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Abstract The cost and size of instrumentation for thermoelastic stress analysis (TSA) have often been an inhibiting factor 
for its use in industrial applications. This has been alleviated to some extent by the development of packaged infrared (IR) 
bolometers which have become popular for non-destructive evaluation of structures. Recent work has demonstrated that an 
original equipment manufacturer (OEM) microbolometer, combined with a single circuit board with dimensions equivalent 
to a credit card, can be used to detect cracks of the order of 1 mm long and to monitor their propagation. The monitoring 
system costs about one tenth the price of a packaged bolometer and can provide results in quasi real time without the need for 
calibration. The system uses the principles of TSA to acquire thermal images and evaluate the amplitude of the thermal signal 
over the field of view, i.e., a map of thermal emission amplitude. Feature vectors are extracted from the time-varying maps 
of thermal emission amplitude and used to identify changes in them that occur when a crack initiates or propagates in the 
field of view. Since the technique does not generate TSA data but uses uncalibrated thermal emission data, it has been named 
Condition Assessment by Thermal Emission (CATE). The CATE system’s crack detection capability has been evaluated 
in laboratory conditions and compared against a state-of-the-art IR photovoltaic effect detector. It was demonstrated that 
the CATE system is capable of detecting cracks as small as 1 mm at loading frequencies as low as 0.3 Hz. Evaluations in 
industrial conditions on large-scale structures are being concluded and imply that there will be little loss of capability in the 
more demanding applications. 
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Introduction 

Non-destructive evaluation (NDE) or non-destructive testing (NDT) methods allow monitoring of engineering structures 
without the technique itself causing changes to that structure. There are a large range of both point and full-field NDE 
methods which can be applied in both laboratory and industrial settings, depending on the conditions, materials, and desired 
information collected [1–3]. Thermoelastic stress analysis (TSA) is one full-field technique that uses the thermoelastic effect, 
combining infrared imagery and information on the applied load, to produce surface maps which are proportional to the 
sum of the principal stresses. TSA has previously been used for damage detection in metals [4–6] and composites [7–9]. 
Until recently, the high cost, volume, and mass of infrared sensors have inhibited use in industrial environments; however, 
developments in infrared camera technology have resulted in cheaper, lower volume packaged microbolometer systems 
which are more suited to use in industrial settings [10]. A further decrease in cost and size has occurred with the development 
of cm size OEM (original equipment manufacturer) board cameras, such as the Lepton Micro Thermal Camera Module 
(FLIR, Wilsonville, OR, USA), which cost on the order of $100s, rather than the $1000s to $10,000s of previous technology. 
The decrease in cost and size results in an associated decrease in sensitivity and resolution; however by combining the data 
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from these sensors with data processing techniques, these sensors can be used for damage detection in aerospace materials 
[11, 12]. 

Methods 

A simple hole-in-plate specimen was manufactured from an aerospace Al alloy, with dimensions 200 mm length, 40 mm 
width, 1.6 mm thickness, and a central hole of 6 mm diameter. The central portion of the front surface of the specimen was 
painted with aerospace primer paint (LAS780-001, LAS Aerospace Ltd, UK), and a resistance strain gauge was installed on 
an area out of the camera’s field of view. Specimens were fatigued using cyclic loading between 0.875 and 8.75 kN at 10 Hz 
for 80,000 cycles to accelerate crack initiation before data collection. Specimens were then loaded with either sinusoidal 
cyclic loading at 1.2 Hz or an idealized flight cycle loading spectrum. Each flight cycle loading was followed by five cycles 
of sinusoidal loading at 1.5 Hz, with the sequence then repeated until failure. 

Two camera systems were used for data collection during constant sinusoidal loading, a high-resolution photovoltaic 
detector (FLIR SC7650, Teledyne FLIR LLC, USA) with DeltaTherm software (Stress Photonics, USA) producing TSA 
maps and a bespoke OEM microbolometer system (Fig. 1). During flight cycle loading, data was collected using the OEM 
microbolometer system only. The OEM microbolometer system combines a Lepton board camera with a Raspberry Pi control 
computer and requires input from a strain gauge on the structure of interest. Bespoke software converts the strain information 
and infrared arrays to maps of the thermoelastic response, called Condition Assessment by Thermal Emission (CATE) data, 
to distinguish them from the quantitative TSA data generated by traditional approaches [12]. 

TSA and CATE maps were generated by the two systems in real time, and CATE data were also processed in near real time 
on the Raspberry Pi control computer using image decomposition [13, 14]. The two-dimensional images were decomposed 
to generate a one-dimensional feature vector, and then the Euclidean distances between the feature vectors representing the 
initial undamaged state and the maps over time were calculated [12]. The same image decomposition approach was applied 
to the TSA maps from the photovoltaic detector in post-processing. For flight cycle data, the algorithm extracts the response 
for different sections of the flight cycle, and so a Euclidean distance between the feature vector for each component of the 
applied load spectrum is calculated. 

Fig. 1 Experimental set-up for thermal data collection. Photovoltaic detector (left) and CATE system (center, foreground), specimen with 
aerospace primer (right). (Adapted from [12])
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Results and Discussion 

The normalized values of Euclidean distance between feature vectors representing data from initial and current states from 
both the photovoltaic detector and the OEM system during constant amplitude loading are shown in Fig. 2, along with inset 
figures of the TSA and CATE maps. Due to the low-frequency loading, the TSA and CATE maps do not show clear hotspots 
associated with crack tips, which would be present under adiabatic conditions [5, 15–17]. However, there are changes in the 
overall data distribution that can be quantified using the image decomposition approach, which are indicated by increases in 
the Euclidean distance. An initial plateau at approximately zero is seen in both graphs, with a slight increase visible in the 
photovoltaic detector data over time. A significant increase in the Euclidean distance is seen at ~7.5 hours in both detectors. 

Crack detection is defined to occur when the Euclidean distance between feature vectors representing the initial and 
current state increases significantly above a threshold that is calculated as a function of the rolling median of the Euclidean 
distance [12]. This crack detection instant is indicated earlier in the data from the photovoltaic detector than the OEM 
detector (Fig. 2), corresponding to sub-mm crack lengths. As the resolution of the photovoltaic detector is higher than the 
microbolometer, this earlier detection is not surprising. In real terms, the OEM detector is indicating damage at the beginning 
of crack propagation, at a crack length of ~1–2 mm, which is an order of magnitude shorter than cracks commonly located 
by visual inspection in the aerospace industry. Therefore, in comparison with a photovoltaic detector system for use in an 
industrial setting, the slight delay in crack detection would likely be outweighed by the significant decrease in cost (from 
$10,000s to $100s) and the smaller footprint of the system. 

CATE maps were also collected during flight cycle loading (Fig. 3), with particular areas in the loading cycle automatically 
identified by the software. The image decomposition method was applied to results from these individual sections, as well as 
a “broadband” effect from the combined waveforms. Certain regions of the flight cycle showed no significant changes in the 
Euclidean distance (Fig. 3, center-right). However, other components show similar increases over time to those seen with the 
sinusoidal loading, indicative of changes in the damage state (Fig. 3, top and bottom-right). Importantly, the “broadband” 
signal also shows the increase in Euclidean distance, demonstrating that this approach would also work for a random loading 
situation. Analysis of the individual Euclidean distance plots related to individual components of the flight cycle indicates 
that these changes can be identified at frequencies as low as 0.3 Hz at high enough strain amplitudes [12]. 

The prototype system has also been installed in full-scale aerospace tests at industrial sites. The successful collection 
of data from these installations shows a proof of concept of installation and use by personnel in industrial laboratory 
environments. Future work will build on these activities for damage detection and monitoring in these environments. 

Fig. 2 Normalized Euclidean distance between feature vectors representing the initial and current state from the CATE system, processed in quasi 
real time (left) and post-processed Euclidean distance from the photovoltaic detector (right). Insets show CATE and TSA maps at given times. 
(Adapted from [12])
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Fig. 3 Applied flight cycle load, calculated normalized Euclidean distances between feature vectors representing the initial and current state 
(right) for selected components of the spectrum (indicated by gray shading), and broadband thermoelastic response (inset). (Adapted from [12]) 

Conclusion 

A low-cost, low-volume thermal emission-based system has been developed for use in damage detection. The system collects 
infrared data, processing it in near real time to CATE (Condition Assessment by Thermal Emission) maps using an on-board 
credit card-sized computer. CATE maps are then further processed to give a quantitative measure of the damage through 
image decomposition techniques. Detection of fatigue cracks is possible at 1–2 mm length under laboratory conditions and 
at loading frequencies as low as 0.3 Hz. The system has been successfully installed in full-scale aerospace tests in industrial 
environments. 
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