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Abstract Dispersive liquid–liquid microextraction (DLLME) was initially 
described as an effective sample preparation technology in 2006. However, 
researchers are still interested in making it more efficient, and ecologically friendly. 
The dispersion of extraction solvent in aqueous samples is the critical stage in 
DLLME, which is commonly accomplished using dispersive solvents. Because 
hazardous dispersive solvents offer a significant environmental danger, attempts 
have been undertaken to produce greener dispersion procedures while maintaining 
high extraction efficiency. When it comes to ordinary DLLME, the number of fasci-
nating approaches for changing disperser solvents has expanded. As a result, the 
goal of this chapter is to provide a overview of current developments in DLLME 
dispersion modes. Different strategies are covered, including the employment of 
environmentally-benign dispersers as well as other dispersion methodologies. The 
most noteworthy approaches that have been implemented to date are highlighted. 
The problems and prospects for the future of these techniques are discussed. The 
chapter offer new study avenues, reinforce existing hypotheses, and discover trends 
among existing DLLME research papers. 
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Abbreviations 

ACN Acetonitrile 
DES Deep eutectic solvent 
DLLME Dispersive liquid–liquid microextraction 
HBA Hydrogen bond acceptor 
HBD Hydrogen bond donor 
HLLME Homogeneous liquid–liquid microextraction 
LLE Liquid–liquid extraction 
LPME Liquid phase microextraction 
LLME Liquid–liquid microextraction 
THF Tetrahydrofuran 
EF enrichment factor 
DLLME-SFOD solidified organic droplet 
ST-DLLME solvent terminated-DLLME 
AA-DLLME Air assisted-DLLME 
VA-DLLME vortex assisted-DLLME 
USA-DLLME Ultrasound assisted-DLLME 
MSA-assisted DLLME magnetic stirrer assisted DLLME 
n-DLLME normal DLLME 
DES deep eutectic solvent 
NADES Natural deep eutectic solvent 
IL ionic liquid 
PIL polymeric ionic liquid 
CAC critical aggregation concentration 
CMC critical micelle concentration 
K Partition coefficient 
LDS low density solvent 
UV ultraviolet spectrophotometry 
MS mass spectrometry 
GC gas chromatography 
HPLC high performance liquid chromatography 
CE capillary electrophoresis 
FAAS flame atomic absorption spectroscopy 
FIA flow injection analysis 
SIA sequential injection analysis 
USAEME USA emulsification microextraction 
LWCC liquid waveguide capillary cell 
ISFME in situ solvent formation microextraction 
DeA decanoic acid 
PAN 2-pyridylazo-2-naphthol
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1 Introduction 

Liquid–liquid extraction (LLE) is the most commonly used technique of sample 
preparation. In LLE, a few milliliters of a water immiscible organic solvent is mixed 
and shaken with the aqueous to allow for analyte partitioning. After that, the extract 
is left to evaporate under a stream of nitrogen to evade sample oxidation. Then, 
the residue is dissolved is the least possible amount of a suitable organic solvent to 
keep the sample highly concentrated. These procedure are not only time consuming, 
but also health hazardous due to the large volume of organic solvents that either 
evaporate or disposed after extraction [1]. In addition, The automation of LLE steps 
is a real challenge [2]. For these reasons, LLE is considered ecologically unfriendly 
and laborious. 

Miniaturization of extraction technologies has grown significantly in recent 
decades [3] to solve the problems of classical LLE while benefiting from its cost-
effectiveness and high efficiency. A tiny amount of a water-immiscible organic 
solvent is employed in liquid–liquid microextraction (LLME) to extract target 
analytes from aqueous samples. This smaller variant of LLE offers a more environ-
mentally friendly approach to improving extraction efficiency with fewer chemicals 
and quicker analytical times. Moreover, LLME was readily automated, which aided 
in the analytical process and safeguarded workers [4]. 

DLLME technique was developed in 2006 by Rezaee and colleagues as a modifi-
cation of the LLME technique [5, 6]. The purpose was to improve the recovery rate 
of LLME. In DLLME, an immiscible organic solvent is combined with an organic 
disperser to create an emulsion. Manual shaking is then used to disperse the organic 
extractant into tiny droplets, resulting in a homogeneous solution. This dispersion 
process extends the contact surface area between the extractant and the sample, 
thereby increasing extraction kinetics. Following this, the sample is centrifuged to 
separate the extractant and break up the emulsion. In 2007, Zanjani et al. proposed 
a new variation of DLLME that uses low-density solvents of long-chain alcohol. 
These solvents solidify at low temperatures, allowing for easy phase separation. 
This method, called DLLME with solidified organic droplet (DLLME-SFOD), has 
been widely used in various applications [7]. A year later, ultrasound was utilized 
instead of manual or mechanical shaking to induce dispersion, eliminating the need 
for a dispersing solvent [8]. In 2010, Chen et al. introduced the solvent-terminated 
DLLME (ST-DLLME) technique, which avoids the centrifugation step by adding an 
auxiliary solvent to break the dispersion and induce phase separation [9]. This mode 
aided in the automation of the method. In 2011, Jafarvand and Shemirani used coacer-
vates and reverse micelles to form supramolecular self-assemblies, resulting in higher 
extraction efficiency and selectivity for specific analytes [10, 11]. The following year, 
Farajzadeh and Mogaddam introduced air-assisted DLLME (AA-DLLME) using 
repeated aspiration/injection cycles to induce dispersion [12]. In 2014, magnetic 
ionic liquids were employed in DLLME to induce phase separation using a strong 
magnet, eliminating the need for centrifugation [13]. In 2020, water-immiscible 
natural deep eutectic solvents (NADES) were utilized in DLLME to extract various
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analytes, including nine phthalic acid esters [14]. Figure 1 illustrates the milestones 
of DLLME development over the last years. DLLME is one of the most successful 
miniaturized sample preparation techniques, due to the high EF, high sensitivity, 
acceptable precision, accuracy and selectivity according to the acceptance criteria 
and guidelines of the Food and Drug Administration (FDA). In addition, DLLME 
is a fast mode of sample preparation in comparison with conventional techniques. 
The speed of DLLME could be even accelerated by using semiautomated-DLLME 
or fully automated DLLME [15].

2 Fundamentals 

The efficiency of the DLLME technique is governed by the same experimental condi-
tions as LLE. Both extraction and microextraction processes are equilibrium-based 
and are controlled by the partition coefficient (K), which can be calculated using the 
following equation: 

K = Corg,Eq  

Caq,Eq  

where, Corg,Eq represents the concentration of the analyte in the extracting solvent, 
and Caq,Eq represents the concentration of the analyte in the aqueous sample, both 
measured at equilibrium. The main difference between microextraction and extrac-
tion lies in the use of tiny amounts of the extractant (microliters) in DLLME, 
compared to milliliters in conventional LLE. As a result, Corg,Eq is substantially 
higher in DLLME when compared to LLE for two primary reasons. Firstly, the 
small volumes of organic solvents used in DLLME leads to the analyte being highly 
concentrated due to the inverse relationship between volumes and concentrations. 
Secondly, Caq,Eq at equilibrium is very high because only a small amount of the 
analyte migrates to the small layer of organic extractant. However, K must remain 
constant, which only occurs if Corg,Eq is also very high to maintain the (Corg,Eq/Caq,Eq) 
ratio. 

In DLLME, the analyte partitioning takes place at the interface between the 
aqueous sample and the immiscible organic extracting solvent. Increasing this inter-
face enhances the efficacy of partitioning and in turn, the efficiency of microextrac-
tion. In DLLME, the organic extract is dispersed in the aqueous sample with the aid 
of a disperser, mechanical force, or both. This dispersion step increases the contact 
surface area between the two layers, leading to better extraction and higher efficiency. 
The efficacy of the process can be assessed by calculating the enrichment factor (EF) 
using the following formula: 

EF  = Corg,Eq  

Caq,int
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Fig. 1 Timeline of the development in dispersive liquid–liquid microextraction (DLLME)



280 A. Bedair and F. R. Mansour

where, Caq,int denotes the starting concentration of the analyte in the aqueous sample. 
The EF can be enhanced by selecting appropriate organic solvents and optimizing 
the experimental settings that influence the DLLME process. These optimization 
techniques will be discussed in the following sections. 

2.1 Requirements of Organic Solvents Used in DLLME 

The DLLME technique relies on the utilization of water immiscible solvents as 
extractants, while a disperser is used to increase their miscibility in the aqueous 
sample. A diverse range of organic solvents can serve as organic extractants, and their 
properties are determined by the specific DLLME mode employed. However, there 
are certain fundamental characteristics that must be satisfied before utilizing organic 
solvents as extractants in DLLME. Firstly, the extractant must exhibit low miscibility 
with the aqueous medium to achieve proper phase separation; this is especially critical 
as the use of a disperser increases the extractant’s miscibility in the aqueous medium. 
Secondly, the extractant should possess the capacity to dissolve the target analyte, 
with high partition coefficients being desirable. Unfortunately, partition coefficient 
data for all analytes across various solvents is not widely reported, so the documented 
Kow value for the octanol/water system is often utilized to estimate the lipophilicity 
of the target analyte. Thirdly, after manual or instrumental shaking, the organic 
solvent should be dispersible either using an organic disperser or not. Fourthly, the 
extractant used must be compatible with the subsequent procedure, or else it must 
be evaporated first. This additional phase may negatively affect the accuracy of the 
sample preparation procedure, besides the effort and time involved. Finally, the cost 
of the extractant should also be taken into consideration, as it should be inexpensive 
to minimize the overall cost of the analytical procedure. Table 1 summarizes the 
properties of the most widely used solvents in DLLME.

2.2 Experimental Variables in DLLME 

There are several experimental factors that can be optimized to increase extraction 
efficiency in DLLME including solvents types and volume used in extraction and 
dispersion, sample temperature and pH, salt addition, extraction duration and stir-
ring rate. The most significant of these factors are proper choices of the kind and 
amount of disperser and extractant. In traditional DLLME, Halogenated hydrocar-
bons, including chloroform, are frequently employed as extractants, however, in 
cases where low density solvents are utilized in DLLME modes, 1-undecanol has 
emerged as the most prevalent extractant. Typically, maximum extraction efficiency 
is found at lower extractant quantities (20–100 µL). The type and volume of disperser 
come next in significance. Acetonitrile (ACN) [17] and methanol [18, 19] are  the  
most often utilized dispersants. A few hundreds of microliters (200–800 µL) are
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Fig. 2 Optimization of a extractant volume, b pH of diluent, c dispersion technique and 
d centrifugation time (n = 3). Reprinted from [21] with permission from Elsevier 

frequently sufficient to spread the extracting solvent in the sample. Greater quanti-
ties of dispersants are mot recommended due to the unwanted co-solvency, which 
reduces the efficiency of DLLME [20]. While optimizing the extraction conditions, 
it is essential to consider the potential interactions between variables. The extrac-
tion efficiency of ionizable solutes can be affected by sample pH. The use of acids 
or bases can potentially alter the ionization process towards the unionized form of 
the analyte, which is theoretically easier to extract. Similarly, the salting out effect 
can boost extraction efficiency. Investigating the effects of sample temperature, salt 
concentration, stirring rate, and extraction duration may aid in achieving the best 
extraction conditions. Figure 2 shows the effect of extractant volume, pH, dispersion 
method and centrifugation time on the EF of four different antivirals. As the figure 
indicated, the most crucial factor was the extractant volume, with markedly higher 
EFs at lower volumes of the extractant [21]. These factors may be modified at the same 
time utilizing chemometrics, which can predict the optimal conditions for DLLME 
with the fewest experimentation, while also predicting variables’ interactions [22, 
23]. 

2.3 Modes of DLLME 

The conventional mode of DLLME (also known as normal DLLME or n-DLLME) 
employs high density organic solvents as extractants, and manual shaking to facilitate 
in dispersion [24]. The different modes of DLLME can be classified according to 
the extractant type or the dispersion technique. As for the extractant type, different
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solvents have been utilized such as low density solvent (LDS), ionic liquids (ILs), 
deep eutectic solvent (DES), and supramolecular (SUPRAS). On the other hand, 
DLLME can be categorized according to the dispersion technique into vortex-assisted 
(VA), ultrasound-assisted (USA), AA and magnetic stirrer assisted (MSA)-DLLME. 
Phase separation after dispersion is usually induced by centrifugation [25], although 
solvent-terminated DLLME has been frequently reported [26]. When a dispersion 
is subjected to centrifugal force, the tiny droplets within the dispersion experience 
a radial outward force. This force causes these droplets to move away from the axis 
of rotation, towards the outer edges of the sample centrifuge tube. The centrifugal 
force in this case accelerates the phase separation. Denser solvents will settle faster 
than lighter ones, causing them to migrate towards the bottom of the sample, while 
lighter solvents float on the top [27]. Figure 3 depicts the categorization of the various 
DLLME modes.

2.3.1 n-DLLME 

The most widely employed method for biological analysis is conventional disper-
sive liquid–liquid microextraction (n-DLLME), which involves combining a suit-
able disperser with an extractant that is heavier than water [28]. Upon injection 
of the combined extractant/disperser solvents into the sample, shaking the solution 
leads to the formation of an unstable emulsion which can be rapidly disrupted by 
centrifugation. The bottom layer is then collected using a syringe and supplied to 
the assay equipment. In this context, n-DLLME has been successfully utilized to 
determine different classes of drugs including antipsychotics [29], antidepressants 
[30, 31], antimicrobials [32, 33], immunosuppressants [34], antiarrhythmics [35], 
and drugs of addiction [36–38]. Chloroform [39–41] is the most commonly used 
extractant, while methylene chloride [35] and carbon tetrachloride [37] are other 
often used halogenated hydrocarbons. It should be noted that the disperser needs 
to possess miscibility with both the sample and the extracting solvent in order to 
serve as a dispersant. Commonly employed dispersers in n-DLLME include ACN 
[30], methanol [29], acetone [33], ethanol [37], and tetrahydrofuran (THF) [40]. In 
some instances, the organic solvent is evaporated before utilizing the analytical tool, 
and the sample residue is reconstituted in a compatible solvent [41]. n-DLLME has 
been employed in a range of analytical techniques, including ultraviolet spectropho-
tometry (UV) [30], mass spectrometry (MS) [34], gas chromatography (GC) [36], 
high performance liquid chromatography (HPLC) [32], and capillary electrophoresis 
(CE) [40, 41]. The n-DLLME technique has certain limitations, such as low manual 
shaking efficiency, high toxicity of organic extractants, and difficulties in automation. 
Researchers have addressed these challenges by modifying the default processes and 
developing new modes of DLLME [28].
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2.3.2 Ultrasound Assisted DLLME 

The most critical step in DLLME is the dispersion. In USA-DLLME, ultrasonic 
waves are employed to induce better dispersion than manual shaking. This mode 
has also been termed USA emulsification microextraction (USAEME). The ultra-
sonic energy was preferentially employed to increase the turbidity of the solution 
and spread the extractant droplets into the aqueous phase. As a result, the analyte was 
trapped in these tiny droplets, which make it easily separated from the aqueous solu-
tion. Furthermore, the ultrasonic power hastens the transfer of analyte to the extractant 
phase. To monitor these effects, the ultrasonic settings (temperature, duration, and 
amplitude of sonication) could be optimized [42] to increase the frequency and rate 
of material molecular motion, enhance solvent penetration, and thus increase the 
dispersion degree of extraction solvents. This accelerates the speed of the analytes in 
the extraction phase, and promote extraction efficiency. Altunay et al. [42] developed 
USA-DLLME using NADES as extractants for extraction of trace metals from honey 
by using flame atomic absorption spectroscopy (FAAS). This application studied the 
effect of ultrasound time and temperature. The effect of sonication period on mass 
transfer and metal ion recovery was studied from 0 to 20 min at a maximum ampli-
tude of 70%. The recovery values for metal ions were relatively low when ultrasound 
was not used. The recovery rate for all metal ions rose significantly as the ultrasound 
period increased up to 10 min, and there was no significant difference in recovery at 
longer ultrasound times. The influence of ultrasonic bath temperature on the produc-
tion of NADES droplets with metal ion recovery was also investigated at temperatures 
ranging from 25 to 60 °C. The best phase separation was attained at 35 °C. No phase 
separation was accomplished, especially at temperatures over 45 °C. As a result, 
an ultrasound period of 10 min and a temperature of 35 °C were determined to be 
appropriate. Generally, ultrasonic bath [43–47] was widely used in USA-DLLME 
in addition to the ultrasound homogenizer probe, which could be more suitable for 
limited sample volumes or small extraction vessels [48]. 

Fernández et al. [49] examined n-DLLME and USA-DLLME for the detection of 
benzodiazepines in biological fluids; USA-DLLME had greater efficiencies due to 
the increased dispersion. Moreover, the ultrasonic waves in USA-DLLME obviated 
the need for a dispersant, reducing solvent usage [50]. Yet, most USA-DLLME appli-
cations employ both a disperser and an ultrasonic bath for enhancing the extraction. 
Fernández and coworkers [51] used USA-DLLME for determination of antidepres-
sants in human plasma by adding 2.5 mL of ACN to samples to act as protein 
precipitant and dispersant. As an extractant, a volume of 200 µL of chloroform 
was used. The extracted drugs were tested using UPLC/UV, and the findings were 
compared to those obtained using traditional LLE connected to GC/MS, there were 
no substantial differences between the two techniques which indicated that DLLME 
could enable UV detection to give comparable results to the highly sensitive MS 
detection. USA-DLLME was also utilized in flow injection analysis (FIA) with 
inline derivatization through diazotized p-sulfanilic acid to determine tetracyclines 
in egg supplement samples [52].The reaction was carried out at 45 °C in a slightly
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alkaline media, and the absorbance at 435 nm was measured using a liquid waveg-
uide capillary cell (LWCC). GC–MS was also utilized to detect seven recreational 
drugs in human plasma, including meperidine, ketamine, methadone, amphetamine, 
and amphetamine derviatives. The impact of ultrasound application duration ranged 
from 0 to 5 min. After 2 min, the optimal sonication was reached. Because of the 
potential demulsification impact, prolonged duration in the ultrasounds application 
through a bath was undesired. USA-DLLME was used to extract different analytes 
from different matrices including aqueous samples [43, 48], food [42] and biological 
samples [53]. 

2.3.3 VA-DLLME 

Instead of shaking or using ultrasonic waves, the sample can be vortexed with an 
extractant and a dispersant to induce dispersion. A principal role of vortex is to break 
down any extraction solvent into tiny droplets, increase the contact area between 
the droplets and water, and speed up extraction equilibrium, which is dependent on 
vortex speed and duration [54]. As a result, the vortex promotes the equilibration and 
dispersion of the target analytes in the extractant and aqueous solution, reducing the 
equilibrium period [55]. So, vortex time should be enough to achieve equilibration 
between the aqueous sample and the extractant [56]. Usually, the vortex step is 
performed with the aid of a vortex agitator [56–58]. The multi-tube vortexers were 
also employed to increase sample throughput. This allows for more applications 
within the same timeframe and facilitates automation. 

Compared with other modes of DLLME, the vortex outperformed the other 
mechanical agitators in terms of extraction efficiency [59]. The sample/extractant 
combination is vortexed with or without an organic disperser to generate an emul-
sion in VA-DLLME. Herrera-Herrera et al. [60] created the VA-DLLME tech-
nique for extracting various sulfonamides and quinolones prior to HPLC–UV. As 
an extractant, chloroform was employed, while acetonitrile was used as a dispersant. 
Before centrifugation, the ternary mixture was vortexed for 3 min. Interestingly, 
vortexing had little effect on extraction efficiency, but it dramatically enhanced 
accuracy. This describes how vortices help to accelerate the equilibrium process. 
VA-DLLME was widely used for extraction various analytes from diverse sample 
types including beverages [61], biologicals [62, 63], food [64], and sewage [65]. 
However, VA-DLLME biological applications are still lower than expected [66]. 

2.3.4 AA-DLLME 

To eliminate the need of equipment in DLLME, an AA-DLLME technique was 
introduced, in which dispersion was produced simply by aspirating and injecting the 
extraction mixture with a syringe repeatedly. This approach requires no extra instru-
ments, facilitating the automation process [67]. The principle of AA-DLLME was 
similar to DLLME in many ways, but there was no requirement for an organic solvent
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to disperse an extractant into the sample solution. A hydrophobic organic solvent at 
µL-concentration (extraction solvent) was dispersed into the sample solution using 
a syringe fitted with a needle and sucking/dispersing cycles numerous times. Despite 
the absence of a dispersant solvent, this approach considerably enhanced the contact 
area of the extraction solvent with the sample solution. The investigations revealed 
that the two primary factors in liquid phase micro extraction (LPME) procedures 
were extraction solvent viscosity and interfacial tension [68]. These parameters influ-
ence both the extractant droplet size and the analyte mass transfer rate. Aspirating-
dispersing cycles transform the extraction solvent into extremely small droplets, 
increasing the contact area of the sample solution with the extraction solvent dramat-
ically. During the aspirating/dispersing cycles in AA-DLLME, there is intense turbu-
lence in the solution, and mass transfer of the analytes is mostly regulated by the 
convective process [67]. 

A syringe is used in AA-DLLME to repetitively withdarw and inject the extractant 
and sample until a hazy solution forms. Farajzadeh et al. [31] used AA-DLLME to 
preconcentrate NSAIDs in biological fluids. The hazy solution was back-extracted 
into 10 µL of ammonia buffer (0.1 M, pH 9) after four rounds of recurrent withdrawal 
and injection before being delivered to an HPLC equipment with UV detection. When 
the analytical figures of merit were compared to other methods of LPME, it was 
discovered that AA-DLLME had the highest EF, the maximum sensitivity, and a suit-
able extraction duration of 10 min. NSAIDs might potentially be chemically deriva-
tized and extracted concurrently with AA-DLLME [69]. The derivatizing agent for 
GC-FID was butyl chloroformate, while the catalyst was picoline. A syringe was used 
to aspirate and disseminate the material, which was combined with the chloroform, in 
presence of the catalyst and the reagents. The number of extraction cycles was inves-
tigated; four rounds of repeated injection and withdrawal were found to be adequate 
to generate dispersion. With five or more extraction cycles, no further improvements 
in signal intensities were detected. The discovered method’s sensitivity was higher 
than previously reported GC–MS approaches, and it was less expensive and time-
saving. The AA-DLLME techniques’ simplicity and ease of automation improve their 
potential in biological applications. Barfi et al. [70] compared the performance of 
ultrasound-enhanced AA-DLLME (USE-AA-DLLME) with previous DLLME tech-
niques that extracted NSAIDs using an organic disperser. Higher EFs were reported 
with USE-AA-DLLME, which might be attributable to disperser-induced improved 
solubility in the aqueous sample. So, because of these advantages AA-DLLME 
including facilitating of the automation and absence of disperser, AA-DLLME was 
widely used for determination different analytes from different matrices including 
water [71–73], beverages [74], food [75–77], biological [78] and biodiesel samples 
[79]. 

Rahmani and coworkers [80] compared USA-DLLME, AA-DLLME and VA-
DLLME to extract benzene, toluene, ethylbenzene and xylene isomers (BTEX) 
from water samples. There was no need for a dispersive solvent in any of these 
procedures, as the extractant is dispersed by air bubbles, vortex, and ultrasound for 
AA-DLLME, VA-DLLME, and USA-DLLME, respectively. The findings revealed 
that the three techniques used were highly effective, and the hazy solutions formed
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were capable of extracting analytes in a relatively short time and with good recov-
eries (BTEX was used as a simple analyte in these tests). These three procedures 
were faster, simpler, more sensitive, less costly, and more environmentally friendly 
than the previous DLLME methods due to the absence of the dispersive solvent. AA-
DLLME required a larger volume of extractant and, as a result, required less time 
to centrifuge. Consequently, AA-DLLME had the shortest analysis time (3 min). 
The linear dynamic range of AA-DLLME was greater (50–2600 µg /L), although 
VA-DLLME utilizes less solvent (only 25 µL) and had the best RSD. USA-DLLME 
has the highest enrichment factor, up to 245-fold. 

3 New Developments in DLLME 

Since the introduction of DLLME in 2006, tremendous efforts have been exerted to 
enhance the performance and widen its scope of application. These advances can 
be categorized into three main trends. The first involves exploring new extractants 
such as LDS, IL, or DES. The second direction focuses on facilitating the phase 
separation step such as in DLLME-SFOD. The third direction is geared towards 
method automation. The following sections discuss these new trends in more details. 

3.1 New Extractants in DLLME 

3.1.1 Using Low Density Solvents in DLLME 

The main obstacles in n-DLLME is the restricted number of extraction solvents 
and the high toxicity of the halogenated hydrocarbons. These barriers were over-
come by utilizing nontoxic organic solvents, with densities lower than water, such as 
hexane, toluene, xylene, octanol and others in a mode known as low density solvent 
DLLME (LDS-DLLME). Following dispersion and termination, the floating layer 
could be delivered to the analytical equipment using a syringe. The LDS-DLLME 
theory has been studied [81]; nonetheless, applicability in biological fluids are still 
quite beyond expectations. Ghambari et al. [82] used LDS-DLLME followed by 
HPLC/UV to extract and evaluate warfarin in plasma. The extraction was carried 
out in a separate cell. The extraction cell contains deproteinized plasma (pH 2.3 
adjusted), an LDS (octanol, 150 µL), a disperser (methanol, 150 µL), and a magnetic 
stir bar. After the extraction procedure, the extractant collection was facilitated by 
the long and narrow neck of a special extraction cell. Warfarin extraction recovery 
was 91%. Applying ultrasonic waves during the dispersion stage boosted LDS-
DLLME efficiency. Meng et al. [83] employed SA-LDS-DLLME to determine 
illicit drugs in plasma. The authors compared their approach to hollow fiber liquid-
phase microextraction (HFLPME); USA-LDS-DLLME achieved greater efficiency 
in shorter extraction times. The fundamental benefit of LDS-DLLME is that the
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LDS organic extractants are compatible with routinely used HPLC mobile phases. 
As a result, there is no need for solvent evaporation or reconstitution prior to sample 
injection. Unfortunately, LDS-DLLME has intrinsic limitations due to the incom-
plete phase separation following extraction and the challenging automation of the 
centrifugation step. Other DLLME modes, such as SFOD [84] and ST-DLLME [9, 
85] could overcome these problems. 

3.1.2 Using ILs in DLLME 

ILs have inspired scientists in a variety of research and industrial fields over the 
last decade. This is demonstrated by the large number of articles in the area of 
analytical chemistry pertaining to ionic liquids. ILs can be effectively isolated and 
reused to greatly decrease application costs [86–89]. Another significant benefit of 
ionic liquids is the ability to select from a wide range of ions to create an IL with 
the desired physical and chemical characteristics such as melting point, viscosity, 
density, and miscibility with water and other solvents. As a result, ILs are frequently 
referred to as modelling solvents. Ionic liquids’ distinctive characteristics piqued the 
curiosity of scientists and engineers in the field of extraction and separation [90]. 
For these reasons, ILs and polymeric ionic liquids (PILs) are used in a variety of 
applications in DLLME [91–93]. 

The physical and chemical characteristics of ILs are primarily determined by the 
size, placement, and type of the organic cation and the organic/inorganic anion. The 
potential of constructing IL structures by selecting the cation and anion that give the 
necessary physicochemical qualities opens up the possibility of widespread usage of 
these substances in academic research and industrial applications [94, 95]. ILs are 
commonly regarded as “green solvents” for their excellent solvation characteristics, 
low vapour pressure, and low toxicity [92]. 

Zhou et al. [96] and Baghdadi et al. [97] were the first to use ionic solutions 
in the DLLME method and to coin the term IL-DLLME [60]. Liu et al. [98] used  
this IL-DLLME mode for preconcentration and isolation of heterocyclic pesticides 
in water before HPLC/DAD determination. The IL employed was [C6MIm] [PF6], 
and the dispersive liquid was methanol [99]. This approach has recently been modi-
fied by changing the sample temperature, using ultrasound, microwaves, or more 
radical modifications such as the in situ IL formation during ME. This in situ IL-
DLLME mode was initially suggested by Bahdadi and Shemirani in 2009 and is often 
referred to as in situ solvent formation microextraction (ISFME) [100]. This in situ 
IL-DLLME technique works by dissolving hydrophilic IL in an aqueous solution 
containing the analytes of interest, then adding an ion-exchange reagent to create an 
insoluble IL. An ion-exchange reagent supports a metathesis reaction, which trans-
forms the hydrophilic IL into a hydrophobic one that settles and preconcentrates the 
analytes. Yao and Anderson [101] used a similar method for the measurement of 
aromatic hydrocarbons. 

Although ILs have been shown to be good extractants in DLLME, phase separa-
tion still needs centrifugation, which is time-consuming and difficult to automate. So,



Dispersive Liquid–Liquid Microextraction 291

an innovative family of ionic liquids with magnetic properties, known as magnetic 
ionic liquids (MILs), has been synthesized, which frequently feature an imidazolium 
[102], choline [103], or phosphonium cation [104] and a paramagnetic metal (Fe, 
Co, Mn, or Gd) chloride anion. The higher the magnetic susceptibility, the easier the 
phase separation in the presence of an external magnet. For this reason, Abdelaziz 
et al. [105] used a hydrophobic gadolinium-based MILfor the first time as extraction 
solvent in DLLME. In this work, the produced Gd(III)-based MIL demonstrated 
hydrolysis resilience in aqueous samples as well as a minimal UV noise signal. 
Furthermore, the suggested MIL’s acceptable viscosity promotes analyte partitioning, 
speeds phase separation, and simplifies extract handling and transfer into the analyt-
ical instrument. Furthermore, the introduced Gd-mased MIL showed significantly 
high magnetic susceptibility, enabling for quicker extraction solvent recovery with a 
powerful magnet. 

3.1.3 Using Deep Eutectic Solvent in DLLME 

One of the objectives of implementing the DLLME method is to utilize environ-
mentally friendly green solvents [106]. The critical step in this aspect is to prepare 
a solvent that is not only green but also offers efficient extraction [107]. Typically, 
the solvents used in DLLME methods are toxic, which has spurred the development 
of remarkable and ecologically favorable green solvents [108]. DESs are typically 
made up of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs). 
HBAs are frequently quaternary ammonium compounds, whereas HBDs are amines, 
carboxylic acids, alcohols, polyols, or carbohydrates [109, 110]. Because of the 
creation of intramolecular hydrogen bonds, DESs have a much lower melting point 
than their separate components. DESs have low volatility, low vapour pressure, a 
reasonably broad liquid range, and high heat durability [111]. Furthermore, DESs 
are readily produced without the need for purification stages, and they are made 
from low-cost compounds with low or minimal toxicity. DES are also biodegradable 
and easily reusable. These characteristics make DESs superior to traditional solvents 
used in extraction processes [112], especially DLLME extraction and isolation of 
bioactive substances [113, 114]. One important benefit of DESs, for example, is their 
ability to be tuned to accomplish specific functionality due to the numerous possibil-
ities of beginning components. The selectivity of DESs for extraction and separation 
can be adjusted by altering the structure and molar ratio of their hydrogen-bonding 
components [115]. DESs have been categorized into four kinds, as shown in Fig. 4: 
Type I (metal halide and quaternary salt), Type II (quaternary salt and hydrated metal 
halide), Type III (quaternary salt and hydrogen bond donor), Type IV (metal halide 
and HBDs), and Type V (HBD and HBA). This class is particularly important in the 
microextraction and sample preparation of ionic and highly polar analytes [116–118].
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Fig. 4 Types of deep eutectic solvents (DES), with examples 

3.1.4 Using SUPRAS in DLLME 

SUPRASs are nano-structured liquids produced through self-assembly processes 
occurring at molecular and nanometer scales from amphiphiles [119]. These solvents 
have been used in extraction processes for many years under different names such as 
cloud point technique and coacervates [120, 121], and offer a set of appealing intrinsic 
properties, including the use of self-assembly based synthetic procedures, widespread 
availability of amphiphiles, tunability of solvent properties, and excellent solvation 
properties for various compounds [119]. SUPRASs are formed through consecu-
tive self-assembly processes that occur at molecular and nanometer levels, where 
amphiphiles form three-dimensional aggregates that separate from the bulk solution 
as a new liquid phase via coacervation when the critical aggregation concentration 
is reached (Fig. 5) [122]. Two main types of SUPRAS, vesicle-based and reverse 
micelle-based, have been developed for analytical extractions, with driving forces 
for effective solubilization and high extraction efficiency being dispersion forces 
between hydrocarbon chains and analytes, cation interactions between aromatic 
rings of complexes and amphiphiles, and hydrogen bonding between nitrogen and 
oxygen atoms in complexes and carboxylic acids from [123, 124]. Reverse micelle-
based SUPRAS using THF has shown greater potential for DLLME compared to 
vesicle-based SUPRAS [125, 126].

The initial self-assembly process in supramolecular solvent production is the 
accumulation of amphiphilic molecules in a variety of nanostructures. As a critical 
aggregation concentration (CAC) is reached, amphiphiles spontaneously aggregate 
to minimise adverse solvophobic interactions [128, 129]. It becomes energetically 
advantageous for amphiphiles to interact with one another at the CAC. Colloidal 
self-assembled structures result from the intricate interplay of solute–solvent and 
solute–solute interactions.
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Fig. 5 Self-assembly processes in supramolecular solvent formation. Reprinted from [127] with 
permission from Elsevier

Seidi et al. [123] developed DLLME-SFOD based on a vesicular SUPRAS of 
decanoic acid and quaternary ammonium compound for extraction of cadmium, the 
extraction mechanism of cadmium depended on the SUPRAS structure contains 
polar and apolar groups, their various interactions with analytes can boost extrac-
tion efficiency. The interactions between the vesicular SUPRAS and the Cd(II)-(2-
pyridylazo)-2-naphthol (PAN), PAN complex are shown in Fig. 6. The main extrac-
tion driving forces appear to be three types of interactions: (1) dispersion forces 
between the hydrocarbon chains of the amphiphile and the analyte; (2) -cation inter-
actions between the aromatic rings of the Cd(II)-PAN complex and Bu4N+; and 
(3) hydrogen bonding between the nitrogen and oxygen atoms in the Cd(II)-PAN 
complex and hydrogen of carboxylic acid. These interactions allow for effective 
solubilization of Cd (II)-PAN in the SUPRAS as well as high extraction efficiency.

Bendito et al. [124] proposed a novel type of SUPRAS-based extraction consti-
tuted of reverse micelles of decanoic acid (DeA) distributed in a water/THF combina-
tion in 2007. They demonstrated that polar and non-polar molecules were extracted 
into SUPRAS using hydrogen bonding and Van der Waals interactions that reverse 
micelles may generate. A series self-assembly model predicts that the dissolved DeA 
in THF producing reverse micelles has at least three critical micelle concentration 
(CMC) points (4.8 ± 0.2, 7.6 ± 0.4, and 51 ± 2 M).When water is added to this 
combination, the aggregates partially dissolve, facilitating contact and encouraging 
the formation of larger reverse micelles as an immiscible liquid phase separate from 
the THF/water bulk solution [125, 126]. It is worth mentioning that using THF based 
SUPRAS is much more than vesicular SUPRAS in DLLME.
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Fig. 6 a Chemical interaction can influence vesicle formation and its stability, b hydrogen bonding 
in vesicular formation, and c molecular mechanism of microextraction and different interactions 
between Cd (II)—PAN complex and the vesicle. Reprinted from [123] with permission from 
Springer Nature

3.2 Phase Separation by SFOD 

DLLME-SFOD use low melting point solvents (10–25 °C), such as 1-undecanol and 
1-dodecanol [84, 130]. The floating droplet is solidified using an icebox after disper-
sion and phase separation and then transferred using spatula or forceps. The key 
benefit of DLLME-SFOD is the ease with which the extracted phase may be sepa-
rated. In pharmaceutical and biological analysis, DLLME-SFOD is the second most
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often utilized mode of DLLME. DLLME-SFOD has been used to determine several 
pharmaceuticals [131–138] and drugs of abuse [139–142] in dosage forms as well as 
biological fluids such as urine [136], plasma [138, 140], milk [143] and tissues. While 
being extensively recognised in biomedical analysis, DLLME-SFOD has several 
drawbacks; to extract the analyte of interest, two organic solvents (the extractant and 
the disperser) are required. This issue can be avoided by using mechanically-induced 
dispersion, as in USA-DLLME-SFOD and AA-DLLME-SFOD [144]. The other 
issue stemmed from the centrifugation stage, which slowed the extraction process 
and hampered automation. ST-DLLME [145] can be used to solve this problem by 
adding a demulsifying solvent. To break the emulsion and produce phase separation, 
a demulsifying solvent is added to the sample/extractant/disperser combination in 
ST-DLLME. In this situation, the centrifugation stage can be skipped, allowing for 
process automation and a reduction in overall analytical time. The main barrier in 
DLLME-SFOD is the limited number of solvents that can solidify at relatively low 
temperature without causing the whole sample to freeze. Exploring other solvents 
especially those from botanical origin with relatively low melting point is highly 
recommended. 

3.3 Automation of DLLME 

Automation is one of the DLLME technique’s ongoing problems. Several develop-
ments in DLLME have relied on flow analysis methods [146]. Initially, DLLME was 
automated using the sequential injection analysis (SIA) approach and used to deter-
mine metals by flame or electrothermal atomic absorption spectrometry [147–150]. A 
comparable method was developed utilizing the flow injection analysis methodology, 
which performed online DLLME using ionic liquids [151–153]. DLLME has also 
been automated utilizing a dual SIA system, which connects both syringe burettes 
by a conical tube that serves as the extraction container [154]. 

SIA rendered the automation of DLLME possible [155], through a multi-axis 
robotic arm with an integrated phase separator and temperature control. This setup 
allowed for the automatic solidification of the organic phase, followed by the collec-
tion of the organic extract for analyte measurement. The automated DLLME-SFOD 
of parabens was examined as a proof-of-concept, followed by analyte separation 
using liquid chromatography. Medina et al. [156] and coworkers developed an auto-
mated method in which everything was automated by combining a SIA technology 
with a custom-made robotic phase separator. Then, phase separation was performed 
in a 3D printed device incorporating a Peltier cell set and placed on a multi-axis 
robotic arm. A single software package controls the combined action of the flow 
system and the robotic arm, allowing for the solidification/melting and collection of 
the organic phase for subsequent analyte measurement as indicated in Fig. 7.

Another approach for DLLME automation is the completion of the extraction 
“in-syringe” [15]. In case, syringes are employed as DLLME containers, and the 
separated extractant droplets can be collected at the top of the syringe, ready to be
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Fig. 7 Major steps of the automated DLLME-SFOD. Reprinted from [156] with permission from 
Elsevier

automatically injected into the detection system, which is interfaced by an injection 
valve, utilizing solvents lighter than water [81]. Shishov et al. [157] developed an 
automated in syringe DLLME for chromium detection in beverages. As indicated in 
Fig. 8, in the first phase, 0.6 mL of extraction mixture (port a, valve) was aspirated 
into the syringe via channel 1 by back movement of the syringe pump plunger 
at a speed of 1.5 mL/ min. The valve was then switched to port b, and 4 mL of 
sample was aspirated into the syringe at a rate of 10 mL /min. Furthermore, 0.4 mL 
of air (port c, valve) was sucked to eliminate any leftover sample in channel 1. 
For 60 s, the sample and extraction liquid were mixed together. The syringe pump 
and stirrer were turned off for 30 s to allow for extraction and phase separation. 
Finally, the upper phase was transported into the flow cell of the UV–Vis detector 
(channel 2), and absorbance was measured under stopped-flow conditions for 5 s at 
540 nm before the solution was supplied to trash. After each measurement, the syringe 
and flow cell were rinsed with 1 mL of isopropyl alcohol (port d). The automation 
did not compromise the analytical figures of merits, including linearity, selectivity, 
sensitivity, accuracy and precision. Maya et al. developed a fully automated DLLME 
for the determination of rhodamine B with integrated spectrophotometric detection 
[15]. The results indicated that rhodamine B was measured in a working range of 
0.023–2 mg/L with a limit of detection of 0.007 mg/L. The method also showed 
good repeatability for 10 successive extractions, with % RSD values of up to 3.2%. 
The EF for a 1 mg/L rhodamine B standard was found to be 23, and the method was 
capable of performing 51 extractions in 1 h.



Dispersive Liquid–Liquid Microextraction 297

Fig. 8 The manifold of automated procedure for the determination of chromium (VI) in beverages. 
Reprinted from [157] with permission from Elsevier 

4 Application of DLLME 

The different modes of DLLME have been extensively used to pre-concentrate 
analytes of different nature from a variety of samples. Plasma, urine, hair, milk, 
fruits, vegetables, seafood and water samples were treated by DLLME before anal-
ysis. Drugs, toxins, pesticides, preservatives and heavy metals were all enriched 
with the aid of different modes of DLLME. According to the dispersion technique, 
n-DLLME and USA-DLLME are the most commonly used modes, followed by VA-
DLLME and AA-DLLME. The average sample size is 5–10 mL, but amounts as 
small as 0.05 mL were also reported. In this case, a dilution step is required before 
sample preparation to facilitate dispersion. Large sample volumes were also prepared 
using DLLME, to allow for ultrasensitive determination of heavy metals. The type 
of extracting solvent depends on the selected DLLME mode, where chloroform is 
the widely used solvent in n-DLLME, while decanol is very common in DLLME-
SFOD. Methanol, ACN and THF are the most popular dispersers due to availability, 
and high miscibility with both organic solvents and aqueous samples. The volume of 
disperser is usually less than 1000 µL, and it is highly dependent on the sample size 
and the extractant volume and type. DLLME has been extensively coupled to HPLC 
with different detectors including UV, FLD and MS. Application of DLLME before 
CE was also reported. Both HPLC and CE require minimal sample volumes to be 
injected into the instrument, which may explain the wide spread of DLLME with 
these particular analytical techniques. DLLME could also be used before UV/Vis 
spectrophotometric and spectrofluorometric determinations, if a microcuvette was 
available. An alternative approach in UV/Vis spectrophotometry was to measure 
the extracted small sample via a Nanodrop spectrophotometer. Table 2 shows some 
selected applications of the different modes of DLLME.
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5 Conclusions and Future Trends 

DLLME has attracted the interest of the analytical community since its introduc-
tion in 2006, owing to its simplicity and strong analytical capabilities. However, 
traditional DLLME has had one shortcoming from its emergence: the use of high-
density halogenated solvents. Despite the high efficiency, these halogenated solvents 
are very hazardous, and a process utilising this type of solvent cannot be termed 
green even if the amount required was in microliter units. As a result, scientists have 
been seeking for solvents that are not only safe for the environment and operators, 
but also capable of improving the extraction efficiency of DLLME-based procedures. 
Many approaches have been presented in this regard. The development of the various 
types of solvents utilized in DLLME over the last 5 years has been examined in this 
chapter. SUPRAs and DESs offer exceptional qualities for microextraction and some 
advantages from being termed green solvents. Nonetheless, the field of chemistry 
is conservative in certain ways, and many DLLME experiments continue to employ 
traditional halogenated solvents in accordance with the guideline. The benefits of 
these traditional solvents, such as their ease of use and high density are obvious but 
we must not overlook the significant impact that these solvents have on health and 
the environment. As a result, the adoption of newer and greener solvents must be 
the goal of DLLME in the next years, with an emphasis on tailorable green solvents 
with high extraction capabilities and simple and safe synthesis. 

The authors have declared no conflict of interest. 
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