
Bridging the Programming Skill Gap
with ChatGPT: A Machine Learning

Project with Business Students

Michael Reiche1(B) and Jochen L. Leidner1,2

1 Coburg University of Applied Sciences, Friedrich Streib-Strasse 2, 96450 Coburg,
Germany

michael.reiche@hs-coburg.de
2 University of Sheffield, Regents Court, 211 Portobello, Sheffield S1 4DP, UK

Abstract. Foundational language models, i.e. large, pre-trained neural
transformer models like Google BERT and OpenAI ChatGPT, GPT-3
or GPT-4 have created considerable general media attention. Microsoft’s
github.com service has also integrated a foundational model (CodePilot)
to make programmers more productive. Some people have gone so far
and heralded the end of the programming profession, an unsubstanti-
ated claim.

We investigate the research question to what extent individuals with-
out the necessary technical background can still use such systems to
achieve a set task. Our single case study based preliminary evidence sug-
gests that using such systems may lead to a good task completion rate,
but without deepening the understanding much on the way.

Keywords: Computer-Supported Instruction · AI for Teaching ·
Pretrained Foundational Models · Artificial Intelligence in Education ·
Classroom Case Study

1 Introduction

Increasingly, employees with a business background are also expected to have a
high-level understanding of machine learning concepts. Consequently, the text-
book Introduction to Statistical Learning [2,5] is used to train MBA students at
Stanford University. Following this trend, the course “Team Project Artificial
Intelligence” was offered as an elective from the area of projects in the winter
semester 2022/2023 in the Master’s degree program in business studies at the
Coburg University of Applied Sciences and Arts.

We borrowed a task from Kaggle.com, namely the task of sentiment analysis
of online-feedback about treatment experiences with medics.

Out of 19 participants across all projects of the semester and study pro-
gram, 6 participants took part in the project. The goal of the project was to
impart knowledge for the focus “IT Management”, which enables the students
to participate in machine learning projects in their later professional life or to
be able to comprehend them. In particular, knowledge from the following areas
was imparted.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Nowaczyk et al. (Eds.): ECAI 2023 Workshops, CCIS 1948, pp. 439–446, 2024.
https://doi.org/10.1007/978-3-031-50485-3_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50485-3_42&domain=pdf
http://orcid.org/0000-0002-1219-4696
https://doi.org/10.1007/978-3-031-50485-3_42


440 M. Reiche and J. L. Leidner

– Technical competences:
• Recognition of machine learning use cases.
• Implementation of machine learning use cases, especially in the phases of

business understanding, data understanding, data preparation, modeling
and evaluation.

– Methodical competences:
• Using ChatGPT for programming.
• Following a machine learning methodology.

– Social competences:
• Presenting technical and business results to a group.
• Discussing in a group.
• Analyzing, evaluating, and refining one’s approach to learning and prob-

lem solving.

The project has had another intended impact in addition to building stu-
dents’ competencies. Namely, the generation of data in a controlled experiment
to compare two methods with an intervention group and a control group. There-
fore, during the planning of the project, dependent (iterations, experimentation,
planning, communication) and independent (business case, input data, algo-
rithm, upskilling, domain knowledge, infrastructure) variables as well as behav-
ioral rules were defined to increase the reliability, validity and credibility of the
results.

The teaching of the competencies and the performance of the activities
required for this purpose were achieved by means of various formats, each of
which was selected in such a way that the previously defined dependent and
independent variables were subject to as few disturbing influences as possible.
An inquiry at the beginning of the project about the theoretical and practical
knowledge showed that the participants (as well as the students of the master’s
program in business administration in general) did not have adequate machine
learning or programming knowledge that would have enabled the independent
and successful implementation of a machine learning project.

To bridge the gap between the programming skills needed for the project and
those brought by the participants, the use of ChatGPT has been suggested for
activities with programming content, especially for generating and concatenating
Python code fragments and fixing bugs in the program code.

In this paper, we investigate the research question “Can students with no
knowledge of computer science and no knowledge of a programming language
use ChatGPT to generate all the Python code for a machine learning project?”.

2 Related Work

After foundational language models based on the transformer architecture by
Google [6] with BERT (Bidirectional Encoder Representations from Transform-
ers) [1] received great attention in the scientific community, more and more
so-called large language models (LLM) have emerged [7].



Bridging the Programming Skill Gap with ChatGPT 441

Vaithilingam et al. conducted an experiment with 24 participants, 23 of whom
had more than two years of programming experience. They investigated, among
other things, whether the LLM Githubs Copilot, which is based on OpenAI’s
Codex, offers more support to experienced programmers than the code comple-
tion tool Intellisense. No significant difference was found. However, participants
indicated that Copilot gave them a better start in the programming task. Even
in the case of incorrect code, at least a helpful direction was given, which could
offer help to novice programmers in particular. 12 of the participants found
it difficult to understand or change the code generated by Copilot, which was
also due to the fact that the generated code is not commented [5]. Kasneci et
al. have critically examined the opportunities and risks of LLM in education.
They concluded that LLM offer many opportunities to enhance learners’ learn-
ing experience, but generated information can also have a negative impact on
learners’ critical thinking and problem-solving skills. To counteract this, LLM
should support learning and not replace human authorities [3].

Controlled experiments in software engineering are a common means of estab-
lishing cause-and-effect relationships. A survey of 103 articles found that 87 %
of the subjects were students [4].

According to our research, no papers have been published on the use of LLMs
or ChatGPT in particular that investigated how well people without a technical
background can programme.

3 Method

To answer the research question, various methods were used before, during and
after the project.

At the beginning of the project, a survey was conducted to determine the
practical experience and theoretical knowledge of each participant. For example,
the following closed-ended questions were asked with a free-text option that
allowed participants to choose between “yes” and “no” answers, and to be able
to explain their answer with an additional answer choice:

– Do you already have practical experience in programming?
– Do you already have theoretical knowledge in Machine Learning Engineering?
– Do you already have practical experience in Machine Learning Engineering?

If one of the questions was answered with “Yes”, then the content of the
associated free-text option was analyzed and a point value from 0 (no knowl-
edge or experience) to 3 (more than two relevant lectures attended or everyday
professional life) was assigned depending on the proficiency.

Two groups (team blue and team red) were formed, which had as equally
distributed experience and knowledge as possible in the three questions on pro-
gramming and machine learning engineering (team blue 3 points and team red
3 points) and in other questions (team blue 25 points and team red 19 points).
The two groups differed in that they each had to use one of two machine learning
methodologies to carry out the project, which led to different ways of working.



442 M. Reiche and J. L. Leidner

In order to compensate for the lack of technical knowledge and experience, a
joint coaching session was held for both groups in the first third of the project
before the use of a programming environment. This provided the theoretical
foundations of machine learning and a guideline for using ChatGPT to generate
the Python code for the project by means of a live demonstration with ChatGPT
and Google’s development environment Colab.

During the live demonstration, ChatGPT and Google Colab were used in
interaction. In ChatGPT, it was shown where prompts are entered, responses
generated and regenerated. In Google Colab, it was shown which elements the
interface has and in particular how code blocks are inserted and executed. As an
example of the interaction between the two web-based interfaces, simple math-
ematical calculations and a simple data pipeline were generated with ChatGPT
and inserted as code blocks in Google Colab. To illustrate the data pipeline, the
framework Pandas was imported, a data frame was filled with a data set (CSV),
the content of the data frame was sorted and the content of the data frame was
visualised. The individual work steps were carried out by the lecturer and by
volunteer participants.

The project was implemented in four teamwork sessions per group, three of
which included programming. The individual sessions lasted between 83 min and
229 min. However, the average was 181 minutes.

During the project, data such as ChatGPT histories, schedules, project doc-
umentation, Python files, presentations and tables with over 250 team activities
were generated by the group participants and the lecturer/experiment leader.

The project switched from Google Colab to Jupyter notebooks and JetBrain’s
PyCharm. The groups were not allowed to use any other tools, information
or communication tools than those provided. The project was completed with
presentations and final reports by the groups (Fig. 1).

4 Evaluation

The teams interacted with ChatGPT (version 3.5 with German conversations)
in different ways. In team blue, one of the three participants was responsible for
interacting with ChatGPT and programming in the development environment.
In team red, all three participants worked together with ChatGPT most of the
time and wrote the programming code for the project. How the prompts were
formulated was at the discretion of the participants. Code fragments were asked
for with general prompts without project-specific specifications and with specific
prompts with detailed specifications that enabled seamless integration into the
already existing code.

Although ChatGPT always provided explanations in addition to code, these
were rarely read through. There was often a lack of understanding and time to
follow the explanations. Instead, the code generated with ChatGPT, including
explanatory comments, was copied completely and with hardly any adjustments
into a programming environment and executed. In case of errors and unexpected
returns, ChatGPT was mostly consulted and in rare cases the lecturer. In some



Bridging the Programming Skill Gap with ChatGPT 443

Fig. 1. Controlled Study Design

cases, functions from libraries were mentioned that showed incompatibilities.
This is due to the fact that the ChatGPT version used was only trained with
data up to 2021.

From a technical point of view, it was clear to the participants what the code
fragments should output. Therefore, prompts could be given correctly and the
results of the executed code could be interpreted in the development environ-
ment.

Interaction behaviour with ChatGPT of the team red: The team generated
the programme code for the project with 97 prompts. With specifications such as
“In future, please take our data name df into account in the code. Please reissue
the code”, the group influenced the subsequent response behaviour of ChatGPT
so that the generated responses fitted better into the already generated and
adopted Python code, which reduced the required understanding about the pro-
gramming. In one case, the team formulated a prompt without a question. The
response was “I’m not sure what exactly you want to customise. If you mean a
specific customisation in the DataFrame, please give me more information about
it.” When the code inserted and executed in the development environment pro-
duced unexpected or erroneous results, ChatGPT was interacted with again, for
example with the following prompt “what does this mean? Empty DataFrame
Columns: [index, rating, comment] Index: []”. ChatGPT was also questioned
in several stages without inserting code into the development environment in
between. Through this, a learning success/progress is recognisable, because the
students saw independently that the generated code would not bring the desired
result. For example, they were first asked “How do I add a new column?” and
then “Add a new column with the title class in df2”. Another peculiarity was
that when ChatGPT entered the same error code twice (without using regener-
ate), it gave an off- target answer the first time and a customised and on-target



444 M. Reiche and J. L. Leidner

Fig. 2. Teamwork Sessions in Comparison

answer the second time. ChatGPT first replied “Sorry for the misunderstand-
ing. To avoid the SettingWithCopyWarning, you can adjust the code as follows:
...” and then with “Sorry again for the misunderstanding. To avoid the Setting-
WithCopyWarning, you can correct the code as follows:...”. ChatGPT did not
always provide the best answers. For example, the bag-of-words method was
recommended to convert textual data (online feedback) into numerical features.
Nowadays, modern methods exist that would not have lost contextual informa-
tion or semantic relationships during the conversion, which could have resulted in
better classification performance. The participants were not able to understand
the generated code in detail and, at least in part, showed little understanding
of it. For example, the code for logistic regression was asked twice. The only
change in the second prompt was to change the distribution from 90 % training
data and 10 % test data to 80 % training data and 20 % test data, which could
have been done directly in the development environment by making the smallest
changes. Elsewhere, ChatGPT was queried for code to count the frequency of
certain words. However, the words searched for were then changed in several
iterations directly in the development environment.

Interaction behaviour with ChatGPT of the team blue: The team generated
the code for the project using 53 prompts. There was a better understanding of
how to adapt the generated code snippets to the previous programming in order
to produce executable code. In the group, it took much longer to give ChatGPT
specific guidelines that directed the response behaviour so that the generated
code needed less customisation and fit better with the given identifiers. Prompts
like this “how do I plot an expression in Python that I would otherwise render
with print?” show that there was at least a basic understanding of programming.
The documentation given in this group on the methodology gave more specific
recommendations for action, which is why technical terms such as lemmatisation,
stemming or class imbalance reduction were sometimes entered in prompts.

Both groups managed to develop a classifier that can distinguish positive from
negative comments by loading a CSV file into a DataFrame, building an under-
standing of the data, qualitatively enhancing it and implementing a model using
the logistic regression algorithm. All without machine learning skills. The cre-



Bridging the Programming Skill Gap with ChatGPT 445

ated classifiers differ in their F1-scores (team red 83.3 % and team blue 94.2 %)
and the time needed for implementation (Fig. 2).

5 Discussion

The current findings should be interpreted with several limitations in mind.
Typically, machine learning projects are carried out by people with training in
programming or machine learning. In such a more realistic scenario, the use
of ChatGPT would have been more effective. The setting, incorporated into a
controlled experiment, did not allow the participants to use sources other than
ChatGPT, the methodology documents and the lecturers for programming. In
other circumstances, the ChatGPT outputs could have been supported with
internet research, for example, which might have produced better results.

We would like to stimulate a discussion that sheds light on the relevance and
effectiveness of using ChatGPT for programming in a business studies course.

6 Summary, Conclusion and Future Work

We described a case study in which two small teams of business students were
given the task of building a sentiment analysis model for German medical prac-
titioner feedback from patients.

In conclusion, our findings support the hypothesis that subjects with little
to no relevant training in programming or machine learning can still complete
tasks that were traditionally required to require programming skills. However,
limitations have been identified that may distinguish the results from those of
an experienced machine learning engineering team. In many cases, even sim-
ple code fragments were not generated in a functional way in the context of
the project, or only after several attempts by ChatGPT. The approaches pro-
vided by ChatGPT were helpful for people with programming knowledge even
in complex situations, but the students without the necessary know-how could
not assess which simple adjustments would be necessary in the code snippet to
create executable programme code. According to the authors, at least a basic
programming education is necessary to interact effectively and efficiently with
ChatGPT for the purpose of creating software.

Feedback indicates that the students’ own perception is not that they had
a learning experience that deepened their understanding; rather, it was a “gap
filling” experience: the foundational language model took the seat that should
be filled by a knowledgeable team member.

Elsewhere, we describe how much programming knowledge these models
really contain, given that they were conceived to model human language, not
programming language(s). In future work, it would be intriguing to explore how
Chatbot-based foundational language models could be integrated in tutorial sys-
tems that aim at teaching programming principles and programming (language)
skills. The need for this is that the demand for programming talent is unmet,
not replaced by language models.



446 M. Reiche and J. L. Leidner

Acknowledgements. The authors would like to thank the six participants in the
experiment, without whom this article would not have been possible, and the anony-
mous reviewers for their valuable feedback. Supported by BMBF Grants 16DHBKI089,
16DHBKI090 and 16DHBKI091; we would also like to thank the Free State of Bavaria
for funding this research under the Hightech Agenda Bavaria R&D programme.

References

1. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota
(2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423

2. James, G., Witten, D., Hastie, T., Tibshirani, R., Taylor, J.: An Introduction to Sta-
tistical Learning–with Applications in Python. Springer Texts in Statistics, Springer
Nature, Cham, Switzerland (2023). https://doi.org/10.1007/978-3-031-38747-0

3. Kasneci, E., et al.: ChatGPT for good? On opportunities and chal-
lenges of large language models for education. Learn. Individ. Differ.
103, 102274 (2023) https://doi.org/10.1016/j.lindif.2023.102274, https://www.
sciencedirect.com/science/article/pii/S1041608023000195

4. Sjoeberg, D., et al.: A survey of controlled experiments in software engineering.
IEEE Trans. Software Eng. 31(9), 733–753 (2005). https://doi.org/10.1109/TSE.
2005.97

5. Vaithilingam, P., Zhang, T., Glassman, E.L.: Expectation vs. experience: eval-
uating the usability of code generation tools powered by large language mod-
els. In: Extended Abstracts of the 2022 CHI Conference on Human Factors in
Computing Systems. CHI EA 22, Association for Computing Machinery, New
York, NY, USA (2022). https://doi.org/10.1145/3491101.3519665, https://doi.org/
10.1145/3491101.3519665

6. Vaswani, A., et al.: Attention is all you need (2017). https://arxiv.org/pdf/1706.
03762.pdf

7. Zhao, W.X., et al.: A survey of large language models (2023)

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1007/978-3-031-38747-0
https://doi.org/10.1016/j.lindif.2023.102274
https://www.sciencedirect.com/science/article/pii/S1041608023000195
https://www.sciencedirect.com/science/article/pii/S1041608023000195
https://doi.org/10.1109/TSE.2005.97
https://doi.org/10.1109/TSE.2005.97
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3491101.3519665
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

	Bridging the Programming Skill Gap with ChatGPT: A Machine Learning Project with Business Students
	1 Introduction
	2 Related Work
	3 Method
	4 Evaluation
	5 Discussion
	6 Summary, Conclusion and Future Work
	References


