
Enhancing Computer Science Education
by Automated Analysis of Students’ Code

Submissions

Lea Eileen Brauner(B) and Frank Höppner

Department of Computer Science, Ostfalia University of Applied Sciences,
38302 Wolfenbüttel, Germany

le.brauner@ostfalia.de

Abstract. Lecturers of introductory programming courses are often
faced with the challenge of supervising a large number of students.
Reviewing a large number of programming exercises is time-consuming,
and an automated overview of the available solution approaches would
be helpful. In this paper, we focus on source code similarity at the level of
students’ selected solution approaches. We propose a method to compare
Java classes using variable usage paths (VUPs) extracted from modified
abstract syntax trees (ASTs). The proposed approach involves match-
ing semantically equivalent functions and attributes between classes by
comparing their VUPs. We define a F1-based similarity measure on how
well one student submission matches another. We evaluate our approach
using students’ submissions from an introductory programming exercise
and the results indicate the effectiveness of our method in identifying
different solution approaches. The proposed approach outperforms sim-
plified comparisons and the widely used plagiarism detection tool JPlag
in accurately grouping submissions by solution approach similarity.

1 Introduction

Lecturers of introductory programming courses often face the challenge of super-
vising a large number of students. Grading a large number of lab assignments is
time-consuming, which is why automated unit tests are frequently used. How-
ever, such tests provide only feedback with respect to functionality, not to the
efficiency or suitability of the approach. Feedback of this kind can be provided
more easily, if code submissions are grouped or clustered according to their (syn-
tactical) similarity, because the same feedback may be used for multiple solutions
(see [3] and references therein). However, in this work we are not interested in
grading (whereas the authors of [3] are), but feedback that may help students to
revise their solution and learn from fellow students. Once an exercise has been
solved, a student may benefit from other solutions that follow the same line of
thought (but are much more elegant or compact) or alternative solutions that
address the problem differently (not just syntactically, but in the underlying idea
how the problem has been solved). We thus seek a similarity measure for code
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Nowaczyk et al. (Eds.): ECAI 2023 Workshops, CCIS 1948, pp. 369–380, 2024.
https://doi.org/10.1007/978-3-031-50485-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50485-3_37&domain=pdf
http://orcid.org/0009-0001-4888-5966
http://orcid.org/0000-0003-4170-5077
https://doi.org/10.1007/978-3-031-50485-3_37

370 L. E. Brauner and F. Höppner

(as it is typically written in introductory programming courses) that focusses on
structurally different solutions. Note that solutions, which follow different ideas,
typically differ syntactically, but syntactical differences do not automatically
indicate a difference in the underlying idea.

2 Related Work

The proposed method for program similarity in [1] is based on the use of Graph
Neural Networks (GNNs) to analyse Control Flow Graphs (CFGs) of Java func-
tions. The authors state that they wanted to capture both, syntactical similarity
as well as semantic similarity. However, this is achieved by estimating the seman-
tics via a syntactic approximation. If the same program constructs are nested in
a similar way, this has a positive impact on the semantic similarity. But to our
experience this does not necessarily hold for code from novice programmers (cf.
next section). Furthermore, single Java functions were used instead of full Java
classes to reduce the runtime of the Graph Edit Distance problem, as this signif-
icantly reduces the number of nodes in each graph. However, it remains unclear
how the approach can generalise to full Java classes with multiple functions.

Some approaches for detecting similar Java classes, like for code clone detec-
tion, also use abstract syntax trees (e.g. [6]). In conventional ASTs, a new node
is created for each new variable access (even if an already referenced variable
is accessed again). Thus, any information about the use of variables and thus
about the data flow through the programme is discarded. This is also the prob-
lem with plagiarism detection tools like JPlag [5]. Here, all variable identifiers
are replaced with generic identifiers, as the naming may not have any influence
on plagiarism detection. However, for the detection of solution approaches in
student solutions, it is important to obtain information about the data flow.

Many approaches utilize neural networks, which are trained using a large
number of open source projects. In [7] individual statements (AST subtrees) are
represented as embeddings (e.g. local variable declaration) and a sequence of
embeddings is encoded using recurrent networks. However, similar to the clone
detection, the sequential representation includes variable declaration statements,
but actual dependencies between variables are not captured (that is, which vari-
able is used where). This may not be a problem for well-written code from offi-
cial repositories, because a tree of statements may suggest a meaningful variable
usage itself. It is, however, a problem when source code from novice programmers
is used, who struggle not only with the concepts of the language, but also with
computational thinking in general. In that case, the wrong variables are used
in the wrong places, turning a potentially useful code skeleton into a mess. The
fact that conditional statements and loops are composed in a similar manner
alone does not mean that the code does something similar.

So for educational purposes (in introductory courses) we consider it as a
major problem with other approaches, that they disregard the way in which
variables are used. We argue that two submissions follow the same solution app-
roach if they use variables in the same way. This work extends earlier work [2]

Enhancing Computer Science Education 371

class Range {

int getRange(int [] arr) {
int min = 1000;
int max = −1000;
for (int i=0;i<arr.length;++i)

if (arr [i]<min) min=arr[i]; else
if (arr [i]>max) max=arr[i];

return max−min;
}

}

class Range {
int mn = 1000;
int mx = −1000;

int getRanges(int [] arr) {
int min = arr [0], max = arr[0];
for (int i=1;i<arr.length;++i) {

if (arr [i]<min) min=arr[i];
if (arr [i]>max) max=arr[i];

}
return max−min;

} }

class Range {
int small = 1000;
int large = −1000;

void include (int a) {
if (a<small) small=a; else
if (a>large) large=a;

}
int range(int [] arr) {
for (int i=0;i<arr.length;++i)
include (arr [i]);

return large−small;
} }

Fig. 1. Three solutions to the same exercise.

by allowing a full comparison of Java classes (multiple functions and distinc-
tion between local variables and attributes) and also addresses the problem of
different functional decompositions.

3 Problem Definition

The goal is to detect different approaches to the same problem or exercise. While
for an experienced programmer it may look like a task calls for a canonical,
straightforward solution, students may find quite different approaches even to
standard problems, as they have not yet developed a notion for standard cases
or struggle with getting the standard approach straight. Figure 1 shows three
(potential) solutions to an exercise which requests a function that returns the
value range of the passed array (which carries elements of up to three digits only).
With respect to the chosen solution approach, all three submissions follow the
same idea and are considered similar (in contrast to the examples of Fig. 5,
which are syntactically similar to the examples in Fig. 1 but solve a different
problem). Keeping the code structure but mixing the variables, however, may
easily destroy the functionality completely. A useful notion of similarity has to
take into account which variable is used where. But still the similarity is not
recognized easily, we are faced with the following challenges: The students have
chosen different function names. Some use attributes, others only local variables.
There are artefacts that indicate a change in the strategy (the solution in the
middle declares some attributes but then decides not to use them). The solution
on the right decomposes the problem and uses a second function to solve the task
in exactly the same fashion as the solution on the left, but with a more compact
code. Syntactically both solutions (left and right) are different, semantically they
are identical. Ideally we would like to group code by ideas, but content ourselves
with ways to group code by similar variable usage.

4 Proposed Approach

The problem of comparing two classes, say C and D, is decomposed into two
steps, matching functions and then attributes. The use of variables, that is,

372 L. E. Brauner and F. Höppner

Fig. 2. Modified AST of class Range (in Fig. 1(right), only method include) where all
nodes, that correspond to the same variable (filled red), are unified.

how they are embedded into the control structures, captures the nature of the
underlying functionality well and shall form the basis of a similiarity measure.
We characterize a variable’s usage by inspecting a modified abstract syntax tree
(AST), where tree nodes that refer to the same variable are unified into a single
node (which turns the AST into a graph). Figure 2 shows an example for the
class Range (example on the right in Fig. 1, limited to the include function).
The three variables (argument a and attributes small and large) correspond
to nodes shaded red. Whenever a variable is used, there is an incoming edge
to these nodes. A variable’s usage can thus be described by the set of all paths
from the root node (here: Range) to the variable node. (The root node is omit-
ted from the path as it is the same for all paths.) For instance, the blue path
a/parameters/include tells us that a is a parameter of function include of
class Range. The green path a/expression/if/if/body/include informs us,
that a is used in the control expression of a nested if-statement inside the
include function. The orange path large/Declaration/⊥ misses a function
node, because large is an attribute that is defined in the scope of the class
rather than the scope of a function. We may thus describe a whole class by the
set of all variable usage paths as follows:

Definition 1 (variable usage path). Let I be a set of code instruction labels
(such as if, while, expression, . . .). For a given Java class C, let VC be a
set of variable identifiers1 and FC the set of functions declared in C. A path
p = (v, i1, . . . , in, f) ∈ VC × I∗ × (FC ∪ {⊥}) := P reflects that a variable v is
used by instruction i1, which is itself used by instruction i2, etc., in function f

1 Note that variable names themselves are not valid identifiers, as the same name may
be used twice for variables in different functions. From the AST, we extract a unique
node identifier for each variable. But in this paper, for simplification and readability,
we use the variable names as identifiers.

Enhancing Computer Science Education 373

(or, indicated by ⊥, directly in the class definition in case of attributes). The
VUP-representation (variable usage path) of code C is a set PC ⊆ P of all
paths occurring in C.

Classes C and D may then be compared by comparing the respective VUP
representations PC and PD:

Definition 2 (VUP similarity). Given two VUP representations P and Q,
we measure their similarity by the F1-measure:

F1(P,Q) = 2 · p · r

p + r
where p =

|P ∩ Q|
|P | , r =

|P ∩ Q|
|Q|

If, however, function and variable names are disjoint in C and D (as it is the case
in Fig. 1), F1(P,Q) is undefined, so in this case, we assume F1(P,Q) = 0. We
may replace all variable names and all function names by the same identifier, as
it is frequently done by other approaches (e.g. plagiarism detection).

Definition 3 (simplified usage path). Given a class C, let σ : VC × I∗ ×
(FC ∪ {⊥}) → {vn} × I∗ × {fn,⊥} a transformation, that replaces all variables
names by a constant identifier vn (generic variable name) and all function names
f by

f ′ =
{
fn if f �= ⊥
⊥ otherwise

where fn is a constant identifier. For a VUP P , we denote σ(P) as a simplified
VUP representation (SVUP) . By σf (σv, resp.) we denote the same transfor-
mation as σ except that it leaves the variable names (function names, resp.)
unaltered.

The discussed paths would thus read in the simplified representation
vn/Declaration/⊥, vn/parameters/fn, and vn/expression/if/if/body/fn,
resp. Comparing simplified representations σ(PC) usually yields a non-zero value
for F1(σ(PC), σ(PD)), but does not distinguish different function and variables
at all, and thus gives only a rough similarity estimate.

By visual inspection of the examples in Fig. 1 we know that function
getRange (left) and range (right) correspond to each other, but this informa-
tion is not available to our similarity measure. The simple approach of averaging
all possible pairwise similarities, such as comparing getRange with include and
getRange with range is not a reasonable solution. To accurately assess similarity
as realistic as possible, only the corresponding functions (and variables) should
be considered (like getRange vs range). To solve this problem, we need some
means to filter for usage paths of certain variables or functions:

Definition 4 (filter π on usage paths). Let π(x,y) : P → P, P 	→ {p | p =
(v, i1, . . . , in, f) ∈ P ∧ (x = v ∨ x = ∗) ∧ (y = f ∨ y = ∗)} be a filtering function
that returns a VUP representation of only those paths that refer to variable
identifier x (or all variables if x = ∗) and function identifier y (or all functions
if y = ∗).

374 L. E. Brauner and F. Höppner

Fig. 3. Schema of class comparison.

The challenge is now to match functions and attributes from different classes
dynamically. Figure 3 shows the proposed approach schematically. On the left,
class C is decomposed into attributes (here: attr0 and attr1) and functions
(here: func1 and func2). Function nodes f have a child node for every variable
that is used in the function. The children of some variable v correspond to a
simplified VUP representation of all related usage paths of function f , that is,
σ(π(v,f)(PC)). The children of some attribute a correspond to σv(π(a,∗)(PC)).

In order to find the best counterparts of functions in C among functions in D,
a cost matrix is created (matrix (1) in Fig. 3). To fill the cost matrix we need to
assess the similarity between, say, function func1 of C and fu3 of D, which shall
be accomplished by comparing how similar both functions are in terms of their
variable usage. To assess this particular value, another cost matrix is constructed
(matrix (2) in Fig. 3), which compares all variables of func1 against all variables
of fu3. A single cell in this matrix captures the cost of assigning a variable from
one class to a variable of the other. The cost value is obtained from calculating
F1 of the respective SVUPs (1 − F1 enters the cell, turning similarity F1 into
cost/distance). For the marked cell (var2 vs va3) we obtain its value from

1 − F1

(
σ(π(var2,func1)(PC)) , σ(π(va3,fu3)(PD))

)

The optimal match of variables is obtained, when the total assignment cost
become minimal. This problem is known as an assignment problem, which is
not trivial. The challenge is to efficiently determine the optimal assignment, as
the number of possible combinations grows quickly with the size of the cost
matrix. The Munkres algorithm [4] provides a solution by analysing the cost
matrix and determining an optimal allocation with minimum total cost in cubic
runtime complexity. In cost matrix (2) of Fig. 3 the optimal assignment would
be Av = {(var1, va2), (var2, va1)} with a minimal total cost of 0.1.

To reflect the optimal variable assignment for func1 and fu3 (as represented
by some assignment A), the variable names can be renamed in all paths of PC

and PD:

Enhancing Computer Science Education 375

Definition 5 (renaming � of usage paths). Let A ⊂ VC × VD be the result
of an assignment problem for classes C and D, that is, identifiers i1 and i2 have
been assigned if and only if (i1, i2) ∈ A. Let �A : P → P be a renaming function,
which replaces all occurrences of any identifier (i1, i2) ∈ A in all variable usage
paths by some new identifier h(i1, i2) (e.g. obtained from a hash function h or
any other unique, artificially generated name).

Once the variables are renamed, we can fill in the cost value of the resp. cell in
cost matrix (1), which is now obtained from

1 − F1

(
σf (�Av

(π(∗,func1)(PC))) , σf (�Av
(π(∗,fu3)(PD)))

)

Having filled out all cells in this way, we obtain the cost-minimal match of
functions from another application of the Munkres algorithm [4].

Once all functions have been assigned to one another and all identifiers have
been replaced in the usage paths accordingly, the attributes can be assigned in
the same fashion by comparing their VUP representations (cost matrix (3) in Fig.
3). With Af = {(func1, fu3), (func2, fu2)} being the union of all selected func-
tion assignments, the cost of the highlighted cell in cost matrix (3) is obtained
from

1 − F1

(
σv(�Af

(π(attr0,∗)(PC))) , σv(�Af
(π(at1,∗)(PD)))

)
At this point, all functions and variables (local variables as well as attributes)
from class C have been assigned to the respective elements of class D, preserved
in the assignments Af and Av.2 The final similarity is then computed as a
mixture of function and attribute similarity (we use α = 0.7):

α F1(�Af
(PC), �Af

(PD))︸ ︷︷ ︸
functions

+(1 − α)F1(�Av
(PC), �Av

(PD))︸ ︷︷ ︸
attributes

Functional decomposition. So far, we have not tackled the difference between
the code on the left and on the right of Fig. 1, which differs in the functional
decomposition. The usage paths will of course differ: range (Fig. 1(right)) uses
the argument arr[i] in the function call include(arr[i]), whereas getRange
(Fig. 1(left)) uses arr[i] multiple times in the if-statements. To overcome these
differences, we modify the way how paths are extracted from the AST in case
of function calls. Figure 4 shows the graph for the range method, which calls
the include-method (call node with edge to the include method). We would
extract a path arr/arrayaccess/call/for/body/range for the array arr,
which indicates that it occurs as a parameter in a function call. Whenever a path
contains a call segment, we modify the path as follows: we replace the single
call segment with all paths of the respective parameter from the called function,
where (1) the argument is removed and (2) the path is cut off at the body of the
function. In the case of the include function in Fig. 2 we have already discussed

2 or remain unassigned in case no counterpart exists.

376 L. E. Brauner and F. Höppner

Fig. 4. Modified AST of class Range (in Fig. 1(right)), without implementation of
include.

the path a/expression/if/if/body/include. We remove the parameter (a)
and cut off the path at the body of the function and obtain expression/if/if.
That is, in the original path of the include(arr[i])-call we replace call
by expression/if/if (same for all other paths that include this parameter).
This leads us to arr/arrayaccess/expression/if/if/body/range, which is
the same path we would have obtained if the function include was inlined in
the range function. In this way we generate the same paths that are extracted
from Fig. 1(left). Finally, minor transformations are applied to the extracted
path sets to purify them, such as filtering out artefacts or nested bodies (such
that if(..){{stmt;}} equals if(..){stmt;}).

5 Experimental Evaluation

We first discuss the results for the example classes from Fig. 1. As a distractor
we add two more source codes to them, shown in Fig. 5, which are similar in
terms of statement nesting, but dissimilar to the others in terms of variable
usage. The following sources were compared pairwise: oddeven and oddevenfunc
from Fig. 5, the left, mid, and right code from Fig. 1, an empty class and a clone
mid2loop of mid where each of the two conditional statements gets its own for-
loop. The result is a 7× 7 distance matrix. One cell in this distance matrix then
corresponds to the total distance between two classes C and D. Multidimensional
scaling (MDS) was applied to the distance matrix (R2 ≈ 0.90), which projects
the individual data points in the two-dimensional space, while trying to preserve
the pairwise distances. For the final evaluation of the quality of the realised
class comparison, hierarchical cluster analysis with the single-linkage method

Enhancing Computer Science Education 377

Fig. 5. Two sources with similar code structure (conditional statement within loop
over array) but different variable usage.

Fig. 6. Evaluation of example codes

was applied to the distance matrices. Figure 6 shows the results. On the left we
see the MDS embedding into 2D. The classes that use variables in different ways
are optimally separated from each other. This is also reflected in the dendrogram.
We can see that the submissions that use variables in a similar way and follow
a similar approach are close to each other, as desired (e.g. mid and mid2loop,
which barely differ in terms of variable usage).

For a more comprehensive evaluation of the proposed approach, we anal-
ysed real students’ submissions resulting from different exercises. The evalua-
tion results of one of these exercises are presented below. In the task Time-
Keeper (TK), a working time administration had to be implemented. A com-
plete realisation typically contains four methods, a constructor and about four
attributes. Two predominant approaches can be found in the submissions, which
perform the necessary calculations in a different way (re-calc all values with every
change versus calculation of single values upon request). First, the submissions
were grouped manually, four clusters were identified. Cgreen contains completely
empty classes without implementation, Cblue contains an implementation that

378 L. E. Brauner and F. Höppner

Fig. 7. MDS 2-dimensional projection, Cgreen = empty classes, Cblue = partially imple-
mented classes, Cyellow and Cred = two predominant solution approaches

Fig. 8. Dendrograms of hierarchical clustering

has been started but for which no specific solution approach is recognisable
yet (only some variable and method declarations but only little functionality),
and Cyellow and Cred contain the two predominant solution approaches. We
compare the results of the proposed approach with the simplified representa-
tion (F1(σ(PC), σ(PD))) and the JPlag [5] tool to derive an additional distance
matrix. JPlag is a frequently used and well established tool for source code com-
parison, most commonly used to detect plagiarisms. Figure 7 shows the results
of MDS and Fig. 8 presents the resulting dendrograms. Note that some jitter
was applied to the 2D projections to make data points visible that lie very close
to each other.

Figure 7a shows the 2D representation of the submissions, which were anal-
ysed with the simplified variant. The submissions belonging to Cgreen, represent-
ing empty classes, are perfectly separated from the remaining submissions. On
the other hand, the submissions in Cblue, which represent partially implemented
classes, are partially separated from the other groups. Some of these submissions
form a distinct cluster in the top-left region. Among these submissions, those

Enhancing Computer Science Education 379

that include more code and are gradually evolving towards one of the two solu-
tion approaches are more similar to the fully implemented classes. Consequently,
they tend to be positioned in close proximity to the fully implemented classes.
The fully implemented classes are concentrated in a single cluster. Within this
cluster, however, the upper region consists mainly of submissions that follow the
yellow approach, while the lower half comprises mostly submissions that follow
the red approach. Thus, an approximate separation is already noticeable here
using the simplified comparison.

Figure 7c shows the results of the pairwise analysis with the JPlag tool. The
empty classes from Cgreen are separated from the other classes, but not as dis-
tinctly as in Fig. 7a. This can be explained by the fact that we classified a class
as “empty” when no functionality was implemented at all. However, a class dec-
laration or the declaration of the main function may still be present in the file.
Thus, the submissions differ in the syntactic comparison with JPlag, but not in
their variable usage paths. On the right side of the figure, the fully implemented
classes as well as isolated half-finished classes occur in one group. There is a slight
tendency to separate the approaches in Cred and Cyellow, but the approaches are
mixed and clusters overlap. Submissions of Cblue are widely distributed between
the empty and fully implemented classes, two almost reaching Cyellow.

Figure 7b analogously shows the results of the proposed similarity presented
in the context of this paper. At first glance, four groups and two outliers can
be identified. In the upper left there are the empty submissions from Cgreen.
Within this group there are two submissions from Cblue. This is due to the fact
that these two solutions contain only attribute declarations and implement no
functionality. Since the declared attributes are never referenced in functions, they
are identified as artefacts and removed before class comparison, which results
in empty VUP-representations as well. In the middle there is a group of par-
tially implemented submissions (Cblue), which have reached a similar stage of
completion. Two other partial solutions represent intermediate versions, which
are thus located somewhere in between. However, the different approaches have
been separated perfectly and form two distinct clusters.

The 2D representation resulting from MDS provides an intuitive way to get
an overview of the structure in the data, clusters can be identified with a single
glance. However, structures may be present in the data that are not recognisable
in 2D space. A coefficient of determination of R2 ≈ 0.70 is solid, but not optimal.
The dendrograms from a hierarchical cluster analysis are shown in Fig. 8. Again,
the proposed approach separates the different approaches (Cyellow and Cred)
best. The dendrograms also show that the proposed comparison is the only
one in which the two solutions Cyellow and Cred can be perfectly separated by a
cutplane (δ ≈ 0.6). For the other two dendrograms no such separation is feasible.

In summary, the results suggest that the composed comparison is a better
discriminating method than the simple one and the JPlag Tool. The sample
is small, but it becomes clear that on the test data, with the help of the cho-
sen implementation, manually distinguishable solutions are distinguishable by a
machine as well.

380 L. E. Brauner and F. Höppner

6 Conclusion

In conclusion, this paper presents an automated method for improving computer
science education by analysing code submitted by students. The proposed app-
roach compares Java classes in a semantic way using variable usage paths (VUPs)
extracted from modified abstract syntax trees (ASTs). The method presented in
this paper outperforms simplified comparisons and the JPlag tool in accurately
grouping submissions by similarity of solution approaches. The evaluation results
demonstrate the effectiveness of the approach in identifying different approaches.
Through a preliminary evaluation using real student code submissions, it was
shown that this method provides valuable insights for students and teachers.
Lecturers can get an overview of the prevailing solution approaches in the sub-
missions and specifically discuss individual ones in the lecture. We intend to
offer students, who have finished their exercise, a solution from a fellow student
that follows a different approach. We then ask the students for pros and cons
of both solutions, which encourages students to overthink their own solution as
well as comprehending given code (and will also be used to assess the validity of
the method on a larger scale). Both applications can have an immediate positive
impact on the students’ learning success.

Acknowledgements. This work was partly funded by the German Federal Ministry
of Education and Research under the grant no. 16DHBKI056 (ki4all).

References

1. Hellendoorn, V.J., Devanbu, P.: Are deep neural networks the best choice for mod-
eling source code? In: Proceedings of the 11th Joint Meeting on Foundation of
Software Engineering, pp. 763–773 (2017)

2. Höppner, F.: Grouping source code by solution approaches - improving feedback
in programming courses. In: Proceedings of the 14th International Conference on
Educational Data Mining (2021)

3. Joyner, D., et al.: From clusters to content: using code clustering for course improve-
ment. In: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, pp. 780–786 (2019)

4. Munkres, M.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

5. Prechelt, L., Malpohl, G., Phlippsen, M.: JPlag: Finding Plagiarisms Among a Set
of Programs. University of Karlsruhe, Tech. rep. (2000)

6. Sager, T., Bernstein, A., Pinzger, M., Kiefer, C.: Detecting similar java classes using
tree algorithms. In: Proceedings of the 2006 International Workshop on Mining
Software Repositories, pp. 65–71 (2006)

7. Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X.: A novel neural source
code representation based on abstract syntax tree. In: 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering, pp. 783–794. IEEE (2019)

	Enhancing Computer Science Education by Automated Analysis of Students' Code Submissions
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Proposed Approach
	5 Experimental Evaluation
	6 Conclusion
	References

