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Abstract. Detecting opinion leaders from dynamic social networks is
an important and complex problem. The few methods in this field are
poor in generalisation and cannot fully consider various dynamic fea-
tures. In this paper, we propose a novel and generic method based on
dynamic graph embedding and clustering. Inspired by the existing knowl-
edge about dynamic opinion leader detection, the proposed method can
exploit both the topological and temporal information of dynamic social
networks comprehensively. It is also generalisable, as shown experimen-
tally on three different dynamic social network datasets. The experimen-
tal results show that the proposed method runs faster than competitors.
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1 Introduction

In social networks, opinion leaders are individuals whose opinions significantly
influence others [6]. They can be experts in a given subject or users who have a
significant number of followers on social media. As online social platforms such
as Twitter and Instagram continue to grow and the flow of information becomes
more rapid, the role that opinion leaders can play also continues to grow. In
recent years, there has been increasing attention on how to automatically detect
opinion leaders from social networks [3,33].

In reality, social networks are dynamic. One key aspect of this dynamic is
reflected in the change of topology. For example, individuals may join or leave the
network and connections between individuals keep changing. Such topological
dynamic is critical to the detection of opinion leaders, as changes in network
structure may result in individuals previously identified as opinion leaders losing
their influence, or the emergence of new opinion leaders. The dynamics of social
networks can also be reflected in the change of semantic properties of individuals
with respect to their influence. In social networks, an individual’s influence not
only depends on the strength of their social connections, but also is affected
by semantic features such as expertise, reputation and expressiveness [17]. The
change in individual semantic properties is also important for opinion leaders
because opinion leaders inherently have requirements on identity.
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The mentioned dynamic factors are crucial for opinion leader detection in
social networks [9]. However, the vast majority of existing research tends to
overlook such dynamic nature. A few studies that consider them and dynamically
identify opinion leaders also suffer from generalization [8,14,27,34]. They rely on
certain semantic information that is only available on specific social networks.
In fact, only the dynamics of topological features are present in most social
networks used by state-of-the-art systems. Thus, a generic solution that can
consider both the dynamics of semantic and topological features, while relying
on the dynamics of topological features, is still lacking in dynamic opinion leader
detection.

Recently, graph embedding has been widely used in social network research
to transform nodes into low-dimensional vector representations [5]. In particular,
the dynamic graph embedding technique is able to retain information about the
temporal changes of a graph in the vector representations. Such representation
can preserve temporal, topological and semantics information of a graph [4,5,39].
Even if the node representations are generated only based on topological informa-
tion, they can still capture some aspects of semantics through the relationships
and contextual information present in the graph structure [38]. Additionally, it
also allows us to infer or capture implicit relationships that are available in a
given graph. Inspired by this, we propose a novel method based on dynamic
graph embedding to detect opinion leaders in dynamic social networks.

Specifically, we first perform graph embedding of dynamic social networks
and then cluster individual nodes based on the vector representations. Opinion
leaders, as a special class of individuals, share similar topological and semantic
characteristics [1,3,7]. Since the node representations generated by our chosen
dynamic graph embedding method (TGNs [31]) can represent these two charac-
teristics of nodes well, the opinion leaders will be clustered into the same cluster.
Then the problem is converted into selecting the cluster containing all opinion
leaders which is far more easier. Based on the significant and effective metrics
for detecting opinion leaders (i.e. centrality metrics), we also design a method
for selecting the cluster. In order to verify the generalisability and feasibility of
our method, we evaluated the detection results on three real datasets using the
influence spreading mode.

Our method can be generalised to different dynamic social networks (that
none of the existing methods is capable of). It can consider temporal topological
information alone but also provides ways to incorporate temporal semantic infor-
mation. Moreover, our method is competitive with state-of-the-art on dynamic
social network datasets with dynamic topology, while achieving superior run-
time performance. Furthermore, it is a model-agnostic framework that allows
the comprehensive exploitation of temporal information of both topological and
semantic features in social networks.
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2 Problem Definition

We present three commonly used models in social networks and based on them
define the problem of dynamic opinion leader detection.

2.1 Social Network Models

Social networks can be predominantly characterized by three models: the static
graph model, the snapshot graph model, and the continuous graph model.

Static Graph Model. When a social network is static, it is represented by
a directed static graph G = (V,E), where V is the node set and E is the
edge set. Each node in V represents an individual which can be attributed to
represent the properties of the individual, such as age, organizational status, etc.
Each edge in E represents an interaction between individuals, such as following,
sending a message, etc. It can also be attributed to indicate the properties of the
interaction. The direction of an edge represents the initiator of an interaction.
As an example shown in Fig. 1(a), nodes 1–7 represent users 1–7, respectively.
Edge (1, 4) represents an interaction initiated by user 1 to user 4, and the other
edges have similar meanings.

Snapshot Graph Model. In the discrete case, a dynamic social network exist-
ing between ts and te is represented with a series of directed graphs, denoted
by G = {G1, · · · , Gi, · · · , Gn}. The time interval [ts, te] is divided into n sub-
intervals and the length of each sub-interval is l = (te − ts)/n. For each snapshot
Gi = (Vi, Ei), Vi is the node set at time ts + (i − 1) ∗ l and Ei is the edge set
including all edges within time interval [ts + (i − 1) ∗ l, ts + i ∗ l]. As the exam-
ple shown in Fig. 1(b), the time interval [0, 40] is divided into 4 intervals and
4 snapshot graphs are generated correspondingly. In the first snapshot, all the
nodes exist in the social network at time 10 and the timestamps of all the edges
are within the time interval [0, 10].

Continuous Graph Model. In the continuous case, a dynamic social net-
work existing between time ts and te is represented by a directed graph with
edges and nodes annotated with timestamps, denoted by G = (V,E, T ). V and
E are the collections of nodes and edges over time [ts, te]. Edges and nodes
have the same format as in the static graph model and therefore can also be
attributed. T : V,E → t ∈ [ts, te] is a function that maps each node and edge
to timestamps between time ts and te. Taking node3 in Fig. 1(c) as an example,
T (v3) = [1, 31]. It indicates that node 3 exists in the social network from times-
tamp 1 to timestamp 31, and T (e(v1, v7)) = 32 means the interaction between
two nodes happens at timestamp 32.

In summary, the three models contain increasing amounts of evolving infor-
mation of social networks. The static graph model contains no evolving informa-
tion while the continuous graph model contains the full evolving details. Conse-
quently, the complexity of these three models increases in order and the problems
defined on them become more difficult to address [13].
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Fig. 1. An example social network represented with three different graph models. There
are 7 users in this (dynamic) social network. Within a total of 40 time units, users may
join/leave the network or interact with each other.

2.2 Dynamic Opinion Leader Detection

Definition 1 (Problem definition). Given a social network represented with
a continuous model G = (V,E, T ). The target of the dynamic opinion leader
detection problem is to find a finite set of individuals. These individuals should
have two main characteristics. One is the possession of a specific identity and
authority and the reliance on them to influence other individuals. Another is that
their influence, as evaluated based on the dynamic diffusion model, is also higher
than that of other ordinary individuals.

To maximise the use of temporal information of dynamic social networks, we
define the dynamic opinion leader detection problem on the continuous graph
model. In fact, temporal information plays an essential role in analysing and
identifying opinion leaders. Take the network in Fig. 1 as an example. In-degree
and out-degree of a node is the most naive way to measure whether a user is
an opinion leader or not. The higher the out-degree of a user is, the more likely
the user is an opinion leader. Thus, node 7 is most likely to be the opinion
leader as it has both the highest in-degree and out-degree. However, considering
the information diffusion procedure, it is clear that opinion leaders should accept
something new before the majority of users to spread influence better. Therefore,
node 7 should not be considered as an opinion leader because it participates in
this dynamic social network at the last time. Instead, node 1 has more chance
to be an opinion leader as node 1 may influence 4 nodes (nodes 2, 3, 4, 6) in this
network, while node 7 can influence at most 2 nodes (nodes 1, 5). Therefore, it is
clear that the temporal factor is not negligible and crucial to the opinion leader
detection problem.

3 Related Work

In this section, we review the related work in opinion leader detection with a
focus on dynamic opinion leader detection.
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3.1 Opinion Leader Detection

Static Opinion Leader Detection. Opinion leaders have a high impact on
the topology of social networks, which makes centrality metrics an important
criterion for measuring opinion leaders in static opinion leader detection. Fre-
quently used centrality includes degree centrality, betweenness centrality and
closeness centrality [30,40]. Since these centrality metrics are often measured
from a narrower aspect of centrality, they are not comprehensive. Therefore, a
variety of methods have been developed, such as PageRank [28] and LeaderRank
[20]. To counter the limitations of a single centrality metric, researchers also used
various metrics in combination [12].

With the development of machine learning, many studies also use machine
learning methods (mainly clustering or graph neural networks (GNNs) tech-
niques) for opinion leader detection [2,15]. Opinion leaders, as a group of people
with similar characteristics, can be well clustered into the same cluster by proper
use of clustering techniques. Several methods followed this idea and applied the
clustering algorithms to identify opinion leaders [2,11]. Later on, Yang et al. [41]
used the DeepWalk graph embedding method to generate embedding vectors of
users, and then combined them with network topology information to propose a
local centrality index of network nodes to identify high-impact nodes. Luo et al.
[21] used SNE (Social Network Embedding) model to obtain embedding vectors
for each user. These embedding vectors were used to calculate the structure and
text similarity between network nodes to improve efficiency.

3.2 Dynamic Opinion Leader Detection

Centrality metrics as an effective and easy-to-calculate metric have been applied
to dynamic opinion leader detection as well. However, GNNs have not been
used for related research yet. Song et al. [34] proposed a method for dynamic
social networks consisting of users and comments. The researchers first rank the
influence of comments by sentiment analysis. They also degenerate the dynamic
social network into a static social network to calculate the degree of centrality
and proximity prestige of each user. Then, opinion leaders are detected by consid-
ering three generated features. Only limited temporal information is considered
in this study. It is reflected in the calculation of the influence of the comments:
the longer the interval between sending the comments the less influence they
have on each other. Huang et al. [14] followed this study and proposed a similar
method. They improved the work by representing the relationship between the
time factor and strength of impact between comments. A similar framework of
generating snapshot networks to identify dynamic opinion leaders is also fol-
lowed by Oueslati et al. [27]. The researchers first evaluated the influence of the
post by semantic analysis of the post. Then, opinion leader detection is done
based on the influence of the posts sent by each user. Only the impact of the
post is counted in each snapshot graph and considered as a temporal feature
in the detection. No temporal information has been used in the calculation of
every user’s influence. Chen et al. [8] proposed a distinct methodology. They do
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dynamic opinion leader detection on a post-and-follow dynamic social network.
They first propose a method to transfer the dynamic network into a weighted
static social network. The weights of edges are calculated based on the similar-
ity of the two nodes and the time difference between the appearance of the two
nodes (the only utilised temporal information). Then, they do community detec-
tion based on this weighted static social network and future detect the opinion
leader with different attributes of nodes.

In summary, the limited existing methods of dynamic opinion leader detec-
tion do not make sufficient use of temporal information. Moreover, they are
designed based on unique datasets containing information that is not always
included in other datasets. Therefore, the generalisation of these methods is
poor. Our method focuses on solving these problems.

To further clarify our focus, we also briefly mention and distinguish one
related but different problem, namely dynamic information maximization. It
identifies an initial set of nodes of predefined size k with the biggest influence
spread in a dynamic social network. Please refer to [18] for a detailed review.
This problem is different from opinion leader detection as it does not place any
constraints on the identity of the node. When opinion leaders are difficult to be
labelled in large-scale social networks, the influence of detected opinion leaders
can be used to quantify the performance of opinion leader detection methods [3].
Aggarwal et al. [1] first proposed a method to evaluate the influence of a given
set of nodes in a dynamic social network. This hill-climbing algorithm is then
used to get the final seed set starting from a simple selection of individuals with
the highest influence. Zhuang et al. [43] first construct a subgraph by probing
a set of nodes in the underlying graph such that the influence diffusion can
be best observed. Then, the seed set that can maximize the influence on the
underlying graph is found on the subgraph. Unlike these two methods that select
all individuals at once at the beginning stage, Michalski et al. [24] proposed a
method that models dynamic social network using snapshots graph model and
activates seeds based on sequential seeding in temporal networks. Notably, none
of the existing dynamic information maximization methods applied dynamic
graph embedding to capture various temporal features of dynamic networks.

4 Methodology

4.1 Overall Design and Framework

The overall framework of our method is presented in Fig. 2 and the specific flow
of the method is shown in Appendix 7.2. Opinion leaders, as a special category of
people, share the same characteristics, such as higher influence, accepting ideas
and starting to spread them before most individuals do [16,37]. Based on this
feature, we propose to categorise different individuals based on their (temporal)
properties and then select the opinion leaders from all the categories. Such a
choice is much simpler in computation compared to choosing opinion leaders
from all the nodes. This is because the number of clusters (e.g. less than 10) is
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Fig. 2. Framework of the proposed method

usually smaller than that of opinion leaders (that is a small percentage of a large
number of individuals and can be over a thousand).

So, we first transfer the dynamic graph into node representations (low dimen-
sional vectors) with the dynamic graph embedding method. Then, the nodes are
clustered based on node representations. This approach seeks to group nodes
together based on the similarity of their embeddings, which encapsulate their
structural roles within the network and how these roles evolve over time (espe-
cially influential factors). The principle here is that nodes within the same cluster
should have similar features, as reflected in their embeddings. The resulting clus-
ters can reveal patterns in the nodes’ behaviors and roles that persist or evolve
over time, and help us better understand the underlying structure and dynamics
of the network [4,5,39]. In this manner, at a design level, our method makes
better use of temporal information compared to existing methods.

Following these steps, the dynamic opinion leader detection problem is con-
verted to select the cluster that contains all opinion leaders. Previous research
has indicated that the centrality metrics can well reflect the probability of an
individual being an opinion leader [3]. We therefore also design the algorithm
for selecting the cluster containing all opinion leaders based on various central-
ity metrics. In real social scenarios, the number of nodes in this cluster may
be higher than the required number of opinion leaders (e.g. we only care about
the top ones). If needed, the opinion leaders in this cluster can also be ranked
to select the most influential ones. In the next subsections, the method will be
described in detail.

4.2 Dynamic Graph Embedding

In this framework, the node representations should be able to well represent the
dynamic of topological features as well as the semantic features. Within various
dynamic graph embedding methods introduced in Appendix 7.1, we employed
the TGNs method which is good at retaining dynamics of both topological and
semantic features and has been shown to perform significantly better than other
existing dynamic graph embedding methods [31].
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The TGNs method uses the encoder-decoder model. It has two core modules,
a memory module and an embedding module. The memory module is used to
represent the node’s topological evolving history in a compressed format which
allows TGNs to memorize long-term dependencies for each node in the graph.
In the memory module, each node is represented with a low-dimensional vector
which is updated when changes related to the node happen using Recurrent
Neural Network (RNN). The main goal of the embedding module is to better
aggregate the information of neighbouring nodes through Graph Neural Network
(GNN) based on the information generated by the memory module. When the
semantic features of nodes are available, the embedding module can incorporate
the semantic information of nodes into the final node representations. Please
refer to the original paper for details about the TGNs method [31]. In this way,
the generated node representation shall encapsulate various features of nodes
within the network both topologically and semantically, as well as how these
features evolve over time.

4.3 Clustering and Cluster Selection

Next, we used the classical k-means [19] algorithm to cluster the nodes using
their node representations. We followed the previous studies in social network
analysis and used centrality metrics to determine the opinion leader clusters [3].
To apply three commonly used centrality metrics in our dynamic setting, we
convert the dynamic social network represented with a continuous model into a
snapshot model in this step. Then, we can calculate the three centrality metrics
in each snapshot separately and add them proportionally. In addition, in dynamic
social networks, opinion leaders should accept and disseminate ideas to others
before most people do [37]. This means that the higher the centrality metric in
the earlier snapshots the more likely they are to become opinion leaders. In other
words, the high centrality metric in later snapshots, is not as useful as that in
earlier snapshots. Node 7 in Fig. 1 is a good example. We therefore designed a
decay function to reflect this pattern which will be explained in the following
paragraphs.

Formally, we use the following equation to express the probability of an indi-
vidual node being an opinion leader in a dynamic social network:

LScore(v) =
n∑

t=1

decay(
t − 1
n

) · (m1BC(v, t) + m2CC(v, t) + m3DC(v, t)), (1)

where n is the number of snapshots and v is a node in the node set V . BC(v, t),
CC(v, t) and DC(v, t) is the betweenness centrality, closeness centrality and
degree centrality of node v in t-th snapshot respectively. m1, m2 and m3 are
adjustable parameters to control the weighting of these three centrality metrics in
the LScore. The decay function can be selected from the following five functions:
f1(x) = 1 − x, f2(x) = (x − 1)2, f3(x) = 1 − x2, f4(x) = cos(x), and f5(x) =
(x + 1)2.
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Table 1. Statistics of three datasets. In the latter two datasets, the start and end times
are anonymous indexes of time steps.

Dataset Node Number Edge Number Start Time End Time Interval Length

UC-IRV 1,889 59,835 2004-04-15 2004-10-26 7 days

Bitcoinalpha 3,783 24,186 0 164246400 7,776,000 (90 days)

Bitcoinotc 5,881 35,592 0 164442412 7,776,000 (90 days)

These five decay functions represent different decay modes. The f1 is a linear
decay, which means that the contribution of centrality to importance decreases
linearly. f2 and f3 are non-linear in decay, meaning that the effect of centrality
on importance decays at different rates over time. The decaying effect of f4 and
f5 is relatively small.

We further calculate the average probability of all nodes in a cluster and
name it ALScore which is calculated as follows:

ALScore(c) =
∑|c|

i=1 LScore(vi)
|c| (2)

where |c| is the number of nodes in cluster c and vi is a node in cluster c. The
cluster with the highest ALScore is considered as the cluster containing the
opinion leaders. Sometimes the number of opinion leaders needed will be larger
than the number of the top cluster containing opinion leaders. In such cases,
more than one cluster can be considered, then individual nodes can be ranked
to satisfy the requirement.

5 Experiments and Results

The code used for experiments can be found at here.

5.1 Experimental Setting

Dataset. Three different datasets used to carry out experiments are UC-IRV
[29], Bitcoinalpha1 and Bitcoinotc2. All of them can be structured as continuous
graph models (defined in Sect. 2.1). The statistics of 3 datasets are shown in
Table 1. The detailed information of datasets is explained in Appendix 7.3.

Parameter Setting. We used the source code3 of the graph embedding method
TGNs provided by the authors. The main parameters of TGNs used in experi-
ments are as follows: the dimension of node embedding is 172, the learning rate

1 http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html.
2 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html.
3 https://github.com/twitter-research/tgn.

https://github.com/YunmingHui/Leveraging-Graph-Embeddings-for-Dynamic-Opinion-Leader-Detection
http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
https://github.com/twitter-research/tgn
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is 0.001, the batch size is 200, the number of neighbours to sample is 20, the
embedding model us graph attention network whose number of layer is 1 and
number of heads used in attention layer is 2. The number of clusters is set to be
8 for UC-IRV and 7 for Bitcoinalpha and Bitcoinotc. The decay function we used
is decay2. m1, m2 and m3 are all set to 1. The process of parameter optimization
is shown in Appendix 7.4.

Evaluation Metric. Since it is difficult to label opinion leaders for large social
networks, evaluating the influence of opinion leaders is a common method for
evaluating the dynamic graph embedding method. The estimation of influence of
nodes depends on the diffusion model which describes the rules of propagation
of an individual’s influence in a social network. Simulations based on the diffusion
model can determine the number of individuals that an individual can influence.

The dynamic diffusion model we selected is Susceptible-Infectious (SI) model
which is also used by Osawa et al. [26]. In the SI model, nodes can have two
states S and I. A node in state S means it does not have information and a
node in state I means it contains information. This model uses the snapshot
form of a dynamic graph. If a node is in state I at time t, it tries to activate its
neighbours at time t+1 with probability. In experiments, the affected probability
of each node is set to 0.5. The ability of opinion leaders to spread influence is
evaluated by the total number of nodes influenced by opinion leaders throughout
the whole period. A larger number of influenced nodes means a higher impact on
this network. In our experiments, due to the randomness in the diffusion process,
we repeat the process 100 times and average the computation.

Baselines. We selected two kinds of baselines, static and dynamic opinion leader
detection methods. The static opinion leader detection method we selected is
LeaderRank [20]. It has a good performance among the static methods but
ignores the dynamics of topological features. We therefore consider it as a repre-
sentative of the static methods for comparison. Due to the unique data require-
ments and non-public datasets, all the existing dynamic opinion leader detection
methods are difficult to be compared. Although the dynamic influence maximi-
sation problem has some differences from the dynamic opinion leader detection
problem, the requirement for the selected nodes to have high influence is the
same. Therefore, two dynamic influence maximisation methods are selected to
compare the influence of detected opinion leaders with ours. They are selected
to represent two different mechanisms. INDDSN [1]: A method quickly esti-
mates the influence of an individual in a dynamic social network and selects
all individuals at once at the beginning stage. The forward version with better
performance is used. SSA [24]: A state-of-art method selects individuals in a
decentralised manner, which results in a higher spread of influence.

5.2 Clustering Result Analysis

The clustering results of three datasets are shown in Table 2. From the table, it
can be seen that the size of clusters containing all opinion leaders are relatively
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Table 2. Clustering results of three datasets. The numbers indicate the number of
nodes in the cluster. The clusters containing opinion leaders are bolded.

Cluster 1 2 3 4 5 6 7 8

UC-IRV 292 300 162 288 251 214 166 226

Bitcoinalpha 671 621 347 333 560 728 523 –

Bitcoinotc 928 600 989 1,196 781 243 1,144 –

Fig. 3. Visualization of node representations of three datasets. The clusters containing
opinion leaders are marked with the blue rectangular box.

small. This matches the characteristics of the opinion leader group that only a
small set of individuals tend to lead the public in social networks [35].

To further validate our generated clusters, we also employed t-SNE [23] to
visualise the node representation (See Fig. 3). A remarkable phenomenon from
the visualization results is that all clusters containing opinion leaders are in the
corners, i.e. the furthest away from all other clusters.

This phenomenon hints at the idea that opinion leaders possess distinct quali-
ties or exert a significant level of influence that sets them apart from the general
population within the dataset. Their placement in the corners of the visual-
ization signifies that they are not only separate from other clusters, but their
influence may also radiate outwards, impacting the entire network in a manner
that distinguishes them from regular nodes. This phenomenon also confirms the
feasibility of the method, i.e., the characteristics of the cluster containing the
opinion leaders can be contained in the node embeddings (from dynamic graph
embedding).

5.3 Performance Evaluation

We compared the influence of detected opinion leaders by the proposed method
as well as the running time with three baselines.

Influence. As shown in Fig. 4, INDDSN has the best performance among the
three baseline methods. The proposed method has similar or better performance
on Bitcoinalpha and Bitcoinotc. In UC-IRV the performance of INDDSN is a
little bit better than the proposed method. It is worth noting that the network
of UC-IRV is dense and smaller than another two datasets which makes the
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Fig. 4. Number of nodes influenced with different numbers of opinion leaders

difference less significant. Besides, as the number of opinion leaders increases,
INDDSN’s performance begins to deteriorate, and sometimes the number of peo-
ple it can influence even decreases. This indicates that performance is difficult to
guarantee when the number of opinion leaders is in high demand, and sometimes
it is even lower than the static algorithm.

Running Time. The runtime performance of all methods with different num-
bers of opinion leaders is shown in Fig. 5. The running time of LeaderRank and
the proposed method is similar for different numbers of opinion leaders as they
produce the rank of each node at one time. The running time of INDDSN and
SSA grows as the number of opinion leaders increases. The running time of
INDDSN is the highest and is two to eight times higher than the running time
of our proposed method.

Discussion. While the influential performance of the proposed method is sim-
ilar to the state-of-art baseline INDDSN, our method still has superiority given
the long running time of INDDSN. Even worse INDDSN uses a hill climbing
algorithm. As the number of opinion leaders and the number of individuals in
the social network increases, the time taken to search the neighbourhood solu-
tion space grows. When to stop searching is critical to the performance of the
results, but how to set it up is tricky requiring a large number of experiments
for each social network. Moreover, experimental results demonstrate that the
advantages of our proposed method increase as the network size increases. This
is particularly valuable because scalability is increasingly important for develop-
ing new solutions in social network analysis as there will be a high requirement
for a larger size of the network in practical problems.
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Fig. 5. Running time of different methods with different numbers of opinion leaders

6 Conclusion and Future Work

In this paper, we illustrate the importance of the dynamic nature of social net-
works for opinion leader detection. We proposed a novel method to detect opinion
leaders from a continuously dynamic social network represented by the contin-
uous model. We leveraged dynamic graph embedding and clustering algorithms
to identify a group of opinion leaders who share similar temporal features. The
results of generated clusters show that our method captures temporal and topo-
logical features of nodes. Compared to existing methods, our proposed method
is less restrictive on the type of social network dataset. The method is evaluated
on the influence of detected opinion leaders and running time, showing simi-
lar performance to other methods but higher operational efficiency. For future
work, we want to explore new dynamic graph embedding methods by integrat-
ing influence-related knowledge into the node representations, which may bring
better performance.

7 Appendix

7.1 Related Work on Dynamic Graph Embedding

Dynamic graph embedding methods can map the dynamic graph to a set of
low-dimensional dense vectors. Each of these vectors represents a node. This
representation improves the feasibility and efficiency of various network analysis
tasks [4,39]. The purpose of dynamic graph embedding methods is that these
low-dimensional vectors can not only maintain the topological information, but
also the graph evolving information.

Following the static graph embedding methods [4], most early dynamic graph
embedding methods update the graph representations quickly when social net-
work changes [32,42]. The low-dimensional vector representation obtained by
these methods does not represent the actual evolving information of graphs.
Instead, only topological information about the graph after the change is cap-
tured. Recently, some proposed dynamic graph embedding methods can repre-
sent both topological and evolving information in the representations. Among
them, several methods use random walk, which extends the random walk in
static graphs by the addition of temporal constraints [10,25]. More methods use
Recurrent Neural Network (RNN) to update node representations when changes
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on edge happened [22,31,36]. In this work, we apply this type of dynamic graph
embedding method to consider the temporal evolution of social networks.

7.2 Methodology Summary

Following the above two subsections describe our design ideas and methodolog-
ical principles, the pseudo-code of our method is shown in Algorithm 1.

Algorithm 1. Graph Embedding Based Dynamic Opinion Leader Detection
Require: dynamic graph: G, number of opinion leaders needed: k, number of cluster

c, hyperparameter: m1,m2,m3

Ensure: set of opinion leaders S
1: node embeddings ← TGNs(G)
2: clusters ← k-means(node embeddings, num clusters)
3: score clusters ← calculate ALScore of each cluster in clusters with Eq. 2
4: S ← cluster with the highest ALScore
5: if size of S > k then
6: calculate LScore of each node in S with Eq. 2
7: sort S according to LScore
8: S ← top k nodes in S
9: end if

10: return S

The dynamic social network is first transferred to node embeddings using
TGNs. Then, the nodes are clustered based the node representations. Next, the
ALScore of each cluster is calculated using Eq. 2. The cluster with the highest
ALScore is selected as the cluster containing all opinion leaders. If the number of
nodes in cluster is higher than the number of opinion leaders needed. The LScore
of these nodes is calculated with Eq 1 and these nodes are ranked according to
the LScore. The top k nodes are the final opinion leaders.

7.3 Dataset Description

Here is a detailed explanation of three used datasets.

– UC-IRV [29] UC Irvine messages dataset includes the users that sent or
received at least one message in a Facebook-like Social Network originating
from an online community for students at the University of California, Irvine.
The database contains a total of 59,835 online messages, each message con-
tains the sender, receiver and time of sending. The dataset is used to form
a directed dynamic social network. Each edge represents a message which is
directed from the sender of the message to the receiver of the message.

– Bitcoinalpha4 Bitcoinalpha is a who-trusts-whom network of people who
trade using Bitcoin on a platform called Bitcoin Alpha. The dataset contains

4 http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html.

http://snap.stanford.edu/data/soc-sign-bitcoin-alpha.html
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a total of 24,186 credit rating records from one user to another. Each record
contains the person who made the credit rating and the person who was rated,
the rating level and the time the rating was made. The dataset is used to form
a directed dynamic social network. Each edge represents a credit rating record
which is directed from the rating maker to the rate.

– Bitcoinotc5 Bitcoinotc is similar to Bitcoinalpha, but it is collected from
another Bitcoin platform, Bitcoin OTC. The number of records in this dataset
is 35,592. The format of records is the same as that of Bitcoinalpha.

7.4 Parameters Optimization

In the proposed method, there are five important parameters: number of clusters
c, m1,m2,m3 and type of decay function. We tested different combinations of
parameters in all three datasets.

We first optimize the number of clusters c. As we discussed in the last section,
ALScore can roughly reflect the average probability that all nodes in a cluster
might be opinion leaders. When we choose the value of c, we want the ALScore
of the cluster with the highest ALScore to be the highest. The ALScore of the
cluster with the highest ALScore varying with the value of c, other conditions
being equal, is shown in Table 3. It can be seen that the best results are achieved
when c is set to be 7 or 8. We recommend that in subsequent experiments c will
be set to 7 or 8 for best results.

Table 3. ALScore of the cluster with the highest ALScore varying with the value of c

c 5 6 7 8 9

UC-IRV 0.41 0.42 0.43 0.45 0.44

Bitcoinalpha 0.46 0.48 0.49 0.48 0.46

Bitcoinotc 0.52 0.55 0.56 0.55 0.54

Following, we optimize m1,m2,m3 and type of decay function. The test the
influence of opinion leaders detected with combinations of different type of decay
function and centrality metrics in dataset UC-IRV and Bitcoinalpha. The results
are shown in Table 4. For the decay function, decay2 can always bring the best
performance. Therefore we suggest that the preferred decay function is decay2,
which will also be used in the next experiments. For the centrality indicator,
closeness centrality performs significantly lower than the other two centrality
indicators. Considering the time-consuming calculation of closeness centrality, we
suggest ignoring closeness centrality, i.e., setting m3 to 0. Betweenness centrality
and degree centrality perform similarly, so we suggest setting both m1 and m2

to 1 so that they contribute equally to LScore. This will also be used in the
following experiments.
5 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html.

https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
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Table 4. The influence of opinion leaders detected with combinations of different types
of decay functions and centrality metrics

Dataset UC-IRV Bitcoinalpha

Centrality metric Betweenness Degree Closeness Betweenness Degree Closeness

decay 1 1247 1245 1219 1645 1636 1631

decay 2 1261 1257 1183 1679 1664 1628

decay 3 1232 1217 1213 1636 1630 1566

decay 4 1196 1191 1180 1597 1601 1513

decay 5 1200 1203 1187 1611 1608 1521
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