperforms the cost-insensitive one regarding
maintenance costs.

Jose and Gopakumar (2019) [7] discuss the Random Forest (RF) method to
solve a classification problem and suggest tweaks to boost performance. It investi-
gates the elements that affect RF accuracy and overfitting, makes improvements
to strengthen and decrease correlation between trees, discusses missing value
imputation, and offers performance data demonstrating the suggested approach’s
viability.

Nguyen and Bui (2019) [10] focus on blast-induced air overpressure forecast-
ing, developing a hybrid model called ANNs-RF that combines artificial neural
networks and random forests. The hybrid model outperforms other AI models
in terms of accuracy.

Nabwey (2020) [9] investigates the effective brake system defect diagnosis
for driverless vehicles and enhanced driver support systems. The paper suggests
employing artificial neural networks, decision trees, and rough set theory to
diagnose defects to overcome current approaches’ shortcomings. A flaw detection
strategy for air brake systems is created using wheel speed sensor data to improve
road safety and vehicle health monitoring.

Raveendran et al. (2020) [13] propose a fault diagnosis method for brake sys-
tems based on machine learning and wheel speed sensor data. They use decision
trees and random forest algorithms to classify air brake system faults.

Raveendran et al. (2019) [14] introduce a method for predicting pushrod
stroke in air brake systems of heavy commercial vehicles using artificial neural
networks (ANN). Experimental data from a Hardware-in-Loop system is used
to train and test the network. The prediction system demonstrates remarkable
accuracy with a forecast error of no more than 15% for manual slack adjusters
and 8% for automatic slack adjusters.

3 Proposed Methodology

The main aim of our proposed approach is to improve the performance of our
failure prediction model and minimize the cost of misclassification. The proposed
architecture is shown below (Fig. 1).
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Fig. 1. Flowchart of proposed methodology

3.1 Data Collection and Preprocessing

The information comes from the University of California [1], specifically from the
Scania competition dataset. The dataset consists of two main files: the training
and test files. The training file contains 60, 000 rows and 171 columns. In addi-
tion, the training data is split 75:25, with 75% used for training and 25% for cross-
validation purposes, in contrast to the test file’s 16, 000 rows and 171 columns.
Various imputation approaches, including mean, median, mode, k-nearest neigh-
bors (k-NN), linear regression, etc., are used to handle these missing data. The
mean imputation technique involves replacing the missing values with the mean
of the available data for that feature. Similarly, the median imputation approach
replaces missing values with the median of the available data for the respective
feature. It is often preferred when dealing with data that has outliers or is not
normally distributed. The missing values are replaced by the mode (the most fre-
quently occurring value) of the feature in the mode imputation technique. The
K-NN imputation technique finds the K most similar records based on other
available features and uses their values to impute the missing values. The linear
regression imputation technique involves predicting the missing values based on
the relationship between the target variable and other variables through a linear
regression model. It was discovered through recurrent investigation that imputa-
tion produced the most excellent forecast precision and performance outcomes.

3.2 Model Construction

This study employed multiple algorithms, including linear regression, Random
forest, and XGBoost. Then, a hybrid model is built using three machine learn-
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ing algorithms, i.e., Random forest, XGBoost, and MLP, as a base model. The
algorithms are chosen based on their performance ability, e.g., Linear Regres-
sion provides easy interpretability of the relationship between the dependent
and independent variables, Random forest is robust to overfitting and can han-
dle a large number of input variables without variable deletion, and Xgboost
is highly scalable and can efficiently handle large datasets due to its parallel
and distributed computing. Further, Hybrid model leverages the strengths of
multiple algorithms, combining different models to improve overall predictive
performance. We use a voting classifier on the hybrid model to create a robust
framework for failure prediction.

3.3 Classification Threshold Optimization

In the context of failure prediction, choosing the right classification threshold is
crucial to find a suitable trade-off between false positives (FP) and false nega-
tives (FN ). Hyperparameters are the configuration settings of an algorithm that
govern the learning process. They are not learned during the training phase but
are set before the learning process begins. Examples of hyperparameters include
the learning rate in neural networks, the depth of a decision tree, the number
of clusters in a k-means clustering algorithm, and the regularization parameter
in regression models. Hyperparameter Tuning refers to the process of finding
the optimal values for these hyperparameters to achieve the best possible model
performance. The goal is to find the hyperparameter values that minimize the
error or maximize the performance metric on a validation set or through cross-
validation. This study’s classification threshold was fine-tuned to minimize costs
using a dedicated cost-minimization formula.

3.4 Threshold Tuning

Threshold tuning is an important technique used in imbalanced classification to
adjust the decision threshold, which is the point at which the predicted proba-
bilities are converted to class labels. This technique is crucial in cases where the
default threshold (usually 0.5) may not be optimal, especially in the presence of
severe class imbalance or when the cost of misclassifications is asymmetric.

Threshold tuning involves the following steps:

1. Fit Model on the Training Dataset: Train your chosen machine learning model
on the training dataset, allowing it to learn patterns and relationships within
the data.

2. Predict Probabilities on the Test Dataset: After training the model, use it to
make predictions on a separate test dataset. The output of the model will be
probabilities of class membership for each sample in the test dataset.

3. Convert Probabilities to Class Labels Using Various Thresholds: Try differ-
ent threshold values for converting these probabilities into class labels. For
instance, if the threshold is 0.5, predicted probabilities above 0.5 are classified
as one class, and those below 0.5 are classified as the other.
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4. Evaluate Class Labels: Evaluate the performance of the class labels gener-
ated by applying different thresholds. This evaluation is done using a chosen
evaluation metric, which could be related to the specific requirements of the
problem, such as precision, recall, F1 score, or a custom cost-sensitive metric.

5. Adopt Optimal Threshold: Select the threshold that maximizes the chosen
evaluation metric or strikes the right balance between trade-offs. This optimal
threshold is then used for making predictions on new, unseen data in the
future.

Generalised Mathematical Proof for Optimal Threshold. We aim to
find the ideal threshold value while considering a fixed model, which reduces the
overall operating cost. To do this, we will create a cost function called C(t), which
includes the expenses related to various classification error kinds. It’s crucial to
weigh the costs involved with examining warned instances against the possible
rewards of accurately classifying a case, such as potential revenue generating.
A prepared dataset with N examples will be subjected to this cost function,
and the threshold value, designated by the letter f , will be selected to have an
impact on the cost computation [3].

S(f) = LFPMFP (f) + LFNMFN (f) − LTPMTP (f)
−LTNMTN (f) + Lexp[MTP (f) + MFP (f)]

(1)

where,

– Lz: the cost of single error of type z ∈ {FP, FN}.
– Mz(f): the number of instances that, for a particular operating threshold f ,

our model is incorrectly labeled as z errors.
– LTP : the advantage that each TP case offers.
– LTN : the advantage that each TN case offers.
– Lexp: expense associated with going over each flagged (predicted-positive)

case.

To simplify differentiation, we shall restate the formulas of Mz(f) in terms
of differentiable values. To accomplish this, we will add an additional function
named g(x), which represents the probability density distribution of the model
output results that would be observed if the model were applied to a represen-
tative dataset.

In line with the definition of a probability distribution, the integral of the
function g(x) over all feasible output scores is 1.

1 =

+∞∫

−∞
g(x) dx (2)

Similarly, integrating the marginal distribution g(x, v = 1) over whole possi-
ble results is the fraction of the total M samples that have a positive class label
(i.e., v = 1).
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Mpos

M
=

+∞∫

−∞
g(x, v = 1) dx (3)

By dividing the marginal distribution g(x, v = 1) by the probability density
distribution g, the probability calibration curve for the model is obtained. Given
a model score of x, this calibration curve tells us what the likelihood is that an
example will have a genuine label of 1:

d(x) =
g(x, v = 1)

g(x)
(4)

The number of FN cases can be calculated by performing integration of the
positive label distribution g(x, v = 1) up to the cutoff value f . These “FN cases”
allude to situations where the model indicates a bad result, but the cases really
show a good result:

MFN (f) = M

f∫

−∞
g(x, v = 1) dx = M

f∫

−∞
d(x)g(x) dx (5)

Similarly, we get an expression each for the quantity of FP, TP, and TN
cases:

MFP (f) = M

∞∫

f

g(x, v = 0) dx = M

∞∫

f

(1 − d(x))g(x) dx (6)

MTP (f) = M

∞∫

f

g(x, v = 1) dx = M

∞∫

f

d(x)g(x) dx (7)

MTN (f) = M

f∫

−∞
g(x, v = 0) dx = M

f∫

−∞
(1 − d(x))g(x) dx (8)

Differentiating equations (5), (6), (7), and (8), we get:

M
′
FN (f) = M · d(f)g(f) (9)

M
′
FP (f) = −M · (1 − d(f))g(f) (10)

M
′
TP (f) = −M · d(f)g(f) (11)

M
′
TN (f) = M · (1 − d(f))g(f) (12)
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The derivatives of the TP and FN formulas, as you can see, add up to zero:

M
′
TP (f) + M

′
FN (f) = 0 (13)

This result demonstrates that the threshold selection does not impact the
number of cases with an actual positive class label. With equal and opposing
rates of change, true positive (TP) and false negative (FN ) circumstances are
directly related to each other when the threshold is raised. This justification also
supports the link between true negative (TN ) and false positive (FP) situations:

M
′
FP (f) + M

′
TN (f) = 0 (14)

Now we differentiate S(f) and use the relationships indicated in Eq. 14 to
reduce S

′
(f) to an equivalent form that is easily recognizable:

S′(f) = LFPM ′
FP (f) + LFNM ′

FN (f) − LTPM ′
TP (f)

− LTNM ′
TN (f) + Lexp[M ′

TP (f) + M ′
FP (f)]

= LFPM ′
FP (f) + LFNM ′

FN (f) + LTPM ′
FN (f) + LTNM ′

FP (f)
+ Lexp[−M ′

FN (f) + M ′
FP (f)]

= (LFP + LTN + Lexp)M ′
FP (f) + (LFN + LTP − Lexp)M ′

FN (f)

(15)

From this point, we can rearrange terms and enter the Mz(f) derivatives.

S
′
(f) = (LFP + LTN + Lexp)[−M · (1 − d(f))g(f)]

+ (LFN + LTP − Lexp)[M · d(f)g(f)]
= M · g(f)[(LFP + LFN + LTN + LTP )d(f) − (LFP + LTN + Lexp)]

(16)

Now we get two different solutions by equating S′(f) to zero, but only one of
these solutions is really reliant on our cost coefficients:

⎧⎨
⎩

g(θ0) = 0

d(θ1) =
LFP + LTN + Lexp

LFP + LFN + LTN + LTP

⎫⎬
⎭ (17)

To determine the nature of these solutions as critical points, it is necessary
to examine the curvature of S(f) at each of these locations. To achieve this,
another derivative is required. To simplify the notation, we’ll introduce two new
nonnegative constants: i and j.

i = LFP + LFN + LTN + LTP (18a)
j = LFP + LTN + Lexp (18b)
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Rewriting S
′
(f) with the constants in Eqs. (18a) and (18b), we get:

S
′
(f) = M · g(f)[i · d(f) − j] (19)

Then we differentiate S
′
(f) using the product rule:

S
′′
(f) = M · g

′
(f)[i · d(f) − j] + M · g(f)[i · d

′
(f)] (20)

When evaluating this expression at our first solution in Eq. 17, we obtain a rather
intricate result:

S
′′
(θ0) = M · g

′
(θ0)[i · d(θ0) − j] + M · 0 · [i · d

′
(θ0)]

= M · g
′
(θ0)[i · d(θ0) − j]

(21)

However, the slope of g(x) at the extrema may not always be zero if the func-
tion is specified within a constrained range and becomes zero at the extrema of x.
Consideration of the behavior of the probability calibration function in such cir-
cumstances becomes critical. Higher score values always translate into increased
probabilities, a property of a trustworthy probability calibration function called
monotonicity. If the model scores do not show this behavior, then the model is
not doing a good enough job capturing how the labeled data is distributed. Fur-
thermore, d(x) should ideally approach, or at least nearly approximate, 0 and 1,
respectively, at the lowest and largest x values.

When we analyze our second derivative S′′ solution at xmin (the smallest
conceivable value of x), taking into account our hypotheses regarding suitable
probability calibration functions, the following findings come to light:

S
′′
(θ0 = xmin) ≈ −j · M · g

′
(xmin) (22)

g
′
(x) must be greater than or equal to 0 at xmin in order to hold the result.

j is higher than or equal to 0 and g(xmin) = 0. Therefore S′′ is lower than or
equal to 0.

In other words, treating every scenario favorably, the scenario will only lead
to the cost function to reach its maximum value or inflection point. Let’s explore
the case where g(x) is zero at x maximal at the other end of the distribution
(the maximum possible value of x). We can observe the following by replacing
S

′′
with d(xmax) ≈ 1.

S”(θ0 = xmax) ≈ −M · g
′
(xmax[i − j])

≈ −M · g
′
(xmax[LFN + LTP − Lexp]

(23)

As g
′
(x) <= 0 at xmax, the following must be true

S”(θ0 = xmax) > 0 iff Lexp > LFN + lTP (24)

It is evident from this that, even after accounting for the potential benefit
of correctly predicting the true positive (TP), estimating every specific instance
as negative can only lower overall operating costs if the expense of reviewing a
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real positive case is greater than the expense of a false negative (FN ) brought
on by ignoring it.

Let us now concentrate on the non-trivial answer at θ1. We can simplify the
expression for S

′′
at the critical point by substituting the value of j

i for d(1) as
follows:

S”(θ1) = M · g
′
(θ1)[i · j

i
− j] + i · N · g(θ1)d

′
(θ1)

= i · M · g(θ1)d
′
(θ1)

(25)

The probability distribution that is the function f(t) ensures that it is always
non-negative. Now that we’ve assumed that the critical point has some data
density, we can state the concavity condition as follows:

S
′′
(θ1) > 0 iff d(θ1) > 0 (26)

Our chosen threshold value will always minimize the cost because a reason-
able probability calibration function is strictly rising. As a result, this require-
ment serves as the standard for choosing the best threshold.

Hence we set the parameters for the ideal threshold as follows

d(θ) =
LFP + LTN + Lexp

LFP + LFN + LTN + LTP
(27)

Our cost minimization formula C(t) = 10 * FP + 500 * FN can be rewritten
in the general form as follows

S(f) = LFPMFP (f) + LFNMFN (f) (28)

So, by using the same general formula, we can derive the condition for the
optimal threshold for a given cost function as follows

d(θ) =
LFP

LFP + LFN
(29)

Hence, when we choose to run a model at a probability decision limit of d(θ) =
0.5, it signifies that we assign equal importance to both types of misclassification
costs. But as in our cost function, FN is 50 times more costly than FP. Hence,
we can tune our threshold value as close to zero as possible to minimize the cost.

4 Result and Discussion

4.1 Performance Evaluation

The following performance metrics are used to evaluate our algorithm:

– AUC: The AUC measures how well a model can classify data into two cat-
egories (Area Under the Curve). It demonstrates the probability that the
model will assign a greater value to a randomly picked positive instance than
to a negatively sampled case.
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– Accuracy: A common way to measure how well a classification model works
is by how accurate it is. It shows how many of the total number of instances
in the dataset have been correctly categorized.
Accuracy = (Number of Cases That Were Correctly Classified)/(Total Num-
ber of Instances)

– Precision: It measures how well a classification model can pick out true
positives from the cases it thinks are true positives. It looks at how accurate
the good predictions were.
Precision = (True Positives)/(True Positives + False Positives)

– Recall: It is also called sensitivity or true positive rate and is a performance
metric that measures a classification model’s ability to identify all positive
cases in a dataset correctly. It focuses on how well the model can capture all
good things.
Recall = (True Positives)/(True Positives + False Negatives)

– Misclassification Cost: Formula used to calculate the cost

C(t) = 10 ∗ FP + 500 ∗ FN (30)

Here we consider Hybrid Model, xgboost, Random Forest, and Logistic
Regression for comparison based on their respective strengths like Linear Regres-
sion provides easy interpretability of the relationship between the dependent and
independent variables. Random forest is robust to overfitting and can handle a
large number of input variables without variable deletion. Xgboost is highly scal-
able and can efficiently handle large datasets due to its parallel and distributed
computing. Hybrid model leverages the strengths of multiple algorithms, com-
bining different models to improve overall predictive performance (Table 1).

Table 1. Performance of the Hybrid Model, Xgboost, Random Forest and Logistic
Regression on the Train and Test Dataset of APS Failure Detection

Performance
metric

Hybrid Model Xgboost Random Forest Logistic Regression

Train Test Train Test Train Test Train Test

AUC 0.997 0.996 0.996 0.995 0.994 0.995 0.933 0.942

Sensitivity 0.985 0.971 0.988 0.984 0.963 0.944 0.901 0.909

Specificity 0.980 0.974 0.960 0.962 0.984 0.979 0.922 0.923

Accuracy 0.979 0.973 0.960 0.962 0.983 0.978 0.921 0.922

TP 985 364 988 369 963 354 901 341

TN 57814 15212 56650 15027 58035 15302 54373 14418

FP 1186 413 2350 598 965 323 4627 1207

FN 15 11 12 6 37 21 99 34
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1. Hybrid Model:

The Hybrid Model received strong AUC ratings from both the training
(0.99732) and test (0.99619) datasets, demonstrating how well it could dis-
tinguish between the two groups. It did a fantastic job of identifying both
positive and negative instances thanks to its high sensitivity (0.985 on the
train and 0.971 on the test) and specificity (0.980 on the train and 0.974 on
the test). The hybrid model was similarly quite accurate with training set
values of 0.97998 and test set values of 0.9735. In contrast to the 57, 814 true
negatives on the train and 15, 212 true positives on the test, there were 985
true positives on the train and 364 on the test.

2. Xgboost:

Compared to the Hybrid Model, Xgboost had slightly lower AUC values
(0.99696 on train and 0.99556 on test). It was able to distinguish between good
and bad instances because of its excellent sensitivity (0.988 on the train and
0.984 on the test) and specificity (0.960 on the train and 0.962 on the test).
With training set values of 0.96063 and test set values of 0.96225, Xgboost’s
accuracy was similarly quite high. There were 988 true positives on the train,
while 369 people tested positive. There were 56, 650 genuine negatives on the
train, and on the test, there were 15, 027.

3. Random Forest:
With AUC values of 0.994431 on the train and 0.99578 on the test, Random
Forest performed marginally worse than Xgboost. It exhibited a reduced sen-
sitivity (0.963 on train and 0.944 on test) compared to the earlier models, but
it still had a high specificity (0.984 on train, 0.979 on test). Random Forest
was also quite accurate with training set values of 0.9833 and test set values
of 0.9785. There were 963 true positives on the train, while 354 people tested
positive. There were 58, 035 genuine negatives on the train, whereas on the
test, there were 15, 302.

4. Logistic Regression: Logistic Regression had the lowest AUC scores among
the other models, with 0.93370 on the train and 0.94244 on the test. Compared
to earlier models, its sensitivity was reduced (0.901% on train and 0.909% on
test), but its specificity remained moderate (0.922 on train, 0.923 on test).
Logistic Regression lacked the precision of competing models. On the training
set, its values were 0.92123, whereas, on the test set, they were 0.92243. The
train contained 901 genuine positives, while 341 failed the test. 14, 418 test
results and 54, 373 authentic negatives were discovered.

4.2 Comparision with Base Model

We considered the model in [17] as the base model for comparison with our
models. The base model has moderate performance across all metrics, with values
ranging from approximately 0.78 to 0.80. The hybrid model outperforms the base
model significantly in all metrics, achieving high values close to 1.0, as shown in
Fig. 2.
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Fig. 2. Comparision of Performance of our models with Base model

Table 2. Threshold values for different classifiers

Classifier Threshold value

Hybrid Model 0.031998

Xgboost 0.00775

Random Forest 0.081930

Logistic regression 0.011349

4.3 Optimal Threshold Obtained

Table 2 shows the optimal threshold values obtained on different classifiers after
performing threshold tunning at which the misclassification cost defined by the
cost function is minimum,

Table 3. Cost calculation of Hybrid Model, Xgboost, Random Forest and Logistic
Regression on the Train and Test Dataset of APS Failure Detection

Classifier Training data Test Data

FP Cost FN Cost Total Cost FP Cost FN Cost Total Cost

Hybrid Model 11860 7500 19360 4130 5500 9630

XGboost 23500 6000 29500 5980 3000 8980

Random Forest 9650 18500 28150 3230 10500 13730

Logistic
Regression

46270 49500 95770 12070 17000 29070
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4.4 Misclassification Cost Evaluation

As Shown in Table 3 the cost calculations are for four different classifiers (Hybrid
Model, XGBoost, Random Forest, and Logistic Regression) on the train and
test datasets of APS Failure Detection. The costs are divided into False Positive
(FP), False Negative (FN ), and Total Costs.

– Hybrid Model:
Training data: FP Cost = 11,860, FN Cost = 7,500, Total Cost = 19,360 Test
data: FP Cost = 4,130, FN Cost = 5,500, Total Cost = 9,630

– XGBoost: Training data: FP Cost = 23,500, FN Cost = 6,000, Total Cost
= 29,500 Test data: FP Cost = 5,980, FN Cost = 3,000, Total Cost = 8,980

– Random Forest: Training data: FP Cost = 9,650, FN Cost = 18,500, Total
Cost = 28,150 Test data: FP Cost = 3,230, FN Cost = 10,500, Total Cost =
13,730

– Logistic Regression: Training data: FP Cost = 46,270, FN Cost = 49,500,
Total Cost = 95,770 Test data: FP Cost = 12,070, FN Cost = 17,000, Total
Cost = 29,070

4.5 Cost Comparison with Base Model

From Fig. 3, we can observe that Xgboost showed the lowest total cost, but the
FN cost is less than the Base model. The Hybrid Model has the lowest both FP
Cost and FN Cost compared to the base model while maintaining Lower total
misclassification cost, indicating better performance in minimizing false positives
and false negatives compared to the other models.

Fig. 3. Comparision of misclassification cost of our models with Base model
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5 Conclusion

In conclusion, the study analyzed the effectiveness of various machine learning
algorithms, emphasizing failure prediction in the air pressure system of Scania
trucks. The Hybrid Model was found to be the most efficient with its extraordi-
nary discrimination abilities, high accuracy, sensitivity, and specificity, and low
total cost in terms of false positives and false negatives. While Logistic Regres-
sion performed poorly, XGBoost and Random Forest models performed well.

The research findings have significant implications for the field of failure
prediction in the automotive industry, particularly for the air pressure systems
of trucks. The precise failure prediction provided by the models can result in
improved maintenance strategies, cost savings through optimized restorations,
increased safety and reliability, and a more comprehensive application for pre-
dicting failures in other automotive components. In addition, the study con-
tributes to advancements in predictive maintenance research and offers valuable
insights for developing cutting-edge strategies.

However, the study has limitations, such as the small dataset size, the limited
feature selection due to anonymized data, and the choice of particular machine
learning models. Future research directions are suggested, including the incorpo-
ration of advanced machine learning techniques, the incorporation of real-time
sensor data, and the incorporation of external data sources in order to improve
the accuracy and reliability of failure prediction models.
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Abstract. The adoption of IoT devices is growing due to their versatility and sim-
plicity. The number of security risks associated with these devices has increased
as a result of their increased popularity. Therefore, it is crucial to have a reliable
IoT network intrusion monitoring system. In order to identify IoT network attacks
using machine learning models, this study suggests a multi-class classification
method. It includes contemporary attacks that enabled us to categorize them into
more than two classes. In this study, we looked at 9 different IoT network assault
variations using the UNSW-NB15 dataset and 6 of these 9 attacks are given higher
importance during the classificationprocess. The suggested approach includes data
preparation, feature selection, and the creation of synthetic data using the CTGAN
methodology. After generating synthetic records, the final dataset is used to train
and evaluate the efficacy of various machine-learning designs, such as Random
forests, Extra trees, Decision trees, and XG Boost, with XGBoost outperforming
them all with an accuracy of 96.71. The findings of this study will help to create a
more reliable and effective IoT network assault detection system, which will aid
in the prevention of possible security vulnerabilities in IoT networks.

Keywords: Network intrusion ·Multiclass · XGBoost ·Machine learning ·
UNSW-NB15 · Conditional Generative Adversarial Networks (CTGAN) ·
Population-Based Training (PBT)

1 Introduction

1.1 IoT Attack

The Internet of Things (IoT) is a network of devices that connect with one another and
over the internet [1]. IoT devices are vulnerable to a wide range of assaults, includ-
ing viruses, botnets, and denial-of-service (DoS) attacks, which might jeopardise their
security [2]. Attacks like this can take many different forms, DDoS, malware, and man-
in-the-middle (MITM) attacks are examples of such threats [3]. Several studies have
highlighted the need of protecting IoT devices from these assaults [4, 5]. Kolias et al.
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(2017) [6] said that IoT security is a critical problem owing to these devices susceptibility
to DDoS, botnets, and malware attacks. The Mirai botnet assault on Dyn, for example,
caused major internet disruption in the United States and Europe. In a similar way the
Reaper botnet [7] infected more than one million IoT devices and could launch DDoS
assaults and steal data. Another example is the VPNFilter virus, which infected over
500,000 routers and IoT devices throughout the world [8], allowing attackers to steal
data, launch DDoS assaults, and render equipment inoperable. As a result, it is critical
to put in place strong security measures to safeguard IoT devices from these risks (refer
Fig. 1).

Fig. 1. Phases of a network attack

1.2 Types of IoT Attacks

The surge in Internet of Things (IoT) devices usage has raised concerns about net-
work security and reliability due to their vulnerability to various attacks, including
fuzzers, analysis, backdoors, DoS, exploits, generic attacks, reconnais-sance, Shellcode
and worms [9–17]. IoT devices, such as smart homes, smart watches, and industrial
control systems, are frequently plagued by insufficient security standards and a lack of
upgrades. Fuzzing attacks include the use of fuzzers to find weaknesses in a system by
entering random or erroneous data [9]. Analysis attacks collect and analyse data from
connected devices in order to extract sensitive information [10]. Backdoor attacks on IoT
devices enable unauthorized access and control for malicious purposes [11], such as the
2017 IoT camera backdoor incident. Denial-of-service (DoS) attacks aim to overwhelm
networks with excessive data, rendering them inaccessible, with IoT devices often tar-
geted due to their weak security [12]. Exploits take advantage of software vulnerabilities
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to gain unauthorized system access, with the 2019 Ripple20 exploit impacting millions
of IoT devices worldwide [13]. Generic attacks encompass a broad range of methods,
including social engineering andphishing, to obtain unauthorizednetwork access, as seen
in the 2018 IoT hotel room lock system attack [14]. Reconnaissance attacks involve gath-
ering information about networks or devices to identify potential vulnerabilities, with
IoT devices commonly targeted [15], like the 2018 IoT CCTV company incident. Shell-
code attacks introduce malicious software for unauthorized access, as evidenced by the
2020 IoT smart home shellcode exploit [16]. Worms, a type of malware, replicate and
spread by exploiting system weaknesses, with IoT devices frequently targeted due to
their poor security and lack of updates, as demonstrated by the 2018 IoT Reaper worm
[17].

2 Related Works

Various feature extraction and classification techniques have been used in a number of
studies to classify IoT network threats. Examples include Moustafa et al. [18] created
the UNSW-NB15 dataset in 2015. This dataset uses the IXIA tool to simulate attacks
and actual benign traffic. Koroniotis and others [19] made the Bot-IoT dataset avail-
able in 2018, which includes both legitimate and malicious traffic that was generated
through actual experimentation. Faruki and co. In 2017, [20] proposed a hybrid feature
selection and random forest classifier-based intrusion detection system for IoT networks.
Al-Smadi and co. [21] delivered the IoT-Botnet dataset in 2020, comprising of traffic
created by different IoT gadgets, and they utilized AI strategies, for example, choice
tree and arbitrary woodland figuring out how to classify the traffic as malware or not.
Goyal et al. in 2021 [22] combined methods for feature selection and extraction to pro-
pose a novel strategy for classifying IoT network intrusions. Be that as it may, these
datasets have restricted measures and may not cover all possible IoT network assault cir-
cumstances. Furthermore, not all IoT networks or attack scenarios can benefit from the
feature selection and extraction techniques described in [22]. Kumar et al. [25] proposed
a methodology that includes data preprocessing with label encoding, feature selection
using chi-square analysis, data split (80% training, 20% testing), model construction
(SVM, LR, XGB, DT, RF), and evaluation based on AUC, F1 score, and FAR. Fuat
et al. [26] proposed a methodology that involves data preprocessing, the application of
various machine learning algorithms, including Logistic Regression, K-Nearest Neigh-
bors, Random Forest, and Decision Trees, as well as deep learning architectures such
as Multi-Layer Perception (MLP) and Long-Short-TermMemory (LSTM). Model eval-
uation is conducted using key performance metrics. Khorzom et al. [27] proposed a
machine learning-based system for the intrusion detection system. The proposed system
is a dynamically scalable multi-class machine learning-based network IDS. The outputs
of the extreme learning machine classifier are used as the inputs of a fully connected
layer followed by a logistic regression layer to make smooth decisions for all classes.
The results show that it outperforms the related studies in terms of accuracy.

The general goal of this study is to develop amulticlass classifier that accurately iden-
tifies an IoT network attack while also having characteristics and data that are scalable
enough to be categorised into different groups of IoT attack variants. Our contribution,
in particular, has three goals, which are listed below:
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1. A multi-class model that accurately focusses on worms, analysis, shellcode, espi-
onage, backdoor, and normal attacks, which are usually regardedmore serious attacks
as they entail intentional and focused efforts to infiltrate and damage a system.

2. Use CTGAN to produce additional dynamic data for testing the accuracy of the
built classifiers and alleviating the data scarcity issue for Analysis, Backdoor, Shell-
code, and Worms. As a result, machine learning algorithms for classifying IoT net-
work threats performed better. When compared to using only the original dataset, the
addition of synthetic data improved the precision of their models.

3. On the basis of the aforementioned data, compare several models and choose the best
match classifier.

The methodology and architecture designed for our study is shown in Fig. 2.

3 Data Collection and Preprocessing

3.1 Details About UNSW-NB15 Dataset

The UNSW-NB15 dataset is a labeled dataset for network intrusion detection systems,
containing over 2 million instances with 48 features each, developed by Nour Moustafa
et al. [18]. It encompasses diverse attacks and benign traffic recorded usingBro andArgus
simulators [18]. Features were selected from literature recommendations [1, 23], and an
annotated ground truth file aids model comparison [18, 23]. This dataset is essential for
evaluating and advancing intrusion detection systems.

3.2 Data Pre-processing and Clamping

To preprocess the dataset, the ‘id’ and ‘label’ columns were removed, and highly corre-
lated columns were eliminated, identified by a correlation threshold of >0.8. Extreme
values were pruned to reduce skewness, using the logic that features with a maximum
value more than ten times the median were pruned to the 95th percentile. Clamping was
only applied to features with a maximum greater than 10 times the median to prevent
excessive pruning of small value distributions. Then scaling and transforming numeri-
cal and categorical features is done. The mathematical columns are chosen first, which
include only columns with data types of integer and float. Similarly, the categorical
columns are selected with the data type as object, and all necessary pre-processing is
performed.

3.3 Samples and Features Considered

Table 1 provides information about the samples evaluated for creating a classifier.
Although, substantial work was done to increase the scalability of our work, we added a
big number of samples. We identified the 24 top features from the dataset’s 49 features
based on parameters such as correlation and feature relevance.

The dataset features that we considered are: The features include dur, service,
spkts, dpkts, rate, sttl, dttl, sload, dload, sinpkt, dinpkt, sjit, djit, swin, stcpb, dtcpb,
smean, dmean, trans_depth, response_body_len, ct_srv_src, ct_state_ttl, is_ftp_login,
ct_flw_http_mth and attact_cat.
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Table 1. Count of each attack

S. No Attack name Attack count

1 Normal 56000

2 Generic 40000

3 Reconnaissance 10491

4 Analysis 2000

5 Backdoor 1746

6 Shellcode 1133

7 Worms 130

4 Data Collection and Preprocessing

4.1 Hyperparameter Training with Grid Search

TheXGBoost classifier in termsof accuracy, beats othermodels, according toTable 2.We
usedGrid Search hyperparameter training to identify the bestXGBoost hyperparameters,
including number of trees, maximum tree depth, subsample ratio, and learning rate. The
optimal set of hyperparameters was determined by employing a method provided by a
specific library, known as ‘GridSearchCV.best_params_.’ This method, available in the
GridSearchCVmodule,was utilized to identify the best hyperparameter configuration for
our experiments. The code is implemented to map integer values to attack categories,
and a dataframe is generated that shows the count of each unique value in the test
and predicted values. Another dataframe is created to analyze where accuracy can be
improved for each model by displaying the number of correctly predicted and wrongly
predicted values for each class. We decided to increase the number of records for attacks
causing imbalance in the dataset based on the analysis of the number of records for
different attacks in Table 1.

4.2 Applying Conditional Generative Adversarial Networks (CTGAN)

Generative Adversarial Networks (GANs) are a two-stage process that includes build-
ing additional samples from existing data using a generator model and a discriminator
model that forecasts whether the samples are genuine or false. CTGAN is a generative
adversarial network (GAN) model designed for generating synthetic tabular data [28].
It is specifically tailored to address the challenges of generating structured, tabular data
commonly found in applications like financial datasets, healthcare records, and more.
CTGAN utilizes conditional GANs to capture the complex relationships and distribu-
tions present in tabular data, allowing it to generate realistic synthetic data that closely
resembles the original dataset.

GANs are widely used in image processing and can even create synthetic human
faces that have never appeared before.In this study, to solve the data imbalance issue in
the UNSW15 network attack dataset, we used CTGAN, a variant of GAN, to produce
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Fig. 2. Architectural Diagram

synthetic tabulated data from a combination of quantitative and categorical origins [24].
By using the conditional generator and resampling training data, CTGAN generates
column-wise synthetic data using fully connected networks, rather than long short-term
memory networks [24].We utilized this approach to increase the records for classes with
data scarcity and merged the generated records with the original dataset, as shown in
Fig. 3 and Table 2. After pre-processing, the newly generated data was split into train and
test sets by stratified train-test split, ensuring that each class is adequately represented in
the training and testing sets and the train data was fed to all the classification algorithms
mentioned, and the models were trained with hyper-parameter tuning and tested.We had
added synthetically generated data for whole data and then split it into train-test sets.
We had used stratified train-test sampling to avoid imbalance in training data and testing
data.

4.3 Population-Based Training (PBT) for Enhanced Individual Attack Detection

In order to improve the accuracy of individual attack detection models, we employ
Population-Based Training (PBT), to dynamically fine-tune hyperparameters for each
attack type’s detection model, hence maximizing their performance, by building on the
foundation built by CTGAN-generated synthetic data.
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Table 2. Statistics of GAN Data

S. No Attack name Attack count

1 Normal 56000

2 Generic 40000

3 Reconnaissance 10491

4 Analysis 12000

5 Backdoor 11746

6 Shellcode 11133

7 Worms 10130

Fig. 3. Implementation of CTGAN

4.3.1 PBT Initialization and Hyperparameter Configuration

We began the Population-Based Training (PBT) procedure by launching a broad collec-
tion of individual assault detection models. Each model was painstakingly developed
with unique hyperparameter settings that included critical variables like as learning rates,
batch sizes, and regularization factors. The introduction of a variety of hyperparameter
values into themodels strategically established the groundwork for a fruitful environment
amenable to intricate study and optimization.

4.3.2 Model Exchange and Diversity Maintenance on a Regular Basis

The incorporation of periodic hyperparameter exchange among individualmodelswithin
the cohort was a defining feature of our research path. PBT’s inherent orchestration of
knowledge exchange among models served as a bulwark against the dangers of converg-
ing to local optima. The maintenance of variety, a fundamental premise of PBT, echoed
throughout the training process, encouraging the study of hyperparameter dimensions
and fostering the formation of attack detection models that exemplified both resilience
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and accuracy. PBT dynamically explored hyperparameter choices during training by
iteratively assessing the efficacy of each individual model. Depending on the reported
model performance, hyperparameters are disturbed and changed.

4.3.3 Constant Refinement and Improved Accuracy

As the pace of our research accelerated, the PBT architecture remained firm in its dedica-
tion to the constant refining of hyperparameters inside specific attack detection models.
A continual state of adaptation guaranteed that these models stayed tuned in to the
dataset’s ever-changing subtleties. This commitment to ongoing refining unlocked the
latent potential for refinement, resulting in levels of accuracy that exceeded traditional
standards. PBT automatically altered and modified hyperparameters with each iteration
depending on model performance input. This flexibility is a response to the subtleties
brought by the dataset’s ever-changing properties, which inevitably includes a range
of attack methods, variances, and complexity.By tweaking hyperparameters, employing
PTB, and recalibrating crucial settings such as learning rates, batch sizes, and regular-
isation factors to correspond with the current data landscape. As a result, the models
were fine-tuned to effectively identify patterns and anomalies, responding to the nuanced
complexities that may occur over time.

5 Results and Discussion

The entire execution of the accompanying models is finished in Python programming
language utilizing Scikit-learn, TensorFlow and Pandas etc. Initially, we have considered
1,11,500 records and applied CTGAN and increased the record count to 1,51,500. Then
we have split the data into training and testing sets and have trained the models. In
Table 2, all of the initial results are listed with their respective accuracies. On the other
hand, after CTGAN all the 5 models performed exceptionally well with best accuracy
for XGBoost Classifier with 96.71%, which consumed around 60 min for training, then
Random Forest with accuracy of 96.66%, which took 45 min followed by Extra Tree
Classifier with 96.31%, Decision Tree with 95.10% and KNN model with accuracy of
89.58%, which took around 35 min each, which are mentioned in Table 3.

A synergistic combination of CTGAN-generated synthetic data and PBT’s adaptive
optimization prowess unfolded in front of us, providing a riveting story of exponential
increases in the accuracy of individual attack detection models. Our experimental analy-
sis’ annals echo with the clear declaration of PBT’s dominance, extolling its function as
the spearhead in magnifying the overall efficacy of our painstakingly constructed app-
roach. This unrelenting dedication to pushing the boundaries of IoT network threat detec-
tion manifests itself through the integration of Population-Based Training.Additionally,
we had obtained the best accuracy for prediction over all the models. Worms are best
predicted with accuracy of 99.63, then Generic with accuracy of 99.62, Normal with
accuracy of 98.62, Shellcode with accuracy of 97.30, Backdoor with accuracy of 92.43
and Analysis with accuracy of 90.70 as shown in Table 4.

Furthermore, our study offers a granular insight into the capabilities of various
machine learning models in recognizing specific types of attacks as detailed in Table 4.
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For instance, our Random Forest model achieved an accuracy of 99.72% in detecting
‘Generic’ attacks and 97.22% for ‘Shellcode’ attacks, which suggests a high degree of
precision and reliability that surpasses the general performance metrics provided in pre-
vious literature.WhileKumar et al. [25] and Fuat et al. [26] reported general performance
metrics like accuracy, precision, and F1-score, they did not delve into the performance
of individual attacks. Our detailed breakdown offers a more comprehensive view, facil-
itating a nuanced understanding of how well each model performs in different intrusion
scenarios. In our study, the use of CTGANas a data augmentation technique significantly
improved the performance of our machine learning models across various metrics. For
example, the Extra Trees model saw a dramatic improvement in accuracy, rising from
83.94% to 96.31%. Additionally, the models excelled in identifying specific types of
network-attacks, with the XGBoost model achieving an outstanding 99.63% accuracy
rate in detecting ‘Worms.’ This high degree of precision underscores the versatility and
reliability of our models in different intrusion detection contexts. Compared to exist-
ing research, our work stands out for its exceptional performance, especially after the
application of CTGAN, reinforcing the value of using data augmentation in enhancing
intrusion detection systems (Fig. 4).

Table 3. Results before and after CTGAN

S. No Model
name

Before After

Accuracy
(in %)

Precision
(in %)

F1-score
(in %)

Accuracy
(in %)

Precision
(in %)

F1-score
(in %)

1 KNN 80.03 78.00 78.62 89.58 89.56 89.49

2 Decision
Tree

82.32 82.35 82.20 95.10 95.12 95.09

3 Extra
Trees

83.94 82.75 83.05 96.31 96.32 96.29

4 Random
Forest

84.67 83.54 83.58 96.66 96.77 96.66

5 XGBoost 85.34 84.20 84.63 96.71 96.74 96.70
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Table 4. Accuracy of individual attack

S.
No

Model
name

Accuracy of each attack per model

Normal Generic Reconnaissance Analysis Backdoor Shellcode Worms

1 KNN 94.06 99.30 67.07 66.92 65.06 81.63 91.13

2 Decision
Tree

98.30 99.18 83.13 77.87 84.26 91.60 95.55

3 Extra
Trees

98.37 99.68 83.57 84.71 90.81 96.02 97.61

4 Random
Forest

98.42 99.72 80.74 90.70 92.43 97.22 99.45

5 XGBoost 98.62 99.62 83.06 87.67 91.19 97.30 99.63

Fig. 4. Variations in accuracy rise for different classifiers

6 Conclusion

Finally, we demonstrated the efficacy of using CTGAN for synthetic data creation to
improve the accuracy of intrusion detection systems. As we demonstrated that each of
the five machine learning models performed considerably better after CTGAN, with the
XGBoost classifier getting the best accuracy. PBT actively travelled the landscape of
hyperparameter settings during our research endeavor, experiencing iterative evaluation
of the performance of each unique model. Hyperparameters were exposed to computed
perturbations and adaptive adjustments based on observed model performance. Models
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that produced promising results were given hyperparameters similar to those used by
their more experienced counterparts. This adaptive process aided in the path to ideal
hyperparameter settings, culminating in the highest level of accuracy for individual
attack detection. Our research also found that worms, which are considered significant
security risks, were the best-predicted attacks with the highest accuracy, followed by
generic attacks with the next highest accuracy, as shown in Table 3. These findings
highlight the significance of our multi-class model, which accurately examines worms,
analysis, shellcode, generic, normal and backdoor attacks, that are usually more serious
than fuzzers and DoS attacks with respect to the accuracy of models. Predicting these
attacks accurately can help organizations in taking proactive measures to mitigate their
effect and avoid possible harm to their systems and networks. Overall, our findings
emphasize the significance of employing sophisticated machine learning methods such
as CTGAN and PBT optimizer to improve the accuracy and efficacy of systems that
detect intrusions.
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Abstract. Sentiment analysis has emerged as a prominent and critical research
area, particularly in the realm of social media platforms. Among these platforms,
Twitter stands out as a significant channel where users freely express opinions
and emotions on diverse topics, making it a goldmine for understanding public
sentiment. The study presented in this paper delves into the profound significance
of sentiment analysis within the context of Twitter, with a primary focus on uncov-
ering the underlying sentiments and attitudes of users towards various subjects. To
achieve it, this study presents a comprehensive analysis of sentiment on Twitter,
leveraging a diverse range of advanced deep learning and neural network models,
including Convolutional Neural Network (CNN) and Recurrent Neural Network
(RNN). Moreover, investigates the effectiveness of Hybrid Ensemble Models in
enhancing sentiment analysis accuracy and optimized time. The proposed archi-
tecture (HCCRNN)puts forward a sophisticated deep learningmodel for sentiment
analysis on Twitter data, achieves great accuracywhilst considering computational
efficiency. Standard models such as Multinomial-NB, CNN, RNN, RNN-LSTM,
and RNN-CNN, as well as hybrid models such as HCCRNN (2CNN-1LSTM),
CATBOOST, and STACKING (RF-GBC), were examined CNN and RNN-CNN
had the best accuracy (82%) and F1-score (81%), with appropriate precision and
recall rates among the conventional models. RNN-CNN surpassed other models
in terms of analysis time, requiring just 22.4 min. For hybrid models, our sug-
gested model, HCCRNN (2CNN-1LSTM), attained high accuracy in 59 s and an
accuracy of 82.6%. It exhibits the capability of real-time sentiment analysis with
extraordinary precision and efficiency. This comprehensive exploration of senti-
ment analysis on Twitter enriches the knowledge base of the community and the
application of sentiment analysis across diverse domains.

Keywords: Sentiment Analysis · Twitter · Social media · Natural Language
Processing · Deep Learning · Hybrid Ensemble Models · Text Classification ·
Emotion Analysis · Text Mining
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1 Introduction

In the contemporary digital age, social media platforms have revolutionized commu-
nication, offering individuals an unprecedented means to express their opinions, emo-
tions, and reactions on a myriad of topics. Among these platforms, Twitter emerges
as a prominent channel where users freely share their thoughts and feelings, making
it a virtual goldmine for understanding public sentiment. The exponential increase of
user-generated material on Twitter brings possibilities as well as problems in collecting
relevant insights from this huge body of data. As a result, sentiment analysis has arisen
as an important study subject within the wider domain of natural language processing
(NLP) [1–4]. Sentiment analysis, often known as opinionmining, is a technique for auto-
matically extracting and categorizing sentiments, attitudes, and emotions expressed in
text data. The ultimate objective is to gain a better understanding of how different themes
and settings affect people’s perceptions and reactions. Sentiment analysis is valuable in
many sectors, including advertising, brand management, political evaluation, and public
perception monitoring. In the context of social media, sentiment analysis is crucial for
measuring user involvement, brand perception, and growing trends. Because of its real-
time and vast nature, Twitter has proven to be an important tool for sentiment research.
Users actively discuss their opinions on social, political, economic, and cultural matters,
transforming it into a microcosm of public opinion. Traditional sentiment evaluation
algorithms, however, are hampered by the particular characteristics of posts on Twitter,
such as shortness, informality, and the usage of emoticons and hashtags. As a result,
to capture the intricacies and complexities of thoughts conveyed in tweets, researchers
have resorted to highly sophisticatedmachine learning techniques, notably deep learning
models.

This paper presents a comprehensive study on sentiment analysis of Twitter data
using advanced deep learning and neural network models with an essential goal to reveal
the basic feelings and perspectives of clients towards different subjects and occasions on
Twitter. To accomplish this, the study presented in this paper influence a different scope
of profound learning models, including Convolu-tional Brain Organizations (CNN) and
Repetitive Brain Organizations (RNN), which have shown promising outcomes in tak-
ing care of regular language handling errands. Moreover, investigated the adequacy of
Mixture Troupe Models in improving opinion examination exactness while enhanc-
ing handling time. Predictions made using ensemble techniques are more reliable and
accurate. By incorporating the qualities of various models, desire to work on the general
execution of opinion investigation on Twitter information. By providing insights into the
efficacy of deep learning models for sentiment classification, this study adds to the exist-
ing body of knowledge in sentiment analysis. Moreover, we shed light on the potential of
Hybrid Ensemble Models in improving sentiment analysis outcomes. The findings from
this research hold practical implications for businesses, policymakers, and researchers.
For marketers, understanding public sentiment on Twitter allows for targeted marketing
strategies, enabling them to tailor their campaigns to resonate with their audience’s emo-
tions and preferences. This study emphasises the necessity of researching the technical
basis of sentiment classification, pushing the boundaries of what is feasible within the
discipline by exploring the research side of sentiment analysis. Researchers gain access
to real-time public sentiment on a wide range of topics, unlocking opportunities for
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sociological and behavioral studies. In subsequent sections, the study presents method-
ologies employed, experimental results obtained, and a comprehensive analysis of the
research findings. By integrating advanced deep learning techniques and Hybrid Ensem-
ble Models, this research aims to foster a deeper understanding of human emotions and
opinions within the dynamic landscape of social media platforms, particularly Twitter.

2 Related Works

Over the past years, sentiment analysis on Twitter data has garnered significant attention
among researchers, leading to the exploration of various methodologies and techniques
to effectively classify sentiments expressed in tweets. The studies mentioned above
have been pivotal in advancing the field, each contributing unique insights and showcas-
ing the effectiveness of different approaches. Go et al. [5] presented a novel approach
knownas distant supervision for Twitter sentiment classification. Theirmethod leveraged
emoticons present in tweets as noisy labels for training a sentiment classifier. Despite
the inherent noise in the training data, their approach achieved remarkable accuracy
in sentiment classification. This study highlighted the potential of utilizing large-scale,
crowd-sourced data for training sentiment classifiers, an aspect that has become more
relevant with the increasing availability of massive social media datasets. In a similar
vein, Pak and Paroubek [6] conducted a comprehensive expl oration of machine learning
techniques for sentiment analysis on Twitter. By evaluating several classifiers, includ-
ing Support Vector Machines (SVM), Naive Bayes, and Maximum Entropy, they shed
light on the strengths and weaknesses of each model in capturing tweet sentiments. The
exceptional performance of SVM stood out, showcasing the importance of selecting
appropriate machine learning algorithms for sentiment analysis tasks. Deep learning
models have also emerged as powerful tools for sentiment analysis on Twitter. Zhang
et al. [7] introduced a Convolutional Neural Network (CNN) model tailored for text
classification tasks, including sentiment analysis. The CNN model demonstrated com-
petitive performance in capturing local textual features, thus highlighting the potential
of deep learning in handling sequential data like tweets. Ensemble methods, such as
the stacking model proposed by Wang et al. [8], have gained popularity for improving
sentiment analysis accuracy. By combining the predictions of multiple classifiers, the
stacking model demonstrated enhanced performance compared to individual classifiers.
This work emphasized the importance of leveraging the complementary strengths of
different classifiers to boost overall sentiment classification results. Furthermore, Dos
Santos and Gatti [9] delved into the impact of word embeddings on sentiment analysis.
Their model, which integrated word embeddings with Convolutional Neural Networks,
showcased the importance of capturing semantic information in tweets formore accurate
sentiment classification. Dhanya andHarish [10] usedmachine learning techniques to do
sentiment analysis on Twitter data pertaining to demonetization. A deep learning-based
approach for predicting noise in audio recordings was proposed in a paper by K. P. V.

S. M. S. and Jeyakumar [11]. Although the application differed from our study on
Twitter data sentiment analysis, the implementation of deep learning techniques inspired
us. Their work’s architecture and methodology served as the foundation for constructing
deep learning model suited for sentiment analysis on Twitter data. Similarly, Uthaya-
suriyan et al. [12] investigated impact maximization models in social networks. While
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their goal was to evaluate the effectiveness of various models using certain measures.
This prompted us to take a similar approach in our research, in which we compared
several sentiment analysis algorithms for Twitter data. G. A. J. Nair et al. [13] con-
ducted a comparison-research using COVID-19 tweet sentiment analysis. Furthermore,
Naveenkumar et al. [14] published a Twitter dataset for sentiment analysis using tra-
ditional machine learning and deep learning methodologies. These previous studies
provided the groundwork for understanding sentiment analysis in the context of Twitter
data, and their findings give useful insights for this research article. In the light of these
remarkable contributions, our research seeks to expand the knowledge base and address
specific challenges in sentiment analysis on Twitter data. By focusing on a diverse range
of advanced deep learning and neural network models, including Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN), aimed to harness the strengths
of these models to achieve more precise sentiment classification. Additionally, explored
the effectiveness of Hybrid Ensemble Models, combining the best features of multi-
ple models, to enhance sentiment analysis accuracy while optimizing runtime. Through
this study of extensive analysis and experimentation to contribute further to the field
of sentiment analysis on Twitter data, providing valuable insights that can be applied
across various domains and applications. By building upon the foundations laid by pre-
vious studies, this research strives to create a more comprehensive understanding of
human emotions and opinions within the dynamic landscape of social media platforms,
particularly Twitter.

In particular, the contribution of this study has three main objectives mentioned
below:

1. Investigate and Compare Advanced Models: The first objective is to conduct a
comprehensive investigation and comparison of advanced deep learning and neu-
ral network models, including Convolutional Neural Networks (CNN) and Recurrent
Neural Networks (RNN), for sentiment analysis on Twitter data. By evaluating the
strengths and limitations of each model, aim to identify the most effective approach
for accurately capturing sentiments expressed in tweets.

2. Develop and Optimize Hybrid Ensemble Models: The second objective is to propose
and optimize Hybrid Ensemble Models that combine the strengths of different deep
learning and neural network architectures. By blending the best features of multiple
models, seek to achieve improved sentiment classification accuracy and efficiency.
These ensemble models have the potential to outperform individual models and yield
more robust sentiment analysis results.

3. Validate and Benchmark Performance: The third goal is validating and benchmarking
the suggested models’ performance utilizing the Senti-ment140 dataset, consisting
of 1.6 million tweets tagged with sentiment labels. To demonstrate the success of
proposed technique and give insights into the possible uses of sentiment evaluation
in real-world contexts through rigorous testing and assessment.

This study contributes valuable insights and advancements to the field of sentiment
analysis on Twitter data by encouraging researchers, organizations, and policy makers
with more precise, accurate and effective tools for comprehending public sentiment,
brand perception, and emerging trends on social media platforms by achieving these
goals.
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3 Methodology

In this segment, the technique embraced in exploration to accomplish the targets framed
in the past area is presented depicting the information prepro-cessing steps, model
designs, and assessment measurements used for opinion examination on the Twitter
dataset.

3.1 Data Preprocessing

Data preparation is an important stage in sentiment analysis because it sets the ground-
work for developing successful models that can identify sentiment from the Twitter
dataset [8, 9]. In this part, various procedures taken to clean the data, tokenize it, remove
stopwords, and lemmatize the Sentiment140 dataset are mentioned.

3.1.1 Data Cleaning

The analysis begin with data pre-processing phase by cleaning the tweets in order to
guarantee the text data’s consistency and quality [6]. This includes eliminating unessen-
tial data, like URLs, makes reference to, exceptional characters, and accentuation. By
disposing of these components, we make a normalized design for the text, empowering
better examination and model execution [7].

3.1.2 Stopword Removal

Certain terms in the tokenized text, which include “and”, “the”, “is”, and so on, are
frequent across numerous tweets and do not contain substantial sentiment information.
Stopwords are words like these. Also removed stop-words as part of data preparation
to decrease noise and focus on significant words that contain sentiment information [6].
This step improves the performance of sentiment classification models.

3.1.3 Lemmatization

Lemmatization is another essential data preprocessing technique employed in this study
to convert words into their base or root form [7]. This step reduces the dimensionality
of the text and captures the essence of the sentiments expressed [8]. By transforming
words to their canonical form, we ensure that variations of the same word do not affect
the sentiment analysis results.

The Sentiment140 dataset used in this research study contains 1.6 million tweets,
annotated with sentiment labels (0 = negative, 2 = neutral, 4 = positive). The dataset
includes fields such as target, ids, date, flag, user, and text. With the data preprocessing
steps detailed above, aim to create a clean and standardized dataset suitable for training
and evaluating the sentiment analysis models [8, 9]. By preparing the data meticulously,
we ensure that the subsequent steps in this research produce reliable and meaningful
results in understanding public sentiment on Twitter.
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3.2 Model Architecture

To achieve accurate sentiment analysis onTwitter data, this research propose an approach
called the Hybrid Contextual Convolutional Recurrent Neural Network (HCCRNN).
The HCCRNN model is designed to leverage the strengths of Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) layers to enhance sentiment
classification performance and capture contextual information in tweets. Samples and
Features considered. The various layers are explained as shown in Fig. 1.

Input Layer: The HCCRNN model takes the preprocessed tweets as input, represented
as sequences of word embeddings.
First CNN Layer: The initial CNN layer captures local features and patterns within the
tweet representations through convolution operations, identifying key features.
Second CNN Layer: The output from the first CNN layer is further refined by passing
it through the second CNN layer, identifying more complex patterns.
LSTM Layer: The output from the second CNN layer is then fed into the LSTM layer,
which captures sequential dependencies and context within the tweet, enabling a broader
understanding of sentiment.
Contextual Fusion:After the LSTM layer, a contextual fusionmechanism is introduced
to merge outputs from both CNNs and the LSTM layer. This fusion process combines
local features from CNNs with the contextual understanding from LSTM, creating a
comprehensive representation of tweet sentiment.
OutputLayer:The final output layer produces sentiment predictions (positive, negative,
or neutral) based on the learned features from the contextual fusion step.

The proposed Hybrid Contextual Convolutional Recurrent Neural Network
(HCCRNN) model for sentiment analysis on Twitter data consists of several intercon-
nected components to effectively capture sentiment information from tweets. The entire
process begins with the input layer, where preprocessed tweets are taken as input. These
tweets are then tokenized into individual words or tokens, creating a structured input
for the model. Common stopwords, which do not carry significant sentiment informa-
tion, are removed, while lemmatization is applied to reduce dimensionality and capture
essential sentiment expressions as shown in Fig. 1.

To achieve accurate sentiment analysis on Twitter data, this study propose a
novel approach called the Hybrid Contextual Convolutional Recurrent Neural Network
(HCCRNN) for sentiment analysis, inspired by the works of Go et al. [8], Pak and
Paroubek [6]. The HCCRNN model combines the strengths of Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) layers to enhance sentiment
classification performance and capture contextual information in tweets. We preprocess
the tweets using techniques inspired by dos Santos and Gatti [9].The tweets are cleaned
to remove irrelevant information, tokenized to create structured input, and stopwords are
removed to focus on meaningful words. Lemmatization is applied to reduce dimension-
ality and capture essential sentiment expressions. Drawing inspiration from the works of
Wang et al. [8] and dos Santos and Gatti [9], the HCCRNN model architecture consists
of an input layer, followed by two 1D CNN layers with 32 filters each. These layers cap-
ture local features and patterns within the tweet representations. MaxPooling1D layers
follow each CNN layer to reduce spatial dimensions. Next, our research introduce an
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Fig. 1. HCCRNN Model Architecture

LSTM layer with 64 units, inspired by the work of Zhang et al. [7], to capture sequen-
tial dependencies and contextual information within the tweet. Dropout and recurrent
dropout rates are set to 0.5 to prevent overfitting. Inspired by the work ofWang et al. [7],
introducing a contextual fusion mechanism that combines the outputs from the CNN
and LSTM layers. This fusion process merges local features from the CNNs with the
contextual understanding from LSTM, creating a comprehensive representation of tweet
sentiment. The model concludes with a dense layer with the number of classes as the
output dimension and ‘softmax’ activation, inspired by the work of Zhang et al. [8]. This
layer performs the sentiment classification and outputs the predicted probabilities for
each class.

The distinguishing aspect of the HCCRNN model lies in the Contextual Fusion
Mechanism. This method is implemented following the LSTM layer and is intended to
contextually integrate the outputs of both CNNs and the LSTM layer. The model derives
a richer representation of the tweet’s sentiment by combining local characteristics from
the CNNs with contextual understanding from the LSTM, increasing the accuracy of
sentiment predictions. Finally, in the output layer, sentiment predictions are generated,
categorizing tweets as either positive or negative based on the contextual fusion step’s
learnt properties. The design of the HCCRNN model combines the benefits of CNNs in
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collecting local characteristics with the capacity of LSTMs to grasp context, giving in a
new method to sentiment analysis on Twitter data.

4 Results and Discussion

4.1 Experimental Setup

The experimental setup utilized to test the performance of our postulated Hybrid Con-
textual Convolutional Recurrent Neural Net-work (HCCRNN) algorithm for sentiment
analysis on Twitter data is described in this section. Initially divided the sentiment-
labeled Twitter dataset into two distinct sections at first: a training set and a testing set.
To minimize bias, the split of both positive and negative emotion samples was ensured
to be equal in both sets. The training set was used to optimize the parameters of the
model, while the test data set was used as an independent assessment dataset to examine
the model’s capacity to generalize. Then set the maximum number of features for the
model architecture to 20,000 and the embedding dimension to 128. These parameters
were selected to establish a compromise between complexity of the model and perfor-
mance. The Adam optimizer was used to train the suggested HCCRNN model, which
has been shown to be successful for multi-class classification applications. During train-
ing, we used the categorical cross-entropy loss function in order to optimize the model’s
parameters. The model was trained across two epochs with 128 batches. These hyper-
parameters were developed using empirical data and past field research. In this study
utilized a sufficient hardware platform with adequate processing power to perform the
training process efficiently. This platform meant that model training went smoothly and
on schedule, allowing to concentrate on the assessment and analysis of the findings.
Various parameters, including as accuracy, loss, and validation accuracy, were tracked
during the training process. Moreover, able to analyze the model’s development and
assure its convergence to an ideal state using these indicators. Following training, used
numerous assessment criteria to assess the effectiveness of the model on the testing set.
These measures comprised accuracy, precision, recall, and F1-score, which provided a
thorough grasp of the model’s prediction skills as well as its capacity to perform sen-
timent categorization tasks. Then created a confusion matrix to acquire insight into the
way the model performed across different sentiment classes.

In thiswork randomly generated seedwas adjusted to a predetermined value to assure
the repeatability of studies. This practice enabled to acquire consistent and dependable
outcomes over several research runs. Overall, with carefully structured experimental
setup to evaluate the usefulness and efficiency of the postulated HCCRNN approach
to sentiment analysis on Twitter data and able to draw informed conclusions regarding
the model’s performance and prospective contributions to sentiment evaluation tasks on
social networking platforms thanks to the selection of hyperparameters, optimization
approaches, and assessment measures.

4.2 Evaluation Metrics and Analysis

As shown below the findings of the comparison analysis in Table 1 which comprised
assessing several sentiment analysis models using Twitter data. The primary goal of
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this study was to develop a model that finds a compromise between high accuracy
and fast execution time. To do this, thoroughly evaluated each model’s performance
in terms of accuracy, execution time as shown in Table 2 and efficiency-to-accuracy
ratio to determine the best strategy for sentiment analysis on Twitter data. Each models
effectiveness was assessed according to accuracy, time required for execution, and the
effectiveness to correctness ratio.

Table 1. Results for standard and ensemble deep learning models

Model Accuracy F1-Score Precision Recall

Multinomial-NB 0.76 0.77 0.76 0.77

CNN 0.82 0.82 0.83 0.81

RNN 0.81 0.82 0.80 0.84

RNN – LSTM 0.81 0.82 0.80 0.84

RNN – CNN 0.82 0.81 0.85 0.78

Table 2. Time taken for standard and ensemble deep learning models

Model Accuracy Time

CNN 82.6 45.6 min

RNN 81.8 35.2 min

RNN-CNN 82.2 22.4 min

RNN – GRU 81.4 32 min

Lexicon-approach 67.6 12 min

Multinomial-NB 76 26 s (<1 min)

The traditional lexicon-based approach using the VADER sentiment analysis tool
obtained an accuracy of 67.6%. Moving to machine learning models, the Multinomial
Naive Bayes model demonstrated improved performance, achieving an accuracy of 76%
in a mere 26 s. This model showcased a commendable efficiency-to-accuracy ratio,
making it an appealing choice.

Deep learning approaches were further explored, starting with the Convolutional
Neural Network (CNN). The CNN model exhibited promising accuracy of 82%, but
it required 45 min for execution. Additionally, a Recurrent Neural Network (RNN)
was employed, achieving an accuracy of 81.4% in 32 min, with results comparable to
the CNN. To enhance efficiency, the Gated Recurrent Unit (GRU) model was explored,
producing a similar accuracy of around 81.4% to theRNN.However, theGRUmodel sig-
nificantly reduced the execution time to 25 min, showcasing better efficiency as shown
in Fig. 2(a). Inspired by these findings, then devised a hybrid model combining the
strengths of CNN and RNN. The fusion resulted in an accuracy of 82% and an execution
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time of only 22min, making it the preferred choice for sentiment analysis on Twitter data
when standard deep learning models are considered as shown in Table 2. This combined
model demonstrated the highest accuracy and significant efficiency improvements. In
this research, attempted to the use of a pre-trained BERT (Bidirectional Encoder Rep-
resentations from Transformers) model for sentiment analysis on Twitter data. BERT is
a state-of-the-art deep learning model that has demonstrated impressive performance in
various natural language processing tasks, including sentiment analysis. However, when
attempted to employ the pretrained BERT model for sentiment analysis task, encoun-
tered certain challenges related to its extensive training requirements. BERT is a large
model with a substantial number of parameters, which makes its training computation-
ally expensive and timeconsuming, especially when dealing with sizable datasets like
the one we used for our experiments.

The training process for the BERT model on Twitter dataset took an exceptionally
long time, exceeding 13 h. Due to the substantial time required for training, had to
terminate the process prematurely to ensure the feasibility of our research within the
allocated time frame. Despite the shortened training period, the pre-trained BERTmodel
did show some promising potential. At the beginning of the training, the model achieved
an accuracy of 62%. This initial accuracy indicated that the model was able to capture
certain patterns and features related to sentiment in the tweets. However, it’s important
to note that the accuracy at the beginning of training is typically lower than the final
performance of the model, as the optimization process is still in its early stages. To fully
realize the potential of the pre-trained BERT model for sentiment analysis on Twitter
data, a longer training period would have been necessary. Longer training would allow
themodel to fine-tune its parameters and learnmore intricate patterns and representations
from the data, potentially leading to improved accuracy. While the pre-trained BERT
model’s extensive training requirements posed challenges in our research, it remains a
powerful option for sentiment analysis when computational resources and time are not a
limiting factor. Future research with a focus on leveraging BERT’s capabilities through
more extended training could lead to even more accurate sentiment analysis results on
Twitter data. However, given the constraints of this research, to prioritize other models
that offered a good balance of accuracy and execution time, such as the hybrid models
mentioned earlier.

Table 3. Accuracy for hybrid deep learning models

Model Accuracy Time

HCCRNN (2CNN-1LSTM) 82.6 59 s

RNN – GRU 81.4 32 min

RNN-LSTM 81.2 120 s

CATBOOST 74.78 1 m 38 s

STACKING (RF-GBC) 74.75 2 min
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Whereas the approach to hybrid ensemble models as shown in Table 3 presents the
accuracy and execution time for various hybrid deep learning models. The HCCRNN
(2CNN-1LSTM)model achieved the highest accuracy of 82.6%, completing in just 59 s.

(a)

(b)
Fig. 2. Accuracy comparison for a. Standard models and b. Hybrid models.
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The RNN – GRU model obtained an accuracy of 81.4%, with a training time of 32 min.
The RNN-LSTM model demonstrated an accuracy of 81.2% and required only 120 s (2
min) for training. The CATBOOST model achieved an accuracy of 74.78% and took 1
min 38 s to train. Lastly, the STACKING model of Random Forest and Gradient Boost
Classifier obtained an accuracy of 74.75%, with a training time of 2 min as shown in
Fig. 2(b). Thus, the combined 2 CNN and 1LSTM Layered model emerged as the most
efficient and accurate choice, achieving an accuracy of 82% in just 21 min. This model
strikes an optimal balance between performance and execution time, making it well-
suited for sentiment analysis tasks on Twitter data. The results from the hybrid model
emphasize the potential of our proposed model can be utilized to gain valuable insights
from public sentiments and enhance decision-making processes in various domains.

4.3 Comparative Analysis

We did a rigorous comparison study with the methods available in the literature in
order to offer a full assessment of our suggested sentiment analysis methods. Our deep
learning models, which include Convolutional Neural Networks (CNN) [7], Recurrent
Neural Networks (RNN), and Hybrid Ensemble Models, have competitive accuracy,
F1-Score, precision, and recall values, as shown in Table 1. Notably, the CNN model
outperforms the others with an accuracy of 82%, demonstrating its usefulness in col-
lecting local textual elements in Twitter data, which is consistent with the findings of
Zhang et al. [7], who established the promise of CNNs for text classification tasks. Fur-
thermore, our Hybrid Ensemble Models, such as HCCRNN (2CNN-1LSTM), attain an
accuracy of 82.6%, demonstrating the value of integrating several models’ capabilities
[8]. In terms of accuracy, our hybrid model beats previous models such as RNN-LSTM,
CATBOOST, and STACKING (RF-GBC) [13], emphasizing the benefit of employing
ensemble approaches in boosting sentiment analysis findings.

In alongside performance measurements, we examined our models’ runtime effi-
ciency, as shown in Table 2. While our models function well, it is critical to strike a
balance between accuracy and computational efficiency. The CNN model achieves this
equilibrium in 45.6 min by performing the sentiment analysis job with an accuracy of
82%. RNN models, on the other hand, provide a decent mix of accuracy and runtime,
processing the data in about 35.2 min. The RNN-CNN model outperforms the com-
petition, obtaining an accuracy of 82.2% in a very short duration of 22.4 min. These
findings demonstrate the utility of our suggested methods, particularly when compared
to Lexicon-based alternatives [14], which need much less time but sacrifice accuracy.
As a result, our research not only highlights the superiority of specific deep learning
models, but also emphasizes the importance of a careful trade-off between accuracy and
real time efficiency in sentiment analysis on Twitter data, contributing to the continuing
debate in the area.

5 Conclusion

In this research an extensive comparative analysis of various models was conducted
for sentiment analysis on Twitter data. The primary objective was to identify a model
that achieves high accuracy while maintaining reasonable execution time. This study
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explored different approaches, including lexicon-based methods, traditional machine
learning models, and deep learning architectures. The lexicon-based approach, imple-
mented using the VADER sentiment analysis tool, provided valuable insights into sen-
timent classification. However, it demonstrated limitations in terms of execution time
and scalability, which may hinder its applicability to real-time or large-scale sentiment
analysis tasks. Moving to machine learning models, Multinomial Naive Bayes exhib-
ited commendable performance, combining acceptable accuracy with rapid execution
time. It emerged as a promising choice for certain sentiment analysis applications. In the
realm of deep learning, Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) were evaluated. The CNN model demonstrated impressive accuracy,
albeit with a longer execution time. Conversely, the RNN model offered slightly faster
processing with a marginally lower accuracy.

To address efficiency concerns, we explored the Gated Recurrent Unit (GRU)model,
which achieved competitive accuracy while significantly reducing execution time. A key
contribution of this research is the development of a hybrid ensemble model that fuses
the strengths of CNN andRNN. Thismodel achieved high accuracywhile demonstrating
improved efficiency, making it a promising solution for sentiment analysis on Twitter
data.

In the future, researchers may explore advanced pre-trained models and transfer
learning techniques to improve sentiment analysis accuracy on Twitter data. Fine-
tuning pre-trained models on domain-specific Twitter datasets could potentially lead
to enhanced performance and efficiency. Efforts should be directed towards optimizing
hyper-parameters andmodel architectures for sentiment analysis. Conducting systematic
hyper-parameter tuning experiments can help uncover the best configuration for each
model, maximizing accuracy while minimizing execution time. Further research could
investigate the use of hybridmodels that combinemultiple deep learning architectures, as
well as ensemble techniques, to achieve even higher predictive performance. Moreover,
investigating the impact of data preprocessing techniques, including text normaliza-
tion and feature engineering, could contribute to the overall performance of sentiment
analysis systems. By addressing these avenues for future research, we can advance the
field of sentiment analysis and facilitate the development of more accurate and efficient
sentiment analysis systems for various applications.
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Abstract. Structural changes that can occur in a network as time pro-
gresses are difficult to capture. To handle such data, one of the methods
used is Topological Data Analysis(TDA), which can transform the data,
in order to extract and analyze the data. Alzheimer’s disease networks
show the changes that happen in the brain network as the disease pro-
gresses. Methods should be devised to capture these changes efficiently.
In this work, two powerful tools of Topological data analysis, “persis-
tent homology” and “mapper algorithm” are applied on the disease net-
works to gain insights about the changes happening during onset and
progression of the disease. From the results, it can be concluded that
more fragmentation is happening within the brain network as the dis-
ease progresses. The interconnections within the community(or cluster)
are stronger as compared to the connections with other communities(or
clusters). This may lead to difficulties in various cognitive functions such
as attention, memory, language, and problem-solving.

Keywords: Node2vec · Persistent homology · Mapper algorithm

1 Introduction

Various methods have been/are being proposed to analyze the data generated
in different domains. The analysis may provide insights about the underlying
structures, complex processes, or interactions that are responsible for generating
such data. In literature, statistics, machine learning algorithms, and artificial
intelligence are some techniques that are used for this purpose.

Scenarios where the interactions can be modeled using networks are even
more complex than data, where there is no influence between individual instances
of data. Network analysis can be carried out on such data using graph theory,
social network concepts such as centrality measures, influence maximization,
community discovery, topological data analysis, and so on.

In various domains [5], topological data analysis is yielding encouraging and
promising results. Topological data analysis(TDA) is specifically about studying
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the topology of the data and extracting the topological features from it. These
may be much more robust than the features extracted from the raw data when
noise may distort the original data.

The key focus of this paper is to analyze the high-dimensional and complex
structures without the risk of data loss using the tools provided by TDA and
how these methods may provide a different perspective of the Alzheimer’s net-
work data specifically. Alzheimer’s disease is a neurological disorder case, where
the formation of tangles and plaques inhibits the communication between var-
ious parts of the brain network, thereby causing issues in the functionalities of
memory, mobility, comprehension, and so on. Since there is a structural change
in the brain network as the disease progresses, we would like to capture these
changes using topological data analysis.

2 Background

There are two main approaches used in TDA to capture the topological changes:
Persistent homology and mapper algorithm. Persistent homology helps to iden-
tify and quantify the persistence of topological features across scales. Persistent
homology, which is based on simplicial complexes, also includes betti numbers
and plots as they are useful analytical tools for TDA. Mapper algorithm provides
a simplified representation of clusters and their relationships. It uses dimension-
ality reduction, and clustering methods to help in understanding the network at
a deeper level.

2.1 Persistent Homology

Persistent Homology(PH) is a powerful method that is used to identify topolog-
ical features of simplicial complexes. It also tracks the changes and encodes the
evolution in the homology across different scales [5]. To compute these changes
in the features, PH uses simplicial complexes.

Simplicial Complex. A simplex is the generalization of a triangle in all dimen-
sions. 0-simplex is a point. 1-simplex is a line segment. 2-simplex is a triangle.
3-simplex is a tetrahedron and so on. The collection of these simplexes is called
simplicial complex [10,16,20] (Fig. 1).

Homology. Homology of a topological space is characterized as connected com-
ponents, holes, voids, etc., and it can be decomposed into degrees: degree 0
homology corresponds to connected components, degree 1 homology encodes
the presence of a cycle, degree 2 stands for a void. As simplexes, homology is
also generalized to more than one dimension and it is known as homology groups
[16]. Homology is denoted as Hk(

∑
) where k denotes the degree or dimension

and
∑

denotes the simplicial complex. Zero-dimensional homology (H0) rep-
resents connected components, one-dimensional homology (H1) denotes loops,
two-dimensional homology (H2) denotes voids or cavities, and so on.



Topological Data Analysis 195

Fig. 1. First few simplexes.

Betti number [14] is defined as the rank of the homology group. It is denoted
by β and kth Betti number βk is the rank of Hk(

∑
).

Betti numbers quantify the number of connected components, loops, and
voids present in the data, revealing its underlying topological characteristics.

Fig. 2. Two sets of components.

In Fig. 2, the left set has one connected component and has one loop hence,
β0 = 1 and β1 = 1. The right set has two connected components and two loops
thus, β0 = 2, β1 = 2. Clearly β0 denotes number of connected components, β1

denotes number of loops, β2 represents number cavity spaces and so on [20].

Building Simplicial Complexes. There are two main approaches to build
simpilicial complexes [2]:

– Čech complex
– Vietoris-Rips complex

For both methods, the process starts by initiating the balls around every
node in the dataset with the same radius, where we get the data points with the
balls overlapping with each other as shown in Fig. 3. From this overlap, simplexes
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Fig. 3. Čech in the left, Vietoris in the right [13].

are found like an edge or a triangular or a tetrahedron, etc., but there are two
ways of considering a cavity [2].

In Fig. 3, the difference between Čech complex and Vietoris-Rips complex
is shown in the blue color filling(the left one has 2-simplexes whereas the right
one has 3-simplexes at the same place), that is because there is no point of
intersection of all the three balls.

The relation between Čech and Vietoris-Rips complex is:

Cε ⊆ V Rε ⊆ C2ε (1)

where ε is a fixed radius of the balls. These two methods differ in how they treat
the collection of balls [14]. Also Čech complex is computationally expensive than
the other available algorithms. Hence Vietoris-Rips(VR) complex is used more
often.

Computing Persistent Homology. Computation of persistent homology
involves the utilization of simplicial complexes as a key component. The input
for this process is represented as point cloud data. The process is initiated by
applying balls at each data point with radius ε = 0. As the radius starts to
increase the balls start to overlap to form edges where we consider the balls as
vertices. As more and more balls overlap, new simplexes are formed and some
are merged with others to form new simplexes.

Persistent homology encodes, at what radii the topological features appear
or born as εbirth and at what radii the topological features disappear(merging
with other simplexes) or dead as εdeath. The outputs of the PH are real number
pairs [10,16]. The output is represented as < εbirth, εdeath > tuple and is called
the persistent interval of the topological feature. The difference between εdeath

and εbirth is called the lifespan of the topological feature [16].
These pairs are generally represented with set of lines called bar codes or as

set of points in persistent diagrams.
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2.2 Mapper Algorithm

Mapper algorithm is another tool to extract, study, and analyze topological
features of high-dimensional datasets [15]. The fundamental concept of mapper
is to create a simplicial complex from high-dimensional noisy data without data
loss [6]. Mapper has many real applications compared to persistent homology.
It is being used in lot of industries for biotech/healthcare through Ayasdi [4](a
software platform and company that specializes in TDA and machine learning)
and also by many individual data scientists. Mapper has been applied to data
in breast cancer patients [11], NLP training data [21], topic detection in twitter
[17] etc.

Fig. 4. Mapper algorithm example [16].

Computation of Mapper Algorithm. The idea of mapper algorithm is illus-
trated in Fig. 4. Firstly, the high-dimensional dataset is projected onto an axis
through dimensionality reduction methods, to reduce the complexity of the noisy
data. This projection is directed by “filter or lens function” [16].

Next a cover function is applied on the projected data so that we get over-
lapping subsets as shown in Fig. 4. Then we apply a clustering algorithm on
all the subsets to get clusters and these clusters act as nodes. These nodes are
connected if any two clusters share a data point(this is due to the cover function
with the “overlapping subsets”) [18,19].

Thus nodes and edges are formed for the resultant graph based on the clus-
ters. It is very flexible due to the choice of functions for lens, cover, and clustering
algorithms for different datasets, but it is also difficult to choose the best func-
tions.

3 Experiments and Results

Persistent homology and mapper algorithms are applied to the Alzheimer’s dis-
ease network [1]. This dataset of Alzheimer’s disease network is provided by
Alzheimer Disease Neuroimaging Initiative(ADNI) [1]. In this dataset, the brain
network is divided into 70 major regions where the brain will be the most affected
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as the disease progresses. This is an adjacency matrix of the dataset with 70 rows
and 70 columns. If there is an edge between two nodes(regions in the brain) then
the matrix entry is 1 otherwise it is 0. This dataset contains the data that is
monitored through four stages of the disease to study the changes in the network
from normal, early, late, and Alzheimer’s stages. Pre-processing of the data is
done by converting these data matrices into graphs using networkx [7] (Table 1).

Table 1. Dataset matrix [1].

S No. Stages number of nodes number of edges

1 Normal 70 3048

2 Early mild cognitive impairment(emci) 70 3088

3 Late mild cognitive impairment(lmci) 70 2828

4 Alzheimer’s disease 70 2796

3.1 Persistent Homology on the Alzheimer’s Disease Network

Using R studio, after loading the datasets, the homology for each matrix is cal-
culated and the outputs, the birth and death radii of the topological features
and their dimensions are generated. But from the bar codes and persistent dia-
grams we are not able to actually analyze or compare the changes as the disease
progresses. Here we can use the idea of Betti number plot or Betti curves.

Betti number plot is the plot between betti-numbers and the radius of the
ball that is Vietoris-Rips radius [9]. For every betti number, there will be a betti
plot. In this dataset, the dimensions came out to be either 0 or 1. So for our
dataset, there will be two betti curves for each stage. So, we have plotted all the
betti curves in two graphs for all the stages of the disease, that is, the 0-betti
curve and the 1-betti curve.

Figure 5 shows the 0 dimension betti plot. The x-axis represents the Vietoris-
Rips radius and the y-axis represents the zero betti values. Figure 6 shows the
1-dimension betti plot, here x-axis represents the Vietoris-Rips radius and y-axis
represents the one-betti values β1. In the Figs. 5 and 6, the purple color graph
represents the normal stage, green is early stage, blue is late stage and red is
Alzheimer’s stage.

Analysis of 0-Betti Plots. Figure 5 shows the number of connected compo-
nents at different stages with respect to the Vietoris-Rips radius. In the 0-betti
number plot (Fig. 5) as the radius increases, there’s a fall in number of con-
nected components in all the stages. This indicates that in each stage, there are
communities of small size that are captured by the small radius values, and as
the radius increases, these small communities become part of the larger com-
munities, hence the fall in the number of connected components as the radius
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Fig. 5. Plot of the 0-betti curve. 0-betti number indicates the number of connected
components.

Fig. 6. Plot of the 1-betti curve. 1-betti number indicates the loops present in the
structure.
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increases. But in the interval 2 to 3 in the radius, we can observe that different
values of connected components are obtained for each stage. A real number in
this interval can be considered as the threshold radius.

Analyzing the graph in this interval shows that the number of connected
components for the AD is more than all other stages, late stage, and early stages.
This is a big indication that the network is getting more and more fragmented as
the disease progresses. Normal stage has less fragmentation, that is less number
of connected components(the red curve is above all the others, then blue, then
green, and at last purple).

Increment in the number of connected components implies that the connec-
tions between nodes are breaking and the nodes’ neighborhoods are altered from
the original connections. As the disease progresses, the presence of number of
connected components is greater in late and AD stages compared to normal and
early stages, implying that the connections between the nodes in the brain net-
works are breaking down which affects the proper functioning of the brain. Thus
we can say that the segregation of the nodes and abnormal organization of the
networks is getting severe as the disease progresses.

Analysis of 1-Betti Plots. The one-dimensional betti number (β1) denotes
the number of loops present in the network. In 1-betti plot (Fig. 6), at radius 0,
number of loops (β1) is zero till radius is 2. As the radius increases, the changes
or the presence of loops can be observed in the radius interval of 2 and 6. Most
of the abnormalities can be seen in the interval 2 and 4, that is, a possibility of
threshold radius in that interval.

In Fig. 6, in the radius interval of 2 and 3, same as in the 0-betti plot, we can
observe that AD has the highest score for the number of loops than the other
stages(at radius 3, the red curve has almost 5 loops, the blue curve has 4 and
green and purple have 3 loops). As the radius increases we can see the changes
in the number of loops values.

Increment in the number of loops in each stage of the disease implies that
the networks are falling apart(getting fragmented). Thus, we can identify the
change in the networks as the disease progresses.

3.2 Mapper Algorithm on the Alzheimer’s Network

General properties of networks are computed for each stage of the Alzheimer’s
disease. These are tabulated in Table 2, Here it can be observed that the con-
nected component is shown as 1 for all stages and the clustering coefficient also
does not change for different stages. That is to say, none of the network properties
do not give any indication of the progression of the disease.

In the dataset, we do not have the information about the features or the
structural properties of the network. So we used the Node2Vec [3] method to get
embeddings of the network which gives the features of the nodes in the vector
space. We used Node2Vec because of its flexibility and node visualizations.
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Table 2. Network properties of the networks.

S No. Network properties Normal EMCI LMCI AD

1 Number of nodes 70 70 70 70

2 Number of edges 3048 3088 2828 2796

3 Number of connected components 1 1 1 1

4 Average shortest path length 1.35 2.38 1.4 1.41

5 Clustering coefficient 0.76 0.77 0.76 0.78

6 Modularity for Walktrap algorithm 0.21 0.19 0.23 0.24

7 Modularity for Louvain algorithm 0.21 0.2 0.23 0.24

These embeddings are used as input to implement the mapper algorithm [6].
For the projection of data(filtration step), isomap [12] is used for the dimen-
sionality reduction. Then a cover function is applied to this projected data. The
cover function used is cubical cover, which is the standard one, to get the over-
lapping subsets. The parameters for this function are the number of subsets to
be generated(we defined it as 20 here) and the overlap percentage of the subsets
is defined as 0.75.

The clustering algorithm used is DBSCAN [12] due to its ability to handle
noise and identification of clusters of different shapes and sizes. Applying clus-
tering algorithms on the subsets we get clusters that acts as nodes and overlap
of nodes which are going to be edges between these nodes. The resultant graphs
after applying the mapper algorithm are shown in Figs. 7, 8, 9 and 10. Again the
network properties are computed for these graphs generated using the mapper
algorithm Table 3.

Analysis of Mapper Outputs. Table 3 shows the network properties of the
graphs that are generated from the data matrices of the Alzheimer’s disease
dataset [1] using mapper algorithm [6]. We can observe that the network is a
one-connected component in normal and early stages but in the late and the AD
stages it has two connected components as shown in Figs. 7, 8, 9 and 10.

Table 3. Network properties of the networks after mapper algorithm.

S No. Network properties Normal EMCI LMCI AD

1 Number of nodes 20 20 17 17

2 Number of edges 53 54 38 36

3 Number of connected components 1 1 2 2

4 Average shortest path length 2.75 2.69 – –

5 Clustering coefficient 0.68 0.67 0.78 0.79

6 Modularity for Walktrap algorithm 0.42 0.43 0.5 0.54

7 Modularity for Louvain algorithm 0.43 0.43 0.5 0.54
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Fig. 7. Normal stage. Fig. 8. Early stage.

Fig. 9. Late stage. Fig. 10. Alzheimer’s stage.

The number of nodes and edges are less in the AD network compared to the
normal network this implies that connections of the brain network are breaking
as the disease progresses. Interestingly, the average shortest path lengths for late
and Alzheimer’s stages are not computable, showing the clear break up of the
network, as can be seen in Figs. 9 and 10.

Clustering coefficients of the networks are increasing as the disease progresses.
The clustering co-efficient at the final stage is higher compared to previous stages
implying that the connections in the brain network with close proximity are
strong but the connections to neighbouring groups or clusters are weak.

Table 3 shows that the final stage(Alzheimer’s stage) has the highest modu-
larity using both Walktrap and Louvain algorithms compared to normal, early,
and late stages. This means that in the AD network, the nodes are strongly inter-
connected within the community but have fewer connections with other commu-
nities. This implies that the information passing from one community to another
will be slower and this affects the daily activities or functions of the brain.
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From Tables 2 and 3, it can be observed that the modularity and cluster
coefficient of the networks increases as the disease progresses. As is evident from
Table 3(network properties of the networks after mapper algorithm), we can
observe that, much more detailed and deeper level information of the networks
is obtained using TDA, compared to the networks from the original datasets
(Table 2). Hence we can say that the mapper algorithm provides a deeper level
of understanding of the networks compared to the traditional network methods.

Analysis of all the network properties shows that as the disease progresses,
the connections in the brain network in some regions are rich whereas in other
regions the connections are breaking which affects the functionality of the brain.
We can also conclude that the brain network is altered from the normal stage.

Comparison of current work, with the work in the literature has yielded
very few results. There had been research on brain white matter networks in
Alzheimer’s disease using persistent features which mainly focused on investigat-
ing the integration and segregation of the brain networks in AD and its previous
stages [8]. The earlier studies in this research domain emphasized the evaluation
of 0-betti values along with global network properties. In this work, focus is
on investigating both 0-betti and 1-betti numbers, leading to a detailed under-
standing of networks behavior. And also, to get a deeper understanding of the
network characteristics, mapper algorithm has been used on this dataset. May
be different methods like community discovery across the stages, link prediction
and influence maximization may help in characterizing the dynamic networks.

4 Conclusions

Topological data analysis is a very new research area and has prominent appli-
cations in biofield, neuro-science, etc. TDA is used to analyze the complex struc-
tures of the data by considering the shape and connectivity of the data points.
It explains the topological features of the network and also the relation between
the data points in the point cloud.

In this work, we applied TDA methods on Alzheimer’s disease networks to
identify the changes in the brain network as the disease progresses. It can be
concluded from persistent homology experiments that the presence of number
of connected components and the number of loops are more in late and AD
stages compared to normal and early stages. This implies that the connections
in the brain networks are breaking down and the nodes are disrupted from their
original positions. Breakdown of the connections can lead to changes in the
dynamic properties of brain networks.

Application of the mapper algorithm, gives a conclusion that as the disease
progresses the number of nodes, edges are decreasing for the resultant graphs of
the brain networks. The modularity and the clustering coefficients of the net-
works increases as the disease progresses, which implies that the interconnections
within the community(or cluster) are strong compared to the connections with
other communities(or clusters). This may lead to difficulties in various cognitive
functions, such as attention, memory, language, and problem-solving.
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Abstract. “In the realm of classic gaming, Mario has held a special
place in the hearts of players for generations. This study, titled ‘Enhanc-
ing Mario Gaming using Optimized Reinforcement Learning’, ventures
into the uncharted territory of machine learning to elevate the Mario
gaming experience to new heights. Our research employs state-of-the-
art techniques, including the Proximal Policy Optimization (PPO) algo-
rithm and Convolutional Neural Networks (CNN), to infuse intelligence
into the Mario gameplay. By optimizing reinforcement learning, we aim
to create an immersive and engaging experience for players. In addition
to the technical aspects, we delve into the concept of game appeal, a
pivotal component in capturing player engagement. Our innovative app-
roach blends the prowess of PPO, CNN, and reinforcement learning to
unlock unique insights and methodologies for enhancing Mario games.
This comprehensive analysis provides actionable guidance for selecting
the most suitable techniques for distinct facets of Mario games. The cul-
mination is an enriched, captivating, and optimized gaming experience
that befits the title, ‘Enhancing Mario Gaming using Optimized Rein-
forcement Learning’.

Keywords: Mario games · Reinforcement learning · PPO algorithm ·
CNN · Game enhancement · Player engagement

1 Introduction

For many years, players of all ages have flocked to the traditional Mario game
as their favourite. Players have been interested in the game for years despite its
straightforward fundamentals because it offers a hard and thrilling experience.
A rising number of people are interested in using machine learning and artificial
intelligence to improve the performance of classic video games like Mario. A
reinforcement learning algorithm is suggested in the paper “Attracting the Mario
Game Using Optimal Fortification PPO Algorithm” to enhance the functionality
of the Mario game. The Proximal Policy Optimization (PPO) algorithm and
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the addition of a better reward system are the authors’ primary methods for
optimising the programme. The history of artificial intelligence and machine
learning is briefly reviewed at the outset of the paper, with an emphasis on the
gaming industry’s possible uses for these technologies. The major elements of
the Mario game, such as the setting, activities, and prizes, are then thoroughly
described by the creators.

The proposed algorithm involves the use of the PPO algorithm, which is
designed to improve the stability and convergence of reinforcement learning algo-
rithms. We also introduce an improved reward system that focuses on incentiviz-
ing the agent to complete levels quickly and efficiently (Fig. 1).

Fig. 1. Mario Gaming Environment (Screenshot taken during own project.)

The iconic Mario game has won the hearts of players of all ages and has been
a mainstay in the gaming industry for decades. Growing interest has been seen
in applying machine learning and artificial intelligence to improve the perfor-
mance of classic video games like Mario. A well-liked technique for improving
the performance of games is reinforcement learning, which entails teaching an
agent to base decisions on feedback and the game’s surroundings.

2 Related Works

In this section, we provide an overview of the relevant research and studies
that contribute to our understanding of maintaining specification integrity. The
following subsections offer a detailed exploration of specific areas within this
field.
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2.1 AI-Enhanced Mario Gameplay: A Deep Reinforcement
Learning Approach

The study by Yizheng et al. [1] suggests using deep reinforcement learning
techniques, such as Proximal Policy Optimization (PPO) and Deep Q-Network
(DQN), to enhance the functionality of the iconic Mario game. The authors
present a more effective compensation scheme that encourages the agent to fin-
ish levels fast and effectively. According to the studies shown in the paper, the
suggested algorithm considerably enhances the performance of the Mario game,
enabling it to get high scores and finish levels more quickly than with exist-
ing state-of-the-art methods. The enhanced incentive system, which focuses on
encouraging the agent to complete tasks quickly and effectively, also makes a
significant addition to the field.

Fig. 2. Evaluation score of the game (Adapted from Reference 2)

Figure 2 in the paper provides a clear score evaluation. However, some issues
need attention. The paper doesn’t discuss the algorithm’s generalizability, its
potential drawbacks, or ethical considerations regarding AI in gaming. These
aspects are essential to consider in AI-enhanced gameplay.

2.2 Model-Based Reinforcement Learning Outperforms DQN
in Minecraft Block-Placing

The research introduces a model-based approach to tackle a block-placing chal-
lenge in Minecraft by integrating a deep neural network (DNN)-based transition
model with Monte Carlo tree search (MCTS) [2]. This transition model utilizes
the agent’s last four first-person view frames and its current action to predict
the next frame and rewards one step ahead. Notably, this model-based technique
achieves performance on par with Deep Q-Networks (DQN) while learning more
efficiently by making better use of training samples.



Enhancing Mario Gaming Using Optimized Reinforcement Learning 209

In deep reinforcement learning, visual-input tasks have gained popularity.
Although model-free methods have shown success, model-based approaches with
direct access to environmental data often prove more effective. Unlike algorithms
built without a known environment model, which rely on planning algorithms,
this research leverages model-based methods. Previous studies have demon-
strated that model-based agents can outperform DQN, particularly raising ques-
tions about the effectiveness of planning algorithms in partially observable envi-
ronments, such as Minecraft building tasks.

To tackle this challenge, researchers introduce a novel approach for predicting
future visual frames and estimating rewards by combining deep neural network
training with Monte Carlo tree search (MCTS). This method effectively com-
petes with DQN, as demonstrated in a Minecraft block-placing task.

The study aims to develop a model-based reinforcement learning agent that
rivals model-free approaches, particularly DQN. It achieves this by combining
deep neural network transition model learning with MCTS. Experiments on a
Minecraft block placement challenge reveal that this approach requires signifi-
cantly less training data for a meaningful transition model compared to learning
Q-values with DQN. This is valuable when collecting training data from the
environment is resource-intensive.

It’s worth noting that the transition model’s performance is impacted by
incomplete knowledge of the last four input frames. Addressing this issue may
involve further research into recurrent neural networks for performance enhance-
ment.

2.3 GATree: A Deep Reinforcement Learning Approach with GANs
and MCTS for Improved Sample Efficiency

A unique approach to reinforcement learning (RL) is proposed in the study
[3] that combines deep RL with generative adversarial networks (GANs) and
Monte Carlo tree search (MCTS). The suggested method aims to increase the
sample efficiency of deep RL algorithms by utilising MCTS to look for poten-
tial actions and GANs to build plausible trajectories. The suggested method,
known as GATree, uses observable state-action pairs to train a GAN to pro-
duce believable trajectories. The policy network and value function of the deep
RL algorithm are then updated using the resulting trajectories. Additionally, by
simulating paths beginning from the current state and using the value function
to assess the expected benefit of each action, MCTS is utilised to find promis-
ing actions. On a number of benchmark RL tasks, such as Atari games and
robotic manipulation tasks, the authors assess the suggested technique. They
demonstrate that GATree produces equivalent or higher performance in terms
of ultimate reward and beats cutting-edge deep RL algorithms in terms of sample
efficiency. In order to evaluate the contributions of each element of the suggested
strategy, the authors additionally conduct ablation studies. The results demon-
strate the necessity of both the GAN and MCTS elements in order to achieve
the optimal performance.
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2.4 Video Prediction with Deep Generative Models: A Novel
Approach Using Variational Autoencoders

Deep generative models are employed in [4] to introduce an innovative video
prediction method, extending variational autoencoders (VAEs) into the realm
of video prediction. This method aims to generate diverse future frames given
a sequence of input frames. It utilizes a stochastic model with latent variables
for each time step in the input sequence, coupled with a decoder network for
predicting future frames. The stochastic nature of the model allows it to produce
various plausible future frames, aiding in uncertainty estimation.

The authors assess the proposed method against state-of-the-art approaches,
evaluating prediction accuracy and uncertainty estimation using benchmark
datasets like moving MNIST and KTH action recognition. Ablation studies con-
firm the importance of the model’s stochastic nature in achieving optimal perfor-
mance.

This approach represents an innovative application of VAEs in video predic-
tion, showing promise in enhancing prediction accuracy and uncertainty esti-
mation. It achieves state-of-the-art performance on various benchmark datasets.
However, it’s important to note that the use of random sampling in the gen-
erative model increases computational complexity, and the method’s general-
izability to real-world video prediction scenarios with complex dynamics and
high-dimensional data may be limited.

2.5 GPU-Based A3C for Efficient Reinforcement Learning Agent
Training

The paper [5] introduces a GPU-based implementation of the Asynchronous
Advantage Actor-Critic (A3C) algorithm for efficient reinforcement learning (RL)
agent training. It builds upon prior A3C research to address high-performance
computing using a GPU. A3C is an online, model-free RL system that acquires
policies and value functions through interactions with the environment. A3C
enhances sampling efficiency and algorithm stability by asynchronously updating
the policy and value function using multiple threads. The authors propose a GPU-
based A3C algorithm implementation that leverages the GPU’s parallel process-
ing capabilities to accelerate the training process, with parallelized computation
of gradients and updates using CUDA. The suggested implementation is evaluated
on various benchmark RL tasks, delivering state-of-the-art performance and sig-
nificantly reducing training time compared to CPU-based implementations. This
implementation can be adapted for other RL algorithms using policy gradients.
However, it may require specialized hardware like a GPU, which might not be
available in all computing environments. Its generalization to RL problems with
complex dynamics and high-dimensional input may be limited.

2.6 ALE Platform: A Standardized Environment for Evaluating RL
Agent Performance on Atari Games

The ALE platform provides a standardized way for reinforcement learning (RL)
agents to interact with and play 60 classic Atari games. It allows RL agents to
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observe the game screen in real time and generate commands. ALE also includes
a scoring system to assess RL agent performance based on their ability to improve
their overall game scores.

The authors of the paper [6] conducted experiments with various RL algo-
rithms, including Q-learning, SARSA, and REINFORCE, on several Atari games
using the ALE platform. They found that RL agents can achieve human-level
or even superior gameplay on some Atari games. The authors also explored the
use of transfer learning to help RL agents quickly adapt to new, related games.

The ALE platform is a valuable tool for evaluating RL agent performance on
Atari games. However, it is important to note that ALE is limited to classic Atari
games and may not be applicable to new domains or practical uses. Additionally,
not all Atari games are included in the ALE framework, which may affect its
representation of the entire spectrum of Atari games.

2.7 Scheduled Sampling Outperforms Other Techniques
in Reducing Exposure Bias and Improving RNN Performance

Recurrent neural networks (RNNs) are a powerful tool for sequence prediction
tasks, but they can be susceptible to exposure bias. This occurs when the RNN
is trained to predict the next item in a sequence based on the ground truth
inputs, but at inference time, it must generate the sequence one item at a time
based on its own predictions.

To address this issue, the paper proposes a method called planned sampling.
Planned sampling works by gradually increasing the probability of using the
RNN’s own predictions as inputs during training. This helps the RNN to learn
to predict the next item in a sequence without relying on the ground truth.

The research suggests planned sampling, a method that gradually exposes
the model to its own predictions during training, as a solution to this issue. In
more detail, the model is trained by feeding it predictions with a probability of
1-p and ground truth inputs with a probability of p. The fraction of the model’s
own predictions gradually rises as the value of p anneals over time. This lessens
the effect of exposure bias at the moment of inference and enables the model to
become adept at handling its own predictions.

In order to assess the efficacy of planned sampling, the study presents tests
on a variety of sequence prediction tasks, including language modeling and
machine translation. The findings demonstrate that planned sampling consis-
tently enhances the RNN models’ performance by minimizing the effects of
exposure bias and producing more accurate predictions [7].

A quick and efficient method for lowering exposure bias in sequence prediction
using RNNs is scheduled sampling. The scheduled sampling algorithm and its
implementation are explained in detail in this work. The studies performed on a
variety of sequence prediction problems show how planned sampling can enhance
RNN model performance.

But there are some concerns about scheduled sampling’s efficacy in specific
settings because the work does not offer a thorough analysis of its theoretical
features. It is uncertain how effectively planned sampling generalizes to other
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sorts of issues because the trials reported in the publication are restricted to a
particular collection of sequence prediction tasks.

2.8 CFGPS Outperforms State-of-the-Art Reinforcement Learning
Algorithms on Benchmark Tasks

CFGPS is a reinforcement learning method that addresses the limitations of
traditional policy search techniques by combining policy search with counterfac-
tual analysis. This allows the agent to explore new areas of the state space and
learn from counterfactual trajectories. The paper [8] introduces a new reinforce-
ment learning algorithm called CFGPS, which combines counterfactual analysis
with policy search to overcome the limitations of traditional techniques. CFGPS
was evaluated on a variety of benchmark tasks, including continuous control
and robot locomotion, and outperformed several state-of-the-art reinforcement
learning algorithms in terms of higher returns and more consistent performance.

While the paper provides a clear and concise explanation of the CFGPS
algorithm and its implementation, there are a few concerns about its applicability
in practice. First, there is no comprehensive theoretical analysis of CFGPS, which
makes it difficult to understand its strengths and weaknesses. Second, the paper
only reports results on a specific set of benchmark tasks, so it is unclear how
well CFGPS would generalize to other types of problems.

Overall, CFGPS is a promising new reinforcement learning algorithm with
the potential to outperform traditional methods. However, more research is
needed to understand its theoretical properties and generalization capabilities
before it can be widely deployed.

2.9 Dopamine Achieves State-of-the-Art Performance on
Benchmark Tasks, Demonstrating Its Potential for Advancing
Deep RL Research

The research paper [9] introduces Dopamine, an open-source research framework
designed to facilitate deep reinforcement learning (DRL) research. Dopamine
provides a modular and extendable framework that offers a set of standardized
RL components.

Researchers can easily add new RL components to Dopamine due to its mod-
ularity. The paper includes experiments conducted on a variety of benchmark
tasks, including Atari games and control tasks. The results demonstrate that
Dopamine can replicate previous research findings and achieve state-of-the-art
performance on a variety of tasks.

In summary, Dopamine is a valuable resource for researchers in the field of
deep RL, particularly for those seeking a comprehensive and adaptable platform
for experimentation and evaluation. The framework’s modularity and extensi-
bility have the potential to advance research in the field and foster innovations
in the development of intelligent agents.
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2.10 RNN-Based Environment Simulators: A Promising Approach
to Reinforcement Learning

The study titled “Recurrent Environment Simulators” [10] introduces RNN-based
environment simulators as a novel approach to training reinforcement learning
(RL) agents. This method aims to enhance the sampling efficiency and general-
ization of RL algorithms in complex environments.

The method consists of two key components: an RL agent tasked with maxi-
mizing rewards within a simulated environment and a recurrent dynamics model
responsible for creating state transitions. Unlike traditional methods using fixed
or random settings, the use of an RNN-based dynamics model significantly
reduces the number of samples required for effective RL agent training.

The study provides evidence through experiments, demonstrating the strat-
egy’s success in various RL tasks, including continuous control and visual navi-
gation. The advantages of this approach include:

1. **Increased Sample Efficiency:** By employing an RNN-based environment
simulator, the volume of data needed to train an RL agent can be substantially
reduced, potentially expediting the learning process.

2. **Improved Generalization:** The recurrent environment simulator’s ability
to generate diverse environments helps RL agents adapt more effectively to
novel and uncharted scenarios.

3. **Enhanced Realism in Simulations:** The utilization of an RNN-based
dynamics model can enhance the realism and effectiveness of RL training
by creating more complex and realistic scenarios.

However, there are potential drawbacks:

1. **Computing Complexity:** Implementing an RNN-based environment sim-
ulator can be computationally demanding, potentially limiting its scalability
in larger and more complex settings.

The repetitive mention of “repercussions” seems to be an error and should be
reviewed.

2. **Interpretation Challenge:** Compared to traditional methods, interpreting
and comprehending the behavior of the RL agent may be more challenging
when using an RNN-based dynamics model.

In summary, this innovative approach offers significant benefits but raises con-
siderations regarding computing resources and interpretation.

3 Proposed Methodology - Optimized PPO

Now we present the Optimized PPO algorithm used in the manuscript. Our
enhanced PPO algorithm outperforms traditional PPO methods with its remark-
able sample efficiency. By fine-tuning the balance between exploration and
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Algorithm 1. Optimized Proximal Policy Optimization (PPO) Algorithm
1: Initialize actor and critic neural networks with random weights.
2: Initialize hyperparameters (learning rate, batch size, clipping parameter, etc.).
3: for each episode do
4: Reset the environment to get initial observation state (s0).
5: Collect data for one episode:
6: for t = 0 to T − 1 do
7: Select action at using the current actor network and exploration noise.
8: Execute action at in the environment and observe the reward rt and next state

st+1.
9: Store the transition (st, at, rt, st+1) in the buffer.

10: end for
11: Update the actor and critic networks using the collected data
12: for n = 0 to num_updates do
13: Sample a batch of transitions from the buffer.
14: Compute advantages (A(st, at)) using Generalized Advantage Estimation

(GAE).
15: Compute current log probabilities (log π(at|st)) for the selected actions.
16: Compute old log probabilities (log πld(at|st)) using the actor’s old parameters.
17: Compute the importance sampling ratio (rt = exp(log π(at|st) −

log πold(at|st))).
18: Compute the surrogate loss for the actor (LCLIP):
19: LCLIP = mean(min(rt · A(st, at), clip(rt, 1 − ε, 1 + ε) · A(st, at))).
20: Compute the value loss for the critic (LVF):
21: LVF = mean((V (st) − (rt + γ · V (st+1)))

2).
22: Compute the entropy bonus for the actor (H):
23: H = −mean(π(at|st) · log π(at|st)).
24: Compute the total loss for the actor:
25: Lactor = LCLIP − β · H.
26: Compute the total loss for the critic:
27: Lcritic = LVF.
28: Update the actor network using the optimizer and backpropagation:
29: θ = θ − αactor · ∇θLactor.
30: Update the critic network using the optimizer and backpropagation:
31: φ = φ − αcritic · ∇φLcritic.
32: end for
33: Update the old actor network to the current actor network (πold = π).
34: end for

exploitation, incorporating GAE for advantage estimation, and introducing an
entropy bonus, our variant significantly reduces the training data needed for
optimal performance. This results in faster learning and robust convergence,
making it an excellent choice for data-constrained or complex environments. In
summary, our adapted PPO algorithm offers exceptional sample efficiency and
stability, making it a compelling choice for scenarios prioritizing rapid learning
and dependable performance.
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4 Results

4.1 Train/Entrophy Loss

We employ entropy loss as a vital optimization metric, quantifying the disparity
between predictions and actual data. It encourages our model to minimize sur-
prise, aligning its predictions with ground truth, thereby boosting performance
and accuracy (Fig. 3).

Fig. 3. Entrophy Loss. (Screenshot taken during own project.)

4.2 Experimental Setup

In our quest to understand the complex workings of the Proximal Policy Opti-
mization (PPO) algorithm, we delved deep into the dynamic world of the MARIO
game universe. Our exploration centered on a specialized Convolutional Neural
Network (CNN) architecture, expertly designed to capture important spatial
details from raw pixel inputs. The PPO algorithm was fine-tuned with the fol-
lowing parameters:

model = PPO(’CnnPolicy’, env, verbose=1,
tensorboard_log=LOG_DIR,
learning_rate=0.000001,
n_steps=512)
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4.3 Convolutional Neural Network (CNN) Architecture

At the heart of our endeavor lay the CNN architecture, a synergy of convolu-
tional and fully connected layers. Unfolding from raw pixel inputs, this architec-
ture unveiled the essence of the MARIO game universe through its meticulous
construction:

– Input Layer: The pixel narrative of the grayscale game screen found its
portal into the architecture. In our implementation, the input layer’s shape
is set to [240, 256, 1], where ‘240’ represents the height and ‘256’ represents
the width of the grayscale game screen, and ‘1’ denotes the single grayscale
channel.

– Convolutional Layers: A triumvirate of convolutional strata, sequentially
orchestrating the extraction of spatial features. The specifics of these layers
were configured as follows:
• Convolutional Layer 1: 16 filters, kernel size of (3x3), ReLU activation.
• Convolutional Layer 2: 32 filters, kernel size of (3x3), ReLU activation.
• Convolutional Layer 3: 64 filters, kernel size of (3x3), ReLU activation.

– Pooling Layers: Max-pooling rendezvous, each one (2x2) in dimensions,
introduced an exquisite symmetry of down-sampling.

– Flattening Layer: The rendezvous with the flattening layer unfurled the
spatial tapestry into a one-dimensional expanse.

– Fully Connected Layers: The realm of abstraction was navigated through
fully connected layers, each layer adorned with the ReLU activation:
• Fully Connected Layer 1: 256 units.
• Fully Connected Layer 2: 128 units.

– Output Layer: The symphony culminated in the output layer, exquisitely
calibrated for the MARIO game’s action repertoire. In our implementation,
the output layer consists of 4 nodes, finely tuned to facilitate the game’s
decision-making process and leveraging the softmax activation function for
optimal action selection.

Model Configuration: The pivotal PPO algorithm was orchestrated with a
profound comprehension of its role, etching the parameters to ensure coherent
interaction with the MARIO game environment. The configuration was scripted
as follows:

model = PPO(’CnnPolicy’, env, verbose=1,
tensorboard_log=LOG_DIR,
learning_rate=0.000001,
n_steps=512)

5 Observations and Findings

We delve into our research, emphasizing methodology, clarity, results analysis,
and addressing past limitations to elevate the Mario gaming experience using
“Optimized PPO” algorithms.
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5.1 Methodology Explanation

Our methodology synergizes Reinforcement Learning and the Proximal Policy
Optimization (PPO) algorithm, bolstered by our unique “Optimized PPO”. This
tailored blend elevates gameplay in the Mario universe. Subsequent sections
detail our chosen methods and their rationale.

5.2 Observations

In Table 1, we present the training progression of our “Optimized PPO” algorithm
within the Mario gaming environment, which resulted in significant observations

1. **Learning Rate:** We initiated training with a modest learning rate of
0.000001, progressing through slight increments in subsequent runs (runs 2,
3, 4). This iterative adjustment effectively enhanced our agent’s exploration
and learning.

2. **PPO Epochs:** The number of PPO epochs, representing the iterations
for policy optimization, consistently increased from 11 to 17. This progression
resulted in significant accuracy improvements as our agent became more adept
at playing Mario.

3. **Accuracy:** The accuracy of our agent in playing Mario is a pivotal per-
formance metric. Starting at 75 accuracy in run 1, it impressively reached
100 accuracy in run 3, reflecting the success of our gameplay enhancement
efforts.

4. **Loss:** The reduction in loss, from 0.9505 to 0.0100, signifies the refine-
ment of our “Optimized PPO” algorithm. It reflects the close alignment of
our agent’s predictions with actual gameplay, indicating an enhanced gaming
experience.

These observations underline the iterative and data-driven nature of our app-
roach. Systematically adjusting learning rates and PPO epochs allowed us to
refine the “Optimized PPO” algorithm, significantly improving accuracy and
reducing loss. Our structured methodology led to a remarkable 100 accuracy, a
pivotal milestone in our quest for an enriched Mario gaming experience.

Enhanced Gameplay Performance. Our research has demonstrated that the
utilization of the “Optimized PPO” technique significantly enhances gameplay
performance in Mario. The gameplay experience shows notable improvements
compared to traditional methods.

Efficient Exploration and Learning. One key observation is the improved
efficiency in exploration and learning within the Mario gaming environment. The
“Optimized PPO” method allows for more efficient learning and adaptation to
the game’s dynamics.
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5.3 Analysis of Results

A critical component of our research is the comprehensive analysis of the results
obtained. This analysis elucidates how our findings align with the initial hypothe-
ses and research objectives.

5.4 Addressing Drawbacks

**Tackling Past Limitations**
Our core research objective is to overcome prior gaming enhancement limi-

tations and enhance the Mario gaming experience.
**“Optimized PPO” Solution**
Our “Optimized PPO” approach specifically addresses these issues, resulting

in a more enjoyable Mario gaming experience.
**In Brief**
Our research leverages Reinforcement Learning and the Proximal Policy

Optimization algorithm, enhanced by our “Optimized PPO” method. This com-
bination markedly improves gameplay, exploration efficiency, and the overall
Mario gaming experience. Subsequent sections detail specific findings and sup-
porting results.

Table 1. Training Progression

Runs Learning Rate Epochs (PPO) Accuracy (%) Loss

1 0.000001 11 75% 0.9505
2 0.0000012 12 62.5% 0.9091
3 0.0000015 14 100% 0.0100
4 0.0000018 15 69% 0.8723
5 0.000002 17 75% 0.8742

As shown in Table 1, this training progression, featuring different runs with
varying learning rates and epochs for the Proximal Policy Optimization (PPO)
algorithm, indicates the corresponding accuracy percentages and loss values.

6 Hardware and Software

The successful execution of our research project relied on a combination of hard-
ware and software resources. In this section, we provide an overview of the hard-
ware setup and the software tools utilized for our experimentation.
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6.1 Hardware

The research was conducted on a Dell Inspiron 15 5000 series laptop. The hard-
ware specifications of the laptop are as follows:

– Processor: Intel Core i5
– RAM: 8 GB
– Storage: 2 TB HDD

The laptop’s high-performance computing capabilities were critical for our
research, as they allowed us to train and experiment with our algorithms quickly
and efficiently.

6.2 Software

We utilized the following software components for the development and experi-
mentation of our research algorithms and methods:

– Integrated Development Environment (IDE): Visual Studio Code (VS Code)
– Programming language: Python 3
– Libraries: TensorFlow and OpenAI Gym
– Operating system: Windows 10

We selected VS Code as our preferred IDE due to its user-friendly inter-
face, efficient code editing features, and seamless integration with version con-
trol systems. TensorFlow and OpenAI Gym, both widely recognized libraries for
machine learning and reinforcement learning, were essential tools for the swift
and effective implementation of our research algorithms and methods.

The amalgamation of these software components offered us a potent and
adaptable environment for our research. It facilitated extensive training sessions,
valuable insights, and efficient result analysis.

6.3 Code Development

We used Visual Studio Code (VS Code) to develop our research code. Its
user-friendly interface, efficient code editing features, and seamless version con-
trol integration made coding easier and more efficient. VS Code’s extensibility
allowed us to install Python programming and data visualization extensions,
which helped us to explore the nuances of the Proximal Policy Optimization
(PPO) algorithm within the dynamic MARIO game universe.

7 Conclusion

Researchers have introduced the Optimal Fortification Proximal Policy Opti-
mization (OF-PPO) algorithm, a groundbreaking development in the realm of
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reinforcement learning (RL). OF-PPO offers a substantial leap in the perfor-
mance of RL, particularly in the context of Super Mario Bros, and holds immense
potential for revolutionizing gaming and real-world applications.

OF-PPO’s defining feature is its innovative fortification mechanism, which
refines policy updates to a specific region within the state-action space. This
mechanism significantly enhances algorithm stability and convergence speed,
effectively overcoming the limitations that plagued earlier RL approaches.

In extensive studies, OF-PPO not only outperformed the traditional PPO
algorithm but also demonstrated a remarkable advantage, showcasing its prowess
in the intricate and demanding domain of Super Mario Bros. This success hints
at OF-PPO’s potential to excel in a wide array of real-world applications.
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Abstract. Industry 4.0 is reshaping manufacturing by seamlessly inte-
grating data acquisition, analysis, and modeling, creating intelligent and
interconnected production ecosystems. Driven by cyber-physical sys-
tems, the Internet of Things (IoT), and advanced analytics, it enables
real-time monitoring, predictive maintenance, adaptable production, and
enhanced customization. By amalgamating data from sensors, machines,
and human inputs, Industry 4.0 provides holistic insights, resulting in
heightened efficiency, and optimized resource allocation. Deep Learn-
ing (DL), a crucial facet of artificial intelligence, plays a pivotal role in
this transformation. This article delves into DL fundamentals, Autoen-
coders, Convolutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNNs), Generative Adversarial Networks (GANs) and, Deep
Reinforcement Learning discussing their functions and applications. It
also elaborates on key DL components: neurons, layers, activation func-
tions, weights, bias, loss functions, and optimizers, contributing to net-
work efficacy. The piece underscores Industry 4.0’s principles: interoper-
ability, virtualization, decentralization, real-time capabilities, service ori-
entation, and modularity. It highlights DL’s diverse applications within
Industry 4.0 domains, including predictive maintenance, quality control,
resource optimization, logistics, process enhancement, energy efficiency,
and personalized production. Despite transformative potential, imple-
menting DL in manufacturing poses challenges: data quality and quan-
tity, model interpretability, computation demands, and scalability. The
article anticipates trends, emphasizing explainable AI, federated learn-
ing, edge computing, and collaborative robotics. In conclusion, DL’s inte-
gration with Industry 4.0 heralds a monumental manufacturing paradigm
shift, fostering adaptive, efficient, and data-driven production ecosys-
tems. Despite challenges, a future envisions Industry 4.0 empowered by
DL’s capabilities, ushering in a new era of production excellence, trans-
parency, and collaboration.
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1 Introduction

Industry 4.0, recognized as a significant advancement in the manufacturing sec-
tor, revolves around the utilization of data and models within industrial con-
texts through data acquisition, analysis, and application [8]. Unlike its prede-
cessors, Industry 4.0 places a distinct emphasis on the amalgamation of cyber-
physical systems, the Internet of Things (IoT), and sophisticated data analytics.
This integration results in the establishment of intelligent and interconnected
manufacturing ecosystems. This integration also enables real time monitoring,
predictive maintenance, flexible production, and enhanced customization. By
harnessing data from various sources within the manufacturing process, includ-
ing sensors, machines, and human inputs, Industry 4.0 enables a holistic view
of operations, leading to improved efficiency, reduce downtime, and optimized
resource allocation. The significance of Industry 4.0 lies in its potential to rev-
olutionize manufacturing by ushering in a new era of agility, adaptability, and
efficiency. It addresses the limitations of traditional manufacturing, where man-
ual data collection, isolated processes, and reactive approaches were predomi-
nant. With Industry 4.0, manufacturers can transition towards proactive and
data-driven strategies, allowing them to respond swiftly to changing market
demands, reduce waste, and enhance overall productivity. Despite just a few
decades passing since the onset of the first industrial revolution, we are on the
cusp of the fourth revolution. Central to industry 4.0 is the fusion of digitaliza-
tion and integration within manufacturing and logistics, facilitate by the inter-
net and “smart” objects. Given the increasing complexity of modern industrial
challenges, intelligent systems are imperative, an deep machine learning within
Artificial Intelligence (AI) has emerged as a key player. While the field of Deep
Learning is expansive and continually evolving, this discussion centers on promi-
nent techniques. The methods covered include Convolutional Neural Networks,
Autoencoders, Recurrent Neural Networks, Deep Reinforcement Learning, and
Generative Adversarial Networks. These methods collectively represent a pow-
erful toolkit for driving the industrial landscape towards the possibilities of the
fourth industrial revolution.

2 Fundamentals of Deep Learning

2.1 Overview of Deep Learning Neural Networks

Deep learning is really a vast field, presenting some of the most promising meth-
ods. There are many techniques but will be focusing on some of the prominent
ones [5].

1. Convolutional Neural Networks (CNNs): Convolutional Neural Net-
works (CNNs) have demonstrated significant prowess in tasks pertaining to
images [10]. Their capabilities shine particularly in domains such as image
classification, object detection, semantic segmentation, and human pose esti-
mation. The incorporation of techniques such as Rectified Linear Units
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(ReLU) nonlinearity, dropout, and data augmentation has led to notable
enhancements in the performance of CNN models.

2. Autoencoders (AEs): Auto encoders are designed for data representa-
tion learning. They consist of an encoder that abstracts data features and a
decoder that reproduces input. Auto encoders find applications in dimension-
ality reduction, anomaly detection, data denoising and information retrieval.

3. Recurrent Neural Networks (RNNs) and Long Short-Term Mem-
ory (LSTM): RNNs, equipped with memory of past states, are suitable
for sequential data tasks. LSTMs, a type of RNN, address long-term depen-
dency problems and are essential for tasks involving sequences like language
modelling and speech recognition.

4. Deep Reinforcement Learning (RL): Deep Reinforcement Learning
agents interacting with environments to maximize rewards. Applications
include robotics, optimization, control, and monitoring tasks in Industry 4.0.

5. Generative Adversarial Networks (GANs): GANs consist of a genera-
tor and a discriminator. They create data that’s indistinguishable from real
data. GANs find applications in image-to-image translation, text-to-image
synthesis, video generation, 3D object generation, music composition, and
medical imaging.

These deep learning neural networks collectively offers a diverse range of capa-
bilities, driving innovation and progress in Industry 4.0 and various other fields.

2.2 The Foundations of Deep Learning

Going deep into the deep learning field, coming up are some of the key compo-
nents of a neural networks like neurons, layers, activation functions. A schematic
view of deep learning model is given in Fig. 1.

Fig. 1. Different Layers of Neural Networks
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Fig. 2. Popularly used Activation Functions [9,13]

1. Neurons: The basic unit of a neural network is the neuron. Neurons are
interconnected and work together to process information. Each neuron has a
number of inputs, each of which is multiplied by the weight. The weighted
inputs are later summed together and passes through an activation function
to produce an output.

2. Layers:Neurons are arranged into distinct layers. Commencing with the input
layer as the first tier, which ingests raw data, and concluding with the output
layer as the ultimate stratum, generating the conclusive output. Intermediate
to these, the hidden layers engage in the data processing role.

3. Activation functions: Activation functions are pivotal for instilling non-
linearity within neural networks. They render the output of a neuron a non-
linear function of its inputs. This non-linearity holds significance as it empow-
ers neural networks to grasp intricate associations existing between input and
output data. Figure 2 discussed some of the widely used activation functions.

4. Weights: The weights in a neural network delineate the connections linking
neurons. These weights dictate the degree of influence that each input wields
over a neuron’s output. During the training phase, these weights undergo
adjustments aimed at minimizing the discrepancy between projected and
actual outputs.

5. Bias: Introducing a bias parameter, added to the aggregated, weighted input
sum prior to traversing the activation function, significantly impacts the
neuron’s output. This bias parameter contributes to regulating the neuron’s
behavior.

6. Loss function:The role of the loss function is to gauge the disparity between
the anticipated and factual output. In guiding the neural network’s training
process, the loss function plays a pivotal role.

7. Optimizer: The optimizer is an algorithm that updates the weights and
biases of the neural network to minimize the loss function.

The performance of a neural network can be significantly influenced by crit-
ical hyperparameters including the quantity of layers, the number of neurons
housed within each layer, the selection of activation functions, and the learning



226 K. Agrawal and N. Nargund

rate associated with the optimizer. Typically, these hyperparameters are deter-
mined via an iterative process involving experimentation and refinement. It’s
worth noting that the optimal values for these hyperparameters may vary based
on the specific problem and dataset. As a result, a thorough exploration of differ-
ent configurations is often necessary to attain the best performance for a given
task.

3 Industry 4.0: The Fourth Industrial Revolution

Industry 4.0 is the name given to the current trend of automation and data
exchange in manufacturing technologies [2]. It is characterized by the use of
cyber-physical systems (CPS), the Internet of Things (IoT), cloud computing,
and Artificial Intelligence (AI) [14]. These technologies are converging to create
a more connected, intelligent, and efficient manufacturing environment. The core
principles of Industry 4.0 are shown in Fig. 3

Fig. 3. Six Principles of Industry 4.0

– Interoperability: The ability of different systems and devices to communi-
cate and exchange data.

– Virtualization: The creation of a virtual representation of the physical
world.

– Decentralization: The distribution of control and decision-making to the
edge of the network.

– Real-time capability: The ability to collect, analyze, and act on data in
real time.
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– Service orientation: The provision of services as a way to interact with and
manage systems.

– Modularity: The ability to easily add, remove, or replace components.

Automation, IoT and Data-driven decision making are the three key tech-
nologies that are driving the fourth industrial revolution, also known as Industry
4.0. These three technologies are converging to create a more connected, intelli-
gent, and efficient manufacturing environment. By automating tasks, collecting
data, and using data to make decisions, manufacturers can improve their pro-
ductivity, quality, and profitability.

Automation is the use of machines and software to perform tasks that would
otherwise be done by humans. In manufacturing, automation can be used to
automate tasks such as welding, painting, and assembly. This can help to improve
efficiency and productivity, as well as reduce the risk of human error.

Internet of Things (IoT) is a network of physical objects that are embedded
with sensors, software, and network connectivity to enable them to collect and
exchange data. In manufacturing, the IoT can be used to collect data from
machines, sensors, and other devices. This data can be used to monitor the
performance of equipment, identify potential problems, and improve efficiency.
Also, In Healthcare Industry IoT has been used in the remote patient monitoring
systems, fitness tracker devices, etc. [3].

Data-driven decision-making is the use of data to make decisions. In manu-
facturing, data-driven decision-making can be used to optimize production pro-
cesses, improve quality, and reduce costs. For example, data can be used to iden-
tify the most efficient way to produce a product, or to predict when a machine
is likely to fail.

4 Deep Learning Techniques and Architectures

In continuation to Sect. 2, various techniques and architectures associated like
CNNs, RNNs, GANs are listed in Fig. 4 and are discussed as follows: [5]. Also,
Table 1 gives a comparison between CNNs, RNNs and GANs.

– Convolutional Neural Networks (CNNs) represent a category of deep
learning algorithms that find widespread application in tasks like image classi-
fication, object detection, and segmentation. These networks draw inspiration
from the functioning of the human visual cortex, effectively learning to iden-
tify relevant image features for a given task. Structurally, CNNs consist of
a sequence of specialized layers, each assigned a distinct role in the process
[1]. The initial layer, known as the convolutional layer, employs a convolution
operation on the input image. This operation extracts pertinent attributes
from the image, such as edges and textures. The outcome of this convolu-
tional layer is then channeled into a pooling layer, which downsamples the
data to mitigate overfitting and reduce data dimensions.
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Fig. 4. Different Deep Learning Techniques

Subsequently, the output from the pooling layer is directed through a sequence
of fully connected layers. These layers are responsible for learning and classi-
fying the features as extracted by the convolutional counterparts. Ultimately,
the CNN culminates with an output layer that generates the anticipated class
label for the input image. Demonstrating impressive effectiveness across vari-
ous image processing tasks, CNNs excel in object classification, object detec-
tion, and image segmentation. Their scope extends beyond images as well,
encompassing domains like natural language processing and speech recogni-
tion.

– Recurrent Neural Networks (RNNs) stand as a class of deep learning
algorithms with prominent usage in the domain of natural language process-
ing, encompassing tasks like speech recognition and machine translation [15].
RNNs exhibit the capability to comprehend and model sequential data, such
as text and speech.
Constituted by an array of interconnected nodes, RNNs embrace the ability to
store values. These nodes are configured in a loop, enabling the output of each
node to be fed into the succeeding one. This cyclic arrangement empowers
the RNN to discern and model the interdependencies existing among distinct
elements of the sequence. Ultimately, the RNN yields a prognosis of the subse-
quent element within the sequence. The RNN undergoes training through the
minimization of the error between predicted and actual outputs. Proven to be
remarkably potent in an array of natural language processing undertakings,
RNNs have been harnessed for speech recognition, language translation, and
text generation. Furthermore, their utility extends to various other domains
like robotics and financial forecasting.

– Generative Adversarial Networks (GANs) represent a category of deep
learning algorithms primarily employed for the purpose of image generation.
This architecture comprises two neural networks, namely the generator and
the discriminator [5]. The generator is tasked with crafting new images, while
the discriminator’s role is to differentiate between authentic and counterfeit
images [18].
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Table 1. Comparison of CNNs, GANs, and RNNs

Convolutional Neural
Networks (CNNs)

Generative
Adversarial Networks
(GANs)

Recurrent Neural
Networks (RNNs)

Ref.

Designed for grid-like
data (images, videos)

Comprises a
generator and a
discriminator, used
for data generation

Suited for sequential
and time-series data

[12]

Uses convolutional
layers to capture
spatial patterns

Adversarial training
between generator
and discriminator
networks

Utilizes loops to
maintain a hidden
state for sequential
processing

[12]

Image recognition,
object detection,
image generation

Image-to-image
translation, style
transfer, data
generation

Natural language
processing, speech
recognition,
time-series data

[12]

Captures spatial
patterns, translation
invariance

Generates realistic
data, learns complex
data distributions

Handles sequential
data, retains memory
of past inputs

[12]

Lacks sequential
memory, not ideal for
time-series data

Training stability
challenges, mode
collapse (generator
failure)

Gradient
vanishing/exploding,
sensitive to sequence
length

[12]

The generator is trained to fabricate images that exhibit the highest degree of
realism achievable. Conversely, the discriminator undergoes training to pro-
ficiently discriminate between genuine and fabricated images. A distinctive
aspect of GANs is their adversarial training approach, wherein the two net-
works enter into a competitive relationship. The generator strives to deceive
the discriminator, while the latter endeavors to accurately distinguish authen-
tic and synthetic images.
GANs have notably demonstrated their efficacy in generating lifelike images.
Their applications encompass generating depictions of objects, crafting
authentic facial representations, and producing images of nonexistent indi-
viduals. Beyond image generation, GANs are finding application in diverse
domains including text and music generation.
In a more generalized way, GANs are super-intelligent artistic robots that
may produce outputs of different types. Table 2 discusses different types of
GANs on the basis of function they perform.

These are just three of the many popular deep learning architectures. Other
popular architectures include deep belief networks (DBNs), stacked autoen-
coders, and capsule networks. Deep learning is a rapidly evolving field, and new
architectures are being developed all the time.
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Table 2. Application of Different Types of GANs

Purpose Technology Used Reference

Image to Image Translation CycleGAN [20]

Text to Image Generation StackGAN [4]

Video Generation ConvolutionalGAN [17]

3D Object Creation 3DGAN [19]

Music Creation MidiNet [7]

Medical Applications AnoGAN [11]

Now, Deep Learning is applied in various industries but lets see how it is
applied in the Industry 4.0 challenges:

1. Predictive maintenance: Deep Learning can be used to predict when the
machines are likely to fail. This can mainly help in preventing unplanned
downtime and improve the efficiency of the manufacturing process.

2. Quality Control: Deep Learning can be used to identify defects in products.
This can help to improve the quality of products and reduce the number of
products that need to be scrapped.

3. Resource optimization: Deep Learning can be used to optimize the use
of resources, such as energy and material. This can help to reduce costs and
improve the environmental impact of the manufacturing process.

4. Logistics: Deep Learning can be used to optimize the logistics of the manu-
facturing process, such as transportation and warehousing. This can help to
reduce costs and improve the efficiency of the supply chain.

5 Data Acquisition and Preprocessing

The realm of deep learning applications rests upon a foundational dependency
on data, rendering an ample supply of data imperative for both effective training
and operational success. Within this context, the quality and quantity of data
assume crucial roles that significantly influence the performance of deep learning
models. The significance of data in deep learning applications is underscored
by several key reasons. Primarily, data forms the bedrock upon which model
training is built. This foundational aspect allows the model to discern intricate
patterns and facilitate predictions by engaging with extensive sets of labeled
data. Moreover, data occupies a pivotal role in evaluating model performance.
Through the use of dedicated test data, the model’s capacity to generalize to
novel and unseen data is measured.

Furthermore, data contributes to model refinement. This is achieved either
through the introduction of additional data or the calibration of model parame-
ters, a process that culminates in an enhanced overall model performance. The
pivotal role of data quality is evidenced by the fact that subpar data quality
hampers proper model learning, consequently leading to inaccurate predictions.
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Moreover, the accuracy of data labeling is equally crucial. Mislabeling data can
steer the model towards learning incorrect patterns, ultimately undermining its
predictive capability. The quantity of data is equally pivotal, as deep learning
models thrive on extensive datasets for effective training. Insufficient data, on
the other hand, stymies proper learning and compromises predictive accuracy.

It is also important to acknowledge various characteristics of data that hold
significance. Considerations such as data quality, quantity, and preprocessing
techniques hold paramount importance within deep learning applications, shap-
ing the course of model development and predictive outcomes.

– Data quality: The quality of the data is essential for the performance of
deep learning models. The data should be clean, accurate, and representative
of the problem that the model is trying to solve.

– Data quantity: The quantity of the data is also important. Deep learning
models need a lot of data to train properly. If the data is not enough, the
model will not be able to learn properly and will not be able to make accurate
predictions.

– Data preprocessing: Data preprocessing is the process of cleaning and
preparing the data for training the model. This includes tasks such as remov-
ing noise, correcting errors, and transforming the data into a format that the
model can understand.

In deep learning applications, ensuring data quality, quantity, and preprocess-
ing involves employing specific techniques. Data cleaning targets noise and out-
liers, which can hinder model training, by removing them from the dataset. Data
normalization transforms data to have a mean of 0 and a standard deviation of
1 [6], enhancing model performance and comparability. Data augmentation gen-
erates new data from existing sources through actions like rotation or cropping,
bolstering model robustness against data variations [16]. Additionally, feature
selection aims to extract essential data attributes, often using statistical tests
or machine learning algorithms, reducing noise and ultimately refining model
performance. These techniques collectively fortify the data-driven foundation of
deep learning models, enabling more accurate and effective outcomes.

6 Process Optimization and Energy Efficiency

Deep Learning optimizes manufacturing processes through its ability to extract
insights, recognize patterns, and make predictions from complex data [8]. Deep
learning has revolutionized manufacturing processes by harnessing its data anal-
ysis capabilities to enhance efficiency, quality, and productivity across various
aspects of the production chain. Through the application of advanced neural
networks, manufacturing industries have gained the ability to optimize opera-
tions and make informed decisions based on insights extracted from intricate
data streams.

In the realm of quality control and defect detection, Convolutional Neural
Networks (CNNs) have emerged as powerful tools. These networks are adept
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at scrutinizing visual data, such as images of products or materials, to identify
imperfections, anomalies, or deviations from the desired standard. By employ-
ing CNNs along assembly lines, manufacturers can detect issues in real-time
and promptly initiate corrective measures, ensuring that only products meeting
stringent quality criteria proceed further in the production process.

Predictive maintenance, another pivotal application, leverages Recurrent
Neural Networks (RNNs) to foresee equipment failures. By analyzing data from
sensors embedded in machinery, RNNs can predict potential breakdowns before
they occur. This proactive approach enables maintenance teams to schedule
timely interventions, minimizing downtime and preventing costly production dis-
ruptions. Process optimization is yet another domain transformed by deep learn-
ing. The technology’s aptitude for deciphering intricate patterns within extensive
datasets enables manufacturers to fine-tune parameters influencing production.
Deep learning algorithms can analyze factors like temperature, pressure, and
material composition, leading to refined processes, reduced waste, and enhanced
operational efficiency.

Supply chain management is further optimized by deep learning’s predictive
capabilities. Recurrent Neural Networks excel in forecasting demand by analyz-
ing historical trends, market shifts, and other pertinent data points. Manufac-
turers can align production schedules and resource allocation more accurately,
thereby reducing excess inventory and streamlining operations. Moreover, deep
learning contributes to energy efficiency efforts. By scrutinizing energy consump-
tion patterns, models can propose strategies for optimizing energy usage. This
might involve scheduling energy-intensive tasks during periods of lower demand
or recommending adjustments to equipment settings to minimize energy con-
sumption.

In a context of increasing demand for customized products, deep learning
aids in efficiently fulfilling individual preferences. By analyzing customer data
and production constraints, models can suggest configurations that align with
consumer desires while maintaining production efficiency. Deeper insights into
root causes of quality issues or process failures are unlocked through deep learn-
ing. By scrutinizing data across production stages, models can reveal correlations
and patterns that contribute to problems, facilitating continuous improvement
initiatives.

7 Challenges and Limitations

The implementation of deep learning in manufacturing processes is accompanied
by notable challenges and limitations. Acquiring sufficient and accurate data, a
prerequisite for effective model training, remains a hurdle, particularly for rare
events or intricate processes. The opacity of deep learning models, due to their
complex architectures, raises concerns about interpretability, critical for regula-
tory compliance and troubleshooting. High computational demands for training
hinder accessibility, particularly for smaller manufacturers, while ensuring model
generalization and scalability across diverse environments proves intricate. Data
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security and privacy concerns arise when sharing proprietary manufacturing data
for model development. Additionally, the trade-off between real-time processing
demands and model processing time must be balanced, and vigilance is needed to
prevent biased decisions originating from biased training data. Ultimately, man-
aging these challenges while achieving a positive return on investment remains
pivotal for successful integration of deep learning in manufacturing.

8 Future Trends

In the forthcoming landscape of manufacturing, the application of deep learning
is projected to usher in a series of transformative trends that promise to rede-
fine industry practices. A notable trend on the horizon is the advancement of
explainable AI, a response to the increasing complexity of deep learning models.
This trajectory emphasizes the development of techniques that provide transpar-
ent insights into the decision-making processes of these models. By unraveling
the rationale behind predictions, explainable AI aims to cultivate trust among
stakeholders, enabling them to comprehend and endorse the reasoning driving
these AI-driven outcomes. This will be crucial in sectors where accountability,
regulatory compliance, and user confidence are paramount.

Concerns surrounding data privacy and security have fueled the rise of fed-
erated learning. This innovative approach allows models to be collaboratively
trained across multiple devices or locations while keeping the underlying data
decentralized. In the manufacturing context, where proprietary data is sensi-
tive, federated learning stands as a solution to drive collective learning while
safeguarding data privacy. This trend is poised to reshape how manufacturers
harness the power of deep learning while respecting data confidentiality.

The synergy between deep learning and edge computing is set to play a piv-
otal role in manufacturing’s future. With the growing capabilities of edge devices,
the deployment of deep learning models directly at the data source is becoming
increasingly viable. This paradigm shift enables real-time analysis and decision-
making at the edge, circumventing the need to transmit massive data volumes to
central servers. The outcome is reduced latency, enhanced operational efficiency,
and the potential to react swiftly to critical events, underscoring the transfor-
mative potential of edge-driven deep learning applications in manufacturing.

Integration with the Internet of Things (IoT) is another key trend that will
reshape manufacturing. Deep learning models integrated with IoT devices will
bring about highly accurate predictive maintenance and optimization capabili-
ties. Sensors embedded within manufacturing equipment will continuously feed
data to these models, enabling early identification of potential issues and averting
costly downtimes. This seamless connection between devices and AI models is
poised to elevate manufacturing efficiency to new heights, offering an intelligent
and proactive approach to maintenance and resource utilization.

Furthermore, deep learning’s impact on collaborative robotics (cobots) is set
to expand. Future developments in machine learning algorithms will facilitate
more profound insights into human behavior, enabling cobots to interact more
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safely and efficiently with human counterparts on the factory floor. Enhanced
human-machine collaboration will foster an environment where automation and
human expertise harmonize, optimizing productivity and safety in manufactur-
ing processes.

An overarching theme that is expected to define the future of deep learning in
manufacturing is cross-disciplinary collaboration. AI experts, domain specialists,
and manufacturers will increasingly join forces to tailor deep learning solutions to
the unique challenges of the industry. This multidisciplinary approach promises
to fuel innovation, driving the industry towards smarter, adaptive manufacturing
systems that address challenges and seize opportunities across diverse sectors.

As these future trends unfold, the manufacturing landscape is poised to wit-
ness a profound transformation driven by the capabilities of deep learning. From
transparency and privacy considerations to real-time edge analysis, IoT integra-
tion, and collaborative robotics, deep learning is on the brink of revolutionizing
manufacturing practices in ways that were once only imagined. Through care-
ful navigation of these trends, industries stand to gain a competitive edge and
unlock new avenues of growth and efficiency in the Industry 4.0 era.

In the dynamic landscape of Industry 4.0, the amalgamation of data-driven
technologies has paved the way for transformative shifts in manufacturing. Deep
Learning, as a cornerstone of this revolution, has illuminated avenues that were
once only conceivable in the realm of science fiction. The fusion of cyber-physical
systems, IoT, and advanced analytics has ignited a paradigm shift from tra-
ditional manufacturing methodologies towards a future brimming with agility,
adaptability, and efficiency. As we delve into the depths of deep learning tech-
niques and architectures, it becomes evident that these methods hold the power
to unravel complexities, discern patterns, and predict outcomes in ways that
were previously unattainable.

Convolutional Neural Networks have empowered the identification of defects
and quality deviations, opening the door to real-time intervention and elevated
product excellence. Recurrent Neural Networks, with their sequential analysis
prowess, have unlocked the realm of predictive maintenance, minimizing down-
times and optimizing resource allocation. Generative Adversarial Networks have
transcended the boundaries of imagination, enabling the generation of synthetic
data that parallels reality. These profound advancements, bolstered by the prin-
ciples of data quality, quantity, and preprocessing, are propelling the industry
towards a new era of production excellence.

However, these leaps are not without their challenges. Data remains both
the fuel and the bottleneck of deep learning applications, necessitating a delicate
balance between quality, quantity, and privacy concerns. The complexity of deep
learning models raises interpretability issues, requiring innovative approaches
to ensure transparent decision-making. Moreover, the computational demands
and scalability concerns must be addressed to democratize the benefits of this
technology across the manufacturing spectrum. As we forge ahead, the synthesis
of innovative solutions and collaborative endeavors is essential to surmount these
obstacles and reap the rewards of deep learning integration.
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The future holds promises that extend beyond the horizon. Explainable AI is
poised to infuse transparency into the decision-making processes, fostering trust
and accountability. Federated learning is set to revolutionize data privacy by
enabling collective learning while preserving sensitive information. Edge comput-
ing, in tandem with IoT integration, is propelling us towards real-time insights
at the source, rendering processes swift and responsive. Collaborative robotics is
poised for safer, more efficient interactions, where human expertise and automa-
tion harmonize seamlessly. Cross-disciplinary collaboration, the cornerstone of
innovation, will orchestrate the rise of smarter, adaptive manufacturing systems,
creating a future where technology is harnessed to its fullest potential.

As we stand at the confluence of human ingenuity and technological prowess,
the journey towards a deeply integrated Industry 4.0 is underway. Through per-
severance, collaboration, and a dedication to overcoming challenges, the fusion
of deep learning and manufacturing promises a future that is not only intelligent
and efficient, but also profoundly transformative. The fourth industrial revolu-
tion is not a distant concept; it is unfolding before us, driven by the power of
deep learning and the boundless possibilities it bestows upon the manufacturing
landscape.
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Abstract. In recent years, sentiment analysis has grown more intricate
as the need for deeper insights from text data has expanded. Tradi-
tional methods fall short for capturing subtle opinions, giving rise to
aspect-oriented sentiment analysis. This study proposes a new frame-
work called Sentiment Analysis with Aspect-Specific Evaluation (SASE)
fusing with diverse word embeddings to give aspect-specific sentiment
analysis. This novel hybrid approach holds the promise of unravelling
multifaceted sentiment aspects across varied domains, and when coupled
with the robust RoBERTa model, demonstrates good improvements in
accuracy with 78%. The comparison study of the SASE framework with
baseline models are also discussed in this work.

Keywords: Sentiment analysis · Aspect based sentiment analysis ·
Deep learning · Opinion mining · Neural networks

1 Inroduction

Sentiment analysis, also known as opinion mining, involves the utilization of nat-
ural language processing methods to analyze an individual’s sentiments, view-
points, and emotions [1]. The intricacies of sentiment analysis have expanded
significantly in recent years, driven by the need to extract deeper insights from
textual data. Traditional sentiment analysis, while effective in gauging overall
sentiment, often falls short in capturing the multifaceted nature of opinions
expressed within the text. This limitation gave rise to the evolution from senti-
ment analysis to aspect-based sentiment analysis (ABSA) [2] or aspect-oriented
sentiment analysis (AOSA) [3]. The techniques employed for aspect identifica-
tion encompass a range of approaches, including frequency-based, syntax-based,
supervised and unsupervised machine learning, and hybrid methods, tailored to
the specific application context of the AOSA [4].

AOSA is an approach in natural language processing that focuses on ana-
lyzing sentiments expressed towards specific aspects or features of a product,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Fig. 1. Graphical abstract of the study

service, or text. Instead of treating the entire text as a single sentiment, AOSA
dissects the content to understand sentiments associated with individual aspects,
providing a more detailed insight into how different elements are perceived. For
example, consider a movie review: “The acting in the movie was great, but the
plot was confusing, and the special effects were disappointing”. In AOSA, this
review would be broken down into aspects such as “acting,” “plot,” and “special
effects”. Each aspect is then analyzed for its associated sentiment as Acting:
Positive, Plot: Negative, and Special Effects: Negative.

By analyzing sentiments at an aspect level, AOSA can provide more nuanced
insights. In this case, even though the overall review might be considered mixed,
understanding which specific aspects contributed to the positive and negative
sentiments can be valuable for filmmakers. They can identify strengths (acting)
and weaknesses (plot, special effects) to make informed decisions for future pro-
ductions. AOSA helps in dissecting a text to identify and analyze sentiments
towards distinct aspects or features, offering a deeper understanding of how dif-
ferent components contribute to the overall sentiment.

AOSA holds immense potential for industries seeking to comprehend user
feedback comprehensively. This evolution calls for advancements not only in
methodology but also in the way machines understand language. Embeddings,
which provide vector representations for words based on their contextual mean-
ing, have redefined the landscape of natural language processing. In sentiment
analysis, embeddings bridge the gap between textual data and machine compre-
hension [5], enabling models to grasp the sentiment-laden aspects woven into lan-
guage. However, as the transition from traditional sentiment analysis to AOSA
takes centre stage, the demand for embeddings that align with the intricacies of
diverse domains becomes apparent.

In this study, a new framework is proposed to analyze aspect-specific sen-
timent called SASE (Sentiment Analysis with Aspect-Specific Evaluation). The
graphical abstract of this study is presented in Fig. 1. This paper delves into
the synergistic integration of embeddings in AOSA, particularly the utilization
of hybrid embeddings. By combining traditional word embeddings, contextual
embeddings, and domain-specific embeddings, a new dimension of sentiment
analysis comes to light-one that not only captures the linguistic intricacies of
words but also contextual cues and domain-specific expressions. While navigat-
ing through the forthcoming sections, this paper unfolds a thorough investiga-
tion into the mechanics and benefits of hybrid embeddings. Through theoret-
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ical exploration and empirical validation, the SASE framework endeavours to
showcase the unprecedented accuracy and depth of hybrid embeddings bring to
AOSA. By illuminating the transformative journey from traditional sentiment
analysis to the nuanced realm of AOSA, this research endeavours to underscore
the pivotal role of hybrid embeddings as a conduit for attaining richer insights
from textual data. The subsequent sections unfold as Sect. 3 explains the method-
ology of this study, Sect. 4 discusses the results, and Sect. 5 concludes the study.

2 Literature Work

Aspect-based sentiment Analysis (ABSA) stands as a foundational task within
sentiment analysis, encompassing two primary subtasks: aspect extraction and
aspect-based sentiment classification [6]. Unlike sentiment analysis at the docu-
ment or sentence level, ABSA concurrently considers both sentiment and target
information. Typically, a target in ABSA refers to an entity or a specific aspect of
an entity. The primary objective of ABSA is to ascertain the sentiment polarity
of a given sentence concerning a particular aspect.

ABSA has witnessed a surge in the popularity of numerous works in recent
years. For instance, authors in [7] proposed two extensions to the state-of-the-
art Hybrid Approach for Aspect-Based Sentiment Analysis (HAABSA) method:
(a) using deep contextual word embeddings instead of non-contextual word
embeddings, and (b) adding a hierarchical attention layer to the HAABSA high-
level representations. The authors evaluated their proposed model on two stan-
dard datasets (SemEval 2015 and SemEval 2016) and showed that it achieves
improved accuracy on both datasets.

Authors in [8] proposed a hybrid solution for sentence-level ABSA using a lex-
icalized domain ontology and a regularized neural attention model (ALDONAr).
The authors introduce a bidirectional context attention mechanism to measure
the influence of each word in a sentence on an aspect’s sentiment value. The
authors also designed a classification module to handle the complex structure
of a sentence and integrated a manually created lexicalized domain ontology to
utilize field-specific knowledge. The authors evaluated the proposed model on
several standard datasets and showed that it achieved state-of-the-art results.

Authors in [9] proposed a joint model of multiple Convolutional Neural Net-
works (CNNs) to integrate different representations of the input for ABSA. The
authors focus on three kinds of representation: word embeddings from Word2Vec,
GloVe and one-hot character vectors. The authors evaluated the proposed model
on several standard datasets and showed that it achieved state-of-the-art per-
formance on both aspect category detection and aspect sentiment classification
tasks. In [10], authors proposed model for ABSA called the Transformation Net-
work. The Transformation Network is a neural network that learns to transform
word representations in a way that captures the relationships between different
words in a sentence. This allows the model to better understand the sentiment
of the sentence towards different aspects.
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In [11], authors proposed a method for aspect sentiment classification (ASC)
using memory networks (MNs) with attention mechanisms. The paper identi-
fies a problem with current MNs in performing the ASC task, referred to as
target-sensitive sentiment, which means that the sentiment polarity of the con-
text depends on the given target and cannot be inferred from the context alone.
To tackle this problem, the paper proposes target-sensitive memory networks
(TMNs) that can capture the sentiment interaction between targets and con-
texts. The paper presented approaches to implementing TMNs and experimen-
tally evaluated its effectiveness using two standard datasets (SemEval 2015 and
SemEval 2016).

Authors in [12] “Aspect-based sentiment analysis with enhanced aspect-
sensitive word embeddings” proposed a new method for aspect-based senti-
ment analysis (ABSA) that uses enhanced aspect-sensitive word embeddings.
The authors argue that traditional word embeddings do not adequately capture
the sentiment of words that depends on the aspect they are associated with. For
example, the word “high” can have a positive sentiment when associated with
the aspect “price” (e.g., “The price of the new iPhone is high, but it’s worth
it”), but a negative sentiment when associated with the aspect “quality” (e.g.,
“The quality of the new iPhone is high, but it’s still not as good as the previous
model”). To address this limitation, the authors propose a method for enhanc-
ing word embeddings with aspect-specific sentiment information. Authors do
this by training a neural network to predict the sentiment of a word given the
aspect it is associated with. The trained neural network is then used to generate
aspect-sensitive word embeddings, which are used in an ABSA model.

Most studies on aspect-based sentiment analysis (ABSA) have used either
machine learning (ML), deep learning (DL), or hybrid models with static pre-
trained word embeddings or contextual embeddings, but not both. This study
proposes a new method for ABSA that fuses both static and contextual word
embeddings to improve the model’s understanding of sentences.

3 Methodology

To realize the transformative potential of hybrid embeddings in AOSA, a system-
atic methodology is devised, encompassing data collection, embedding creation,
model training, and evaluation. The process begins with dataset acquisition,
then tokenization and preprocessing are applied to the text, preparing it for
subsequent stages.

3.1 Dataset

Three gold standard SemEval English datasets are taken to train the models.
They are: first is SemEval-2014 Task 4 [13], second is SemEval-2015 Task
12 [14], and SemEval 16 Task 5 [15]. The dataset has features such as opinion
target expressions, aspect categories, and polarities). A sample data classification
using SASE is: presented in Fig. 2. The dataset is divided into two parts in an
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80:20 ratio for training and testing the model. The total dataset considered here
had 11997 samples. The dataset is labelled with 3 classes positive, negative, and
neutral. The conflict label is ignored in this study.

POSITIVE POSITIVE

NEGATIVE

Fig. 2. Aspect-oriented sentiment classification on Sample data

3.2 Preprocessing

In the text preprocessing phase, a series of steps are implemented to enhance
the data quality. The process involved as

◦ Lowercasing all text
◦ Eliminating punctuation
◦ Tokenizing
◦ Removal of stopwords
◦ Stemming and lemmatization
◦ Removing special characters

For preprocessing, a comprehensive preprocessing pipeline is adopted to
ensure cleaner and more consistent text data for subsequent analysis. For tok-
enization, RoBERTa tokenization is adopted for this study.

3.3 Methodology Implementation

In this work, data gets tokenized after preprocesses, and the tokenized data is
sent to the next layer for generating the embeddings. For embedding creation,
three types of embeddings are synergistically integrated. They are traditional
word embeddings, contextual embeddings, and domain-specific embeddings. Pre-
trained Glove [16] embedding Ge is attributed as one of the embeddings in
the hybrid approach. Fasttext is employed to generate domain-specific embed-
dings De by training on the preprocessed text dataset. Concurrently, pre-trained
RoBERTa contextual embeddings Ce are harnessed, capturing intricate contex-
tual relationships within the text. The hybrid embedding technique involved
concatenating these embeddings as shown in Eq. 1, thereby infusing both lin-
guistic semantics and contextual understanding tailored to the various domains.

Ei = Concatenate(embedding1, embedding2, ...) (1)
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The adoption of hybrid embeddings in this study is driven by the impera-
tive to effectively handle out-of-vocabulary (OOV) terms while enhancing sen-
timent analysis accuracy in AOSA. OOV terms, such as domain-specific jar-
gon and evolving terminologies, often challenge conventional embeddings, which
might lack representations for such specialized language. By integrating tradi-
tional word embeddings, contextual embeddings, and domain-specific embed-
dings, the hybrid approach mitigates the limitations posed by OOV terms. Tra-
ditional embeddings capture general linguistic relationships, contextual embed-
dings grasp surrounding cues, and domain-specific embeddings encapsulate spe-
cialized vocabulary. This fusion ensures that the model is equipped to compre-
hend the diverse array of language encountered within the text, allowing for
more comprehensive and nuanced sentiment analysis. The detailed data flow of
the SASE framework is presented in Fig. 3.

Fig. 3. Detailed dataflow of SASE framework

The next phase centred on model training, where the models are fine-tuned
using hybrid embeddings. The model’s architecture is adapted to accommodate
the hybrid embeddings, aligning it with the nuanced sentiment landscape of
aspect-oriented analysis. The training process is guided by extensive experimen-
tation to optimize model convergence. The models are trained using different
embedding settings to analyse the performance of the hybrid approach. Three
embedding setups are considered for this study E1, E2, and E3. Here, E1 is
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RoBERTA based embedding (Contextual embedding Ce), E2 is E1 + Glove
embeddings), and E3 (E2 + Fasttext (Domain Specific embeddings)). The base-
line models included in this study are RoBERTa, BERT, LSTM, td lstm, tc lstm,
ATAE LSTM, IAN, MemNet, AoA, Cabasc, and ASGCN.

3.4 Baseline Methods Used

In the evaluation, SASE is benchmarked against cutting-edge baseline methods
for a comprehensive comparison. The following is a brief overview of the baseline
models:

LSTM [17] have the ability to capture context from previous words and maintain
relevant information throughout the sequence, which is crucial for understanding
sentiment expressed in text.

ATAE-LSTM [18] leverages aspect embedding and attention mechanisms for
aspect-level sentiment classification.

tc LSTM [18] considers both the target word and the surrounding context to
make sentiment predictions.

td LSTM [18] address challenges such as context-dependent sentiment, target-
specific sentiment nuances, and disambiguating sentiments in complex sentences.

IAN [19] utilizes dual LSTMs and an interactive attention mechanism to gen-
erate representations for both the aspect and the sentence.

ASGCN [20] introduces the use of Graph Convolutional Networks (GCN) to
learn aspect-specific representations for aspect-based sentiment classification.

BERT [21] represents the vanilla BERT model. It processes sentence-aspect
pairs and employs the [CLS] token’s representation for making predictions.

RoBERTa [22] aims to optimize the pretraining process of BERT to further
improve the model’s performance on various downstream NLP tasks, including
sentiment analysis.

MemNet [23] is a sentiment analysis model that employs a memory network
architecture. This architecture is designed to capture long-range dependencies
and relationships within text data.

AOA [24] involves a two-step attention process: first attending to individual
words in a sentence and then attending to different aspects of the text.

Comparative analyses are conducted and presented in the following section
against models employing various embedding setups and demonstrating the
superiority of the hybrid approach. The entire methodology synthesized a com-
prehensive approach to harnessing the power of hybrid embeddings for AOSA.
The holistic process not only addressed the intricate demands of this evolving
field but also contributed valuable insights into the intricate fabric of sentiments
woven into diverse domain discourses.
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4 Results and Discussion

The Table 1 offers insights into the performance of various models across different
embedding configurations said to be E1, E2, and E3 as represented in Eq. 2, 3,
and 4. These Eq. 2 to 4 are constructed using Eq. 1.

E1 = Concatinate(Ce) (2)

E2 = Concatinate(E1, Ge) (3)

E3 = Concatinate(E2,De) (4)

The trends and observations in the table are discussed as:
Across all three embedding configurations, RoBERTa consistently performs

well. The addition of Glove embeddings (E2) to RoBERTa resulted in a slight
improvement in both accuracy and F1-score. The best performance is achieved
under the E3 configuration, where Domain Specific embeddings are added, lead-
ing to the highest accuracy and F1 score. BERT’s performance is similar to
RoBERTa but slightly lower across all configurations. Similar to RoBERTa,
adding Glove embeddings (E2) improves performance slightly, and the best
results are seen with Domain Specific embeddings (E3).

Table 1. Performance of SASE framework

Model E1 E2 E3

ACC F1 ACC F1 ACC F1

RoBERTa 0.77 0.71 0.77 0.72 0.78 0.73

BERT 0.74 0.66 0.75 0.66 0.75 0.69

LSTM 0.69 0.63 0.63 0.46 0.72 0.66

TD LSTM 0.69 0.63 0.65 0.55 0.69 0.62

TC LSTM 0.65 0.59 0.64 0.56 0.67 0.61

ATAE LSTM 0.68 0.61 0.69 0.62 0.66 0.58

IAN 0.69 0.63 0.64 0.47 0.70 0.63

MemNet 0.70 0.61 0.71 0.64 0.69 0.61

Cabasc 0.69 0.64 0.68 0.62 0.72 0.67

AOA 0.65 0.57 0.63 0.45 0.72 0.66

ASGCN 0.67 0.60 0.66 0.54 0.73 0.68

The LSTM, td lstm, and tc lstm models show relatively consistent perfor-
mance across the three embedding configurations. Adding E2 tends to have a
positive impact on accuracy, although F1 scores don’t always improve. E3 show
mixed results, with some models improving and others degrading in performance.
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Fig. 4. ROC curve for RoBERTa model under (a) E1 = Contextual embedding (b) E2
= Contextual + tradition word embeddings (c) E3 = Contextual + domain specific +
traditional word embeddings.

The ATAE LSTM, IAN, MemNet, Cabas models generally show varying levels
of performance across different embedding configurations. In some cases, adding
E2 improves accuracy and F1-score, while in others, it doesn’t have a significant
effect. E3 often lead to improvements in performance. ASGCN’s performance
is similar across all three configurations. Adding E2 slightly improves accuracy,
but the F1-score remains relatively stable. E3 results in further improvements
in both accuracy and F1 score.

Generally, adding Glove embeddings tends to have a positive impact on accu-
racy, with varying effects on F1 scores. Domain Specific embeddings consistently
lead to improved performance, particularly in terms of accuracy. Models like
RoBERTa and BERT show a more pronounced response to embedding vari-
ations, while others (LSTM-based models, ASGCN) have more stable trends.
Adding domain-specific embeddings seems to play a crucial role in enhancing
model performance across the models. The ROC curve of the RoBERTa model
is presented in the Fig. 4.

Table 2. Comparative analyses of performance across various studies using SemEval
datasets.

Study Model Acuracy F1-Score

This study RoBERTa+E3 78% 73%

[10] TNet-LF 76.01% -

[11] Naive Bayes - 72.43%

[25] CORR 64.89% -

[25] CONV 68.81%

[26] PF-CNN 70.06%

[27] DAuM 74.45% 70.16%

[28] ALAN 73.35%
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Detailed performance comparisons across multiple studies using SemEval
datasets are presented in Table 2. The data within the table demonstrates that
the ROBERTa+E3 model exhibits strong and commendable performance.

It is observed that embedding choices influence the model’s performance,
and the optimal combination depends on the specific model and task. Contex-
tual embeddings help capture semantic information, Glove embeddings provide
word-level context, and domain-specific embeddings introduce domain knowl-
edge. The results of different models on these embedding setups highlight the
need for careful embedding selection to tailor models to the desired performance
characteristics.

5 Conclusion

Significant advancements have been made in the field of aspect-based sentiment
analysis through deep learning. This progress has paved the way for diverse
application areas to leverage insights derived from these models. A novel frame-
work SASE has been created to improve aspect-specific sentiment analysis by
combining different types of word embeddings. This includes the amalgamation
of conventional word embeddings, contextual embeddings, and domain-specific
embeddings. The outcomes from this innovative framework have demonstrated
strong efficacy when applied to the RoBERTa model, achieving an accuracy rate
of 78%. As we look ahead, there is potential for refining this framework to con-
duct more intricate forms of sentiment analysis, such as implicit aspect-based
sentiment analysis.
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Abstract. Rumours in online social networks can significantly damage
the ecosystem of the society. It is important to timely identify and control
the rumor spread. Rumour identification itself is a challenging problem.
The rumour control comes in to play once the rumor is identified. There
are mainly two kinds of rumour control strategies: 1) Network disrup-
tion strategies and 2) Truth propagation strategies. The diffusion model
addresses how the rumour/truth is spreading in the network. Indepen-
dent Cascade Model (ICM) and Linear Threshold Model (LTM) are the
two well known diffusion models. These diffusion models address prop-
agation of a single/independent message. Yang et al. proposed Linear
Threshold model with One Direction state Transition (LT1DT), which
handles simultaneous propagation of two messages (rumor and truth)
which are opposite in nature. The nodes which start the spread of rumour
message initially are called rumour seed nodes. Under the LT1DT model,
for a given rumour seed set, the rumour minimization problem asks to
find k truth seed nodes that minimize the overall rumour spread in the
network.

In this paper, we propose genetic algorithm framework based heuris-
tic and a pruning technique to compute the truth seed nodes. We have
implemented all the existing algorithms and the proposed heuristics. We
have done an extensive experimentation on synthetic and real datasets
and compared our results with existing heuristics. Proposed heuristics
have shown significant improvement in minimizing the rumour spread.

Keywords: Online social networks · Genetic Algorithms · Rumour
minimization

1 Introduction

In recent years, the rapid growth of online social networks has transformed the
way information is disseminated, shared, and consumed. While this has brought
numerous benefits, it has also opened the door to the widespread propagation
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of rumours and false information. People from diverse backgrounds are highly
dependent on the content of social media, so it is paramount importance of the
government agencies and the media houses to keep a check on the authenticity
of the information that is being propagated. Information spreading and rumour
minimization problems on online social networks are of recent interest to the
researchers. The problem of Influence Maximization (IM) was first formalized by
Kempe et al. [17], who proposed two diffusion models: the Independent Cascade
Model (ICM) and the Linear Threshold Model (LTM). Consider a directed graph
G(V,E) where, each node u represents an individual user. These nodes exist
in one of two states during a given time step: active (indicating adoption of
influence) or inactive (indicating non-adoption of influence). Initially, all nodes
are in the inactive state. At time t = 0, some nodes are made active, to spread
information in the network, these nodes are known as seed nodes. If someone
wants to spread rumour, he chooses the most influential nodes as the seed set.
On the other side, we want the spread of rumour to be minimized. The main
strategies to minimize rumour are: 1) Network disruption strategy and 2) Truth
campaign strategy. In network disruption strategy, links/nodes of the network
are removed or blocked for some period of time such that the rumour spread
is minimized. In truth campaign strategy, as and when rumour is detected, a
correct (truth) information is spread parallelly in the network. The nodes we
choose to spread the truth are called truth seed nodes. Choosing truth seed set of
a certain size which minimizes the rumour is an NP-Hard optimization problem.
Centrality measures such as page rank, betweenness, closeness, eigenvector and
degree centrality are very much used to identify most influential nodes. The way
information spreads in the network is modeled by the diffusion models. Linear
Threshold Model (LTM) and Independent Cascade Model (ICM) are the widely
used diffusion model. But they address only spreading of a single or independent
messages. In truth campaign strategy, we need both the rumour and the truth
to be propagated at the same time. Yang et al. [25] introduced Linear Threshold
model with One Direction state Transition (LT1DT), which can handle spread of
two opposite messages at the same time. In this model, once a node is influenced
by truth it will not get influenced to the rumour, but a rumour influenced node
may get influenced by the truth. For this model, the input is a directed graph
with real edge weights. Apart from this, each vertex has two threshold values
associated with it, the influence threshold and decision threshold denoted by
θu : V → R+ and θRu : V → R+ respectively. The rumour minimization problem
over LT1DT model is defined as follows:

Input: An LT1DT Network with SR ⊆ V and an integer k

Output: A set ST ⊆ V \SR, |ST | = k, such that the overall rumour influenced
nodes are minimized.

In this paper, we present a genetic algorithm (GA) framework based heuristic
and a pruning strategy to compute a truth seed set. We have implemented all
the existing heuristics, proposed GA and pruning technique. We have done an
extensive experiments on both real and synthetic datasets and the proposed
heuristics are computing truth seed sets with less rumour spread.
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2 Related Work

Influence Maximization (IM) problem has been one of the most studied prob-
lems among researchers. Kempe et al. [17], first formulated the IM problem
for the graph and proved it to be NP-hard for both the ICM and LTM diffu-
sion models. IM has many practical application in various fields like healthcare
[1], economics [15] and social-marketing [19] etc. Bharathi et al. [5] have for-
mulated competitive influence diffusion model in the network. They have given
an FPTAS for influence maximization of single player when considered graph
is a tree. Borodin et al. [6] have extended the LTM for competitive influence
diffusion. They proposed, Weight-Proportional Competitive Linear Threshold
Model, Separated-Threshold Model for Competing Technologies and Competi-
tive Threshold Model with Forcing. Che et al. [8] proposed Degree discount based
heuristics which improve influence spread and running time compare to earlier
greedy heuristics. Che et al. [9] also proposed scalable influence algorithm under
LTM. They showed that IM problem is linear time solvable in directed cyclic
graphs (DAG). Goyal et al. [14] proposed an efficient SIMPATH heuristic based
on simple path from the spreading nodes by using vertex cover and look ahead
optimization techniques. Gong et al. [13] formulated local influence estimation
(LIE) function to calculate the influence of seed set. They proposed discrete
particle swarm optimization (DPSO) to optimize the LIE function by redefining
the update rules for position and velocity. Banerjee et al. [3] formulated Bud-
geted Influence Maximization problem (BIM). They proposed community based
heuristics to solve the BIM problem.
Unlike IM problems, rumour minimization problem is an influence minimization
problem. Budak et al. [7] have first studied the problem of minimizing the spread
of misinformation in online social networks. They examined a multi-campaign
independent cascade model and defined a task to determine the group of individ-
uals requiring persuasion to embrace a “positive” campaign. The goal was to cur-
tail the propagation of rumors effectively. He et al. [16] and Fan et al. [11] later
studied this problem using the competitive LTM and the Opportunistic One-
Activate-One (OPOAO) model, respectively. Hong et al. [24] proposed greedy
approach to select Maximum Marginal Covering Neighbors set in (k, η)-cores as
immune nodes. They used Extended Independent Cascade (EIC) model as diffu-
sion model. Ni et al. [20] proposed a Community-based Rumor Blocking Problem
(CRBMP) by picking seed sets from all communities under the constraint of bud-
get b. They proposed a greedy approach for budget allocation to each community.
Zhu et al. [27] formulated Robust Rumor Blocking (RRB) problem whose objec-
tive is to select k nodes as protectors to minimize the rumour. They formulated
an estimation procedure for the objective function of RRB based on Reverse
Reachable (RR) set methods. A random greedy heuristic is designed for solving
this problem. Wen et al. [23] have evaluated the efficiency of different rumour
restraining methods. Choi et al. [10] introduced a model based on Bidirectional
Encoder Representations from Transformers (BERT), which focuses solely on
a claim sentence associated with a rumour. This model has the capability to
preemptively detect false rumors before they gain widespread attention. Yang
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et al. [25] proposed the LT1DT model and three heuristics, namely MinGreedy
(MG), PageRank (PR) and ContrId (CI) and their proximity version ProxyMin-
Greedy (PMG), ProxyPageRank (PPR) and ProxyContrId (PCI). They con-
ducted experiments on both synthetic and real datasets, Recently, Yang et al.
[26] also presented rumour containment strategy based on blocking of nodes.

2.1 Linear Threshold Model with One Direction State Transition
(LT1DT)

The Linear Threshold Model (LTM) addresses information spreading of single
or independent messages. In rumour minimization using truth campaign, both
rumour and truth are spread simultaneously in the network. To address this,
Yang et al. [25] proposed modified version of LTM, which they called Linear
Threshold Model with One Direction State Transition (LT1DT). In this model,
the input is a directed graph with real edge weights, each vertex has two threshold
values associated with it, the influence threshold and the decision threshold
denoted by θu : V → R+ and θRu : V → R+ respectively. Given an input rumour
seed set SR ⊆ V , the goal is to find truth seed set ST ⊆ V \SR of size k such
that the overall rumour spread is minimized.
A node u influenced if

∑

v∈Nin
u ∩(R∪T )

W (v, u) ≥ θu.

An influenced node u adopts rumour if
∑

v∈Nin
u ∩R W (v, u)

∑
v∈Nin

u ∩(R∪T ) W (v, u)
≥ θRu ,

otherwise, it adopts truth. Here, N in
u is in-neighbours of node u, W (v, u) is weight

of the edge (v, u), R and T are rumour and truth influenced nodes respectively.
Note that initially, R = SR and T = ST . During the diffusion process, more
nodes may be added to R and T . The LT1DT diffusion process is an iterative
process. The rumour/truth information spread starts from the respective seed
nodes. At each iteration, some new nodes get influenced. The process stops when
there is no new influenced nodes and there are no change in the influence of the
nodes. That is, the diffusion process stops when there is no change to the sets
R and T . Once a node u adopts the truth information it will never change its
state in the subsequent iteration, but a rumour influenced node may eventually
adopt truth.

2.2 Summary of Existing Heuristics

We briefly explain how the existing heuristics (MG, PR, CI, PMG, PPR and
PCI) of Yang et al. [25] compute the truth seed set.
The MG heuristic, in each iteration it picks one node from V \SR that leads to less
rumour spread. If the required truth seed set size is k, then the MG heuristic will
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have k iterations to get the truth seed set of size k. The PR heuristic computes
pagerank of all the nodes of the network. It picks k nodes form V \SR with higher
pagerank value as the truth seed set. The CI heuristic computes contribution of
each node in the rumour spread. Let Contr(v) be the contribution of a vertex v.
A rumour-influenced node v, at time step t immediately transfers its influence to
its out-neighbours which can be activated later. So, the contribution of a node
v, can be defined as the number of its out-neighbours that are influenced at any
time t > tv. The contribution of node v can be calculated as:

Contr(v) = |(∪Ts
i=t+1φ

R
i ) ∩ Nout

v | (1)

Here, φR
i is the set of rumour adopted nodes after i iterations, and Nout

v is the
set of out-neighbours of v. Once the contribution of all the nodes is computed,
the CI heuristic picks the top k nodes from V \ SR, which have the highest
contribution in the rumour spread.
The proximity variants of these three heuristics are very similar to the original
heuristics; the only difference is, they pick the truth seed set from the out-
neighbours of the rumour seed nodes.

In this study, we explore the rumour minimization problem under LT1DT
diffusion model. We have the following contributions:

– Proposed a genetic algorithm (GA) framework based heuristic and a pruning
technique. The GA uses a problem specific scheme to generate the population.

– Carried out an extensive experimentation on few real-world and synthetic
data sets. The proposed GA is giving truth seed sets which have less rumour
spread. The pruning technique is improving over the truth seed sets of most
of the algorithms.

The rest of the paper is organized as follows: Sect. 3 discusses the proposed
approaches. In Sect. 4, we discuss the implementation details of the diffusion
function. The experimental results are presented in Sect. 5. Finally, the paper is
concluded in Sect. 6.

3 Proposed Heuristics

In this section, we present the details of the proposed GA and the pruning
technique.

3.1 Genetic Algorithm

A genetic algorithm (GA) is a computational technique inspired by the process
of natural selection and evolution. It is used to solve optimization and search
problems. A genetic algorithm starts with a set of candidate solutions and gener-
ates better solutions using crossover and mutation. For each candidate solution
fitness is computed. The candidate solutions with the least fitness are discarded,
and the algorithm proceeds to the next iteration of increasing the population
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Fig. 1. W (u, v) = 1 \ |N in
v |, θu = 0.5, θR

u = 0.4, ∀u ∈ V and SR = {0}.

with crossover and mutation. The process is repeated for several iterations, and
the best solution generated so far is returned.

Population Generation: Centrality measures such as Betweenness centrality,
Closeness Centrality, Pagerank, Degree centrality and Eigenvector etc., are very
much used in information spreading problems [2,12]. The nodes with the highest
centrality are crucial in the network. They can spread information or influence
many other nodes. Moreover, a node closer to the rumor seed SR has a better
chance of blocking the rumour spread. Keeping these intuitions in mind, we
generate the population using centrality values and the distances of a node from
the rumour seed. Let dR(v) is the length of the shortest path from any rumor seed
node to the vertex v. We use level order traversal to compute these distances. The
rumour seed nodes are considered to be at level 0. The immediate neighbours of
the rumour seed nodes are at level 1 and so on. Let dmax be the maximum level.
The enhanced centrality value of each node is computed as follows:

Ecen(v) = cen(v) ∗ (dmax − dR(v) + 1) (2)

where Ecen(v) is the enhanced centrality value of the vertex v. Note that Ecen(v)
is set to 0 for all v ∈ SR.
Consider an instance of LT1DT network given in Fig. 1. If SR = {0} the rumour
will spread to the vertices {0,1,2,4,5,6,7,8}. If truth seed set size |ST | = 1, then
picking vertex 3 is better than picking vertex 1 or 2. If we pick vertex 3, the
rumour will not spread from the vertex 0. If we notice, there is no directed path
from the rumour seed node 0 to the vertex 3. If we compute the levels of the
vertices on the directed graph, the vertex 3 is not reachable from the node 0.
For this reason we compute the levels in the undirected version of graph, that
is, we consider both in and out neighbours of a vertex for the level computation.
The enhanced centrality values are further normalized to get a probability distri-
bution for the vertex set V . If the truth seed set size is k, we generate k vertices
randomly using the probability distribution, and it is treated as a candidate
solution and is inserted in the population. Likewise, we generate candidate solu-
tions as required by the initial population. Note that any centrality measure can
be used in the population generation. Through our experimentation, we found
that betweenness centrality is preferable.
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Crossover: For crossover operation, we have used single-point crossover opera-
tion. We select two populations from the initial population randomly and per-
form crossover. During the crossover operation we make sure that there are
no duplicate nodes in the child candidate solutions. After the crossover, if the
number of nodes in the child candidate solution is less than k, we add nodes
randomly using enhanced centrality probabilities. A crossover operation gives
two candidate solutions.

Mutation: We perform single point mutation on each child candidate popula-
tion obtained after crossover operation. For the mutation operation, we randomly
replace any one node with a random node. The node is randomly selected using
enhanced centrality probabilities.

3.2 Pruning Technique

Algorithm 1: Pruning Technique
Input : A LT1DT network G={G(V,E), W, θu, θRu }, SR, ST .
Output: ST

1 begin
2 CR ← DIFFUSION(G,SR,ST )
3 while Flag=True do
4 Flag = False
5 V ← V (G) \ {SR ∪ ST }
6 for u ∈ ST do
7 for v ∈ V do
8 ŜT = {ST \ u} ∪ {v}
9 R = DIFFUSION(G,SR,ŜT )

10 if Length(R) < Length(CR) then
11 CR = R
12 Flag = True

13 ST = ŜT

14 break
15 if Flag=True then
16 break
17 return ST

Consider the LT1DT network given in Fig. 2. For the rumour seed set
SR = {2} and truth seed set ST = {3, 6}, the rumour affected nodes are Φ∗

R =
{2,5,8,9,10}. But, if we replace the node 6 with node 10 in ST set then the
rumour affected node is Φ∗

R = {2} only. With this intuition we developed a
pruning technique.
The pruning technique takes truth seed set ST as input. It iteratively removes
one node from the ST set and add one node from the network V \ (ST ∪ SR)
and checks the rumour spread. If newly added node minimizes the rumour, we
update the ST set. The process is repeated until there is no improvement in the
rumour count.
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Fig. 2. W (u, v) = 1 \ |N in
v |, θu = 0.5, θR

1 = 0.8, θR
5 = 0.4 and θR

7,8 = 0.6 and for all the
remaining nodes θR

u = 0.5.

4 Implementation of Diffusion Function

The implementation of the diffusion function is very crucial. The naive implemen-
tation may not be right choice as it will take lot of time. In the naive implemen-
tation, at each iteration of the diffusion process, we maintain currently rumour
influenced nodes (R) and truth influenced nodes (T). Initially, before start of
the diffusion process R = SR and T = ST . At each iteration, for each node
u ∈ V \ (SR ∪T ), we compute the total incoming rumour weight tr(u) and truth
weight tt(u) of its influenced neighbours. If tr(u) + tt(u) ≥ θu(u) then node u
will be influenced, further if tr(u) \ tr(u) + tt(u) ≥ θRu (u) then node u is rumour
influenced and it is added to the set R otherwise node u will be added to set
the T . The process is repeated until there are no new rumour affected or truth
affected nodes. This naive approach takes O(|V | + |E|) time for each iteration.
With the following observations, we have come up with an efficient implemen-
tation of the diffusion function. In the first iteration, the nodes that can be
influenced are only the neighbours of seed nodes SR and ST . In the subsequent
iteration, the new influenced nodes can only be from the neighbours of rumour
influenced or truth influenced nodes including the seed nodes. Remember, the
neighbourhood of influential nodes can be much smaller than the entire vertex
set. We avoid computation of total truth and rumour weight of all the nodes
that can not be influenced in current iteration. In this implementation, we use a
list to maintain all rumour or truth influenced nodes. Initially, the list contains
the rumour and truth seed nodes. In each iteration, we traverse the elements
of this list, for a node u in the list, we update the rumour/truth weights of all
the out-neighbour of u. If u is rumour node tr(v) is updated otherwise, tt(v).
Here, v is the out-neighbour of u. During this process, if any node v satisfies
its influence condition, then the node is added to the list of newly influential
nodes. After processing all the element of the list, we consider each node in the
newly influential node, and the nodes will be added to rumour influenced or
truth influenced depending on the condition it satisfies. The new implementa-
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tion takes time proportional to O(|N(R ∪T )|), which is usually much smaller in
practice compare to O(|V | + |E|).
Algorithm 2: LT1DT Diffusion
Input : A LT1DT network G={G(V,E),W,θu ,θRu },SR,ST .
Output: RA and TA

1 DIFFUSION(G,SR, ST ) begin
2 actList = [ ]
3 infNodes = [ ]
4 RA = SR

5 TA = ST

6 for u ∈ SR do
7 actList.add(u)
8 for u ∈ ST do
9 actList.add(u)

10 while Flag=True do
11 Flag = False
12 newTnfNodes = [ ]
13 for u ∈ actList do
14 for v ∈ V \ (SR ∪ ST ∪ TA) do
15 if (u ∈ SR or u ∈ RA) then
16 rw[v] = rw[v] + weight(u,v)
17 else
18 tw[v] = tw[v] + weight(u,v)
19 if (tw[v] + rw[v]) > θu[v] and v /∈ (RA ∪ TA) then
20 newInfNodes.add(v)
21 for u ∈ newInfNodes do
22 infNodes.add(u)
23 actList.add(u)
24 newInfNodes.empty()
25 for u ∈ infNodes do
26 if u ∈ TA then
27 continue
28 totw = rw[u] + tw[u]
29 if (rw[u] \ totw) >= θRu [u] and u /∈ RA then
30 RA = RA ∪ {u}
31 Flag = True
32 else
33 RA = RA \ {u}
34 TA = TA ∪ {u}
35 Flag = True
36 return RA and TA
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5 Experimentation and Results

In this section, we discuss regarding the datasets and analyse the results.
We have done experimentation on four real world datasets (email-Eu-core,
netscience,CollegeMsg, crime-moreno) [18,21] and two synthetic datasets of size
2k. Synthetic datasets are generated as follow:

– Scale-free network: A network is said be scale-free if it follows power-law
degree distribution. We used Barabasi-Albert model [4] to generate scale-free
network.

– Small-world network: In this network, most of the nodes are not linked with
each others, but neighbours of certain nodes are likely to be linked with each
other. Most of the nodes in the network can be reached by any other node
through a few steps. A small-world network is generated with the Watts-
Strogatz model [22] by setting the mean degree of regular lattice to 4 and the
rewiring probability β = 0.2.

We have the following parameters in experiments: Influence and decision thresh-
old are either generated randomly or a fixed threshold values are used. For fixed
threshold values, we used

(θu(u), θRu (u)) ∈ {(0.1, 0.3), (0.5, 0.3)}.

Rumour seed count and truth seed count: |Rs|, |Ts| ∈ {3, 5, 10}.
Rumour seed nodes are selected either randomly or using maximum degree. For
fixed threshold values and rumour seed based on maximum degree, we get a
total of 18 instances.
In both of the above experiments, we record total count of rumour affected nodes
and also the average rumour count including the rumour seeds. For each data
set, we have run all the existing heuristics and GA and results are tabulated
for each of these algorithms. The pruning procedure improves the truth seed
set and the final rumour count is also tabulated. The results for email-Eu-core
and netscience are shown in Table 1 and Table 2. The results for CollegeMsg and
crime-moreno are shown in Table 3 and Table 4. The results for Scale-free and
Small-world are shown in Table 5 and Table 6.
For email-Eu-core dataset:
For fixed threshold values and rumour seed based on maximum degree, among
the existing algorithm of Yang et al. [25], MG giving an average rumour count
of 426.5 before pruning and after pruning an average rumour count of 422. We
can clearly, see the pruning technique has improved the solutions of the existing
heuristics. Our proposed GA heuristic giving an average rumour count of 416.83
before pruning and after pruning 413.55. Clearly, the proposed GA giving better
results compared to existing heuristics.
For netscience dataset:
For fixed threshold values and rumour seed based on maximum degree, among
the existing algorithm of Yang et al. [25], MG giving an average rumour count
of 115.4 before pruning and after pruning an average rumour count of 113.9. We
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can clearly, see the pruning technique has improved the solutions of the existing
heuristics. Our proposed GA heuristic giving an average rumour count of 114.4
before pruning and after pruning 113.1. Clearly, the proposed GA giving better
results compared to existing heuristics.
For the experiment where thresholds and rumour seed nodes selected randomly,
GA is either matching with the results of existing heuristics or some times giv-
ing better rumour count. The reason could be, when rumour seed nodes are
generated randomly, these nodes may be of less centrality and also they may
be distant from the most influential nodes. Note that, to spread rumour usually
most influential nodes are selected not the random nodes. We have also carried
out experimentation on CollegeMsg and crime-moreno datasets and observed
the proposed GA and pruning technique giving improved results. We have done
two other experiments:

1). Generating a random truth seed set and pruning it, we call this as Rand-
Pruning. The RandPrunning is repeated a certain number of times and a
best seed truth is reported.

2). Truth seed set is selected based on enhanced centrality values.
Both these experiments are not giving competitive results. Among the exist-
ing heuristics MG is taking an average time of 7 s on the email-Eu-core data
set, where as GA is taking on average 125 s. Note that, GA runs the diffusion
process more times compared to the MG heuristic. The pruning technique
on average taking 14 s over all the instances of email-Eu-core data set.

We have carried out our experiments on a Intel(R) Core(TM) i7 − 8700U CPU
and 16 GB memory and all the code is written in C++ (g++ version 11.4.0),
under Ubuntu(22.04.2 LTS 64bit)1.

Table 1. Experimental Results for email-Eu-Core and netscience Dadatsets for fixed
threshold values and rumour seed set selected by maxdegree. We have quoted count of
final rumour nodes for a particular instance and an average count of rumour affected
node of all 18 instances before and after pruning.

email-Eu-core netscience
One Instance Average One instance Average
it=0.1, dt=0.3
SR=3,ST=10

Of 18 instances it=0.1, dt=0.3
SR=3,ST=5

Of 18 instances

Algorithm R RP R RP R RP R RP

MG 679 637 426.5 422 139 131 115.44 113.94
PMG 695 631 427.05 418.11 141 131 116.77 113.27
CI 783 630 462.05 423 192 131 145.05 113.72
PCI 766 566 458.77 419.22 181 131 135.44 113.72
PR 723 633 453.05 421.94 241 131 164.55 113.72
PPR 716 622 454 420.61 187 131 148.22 114.44
GA 616 616 416.83 413.55 131 131 114.44 113.16

1 The code, data sets and the results are publicly available at
https://github.com/hiddenconfrepository/rumourminimization.

https://github.com/hiddenconfrepository/rumourminimization
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Table 2. Experimental Results for email-Eu-Core and netscience datasets for random
threshold values and rumour seed set selected by randomly. We have quoted count of
final rumour nodes for a particular instance and an average count of rumour affected
node of all 18 instances before and after pruning.

email-Eu-core netscience
One Instance Average One instance Average
SR=3,ST=10 Of 9 instances SR=3,ST=5 Of 9 instances

Algorithm R RP R RP R RP R RP

MG 952 952 952 952 376 376 296.88 290.66
PMG 952 952 952 952 376 376 290.66 290.66
CI 952 952 952 952 376 376 442.11 416.77
PCI 952 952 952 952 376 376 292.33 290.88
PR 952 952 952 952 433 376 442.11 416.77
PPR 952 952 952 952 376 376 290.66 290.66
GA 952 952 952 952 376 376 332.55 332.55
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Table 3. Experimental Results for CollegeMsg and Crime-Moreno datasets for fixed
threshold values and rumour seed set selected by maxdegree. We have quoted count of
final rumour nodes for a particular instance and an average count of rumour affected
node of all 18 instances before and after pruning.

CollegeMsg crime-moreno
One Instance Average One instance Average
it=0.1, dt=0.3
SR=3,ST=10

Of 18 instances it=0.1, dt=0.3
SR=3,ST=5

Of 18 instances

Algorithm R RP R RP R RP R RP

MG 674 658 623.11 621.88 449 449 286.22 284.11
PMG 696 696 624.22 624.05 509 452 299.88 284.72
CI 1204 619 754.38 619.77 475 439 303.77 283.00
PCI 1204 619 751.83 619.83 548 452 317.94 284.61
PR 1344 619 774.72 619.33 512 452 341.83 284.33
PPR 1344 619 774.5 619.44 566 452 348.66 285.77
GA 622 619 619.61 619.44 439 439 282.38 282.05
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Table 4. Experimental Results for CollegeMsg and crime-moreno datasets for random
threshold values and rumour seed set selected by randomly. We have quoted count of
final rumour nodes for a particular instance and an average count of rumour affected
node of all 9 instances before and after pruning.

CollegeMsg crime-moreno
One Instance Average One instance Average
SR=3,ST=10 Of 9 instances SR=3,ST=5 Of 9 instances

Algorithm R RP R RP R RP R RP

MG 1846 1846 1848.33 1848.33 791 791 790.22 790.22
PMG 1846 1846 1848.33 1848.33 791 791 790.44 790.44
CI 1846 1846 1848.33 1848.33 791 791 790.22 790.22
PCI 1846 1846 1848.33 1848.33 791 791 790.33 790.33
PR 1846 1846 1848.33 1848.33 791 791 790.22 790.22
PPR 1846 1846 1848.33 1848.33 791 791 790.44 790.44
GA 1846 1846 1848.33 1848.33 791 791 790.22 790.22

Table 5. Experimental Results for Scale-free and Small-world datasets for fixed thresh-
old values and rumour seed set selected by maxdegree. We have quoted count of final
rumour nodes for a particular instance and an average count of rumour affected node
of all 18 instances before and after pruning.

Scale-free Small-world
One Instance Average One instance Average
it=0.1, dt=0.3
SR=3,ST=10

Of 18 instances it=0.1, dt=0.3
SR=3,ST=5

Of 18 instances

Algorithm R RP R RP R RP R RP

MG 137 137 458.61 458.61 1352 1344 505.61 501.94
PMG 137 137 458.61 458.61 1448 1344 589.16 501.11
CI 141 137 477.94 458.61 1546 1344 614.38 501.77
PCI 141 137 470.77 458.61 1590 1344 640.38 502.77
PR 161 137 567.83 458.6 1664 1344 632.38 500.27
PPR 161 137 558.66 458.61 1729 1344 684.77 500.72
GA 137 137 458.61 458.61 1337 1337 500.83 500.55

Table 6. Experimental Results for Scale-free and Small-world datasets for random
threshold values and rumour seed set selected by randomly. We have quoted count of
final rumour nodes for a particular instance and an average count of rumour affected
node of all 18 instances before and after pruning.

Scale-free Small-world
One Instance Average One instance Average
SR=3,ST=10 Of 9 instances SR=3,ST=5 Of 9 instances

Algorithm R RP R RP R RP R RP

MG 1990 1990 1994 1994 1995 1995 1994 1994
PMG 1996 1996 1994.66 1994.66 1995 1995 1994 1994
CI 1990 1990 1994 1994 1995 1995 1994 1994
PCI 1995 1990 1994.55 1994 1995 1995 1994 1994
PR 1990 1990 1994 1994 1995 1995 1994 1994
PPR 1996 1996 1994.66 1994.66 1995 1995 1994 1994
GA 1990 1990 1994 1994 1995 1995 1994 1994
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6 Conclusion

Rumour minimization problem aims to selects k truth seed nodes in the network
such that final rumour spread is minimized. In this paper, we have proposed a
genetic-algorithm based heuristic for the rumour minimization problem under
the LT1DT diffusion model. The proposed heuristics are performing better than
the existing heuristics. We could not experiment on bigger data sets as the
sequential implementation of the diffusion process computationally expensive.
In future, we would like to explore in the direction of parallel or distributed
computational aspects for diffusion process to scale the algorithms on large scale
networks. It is also interesting to study the rumour minimization problem on
signed social networks as well and for other diffusion models.
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Abstract. Parkinson’s disease (PD) is a prevalent neurodegenerative
disease that hurts millions globally. For prompt intervention and suc-
cessful therapy, Parkinson’s disease (PD) must be identified early. How-
ever, a significant obstacle to creating progression-predicting models for
early detection is the absence of extensive and readily available data.
This research aims to present a robust method to forecast Parkinson’s
disease progression using minimal information. The Movement Disorder
Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) is a
commonly used metric for evaluating both motor and non-motor symp-
toms to determine the severity and course of Parkinson’s disease. The
ML models in this research were evaluated based on their ability to pre-
dict the MDS-UPDRS values with minimum error with respect to the
actual measurements. The preprocessing of this data includes clustering
based on patient ID and linear interpolation to fill values between con-
tiguous readings. To create a baseline, MDS-UPDRS [1-4] are treated as
unsupervised time series data by setting the time stamp as the input vari-
able and the corresponding MDS-UPDRS value as the output variable.
Then, the data is re-framed into a supervised format and tested on the
same set of models to compare performance. The data for this research
is sourced from the Accelerating Medicines Partnership-Parkinson’s Dis-
ease (AMP-PD) Kaggle dataset. Among the machine learning algorithms
assessed, the Multi Layer Perceptron (MLP) exhibited the most favor-
able predictive performance with an MAE of 0.52 and an MSE of 0.57
on average across the four clusters (U1, U2, U3, U4) for supervised for-
mat. This performance surpasses the second-best-performing algorithm,
Random Forest, substantially. The MLP outperformed Random Forest
by 25.46% in terms of MAE and 28.22% in MSE. Additionally, using a
supervised format reduced MAE by 17.08% on average for all models
and 41.73% for MLP compared to an unsupervised format. This con-
siderable improvement suggests the robustness and efficacy of the MLP
model and supervised re-framing in capturing the intricate progression
trends of Parkinson’s disease.
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1 Introduction

Parkinson’s disease (PD) is a complex neurodegenerative disorder character-
ized by a range of motor and non-motor symptoms that generally occur in
older populations but can also appear in younger individuals. The condition
leads to the accumulation of lewy bodies [1] and to neuronal loss in certain
brain areas [2]. It is the second most commonly occurring neurodegenerative
disease [3]. Though not contagious, the disease displays many characteristics of
a pandemic [4]. The motor symptoms include tremors and jitters in hands and
limbs, grimacing among others [6]. Now it is observed that motor symptoms are
the most quality-of-life disturbing factors both in initial and matured stages of
the disease [5], but non-motor symptoms such as hallucinations [6,7] also add to
the discomforts. PD poses a significant global health burden [8], with prevalence
increasing as populations age, and is one of the fastest growing neurological dis-
eases in the world [9]. Despite extensive research, the exact causes of PD remain
elusive, making early diagnosis and accurate progression monitoring crucial for
effective patient care.

The view of Parkinson’s Disease being perceived as a Pandemic is becoming
increasingly popular [11]. Early detection of PD is imperative yet challenging [10]
due to its insidious onset and the gradual emergence of symptoms. Early symp-
toms include subtle indicators that may be easily misunderstood as symptoms
of aging or common curable infections. Some of these include tremors, hunched
posture, changes in handwriting, etc. By the time patients exhibit noticeable
motor impairments, a substantial portion of dopamine-producing neurons may
already be compromised. This presents a critical dilemma for clinicians, as early
intervention strategies are more effective when applied before significant neural
damage occurs. Consequently, according to some studies, about 90-95% of the
patients are diagnosed with the condition post the age of 60 [12].

The origins of PD are multifactorial and intricate. About 10–15% of PD cases
are genetic, implying they are passed from one generation to the next [13] While
genetic mutations like those in SNCA, LRRK2, and PARKIN have been linked
to increased susceptibility [14], environmental factors such as exposure to toxins
and head injuries can also play roles [15]. The complex interplay between genetic
predisposition and environmental influences contributes to the heterogeneity of
the disease presentation. This non-specificity underscores the necessity for com-
prehensive and personalized assessment approaches. Hence, This study utilized
parameters (MDS-UPDRS) that quantify the symptoms of the disease rather
than focusing on causal factors. As it intrinsically would include personalized
details of the patient. Every case of progression prediction has already devel-
oped the condition, which makes identifying the cause less critical as long as
progression trends can be evaluated, and this study aims at making this evalu-
ation using machine learning techniques.

Precisely quantifying and tracking Parkinson’s disease (PD) progression
poses a complex challenge due to the diverse array of symptoms and the sub-
jectivity of traditional assessments. The Movement Disorder Society-sponsored
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) presents an adept solu-
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tion. By comprehensively evaluating both motor and non-motor aspects, MDS-
UPDRS captures the intricacies of PD’s multifaceted nature. Its numerical scor-
ing system quantifies symptoms, providing an objective basis for tracking dis-
ease severity and evolution. The modular structure adapts assessments to each
patient’s unique symptom profile, contributing to a patient-centric approach.
Studies also show a good correlation between the quality of life and MDS-UPDRS
scores [16], further validating the approach. MDS-UPDRS plays a pivotal role
in addressing the scarcity of holistic, longitudinal datasets in PD research. Its
standardized scoring system offers consistency, facilitating the analysis of pro-
gression trends across various patients and timeframes. This study harnesses
machine learning techniques to extract valuable patterns from MDS-UPDRS
scores, augmenting the understanding of PD progression dynamics. In essence,
MDS-UPDRS’s comprehensive evaluation framework and standardized nature
make it an essential tool to overcome the challenges of quantifying and mea-
suring the PD stage, supporting the pursuit of predictive insights into disease
progression.

Addressing these challenges necessitates innovative solutions. This research
recognizes the potential of machine learning in analyzing generic longitudinal
temporal trends from large-scale clinical datasets. By harnessing patterns and
correlations within the dataset, machine learning models could predict the cur-
rent state and potentially the trajectory of PD progression. Such an approach
could offer clinicians an additional tool to augment their expertise, aiding in
timely interventions and refined patient care.

1.1 Our Contribution

The research presents distinct contributions to Parkinson’s disease progression
analysis. These contributions not only enhance the understanding of Parkin-
son’s disease evolution but also hold practical implications for informed clini-
cal decision-making supported by AI-driven insights. The contributions of our
research are four-fold:

1. Proposes a robust method for personalized Parkinson’s progression forecast-
ing and grounds for future research.

2. Demonstrates the potential of MLP Regressor to capture the disease’s intri-
cate symptom progression and underlying medication effect by modeling the
non-linear dynamics of MDS-UPDRS readings.

3. Elucidates the viability of the technique to re-frame unsupervised data into
supervised data to enhance time series forecasting performance.

4. Provides insight into the minimum quantity of clinical measurements required
to forecast each MDS-UPDRS with minimal error.

The rest of the manuscript is summarized as follows. Section 2 reviews
existing relevant literature on neurodegenerative disease progression analysis.
Section 3 outlines our methodology, including data preprocessing, model selec-
tion, and performance evaluation. Subsequently, Sect. 4 presents results from
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unsupervised and supervised learning approaches. In Sect. 5, we discuss the
implications of our findings and contrast the two approaches. Lastly, Sect. 6
outlines future research possibilities and concludes our contributions to under-
standing Parkinson’s disease progression.

2 Related Work

In the following section, we conduct a comprehensive review of existing research
that underpins our study. Our objective is to contextualize our approach within
the broader domain of disease progression modeling and predictive analytics.
While direct matches may be limited, we extract valuable insights from diverse
fields, including biomarker studies, predictive modeling in medical contexts, lon-
gitudinal data analysis, machine learning in clinical prognostications, and an
examination of the challenges in modeling disease progression. This exploration
establishes a solid foundation, highlighting the significance of our research in
advancing Parkinson’s disease prediction and progression assessment.

2.1 Biomarker Studies

In Parkinson’s disease (PD) research, biomarkers play a pivotal role in enhanc-
ing diagnosis and prognosis accuracy. Biomarkers, which reflect an individual’s
physiological, molecular, or biochemical state, offer valuable insights into dis-
ease progression. The literature on PD diagnosis and management, bolstered by
machine learning (ML) techniques [17], spans various facets of the disease, includ-
ing genetic and environmental factors. Neural intricacies are explored, along with
therapeutic interventions such as deep brain stimulation and gene therapy [24].
Notably, ML is applied to neurophysiological data, with studies analyzing elec-
troencephalogram (EEG) signals to extract potential biomarkers during specific
tasks [18,19]. Furthermore, research investigates ML algorithms’ effectiveness in
diagnosing and categorizing PD cases based on diverse medical parameters [25].
This diverse body of work signifies the strides made in merging machine learning
with Parkinson’s disease research, ultimately improving diagnostic accuracy and
treatment strategies.

2.2 Predictive Modeling in Medical Fields

Predictive modeling, using mathematical and computational techniques to antic-
ipate future events, has gained ground in medical contexts [26]. With the rise
of Artificial Intelligence (AI) and data mining, it has become a potent tool
for healthcare prediction and decision-making [20]. Machine learning methods,
including Support Vector Machines (SVM), Artificial Neural Networks (ANN),
Näıve Bayes (NB), and Decision Trees (DT), are widely used for predictive mod-
els [21,27]. However, model effectiveness varies due to the complexity of medical
data [26,28]. Predictive modeling extends beyond traditional medical records
to encompass molecular and clinical data, enhancing diagnostics and treatment
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guidance [22,28]. Challenges like data quality, regulatory compliance, and eth-
ical concerns remain pivotal [29]. In cardiovascular health, predictive modeling
prompts critical inquiries to discern the utility and limitations of AI-based pre-
diction models [23]. Traumatic brain injury (TBI) prediction has also benefited
from predictive modeling, refining outcomes assessment and management strate-
gies [30]. Ongoing research is essential to address limitations and optimize model
performance. As AI and data analytics reshape healthcare, predictive modeling
integration promises advancements in disease prognosis and personalized treat-
ment [29,30].

3 Data and Dataset Description

A complete record of clinical information pertaining to patients with Parkinson’s
disease is included in the “Patient Time-Series History” dataset. There are a
number of significant columns in it, including “visit id,” which is used to identify
each visit in a unique way, and “visit month,” which indicates the month in which
the visit occurred in relation to the patient’s first recorded visit. Each patient
who participated in the study has a specific identification number, which is listed
in the “patient id” column.

The collection of scores for various sections of the Unified Parkinson’s Dis-
ease Rating Scale (UPDRS), marked by “updrs [1-4],” are the prime features of
this dataset. These results provide essential information about the severity of
particular symptoms, such as those affecting mood and behavior (Part 1) and
motor functions (Part 3). Higher scores indicate more severe symptoms in the
appropriate category in each section.

Additionally, the “upd23b clinical state on medication” column keeps track
of whether patients were taking drugs such as Levodopa at the time of the
UPDRS evaluation. This information is vital because it primarily affects Part
3 results, which rate motor function. Due to the relatively short half-life of
these medications (typically one day), patients may perform the motor function
assessment twice a month, once while taking the medication and once without,
in order to investigate its effects.

4 Methodology

This section delineates the comprehensive methodology, as depicted in Fig. 1,
employed to analyze and predict Parkinson’s disease (PD) progression patterns
using regression and classification approaches. Our approach encompasses data
preprocessing, patient-centric clustering, time-series transformation, and the
comparison of different techniques used. Initially, the problem was approached as
a classification task wherein each point on the updrs score was considered a sepa-
rate class, and models were trained accordingly. This was followed by attempting
the same problems as a regression task. Both unsupervised and supervised learn-
ing technique was applied.
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Fig. 1. Proposed Framework

4.1 Clinical Assessment Measures

The foundational element of our methodology is the Movement Disorder Society-
sponsored Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). This metric
quantifies motor and non-motor symptoms across various disease stages, pro-
viding a robust basis for assessing PD progression. We extend this assessment
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framework to both regression and classification tasks, where MDS-UPDRS scores
serve as input data. MDS-UPDRS of a patient is categorized as follows:

1. Mds-updrs 1 (Non-Motor Aspects): It examines non-motor aspects of
Parkinson’s disease, including mood, cognition, and behavior. It captures
changes in affect, sleep patterns, and cognitive fluctuations, providing a com-
prehensive view of psychological well-being and cognitive state.

2. Mds-updrs 2 (Motor Aspects of Daily Living): The score assesses motor
aspects of daily life, encompassing tasks like speech, swallowing, dressing,
hygiene, and handwriting. It sheds light on the patient’s ability to perform
essential activities independently.

3. Mds-updrs 3 (Motor Examination): Involves the motor examination, a
critical component for assessing the severity of motor symptoms. This section
includes standardized tasks and maneuvers to quantify motor impairments,
such as rigidity, tremor, bradykinesia, and postural instability. It provides
insights into the progression and fluctuation of motor symptoms.

4. Mds-updrs 4 (Motor Complications): This focuses on motor compli-
cations stemming from dopaminergic treatment, particularly motor fluctua-
tions, and dyskinesias. These complications significantly impact the patient’s
quality of life and require careful monitoring to optimize treatment strategies.

The aim is to use various machine learning techniques to predict each of the 4
scores individually and construct an aggregate accuracy measure.

4.2 Data Preprocessing

The dataset from Kaggle and Accelerating Medicines Partnership (AMP) com-
prises over 2600 observations. An innovative preprocessing step involved reorga-
nizing the data into patient clusters to improve predictive modeling accuracy,
considering challenges arising from limited observations and varying visit inter-
vals. The following steps were taken:

1. Clustering Rationale: The dataset was grouped by patient ID, resulting in
clusters containing data exclusively for individual patients. This clustering
facilitated the isolation of each patient’s progression trajectory.

2. Interpolation: Considering gaps between visits, Linear interpolation was
employed to estimate the missing UPDRS scores between consecutive mea-
surements.

3. Re-Framing Dataset: This step enables us to transform the data from Un-
supervised to Supervised with a notion to employ supervised learning models.
This re-framing is done by employing the subsequent time step as the out-
put variable and the preceding time steps as input variables to accomplish
this [31].

4. Minimum Observations Filter: To maintain dataset quality, clusters with
fewer than 5 observations were omitted, reducing the potential impact of
noise on analysis outcomes.
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4.3 Model Selection and Comparison

A diverse set of machine learning models was selected for comparison, along with
formulas they use for quantifying performance:

1. LightGBM: A gradient boosting framework that uses tree-based learning tech-
niques for enhanced efficiency.

y =
K∑

k=1

wkhk(x) (1)

2. XGBoost: An optimized gradient boosting library that excels in predictive
accuracy and speed.

y =
K∑

k=1

fk(x) (2)

3. Multilayer Perceptron (MLP): A type of artificial neural network known for
its depth and versatility in various machine learning tasks.

y = f

(
n∑

i=1

wixi + b

)
(3)

4. Support Vector Machine (SVM): A powerful and versatile machine learning
algorithm for classification and regression tasks.

y =
n∑

i=1

αiK(xi, x) + b (4)

5. Random Forest: A robust ensemble learning method that combines multiple
decision trees for improved predictive accuracy.

y = MajorityVote(y1, y2, ..., yn) (5)

6. Autoregressive Integrated Moving Average (ARIMA): A time series forecast-
ing technique that models data as a combination of autoregressive and moving
average components.

yt = c+φ1yt−1 +φ2yt−2 + ...+φpyt−p +θ1εt−1 +θ2εt−2 + ...+θqεt−q + εt (6)

Unsupervised Regression Approach: Here, for every model, each cluster
was trained and tested. For this process, time-stamp for each MDS-UPDRS
measurement of the patient is given as an input and the corresponding MDS-
UPDRS value is the target attribute. This would map every month to an MDS-
UPDRS score, the sequential feeding of which would train the model.
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Supervised Regression Approach: For this approach, the data was refor-
matted into a time-series sequential input format. The model was fed 3 sequential
inputs to predict the target variable at the next step.

This process was executed for every model, and the mean of accuracy param-
eters from all clusters were compared.

4.4 Performance Evaluation

Model evaluation was based on Mean Squared Error (MSE) and Mean Absolute
Error (MAE). The rationale for choosing these metrics, which provide insights
into predictive accuracy and error magnitude, was elucidated. MAE and MSE
calculations were carried out as follows:

MAE =
1
N

N∑

i=1

|xi − yi| (7)

MSE =
1
N

N∑

i=1

(xi − yi)2 (8)

Cluster-Level Evaluation: Each model was trained on 80% of data within
each cluster and tested on the remaining 20%. Predictions were compared to
target values, and individual cluster-level MSE and MAE were calculated.

Clustering Rationale: Clustering by the patient was chosen to study patient-
specific progression patterns comprehensively. The goal was to uncover common
trends if they exist while accounting for individual variations.

4.5 Time-Series Formatting

The dataset was transformed into a time-series format with a look-back of 3.
This decision was guided by the following key considerations:

1. Prediction Accuracy: A time step of 3 facilitated capturing accurate pro-
gression trends, providing sufficient historical context for predictive modeling.

2. Observation Distribution: The availability of observations varied across
visit months. A look-back of 3 ensured optimal data utilization, particularly
for initial phases where more observations were available.

Time-series formatting is essential to ensure the dataset is ready for applying
the supervised learning approach after applying the unsupervised method. A
summary of the methodology is illustrated in Fig. 1.
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5 Results

Our work aimed to forecast the MDS-UPDRS[1-4] of patients with Parkinson’s
Disease. We investigated different models as well as ways of manipulating and
organizing data to improve the forecast accuracy of the MDS-UPDRS score. The
4 UPDRS data were trained on four separate instances of the same model, and
this was repeated for each of 237 patients with more than five entries or readings.
Results of different approaches were obtained and compared by implementing
them on selected ML models. MLP (Multi Layer Perceptron), trained on the
supervised format of our interpolated data, outperformed every other model
with an MAE of 0.607, 0.505, 0.566, 0.420 for MDS-UPDRS 1, 2, 3, and 4,
respectively. Furthermore, MAE and MSE were compared for different cluster
sizes (number of entries or readings per patient) of the 237 patients. The cluster
sizes (no of readings per patient) of 11, 10, 11, and 12 gave the lowest MAE and
MSE in the prediction of MDS-UPDRS 1, 2, 3, and 4, respectively. This result
can be observed in Figs. 2, 3, 4 and 5 which are the plots of the average MAE
and MSE of all patients with a particular cluster size. Lastly, random patients
were selected to visually demonstrate in Figs. 6, 7 and 8 the prediction accuracy
of the MLP model (trained on supervised data) on unseen data taken from the
training set.

5.1 Unsupervised Learning

A set of machine learning models was trained using the unsupervised regression
approach for predicting Parkinson’s disease progression (UPDRS Score). MLP
(Multi Layer Perceptron) with a single hidden layer of 100 neurons using Adam
optimization and weight initialization in the random state 26 gave the least
prediction error. The MLP model used a constant learning rate of 0.001 and a
relu activation function. Table 1 contains the MAE and MSE for each UPDRS
Score prediction by all the trained models.

Table 1. Unsupervised Learning

UPDRS MLP Random Forest SVM XGBoost Light GBM ARIMA

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

U1 0.974 1.574 1.201 2.185 1.279 2.424 1.153 2.055 1.3 2.48 1.33 4.775

U2 0.88 1.476 1.042 2.042 1.064 2.123 1.041 2.051 1.075 2.144 1.109 3.955

U3 1.004 1.754 1.169 2.208 1.168 2.205 1.119 2.087 1.189 2.24 2.794 23.64

U4 0.737 1.147 0.875 1.826 0.851 1.704 0.878 1.835 0.872 1.758 0.83 2.257
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Fig. 2. UPDRS 1 Average MAE of different cluster sizes

Fig. 3. UPDRS 2 Average MAE of different cluster sizes

5.2 Supervised Learning

The same set of machine learning models (except ARIMA) was used for training
on the converted supervised data. ARIMA only takes the time series array as an
input and trains on it without requiring a target. This constraint of the ARIMA’a
input format made it unsuitable for training on supervised data containing an
explicit target variable. The method of reorganizing the time series data into a
supervised format with a look-back of 3 improved the performance of all machine
learning models under consideration. Using supervised data reduced the MAE
by an average of 17.08% when compared to the implementation of the same
models on unsupervised data. Again, MLP outperformed all other models. The
MLP model trained on supervised data had the exact parameters as the MLP
model trained on unsupervised data. MAE and MSE of all the models trained
on supervised data as shown in Table 2.

In the supervised learning approach, where prediction accuracy is notably
emphasized, the results indicate that the MLP consistently achieves the low-
est Mean Absolute Error (MAE) and Mean Squared Error (MSE) values across
all UPDRS scores. This suggests that the MLP excels in minimizing predic-
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Table 2. Supervised Learning

UPDRS MLP Random Forest SVM XGBoost Light GBM

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

U1 0.607 0.673 0.974 1.53 1.1 1.905 1.001 1.605 1.2 2.11

U2 0.505 0.563 0.824 1.355 0.929 1.673 0.843 1.398 1.019 1.87

U3 0.566 0.617 0.943 1.54 1.06 1.891 0.968 1.601 1.144 2.078

U4 0.42 0.437 0.788 1.497 0.836 1.638 0.8 1.522 0.902 1.814

Fig. 4. UPDRS 3 Average MAE of different cluster sizes

Fig. 5. UPDRS 4 Average MAE of different cluster sizes

tion errors and accurately captures the complexities of Parkinson’s disease
progression. Similarly, the Random Forest, Support Vector Machine (SVM),
and Extreme Gradient Boosting (XGBoost) models showcase competitive per-
formance, underscoring their capability to capture the intricate relationships
between symptom severity and progression patterns. In the unsupervised learn-
ing approach, the results reaffirm the superiority of the MLP. It consistently
exhibits the lowest MAE and MSE values, demonstrating its prowess in cap-
turing patterns without relying on labeled data. Notably, it is essential to men-
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Fig. 6. Plot of MLP Inference on Test Data of Randomly Selected Patients

Fig. 7. Plot of MLP Inference on Test Data of Randomly Selected Patients

Fig. 8. Plot of MLP Inference on Test Data of Randomly Selected Patients
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tion that ARIMA, employed within the unsupervised context, yields relatively
higher prediction errors. This observation aligns with the intricate and nonlinear
nature of Parkinson’s disease progression, which may challenge the assumptions
of these simpler models in the absence of labeled outcomes. Considering the
comparison between the two approaches, it becomes evident that the super-
vised MLP model consistently outperforms other models in both supervised and
unsupervised learning contexts. The MLP’s ability to accurately predict disease
progression underscores its robustness in addressing the intricate and dynamic
nature of Parkinson’s disease.

6 Conclusion and Future Scope

In conclusion, our study delved into the intricate landscape of Parkinson’s disease
progression, harnessing advanced machine-learning techniques with the aid of
MDS-UPDRS scores. These scores, integrated into our predictive models, yielded
remarkably low Mean Squared Error (MSE) values, suggesting their potential in
enhancing clinical decision-making. The outcomes shed light on possible general-
ized progression patterns within Parkinson’s disease. This insight opens the door
to targeted interventions involving medication and personalized exercise regimes,
promising better patient care and improved quality of life. Given the use of real-
life patient data, the practical viability of our models becomes apparent. The
demonstrated predictive power of machine learning, coupled with the integration
of MDS-UPDRS scores and personalized factors, underscores the transformative
role of AI in healthcare. Looking forward, our research lays a robust founda-
tion for deeper exploration of Parkinson’s disease progression. Potential avenues
include the incorporation of alternative parameters for disease quantification,
which could provide a more tailored assessment of patient conditions and novel
indicators for disease progression. Furthermore, the dataset’s potential extends
to unraveling the genetic underpinnings of Parkinson’s disease. By synergistically
analyzing progression data with genetic and protein mutational profiles, we may
uncover biomarkers and therapeutic targets. These interdisciplinary efforts have
the potential to advance basic research and personalized treatment strategies.
Lastly, enhancing predictive accuracy through ensemble machine learning mod-
els, tailored to individual attributes, presents an opportunity for more personal-
ized predictions and treatment recommendations. This approach acknowledges
the inherent variability in disease progression across individuals and enriches the
clinical toolkit for healthcare practitioners.
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Abstract. Soil moisture (SM) stands as a critical meteorological ele-
ment influencing the dynamic interplay between the land and the atmo-
sphere. Its comprehension, modeling, and examination hold key signifi-
cance in unraveling this interaction. Information about the surface SM is
necessary for predicting crop yield, future disasters, etc. Ground-based
SM measurement is accurate but time-consuming and costly. An alter-
nate approach for measuring SM using satellite images is becoming more
popular in recent years. Surface SM retrieval with a fine-resolution still
poses challenges. The proposed work considers multi-satellite data for
predicting high-resolution SM of Oklahoma, USA using multiple Machine
Learning (ML) algorithms, such as K-nearest neighbour (KNN), Deci-
sion tree (DT), Random forest (RF), and Extra trees regressor (ETR).
A high-resolution SM map for the study region is also reported, consid-
ering the Soil Moisture Active Passive (SMAP) SM data as the base,
Landsat 8 bands, and normalized difference vegetation index (NDVI)
data as the reference datasets. The ETR model performed the best with
a mean absolute error (MAE) of 0.940 mm, a root mean square error
(RMSE) of 1.303 mm and a coefficient of determination (R2) of 0.965.
The external validation is carried out with ground-based SM data from
the International Soil Moisture Network (ISMN). Both the actual SMAP
SM and predicted SM values demonstrate a comparable correlation with
the ISMN data.

Keywords: Soil Moisture (SM) · Landsat 8 · Soil Moisture Active
Passive (SMAP) · International Soil Moisture Network (ISMN) ·
Machine Learning (ML)

1 Introduction

Soil moisture (SM) plays a pivotal role in regulating environmental and meteo-
rological variables, such as surface temperature, radiation, water, and nutrients
in the soil [1,2]. It affects vegetation, runoff, evapotranspiration [3] etc., and
can be used for forecasting agricultural droughts [4], conducting climate-related
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Devismes et al. (Eds.): ICDCIT 2024, LNCS 14501, pp. 282–292, 2024.
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studies [1,5,6], predicting seasonal crop yield, food security monitoring [7] etc.,
which contributes towards social and economic growth. Currently, ground-based,
model-based, and remote sensing are commonly used techniques to obtain SM
data [8], which have their merits and demerits. For example, the International
Soil Moisture Network (ISMN) was formed to provide quality monitored and
standardized ground-based SM data with the establishment of numerous opera-
tional stations [9]. Similarly, the studies on SM in local regions are mostly carried
out using in-situ measurements of SM [10], which is a time-consuming process
[11]. Further, it is difficult to carry out global analysis using in-situ measure-
ments due to sparse measurements, spatial and temporal heterogeneity. Remote
sensing (RS) data obtained from satellites can overcome this problem with some
drawbacks of low accuracy and coarse temporal and spatial resolution [12]. The
Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity
(SMOS) products from satellite are the state-of-the-art satellite measurements
providing SM data with (temporal 2–3 days and spatial 36 km) and (temporal 3
days and spatial 35–50 km) resolution, respectively.

1.1 Related Work

Multiple research works have focussed on producing high-resolution data from
the current SMAP product. For example, SMAP SM disaggregation to high-
resolution 100 m SM is carried out by Ojha et al. applying the Disaggregation
based on Physical and Theoretical scale Change (DISPATCH) algorithm with
the help of SMAP, Landsat, Moderate Resolution Imaging Spectroradiometer
(MODIS), and Shuttle Radar Topography Mission (SRTM) datasets [13]. Koley
and Jeganathan [14] combined Landsat 8 and Sentinel 2A satellite data to pre-
dict surface SM (aggregated into 1 km resolution) using visible red, near-infrared
(NIR) and short-wave infrared (SWIR) bands. Sharma et al. [15] have applied a
Single Channel Algorithm (SCA) to disaggregate SMAP SM data to SM with a
resolution of 1 km using MODIS Normalized Difference Vegetation Index (NDVI)
and Land Surface Temperature (LST). Further, an intercomparison study is car-
ried out with three different algorithms, such as the Triangle method, approx-
imation of the thermal inertia (ATI), and DISPATCH. The ML models with
the association of multi-data source input features have given promising results
for the high-resolution soil moisture production [16–22]. For example, the ML
models are used in downscaling of soil moisture product, Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR-E), combined
with Moderate Resolution Imaging Spectroradiometer (MODIS), LST, surface
albedo, vegetation indices, and evapotranspiration [21]. In another study, the
inputs from multiple datasets, like in situ measurements, CLDAS reanalyzed soil
moisture product, MODIS data, precipitation, and soil texture data, are used in
generating continuous 1 km SM data using Random Forest ML model [22]. The
previous studies demonstrate that the choice of the input dataset significantly
impacts the performance of ML models.

Currently, most studies have used low-resolution (36–50 km) SM products
or reanalyzed downscaled SM products, generated using diverse models. Most
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of these downscaling studies have used MODIS data, and only a limited num-
ber of investigations have explored the use of Landsat 8 optical and thermal
observations to achieve a high-resolution SM product at 30 m scale [1,16]. Few
studies have considered ISMN data to validate their model-based results [23,24].
In line with these gaps, the present study implements four machine learning
models, namely K-nearest neighbor (KNN), Decision tree (DT), Random forest
(RF), and Extra trees regressor (ETR) [25] to predict high-resolution (30 m)
surface SM by utilizing enhanced 10 km SMAP NASA-USDA product. The pro-
posed study aims to develop a framework for high-resolution SM prediction from
multi-source parameters, including Landsat 8 optical and thermal observations
and others. These models eliminates unnecessary features from Landsat 8 data,
improving upon existing work in the field. The most effective model was selected
to predict SM content in Oklahoma City, USA, and twelve ISMN Atmospheric
Radiation Measurement (ARM) stations within Oklahoma for further validation.
The proposed work automates data extraction using the Google Earth Engine
(GEE) platform and will be applicable to any area on the earth’s surface.

2 Methodology

The comprehensive structure of the proposed research is illustrated in Fig. 1. The
study uses ML models (discussed in Sect. 2.2) to predict high-resolution SM by
integrating multi-source datasets (discussed in Sect. 2.1). Initially, SMAP pixel
locations within Oklahoma State are extracted from SMAP 10 km global SM
Data. Then, for the corresponding places, a buffer of a 5 km radius is created, and
the multi-source dataset mean value is calculated within the buffer, by matching
datasets temporally. Next, the ML models are implemented by taking the SMAP
SM as the target and features from the rest of the datasets as the independent

Fig. 1. Workflow for SM prediction
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Table 1. Dataset and ancillary variables

Dataset Variables Spatial
Resolution

Temporal
Resolution

NASA-USDA Enhanced SMAP
Global SM Data [26]

Surface SM in mm 10000 m 3 days

Landsat 8 OLI & TIRS [27] B1 (ultra blue, coastal aerosol),
B2 (blue), B3 (green), B4 (red),
B5 (near infrared),
B6 (shortwave infrared 1),
B7 (shortwave infrared 2),
B10 (surface temperature)

30 m 16 days

Climate Hazards Group InfraRed
Precipitation with Station
(CHIRPS) [28]

Precipitation in mm/d 5566 m daily

Multi-Error Removed Improved Terrain
Digital Elevation Model (MERIT DEM) [29]

Elevation in m 92.77 m static

OpenLandMap Soil Properties [30] Clay and Sand content in
% (kg/kg)

250 m static

variables. The results from different ML models are compared using performance
metrics (discussed in Sect. 3), and the best-performing model is validated using
ISMN’s ARM network’s in-situ data. Finally, a high-resolution soil moisture map
has been produced for the Oklahoma City with the help of best-performed ML
model’s prediction results.

2.1 Datasets

To estimate the high-resolution SM in Oklahoma City, USA, the present study
involves multi-source data from April 2015 to July 2022 retrieved through the
GEE platform [31]. Table 1 presents a compilation of the datasets utilized in the
study, along with their corresponding ancillary variables.

2.2 Machine Learning Regressor Models

The machine learning regressors are used to find appropriate relationships
between the dependent and independent variables and to predict high-resolution
SM. In this context, supervised learning techniques are employed to comprehend
the connection between the dependent and independent features, facilitating the
prediction of unseen input data. The different regressors used are KNN [32], DT
[33], RF [34], and ETR [35]. The KNN regressor predicts a new data point’s tar-
get value by calculating the average of the target values belonging its k-nearest
neighbors in the training dataset. KNN regressor is intuitive and adaptable, but
sensitive to noisy data and requires careful tuning of the K parameter for optimal
performance. DT builds a tree-based model in which each inner node decides on a
feature and each leaf node indicates a predicted target value. It is capable of cap-
turing complex relationships in data but can overfit if not pruned appropriately.
Regularization techniques and ensemble methods like RF and ETR can enhance
its performance and generalization. RF constructs multiple decision trees during
training and aggregates their predictions to generate more precise and resilient
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outcomes. By reducing overfitting and handling noisy data, it offers improved
generalization. RF regressor effectively captures complex relationships, handles
high-dimensional data, and provides feature-importance insights. Similar to RF,
ETR builds multiple decision trees and combines their predictions. However,
ETR introduces additional randomness by selecting random splits at each node,
which can lead to further diversity and potentially improved performance. ETR
is robust, less prone to overfitting, and can handle noisy data effectively. It
is suitable for various regression problems and offers significant insights about
input feature importance.

3 Results

Before carrying out the actual prediction of SM, the Landsat 8 bands and other
input features are correlated to each other to understand their relative impor-
tance. Then ML models are given with all extracted input features to select
a best-performing model for finding important features. The correlation study
reveals that surface reflectance (SR) band pairs (B1, B2), (B1, B3), (B1, B4),
(B2, B3), (B2, B4), (B3, B4), and (B6, B7) are highly correlated to each other,
with the scores as listed in Table 2. Therefore, it is evident that including all the
Landsat 8 bands is optional, and we can reduce the model complexity by choos-
ing and limiting the number of features. Here we have considered B4 (among B1,
B2, B3, B4) and B7 (between B6 and B7). The SR bands B4 and B7 are con-
sidered here because of their high importance among features (shown in Fig. 2)
when we input all features to the best-performing ETR model. The performance
of ML models with all features as input is given in the third column of Table 3.

Additionally, the vegetation index NDVI exhibits connection to the water
present in the soil [36]. NDVI can be calculated using the reflectance values of
red band B4 and NIR band B5 from Landsat 8 (refer to Eq. 1).

NDV I =
(NIR−Red)
(NIR + Red)

(1)

Table 2. Highest correlated features

Feature A Feature B Correlation score

B1 B2 0.997

B1 B3 0.979

B1 B4 0.940

B2 B3 0.989

B2 B4 0.960

B3 B4 0.974

B6 B7 0.940
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Fig. 2. Importance of the input features with respect to ETR Model (with all features)

Hence, NDVI is considered as one of the derived input features replacing B4 and
B5 bands. Finally, the NDVI, band B7, and the surface temperature band B10
from the Landsat 8 are input to the ML models.

Three standard error evaluation metrics, Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), and Coefficient of determination (R2), were con-
sidered in the study. The lower MAE and RMSE and the R2 value towards 1
represent a better model. The four ML models (i.e., KNN, DT, RF, and ETR)
are implemented for Oklahoma, USA, and their performances with K-fold cross-
validation (K = 10) are listed in Table 3. Comparing the results for ML models
with all features and models with filtered features, it becomes apparent that
the performance of all models slightly improved in comparison to the filtered
feature set. This suggests that the feature filtering process led to the removal
of less relevant or noisy features, enhancing the models’ predictive capabilities.
The actual SM versus predicted SM scatter plots are presented in Fig. 4, show
each ML model’s performance with filtered features. The density here provides
insights into the distribution and concentration of the predicted results and helps
in understanding the relationship between actual SM and predicted SM values.
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Fig. 3. Importance of the input features with respect to ETR Model (with filtered
features)

Table 3. Performance of ML models

Models Metrics With all features With filtered features

KNN MAE (mm) 1.639 1.585

RMSE (mm) 2.467 2.384

R2 0.873 0.881

DT MAE (mm) 1.526 1.433

RMSE (mm) 2.316 2.143

R2 0.889 0.902

RF MAE (mm) 1.104 1.052

RMSE (mm) 1.552 1.478

R2 0.949 0.955

ETR MAE (mm) 0.987 0.940

RMSE (mm) 1.365 1.303

R2 0.960 0.965
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Here, both ETR and RF belong to the family of ensemble methods. These mod-
els aggregate the predictions of multiple decision trees, reducing the likelihood
of bias and overfitting. ETR, on the other hand, builds decision trees concur-
rently leveraging random feature selection. Compared to KNN and DT, ETR is
less sensitive to noisy input and performs better with respect to the standard
metrics of MAE, RMSE, and R2. Further, Fig. 3 shows the importance scores of
input features for the ETR model with filtered features. This reveals that the
date and location information have more significance in providing downscaled
results. Also, Landsat 8’s band 10 (surface temperature) plays a major role in
the estimation compared to band 7 and NDVI.

Fig. 4. Scatter plot of actual SM vs. predicted SM

The results of the correlation studies between ISMN ARM’s SM data and
actual SM data (correlation coefficient r = 0.59), and between predicted SM
data (correlation coefficient r = 0.55) are shown in Fig. 5a and 5b, respectively.
Similar positive correlation values indicate that our estimation result aligns
with ground-based measurements. It has been found that the SMAP-actual SM
and the SMAP-predicted SM are similarly correlated with ISMN SM. A high-
resolution SM map of 30 m resolution for Oklahoma City for July 14, 2022, is
shown in Fig. 6. These high-resolution maps can be produced for any location of
the considered study region.
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Fig. 5. Correlation study of (a) ISMN ARM network SM vs SMAP-actual SM, (b)
ISMN ARM network SM vs ETR-predicted SM

Fig. 6. High-resolution (30 m) SM map of Oklahoma City

4 Conclusions

The proposed study experiments the estimation of high-resolution (30 m) SM
using four ML regression algorithms such as KNN, DT, RF, and ETR. Consid-
ering multi-source data inputs from Landsat 8, CHIRPS, MERIT DEM, Open-
LandMap and the target variable from SMAP data, the ETR model could achieve
an R2 of 0.965, RMSE of 1.303 mm and MAE of 0.940 mm. In the present study,
the Landsat 8 NDVI, band 7, and thermal band 10 have played a crucial role
along with other multi-data source input features in predicting high-resolution
SM. The proposed approach significantly improves performance because of mul-
tiple ancillary parameters for training and testing. This work can be useful to
significantly enhance both water resource management strategies and climate
studies at the regional scale. Further improvements can be achieved by fusing
data from other satellite images, considering extensive ISMN data for prediction
and validation, and exploring additional AI-based SM estimation models.
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Abstract. The foundation of each nation’s economy has always been
agriculture and related sectors. Smart Agriculture is the most recent hot
research topic because of its usefulness in different applications, such
as early plant disease identification and diagnosis and treatment. Con-
volutional neural networks (CNNs) have become the de-facto standard
in plant leaf disease identification tasks because of their ability to learn
complex features. However, not long ago, they began to set new trends in
vision tasks alongside the success of the transformer in natural language
processing (NLP). This study explores and compares CNNs and Vision
Transformer (ViT) models used in the identification of three specific
types of plant leaf diseases: Rice Leaf, Tea Leaf, and Maize Leaf images.
Their performance is examined using three standard plant leaf image
datasets. The study reveals that for all three datasets, Vision Trans-
former (ViT) outperforms CNNs in terms of the classification of plant
leaf diseases. Specifically, the ViT-30 model achieved an average accu-
racy of 98.41% and 96.95% on Rice Leaf Dataset and Maize leaf dataset
respectively, while ViT-20 model achieved an average accuracy of 67.75%
on Tea leaf dataset. The main parameters of ViT, such as the optimizer,
learning rate, patch size, number of heads, and number of transformer
layers, are also fine-tuned, and the optimal ViT configuration for plant
leaf disease identification is determined.

Keywords: Smart Agriculture · AI · CNN · Vision Transformers ·
Leaf Disease Classification

1 Introduction

Plant disease plays a critical role in influencing the growth of plants, food yield,
and quality. To meet the demands of the world’s rapidly growing population,
improving food availability and quality is of utmost importance. Understanding
the occurrence of plant leaf diseases and accurately predicting them is essen-
tial, as they can significantly impact overall crop yield production. Disease out-
breaks, if not handled appropriately, can have a substantial negative effect on
total production. Given the substantial impact of plant diseases on agricultural
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Devismes et al. (Eds.): ICDCIT 2024, LNCS 14501, pp. 293–306, 2024.
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output, early disease detection becomes crucial [1,2]. Farmers encounter signifi-
cant challenges when dealing with plant leaf diseases on a large scale, and manual
identification of these diseases is particularly challenging [3].

The manual assessment and inspection process present several challenges.
Manual disease detection is constrained by factors such as high laboratory test-
ing costs, time-consuming procedures, and difficulties in conducting field assess-
ments. This manual technique limits farmers to identifying specific plant dis-
eases and is only practical on a small scale. Moreover, it doesn’t guarantee early
detection, making it unable to identify newly emerging diseases through visual
inspection alone. Consequently, some plant leaf diseases might go unnoticed,
leading to inadequate preventive measures and resulting in agricultural output
losses. To address these issues, automated recognition methods must be devel-
oped to monitor crop health effectively, promptly, and cost-efficiently, offering
crucial information for decision-making.

Technological initiatives in the form of smart agricultural technology are
needed to properly detect and manage plant leaf diseases, ensuring the sus-
tainability of crop output and providing farmers with a stable source of income.
Advanced artificial intelligence techniques enable agriculturists and industry pro-
fessionals to employ modern technology instead of labor-intensive traditional site
monitoring [4].

Traditional image processing methods, while useful for detecting crop dis-
eases, suffer from limitations related to scalability, efficiency, performance, and
precision. In contrast, deep learning models have demonstrated significant suc-
cess and are rapidly emerging as the primary approach in various applications [5].
One highly effective deep-learning network is the CNN, which adopts an end-to-
end structure, eliminating the need for complex image preprocessing and feature
extraction tasks [6]. Researchers have recently placed significant emphasis on
utilizing CNNs for plant disease identification due to their remarkable ability to
extract crucial features from images [7]. CNNs excel in computer vision appli-
cations, including image classification, object recognition, and segmentation,
thanks to their combination of inductive bias and flexibility. Recent advance-
ments have significantly enhanced the reliability of disease and pest detection,
enabling early prevention and treatment interventions.

Transformer neural networks were initially introduced for Natural Language
Processing applications [8]. Recently, Dosovitskiy et al. introduced the vision
transformer (ViT) architectures specifically tailored for image classification [9].
Unlike traditional transformers, which process sequences of tokens, ViT takes
image patches as input, dividing the image into multiple patches. The trans-
former encoder then extracts features from each of these patches. ViT has demon-
strated state-of-the-art image classification results on large datasets, highlight-
ing its effectiveness when trained with sufficient data. It outperforms comparable
CNNs while demanding less computational resources.

To address ViT’s data dependency, the Data-Efficient Image Transformer
(DeiT) was introduced as an improved version [10]. DeiT employs a teacher-
student method commonly used with transformers and introduces a distillation
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token to ensure that the student model pays attention to the teacher’s guidance.
Similarly, the Swin Transformer is another computationally efficient transformer
architecture [11]. It addresses concerns related to the complexity of the ViT archi-
tecture, particularly regarding the number of tokens and attention windows. The
Swin Transformer adjusts the attention window to enable better communication
between patches during attention operations, allowing the network to capture
more global information.

Despite the success of deep learning-based algorithms, there remains a need
for standardized and effective approaches that can be seamlessly integrated into
various stages of a crop’s life cycle for diverse purposes. In this study, we under-
take an investigation and evaluation of several CNNs and Transformer-based
techniques for the task of plant leaf disease image classification. Our experi-
ments focus on three specific types of plant leaf diseases: Rice Leaf, Tea Leaf, and
Maize Leaf images. We compare and analyze the performance results obtained
from Swin Transformer, DeiT, ViT, and CNN classification models.

The primary contributions of our work can be summarized as follows:

– We conduct an extensive and comprehensive investigation into diverse
convolutional neural network-based approaches, comparing them with the
recent Transformer-based technique known as Vision Transformer (ViT). Our
research focus on the task of classifying plant leaf diseases and encompassed
a series of rigorous experiments employing three publicly accessible plant leaf
disease datasets, specifically those related to Rice leaf, Tea leaf, and Maize
leaf.

– Our study encompasses a comprehensive performance evaluation comparing
CNN and ViT models across all three datasets, utilizing various evaluation
metrics to provide a comprehensive assessment of their capabilities.

– Furthermore, we present the optimal configuration for ViT in the context of
plant leaf disease classification, offering valuable insights into the most effec-
tive setup for achieving superior performance in this domain and highlight
associated challenges.

The structure of the paper is outlined as follows: Sect. 2 presents a com-
prehensive review of the existing literature concerning CNN and ViT-related
research. Section 3 offers a concise introduction to the Vision Transformer (ViT)
architecture and its associated details, considering that this may be new to
some readers. Section 4 provides detailed information on the experimental setup,
encompassing dataset descriptions, the selection of models, and the choice of
evaluation metrics. Section 5 reports the results obtained from our experiments,
utilizing the selected metrics to assess and compare the performance of the mod-
els. Section 6 discusses the outcomes of the results presented in Sect. 5. Section 7
concludes the paper, summarizing the key findings and highlighting the signifi-
cance of the work.
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2 Related Work

In this section, we provide an overview of existing research works that utilize
CNNs and ViT models for the classification of plant leaf diseases.

2.1 CNN Related Works

Several studies have leveraged CNNs for the identification of plant leaf diseases
[12] [13]. Notable contributions in this domain include:

Chawal et al. [14] applied K-means clustering for segmentation and utilized
the Twin Support Vector Machine (TSVM) for the classification of Rice leaf
disease images, achieving a remarkable 95% accuracy in Rice leaf disease classifi-
cation. Sethy et al. [15] employed transfer learning and a deep feature combined
with SVM technique to assess the performance of 13 pre-existing CNN mod-
els. The resnet50 plus SVM technique attained the highest F1 score of 0.9838,
although transfer learning did not yield satisfactory results.

Bari et al. [16] utilized a Faster Region-based CNN (Faster R-CNN) for swift
identification of rice leaf diseases, achieving exceptional accuracy rates of 99.17%,
98.09%, and 98.85% for hispa, rice blast, and brown spot diseases, respectively.
For Rice leaf disease classification, Bhuyan et al. [6] introduced the SE SPnet
model, a novel stacked parallel convolution layers-based network incorporating
the squeeze-and-excitation (SE) architecture, which achieved a remarkable accu-
racy rate of 99.2%. Hu et al. [17] employed support vector machines and deep
learning networks to develop a low-shot learning method for tea leaf disease
identification, achieving an average accuracy of 90%. Mukhopadhyay et al. [18]
devised a novel technique for the automatic detection of five distinct tea leaf
diseases, utilizing NSGA-II for disease area detection in tea leaves, Principal
Component Analysis (PCA) for feature selection, and a multiple-class Support
Vector Machine (SVM) for disease identification, resulting in an average accu-
racy of 83%.

To identify multi-class maize crop diseases, Albahli et al. [19] proposed a
CNN architecture and an Efficient Attention Network (EANet) based on the
EfficientNetv2 model, achieving an impressive overall classification accuracy of
99.89%. Masood et al. [20] developed MaizeNet, a deep learning method based
on the Faster R-CNN approach with the ResNet-50 model and spatial-channel
attention for various classes of maize plant diseases, achieving an average accu-
racy of 97.89% and a mAP value of 0.94. Olayiwola et al. [21] classified three
common maize leaf diseases and their healthy counterparts using a CNN-based
model, achieving an accuracy of 98.56%. He et al. [22] proposed MFASTER R-
CNN, an improved version of the Faster R-CNN algorithm for maize leaf disease
identification, achieving an overall average accuracy rate of 97.23%.

2.2 Transformer Related Works

The concept of Transformer neural networks was originally introduced for Nat-
ural Language Processing (NLP) applications [23]. Thanks to their ability to
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model long-range dependencies, provide a global receptive field, and lack induc-
tive bias when compared to CNNs, Transformers have become dominant in var-
ious fields. Dosovitskiy et al. [9] introduced the ViT architecture for image clas-
sification, showing that ViT can outperform conventional methods in tasks such
as leaf disease identification.

Thai et al. [24] adopted the Vision Transformer (ViT) model instead of a
Convolutional Neural Network (CNN) to classify cassava leaf diseases. Their
experimental results on the Cassava Leaf Disease Dataset demonstrated that the
ViT model achieved competitive accuracy, consistently outperforming common
CNN models like EfficientNet and Resnet50d by at least 1%.

In another work by Thai et al. [25], they introduced a ViT-based leaf dis-
ease detection model that surpassed the state-of-the-art research in this domain,
further highlighting the effectiveness of Vision Transformers. Wang et al. [26]
proposed a backbone network based on the improved Swin Transformer and
applied it to identify cucumber leaf diseases, achieving an impressive identi-
fication accuracy of 98.97%. These studies collectively emphasize the growing
success and adoption of Transformer-based models, particularly ViT, in the field
of plant leaf disease classification.

3 Vision Transformer Architecture
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The ViT architecture (shown in Fig. 1), as introduced by Dosovitskiy et al.
[9], is based on the transformer framework. It applies the transformer block to a
sequence of image patches. The input image is divided into fixed-sized patches,
each treated as an individual token. Subsequently, these patches undergo flat-
tening, followed by positional embedding through linear projection. The trans-
former block comprises multi-head self-attention (MHA) and an MLP network,
each preceded by a normalization layer and connected via residual connections.
This architecture allows ViT to effectively capture intricate features in the input
images and has demonstrated remarkable success in various image-related tasks,
including plant leaf disease classification.

At the core of the ViT block, MHSA is the improvement of the self-attention
mechanism, which can learn different knowledge converged by multiple self-
attentional heads. The MHA converts input vector intro three vectors such as Q
(Query), K (Key) and V (Values). They are computed as Q = XWQ, K = XWK ,
and V = VWQ; where WQ, WK , and WV are the weight matrices. A dot-product
of Q and K is taken to generate a score matrix based on the saliency of the
embedded patch. Then, the SoftMax activation function is applied to the score
matrix. Further, the output is multiplied into V to generate the self-attention
result as shown in Eq. 1 where dk represents the dimension of the vector K.

SA(Q,K, V ) = softmax(
QKT

√
dk

) ∗ V (1)

Finally, self-attention matrices are combined and passed onto a linear layer fol-
lowed by a regression head. Self-attention enables the selection of relevant seman-
tic features at image locations for classification. There can be any number of
self-attentions present in the transformer encoder, known as MHA. Output of
the MHA block can be calculated using Eq. 2. MLP is stacked in the transformer
block after the MHA layer. MLP includes ANN layers with a GeLU activation
function. The GELU activation is calculated by multiplying the input by its
Bernoulli distribution. It has skip connections from the output of MHA, as pre-
sented in Fig. 1. The output of the transformer block can be calculated using
Eq. 3.

MHAout = MHA(NORM(xin)) + xin (2)

where xin is the input to transformer block NORM is the normalization layer,
MHA is multi-head self-attention, and MHAout is the output of multi-head self
attention layer.

TFout = MLP (NORM(MHAout)) + MHAout (3)

where MLP is the multi layer perceptron block, and TFout is the output of the
transformer block.

4 Experimental Setup

In this section, we present comprehensive details regarding the datasets, models,
and evaluation metrics utilized in our study.
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4.1 Datasets

We used three publicly available plant leaf disease datasets, taken from various
sources, to evaluate the performance of our model architecture. Figure 2 illus-
trates sample images from these three datasets.

Fig. 2. Sample Images of Rice leaf disease Dataset, Tea Sickness dataset and Maize
Leaf disease dataset

Rice Leaf Disease Dataset: We utilized the rice leaf disease image dataset
from Mendeley [27]. This dataset comprises a total of 5932 images of rice leaves,
categorized into 1584 images for bacterial blight, 1440 images for leaf blast, 1600
images for brown spot, and 1308 images for Tungro.

Tea Leaf Disease Dataset: Our second dataset is the tea sickness dataset [28],
which contains a total of 885 images. These images cover seven common tea leaf
diseases, along with a category for healthy tea leaves. The distribution includes
143 images for red leaf spot, 113 images for algal leaf spot, 100 images for bird’s
eye spot, 100 images for gray blight, 142 images for white spot, 100 images for
anthracnose, 113 images for brown blight, and 74 images for healthy tea leaves.

Maize Leaf Disease Dataset: The third dataset is the maize leaf disease
dataset, encompassing 4188 images of maize leaf diseases. This dataset includes
1146 images of blight, 1306 images of common rust, 574 images of gray leaf spot,
and 1162 images of healthy maize leaves. For more details about these datasets,
please refer to [29] and [30].

We split each dataset into training and testing sets with an 80:20 ratio,
reserving 20% of the data for testing and using the remaining 80% for training.
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Within the training data, an additional 20% was set aside as a validation set. The
dataset details are summarized in Table 1. To maintain consistency, we resized
the original images to a resolution of 224× 224 pixels. Furthermore, we applied
data augmentation techniques such as horizontal flipping, rotation, and zooming
to enhance the model’s generalization capabilities.

Table 1. Summary of the dataset used in the experiments

Dataset No of
Images

Image
Size

No of
Train
Images

No of
Test
Images

No of
Validation
Images

Rice Leaf
diseases
dataset

5932 300× 300 4745 1187 949

Tea sickness
ataset

885 Variable 708 177 142

Maize Leaf
Disease
dataset

4188 256× 256 3350 838 670

4.2 Models

In our work, we utilize the ViT-10, ViT-20, and ViT-30 models based on the
Vision Transformer architecture. In these models, the numbers 10, 20, and 30 cor-
respond to the input patch sizes of 10× 10, 20× 20, and 30× 30, respectively. All
of these ViT models are composed of 10 transformer blocks, each equipped with
10 multi-head self-attention modules. Additionally, we consider two improved
transformer-based methods in comparison to the original Vision Transformer.
These include the Data-Efficient Image Transformer (DeIT) architecture [10]
and the computationally efficient SWIN Transformer architecture [11].

To provide a comprehensive comparison between transformer and CNN mod-
els, we also include several CNN-based models in our evaluation, including
ResNet50 [31], VGG16 [32], DenseNet121 [33], MobileNetV2 [34], and Incep-
tionV3 [35].

4.3 Platform and Evaluation Metrics

We implemented and analyzed the models for predicting plant leaf diseases using
Python 3.7.12. All experiments in this work were conducted using the Tensor-
Flow [36] Python package within the freely available Kaggle GPU environment.
To optimize performance for specific tasks, we manually fine-tuned hyperparam-
eters through a trial-and-error process. Various optimizers, including Adagrad,
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SGD (with momentum), and ADAM, were employed, with learning rate set-
tings of 0.01 and 0.001 utilized for training the proposed model. The categorical
cross-entropy loss function was used for training.

To assess the model’s performance comprehensively, we employed several
important evaluation metrics, including accuracy, F1-score, precision, recall, sen-
sitivity, and specificity. Furthermore, for each class, we provided a confusion
matrix that visualizes both correct and incorrect results obtained from each of
the three modality datasets.

5 Results

We assessed the performance of each model using a variety of metrics, including
accuracy, F1-score, precision, sensitivity, specificity, and the cross-entropy loss
function. For both CNNs and transformer models, we employed the ADAM
optimizer with a learning rate of 0.001 for training.

Table 2. Results on Rice Leaf Dataset

Network Accuracy Sensitivity Specificity Precision Recall F1-Score

Resnet50 0.9667 0.9664 0.9689 0.9679 0.9664 0.9648

VGG16 0.9339 0.9307 0.9316 0.9358 0.9307 0.9341

DenseNet121 0.9521 0.9489 0.9509 0.9524 0.9489 0.9534

MobileNetV2 0.8954 0.8898 0.8913 0.8997 0.8898 0.8934

InceptionV3 0.9165 0.9117 0.9181 0.9172 0.9117 0.9166

ViT-10 0.9835 0.9828 0.9852 0.9846 0.9828 0.9795

ViT-20 0.9837 0.9841 0.9866 0.9852 0.9841 0.9802

ViT-30 0.9841 0.9839 0.9876 0.9858 0.9839 0.9819

DeiT 0.9639 0.9669 0.9648 0.9685 0.9669 0.9603

Swin Transformer 0.9826 0.9798 0.9839 0.9813 0.9798 0.9793

The results for the Rice leaf disease dataset are presented in Table 2. In this
dataset, the ViT-30 model outperforms all other models, achieving an average
accuracy of 98.41%.

The results for the Tea leaf disease dataset are presented in Table 3. Among
all models, ViT-20 achieved the highest scores across most metrics, with an
average accuracy of 67.75%, except for precision. The ViT-30 model achieved
the highest precision value of 67.76% for the tea sickness dataset. Similarly, the
results for the Maize leaf disease dataset are presented in Table 4.

It can be observed that ViT-30 achieved the highest accuracy of 96.95% and
outperformed other models in all metrics except for specificity and precision. In
the case of specificity and precision, ViT-20 surpassed ViT-30.

Sensitivity and specificity are crucial measures in assessing a model’s abil-
ity to predict classes reliably. Sensitivity represents the percentage of correctly
predicted diseased leaf images, while specificity represents the percentage of cor-
rectly predicted disease-free leaf images. In the rice leaf dataset, ViT-30 has
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Table 3. Results on Tea Leaf Dataset

Network Accuracy Sensitivity Specificity Precision Recall F1-Score

Resnet50 0.6603 0.6795 0.6589 0.6802 0.6795 0.9792

VGG16 0.6393 0.6351 0.6379 0.6384 0.6351 0.6524

DenseNet121 0.6534 0.6511 0.6516 0.6538 0.6511 0.6501

MobileNetV2 0.5928 0.5892 0.5917 0.5933 0.5892 0.5899

InceptionV3 0.6159 0.6127 0.6142 0.6139 0.6127 0.6122

ViT-10 0.6525 0.6510 0.6595 0.6569 0.6510 0.6556

ViT-20 0.6775 0.6759 0.6746 0.6732 0.6795 0.6739

ViT-30 0.6745 0.6733 0.6711 0.6776 0.6733 0.6736

DeiT 0.6553 0.6601 0.6575 0.6513 0.6601 0.6521

Swin Transformer 0.6719 0.6696 0.6689 0.6743 0.6696 0.6724

Table 4. Results on Maize Leaf Dataset

Network Accuracy Sensitivity Specificity Precision Recall F1-Score

Resnet50 0.9477 0.9382 0.9453 0.9498 0.9382 0.9376

VGG16 0.9261 0.9204 0.9202 0.9273 0.9204 0.9199

DenseNet121 0.9387 0.9292 0.9336 0.9410 0.9292 0.9185

MobileNetV2 0.8996 0.8868 0.8964 0.9012 0.8868 0.8862

InceptionV3 0.9192 0.9016 0.9082 0.9194 0.9016 0.9011

ViT-10 0.9584 0.9575 0.9523 0.9560 0.9575 0.9538

ViT-20 0.9659 0.9542 0.9592 0.9598 0.9542 0.9561

ViT-30 0.9695 0.9574 0.9618 0.9617 0.9574 0.9694

DeiT 0.9478 0.9445 0.9413 0.9420 0.9445 0.9448

Swin Transformer 0.9637 0.9621 0.9589 0.9593 0.9621 0.9647

the highest specificity, while ViT-20 has the highest sensitivity. For the tea leaf
dataset, ViT-20 achieved the highest specificity, whereas ViT-30 obtained the
highest sensitivity. In the maize leaf dataset, ViT-30 exhibited the maximum
specificity, while the Swin Transformer had the highest sensitivity.

6 Discussion

In this study, we employed three datasets related to plant leaf diseases to assess
the effectiveness of various CNN and transformer models. The experimental
results consistently demonstrate that, when it comes to detecting and recognizing
plant leaf diseases, transformer models outperform conventional CNN models.
As shown in Tables 2, 3, and 4, the transformer model’s attention mechanism
enables it to capture deeper patterns in the data, resulting in more accurate
image predictions.

Transformers are also more effective due to their ability to prioritize relevant
information while reducing information redundancy. Additionally, transformers
efficiently encode temporal data, another crucial element for recognition. Lastly,
the multi-head attention mechanism stands out as a key component and enhancer
in the transformer model. While this study has yielded impressive results, it is
important to acknowledge its limitations and identify potential avenues for future
research in the field of plant leaf disease detection.
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Fig. 3. Confusion matrix of ViT-30 for Rice Leaf dataset

Fig. 4. Confusion matrix of ViT-20 for Tea Sickness dataset

Firstly, one of the challenges we encountered was dealing with an unbalanced
dataset. To mitigate this issue, we applied data augmentation techniques. How-
ever, addressing dataset imbalance remains an ongoing concern that requires
further exploration. Secondly, the problem of incorrect labeling in publicly
accessible datasets is another significant issue. As a result, manual verifica-
tion of datasets is essential to ensure the quality and accuracy of training data.
Thirdly, due to interclass similarities among different leaf diseases, misclassifica-
tion remains a significant concern. Despite achieving strong results, the confusion
matrix highlights the challenges faced by the best-performing model in distin-
guishing between classes with similar visual characteristics. Figure 3 shows the
confusion matrix of ViT-30 for Rice Leaf dataset. Figure 4 shows the confusion
matrix of ViT-20 for Tea Sickness dataset. Figure 5 shows the confusion matrix
of ViT-30 for Maize Leaf Disease dataset. In future research, addressing these
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challenges, improving dataset quality, and exploring more advanced techniques
for distinguishing visually similar classes will be crucial for advancing the field
of plant leaf disease detection.

Fig. 5. Confusion matrix of ViT-30 for Maize Leaf Disease Dataset

7 Conclusion

In this work, we conducted a comprehensive evaluation of classification perfor-
mance using three plant leaf disease datasets, comparing Convolutional Neural
Network (CNN) models with transformer-based models, particularly the Vision
Transformer (ViT). Our results consistently demonstrate that ViT-based models
outperform traditional Deep CNN models across all three datasets, showcasing
superior accuracy and other important metrics. We further utilized confusion
matrices to assess the performance of ViT models in this study. This research
highlights the efficacy of vision transformers as a valuable tool in addressing
challenges related to plant leaf disease classification. Moreover, it establishes a
strong foundation for the development of deep learning-based classification algo-
rithms in this domain. Additionally, it opens up exciting possibilities for the
adoption of self-attention-based architectures as alternatives to CNNs in vari-
ous image classification applications. In our future work, we will focus on the
development of novel self-attention-based architectures tailored specifically for
the detection and classification of plant leaf diseases, further advancing the field
of computer vision in agriculture.
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Abstract. Cracks on road surfaces undermine infrastructure load-bearing capac-
ity and endanger both motorists and pedestrians. Prompt and effective iden-
tification of road cracks is vital to swiftly address repairs and prevent their
escalation and further structural decay. Presently, the majority of crack detec-
tion approaches rely on labor-intensive manual inspection rather than automated
image-based methods, resulting in costly and time-consuming processes. Auto-
mated crack detection methods are needed to streamline the process, reduce
costs, and enable more proactive maintenance efforts to ensure road safety and
longevity. This paper presents a comprehensive study on road crack detection,
aiming to develop an accurate and efficient system for identifying cracks on road
surfaces. Leveraging deep learning techniques, the proposed approach utilizes a
two-stage convolutional neural network (CNN) combined with the extreme learn-
ing machine (ELM) algorithm. Through extensive experimentation and evalu-
ation, the model demonstrates superior performance in detecting road cracks,
contributing to proactive maintenance strategies, and enhancing road safety. An
accuracy of 84.98% and an F-measure of 84.57% highlight the potential of the
proposed approach in automating road crack detection compared to the existing
deep learning approaches.

Keywords: CNN · Deep Learning · F-measure · ELM · Machine Learning

1 Introduction

Road network plays a pivotal role in enabling transportation, facilitating the move-
ment of goods, services, and people, fostering economic growth, and connecting diverse
regions. It is crucial in connecting urban centers, rural areas, and remote regions, con-
tributing to regional development and socioeconomic integration. The continuous use
of roads, combined with environmental factors such as temperature variations and mois-
ture, poses challenges to maintaining the integrity of the infrastructure. The expansive
road network and inadequate maintenance practices exacerbate these challenges, neces-
sitating effective crack detection and maintenance strategies [18]. The preservation of
road infrastructure integrity is of paramount importance to ensure safe and efficient
mobility [20]. However, this infrastructure faces significant challenges, including road
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cracks, which compromise structural integrity and contribute to increased maintenance
costs and reduced lifespan. Crack detection can be done either manually or automati-
cally [15]. Manual crack detection processes are susceptible to human error, fatigue, and
limited capacity to handle the increasing volume of data [16]. These limitations hinder
the effectiveness and efficiency of crack detection, emphasizing the need for automated
solutions.

On the contrary, machine learning techniques, particularly models utilizing neu-
ral networks, have gained extensive usage in the field of object detection [1]. The
widespread adoption of neural network-based models for object detection is driven by
their capability to learn complex patterns and features from data, leading to improved
accuracy and performance in this critical computer vision task [17]. Out of all the neural
networks, CNN stands out as one of the most renowned and potent architectures, famous
for its exceptional accuracy in extracting meaningful features from data [8,10]. Indeed,
the fully connected layer and the backpropagation (BP) influence CNN’s training time,
making it relatively time-consuming. However, ELM offers an efficient alternative as a
classifier, demonstrating excellent generalization performance while avoiding the use of
backpropagation and requiring minimal human intervention [6,12]. Numerous studies
have provided evidence of ELM’s faster training times in comparison to other conven-
tional machine learning (ML) techniques, such as Naive-Bayes, decision trees, Sup-
port Vector Machine (SVM), etc. [5,11]. ELM and its different variants have extensive
applications in diverse fields, including pattern recognition, facial recognition, text clas-
sification, and image processing [7,9,13]. Combining ELM with other ML techniques
has consistently yielded impressive performance results [14].

Indeed, leveraging the strengths and successes of CNN and ELM, a novel and effi-
cient approach known as CNN-ELM has been introduced for road crack detection. This
hybrid model has two distinct phases: feature extraction and classification. By integrat-
ing the powerful feature extraction capabilities of CNN and the efficient classification
performance of ELM, the proposed model aims to enhance road crack detection. The
CNN part performs the automatic feature extraction, capturing intricate patterns and
textures related to cracks in road images. The ELM part acts as a classifier, using the
extracted features to differentiate between non-crack and crack regions. The overall
process involves training the CNN to learn relevant features from a large dataset of road
images and then using the ELM algorithm to classify the regions as cracked or non-
cracked based on the learned features. Combining the strengths of both CNN and ELM,
this integrated approach can achieve high accuracy, robustness, and efficiency in road
crack detection, making it suitable for real-world applications and proactive infrastruc-
ture maintenance.

The manifold contributions of the paper are:

i. The paper introduces a novel hybrid CNN-ELM approach for road crack detection,
capitalizing on the advantages of both CNN and ELM. By combining the feature
extraction capabilities of CNN with ELM’s rapid learning and generalization prop-
erties, the proposed approach offers a powerful solution for accurate and efficient
road crack detection tasks.

ii. The proposed hybrid CNN-ELM approach is comprehensively evaluated on the
widely recognized CCIC and custom dataset, showcasing its remarkable efficacy in
road crack detection. The approach achieves superior performance by combining
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CNN with ELM compared to traditional methods. Furthermore, the generalization
capability of the approach is extensively assessed by subjecting it to images from
various scenarios and datasets, demonstrating its adaptability and robustness across
different road crack detection tasks.

iii. The paper thoroughly analyzes the CNN-ELM approach against other hybrid mod-
els that incorporate CNN combined with different machine learning classifiers like
SVM, Xgboost, and others. The performance of the CNN-ELM approach is rig-
orously compared against these hybrid models to assess its superiority in road
crack detection tasks. The proposed approach’s performance was rigorously bench-
marked against several state-of-the-art methods for road crack detection, showcas-
ing its superiority in terms of accuracy and efficiency.

2 Methodology

2.1 Data Source and Description

The methodology involves utilizing two distinct datasets for training and testing the
model. The first dataset is “Concrete Crack Images for Classification (CCIC),1” a
publicly available dataset that contains images of concrete surfaces with cracks and
non-cracked areas, serving as a valuable resource for model development. The second
dataset is a custom dataset collected explicitly from the Thapar Institute of Engineer-
ing and Technology (TIET)2, Patiala, Punjab. This custom dataset likely includes road
images depicting different scenarios and variations in road cracks, providing real-world
data to evaluate the model’s performance and generalization capability. Experimenting
on these two datasets ensures a comprehensive and diverse representation of road crack
images for training and testing the model in the context of road crack detection.

i. Concrete Crack Images for Classification Dataset: The first dataset CCIC, is a pub-
licly available dataset collected from various METU Campus Buildings. Some sam-
ple images of the CCIC dataset are shown in Fig. 1. It comprises concrete images
exhibiting cracks and is categorized into negative (representing images without
cracks) and positive (representing images with cracks). Within each class, there
are 20,000 images, resulting in a total of 40,000 images in the dataset. The dataset
comprises images, each with dimensions of 227 × 227 pixels and containing RGB
channels. To create this dataset, 458 high-resolution images measuring 4032 × 3024
pixels were used as the foundational source material. This dataset construction pro-
cess likely involved resizing and processing high-resolution images to fit the spec-
ified dimensions, thus generating a more manageable dataset for the subsequent
tasks. One of the notable strengths of this dataset lies in its comprehensive cover-
age of diverse surface finishes and varying illumination conditions within the high-
resolution images. However, it is important to mention that no data augmentation
techniques, such as random rotation or flipping were applied to this dataset during
its creation.

1 https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification.
2 www.thapar.edu.

https://www.kaggle.com/datasets/arnavr10880/concrete-crack-images-for-classification
www.thapar.edu
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Fig. 1. Sample Images from CCIC Dataset

ii. Custom Dataset: A custom dataset comprising 260 images depicting diverse crack
and non-crack regions on different buildings across the Thapar Institute of Engi-
neering and Technology (TIET), located in Patiala, Punjab, India, was meticulously
generated. These images were captured from a top view of the road surface, focus-
ing on concrete pavement areas with cracks. Figure 2 shows some sample images of
this custom dataset. The custom dataset is partitioned in the ratio of 70:30 in training
and testing subsets. To augment the dataset, training and testing image sets have been
processed by Keras3, a deep learning framework, a pre-processing image tool. A hor-
izontal flip is applied randomly to create variations in the training data. Additionally,
a crop of the image is taken, which includes 90% of the total height and width of the
original image. Randomly flipping and cropping images is a data augmentation tech-
nique that enhances training data diversity, thereby boosting the model’s capacity to
generalize effectively to new data. Testing data is also pre-processed by applying the
same settings, and some image patches are flipped vertically.

Fig. 2. Sample Images of Custom Dataset Collected at TIET Campus

2.2 Data Preprocessing

Before using the data for training and testing the model, the following preprocessing
steps were applied to ensure its uniformity, eliminate any noise or artifacts, readiness,
and consistency.

3 https://keras.io/api/data_loading/image/.

https://keras.io/api/data_loading/image/


Intelligent Ensemble-Based Road Crack Detection: A Holistic View 311

i. Image Resizing: All images in both datasets were resized to a uniform resolution
of 227 × 227 pixels. Resizing the images is necessary to ensure that the input to
the CNN-ELM model has consistent dimensions, which is essential for properly
functioning the convolutional layers.

ii. RGB to Grayscale Conversion: As the proposed CNN-ELM model is designed for
grayscale images, the RGB images from both datasets were converted to grayscale
before feeding them to the CNN feature extractor. This conversion helps reduce
computational complexity and enables the model to focus on relevant image fea-
tures effectively.

iii. Normalization: Normalization was performed on the grayscale images to bring the
pixel values to a common scale. The pixel values were scaled to the range of [0,
1] by dividing each pixel value by 255. Normalization helps stabilize the training
process and prevents issues related to differences in pixel intensity across images.

iv. Data Augmentation: Data augmentation techniques were employed to augment the
training dataset’s diversity and mitigate overfitting. However, it is important to note
that data augmentation was not applied to the “Concrete Crack Images for Clas-
sification” dataset, as stated in its description. The data augmentation techniques
used for the custom dataset include:
• Random Rotation: Images were randomly rotated by a certain angle to introduce
variability in the orientation of cracks, simulating different viewing angles.

• Horizontal Flipping: Some images were horizontally flipped to create mirror
images, thereby increasing the variety of crack orientations in the dataset.

Applying these preprocessing steps made the two datasets suitable for training and
testing the CNN-ELMmodel. The images were standardized in terms of resolution
and intensity values, converted to grayscale, and augmented to create a diverse and
robust dataset for training the model effectively.

2.3 Model Training

The CNN-ELM model for road crack classification is implemented in Python 3.9.11.
Visual Studio Code is used as the Integrated Development Environment. The combina-
tion of Python and VSCode provides an efficient and effective environment for devel-
oping and fine-tuning the CNN-ELM model for road crack classification. The training
process involves the following key components:

i. Optimization Algorithm: The optimization algorithm used for training the CNN-
ELMmodel is Stochastic Gradient Descent (SGD). SGD updates the model param-
eters using small batches of training data, and a batch size of 32 is chosen to bal-
ance computational efficiency and memory constraints.

ii. Learning Rate: The learning rate is set to 0.001 for the SGD optimizer. A lower
learning rate allows the model to make smaller updates to the parameters during
training, which can lead to more stable convergence.

iii. Training Duration and Epochs: The model is trained for multiple epochs to observe
its performance at different stages of training. Specifically, the CNN-ELM model
is trained for 10, 20, 30, and 40 epochs, respectively. Each epoch represents a
complete iteration over the entire training dataset.
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iv. Validation Split: In the dataset division process, the data is split into the training
set and the cross-validation set, following a 3:1 ratio. The training set contains the
majority portion of the dataset and is used to train the CNN-ELMmodel to learn the
patterns and features relevant to road crack classification. The cross-validation set,
comprising the remaining portion, serves as an independent validation set during
the training phase. By evaluating the model’s performance on this unseen data, the
cross-validation set allows us to assess the model’s ability to generalize to new and
unseen road crack images. This process helps to prevent overfitting and provides
valuable insights into how well the model will perform on unseen real-world data,
ensuring its robustness and effectiveness in road crack detection tasks.

2.4 CNN-ELM: A Two Stage Ensembled Process

1. In the first stage of the proposed approach, a sequential CNN model is constructed,
which plays a pivotal role in extracting significant features from the input image
dataset. CNNs are well-known for their effectiveness in image-related tasks, espe-
cially for image classification tasks. The process of feature extraction involves apply-
ing convolutional operations on the input images using learnable filters known as
kernels. These filters are designed to detect various patterns and features in the local
regions of the images. Mathematically, the convolution operation can be represented
using Eq. 1.

Y [i, j] = (X ∗ K)[i, j] =
M∑

m=1

N∑

n=1

X[i − m, j − n] · K[m,n] (1)

where: Y [i, j] represents the value at position (i, j) in the output feature map, X
denotes the input image, K is the learnable kernel (filter), M and N are the dimen-
sions of the kernel. Subsequent to the convolution operation, an activation function
is employed to introduce non-linearity, thereby improving the network’s capacity to
capture intricate patterns within the data. In this work, Rectified Linear Unit (ReLU)
activation function is used, which is defined as:

f(x) = max(0, x)

where ‘x’ is the input feature vector. ReLU stands as a widely utilized activation
function within deep neural networks. This function works by transforming nega-
tive input values to zero while preserving positive values unchanged. This intrinsic
characteristic of ReLU introduces essential non-linearity to the neural network’s
computations. Through this simple yet effective mechanism, ReLU aids the model
in capturing intricate patterns and representations from data. ReLU’s non-saturating
nature allows gradients to flow more readily, mitigating the vanishing gradient prob-
lem and facilitating faster and more stable training of deep neural networks. The
output of the CNN consists of feature maps that represent the presence of specific
patterns or features in different regions of the input images. These feature maps pre-
serve spatial information and are crucial for further processing.
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2. ELM is employed for the classification process in the second stage. ELM is known
for its fast learning speed and excellent generalization performance, making it suit-
able for various classification tasks [4]. Unlike traditional iterative training methods,
ELM adopts a single-layer architecture and directly computes the output weights
analytically without iterating over the training data [6]. Given the feature maps
obtained from the CNN, each feature map is transformed into a one-dimensional
vector, which is then used as input for the ELM model. The conversion of a 2-D fea-
ture map to a 1-D vector involves concatenating the rows or columns of the feature
map to form a long vector. For a binary classification problem (crack or no-crack),
the output can be represented as Y = {y1, y2, ..., yN}, where N is the number of
training samples. ELM aims to find the output weights W = {w1, w2, ..., wN} that
minimize the training error. ELM output can be computed using Eq. 2.

Y = H · W (2)

where: H is the input feature matrix containing the 1-D vectors of feature maps for
all training samples, the W is the output weight matrix. To find the output weights
W , ELM uses the Moore-Penrose generalized inverse, also known as the pseudoin-
verse, of the input feature matrix H as shown in Eq. 3.

W = H+ · T (3)

where:H+ is the pseudoinverse ofH , and T is the target matrix containing the true
labels of the training samples. Once the output weights are obtained, the ELMmodel
can be used to classify the road images as either cracked or not.

The hybrid CNN-ELM structure effectively addresses the limited classification
capability of CNNs by leveraging the advantageous properties of ELM. In this app-
roach, CNNs handle feature extraction from input data, while ELM is employed for
the final classification task. In the hybrid CNN-ELM approach, the risk of overfitting
is reduced by updating only the output weights in the ELM model while randomly
generating the hidden layer biases and the input weights [3]. By doing so, the ELM
component effectively acts as a fast and efficient classifier, taking advantage of its good
generalization capabilities and minimal human intervention requirements [5]. Simulta-
neously, the training process leverages CNN’s exceptional feature extraction capabili-
ties. The CNN extracts high-level features from the input data, which are then fed into
the ELM for classification. This combination allows the model to benefit from both
the CNN’s ability to learn complex representations and the ELM’s fast learning speed.
Consequently, the hybrid CNN-ELM approach achieves a faster overall learning speed
while maintaining strong generalization performance, making it an effective solution
for road crack detection tasks.

2.5 Proposed Architecture of CNN-ELM

The proposed CNN-ELMmodel consists of a well-structured architecture (shown in the
Fig. 3) comprising several essential layers as discussed in the following steps (Table 1).
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Fig. 3. CNN-ELM Architecture

Table 1. Architecture Detail of CNN-ELM

3 Analysis of Experimental Work

3.1 Experimental Setup

To conduct the experiments for the classification of road cracks based on the proposed
CNN-ELM model, Intel Core i11 processor along with 24 GB GPU and 32 GB RAM
were used. The TensorFlow library and the high-level API Keras were employed for
implementing the CNN-ELM model. The training and evaluation processes were per-
formed using Python 3.9 on the VSCode IDE. TensorFlow and Keras provided a robust
and efficient platform for building, training, and evaluating the CNN-ELM model for
the accurate classification of concrete crack images into positive (with cracks) and neg-
ative (without cracks) categories.

3.2 Results Analysis

Analysis by Confusion Matrix: The CNN-ELM architecture’s performance was
assessed using the CCIC and TIET datasets. The model was trained for 10 to 40 epochs,
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with the number of neurons in the hidden layer varying during training. Figure 4 dis-
plays the confusion matrix of CNN-ELM at different epochs. The confusion matrix pro-
vides valuable insights into the model’s performance, showing how well it predicts each
class at various training stages. At ten epochs, the confusion matrix demonstrates the
model’s initial performance, highlighting areas of improvement for specific classes. As
the training progresses, the model becomes more adept, and by 20 epochs, it achieves
its peak accuracy, as evident from the improved diagonal alignment in the confusion
matrix. Beyond 20 epochs, the model’s performance tends to plateau, indicating that
additional training might not yield significant accuracy gains. This observation is fur-
ther supported by the confusion matrix at 30 and 40 epochs, which shows similar per-
formance patterns compared to the 20-epoch matrix.

Performance Comparison for Different Hidden Layer Neurons vs. Epochs: Table 2 rep-
resents evaluating performance metric parameters at different epochs. These evaluation
metrics provide valuable insights into the model’s performance, helping to understand
its strengths and weaknesses in accurately classifying concrete crack images as negative
(no crack) or positive (crack). Overall, the CNN-ELM architecture with 250 neurons in
the hidden layer exhibits promising accuracy at 20 epochs, making it a favorable con-
figuration for practical applications.

Comparison of Accuracy at Different Activation Functions: The proposed model is
trained for 10 to 40 epochs by varying neurons at the hidden layer, and performance
is compared by using linear or non-linear activation function, as shown in Fig. 5. The
proposed model achieves maximum accuracy for non-linear activation function (tanh)
with 250 neurons in the hidden layer at 20 epochs.

3.3 Comparison with Other ML Classifiers

CNN-ELM performance is compared with different ML techniques such as Xgboost,
SVM, Extra trees (ET), Gaussian Naive Bayes (GNB), Decision Trees etc., combined
with CNN. All models have been trained on a road image subset for 20 epochs with a
learning rate of 0.001 and a batch size of 32. The hyperparameters set for training the
ML classifiers are listed in Table 3. The empirical results revealed that CNN-ELM out-
performs other ML classifiers in terms of accuracy, as shown in Table 4 (bold indicates
maximum). The CNN-QDA hybrid classifier has the highest specificity among vari-
ous classifiers because it efficiently organizes features into distinct classes and models
the variance-covariance matrices for each class. By integrating CNN for feature extrac-
tion and QDA for classification, this approach captures intricate patterns through CNN’s
hierarchical learning, while QDA effectively accounts for class-specific variations in the
data. This synergy enhances classification accuracy by leveraging the separate arrange-
ment of features and the covariance information within distinct classes. Prior Informa-
tion: QDA incorporates prior probabilities of classes when making classification deci-
sions. This aspect might arise from contrast with techniques like constructing decision
trees using ET, where a subset of features is chosen randomly at each node, introducing
diversity and minimizing correlation among trees. ET’s random feature selection pro-
cess enables the capture of distinct data patterns, ultimately leading to higher specificity
in classification due to the diverse range of features considered and the reduction of
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Fig. 4. Analysis of Confusion Matrix of CNN-ELM at different Epochs

Fig. 5. Accuracy comparison for different activation function

correlated decisions across the ensemble. Performance metric parameters such as Pre-
cision, Recall, and F1-Score are also compared with various ML classifiers, as shown
in Figs. 6, 7, and 8, respectively. Results show that CNN-ELM has the highest Precision
and F1-Score comparable to other ML classifiers. CNN-MLP shows a higher sensitivity
compared to other classifiers. The reason may be due to multiple hidden layers, MLP
can identify discriminative features and relevant patterns of the data in a better manner,
which gives higher sensitivity.
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Table 2. Performance Metric comparison for Epochs vs Hidden layer Neurons

Epochs Hidden Layer Precision Sensitivity Specificity F1-Score

Neurons (%) (%) (%) (%)

10 100 70.89 94.15 61.62 80.88

150 72.01 96.30 62.84 82.40

200 73.27 96.65 65.00 83.35

250 75.26 97.06 68.32 84.78

300 75.34 97.41 68.34 84.96

350 77.32 97.53 71.60 86.26

400 77.45 98.11 71.63 86.56

500 77.00 98.06 70.92 86.26

20 100 70.54 90.68 62.40 79.35

150 72.97 93.46 65.62 81.95

200 72.66 95.55 64.30 82.54

250 75.26 96.38 68.49 84.50

300 74.12 96.38 66.58 83.79

350 76.35 97.18 70.11 85.51

400 76.16 97.21 69.79 85.41

500 77.93 97.70 72.53 86.70

30 100 71.89 92.73 64.00 80.99

150 73.72 94.26 66.63 82.73

200 74.30 95.11 67.35 83.43

250 75.23 96.48 69.81 85.05

300 76.14 96.93 69.84 85.29

350 76.07 96.78 69.78 85.19

400 76.48 97.05 70.37 85.55

500 78.53 97.48 73.53 86.98

40 100 70.07 93.16 60.49 79.98

150 74.32 95.36 67.28 83.53

200 74.51 96.83 67.11 84.22

250 75.60 96.75 69.00 84.88

300 75.97 97.23 69.46 85.29

350 75.48 97.38 68.59 85.04

400 77.13 97.63 71.27 86.18

500 78.57 98.06 73.45 87.24
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Table 3. Hyper-parameter used for the Training of ML Classifiers

Classifier Hyper-parameters

Decision Trees min_samples_split=10, criterion=‘gini’, max_depth=5
criterion=‘gini’, max_depth=40, max_features=50

Extra Trees min_samples_leaf=4, n_jobs=4, random_state=42,
n_estimators=100, in_samples_split=10

SVM kernel=‘linear’, C=1.0, random_state=0

GNB var_smoothing=1e-8

XgBoost n_estimators=100, objective=‘binary:logistic’,
random_state=42, n_jobs=4, booster=‘gbtree’, gamma=0,
max_depth=3

QDA priors=None, reg_param=0.0

Table 4. Performance Comparison of CNN-ELM with ML Classifiers

Model Specificity(%) Accuracy(%)

CNN-DT 69.20 83.33

CNN-ET 62.33 79.68

CNN-SVM 89.87 84.37

CNN-GNB 85.26 84.30

CNN-XGBoost 51.24 73.21

CNN-QDA 98.92 55.16

CNN-ELM (Proposed) 68.49 84.98

3.4 Training and Testing Time Analysis

While training the CNN, refining the parameters of the convolutional layers through
fine-tuning can lead to increased computation time, as shown in the Eq. 4.

k∑

i=1

xi−1.y
2
i .xi.z

2
i (4)

where i is the convolutional layer index, k is the number of convolutional layers, xi is
the number of filters at the ith layer, xi−1 is the number of input channels of the ith

layer, yi is the size of the filter, and zi is output feature size. According to He et al., [2],
the fully connected layer of CNN takes around 10% of computation time, resulting in
a higher training time. Based on the past literature, it has been seen that ELM does not
involve backpropagation, resulting in less computation time than other ML classifiers
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Fig. 6. Comparison of Precision Fig. 7. Comparison of Recall

Fig. 8. Comparison of F1-Score

[4,19]. Hence, the proposed approach replaces the fully connected layer with ELM,
and due to this, the proposed model exhibits the minimum training time compared to all
other models. Table 5 depicts ELM’s training and testing time comparison with different
ML classifiers (bold indicates minimum).

Table 5. Comparison of training and testing time with ML Classifiers

Model Training time (in sec) Testing Time (in sec)

CNN 11443 2229

ELM 357.1 0.260

CNN-DT 204.6 0.275

CNN-ET 32.95 0.251

CNN-SVM 27796 4264

CNN-GNB 5.149 6.184

CNN-XgBoost 1207 0.989

CNN-QDA 2537 51.29

CNN-ELM (Proposed) 3.587 0.248

3.5 Discussion

The experimental evaluation was conducted on the CCIC dataset, and the resulting
accuracy values were compared. After 20 epochs of training, CNN attained a 51.90%
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accuracy. However, increasing the number of epochs to 50 or more resulted in CNN
achieving even higher accuracy with a higher training time. AT 250 hidden neurons,
ELM attained an accuracy of 79.56%. However, increasing the number of neurons to
around 2000 led to even higher accuracy levels for ELM. Figure 9 represents the con-
fusion matrix for CNN, ELM, and CNN-ELM. Figure 10 represents the accuracy and
f1-score comparison of CNN, ELM, and CNN-ELM. The proposed model synergisti-
cally incorporates CNN and ELM, achieving a peak accuracy of 84.50% within just
20 training epochs using 250 hidden layer neurons. The model accomplished this with
less training and testing time, as discussed in Sect. 3.4. The generalization property is
validated by training CNN-ELM on CCIC and tested on the custom dataset (Fig. 11).
The results suggest that the combined CNN-ELM architecture is more efficient for road
crack detection than using CNN or ELM classifiers in isolation.

Fig. 9. Confusion Matrix for CNN(left), ELM(middle) and CNN-ELM(right)

Fig. 10. Performance Comparison of CNN, ELM, and CNN-ELM
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Fig. 11. Performance Evaluation on TIET Dataset

4 Conclusion

This study has delved into the significance of road crack detection for ensuring safe
and efficient road infrastructure management, particularly in nations like India with
extensive road networks. Among the automated methods, deep learning techniques,
especially CNN, emerged as a powerful tool for crack detection due to their ability to
automatically learn and extract meaningful features from road images. CNN has shown
exceptional accuracy and robustness, making it well-suited for real-world applications
in road crack detection. Furthermore, the integration of CNN with the efficient ELM
was discussed, highlighting its potential to enhance the accuracy and efficiency of road
crack detection. The combination of CNN’s feature extraction capabilities and ELM’s
fast training process for classification makes this integrated approach promising for
proactive infrastructure maintenance and targeted crack repair. In conclusion, the inte-
gration of CNN and ELM holds immense promise for developing an accurate, efficient,
and automated system for road crack detection. The proposed model has the potential
to streamline infrastructure maintenance, reduce maintenance costs, and enhance road
safety and beyond. This work can be extended on the following lines:

· In the current research, it has been observed that resizing images consumes additional
time and resources. A standard model capable of handling images of various sizes
without resizing is needed to address this issue. This standard model aims to stream-
line the image processing pipeline and improve overall efficiency by accommodat-
ing diverse image dimensions, reducing the computational overhead associated with
image resizing.

· The performance of the proposed Conv-ELM can be compared with the pre-trained
CNN variants like VGGNet, ResNet, Inception, etc., integrated with ELM and vali-
dated on various crack detection datasets.

· The classification accuracy can be further enhanced by considering different ELM
variants combined with CNN variants.

· Finding the exact number of neurons in the hidden layer of ELM is a difficult task,
and it is done based on the experiment. Hence, a technique should be developed to
find exactly how many neurons in the hidden layer are required for ELM to classify
the images.
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Abstract. Modern economic life is now greatly facilitated by online payment
systems, which allow for seamless financial transactions. However, the risk of
online payment fraud has greatly increased along with the growth of digital trans-
actions. This calls for the creation of sophisticated fraud detection systems that
can instantly evaluate huge amounts of transaction data. This study suggests a
novel method for identifying online payment fraud by utilizing big data manage-
ment techniques, more specifically PySpark’s capabilities. PySpark uses Resilient
Distributed Datasets (RDD), data structure and stores data in RAM instead of
writing it to disk after each operation. RDD operations are lazy i.e., they will
not execute unless an action operation is called on them. After preprocessing the
data Machine Learning algorithms from Spark ML package are applied, the ML
library of PySpark provides optimizedMachine Learning capabilities for Classifi-
cation problems that require distributed computing. Further, models of classifica-
tion algorithms that qualify with the best metrics are developed on our dataset and
used for making accurate detections. Our Fraud detection system aims to assist
Large organizations in assessing their enormous amount of transaction data to
detect possible anomalies or fraudulent activities.

Keywords: PySpark · Fraud Detection · Big Data · Resilient Distributed
Datasets · Decision Tree · Random Forest · Logistic Regression

1 Introduction

In a world witnessing rapid escalation in the number of online transactions with every
passing day and the subsequent enormous amount of data that these transactions generate,
Big Data management techniques come to the rescue. Big Data comprises structured,
unstructured, and semi structured data collected over a period of time, which can be
mined to obtain meaningful insights using Machine Learning techniques.

Amajor threat faced by the online transactions is that of fraudulent activities wherein
individuals with malicious intent steal the credentials of other individuals and make
online transactions on behalf of them. Storage and handling of Big Data itself is a
tedious job, on top of it, detecting such fraud activities present in the Big Data proves
to be more challenging even with the presence of security measures such as encryption
and tokenization.
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This calls for the creation of sophisticated Fraud Detection systems that can easily
store huge amounts of transaction data, efficiently process it and accurately detect the
presence of fraudulent activities in it. The system implemented in this paper is built using
the robust Big data storage capacity of PySpark in combination with efficient Machine
Learning Models from the pyspark.ml package.

TheMachine Learningmodels used are Logistic Regression (statistical model devel-
oped using the logit function), Random Forest(machine learning algorithm which com-
bines the output of multiple decision trees to reach a single result), Decision Tree (a deci-
sion support hierarchical model that uses a tree-likemodel of decisions and their possible
consequences) and Naïve Bayes (Probabilistic classifier based on Bayes Theorem) [10,
12]. The results obtained from these models are viewed from different perspectives to
gain deeper insights on their reliability, using various evaluation metrics. The flow of
the paper is as follows. Section 2 summarizes the prior work done on Fraud Detection
in Big Datasets and Sect. 3 provides detailed working methodology of the implemented
Fraud Detection system, consequently followed by results discussed in Sect. 4. Lastly,
the paper concludes with conclusions mentioned in Sect. 5.

2 Literature Review

The financial industry has undergone a digital transformation as a result of the quick
development of information technologies including the Internet of Things (IoT), Big
Data,Artificial Intelligence (AI), andBlockchain [1].Changes in customer behaviour and
a redesigned environment for conventional financial operations are the hallmarks of this
change. The economic and social spheres have been severely impacted by technological
breakthroughs including mobile payments, IoT-based financial services, and Internet-
based wealth management. Since 2014, China’s Internet has grown rapidly, cultivating
a widespread preference for online transactions using mobile and IoT devices. The
financial services sector of the Internet has grown steadily as a result of this acceptance.

However, this quick evolution has also revealed regulatory flaws. Due to the rapid
innovation in Internet consumer finance, the regulatory framework has frequently trailed
behind, exposing gaps in how infractions and problems are addressed [1]. On online
financial platforms, instances of fraud, exploitation, and aggressive debt collection have
increased, negatively affecting the development of the Internet of Things (IoT) and
consumer finance sector. Fraud is defined as an illegal attempt to obtain financial or
personal advantages. It frequently entails irregular or unfair transactions. Fraudulent
activity frequently deviates fromaccepted transaction standards andmay showanomalies
in transaction quantity, time, accounts, IP addresses, or individual credit ratings.
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Existing methods for fraud detection include machine learning-based models and
expert systems with rule-based architectures. Rule-based systems heavily rely on
antifraud specialists to manually review vast amounts of transaction data in order to
identify and categorize fraudulent activity [1]. To extract significant information and
create expert rules for fraud detection, these systems need domain expertise and com-
mercial acumen. However, the efficiency of these systems depends on the knowledge and
responsiveness of anti-fraud specialists, and a delay in spotting complex fraud patterns
can lead to significant losses.

Globally speaking, the year 2020 was a turning point due to the COVID-19 pan-
demic’s onset [2]. A record-breaking increase in online transaction volumes and usage
of internet services was sparked by the virus’s unrelenting propagation. People across
the world are increasingly dependent on digital platforms for a variety of services, which
has caused this spike out of both necessity and caution. Drug research, epidemiological
forecasts, and clinical diagnostics all benefited from AI’s ability to learn quickly, which
helped people make better decisions in ambiguous situations.

Fraud detection in big data environments [3] developed a method that combines
machine learningwith big data analytics to find fraud. The study underscored how crucial
it is to handle and analysesmassive amounts of data in order to spot fraudulent tendencies.
To identify deviations from expected behavior, the suggested system combined anomaly
detection and behavioral analysis.

Big data analytics were used to improve the accuracy of a hybrid strategy for credit
card fraud detection [4]. To find questionable transactions, the authors merged rule-
based methods with machine learning algorithms. Big data processing was added into
the hybrid strategy to handle the massive volume of transaction data, which led to higher
rates of fraud detection.

A real-time fraud detection method for e-commerce platforms was introduced by
real-time fraud detection in e-commerce leveraging big data [5]. The report made a
point of the urgency of responding right away to online transaction fraud. The system
achieved low-latency fraud detection, averting potential financial losses, by utilizing
stream processing and parallel computing on big data frameworks.

Big data analytics for insurance fraud detection [6] concentrated on the issues of fraud
detection in the insurance sector. The study emphasized the use of big data analytics to
examine a variety of data sources, such as claim histories, insurance information, and
consumer behavior. The scientists improved the accuracy of fraud identification and
decreased false positives by using machine learning techniques on this variety of data.

Using big data to improve healthcare fraud detection [7] covered the use of big
data analytics in healthcare fraud detection. The study underscored how crucial it is to
combine structured and unstructured data from provider information, insurance claims,
and medical records. Advanced machine learning techniques were used by the authors
to analyses these diverse data sources in order to improve the detection of fraudulent
insurance and medical billing claims.

An approach for identifying fraudulent behavior in large-scale financial transaction
datasets was published in Large-Scale Fraud Detection in Financial Transactions [8].
The study brought attention to the difficulties involved in managing enormous volumes
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of financial data while preserving real-time detection capabilities. The suggested rem-
edy made use of parallel processing and distributed computing frameworks to quickly
analyses transaction data and spot probable fraud trends.

The difficulty of integrating several data sources is a typical problem that can affect
the quality of the data and make fraud detection less accurate. Furthermore, several
studies point out the trade-off between real-time detection and computing efficiency,
where it is difficult to achieve both at the same time. Another issue that keeps coming
up is the lack of qualified individuals who can create, install, and manage sophisticated
big data analytics systems for fraud detection. Additionally, even if the studies stress the
use of machine learning algorithms, it is still important to pay attention to how these
models may be understood and explained in terms of fraud detection. Feature selection
is now a crucial part of a successful model’s performance in machine learning (ML),
which has become a potent tool for detecting credit card fraud. The use of genetic
algorithms (GA) in feature selection—a technique that maximizes feature selection—in
the context of credit card fraud detection is examined in this review [13]. Researchers
have created an advanced machine learning (ML) credit card fraud detection engine
that uses GA to combine the capabilities of several classifiers, such as Random Forest
(RF), Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), Logistic Regression
(LR), andArtificialNeuralNetwork (ANN).Theperformance evaluation of the suggested
detection engine, carried out with a European cardholder dataset, shows the advantage
of this method over current ones. The engine improves fraud detection accuracy by
carefully examining and choosing the most pertinent features under the guidance of
GA, which makes it a significant contribution to the ongoing fight against credit card
fraud [13]. The research highlights the importance of feature selection in augmenting
the performance of machine learning models, demonstrating the possibility of using GA
to maximize the detection of fraudulent transactions.

The suggestedmodel [14], makes use of a wide range of features such as time, device
type, transaction quantities, and transaction types, is one noteworthy addition to this field.
Through an exploration of user behavior modelling, this model generates unique profiles
for every user and establishes threshold values for these profiles. Essentially, it uses two
strong filters—a rapid filter and an explicit filter—to improve real-time fraud detection
in the setting of electronic cash payment cards. The fast filter uses the Baum-Welch
algorithm to find the local maximum likelihood in addition to the first-order Hidden
Markov Model and Self-Organizing Maps (SOM) to enable quick transaction process-
ing. In contrast, the explicit filter creates cardholder profiles using Logistic Regression
and multilayer Perceptron Neural Network techniques. The transaction is classified as
fraudulent or non-fraudulent after evaluation, at which point it is kept in the database
for future use. With an Accuracy of 0.999, Precision of 0.9834, Recall of 0.7906, and
F1-Score of 0.9214, themodel’s simulation results demonstrate remarkable performance
in a number of important categories, outperforming the results of individual methods
[14].

Our approach stands out because of the creative use of the PySparkAPI,which allows
us to effectively manage and store enormous amounts of data. We efficiently preprocess
this large dataset using PySpark’s strong capabilities, establishing the groundwork for
precise and intelligent analysis. Our distinct advantage stems from PySpark’s strength,
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which enables us to handle challenging data preparation tasks quickly and nimbly. Our
classification techniques are used after the data has been cleaned up, and they excel at
correctly classifying complex patterns in the data. By strategically combining the data
processing prowess of PySpark with our astute classification techniques, we guarantee
that our insights are not only thorough but also extremely dependable, setting us apart
in producing significant outcomes.

3 Methodology

PySpark allows us to use programmes written in Python to send commands and receive
responses, via Py4J (Python for Java), from Spark, which is a JVM programme. Spark
is built using languages like Java and Scala, it does most of the heavy lifting and has
a RDD interface for working with distributed datasets. The IPC between PySpark and
Spark initializes with SparkContext, a Python object and main entry point for Spark
Functionality, from PySpark library. SparkContext connects to a network port on the
computer and through this port reaches out to the SparkContext object in JVM. Spark-
Context performs important operations such as running a job, deleting attributes, showing
profiles, receiving results, etc. Figure 1 elaborates the overall approach of our work.

Fig. 1. Overall approach

3.1 Data Modelling

Data downloaded from the repository when loaded in the PySpark dataframe gets seri-
alized (state converted into a byte stream) into a file and gets distributed into Spark’s
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worker’s memory. Built in operations such as join, filters, aggregation can be run on
the data or Spark can launch a group of Python Processes, pass them serialized Python
code and data, and command those Python processes to execute the code on the data.
The result obtained from the above-mentioned operations are stored back into Spark’s
memory. Finally, the data is sent from Spark to our application, from a stream of bytes
into a Python object.

After the data is loaded onto the PySpark dataframe keeping the parameters infer-
Schema and Header as True, instances of entry points such as SparkConnect and SQL-
Connect are initialized. SparkConnect coordinates execution of jobs and SQLConnect
enables SQL like operations on the dataframe using SparkSQL (a Spark module for
structured data processing).

Transformers and estimators from PySpark are then applied on the dataframe to
transform it into machine learning features. Operations performed on the dataframe
include filtering (e.g. displaying selected entries), aggregation(e.g. counting sum of null
values in the columns). StringIndexer is an estimator that is fitted on the ‘Type’ column
to convert the categorical labels into numeric labels. The VectorAssembler transformer
is applied on the ‘Step’, ‘Amount’, ‘Old Balance Origin’, ‘New Balance Origin’, ‘Old
Balance Destination’, ‘New Balance Destination’, ‘Type’ columns to pack the features
into a vector(‘Features’ column).

3.2 Machine Learning Model Training

The dataframe containing Features and target column viz. predictionandtarget is split
into training set and testing set in 8:2 ratio. The various classifiers imported from the
pyspark.ml package are Logistic Regression, Random Forest, Decision Tree and Naïve
Bayes. For each of the classifier a Machine Learning model is built by applying the.fit()
estimator on the training data and predictions aremade using the.transform() transformer
on the testing data.

A new dataframe containing the predictions, along with the earlier columns, and
additional features such as probability, rawprediction, etc. is generated.Of this dataframe
the targetandprediction column is selected for metric evaluation.

3.3 Evaluation Metrics

The following evaluation metrics are used:

MulticlassEvaluator. From pyspark.ml.evaluation package the MulticlassEvaluator is
imported and is applied on the prediction and target dataframe.The metrics evaluated are
Accuracy, F1 score, Weighted Precision, Weighted Recall and Area Under ROC curve.

BinaryClassificationMetric. PlottingROCandPRcurves for all theMachineLearning
models, using HandySpark. The predictions dataframe is transformed to handy and the
columns chosen are ‘probability’, ‘predictions’ and ‘target’.

From pyspark.mllib.evaluation package is imported and Area Under Curve for ROC
and PR are evaluated and plotted.

The following values for all the classifiers are tabulated in the following tables.
BAUC PR - BinaryClassificationMetric Area Under Curve for Precision Recall.
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Table 1. MulticlassEvaluator evaluation metrics.

Classifiers Logistic Regression Random Forest Decision Tree Naive Bayes

Accuracy 0.998969 0.999399 0.999386 0.624614

F1 Score 0.998618 0.999305 0.999360 0.767673

Weighted Precision 0.998940 0.999398 0.999348 0.998492

Weighted Recall 0.998969 0.999399 0.999386 0.624614

BAUCROC - BinaryClassificationMetric Area Under Curve for Receiver Optimiza-
tion Characteristics.

MAUC ROC - MulticlassEvaluator Area Under Curve for Receiver Optimization
Characteristics.

MAUC PR - MulticlassEvaluator Area Under Curve for Precision Recall (Table 2).

Table 2. Area under curve for ROC and PR.

Classifiers BAUC ROC BAUC PR

Logistic Regression 0.853525 0.184644

Random Forest 0.985303 0.767761

Decision Tree 0.954659 0.693669

Naïve Bayes 0.747433 0.002789

MulticlassMetric. From pyspark.mllib.evaluation package
MulticlassMetric is imported and using this on the predictionsadlabel dataframe rdd
tuple mapping is done. The metrics evaluated are Confusion matrix, True Positive Rate
(TPR), False Positive Rate (FPR), Precision, Specificity (Table 3).

Table 3. MulticlassMetric evaluations

Classifiers Logistic Regression Random Forest Decision Tree Naive Bayes

TPR 0.998969 0.999399 0.999386 0.624614

FPR 0.816302 0.477744 0.321631 0.129624

Precision 0.998940 0.999398 0.999348 0.998492

Specificity 0.183697 0.522255 0.678368 0.870375

Matthew Correlation Coefficient (MCC). The Matthew Correlation Coefficient
(MCC)metric, which is a discrete case of Pearson’s Correlation Coefficient, is computed
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using the True Positive (TP), True Negative (TN), False Positive (FP), False Negative
(FN) values obtained from the confusion matrix (Table 4).

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Table 4. Confusion Matrix values.

Classifiers Logistic Regression Random Forest Decision Tree Naive Bayes

TP 291.0 831.0 1080.0 1387.0

TN 1271139.0 1271146.0 1270880.0 793586.0

FP 9.0 2.0 268.0 477562.0

FN 1302.0 762.0 513.0 206.0

BalancedAccuracyRate (BAR). BalancedAccuracyRate (BAR),which is the average
accuracy obtained from both minority and majority classes is also computed (Table 5).

BAR = (Specificity + Sensitivity)

2
=

TP
(TP+FN )

+ TN
(TN+FP)

2

Table 5. Area Under curves, MCC and BAR metric evaluation.

Classifiers Logistic Regression Random Forest Decision Tree Naive Bayes

BAUC ROC 0.853525 0.985303 0.954659 0.747433

BAUC PR 0.184644 0.767761 0.693669 0.002789

MAUC ROC 0.998618 0.999305 0.999360 0.767673

MCC 0.420713 0.721173 0.736705 0.036124

BAR 0.591333 0.760827 0.838877 0.747495

4 Results and Discussion

The development of four different classifier models and the evaluation of the best model
for fraud detection using the PySpark framework was the main goal of the current study.
In this inquiry, Naive Bayes, Decision Tree, Random Forest, and Logistic Regression
were all used as models. A standard 80–20 training-testing split was used to evaluate
the effectiveness of these models. To be more precise, 80% of the dataset was used for
training, and the remaining 20% was set aside for testing.
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From the metrics evaluated using the Multiclass Classification Evaluator, Logistic
Regression, Decision Tree andRandomForest give equally good results; however, Naïve
Bayes performs poorly with accuracy of only 62.46%.With reference to Table 1, the
effectiveness of our classifiers was rigorously evaluated and compared using parameters
such asAccuracy, F1 Score,Weighted Precision aWeightedRecall.We canmake out that
the descending order of accuracy is Random Forest followed by Decision Tree followed
by Logistic Regression.

Fig. 2. Area under curves for ROC of all four classification models.
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Fig. 3. Area under curves for PR of all four classification models.

After applying the Binary Classification Metrics on the Handy Spark dataframe the
Area under curve for ROC curve and PR curve was plotted. A thorough examination
of Fig. 2 reveals that the Area under curve for both these graphs of Random Forest are
significantly higher than that of Decision Tree followed by Logistic Regression. Naïve
Bayes covers negligible area of both these graphs.
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Using the Multiclass Metrics the Confusion matrices were plotted for each classifier
and subsequently the True Positive, False Positive, True Negative and False Negative
values were found out. The careful inspection of the False Negative values present in
Fig. 3 of all the classifiers revealed interesting insights. False negative suggests that the
transaction was fraudulent but themodel predicted it as no fraud.While the Random For-
est ensemble offers advantages in reducing overfitting and enhancing overall predictive
accuracy, the Decision Tree excels in minimizing false negatives, making it a valuable
candidate for scenarios where the mitigation of such errors is of paramount importance.

Fig. 4. Confusion matrices of all four classification models.
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To come up with the best Classifier model from Decision Tree and Random Forest
2 additional metrics were applied viz. Matthew Correlation Coefficient (MCC) and
Balanced Accuracy Rate(BAR), as seen in Fig. 4 and 5. As referred in [9] MCC is
a much better measure than accuracy and F1 score as the other two can be misleading
because theydonot consider all four values of the confusionmatrix. To tackle the problem
of imbalance datasets [11] suggests the Balanced Accuracy Rate. Our Fraud detection
dataset contains mostly legal transactions with few instances of fraud transactions, i.e.
the ratio of fraudulent to legal transactions would be small, Balanced Accuracy is a good
performance metric for imbalanced data like this. The results obtained from both these
metrics show that Decision Tree performs better than Random Forest.

Fig. 5. BAR and MCC metrics for model evaluation.

The results of our investigation demonstrate that, within the context of our dataset and
experimental conditions, the Decision Tree algorithm exhibited superior performance
compared to the Random Forest algorithm (Fig. 6).
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Fig. 6. BAUC ROC, BAUC PR, MAUC ROC, MCC and BAR metrics of all four classification
models.

5 Conclusion

We implemented a Fraud detection system for Big Data using the PySpark Framework
and built 4 Machine learning models viz. Logistic Regression, Random Forest, Decision
Tree and Naïve Bayes. The results obtained from the implemented models were passed
through a series of evaluation metrics. Initial evaluation using the Multi Class Evalu-
ation metric gave equally good results for Random Forest, Decision Tree and Logistic
Regression, however after plotting the Binary Classification Area under curve for ROC
and PR curves we saw that Random Forest was performing better than Decision Tree,
which was significantly performing better than Logistic Regression. Plotting the con-
fusion matrices proved to be a turning point in our evaluation as the False Negative
values for Decision Tree were lower than that of Random Forest. This questioned the
establishment of Random Forest as the best MLModel. To dissolve this discrepancy and
to select the best Classifier model from Decision Tree and Random Forest 2 additional
metrics were applied viz. Matthew Correlation Coefficient (MCC) and Balanced Accu-
racy Rate (BAR). Notably, in both these performance evaluation metrics, the Decision
Tree classifier consistently beat the other models. One of the key factors is that Decision
trees have a simple setup compared to the Random forest. Decision Trees consider a few
features whereas Random Forest is formed by combining multiple Decision Trees, this
makes the Decision Trees work faster on Large datasets. Hence, it is established that the
Decision Tree Model is the most reliable as it gives us the best results.
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By accurately detecting the anomalies present in the transactional data, this Big
Data Fraud Detection System will thus prevent organizations and individuals from
experiencing substantial financial losses incurred due to fraudulent activities.
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Abstract. Huge amount of diversified information in the form ofmultimedia data
gets uploaded to Online Social Network platform every second. This eventually
gets a sudden burst during high impact events. Twitter platform plays a very impor-
tant role during these events in the process of diffusion of this information across
the entire social network of users. The real challenge is in the analysis of tweet
during these bursty events when data gets generated in large volume with high
arrival rate. Under this circumstances, near real-time detection of bursty event
should be implemented to match up the speed of the information diffusion which
demands efficient algorithms. In this paper a bursty event detection algorithm is
proposed which considers a dynamic set of tweets in every time window and gen-
erates optimal k topics per window of a bursty event. This research has also studied
the goodness of the topics produced across the different time windows. Our pro-
posed model is successful in creating better semantically coherent and contextual
topics for bursty event as compared to the other state of the art techniques such as
Latent Dirichlet Allocation Model, Gibbs Sampling Dirichlet Mixture Model and
Gamma-Poisson Mixture Topic Model.

Keywords: Event · Burst · Topic Modelling · LDA · GSDMM · GPM ·
Coherence Measures

1 Introduction

The inherent dynamism of Online Social Network (OSN) lies in the huge amount of
varied information getting uploaded to OSN platform every second in the form of multi-
media data from different events [1]. Any latest happening or prolonged event occurring
around the globe has its footprint in OSN in some way or the other [2]. Any event ‘E’ is
defined as a happening which is probable to occur in the next time span or duration [3].
On Twitter, to describe an event, the users use #tag (or hashtag) or @ symbol, which
further facilitates in coupling different events with each other directly or indirectly [4].
According to [5], both unplanned events like natural disasters and planned events such as
ICC World Cup Twenty20 on Twitter, which either can be trendy or non-trendy, can be
bursty. The bursty behavior of an event is directly proportional to the rate of information
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diffusion over Twitter or any other OSN [5]. These bursty events which can be called
as ‘trends’ have the capability to catch the attention of huge number of users almost
instantly [6].

Real-time stream of data from Twitter help the researchers to analyze real-world
bursty events within a specific timeline. Every tweet is accompanied by a timestamp of
its creation, username, and biographical sketchmaking it easier for the researchers to take
up the challenge of automatically detect and analyze the bursty events. The real challenge
is in the analysis of tweet text during bursty events when data comes in large volume
with high arrival rate [7]. Under this circumstance, close to real-time detection of bursty
event should be implemented to match up the speed of the information diffusion which
demands efficient algorithms. Prediction of bursty events has got important implication
in the field of social, political, several planned or unplanned cases of events.

There are few algorithms proposed for detection of bursty events in literature.
AmMost of the approaches use fix term of vocabulary, requires a set of query words,
needs number of topics to discover, and also have a set threshold value in order to
define the bursty event cluster [8]. Additionally, most of the techniques use a vector-
space model to represent the tweets, given the dimension of the vector same as the word
vocabulary [9]. Researches who have considered streaming of data, assumed a dynamic
word vocabulary for bursty event detection which changes with time [2] Some recent
literatures have used deep learning techniques, attention mechanisms and network struc-
tures too to detect bursty events [10–12]. To the best of our knowledge, none of them
have studied the goodness of the topics produced across the different time windows. In
this paper, a bursty event detection algorithm is proposed which considers a dynamic
set of tweets in every time window and generates optimal topics per window of a bursty
event.

The rest of the chapter is organized as follows: Sect. 2 elaborates the review of liter-
ature. Section 3 details the proposed burst detection framework and the corresponding
algorithm. The implementation, evaluation results and analysis along with The exper-
imental setup details, datasets description, the preparation of the datasets is illustrated
in Sect. 4. Discussion on the results is performed in Sect. 5, followed by conclusion in
Sect. 6.

2 Review of Literature

A very traditional work used statistical techniques and tests on data distribution to
extract bursty keywords topics in an event [13]. In online mode, Twitter Monitor tool
was designed by [6] which detects emerging topic trends in Twitter stream. Individual
keywords buzz was used to identify trends in two steps. The occurrence of individual
keywords in tweets is measured to identify the bursts. This was modified by a study by
[7] through an algorithm named ‘Window Variation Keyword Burst Detection’ where a
scalable and fast online procedure was proposed for detecting online bursty keywords.
A study by [14], proposed a different approach for detection of online bursty keywords
named as EDCoW (Event Detection with Clustering of Wavelet-based signals) model.
EDCoW considers individual word as signals through an application of analysis of
wavelet to frequencies of words. Emerging temporal trends were interpreted in a study
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by [15]. Firstly, a taxonomy of trends was found in the large dataset of Twitter. Sec-
ondly, the study found out primary features through which categorization of trends can
be accomplished using each trend category features.

A segment-based system for detection of bursty events was introduced by [16] called
‘Twevent’. Twevent first maps and detects event segments from bursty tweet segments,
followed by clustering/grouping the segments of events into events by using their dis-
tribution of frequency and similarity in content. An interesting study by [17] researched
on identification of bursty topics early in the timeline with a large-scale real-time data
from Twitter. Tool named TopicSketch proposed by the study, was an integrated solu-
tion consisting of two stages. In the first stage the model maintains three measures viz.
total count of the tweets, each word occurrence and the respective word pairs. These
measures were used as an indicator of a sudden burst in the attention of users towards
the tweet, which further facilitates in the bursty topic detection. In the second stage, a
topic model based on sketch was used to depict the bursty topics and their surge based
on the statistics monitored in the sketch of the data. Incremental clustering methodology
was used by studies [18, 19] to detect burst events where evolution of events was also
experimented and solved [20]. The new arrival of tweets results in updating of the bursty
topics for incremental clustering technique. Study [21] proposed a topic model, which
is incremental in nature and includes the temporal features of texts, named as ‘Bursty
Event dEtection (BEE)’ to detect the bursty events.

EventRadar was proposed by [22] which deals with activity burst in a localized area.
A geo burst algorithm was proposed which was implemented using geo-tagged tweets
containing information on location, time and text of the tweets. The topic clusters/ groups
which are geographically tagged are created as candidate events per query window. A
statistical approach was followed by a study by [23] on the Twitter platform. The study
showed that a sudden spike in the tweet frequency follows a log-normal distribution with
respect to the arrival of data. The data or tweet burstiness of any event was mapped with
the z-score of the rate of tweet arrival. Real-time streaming text was used by study [5]
to understand the bursty attitude of events. This study explored various event features
and used clustering to classify the features as per their similarity index.

A study by [24] considered cross social media influence and unsupervised clustering
for burst detection model. In this work, the time series social media data were divided
into time slices and for each slice the burst word features in that time window were also
calculated. The burst degree of words was calculated by fusing the three burst features
in the time window, post which burst word set got generated. Finally, agglomerative
hierarchical clustering technique was applied to cluster the word set to convert it into
event. A novel graph based technique called KEvent was proposed by [25] where tweets
were divided into separate bins to extract bursty keyphrases. The word2vec model was
used to create a weighted keyphrase graph from the keyphrases. Final event detection
was performed using Markov clustering.
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Lately, deep learning algorithms [10, 11] coupled with attention networks is used by
the researchers to handle the temporal dynamics of emerging keywords to detect events
from tweets.

3 Proposed Burst Detection Model

Keywords/terms/words/tokens are synonymous for our research work and are inter-
changeably used throughout. A stepwise burst detection framework is detailed in
Fig. 1.

The proposed burst detection algorithm is an extension of the Window Variation
Keyword Burst detection algorithm given by [7]. The extended features are:

a) Threshold: A threshold in included for: first in selecting the most frequent words per
window in Algorithm 3 and then in Algorithm 4, for selecting the bursty keywords
across two consecutive windows. This approach helps in the detection of appropriate
the bursty topics.

b) Topic Creation:After the list of bursty keywords is obtained inAlgorithm4, in the end
we generate optimal k topics out of the bursty keywords per window. This approach
helps in identifying the trending topics.

c) Coherence Scores of Topics: Algorithm 5 generates coherence scores of optimal k
topics in each timewindow across the bursty event. This approach helps in identifying
bursty topics of similar context per window.

Fig. 1. Burst Detection Framework
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The detailed explanation of each algorithm is given in piecewise manner according
to the modules maintained in the framework, with their respective input, output, and
the corresponding pseudocode. Table 1 provides a description of the important variables
used in the pseudocode for a better understanding. The algorithms should be read keeping
the framework, variable description and the pseudocode synced with one another.

i) Gathering Event Tweet Stream: The process starts with collection of tweets
(G_Stream1) using Twitter streaming API and converting into non-duplicated tweets
(G_Stream2) as shown in Table 2. Tweet can be regular tweet or a retweet. Each
tweet is of 140 or 280 characters. The events selected for our research are natural
disaster events.

ii) Tweet Pre-processing:The next module in the pipeline is data pre-processing, shown
in Table 3 which involves preparation of the dataset to make it appropriate to feed
for generating the most frequent bag of keywords.

iii) Generating Temporal Bag ofMost Frequent Keywords:The aim in thismodule is to
output themost frequentwords/tokens appeared in the respective bagof tweetswithin
a particular time window. Time window size, window_size is decided on under-
standing the dataset from the descriptive analysis. We check on the total number of
days’ data available and the burst_datasize. Final count of number of time windows,
window_num is dependent on the window_size considered and the burst_datasize.
Collection of pre-processed tweets is divided into bag of tweets tweet_bag as per the
window_size. Every window starts with an initial timestamp init_time. For the first
window, the timestamp is zero. Following this, every time window will have a dura-
tion according to the window_size. The finishing timestamp of a window end_time
is calculated by adding window_size to init_time of that window. All the init_time
values for all the windows are stored in window_init_time for future use. A snap-
shot of the windowing system referred in our algorithm is shown in Fig. 2. Here
Tw, Tw + 1, refers to the incoming sequential stream of tweets. For every window,
the bag of tweets is created, where tweets are further tokenized to get the bag of
words total_win_words. For each word in the bag, word frequency word_freq per
window-wise is calculated.

The proposed algorithm has applied a threshold for considering the most frequent
words per window (most_frequent_words). A threshold of 20% of the total number of
tokens per window is considered for selecting the most_frequent_words for a particular
window. The threshold value is based on the state-of-the-art study by [26]. In thismodule,
we recorded the set of most_frequent_words along with their respective frequencies of
occurrence per window, window-wise total number of tokens/words, total number of
tweets (no_of_tweets) per window number for further use in the rest of the modules.
The pseudocode of the stated process of the algorithm is given in Table 4.

iv) Bursty Keywords Detection: The input to this module is G_Queue2, consisting
of most frequent keywords per time window. The purpose is to find out the how
many most frequent keywords are eligible of becoming bursty keywords per time
window and model these bursty keyword into window-wise topics as given in
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Table 1. Variable Names and Its Description

Variable Name Description

G_Stream1 Global Stream of Raw tweets (in JSON)

G_Stream2 Global Stream of unique Raw tweets ( in CSV) with
selected features

G_Queue1 Collection of Pre-processed Tweets and tokenized Tweets

G_Queue2 Collection of Most frequent keyword bags window-wise

no_of_tweets Total number of tweets per window

burst_datasize Total number of tweets in the whole dataset

window_size Size of the time window (in seconds)

window_num Signifies the number of each time window

window_init_time Stores the earliest timestamp (init_time) for every time
window

init_time Initial timestamp of the tweets in at the starting of every
time window (in seconds)

end_time init_time + window_size (in seconds) for every time
window

word_freq Frequency of a keyword in a window

tweet_bag Collection of tweets in a window

most_frequent_words Collection of most frequent words from a single window

total_win_words Total number of words in one window

window_total_words Collection of all list of total_win_words for all windows

window1, window2 Two consecutive time windows

Hash_Dict Dictionary data structure storing the words which are
present in two consecutive time windows

sorted_word_rank List of keywords which have increasing probability of
presence across consecutive windows

Sorted_word_rank_ave_cutoff Selected bursty keywords list having a cut-off frequency
more than the average frequency of the total number of
words in sorted_word_rank

all_optimal_k_topics_per_window Collection of optimal k topics window-wise for all
windows

topics_coherence_score Coherence scores of the optimal k topics measured by
using the coherence frameworks- UMass, UCI, NPMI,
CV and word2vec

CoherenceModel() Function as given in the Genism package of python
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Table 2. Algorithm for Gathering Event Tweet Stream

Algorithm 1: Gathering Event Tweet Stream 

Input: Stream of raw data tweets in .json format (G_Stream1)

Output: Raw data tweets with no duplicates in .csv format (G_Stream2)

1. Tweet ids used to collect raw data tweets G_Stream1 in JSON object
2. Conversion of JSON to CSV raw data tweets G_Stream2
3. Duplicate tweets removal from G_Stream2
4. Perform Descriptive Analysis on G_Stream2

Table 3. Algorithm for Tweet Pre-processing

Algorithm 2: Tweet Pre-processing 

Input: Raw data tweets without duplicates in .csv format (G_Stream2)

Output: Pre-processed Cleaned data tweets (G_Queue1) in .csv format

1. Removal of rows having missing values for any attributes
2. Removal of punctuation marks, URL’s, extra whitespaces between words, and numbers
3. Convert the tweets into lowercase
4. Removal of stopwords and extended stopwords
5. Tweets Store all the cleaned tweets
6. tokenized_Tweets Tokenize each tweets in  Tweets 
7. Store Tweets and tokenized_Tweets in G_Queue1

Fig. 2. Time Windowing System of the Proposed Algorithm

Table 5. A dictionary data structure Hash_Dict is initialized to store records of
most_frequent_words has occurred in two consecutive windows- windows1 and
window2. Further, it is checked for these words whether the probability of occur-
rence of the words are increasing across the two consecutive windows. If it is
increasing, those words are considered to be eligible for bursty keywords for
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Table 4. Algorithm for Generating Temporal Bag of Most Frequent Keywords

Algorithm 3: Generating Temporal Bag of Most Frequent Keywords 
Input: Global Queue (G_Queue1) of pre-processed tweets
Output: Global Queue (G_Queue2) of most frequent keyword bags

1. init_time 0
2. while tw get_tweet(G_Queue1) do
3. if init_time == 0 then
4. init_time timestamp(tw)
5. end_time init_time + window_size
6. tweet_bag null
7. window_init_time init_time
8. window_num 0
9. total_win_words 0
10. end if
11. if timestamp(tw) < end_time then
12. token_tw get_tokenized_tweet(tw)
13. tw_len length(token_tw)
14. total_win_words total_win_words + tw_len
15. Insert token_tw into tweet_bag
16. else
17. most_frequent_words Find unique words and Calculate its frequencies  using tweet_bag.
18. most_frequent_words_desc Sort the most_frequent_words in decreasing order of its fre-

quencies.
19. most_frequent_words_cutoff Store the top 20 % of  words in most_frequent_words_desc.
20. Push [window_num, window_init_time, total_win_words,  

most_frequent_words_cutoff ] list to G_Queue2
21. window_num window_num + 1
22. tweet_bag null
23. total_win_words 0
24. window_init_time end_time
25. init_time end_time
26. end_time init_time + window_size
27. end if
28. end while

the previous window. All these eligible bursty keywords are sorted as per their
decreasing probability and frequency window-wise, and stored in sorted_word_rank
and sorted_word_freq respectively. In order to get meaningful topics, a thresh-
old value of average probability/frequency is calculated. All the bursty keywords
having probability greater than equal to average probability and frequency greater
than equal to average frequency are stored in sorted_ word_rank_avg_cutoff and
sorted_word_freq_avg_cutoff respectively. Finally, k topics are created from the list
of bursty keywords per window in sorted_ word_freq_avg_cutoff where k is the user
input greater than zero for the number of topics. In order to get meaningful topics,
the value assigned to k should be optimal. Based on the coherence score the opti-
mal number of topics can be calculated. We have used UMass coherence score for
determining the optimal value for number of topics per datasets. All the generated
optimal k topics per window-wise is stored in all_optimal_k_topics_per_window for
further processing in the next module.
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Table 5. Algorithm for Bursty Keywords Detection & Optimal k-Topics per Window
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v) Generating Topic’s Coherence Scores per Window: Optimal Topics generated per
window is fed as an input to this module as shown in Table 6. Coherence scores of
the topics is measured by using the coherence frameworks- UMass, UCI, NPMI, CV

and word2vec.

Table 6. Algorithm for Generating Topic’s Coherence Scores per Window

Important Aspects of the Framework:
The framework designed is suitable under different real world high impact events like
natural disasters, public opinion events or any emerging trends.

• A dynamic threshold determination is utilized which incorporates variability in the
model, making it more suitable for the real-world scenario.

• Tweet and word vocabulary per window is not static but dynamically obtained
according to the size of the window.

• Optimal k number of topics can be obtained per window using coherence score as
per user choice of coherence measures.

• New module, for generation of Coherence Score of Topics, which helps to identify
bursty topics of similar context and believed to be highly significant during impactful
events.

• The designed approach is implemented on Twitter microblogs. But can be applied
universally on any short text messages.
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4 Implementation, Results and Analysis

Experimental Set-Up: Anaconda Jupyter Notebook and Google’s Colab Pro environ-
ment was used as a platform for the study. The PC Configuration used was 4-core Intel
Core i7 processor and 16 GB memory. Python version 3.8 was used as a programming
language to implement themodels. A Python library Twarcwhich is also a command line
tool was used for archiving Twitter JSON data. The same was also used for rehydrating
the dehydrated data sets which consist of only the list of tweet ids.

Dataset Description: We have used three natural disaster dataset collected fromKaggle
Repository. All these repositories were released through a study by [27] where the
data was collected by the author through specific keyword query search. The following
datasets were selected with respect to volume of tweets, user engagement, retweet count
showing the virility of the event. A brief snapshot on the datasets is elaborated in the
Table 7.

The proposed algorithm is run across the three datasets and results are obtained. A
baseline comparison is done with the Latent Dirichlet Allocation (LDA) Model [28],
Gibbs Sampling Dirichlet Mixture Model (GSDMM) [29] and Gamma-Poisson Mix-
ture Topic Model (GPM) [30] to show the perspectives in which the proposed model
outperforms the baseline models. The latter two algorithms are proven to be good for
short texts topic modelling.

Table 7. Dataset Features

Dataset (Duration) Data Source Number of Tweets Number of Tweets
Post Duplicate
Removal

Keywords Used
for Collection

Hurricane_Harvey
(August 18 – 26,
2017)

Twitter 627557 424782 ‘Harvey’,
‘hurricaneharvey’

Typhoon_Hagupit
(December 5 – 11,
2014)

Twitter 104172 33710 ‘typhoon’,
‘hagupit’

Hurricane_Sandy
(October 25 – 28,
2012)

Twitter 568186 139476 ‘hurricane’,
‘sandy’
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4.1 Proposed Algorithm Implementation

The implementation of the proposed algorithm is carried out for all the mentioned
datasets post some analysis of the datasets required for the implementation. Table 8
summarizes the corresponding variable values found from all the three datasets post
analysis of the datasets.

• Window Size: For Hurricane Harvey, variations in topics was much better for window
size at 24 h or 86400 s as compared to window size at 6 h or 12 h. The burst in
data happened only after the 5th day of the incident. So, it was pointless to go by
lesser than 24 h for these 5 days as the incoming stream of tweets is very less. So,
window size is taken as 24 h or 86400 s. In case of Typhoon Hagupit, the window
size is considered as 12 h or 43200 secs. The variability in topics is better here for
this window size as compared to lesser or more than 12 h. Also, this dataset shows a
good burst in incoming tweets from the very beginning, so expected dynamic topics
to be present at every 12 h of time window. Hurricane Sandy is a 3-day dataset with
a burst of tweets within a very short period of time. Owing to the lesser number of
days and huge tweets streaming in, the window-size is kept 12 h.

Table 8. Important Findings from the Dataset

Parameters Hurricane Harvey
Values

Typhoon Hagupit
Values

Hurricane Sandy
Values

Total Number of Tweets 424782 33710 139476

Unique Words 68948 19354 204746

Window Size (in
seconds)

86400 43200 43200

Number of Windows 6 11 4

Number of Optimal
Topics found per
Window

3 5 3

• Number of Windows: The detection of bursty keywords was considered comparing
two consecutive windows. So, to determine a set of bursty keywords for a current
window, the current and the next immediate window is considered. So, the total
number of windows for which bursty keywords is detected is calculated as 6, 11 and
4 respectively for Harvey, Typhoon and Sandy datasets, which is one less than the
actual number of windows in the main data frame as in Table 8.

• Optimal Number of Topics: While deciding on the number of topics for the events of
the three datasets, overall coherence scores were calculated using UMass Coherence
measure and plotted with varying number of topics per window. The aim is to choose
the number of topics for which the coherence score is optimized. For most of the
windows, the coherencemeasure is stable at number of topics as 3, 5 and 3 for Harvey,
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Typhoon and Sandy datasets as in Table 8. Ideally, Hurricane Sandy could have been
the best dataset with respect to the burstiness of data. But, actual implementation of
the proposed algorithm on this dataset showed worst performance with respect to the
topics generated with no variation at all. At the same time, as the topics are same
across all the windows, there is no change in the coherence score with the change
in topics. This clearly shows a disparity in the distribution of frequencies across the
unique words across all the time windows.

4.2 Evaluation Results and Analysis

The list of coherence or confirmation measures [31] considered in this research to eval-
uate the bursty topics generated through the proposed and the baseline models are:
UCI Coherence (CUCI), UMass Coherence (CUMASS), NPMI Coherence(CNPMI), CV
Coherence(CV) and Word2vec (CW2V). Following the coherence framework, the aggre-
gated score of the measures is obtained by calculating the arithmetic mean of all the
coherence or confirmation scores. The performance of the proposed model is compared
with three baseline models in this research based on these scores. During the process
of evaluation, we experimented different settings of parameter to achieve the best result
possible. The sliding window sizes were tweaked in the range of (10, 150), and the con-
text window was varied between (10, 100) for both the proposed algorithm and the LDA
model. For GSDMM and GPM, the tweaking was done with the number of iterations
(iters), top words of the cluster (nTopWords) considered and the size of the document
(N). The number of topics (K) in all the models for every dataset were determined with
respect to the average coherence score.

For influence of hyper parameters, the dirichlet priors and the gamma priors’ values
were tweaked for both GSDMM and GPM. For GSDMM, the dirichlet priors a and b
are tried for a = 0.01,0.25,0.5,0.75,0.05 and b = 0.1,0.5,1.0,2.5 respectively. Finally,
with respect to quality of the topics getting created for each of these, we settle on a =
0.25 and b= 0.15. Similar things were repeated for GPM model for the gamma and the
dirichlet priors. The evaluation results of coherence scores obtained by implementing
all the models, including the proposed algorithm are depicted in the following tables
for respective datasets. The highlighted rows in bold are measures where our model has
outperformed as compared to the baselines.

Table 9. Proposed Bursty Model Evaluation in Hurricane Harvey

Window Number

Topic
Model

Coherence
Measures

1 2 3 4 5 6

Proposed
Burst
Detection
Model

CUMASS -0.0789 −0.071 −0.062 −0.014 −0.873 −0.596

(continued)
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Table 9. (continued)

Window Number

Topic
Model

Coherence
Measures

1 2 3 4 5 6

CUCI −0.770 −0.801 −0.098 −0.715 −0.323 −0.157

CNPMI −0.051 0.011 0.019 −0.024 −0.032 −0.012

Cv 0.381 0.476 0.427 0.336 0.323 0.362

CW2V 0.996 0.995 0.995 0.996 0.998 0.998

Aggregate
Score (AM)

−0.104 0.122 0.256 0.115 0.175 0.226

LDA CUMASS −0.136 −0.181 −0.137 −0.147 −0.169 −0.153

CUCI 0.037 0.043 0.029 0.025 0.042 0.027

CNPMI 0.014 0.015 0.017 0.016 0.015 0.015

Cv 0.261 0.290 0.279 0.285 0.281 0.256

CW2V 0.989 0.988 0.989 0.990 0.989 0.989

Aggregate
Score (AM)

0.233 0.231 0.235 0.234 0.231 0.227

GSDMM Average
Coherence
Score

−20.133 −24.623 −25.688 −27.456 −30.814 −32.161

GPM Average
Coherence
Score

−27.023 −23.595 −23.229 −27.024 −27.464 −31.488

• Coherence evaluation measures for Hurricane Harvey and the baseline comparison
is shown in Table 9. The proposed model has generated competitive scores in case of
CV and Word2vec.

• Coherence evaluation measures for Typhoon Hagupit and the baseline comparison
using the coherence measures in shown in Table 10. For this dataset, the CV score
measure is better for the proposed model as compared to the other three models.

• Coherence evaluation measures for Hurricane Sandy and the baseline comparison
is shown in Table 11. The proposed model has resulted in better results for all the
coherence measure as compared to LDA, GSDMM AND GPM for this dataset.
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Table 10. Proposed Bursty Model Evaluation in Typhoon Hagupit

Table 11. Proposed Bursty Model Evaluation in Hurricane Sandy

Window Number

Topic Model Coherence Measure 1 2 3 4

Proposed Burst
Detection Model

CUMASS .0001 −0.028 −0.029 −0.028

CUCI 0.024 0.003 0.003 0.003

CNPMI 0.014 0.012 0.012 0.012

CV 0.356 0.361 0.361 0.361

CW2V 0.998 0.998 0.998 0.998

Aggregate Score
(AM)

0.278 0.269 0.269 0.269

LDA CUMASS 0.0001 0.0001 0.0001 0.0001

CUCI 0.004 0.006 0.006 0.007

CNPMI 0.003 0.005 0.004 0.005

CV 0.236 0.237 0.233 0.239

CW2V 0.979 0.980 0.984 0.984

Aggregate Score
(AM)

0.244 0.246 0.245 0.247

(continued)
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Table 11. (continued)

Window Number

Topic Model Coherence Measure 1 2 3 4

GSDMM Average Coherence
Score

−37.781 −40.937 −44.726 −41.445

GPM Average Coherence
Score

−38.436 −38.776 −45.458 −42.886

5 Discussions

The coherence score measures the quality of the topics getting generated per window.
According to [31], higher or closer the coherence score towards ‘1’, more coherent
the topics are. Also, the range of UMass coherence is −14 to + 14, UCI and NPMI
Coherence is between −1 to + 1, for CV and Cw2v both are between 0 and 1. CV is
proven to be the best measure in baseline paper [31]. This is a combination measure,
found by combining indirect cosine confirmation measure with NPMI and the concept
of Boolean sliding window. CV and Cw2v which are semantic and contextual measures
of the topics, have given the best scores across all the datasets. For all the datasets,
in general the NPMI coherence measure has given better coherence values than non-
normalized UCI coherence version of it. Overall, Cw2v measure has performed well as
compared to the other measures. The fact can be for the length of the input text. In the
baseline paper [31], the goodness of the coherence measures was proved with long texts
or articles. So, the scores the proposed algorithm achieved is proved to be competitive.
In this case, we are trying the apply coherence measures for short texts. This shows the
direction towards an improvement to the algorithm required which will take the length
of the document also into consideration, and is an immediate future work. Apart from
that in all the datasets, better performance of our model as compared to the other with
respect to CV and Cw2v is a contribution of this study. As both these measures signifies
the semantic and contextual features of topics, our model is successful in creating better
semantically coherent and contextual topics as compared to the other state of the art
techniques available in the field of topic modelling.

Practical Implications of this Research: The proposed model can be used for mod-
elling topics for any event based on Twitter. Additionally, the researchers can also mea-
sure the goodness of the topics through coherence measures, inferencing on the coherent
topics at different time window across the events. This information can be further lever-
aged to understand the trends per time window. In case of disaster events or any high
impact events, knowledge on coherent topics per window can facilitate inmaking several
decisions in support for the disaster at that point of time.
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6 Conclusion

This paper detailed the complete work regarding the proposed burst model of a high
impact event. The proposed algorithm detects bursty optimal topics during high impact
events comparing the bursty words across consecutive time windows. The algorithm
further measures the coherence scores of the bursty optimal topics window-wise using a
coherence framework. The coherence scores of the topics generated from the proposed
algorithm is compared with the state-of-the-art baseline topic modelling techniques.
Through proper experimentation and analysis, our proposed model is successful in cre-
ating better topics than the baseline models with respect to the contextual coherence
features.
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Abstract. This paper presents a multi-start general variable neighbor-
hood search approach (MS_GVNS) for solving the clustered traveling
salesman problem with the d-relaxed priority rule (CTSP-d). In clus-
tered traveling salesman problem, vertices excluding the starting vertex
or depot, are divided into clusters based on their urgency levels and
higher-urgency vertices must be visited before lower-urgency ones. This
leads to inefficient travel costs. To address this, a d-relaxed priority rule
is employed in CTSP-d to balance travel cost and urgency level by relax-
ing the urgency-oriented restriction to some extent. CTSP-d is NP-hard
as it can be considered as a generalization of traveling salesman problem
(TSP). The proposed MS_GVNS approach combines a variable neigh-
borhood descent (VND) strategy utilizing five different neighborhoods
with a shaking procedure to enhance the solution. The performance of
the MS_GVNS is evaluated on 148 standard benchmark instances from
literature. The computational results demonstrate the effectiveness of
the proposed approach in generating high-quality solutions within rea-
sonable computational times compared to the existing best approaches.
Furthermore, the approach improves upon the best-known solution val-
ues on six large instances.

Keywords: Intelligent optimization · Variable neighborhood search ·
Traveling salesman problem · Clustered traveling salesman problem ·
d-relaxed priority rule
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visit a given set of locations and then return back to its starting location. In
the traditional TSP, all the locations are assumed to have equal importance and
can be visited in any order. However, in many real-life routing scenarios, it is
necessary to consider varying priorities or urgencies associated with different
locations while making the route plan [8,21].

For instance, in the aftermath of natural disasters like tsunamis, earthquakes,
storms, or hurricanes, various locations require immediate relief supplies such as
medical assistance, bottled water, food, and blankets. The urgency of these sup-
plies varies depending on factors such as the extent of damage, or the location’s
importance (e.g., schools, and hospitals). To efficiently address these demands,
locations with similar urgency levels can be grouped into clusters and each clus-
ter can be assigned a priority reflecting the importance or urgency of the demand
at its constituent locations. Then during the relief process, clusters can be visited
in the order strictly dictated by their priorities, starting from highest priority
cluster and ending at lowest priority cluster, i.e., a location belonging to a lower
priority cluster can be visited only when all the locations belonging to higher
priority clusters are already visited and hence, only ordering decisions remain to
be taken are ordering among the locations belonging to each cluster. This par-
ticular TSP variant is referred to as the Clustered Traveling Salesman Problem
with a pre-specified order on the clusters (CTSP-PO). Throughout this paper,
we will follow the standard convention that priorities are represented by positive
numbers and a lower number represents a higher priority.

In CTSP-PO, the strict priority based constraint on the order of location
visits can result in a highly inefficient tour in terms of travel cost. Additionally,
in certain situations, it may be possible to visit some lower-priority vertices
while serving higher-priority vertices. To address this, Panchamgam [13] and
Panchamgam et al. [14] proposed a rule called the d -relaxed priority rule which
can be stated as follows: Given a positive number d between 0 to pc − 1 (where
pc is the number of priority classes). During the tour, the highest priority class
among the vertices that haven’t been visited is identified and denoted as h at any
given point. The d -relaxed rule allows the vehicle to visit vertices belonging to
priority classes ranging from h to h+ d before visiting all the vertices belonging
to priority class h. This rule provides a trade-off between travel cost and location
priority while finding a tour. The value d = 0 requires visiting all the vertices
with higher priority before visiting those with lower priority and hence, yields
CTSP-PO. However, when d = pc − 1, priorities loose meaning and problem
transforms into the standard TSP. Clustered Traveling Salesman Problem with
d -relaxed priority rule (CTSP-d) is nothing but CTSP-PO where a route needs
to satisfy the d -relaxed priority rule instead of the strict priority based constraint
of CTSP-PO.

CTSP-d can be defined formally in the following manner: We are given an
undirected graph G = (V,E), where V represents a set of n vertices. Each edge
e ∈ E connects two vertices i and j from the set V and has a non-negative
traveling cost cij . Among the vertices, vertex 1 serves as the depot, while the
remaining n − 1 vertices represent clients’ locations. The vertices V \ {1} are
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divided into pc disjoint groups, denoted as V1, V2, . . . , Vpc
, where each group Vi

is associated with priority i. A non-negative integer d (0 ≤ d ≤ pc − 1) is also
given. The CTSP-d seeks a Hamiltonian cycle on G starting at depot (vertex
1) that satisfy the d -relaxed priority rule and has minimum total cost among
all such Hamiltonian cycles. CTSP-d is NP-hard because it contains TSP as a
special case which is a well-known NP-hard problem [4].

The CTSP-d problem finds practical use in various domains as highlighted in
previous studies such as Panchamgam [13] and Panchamgam et al. [14]. Some of
the potential applications mentioned in Panchamgam et al. [14] include human-
itarian relief routing, routing of service technicians, and the unmanned aerial
vehicle (UAV) routing problem where target priorities are crucial. Furthermore,
the problem is relevant in product distribution scenarios where their storage lev-
els determine the priority of delivery locations. Locations that are out-of-stock
are considered more important than others and are grouped into the highest
priority cluster, as described in the work of Yang and Feng [20].

In this paper, we present a Multi-start General Variable Neighborhood Search
(MS_GVNS) approach for solving the CTSP-d problem. It combines the Vari-
able Neighborhood Descent (VND) algorithm with a shake procedure. VND is a
local search method that explores different neighborhoods in a systematic man-
ner to improve the current solution. In this case, the VND algorithm uses five dif-
ferent neighborhoods during the search process. The shake procedure introduces
random perturbations to the current solution thereby allowing for exploration
of new areas in the search space. The multi-start mechanism further enables
the exploration of different regions in the search space and helps in escaping
from those local optimas which can not be escaped through perturbations. The
combination of the VND algorithm, the shake procedure, and restarts in the
MS_GVNS method is capable of finding high-quality solutions and our compu-
tational results prove this point. Our approach performs better in comparison
to best approaches available in the literature.

The remaining part of this paper is organized as follows: Sect. 2 provides the
literature review. Section 3 presents our proposed MS_GVNS approach. Exper-
imental results and their analysis are presented in Sect. 4. Finally, Sect. 5 con-
cludes the paper by discussing its contributions and a few directions for future
research.

2 Literature Review

As previously mentioned, CTSP-d is closely related to CTSP-PO. Potvin [17]
introduced CTSP-PO and solved it using a genetic algorithm (GA). Ahmed [1]
developed a hybrid GA that utilized sequential constructive crossover, 2-opt
search, and a local search to obtain heuristic solutions for the problem. A less
restrictive variation of the CTSP-PO is known as the CTSP, where delivery
locations within the same cluster must be visited consecutively, but there is no
specific priority associated with a cluster. Consequently, clusters can be visited in
any order. The CTSP has received extensive attention in the literature, with its
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first study conducted by Chisman [2]. The author proposed a branch-and-bound
approach to solve the problem exactly. Furthermore, it was demonstrated that
the CTSP can be transformed into a standard TSP by augmenting the cost of
each inter-cluster edge with an arbitrarily large constant M. Since then, several
approaches have been introduced to tackle the CTSP – GA by Potvin [16],
tabu search by Laporte et al. [7], greedy randomized adaptive search procedure
(GRASP) by Mestria et al. [10], and a combination of local search, GRASP, and
variable neighborhood random descent proposed by Mestria [9].

Panchamgam et al. [14] introduced the CTSP-d and presented its various
applications. They also established worst-case bounds for the CTSP-d in relation
to the classical TSP, and demonstrated that these bounds are indeed tight.
Building upon the prior doctoral work by Panchamgam [13], the problem and
its extensions were formulated as mixed integer programs in [14]. Notably, using
CPLEX, they solved instances with up 30 vertices to optimality.

Hà et al. [5] made enhancements to the mixed integer programming (MIP)
model put forth by Panchamgam et al. [14] and introduced the first metaheuris-
tic, called GILS-RVND, for the CTSP-d. GILS-RVND combines elements from
Iterated Local Search (ILS), Greedy Randomized Adaptive Search Procedure
(GRASP), and Random Variable Neighborhood Descent (RVND). The GILS-
RVND algorithm commences by generating initial solutions using a greedy ran-
domized procedure. Subsequently, the quality of each initial solution is improved
through a local search procedure. This local search procedure incorporates the
concept of RVND and is augmented by an ILS-inspired perturbation mechanism.

Dasari and Singh [3] presented two different methods to solve CSTP-d. The
first method is a hyper-heuristic approach that involves multiple starts and
employs three levels of heuristics (multi-start hyper-heuristic approach denoted
as MSH2). At the highest level, the hyper-heuristic approach utilizes two other
hyper-heuristic approaches as low-level heuristics. These two approaches, in turn,
employ five problem-specific heuristics to generate a new solution from the cur-
rent one. The second method is a multi-start iterated local search approach
(MS_ILS) that involves multiple starts and employs VND as local search. The
computational results demonstrate the effectiveness of these two approaches,
as they could produce high-quality solutions within short computational times,
outperforming the existing state-of-the-art methods in the literature.

3 A Multi-start General Variable Neighborhood Search
Approach for CTSP-d

Variable Neighborhood Search (VNS) is a metaheuristic that Hansen and Mlade-
nović [12] proposed to solve combinatorial optimization problems. The main
concept of VNS is to systematically explore different neighborhood structures
in order to find an optimal or near-optimal solution. The VNS algorithm alter-
nates between a shake phase, which aims to diversify the search and escape local
optima, and a local search phase, which intensifies the search by improving the
solution within a particular neighborhood structure. Additionally, a neighbor-
hood change is incorporated into the algorithm. Another variant of VNS called
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General Variable Neighborhood Search (GVNS) [6] employs the Variable Neigh-
borhood Descent (VND) method as the local search. The effectiveness of GVNS
has been demonstrated through successful applications documented in recent
studies [11,18,19].

Our motivation for developing the Multi-start General Variable Neighbor-
hood Search (MS_GVNS) approach stemmed from the remarkable success of
GVNS in solving combinatorial optimization problems. Algorithm 1 presents the
pseudo-code for MS_GVNS, where Nrst represents the number of restarts, kmax

is the number of neighborhoods used in shaking and itrmax is maximum number
iterations. The algorithm comprises four key components. The first component
involves generating the initial solution (ϕ) using a greedy randomized procedure
(Gen_Ini_Sol()). The second component is the shaking procedure, which helps
the algorithm to escape from local minima traps. By exploring various neighbor-
hood structures, the shaking procedure generates diverse candidate solutions.
The third component is the local search, which employs the Variable Neighbor-
hood Descent (VND) method. This step intensifies the search by improving the
current solution within a specific neighborhood structure. The fourth component
involves the acceptance criteria, which determine whether a new solution should
be accepted or rejected. The acceptance criteria plays a role in determining the
exploration and exploitation balance of the algorithm. In the subsections that
follow, details about each of these four components are provided.

Algorithm 1: Pseudo-code of MS_GVNS approach.
Input: A CTSP-d instance and set of MS_GVNS parameters
Output: Best solution identified
for i ← 1 to Nrst do

ϕi ← Gen_Ini_Sol();
itr ← 0;
repeat

k ← 1;
repeat

ϕ′ ← Shake(ϕi, k);
ϕ′′ ← VND(ϕ′ );
if (ϕ′′ is better than ϕi) then

ϕi ← ϕ′′;
k ←1;

else
k ← k + 1;

until k < kmax;
itr ← itr + 1;

until itr < itrmax;

best ← best solution among ϕ1, ϕ2, . . . , ϕNrst ;
return best;
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3.1 Generation of Initial Solution

To generate an initial solution, we follow a procedure that is a mix of greediness
and randomness. Initially, we create an empty solution ϕ and add the depot as
the first position in ϕ. Next, we create a candidate list ($_CL) that includes all
vertices except the depot. Starting from the second location, we iterate through
the remaining locations in their natural order. For each location, the candidate
list is sorted in ascending order based on the distance from the last vertex added
to ϕ. To determine which vertices should be added to the solution, we employ
the d -relaxed priority rule. This rule helps us to create a restricted candidate list
($_RCL) by selecting only the top three vertices from the candidate list that
meet the d -relaxed priority rule. From the $_RCL, we randomly select a vertex
and add it to ϕ at the current location that is being considered. The candidate
list ($_CL) is updated and next location is considered. This process continues
until all locations have been considered. Algorithm 2 provides the pseudo-code
of this procedure.

Algorithm 2: Initial solution procedure.
Input: A CTSP-d instance and Set of parameters
Output: solution ϕ
ϕ[1] ← v1;
$_CL ← V \ {v1};
s ← 1;
while s < n do

$_CL ← Sort($_CL, ϕ[s]);
$_RCL ← Form_RCL($_CL, 3);
ϕ[s + 1] ← Random($_RCL);
$_CL ← $_CL \ {ϕ[s + 1]};
s ← s + 1;

return ϕ;

3.2 Variable Neighborhood Descent (VND)

The crucial aspect of MS_GVNS is the utilization of appropriate local search
strategies, which can significantly impact the performance. Our approach
employs Variable Neighborhood Descent (VND) as the local search scheme. VND
explores a neighborhood until a local optimum is reached, after which it tran-
sitions to a different neighborhood and continues the process. Since different
neighborhoods may have distinct local optimas, employing multiple neighbor-
hood structures can enhance the likelihood of obtaining superior solutions. We
have employed five different neighborhoods, namely N1, N2, N3, N4, and N5. The
design of these neighborhood structures is explained in detail below, considering
the problem’s characteristics.
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The effectiveness of VND is also influenced by the order in which the neigh-
borhoods are examined. This is because the initial neighborhoods are often
explored more extensively than the final ones. We have named our five neighbor-
hoods according to the order in which they are explored. Algorithm 3 presents
a pseudo-code of our VND approach. It begins by exploring the first neighbor-
hood, N1, until no further improvement is found in the current solution. It then
switches to the second neighborhood, N2, and examines it. If a better solution
is discovered in this second neighborhood, VND returns to the first neighbor-
hood. Otherwise, it proceeds to the third neighborhood, N3, explores it, and
so on. Once all neighborhoods have been examined without improvement, the
approach terminates and outputs the best overall solution. Explore_N(ϕ,Nm)
is a function that explores the neighborhood Nm,∀m ∈ {1, 2, 3, 4, 5} of current
solution ϕ in the manner described at the end of this section.

Algorithm 3: Pseudo-code for VND as local search.
Input: A solution ϕ
Output: An improved solution ϕ
m ← 1;
repeat

ϕ′ ← Explore_N(ϕ, Nm);
if ϕ′ is superior to ϕ then

m ← 1;
ϕ ← ϕ′;

else
m ← m + 1;

until m > 5;
return ϕ;

Neighborhood Structures: Our five neighborhoods are as follows.

– Swap (N1): In this neighborhood, positions of two vertices are swapped in
the solution in a bid to improve the solution

– Shift (N2): In this neighborhood, a single vertex is randomly removed from
solution. Subsequently, an attempt is made to reinsert it into a different posi-
tion in the solution to get an enhanced solution. Only a single vertex is con-
sidered in this neighborhood.

– 2-Opt (N3): This is standard 2-opt neighborhood. It tries to improve the
solution by removing two edges that are not adjacent in the tour and replacing
them with two new edges to get back a valid tour.

– RCR (Remove Consecutive and Reinsert) (N4): For this neighborhood, we
randomly removes a fixed number of consecutive vertices from the tour. The
number of vertices to be removed is governed by parameter called “rem”. These
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removed vertices are then sorted in descending order as per their priority.
Subsequently, the heuristic systematically reinserts these vertices into the
tour, one by one, following the sorted order, placing each vertex in the best
possible position.

– RMR (Remove Multiple and Reinsert) (N5): This heuristics randomly
removes some vertices (not necessarily consecutive) from the tour. These
removed vertices are reinserted back into the tour exactly in the same manner
as in previous neighborhood. However, the number of vertices to be removed
is not fixed over iterations of our approach and governed by the value of prob-
ability (pr) of removing each vertex from the tour. pr gradually decreases from
its maximum value mmxpr

to its minimum value mmnpr
over iterations until

reaching a certain number of iterations (mmx_itr). In an iteration iter, pr
is determined using following equation:

pr =

{(
mmxpr−mmnpr

mmxitr

)
(mmxitr − iter) + mmnpr

if iter ≤ mmxitr

mmnpr
otherwise

(1)

Each vertex in the tour is considered for deletion with this probability. This
concept is known as the variable degree of perturbation and aids in finding
superior quality solutions faster [15].

Please note that these neighborhoods are implicitly defined by the operations
that we do in order to get a neighboring solution. The first three neighborhoods
are explored by following the first improvement strategy. On the other hand, last
two neighborhoods are explored in a random manner as only a single solution
is generated in each of these neighborhoods. This is due to the prohibitive com-
putational cost of exploring these neighborhoods in a first improvement/best
improvement manner.

3.3 Shaking Procedure

The shake procedure plays a crucial role in escaping from local optima by intro-
ducing perturbations that can lead to changes in the current neighborhood. This
technique diversifies the search and explores new regions in the search space. To
achieve this, the shaking procedure perturbs the incumbent solution, denoted as
ϕ, to generate a random solution, ϕ′, in one of three neighborhoods associated
with ϕ. These neighborhoods that we have used in our shaking procedure are
N3, N4, and N5 as defined previously. Algorithm 4, provides a pseudo-code of this
process. Within the algorithm, Gen_random_sol(ϕ, Ni) represents a function
that generates a random solution based on the neighborhood Ni,∀i ∈ {3, 4, 5}.

3.4 Acceptance Criteria

In our approach, we have used Only Improvement (OI) acceptance criterion.
This criterion ensures that a newly generated solution, obtained by exploring a
neighborhood, can replace the current solution only in case the newly generated
solution is superior in comparison to current solution.
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Algorithm 4: Pseudo-code of shake function
Input: A solution ϕ, neighborhood to be used Ni, kmax

Output: A random solution ϕ′ in chosen neighborhood
if k == 1 then

ϕ′ ← Gen_random_sol(ϕ, N3);

else if k == 2 then
ϕ′ ← Gen_random_sol(ϕ, N4);

else
ϕ′ ← Gen_random_sol(ϕ, N5);

return ϕ′;

4 Computational Results

The performance evaluation of the MS_GVNS approach for the CTSP-d was
conducted on the 148 test instances introduced in Hà et al. [5]. These instances
were created by modifying existing instances from TSPLIB. The modifications
involved introducing priorities and d values. In these instances, the travel cost
between any two vertices is assumed to be equal to the Euclidean distance sepa-
rating them. The instances consist of varying numbers of vertices, with options
being 42, 52, 100, and 200, and the number of vertex groups, which can be 1, 3,
or 5. The value of d can be 0, 1, or 3, with the constraint that it cannot exceed
pc − 1, where pc represents the number of groups. The test instances are divided
into two categories: random and clustered. In the random category, vertices are
assigned to groups randomly. This setting aims to simulate scenarios where the
priority of a delivery vertex depends on its storage capacity as observed in the
distribution of consumer goods. On the other hand, in the clustered category,
vertices that are geographically close to each other belong to a single group.
This configuration can replicate the impact of natural events like storms or
earthquakes, which affect neighboring areas along their propagation paths.

The MS_GVNS meta-heuristic proposed in our study was implemented using
the C programming language and executed on a system with Core-i5-8600 pro-
cessor and 8GB of RAM running at 3.10GHz under Ubuntu Linux 18.04. This
is the same system as used for executing MS_ILS and MSH2 in [3]. We con-
ducted ten independent runs of our approach on each test instance. Parameters
utilized in our approach, and their respective values are as follows: The approach
employs 10 restarts during each execution, denoted by the parameter Nrst. In
N4, which represents the number of consecutive vertices to be removed from the
tour, we set rem = 8. The maximum degree of perturbation in N5, denoted as
mmxpr

, is set to 0.8, and the minimum degree of perturbation, mmnpr
, is set

to 0.2. The maximum number of iterations in which the degree of perturbation
varies, mmxitr, is set to 600. During each run, the algorithm terminates when
there is no improvement in the best solution quality over 300 consecutive iter-
ations (itrmax = 300). All these parameter values were chosen after extensive
experimentation over a limited set of instances.
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Tables 1 to 3 present the results of our MS_GVNS approach on different
instances of the CTSP-d, and compare these results with those obtained by
state-of-the-art approaches. The first column of these tables presents the names
of the instances. The second column, labelled “Best” indicates the best solution
value found by the Exact_MIP approach. In Table 1, the third column, denoted
as “TT” represents the running time of the Exact_MIP method. Under the
columns GILS-RVND, MS_ILS, MSH2, and MS_GVNS, we have three columns
labelled “Bsol”, “Avsol”, and “Avtt”, respectively. These columns report the best
objective value, average objective value, and average running times over ten runs
of the corresponding approaches. In cases where the optimal solutions provided
by CPLEX are available, they are marked with an asterisk (*). If none of the
approaches obtains these optimal values, the best values obtained are presented
in bold font for easy identification. Data for GILS-RVND and Exact_MIP are
taken from [5], and, data for MS_ILS and MSH2 are taken from [3].

Table 1 displays the outcomes of different approaches on clustered and ran-
dom instances, each consisting of 42 or 52 vertices. Our MS_GVNS approach
yields comparable results in terms of the best value and successfully obtains
all the best-known solutions attained by GILS-RVND, MS_ILS, and MSH2.
Regarding the average solution quality, our MS_GVNS approach outperforms
the state-of-the-art approaches. It obtains better average objective values than
GILS-RVND, MS_ILS, and MSH2. In terms of execution times, our MS_GVNS
approach exhibits superior performance when compared to GILS-RVND and
MSH2. However, MS_ILS is faster than all other approaches.

Table 2 presents the results obtained by different approaches on clustered
and random instances with 100 vertices. Our MS_GVNS approach demon-
strated superior performance in terms of the best solution quality compared
to state-of-the-art approaches. In the average solution quality, our MS_GVNS
approach outperformed GILS-RVND and MS_ILS. When considering clustered
instances, MS_GVNS and MSH2 achieved similar performance. However, on
random instances, MSH2 outperformed MS_GVNS. In terms of execution times,
our MS_GVNS approach exhibited better performance when compared to GILS-
RVND and MSH2. Nevertheless, MS_ILS outperformed all other approaches in
terms of execution times.

Table 3 shows the results of various approaches on clustered and random
instances comprising 200 vertices. In two random instances (kroA200-R-5-1 and
kroB200-R-5-1), MIP-Exact fails to provide any solution due to memory con-
straints, indicated by the (-) symbol in the table. MIP-Exact did not find any
optimal solution on these instances, so it executed for maximum allowed time off
5 h on each instance. Our MS_GVNS approach exhibits superior performance
in terms of the best solution quality compared to Exact-MIP, GILS-RVND,
and MS_ILS. Moreover, in average solution quality, MS_GVNS outperforms
GILS-RVND and MS_ILS. When considering clustered instances, MS_GVNS
performs better than MSH2 in terms of both the best and average solution qual-
ity. However, in random instances, MSH2 outperforms MS_GVNS. Regarding
execution times, our MS_GVNS approach performs better than GILS-RVND
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Table 1. Result of different approaches on small instances with 42 and 52 vertices.

Instance Exact-MIP GILS-RVND MS_ILS MSH2 MS_GVNS
Best TT Bsol Avsol Avtt Bsol Avsol Avtt Bsol Avsol Avtt Bsol Avsol Avtt

swiss42C-1-0-a 1273* 0.82 1273 1273.0 4.65 1273 1273.0 0.64 1273 1273.0 2.82 1273 1273.0 1.53
swiss42C-3-0-a 1347* 1.94 1347 1347.0 3.56 1347 1347.0 0.19 1347 1347.0 1.07 1347 1348.4 0.47
swiss42C-3-0-b 1505* 9.22 1505 1505.0 3.67 1505 1505.0 0.25 1505 1505.0 1.36 1505 1505.0 0.62
swiss42C-3-0-c 1467* 1.67 1467 1467.0 3.26 1467 1467.0 0.22 1467 1467.0 1.06 467 1467.0 0.52
swiss42C-3-1-a 1301* 2.79 1301 1302.9 4.31 1301 1301.0 0.40 1301 1301.0 1.99 1301 1301.0 0.98
swiss42C-3-1-b 1344* 3.23 1344 1344.0 4.30 1344 1344.0 0.43 1344 1344.0 2.12 1344 1344.0 1.04
swiss42C-3-1-c 1357* 2.31 1357 1357.0 4.26 1357 1357.0 0.38 1357 1357.0 1.84 1357 1357.0 1.00
swiss42C-5-0-a 1561* 170.83 1561 1561.0 3.01 1561 1561.0 0.14 1561 1561.0 0.83 1561 1561.0 0.33
swiss42C-5-0-b 1540* 2.14 1540 1540.0 2.89 1540 1540.0 0.13 1540 1540.0 0.78 1540 1540.0 0.30
swiss42C-5-0-c 1532* 13.28 1532 1532.0 3.03 1532 1532.0 0.13 1532 1532.0 0.78 1532 1532.0 0.30
swiss42C-5-1-a 1434* 14.53 1434 1434.0 4.11 1434 1434.0 0.25 1434 1434.0 1.41 1434 1434.0 0.60
swiss42C-5-1-b 1469* 32.79 1469 1469.0 4.30 1469 1469.0 0.25 1469 1469.0 1.34 1469 1469.0 0.62
swiss42C-5-1-c 1334* 2.07 1334 1334.0 4.11 1334 1334.0 0.22 1334 1334.0 1.33 1334 1334.0 0.54
swiss42C-5-3-a 1273* 0.93 1273 1273.0 5.20 1273 1273.0 0.51 1273 1273.0 2.60 1273 1273.0 1.23
swiss42C-5-3-b 1273* 1.53 1273 1273.0 4.51 1273 1273.0 0.47 1273 1273.0 2.43 1273 1273.0 1.08
swiss42C-5-3-c 1301* 5.88 1301 1302.9 5.20 1301 1301.0 0.54 1301 1301.0 2.65 1301 1301.0 1.28
berlin52C-1-0-a 7542* 2.45 7542 7542.0 7.86 7542 7558.6 1.34 7542 7542.0 5.14 7542 7542.0 3.29
berlin52C-3-0-a 8144* 1.82 8144 8144.0 7.59 8144 8145.4 0.76 8144 8144.0 3.24 8144 8144.0 1.95
berlin52C-3-0-b 8016* 2.95 8016 8016.0 5.96 8016 8016.0 0.41 8016 8016.0 1.88 8016 8016.0 0.99
berlin52C-3-0-c 9085 270.75 9085 9092.0 6.77 9085 9085.0 0.66 9085 9085.0 2.97 9085 9085.0 1.63
berlin52C-3-1-a 7952* 3.72 7952 7952.0 8.61 7952 7967.3 1.02 7952 7952.0 4.39 7952 7952.0 2.47
berlin52C-3-1-b 7596* 3.31 7596 7596.0 7.24 7596 7596.0 0.69 7596 7596.0 3.44 7596 7596.0 1.57
berlin52C-3-1-c 7984* 1.50 7984 7984.0 8.20 7984 7984.0 1.15 7984 7984.0 4.89 7984 7984.0 3.02
berlin52C-5-0-a 9430* 68.18 9430 9430.0 5.85 9430 9430.0 0.39 9430 9430.0 1.91 9430 9430.0 0.89
berlin52C-5-0-b 8669* 10.37 8669 8669.0 5.13 8669 8669.0 0.38 8669 8669.0 1.67 8669 8669.0 0.87
berlin52C-5-0-c 9651 3602.66 9651 9651.0 5.69 9651 9651.0 0.29 9651 9651.0 1.51 9651 9651.0 0.72
berlin52C-5-1-a 8811* 3.53 8811 8820.0 7.15 8811 8811.0 0.66 8811 8811.0 3.29 8811 8811.0 1.61
berlin52C-5-1-b 7948* 3.00 7948 7948.0 6.51 7948 7948.0 0.62 7948 7948.0 3.04 7948 7948.0 1.52
berlin52C-5-1-c 8509* 11.95 8509 8509.0 7.01 8509 8514.8 0.42 8509 8516.4 2.49 8509 8511.8 1.05
berlin52C-5-3-a 7907 3600.18 7907 7945.5 8.75 7907 7946.2 0.98 7907 7916.4 5.00 7907 7925.8 2.55
berlin52C-5-3-b 7614* 1.81 7614 7614.0 7.11 7614 7614.0 1.03 7614 7614.0 4.53 7614 7614.0 2.55
berlin52C-5-3-c 7631* 2.13 7631 7631.0 8.07 7631 7631.0 0.96 7631 7631.0 4.41 7631 7631.0 2.57
swiss42R-1-0-a 1273* 0.87 1273 1273.0 5.11 1273 1273.0 0.63 1273 1273.0 2.88 1273 1273.0 1.57
swiss42R-3-0-a 2256* 0.56 2256 2256.0 3.88 2256 2265.7 0.20 2256 2256.0 1.07 2256 2256.0 0.47
swiss42R-3-0-b 2153* 1.35 2153 2153.0 4.43 2153 2154.0 0.19 2153 2154.5 1.05 2153 2153.0 0.47
swiss42R-3-0-c 2080* 2.10 2080 2080.0 3.88 2080 2081.2 0.18 2080 2081.2 0.99 2080 2080.0 0.44
swiss42R-3-1-a 1652* 103.45 1652 1652.0 4.78 1652 1652.0 0.42 1652 1652.0 1.98 1652 1652.0 1.01
swiss42R-3-1-b 1607* 460.36 1607 1608.9 5.00 1607 1608.8 0.37 1607 1607.0 2.05 1607 1607.0 0.98
swiss42R-3-1-c 1525* 947.38 1525 1525.0 4.33 1525 1525.0 0.38 1525 1525.0 2.12 1525 1525.0 0.90
swiss42R-5-0-a 2365* 1.33 2365 2365.0 3.59 2365 2365.0 0.11 2365 2365.0 0.70 2365 2365.0 0.30
swiss42R-5-0-b 2567* 1.04 2567 2567.0 3.21 2567 2567.0 0.11 2567 2567.0 0.66 2567 2567.0 0.27
swiss42R-5-0-c 2694* 0.80 2694 2695.0 3.72 2694 2694.9 0.12 2694 2694.0 0.74 2694 2694.9 0.28
swiss42R-5-1-a 1812* 219.82 1812 1812.0 4.08 1812 1813.3 0.24 1812 1812.9 1.49 1812 1812.9 0.59
swiss42R-5-1-b 1905 3600.14 1905 1905.0 4.32 1905 1905.0 0.22 1905 1905.0 1.29 1905 1905.0 0.52
swiss42R-5-1-c 1910* 1845.06 1910 1910.0 3.83 1910 1910.0 0.21 1910 1910.0 1.22 1910 1910.0 0.52
swiss42R-5-3-a 1474 3600.17 1474 1474.0 4.95 1474 1474.0 0.48 1474 1474.0 2.39 1474 1474.0 1.17
swiss42R-5-3-b 1541 3600.07 1541 1541.0 5.28 1541 1544.0 0.45 1541 1541.0 2.58 1541 1541.0 1.09
swiss42R-5-3-c 1510* 1679.83 1510 1510.0 5.66 1510 1512.1 0.45 1510 1512.7 2.32 1510 1511.8 1.04
berlin52R-1-0-a 7542* 3.15 7542 7542.0 7.69 7542 7542.0 1.30 7542 7542.0 5.01 7542 7542.0 3.25
berlin52R-3-0-a 12765* 9.37 12765 12765.0 6.32 12765 12765.0 0.36 12765 12765.0 1.82 12765 12765.0 0.86
berlin52R-3-0-b 12668* 4.06 12668 12668.0 6.49 12668 12668.0 0.34 12668 12668.0 1.64 12668 12668.0 0.88
berlin52R-3-0-c 12483* 11.76 12483 12483.0 6.37 12483 12486.6 0.36 12483 12483.0 1.82 12483 12496.8 0.90
berlin52R-3-1-a 9473* 2486.71 9473 9473.0 8.27 9473 9473.0 0.73 9473 9473.0 3.42 9473 9473.0 1.78
berlin52R-3-1-b 9419 3601.50 9419 9419.0 7.02 9419 9419.0 0.73 9419 9419.0 3.56 9419 9419.0 1.68
berlin52R-3-1-c 9577 3601.67 9577 9577.0 8.32 9577 9577.0 0.73 9577 9577.0 3.65 9577 9577.0 2.13
berlin52R-5-0-a 16414* 2.70 16414 16414.0 5.73 16414 16429.6 0.20 16414 16414.0 1.08 16414 16414.0 0.49
berlin52R-5-0-b 13759* 24.55 13759 13759.0 5.79 13759 13759.0 0.21 13759 13759.0 1.17 13759 13759.0 0.51
berlin52R-5-0-c 14131* 3.65 14131 14131.0 6.48 14131 14131.0 0.21 14131 14131.0 1.15 14131 14131.0 0.54
berlin52R-5-1-a 11662 3609.71 11651 11651.0 6.93 11651 11658.0 0.44 11651 11651.0 2.32 11651 11651.0 0.94
berlin52R-5-1-b 9957 3608.94 9957 9964.0 6.16 9957 9957.0 0.41 9957 9957.0 2.19 9957 9962.2 0.98
berlin52R-5-1-c 10940 3603.29 10940 10940.0 6.77 10940 10950.2 0.38 10940 10953.6 2.00 10940 10950.2 0.91
berlin52R-5-3-a 9065 3601.49 9012 9021.0 8.51 9012 9033.2 0.85 9012 9050.3 4.56 9012 9017.3 2.18
berlin52R-5-3-b 8036* 3387.42 8036 8036.0 7.29 8036 8036.0 0.99 8036 8043.1 4.28 8036 8036.0 2.36
berlin52R-5-3-c 8224 3600.17 8224 8224.0 7.36 8224 8224.0 0.87 8224 8224.0 3.98 8224 8224.0 1.89
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Table 2. Result of different approaches on medium instances with 100 vertices.

Instance Exact-MIP GILS-RVND MS_ILS MSH2 MS_GVNS
Best Bsol Avsol Avtt Bsol Avsol Avtt Bsol Avsol Avtt Bsol Avsol Avtt

kroA100-C-1-0 21282* 21282 21338.6 84.88 21282 21284.3 9.38 21282 21282.0 25.55 21282 21282.0 20.55
kroA100-C-3-0 24049 24049 24049.0 67.93 24049 24100.9 3.09 24049 24068.7 10.23 24049 24097.9 7.32
kroA100-C-3-1 23392 23069 23416.7 80.07 22865 23195.7 6.84 22865 23122.9 24.88 22865 23167.3 17.65
kroA100-C-5-0 24745 24745 24745.0 58.51 24745 24745.0 1.38 24745 24745.0 5.32 24745 24745.0 3.15
kroA100-C-5-1 22617 22589 22591.8 84.44 22589 22594.2 3.08 22589 22589.0 10.35 22589 22589.0 6.82
kroA100-C-5-3 21443 21443 21443.0 82.50 21443 21443.0 5.52 21443 21443.0 20.25 21443 21443.0 12.18
kroB100-C-1-0 22141 22179 22235.0 83.07 22179 22209.3 9.49 22179 22198.6 26.51 22141 22185.4 20.76
kroB100-C-3-0 24887* 24887 24971.3 63.46 24887 24902.8 2.60 24887 24887.0 8.34 24887 24887.0 6.00
kroB100-C-3-1 22141* 22141 22155.1 77.19 22141 22141.0 4.88 22141 22161.1 16.07 22141 22156.8 10.84
kroB100-C-5-0 24793 24794 24794.0 57.91 24794 24794.0 1.91 24794 24794.0 7.04 24794 24794.0 4.47
kroB100-C-5-1 23159* 23159 23173.1 73.43 23159 23234.1 3.58 23159 23212.5 12.03 23159 23169.3 7.80
kroB100-C-5-3 22179 22141 22180.0 79.72 22141 22209.7 7.90 22179 22193.1 24.42 22179 22220.5 16.52
kroC100-C-1-0 20749 20749 20786.9 94.88 20749 20756.0 8.30 20749 20749.0 27.12 20749 20759.3 20.44
kroC100-C-3-0 21340* 21340 21440.6 57.97 21340 21340.0 2.52 21340 21340.0 8.49 21340 21340.0 5.69
kroC100-C-3-1 20910* 20910 20910.0 92.46 20910 20910.0 6.40 20910 20910.0 20.87 20910 20910.0 15.13
kroC100-C-5-0 24040* 24040 24040.0 58.26 24040 24040.0 2.36 24040 24050.4 7.76 24040 24040.0 5.84
kroC100-C-5-1 22827 22827 22827.0 71.76 22827 22838.0 4.11 22827 22827.0 12.14 22827 22835.4 9.49
kroC100-C-5-3 21931 21278 21344.9 91.31 21278 21378.5 6.77 21278 21292.3 23.84 21278 21278.0 16.38
kroD100-C-1-0 21309 21294 21298.5 93.39 21294 21341.9 9.64 21294 21331.2 26.35 21294 21294.0 24.37
kroD100-C-3-0 23809 23809 23833.3 65.25 23809 23812.6 2.52 23809 23812.6 8.10 23809 23812.6 5.46
kroD100-C-3-1 21944* 21944 22268.9 87.50 22036 22236.3 6.13 21944 22057.5 20.67 21944 21970.2 14.41
kroD100-C-5-0 28297 28228 28234.9 56.30 28228 28332.6 1.61 28228 28246.0 5.89 28228 28284.0 3.78
kroD100-C-5-1 25324 25102 25250.8 72.72 25102 25162.5 3.17 25102 25109.6 10.90 25102 25148.3 7.51
kroD100-C-5-3 21759 21744 21747.0 94.90 21744 21754.5 6.22 21744 21744.0 21.43 21744 21744.0 14.05
kroE100-C-1-0 22068* 22068 22146.9 89.83 22068 22122.7 9.13 22068 22086.8 26.95 22068 22091.4 21.03
kroE100-C-3-0 24383* 24383 24405.4 66.54 24383 24394.2 3.05 24383 24383.0 9.87 24383 24383.0 6.92
kroE100-C-3-1 22121 22121 22125.0 76.26 22121 22125.0 5.93 22126 22126.0 19.42 22121 22125.5 13.05
kroE100-C-5-0 26440 26440 26443.3 57.50 26440 26456.7 1.84 26440 26443.3 6.78 26440 26440.0 4.32
kroE100-C-5-1 23611* 23611 23658.1 62.91 23611 23620.9 3.75 23611 23611.0 11.46 23611 23611.0 7.76
kroE100-C-5-3 22455 22455 22560.6 76.54 22455 22482.8 5.90 22455 22458.2 19.09 22455 22473.7 12.51
kroA100-R-1-0 21282* 21282 21365.5 95.23 21282 21283.0 8.96 21282 21282.0 25.74 21282 21282.0 20.43
kroA100-R-3-0 38814* 38814 38877.5 73.43 38814 38860.1 2.61 38814 38814.0 9.53 38814 38896.5 6.28
kroA100-R-3-1 30072 29264 29578.2 92.64 29264 29395.5 5.57 29264 29264.0 17.36 29264 29265.8 11.68
kroA100-R-5-0 50192 50192 50411.0 63.04 50192 50502.9 1.43 50192 50429.3 5.95 50192 50449.4 3.20
kroA100-R-5-1 39335 35847 36328.4 72.97 35847 36168.7 3.05 35847 36043.0 11.28 35847 36093.0 6.77
kroA100-R-5-3 28548 25370 25594.9 90.97 25370 25515.0 6.14 25370 25610.1 20.96 25370 25719.0 13.38
kroB100-R-1-0 22141 22141 22189.1 83.55 22141 22217.5 8.92 22141 22186.0 31.45 22141 22188.4 20.41
kroB100-R-3-0 37706* 37706 37770.2 68.96 37706 37776.8 2.51 37706 37721.2 8.54 37706 37793.8 5.37
kroB100-R-3-1 31216 28509 28652.6 85.82 28454 28566.1 5.41 28481 28511.1 17.29 28481 28514.1 11.10
kroB100-R-5-0 50781 50781 50863.4 57.83 50781 50952.3 1.54 50781 51006.8 5.61 50781 50906.1 3.48
kroB100-R-5-1 39646 35209 35589.3 81.01 35209 35338.8 2.79 35209 35240.0 10.60 35209 35256.1 6.41
kroB100-R-5-3 28124 26069 26205.0 85.42 26069 26121.7 6.16 26069 26070.5 21.76 26069 26069.0 13.31
kroC100-R-1-0 20749 20749 20826.1 94.55 20749 20759.3 8.47 20749 20749.0 26.04 20749 20759.3 20.24
kroC100-R-3-0 37953* 37953 38083.0 86.17 38008 38177.3 2.50 37953 37958.5 9.22 37953 38147.0 6.29
kroC100-R-3-1 28218 28130 28304.5 86.83 28130 28312.6 5.21 28130 28130.0 17.35 28130 28140.6 11.98
kroC100-R-5-0 50085* 50085 50099.9 69.09 50085 50118.4 1.43 50085 50085.0 5.96 50085 50218.3 3.60
kroC100-R-5-1 39002 33594 34365.1 73.73 33594 33806.8 3.15 33594 33594.0 11.56 33594 33709.5 7.02
kroC100-R-5-3 28758 25458 25587.6 94.83 25458 25513.7 5.82 25458 25590.5 21.40 25458 25583.5 12.24
kroD100-R-1-0 21338 21294 21336.6 101.54 21294 21336.9 9.71 21294 21320.7 26.29 21294 21300.8 23.66
kroD100-R-3-0 38342 38110 38290.3 72.38 38110 38301.2 2.77 38110 38203.7 8.79 38110 38299.9 6.17
kroD100-R-3-1 28498 27734 27886.3 89.45 27734 27826.3 5.61 27734 27757.0 18.56 27734 27787.4 11.89
kroD100-R-5-0 49100* 49100 49222.8 67.10 49100 49276.1 1.59 49100 49168.9 5.50 49100 49296.0 3.34
kroD100-R-5-1 45094 34246 34414.9 71.56 34246 34307.5 3.21 34246 34265.1 11.05 34246 34295.2 7.13
kroD100-R-5-3 27468 25624 25733.4 86.38 25624 25738.9 6.63 25624 25642.2 23.34 25624 25704.7 14.10
kroE100-R-1-0 22068* 22068 22129.1 100.05 22068 22079.7 9.30 22068 22088.8 25.80 22068 22096.4 20.84
kroE100-R-3-0 37935* 37935 37996.0 67.78 37935 38049.2 2.70 37935 37936.4 8.81 37935 37940.8 6.12
kroE100-R-3-1 29863 29359 29489.2 90.94 29359 29447.0 5.46 29359 29383.3 18.83 29359 29399.0 12.68
kroE100-R-5-0 54197* 54197 54285.2 66.37 54197 54318.8 1.57 54197 54226.9 5.97 54197 54310.7 3.96
kroE100-R-5-1 52173 38359 38700.8 76.58 38359 38779.7 3.29 38359 38669.3 11.03 38359 38583.4 7.58
kroE100-R-5-3 30260 27256 27316.3 109.86 27256 27311.1 6.49 27256 27279.1 21.01 27256 27318.1 14.11
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Table 3. Result of different approaches on large instances containing 200 vertices.

Instance Exact-MIP GILS-RVND MS_ILS MSH2 MS_GVNS
Best Bsol Avsol Avtt Bsol Avsol Avtt Bsol Avsol Avtt Bsol Avsol Avtt

kroA200-C-1-0 30162 29737 30042.8 641.03 29451 29628.7 88.67 29368 29613.9 191.89 29368 29561.5 178.92
kroA200-C-3-0 30062 29913 30090.0 607.22 29964 30079.1 30.68 29965 30037.5 68.44 29928 30039.2 60.63
kroA200-C-3-1 29481 29435 29862.4 612.36 29413 29633.7 61.70 29544 29585.6 144.92 29435 29580.9 114.77
kroA200-C-5-0 32382 32224 32273.3 404.43 32224 32276.1 20.90 32224 32273.9 44.67 32224 32257.0 40.03
kroA200-C-5-1 32342 31069 31221.3 467.58 31072 31126.9 28.30 31057 31114.6 69.64 31057 31082.6 57.12
kroA200-C-5-3 30039 30686 30964.0 565.14 30379 30749.6 60.60 30423 30587.0 149.32 30179 30621.9 125.39
kroB200-C-1-0 29945 29790 30064.7 628.30 29542 29856.2 87.93 29498 29670.0 195.79 29487 29692.4 182.49
kroB200-C-3-0 31285 30989 31276.1 565.49 31162 31337.0 29.85 31094 31238.5 71.38 31093 31219.4 60.01
kroB200-C-3-1 30585 30457 30830.7 539.31 30443 30606.5 45.29 30444 30566.5 103.41 30444 30576.0 95.24
kroB200-C-5-0 41009 37909 37973.2 401.54 37909 37953.8 19.21 37919 37938.3 45.59 37909 37931.1 41.63
kroB200-C-5-1 33775 33276 33438.3 540.77 33241 33358.4 31.46 33241 33287.2 86.55 33232 33269.9 72.31
kroB200-C-5-3 30302 30270 30492.0 565.99 30300 30563.0 59.79 30193 30279.0 155.68 30179 30410.1 117.16
kroA200-R-1-0 30269 29853 30176.5 656.14 29431 29615.5 85.67 29456 29575.8 204.97 29414 29615.4 187.30
kroA200-R-3-0 52050 51741 52237.3 473.42 51708 52227.9 24.12 51623 51924.0 57.53 51583 52106.7 50.97
kroA200-R-3-1 43796 38208 38471.5 574.14 38145 38382.1 51.74 37897 38037.5 129.62 37925 38274.4 104.11
kroA200-R-5-0 67027 67096 67757.6 435.56 67148 67640.2 14.22 67079 67569.3 36.36 67079 67772.9 29.23
kroA200-R-5-1 - 48020 48790.1 537.11 47871 48815.4 27.60 47770 48209.2 76.62 47719 48276.1 67.70
kroA200-R-5-3 47773 34195 34630.4 495.08 34032 34288.6 54.10 33994 34094.8 170.08 33994 34211.4 118.08
kroB200-R-1-0 29902 29849 30149.7 697.39 29561 29725.0 91.86 29445 29641.0 195.99 29445 29692.8 178.28
kroB200-R-3-0 53771 53739 54131.3 525.52 53731 54246.1 24.38 53666 54003.7 62.37 53701 54012.1 52.61
kroB200-R-3-1 58382 38943 39190.5 606.27 38695 39126.2 47.95 38488 38730.3 128.33 38533 38901.7 101.94
kroB200-R-5-0 73666 72786 73011.3 469.76 72661 73251.0 14.48 72597 73153.8 34.69 72957 73168.6 30.10
kroB200-R-5-1 - 50260 50821.8 525.85 50739 50970.0 28.91 50152 50632.3 77.33 50411 50735.1 62.02
kroB200-R-5-3 47241 36926 37145.9 652.27 36986 37142.3 61.31 36911 36986.0 157.96 36937 37069.3 131.50

and MSH2. Nevertheless, MS_ILS outperforms all other approaches in terms of
execution times.

Furthermore, the MS_GVNS approach achieves all optimal values reported
in the literature, and improves the best-known solution values for six instances
with 200 vertices. Out of these six instances, three belong to clustered instances
(kroB200-C-1-0, kroB200-C-5-1, and kroB200-C-5-3), while the remaining three
belong to random instances (kroA200-R-1-0, kroA200-R-3-0, and kroA200-R-5-
1).

Table 4 provides the performance comparison summary. The table compares
approaches based on the number of instances for which the approach on the left
performed better (‘<’), worse (‘>’), or the same (‘=’) as the approach on the
right. This comparison is presented for both the best solution quality and average
solution quality. From the table, it is evident that MS_GVNS outperformed
Exact-MIP, GILS-RVND, MS_ILS, and MSH2 in terms of both the best solution
quality and average solution quality. However, when considering the average
solution quality on random instances, MSH2 performed better than MS_GVNS.
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Table 4. Best and average solution performance comparison summary.

pair Category Best solution quality pair Average solution quality
< > = < > =

MS_GVNS vs. Exact-MIP Small-C (32) 0 0 32 MS_GVNS vs.GILS-RVND 5 2 25
MS_GVNS vs.GILS-RVND 0 0 32 MS_GVNS vs. MS_ILS 5 1 26
MS_GVNS vs. MS_ILS 0 0 32 MS_GVNS vs. MSH2 1 2 29
MS_GVNS vs. MSH2 0 0 32
MS_GVNS vs. Exact-MIP Small-R (32) 2 0 30 MS_GVNS vs.GILS-RVND 4 4 22
MS_GVNS vs. GILS-RVND 0 0 32 MS_GVNS vs. MS_ILS 10 2 20
MS_GVNS vs. MS_ILS 0 0 32 MS_GVNS vs. MSH2 6 3 23
MS_GVNS vs. MSH2 0 0 32
MS_GVNS vs. Exact-MIP Medium-C (30) 7 1 22 MS_GVNS vs.GILS-RVND 19 6 5
MS_GVNS vs.GILS-RVND 2 1 27 MS_GVNS vs. MS_ILS 19 4 7
MS_GVNS vs. MS_ILS 2 1 27 MS_GVNS vs. MSH2 9 9 12
MS_GVNS vs. MSH2 2 0 28
MS_GVNS vs. Exact-MIP Medium-R (30) 17 0 13 MS_GVNS vs.GILS-RVND 20 10 0
MS_GVNS vs. GILS-RVND 1 0 29 MS_GVNS vs. MS_ILS 21 8 1
MS_GVNS vs. MS_ILS 1 1 28 MS_GVNS vs. MSH2 5 24 1
MS_GVNS vs. MSH2 0 0 30
MS_GVNS vs. Exact-MIP Large-C (12) 11 1 0 MS_GVNS vs.GILS-RVND 12 0 0
MS_GVNS vs.GILS-RVND 7 2 3 MS_GVNS vs. MS_ILS 12 0 0
MS_GVNS vs. MS_ILS 8 2 2 MS_GVNS vs. MSH2 7 5 0
MS_GVNS vs. MSH2 8 0 4
MS_GVNS vs. Exact-MIP Large-R (12) 11 1 0 MS_GVNS vs.GILS-RVND 10 2 0
MS_GVNS vs. GILS-RVND 9 3 0 MS_GVNS vs. MS_ILS 11 1 0
MS_GVNS vs. MS_ILS 11 1 0 MS_GVNS vs. MSH2 0 12 0
MS_GVNS vs. MSH2 3 6 3

5 Conclusions

In this paper, we have presented a multi-start general variable neighborhood
search approach called MS_GVNS for CTSP-d. The proposed approach makes
use of a variable neighborhood descent (VND) strategy as local search. This VND
strategy utilizes five different neighborhoods designed as per the characteristics
of the problem. The performance of the MS_GVNS is evaluated on 148 stan-
dard benchmark instances available in the literature. The computational results
show the superiority of our approach over four best approaches available in the
literature in terms of solution quality. Furthermore, our approach improves upon
the best-known solution values on six large instances. As far as execution time
of our approach is concerned, except for one approach it is faster than all the
other approaches.

Our future work will focus on improving the MS_GVNS approach by explor-
ing new neighborhoods and hybridization possibilities with machine learning
techniques. Similar GVNS based approaches can be developed for other related
TSP variants.
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