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Chapter 5
Avian Disease Ecology in the Neotropics

Paulina Álvarez-Mendizábal, María José Tolsa, Octavio Rojas-Soto, 
Ian MacGregor-Fors, and Diego Santiago-Alarcon

5.1  Introduction

Globally, birds are the best studied taxonomic group of vertebrates. Over 10,000 
bird species have radiated and spread across the Earth’s biomes (Avibase; avibase.
bsc-eoc.org), and ornithologists have mapped and dated the diversification of all 
extant bird species worldwide (Jetz et al. 2012). Through ecological studies, orni-
thologists have uncovered the high taxonomic and functional diversity of birds, 
their biogeographical patterns and the drivers of these patterns across different 
regions and scales (Rahbek and Graves 2001; Herzog et al. 2005; Moura et al. 2016; 
Matuoka et al. 2020; Sol et al. 2020). However, parasite species affecting bird popu-
lations and communities have received fewer research efforts, hindering our capac-
ity to manage and conserve bird species. Bird species play a critical role as hosts of 
a large array of parasite species that affect animal and human health (Dobson et al. 
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2008; Nabi et al. 2021). Birds have been reported to harbor as many zoonoses as 
those found in flying mammals, such as in bats (Order Chiroptera; Mollentze and 
Streicker 2020). Moreover, birds latitudinal and altitudinal migration movements 
between wintering and breeding areas are implicated in the geographical spread of 
major parasitic species (e.g., influenza viruses, West Nile virus; Feare 2010; Winker 
and Gibson 2010; Lee et al. 2015; Morin et al. 2018; Mine et al. 2019). For example, 
Avian Influenza viruses (AIVs) are known to successfully complete reassortment 
processes (i.e., the processes in which gene segments are exchanged between differ-
ent influenza viruses) in geographical hotspots for viral transport and mixing, where 
breeding areas are shared between North American and Asian migrant bird species 
(Morin et al. 2018). In the Beringia region, phylogeographic analyses have shown 
that viral reassortment has likely occurred between highly pathogenic influenza 
strains originating in China (e.g., Asian H5N8) and North American influenza lin-
eages that have ultimately spread across the continental United States (Saito 
et al. 2015).

Avian parasites can have negative effects on their host populations and ecosys-
tems (Møller 2005). Parasites can significantly affect host fitness by changing their 
behavior and sexual selection and can regulate avian populations by negatively 
impacting host reproduction (i.e., affecting the fecundity or survival of individuals) 
(May and Anderson 1978; Møller 2005). Parasites can also mediate intraspecific 
competition, predator–prey interactions, and food web stability and determine host 
community structure (Møller and Erritzøe 2000; Navarro 2004; Lafferty et al. 2006; 
Wood et al. 2007). Moreover, they can exert evolutionary pressures on their hosts’ 
immune systems, promoting greater investment in immune function that produces 
fitter and more viable host populations (Møller and Erritzøe 2002). For example, 
avian malaria (genus Plasmodium) has produced epizootic die-offs in immunologi-
cally naive Hawaiian insular avifauna (LaPointe et al. 2012), causing population 
declines and significant altitudinal shifts in the distribution of susceptible forest 
birds (e.g., Hawaii amakihi; Hemignathus virens) (Samuel et al. 2011). While such 
population declines are commonly associated with acute malaria infections that 
result in increased predation or starvation of avian hosts, chronic infections in con-
tinental avifauna produce long-term subclinical effects that can indirectly impair 
reproductive success (e.g., Plasmodium-infected male songbirds have been observed 
to reduce song frequency, potentially impacting sexual selection) (Gilman et  al. 
2007; Meza-Montes et al. 2023).

Although parasitic species such as avian malaria and related haemosporidians 
are constrained to affect avian populations, others have had critical effects on both 
avian and human populations. Such is the case for the neurotropic and zoonotic 
West Nile virus (WNV), which has produced massive bird die-offs in highly suscep-
tible hosts (e.g., American crows; Corvus brachyrhynchos), and neurological out-
breaks of disease in humans across Europe and the United States (LaDeau et al. 
2011; George et al. 2015; Hadfield et al. 2019). WNV is capable of infecting over 
608 species of birds (Tolsá et al. 2018); however, not all bird species are amplifying 
hosts for maintaining and transmitting the infection (Komar et al. 2003). Similarly, 
not all infected avian species are affected by neurologic illness and death (Steele 
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et al. 2000). The effects of WNV on birds have affected only a few susceptible host 
species (Kilpatrick and Wheeler 2019), but WNV-associated declines of avian pop-
ulations have had indirect ecological and health effects on other species. For 
instance, abundance variation in susceptible WNV species such as American robins 
promoted shifts in mosquito feeding preferences to humans and other avian species, 
increasing the prevalence of human disease (Kilpatrick et al. 2006).

Avian hosts can also produce important effects on parasite populations and com-
munities. For example, when infected by vector-borne viruses, bird species can 
exert selection pressures over parasite genetic populations, removing variants of 
lower fitness and affecting intrahost viral diversity (Jerzak et al. 2005). This regula-
tion has been observed for WNV, where strong processes of purifying selection can 
evolutionarily constrain its genetic diversity in bird hosts (Jerzak et al. 2008). On a 
much broader scale, avian host ecological traits (e.g., body mass, geographic range 
size, and relative abundance) can influence a parasite’s colonization success, repro-
duction, and contact with susceptible hosts, affecting parasite diversity and com-
munity composition (Poulin and Valtonen 2001; Dáttilo et al. 2020). Moreover, the 
phylogenetic relatedness of hosts can drive the phylogenetic diversity of parasites 
across spatial scales (Clark and Clegg 2017).

Few study systems are well understood in relation to the effects of the ecology of 
avian parasites on the ecology of avian host populations (and vice versa). 
Additionally, the potential for bird parasites to produce spillover events and emerge 
as novel zoonoses remains unclear. This stems from the fact that, in general, very 
little is known about the global parasitic faunas of birds. Most studies on the ecol-
ogy of birds and their parasites have been performed in temperate regions (i.e., 
Nearctic and Palearctic) (Titley et al. 2017). Accordingly, a gap in knowledge on 
avian disease ecology remains for other biogeographical regions, such as the 
Neotropics. This scenario is worrying, as the Neotropical region is home to approxi-
mately 30% of the global avifauna and a high number of endemic species (Reboreda 
et al. 2019). The high diversity of Neotropical bird species provides a diverse set of 
ecological niches for parasites (Hudson et al. 2006; Poulin 2014). Furthermore, host 
species diversity has been shown to be a positive driver of parasite species diversity 
(Dobson et al. 2008; Poulin 2014; Kamiya et al. 2014). Consequently, the Neotropical 
region is predicted to harbor not only a great proportion of the world’s avifauna but 
also an extraordinary amount of parasite species (Dobson et  al. 2008; Santiago- 
Alarcon and Rojas Soto 2021).

In the context of global change, parasites are most likely to jump across species 
and disproportionately affect endangered and naïve native avian populations (e.g., 
Ortega-Guzmán et al. 2022). Yet, some parasite species are also predicted to decline 
in abundance and geographical range size due to climate change and habitat destruc-
tion (Dobson et al. 2008). This will be contingent on the complexity of a parasites’ 
life cycle, their dependence on host population density, their type of transmission, 
their host specificity, and the geographical range size of their hosts, among other 
factors (Dobson et al. 2008). Unfortunately, Neotropical species tend to have smaller 
range sizes than those inhabiting temperate or polar regions (Jetz and Rahbek 2002); 
hence, it is likely that their population declines will lead to the decline of their 
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parasitic faunas (Dobson et al. 2008). This is predicted to impact several ecosystem 
services that parasite species provide, including regulation of host abundance, 
increase in food web connectance, concentration and removal of pollutants from 
their hosts, among others (Sures 2004; Møller 2005; Lafferty et al. 2006). Because 
parasites represent fundamental components of biodiversity, understanding their 
ecological and evolutionary interactions with their host species will aid to maintain 
animal, human, and ecosystem health.

In this chapter, we conducted an extensive search in the Web of Science Core 
Collection for current information regarding parasite ecology in birds across the 
Neotropical region from 2000 to 2021. The Web of Science Core Collection is a 
selective and balanced database that uses relevant information from multiple sources 
(Birkle et al. 2020). Our first search aimed to retrieve studies focused on parasite 
groups (i.e., virus, bacteria, protozoa, fungi, and disease), birds (i.e., birds, avian, 
aves, and avifauna), and the Neotropical region (i.e., Neotropic, South America, and 
Latin America). We excluded all scientific papers that reported avian parasites in 
captive bird species, review papers, laboratory/experimental studies, and museum 
collection studies.

Our second search aimed to retrieve studies that show how anthropogenic (i.e., 
fragmentation, land use, landscape, urban, and habitat perturbation) and ecological 
(i.e., temperature, latitude, altitude, precipitation, humidity, and climate change) 
factors can be associated with the prevalence and diversity of each parasite group. 
According to prior knowledge, anthropogenic and ecological keywords were cho-
sen regarding fundamental factors that influence the prevalence and diversity of 
parasite species in their hosts, environment, and space. Last, we conducted a third 
search seeking to retrieve studies that explicitly assessed the relation between 
anthropogenic/ecological factors and the prevalence, diversity and/or richness of 
specific parasite genera or species within each parasite group. We selected one para-
site species (or genus) per parasite group (i.e., the parasite species or genus that had 
the highest number of observations in our first search). An avian parasite record was 
considered to be an independent observation of a parasite genus or species in a par-
ticular Neotropical country, locality, and year. Boolean codes for all three searches 
can be found in Appendix Table 5.4.

5.2  Results

In our first search, we retrieved and assessed 3064 studies. Only papers that con-
tained parasite group and/or species, avian order and/or species and country were 
selected, leaving a total of 1338 studies. Only 11 of 26 were conducted in Neotropical 
countries (i.e., Brazil, Peru, Argentina, Colombia, Chile, Ecuador, Mexico, 
Venezuela, Costa Rica, Dominican Republic, French Guiana, Panama, Guatemala, 
Bolivia, and Uruguay), and 15 Neotropical countries were not represented (i.e., 
Belize, El Salvador, Honduras, Nicaragua, Paraguay, Guyana, Suriname, Cuba, 
Jamaica, Haiti, and Puerto Rico). We found that Brazil is the Neotropical country 
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that contains the highest number of avian parasite records (553 observations), fol-
lowed by Colombia (268 observations), Peru (252 observations), Argentina (86 
observations), Chile (53 observations), Mexico (28 observations), and Ecuador (27 
observations) (Fig. 5.1). In terms of groups of parasites, Brazil and Mexico were the 
only countries that had parasite records of all five groups considered in this chapter: 
Virus, Bacteria, Fungi, Protista, and Animalia (i.e., parasitic insects, worms, ces-
todes, and rotifers) (Fig. 5.1). Brazil mainly had records of parasitic insects (i.e., 
Arthropoda, Fig. 5.2), but it also had a significant number of protozoa of the phylum 
Mizozoa (subphylum Apicomplexa) (e.g., avian haemosporidian parasites) 
(Fig.  5.3) and of viral families such as Orthomyxoviridae, Coronaviridae, and 
Bornaviridae (e.g., avian coronaviruses, avian influenza, and avian bornaviruses) 
(Fig. 5.4). Mexico mainly contained records of viral families such as Flaviviridae 
(e.g., West Nile virus) (Fig.  5.4), platyhelminthes and rotifers (Fig.  5.2), and 
Apicomplexa protozoa (i.e., avian haemosporidians) (Fig. 5.3).

Chile followed Brazil and Mexico in number of groups of parasites, showing 
records of parasitic arthropods, nematodes, and platyhelminthes (Fig. 5.2) but also 
containing records of Apicomplexa protozoa (Fig. 5.3), and of Orthomyxoviridae 
and Poxviridae viral families (e.g., Avian Pox and Influenza viruses) (Fig.  5.4). 
Argentina mainly contained records of parasitic platyhelminthes (Fig. 5.2) and of 
the Orthomyxoviridae, Adenoviridae, Coronaviridae, Paramyxoviridae, and 
Bunyaviridae families (e.g., avian influenza virus, avian adenovirus, avian infec-
tious bronchitis virus, and avian paramyxovirus) (Fig. 5.4). After Brazil, Colombia 
contained the most records of parasitic arthropods (Fig. 5.2) and an important num-
ber of records of parasitic protozoa (i.e., both Mizozoa and Euglenozoa phyla) 
(Fig. 5.3). Following Colombia, Peru also contained an important number of records 
of parasitic arthropods (Fig.  5.2) and showed records of viral families such as 
Orthomyxoviridae and Adenoviridae (e.g., avian influenza, Siadenoviruses, and 
Mastadenoviruses) (Fig. 5.4). Brazil and Argentina contained most studies focusing 
on avian bacteria (Fig. 5.1), mainly the phyla Proteobacteria (e.g., Escherichia coli, 
Vibrio cholerae, Salmonella spp), Firmicutes (e.g., Bacillus spp., Clostridium spp.), 
and Chlamydiota (e.g., Chlamydia psittaci) (Fig. 5.5).

Brazil also represented the country with the highest parasite species richness 
(S = 243), followed by Argentina (S = 58), Colombia (S = 48), Peru (S = 43), and 
Chile (S = 44) (Fig. 5.6). These five countries contained most of the studies that we 
were able to retrieve (Fig. 5.6). Additionally, our first search revealed that almost all 
avian parasites included in our study (over 800 observations out of 1338 total para-
site observations) are being recorded and studied in bird species of the order 
Passeriformes (n  =  72 studies), followed by birds of the order Columbiformes 
(n = 27 studies), Charadriiformes (n = 18 studies), and Psittaciformes (n = 17 stud-
ies) (Fig. 5.7). Most records observed in the order Passeriformes belong to parasitic 
insects of the phylum Arthropoda (Fig. 5.8), followed by Apicomplexa protozoa 
(Fig. 5.9), and by viral species of the Poxviridae, Flaviviridae, and Bunyaviridae 
families (Fig. 5.10). Studies that focused on avian bacteria were mostly observed in 
the orders Psittaciformes, Charadriiformes, and Cathartiformes (Fig. 5.11).
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Fig. 5.1 Number of parasite records belonging to the kingdoms Virus, Animalia (i.e., Arthropoda, 
Nematoda, Platyhelminthes, Rotifera), Protista, Bacteria, and Fungi per studied country in the 
Neotropical region

Fig. 5.2 Number of records of avian parasitic arthropods, nematodes, platyhelminthes and rotifers 
per studied country in the Neotropical region
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Fig. 5.3 Number of records of avian protozoa per studied country in the Neotropical region

Fig. 5.4 Number of records of viral families per studied country in the Neotropical region

5 Avian Disease Ecology in the Neotropics
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Fig. 5.5 Number of records of bacterial phyla per studied country in the Neotropical region

Fig. 5.6 Parasite species richness as a function of avian species richness as analyzed in the 
Neotropical region. N represents the number of studies retrieved from each country. The Y axis was 
transformed to Sqrt (square root)

In our second search, we retrieved 1100 and 268 studies where anthropogenic 
and ecological factors, respectively, were studied concerning the prevalence and 
diversity of each parasite group. However, only in eight studies, parasite prevalence 
and/or diversity were explicitly assessed (i.e., using mathematical modeling) in 
relation to anthropogenic (e.g., land use type, distance to urban sites, forest frag-
ment size, etc.) and ecological (i.e., temperature, precipitation, latitude, etc.) factors 
(Table 5.1). The parasite groups assessed in these eight studies included Apicomplexa 
protozoa (i.e., avian haemosporidians), avian viruses (i.e., West Nile virus, St Louis 
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Fig. 5.7 Number of parasite records belonging to the kingdoms Virus, Animalia (i.e., Arthropoda, 
Nematoda, Platyhelminthes, Rotifera), Protista, Bacteria, and Fungi, per taxonomic bird order. 
Numbers next to bars represent the number of studies found per bird order

Fig. 5.8 Number of records of avian parasitic arthropods, platyhelminthes, nematodes, and roti-
fers per taxonomic bird order
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Fig. 5.9 Number of records of avian protozoa per taxonomic bird order

Fig. 5.10 Number of records of viral families per taxonomic bird order
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Fig. 5.11 Number of records of bacterial phyla per taxonomic bird order

Encephalitis virus, Avian pox virus), parasitic arthropods (i.e., Amblyomma spp.), 
and helminth communities (Table 5.1).

Finally, our third search retrieved 287 and 62 studies for anthropogenic and eco-
logical factors, respectively. Of these, 12 (Table 5.2) and 17 (Table 5.3) were studies 
where the prevalence and/or diversity of each parasite genus/species was explicitly 
assessed for anthropogenic and ecological factors. All studies analyzed avian hae-
mosporidian parasites.

5.3  Discussion

Parasite ecology in birds has gained greater attention in the last two decades. Animal 
and public health concerns linked to avian disease outbreaks (e.g., highly patho-
genic avian flu and West Nile fever) underscore the importance of investigating the 
ecological and evolutionary relationships between avian parasites, their host com-
munities, and their environments (e.g., Robles-Fernández et al. 2022). Despite this, 
our research suggests that avian parasite diversity surveys remain rudimentary in 
most countries of the Neotropical region, and therefore, we have a poor understand-
ing of disease dynamics as a function of ecological and anthropogenic factors.

Our extensive search revealed that within the Neotropics, most avian parasites 
are being detected in Brazil, Colombia, and Peru. This is not surprising, as these 
countries represent the three most bird-rich countries in the world (birdlife.org). 
Several studies have shown that parasite species richness follows host species 

5 Avian Disease Ecology in the Neotropics

http://birdlife.org


96

Ta
bl

e 
5.

1 
Su

m
m

ar
y 

of
 t

he
 s

el
ec

te
d 

(s
ec

on
d 

se
ar

ch
) 

st
ud

ie
s 

th
at

 e
xp

lo
re

 t
he

 a
ss

oc
ia

tio
n 

be
tw

ee
n 

an
th

ro
po

ge
ni

c/
ec

ol
og

ic
al

 f
ac

to
rs

 a
nd

 p
ar

as
ite

 p
re

va
le

nc
e/

di
ve

rs
ity

 in
 N

eo
tr

op
ic

al
 a

vi
fa

un
a

Ty
pe

 o
f 

fa
ct

or
C

ou
nt

ry
Pa

ra
si

te
 s

tu
di

ed
A

vi
an

 o
rd

er
E

xp
la

na
to

ry
 

va
ri

ab
le

(s
)

R
es

po
ns

e 
va

ri
ab

le
 (

s)
E

ff
ec

t t
yp

e
R

ef
er

en
ce

s

A
nt

hr
op

og
en

ic
B

ra
zi

l
A

rt
hr

op
od

a:
 A

m
bl

yo
m

m
a 

sp
p.

Pa
ss

er
if

or
m

es
C

ol
um

bi
fo

rm
es

C
or

ac
iif

or
m

es

Fo
re

st
 f

ra
gm

en
t 

si
ze

Pr
ev

al
en

ce
Pr

ed
ic

tiv
e

O
gr

ze
w

al
sk

a 
et

 a
l. 

(2
01

1)

B
ra

zi
l

Pr
ot

oz
oa

 (
A

pi
co

m
pl

ex
a)

: 
H

ae
m

os
po

ri
di

a 
(P

la
sm

od
iu

m
 s

p.
, 

H
ae

m
op

ro
te

us
 s

p.
)

Pa
ss

er
if

or
m

es
N

at
iv

e 
ve

ge
ta

tio
n 

co
ve

r
D

is
ta

nc
e 

to
 u

rb
an

 
ar

ea
s

N
um

be
r 

of
 w

at
er

 
bo

di
es

In
fe

ct
io

n 
pr

ob
ab

ili
ty

 
(m

ol
ec

ul
ar

 
pr

ev
al

en
ce

)

Pr
ed

ic
tiv

e 
na

tiv
e 

ve
ge

ta
tio

n 
in

cr
ea

se
s 

in
fe

ct
io

n 
pr

ob
ab

ili
ty

Fe
cc

hi
o 

et
 a

l. 
(2

02
0)

A
rg

en
tin

a
V

ir
us

 (
Fl

av
iv

ir
id

ae
):

 W
es

t 
N

ile
 v

ir
us

 S
t. 

L
ou

is
 

E
nc

ep
ha

lit
is

Pa
ss

er
if

or
m

es
Pi

ci
fo

rm
es

C
ol

um
bi

fo
rm

es
C

uc
ul

if
or

m
es

A
cc

ip
itr

if
or

m
es

A
gr

ic
ul

tu
ra

l a
re

a
T

re
e 

co
ve

ra
ge

U
rb

an
 s

ite
s

D
is

ta
nc

e 
to

 w
at

er
 

bo
di

es

Se
ro

pr
ev

al
en

ce
Pr

ed
ic

tiv
e

M
an

si
lla

 e
t a

l. 
(2

02
2)

E
cu

ad
or

V
ir

us
 (

Po
xv

ir
id

ae
):

 A
vi

an
 

Po
x 

vi
ru

s
Pa

ss
er

if
or

m
es

H
ab

ita
t t

yp
e:

U
rb

an
A

gr
ic

ul
tu

ra
l

U
nd

ev
el

op
ed

M
ol

ec
ul

ar
 

pr
ev

al
en

ce
Pr

ed
ic

tiv
e 

ag
ri

cu
ltu

re
 

in
cr

ea
se

s 
pr

ev
al

en
ce

Z
yl

be
rb

er
g 

et
 a

l. 
(2

01
3)

P. Álvarez-Mendizábal et al.



97

E
co

lo
gi

ca
l

A
rg

en
tin

a
A

ni
m

al
ia

: (
H

el
m

in
th

s)
 

C
es

to
da

, D
ig

en
ea

, 
N

em
at

od
a,

 
A

ca
nt

ho
ce

ph
al

a

C
ha

ra
dr

iif
or

m
es

U
se

d 
en

vi
ro

nm
en

ts
 

ac
ro

ss
 m

ig
ra

to
ry

 
fly

w
ay

s:
C

on
tin

en
ta

l
M

ar
in

e

Pa
ra

si
te

 p
re

va
le

nc
e,

 
ri

ch
ne

ss
 a

nd
 

ev
en

ne
ss

A
t c

om
po

ne
nt

 
co

m
m

un
ity

: p
re

di
ct

iv
e

A
t i

nf
ra

co
m

m
un

ity
: 

no
np

re
di

ct
iv

e

C
ap

as
so

 e
t a

l. 
(2

02
2)

B
ra

zi
l

Pr
ot

oz
oa

 (
A

pi
co

m
pl

ex
a)

: 
H

ae
m

os
po

ri
di

a 
(P

la
sm

od
iu

m
 s

p.
, 

H
ae

m
op

ro
te

us
 s

p.
)

Pa
ss

er
if

or
m

es
Te

m
pe

ra
tu

re
Pr

ec
ip

ita
tio

n
A

lp
ha

 a
nd

 b
et

a 
pa

ra
si

te
 d

iv
er

si
ty

Pr
ed

ic
tiv

e
L

óp
es

 e
t a

l. 
(2

02
0)

Pu
er

to
 

R
ic

o
Pr

ot
oz

oa
 (

A
pi

co
m

pl
ex

a)
: 

H
ae

m
os

po
ri

di
a 

(P
la

sm
od

iu
m

 s
p.

, 
H

ae
m

op
ro

te
us

 s
p.

)

Pa
ss

er
if

or
m

es
1-

 a
nd

 1
0-

ye
ar

 
tim

e 
in

te
rv

al
s

L
in

ea
ge

 
co

m
po

si
tio

n
1-

ye
ar

 in
te

rv
al

: 
pr

ed
ic

tiv
e 

ne
ga

tiv
e

10
-y

ea
r 

in
te

rv
al

: 
pr

ed
ic

tiv
e 

po
si

tiv
e

Fa
llo

n 
et

 a
l. 

(2
00

4)

E
cu

ad
or

Pr
ot

oz
oa

 (
A

pi
co

m
pl

ex
a)

: 
H

ae
m

os
po

ri
di

a 
(P

la
sm

od
iu

m
 s

p.
, 

H
ae

m
op

ro
te

us
 s

p.
)

Pa
ss

er
if

or
m

es
E

le
va

tio
n

Pr
ev

al
en

ce
Pr

ed
ic

tiv
e

E
sc

al
lo

n 
et

 a
l. 

(2
01

6)

5 Avian Disease Ecology in the Neotropics



98

Table 5.2 Summary of the selected (third search) studies that explore the association between 
anthropogenic factors and parasite prevalence/diversity in Neotropical avifauna

Country Avian order
Explanatory 
variables

Response 
variables Effect type References

Ecuador NA Forest 
fragment size

Prevalence 
(Plasmodium)

Nonpredictive Sebaio 
et al. (2010)

Forest 
fragment size

Prevalence 
(Haemoproteus)

Nonpredictive

Forest 
dependence

Prevalence 
(Plasmodium)

Predictive

Forest 
dependence

Prevalence 
(Haemoproteus)

Nonpredictive

Ecuador Passeriformes Fragment area Infection status 
(Haemosporidian)

Nonpredictive Rivero de 
Aguilar 
et al. (2018)Forest quality Infection status 

(Haemosporidian)
Nonpredictive

Tree cover 
around 
fragments

Infection status 
(Haemosporidian)

Nonpredictive

Mist-net 
location (edge 
or interior)

Infection status 
(Haemosporidian)

Nonpredictive

Date Infection status 
(Plasmodium)

Predictive

Cover Infection status 
(Haemoproteus)

Predictive

Brazil Passeriformes Proportion of 
native 
vegetation

Probability of 
infection 
(Haemosporidian)

Predictive Fecchio 
et al. (2021)

Distance to 
urban regions

Probability of 
infection 
(Haemosporidian)

Nonpredictive

Brazil NA Habitat type 
(disturbed and 
undisturbed)

prevalence 
(Haemosporidian)

Predictive Fecchio 
et al. (2021)

Habitat type 
(disturbed and 
undisturbed)

prevalence 
(Haemoproteus)

Predictive

Habitat type 
(disturbed and 
undisturbed)

Prevalence 
(Plasmodium)

Predictive

Habitat type 
(disturbed and 
undisturbed)

Diversity 
(Plasmodium)

Predictive

Habitat type 
(disturbed and 
undisturbed)

Diversity 
(Haemosporidian)

Predictive

(continued)
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Country Avian order
Explanatory 
variables

Response 
variables Effect type References

México Passeriformes Land use 
types

Lineage richness 
(Haemosporidian)

Predictive Hernandez-
Lara et al. 
(2020)Land use 

types
Prevalence 
(Haemosporidian)

Predictive

Land use 
types

Parasitemia 
(Haemosporidian)

Nonpredictive

Land use 
types

Aggregation 
(Plasmodium)

Nonpredictive

Brazil Passeriformes Habitat type 
qué tipos?

Prevalence 
(Haemosporidian)

Predictive Belo et al. 
(2011)

Diversity 
(Haemosporidian)

Predictive

Argentina, 
Uruguay, 
Bolivia, 
Mexico, 
Brazil, Peru, 
and 
Guatemala

Passeriformes Host species 
diversity

Prevalence 
(Haemoproteus)

Predictive Doussang 
et al. (2021)

Argentina, 
Uruguay, 
Bolivia, 
Mexico, 
Brazil, Peru, 
and 
Guatemala

Passeriformes Host species 
diversity

Prevalence 
(Plasmodium)

Predictive

Guadeloupe 
and 
Martinique

Passeriformes Habitat loss Prevalence 
(Haemosporidian)

Predictive Perez-
Rodriguez 
et al. (2018)Habitat 

fragmentation
Prevalence 
(Haemosporidian)

Predictive

(continued)
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Country Avian order
Explanatory 
variables

Response 
variables Effect type References

Brazil NA Proportion 
native forest

Prevalence 
(Haemoproteus)

Nonpredictive Fecchio 
et al. (2021)

Taxonomic 
diversity 
(Haemoproteus)

Nonpredictive

Phylogenetic 
diversity 
(Haemoproteus)

Nonpredictive

Host 
functional 
diversity

Prevalence 
(Haemoproteus)

Nonpredictive

Taxonomic 
diversity 
(Haemoproteus)

Nonpredictive

Phylogenetic 
diversity 
(Haemoproteus)

Nonpredictive

Host 
phylogenetic 
diversity

Prevalence 
(Haemoproteus)

Nonpredictive

Taxonomic 
diversity 
(Haemoproteus)

Nonpredictive

Phylogenetic 
diversity 
(Haemoproteus)

Nonpredictive

Host 
taxonomic 
diversity

Prevalence 
(Haemoproteus)

Nonpredictive

Taxonomic 
diversity 
(Haemoproteus)

Predictive

Phylogenetic 
diversity 
(Haemoproteus)

Nonpredictive

Proportion 
native forest

Prevalence 
(Plasmodium)

Predictive

Taxonomic 
diversity 
(Plasmodium)

Nonpredictive

Phylogenetic 
diversity 
(Plasmodium)

Nonpredictive

(continued)

Table 5.2 (continued)
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Country Avian order
Explanatory 
variables

Response 
variables Effect type References

Host 
functional 
diversity

Prevalence 
(Plasmodium)

Predictive

Taxonomic 
diversity 
(Plasmodium)

Predictive

Phylogenetic 
diversity 
(Plasmodium)

Nonpredictive

Host 
phylogenetic 
diversity

Prevalence 
(Plasmodium)

Nonpredictive

Taxonomic 
diversity 
(Plasmodium)

Nonpredictive

Phylogenetic 
diversity 
(Plasmodium)

Nonpredictive

Host 
taxonomic 
diversity

Prevalence 
(Plasmodium)

Nonpredictive

Taxonomic 
diversity 
(Plasmodium)

Predictive

Phylogenetic 
diversity 
(Plasmodium)

Predictive

Null model 
(without any 
predictor 
variables)

Prevalence 
(Haemoproteus)

Nonpredictive

Null model 
(without any 
predictor 
variables)

Taxonomic 
diversity 
(Haemoproteus)

Nonpredictive

Null model 
(without any 
predictor 
variables)

Phylogenetic 
diversity 
(Haemoproteus)

Nonpredictive

Mexico Passeriformes Land use 
types

Prevalence 
(Haemosporidian)

Predictive Hernandez-
Lara et al. 
(2017)Land use 

types
Parasitaemia 
(Haemosporidian)

Predictive

Land use 
types

Aggregation 
(Haemosporidian)

Nonpredictive

Brazil Passeriformes 
and 
Columbiformes

Succession 
stage

Prevalence 
(Haemosporidian)

Predictive Ferreira 
et al. (2017)

Diversity 
(Haemosporidian)

Predictive

Table 5.2 (continued)
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Table 5.3 Summary of the selected (third search) studies that explore the association between 
ecological factors and parasite prevalence/diversity in Neotropical avifauna

Country Avian order
Explanatory 
variables Response variables Effect type References

Chile, 
Costa 
Rica, 
Bolivia, 
Peru, and 
Argentina

Passeriformes Altitude Prevalence 
(Haemoproteus)

Predictive Doussang. 
et al. 
(2021)Prevalence 

(Plasmodium)
Predictive

Genetic diversity 
(Haemoproteus)

Nonpredictive

Genetic diversity 
(Plasmodium)

Nonpredictive

Latitude Prevalence 
(Haemoproteus)

Predictive

Prevalence 
(Plasmodium)

Predictive

Genetic diversity 
(Haemoproteus)

Nonpredictive

Genetic diversity 
(Plasmodium)

Nonpredictive

Brazil Apodiformes, 
Passeriformes, 
Columbiformes, 
Accipitriformes, 
Galbuliformes, 
Psittaciformes

Humidity Infection 
(Haemosporidian)

Predictive Ferreira de 
Souza et al. 
(2020)

Peru Passeriformes Altitude Prevalence 
(Plasmodium)

Predictive Jones et al. 
(2013)

Chile Passeriformes Latitude Prevalence 
(Plasmodium)

Predictive Cuevas 
et al. 
(2020)Diversity 

(Plasmodium)
Predictive

Prevalence 
(Leucocytozoon)

Predictive

Diversity 
(Leucocytozoon)

Predictive

Prevalence 
(Haemoproteus)

Predictive

Diversity 
(Haemoproteus)

Nonpredictive

(continued)
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Table 5.3 (continued)

Country Avian order
Explanatory 
variables Response variables Effect type References

Chile NA Latitude Prevalence 
(Leucocytozoon)

Predictive Merino 
et al. 
(2008)Prevalence 

(Plasmodium)
Predictive

Prevalence 
(Haemoproteus)

Predictive

Prevalence 
(Haemosporidian)

Predictive

Parasite richness 
(Leucocytozoon)

Nonpredictive

Parasite richness 
(Plasmodium)

Nonpredictive

Parasite richness 
(Haemoproteus)

Nonpredictive

Parasite richness 
(Haemosporidian)

Nonpredictive

Ecuador Passeriformes Precipitation Prevalence 
(Haemosporidian)

Predictive Cadena- 
Ortiz et al. 
(2019)Site Parasitemia 

(Haemosporidian)
Predictive

Colombia Passeriformes Precipitation Prevalence 
(Haemosporidian) 
Eucometis 
penicillata

Predictive Pulgarin-R 
et al. 
(2018)

Prevalence 
(Haemosporidian) 
Manacus manacus

Predictive

Diversity 
(Haemosporidian)

Nonpredictive

Brazil Passeriformes and 
Columbiformes

Temperature Prevalence 
(Plasmodium)

Predictive Rodriguez 
et al. 
(2021)Prevalence 

(Haemoproteus)
Nonpredictive

Rainfall Prevalence 
(Plasmodium)

Nonpredictive

Prevalence 
(Haemoproteus)

Nonpredictive

(continued)
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Table 5.3 (continued)

Country Avian order
Explanatory 
variables Response variables Effect type References

Peru Passeriformes, 
Caprimulgiformes, 
Apodiformes, 
Strigiformes, 
Cuculiformes, 
Galbuliformes, 
Piciformes, 
Tinamiformes, 
Trogoniformes, and 
Columbiformes

Precipitation Parasite turnover 
(Haemosporidian)

Predictive McNew 
et al. 
(2021)Temperature Parasite turnover 

(Haemosporidian)
Nonpredictive

Elevation Parasite turnover 
(Haemosporidian)

Predictive

Net primary 
production

Parasite turnover 
(Haemosporidian)

Predictive

Host 
turnover

Parasite turnover 
(Haemosporidian)

Predictive

Precipitation Taxonomic 
diversity

Nonpredictive

Temperature Taxonomic 
diversity

Nonpredictive

Elevation Taxonomic 
diversity

Predictive

Net primary 
production

Taxonomic 
diversity

Predictive

Host 
turnover

Taxonomic 
diversity

Predictive

Mexico Columbiformes, 
Cuculiformes, 
Apodiformes, 
Strigiformes, 
Coraciiformes, 
Piciformes, 
Passeriformes

Elevation Prevalence 
(Plasmodium)

Predictive Rodríguez- 
Hernandez 
et al. 
(2021)

Prevalence 
(Haemoproteus)

Predictive

Prevalence 
(Leucocytozoon)

Predictive

Parasitemia 
(Plasmodium)

Predictive

Parasitemia 
(Haemoproteus)

Predictive

Parasitemia 
(Leucocytozoon)

Predictive

Aggregation 
(Plasmodium)

Predictive

Aggregation 
(Haemoproteus)

Predictive

Aggregation 
(Plasmodium)

Predictive

Prevalence 
(Haemosporidia)

Predictive

Parasitemia 
(Haemosporidia)

Predictive

Aggregation 
(Haemosporidia)

Predictive

(continued)
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Table 5.3 (continued)

Country Avian order
Explanatory 
variables Response variables Effect type References

Mexico Columbiformes, 
Cuculiformes, 
Apodiformes, 
Strigiformes, 
Coraciiformes, 
Piciformes, 
Passeriformes

Temperature Lineage 
community 
composition

Predictive Alvarez- 
Medizabal 
et al. 
(2021)Precipitation Lineage 

community 
composition

Predictive

Brazil Passeriformes Number of 
water bodies

Probability of 
infection 
(Haemosporidian)

Nonpredictive Fecchio 
et al. 
(2021)

Precipitation Probability of 
infection 
(Haemosporidian)

Predictive

Temperature Probability of 
infection 
(Haemosporidian)

Predictive

Mexico Passeriformes Seasonality Prevalence 
(Haemosporidia)

Predictive Hernandez- 
Lara et al. 
(2020)Prevalence 

(Haemoproteus)
Predictive

Prevalence 
(Plasmodium)

Predictive

Parasitemia 
(Haemosporidia)

Predictive

Aggregation 
(Haemosporidia)

Predictive

Brazil NA Temperature Prevalence 
(Plasmodium)

Nonpredictive Fecchio 
et al. 
(2021)Taxonomic 

diversity 
(Plasmodium)

Nonpredictive

Phylogenetic 
diversity 
(Plasmodium)

Nonpredictive

Prevalence 
(Haemoproteus)

Nonpredictive

Taxonomic 
diversity 
(Haemoproteus)

Nonpredictive

Phylogenetic 
diversity 
(Haemoproteus)

Nonpredictive

Mexico Passeriformes Seasonality Prevalence Predictive Hernandez- 
Lara et al. 
(2017)

Parasitaemia Predictive
Aggregation Nonpredictive

(continued)
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Table 5.3 (continued)

Country Avian order
Explanatory 
variables Response variables Effect type References

Brazil Passeriformes and 
Columbiformes

Seasonality Prevalence Nonpredictive Ferrerira 
et al. 
(2017)

Ecuador Passeriformes Seasonality Infection status 
(Plasmodium)

Nonpredictive Rivero de 
Aguilar 
et al. 
(2018)

richness (Dobson et  al. 2008; Poulin 2014; Kamiya et  al. 2014). Consequently, 
these three bird-rich countries offer a high diversity of hosts for parasites to occupy, 
increasing the likelihood of parasite detection. Most observations for Brazil, 
Colombia, and Peru are of parasitic Arthropoda, which are mainly represented by 
chewing lice of the genus Myrsidea sp. Avian chewing lice are ubiquitous and 
highly diverse ectoparasites of birds in Neotropical regions (Soto-Madrid et  al. 
2020). Apart from being studied for their relevance as members of Neotropical com-
munities, arthropods such as chewing lice are methodologically more straightfor-
ward to detect than other groups of parasites (e.g., viruses). We suggest that their 
vast diversity, direct detection, and usefulness as parasite models to understand eco-
logical interactions explains the high number of arthropod records observed in 
Brazil, Colombia, and Peru.

Following arthropod insects, avian protozoa comprised the next best-studied 
parasite group in the Neotropics. Brazil, Peru, Colombia, Mexico, and Chile con-
tained most avian protozoa records. Phylum Mizozoa (subphylum Apicomplexa) 
represented most of the observations, mainly including avian haemosporidian para-
sites (Plasmodium sp., Haemoproteus sp., and Leucocytozoon sp.). Apicomplexan 
parasites such as avian haemosporidians have become a model system for ecologi-
cal and evolutionary studies of bird–parasite interactions (e.g., see chapters in 
Santiago-Alarcon and Marzal 2020b). Their importance for avian conservation, 
worldwide distribution, and high probability of detection in blood smears and PCR 
molecular samples has contributed to more scientists dedicating their research to 
this highly diverse parasite system (Valkiūnas and Atkinson 2020; Bensch and 
Hellgren 2020). Although much effort to detect and understand avian haemosporid-
ian diversity in tropical settings has taken place in the last decade, most of their 
studies have been performed in temperate regions (Santiago-Alarcon and Marzal 
2020a; Chapa-Vargas et al. 2020). Moreover, haemosporidian haplotype sequence 
divergence has suggested that haemosporidian genetic richness could match world-
wide avian species richness (i.e., 10,000 bird species) (Bensch et al. 2004; Bensch 
and Hellgren 2020). Consequently, detection of avian haemosporidian diversity will 
help to understand complex antagonistic interactions – particularly of vector-borne 
parasites – and should be prioritized within Neotropical settings considered hotspots 
for host and parasite biodiversity (Santiago-Alarcon and Rojas Soto 2021).
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After avian protozoa, avian viruses were the next best-studied group. In particu-
lar, we found that the Poxviridae, Orthomyxoviridae, Flaviviridae, and Coronaviridae 
families have been the most studied avian viruses in Neotropical countries. Ecuador, 
French Guiana, Guatemala, Chile, and Venezuela contained all studies focusing on 
avian pox virus. Avian pox viruses have been observed in over 350 species of birds 
(Williams et al. 2021). Because their incidence has increased over the last 10 years, 
avian pox has been considered an emerging viral disease (Alehegn et  al. 2014), 
mainly affecting songbirds, birds of prey, marine birds, and poultry within tropical 
regions. A high prevalence of the disease has been observed in remote populations 
(e.g., Galapagos Islands), suggesting a threat to naive endemic insular avifauna in 
the Neotropical region (Williams et al. 2021). In wild continental birds, pox preva-
lence has been highly variable, and information regarding host specificity, strain 
virulence, and strain diversity remains elusive (Williams et al. 2021). In addition to 
finding many observations on avian pox viruses, our results showed avian influenza 
viruses (AIV) as the second most studied avian viruses in Neotropical countries. 
Brazil, Argentina, Peru, Ecuador, Chile, and Guatemala contained most AIV obser-
vations. Research efforts have been conducted worldwide to better understand the 
ecology of AIVs in wild birds (Wille and Barr 2022). Today, we know that highly 
pathogenic AIVs (HPAIVs) circulate on all continents except Australia and 
Antarctica (Willie and Barr 2022). Moreover, HPAIVs have caused recent outbreaks 
in South America, killing over 22,000 wild birds, mainly Peruvian pelicans 
(Pelecanus thagusI) and boobies (Sula variegata) (Gamarra-Toledo et  al. 2023). 
Apart from these species, HPAIV has affected the near-threatened Guanay cormo-
rant (Leucocarbo bougainvillii) across the coastline of Peru and has been suggested 
to be a potential threat to scavenger species such as the Andean condor (Vultur 
gryphus) (Gamarra-Toledo et al. 2023). Researchers are calling for epidemiological 
surveillance to better understand the extent to which such outbreaks could progress.

Following avian influenza, West Nile virus was the third most studied avian virus 
in the Neotropical region. Mexico and the Dominican Republic contained all of the 
records. WNV belongs to the Flavivirus genus, and its transmission cycle involves 
mosquitoes as vectors and wild birds as their vertebrate hosts. For more than 
20  years, this virus has represented a threat to bird populations with persistent 
impacts on some wild bird species in North America (Passeriformes comprises the 
order with more susceptible avian species for this virus) and on human populations 
producing outbreaks of neurological disease (LaDeau et  al. 2007; George et  al. 
2015). However, despite its importance for bird conservation, human health, and 
evidence suggesting migratory birds are important carriers of this virus, WNV is 
poorly known in the Neotropical region. A worldwide study showed that Mexico, 
Guatemala, and Argentina are countries with serological and molecular evidence in 
wild birds (Tolsá et  al. 2018). However, WNV has already been classified as a 
neglected tropical disease because funding and research efforts have declined over 
time (Ronca et al. 2021).

Regarding bacteria, we found few records, even though birds are recognized as 
hosts of many bacterial species relevant to avian and human health (Reed 2002; 
Benskin et al. 2009). Escherichia coli was the best-represented bacterial species in 
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our search and was studied in Brazil, Chile, Costa Rica, and Argentina mainly in 
Charadriiformes, Psittaciformes, and Sphenisciformes hosts. In the Neotropics, the 
study of E. coli should be a priority because it has been associated with mass die-
offs of various wild bird species, which are suggested to act as carriers of multidrug- 
resistant E. coli (Reed 2002; Smith et  al. 2020). The genus Salmonella was the 
second most studied bacteria in the Neotropics, mainly in Peru and Argentina in the 
Charadriiformes and Passeriformes. Various studies have shown that this genus, 
specifically Salmonella typhimurium, is commonly isolated in intestinal samples of 
wild birds and has been associated with mass mortality events (Smith et al. 2020).

Fungi was the least studied parasite group in the Neotropics (n = 19). The best- 
represented species were Cryptococcus neoformans and Aspergillus spp. 
Cryptococcus neoformans was identified infecting the order Columbiformes 
(pigeons and doves) in Brazil, Venezuela, and Colombia. Cryptococcus spp. have 
been found in avian orders such as Passeriformes, Anseriformes, Accipitriformes, 
Apterygiformes, Psittaciformes, and Columbiformes, with wide variability in sus-
ceptibility between bird species (Johnston et  al. 2016). Additionally, Aspergillus 
spp. were identified in samples of Sphenisciformes, Suliformes, and Charadriiformes 
in Brazil, Argentina, and Mexico, respectively. At the parasite species level, we also 
recorded Aspergillus fumigatus, a common parasite among wild and domestic birds, 
with a prevalence of approximately 95% (Arné et al. 2021).

5.3.1  Parasite Dynamics as a Function of Anthropogenic 
and Ecological Factors

Understanding parasite infection patterns, their diversity and distribution in relation 
to environmental, spatial, and anthropogenic factors remains a challenge for infec-
tious disease ecology. Our synthesis found that the main anthropogenic variables 
associated to prevalence and diversity of avian parasites are land-use or habitat type, 
habitat fragmentation or loss, the proportion of native vegetation, and habitat- 
associated host diversity in its taxonomic, phylogenetic, and functional forms. 
These variables often relate differently to each parasite system, sometimes produc-
ing opposing trends even within the same parasite taxa. For example, the prevalence 
of avian pox viruses has increased with agricultural intensification (Zylberberg 
et al. 2013). In contrast, the probability of haemosporidian parasite infection has 
increased with higher proportion of native vegetation cover (Fecchio et al. 2020) or 
decrease with advanced stages of forest succession (Ferreira Junior et al. 2017). In 
the case of avian haemosporidians, parasite genera can produce these contrasting 
results because each Haemosporidian genus is transmitted by different Diptera fam-
ilies and species whose reproduction and development depend on different micro-
climatic conditions (Rodríguez-Hernández et al. 2021). For instance, the Plasmodium 
genus might be favored by anthropogenic transformation, while the Haemoproteus 
genus might be more prevalent in preserved forests (Hernández-Lara et al. 2020). 

P. Álvarez-Mendizábal et al.



109

This shows how the response of parasites to anthropogenic drivers of prevalence 
varies spatially and may be contingent on the host–parasite system.

Habitat-associated host diversity has also been related to contrasting infection 
patterns and parasite diversity in systems such as avian haemosporidians. Increased 
host functional diversity in preserved remnants of the Brazilian Atlantic Forest 
decreased Plasmodium lineage diversity (Fecchio et al. 2021). However, high host 
taxonomic diversity within the same locations increased Plasmodium taxonomic 
lineage diversity but decreased Plasmodium phylogenetic lineage diversity (i.e., 
more diverse avian communities in preserved remnants harbored more taxonomi-
cally diverse but phylogenetically clustered parasite assemblages). Apparently, dif-
ferent facets of avian host diversity (e.g., functional, taxonomic, and phylogenetic) 
can produce differential effects over the taxonomic and phylogenetic components of 
haemosporidian parasite diversity, underscoring the complexity and relevance of 
assessing the spatial patterns of host diversity in all of its facets as drivers of parasite 
diversity and distribution.

Beyond the diverse effects of anthropogenic factors, the prevalence and diversity 
of avian parasites can be driven by ecological factors (i.e., environmental and spatial 
factors). We found that latitude, altitude, temperature, precipitation, humidity, and 
seasonality are the most studied ecological drivers of parasite prevalence and diver-
sity in the Neotropics. For instance, the inverse relationship between altitude and 
temperature has been associated with the differential distribution of avian haemo-
sporidian genera across elevational gradients in different settings (Zamora-Vilchis 
et al. 2012; van Rooyen et al. 2013; Álvarez-Mendizábal et al. 2021). Similarly, an 
inverse latitudinal diversity gradient has explained the infection probability and 
phylogenetic diversity of Leucocytozoon parasites in New World birds (Fecchio 
et  al. 2019). Moreover, within Neotropical countries such as Mexico and Brazil, 
haemosporidian parasite prevalence, diversity, and community composition have 
been explained by temperature, precipitation, humidity, and seasonality (Hernández- 
Lara et al. 2017; Hernández-Lara et al. 2020; Ferreira de Souza et al. 2020). In the 
Caatinga of Brazil, there was a high frequency of hemoparasites in birds due to high 
levels of humidity and rainfall (Ferreira de Souza et al. 2020). Similarly, contrasting 
patterns in prevalence among bird species were reported in Colombia (e.g., gray- 
headed tanagers, Eucometis penicillata, exhibited higher prevalence rates in loca-
tions with less precipitation, while white-bearded manakins, Manacus manacus, 
showed higher prevalence in  locations with high precipitation) (Pulgarín-R et al. 
2018). In Mexico, increased infection rates have been associated with wet seasons, 
where there is an increase in the abundance of mosquito vectors, and coincide with 
avian host breeding seasons, where reproduction generates a trade-off between 
immune function and reproductive output (Hernández-Lara et al. 2020).

Environmental and spatial heterogeneity can structure the distribution and diver-
sity of avian parasites and their hosts and vectors. However, a wide variation in 
responses to the heterogeneity in ecological factors can be observed for most host–
parasite systems. The relative importance of environmental versus spatial drivers of 
parasite infection and diversity can also depend on the scale of the study (e.g., 
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microclimatic variables can explain parasite distribution patterns at local-landscape 
scales, while geographic barriers or latitude could be more important drivers at 
regional and global scales). Consequently, it is fundamental to continue studying 
avian host–parasite systems in regions that provide this type of environmental het-
erogeneity (i.e., tropical and subtropical) at different spatiotemporal scales to better 
understand the relative importance of such drivers for specific parasite systems.

5.4  Conclusions and Synthesis

Our study showed that arthropod insects, protozoa, and viruses are the main parasite 
groups being studied in birds across the Neotropical region. Although bacteria and 
fungi have been less studied, the potential for these parasites to produce diseases in 
avian populations should not be overlooked. Most of the published information 
regarding parasite ecology in Neotropical birds has been directed to the order 
Passeriformes, mainly because of its high number of species and because there is a 
sampling bias for passerine birds when using understory mist nets. This has allowed 
in-depth knowledge of parasite dynamics within some passerine populations (e.g., 
West Nile virus infecting American robins); however, the diversity and distribution 
of avian parasites among nonpasserine birds remains scarce, and it is an area of 
opportunity to advance the field. Our data showed that parasite species richness was 
higher in Brazil, Argentina, Colombia, Peru, and Chile than in the other analyzed 
Neotropical countries. This was certainly associated with the high bird species rich-
ness that these countries harbor, and it should also be associated with the high num-
ber of studies that we retrieved for those countries. The low parasite and bird species 
richness that was observed for countries, such as the Dominican Republic, Guatemala, 
Bolivia, and Uruguay, is likely explained by the few studies that we found, suggest-
ing that parasite surveillance and scientific publication in these countries is insuffi-
cient. The lack of studies focusing on avian disease ecology in Neotropical islands 
(e.g., Cuba, Jamaica, Haiti, Puerto Rico; but see (Parker 2018) for synthesis of dis-
ease ecology research in the Galápagos Islands) underscores the need to focus our 
scientific research on parasite dynamics of endemic insular avifauna.

We identified several anthropogenic and ecological factors affecting parasite 
prevalence and diversity across space. However, our synthesis did not include all 
relevant factors that could potentially drive parasite diversity and distribution (e.g., 
host-associated factors such as life-history traits). Although we showed that the 
diversity and distribution of some Neotropical avian parasites have been thoroughly 
assessed concerning anthropogenic and ecological drivers (e.g., avian haemosporid-
ians), most parasite systems remain understudied in the Neotropical region (i.e., 
their presence in avian hosts is not assessed as a function of relevant drivers of dis-
ease), and their diversity is yet to be uncovered (Fernandez Correa et al. 2019). We 
underscore the large knowledge gap when considering the temporal aspect of 
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disease ecology (e.g., Rubio et al. 2017). Future research efforts should focus on 
determining how the temporal component (e.g., variation across the day and across 
seasons or months) (Castro-Arellano et al. 2010) affects the ecological dynamics of 
host-parasite systems.

 Appendix A: Supplementary Data

Table 5.4 Boolean codes used for our first, second, and third searches

First search

General overview of 
parasite groups

((virus* OR bacteria* OR protozoa* OR *parasite* OR fungi* OR 
disease*) AND (birds OR avian OR aves OR avifauna) AND 
(neotropic* OR South America OR Latin America) NOT (review* 
OR laboratory OR experiment*) NOT (zoos OR captivity OR 
domestic OR poultry))

Second search

Anthropogenic factors/
parasite groups

(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) NOT (review* OR 
laboratory OR experiment*) NOT (zoos OR captivity OR domestic 
OR poultry) AND (virus*)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) NOT (review* OR 
laboratory OR experiment*) NOT (zoos OR captivity OR domestic 
OR poultry) AND (bacteria*)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) NOT (review* OR 
laboratory OR experiment*) NOT (zoos OR captivity OR domestic 
OR poultry) AND (fungi* OR fungus)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) NOT (review* OR 
laboratory OR experiment*) NOT (zoos OR captivity OR domestic 
OR poultry) AND (protista OR protozoa*)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) NOT (review* OR 
laboratory OR experiment*) NOT (zoos OR captivity OR domestic 
OR poultry) AND (Arthropoda OR Platyhelminthes OR 
Nematoda OR Rotifera)

(continued)
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Table 5.4 (continued)

Ecological factors/
parasite groups

(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (temperature OR latitude OR 
altitude OR precipitation OR humidity OR climate change) NOT 
(review* OR laboratory OR experiment*) NOT (zoos OR captivity 
OR domestic OR poultry) AND (virus*)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (temperature OR latitude OR 
altitude OR precipitation OR humidity OR climate change) NOT 
(review* OR laboratory OR experiment*) NOT (zoos OR captivity 
OR domestic OR poultry) AND (bacteria*)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (temperature OR latitude OR 
altitude OR precipitation OR humidity OR climate change) NOT 
(review* OR laboratory OR experiment*) NOT (zoos OR captivity 
OR domestic OR poultry) AND (fungi* OR fungus)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (temperature OR latitude OR 
altitude OR precipitation OR humidity OR climate change) NOT 
(review* OR laboratory OR experiment*) NOT (zoos OR captivity 
OR domestic OR poultry) AND (protista OR protozoa*)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (temperature OR latitude OR 
altitude OR precipitation OR humidity OR climate change) NOT 
(review* OR laboratory OR experiment*) NOT (zoos OR captivity 
OR domestic OR poultry) AND (Arthropoda OR Platyhelminthes 
OR Nematoda OR Rotifera)

Third search

Anthropogenic factors/
prevalence and diversity/
parasite genus or species

(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) AND (presence OR 
prevalence OR diversity OR richness) AND (Avian pox virus)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) AND (presence OR 
prevalence OR diversity OR richness) AND (Escherichia coli)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) AND (presence OR 
prevalence OR diversity OR richness) AND (Cryptococcus 
neoformans)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) AND (presence OR 
prevalence OR diversity OR richness) AND (Plasmodium sp)
(birds OR avian OR aves OR avifauna) AND (neotropic* OR South 
America OR Latin America) AND (fragmentation OR land use OR 
landscape OR urban*OR habitat perturbation) AND (presence OR 
prevalence OR diversity OR richness) AND (Myrsidea sp)

(continued)
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