
Achieving Complete Coverage
with Hypercube-Based Symbolic
Knowledge-Extraction Techniques

Federico Sabbatini1(B) and Roberta Calegari2

1 Department of Pure and Applied Sciences (DiSPeA),
University of Urbino “Carlo Bo”, Urbino, Italy

f.sabbatini1@campus.uniurb.it
2 Department of Computer Science and Engineering (DISI), University of Bologna,

Bologna, Italy

roberta.calegari@unibo.it

Abstract. Symbolic knowledge-extraction (SKE) techniques are cur-
rently employed for various purposes, particularly addressing the chal-
lenge of explaining opaque models by generating human-understandable
explanations. The existing literature encompasses a diverse range of tech-
niques, each relying on specific theoretical assumptions and possessing
its own advantages and disadvantages. Amongst the available choices,
hypercube-based SKE techniques are notable for their adaptability and
versatility. However, they may suffer from limited completeness when
utilised for making predictions. This research aims to augment the pre-
dictive capabilities of hypercube-based SKE techniques, striving for a
completeness rate of 100%. Furthermore, the study includes experiments
that assess the effectiveness of the proposed enhancements.

Keywords: Explainable artificial intelligence · Symbolic knowledge
extraction · PSyKE

1 Introduction

Ensuring the explainability of predictions made by machine learning (ML) mod-
els is crucial, especially in critical domains where the outcomes significantly
impact human well-being, such as health, wealth, and safety. To address the opac-
ity of ML predictors, the explainable artificial intelligence (XAI) community pro-
poses two primary approaches [8]: (i) utilizing inherently human-interpretable
models, such as decision trees with limited depth [13]; or (ii) employing sym-
bolic knowledge-extraction (SKE) techniques to extract post-hoc explanations
from trained opaque models [12]. This paper focuses on SKE techniques.

Over the past few decades, numerous SKE algorithms have been proposed
in the literature. While these techniques exhibit diversity, certain common char-
acteristics can be identified amongst the most widely adopted approaches. For

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Nowaczyk et al. (Eds.): ECAI 2023 Workshops, CCIS 1947, pp. 179–197, 2024.
https://doi.org/10.1007/978-3-031-50396-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50396-2_10&domain=pdf
http://orcid.org/0000-0002-0532-6777
http://orcid.org/0000-0003-3794-2942
https://doi.org/10.1007/978-3-031-50396-2_10


180 F. Sabbatini and R. Calegari

example, G-REX [11], Trepan [4] and Cart [2] offer human-understandable
knowledge in the form of decision trees. However, it should be noted that Trepan
is only applicable to binary input feature classification tasks. On the other hand,
G-REX and Cart can be utilised also for regression tasks and accept inputs that
are either discrete or continuous.

SKE techniques often exhibit a recurring pattern of employing hypercubic1

partitioning of the input feature space [22,24]. This approach aims to generate
interpretable predictions. The identification of specific regions within the input
feature space, characterised by interval inclusion constraints – typically one con-
straint per input feature –, forms the basis of these methods. Consequently,
the outputs of these techniques can be easily understood by human users. Each
hypercubic region that is identified is associated with a comprehensible output
value, which could be a class label, a constant value, or a linear combination of
the input features.

SKE algorithms based on hypercubes can be executed using either a top-
down or a bottom-up workflow [15]. The bottom-up approach is particularly
susceptible to non-exhaustivity issues, referring to the potential inability to gen-
erate predictions for instances belonging to certain subregions of the input space.
Generally, the bottom-up strategy involves iteratively expanding the hypercubes
created in the input feature space, one cube and one dimension at a time. The
cubes are initially defined as multidimensional points, and achieving conver-
gence (i.e., complete coverage of the input feature space) may require a signifi-
cant number of iterations, especially for data sets with numerous input features.
Consequently, the presence of non-exhaustivity in bottom-up hypercube-based
SKE techniques depends on the complexity of the data set being analyzed. An
example of an SKE algorithm that suffers from this drawback is Iter [9].

Due to the time-consuming process of iterative hypercube expansion, bottom-
up algorithms like Iter may terminate after a specific number of user-defined
iterations, even if they have not yet achieved convergence. This means that cer-
tain subregions of the input space remain uncovered by the identified hypercubes,
resulting in the inability to predict instances belonging to these uncovered subre-
gions. As a result, the completeness of SKE becomes a crucial factor to consider
when evaluating the quality of a technique [7].

The significance of completeness in assessing the quality of knowledge
extracted through SKE methods is also emphasised in [18,19], where two metrics
are introduced to evaluate knowledge quality. These metrics utilise other indices
commonly employed to assess the quality of SKE techniques, namely correctness
and compactness [7]. Correctness measures the ability of the SKE technique to
replicate the predictions of the underlying opaque predictor. On the other hand,
compactness is a measure of human readability, as knowledge with a smaller
dimension is more understandable for end users compared to knowledge with a
large size.

1 We use the term “hypercube” also for referring to actual hyperrectangles, as com-
monly made in the literature [9, for instance].



Achieving Complete Coverage with Hypercube-Based SKE Techniques 181

In this paper, we address the significance of obtaining comprehensive inter-
pretable models by introducing a set of vicinity-based extensions for hypercube-
based SKE methods. These extensions aim to provide human-interpretable pre-
dictions even for instances that do not belong to any identified hypercube. The
proposed extension is not limited to a specific SKE algorithm or task. Therefore,
it can be applied to any type of SKE technique that relies on hypercubic parti-
tioning of the input feature space, regardless of whether it involves classification
or regression tasks with categorical, discrete, or continuous outputs.

The paper is organised as follows: Section 2 resumes background notions on
SKE, Sect. 3 describes the proposed extensions, and Sect. 4 shows the effective-
ness of our proposal via several experiments on real world data sets. Finally,
Sect. 5 summarises our conclusions.

2 Symbolic Knowledge Extraction

Knowledge-extraction mechanisms usually aim to reverse-engineer an opaque
model in order to understand the rationale behind the output predictions it
provides [10]. SKE algorithms may be categorised along several dimensions,
including (but not limited to) the expressive power of the extracted knowl-
edge (e.g., propositional, fuzzy, oblique rules) and the translucency extent of
the technique [1]. According to the translucency dimension, SKE methods may
be classified as decompositional or pedagogical.

A group of pedagogical SKE techniques [9,14,20,25] rely on hypercubic
partitioning of the input feature space to establish input/output relationships
between queries made to opaque models and their corresponding output pre-
dictions. These techniques fall into a category that typically generates human-
interpretable outcomes in the form of propositional rules presented as a list or
tree structure. In the following, we delve into the specifics of these hypercube-
based SKE methods to elucidate the potential causes of their non-exhaustivity.
Additionally, we highlight the advantages of employing the presented extension
to achieve complete coverage, addressing the limitations of these techniques.

2.1 Iter

Iter [9] is a bottom-up SKE technique originally designed for regression tasks
described by continuous input features. It is based on the creation of a user-
defined number of small hypercubes randomly placed inside the input feature
space (i.e., multidimensional points) and on the iterative expansion of these
cubes until the whole input space is covered (i.e., convergence) or it is not pos-
sible to further expand them. Hypercubes are always non-overlapping, to avoid
ambiguity in the prediction phase.

The expansion step of Iter may terminate without reaching convergence
after a user-defined number of iterations. In this case some portions of the input
feature space remain unassociated with the found hypercubes and the result-
ing interpretable model will be unable to provide predictions for all instances
belonging to these unassociated regions.



182 F. Sabbatini and R. Calegari

The non-exhaustivity of Iter is thus due to the slow convergence of its
expansion phase, given that at each iteration only one cube is expanded along
a single dimension and such expansion is generally represented by a small user-
defined amount of input space.

2.2 GridEx and GridREx

GridEx [25] is a top-down algorithm to perform knowledge extraction from any
kind of opaque predictor. It has been designed to overcome the non-exhaustivity
issues deriving from the usage of Iter. To do so, GridEx recursively splits the
input feature space in a set of symmetric, disjoint partitions according to some
criteria. In particular, GridEx identify 3 classes of input space regions: negligible
if there are no training samples belonging to them; permanent if they contain
training samples and the associated predictive error is below the user-defined
threshold; and eligible if they contain samples and the corresponding error is
above the threshold. From a workflow standpoint, negligible regions are dis-
carded, permanent regions are converted into human-readable rules and eligible
regions are further split during the recursive phase of the algorithm.

A consequence of the splitting strategy adopted by GridEx is the possibility
to produce a non-exhaustive input space partitioning when applied to data sets
having sparse data points, due to the discarded negligible regions. In this case
GridEx cannot predict instances falling inside these input space portions.

GridREx [14] is an extension of GridEx aimed at achieving better predictive
performance. Since GridEx associates constant output values to the identified
hypercubes, it introduces an undesired discretisation impinging the predictive
performance of the interpretable model. GridREx overcomes this drawback by
substituting the constant output of each hypercube with a regression law express-
ing a linear combination of the input features. However, it shares with GridEx the
same splitting strategy and thus the same issues related to the non-exhaustivity
due to negligible regions.

2.3 CREEPY

CReEPy [20] is a top-down SKE technique producing a hypercubic partitioning
of the input feature space organised as a binary tree. It is based on an underlying
explainable clustering algorithm that may be selected by users, together with the
corresponding parameters. Available clustering techniques are ExACT [16] and
CREAM [17].

The tree structure produced by this algorithm is created by recursively split-
ting input space regions into two subregions: a hypercube and a difference cube,
obtained by subtracting the hypercubic subregion from the starting region. As
a consequence, each node of the tree is associated with a constraint describing a
hypercube. The two child nodes are then associated with inclusion in/exclusion
from that hypercube.



Achieving Complete Coverage with Hypercube-Based SKE Techniques 183

Since CReEPy produces human-intelligible rules by traversing the binary
tree, it is always possible to provide an output prediction for a given query and
therefore it is a complete technique by design.

3 Vicinity-Based Extensions to Achieve Complete
Coverage

In order to address the completeness of the interpretable models obtained
through SKE techniques, we have developed an extension that can be applied
to any SKE algorithm utilizing hypercubic input space partitioning for predic-
tions. The problem of drawing predictions for uncovered queries has already been
investigated in the literature [5,27]. In particular, [5] emphasises the need for a
more sophisticated strategy than majority-based assignments and proposes an
alternative method based on rule stretching. On the other hand, [27] exploits
Euclidean distance to assign a point to the nearest hypercube, selected amongst
a set of possibly nested hypercubes.

It is important to note that our proposed extension does not impact the
prediction phase for data points that fall within the identified hypercubes during
knowledge extraction. These instances can be predicted as intended by the design
of the SKE algorithm. Instead, our focus is solely on predicting instances that
are included in regions not covered by any hypercube, referred to as uncovered
instances hereafter.

The core concept behind this extension is to assign each uncovered instance
to an existing hypercube based on a vicinity criterion. This approach ensures
that the readability extent of the interpretable model obtained through SKE
remains unchanged, as it is directly related to the size of knowledge represented
by the number of identified hypercubes, which remains unaltered with our exten-
sion. Additionally, employing a vicinity criterion enables the assignment of out-
liers to the closest hypercube. Experimental tests have shown that the proposed
extension, which in the following we refer to as brute prediction, can enhance
the predictive performance of the interpretable model by accurately assigning
uncovered instances to the correct hypercube.

Brute prediction depends on the closest hypercube w.r.t. the query. The dis-
tance between a data point and a cube may be calculated according to more
than one definition. In the following several strategies are defined, each one pre-
senting a trade-off between computational complexity and expected predictive
performance. In particular, we propose to assimilate the distance between a
point and a cube to the Euclidean distance between the point and the relevant
points of the cube. The selection of Euclidean distance derives from the need
to maintain the highest possible degree of human interpretability for the SKE
outputs. Indeed, the most natural method to assess distance for humans is in
terms of “straight lines” between two points. Other commonly used metrics are
the Manhattan distance or the Chebyshev distance. We briefly recall that the
Manhattan distance between a pair of points is calculated as the sum of the
absolute differences of the points’ Cartesian coordinates (“city block” strategy).



184 F. Sabbatini and R. Calegari

On the other hand, the Chebyshev distance between two points is the greatest
distance amongst those calculated for each point dimension (“chessboard” strat-
egy). In our opinion, these alternatives hinder the immediacy of the knowledge
representation, even if they may be more computationally efficient.

In our proposed extension we consider the following points of the hypercube
as relevant: the centre, barycentre, vertices, and edge points. This allows us to
employ different approaches for brute prediction, such as centre-based, density-
based, corner-based, and perimeter-based methods. Additionally, we introduce
an additional majority criterion that disregards the identified hypercubes and
instead relies solely on the average output observed for the instances provided
during the extraction phase of the SKE technique. This criterion can be used as
an alternative prediction strategy.

To establish the different strategies for brute prediction, we begin by for-
malising the concepts of a data set and a hypercube. We define a data set D
as a collection of n-dimensional points, where n represents the number of input
features in the data set. For the purpose of this definition, without loss of gener-
ality, we will ignore the output feature since the hypercubes created using SKE
techniques are based on the dimensions of the input features alone. The domain
of data set D, i.e. Dom(D), is defined as the Cartesian product of the domains
of each input feature f of D:

Dom(D) = Dom(f1) × Dom(f2) × · · · × Dom(fn). (1)

Hypercube-based SKE algorithms work upon continuous input features, there-
fore

Dom(fi) ⊆ R ∀i = 1, . . . , n. (2)

As a consequence
Dom(D) ⊆ R

n. (3)

A hypercube H is defined as a portion of the input feature space:

H ⊆ D. (4)

The corresponding domain is thus a subset of the domain of data set D. We
denote with h1, h2, ..., hn the n individual dimensions of the cube, with the
following domains:

Dom(hi) ⊆ Dom(fi) ∀i = 1, . . . , n. (5)

It is worthwhile to notice that hypercubes (and their corresponding domains)
are usually strict subsets of the data set (and its corresponding domain), except
for the surrounding cube, defined as the cube enclosing all the instances of the
data set. Therefore, this cube coincides with the data set and its domain coincides
with the one of the data set.



Achieving Complete Coverage with Hypercube-Based SKE Techniques 185

Fig. 1. Example of centre-based distance calculation.

3.1 Majority-Based Assignment

The simplest option to provide predictions for data instances belonging to uncov-
ered input space regions is to consider a surrounding hypercube enclosing all
the possible queries. This enables SKE techniques to exhibit a default behaviour
when there are no cubes providing the needed prediction. To minimise the predic-
tive error of this default prediction it is necessary to consider the most common
output values observed in the whole data set. When performing classification
tasks, it is possible to consider as default output the most common class label
in the data set. Conversely, for regression tasks the output feature can be aver-
aged over all the data points to provide a constant value. Alternatively, it is
possible to express the output value as a linear function of the input features
approximating the data point distribution within the whole data set.

With this majority-based criterion brute predictions may be provided in con-
stant time, regardless of the number of input features describing the data set,
and without calculating any distance between queries and hypercubes found via
SKE. However, the default output value is strongly subject to the data used
to extract knowledge. For instance, if a balanced data set with 3 classes is ran-
domly split into training and test sets and only the training set is used to extract
knowledge (as usually done), the default value will be determined based on the
class label distribution after the random train/test splitting, leading to arbitrary
brute predictions.

3.2 Centre-Based Assignment

A slightly more complex solution, albeit with comparable computational com-
plexity, resides in the calculation of the Euclidean distance between the query
and the centre of each identified hypercube. The brute prediction is then pro-
vided based on the hypercube whose centre is the closest to the query.

We define the centre of a hypercube H as the multidimensional point whose
coordinates are the centres of the cube’s dimensions:

Centre(H) = (Centre(h1), Centre(h2), ..., Centre(hn)). (6)



186 F. Sabbatini and R. Calegari

Fig. 2. Example of density-based distance calculation.

We finally define the centre of a hypercube dimension h as the dimension mid-
point:

Centre(h) =
max(h) + min(h)

2
. (7)

The centre-based criterion requires the calculation and comparison of a single
distance for each hypercube since the only relevant point is the cube centre.
However, it may be not a proper strategy when there are cubes having very
different sizes. In this case, small cubes are arbitrarily privileged since instances
belonging to uncovered regions have more probability of being closer to the
centre of small cubes than to those of large cubes.

An example of an expected centre-based assignment is reported in Fig. 1a,
where the point belonging to the uncovered region (red point) is associated with
the closest cube (the blue one). The issue due to high diversity in the cube sizes
is reported in Fig. 1b, where the point is associated with the green hypercube,
given the vicinity to its centre, even if the point is visibly closer to the blue
hypercube.

3.3 Density-Based Assignment

Centre-based brute predictions may be theoretically enhanced by adding aware-
ness of the data set instance distribution within the identified hypercubes. In
this case we move towards a density-based assignment of the uncovered queries
since the brute prediction is based on the distance between a query and the
barycentres of the cubes identified via SKE.

We define the barycentre of a hypercube H as the multidimensional point
whose coordinates are the barycentres of the cube’s dimensions:

Barycentre(H) = (Barycentre(h1), Barycentre(h2), ..., Barycentre(hn)). (8)

We finally define the barycentre of a hypercube dimension h as the mean value
calculated for that dimension on the data set instances enclosed within the hyper-
cube:

Barycentre(h) = h. (9)



Achieving Complete Coverage with Hypercube-Based SKE Techniques 187

Fig. 3. Example of corner-based distance calculation.

The density-based criterion for brute prediction has the same computational
complexity as the centre-based criterion. In both cases, only a single distance
calculation and comparison are required for each identified hypercube in the SKE
technique. However, the density-based criterion may encounter drawbacks when
it comes to assigning instances to hypercubes that have a uniform distribution
of data points. In such cases, the barycentres of the hypercubes are equivalent
to the centres, resulting in similar issues as those described for the centre-based
brute prediction.

Examples of density-based assignments are shown in Fig. 2a (expected assign-
ment) and Fig. 2b (incorrect assignment due to hypercubes with uniform den-
sity).

3.4 Corner-Based Assignment

Given that manual assignments of uncovered instances to hypercubes performed
by human users would take into account the distance of the data point to the
edges of the cube, we formalise accordingly a corner-based criterion considering
the cube vertices.

We define the corners of a hypercube H as the set of points obtained via the
Cartesian product of the sets of corners corresponding to the individual cube’s
dimension:

Corners(H) =
n×

i=1
Corners(hi). (10)

We finally define the corners of a hypercube dimension h as the set containing
its minimum and maximum values:

Corners(h) = {min(h),max(h)} . (11)

The computational complexity of corner-based brute prediction is no longer
constant. For each assignment, it is necessary to calculate the distance between
the uncovered instance and each corner of each identified hypercube. Therefore,



188 F. Sabbatini and R. Calegari

Fig. 4. Example of midpoint-based distance calculation.

the complexity of corner-based brute prediction is directly related to the dimen-
sionality of the hypercubes, which corresponds to the number of input features in
the data set, denoted as n. The number of corners in an n-dimensional hypercube
is equal to 2n. This means that as the dimensionality of the hypercube increases,
the number of corners and the computational complexity of corner-based brute
prediction also increase. However, corner-based brute prediction remains feasi-
ble even with high-dimensional data sets. It is worth noting that when using
the corner-based strategy, there can be challenges when assigning instances to
hypercubes of different sizes. In such cases, smaller cubes may be privileged, lead-
ing to potential issues in the assignment process. The assignment may become
arbitrary and dependent on the positioning of the hypercubes within the input
space. Examples of corner-based assignments are reported in Figures 3a and 3b,
which demonstrate the expected behavior and highlight the issues that can arise
when hypercubes of significantly different sizes are present.

3.5 Midpoint-Based Assignment

Alternatively, other relevant multidimensional points laying on the hypercube
edges may be selected to compute the Euclidean distances. For instance, one
can use edge midpoints instead of vertices.

We define the midpoints of a hypercube H as the set obtained through the
union of the Cartesian products of an edge midpoint with the corners of all the
other cube edges:

Midpoints(H) =
n⋃

i=1

{
{Centre(hi)} × ×

j∈{1,...,n}\{i}
Corners(hj)

}
. (12)

The computational complexity of midpoint-based brute prediction is slightly
higher than that of corner-based assignments. This strategy involves calculating
the distance between the uncovered instance and every midpoint of each iden-
tified hypercube. The number of midpoints in an n-dimensional hypercube is
equal to the number of edges, which is given by n · 2n−1. However, it is worth
noting that the negative effects on computational complexity become noticeable



Achieving Complete Coverage with Hypercube-Based SKE Techniques 189

Fig. 5. Example of perimeter-based distance calculation, p = 5.

when the dimensionality of the hypercube exceeds 6. Therefore, midpoint-based
assignments can still be computationally feasible for data sets with dimensions
up to a certain threshold. Similar to corner-based assignments, midpoint-based
assignments also face challenges when dealing with hypercubes of significantly
different sizes. The issues arising from these cubes are shared between the two
strategies, as shown in Fig. 4.

3.6 Perimeter-Based Assignment

The notion of midpoint-based assignment may be relaxed in order to enable a
more fine-grained sampling of edge points and to overcome the issues of cubes
having different sizes. We then introduce the p parameter to indicate how many
equispaced points have to be selected on edges and modify Eq. (12) accordingly:

Perimeter(H, p) =
n⋃

i=1

{
Equispaced(hi, p) × ×

j∈{1,...,n}\{i}
Corners(hj)

}
,

(13)
where Equispaced(h, p) denotes the set of p equispaced points for the hypercube
dimension h.

The accuracy of perimeter-based brute prediction is greater with greater val-
ues of p, however, the computational complexity grows together with p. Indeed,
the number of relevant points identified for a single n-dimensional cube is equal
to p · n · 2n−1 (i.e., p points per edge). This value is actually reduced in prac-
tice, given that duplicate points corresponding to the cube edges are ignored.
An n-dimensional cube has (n − 1) · 2n duplicate points. The number of rele-
vant points without duplicates is thus p · n · 2n−1 − (n − 1) · 2n, equivalent to
(p − 2) · n · 2n−1 + 2n. Perimeter-based assignments are exemplified in Fig. 5.



190 F. Sabbatini and R. Calegari

Fig. 6. Computational complexity of the proposed vicinity-based assignments.

It is worthwhile to notice that with p = 1 this strategy corresponds to the
midpoint-based brute prediction, whereas with p = 2 it corresponds to the
corner-based one.

3.7 On the Computational Complexity

The computational complexity of each brute prediction strategy described in this
work is reported in Fig. 6. The figure shows the complexity of perimeter-based
assignments for different values of the p parameter, up to 6.

Unfortunately, there is an important trade-off between the quality of the
brute prediction and the corresponding computational complexity. Indeed, as
described in this section, the simplest and fastest strategies to be applied are
the most prone to provide predictive errors, e.g., when the sizes of hypercubes
are strongly unbalanced. On the other hand, perimeter-based predictions have
more probability to give the correct results. However, this strategy becomes quite
unfeasible for p = 3 when n > 6, given that the overall amount of relevant points
of a single cube would be greater than 576 (corresponding to the calculation and
comparison of as many distances for each query to predict). For the same reason
the perimeter-based strategy is not recommended with p ∈ {4, 5} if n > 5 and
with p = 6 if n > 4.

Obviously, the complexity of the adopted strategy also depends on the num-
ber of cubes identified via the SKE technique, given that the reported measure-
ments have to be multiplied by the number of cubes. SKE algorithms usually out-
put a limited amount of hypercubes to preserve human readability and therefore
the overall complexity of the vicinity-based assignments is not strongly altered.
However, there may be applications where the hypercube amount is bound to
the domain itself and it has a heavy impact on the computational complexity of
vicinity-based brute prediction, e.g., classification tasks for handwritten digits
or characters. Even by assuming an optimal hypercubic partitioning of the input
feature space, resulting in only a single cube per possible output class, 10 or 26
different cubes are identified, respectively, thus causing a non-negligible impact
on the overall computational complexity.



Achieving Complete Coverage with Hypercube-Based SKE Techniques 191

4 Experiments

To evaluate the effectiveness of our proposed extension, we performed a number
of experiments with the aid of the PSyKE2 Python framework [3,21,23,26].

We selected the Iris data set3 [6] to exemplify our proposed vicinity-based
brute prediction strategies since it can be easily visualised as a bidimensional
projection. In particular, we privileged the petal length and width input features,
given that these are the most relevant input features to perform the classification.

The experimental setup is the following. The sepal length and width input
features have been first removed from the data set. Then, the 150 available data
instances were split into 2 halves, one to train an opaque model and extract
knowledge, the other to test the predictive performance of both the model and
the knowledge.

A k-nearest neighbours with k = 7 (7-NN) has been selected as opaque
underlying model for the GridEx hypercube-based knowledge extractor. Data
samples and decision boundaries of the 7-NN and the GridEx extractor are
shown in Fig. 7.

From Fig. 7c it is possible to notice that GridEx identifies 3 different hyper-
cubes, one per output class of the data set. The cubes do not cover the whole
input feature space, yet they enclose the majority of data samples. Only 2
instances of Virginica Iris are outside the boundaries of the cubes (green stars
with blue and magenta contour in Fig. 7c) and thus they cannot be predicted
through the interpretable model provided by GridEx.

In Fig. 7 the proposed vicinity-based brute predictions are exemplified. In
particular, Fig. 7d shows the majority-based assignment of the 2 uncovered
instances. Since the random train/test splitting produced a training set where
the Versicolor output class label is predominant, both uncovered instances are
wrongly classified as Versicolor Iris. This very simple strategy is thus easy to
compute but not accurate from a predictive standpoint.

Figure 7e and 7f reports the assignment obtained according to the centre- and
density-based strategies, respectively. In both cases only one uncovered instance
is correctly classified as Virginica Iris (the magenta one), whereas the other is
misclassified as Versicolor Iris (the blue one).

The inverse situation is present by adopting a corner-based brute prediction,
as depicted in Fig. 7g. According to the distance between uncovered instances
and cubes’ corners, the blue instance is incorrectly associated with the Versicolor
class and the magenta one is correctly classified as a Virginica Iris.

Both instances are misclassified by adopting midpoint-based assignments (cf.
Fig. 7h).

Finally, Fig. 7i shows the effectiveness of perimeter-based brute prediction.
Indeed, both uncovered instances are correctly classified by adopting this strat-
egy with p = 5.

2 https://github.com/psykei/psyke-python.
3 https://archive.ics.uci.edu/dataset/53/iris.

https://github.com/psykei/psyke-python
https://archive.ics.uci.edu/dataset/53/iris


192 F. Sabbatini and R. Calegari

Fig. 7. Example of vicinity-based assignments for GridEx on the Iris data set.

4.1 Experiments on Real World Data Sets

A quantitative assessment of the predictive performance obtained for the
distance-based brute prediction on the Iris data set is reported in Table 1. In this
case the data set has been used without removing input features. The same train-
ing/test splitting strategy (50% + 50%) has been adopted. A new 7-NN has been
trained accordingly, achieving an accuracy score of 0.96. A set of non-exhaustive
hypercube-based SKE techniques (i.e., Iter and 2 instances of GridEx, having
different parameters) are compared with 2 instances of CReEPy, used as bench-
mark for hypercube-based SKE methods complete by design. The parameters of
each algorithm are reported in the table. In particular, Iter requires the size
of the single updates, the maximum number of iterations (it), the number of
starting points, and an error threshold (θ). GridEx requires a splitting strat-
egy, a maximum depth (δ) and an error threshold (θ). We selected for GridEx
adaptive strategies based on the input feature relevance: we let the 2 algorithm
instances perform 5 or 8 slices along features with relevance greater than 0.5 or
0.85, respectively, and only a single slice along all the others. Finally, CReEPy
requires an underlying explainable clustering technique, a maximum depth (δ)
and an error threshold (θ).



Achieving Complete Coverage with Hypercube-Based SKE Techniques 193

Table 1. Predictive performance of brute predictions for the Iris data set.

k-NN Iter GridEx GridEx CReEPy CReEPy

update = 0.1 adaptive split adaptive split Clustering: Clustering:

it = 100 if relev. < 0.5: if relev. < 0.85: ExACT CREAM

Parameters k = 7 points = 1 1 split else 5 1 split else 8 δ = 2 δ = 2

θ = 0.1 δ = 1 δ = 1 θ = 0.1 θ = 0.1

θ = 0.1 θ = 0.1

Accuracy 0.96 0.97 0.96 0.90 0.92 0.93

Rules 3 6 3 3 3

Completeness 0.93 0.92 0.92 1.00 1.00

Majority 0.91 0.88 0.83

Centre 0.97 0.96 0.91

Density 0.97 0.96 0.91

Corner 0.97 0.96 0.91

Midpoint 0.97 0.96 0.91

Perimeter, p = 3 0.97 0.96 0.91

Perimeter, p = 5 0.97 0.96 0.91

For each SKE instance the fidelity w.r.t. the 7-NN expressed as classification
accuracy, the number of extracted rules and the completeness expressed as per-
centage of test set covered by the identified hypercubes are reported in Table 1.
For the non-exhaustive SKE techniques, several vicinity-based brute prediction
strategies have been tested and the corresponding results are reported in the
same table.

From the table, it is possible to notice that CReEPy outperforms the other
techniques on 2 different dimensions, indeed it has the smallest amount of rules
and the highest completeness. However, thanks to the proposed brute prediction
strategies, Iter and GridEx may achieve complete coverage of the input feature
space as well. As a result, Iter becomes the best algorithm in the examined pool,
since it maximises both the completeness and the accuracy of its predictions
with only 3 extracted rules. As for GridEx, an instance is able to outperform
CReEPy in terms of accuracy but produces a double amount of rules, whereas
the other exhibits the same rule amount but smaller classification accuracy. The
proposed extension to draw predictions for uncovered instances is thus effective
in obtaining better overall results.

We conclude this experimental section with a regression case study on the
Combined Cycle Power Plant (CCPP) data set [28]. A random forest (RF) regres-
sor based on 20 decision trees (DT) with unbounded depth (δ) and leaf amount
(λ) has been selected as opaque model. The pool of SKE techniques is composed
of GridEx, GridREx, CReEPy adopting CREAM clustering, and 2 different
instances of Iter. We omitted the results of CReEPy adopting ExACT clus-
tering, since it showed the same input space partitioning obtained by adopting
CREAM, with the same performance measurements, by setting δ = 3. Results
are reported in Table 2, where predictive performance is expressed through the
R2 score.



194 F. Sabbatini and R. Calegari

Table 2. Predictive performance of brute predictions for the CCPP data set.

RF Iter Iter GridEx GridREx CReEPy

upd. = 0.03 upd. = 0.07 adaptive split adaptive split CREAM clust

DT = 20 it = 100 it = 150 if relev. < 0.7: if relev. < 0.7: δ = 2

Parameters λ = ∞ points = 1 points = 2 1 split else 3 1 split else 3 θ = 0.1

δ = ∞ θ = 10 θ = 10 δ = 1 δ = 1 output: linear

θ = 1 θ = 1 functions

R2 0.96 0.62 0.86 0.98 0.93 0.97

Rules 4 13 3 9 4

Completeness 0.58 0.93 0.99 0.99 1.00

Majority 0.31 0.77 0.97 0.93

Centre 0.65 0.86 0.98 0.93

Density 0.61 0.84 0.98 0.93

Corner 0.60 0.81 0.98 0.93

Midpoint 0.62 0.87 0.98 0.93

Perimeter, p = 3 0.62 0.87 0.98 0.93

Perimeter, p = 5 0.63 0.86 0.98 0.93

In this case study GridEx is superior to CReEPy from the predictive perfor-
mance and rule amount standpoints. However, only CReEPy provides complete
knowledge. Our proposed extension enables GridEx to achieve 100% complete-
ness as well. GridEx empowered with brute prediction capabilities outperforms
CReEPy and it is thus the best SKE technique in the pool.

Amongst all the proposed vicinity-based strategies, from our experiments,
the majority-based criterion appears to be the simplest but also the least per-
forming in terms of prediction accuracy. Conversely, the other alternatives do
not exhibit very noticeable differences in the measured predictive performance.
For this reason we suggest applying one of the least computationally expensive
strategies to empower non-exhaustive hypercube-based SKE techniques.

5 Conclusions

In this paper, we introduce a vicinity-based extension for SKE techniques that
ensures 100% completeness in predictions. This extension can be applied to
any hypercube-based SKE method and offers flexibility to users in selecting
the desired trade-off between computational complexity and predictive perfor-
mance. We define different strategies based on vicinity for the extension, allowing
users to tailor the approach to their specific needs. Additionally, we provide an
analytical study of the computational complexity associated with the proposed
extension. Furthermore, we present experimental results that demonstrate the
effectiveness of the extension in practical applications.

Our future work aims to enhance the selection of relevant points within
hypercubes to achieve smaller sets of points while maintaining comparable or
even improved predictive performance with reduced computational complexity.



Achieving Complete Coverage with Hypercube-Based SKE Techniques 195

Specifically, we plan to consider points on the surface of the hypercubes and
to develop mechanisms for coarse-grained sampling of relevant points in low-
importance regions of the cubes, such as cube edges near the boundaries of the
data set domain or perimeter sampling for very small cubes. These advancements
will further refine and optimise the extension of SKE techniques.

Acknowledgments. This work has been supported by European Union’s Hori-
zon Europe AEQUITAS research and innovation programme under grant number
101070363.

References

1. Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for
extracting rules from trained artificial neural networks. Knowl. Based Syst. 8(6),
373–389 (1995). https://doi.org/10.1016/0950-7051(96)81920-4

2. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression
Trees. CRC Press, Boca Raton (1984)

3. Calegari, R., Sabbatini, F.: The PSyKE technology for trustworthy artificial intel-
ligence. In: Dovier, A., Montanari, A., Orlandini, A. (eds.) XXI International Con-
ference of the Italian Association for Artificial Intelligence, AIxIA 2022, Udine,
Italy, November 28 – December 2, 2022, Proceedings, vol. 13796, pp. 3–16 (2023).
https://doi.org/10.1007/978-3-031-27181-6 1

4. Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained
networks. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in
Neural Information Processing Systems 8. Proceedings of the 1995 Conference, pp.
24–30. The MIT Press (1996). https://papers.nips.cc/paper/1152-extracting-tree-
structured-representations-of-trained-networks.pdf

5. Eineborg, M., Boström, H.: Classifying uncovered examples by rule stretching.
In: Rouveirol, C., Sebag, M. (eds.) Inductive Logic Programming, 11th Interna-
tional Conference, ILP 2001, Strasbourg, France, September 9–11 2001, Proceed-
ings. LNCS, vol. 2157, pp. 41–50. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44797-0 4

6. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugenics 7(2), 179–188 (1936). https://onlinelibrary.wiley.com/doi/abs/10.1111/
j.1469-1809.1936.tb02137.x, https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

7. Garcez, A.S.d., Broda, K., Gabbay, D.M.: Symbolic knowledge extraction from
trained neural networks: a sound approach. Artif. Intell. 125(1–2), 155–207 (2001)

8. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.:
A survey of methods for explaining black box models. ACM Comput. Surv. 51(5),
1–42 (2018). https://doi.org/10.1145/3236009

9. Huysmans, J., Baesens, B., Vanthienen, J.: ITER: an algorithm for predictive
regression rule extraction. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS,
vol. 4081, pp. 270–279. Springer, Heidelberg (2006). https://doi.org/10.1007/
11823728 26

10. Kenny, E.M., Ford, C., Quinn, M., Keane, M.T.: Explaining black-box classifiers
using post-hoc explanations-by-example: the effect of explanations and error-rates
in XAI user studies. Artif. Intell. 294, 103459 (2021). https://doi.org/10.1016/j.
artint.2021.103459

https://doi.org/10.1016/0950-7051(96)81920-4
https://doi.org/10.1007/978-3-031-27181-6_1
https://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
https://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
https://doi.org/10.1007/3-540-44797-0_4
https://doi.org/10.1007/3-540-44797-0_4
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1145/3236009
https://doi.org/10.1007/11823728_26
https://doi.org/10.1007/11823728_26
https://doi.org/10.1016/j.artint.2021.103459
https://doi.org/10.1016/j.artint.2021.103459


196 F. Sabbatini and R. Calegari

11. Konig, R., Johansson, U., Niklasson, L.: G-REX: a versatile framework for evo-
lutionary data mining. In: 2008 IEEE International Conference on Data Mining
Workshops (ICDM 2008 Workshops), pp. 971–974 (2008). https://doi.org/10.1109/
ICDMW.2008.117

12. Rocha, A., Papa, J.P., Meira, L.A.A.: How far do we get using machine learning
black-boxes? Int. J. Pattern Recogn. Artif. Intell. 26(02), 1261001-(1–23) (2012).
https://doi.org/10.1142/S0218001412610010

13. Rudin, C.: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215
(2019). https://doi.org/10.1038/s42256-019-0048-x

14. Sabbatini, F., Calegari, R.: Symbolic knowledge extraction from opaque machine
learning predictors: GridREx & PEDRO. In: Kern-Isberner, G., Lakemeyer, G.,
Meyer, T. (eds.) Proceedings of the 19th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2022, Haifa, Israel, July 31–August
5, 2022 (2022). https://doi.org/10.24963/kr.2022/57. https://proceedings.kr.org/
2022/57/

15. Sabbatini, F., Calegari, R.: Bottom-up and top-down workflows for hypercube-
and clustering-based knowledge extractors. In: Proceedings of the V Interna-
tional Workshop on Explainable and Transparent AI and Multi-Agent Systems,
EXTRAAMAS 2023, London, UK, 29 May 2023, vol. 14127. Springer, Cham.
(2023, to appear). https://doi.org/10.1007/978-3-031-40878-6 7

16. Sabbatini, F., Calegari, R.: Explainable clustering via ExACT. In: Proceedings
of the II International Workshop on Knowledge Diversity, KoDis 2023, Rhodes,
Greece, 2–8 September 2023 (2023). https://ceur-ws.org/Vol-3548/paper3.pdf

17. Sabbatini, F., Calegari, R.: Explainable clustering with CREAM. In: Proceedings
of the 20th International Conference on Principles of Knowledge Representation
and Reasoning, pp. 593–603 (2023). https://doi.org/10.24963/kr.2023/58

18. Sabbatini, F., Calegari, R.: The ICE score to evaluate symbolic knowledge quality.
In: Proceedings of the XXXVIII Annual AAAI Conference on Artificial Intelligence,
AAAI24, Vancouver, Canada, 20–27 February 2024 (2023, submitted to)

19. Sabbatini, F., Calegari, R.: On the evaluation of the symbolic knowledge extracted
from black boxes. In: AAAI 2023 Spring Symposium Series, San Francisco, Cali-
fornia (2023, to appear)

20. Sabbatini, F., Calegari, R.: Unveiling opaque predictors via explainable clustering:
the CReEPy algorithm. In: Proceedings of the 2nd Workshop on Bias, Ethical Al,
Explainability and the role of Logic and Logic Programming, BEWARE-23, Rome,
Italy, November 6, 2023, (2023, to appear)

21. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: On the design of PSyKE: a
platform for symbolic knowledge extraction. In: Calegari, R., Ciatto, G., Denti,
E., Omicini, A., Sartor, G. (eds.) WOA 2021–22nd Workshop “From Objects to
Agents”. CEUR Workshop Proceedings, vol. 2963, pp. 29–48. Sun SITE Central
Europe, RWTH Aachen University (2021). https://ceur-ws.org/Vol-2963/paper14.
pdf, 22nd Workshop “From Objects to Agents” (WOA 2021), Bologna, Italy, 1–3
September 2021. Proceedings (2021)

22. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Hypercube-based methods for
symbolic knowledge extraction: towards a unified model. In: Ferrando, A., Mas-
cardi, V. (eds.) WOA 2022–23rd Workshop “From Objects to Agents”, CEUR
Workshop Proceedings, Sun SITE Central Europe, RWTH Aachen University, vol.
3261, pp. 48–60 (2022). https://ceur-ws.org/Vol-3261/paper4.pdf

https://doi.org/10.1109/ICDMW.2008.117
https://doi.org/10.1109/ICDMW.2008.117
https://doi.org/10.1142/S0218001412610010
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.24963/kr.2022/57
https://proceedings.kr.org/2022/57/
https://proceedings.kr.org/2022/57/
https://doi.org/10.1007/978-3-031-40878-6_7
https://ceur-ws.org/Vol-3548/paper3.pdf
https://doi.org/10.24963/kr.2023/58
https://ceur-ws.org/Vol-2963/paper14.pdf
https://ceur-ws.org/Vol-2963/paper14.pdf
https://ceur-ws.org/Vol-3261/paper4.pdf


Achieving Complete Coverage with Hypercube-Based SKE Techniques 197

23. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Symbolic knowledge extraction
from opaque ML predictors in PSyKE: platform design experiments. Intelligenza
Artificiale 16(1), 27–48 (2022). https://doi.org/10.3233/IA-210120

24. Sabbatini, F., Ciatto, G., Calegari, R., Omicini, A.: Towards a unified model for
symbolic knowledge extraction with hypercube-based methods. Intelligenza Arti-
ficiale 17(1), 63–75 (2023). https://doi.org/10.3233/IA-230001

25. Sabbatini, F., Ciatto, G., Omicini, A.: GridEx: an algorithm for knowledge
extraction from black-box regressors. In: Calvaresi, D., Najjar, A., Winikoff, M.,
Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems.
Third International Workshop, EXTRAAMAS 2021, Virtual Event, 3–7 May 2021,
Revised Selected Papers, LNCS, vol. 12688, pp. 18–38. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-82017-6 2

26. Sabbatini, F., Ciatto, G., Omicini, A.: Semantic Web-based interoperability
for intelligent agents with PSyKE. In: Calvaresi, D., Najjar, A., Winikoff, M.,
Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems,
LNCS, vol. 13283, pp. 124–142. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15565-9 8

27. Salzberg, S.: A nearest hyperrectangle learning method. Mach. Learn. 6, 251–276
(1991). https://doi.org/10.1023/A:1022661727670

28. Tüfekci, P.: Prediction of full load electrical power output of a base load operated
combined cycle power plant using machine learning methods. Int. J. Electr. Power
Energy Syst. 60, 126–140 (2014). https://www.sciencedirect.com/science/article/
pii/S0142061514000908, https://doi.org/10.1016/j.ijepes.2014.02.027

https://doi.org/10.3233/IA-210120
https://doi.org/10.3233/IA-230001
https://doi.org/10.1007/978-3-030-82017-6_2
https://doi.org/10.1007/978-3-031-15565-9_8
https://doi.org/10.1007/978-3-031-15565-9_8
https://doi.org/10.1023/A:1022661727670
https://www.sciencedirect.com/science/article/pii/S0142061514000908
https://www.sciencedirect.com/science/article/pii/S0142061514000908
https://doi.org/10.1016/j.ijepes.2014.02.027

	Achieving Complete Coverage with Hypercube-Based Symbolic Knowledge-Extraction Techniques
	1 Introduction
	2 Symbolic Knowledge Extraction
	2.1 Iter
	2.2 GridEx and GridREx
	2.3 CReEPy

	3 Vicinity-Based Extensions to Achieve Complete Coverage
	3.1 Majority-Based Assignment
	3.2 Centre-Based Assignment
	3.3 Density-Based Assignment
	3.4 Corner-Based Assignment
	3.5 Midpoint-Based Assignment
	3.6 Perimeter-Based Assignment
	3.7 On the Computational Complexity

	4 Experiments
	4.1 Experiments on Real World Data Sets

	5 Conclusions
	References


