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Abstract Sample preparation represents a pivotal stage within the analytical work-
flow. This chapter delves into the latest advancements in solid-phase microextraction 
(SPME), a technology renowned for its ability to facilitate uncomplicated, highly 
sensitive, swift, and solvent-free extraction of analytes from gaseous, liquid, and 
solid samples. This versatile approach extends its utility to trace-level analysis of 
compounds even within intricate matrices. Consequently, SPME has emerged as a 
preeminent sample preparation technique in the past decade, frequently employed in 
the form of an automated fiber-injection system in conjunction with chromatographic 
separation modules. Its primary application pertains to the extraction of volatile and 
semi-volatile organic compounds. 

Keywords Solid-phase microextraction · Fiber · Membrane · Headspace ·
Sample preparation · Solvent free 

Abbreviations 

SPME Solid-phase microextraction 
GC Gas chromatography 
LC Liquid chromatography 
MS Mass spectrometry 
FID Flame ionization detector 
HS Headspace 
DI Direct immersion 
LOD Limit of detection 
MOF Metal organic framework
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COF Covalent organic framework 
PDMS Polydimethylsiloxane 
PAN Polyacrylonitrile 
DVB divinylbenzene 
MWCNTs Multiwalled carbon nanotubes 
Car Carboxen 
GO Graphene oxide 
HLB Hydrophilic-lipophilic balance 
NPs Nanoparticles 
OPPs Organophosphorous pesticides 
PAHs Polycyclic aromatic hydrocarbons 
PAEs Phthalate esters 
PCBs Polychlorinated biphenyls 
PFASs Per- and polyfluorinated alkyl substances 
PPY Polypyrrole 
PANI Polyaniline 
PAN Polyacrylonitrile 
PEG Polyethylene glycol 
PA Polyacrylate 
TF-SPME Thin-film solid-phase microextraction 
VOCs Volatile organic compounds 

1 Introduction 

In recent decades, researchers in chemistry and technology communities have 
achieved significant advances in separation science and sample-preparation tech-
nologies. However, an efficient universal sample-pretreatment method capable of 
isolating target compounds from a sample matrix for instrumental analysis, irre-
spective of sample type and complexity or the chromatographic technique used 
for quantitative and qualitative analysis, remains elusive. Sample preparation is a 
critical component in all analytical workflows, as the clean extracts produced via 
such methods enable effective separation and seamless analysis, and help ensure the 
analytical instrument is operating under optimum working conditions [1–3]. 

Liquid-liquid extraction (LLE) and solid-phase extraction (SPE) are classical 
exhaustive sample-preparation techniques that have been successfully applied for 
the analysis of various samples [4–7]. Unfortunately, LLE techniques are character-
ized by numerous limitations, such as inadequate selectivity for target compounds, 
the need for large amounts of toxic organic solvents, unwanted emulsion forma-
tion, and long preparation times due to solvent evaporation and sample reconstitu-
tion. Conversely, SPE is a time-consuming, multi-step procedure that requires clean, 
particle-free samples, and often involves solvent evaporation and sample reconstitu-
tion in solvents, which can result in analyte loss. Moreover, the application of SPE for



Solid-Phase Microextraction 87

the isolation of polar compounds and metabolites, especially in biological samples, is 
limited by the availability of only a handful of suitable sorbents. Solid-phase microex-
traction (SPME) is an innovative sample-preparation technology that addresses many 
of the limitations of SPE and LLE, particularly the ability to offer high sensitivity 
without the use of solvent, which has led to its wide application in analytical chemistry 
[8–11]. SPME is an equilibrium-based extraction technique based on the migration 
of analytes from the sample to a sorbent material applied to a substrate via a free 
radical cross-linking reaction. The most widely employed sorbents in SPME devices 
include polydimethylsiloxane (PDMS), polyethylene glycol (PEG), polyacrylate 
(PA), carboxen/polydimethylsiloxane (Car/PDMS), and carboxen/divinylbenzene/ 
polydimethylsiloxane (Car/DVB/PDMS). In SPME, sampling continues until the 
sorbent has reached its maximum capacity (equilibrium), at which point the device 
is removed and subjected to direct or indirect instrumental desorption. 

The literature contains a large (and continuously growing) number of reports 
of novel SPME workflows developed for a wide variety of applications, including 
the analysis of environmental, biological, and pharmaceutical samples; the analysis 
of foods, beverages, flavors, and fragrances; forensic and toxicology studies; and 
product testing [12–19]. In recent years, several authors have published reviews/ 
articles surveying the application of SPME in areas such as the analysis of wine 
volatiles, in vivo analysis of pollutants, on-site soil analysis, water sample analysis, 
food analysis, in vitro and in vivo metabolomics studies, and pharmaceutical and 
biomedical analysis [8, 9, 20–25]. 

This chapter provides an overview of recent, innovative work focusing on SPME. 
The remainder of this chapter can be divided into four primary sections. Firstly, we 
will introduce the core principles of SPME. Next, we will delve into recent research 
that has led to innovative advancements in SPME geometries and coating materials. 
Following that, we will provide a recap of noteworthy recent applications of SPME in 
the realms of food, environmental, and bioanalytical studies. Lastly, we will engage 
in a discourse on the prospective paths for future research and developments in the 
field of SPME. 

2 Fundamentals 

SPME operates by establishing equilibrium between the target compounds within 
the sample matrix and the extraction phase adhered to the SPME device’s surface (as 
depicted in Fig. 1). In this regard, SPME shares foundational principles with electro-
chemical methods like potentiometry and amperometry, albeit with key distinctions, 
primarily in terms of capacity. This distinction is crucial because it permits SPME 
to be seamlessly integrated with various readout techniques such as GC or LC-MS, 
facilitating qualitative and quantitative analysis, particularly when employing coat-
ings compatible with the sample matrix. Analogous to biosensors, matrix-compatible 
coatings adopt a membrane protection strategy, enabling their application in highly 
intricate samples. The comprehension and optimization of coating extraction kinetics
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Fig. 1 Vf represents the 
volume of the fiber coating, 
Kfs denotes the distribution 
coefficient between the fiber 
coating and the sample, Vs 
represents the sample 
volume, and C0 signifies the 
initial analyte concentration 
within the sample 

and thermodynamics are of paramount importance, ensuring the swift accumulation 
of analytes and prompt pre-equilibrium determinations with the requisite sensitivity. 
The mass transfer of analytes from the matrix to the extraction phase can be elucidated 
employing Fick’s second law, a second-order partial differential equation solvable 
via the initial and boundary conditions of the specific system under investigation 
[26–28]. 

In addition to its applicability in the analysis of organic compounds across various 
disciplines, SPME also enables researchers to compute the distribution coefficients 
of analytes between the coating material and the sample matrix. Several studies have 
made efforts to estimate the SPME distribution constant (KSPME) and correlate it 
with the partition coefficient (log Kow) [29–32]. However, predictions regarding the 
quantity of extracted compounds display variability, and as of now, there is no clear-
cut relationship established between the partition coefficients and the characteristics 
of the analytes [33, 34]. 

In the context of SPME, the process is typically deemed finished when distribution 
equilibrium is attained between the sample matrix and the fiber coating, as described 
by Eq. 1. Adhering to the principles of mass conservation, particularly when only 
two phases are under consideration (for example, the sample matrix and the fiber 
coating), then 

C0Vs = C∞ 
s Vs + C∞ 

f V f (1) 

where C0. represents the initial analyte concentration within the sample, Vs denotes 
the sample volume, C∞

s stands for the equilibrium concentration within the sample, 
C∞ 

f represents the equilibrium concentration on the coating, and V f signifies the 
volume of the coating. 

The distribution coefficient (K f s). between the coating and the sample matrix is 
formally defined as:
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K f s  = 
C∞ 

f V f 

C∞
s Vs 

(2) 

The quantity of analyte moles absorbed (n) by the coating when it reaches equilib-
rium can be succinctly expressed using Eq. (3), which results from the amalgamation 
of Eqs. (1) and (2): 

n = C∞ 
f V f = 

K f s  V f VsC0 

K f s  V f + Vs 
(3) 

Here, K f s  represents the distribution coefficient governing the interaction between 
the coating and the sample matrix. Equation (4) proves useful in establishing the 
equilibrium state for a three-phase system, encompassing scenarios that include the 
headspace, 

n = C∞ 
f V f =

K f s  V f VsC0 

K f s  V f + Khs Vh + Vs 
. (4) 

where Khs . represents the distribution coefficient between the coating and the 
headspace. Equation (4) stipulates that the quantity of analyte extracted remains 
unaffected by the positioning of the fiber within the system. Therefore, the fiber can 
be positioned either in the headspace or directly within the sample, provided that 
the volumes of the fiber coating, headspace, and sample are maintained at a constant 
level. 

The fiber constant serves as a useful metric for assessing the fiber’s performance, 
particularly in situations involving coatings with solid particles. What makes it partic-
ularly valuable is that it doesn’t necessitate data regarding the active surface area or 
adsorption distribution constant. For assessing mass transfer within the coating, it’s 
advantageous to treat the entire extraction phase as a liquid phase, even when it 
contains particles. In this context, we use the extraction phase diffusion coefficient 
as the effective diffusion coefficient (Def  f  ) [35]. Equation (5), derived and adapted 
from theories related to mass transfer in porous media and chromatography [36], 
elucidates the concept of this effective diffusion coefficient. 

Def  f  = 
DE 

1 + k 
(5) 

where DE represents the diffusion coefficient (m2s−1) within a single binder mate-
rial (e.g., PDMS, PAN, etc.) and k stands for the phase capacity, which denotes 
the extraction ratio between the composite mixed-phase sorbent (e.g., HLB/PDMS, 
HLB/PAN, etc.) and the extraction phase composed solely of PDMS or PAN. In 
the case of mixed-phase sorbents (e.g., HLB/PDMS, HLB/PAN, C18/PAN, etc.), the 
majority of analytes tend to accumulate on the sorbent material (e.g., HLB, C18, etc.), 
as evidenced by variations in their respective distribution constants (K).
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3 Novel Developments 

SPME has been studied extensively, producing a variety of different configurations. 
Currently, there are a variety of available SPME geometries, including: (A) fibers 
[14], (B) in-tube [37], (C) in-tip [38], (D) vessel wall, (E) arrow [39], (F) suspended 
particles [40], (G) stirrer, (H) disk, (I) thin-film [41], and (J) 96-blade configuration 
[42]. Figure 2 illustrates the different forms of SPME considered in this chapter. 

Among the above-listed techniques, fibers can be sequenced prior to being intro-
duced to the GC instrument, while in-tube SPME can be used for liquid chro-
matography. SPME arrows are an evolution of SPME fibers and can be applied for 
headspace analysis or direct immersion in liquid matrices [39, 43]. Thin-film solid-
phase microextraction (TF-SPME) is a new geometry that has emerged as an attrac-
tive sample-preparation technique, as its high surface area-to-volume ratio—and 
thus, its greater volume of extraction phase—enables enhanced sensitivity without 
sacrificing sampling time [10, 11, 44, 45]. On the other hand, the use of 96-well plates 
has also received much attention due to their potential to provide high-throughput 
when performing multiple microextractions in parallel [46, 47]. As the above exam-
ples show, the variety of available SPME geometries allows researchers to select the

Fig. 2 Different SPME geometries 
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most optimal configuration for a given application. Currently, SPME fibers are the 
most widely used geometry due to their small size, high portability, and easy automa-
tion. Due to these advantages, the preparation of SPME fibers has been studied more 
extensively compared to other SPME geometries; however, these strategies can be 
adapted to prepare SPME devices with other configurations. 

The coating’s properties determine the method’s analyte enrichment efficiency, 
and consequently, its sensitivity and reliability. Typically, extraction phases are 
constructed using either polymeric absorbents with liquid-like properties or solid 
adsorbents [48]. The extraction capabilities of liquid-like absorbents are determined 
by the distribution coefficient of the target analytes between the coating and the 
sample. In recent times, there has been a growing prevalence of solid-phase adsor-
bents characterized by their substantial surface areas, extensive porosities, and a 
profusion of interaction sites in research pertaining to SPME.. 

In the case of solid sorbents, analytes engage in interactions with the adsor-
bent surface through mechanisms such as hydrogen bonding, π-π interactions, 
dipole-dipole forces, electrostatic attractions, or hydrophobic/hydrophilic interac-
tions. These various interaction types collectively exert a significant influence on 
both the quantity and the rate at which analyte adsorption occurs [49]. Two princi-
ples should be considered when designing an SPME coating. Firstly, there should 
be strong interaction between the coating materials and target analytes, as this will 
ensure excellent analyte enrichment. Secondly, it should be easy to firmly immobi-
lize the coating material onto the supporting substrate. Table 1 presents an overview 
of recent developments in different SPME coating materials.

4 Main Applications 

SPME has been applied successfully for the analysis of analytes in various samples, 
including organic analytes in environmental [8, 19, 112], food [113, 114], biological 
matrices [115–117], particularly whole blood, pharmaceuticals, and air. To date, 
researchers and separation experts have published several thorough reviews detailing 
the use of SPME for the analysis of different sample matrices and gaps that need to 
be addressed. 

4.1 Environmental Applications 

The development of effective SPME methods in the environmental field has been 
critical in enabling the extraction and analysis of several analytes. Various tradi-
tional SPME methods have been employed to analyze certain analytes in envi-
ronmental samples, despite possessing notable limitations such as the need for a 
post-treatment step, higher costs, and limited efficiency [19, 112, 114]. However, 
despite these challenges, SPME remains the prevailing microextraction technique,
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and researchers are consistently exploring ways to address the mentioned limita-
tions. The conventional commercially available SPME device comprises a fused 
silica or stainless-steel fiber, either coated or uncoated, with a thin sorbent layer. 
This fiber is typically affixed to a syringe-like device. In pursuit of enhanced extrac-
tion efficiency for environmental applications, researchers have delved into diverse 
strategies, encompassing the adoption of varied coating materials and alternative 
device configurations [118, 119]. As a result, SPME techniques have received great 
attention in the analytical and environmental fields due to their enhanced prop-
erties and high selectivity for certain target analytes. Commercial SPME fibers 
featuring non-polar or semipolar coatings fabricated from conventional and newly 
synthesized materials (e.g., PDMS, DVB, or Car) have been successfully employed 
to extract selected analytes from environmental samples. For instance, Wu et al. 
[120] developed and deployed two novel monolith-based electrodes for electric field 
assisted SPME (EFA-SPME) aimed at the simultaneous detection of phenylurea and 
sulfonylurea herbicides. In this work, the authors applied poly(vinylimidazole-co-
ethylene dimethacrylate) and poly(methylacrylic acid co-ethylene dimethacrylate/ 
divinylbenzene) monolith onto the surfaces of stainless steel wires, which were then 
respectively used as the anode and cathode for EFA-SPME. Figure 3 shows the 
preparation of the poly(vinylimidazole-co-ethylene dimethacrylate)-monolith-based 
anode and the poly(methylacrylic acid co-ethylene dimethacrylate/divinylbenzene)-
monolith-based cathode, as well as the electric field assisted SPME protocol applied 
for the simultaneously extraction of sulfonylureas and phenylureas.

Grandy et al. [121] developed a drone-equipped TF-SPME sampler featuring 
HLB/PDMS membranes, enabling the remote assessment of environmental water 
pollutants (see Fig. 4). In order to enhance mobility, this drone-assisted sampling 
method was integrated with portable hand-held GC-MS instrumentation, thereby 
bolstering the method’s suitability for on-site sampling, extraction, and analyte 
identification.

In 2020 [44], our research team introduced an innovative in-vial standard gas 
generation system that employed thin-film membranes supported by mixed-sorbent 
carbon mesh as carriers for analytes. These vials were designed with carbon mesh 
membranes loaded with various sorbents such as pure PDMS, DVB/PDMS, HLB/ 
PDMS, and Car/PDMS, which were subsequently spiked with modified McReynolds 
standards. The results obtained indicated that the TF-SPME gas generation vial 
exhibited comparable, and in certain instances, superior performance when compared 
to the PS/DVB silicone-oil-based vial (as illustrated in Fig. 5). Additionally, the TF-
SPME vial boasted a much cleaner, reusable, and user-friendly design. Moreover, 
the outcomes also confirmed the suitability of these novel TF-SPME-based standard 
gas generation vials for the consistent generation of gaseous standards essential for 
GC-MS analysis and quality control purposes.
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Fig. 3 a Synthesis of the monolithic anode using poly(vinylimidazole-co-ethylene dimethacry-
late) and the cathode using poly(methylacrylic acid co-ethylene dimethacrylate/divinylbenzene). 
b Operation of the developed monolith-based electrodes/electric field assisted-SPME protocol in 
the adsorption and desorption steps. Reprinted with permission from [120] with permission from 
Elsevier

4.2 Food Applications 

SPME has become one of the most popular methods for the pretreatment of food 
samples, having been applied for a range of matrices including liquids, such as milks, 
wines, and oils; semifluids, such as honey; and solids, such as meats, vegetables, and 
fruits. One reason for SPME’s popularity with such samples is that it can be applied 
for targeted or untargeted analysis. Researchers have fabricated various SPME 
devices (fibers, thin films, in tube, and coated blades) using a range of functional 
materials and extraction models to satisfy the wide range of extraction requirements 
when using food samples [122–126]. Food matrices are inherently intricate, often 
comprising proteins, fats, salts, acids, bases, and a multitude of food additives with 
diverse chemical properties. Among the various coating materials studied, PDMS,
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Fig. 4 Utilizing a drone-based TF-SPME system for water sampling. Reprinted from [121] with 
permission from American Chemical Society

Fig. 5 Concept and rationale behind the development of dual-phase in-vial standard gas gener-
ation vials: a Utilization of a recently prepared silicone oil, PS/DVB vial. b Assessment of vial 
stability suitable for laboratory applications. c Evaluation of vial contents following agitation or 
transportation. d Deployment of DVB/PDMS-coated carbon fiber fabric as a sorbent, along with 
the integration of new vials into an autosampler unit. Reprinted from [44] with permission from 
Elsevier

characterized by its liquid nature and smooth, uniform surface, stands out for its 
remarkable resilience to irreversible fouling effects triggered by matrix components 
(as compared to solid coatings) [127], Consequently, it emerges as the most robust 
choice for the direct analysis of food samples. Nevertheless, PDMS’s susceptibility 
to analytes of interest has posed a significant challenge. To address this limitation, 
researchers have explored the enhancement of conventional commercial SPME fiber 
coatings by incorporating a thin PDMS layer, thus creating a novel matrix-compatible
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coating that preserves the original coating’s sensitivity to the target analytes [128]. 
As depicted in Fig. 6, these modified SPME fiber coatings, such as PDMS/DVB, 
DVB/Car/PDMS, and PDMS/DVB/PDMS, exhibit exceptional extraction efficiency 
and durability, rendering them highly effective for the direct analysis of complex 
matrices [128]. As a result, these PDMS-modified coatings have risen to prominence 
as the preferred choices for SPME in food analysis. Moreover, researchers have also 
devised innovative SPME fiber coatings, which we will delve into further in the 
subsequent section. 

Chen et al. drew upon sampling rate correction theory to develop a non-
invasive in-vivo sampling-rate-calibrated SPME-GC/MS method for the accurate 
quantification of target analytes [129]. The researchers employed their methodology 
directly on-site to observe and analyze the environmental dynamics, encompassing 
absorption, enrichment, migration, and elimination processes, of three insecticides 
(hexachlorobenzene, fipronil, and chlorfenapyr) within edible plants, specifically 
garlic bulbs and leaf sheaths. Additionally, they investigated the kinetics of these 
insecticides’ elimination within living garlic plants. Figure 7 illustrates a schematic 
representation of Chen et al.’s in vivo SPME procedure. In this in vivo SPME

Fig. 6 a Microscopic image depicting a commercial PDMS/DVB coating in its pre-extraction state. 
b Microscopic image showing a PDMS/DVB/PDMS coating before any extraction. c Scanning 
Electron Microscope (SEM) image revealing the surface of a PDMS/DVB coating after undergoing 
20 extraction cycles within grape juice. d SEM image depicting the surface morphology of a PDMS/ 
DVB/PDMS coating after enduring more than 130 extraction cycles in grape juice, observed at 580× 
magnification. Reprinted from [128] with permission from the American Chemical Society 
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sampling method, an SPME fiber was inserted directly into the garlic bulbs or leaf 
sheaths, reaching a depth of approximately 1.5 cm while being shielded by an external 
cannula. Following a static extraction period of 25 min at a temperature of 25 °C, 
the probe was carefully withdrawn, washed with deionized water, wiped clean with 
Kimwipes, and promptly prepared for analysis using GC/MS. 

The ability to detect spoilage and nutrient content in salmon is critical for ensuring 
it is safe to consume and determining its market value. To this end, Yu et al. [39] 
developed and fabricated an innovative SPME arrow coated with HLB/PDMS, which 
was subsequently integrated with GC-MS for the untargeted assessment of volatile 
metabolites and unsaturated fatty acids within fresh salmon samples. This newly 
developed device was effectively employed in two distinct operational modes, specif-
ically headspace (HS) and direct immersion (DI) (as depicted in Fig. 8). As a result, 
it emerged as an excellent solution for real-time monitoring of salmon spoilage 
mechanisms and the comprehensive analysis of essential nutrients present in salmon 
fillets.

The application of ambient mass spectrometry techniques for pesticide analysis 
in produce, along with the validation of these techniques through chromatographic 
separation, has not received extensive exploration. In one of the few existing studies, 
Kasperkiewicz and Pawliszyn developed a coated blade spray (CBS) protocol to 
quantitate multiresidue pesticide levels in various fruit matrices [130]. In CBS, 
sampling, sample preparation, and introduction to analytical instrumentation is 
consolidated into a single device consisting of a polymeric sorbent coated onto 
a conductive support [131, 132]. The use of CBS allowed the authors to couple

Fig. 7 A Real-time sampling within garlic bulbs and leaf sheaths. B In vivo SPME procedure: 
(a) Gently introduce the custom-made fiber into the garlic with the safeguard of a steel needle, 
(b) Extract analytes in vivo by carefully withdrawing the steel needle, (c) Retrieve the extracted 
fiber afterward. Reprinted from [129] with permission from Elsevier 
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Fig. 8 Headspace and direct immersion SPME protocols. Reprinted from [39] with permission 
from Elsevier

the devices directly to mass spectrometry (MS) and liquid chromatography (LC) 
to perform multiresidue (e.g., organophosphates, organonitrogen, carbamates, neon-
icotinoids, strobilurins, triazines, spinosyns) analysis for a panel of pesticides in 
apple, blueberry, grape, and strawberry samples. Figure 9 shows the CBS-MS/MS 
and SPME-LC–MS/MS workflows to quantitatively assess 126 pesticides in apples, 
139 pesticides in blueberries, 136 pesticides in grapes, and 135 pesticides in straw-
berries, as well as their analytical figures of merit, analytical properties (e.g., solvent 
usage, analysis time), and real-world sample quantification.

4.3 Biological Applications 

Conducting direct-immersion SPME within complex matrices can be challenging. 
Generally, some form of sample pre-treatment is required to safeguard the coating 
and avert extraction phase fouling, which can result from the irreversible adsorp-
tion of large molecules present in the intricate matrix. This irreversible adsorption 
not only significantly shortens the fiber’s operational lifespan (often limiting it to 
just a few samplings) but also alters the coating’s extraction characteristics. Conse-
quently, researchers are persistently exploring novel SPME coatings with enhanced 
performance capabilities for direct extractions from complex matrices. 

The development of biocompatible coatings was a major breakthrough with 
respect to biological applications coupling SPME and LC/MS analysis. Within 
SPME, a biocompatible coating is characterized by its ability to (i) avoid eliciting 
toxic responses within the studied system and (ii) prevent the attachment of macro-
molecules, such as proteins, onto its surface [133]. To address the aforementioned 
biocompatibility issues, researchers have investigated coatings based on polyethy-
lene glycol (PEG) [134], polypyrrole (PPY) [134, 135], restricted access materials 
(RAM) [136], and mixtures of SPE sorbents (coated silica particles) and biocompat-
ible polymers [137]. As an illustration, Musteata et al. [135] utilized SPME fibers
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Fig. 9 The process for analyzing pesticides in fruit matrices (steps 1–4) was also utilized for 
CBS-MS/MS analysis (step 5). The LC-MS/MS protocol followed the identical sample-preparation 
workflow (steps 1–4). Reprinted from [130] with permission from Elsevier

featuring PPY/PEG and PEG/C18-bonded coatings to directly extract diazepam and 
its metabolite from the circulating blood of beagle dogs. 

In other work, scientists created novel biocompatible SPME fiber coatings through 
the amalgamation of polyacrylonitrile (PAN) with diverse extraction particles 
(including C18, RP-amide-silica, HS-F5-silica, 5 μm). They subsequently assessed 
the efficiency of these coatings in extracting five distinct drugs from human plasma. 
[137]. In addition to biocompatibility and improved durability, the developed fibers 
offered significantly better extraction efficiency for the targeted drugs compared to 
PPY, RAM, and commercial CW/TPR coatings. Similarly, Mirnaghi et al. developed 
a method for preparing biocompatible C18-PAN (polyacrylonitrile) thin-film coatings 
(“blades”) for the direct extraction of small molecules from biological fluids [138]. 
Elsewhere, Sinha Roy et al. [42] developed a protocol enabling the high-throughput 
analysis of free concentrations of a panel of drugs in plasma, as well as the protein 
binding of a selection of substances with wide-ranging properties in order to elucidate 
the underlying principles of SPME technology. The chosen microsampling prepa-
ration device supported by plastic comprised 96 pins (as depicted in Fig. 10), each 
coated with a minimal quantity of matrix-compatible C18 extraction phase. This 
coating was employed to facilitate the extraction of small analytes of interest, even 
in the presence of macromolecules.
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Fig. 10 a Supel™ BioSPME 96-Pin device. b BioSPME device coupled with a Concept96 auto-
mated system (PAS Technologies GmbH, Germany). Reprinted from [42] with permission from the 
American Chemical Society 

Rocío-Bautista et al. directly coupled BioSPME to liquid electron ionization-
tandem mass spectrometry (LEI-MS/MS) via a microfluidic open interface (MOI) 
to create a sensitive technique that eliminates matrix effects (ME) and enables the 
direct analysis of biological samples without necessitating sample purification or 
chromatographic separations [139]. In this protocol, the authors used C18 Bio-SPME 
fibers for direct immersion analysis of fentanyl compounds in urine and plasma. A 
schematic of the modified MOI-LEI-MS/MS system is shown in Fig. 11.

4.4 In vivo Applications 

The application of in vivo SPME has found extensive use in numerous research 
investigations aiming to analyze organic analytes within intricate matrices [140– 
142]. Substances such as persistent organic pollutants (POPs), endocrine-disrupting 
compounds (EDCs), pesticides, disinfection byproducts (DBPs), and heavy metals 
have the potential to leach into environmental matrices like soil, air, water, and
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Fig. 11 Diagram illustrating the fluid dynamics of the MOI-LEI-MS/MS system. a Standby and 
injection configuration; b Desorption configuration. Reprinted from [139] with permission the from 
American Chemical Society
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sediments, which can lead to their accumulation in plants, animals, and humans, 
either through direct contact with the matrices or via the food chain. This poses a 
risk to living organisms, as the accumulation of such compounds can lead to toxicity 
impairing different cellular processes at the genomic, proteomic, and metabolomic 
levels. 

Napylov et al. [143] employed in vivo SPME sampling to assess oxylipin profiles 
within the brains of live, conscious rats. This groundbreaking and inventive technique 
circumvented alterations in oxylipin concentrations post-mortem, allowed for the 
real-time tracking of oxylipin levels with exceptional spatial precision, and could 
be executed using the identical experimental apparatus as in vivo microdialysis, a 
well-regarded standard in neuroscience research. Elsewhere, Musteata et al. [144] 
developed a fast in vivo microextraction technique with the potential to replace (at 
least in part) current sampling techniques based on blood drawing, especially in 
the case of small animals (Fig. 12). In this method, the sampling process does not 
require the animal to be handled once the interface has been installed, thus reducing 
its exposure to stress. This is a significant improvement, as lower levels of stress 
result in more relevant pharmacokinetic data, thus reducing the number of animals 
required to obtain reproducible data. In this study, Musteata et al. effectively utilized 
sampling devices founded on hypodermic tubes coupled with SPME fibers for the 
in vivo analysis of both free and total concentrations of diazepam and its metabolites 
within whole blood in rats. 

Yuan et al. [145] developed a breath collection device utilizing a daily wearable 
face mask. In this approach, one or more SPME fibers are integrated into the face 
mask, leading to substantial selectivity and analyte enrichment through both specific 
and nonspecific adsorption mechanisms. Consequently, the proposed SPME-in-mask 
device proves well-suited for the ongoing collection of analytes from exhaled breath 
aerosols over extended periods, even in real-world settings, spanning multiple hours. 
After the exhaled breath samples were acquired, they were directly desorbed and

Fig. 12 In vivo SPME investigation involving rats: positioning of SPME devices and their 
connection interface to the carotid artery. Reprinted from [144] with permission from Elsevier 
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Fig. 13 Illustration 
depicting SPME-in-mask 
sampling and the subsequent 
direct mass spectrometry 
analysis of exhaled breath 
aerosol. a Insertion of the 
SPME fiber into a KN95 face 
mask; b Wearing of the 
SPME-in-mask for the 
collection of exhaled breath 
aerosol; c Direct linkage of 
SPME with DART-MS. 
Reprinted from [145] with 
permission from the 
American Chemical Society 

ionized from the fibers via direct analysis in real time mass spectrometry (DART-
MS) without further sample pretreatment. The SPME-in-mask concept is illustrated 
in Fig. 13. 

5 Conclusions and Future Trends 

Since its introduction in 1990, solid-phase microextraction has established itself 
as a highly popular microextraction approach for the analysis of a wide range 
of compounds in biological, food, and environmental samples. Indeed, SPME’s 
numerous benefits endow it with great potential for several analytical applications. 
As an example, SPME proves highly advantageous for the analysis of volatile 
compounds found in exceedingly low concentrations within diverse food and envi-
ronmental samples. In addition, SPME’s status as a reliable and high-quality sample-
preparation tool has further contributed to its widespread application for the identi-
fication and quantitation of myriad chemical compounds and biological substances. 
SPME’s competitive edge over other extraction methods is primarily rooted in the 
large selection of available coating sorbents including polar, medium polar, non-
polar, ion-exchange, and mixed-mode sorbents. Despite this variety, selecting an 
appropriate SPME fiber still requires detailed knowledge of the properties of the 
sample matrix under study. Finally, in addition to the large variety of fiber coatings, 
the availability of many different extraction and desorption techniques and deriva-
tization procedures has also enabled the development of selective, sensitive, and 
repeatable SPME methods, especially for the analysis of food and environmental 
matrices.
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