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Abstract. Data analysis is one of the most important parts of data mining and
machine learning tasks. In recent years, explainable artificial intelligence meth-
ods have been used very often to support this phase. However, the explanations
themselves are very often difficult to understand by domain experts, who play
one of the most important roles in the phase of data analysis. In this work, we
proposed a procedure to combine domain knowledge with ML and XAI methods
to improve the understandability of explanations. We demonstrated the feasibility
of our approach on a publicly available medical dataset. We describe a procedure
for obtaining intuitively interpretable information about distinguishable groups
of patients and defining differences between them with the usage of clustering,
rule–based encoded domain knowledge, and SHAP values.

1 Introduction

Explainability (XAI) methods are becoming increasingly important with the spread of
practical applications of Machine Learning (ML). XAI could be used to recognize inter-
nal dependencies of a model by determining the influence of features on the prediction
result, and finally help get better insight into data and the model in pre–modeling phase
of data mining (DM) and ML workflows. In this phase, the main focus is on domain
understanding, data cleansing, feature selection, etc. The success of this stage is deter-
mined by a proper understanding of the data and the domain. Therefore, in most cases,
the pre–modeling phase is a combined effort of different stakeholders including domain
experts and data scientists. In recent years, XAI methods have been used to improve the
communication between data scientists and nontechnical stakeholders by explaining
the model decisions. However, the target users of most current XAI algorithms such as
SHAP, Lime, Anchor, Lore, etc. are usually data scientists [15,19,23]. This limits their
usage to model–debugging, or feature–selection tasks, while their potential of generat-
ing explanation for broader audience including domain experts is not fully utilized. In
our research, we focus on augmenting existing XAI methods with an additional layer
of domain knowledge that will increase their understandability. We base our procedure
on the SHAP algorithms, which are among the most mature and widely used for both
research and practical applications.
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SHAP importance score allows us to determine the contribution of individual input
parameters to ML model decisions. Expert knowledge is usually not limited to rec-
ognizing the importance of features but also encodes complex relationships between
them. Thus, the transition from a simple feature attribution scheme, which most mod-
ern XAI methods follow, to more expressive explanations is not straightforward and
limits the usefulness of such explanations from the expert perspective. One of the goals
of the research presented in this article was to fill this gap, developing a method that
will improve the understandability of XAI explanations for non–technical users, but
also provide a formalized way to encode expert knowledge into the explanation process
to let data scientists get better insight into the domain [22]. To achieve this goal, we
combined rule-based knowledge representation, clustering, and explainability methods
according to the Semantic Data Mining paradigm [13].

The rest of the paper is organized as follows. In the 2 section, we describe our moti-
vations. The articles related to our research are presented in Sect. 3. The methodology
of is shown in 4. The results obtained and their evaluation are presented in Sect. 5.

2 Motivation

One of the goals of our research was to develop a method to integrate model explana-
tions with additional domain knowledge to enhance the interpretability of XAI results.
One way to do this is to recognize the relationship between instance values and their
impact on the model’s decision [11]. We applied it by designing a set of rules for the
features to capture expert knowledge of certain relationships that are hidden without
experience in a particular area. Such an approach has at least two advantages, the one–
time implementation of additional information allows its later reuse. The second is the
ability to automate the entire procedure whose results will be understandable to a non–
specialist user.

In order to find patterns in the data and relate them to the explainability results, we
had to consider several issues like:

1. Identify features that are not intuitive or even impossible to understand without hav-
ing domain knowledge.

2. Implementation of domain knowledge in the form of rules
3. Transformation of the rules into new, binary features set
4. Defining patterns in data to recognize similarities between instances (Clustering)
5. Defining relations between the clusters using: a) ML model and SHAP results to

determine distinctive patterns of features significance for each group b) Rule-based
encoded domain knowledge c) Data distribution analysis
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In Fig. 1 are the workflows of two approaches for explaining unsupervised learning
models. In our study, we used the schema shown in 1A. Schema 1B represents the
basic workflow in which the relations in the dataset are defined by the importance of
SHAP features on the basis of unsupervised model decisions. Approach 1B, despite
its simplicity, may be less generic. Depending on the model used for the unsupervised
learning task, the appropriate method to create explanations should be selected.

In our study, we do not analyze the explainability scores of the model that creates
the labels. This approach (Fig. 1A.) is universal due to the independence of the internal
structure of the model, as we only use the input data and the output results for the
Semantic Data Mining analysis.

3 Related Works

In our research, we want to expand the available set of information in order to create
explanations that are easier to interpret, especially without detailed knowledge of the
data. This approach is inspired by the concept of Semantic Data Mining [20]. It relies
on the Semantic Data Mining tasks that systematically incorporate domain knowledge,
especially formal semantics, into the process. As noted by the authors of [17], the main
aspect of Semantic Data Mining is the explicit integration of this knowledge into algo-
rithms for modeling or post-processing. In our study, we use domain knowledge that
describes medical data for diabetes in the form of additional rules to code the original
data and recognize its impact on the outcome (in our case, health status) [14]. One of
the methods to look for relationships in the data is to compare the distributions between
groups [4,6]. We used information obtained on the original and additional feature dis-
tributions as a basis for interpreting the XAI results. [7]

Fig. 1. Comparison of workflow used in our study (A) vs basic workflow for unsupervised learn-
ing explanations (B)
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Despite many existing explainability algorithms, there is still no scientific consensus
on the explicit recognition of multifaceted dependencies of model input parameters [9].
This problem was noticed by the authors of [10], especially in the case of multi–modal
relationships, where different aspects of a phenomenon are represented by individual
modalities/channels.

In our study, we used the proxy model to determine differences between clusters
(Fig. 1A.). This term is defined by the authors of [3] under the name “surrogate model”
as “usually directly interpretable model that approximates a more complex model. We
evaluated the results of explainability from various perspectives in a similar way to
the idea described by the authors in [5]. In our research, we explore the possibilities
of recognizing relations between the instances using additional features coded from
domain knowledge–based rules, original dataset distributions, and SHAP importance
score.

4 Transforming Domain Knowledge into a Set of Rules

4.1 Dataset

The ‘Pima Indians Diabetes’ (PID) dataset [21] is a collection of data about the inci-
dence of diabetes, originally from the National Institute of Diabetes and Digestive and
Kidney Diseases. PID dataset was designed to detect relations between diabetes and
parameters that describe the health status of the subjects. There are 768 cases in the
database. Dataset includes information if a patient has or does not have diabetes, and 8
features:

– Pregnancies – Number of pregnancies
– Glucose – Plasma glucose concentration a 2 h in an oral glucose tolerance test
– BloodPressure – Diastolic blood pressure [mm Hg]
– SkinThickness – Triceps skin fold thickness [mm]
– Insulin – 2–Hour serum insulin [mu U/ml]
– BMI – Body mass index
– DiabetesPedigreeFunction – Indicator based on the diabetes mellitus history in rela-
tives and the genetic relationship of those relatives to the patient.

– Age

After conducting exploratory analysis, we have noticed a significant amount of
zeros values in the original dataset. The most important feature in this regard was
Insulin with 374 zero values out of 768. In Fig. 2 we can see silhouette scores for all
features (A), data excluding Insulin measurements (B) and after removing a small num-
ber of zeros (C) of the BMI (11 measurements), Blood Pressure (35 measurements)
and Glucose (5 measurements) features. After cleaning the data and excluding Insulin,
724 cases remained as input to the unsupervised learning model. Based on the 2C plot,
model was set to find similarity for 4 clusters.
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Fig. 2. Silhouette scores for different subsets of data

4.2 Feasibility Study of Rules for Features Assessment

The most time–consuming part of our approach is the preparation of rules coding the
original dataset. Incorporation of domain knowledge requires a thorough exploration of
the possible sources of this knowledge. In practice, decision support systems are often
developed in collaboration with end users or domain experts. In such cases, users are
an important source of expertise.

In our case, the two main goals of domain data mining were: 1) Determine the
thresholds that would allow assessing the value of features, shown in Fig. 3, 2) Obtain
information on the real impact of the feature on the outcome, in this case susceptibility
to diabetes.

Let’s consider influence assessment issue using the BMI feature as an example. BMI
is one of the most important features related to diabetes susceptibility. It is a universal
factor that is often used as a health index based on the weight–to–height ratio. The
main advantage is its simplicity of calculation and interpretation. Some interpretations
of the BMI factor separate the correct limits for men and women due to differences in
body build [2], but this approach does not follow the guidelines of the World Health
Organization (WHO), the Centers for Disease Control and Prevention (CDC) [1]. As
described by the authors of [18], BMI is a useful index associated with susceptibility to
various diseases such as asthma. The controversy related to BMI is oversimplification,
which does not distinguish between muscle mass and fat mass. This leads to a situation
where similar, high values can be obtained by a person with excessive, unhealthy weight
and an athlete with a lot of muscles and a negligible share of body fat. One of the
postulates of physicians analyzing this topic is the proposal to take into account the
circumference of the waist as a factor that distinguishes these cases.

In a detailed analysis of this feature, we can observe that the limits determining the
correct values do not depend on age, although with age there is a tendency for a sta-
tistical increase in BMI [8]. In the dataset we use in our research, all the respondents
are older than 21 years, therefore the following thresholds describing obesity are uni-
versal for the entire dataset (Fig. 3), however, considerations concerning children and
adolescents are not so clear. In adolescents and children, the different growth rates and
generally large changes over several years mean that BMI should be assessed in relation
to the BMI distribution of the local peer group and with the use of additional measure-
ments [12]. One of the goals of our research was to assess patient health based on
medical measurements and to determine the factors of influence that are the most risky
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in terms of health loss. The ambiguity in the interpretation of the BMI value means that
as a single information is not crucial for pro–health activities recommendations. How-
ever, BMI is important information in relation to additional indicators that describe the
patient’s health condition.

The rules have been prepared to give semantic meaning to the values in the dataset.
Without additional knowledge, in basic approach, XAI algorithms let us obtain infor-
mation such as “BMI was the most influential feature considered by the model for the
cluster assignment decision”. The same data, after being processed by domain–based
rules, allow us to designate the most influential groups of features in the context of
dependencies understandable to a non–specialist user. In practice, the number of classes
and the complexity of the rules depend on the individual goals of the analysis. The next
section describes the results we obtained after applying our procedure.

4.3 Creating Rules

In our research, we consider the way of implementing the domain knowledge informa-
tion that describes the underlying dataset to obtain meaningful results. For this purpose,
we conducted a feasibility study to acquire thresholds for features real–life influence
assessment. Next, we turned that information into a set of rules to classify the original
data in a form of binary–coded features. Each rule rf takes form of:

rf =
∏

j∈Tf

I(xj ∈ sjf )

where Tf is a set of thresholds for feature f , I is the indicator function that is equal to
’1’ when threshold xj is in a specified subset of values s for the j–th threshold and ’0’
otherwise. We are using numerical features, so sjf is an interval in the value range of
the threshold:

(xjf ,lower < xj) AND (xj < xjf ,upper )

For example, if we need to incorporate domain–based assessment of the BMI feature
that states ’BMI less than 35 and more than 30’, we add a new feature – ’obesity type
1’ in the instance that will be equal to ‘1’ if it satisfies that condition and ’0’ otherwise.
Visualization of additional features related to the level of healthy value exceedances is
shown in Fig. 3.

After choosing the appropriate way to encode additional information, we proceeded
to analyze the dataset. We use the clustering technique to identify patterns in the data.
This is a form of unsupervised learning that allows us to group instances according
to their similarity. In the next step, we create a proxy model using the original data as
input. The model was aimed at predicting the clusters formed by unsupervised learning.
Then we used XAI scores and distribution statistics to relate all available data in the
context of the clusters. The main stages of our research include: 1) Transformation of
domain knowledge into a form of rules, and then features, used for ML methods. 2)
Unsupervised learning to determine patterns in the data. 3) Training ML model for
identifying the relations between model input and designated clusters. 4) Explainability
analysis using SHAP values. 5) Recognition of patterns and relations between clusters
using explainability results, distribution statistics, and rule–based features analysis for
individual clusters.
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Fig. 3. Visualization of domain–based rules used to create an additional set of features

Clustering is used as a source of patterns that we want to identify and determine
the internal relationships that distinguish clusters from each other. The objective of the
case study presented in Sect. 5 was to divide patients into groups according to their
susceptibility to diabetes and recognize the characteristics of each group.

5 Evaluation

In our procedure, we draw conclusions about relationships between patients by merging
information from several sources (shown in Fig. 1): 1) Distribution characteristics of
the original data 2) Distribution characteristics of the features derived from domain
knowledge 3) XAI results of the proxy model

During the study, we tested 4 types of models: Logistic Regression, K–Nearest
Neighbors (KNN), Random Forest Classifier, and Support Vector Machine. We chose
the Random Forest Classifier for further analysis because it achieved the highest accu-
racy.

The Table 1 contains clustering results. Cluster 0 has the highest number of people
with diagnosed diabetes (45% of all) in terms of both the number of people with dia-
betes and their proportion. Cluster 3 represents the most “healthy” group. Clusters 1 and
2 have similar proportions when it comes to diabetics, and to identify preliminary dif-
ferences between these groups, we analyzed the distributions of feature measurements.

Table 2 shows the mean feature values according to the clusters. Bold font indicates
the highest values for column, italic – the lowest. The results show that in clusters 0
and 3 people with the worst and the best scores were collected, respectively, which is
consistent with the shares of diabetics in these clusters. Compared to the information
in Table 1, we can observe differences between clusters 1 and 2. In cluster 2 patients
have a higher average for the number of pregnancies and age, while noticeably lower
values for features BMI and Diabetes Pedegree Function (represent genetic susceptibil-
ity to diabetes). The largest difference (almost 15 times) in favor of patients in cluster
2 compared to cluster 1 is noticeable for the Skin Thickness feature, which represents
information about adipose tissue.
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Table 1. Division of patients into clusters of the unsupervised learning model.

Cluster Sum Outcome Quantity Diabetes share

0 153 0 40

1 113 74%

1 194 0 127

1 67 35%

2 147 0 100

1 47 32%

3 230 0 208

1 22 10%

Table 2.Mean values of features for clusters.

Cluster Pregnancies Glucose BloodPressure SkinThickness BMI DiabetesPedigreeFunction Age

0 5,0 168,7 76,6 25,1 35,1 0,55 38,7

1 3,5 121,7 73,7 33,6 34,9 0,50 31,9

2 4,6 121,9 75,9 2,3 30,7 0,42 37,7

3 2,9 90,8 66,2 21 29,8 0,44 28,2

Table 3 shows the summarized values of binary features according to the clusters.
We can use this to provide context to the original dataset. The SHAP explainability
results for the proxy model are shown in Fig. 4 The Glucose preDiabetes feature in all
clusters was 0.

The major differences considering the domain knowledge features include the fol-
lowing:

– Glucose – The most significant differences between the Cluster 0 and others groups
are observed on the Glucose parameter due to the highest mean value. This is due
to the presence of 83% of all patients with excesses in this group. Clusters 1 and 2
contain only 16 cases each (out of 185 observations), and 0 cases in cluster 3.

– BMI – people in clusters 0 and 1 have a significantly higher average BMI than
clusters 2 and 3. The distinction between these groups can be made by analyzing
additional data. We can see that despite the highest average for cluster 0, the largest
number of people with exceeded the Obesity type 1 threshold and above are in clus-
ter 1. The lower level of BMI is cluster numbers 2 and 3. The smallest number of
overruns is in cluster 2, but it is cluster 3 that has the lowest average BMI. This is
due to the fact that cluster 3 has the highest share of people without excesses of this
parameter (27% compared to 22% in cluster 2).

– Blood Pressure – the most distinctive group is cluster 3 which has the highest propor-
tion of people with problems with too low blood pressure (54% of all exceedances
of this type). Cluster 0 has the largest share of people with too high blood pressure
(35%). In cluster 1, the proportions of excesses related to too high and too low blood
pressure are similar.
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Table 3. Sum of domain–based binary features for clusters.

Cluster BM
I o
be
se
3

BM
I o
be
se
2

BM
I o
be
se
1

BM
I o
ve
rw
eig
ht

Gl
uc
os
e
hi

Bl
oo
dP
res
su
re
hi

Bl
oo
dP
res
su
re
lo

0 32 33 57 20 153 54 24

1 34 53 58 40 16 51 46

2 12 18 42 42 16 40 25

3 12 37 55 64 0 18 111

The major interpretation differences of SHAP explainability results include:

– Glucose – SHAP results show inverse proportion to the highest measurement values.
More informative is the assessment based on absolute SHAP values. For cluster 0
the results are more than 2x higher than for clusters 1 and 2, and significantly lower
in cluster 3. This is consistent with the interpretation of Glucose as one of the most
significant characteristics that differentiates the clusters, both in terms of mean and
number of exceedances.

– BMI – For this feature, we can observe a relation between the SHAP sign and the
high and low values of BMI. Clusters 0 and 1 have a similarly high BMI average, but
cluster 1 has significantly higher SHAP results. This may be related to the highest
overall number of cases with Obesity type 2 in cluster 1. The situation is similar
for the two clusters with the lowest average BMI. In both cases, SHAP values are
positive, but for cluster 3 they are significantly higher than for cluster 2. Cluster 3
also has a higher number of cases of type 2 Obesity and Overweight compared to
cluster 2.

– Age – Interpretation of the results for Age is not consistent. In cluster 3 it was the
most significant parameter, proportional to low age. Analysing the results for cluster
1 (low mean Age), SHAP values are negative, but for the high mean Age in cluster
2 they are also negative. This means that the significance of Age is related to other
parameters that characterise the cluster.

Summarizing the results obtained, the patient groups determined by the unsuper-
vised model are characterized by:

– Cluster 0 – Glucose problems, higher Age, genetic susceptibility to diabetes, high-
est average Pregnancies, high percentage of diabetics. The most significant feature,
according to SHAP, defining this cluster was the high values of the Glucose param-
eter.

– Cluster 1 – Despite the small proportion of participants with increased Glucose, this
group is distinguished by the highest proportion of patients with excess BMI and
significantly higher average Skin Thickness feature than in the other groups. The
most significant characteristics according to SHAP that define this cluster were low
Glucose values and high BMI values.
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Fig. 4. SHAP explanations of proxy model

– Cluster 2 – The group with the correct glucose results, the lowest number of excess
BMI, and the lowest average Skin Thickness. These features and Diabetes Pedigree
Function are the most significant differentiation from cluster 0 because the mean
number of pregnancies and the age are similar. The most significant features accord-
ing to SHAP that defined this group were low Glucose values and high Pregnancy
values.

– Cluster 3 – The most ’healthy’ group, with the lowest averages for almost all param-
eters. Despite the relatively high number of excess BMI, there are a small number
of patients with the highest obesity (type 3 Obese). A distinguishing feature of this
group is also the significantly higher number of cases with too low Blood Pressure,
as well as the lowest average Age and Pregnancies. The most significant character-
istics, according to SHAP, defining this cluster were low BMI, Blood Pressure and
Age.

In the course of the research, the method in which domain knowledge was trans-
formed into an additional set of features proved to be an important factor in facilitating
the interpretation of the original data. Parameters on a binary scale can be represented
in 2 ways. Taking into account 4 levels of exceedances for the BMI feature (equivalent
to creating 4 additional parameters), so that each exceeded threshold means 1 and a
measurement below the threshold – 0, when describing a person with maximum exceed
of BMI (Obesity type 3), all 4 parameters will have a value of 1. This approach to the
creation of the dataset turned out to be better in terms of training the prediction model.
The second way to represent binary characteristics is to assign 1 value only to the high-
est exceedance threshold for an individual. In this case, the value of the Obesity type
3 parameter will be equal to 1, while the other features describing BMI exceedances
will be equal to 0. This approach is more intuitive for analyzing the distributions of
exceedances within clusters and was used to create a Table 3.
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6 Summary

We described a procedure for obtaining intuitively interpretable information about dis-
tinguishable groups of patients and defining differences between them with a usage of
clustering, rule–based encoded domain knowledge, and SHAP values. On the basis of
the data patterns found and the analysis of information with different origins, we deter-
mined the characteristic attributes of each group. This potentially allows us to automate
the procedure and provide final conclusions in the form of easy–to–understand infor-
mation even by non–specialist user.

This type of analysis is an important part of, for example, recommendation sys-
tems. Users of patient prediagnostic decision support are healthcare facilities that have
an established set of treatment actions, the equivalent of the clusters in our study. The
evaluation of the health of the clients is performed based on the knowledge of specialists
and the diagnosis scripts prepared for them. By determining the associations between
patient health indicators and the medical services they use, we can shorten the time
between identifying the needed treatment and actually starting it. Applying our proce-
dure in practice would require an in–depth analysis of the available domain knowledge
as well as the company’s experience.

One of the possibilities for further enhancement of our research is to use coun-
terfactual explanations to estimate how much the value of a feature should change to
assign a subject to a different category/cluster, other than the original. One of the imple-
mentations of that method is Diverse Counterfactual Explanations (DiCE) [16]. With a
properly designed procedure, we can use the DiCE algorithm to estimate the goals of a
treatment. This information could be useful in planning the intensity of therapy. Devel-
opment in this direction may allow for faster and automated assessment of the patient’s
health. This type of information can be used to shorten the diagnostic process and limit
the number of intermediate stages before the patient can reach a suitable specialist for
his needs.
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