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Preface

The European Conference on Artificial Intelligence (ECAI) is the premier European
conference on Artificial Intelligence. In 2023, ECAI took place in Kraków, Poland,
from the 30th of September till the 4th of October. The program included workshops
on specialised topics of high relevance for the scientific community. They were held
during the first two days of the conference, in parallel with tutorials and side events such
as the Doctoral Consortium or STAIRS (the 10th European Starting AI Researchers’
Symposium). This two-volume set includes the proceedings of the followingworkshops:

1. XAI^3: Joint workshops on XAI methods, challenges and applications
2. TACTFUL: Workshop on Trustworthy AI for safe & secure traffic control in

connected & autonomous vehicles
3. XI-ML: International Workshop on Explainable and Interpretable Machine Learning
4. SEDAMI: The Semantic Data Mining Workshop
5. RAAIT: Workshop on Responsible Applied Artificial Intelligence
6. AI4S: Workshop on Artificial Intelligence for Sustainability
7. HYDRA: HYbrid models for coupling Deductive and inductive ReAsoning
8. AI4AI: AI for AI Education

Each section of this book contains the papers from one of the workshops, following
a preface from the organisers. We would like to thank all participants and invited speak-
ers, the Program Committees and reviewers, and the ECAI conference and workshop
chairs—we appreciate your efforts in making the workshops successful events. We are
also grateful to Springer for their help in publishing the proceedings.

October 2023 Sławomir Nowaczyk
on behalf of the volume editors
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Maciej Szelążek, Szymon Bobek, and Grzegorz J. Nalepa

Visual Patterns in an Interactive App for Analysis Based on Control Charts
and SHAP Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Iwona Grabska-Gradzińska, Maciej Szelążek, Szymon Bobek,
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XAI3: Explainable Artificial Intelligence Methods,
Challenges, and Applications, ECAI, Cracow,

1 October 2023

Preface

Explainability is gaining an increasingmomentum and criticality in artificial intelligence
(AI) research.Operating characteristics ofmodernAImodels, primarily poweredbydeep
neural networks (DNNs), are notoriously difficult to understand due to an extremely large
number of parameters, non-linearity, complex architectures, and end-to-end training. As
we attempt to translate the success of AI into high-risk and high-impact domain areas
such as medicine and industry, we are interested in evaluating current XAI practices and
developing a new generation of XAImethods. To this end, we organised joint workshops
on XAI methods, challenges, and applications (XAI3) at the 26th European Conference
on Artificial Intelligence (ECAI 2023).

So far, XAI methods have been primarily developed in a post-hoc manner where
the original DNNs are unchanged. These methods attempt to interpret the decision-
making process of pre-trained models. For example, when the computer vision model
(e.g., ResNet-50) classifies a picture, the saliency map seeks to quantify and visualize
which input pixels have contributed to that particular classification. In the majority of
cases, XAI has been application-agnostic with the hope that methods for natural images
and languages would readily translate into specific application domains. However, that
approach has not worked particularly well, as evident in limited real-world cases of XAI
in medicine or industrial processes. In this workshop, we seek to investigate challenges
and opportunities for the new generation of explainable AI (XAI) methods that are
reliable, robust, and trustworthy. We envision the next generation of XAI methods must
be motivated by and directly benefit specific application domains.

At the XAI3 workshop, we planned three tracks: medical, industry, and future chal-
lenges, where we will explore the challenges and opportunities in creating useful XAI
methods for medical applications, integrating explainability in highly automated indus-
trial processes, and evaluating current and future XAI methods. We welcomed con-
tributions from researchers, academia, and industries primarily from a technical and
application point of view, but also from an ethical and sociological perspective.

Inmedical applications, explainability is as important as classification performance.
Doctors and patients are unlikely to trust a blackbox algorithm, as false positives and
false negatives could lead to great burdens. This challenge is compounded by substantial
differentiation in subpopulations, technology, and medical practices. So far, AI methods
have generally produced neither superhuman performances nor accurate explanations.
In high risk medical applications, it appears that those two aspects are closely related, as
understanding edge cases and biases via XAI methods could improve inference and pre-
diction. Therefore, as discussed in the XAI3 workshop, inherently interpretable models
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are emerging as potentially powerful approaches that could provide both explainabil-
ity and high performance. XAI may be utilized to improve our understanding of AI in
medicine and modify the model architectures and behaviors accordingly. Alternatively,
XAI methods could be utilized in human-computer interactions where explanations in
conjunction with diagnosis or prognosis could help humans to make more informed
decisions. Furthermore, recent legislations and regulations around the world (e.g., EU
General Data Protection Regulation) emphasize “right to an explanation” when com-
puter algorithms are used in decision making process. Therefore, XAI will become an
indispensable element in translating the success of AI into medical applications.

Industry 4.0, the fourth industrial revolution, is characterised by a high degree of
automation and the use of AI for optimising key processes of manufacturing, logis-
tics and more. Building on this foundation, Industry 5.0, known as “Smart Factory,”
allows humans andmachines to collaborate seamlessly, driving sustainability, resiliency,
and benefits to people and society. As a result, today’s industry is characterised by the
widespread integration of cutting-edge technologies into highly automated and inter-
connected processes, where data is collected from many sources, fused, and analysed in
real time to make decisions and optimise operations. However, it is equally essential to
ensure that the resulting systems are transparent, reliable, and explainable to humans in
various roles, from operators through managers and overseers, all the way to certifica-
tion authorities. Integration of explainable AI (XAI) is crucial to ensure trustworthiness,
safety, security, and accountability. The workshop brought industrial AI professionals
together with explainability experts to discuss the latest developments in XAI and their
practical applications, providing an opportunity for attendees to learn about the latest
research, best practices, and challenges in this area. It was an opportunity to bridge
researchers and engineers to discuss emerging topics and the newest trends. The integra-
tion of explainability in Industry 4.0 and 5.0 is crucial to ensure AI systems’ reliability,
trustworthiness and transparency.

The more research is conducted on the topics of XAI, the more new problems and
future challenges open up. Among these challenges, one of the key importance includes
the issue of the evaluation of explanations, an issue that is very important but also very
complex. Important, because without evaluation it is difficult to compare the growing
number of model exploration techniques. Complex, because explanations are used by
different stakeholders, in different contexts, and thus it is difficult to capture with a single
metric how good an explanation is. It is not only the multiplicity of stakeholders that
is a challenge, but also their different levels of knowledge regarding machine learning
techniques or even algorithmic operation. A related topic is the issue of explanation
stability and fidelity in explaining the actual model. During the workshop, we brought
together researchers conducting research dedicated to the evaluation of XAI techniques,
as well as researchers applying these techniques in a variety of disciplines (such as the
social sciences). Not only new dimensions of the evaluation of XAI methods were pre-
sented, but also the results of evaluations of selectedmethods.We know now that a single
explanation is not enough and model exploration requires a multifaceted perspectives
on a model. The presented papers will serve as a reference in the construction of further
benchmarks evaluating explanatory methods.
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The organisers would like to thank the authors, keynote speakers, and Program
Committeemembers for their contributions to theworkshop.Wehope andbelieve that the
workshophas been a valuable resource for participants and contributed to identifying new
ideas, applications, and future research papers in XAI. The workshop provided a premier
forum for sharing findings, knowledge, insights, experience, and lessons learned from
practical and theoretical work. The intrinsic interdisciplinary nature of the workshop
promoted the interaction between different competencies, thus paving the way for an
exciting and stimulating environment involving researchers and practitioners.

Keynote Talks

The workshop included three keynote talks.

Christin Seifert from University of Marburg: Can we trust XAI? Current status and
challenges of evaluating XAI methods.

The XAI community develops methods to make black-boxmodels more transparent,
with transparency catering to multiple stakeholders. In the case of post-hoc, local XAI
methods, the user-facing output is a prediction and its accompanying explanation. The
user should refer to the explanation to understand why a prediction was (not) made. But
how can we evaluate whether an explanation is correct, understandable, useful to the
user and truthful to the model? And how can we compare multiple XAImethods in a har-
monised way to measure and ensure scientific progress? In this talk, I discussed different
evaluation approaches, methods, andmetrics, that have been developed –mostly bottom-
up – in the XAI community. I then revisited other scientific fields, such as machine learn-
ing and information retrieval and their de facto evaluation standards. Finally, I presented
obstacles and challenges towards a unified evaluation framework for XAI.

Concha Bielza and Pedro Larrañaga from Technical University of Madrid: Explana-
tion Capabilities of Bayesian Networks in Dynamic Industrial Domains.

This talk described how Bayesian network models can provide natural explanations
in temporal domains from the industry. After a brief introduction to Bayesian networks
in static settings, discrete-time versions for temporal domains were presented, which
include dynamic Bayesian networks and the popular hidden Markov models. The more
recent continuous-time Bayesian networks and their supervised classification counter-
parts, both in uni- and multi-dimensional settings, were explained. How Bayesian net-
works can be used in dynamic clustering was also covered. In all cases, real examples
from industry illustrated the versatile capabilities of Bayesian networks to intrinsically
explain the model as a whole, predictions (reasoning), instances (evidences) and deci-
sions. This is the so-called XBN framework, that encourages efficient communication
with end users and supports understanding of how and why certain predictions were
made, gaining new industrial insights.

Issam El Naqa from Moffitt Cancer Center: Towards Trustworthy AI for Clinical
Oncology.

Artificial intelligence (AI) andMachine learning (ML) algorithms are currently trans-
forming biomedical research, especially in the context of cancer research and clinical
care. Despite the anticipated potential, their application in oncology and healthcare has
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been limited in scope with less than 5% of major healthcare providers implementing
any form of AI/ML solutions. This is partly attributed to concerning issues that AI/ML-
driven technologies instead of reducing healthcare disparities would exacerbate existing
racial and gender equity due to inherent bias and lack of prediction transparency. In
this work, we presented different approaches for detecting and mitigating such bias in
AI/ML algorithms. We further showed examples of implementing these approaches in
oncology applications from our work and others and discussed their implications for the
future of AI/ML.

Acknowledgements. This work was in part supported by the INFORM consor-
tium, CHIST-ERA grant [CHIST-ERA-19-XAI-007] funded by General Secretariat
for Research and Innovation (GSRI) of Greece [T12EPA5-00053], CHIST-ERA grant
[CHIST-ERA-19-XAI-012] funded by Swedish Research Council, National Science
Centre (NCN) of Poland [2020/02/Y/ST6/00071, Sonata Bis 2019/34/E/ST6/00052],
Agence Nationale de la Recherche (ANR) of France [ANR-21-CHR4-0006]. It also
received partial supports from the IDUB program (POB3) from the Faculty of
Mathematics, Informatics, and Mechanics, University of Warsaw.
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Abstract. Understanding when and why to apply any given eXplain-
able Artificial Intelligence (XAI) technique is not a straightforward task.
There is no single approach that is best suited for a given context. This
paper aims to address the challenge of selecting the most appropriate
explainer given the context in which an explanation is required. For AI
explainability to be effective, explanations and how they are presented
needs to be oriented towards the stakeholder receiving the explanation.
If—in general—no single explanation technique surpasses the rest, then
reasoning over the available methods is required in order to select one
that is context-appropriate. Due to the transparency they afford, we pro-
pose employing argumentation techniques to reach an agreement over the
most suitable explainers from a given set of possible explainers.

In this paper, we propose a modular reasoning system consisting of
a given mental model of the relevant stakeholder, a reasoner component
that solves the argumentation problem generated by a multi-explainer
component, and an AI model that is to be explained suitably to the stake-
holder of interest. By formalizing supporting premises—and inferences—
we can map stakeholder characteristics to those of explanation tech-
niques. This allows us to reason over the techniques and prioritise the
best one for the given context, while also offering transparency into the
selection decision.

Keywords: Explainability · Transparency · Argumentation

1 Introduction

Now that the need for eXplainable Artificial Intelligence (XAI) has been firmly
established [2], the development of state-of-the-art techniques, such as Local
Interpretable Model-agnostic Explainations (LIME) [30] and SHapley Additive
exPlanations (SHAP) [22], is continuously being pursued. While researchers and
practitioners have benefited from model interpretations offered by such tech-
niques, issues remain that make them tricky to adopt. One identified pitfall of
current XAI methods is the failure to make their limitations clear; misleading
explanations can be inconspicuous, and may result in downstream actions that
are unjustified [20,28,31]. Moreover, with this large suite of XAI methods comes

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Nowaczyk et al. (Eds.): ECAI 2023 Workshops, CCIS 1947, pp. 7–23, 2024.
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http://orcid.org/0000-0002-9808-2037
http://orcid.org/0000-0001-7409-5813
http://orcid.org/0000-0001-9499-1535
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the need to understand each in order to make an informed choice about which
to select, and then further interpret the results received. The assumption here is
that these explainees will have the expertise to make such informed choices and
analyses. In reality, current explanations mostly serve system developers—who
have limited temporal constraints (i.e. how fast the explanation is to be produced
and can be consumed) and require a large amount of in-depth information [24].

Thus, we propose an XAI system built to support the selection of an XAI
method using symbolic reasoning, taking into account what the explainee may
value and need in order to determine the optimal method and explanations
to present. In this work, we focus only on selecting the best suited explainer.
While an aggregated view of many potential explanations could perhaps be more
appropriate depending on context, it is possible to mislead the stakeholder when
attempting to augment one explanation using other explanations generated by
incompatible techniques [28].

Moreover, it is important to consider the context within which explanations
are needed and the context within which they will be used. When we refer
to context-sensitivity, we mean capturing the frame that surrounds the request
for an explanation. This includes capturing relevant knowledge about available
explanation techniques, such as strengths and weaknesses, as well as relevant
knowledge about the target audience, referred to as the stakeholder, including
their understanding of the AI system and their intentions behind seeking an
explanation for its decision-making. Too few techniques are developed with the
intention of modelling the stakeholder’s view of the system and with considera-
tion for their explainability needs [6]. Still, explainability begins with considering
who is in need of an explanation. Often, the “who” is not entirely aware of what
type of explanation is best suited to their needs, which introduces the added
challenge of selecting an optimal explanation technique that can be sufficiently
interpreted for the context at hand. Thus, more transparency, i.e. providing
insights into ‘why’ an explanation has been selected, is required.

Contribution Our main contribution is a framework for the formalisation of and
reasoning over: i)the characteristics of explanation techniques; ii) the properties
that make them well-suited—or ill-suited—towards various contexts; and iii)
the contexts in which the produced explanations are to be used. With such
a formalisation, transparency into the selection of existing explainer methods
that also maps needs to their capabilities is afforded. This is proposed by our
introduction of the reasoning component on top of a multi-explainer system.
The intention is to take an appropriate mental model of a target explainee into
account when offering explanations, removing any assumption that the user is
sufficiently informed of all the strengths and weaknesses of each explanation
method and the technicalities required to interpret the output. For the purposes
of this paper only, we assume that these explainee mental models are given and
accurately portray their existing knowledge and intentions.

In this paper, we begin with an overview in Sect. 2 of the concepts that
underpin our proposed solution; we define terms central to explainable artificial
intelligence (XAI) and human-centric XAI (HCXAI), as well as computational
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reasoning and argumentation for both making and justifying decisions. In Sect. 4,
we describe our working example and describe an experimental setup. Finally
in Sect. 5, we conclude that reasoning over multiple explanations can be used
to map explainers to explainee characteristics. We further motivate the need
for evaluating this work in a human-subject study to validate the transparency
effects with target human stakeholders.

2 Background

2.1 Explainable Artificial Intelligence

It is widely agreed that no one ‘true’ explanation exists and that stakeholders
have diverse needs when it comes to explainability and interpretability of AI
models [3]. There can be many explanations for a single outcome, each con-
tributing towards a particular explanatory dimension [28].

To build on this notion of explanatory dimensions we first need to unpack
what is meant by an explanation. Here, we adopt the definition offered by
Guidotti et al. In their survey, they describe an explanation to be ‘an inter-
face’ between humans and a decision maker that is ... both an accurate proxy of
the decision maker and comprehensible to humans” [17]. Markus et al. charac-
terise explainability similarly by highlighting the properties of interpretability—
relating to clarity and parsimony—and fidelity—relating to completeness and
soundness [23]. The importance of each property, they argue, is dependent on the
reason that explainability is demanded in the first place. Today, a vast amount
of XAI methods have been—and continue to be—developed towards different
explanatory demands. Models can be developed to be intrinsically explanatory
and interpretable to humans. Consider decision trees, for instance, as such intrin-
sically interpretable Machine Learning (ML) models; decision-making steps can
be intuitively followed and understood for simple trees1. When such interpretable
models suffer in terms of predictive power, the need for more complex models
may arise, motivating the employment of black-box models that are not intu-
itively understandable. Post-hoc XAI methods become useful in this case, where
explanations can be offered after model training has been completed. More useful
still, are model-agnostic methods, which are those that are not innately baked
into a specific ML model and can—in principle—be applied to any ML model.
The benefits of taking a model-agnostic approach include the freedom to choose
any machine learning model for the prediction task at hand and still being able
to offer an explanation to stakeholders after the fact. It offers practitioners the
added benefit of comparing interpretability across machine learning methods
as well, which can be insightful in terms trade-offs. These qualities make post-
hoc, model-agnostic XAI approaches desirable, and we therefore focus on these
methods only.

1 It is worth noting that as decision trees scale, their interpretability may also decline
due to the sheer size of the structure.
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Post-hoc methods can be global or local. If an understanding of the overall
behaviour of an AI system is required, then global explanation techniques can
be employed. For an understanding of how a single decision came to be, local
techniques can be used. In this paper, we consider both classes of XAI techniques
as the context within which explanations are needed will drive the choice of class.

2.2 Human-Centred Explainable Artificial Intelligence

Effectively applying XAI techniques requires, according to Pitman and Munn,
practitioners to “start from the consumer’s place of understanding and build
upon it” [28]. This is precisely what Human-centred Explainable Artificial Intel-
ligence (HCXAI) intends to do by putting the human at the core of XAI design
[13].

HCXAI moves beyond superficial consideration of who the target human
might be; by employing human-computer interaction (HCI) techniques such as
value-sensitive design (VSD) [12] and participatory design [15], HCXAI aims to
involve the human stakeholder directly for a holistic understanding of relevant
design requirements. VSD is rooted in consideration for human values when
designing technology. Participatory design aims to build technology together
with those who hold a stake in it. These approaches often result in the formula-
tion of mental models of relevant human stakeholders.

Here, we define a mental model to be the stakeholder’s cognitive representa-
tion of how any given system works. This includes what the stakeholder knows
about the system’s components, the interactions between them, as well as the
processes that transform them [7]. Additionally, we consider what is known about
the stakeholder themselves; this includes their needs to fulfil a role and adhere to
values, amongst others. Mental models are important to consider in the context
of explainable AI in particular for numerous reasons. For one, there is no uni-
versal explanation best suited for all stakeholders and their needs. Furthermore,
individuals within stakeholder groups may also have slightly different require-
ments based on their personal experience with AI and XAI in particular. Simi-
larly, as we humans explain concepts amongst ourselves, we tailor our explana-
tions based on the explainee and what they are already expected to understand
about the concept, building on top of that expected knowledge. Attention is
given to context, which we understand as the relevant elements that shape the
setting within which an explanation is required. This calls for the consideration
of relevant explainee characteristics mapped to XAI techniques to inform more
suitable selections of explanations.

2.3 Reasoning and Argumentation

Transparency into the various elements that contribute towards the choice of
an explanation technique offers stakeholders the value of making more informed
decisions when it comes to AI and its applications in industry. Transparency
is afforded through the neat and intuitive way of forming inferences—drawing
conclusions—derived from a knowledge base of facts already assumed to be true.
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The availability of such a knowledge base of truths together with well-formulated
and documented rules of inference can help stakeholders in their interpretation
of any given explanation.

Argumentation is considered pivotal to the way humans arrive at conclusions
and thus make decisions [10]. Arguments are formulated to defend and persuade
given claims and further support actions that can be taken. Offering “the cor-
rect” argument is not of the essence, which is fitting in the context of offering
explanations—we do not necessarily have one correct approach to explaining
a decision outcome, but rather many; some approaches are more suitable than
others depending on the context.

Computational argumentation can therefore offer a solid foundation for
human-centric AI, where the intention is to augment human cognition. Thus,
we choose to adopt a computational argumentation approach to reasoning over
the choice of explanation when given a system of multiple explainers suited for
presenting different motivations for the outcome of a single machine learning
model.

Consider Dung’s Abstract Argumentation (AA) framework [11]. Formally,
the AA framework takes the form of a pair S = 〈Ar ,R〉 where Ar is the set
of arguments, and R is a binary relation of attacks, where R ⊆ Ar × Ar. For
a, b ∈ Ar , R(a, b) indicates that the argument a represents an attack on the
argument b.

To compute a reasonable position given by the argumentation framework S,
an extension set E can be built, where E ⊆ Ar. E is considered conflict-free if
no member within it attacks another. That is there exists no elements a and b
within E such that R(a, b). An argument a that is attacked by b through the
relation R(a, b) is said to be defended by c if R(c, a) and thus acceptable as
an argument with respect to the position. Conflict-free positions that contain
acceptable arguments are said to be admissible. [33]

Label-based approaches to solving arguments also exist [4]. Arguments that
are free from the effect of any attack are labelled IN. IN arguments are accepted
and render any argument they attack to be OUT. Therefore, we can reject all
arguments that are labelled OUT. Arguments that are neither IN nor OUT
are undecided and labelled UNDEC. This label-based approach can be depicted
visually using a graphical representation of the argument framework. The AA
framework can be constructed as a graph; the nodes represent arguments and
directed edges represent attack relations. Starting with a graph of the abstract
argument, the label-based approach can be used to remove those nodes labelled
as OUT, together with any outgoing edges from OUT nodes, and retain those
nodes that are labelled as IN. What is left is a neat visual depiction of an accepted
position as shown in Fig. 1. Visualisations of the AA framework as a graph
support the value of transparency, offering a representation of the argumentation
flow that is often easily digestible for humans.



12 L. Methnani et al.

3 Related Work

In his work summarising XAI insights from the social sciences, Miller [24]
describes some requirements for the selection of the “best” explanation in AI.
From a social sciences perspective, the question asked by the explainee is of
utmost importance, and often driven by anomalies or surprising observations.
As users interact with system, they learn and generalise, adjusting their need
for certain explanations along the way. This motivates the need for selection
mechanisms that take into account both the question asked by the explainee,
and the mental model they have of the system. Further motivation is given for
maintaining a model of both the explainee and the explainer, with early work in
XAI such as Cawsey’s EDGE system [8] or Weiner’s BLAH system [35] that both
promote explanations that are oriented towards the users and what they seem
to know about the system. The focus, however, is consistently on selecting and
evaluating individual explanations rather than motivating the existing methods
that generate them, which is also of significant importance.

Considering the time and expertise currently required to select an XAI
method that generates relevant explanations, motivation exists to automate the
whole XAI pipeline, as in Automated Machine Learning (AutoML). The objec-
tive with AutoML is to automate the ML pipeline end to end as a means of
enabling domain experts to create ML solutions without much of the techni-
cal pre-requisites [18]. In their work, Cugny et al. [9] propose a framework for
AutoXAI, also motivated by the need for contextualising XAI solutions and
relieving the data scientist of the tedious tasks required to do so. There are
three main components in their framework: (1) the user who offers elements
of the context, (2) the context adapter that selects a subset of explainers that
match these specified needs, and (3) a hyper parameter optimiser that performs
a search over hyperparameters to reduce loss based on explanation evaluation
function aggregates. As with most XAI techniques, this framework is also ori-
ented towards the practitioner—namely data scientists—as its primary user. In
our work, we motivate consideration for a wider scope that includes expert and
non-expert users alike. Moreover, the authors raise ethical issues that may follow
from the explanation selection, namely the bias that may arise from preference
configurations within their framework. Biases that may arise from stakeholder
preferences is one consideration that encourages our choice of argumentation and
reasoning; they support making the facts, opinions, and beliefs that drive such
preferences explicit and clear.

The Gorgias Argumentation Framework is a structured argumentation frame-
work that accounts for beliefs and how they shape the conditions that lead
to a given position. Gorgias allows for the generation of priority arguments,
where preference or relative strength between arguments can be expressed. These
assigned strengths then determine their attack or defense influence over other
arguments. In their work, Kakas et al. explore Gorgias output in relation to XAI
and the need for “socially useful” explanations, arguing that the properties such
as being (1) attributive in the rules of an argument and (2) contrastive in the
set of preferences presented are supported by argumentation frameworks such
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as Gorgias [32]. In their work developing Visual Gorgias, Vassiliades et al. [34]
describe how an added visualisation layer that offers graphical representations
can support the user’s understanding of the argumentation framework and the
decisions that were made.

4 Modular Multi-explainer and Reasoning System

In this section, we describe our proposed solution—a modular explanation selec-
tion system for determining context-appropriate explanations. We consider con-
textual factors such as the stakeholder receiving the explanation, timeliness of
the explanation, the model that needs to be explained, the application domain,
etc. A high-level overview of the system is offered by the illustration in Fig. 3.
One critical component is a given mental model of the relevant stakeholder.
Here, we will assume that the mental model is already defined and provided. It
captures a representation of the stakeholder’s cognitive state with respect to the
context including elements such as values and requirements. This representation
contributes towards a Knowledge Base (KB) of facts and beliefs that the rea-
soner component can access to make inferences over an appropriate explanation
offered by multiple explainers. We consider multiple explanation techniques to
comprise of the multi-explainer component of this system. Each explainer has
characteristics that support particular values, requirements, and other knowl-
edge characteristics of the users that employ them. Thus, we can extend our KB
with facts about these explainers, and construct relations in the form of attacks
as captured by Dung’s AA framework. Our final component is ML system itself,
which can—in principle—be any dataset and model of the stakeholder’s choice.
In our system, we promote the selection of post-hoc and model-agnostic explain-
ers for the multi-explainer component, thus allowing for the desirable flexibility
of choosing any ML model to explain. End-to-end, we make available any sup-
porting premises—and inferences—that map stakeholder characteristics to those
of the explanation techniques to make the process not only transparent, but also
contestable. The latter refers to the property of providing information as to
why this was the best decision possible [1]. In our argumentation framework,
we demonstrate that we have selected the best possible explanation—given the
conditions presented to the system—through our attack system.

We see a system like this being utilised when companies are in need of a for-
mal and standardised approach to fulfilling the explainability demands of their
stakeholders based on regulatory and other policy requirements. While a system
like this is by no means intended to replace the interview and participatory design
processes that an organisation is expected to engage in with their stakeholders,
it offers a means of concretising those findings and making any biases explicit.
In the context of this paper, the decision problem we are concerned with is that
of selecting an explanation technique when an explanation is demanded. Cap-
turing and presenting various assumptions about the context to the stakeholder
supports their understanding of organisational decision making around AI. It
can also support organisations in their due diligence whenever their AI ecosys-
tem is audited. Presenting reasoning around explainability becomes increasingly
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important when you consider the fact that AI explanations can be ‘weaponised.’
It is possible, for example, to induce over-confidence in an AI system by gener-
ating explanation that are misleading [14,26,31]. We propose our framework as
a means of designing for accountability and avoiding “ethics washing.”

4.1 Use Case: Predicting Current Housing Prices

To best explain our work, we offer an example use case and describe a modular
Multi-explainer and Reasoning System (MxRS) component by component. Con-
sider the scenario of buying and selling houses. A real-estate agency has deployed
an AI system trained on historical housing data of the region. The agency is
performing evaluations for a customer interesting in selling their house. This
customer is also seeking an explanation for the price point offered by the pre-
diction system. The agency has an in-house team of AI architects who design,
develop, and maintain their AI ecosystem together with a suite of XAI tech-
niques. Now, the agency must make a decision on how to explain the outcome
to the customer; a choice that is contextual and stakeholder dependent. For the
purposes of our use case, we define an instance of a system using our proposed
architecture component by component. We use this theoretical implementation
to ground our discussion throughout.

The Stakeholder Mental Model(s) and Building Context. Collecting the
knowledge required to construct a mental model can be achieved through many
means; for instance, using sensors, direct user input, or a mix of the two. The
HCXAI community advocates for conversational explainable AI, where users can
engage in conversation when seeking explanations from a given AI system [21,24].
Neurosymbolic techniques can therefore be employed to extract symbolic rules
from the user’s natural language prompts if such a dialogue were to be devel-
oped as the interface between our proposed system and the user. The extracted
symbolic knowledge can then be used by the MxRS to construct a mental model
for the stakeholders and populate the knowledge base for the system to reason
over an appropriate explanation technique to employ.

The appropriate solution will depend on (at least) both stakeholders pre-
sented in our use case. Facts and beliefs about each side should be considered
for the context at hand. Let us take the first stakeholder to be the real-estate
agency that has deployed the housing price prediction model and the second to
be the customer interested in selling their house; the former must present the
latter with an explanation as to why the selling price is not as high as they had
expected.

Consider that the real-estate agency has two XAI techniques at their dis-
posal when explaining their model outcomes. The first one is LIME, a local
interpretability technique that is considered to be human-friendly and intuitive
to decipher, the second is counterfactual, describing how the variables need to
be adjusted to obtain a different outcome. For this scenario, we assume that
both these methods are valid. The real estate agency expresses a preference
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for computationally cheap methods over those that generate short explanations,
which are considered more human-friendly. They also express a preference for
using more trustworthy techniques over those that generate short explanation
due to the observation that their customers have expressed doubt towards their
services; they want to boost the customer’s trust. They want to demonstrate to
their trustworthiness to the customer by being transparent about their methods;
those that are susceptible to adversarial attack is a stronger argument against
trustworthiness than instability.

To build the argumentation framework around this decision problem of select-
ing a context-appropriate explainer, we must first identify the knowledge related
to this selection process. In the housing prices scenario, we consider the require-
ments from the two stakeholders, the real estate agency and the customer, which
include:

– The real estate agency has preference for computationally cheap methods.
– The customer puts high values on the trustworthiness of an explanation.
– The customer requires a ‘human-friendly’ explanation.

Let us also list some contextual facts and some beliefs about the context in
general:

– It has been shown that LIME is susceptible to adversarial attack that can
intentionally mislead explainees by hiding biases [31].

– An explanation is human-friendly’ if it is short (presenting only one or two
causes) and contrastive, i.e., it compares the current context with some con-
text in which the event would not have happened. [24,26]

– Simpler explanations that boost the likelihood of the explainee understanding
and accepting an explanation may better support trust than offering a more
likely explanation. [24]

Contextual Information About the ML System. In our MxRS, the ML
component is more than just an ML Model and its output; multiple explainers
would in fact require access to the dataset, as depicted by Fig. 3. Explainers may,
for example, generate alternative outputs based on permutation or in order to
select samples as example-based explanations. So we define our ML system com-
ponent to consist of metadata, data, and the trained ML model. Metadata cap-
ture information about the dataset that may be relevant to the context and used
to populate the KB. This can include information extracted from a datasheet,
describing the dataset [16], or a model card reporting on the trained model [25].

In our use case, the dataset is historical housing data of the region within
which the stakeholder is looking to buy and sell. Making predictions for house
prices is considered a regression problem solved by models such as eXtreme
Gradient Boosting (XGBoost) [5]. XGBoost is a tree-based ensemble learning
method that has high predicting power for regression problems.
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The Multi-Explainer Component. The multi-explainer component consists
of at least two explainer sub-components. Each explainer provides its own means
of extracting or producing explanations from the ML model. For example, one
explainer may be providing local explanations by using the Local Interpretable
Model-agnostic Explanations (LIME) [30] method and another may offer coun-
terfactual explanations using Diverse Counterfactual Example (DiCE) [27].

In principle, a multi-explainer component can comprise multiple instances of
the same explanation technique, only with different parameter settings. Then,
the explanations offered will be intrinsic and/or model-specific, therefore requir-
ing modifications and substitutions within the ML System module of our archi-
tecture. Such an approach is outside the scope of this paper but relevant to
consider for future iterations.

Each explainer also contains a list of arguments for why its produced expla-
nations are the best for each explanation request. It offers those arguments to
the reasoner component. We would also like to highlight the ability to take into
consideration various characteristic of explanation techniques themselves within
explainer arguments. Such characteristics of interest may include the computa-
tional costs of generating an explanation using any given method, the environ-
mental impact of said computation, or even access to interpretable visualisations
for example. These pros and cons may be mapped to stakeholder requirements
and contribute to the argumentation computation.

The Reasoner Component. The reasoner component is made up of a KB and
an argumentation solver. The KB is populated with relevant facts and beliefs
offered by the previously described multi-explainer component, as well as those
offered by the mental model of the stakeholder, to be described in the upcom-
ing subsection. The argumentation solver computes admissible positions given
the arguments posed. Our working example uses notation from both Dung’s
Abstract Argumentation Framework [11] and Gorgias Preference-based Argu-
mentation Framework [19]; introducing preferences offers a value-based approach
that is appropriate in various applications of our systems due to emphasis on
human-centricity when solving for context-appropriate explanations. If the con-
text requires consistency and involves arguments constructed from imperfect
information, then admissibility-based semantics are desirable [4]. In principle,
however, an instance of our proposed system can be implemented with any argu-
mentation semantics; while the outcome of the system will be determined by it,
transparency will illuminate biases in the designer’s choice.

Using syntax from the Gorgias framework, we can represent knowledge of
rules, conflicts, and preferences using predicate symbols. Labelled rules are con-
structed using the form rule(Label,Head,Body). Here, the Head is a literal, the
Body is a list of literals, and the Label is a compound term made up of the rule’s
name along with selected variables from the Head and Body [29]. To represent
negative literals, Gorgias uses the form neg(L). An attack is characterised both
by the complements and preferences defined in the framework. That is, argument
a is said to attack argument b if they have complementary conclusions, and argu-
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ment a contains rules of higher or equal priority to argument b. To follow, we put
the scenario described in our use case above into Gorgias syntax to construct
the argumentation framework and solve for the queries neg(use(X=lime)) and
use(X=counterfactual) respectively.

%% Arguments , where X i s an exp l a i n e r
r u l e ( r1 (X) , use (X) , [ i s s p a r s e (X) ] ) .
r u l e ( r2 (X) , neg ( use (X) ) , [ neg ( i s c omputa t i ona l l y cheap (X)

) ] ) .
r u l e ( r3 (X) , use (X) , [ i s t r u s two r thy (X) ] ) .
r u l e ( r4 (X) , i s t r u s two r thy (X) , [ i s s t a b l e (X) ] .
r u l e ( r5 (X) , neg ( i s t r u s two r thy (X) ) , [

s u s c e p t i b l e t o a d v e r s a r i a l a t t a c k (X) ] .

%% Pre f e r ence Rules
r u l e ( pr1 (X) , p r e f e r ( r2 (X) , r1 (X) ) , [ ] ) . % p r e f e r

computat ional c o s t s shor t exp lanat i ons .
r u l e ( pr2 (X) , p r e f e r ( r3 (X) , r2 (X) ) , [ ] ) . % p r e f e r

t ru s two r th in e s s over computat ional c o s t s .
r u l e ( pr3 (X) , p r e f e r ( r5 (X) , r4 (X) ) , [ ] ) . % s u s c e p t i b i l i t y

to adv e r s a r i a l at tack i s s t r onge r argument than
s t a b i l i t y .

%% Facts / B e l i e f s
r u l e ( f1 , i s s p a r s e (X = coun t e r f a c tua l ) , [ ] ) .
r u l e ( f2 , i s s p a r s e (X = lime ) , [ ] ) .
r u l e ( f3 , i s c omputa t i ona l l y cheap (X = lime ) , [ ] ) .
r u l e ( f4 , neg ( i s c omputa t i ona l l y cheap (X = coun t e r f a c tua l )

) , [ ] ) .
r u l e ( f5 , s u s c e p t i b l e t o a d v e r s a r i a l a t t a c k (X = lime ) , [ ] )

.
r u l e ( f6 , neg ( i s s t a b l e (X = lime ) ) , [ ] ) .

The set of arguments, presented as rules r1 through to r5, together with the
preference rules pr1 through to pr3, already encapsulate bias in the designer’s
choice and presenting these rules and reasoning steps to any stakeholder (cus-
tomers, auditors, system engineers, etc.) will make the designer’s assumptions
clear. Starting with r1, we see that the agency has a rule to use methods that
produce short explanations, which is characterised by sparsity. If it is not com-
putationally cheap, r2 says not to use the method. Using trustworthy methods
is depicted by r3. What constitutes a trustworthy method is determined by the
stability of the method, as described by r4, while r5 states that a method’s
trustworthiness is compromised if it is susceptible to adversarial attack. We can
also see that the agency has a preference to save on computational costs over
generating short explanations, as described by pr1. More important still is the
preference for trustworthiness; pr2 says it is a stronger argument over compu-
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tational cost. With regards to trustworthiness, pr3 states that susceptibility to
adversarial attack is a stronger argument against it than stability is for it. Then,
we can populate the knowledge base with facts and/or beliefs about the available
explainers, for instance f5, that states LIME is susceptible to adversarial attack.

Fig. 1. An example solution using labellings, where the argument not to use LIME
holds in the described argumentation framework. The example is further described in
Sect. 4.1.

In Fig. 1, the KB consists of an argument set Ar, binary relations R repre-
senting attacks, and preferences Pr that depict priority of some arguments over
others. The example depicted in the figure solves for the argument against using
LIME as an explainer in the described context; i.e. the framework is queried to see
if r2(X=lime): neg(use(X=lime)) holds. The arguments and relations generated
using this query are Ar = {r1, r2, r3, r5} and R = {(r1, r2), (r3, r2), (r5, r3)}.
The argument r4 is not generated because it does not hold that LIME is stable.
The preferences are Pr = {r2 � r1, r3 � r2, r5 � r4}. Graphically, we can
represent these arguments as nodes and the attacks as directed edges. Priority
arguments are handled by countering an incident attack. So, in step 2, we can
flip the edge in the graph and update the attack relations to apply this priority
preference. Recall from Sect. 2 that an argument without any effective attacks is
considered IN (that is, any attack is labelled OUT). Thus, in step 3, the argument
r5 can be trivially marked as IN (coloured green in Fig. 1) and any argument that
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r5 attacks will be marked as OUT (coloured red in Fig. 1). Uncoloured nodes are
UNDEC. We can disregard attacks coming from OUT arguments, as indicated by
the dotted edges in Fig. 1. Removing those outgoing edges in step 4 allows us to
consider r2 an argument that is IN—it considered defended by r5. It follows that
any argument attacked by r2 is OUT. Finally, we can see that only two arguments
remain, concluding an admissible and accepted position {r2, r5}, which contains
the argument r2(X=lime): neg(use(X=lime)), that is, not to use LIME in the given
context, holds.

Fig. 2. An example solution using laballeings, where the argument to use counterfac-
tual explanations holds in the described argumentation framework. The example is
further described in Sect. 4.1.

In Fig. 2, we demonstrate the same process, but with the query
use(X=counterfactual), showing that it also holds. The agency may therefore
select a counterfactual method to generate explanations for the explainee in
this given context. The agency may apply DiCE, for example, and present the
customer with a diverse set of feature-perturbed instances of their house that
would have received the price they were expecting. In natural language, such
an explanation would be interpreted as follows, “you would have received the
price range you are looking for if your house had an additional balcony.” Such
an explanation shows how the number of balconies influences housing prices in
the given geographic location, for example, and can support the explainee in
understanding what renovations may—or may not—support them in achieving
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their target price. This explanation is more context-appropriate considering the
explainee’s question of why their expectations on housing prices were not met by
the agency’s evaluation; LIME may have offered an explanation that depicts the
number of balconies as an influential factor on price, but would not have offered
the additional information required to satisfy the explainee’s question about a
specific target price bracket.

It may be that an empty set E = ∅ is returned by the solver. In such a case, we
propose that the system always present a default explanation as a fallback. Here,
we are of the position that some explanation is better than none. We prioritise
both ensuring an explanation is always available regardless of the context, and
that the system is transparent at all times, even when only a trivial solution exists.
The opportunity to offer a log showing the reasoning steps that result in E = ∅
also exists here, allowing users to better understand where conflicts in arguments
arise and how that might impact their understanding of the system as a whole.

Notice that the stakeholder’s perception of the system will not only be influ-
enced by the explanations presented, but also by the transparency by which an
explanation is selected. By offering the stakeholder insights through the provi-
sion of all reasoning steps for explanation selection, the system is also influencing
their understanding of an explanation context-dependency, thereby influencing
the state of the stakeholder’s mental model. Therefore, interaction with both
the ML model and our explanation selection system as a whole will result in the
need for continuous updates to the mental model of the stakeholder, as depicted
in our high-level diagram in Fig. 3. At this stage, considerations for how such
updates can be done have not been made, but doing so through interactivity and
accounting for user feedback is one way we propose this work to move forward.

Fig. 3. A high-level illustration of our proposed explanation selection system compris-
ing of: (a) the mental model; (b) the Reasoner component that consists of a Argu-
mentation Solver and a Knowledge Base; (c) the multi-explainer component consisting
of many explainers; and (d) the Machine Learning system consisting of any available
meta-data, a dataset, and the trained model itself that is to be explained (black-box).
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5 Conclusion and Future Work

In selecting a suitable explainer, there is no one-size-fits-all solution. There are
increasingly many methods to select from when it comes to explaining AI out-
comes. Some are more appropriate than others given the context, which includes
the AI system(s) being used, the mental model of the explainee and the questions
they ask, and potentially also legal or sectorial requirements on what are suit-
able explanations. Still, the path to selecting context-appropriate solutions is not
always conflict-free considering the facts and beliefs that give shape to the con-
text. Using argumentation to reason over available explanation techniques and
select that which will generate a context-appropriate explanation is therefore
desirable. Moreover, making those reasoning steps accessible and readily avail-
able for the target stakeholder offers transparency into explanation selection,
making XAI applications themselves less of an opaque practice.

Beyond selecting explanations, evaluating the quality of the selection and
the explanation requires grounding in studies with human subjects. Therefore,
we propose the development of a Minimum Viable Product (MVP) and a user
study as the necessary next steps to determining the effectiveness of our approach
in collaboration with target stakeholders. Future work includes such an MVP
implementation, along with an investigation of how neurosymbolic AI techniques
can be utilised for extracting additional contextual knowledge and beliefs as
a supplement to traditional methods of participatory design for constructing
stakeholder mental models.

Ethical Statement. The authors have no competing interests, research involving

human participants and/or animals, or issues of informed consent to disclose.
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Abstract. One of the most widely adopted approaches for eXplainable
Artificial Intelligence (XAI) involves employing of Shapley values (SVs)
to determine the relative importance of input features. While based on
a solid mathematical foundation derived from cooperative game theory,
SVs have a significant drawback: high computational cost. Calculating
the exact SV is an NP-hard problem, necessitating the use of approxi-
mations, particularly when dealing with more than twenty features. On
the other hand, determining SVs for all features is seldom necessary
in practice; users are primarily interested in the most important ones
only. This paper introduces the Economic Hierarchical Shapley values
(ecoShap) method for calculating SVs for the most crucial features only,
with reduced computational cost. EcoShap iteratively expands disjoint
groups of features in a tree-like manner, avoiding the expensive com-
putations for the majority of less important features. Our experimental
results across eight datasets demonstrate that the proposed technique
efficiently identifies top features; at a 50% reduction in computational
costs, it can determine between three and seven of the most important
features.

Keywords: Feature Importance · Shapley Value · Explainable
Artificial Intelligence (XAI)

1 Introduction

In recent years, researchers are increasingly focusing on explaining machine
learning models due to their ever-growing practical applications in industry,
business, society, healthcare, and justice. Especially in safety-critical systems, it
is essential to be able to interpret the output of a prediction model correctly. This
builds trust among users, allows humans to understand the machine’s decision-
making process, and provides insight into the model’s potential enhancements
[1–3]. Among many diverse approaches to XAI, including feature importance,
prototype explanations, rule-based systems, counterfactual analysis, and model
distillation [4–6], explanations based on feature importance are arguably the
most popular.
c© The Author(s) 2024
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It is so because feature importance provides a straightforward and intuitive
understanding and enables a deeper comprehension of the relationship between
input features and prediction targets. This approach can increase transparency
and build trust in the model by highlighting the most important features, espe-
cially for users without a technical background. It can also help data scientists
identify and revise biased, irrelevant, or redundant features, improving model
accuracy and reducing overfitting. Finally, only with humans understanding how
and why ML made its decisions can AI provide knowledge discovery through
actionable and robust insights exploiting super-human performance achievable
in some tasks. Generally, feature importance scores are used to assess the influ-
ence each input feature has on a particular model predicting a specific variable.
The fact that they are often easier to understand than other XAI techniques
makes them a popular choice for many users [7–9].

Among the different approaches to feature importance, those based on coop-
erative game theory (CGT) have gained recognition in recent years. In contrast
to other approaches, CGT concepts are axiomatically motivated. An example
of this type of solution is the Shapley value (SV), built on a very strong theo-
retical foundation and characterized by fairness, symmetry, and efficiency [10].
However, computing the SV is NP-hard; even with significant progress related
to calculating approximate Shapley values [11], the computational complexity
still limits potential usage areas [12].

In this paper, we propose a method to calculate a limited number of the
highest Shapley values, instead of all of them, in significantly reduced time. The
solution builds on a recent idea introduced by [13], where SVs are calculated for
a group of features instead of one feature at a time. We exploit the (typically
assumed to hold) superadditivity property and the lower computational cost
associated with calculating SVs for groups of features at once. This way, our
approach allows calculating SVs for the most important features at a fraction of
the cost (across eight popular ML datasets, we can always find the single most
important feature in 30% of the calculations; and in half of the time, we can
compute from three to seven highest ranked features).

The idea is motivated by the notion that, in most applications, only a select
few of the most important features warrant in-depth analysis; the SVs for all the
others are of little value. The primary goal for the user is to evaluate the impact a
specific input feature has on predicting the target variable; thus, the explanations
should highlight critical features and facilitate relative comparisons among them.
SVs for low-importance features are rarely needed. In practice, simply not being
among the top ones conveys sufficient information. Let us consider the three
specific examples of uses of explanations mentioned earlier.

First, XAI increases transparency and fosters trust in the model. This is typ-
ically achieved by comparing the user’s (human expert’s) expectations against
the ML model’s internal mechanisms. Trust is undermined when the model disre-
gards features deemed important or assign considerable weight to features known
to be irrelevant. Clearly, both of these scenarios can be identified based on SVs
for the most important features. While a user may have intuitions concerning
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the relative significance of key features (e.g., that the top feature should be at
least twice as important as the second one), it is difficult to envision similar phe-
nomena for the lowest-ranked features. The second use of XAI involves model
debugging and enhancement. Virtually all actions in this context can be carried
out based on SVs for the top features as well. For instance, by dropping irrel-
evant features, a model can be simplified and made computationally cheaper –
but precise SVs are not needed, only information regarding which features fall
outside of the retained range. Another enhancement technique entails increasing
the quality of key features, by allocating additional preprocessing and clean-
ing efforts where they yield the most benefit – on the highest-ranked features.
Finally, knowledge creation or discovery of insights is, essentially, the opposite of
trust building. It relies on finding discrepancies between the model’s operation
and expert understanding. Specifically, in cases where the model outperforms
the human, these discrepancies are discovery opportunities. Both unexpectedly
high-importance features and those with unexpectedly low importance are valu-
able in this context – and both can be efficiently detected using ecoShap.

The remainder of the paper is organized as follows. In Sect. 2, we first present
the background of this work in terms of Shapley values in the ML setting, the
assumptions made, and the proposed method. In Sect. 3, we cover the experimen-
tal setting and dataset that was used. In Sect. 4, we present some computational
results of the experiments and finish the paper with some conclusions and future
works.

2 Methodology

2.1 Background

Lloyd Shapley introduced one of the most influential solution concepts in cooper-
ative games, now referred to as the Shapley value [14]. When a group of players
agrees to cooperate, the SV helps determine a fair payoff for each individual,
considering that each player may have contributed to varying extents.

Although extensively studied from a theoretical standpoint, calculating the
SV is an NP-hard problem [15]. Due to its strong theoretical properties, the SV
has emerged as a favored explanation method for black-box models. Considerable
efforts have been dedicated to approximate the SVs in cases where exact solutions
are impractical. Nevertheless, even with those approximations, employing SVs
for larger datasets continues to pose significant computational challenges.

Shapley Values. In a cooperative game, SVs are formally defined as a fair way
to distribute payoffs to players according to their marginal contributions. The
Shapley value φSh

i for player i is calculated as follows:

φSh
i (v) =

∑

S⊆N\{i}

|S|! (|N | − |S| − 1
)
!

|N |!
(
v
(
S ∪ {i}) − v(S)

)
, (1)
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where N is a set of all players, S is a partial coalition, and v(S) is the payoff
(sometimes referred to as value or worth) created by coalition S ⊆ N (so-called
“characteristic function”). This formula computes the average marginal contri-
bution of player i over all possible orderings of the players.

In recent years, SVs have been widely adopted in various machine learning
settings, including explainable machine learning, feature selection, data valua-
tion, multi-agent reinforcement learning, and ensemble model evaluation, all of
which have specific cooperative game formulations, see for example [16,17]. In
this paper, we are particularly interested in using SVs to find the most important
features in supervised machine learning problems, so we formulate cooperative
games based on that setting. In principle, though, the core idea of the proposed
approach could be extended to most, if not all, other formulations as well.

Let D =
{(

xi , yi
) |i = 1 : M

}
be a dataset, where the target variable y can be

either categorical or continuous for classification or regression, respectively. Each
instance xi ∈ Rn is described by n features F = [f1, · · · , fn], and A : Rn → y
is a black box model to predict the outputs.

Let v(S) = g(yi, ŷi), where g(·) is the goodness of fit function, yi is the
ground truth and ŷi = AS(xi) is the target predicted by AS , namely the model
trained on a subset of features S ⊆ F . The φSh

i is SV of a single feature i,
calculated according to Eq. 1. Then, φSh

G is SV of a group of features G, where
G ⊆ F . To calculate φSh

G , we consider all features in G as a single unit:

φSh
G (v) =

∑

S⊆F\G

|S|! (|F | − |S| − |G|)!
(|F | − |G|)!

(
v
(
S ∪ G

) − v(S)
)
. (2)

As can be seen from Eq. 2, calculating φSh
G for |G| � 1 is significantly faster

than φSh
i from Eq. 1. Since coalitions are elements of the power set of N \ {G},

the power set of remaining players would therefore have much fewer elements
when calculating the SV of a group than a single feature. The larger the group of
players G is, the fewer elements in the power set and the fewer model evaluations
are required according to Eq. 2.

2.2 EcoShap Assumptions

Intuitively, the Shapley value of a feature represents the extent of the contri-
bution made by that feature to the machine learning model. SV for a group of
features captures the combined contribution of all these features together. As a
result, it is reasonable to expect that the SV for a set of features will be at least
as high as the individual SVs of each of those features.

Incorporating additional features does not diminish the performance of an
optimal machine learning model. An ideal model should be able to discern fea-
tures that negatively affect the result and disregard them. In practice, of course,
less robust machine learning algorithms fall prey to spurious features and overfit.
However, with a sufficiently powerful model, one can expect that the introduc-
tion of more features will either cause the SV of the group to increase or maintain
its current level.
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Algorithm 1. EcoShap Algorithm
Require:

F - list of all features
K - the number of most important features wants to find

Ensure:
Top features - The top K most important features

1: Top features ← []
2: G∗ ← [F ]
3: G ← [G∗]
4: countk ← 0
5: while countk < K do
6: if len(G∗) == 1 then
7: Top features[countk] ← G∗

8: countk+ = 1
9: else

10: G1, G2 ← Divide(G∗)
11: Calculate φSh

G1 , φSh
G2

12: G.add(G1)
13: G.add(G2)
14: end if
15: G.remove(G∗)
16: G∗ ← The member of G with the highest SV

17: end while
18: Return Top features

This corresponds to an assumption of the superadditive characteristic func-
tion. Formally, if S and T are disjoint coalitions players (S ∩ T = ∅), then

v(G1 ∪ G2) ≥ v(G1) + v(G2). (3)

It means the value of two disjoint coalitions working together is at least as
big as when they work separately. Of course, in game theory, superadditivity is
not required for many coalition games; however, it seems natural for the machine
learning formulation. From the above directly follows the following constraint:

v(G) ≥ max
fi∈G

v(fi). (4)

Thus, if we calculate SV for a group of features G, and it is lower than some
“threshold of interest”, there is no need to calculate individual SVs for any of
the fi ∈ G since no feature in that group can be “good enough”.

2.3 EcoShap Algorithm

Our proposed approach follows the binary search tree idea. First, we intuitively
describe how to find the single most important feature. We then generalize the
approach to more features in ecoShap Algorithm 1.
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In the first step, the set of all features F is randomly split into two disjoint
subsets of equal sizes, G1 and G2. Given that we can identify which of these two
subsets contains the most important feature f∗, then – by ignoring the other
subset – we would be able to find f∗, recursively, in log2|F | steps by splitting
one of the groups until we reach a leaf, i.e., a group comprising just one feature.

In the general case, of course, it is not possible to (efficiently) determine
that with absolute certainty. However, it is easy to determine which branch is
more likely to contain the most important feature(s) based on the SV of each
group. As mentioned in Sect. 2.2, a group has a value greater than or equal to
the maximum value of the features belonging to that group. Thus, we calculate
SV for each of the two groups. Let us assume that the first subgroup has value
φSh
G1

and the second has value φSh
G2

, and without loss of generality φSh
G1

< φSh
G2

.
We can then suppose that G2 contains f∗ and select that one to split first.

Nevertheless, we store G1 in a priority queue called G, in case we need to revisit
it later. Generally, we expect that f∗ belongs to the group with the highest SV
among all the already evaluated groups. We call it G∗, and in each step, G∗ will
split into two disjoint groups.

Continuing our example, if at some point we reach a state where φSh
G1

is the
largest SV, we will “backtrack” and split it as well. Since there is no upper
bound on the SV of a group, it is conceivable that a number of individually
weak features combine into a powerful impact on the model. While somewhat
harmful to the computational performance of our algorithm, this backtracking
procedure guarantees such phenomena do not affect the correctness – and they
happen relatively rarely in practice, according to the experimental evaluation.

We repeat such splitting of G∗ until we find the single feature fi. As long as fi
has the highest value among all the unexpanded nodes in the current tree (please
note that we do not need to evaluate this over all the leaves of the fully-expanded
tree), we can be sure that fi has a higher SV than the features belonging to the
other leaves. Therefore, it is the most important feature, i.e., fi = f∗. For clarity,
this example is visualized in Fig. 1.

fi ≡ f∗, if ∀G∈G φSh
fi > φSh

G . (5)

After finding the single feature f∗ with the highest Shapley value φSh
∗ , we can

identify the next-in-line G∗ on the remainder of the tree. This is the group that
should be expanded next. As before, while there is no guarantee that it contains
the second-best feature, we also cannot exclude that possibility. And whenever
we find a single feature with the second-highest value among all leaves, we can
be sure that it is the second-important feature.

Overall, whenever we find a single feature with a higher value than all the
remaining groups within the G at any point in the search, we can be sure that
this feature is more important than all the “yet unexplored” features, allowing
us to efficiently calculate an arbitrary number of SVs.
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Fig. 1. A raw example of using ecoShap to find the most important feature(f6) among
the six features.

3 Experiments

3.1 Datasets

We used eight well-known machine learning datasets of moderate size for the
experiments. Four variants are very similar to each other, corresponding to data
of Wave Energy Converters from four different cities. This allows us to compare
the behavior of ecoShap on datasets with consistent characteristics. Note that
we remove all categorical features from all datasets to avoid the arbitrary choice
of encoding. An overview of the datasets used can be found in Table 1.

Table 1. Summary of datasets

Datasets Abbreviation #features #Instances

House Pricea HP 36 1460

Wave Energy Converters from Sydneyb [18] WEC A 48 72000

Wave Energy Converters from Adelaideb [18] WEC P 48 72000

Wave Energy Converters from Perthb [18] WEC S 48 72000

Wave Energy Converters from Tasmaniab [18] WEC T 48 72000

Online News Popularityb [19] ONP 59 39797

Superconductivity Datab [20] SC 81 21263

Year Prediction on MSDb [18] MSD 90 515345
a https://www.kaggle.com/
b https://archive.ics.uci.edu/ml/index.php

We intentionally selected relatively small datasets for the experimental eval-
uation to more clearly illustrate the behavior near the budget threshold. In prac-
tice, ecoShap is especially well-suited for datasets with hundreds or thousands
of features, where “classical” Shapley approaches are infeasible. More formally,
the complexity of ecoShap grows logarithmically with the number of features,
whereas existing methods require a linear number of SV computations.

https://www.kaggle.com/
https://archive.ics.uci.edu/ml/index.php
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3.2 Baseline Shapley Value

All experiments were conducted using our custom Python1 implementation of
the Monte Carlo permutation method (MCshap) to approximate SVs. The imple-
mentation permits the approximation of the SV for either a single feature or a
group of features, utilizing the same core algorithm. Given that the concept of
calculating SVs for groups of features is relatively novel, we are not aware of any
existing implementation that offers such versatility.

The MCshap method involves randomly permuting the feature values based
on a subset of the training set, known as the “background,” and computing
the difference in model predictions with and without the feature under evalua-
tion. As ML models are trained with all features, directly excluding a feature
during prediction is impossible. The permutation simulates such exclusion by
replacing actual values with random values from the background samples. It
effectively disrupts any existing meaningful patterns while preserving the struc-
ture of the data. The global SV for any feature is determined by repeating the
above procedure for multiple test instances and calculating the mean absolute
value. Consequently, the SV depends not only on the feature itself, but also on
the test and background instances used in the computations.

3.3 Experimental Setup

To assess the global feature importance, ecoShap requires a trained model, a test
set, and background data. The datasets have been randomly divided into training
(75%) and testing (25%) sets, except for the MSD dataset, in which the train
and test split is predefined. Two models, namely, Extreme Gradient Boosting
(XGBoost2) [21] and Random Forest Regression3) [22], have been trained on
each dataset. To estimate the global SV, we randomly select 100 data points as
the test set and 100 data points as the background from the test set and training
set, respectively.

We use ecoShap and MCshap to find different numbers of important features,
repeating every experiment 50 times on each dataset. It is worth mentioning that
both models performed similarly, though, for brevity, only the result of XGB is
reported.

As mentioned in Sect. 2.1, calculating the SV is an NP-hard problem. Com-
puting the exact SV for real-world datasets, particularly those with more than
20–25 features, is infeasible [15], and the lack of ground truth presents a signifi-
cant challenge.

Therefore, we compare against the MCshap baseline to demonstrate that
the ecoShap method does not introduce significant additional errors, beyond
those inherent in the Monte Carlo approximation. We used MCshap 50 times to
approximate the SVs of each dataset and considered their average as an SV of
each feature. We refer to these values as close-to-ground-truth and use them to
evaluate the ecoShap.
1 https://www.python.org/.
2 https://github.com/dmlc/xgboost.
3 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomFores

tRegressor.html.

https://www.python.org/
https://github.com/dmlc/xgboost
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
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4 Results

In this section, we showcase the results of experiments that emphasize the advan-
tages of the ecoShap method. We start by illustrating the computational effi-
ciency of the ecoShap and explore how different dataset characteristics influence
its performance. Finally, we verify the precision of the ecoShap results by com-
paring them to the baseline MCshap method.

4.1 Measuring Computational Efficiency of EcoShap

The initial experiment aims to demonstrate the computational effectiveness of
the proposed ecoShap method in identifying the most important features. Specif-
ically, we investigate the relationship between the computational cost and the
number of highest-ranked features found. The findings for two representative
datasets (MSD and SC) are presented in Fig. 2, while comprehensive results for
all datasets can be found in Figs. 5 and 6.

The most straightforward way to compare the two methods is the number of
times they need to call the SV function. Clearly, MCshap needs to calculate SV
for all features and then sort them; thus, even to find the single most important
feature, MCshap must call the SV function as many times as there are features.
In contrast, ecoShap uses significantly fewer calls to identify the first feature, but
computing SV for additional features incurs an extra cost. The leftmost panels
of Fig. 2 illustrate (top one for MSD and bottom for SC datasets) the number
of times each method calls the SV function (y-axis) to find the required number
of important features (x-axis). The intersection of the blue line (corresponding
to ecoShap) with the horizontal red line (MCshap) represents the break-even
point for the proposed method, signifying that fewer function calls are required
to calculate SVs for that many top features.

It is worth noting, though, that the ecoShap method often considers a group
of features as a single entity for calculating SV; and somewhat counterintu-
itively, the computational cost for a group is smaller than for a single feature(see
Sect. 2.2). Consequently, considering both a group and a single feature as a
unit of computation underestimates the computational benefits of the ecoShap
method.

To achieve a fairer comparison, therefore, we examine the time required by
each method. A direct comparison of the time consumption reveals that the
advantage of the ecoShap approach over MCshap is even more pronounced. As
indicated in the middle panels of Fig. 2 (labeled b1 and b2), ecoShap discovers
even more features up to the intersection point, confirming that the number of
SV function calls is biased. However, measuring time directly introduces experi-
mental uncertainties, particularly in an environment with shared resources, and
creates undesired correlations with specific hardware, making future comparisons
more challenging.
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a1 b1 c1

a2 b2 c2

Fig. 2. Comparing MCshap (red line) and ecoShap (blue line) in terms of a) the num-
ber of calls to the SV function, b) computation time, and c) the number of samples
evaluated; per number of features to discover, for the MSD (top) and SC (bottom)
datasets. (Color figure online)

Consequently, as a final and most equitable comparison, we propose using
the total number of sample evaluations by the ML model across the whole SV
calculation process. Since estimating the SV for a group of features requires
fewer permutations and fewer sample evaluations than for a single feature, this
metric provides a more comprehensive and fair assessment. These findings are
shown in the far-right panels of Fig. 2 (labeled c1 and c2). When comparing
subfigures b1 against c1 and b2 against c2, the fidelity of the number of sample
evaluations is superior to the SV function calls and is more reliable than direct
time measurements.

4.2 EcoShap Performance on Budget

The first experiment focused on comparing the time efficiency of ecoShap and
MCshap using different evaluation metrics. In this section, we explore how many
top-ranked features ecoShap can calculate SVs for, while still conserving com-
putations in comparison to MCshap. To this end, we consider the MCshap com-
putational costs to be the “full budget.” Table 2 shows the number of features
that ecoShap can identify by allocating different percentages of the budget (from
10% to 100%) for each of the eight datasets.

Likewise, we are also interested in determining the amount of budget neces-
sary to identify various numbers of important features. Table 3 illustrates the
percentage of computations (MCshap full budget) required to find between one
and ten most important features for each of the eight datasets.
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Table 2. The average number of features found based on the budget percentage

Budget Percentage Dataset

HP WEC A WEC P WEC S WEC T ONP SC MSD

10% 0.18 0.0 0.0 0.0 0.0 0.12 1.18 0.42

20% 1.32 0.0 0.0 0.0 0.0 1.04 2.0 3.02

30% 2.18 0.22 0.38 0.18 0.22 2.16 2.6 4.32

40% 3.24 1.8 2.1 1.52 1.64 4.54 3.9 5.98

50% 4.44 3.44 4.3 3.08 3.74 7.1 5.64 6.02

60% 5.46 5.64 7.12 5.82 6.22 8.94 7.58 7.54

70% 6.68 8.14 10.24 9.14 8.96 11.86 11.98 11.4

80% 8.2 12.5 12.5 12.9 11.8 15.04 14.28 15.26

90% 10.7 15.76 15.4 15.22 14.76 18.88 17.06 18.52

100% 13.68 16.6 15.98 16.26 16.14 24.18 19.18 19.64

These experiments demonstrate that ecoShap can always identify the top
three most important features by using up to half of the budget, often much
less. In some instances, it can discover as many as seven of the most significant
features at half of the budget. These experiments demonstrate the computational
advantages of ecoShap in identifying essential features with a limited budget.

4.3 Dataset Characteristics

Interestingly, there is a noticeable variation in the results across different
datasets. This is evident even in the simplest scenario, where the objective is
to find the first most important feature. In some datasets, ecoShap can discover
the top feature by spending less than 10% of the budget, while in others, it
requires more than 35% of the budget.

This relation between each dataset’s features SV pattern and the budget used
by ecoShap can be explained based on the algorithm’s design. EchoShap can find
the most important feature faster when the SV of the first feature is significantly
higher than those of the remaining features. For instance, in the case of the SC
dataset, ecoShap identified the first important feature with as little as 5% of the
budget – because it has a notably higher SV than other features. The SV of the
second feature is roughly half that of the first one. In contrast, the SV of the
first sixteen significant features of the WEC T dataset are all very similar to
each other, and ecoShap expended more than 35% of the budget to identify the
first one.

Intuitively, the more similar the SVs are, the more budget ecoShap will need
to recognize the order of features. This phenomenon is a result of the ecoShap
algorithm, which partitions feature groups based on their SV values. When the
SV of the first important feature, f∗, is significantly higher than that of other
features, it strongly impacts the SV of its group. Thus, any group it is placed
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Table 3. The mean and (std) of the budget rate were used to find the first to the tenth
important features in eight datasets.

Top features Datasets

HP WEC A WEC P WEC S WEC T ONP SC MSD

Top 1 0.1139 0.3457 0.3466 0.3465 0.3676 0.1295 0.0566 0.1024

(0.0201) (0.0614) (0.0754) (0.0503) (0.0635) (0.0256) (0.0108) (0.0195)

Top 2 0.2098 0.4264 0.4033 0.4268 0.3792 0.27 0.1159 0.1519

(0.0291) (0.0702) (0.0708) (0.0684) (0.0628) (0.0474) (0.0178) (0.0213)

Top 3 0.3377 0.4292 0.4107 0.4479 0.4456 0.3334 0.288 0.1625

(0.0421) (0.0696) (0.073) (0.0702) (0.0754) (0.0484) (0.0366) (0.0232)

Top 4 0.4291 0.4717 0.4613 0.5716 0.4991 0.3504 0.3682 0.239

(0.0538) (0.0777) (0.0682) (0.0717) (0.0711) (0.0484) (0.0356) (0.0314)

Top 5 0.5101 0.5884 0.4972 0.5765 0.5163 0.3807 0.4477 0.3187

(0.0577) (0.0737) (0.0608) (0.0725) (0.0709) (0.0454) (0.0431) (0.0328)

Top 6 0.6744 0.6211 0.5147 0.5817 0.6019 0.4309 0.4823 0.3255

(0.0782) (0.0701) (0.0616) (0.074) (0.0783) (0.0495) (0.051) (0.0348)

Top 7 0.6981 0.6345 0.6079 0.5928 0.6249 0.4616 0.5659 0.5964

(0.0829) (0.0692) (0.0732) (0.0709) (0.0679) (0.0513) (0.0531) (0.0538)

Top 8 0.7192 0.6615 0.6298 0.6084 0.6315 0.5245 0.6132 0.6187

(0.0799) (0.0724) (0.069) (0.0665) (0.0673) (0.0593) (0.0483) (0.0551)

Top 9 0.874 0.7218 0.642 0.6957 0.6743 0.6102 0.6222 0.637

(0.0741) (0.0607) (0.0677) (0.0717) (0.0713) (0.0605) (0.0469) (0.0574)

Top 10 0.8852 0.7466 0.7005 0.7299 0.7774 0.6304 0.6553 0.658

(0.0801) (0.0576) (0.0712) (0.0702) (0.0763) (0.0602) (0.0529) (0.0535)

into becomes G∗ most of the time. As a result, the algorithm does not need to
evaluate any other groups and can always split the group containing f∗. On the
other hand, if multiple features share similar high SVs, ecoShap needs to analyze
several unwanted groups, and finding f∗ will require more SV calculations.

When considering more than just the top feature, the differences in slope
in Fig. 3 can be similarly explained. For example, in the MSD dataset, there is
a substantial increase in computational cost between the 5th and 6th features,
which is much larger than that between the 4th and 5th features. A comparison
with the corresponding SV plot (Fig. 4) reveals a more significant difference
between the SVs of the 6th and 7th features than that between the 6th and 5th
features.

4.4 Backtracking Cost

As discussed in Sect. 2.3, the proposed algorithm can backtrack when the wrong
branch is chosen. In this experiment, we investigate ecoShap’s backtrack ability.
For simplicity, we limit ourselves to the single most important feature. We first
compute the expected number of SV function calls required to identify the most
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Fig. 3. The percentage of the budget used to find the first to the tenth important
features in eight datasets. The red line indicates half of the budget. Each intersection
of the red line with the other lines shows how many features ecoShap found by spending
half of the budget across each dataset. (Color figure online)

significant feature, assuming the correct branch is always selected (i.e., an oracle
is used). In Table 4, we then compare this to the mean number of calls made by
ecoShap, for each dataset.

For example, the algorithm finds the first important feature of the HP dataset
by calling the SV function close to 12 times while the expected value is 10.44).
It shows that the algorithm almost always selects the branch containing the
most important feature for the split. Meanwhile, the true number of calls for the
WEC T dataset exceeds the expected value by a factor of three. This indicates
that the algorithm explored many incorrect branches before finding the first
feature. These results are consistent with earlier findings and supported by Fig. 4.

4.5 The Accuracy of the EcoShap

As the final step, we consider the accuracy of the proposed method. In principle,
given our assumptions, ecoShap should not introduce any error in the calcu-
lations. In practice, though, due to the stochastic nature of all the algorithms
involved, there is a possibility of errors accumulating in unfavorable ways. This
section aims to demonstrate that these effects are negligible.

Given that there is no definitive ground truth for the SVs, we compare
ecoShap results with their close-to-ground-truth (CtGT) MCshap counterparts
to demonstrate that our proposed method does not significantly deviate from its
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Table 4. Expected versus actual number of SV function calls.

Dataset #feature Expected value Mean number of calls

HP 36 10.44 11.52 ± 1.42

WEC A 48 11.33 37.92 ± 3.67

WEC P 48 11.34 38.76 ± 4.4

WEC S 48 11.35 38.4 ± 3.27

WEC T 48 11.36 39.76 ± 3.57

ONP 59 11.83 26.16 ± 2.94

SC 81 12.84 17.28 ± 1.64

MSD 90 13.16 35.04 ± 2.97

baseline in approximating SVs. We use the “features on the whole budget” (FoB)
metric, which refers to the most important features that ecoShap can identify
using the MCshap computational budget. As a measure of accuracy, we use the
sum of absolute errors (SAE) of the FoB features, defined as:

SAE =
∑

f∈FoB

|ecoShap(f) − CtGT (f)| (6)

Table 5. The mean and standard deviation of the SAE for each dataset.

Dataset #feature #FoB SAE

HP 36 14 0.0011 ± 0.0002

WEC A 48 17 0.0011 ± 0.0002

WEC P 48 16 0.0010 ± 0.0002

WEC S 48 16 0.0011 ± 0.0002

WEC T 48 16 0.0010 ± 0.0002

ONP 59 24 0.0005 ± 0.0000

SC 81 19 0.0019 ± 0.0003

MSD 90 20 0.0934 ± 0.0171

Table 5 presents the mean and standard deviation of the SAE for each
dataset, indicating that there is essentially no approximation error caused by
ecoShap. For example, in the HP dataset, the sum of errors for 14 features is
0.0011, which is quite negligible.
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Fig. 4. Barplots of the mean |SHAP values| of the first 20 important features for eight
datasets using the SHAP library
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Fig. 5. Comparing MCshap (red line) and ecoShap (blue line) in terms of the number
of calls to the SV function(left) and the number of samples evaluated(right); per the
number of features to discover for HP, MSD, ONP, and SC datasets, respectively. (Color
figure online)
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Fig. 6. Comparing MCshap (red line) and ecoShap (blue line) in terms of the number
of calls to the SV function(left) and the number of samples evaluated(right); per the
number of features to discover for WEC A, WEC P, WEC S, and WEC T datasets,
respectively. (Color figure online)
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5 Conclusion

In this paper, we introduced the Economic Hierarchical Shapley value (ecoShap)
method, which efficiently identifies the most important features and calculates
their Shapley values, with computational savings of up to 95%. By utilizing
group-wise efficient computation of Shapley values in the early stages of the
search process, ecoShap serves as a filter, bypassing the unnecessary calculation
of Shapley values for less important individual features.

Our method can be used based on the desired number of important features or
the computational budget. Experimental results indicate that ecoShap performs
much better in datasets whose features are well separated and feature importance
levels differ. Additionally, ecoShap has consistently identified between three and
seven most important features across all evaluated datasets while using less than
half of the available budget. To verify the accuracy of ecoShap, it was compared
with the close-to-ground-truth results obtained from a baseline, demonstrating
that there is no significant approximation error introduced.

It is worth noting that in the current version of ecoShap, features are ran-
domly split into groups. One idea for future work is to develop more effective
grouping approaches, for example, based on correlations, that will allow ecoShap
to avoid unnecessary divisions and perform an even smarter search.
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Abstract. In explainable artificial intelligence (XAI) research, the pre-
dominant focus has been on interpreting models for experts and prac-
titioners. Model agnostic and local explanation approaches are deemed
interpretable and sufficient in many applications. However, in domains
like healthcare, where end users are patients without AI or domain exper-
tise, there is an urgent need for model explanations that are more com-
prehensible and instil trust in the model’s operations. We hypothesise
that generating model explanations that are narrative, patient-specific
and global (holistic of the model) would enable better understandability
and enable decision-making. We test this using a decision tree model
to generate both local and global explanations for patients identified as
having a high risk of coronary heart disease. These explanations are pre-
sented to non-expert users. We find a strong individual preference for a
specific type of explanation. The majority of participants prefer global
explanations, while a smaller group prefers local explanations. A task
based evaluation of mental models of these participants provide valuable
feedback to enhance narrative global explanations. This, in turn, guides
the design of health informatics systems that are both trustworthy and
actionable.

Keywords: Global Explanation · End-user Understandability · Health
Informatics

1 Introduction

The field of explainable artificial intelligence (XAI) has witnessed significant
advancements, primarily focusing on the interpretability of models. However, the
interpretability of an AI model for developers does not seamlessly translate into
end-user interpretability [3]. Even inherently interpretable models like decision
trees (DT) and decision lists are challenging to use in applications due to the
complexity and scale of data. Hence popular explanation techniques interpret
black box models by considering an individual input and corresponding pre-
diction - local explanations. Model-agnostic explanations such as Shapley values
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and Local Interpretable Model-Agnostic Explanations (LIME) offer insights into
the features contributing to an individual prediction, revealing the importance
of specific characteristics in decision-making. Nevertheless, they do not capture
the complete model functioning, comprehensive utilization of data, and, most
importantly, the interactions among features. They lack the ability to facilitate
generalization or provide a complete mental model of the system’s workings.

Explanation
Verboseness rating by
user

Change in mental
model of user

Error in
understandability

Understandability
rating by user

Completeness
rating by user

Types of explanations

SHAP

Global tree

Local tree

Fig. 1. A comparison of Local SHAP, Local and Global tree explanation of CHD risk
prediction using decision tree model. Different evaluation parameters are computed
based on end-user feedback of the explanation.

In critical domains such as healthcare and financial predictions, the inter-
pretability of AI models by end-users holds significant importance. The under-
standability of the underlying AI model and the trust in its predictions can
have life-altering implications for stakeholders. Enabling user intervention and
action to modify predicted outcomes require explanations that address the How
and Why questions, as well as convey causal relationships [18,21]. Achieving
this necessitates an overall comprehension of the model. Further, the explana-
tion should not only align the user’s mental model with the AI system’s model
but also be perceived as understandable and trustworthy. We propose that a
global model explanation hold greater potential for providing understandabil-
ity and building trust compared to local model explanations. This study is a
preliminary step towards testing this.

What qualifies as a global explanation and what methodologies would pro-
vide an overall understandability is relatively less researched. The comparison
between global model explanations and local explanations for end users, along
with various presentation aspects such as narrative and visualization, bears sig-
nificance when building explanation-centric applications. This study delves into
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the understandability of local and global explanations, specifically in the con-
text of a coronary heart prediction model. We address the following research
question:

1. For non-expert users, do global explanations provide a better understanding
of the AI’s reasoning in comparison to (only) local explanations?

2. As the complexity of the explanation increases is there a difference in under-
standability and user preference for local and global explanations?

We use decision tree (DT) models which are interpretable by design, and con-
struct local and global explanations with varying levels of complexity. We gauge
the perceived understandability of these models and evaluate their effectiveness
based on predefined tasks. We also measure the changes in users’ mental mod-
els following exposure to the explanations. Figure 1 shows different evaluation
parameters. The experiment identifies preferences in explanation types among
different participant groups. It is found that while complexity does not have
a significant effect on perceived understandability and completeness of explana-
tion, errors in understanding increase with complexity. The obtained results offer
valuable insights for designing narrative explanations for end-users and highlight
the majority of participant preference for global explanations in healthcare risk
models.

2 Related Work

In healthcare, a risk score is a quantifiable measure to predict aspects of a
patient’s care such as morbidity, the chance of response to treatment, cost of
hospitalisation etc. Risk scoring is utilised for its predictive capabilities and in
managing healthcare at scale. A predicted risk score is representative of the prob-
ability of an adverse outcome and the magnitude of its consequence. Article 22 of
the General Data Protection Regulation (GDPR) mandates human involvement
in automated decision-making and in turn understandability of a risk predic-
tion model. Hence the use of risk scores requires the effective communication of
these scores to all stakeholders - doctors, patients, hospital management, health
regulators, insurance providers etc. With statistical and black-box AI models
used in risk score computations, this is an added responsibility of the AI model
developer to ensure the interpretability of these systems to all stakeholders.

Current regulations such as model fact tables [25] are useful for clinicians
and approaches of local model interpretation [15,24] to model developers. For a
non-expert end-user who has limited domain knowledge and who is not trained
to understand a fact table, these approaches will not explain a recommendation
given to them. Further, explaining a risk prediction model to the end user should
address the perceived risk from numeric values and previous knowledge of the
user, any preferences and biases. In other words, the explanation presentation
should address socio-linguistic aspects [18] involved.

Researchers have recognized that a good explanation should aim to align the
user’s mental model with the mental model of the system, promoting faithful
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comprehension and reducing cognitive dissonance [18]. Achieving such effective-
ness is very context-dependent [1]. However, aspects of explanation presentation
generalise across a broad spectrum of applications. The significance of narrative-
style explanations is emphasised by [23] while [26], highlights the effectiveness
of a combined visual and narrative explanation. Recent studies have evaluated
existing systems in use [6,16] and calls for focus on the design choices for expla-
nation presentation in health informatics. Further, with tools available in the
public domain such as QRisk1 from National Health Service (NHS), evaluat-
ing the impact and actionability of explanation approaches in use would enable
improving them and ensure their safe usage.

Before looking into evaluating black-box models, it would be worthwhile to
explore what constitutes a good explanation in interpretable models such as DTs,
decision lists [13] etc. DT algorithms are methods of approximating a discrete-
valued target by recursively splitting the data into smaller subsets based on
the features that are most informative for predicting the target. DTs can be
interpreted as a tree or as a set of if-else rules which is a useful representation
for human understanding. The most successful DT models like Classification
and Regression Trees (CART) [5] and C4.5 [22] are greedy search algorithms.
Finding DTs by optimising for say a fixed size, is NP-hard, with no polynomial-
time approximation [9]. Modern algorithms have attempted this by enforcing
constraints such as the independence of variables [10] or using all-purpose opti-
mization toolboxes [2,4,27].

In [12] authors attempt the optimisation of the algorithm for model inter-
pretability to derive decision lists. The reduced size of the rules opens up the
option of interpreting the decisions in their entirety and not in the context of
a specific input/output alone - a global explanation. The authors highlight the
influence of complexity on the understandability of end-users. However, deci-
sion list algorithms still do not scale well for larger datasets. Optimal Sparse
Decision Trees (OSDT) [8] and later improved with Generalized and Scalable
Optimal Sparse Decision Trees (GOSDT) [14] algorithms produce optimal deci-
sion trees over a variety of objectives including F-score, AUC, and partial area
under the ROC convex hull. GOSDT generates trees with a smaller number of
nodes while maintaining accuracy on par with state-of-art models.

On explaining DTs for end-users, current studies have investigated local
explanations using approaches such as counterfactuals [28], the integration of
contextual information and identified narrative style textual explanations [17].
All these attempts to answer the why questions based on a few input features
and specific to a particular input. Extending these insights to global explana-
tions should help better understanding of the model by end-users and allow
generalisation of the interpretations, driving actionability.

1 https://qrisk.org/index.php.

https://qrisk.org/index.php
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3 Experiment Design

Our main research question is to determine what type of explanation are most
relevant for non-expert end-users to be able to understand underlying risk model.
We evaluate a local and global explanation by measuring user’s perceived under-
standing and completeness. We also measure whether the user’s mental model
had changed after reading an explanation.

3.1 Dataset and Modeling

For the experiment, we used the Busselton dataset [11], which consists of 2874
patient records and information about whether they developed coronary heart
disease (CHD) within ten years of the initial data collection. This study is similar
to the data collected by NHS to develop QRISK3 [7]. Computing a risk score
demands that we also explain the risk score, data used, probability measures
of the scoring algorithm in addition to model prediction. We limit the scope of
this study to only explaining the model prediction and use the CHD observation
from the dataset as target variable for prediction. Using GOSDT [14] algorithm,
we fit the data to obtain decision tress. GOSDT handles both categorical and
continuous variables. While the optimum model may have multiple closeby splits
for numeric values, such splits can reduce the readability of the tree. Hence we
preprocess the data by converting most of the features into categorical variables.
We follow the categories as mandated by National Health Service (NHS). The
data is pre-processed as described in Appendix A, with 2669 records and 11
features.

The GOSDT algorithm generated a comprehensive decision tree for the
dataset, comprising 19 leaf nodes at a depth of 5, achieving an accuracy of 90.9%
(Fig. 4 in Appendix A). For the purpose of human evaluation and comparison of
local and global explanations, it was necessary to have multiple DTs with com-
parable structures. Hence, we created subsets of the data by varying the ranges
and combinations of Age and Gender. By working with reduced data points, the
size of the constructed trees was significantly reduced. To ensure larger trees for
evaluation purposes, we enforced a consistent depth of 4. Ultimately, we selected
four trees for the evaluation task as shown in Table 1.

As mentioned in [20], a higher complexity of explanation rules in clinical
setting leads to longer response times and decreased satisfaction with the expla-
nations for end-user. The authors refer to unique variables within the rules as
cognitive chunks, which contribute to complexity in understanding. In our exper-
iment, global explanations naturally contain more cognitive chunks. To prevent
bias in the results, we incorporated two levels of difficulty for each explanation
type. The easy level consisted of trees with similar structures, both local and
global, featuring 5 nodes and decision paths of equal length with an identical
number of cognitive chunks. For ease of understanding, we henceforth refer to
a particular combination of explanation type and difficulty level as a specific
scenario, namely - local-easy, global-easy, local-hard, and global-hard. A local-
SHAP explanation was generated utilizing the same tree as the local-easy sce-
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nario. We use kernel SHAP [15] to obtain feature importance for the local-easy
tree for specific patient input. The SHAP explanation is treated as a baseline
for evaluation.

The hard scenario for both explanation types, consist of larger trees of sim-
ilar structures. The tree had 8 nodes for local-hard scenario and 9 nodes in
case of global-hard scenario. For global explanations, the explanation presen-
tation involves more cognitive chunks, potentially introducing bias by making
the global-hard scenario challenging to comprehend. Nevertheless, we proceeded
with evaluating this scenario in our experiment.

Another factor to consider when generating explanation is the possible con-
tradiction between model explanation and general assumptions. For instance, a
node BMI = Normal appearing in decision rules for low CHD risk is expected
but not in those for high risk. Communicating this contradiction in explanation
would be important in its understandability. We also include this in our exper-
iment. Explanation scenarios categorized as hard involved contradictory expla-
nations, which could prove more challenging for comprehension. We addressed
these cases using semifactual [19] explanations, employing phrase even-if. We
assess the impact of such risk narrations on understandability. Table 1 provides
a summary of the four trees used for explanation generation.

Table 1. Description of DTs and type of explanation generated.

Age Gender Leaf count Accuracy Explanation Type

70–79 Female 6 78.4 Local Easy

60–84 Female 6 82.5 Global Easy

60–70 Male 9 77.3 Local Hard

65–70 male 10 85.4 Global Hard

3.2 Generation of Explanation

For a given CHD prediction model and a corresponding patient input, the local
explanation is a set of necessary conditions and predicted decisions of high/low
risk. For the decision tree model in Fig. 2a, given particular patient info as input,
the decision rule that is triggered to predict high risk is highlighted in blue. The
path followed for the decision can be represented textually as shown in Fig. 2b.
This is one possible representation. A more natural language expression of the
rule is treated as a local explanation for the experiment. The language generation
is rule-based. Details of the generation algorithm and an example of the evaluated
explanation are given in AppendixB.

The global tree explanation is a list of all the decision rules of the tree. For
a particular patient, a combination of the global explanation and the specific
rule triggered corresponding to the given patient input is treated as the global
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Fig. 2. An example of local and global narrative explanation of a DT. Note that this
is one way of generating a global tree explanation (Appendix B). Listing all the nodes
or stating all possible categorical values of features are design choices that will affect
understandability.
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prediction explanation. Once again, this is a choice we make for this experiment.
A list of all decision nodes similar to feature importance in SHAP could also be
a possible global tree explanation. For the patient in Fig. 2a, the corresponding
global explanation is shown in Fig. 2c. As the tree size becomes large, the num-
ber of rules and the number of features in each rule increase. This means the
explanation size and the cognitive chunks in the explanation increase. The best
way to frame natural language explanations, for these different cases, is a sepa-
rate research problem that we do not address here. Further, we restrict the rules
in global explanation to those corresponding to a single risk category - high risk.
Since the particular case involves only two categories, this still provides coverage
to possible predictions while keeping the explanation less verbose. The narration
generation involves the same algorithm as in the case of local explanation.

In addition to the model accuracy, note that each leaf node has a probability
and confidence associated with that particular decision. For a particular node,
the probability is the ratio of training data points that fits the criteria of that
node to the number of data points in its previous node. A low probability node
denotes that, the particular decision was rare based on the training data. The
statistical significance of this prediction denotes its confidence. Both these mea-
sures are used for generating decision narration. Appendix B shows examples of
the usage. To express the probabilities, we use verbal mapping proposed by [26].
An additional usage of possibly is introduced to accommodate cases involving
low confidence and high probability.

The SHAP explanation does not have associated confidence. We filter fea-
tures with SHAP score greater that 0 and present them as bulleted points in
descending order of importance.

3.3 Evaluation

For evaluation, a within-subject survey is conducted with participants recruited
on Prolific platform. We conducted a pilot study among peers and the feedback
was used to improve the readability of the explanations and assess the time taken
for the tasks.

The survey involves 5 patient scenarios namely local-SHAP, local-easy, local-
hard, global-easy and global-hard. Each scenario consists of 2 pages. On the
first page, the participant is provided with information about a patient. This
consists of their features: age, gender, height, weight, BMI, blood pressure, dif-
ferent cholesterol values, smoking, and drinking habit. They are asked to enter
the assumptions on what patient features may contribute to the AI model’s
prediction. This captures the mental model of the participant regarding CHD.
AppendixC shows examples of the pages used in the survey.

On the next page, participants are presented with the same patient, the risk
of CHD (high or low) as predicted by the AI system along with an explanation.
They are asked to enter feature importance once again based on their under-
standing of the explanation. They are also asked to rate the explanation on
three parameters: completeness, understandability, and verboseness, using a 5-
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Table 2. Evaluation criteria for comparison of different explanation types.

Measure Definition

Completeness rating (CR) User rating for the prompt: This explanation
helps me completely understand why the AI
system made the prediction

Understandability rating (UR) User rating for the prompt: Based on the
explanation I understand how the model would
behave for another patient

Verboseness rating (VR) User rating for the prompt: This explanation is
long and uses more words than required

Change in mental model (CMM) Difference in perceived feature importance before
and after viewing model explanation

Error in Understanding (EU) Difference between model feature importance
and perceived feature importance after viewing
explanation

level Likert scale. Text feedback on each explanation and overall feedback at the
end of the survey is collected.

The evaluation of each explanation has 3 parameters from a Likert rating
based on participant perceptions. In addition, based on the task of choosing
feature importance we compute two additional parameters: change in mental
model and correctness of understanding. Change in mental model is defined
as the updation of perceived feature importance before and after explanation.
Let U = (u1, u2, ..., uN ) where ui ∈ {0, 1}, 1 ≤ i ≤ N be the selected feature
importance before explanation where N is the total number of features. Let V =
(v1, v2, ..., vN ) where vi ∈ {0, 1}, 1 ≤ i ≤ N be the selected feature importance
after explanation. Change in mental model is computed as

Dm =
d(U, V )

N

where d is the Hamming distance between U and V.
For each explanation, based on the features that are shown in the narration,

we also know the correct feature importance. In the case of SHAP, these are
the features with a SHAP score greater than 0. For local explanations, these
are the features in the decision path, and for global explanations, it is all the
features in the tree. If the correct feature importance C = (c1, c2, ..., cN ) where
ci ∈ {0, 1}, 1 ≤ i ≤ N , we compute the error in understanding w.r.t to the
system mental model as

Dc =
d(V,C)

N
.

Since for each feature, the participant selects a yes/no for importance, these mea-
sures do not capture the relative importance among features. Table 2 summarises
all the evaluation parameters.
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4 Results and Discussion

Fifty participants were recruited from the Prolific platform for the experiment,
ensuring a balanced gender profile. All participants were presented with five
patient-explanation scenarios and were requested to evaluate each of them. The
survey took an average of 26 min to complete, and participants received a com-
pensation of £6 each, as per the minimum pay requirement. However, one partic-
ipant was excluded from the analysis due to indications of low-effort responses,
spending less than 1 min on multiple scenarios. The demographic details of the
selected participants are summarized in Table 3. Based on the responses, we
computed the evaluation parameters mentioned in the previous section. The
Likert scale ratings for Completeness, Understandability, and Verboseness are
assigned values from 0 to 1, 0 corresponding to ‘Strongly Disagree’ and 1 to
‘Strongly Agree’. We also calculate, Change in the mental model and Error in
understanding from the selection of feature importance. The calculated scores
are also normalised to range from 0 to 1. The mean values across all participants
are presented in Table 4.

Table 3. Demographic distribution of survey participants.

Feature Category: Proportion

Age 18–30: 81.63%, 30–40: 16.33%, 40–65: 2.04%

Gender Male: 51.02% , Female: 48.98%

First language English: 38.8%, Others: 61.2%

Table 4. Evaluation parameters across all the scenarios. Maximum is highlighted in
bold and minimum in italics. CR - Completeness rating, UR - Understandability rating,
VR - Verboseness rating, CMM - Change in mental model, EU - Error in Understand-
ing.

Local SHAP Local Easy Local Hard Global Easy Global Hard

CR 0.64 0.69 0.63 0.68 0.69

UR 0.66 0.71 0.67 0.72 0.74

VR 0.16 0.26 0.23 0.56 0.52

CMM 0.42 0.28 0.38 0.34 0.35

EU 0.12 0.07 0.13 0.19 0.30

While local-easy scenario has the lowest error in understandability (EU),
participants rated all the models comparably in terms of Understandability (UR)
and Completeness (CR). The Change in the Mental Model (CMM) exhibited
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uniformity across all types of explanations, except for local-SHAP and local-
easy. To assess the significance of these results, we performed the Wilcoxon
test, for all combinations of explanation types. Since multiple comparisons are
performed, we apply Bonferroni Correction on p-value and a threshold of 0.01 is
chosen. In comparing local and global explanations, local-SHAP is excluded and
the ratings for both levels of difficulty in each case are averaged. The results are
shown in Table 5. The observations that hold for a stricter threshold of 0.001 are
highlighted with ∗.

Table 5. Significance of difference between types of explanation. CR - Completeness
rating, UR - Understandability rating, VR - Verboseness rating, CMM - Change in
mental model, EU - Error in Understanding. The values which are significant (Bonfer-
roni Corrected p-value threshold of 0.01) are highlighted in bold. P-value ≤ 0.001 are
highlighted with *.

CR UR VR CMM EU

Local vs Global 0.42 0.44 0.00∗ 0.53 0.00∗

Local Easy vs Global Easy 0.84 0.85 0.00∗ 0.05 0.00∗

Local Hard vs Global Hard 0.35 0.42 0.00∗ 0.36 0.00∗

Local Easy vs Local Hard 0.38 0.24 0.76 0.00∗ 0.00∗

Global Easy vs Global Hard 0.50 0.53 0.56 0.43 0.00∗

Local SHAP vs Local Hard 0.63 0.76 0.10 0.23 0.42

Local SHAP vs Local Easy 0.18 0.28 0.03 0.00∗ 0.11

Local SHAP vs Global Hard 0.02 0.30 0.00∗ 0.09 0.00∗

Local SHAP vs Global Easy 0.16 0.28 0.00∗ 0.01 0.02

Global explanations resulted in a lower average understandability based on
the feature selection (EU) and it was observed that harder scenarios resulted in
higher errors for both local and global explanations. For each type of explanation,
the patient features wrongly selected was investigated (Tables 11, 12). Incorrect
feature selection related to cholesterol caused the majority of errors. Participants
chose the wrong cholesterol-related feature, possibly due to a lack of attention
or limited understanding of medical terminology. Improving the presentation
of explanations and providing more contextual information could potentially
address this issue. Importantly, when presented with semifactual explanations
of hard scenarios both local and global explanations led to almost half or more
participants excluding the corresponding feature. This clearly points to the ambi-
guity of such narration.

The error analysis does not explain the contradiction between the under-
standability ratings and the correctness of feature selection. Interestingly, a
considerable number of participants expressed a preference for longer, global
explanations, even if they did not fully comprehend them. Significant rating of
global explanations as more verbose adds to this contradiction. To delve deeper
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into this phenomenon, participant clustering was performed based on the ratings
and computed scores. Using the k-means algorithm, three distinct groups of par-
ticipants were identified and manually validated. Figure 3 displays the average
rating across different parameters for each group.

UR

CR

VRCMM

EU

Group 1 UR

CR

VRCMM

EU

UR

CR

VRCMM

EU

Group 2 Group 3

Local SHAP Local easy Local hard Global easy Global hard 

Fig. 3. Average rating for different explanation type across the participant groups

– Group 1: Strongly prefer and understand local explanations. The cluster con-
sists of 11 participants who rate patient-specific local tree explanations high-
est on completeness and understandability.

– Group 2: Majority group that rates global explanation as most understand-
able: This cluster consist of 22 people who has the least significance in pref-
erence between global, local explanation or difference based on the difficulty
level. They rate Global explanation highest on completeness and understand-
ability

– Group 3: This cluster consist of 16 people who strongly prefer global explana-
tions but critical about the narration. This cluster is more detail oriented and
rates global explanations as more understandable and complete. This group
was critical on the narration and presentation of explanation in the feedback
form. The average error in feature selection for global explanation for this
group, is lower than Group 2.

It is evident that within the clusters, the ratings on each parameters has sig-
nificant preferential pattern between each type of explanation. Group 1, 3 has
strong polarity on the preferences and their rating tend to Strongly agree or
Strongly disagree. Both these Groups identify Global explanations as verbose.
This shows that, in healthcare setting, the effectiveness of an explanation to an
end-user, is very dependent on their individual preference.

4.1 Local vs. Global

While there is no significant difference between local and global explanations
overall, strong differences emerge at the Group level. Group 1 rates the local
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explanation as complete, while both Groups 2, and 3 favour the global explana-
tion for completeness. Similar preferences are observed in participants’ percep-
tion of understandability within each group. When a stricter p-value threshold of
0.001 is applied, the significance of the difference in user rating for understand-
ability and correctness holds only in Group 1. The results of the Wilcoxon test
for combinations of explanation types within Groups are given in Appendix D.

– The results indicate that certain people strongly prefer specific type of expla-
nation. This preference does not necessarily translate to understandability.

– In all groups, a higher error in feature selection is observed for global expla-
nations, mainly due to the semifactual explanation and wrongly interpreting
features related to Cholesterol

Among participants belonging to Group 2, the factors driving their prefer-
ence for global explanations remain unclear. Demographics data examination
(Table 6) offers no apparent patterns, leading us to propose the influence of
unique cognitive styles within the groups. Further investigations are warranted
to unveil the underlying reasons for these preferences and errors. While users
may perceive explanations as understandable, it is vital to recognize that this
perception may not necessarily translate into accurate decision-making. The lack
of significant changes in mental models substantiate this, indicating the need for
continued exploration to optimize explanation presentations for healthcare AI
models.

Table 6. Demographic distribution of participants within each group. All the features
are not available for all participants. Missing data are excluded in the counts.

Group1 Group2 Group3

Number of participants 11 22 16

Male to female ratio 4:7 9:13 12:4

Count of full time employed 2 8 5

Student to non-student ratio 8:2 10:9 8:7

Number of native english speakers 4 11 4

Ethnicity, white to black ratio 9:2 11:10 11:3

4.2 Tree Explanation vs. SHAP

The overall ratings of SHAP explanations are comparable to those of local-hard
explanations but lower than those of local-easy explanations generated from
the same underlying decision tree. This suggests that the comprehensibility and
interpretability of SHAP explanations are slightly lower than those of the local-
easy explanations. However, this may be attributed to the presentation bias, as
all participants were exposed to the SHAP explanation first. It is noted that the
presentation style of SHAP explanations, using bulleted points, is generally con-
sidered less verbose even though it does not impact the error in understandability



56 A. Sivaprasad et al.

or perceived understandability and completeness. Hence the simpler readability
of the SHAP explanation is not seen to have impacted its overall understand-
ability.

4.3 Easy vs. Hard

The ratings provided by the participants on the Likert scale did not reveal any
significant distinction between the explanation scenarios characterized as easy
and hard. However, an examination of the impact of difficulty levels on the error
in feature selection uncovered significant results. Hard scenarios, whether global
or local explanations, exhibited significantly higher error rates, even within par-
ticipant groups.

– The explanation understanding is strongly dependent on the complexity of the
feature interaction being explained.

When participants encountered explanations that deviated from their preex-
isting notions of feature dependence, it introduced confusion, becoming a major
contributor to error in hard scenarios. We observed that harder scenarios, on
average, caused larger changes in the mental model of participants. However,
this alone was insufficient to mitigate the observed errors. Furthermore, the con-
sistent error patterns across different participant groups present an opportunity
to enhance the current framework of narration and presentation of explanations,
benefiting all participants.

5 Limitations and Future Work

The experiment provides evidence for the usefulness of global explanations in
health informatics. Identifying cognitive styles that lead to particular expla-
nation preferences and errors in comprehension, is pivotal to applying global
explanations in real-life applications. The current experiment has been carried
out on a small dataset. Evaluating these findings on a larger data set with more
data points and larger features will be undertaken in future studies. We recog-
nise that regression models are commonly used in risk prediction. Expanding
the scope of the narrative global explanation within the context of regression
and assessing its comparative utility against the local explanation will enable
the integration of our findings into established risk predictive tools.

Further, the evaluation in this study was crowdsourced and hence the par-
ticipants are not representative of real-life patients. Most of the participants fall
in the age category that does not have a risk of heart disease as predicted by the
model. This may have biased their rating. We aim to rectify this by conducting
the evaluation on a representative patient population, which would also require
addressing ethical concerns.

The current study has not focussed on generating effective global explana-
tions. The use of semifactuals has not addressed the mismatch with the user’s
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mental models. Further, the presentation of Explanation features is seen to have
introduced errors. Effective communication and presentation techniques would
be vital in reducing errors. Though we have used a linguistic representation of
probability and confidence, the evaluations in this regard remain undone. For
risk communication at scale, this is a crucial component. Further research is
warranted to delve deeper into these aspects and refine the design and imple-
mentation of explanation systems.
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A Construction and Selection of DT

B Generating Explanation Narration

Steps in generating narration (Figs. 5, 6 and 7):

1. Filter the rules corresponding to high risk leaves.
2. Sort the decision rules in order of their leaf node confidence and insert verbal

mapping of relative probability.
3. Reorder the features and place contradictory features at the end preceded by

even-if.
4. combine the features with and
5. Add header with age, gender

Fig. 4. Depth 5 Decision tree generated on 2134 datapoints. Training accuracy =
90.9%, test accuracy on 534 records = 85%.
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Fig. 5. DTs for different scenarios. (a) Local easy scenario: Decision tree generated on
116 data points. Training accuracy = 78.4%, (b) Local Hard scenario: Decision tree
generated on 163 data points. Training accuracy = 77.3%, (c) Global easy scenario:
Decision tree generated on 382 data points. Training accuracy = 82.5% (d) Global
Hard scenario: Decision tree generated on 108 data points. Training accuracy = 85.4%.

Fig. 6. Verbal mapping of relative probabilities.
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Patient Information Sheet

Patient ID :    1232
Age:    68.2
Gender:    Female                     
Weight:    68.5 kg
Height:    159 cm
BMI:    Overweight
Diabetic:   No
Smoker:    Light smoker
Systolic blood pressure:   Elevated
Triglyceride:    High
Cholesterol:   High
HDL Cholesterol:    Normal
Total cholesterol to HDL cholesterol ratio: High
Daily alcohol amount:   144 ml

The AI model has learned that women in the
age range of 60 to 84 years, are possibly at high
risk of CHD in next 10 years if any of the following
is true:

(fasting triglyceride is Not normal) and (BMI
is Not Underweight) and (is Not a moderate
Smoker) and (daily alcohol consumption is
more than 125.5ml)
(fasting triglyceride is Not normal) and
(BMI is Underweight)
(fasting triglyceride is Not normal) and
(BMI is not Underweight) and (is a Moderate
Smoker) and (HDL cholesterol is Low)

Patient 1232 is possibly at high risk of CHD since
she is (woman in the age range of 60 to 84 years)
and (fasting triglyceride is Not normal) and
(BMI is Not Underweight) and (is Not a moderate
Smoker) and (daily alcohol consumption is more
than 125.5ml)

AI system

Fig. 7. An example for generated global explanation. This model corresponds to
Global-easy scenario.

Table 7. Category definitions for Data preprocessing.

Feature Categories

Smoking Non-smoker, light smoker: (less than 10), moderate smoker - (10 to
19)/day, heavy smoker- (20 or over)/day)

BMI Underweight (less than 18.5), Healthy - (18.5 to 24.9), Overweight - (25
to 29.9), Obese - (30 or over)

Cholesterol Normal: ≤5, High: above 5

Cholestrol HDL ratio Normal: ≤6, High: above 6

Triglycerides Fasting - normal (0 to 1.7), Non Fasting - normal (1.7 to 2.3), High (2.3
to 10)

HDL Normal: ≤ 1, High: above 1

Systolic Blood Pressure Low: (0 to 90), Normal: (90 to 120), Elevated: (120 to 140), High: (140 to
250)

Diastolic Blood pressure Low: (0 to 60), Normal: (60 to 80), Elevated: (80 to 90), High: (90 to 150)

C User Survey on Prolific

For each scenario, a participant first see the patient information as shown in Fig. 8.
The participant is asked to pick all the features they think might be influential in
predicting the patient’s risk of CHD. This captures the participants mental model
regarding CHD prediction before viewing any explanation (Table 7).

In the next page, a participant is shown the explanation followed by questions
to rate the explanation. The are asked to redo the task of picking all the features
they think were influential in predicting the patient’s risk of CHD as shown in
Fig. 9. This captures the participant’s understanding of AI’s mental model. This
is followed by questions to get the users rating based on a 5 point Likert scale.
The questions correspond to 3 parameters being measured:
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1. Completeness: This explanation helps me completely understand why the AI
system made the prediction

2. Understandability: Based on the explanation, I understand how the model
would behave for another patient

3. Verboseness: This explanation is long and uses more words than require

Fig. 8. First page of a scenario shown to participants with a patient info. They question
captures the participant’s mental model of CHD prediction before viewing explanation.

Fig. 9. The first question evaluates participant’s understanding of the explanation.
The Remaining questions capturing their feedback on explanation.
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D Comparison of Local and Global Explanation Ratings

Results of Wilcoxon test, for combinations of explanation types within partici-
pant Groups. After Bonferroni Correction, p-values less than 0.01 are chosen as
significant (Tables 8, 9 and 10).

Table 8. Significance of difference between different types of explanation for Group
1 rounded to 2 decimal places. Significant p-value are in bold. P-value ≤ 0.001 are
highlighted with *.

CR UR VR CMM EU

Local vs Global 0.00∗ 0.00∗ 0.00∗ 0.81 0.00

Local easy vs Global easy 0.00 0.01 0.00 0.93 0.00

Local Hard vs Global Hard 0.05 0.05 0.03 0.62 0.07

Local easy vs Local Hard 0.20 0.21 0.50 0.04 0.19

Global easy vs Global Hard 0.34 0.65 0.16 0.56 0.66

Local SHAP vs Local Hard 0.53 0.79 0.04 0.29 0.79

Local SHAP vs Local easy 0.04 0.34 0.01 0.01 0.18

Local SHAP vs Global Hard 0.21 0.03 0.01 0.21 0.10

Local SHAP vs Global easy 0.03 0.07 0.00 0.02 0.35

Table 9. Significance of difference between different types of explanation for Group
2 rounded to 2 decimal places. Significant p-value are in bold. P-value ≤ 0.001 are
highlighted with *.

CR UR VR CMM EU

Local vs Global 0.02 0.01 0.13 0.89 0.00∗

Local easy vs Global easy 0.22 0.08 0.10 0.38 0.00∗

Local Hard vs Global Hard 0.06 0.08 0.65 0.29 0.00∗

Local easy vs Local Hard 0.40 0.60 0.92 0.02 0.19

Global easy vs Global Hard 0.53 0.24 0.21 0.42 0.35

Local SHAP vs Local Hard 0.84 0.99 0.51 0.81 0.92

Local SHAP vs Local easy 0.27 0.71 0.97 0.05 0.58

Local SHAP vs Global Hard 0.00 0.02 0.80 0.71 0.01

Local SHAP vs Global easy 0.03 0.07 0.10 0.20 0.02
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Table 10. Significance of difference between different types of explanation for Group
3 rounded to 2 decimal places. Significant p-value are in bold. P-value ≤ 0.001 are
highlighted with *.

CR UR VR CMM EU

Local vs Global 0.01 0.05 0.00∗ 0.17 0.00∗

Local easy vs Global Hard 0.02 0.10 0.00 0.03 0.00∗

Local Hard vs Global Hard 0.27 0.27 0.00∗ 0.94 0.01

Local easy vs Local Hard 0.60 0.62 0.77 0.14 0.00

Global easy vs Global Hard 0.66 0.26 0.14 0.96 0.40

Local SHAP vs Local Hard 0.56 0.62 0.13 0.25 0.06

Local SHAP vs Local easy 0.60 0.60 0.07 0.01 0.29

Local SHAP vs Global Hard 0.05 0.23 0.00∗ 0.15 0.00∗

Local SHAP vs Global easy 0.03 0.05 0.00∗ 0.23 0.01

Table 11. Error in selecting patient feature after explanation. Type I error (False
Positive) - Wrong selection overall.

Local SHAP Local easy Local hard Global easy Global hard

Age

Gender 3

BMI 2

Diabetics 5 2 1

Cholesterol 5 2 2 8

HDL cholesterol 15

Triglyceride cholesterol 1

Total cholesterol to HDL cholesterol ratio 2 1 1 6

Systolic blood pressure 5 1 2 5

Smoking/Smoking amount 2

Dinker/Drinking amount 2

Table 12. Error in selecting patient feature after explanation. Type II error (False
Negative) - Missing correct feature.

Local SHAP Local easy Local hard Global easy Global hard

Age 6 6 1 8 9

Gender 8 13 22 23

BMI 14 1 1 3

Diabetics

Cholesterol 31

HDL cholesterol 10 23 37

Triglyceride cholesterol 20 4 35

Total cholesterol to HDL cholesterol ratio 11

Systolic blood pressure

Smoking/Smoking amount 4 17 10 27

Dinker/Drinking amount 12 9 3
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Abstract. The number of local model-agnostic explanation techniques
proposed has grown rapidly recently. One main reason is that the bar
for developing new explainability techniques is low due to the lack of
optimal evaluation measures. Without rigorous measures, it is hard to
have concrete evidence of whether the new explanation techniques can
significantly outperform their predecessors. Our study proposes a new
taxonomy for evaluating local explanations: robustness, evaluation using
ground truth from synthetic datasets and interpretable models, model
randomization, and human-grounded evaluation. Using this proposed
taxonomy, we highlight that all categories of evaluation methods, except
those based on the ground truth from interpretable models, suffer from
a problem we call the “blame problem.” In our study, we argue that this
category of evaluation measure is a more reasonable method for evaluat-
ing local model-agnostic explanations. However, we show that even this
category of evaluation measures has further limitations. The evaluation
of local explanations remains an open research problem.
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1 Introduction

One of the most popular areas within explainable AI is the study of local model-
agnostic explanation techniques1 [17]. Local explanations, originally called expla-
nations for individual instances [42], differ from global explanations. Global
explanations are the information intrinsically available in the interpretable mod-
els, such as the weights of linear models or the feature importance scores in tree
models [13]. Moreover, they provide information about the internal logic of their
models at the dataset level, i.e., for all data instances. On the other hand, local
explanations are information about the prediction of an individual instance [38].
One of the main arguments for the need for local explanations is that obtaining
a global explanation of complex black-box models for all instances might be hard
[38,39].
1 For brevity, we refer to them as local explanations in our study.
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There are numerous different ways to represent local explanations. How-
ever, feature attribution is the most common representation in the literature
of explainable AI [17]. The feature attribution explanation technique allocates
importance scores to each feature, showing their contribution to the predicted
output of a black-box model2.

The need for rigorous evaluation of local explanations has been amplified
after several studies have shown that local explanations can fail. For example,
in [40], the author argues that we should not use local explanation techniques in
high-stake decision-making domains by showing numerous failure cases of these
techniques. In [31], the authors show that local explanation techniques can fail to
consider feature interaction in their output explanations. Meanwhile, the number
of proposed local explanation techniques is growing rapidly. In only one study,
[8], the authors have listed 29 local explanation techniques.

Even though we share the same concern with the authors of [31,40], we believe
that the real problem that hinders the adaptation of these techniques into high-
stake domains is the lack of optimal measures to evaluate them. In the absence
of strict and rigorous measures, there has been a surge in studies that propose
new explainability techniques, yet it is unclear whether the newly introduced
explanation techniques can significantly improve upon their predecessors and, if
so, in what type of tasks or problems. In [26], the authors share their concerns
about the poor evaluation of local model-based explanation techniques of neural
network models. In their words, “interpretability research suffers from an over-
reliance on intuition-based approaches that risk-and in some cases have caused
illusory progress and misleading conclusions.”.

In an ideal world, each instance will have a local ground truth importance
score3. These include information about the importance of each feature in the
explained instance to the black box’s predicted output. We expect this local
ground truth to be unique for data instances with substantially different feature
values and predicted output. However, we are faced with a contradiction: if we
can extract such information from a black box model, why do we call that model
a black box, and hence, what is the need for local explanations? Therefore, we
can naturally assume a limit to how fine-grained and accurate these ground truth
importance scores can be.

Faced with this problem, researchers in explainable machine learning have
introduced and extensively used alternative measures to circumvent this chal-
lenging problem. However, we have noticed that these measures’ assumptions
and limitations are mostly stated implicitly. As a result, researchers can draw
misleading conclusions about the accuracy of local explanations when using these
evaluation measures. Because of this, in our study, we propose to categorize these
evaluation measures based on the assumptions they are based on:

2 See Sect. 3 for a formal definition of these techniques.
3 For brevity, we refer to local ground truth importance scores as ground truth. Note

that these ground truth vectors differ from the common ground truth in machine
learning, which are discrete class labels for the data points.
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– Robustness Measures are based on the assumption that nullifying impor-
tant (unimportant) features should cause large (insignificant) changes to the
predicted output of a black-box model for the explained instance. Another
sub-category of these measures is based on the assumption that adding a small
variation (noise) to the explained instance needs to cause minimal changes to
their explanation.

– Ground Truth from Synthetic Data is based on the assumption that
local explanations must provide feature importance scores similar to the prior
importance scores generated by the synthetic data generators.

– Ground Truth from Interpretable Models is based on the assumption
that local explanations must be able to allocate similar importance scores to
the local ground truth importance scores obtained from simpler and more
interpretable models.

– Model Randomization evaluation measures are based on the assumption
that local explanations of a randomized (contaminated) model must be sub-
stantially different from those obtained for the original black-box model.

– Human-grounded Evaluation is based on the assumption that if human
subjects need to be able to replay the model prediction of a black-box model
using local explanations or the content of local explanations need to be similar
to the human reasoning process for local explanation to be accurate.

The main contribution of our study is to highlight the different ways we eval-
uate local explanations. This is in contrast to some studies that have primarily
focused on one class of evaluation measures, namely Robustness measures [32].
Moreover, we show all categories of evaluation measures suffer from a range of
implicit limitations, the most influential of which is a “blame problem.”. In our
definition, the blame problem is when we are unsure whether we should allo-
cate the poor performance of local explanations to themselves or the black-box
model. What becomes straightforward through our proposed systematic catego-
rization is the realization that the “blame problem” is a recurring problem in
all the above categories of evaluation methods, except when we evaluate local
explanations via extracting ground truth using interpretable models. However,
even in this category, we face further limitations. To our knowledge, no study
has highlighted the blame problem or systematically investigated these different
categories of evaluation measures. Moreover, the relationship between different
evaluation measures across these categories is poorly studied. We provide a syn-
thetic example of such investigations.

The rest of the paper is organized as follows. Section 2 discusses the related
work. In Sect. 3, we provide the formal definition of local model-agnostic explana-
tions. In Sect. 4, we briefly discuss how global explanations of black-box models
are evaluated, as these methods precede local explanations. In Sect. 5, we present
our proposed categories of evaluation measures along with their strengths and
limitations. We conclude our study and provide directions for future studies in
Sect. 6.
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2 Related Work

Several well-written surveys on the local model-agnostic explanation techniques
exist in the literature of explainability [17,30]. In Molnar et al. [31], the authors
provide general pitfalls of local explanation models. However, the study focuses
on the limitations of the explanation techniques and not the evaluation measures.

In [11], the evaluation methods of local explanations are categorized into
Human-grounded, Application-grounded, and Functionally-grounded evaluation.
Human-grounded evaluations use expert human subjects to replay the black-box
prediction, whereas functionally grounded evaluation uses systematic proxy mea-
sures to evaluate local explanations. Application-grounded Evaluation is similar
to Human-grounded assessment. However, the experiments involve lay humans,
not experts. The first four categories of evaluation we discuss in our study fall
into the Functionally-grounded evaluation measure.

In the rest of this section, we provide an overview of the studies that have
provided critical overviews or surveys of the evaluation measures. The discussion
of related work for each category of evaluation measures will be presented in their
respective subsections of Sect. 5.

In [33,47], the authors have focused on providing systematic surveys of the
evaluation measures for local explanations. In these surveys, the authors aim to
provide a reference for the type of evaluation measures used in the literature
on explainability. We consider these studies reliable references for knowing what
measures were used to evaluate explanations in the literature. However, our study
aims to highlight implicit assumptions and limitations behind these evaluation
measures and their respective limitations.

In [18], the author argues that robustness analysis of local explanations is use-
ful for obtaining explanations that can generalize to real-world problems. In [19],
the authors propose an evaluation toolkit for evaluating the local model-based
explanations of neural networks. In [3], the authors propose an open benchmark
to evaluate local explanations. Most of the measures included in the two afore-
mentioned studies are based on the robustness analysis (See Sect. 5.1 for more
details on robustness analysis).

In [26], the authors state four criticisms of how local model-based explana-
tions of neural networks are evaluated. Firstly, they criticize the excessive use of
visualization, such as saliency maps, as a means to evaluate explanations4. More-
over, they state that the design principles behind most explanation techniques
are not rigorously verified in their respective studies. Thirdly, they criticize the
lack of quantifiable measures in some evaluation studies. Lastly, they highlight
that while some studies claim to provide explanations that are interpretable
to humans, they include limited or no studies that involve human subjects.
The study provides general guidelines for improving the quality of research in
explaining neural networks. Unlike the study of [26], whereauthors propose gen-

4 Other studies have shown that saliency maps are unreliable for evaluating explana-
tions [1,14].
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eral guidelines for a more rigorous study of local model-agnostic explanations,
our study aims to showcase the implicit assumptions and the limitations of these
evaluation methods used in the literature on eXplainable AI (XAI).

3 Local Explanations

This section briefly defines our formal notion of local model-agnostic explana-
tions5. Let X ∈ R

N×M and f : RN×M → R
N . Let f(x) be the black-box model

f predicted output for a designated class given instance x, namely f(x). An
explanation technique g provides φj , the local feature importance of feature j
in xj for the output f(x). The feature importance can be φj zero, which indi-
cates that the feature has no contribution to the predicted output, or negative
(positive), which indicates that it negatively (positively) affects the predicted
output of black-box of instance x, namely f(x). A sub-category of local model-
agnostic explanations, e.g. LIME [39] and SHAP [28] additionally satisfy the
completeness property [29] where

f(x) =
M∑

j=1

φjxj (1)

The completeness property states that the predicted output f(x) equals an
additive set of importance scores. The local explanation is created by all the
individual feature importance scores into Φc

x,f = [φ1, ..., φM ] ∈ R
M .

Local explanations should not be confused with global explanations. In Local
explanations, we explain an individual instance, whereas global explanations
provide a single importance scores vector for all instances. In local explanations,
each unique instance can have a unique local explanation. On the other hand,
global explanations are the feature importance scores for the entire dataset that
are equal for all instances.

Numerous local model-agnostic explanations, such as LIME [39], SHAP [28]
obtain their Φc

x,f from the weight of an interpretable surrogate g. The surrogate
model is trained on interpretable representations of explained instances that are
interpretable to humans. For example, in the text datasets, binary representa-
tions are used where the existence of a token in a sentence is set to one. See
Fig. 1 for an example of how LIME builds its interpretable surrogate.

We want to emphasize that local model-agnostic explanation techniques dif-
fer from local (model-based) explanations of neural network models. In those
explanations, we need to assume that the model is differentiable since the expla-
nations are obtained based on the derivative of the model f(x) with respect
to the input instance x, i.e., df/dx [41,44]. Even though some of the evaluation
measures used in evaluating model-based gradient explanations are similar to the
ones used for evaluating local model-agnostic explanations, e.g., robustness anal-
ysis, we focus only on the taxonomy of the evaluations of local model-agnostic
explanations in our study.
5 For brevity, we might refer to local model-agnostic explanations as local explanations

in our study.
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Fig. 1. LIME explanations are obtained from the weight of the surrogate linear regres-
sion model shown by a dotted line. Compared to the original explained model, this
model focuses on the model trained in the neighborhood around the explained instance
(red bold plus sign). Source: [39] (Color figure online)

4 History

The problem of evaluating local explanations is significantly harder than the
evaluation of global explanations. This section examines how global explanations
have been evaluated in the literature of explainability. Even though these studies
have inspired some of the evaluation studies of local explanations, we discuss why
these methods cannot be directly used to evaluate local explanations.

The first approach to evaluate global explanations is by dropping features
from the entire dataset and retraining the model [20]. Based on this, the fea-
ture importance scores of accurate global explanations must equal the difference
between the new and original models’ accuracy. While this method is imperfect,
the evaluation can be considered a controlled experiment. However, this cannot
be easily translated into local explanations. Local explanations can be different
for each instance. Therefore, dropping an entire set of features is not possible. In
[21], the authors propose separately nullifying the important features from each
image instance and retraining the model with this new dataset. However, this
breaks the properties of a controlled experiment as this process can be sensi-
tive to the type of nullification and the emergence of further complex covariance
relationships among the nullified features.

The second approach to evaluating global explanations is based on the fidelity
measure. Some studies aimed to replace black-box models with interpretable
global explanations, especially in the form of rule classifiers [9,10,13]. In such
studies, the fidelity measure, i.e., the difference between the accuracy of global
explanations and the black-box models, showed the quality of those explana-
tions. For the case of evaluating local explanations, the fidelity metric can-
not be directly applied. Because in the local explanation techniques, the inter-
pretable surrogate and the black-boxmodels are trained on two different datasets
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and labels. We want to emphasize that the fidelity measure proposed in [45]
should not be confused with the measure used in global explanations studies.
See Sect. 5.1 for more details.

5 Evaluation Methods of Local Explanations

In the previous section, we clarified why applying the former approaches to evalu-
ating global explanations is not directly translatable to the problem of evaluating
local explanations. As we mentioned in Sect. 1, the most straightforward way to
evaluate local explanations is to measure their similarity to ground truth impor-
tance scores. However, such ground truth needs to be obtained from a black-box
model. Remember that we need local explanations because we do not understand
black-box models. Therefore, directly evaluating local explanations using local
ground truth importance scores is challenging, if not impossible.

Therefore, all evaluation measures of local explanations need to make certain
assumptions. This section provides a taxonomy of evaluation measures, which
are categorized based on the assumptions and the ways they circumvent this
impossible task. These methods range from Robustness Measures (Sect. 5.1) and
Evaluation based on Ground Truth (Sect. 5.2) to Human-grounded evaluation
(Sect. 5.4). In each section, we focus on the implicit assumptions and limitations
of each measure in a critical manner. In the last section, we provide an example
where some evaluation measures from different categories are compared in a
synthetic dataset.

5.1 Robustness Measures

The robustness measures of local explanations can be divided into two sub-
categories. In the first category, measures evaluate local explanations by nul-
lifying important (unimportant) features of local explanations. Importance by
Preservation, Importance by Deletion [12] are examples of this first category.
The main underlying assumption is that nullifying features deemed impor-
tant (unimportant) from the local explanation in the explained instance need to
cause significant (insignificant) changes in the predicted scores of the explained
instance [32].

Formally, let f be a black-box model and E the set of top-K features ranked
by their importance scores obtained from a local explanation technique g in
descending order, for instance, x. The user selects the variable K. Now, Let
x′ be the explained instance after the features in E are replaced by a baseline
value, such as the average feature value in the dataset. The importance By
Deletion measure is then measured as |f(x′)−f(x)|

|x−x′| . Importance by Preservation
is calculated similarly; however, in this case, E is the set of top-K features
ranked by their importance scores in an ascending order. Robust explanations
have relatively large (small) Importance by Deletion (Preservation) values [4,32].

In the second category, measures compare the similarity (distance) of the
local explanations of the explained instance with the local explanations of an
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instance that includes a small noise (variation) of the explained instance. Con-
tinuity [2,32,45] is an example of such measures. The second category of the
measure is based on the assumption that there needs to be a proportional
difference between how much the local explanations of an explained instance
changes based on the magnitude of the change in the explained instance.

The continuity measure is an example of this category of robustness measure
proposed by [4]. Let xj be an instance located in an Euclidean ball with a
maximum radius of ε, Bε(x), from the explained instance x ∈ X. We define the
continuity for xi based on the explanation technique g as follows:

L̃(xi) = arg max
xj∈Bε(x)

||g(x) − g(xj)||2
||x − xj ||2 (2)

where ε and the size of B is set by the user and || is a norm function.
As it is clear from their definitions, the robustness measures have no further

assumptions about the data and model explained. Moreover, none of these cat-
egories of robustness measures include any notion of ground truth for evaluating
local explanations. This can make the evaluation process more accessible and
can be the reason that they are widely used in evaluating local explanations of
black-box models [22,28,29,39]. Because of this, we consider them as indirect
measures for evaluating local explanations.

However, they rely heavily on the role of the black-box model as an oracle to
provide accurate and certain predictions. Even though we are unaware of studies
that have addressed the limitations of the robustness analysis, except partially
the work of [42], we have identified more limitations associated with them:

Firstly and most importantly, blaming the local explanation for their lack of
robustness is not straightforward. It is equally probable that after nullifying fea-
tures, the black-box model is providing us with wrongful predictions with high
certainty, similar to the case of adversarial examples. We provide examples of
this problem in each category of robustness measures. For showing this limita-
tion in the first subcategory of robustness measures, Fig. 2 shows the evaluation
process of superpixels, similar to those used by LIME and SHAP explanations.
The example includes the image of the class bird with predicted label indigo
bunting. We can see that nullifying features from these superpixels can generate
wrong predictions. For example, in the first image of the bottom row, consider
when LIME correctly allocates significant importance scores to the superpixels
of the body of the bird. Using Importance by Deletion, we nullify these pixels
and record the change in the predicted output of the ResNET model. The model
still predicts the label of the instances of the class “bird.” Therefore, we blame
LIME for inaccurate explanations. We can see that using wrongful information
to evaluate explanations may result in blaming explanations for producing expla-
nations that are not robust. However, the model should be blamed for its role
as an inaccurate oracle.

To see that the blame problem also exists with the second sub-category of
robustness measures, we will show the example provided by [2] (Fig. 3). In this
example, instances with added Gaussian noise are created to evaluate the Con-
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Fig. 2. (Above): The explained bird image from the ImageNet dataset with the pre-
dicted label of indigo bunting by the ResNET model. (Below). Let us evaluate the
importance of superpixels that include the body of the bird (first image from the bot-
tom row) by removing those pixels. Since the model can still predict the class of the
image as a bird, we will wrongfully blame the explanations for inaccurate explanations
because of an inaccurate oracle. Source: [36]

tinuity robustness of the explained instance (shown with dotted circle). Since
the instance lies close to the decision boundary, the prediction of these instances
will include a significant change in the predicted output and potentially in their
local explanations. Because of this, we blame the local explanations for their
lack of robustness, yet the underlying reason is that the black-box model does
not satisfy the Lipshizt condition around the explained.

Secondly, there is also a lack of agreement on nullifying features and account-
ing for that bias in evaluating explanations. In [43], the authors show that the
choice of the nullification method can severely affect the selection of the most
robust explanation technique.

Lastly, there is no global optimal robustness value or an acceptable threshold
for selecting robustness explanations. In other words, how much change in the
predicted score of a black-box model after nullifying an important (unimportant)
feature can deem the explanation robust? [4]. In numerous studies, we see how
the scale of change after nullifying features can be extremely large between the
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Fig. 3. For evaluating the robustness of the explained instance (shown with a dotted
circle), several instances with added Gaussian noise are created around that instance.
Since the explained instance lies close to the decision boundary, it can have a potentially
large value for Continuity (hence low robustness concerning this measure). However, the
model does not satisfy the Lipshitz condition in the neighborhood around the explained
instance. Yet again, we blame explanations for their lack of robustness, whereas the
model is at fault. Source: [36]

same model trained on different datasets or two models trained on a single
dataset, as shown in [22].6

Some studies have aimed to address the limitations of the robustness mea-
sures. In [20,21], the authors propose to retrain the model after replacing the
important (unimportant) features before evaluating the robustness of explana-
tions. Their proposed method aims to tackle the first aforementioned problem
above, namely to minimize the problem of uncertain predictions by the oracle.
However, this raises the blame problem again: what if the newly trained model
does not represent the original black-box model we aimed to explain?

Overall, we need to emphasize that the conclusions we can draw from eval-
uating local explanations with robustness measures are very limited due to the
absence of ground truth. In the next Section, we provide an overview of the
methods that introduce the notion of ground truth to evaluate local explana-
tions directly.

5.2 Evaluations Using Ground Truth

As mentioned in the previous section, robustness measures can be applied to eval-
uate local explanations of any model trained on any dataset. However, these mea-
sures only measure the accuracy of explanations indirectly. Unlike the robustness
measure, using the ground truth-based evaluation measure, we can measure the
accuracy of local explanations directly without using the black-box model as an
oracle.

In the upcoming subsections, we show that evaluation based on the ground
truth can be categorized into two subcategories: extracting ground truth from
synthetic datasets (Sect. 5.2) and extracting ground truth from interpretable

6 See Table 2 of the study and the scale of values that explanations show for robustness.
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models (Sect. 5.2). In Sect. 5.2, we show the important role of the similar-
ity metric when evaluating local explanations with these ground truth-based
approaches.

Ground Truth from Synthetic Data. The studies that aim to obtain ground
truth from synthetic data are based on the following assumption: if the model
we explain is too complex. The extraction of ground truth from them is challeng-
ing. However, we can obtain ground truth from synthetic dataset generators. We
create synthetic datasets that include prior importance scores for each feature,
and then we train the black-box model on this dataset and obtain local explana-
tions. The similarity between the feature importance from the local explanations
and the prior importance scores can measure the accuracy of local explanations
in this setting. The main benefit of this approach is that we still evaluate the
explanations of a black-box model since there is no limitations on the model,
and we can also measure the accuracy of local explanations directly.

In [16], the authors proposed their method Seneca-RC that generates data
from a polynomial function that can include varying operators such as sin or
cos in its polynomial terms. After that, a sample dataset is generated based on
the chosen polynomial function. Lastly, the algorithm returns the ground truth
importance scores for the explained instance x based on the following steps: 1)
the closest instance x∗ to x on the decision boundary of an explained model,
f , is found, and 2) the derivative of the ground truth polynomial is evaluated
at this point and returned as true importance scores for x. The main benefit of
using SenecaRC is that it has a simple logic based on the derivative for various
polynomial-based data generation processes. We show an example of Seneca-RC
in Sect. 5.5. The same study proposes other methods for obtaining ground truth
for rule-based, saliency maps, and text-based explanations.

In [7], the authors evaluate the local explanation techniques using the follow-
ing synthetic datasets with polynomial features:

1. 2-dimensional XOR as binary classification. The input vector X is gener-
ated from a 10-dimensional standard Gaussian. The response variable Y is
generated from P (Y = 1|X) ∝ exp{X1X2}.

2. Orange Skin. The input vector X is generated from a 10-dimensional stan-
dard Gaussian. The response variable Y is generated from P (Y = 1|X) ∝
exp{∑4

i=1 X2
i −4}. Figure 4 (a) shows an example of this dataset with instance

ground truth over the decision plane of Multi-layer perceptron trained on this
dataste.

3. Nonlinear additive model. Generate X from a 10-dimensional standard
Gaussian. The response variable Y is generated from P (Y = 1|X) ∝
exp{−100 sin(2X1) + 2|X2| + X3 + exp{−X4}}.

4. Switch feature. Generate X1 from a mixture of two Gaussians centered at
±3 respectively with equal probability. If X1 is generated from the Gaussian
centered at 3, the 2 − 5th dimensions generate Y like the orange skin model.
Otherwise, the 6 − 9th dimensions are used to generate Y from the nonlinear
additive model.
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(a) Orange Skin Dataset from [7] (b) Gaussian Dataset from [3] (4
clusters)

Fig. 4. Ground Truth from Synthetic Datasets represented on the decision plane of a
multi-layer perception in two trained on this dataset. The arrow represents the ground
truth importance scores. Note that the representation of the model does not agree with
prior ground truth importance scores.

In this study, after the model is trained on these datasets, local explanations
must provide feature importance scores close to the weight of the respective
features in the label-generating function. We have found some limitations of
the datasets proposed in [7]. Firstly, as we can see in Fig. 4, the ground truth
of Orange Skin is equal for all instances irrespective of their position on the
decision plane. Similar cases happen in XOR and Nonlinear additive models, as
no specific rule changes the label generation formula for specific instances. Even
though Switch Feature (dataset 4) can be considered a baseline for local ground
truth definitions as the label generation is based on each instance’s feature value
since the two Gaussian collide around the value of 0, all the features 2 − 9 can
all be considered important.

In [3], the authors propose a synthetic dataset with Gaussian clusters without
covariance between each cluster to solve the problem of datasets such as the
Switch feature (Fig. 4 (b)). The dataset allocates random feature masks that
control which features can contribute to the predicted output. As shown in the
figure, these ground truth importance scores disagree with the model’s decision
plane. For example, the cluster on the top left disregards the importance of the
feature along the x-axis, whereas the nearest decision boundary has used this
feature to separate instances, which means that it is important to the model.

Overall, the main limitation of obtaining ground truth from synthetic
datasets in [3,7,16] is that it suffers from the blame problem. We are blaming
local explanations even though proving that the explained model has learned a
representation that follows our prior importance scores is difficult. As highlighted
in the work of [6], local explanations must be truthful to the model and not the
data-generating process. In this case, we again fall into the same problem: we
cannot directly blame the explanation technique for inaccurate explanations.

Another (important) limitation of this category of evaluation measures is
that synthetic datasets do not exhibit the complexities of benchmark datasets.
Therefore, we do not gain an understanding of the effects complex datasets have
on the accuracy of local explanations.
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Ground Truth from Interpretable Models. One of the limitations of the
studies that use ground truth from datasets is that there is no guarantee that
the explained model has learned a representation by the data. As mentioned in
the previous section, explanation techniques must explain the model, not the
data. Some studies have aimed to tackle this limitation by extracting ground
truth from models directly, however, from simpler and more interpretable mod-
els. Their assumption is as follows: even though we cannot extract ground truth
from the black-box model, we can extract them from the more transparent inter-
pretable models. The main benefit of this approach is that we are extracting the
ground truth straight from the model’s representation and have no assumptions
about the datasets. The main strength of this category of evaluation measures is
we are confident that these ground truth importance scores are obtained directly
from the model and its representation we aim to explain. In these types of evalu-
ations, similar to the methods in Sect. 5.2, we can evaluate the local explanations
directly.

In [3,25], the ground truth for local explanations is extracted from the
weight of Logistic Regression models. Formally, given weights w ∈ R

M+1 and an
instance xn ∈ R

M , a logistic regression model is defined as:

P (yn = c||xn, w) =
1

1 + e− ∑M
m=0 wmxm

n

(3)

where x0
n = 1. Based on this, the vector of w is used as the ground truth

importance score for all instances. One major drawback of this ground truth is
that it is similar for all instances regardless of their feature values.

In [37], the authors highlight that the approach used by [3,25] is a baseline
for a global explanation and not local explanations as shown earlier in [13,30].
Their study proposes extracting the ground truth for local explanation tech-
niques using additive terms of linear additive prediction functions. For example,
by transforming the prediction function of Logistic Regression to log odds ratio,
they extract the additive terms as the ground truth importance scores. These
scores are referred to as Model-Intrinsic Additive Scores (MIAS). More formally,

log
P (yn = c||xn, w)
P (yn = ¬c||xn, w)

=
M∑

m=0

wmxm
n (4)

where ¬c is the complement of class c, the authors propose λm
n = wmxm

n as MIAS,
the ground truth for local explanations. We can see that in their definition, the
feature value of each instance plays a role in the local ground truth importance
scores. As we mentioned earlier, local explanations can be unique for different
instances, and therefore, the optimal local ground truth needs to include terms
specific to each instance as well. The authors show that their proposed method
can be used to evaluate local explanations of other interpretable models, such
as Linear Regression and Gaussian Naive Bayes.

There is an advantage to the evaluation methods of this category. Since
ground truth importance scores are extracted from the explained model without
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inducing any change, we can finally blame the inaccuracy of local explanations
for themselves. These evaluation methods follow a more principled approach in
which they only rely on the explained model, not as an oracle, but as a source
to extract ground truth importance scores.

However, there are other limitations associated with this class of evalua-
tion measures. The main limitation of methods that extract ground truth from
interpretable models is the explanation techniques were initially developed for
explaining black-box models. Therefore, it is not straightforward to conclude
that if local explanations accurately explain these interpretable models, they
will successfully provide accurate explanations of black-box models. Moreover,
ground truth importance scores must be defined separately for each explained
model class. Section 5.5 highlights this in an example of a synthetic dataset.

The Role of Similarity Metric. Measuring the local explanations directly
using ground truth is highly sensitive to the choice of similarity metric. This is a
critical issue that has not gained the attention of the studies in the Explainable
AI community. The Euclidean distance [4], cosine similarity [39], and Spearman’s
rank correlation [15], F1-Score [16] are among the set of measures usually used
in the evaluation studies of local explanations.

For illustration, we provide an example of comparing two local explana-
tions using Euclidean and Cosine similarity and Spearman’s rank correlation
taken from [37]. This example shows that using different similarity metrics can
lead to selecting different local explanations based on explanation accuracy.
Suppose we need to measure the accuracy of two different local explanations
φ1 = [0.21, 0.1, 0.32] and φ2 = [0.21, 0.3, 0.12] to the local ground truth score
λ = [0.32, 0.2, 0.42]. We compare the similarity of these explanations with the
ground truth:

EuclideanS(λ, φ1) = 0.179
SpearmanC(λ, φ1) = 1

CosineS(λ, φ1) = 0.99

EuclideanS(λ, φ2) = 0.28
SpearmanC(λ, φ2) = −1

CosineS(λ, φ2) = 0.81

Based on Spearman’s rank correlation, the ranking of φ1 correlates perfectly
with λ, while the ranking of φ2 negatively correlates with λ. Using this rank-
based metric, we can thus conclude that explanation φ1 is more accurate than φ2.
The Euclidean7, and Cosine Similarity instead votes in favor of φ2 as the more
accurate explanation. This is because Euclidean similarity takes the difference
between importance and ground truth scores similarly for all features. On the
other hand, cosine similarity only considers the angle between the two vectors.
For Spearman’s rank correlation, the order of features based on their importance
is the most important aspect.

7 In this example, the Euclidean similarity is defined as 1/(ε + d) where d is the
Euclidean distance and ε is the machine epsilon of Python.
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Even though cosine similarity can be the most optimal measure for data
domains such as text and image, we argue that for tabular datasets, rank-based
measures such as Spearman’s rank correlation might be more suitable for eval-
uating local explanations. This is large because feature importance is presented
to users sorted based on their importance scores in descending order in tabu-
lar datasets. In this representation, the similarity among the features with the
largest importance scores becomes more important. In addition, the rank-based
measures enable comparing feature importance scores with substantially differ-
ent mechanisms for explanations, e.g., LIME and SHAP versus Permutation
Importance. However, the optimal choice of similarity for evaluating local expla-
nations remains an open research question.

5.3 Evaluation with Model Randomization

In some studies, local explanations are evaluated based on comparing the local
explanations of an accurate black-box model versus after some randomization
(contamination) induced on the same black-box model. The assumption is that
local explanations need to show significantly different explanations for these two
models. In this category of evaluation methods, we no longer have access to or
include ground truth in evaluating local explanations.

In [1], the authors propose two randomization tests. In the first test, they
randomly re-initialize the weights of the neural networks model sequentially. In
the second test, they independently randomize the weights of a single layer one
at a time. They show that most of the local explanation techniques of neural
network models, both model-agnostic and model-based, provide similar explana-
tions for the original and randomized models. They conclude that these methods
are inaccurate for explaining the investigated neural network models.

In this category of evaluation measures, we face the blame problem again.
Studies have shown that black-box models, including deep neural networks, tend
to memorize and extract accurate knowledge even from random or corrupted
labels [23,46]. Because of this, there is no guarantee that randomizations can
largely obfuscate the workings of the black-box models enough to cause changes
to the local explanations. We can blame local explanations in these scenarios
even though the explained models can still provide meaningful predictions after
introducing randomization.

5.4 Human-Grounded Evaluation

The main focus of our study so far was on the limitations of the functionally
grounded evaluations of local explanations. In this section, we briefly describe
a set of limitations in the studies that perform human-grounded evaluation of
local explanations.

The human-based evaluations were initially suggested by [24]. The authors
proposed several ways in which human users can evaluate the explanation. One
of the most common methods is called model replay, i.e. a task in which the
human subjects are asked to replay the model, i.e., to predict the prediction
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of the instance explained [34,35,39] using local explanations. The assumption
is that if the human subjects can replay the model promptly, the explanations
can be considered accurate. In these studies, it is customary to divide human
subjects into experts of the task at hand or lay humans.

One of the main benefits of such methods is that there is also no need to
obtain the ground truth for explanations before our evaluation process. On the
other hand, there is a limitation associated with them: we cannot subjectively
measure how much of the mimicking is performed using human subjects’ prior
knowledge of data or the model. If human subjects have a poor understanding
of the model or data in the task, the poor model replay will still be blamed on
local explanations for their inaccuracy.

In other studies [29], the notion of consistency with human subjects is con-
sidered a metric for evaluating explanations. The measure represents the similar-
ity between human explanations and algorithmic local explanations. The main
assumption behind such methods is that if the similarity is large between the
local explanations and human explanations, the local explanations are accurate.
However, these methods also suffer from limitations. There are no analysis pre-
sented to evaluate whether there are complete agreements between the logic of
the explained model and human subjects in the way they solve the task at hand.
Studies have shown that humans and machine learning models rely on different
knowledge in performing tasks [5]. Because of this, we will blame local expla-
nations again even though the main underlying problem is that the model has
learned the task with a significantly different logic.

5.5 Synthetic Example

As we said earlier, all evaluation measures have different assumptions and study
different characteristics of local explanations. In simple words, they are orthog-
onal to one another. However, in this section, we show an example, taken from
[37], where all of these measures can be compared against one another from
synthetic datasets proposed by [16], the ground truth proposed [3], robustness
measures [12,22] and the MIAS scores of [37]. This is because we use synthetic
datasets trained on a Logistic Regression model.

Let Y = 2x0 − x1 be the data generation process where features x0 con-
tribute positively and x1 negatively to the label (Fig. 5). Let Seneca-RC use this
function to generate its synthetic datasets. We sample one thousand instances
from Seneca-RC’s data generation process where no extra redundant features
are added, and we set the noise level to 0.3. We train a Logistic Regression
model on this generated dataset. The decision boundary shows that overall, the
model has correctly identified that both features are important for separating
instances from different classes (Class 1 is represented by the blue color). We also
see arrows on top of each instance. The arrows represent the baseline importance
scores that each evaluation method uses for evaluating the explanation of local
explanations. Note that these arrows do not represent the local explanations but
the baselines each evaluation measure uses for evaluating the local explanations.
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The Seneca-RC ground truth importance scores are all equal to the vector,
[1,−1], irrespective of the position of the instance in the prediction space or
the decision boundary of the model. This is because the derivative of the data
generation process concerning each feature is a constant value. As mentioned
earlier, there can be a discrepancy between the label generation function and
the model representation, which is evident in this case.

The ground truth of OpenXAI [3] is also constant across all instances. This
is because the model weights are used as the baseline for evaluating all local
explanations in this approach. Based on this, all instances receive equal ground
truth scores regardless of their position in the decision space.

Unlike the other methods in our example, robustness measures do not tech-
nically have the ground truth for each instance. However, the rationale behind
these measures is to measure the effect of nullification of each feature on the
prediction of the model’s predicted output. Because of this, the arrow on top
of instances is created as follows: each feature is nullified separately, and the
absolute change in the predicted scores of the model concerning class one is
recorded. We have nullified each feature using the average values of that feature
in the dataset as it is generally practiced in tabular datasets [27,31,32]. In the
figure, we can see that for most instances, the robustness arrow does not set
any importance to the second feature on the y-axis, even though it plays an
important role in the linear boundary of logistic regression and the data gen-
eration process. Moreover, an instance will receive zero robustness by default
along an axis, i.e., for a feature, if its feature values are similar to the empirical

Fig. 5. Comparison of the baseline importance scores that Seneca-RC, OpenXAI along
with robustness measures and Model-intrinsic Additive Score (MIAS). The Seneca-RC
algorithm generated the dataset. The baseline importance score for each instance is
visualized as vectors on the top of each instance.
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average of each feature. This is because nullifying those features will not affect
the predicted output.

The Model-Intrinsic Additive Scores (MIAS) allocate different values for
instances based on the feature value and their location on the decision plane
of the Logistic Regression model. MIAS score of Logistic Regression models sets
importance to both features in explaining the log odds ratio of the model. We
can also see that the instances will have arrows toward the subspace with maxi-
mum log odds of their predicted class visualized by the shades in the background.
Moreover, the MIAS vectors of instances close to the decision boundary are more
different since the uncertainty in the model’s predicted output is larger in those
parts of the plane. This satisfied the uniqueness property as discussed in Sect. 1.

Overall, among the evaluation methods we discussed here, we argue that
MIAS scores are the most reliable ground truth for evaluating local explanations
of Logistic Regression since 1) Their baseline is sensitive to the decision boundary
of the model, and 2) MIAS scores allocate unique ground truth scores for different
instances depending on their position in the decision plane of Logistic Regression.

6 Conclusion

Our study presented a taxonomy of the evaluation methods for local model-
agnostic explanations: robustness analysis, extracting ground truth from syn-
thetic data and interpretable models, evaluation with model randomization, and
human-grounded evaluation. We provide a detailed discussion of each evalua-
tion method’s assumptions, strengths, and limitations. Through our study, we
highlighted that the significant limitation of all of the categories of evaluation
measures is the presence of a “blame problem” where we are unsure of blaming
the inaccuracy of local explanations on the explanation techniques or the black-
box model or human subjects (in the case of human-based evaluation methods).

Even though robustness analysis poses no assumption or the type of model
or data used for obtaining local explanations, it can only evaluate the local
explanations indirectly. The main limitation of robustness analysis is that we
can no longer directly blame the explanations for their lack of robustness or the
explained model if it provides wrongful predictions.

Extracting ground truth from a synthetic dataset measures the local explana-
tions directly by setting prior importance scores in the data generation process.
However, there are no guarantees that the explained model has learned these
prior importance scores. In this case, we will blame the local explanations for
inaccuracy instead of the black-box model.

Extracting ground truth from an interpretable model solves the limitation of
the synthetic datasets approaches by obtaining ground truth directly from the
interpretable model. The number of studies that use this approach is limited, but
to our knowledge, they represent the most principled approach to evaluating local
model-agnostic explanations. They are the only category of evaluation methods
that bypass the blame problem. However, they come with their limitations as
well. Since explanation techniques are built to explain black-box models, it is
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hard to conclude that they are accurate for these models by only looking at local
explanations’ accuracy of interpretable models.

Evaluation using model randomization assumes that local explanations must
provide significantly different explanations after randomizing the model weights
or parts of the black-box model. Several studies have shown that randomization
in black-box models does not necessarily reduce or change their predictive power.
In this case, we can blame the local explanations for their inaccuracy, whereas
we need to blame the black-box model.

Using human-grounded evaluation measures to evaluate local explanations
can circumvent the need for ground truth importance scores. However, we can
end up blaming local explanations for the inherently wrong intuition of the
human subjects of the datasets and task at hand or that humans and models
are solving the task at hand with different logic.

The thesis of our study is that none of the available evaluation methods in
the literature of explainability is optimal, even though they can circumvent the
blame problem in the case of ground truth via interpretable models. Moreover,
beyond the blame problem, we need to be aware of the trade-offs these evaluation
measures offer. Finding the optimal measure for evaluating local model-agnostic
explanations remains an open research problem.
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Abstract. Anomaly detection in industrial environment is a complex
task, which requires to consider multiple characteristics of the data from
industrial sensors and anomalies itself. Such data is often highly imbal-
anced and the availability of labels is limited. The data is generated in
streaming fashion, which means that it is unbounded and potentially
infinite. The industrial process may evolve over time due to degradation
of the asset, maintenance actions or modifications. The manual verifica-
tion and definition of anomaly source is a tideous task, which requires
human to carefully investigate each anomalous observation. An anomaly
detection system should consider all above challanges. In this paper we
propose a system, which addresses the discussed issues. It is applica-
ble for industrial data stream scenarios and comprises of unsupervised
anomaly detection model, resampling module and explanation module.
We consider two different approaches towards the utilization of machine
learning model – online and offline. We present our work in relation to a
cold rolling process use case, which is one of the steps in production of
steel strips.

Keywords: Anomaly detection · Data streams · Explainable Artificial
Intelligence

1 Introduction

Significant progress in the domains of Industrial Internet of Things, Machine
Learning (ML), and Big Data has presented a remarkable prospect for the devel-
opment of innovative intelligent systems that can effectively assist industrial pro-
cedures. An inherent concern in industrial systems, which can be tackled through
the utilization of Industry 4.0 technologies, revolves around real-time anomaly
detection. Anomalies refer to deviations from the typical operational states that
possess the potential to significantly disrupt production processes, leading to
unplanned downtime, compromised product quality, or increased safety hazards.
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The implementation of an anomaly detection system is a complex task,
requiring one to carefully consider various challenges. First, the anomalies usu-
ally constitute a very small fraction of the data, which makes the dataset heavily
imbalanced. Additionally, it is difficult to determine all potential kinds of anoma-
lies, even for existing industrial sites, as the anomalies tend to be very diverse.
Second, except for the rarity of anomalies, another problem might be the rarity
of some operating conditions. By operating conditions, we understand different
states of the machine, which are caused not due to deviations in the process itself,
but the deviations in the characteristics of the environment which influence the
observed data. In case of cold rolling, the different operating conditions can be
regarded as the processing of different products, which differ by thickness, width,
reduction or steel composition. The family of products in a manufacturing site is
often composed of certain number of popular products and some number of rare
products (operating conditions), which are not well represented in the data. This
is another dimension of data imbalance in the industrial setting. If the problem
is not carefully considered, then the anomaly detection system could treat all
rare operating conditions as anomalies, even if the issue does not originate in
any malfunctions of the production site. Third, data in industrial processes are
continuously generated at high speeds, creating large volumes of data that need
to be processed in a limited amount of time [9]. The industrial setting may evolve
with time due to various reasons, e.g., production of new type of product, slow
degradation of the manufacturing line, changes in the asset. This evolution of the
data over time is often referred to as concept drift [9]. Last, the ML models are
often considered as black boxes, and humans are not able to follow the reasoning
of the algorithm. For anomaly detection in an industrial environment, this might
be a big issue, as we usually deal with high-dimensional data, where the source
of anomaly might not be visible superficially. Therefore, the system should pro-
vide not only an alarm in case of anomaly but also some kind of explanation of
its reasoning. This is especially important if there might be multiple sources of
anomalies in the system.

To address the issues described above, we propose a system for the detection
of anomalies in streaming data from industrial processes, which comprises of
anomaly detection model, resampling module and explanation module. We do
not restrict the proposed solution to any specific type of industrial equipment;
however, we focus on the type of anomaly detection tasks, where we deal with
high-dimensional data and unknown number of potential anomaly sources. We
present the solution on the use-case of cold rolling process, which is one of the
stages in steel production. However, we believe our method is suitable for other
industries such as manufacturing, energy, mining, but also transportation or
whenever there is an evolving system.

The remainder of the paper is organized as follows. In Sect. 2 we briefly
discuss the current state of knowledge in the related fields. In Sect. 3 we present
our use case, which is the steel rolling process. In Sect. 4 we present the proposed
system for anomaly detection. In Sect. 5 we conclude the work and discuss the
potential directions of further research.
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2 Related Works

In this section we provide a brief overview of anomaly detection, data streams,
and explainable artificial intelligence.

2.1 Anomaly Detection

Anomaly detection, often referred to as outlier or novelty detection, is a process
of identifying the data points that significantly differ from the rest of the data
in terms of their characteristics. In real-life applications anomalies may be a
symptom of invalid data, e.g. missing or extreme values, but also an indication
of system malfunctions. The possibility to detect early signs of anomalies is very
important for the industry, as they can gain significant benefits from preventing
the anomalous states of machines. The potential issues that may arise due to
such states include the breakdown of an asset (which leads to increased main-
tenance costs and unplanned downtime), production of downgraded material,
and safety hazards. Each of the listed problems can cause significant financial
or reputational losses; therefore, we believe that potential savings significantly
surpass the cost of implementation of anomaly detection system.

The special characteristics of the anomalies, that is, their rarity, diversity,
and inpredictability, are a major issue from point of view of machine learning
models. Additionally, the availability of labels in real-life situations might be lim-
ited, which hinders the utilization of supervised learning methods. The discussed
problems can be solved by switching from supervised ML methods to semi-
supervised or unsupervised methods. These methods require little or no labeled
data for training the models, which solves the problem of a limited number of
labels. Unsupervised anomaly detection methods, depending on their characteris-
tics, can be divided into similarity-based, one-class classification, isolation-based
or deep learning categories [17]. Similarity-based algorithms, such as cluster-
ing algorithms or LOF [5] classify the points based on their neighborhood. If
an observation does not have sufficient number of neighbors, it is classified as
anomaly. A classification of one class such as OCSVM [21] aims to determine the
characteristics of a normal class; if the observation does not follow the learned
pattern, it is considered anomalous. The example of an isolation-based method
is Isolation Forest [16]. The aim of the algorithm is to partition a dataset in
such a way that an observations are isolated with the smallest possible number
of partitionings. The points which require fewer divisions (which is equivalent to
a smaller average depth of a tree) are given higher anomaly scores. The state-
of-the-art deep learning methods, which are used for anomaly detection, are
autoencoders [20] (AEs) and generative adversarial networks [12] (GANs). The
general idea of AE is to encode the observations into latent representations and
then decode them to obtain the original observation. The observations which
are not well-reconstructed can be treated as anomalies. GANs use networks
known as discriminator and generator in order to distinguish between normal
and abnormal data.
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2.2 Data Streams

Data streams learning is a field of machine learning that focuses on process-
ing data in real-time, which is more suitable for data coming from a industrial
environment than traditional batch learning. The main characteristics of a data
stream are [11]:

– The data is generated continuously, which means that the stream is infinite
in nature.

– The data distribution may vary over time.
– The labels for the new data may be delayed or inaccessible.

To account for the characteristics listed above, a machine learning model in
streaming setting should meet some specific requirements. Most importantly, the
model should meet the following criteria [7,9]:

– Data are processed only once upon arrival.
– The data are processed with limited memory and time, preferably before the

new observation arrives.
– Its time and memory requirements do not depend on the number of observed

data points (the complexity of the model should not increase with time).
– It has similar performance to its batch learning equivalent.
– It possesses the ability to adapt to new data, but can also remember relevant

information from the past.

The majority of the state-of-the-art ML models, e.g. Random Forest, Support
Vector Machine, or k-Means, are not designed for the online learning, as they
require access to all data at time of training. For the purpose of online learning,
alternative implementations of well-known ML algorithms were proposed, e.g.,
the alternative to Random Forest is Adaptive Random Forest [18], which uses
Hoeffding Tree [6] as a single classifier.

However, offline learning algorithms might also be used in a streaming envi-
ronment, provided that they meet the requirements listed above. Particularly,
these algorithms should be re-trained upon any relevant changes in the data
distribution are observed (concept drift), which can be monitored using drift
detection methods e.g., Early Drift Detection Method (EDDM) [2], Adaptive
Windowing (ADWIN) [4] or others. To achieve this, one needs to store some
part of the most recent data in the memory, which will be accessible when the
need for retraining occurs. What is also important is that the retraining of the
model should have negative influence on the online predictions, i.e., the retraining
of the model should not block the threads used for processing new observations.

One of the challenges, when dealing with streaming data, is the problem of
pattern forgetting. It is the situation where the ML model loses the knowledge
it has gained at some point in the past, which is still relevant. The simplest
scenario is when we retrain the offline model upon concept drift and we lose all
the knowledge of the previous model. There are several approaches which can be
used to tackle this problem. One solution is to use the ensemble of the models,
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where each model is a separate instance, and the prediction is made using, e.g.,
majority vote [15]. When one of the models is outdated, it is re-trained, but
the other models retain their knowledge. Another approach is to use domain
adaptation, instead of retraining the model on new data. The domain adaptation
aims at aligning the source domain (on which the model was trained) with the
target domain (on which the predictions are made) [8]. Research on the use of
domain adaptation for concept drift handling is not well established but yields
promising results [14,23].

2.3 Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) methods aim to gain some insight into
the decisions of the models regarded as black-boxes. For complex models that use
deep learning or a tree ensemble, the human has no cognitive ability to follow
the decision process of the ML model, which might raise some issues. In the
anomaly detection problem, when we have a complex system under observation
with multivariate data, the model’s user may not be able to easily determine the
reason for the anomaly. The utilization of XAI methods can help indicate which
measurements are perceived by the anomaly detection model as anomalous and
thus guide the model’s user to perform necessary corrective actions.

The field of XAI has gained a lot of attention in recent years due to the rapid
development of ML methods, especially deep learning. The taxonomy of XAI is
very broad and divides explainability methods based on factors such as type of
explanation (feature importance, counterfactual, example-based etc.), the scope
of explanation (local, global), applicability (model-specific, model-agnostic), or
stage of computation (ante hoc, post hoc) [22]. Some of the state-of-the-art XAI
methods include LIME [19], SHAP [18] or Counterfactual Explanations [24].
However, for streaming data, it must be taken into account that some of the
methods like LIME or SHAP require access to background data, which might
not always be available. In such cases the XAI methods, which do not have such
requirement, like Counterfactual Explanations, should be considered. Another
robust option for streaming setting is to use the surrogate models, which are
interpretable, so that human can follow their reasoning. For streaming data,
some of the algorithms could be considered as AMRules [1], which generates
rules for each prediction or Hoeffding Tree [6], which builds a single decision
tree that should be relatively easy to follow.

3 Cold Rolling

3.1 Mill Description

Our use case is related to a steel manufacturing process, more specifically cold
rolling, which is most often preceded by hot rolling and pickling. It is a man-
ufacturing method that aims at reshaping the steel strip by reducing its thick-
ness. Additional results of the process include the increase in the strength of
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the material (which causes the necessity of annealing afterwards) and imparti-
tion of desired surface finish. A set of rollers typically consists of two work rolls
(which are in direct contact with a steel strip) and two backup rolls. Remaining
equipment of the mill, which is worth mentioning, includes uncoiler, recoiler,
lubrication system, bending system, and electrical motors.

The manufacturing procedure begins with the unwinding of the steel coil
on the uncoiler, and the strip gradually moves alongside the mill. The head of
the strip is placed between the work rolls, and interstand tensions are applied
to the strip. When the head of the strip is gripped by recoiler, the process
accelerates and actual rolling begins. The reduction of strip thickness is achieved
by applying pressure towards the strip with the use of work rolls. The whole
manufacturing process is controlled by a programmable logic controller (PLC)
with a human user able to manually perform some corrections. The superior task
of the PLC is to achieve predefined thickness at the mill exit, while preserving
process boundaries. The dynamics of this process necessitates rapid responses to
minor fluctuations in the measured thickness. Proper maintenance is extremely
important to guarantee the safety and quality of the process. The deviations of
the rolling parameters from the normal working conditions may lead to many
problems, e.g., flatness issues, scratches, thickness deviations, or strip breaks.

Fig. 1. Schematic diagram of tandem cold mill with 4 rolling stands [13].

The cold rolling mill investigated in our investigation is located in Kraków,
Poland and is a part of ArcelorMittal company. It consists of four pairs of rollers,
which gradually decrease the thickness of the steel from about 30% to 80% in
total. The simplified diagram of our use-case production site is presented in
Fig. 1. From the production line, we receive the sensor measurements at 1Hz
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sampling frequency. The most relevant features include the metadata of the steel
(grade, dimensions), work roll speeds, applied reductions, rolling forces, rolls
bending, tensions, gaps, lubrication parameters (flow, pressure, temperature)
and motor load (voltage, current). The observed values of the process may vary
greatly depending on factors, e.g., the demanded rolling schedule, the wear of
the work rolls, the condition of the lubricant, or the human corrections.

With respect to anomaly detection in the cold rolling process, there are few
aspects of the data set which require a more detailed explanation. Most of the
rolling parameters highly depend on the material being rolled, so the working
conditions can change drastically from coil to coil if there is significant change
in steel metadata. Additionally, the wear of the work rolls is a relatively rapid
process and the replacement procedure of the work rolls is usually performed
few times per day. As the characteristics of the work rolls may be different, their
replacement may lead to a noticeable change in the observed working conditions.

Fig. 2. Distribution of selected product metadata

3.2 Data Description

From a data point of view, an important issue is the fact that the data is highly
imbalanced. This imbalance reveals itself in two dimensions. The first is the
ratio of anomalies to normal observation, which is usually below 1%, which is a
typical case in anomaly detection tasks. The second is high imbalance in the coil
metadata – generally there are few types of ’common’ products, which are often
rolled and are well represented in the data. Apart from them, there are dozens
of uncommon products, which are produced irregularly and in small amounts,
leading to poor representation in the data. Figure 2 presents the distribution
of the main characteristics of the product. In such a scenario, there is a risk
of overfitting the model to the products well represented in the data, with the
other ones automatically considered as anomalies (which is not at all certain).
To tackle this issue, a resampling algorithm should be included in the training of
the anomaly detection model, to ensure that all kinds of product are sufficiently
represented in the training data. On the other hand, the problem of rarity of
explanations can be easily solved using unsupervised methods, where the model
learns only the normal behavior of the mill and assumes data that do not fit to
the learned distribution, to be anomalies.
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4 Proposed System

We propose a system that can be used for the detection of anomalies in data
streams. Although we focus on the process of cold rolling, which is our use
case, we believe that the following approach can be adapted to wide range of
industrial applications. Our objective is to propose a flexible solution, which
is not restricted to any specific ML methods, so that selection of algorithms
can be done individually depending on the use case. We consider two different
approaches towards detection of anomalies in streaming data. The first approach
assumes that we do not store any observations in the memory and the algorithm
works using an online learning methodology. The second approach assumes we
are able to store some limited amount of data in the system memory and offline
learning algorithms can be applied (with option to adapt them upon concept
drifts). The proposed system is the extension of the anomaly detection method
we have proposed in [13].

4.1 Main Assumptions

Regardless of the selected approach, the main assumptions of the system remain
the same. The system consists of five main components, i.e., data stream,
anomaly detection model, resampling module, XAI module, and human opera-
tor. Additionally, in the offline learning, we use a buffer, which stores the selected
data, and concept drift detection, to detect changes in data distribution.

Data Stream. The data arrive at the system at any time interval, i.e., we
do not need to have any specific sampling frequency. Each observation contains
the sensor measurements from the line, which are processed by the system. It is
assumed that the obviously invalid observations, e.g., sensor temperature indica-
tion 0K due to sensor fault, are filtered during preprocessing and not processed
by the anomaly detection model.

Anomaly Detection. The anomaly detection model is designed as an unsu-
pervised learning algorithm, which processes each observation received from the
data stream. First, the model predicts the label of the observation (normal or
anomalous). If the sample is considered normal, the model passes this observa-
tion to a resampling module for further processing. On the other hand, if the
sample is predicted to be anomalous, it is passed to the XAI module and is not
considered in future training. The label of the observation is assigned on the basis
of the anomaly score. The mean anomaly score μ and its standard deviation σ
are stored as a moving average. When the predicted anomaly score exceeds the
selected threshold, e.g., μ + 3σ, the observation is marked as anomaly.

Resampling Module. The task of the resampling module is to increase the
number of rare products and decrease the number of popular products, which
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the anomaly detection model observes during training. To achieve this resam-
pling module should utilize selected clustering algorithm, which classifies each
observation to one of N operating conditions (clusters). The resampling is then
performed based on the population of each cluster; minority clusters are oversam-
pled, while majority clusters are undersampled. Potential methods for resampling
include, but are not limited to, random sampling or C-SMOTE [3].

XAI Module. Explainable Artificial Intelligence methods are used to determine
the source of the anomaly, so that the human can easily understand the reasoning
of the anomaly detection model and take the necessary corrective actions. In a
complex process with hundreds of measurements, a simple anomaly indication is
not enough, as the human operator may not be able to recognize the symptoms of
the anomaly by himself quickly. Highlighting most relevant features related to the
anomaly prediction can ease the job of the operator and shorten time required
to implement corrections in the system. In terms of generating explanations,
anomaly detection seems to be fairly easy task, as there are only two possible
labels (normal or anomaly), which actually limits the scope of explanation. The
explanation should answer why the model has predicted that the observation is
anomaly rather than a normal observation. We assume that only anomalies are
explained, since it makes little sense to explain why the sample is normal rather
than anomaly. For XAI methods, we propose to use explanations in the form of
feature importance, e.g., SHAP [18], counterfactuals [24], or rules [1]. However,
other methods which apply to the given task can also be considered.

Operator. The task of the operator is to watch for the anomaly signals raised by
the model and to take the necessary actions to resolve the problem. As described
above, the operator is equipped not only with the prediction of the model, but
also with the explanation, so that his job is to assess the situation based on the
received information. We also consider including the operator in the loop, so that
he will be able to indicate the incorrect predictions of the anomaly detection sys-
tem (e.g. false positives), which could shorten the process of adapting to concept
drifts. However, the implementation of such human-in-the-loop functionality is
outside of the scope of this system.

4.2 Online Learning.

In the online learning we run the training procedure each time the observation
arrives at the system. As described in Sect. 4.1, the training procedure begins
when the sample is labeled by the model as normal observation. The sample is
then passed to the resampling module, which will generate more similar instances
or dismiss the observation. Otherwise, the sample might be omitted from the
training (undersampled). Although there is no concept drift detection method
included in the main components of the online learning system, some of the
algorithms may utilize those methods, e.g., Adaptive Random Forest [10]. In
the online learning approach, we assume that no observations are stored in the
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memory, so they are discarded soon after the training procedure ends. The online
learning system is presented in Fig. 3.

Fig. 3. Online learning system

4.3 Offline Learning

In the offline learning approach, we assume that the static model (or ensemble
of models) is used to predict anomalies. The model is initially trained on the
acquired data, and the anomaly score is monitored by the concept drift detection
method. Each normal observation is passed to the resampling module, similarly
to the online learning approach, and over- or undersampled. The selected samples
are then stored in a limited size memory, to be used for future training. When
the concept drift is detected, the model is discarded and the new one is trained
on the data from the buffer. For ensemble models, each individual model is
equipped with its own drift detection method, so that only outdated models are
discarded, not the whole ensemble. The offline learning system is presented in
Fig. 4.

4.4 Preliminary Results

In this section we present the preliminary results of our studies. Some of our
results on the topic of anomaly detection in streaming data from cold rolling
process were presented in our previous study [13]. The results have shown that
the concept drift is a major issue in learning the characteristics of cold rolling
process, as the data tends to deviate significantly. Figure 5 presents the evolu-
tion of the anomaly score in the analyzed period using three different learning
approaches: offline learning, offline learning with concept drift detection (and
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Fig. 4. Offline learning system

model retraining) and online learning. As the anomaly detection model is put
into production (after initial training), the anomaly score is comparable among
all the considered approaches. However the offline models deteriorate with time,
which is reflected by increased anomaly score. The retraining of the offline model
allows to reduce the anomaly score and hence adapt to new characteristics of
the data.

Fig. 5. Evolution of mean anomaly score (sliding window) for different learning
approaches.

To present the use of XAI methods in the anomaly detection system, we have
employed SHAP [18] method, which was used to show which features are respon-
sible for high anomaly scores. The SHAP method assigns an importance value
to every feature. In our case, where the target prediction is the anomaly score
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(high values indicate anomalies), the higher SHAP value of a given feature corre-
sponds to its higher contribution to anomaly score. Figure 6 presents an example
of the anomaly, which was predicted by the anomaly detection model together
with the SHAP values of some selected features. In this example, anomaly score
greatly increases on the 200th observation, meaning an anomaly is detected. By
observing the SHAP values of each feature, we can find out that the rolling speed
at first stand has supposably high contribution to the anomaly score. The other
two presented features does not show any significant impact on the increased
value of anomaly score.

Fig. 6. Example of anomaly score predictions and SHAP values assigned to selected
features

5 Conclusion

In this paper, we have proposed a system for anomaly detection in industrial data
streams. The proposed system comprises such components as anomaly detec-
tion model, resampling module, and XAI module. Each module is designed to
deal with specific tasks for data streams and anomaly detection. The anomaly
detection model uses an unsupervised learning approach to classify the incoming
observations as normal or anomalous. Based on the assigned label, the samples
are passed to either resampling module (normal) or XAI module (anomaly).
The resampling module is used to balance the data set so that rare operat-
ing modes are not underrepresented during model training. The output of the
resampling module is used for training the anomaly detection model. The XAI
module is used to explain the reasoning of the model when the sample is classi-
fied as anomaly. This is done to help the human operator understand the reasons
behind the anomaly and allow him to quickly take corrective actions. In our sys-
tem, two distinct approaches are considered. First, the online learning approach,
which uses data for training as soon as it arrives at the system and discards it
later. Second, the offline learning approach, which trains the model in an offline
manner and allows retraining it when the drift is detected. We have shown some
of our preliminary results on the cold rolling use case, with the emphasis on the
comparison of different learning approaches. Moreover, we have presented how
the SHAP method can be used to gain insight into model’s reasoning.
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In future work, we plan to implement the described system in an object-
oriented way, so that each component is easily replaceable. We decide for this
approach, so that we are not limited to any specific methods, but rather a group
of potential methods from which the system can be built. Additionally, we want
to extend our system to include the human-in-the-loop functionality, so that the
operator will have direct impact on the training of the model.
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Abstract. In many practical applications data used for training a
machine learning model and the deployment data does not always pre-
serve the same distribution. Transfer learning and, in particular, domain
adaptation allows to overcome this issue, by adapting the source model
to a new target data distribution and therefore generalizing the knowl-
edge from source to target domain. In this work, we present a method
that makes the adaptation process more transparent by providing two
complementary explanation mechanisms. The first mechanism explains
how the source and target distributions are aligned in the latent space of
the domain adaptation model. The second mechanism provides descrip-
tive explanations on how the decision boundary changes in the adapted
model with respect to the source model. Along with a description of a
method, we also provide initial results obtained on publicly available,
real-life dataset.

Keywords: Explainable AI (XAI) · Domain adaptation · artificial
intelligence

1 Introduction

Domain adaptation (DA) aligns different but related domains to leverage all the
available knowledge together. Typically, a source domain with an abundance
of training data is used to enable models to generalize effectively in another
domain, called a target domain [5]. This capability makes domain adaptation a
suitable approach for overcoming the challenges of limited labeled data in many
practical applications, and it has demonstrated significant success in addressing
real-world problems [13]. The main challenge of DA is how to map both input
data distributions, given the data shift between the source and target domains,
into a common latent space. Deep domain adaptation [14], which covers a lot of
recent work, aims at learning this transferable representation using deep learning.
Similar to any deep learning model [1], deep domain adaptation techniques are
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considered black-box models, and understanding the adaptation process between
source and target domains is challenging. In particular, explaining the adaptation
process is an important step in many practical settings for ensuring trust and
acceptance from the end user.

The success of domain adaptation depends on the difficulty of transferring
knowledge from the source domain to a “different but related” target domain [12].
Neither of these two terms (“different” and “related”) is generally well-defined;
those concepts highly depend on the task at hand and are often impossible for
domain experts, not well-versed in data science, to grasp fully. Surprisingly, these
concepts have received limited attention in the existing literature [15]. In particu-
lar, there is a lack of discussions on these aspects from an explainability perspective
– how to convey to humans key knowledge about the adaptation performed by a
model. We claim that explainability can help in describing, in a meaningful way,
the domains’ variations, discrepancies, and similarities.

When performing DA, one of the most common techniques is to learn a
shared feature representation that aligns both domains with each other. The final
prediction model operates within this shared feature space. Understanding how
this shared feature space is constructed is crucial to comprehend the differences
between the domains and how the DA model addresses these differences. It
is particularly important to focus only on regions of feature space that affect
decision boundary in the adapted model, i.e., regions from the target domain that
are incorrectly classified by the source model; discrepancies that are irrelevant
to the decision-making should be hidden not to distract the expert. The second
important aspect of domain adaptation is how the decision boundary differs
between the original model (trained only using the source domain) and the
adapted model (trained using both domains). Given that the additional data is
likely to affect the decision-making, possibly by identifying new discriminative
patterns, a full-picture explanation needs also to highlight those changes.

This paper proposes a model-agnostic explanation, which allows us to ana-
lyze the adapted model from two complementary perspectives explained above.
First, it provides an explanation of the feature extraction process by generating
an approximation of the transform that the DA performs to align two domains.
Second, it gives insight into the changes in a decision boundary in the adapted
model, compared to the source model. This work is the first attempt at explain-
ing the meta-level of the domain adaptation mechanism. The expert can directly
use this knowledge to gain more understanding of the technical aspect of adapta-
tion (model debugging) but also to obtain information about semantic relations
between domains that the adaptable mechanism encoded and the explainable
method revealed (knowledge discovery). For example, if rich knowledge about
the source domain exists, but little is known about the target domain, such a
descriptive summary linking source and target domains through the lenses of an
adapted model clearly brings new insights and opportunities for data analysis.

The rest of the paper is organized as follows. In Sect. 2 we describe current
trends at the intersection of explainable AI and DA. In Sect. 3 we introduce
the theoretical background of our method and demonstrate it on a simple 2D
use-case. The more advanced case-study that involves explanation of a domain
adaptation in the area of network intrusion detection is presented in Sect. 4.
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Finally, we summarize our work in Sect. 5 and provide future possible extensions
and application of our method.

2 Related Work

Explainable Domain Adaptation has been approached from different perspec-
tives in the literature. In this section, we focus on the use of explainable methods
as a tool for performing DA. Typically, some explanation is provided for every
domain, explaining the model or data, and then the explanations are used to
adapt the domains. In this regard, the authors of [11] propose an explanation-
guided training strategy, specifically focusing on the Cross-domain Few-shot
learning mechanism. To achieve this, they utilize LRP (Layerwise relevance prop-
agation) to construct a weight vector that indicates the relative importance of
features in the prediction process and feeds it into the classifier. By downscaling
the weights of features with lower LRP values, they ensure that the classifier
pays more attention to the features deemed more important. The authors of [18]
also employ the concept of explainability, specifically saliency maps, as a tool
for conducting domain adaptation. The proposed method in [18] utilizes saliency
maps to create a strong influence on classifier prediction, forcing it to prioritize
attention to specific regions. As a result of being forced to focus primarily on
these salient regions, the model will focus more on features that are domain-
invariant while neglecting features that are domain-specific (such as background
information). The emphasis on domain-invariant features facilitates the map-
ping of the source and target domains so that source domain information can
be used to make accurate predictions in the target domain. Such an approach
focuses primarily on explaining the domains rather than explaining how they
are adapted.

Designing DA methods that are inherently explainable is another direction,
although very few papers have been published in this area. The proposed method
in [7] explains the prediction of the output of the test samples based on the pro-
totypes of source and target domains. The method focuses on aligning the pro-
totypes between the domains, ensuring that prototypes belonging to the same
class are closer to each other and farther from prototypes of other classes. Fur-
thermore, a prototype projection layer is introduced to map the prototype vec-
tors into visually interpretable images, enhancing human understanding of the
model’s inner workings. Such methods provide explanations for final predictions.
However, they adapt source and target domains according to their predefined
rules. Thus, the explanations provided by such approaches are aligned with what
is injected into the DA model for adaptation.

In the paper [16], the authors present a method to explain DA by highlight-
ing the impact of source samples on predicting a target sample. To achieve this,
they introduce an interpretable deep classifier and integrate it into the frame-
work of Domain-Adversarial Neural Networks (DANN). The classifier works by
measuring the distance between source and target samples resulting in inter-
pretability. In summary, the proposed method provides insights into the role of
source samples in the DA process.
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All of the aforementioned works focus either on explaining the final adapted
model or using explanations in the process of adaptation to enhance it. In our
work, we focus on explaining the adaptation itself; hence we provide explanations
in the form of transform vectors that approximate the adaptation process and
describe shifts in decision boundaries between source and adapted models. In
the next section, we describe how we achieve that in more detail.

3 Method

In our work, we focus on descriptive explanation mechanisms that capture two
aspects of domain adaptation: domain alignment and decision boundary update.
In Fig. 1, we present how our explanation modules fit into the architecture of
the most common domain adaptation model. The first module is responsible for
explaining the latent space adaptation mechanism by providing a transform (or
a set of transforms) that the feature extractor performs on the original data
to align source and target domains in the latent space. The second module is
responsible for explaining how the decision boundary changes in the adapted
model in comparison to the source model.

Fig. 1. Explainability modules in the architecture of the domain-adapted model. The
first module describes the transform performed by the feature extractor in order to
align domains in latent space. The section module describes the changes in the decision
boundary.

In both cases, the explanation Φ for an adapted model Ma with respect to the
source model Ms is defined as a vector ΦMs→Ma = (v1, v2, . . . , vn), where vi ∈ R

is a value associated with the feature i. In the case of the feature space adap-
tation, the (v1, v2, . . . , vn) represents a transform vector that aligns the source
and target domains in the latent space, while in case of the decision boundary
adaptation, the vector represents the change in the separation hyperplanes in
the source and the adapted model. In the next paragraphs, we describe how the
explanations for these two modules are constructed.

3.1 Explanation of a Feature Space Adaptation

One of the tasks of adaptable models such as DANN is the discovery of latent
space representation of the input data that makes the source and target domains
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indistinguishable. This stage is often referred to as feature extraction because the
latent space becomes the new feature space for both source and target domains.
In our work, our aim is to explain what is an interpretation of such an alignment
in the input space, i.e., what transform (v1, v2, . . . , vn) of the target domain
input space makes it indistinguishable from the source input space.

To solve this problem, we first select unaligned samples from source and target
domains. We are interested in samples Xe = {xi ∈ Xs ∪ Xt : Ms(x1) �= Ma(xi)},
where Xs are source domain samples and Xt are target domain samples. Next, we
build a classifier C that is trained to distinguish samples from Xe as either source
domain samples or target domain samples. In this step, we do not use latent space
representation of the samples, where they are indistinguishable, but operate on
original input space.

Based on the classifier C, we define counterfactual sub-spaces for each sample
from the target domain. The counterfactual subspace for a sample xi : C(xi) = l
is a set of samples Xi

cf ⊆ Xe such that for the majority of samples from Xi
cf

the C(xj) �= C(xi). The counterfactual sub-spaces are constructed with LUX
explainer [2], which uses a decision tree to partition input space into homoge-
neous areas with respect to class label and returns counterfactual sub-spaces by
traversing the decision tree in a search for partitions that contain a majority of
samples from opposite class, i.e., C(xj) �= C(xi). It is worth noting that we do
not define a counterfactual as the nearest sample from the input space with the
opposite class label, as this approach is prone to noise. Instead, we are inter-
ested in finding all of the groups of counterfactual samples, which form more
stable and representative counterfactuals than single nearest instances. This is
also motivated by the fact that later in our method we move the analysis to the
latent space, where similarities from input space do not have to be preserved.
This step can also be used to obtain an explanation of the differences between
the domains in the input space, as shown in Fig. 2.

In the subsequent step, we transform each sample xi and its associated coun-
terfactual subspace Xi

cf into latent representations, becoming xi and X
i

cf respec-

tively. Then we select the nearest neighbor xcf ∈ X
i

cf of xi, which now forms
a pair (xi, xcf ) and so can be easily traced back to its original input space rep-
resentation (xi, xcf ). Finally, for each sample, we calculate the transform vector
(v1, v2, . . . , vn) as a difference between its real representation and the real repre-
sentation of a nearest latent counterfactual: xi−xcf . Due to the fact that the trans-
form performed in the adaptation model might not be linear, we cluster detected
instance-based transforms according to cosine similarity as depicted in Fig. 2.

In the case of low-dimensional space, the visualization as presented in Fig. 2
is satisfactory as a way of presenting the explanation. In higher-dimensional
spaces, we adapted the SHAP waterfall plots to depict the transformations. In
Fig. 3, the example waterfall plot for the transform of one of the clusters from
Fig. 2 is presented.

It is worth noting that the waterfall plot from Fig. 3 transfers the information
about the counterfactual explanations, as it is built based on the counterfactual
sub-spaces Xcf discussed earlier in this section. In other words, the transform
depicted in the plot is a generalized version of a counterfactual explanation for
a whole cluster of data.
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The transform clusters defined in this stage are used as input for the phase
of explaining the decision boundary adaptation.

3.2 Explanation of a Decision Boundary Adaptation

In the explanation of a decision boundary adaptation, we focus on describing how
the decision boundary changed between the source model Ms and the adapted

Fig. 2. Visualization of a transform-based explanation for feature space adaptation.
On the left-hand side, there is a decision tree generated by the LUX algorithm that
divides the space into two homogeneous subspaces and helps in defining counterfactuals.
On the right-hand side, there are transforms in the input space, conditioned on their
representation in latent space.

Fig. 3. Visualization of a transform-based explanation for feature space adaptation
with SHAP-like waterfall plot. Three important pieces of information can be read from
the plot: 1) how many transform clusters are there in the data 2) what are cluster
centroids defined by the origins of bars in the plot, and 3) the transform itself depicted
as colored bars which define a shift in dimension represented by a particular feature.
(Color figure online)
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model Ma. The decision boundaries of Ms and Ma are assumed to be non-
linear and possibly complex; therefore, we approximate it locally with a linear
interpretable model such as LIME. To achieve that, we use transform clusters
defined in previous steps as initial samples for which we calculate two approxi-
mations of decision boundaries with a local linear surrogate model: one for Ms

and one for Ma. As a result, we obtain two vectors of coefficients (θs1, θ
s
2, . . . , θ

s
n)

and (θa1 , θa2 , . . . , θan) which define the hyperplanes perpendicular to them. Such
a situation for the toy example used in this section is presented in Fig. 4. The
yellow lines represent decision boundaries for the source model (solid line) and
the adapted model (dashed line). The other straight lines represent the linear
approximations of the decision boundaries for particular transform cluster points
(different colors for different transform clusters). The arrows are associated with
each transform clusters and are vectors perpendicular to the decision boundary,
which locally approximate the Ms and one for Ma boundaries. From the visual-
ization of the vectors, one can immediately notice that for both of the transform
clusters, the decision boundary has flipped by more than 180◦.

Fig. 4. Linear approximations of decision boundaries for Ms (solid line) and Ma

(dashed lines) and corresponding vectors that define these hyperplanes. Arrows repre-
sent the contribution of features according to LIME for clusters of transforms. Dotted
lines – adapted model, solid lines – source model.
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Although such a visualization is straightforward for simple cases, it becomes
infeasible for the multidimensional case. In such a situation, we adapted the
summary plot from SHAP plots that shows the variant and invariant features
for the domain adaptation procedure, as shown in Fig. 5. The smaller the value
associated with the feature, the smaller the change of the decision boundary
related to this feature in the source and adapted models. For instance, in Fig. 5
one can observe that for both transform clusters the x2 attribute is considered
invariant, while x1 variant feature. This means that the biggest change in the
decision boundary in the adapted model was made along the feature x1 , which
is also visible in Fig. 4.

Fig. 5. Summary plot for decision boundary comparison presented in Fig. 4. The low
values are associated with invariant features, while high values denote the variant
features.

In the following section, we demonstrate the method on a real-life, multidi-
mensional dataset.

4 Case Study

For the evaluation study, we selected real-life multidimensional datasets,
CICIDS17 [9] and InSDN [4], from the computer network security area. These
two datasets are collected using the same network monitoring tools resulting in
homogeneous feature sets [17]. Despite sharing the same feature set, these two
datasets differ greatly from one another due to two factors: they are collected
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from two different networks, and the existing attacks in each dataset are dif-
ferent. This characteristic of these datasets makes them suitable for performing
DA. As a source domain dataset, we used the CICDS17 dataset, and as a target
domain dataset, we used the InSDN dataset.

Datasets include samples for different attacks (5 attacks) that can be used for
multilabel network intrusion classification. However, in order to have the same
label set in different domains (while keeping the divergence between them), we
changed it to binary classification. We altered the labels of all of the differ-
ent types of attacks to be abnormal state focusing on building a classifier that
distinguishes this state from normal state.

First, we trained a model on the source dataset (CICIDS17) and evaluated
it on both source and target dataset (InSDN). We obtained F1 scores of 0.96
(macro average 0.95) and 0.22 (macro average 0.25), respectively, which indi-
cated that in order to achieve adequate performance on the target dataset, an
adaptation to a new domain is required. We used the CCSA algorithm [8] to
perform the adaptation and achieved F1 scores for the source and target domain
of an adapted model equal to 0.96 (macro average 0.96) and 0.99 (macro average
0.99), respectively, proving that the adaptation was performed correctly.

Next, we applied our method to explain the adaptation process. We distin-
guished the sets of samples Xe from the target domain that are misclassified by
the source model. Then we created the interpretable classifier C (the left plot in
Fig. 6) that distinguishes between the domains in the input space. This classifier
was later used to generate the counterfactual sub-spaces Xi

cf based on which we
obtained explanations in the form of cluster transforms. The generated cluster
of transforms are presented in the right-hand graph in Fig. 6.

Fig. 6. Explainable decision tree (on the left) describing the most discriminative feature
that allows for distinguishing between source and target domains. Transform visualiza-
tion for the top five most important features (on the right) depicting how the adaptation
aligns domains in a feature space.
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From these results, several conclusions can be drawn. First, the most discrim-
inative feature that makes the two domains different is the Fwd_Seg_Size_Min
feature. In the target domain, the value of this feature is much lower than in

the source domain. Our method detected five distinct cluster transforms (the
optimal number of clusters was obtained by the analysis of silhouette score and
K-means clustering). These clusters depicted in the waterfall plot in Fig. 6 show
how samples from the target domain are transformed to the source domain in
the input space.

It can be seen that Fwd_Seg_Size_Min , the most discriminative feature, is
not present as the most important feature in the transforms-based explanations.
One can conclude that the domain alignment that is performed in the latent
space is a much more complex operation, and it cannot be derived only by
looking at the differences between the samples in the input space. Furthermore,
the cluster transforms reveal additional information on how the alignment is done
with respect to the semantics of the samples. For instance, the datasets used by
us in this case study were originally multi-labeled datasets, which we converted
to a binary classification problem. Each of the labels in the original dataset
corresponded to an attack performed on the network infrastructure, which we
interpreted as anomalous behavior.

We traced back which classes from the original dataset were mapped with
each other by the domain adaptation mechanism; it appeared that the only
class from the target domain that was incorrectly classified by the source model
was ‘DDoS’ attack. Additionally, by analyzing instances linked by the trans-
forms obtained from our method, we discovered that the ‘DDoS’ attack from
the target domain (which was missing in the source domain) was aligned with
the ‘Patator’ attack in the source domain (not present in target domain). Such
information can be used by the expert to judge whether the alignment performed
by the domain adaptation mechanism is consistent with background knowledge.
In this case, one can argue that this alignment does make sense, as the ‘Pata-
tor’ attack, which is a brute-force password cracking mechanism, may resemble
DDoS or DoS attacks. The transform clusters give more details on how such
alignment was performed. For example, when analyzing the cluster transform 1
in Fig. 6, we can observe that there exist several features for which the transform
was minimal, such as Init_Fwd_Win_Byts or ACK_Flag_Cnt . This means that
samples from source and target domains had similar values for these parameters.
According to the analysis of the source domain dataset [10], these features hap-
pen to be the most important features for identifying ‘Patator’ attacks. Thanks
to transform clusters and available knowledge about the source domain, we can
derive a conclusion that the type of attack that is associated with cluster trans-
form 1 resembles ‘Patator’ attacks from the source domain, and the alignment
done by the adaptation mechanism is semantically sound.

In Fig. 7, linear decision boundaries approximations for source and adapted
model for cluster transform 1 was presented. It can be seen that the biggest dif-
ference between decision boundaries (right plot) is observed in features related
to the number of packages sent over the network per second. This is again con-
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sistent with the background knowledge about the difference between ‘Patator’
and ‘DDoS’ attacks. The former is performed from a single computer, and the
latter is a distributed attack that results in larger packet intensity.

Fig. 7. Linear decision boundary approximation in source model for transform cluster 1
(left plot). Linear decision boundary approximation in the adapted model for transform
cluster 1 (middle plot). Variant and invariant features between domains (right plot).

Similarly to transform cluster analysis, the feature which is the most discrim-
inative from the perspective of data distribution (i.e. Fwd_Seg_Size_Min ) is not
present as important in decision boundary explanations. Because the model fits
decision boundary with a different objective than separating domains, this sug-
gests a conclusion that domain adaptation explanation cannot be done purely
based on data distribution analysis.

5 Summary

In this paper, we proposed explainability mechanisms for feature-based domain
adaptation algorithms. The explanations provide two complementary perspec-
tives on the domain adaptation process: (1) feature alignment and (2) decision
boundary updates. Our initial investigation has shown that it is not enough to
look at domain adaptation through the perspective of differences between data
distributions of source and target domains. Instead, looking deeper into how
these distributions are aligned by the adaptation mechanism and observing in
which directions the decision boundaries are changing can give a new opportu-
nity to relate the two domains on a more semantic level and open the possibilities
to transfer background knowledge from the source to the target domain.

Although the work presented in this paper contributes the most towards
the theoretical analysis of XAI applications in the domain adaptation area, the
potential practical value is much broader. One of the possible applications of
the method we presented herein is to distinguish domain shifts from anoma-
lies in a data-stream scenario. The problem of differentiating between these two
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phenomena in data streams was recently reported in [6]. The usage of explain-
able domain adaptation can help in detecting anomalies or failures in industrial
applications, separating them from domain shifts.

Furthermore, in the case of consecutively changing domains, especially in
industrial settings, where each domain represents a new generation of products
or processes, one can use explainable domain adaptation to build a predictive
model on top of the discovered feature adaptation transforms and use it to tune
future new models better.

Finally, one of the important research paths related to explainable domain
adaptation is exploring more sophisticated ways of visualizing explanations.
We plan to evaluate methods that are more interactive and better suited for
multidimensional dataset analysis, such as interactive parallel coordinate plots
(IPCP) [3], and combine them with explanations obtained from our method.
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TACTFUL 2023: The 1st Workshop on Trustworthy AI
for Safe and Secure Traffic Control in Connected

and Autonomous Vehicles

Connected and Autonomous Vehicles and System Technologies will be the product of a
rapidly developing Artificial Intelligence (AI)-centric breakthrough that will most likely
transform the very way transport is perceived, mobility is serviced, travel eco-systems
‘behave’, and cities and societies as a whole operate. At least on paper this breakthrough
promises some critical safety, mobility and sustainability rewards spanning from acci-
dent prevention, reduced traffic congestion and lessened greenhouse gas emissions to
energy savings, improved surveillance, increased ease of use, and improved traffic man-
agement and control. However, these promising benefits are not without significant
technological challenges. On the one hand, there is the need to ensure the autonomous
driving capabilities of individual vehicles. On the other hand, the complex machine-led
and interconnected dynamics of a high-tech mobility paradigm built around Connected
and Autonomous Vehicles (CAVs) make our transport futures more susceptible to data
exploitation and vulnerable to cyber-attacks, increasing the risks of privacy breaches and
cyber security violations for road users.

There is awealth of literature addressing trustworthy issues and cyber security threats
and vulnerabilities on the technology and operational level in terms of how CAVs can be
compromised and how the threat can be overcome andmitigated. However, these studies
are often performed in a ‘bottom-up’ isolated manner. I.e., they focus on specific aspects
of the technology that can be compromised without considering why the technology
might be exploited and for what purpose within the smart traffic infrastructure. This has
resulted in discrete research studies lacking a joined-up perspective of their adversarial
use and how they can bemitigated. In themeanwhile, the risk of a substantial cyber-attack
on smart transport infrastructure is continuously increasing.

The aim of TACTFUL 2023, held in conjunction with the 26th European Conference
on Artificial Intelligence (ECAI) in Krakow, Poland, was to provide a venue to present
approaches related to any aspect of autonomous driving and on the use of CAV/AV
functionalities for traffic control, including driving algorithms, security vulnerabilities,
exploit potential, and how to mitigate them by leveraging on AI to increase resilience
and robustness of intelligent transport systems. Topics of interest included, among the
others, AI ethics in AVs and CAVs, The role of AI interpretability in traffic control
with CAVs, Vulnerabilities associated with underpinning technology and connectivity,
Threat modelling in CAVs and smart traffic control, Cyber Threat Analysis in urban
traffic control and mobility, Intersection between safety and security, Security by design
in urban traffic control and mobility, AI and Traffic Control, Knowledge representation
and reasoning in autonomous driving, Smart cities and interactionwith CAVs, and Policy
developments for safety and secure CAVs and smart traffic control.
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We encouraged submissions of regular papers (long or short). All submitted papers
were peer reviewed by three reviewers from the Program Committee, and selected for
presentation at the workshop and inclusion in the proceedings on the basis of these
reviews. In this proceedings, the three best papers accepted for theworkshop are included.
The TACTFUL workshop run for half a day, were a total of 5 papers were presented and
innovative ways of using AI in concert with connected and autonomous vehicles were
discussed and presented.
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Abstract. This paper tackles the problem of finding time optimal routes
for trains over a railway network. The problem is defined as follows: A
train has a known length. The position of the train is defined over parts
of one or more consecutive track segments. There are a maximum speed,
a maximum acceleration and a maximum deceleration capability for the
train. Each track segment has a maximum allowed speed for any train
being over it. A problem instance is defined by an initial and a goal state,
which are two positions accompanied with desired speeds (being usually,
but not necessarily, zero). In this paper we are interested in minimizing
the total duration of reaching the goal state from the initial one; other
metrics such as fuel consumption could be considered.

We solve this problem using basic kinematics and A*. We present
two algorithms: The first one computes analytically in continuous space
the optimal speed profile of the train for a problem defined over a given
path. The second algorithm extends the first one over arbitrary graphs.
A* empowered with a simple admissible heuristic is employed to find the
optimal combination of speed profile and path.

Keywords: Scheduling · Heuristic search · Kinematics

1 Introduction

Railways are key components in the transportation systems of many countries
around the world, with many European development economists considering
a modern rail infrastructure as a significant indicator of a country’s economic
advancement [12]. Moreover, the European Commission aims for rail networks
to absorb the majority of medium-distance passenger transport by 2050 [10].
Increasing the efficiency of transport in the railway infrastructure can greatly
improve speed and reliability, reduce costs and energy consumption.

In recent years, research on train scheduling has grown significantly. Compa-
nies such as the Swiss Federal Railways invest in research through the Flatland
challenge, on tasks which include train schedule optimization (railway timetable
generation) [2], as well as applications of multi-agent reinforcement learning on
the re-scheduling problem (RSP) [3].
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In this paper we present algorithms to generate time-optimal routes for single
trains over arbitrary railway networks, using basic kinematics. The main con-
tribution of this paper is a realistic approach to compute the amount of time
a train needs to traverse a certain path, making use of a variety of train and
path characteristics, particularly train max speed, acceleration and deceleration;
train length; and maximum allowed speed per railway segment, while aiming
at minimizing journey duration. Our approach employs continuous domains (a
train can be anywhere in the railway network and have any speed and acceler-
ation or deceleration, while satisfying the physical constraints), whereas it uses
basic kinematic equations to compute the state of a train over time. The aim is
to approximate real-world conditions on railway networks, which, in turn, will
improve the optimization of the train-scheduling problem and contribute to the
development of an application that can be effectively used on real-world rail-
way networks. The project’s structure and originality allows a lot of possible
extensions, including more features of a train (e.g., load; engine power; variable
maximum acceleration/deceleration depending on speed) or the environment
(e.g., slopes of the ground), as well as alternative optimization criteria (e.g., fuel
consumption).

This paper contributes in two directions: First, we present an algorithm to
compute the precise duration needed for the train to arrive at any position
over a given path, while respecting the physical constraints of the train and the
maximum allowed speed for any segment of the network. Second, we empower the
first algorithm with A* search and a common straight line distance admissible
heuristic function in order to find the optimal route between a source and a
target state over any given railway network.

The rest of the paper is organized as follows. Section 2 presents a review
of the background literature, whereas Sect. 3 provides the problem formulation.
Sections 4 and 5 present the algorithms which are used, in order to compute the
optimal speed profile over a given path and the shortest (in terms of time) com-
bination of path and speed profile over a railway network, respectively. Finally,
Sect. 6 concludes the paper and poses future challenges.

2 Related Work

A great amount of effort has been invested in solving the train-scheduling prob-
lem for multiple trains on a single or multiple railway tracks, with an emphasis
on conflict resolution in the planning phase. Optimization is used in order to
generate timetables, with many works [4,6,11,14,15,20] presenting surveys on
the subject. The train scheduling problem on a single track line has been mod-
eled as a job shop scheduling problem and solved with a branch and bound
algorithm [18], while the same algorithm has also been used on railway networks
[7]. The patent US20110046827A1 [21] showcases a method for controlling speed
in an automatic train operation, making use of kinematic equations in order to
estimate and control speed. However, the train’s length is not included in the
problem formulation reducing the complexity significantly since for example, a
train cannot be in multiple segments with overlapping speed limits.
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On the other hand, many researchers have proposed and evaluated many
heuristic search approaches and artificial intelligence techniques. Genetic algo-
rithms (GA) were used in order to further reduce the number of trains (previ-
ously assigned individually on routes) on a network basis [16], while in [19] a
GA was designed for application on railway scheduling problems, achieving a
good performance on real-world instances from the Spanish Manager of Railway
Infrastructure (ADIF). Samà et al. [17] formulated the routing selection prob-
lem as a linear programming model and adopted an ant colony optimization
algorithm to solve it. Ant colony optimization algorithms were also attempted
to solve a simulated dynamic multi-objective railway rescheduling problem [8].
Bożejko et al. [5] applied the Dijkstra algorithm on railway networks in order to
determine the fastest routes for rail freight transportation.

The resurgence of neural networks in the modern era of artificial intelligence
gave way to the application of deep learning and learning methods in general on
the train-scheduling problem. Reinforcement learning is applied in [13], where
deep neural networks are used in order to approximate Q-values, formulating the
problem as a Markov decision process. Šemrov et al. [9] proposed a Q-learning
algorithm for train rescheduling and compared the implementation with the
rescheduling methods that do not rely on learning, showing that the solutions
are at least equivalent or superior. Two deep Q-learning methods (a decentralized
and a centralized approach) were applied and evaluated on the train dispatching
problem [1], showcasing their advantages over the classical linear Q-learning
method.

3 Problem Formulation

A railway network graph is modeled as a directed graph G = (V,E), where V is
the set of the vertices and E the set of the edges. A track segment, s = (u, v),
is an edge of E. Each track segment s is labeled with its length l(s) ∈ R

+, and
the maximum allowed speed vmax(s) ∈ R

+ a train can reach while traversing
it. A track segment can be connected at its ends with any number of other
track segments; no inner connections are allowed. A path is a list of consecutive
segments (s1, s2, ..., sk), k ≥ 1, such that si = (ui, vi) and for each i in {1..k− 1}
we have vi = ui+1. Furthermore, for every 1 ≤ i < j ≤ k, ui �= uj , that is the
sequence of segments do not cross (but potentially, u1 = vk, k > 1, in which case
we have a cycle).

A train T is described by its length l(T ) ∈ R
+, its maximum speed

vmax(T ) ∈ R
+, its maximum acceleration maxacc(T ) ∈ R

+, and its maxi-
mum deceleration maxdec(T ) ∈ R

+. We use the functions head(T ) to denote
the head point of T , and tail(T ) to denote the tail point of T .

The position of a train T , denoted by pos(T ), is defined as a pair (S, x),
where S = (s1, s2, ..., sk), with k ≥ 1, is a path (that is, the train may span over
multiple consecutive segments). Furthermore, tail(T ) ∈ s1 but tail(T ) �= v1, and
head(T ) ∈ sk but head(T ) �= uk. x is the distance of head(T ) from vk across sk.
In case k = 1, head(T ) is considered to be closer to v1 than tail(T ).
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The state of a train T , denoted by state(T ), is the pair (pos(T ), speed(T )),
where speed(T ) is its current speed. We assume that speed(T ) ≥ 0, meaning
that the train can move only forwards. We use also the notation speed(T, t) to
denote the speed of train T at a particular time point t. A valid state is a state
that satisfies the following constraints:

0 ≤ speed(T ) ≤ vmax(T )

and for each i ∈ [1..k], where (s1, s2, ..., sk) is the list of segments over which the
train spans,

speed(T ) ≤ vmax(si)

A Problem is defined by a tuple (T,G, init, goal), where T is a train, with
its given attributes, G is a directed graph with speed limits on its segments, init
is the initial state and goal is the goal state.

A speed profile SPt1:t2 , or simply SP , is an infinite set of pairs {(state, t) :
for every t such that t1 ≤ t ≤ t2}, for some time points t1 and t2, such that
t1 ≤ t2. A speed profile SPt1:t2 is valid if and only if (a) it consists of valid
states for every t in [t1, t2]; (b) for every pair (state′, t′) and (state′′, t′′) in
SPt1:t2 , if t′ → t′′ then state′ → state′′, where convergence between states is
defined in the obvious way, that is, the difference in train position and speed
between the two states tends to zero; and (c) for every pair (state′, t′) and
(state′′, t′′) in SPt1:t2 , such that t′ < t′′, if speed(T, t′) < speed(T, t′′) then
(speed(T, t′′) − speed(T, t′))/(t′′ − t′) ≤ maxacc(T ), whereas if speed(T, t′) >
speed(T, t′′) then (speed(T, t′) − speed(T, t′′))/(t′′ − t′) ≤ maxdec(T ). Note that
the third constraint subsumes the second one.

The duration of SPt1:t2 is defined as t2 − t1. Moreover, we define three func-
tions: mint(SPt1:t2) that returns the minimum time label (t1) in the speed pro-
file; maxt(SPt1:t2) that returns the maximum time label (t2) in the speed pro-
file; and stateAt(SPt1:t2 , t) that returns the state state(T ) of T at time t, where
t1 ≤ t ≤ t2.

Given a Problem, a pair (path, SP ) is a solution to the Problem if (a) the seg-
ments in init comprise the prefix of path; (b) the segments in goal comprise the
suffix of path; (c) the speed profile is valid; (d) init = stateAt(mintime(SP ));
and (e) goal = stateAt(maxtime(SP )). The optimal solution to Problem is the
pair (path, SP ) with the minimum duration.

Moving on, we will make use of two simple examples with the aim of show-
casing the operation of the algorithms. It is important to note that our approach
makes use of algorithms of low complexity. In more detail, finding an optimal
speed profile can be done in time linear in the length of the path, while the pro-
cess of finding the optimal path has the same worst case algorithmic complexity
as the Dijkstra algorithm. For that reason, an extensive experimental study was
deemed to be unnecessary.

Example 1. We present an example of an optimal speed profile between an initial
and a goal state over a given path (so, we do not have to search over alternative
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paths). Since the path is given, we are interested only in the speed profile. Table 1
details the path, while Table 2 gives the train T characteristics, as well as the
initial and the goal states for this example.

Table 1. Path layout (Example 1)

Segment s Length ls (m) vmax(s) (m/s)

s0 150 20

s1 150 40

s2 700 50

s3 800 80

s4 1000 85

s5 200 40

s6 300 60

s7 700 50

sf 150 30

Table 2. Train T characteristics; init and goal states for Example 1

Parameters Value

Length l(T ) 150m

Maximum speed vmax(T ) 75m/s

Acceleration maxacc(T ) 1.5 m/s2

Deceleration maxdec(T ) 1m/s2

init ((s0, 150), 0)

goal ((sf , 0), 0)

Figure 1 presents the optimal speed profile for the particular problem. Note
that there are two vertical axes in the figure, the left (red) denoting the speed and
the right (green) denoting the distance travelled by the train for any particular
time. The distance in this diagram is measured in length units from the initial
position of head(T ), which (in this example) is at the start of s0 (head(T ) = u0)
and is considered the 0 in the green axis. The vertical dotted lines show the time
point in which head(T ) enters each segment (of course the tail of the train is
still in previous segments).

It is worth noting that whenever the train leaves a segment with a speed
limit that is lower than the speed limits of the segments of its new position, it
starts accelerating (if not already accelerating). On the other hand, before the
train enters a segment with a speed limit that is lower than its current speed,
the train starts decelerating earlier enough, even several segments before the
low speed limit segment. The same happens with the goal state, where (in the



124 D. Manolakis and I. Refanidis

Fig. 1. Speed and Position vs. time graph

current example) the train should be idle: the train may start decelerating early
enough.

Furthermore, in order for the speed profile to minimize the duration of the
journey, the train must continuously maintain the maximum possible speed.
This implies that whenever the train accelerates or decelerates, it does so at the
maximum possible acceleration and deceleration rates. Thus why in Fig. 1 the
periods of acceleration have the same ascending slope, and the same happens
with the periods of deceleration, which all have the same descending slope.

Fig. 2. Calculating the shortest path from A to H

Example 2. Figure 2 presents an example railway network, consisting of 10 ver-
tices and 12 edges. Each edge s is labeled with l(s) and vmax(s). The train T
characteristics, as well as the goal state, remain the same as in Table 2, while
init = ((s0, 0), 0).
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The nodes marked with a green colour form the optimal solution path, with
the corresponding optimal speed profile having a total duration of about 91 s.
In this case, the solution path is not the shortest one in terms of length; indeed,
path [S,A,C,E,H, T ] is 200 m shorter than the solution path [S,A,C, F,H, T ].
We will return to this example in Sect. 5.

4 Computing Optimal Speed Profile Over a Given Path

This section presents the computation of the optimal speed profile between init
and goal, assuming that there is a single path that can be used to reach the goal
state, with no junctions across it. Before presenting the details of the computa-
tion, we give an overview of it.

There are three possible modes for a train: (a) Maintaining a steady speed;
(b) accelerating; and, (c) decelerating. The train maintains a steady speed if it
cannot accelerate and there is no need to decelerate. The need for deceleration
arises from a subsequent segment (not necessarily the immediate next one) with
a lower speed limit than the current speed of the train, or a goal state with
a smaller goal speed (usually zero) than the current train speed. Acceleration
occurs whenever the train is in a list of segments having all of them higher speed
limits that its current speed, provided that there is no need to decelerate. Decel-
eration has priority over acceleration, which in turn has priority over maintaining
steady speed. The computation’s crucial part is to determine the point where
deceleration should start.

The computation proceeds forwards. For each segment over the given path,
it computes the optimum speed profile until head(T ) reaches the end of the seg-
ment, taking into account the already computed speed profiles over the previous
segments of the given path. In case the new segment has a lower speed limit than
the train speed when entering the segment, it is assumed that the train enters
the new segment with a speed equal to its speed limit and, then, the algorithm
computes where and when the train should have started decelerating, in order
to satisfy the lower speed limit. This computation has as result changing the
speed profile(s) of the previous segment(s).

Example 3. We present an example of the event in which the speed profile is
recalculated, since the train reached a segment that has a speed limit lower than
its current speed. Tables 3 and 4 provide the path and the train T characteristics,
as well as the initial and the goal states for this example.

Figure 3 presents the speed profile at the end of segment s4; till that point
the train mostly accelerates or maintains a steady speed due to the high speed
limits of the previous segments. So, according to Fig. 3, the train is ready to exit
s4 with a speed over 70 m/s. However, the speed limit for the next segment is 10
m/s hence, the train needs to decelerate significantly. Considering that T enters
s4 with a speed of about 64 m/s, as well as l(s4) and maxdec(T ), deceleration
must start earlier enough. Hence, the process is backtracked at previous segments
until the deceleration line crosses the speed profile. The result of this procedure
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is shown in Fig. 4. The train’s deceleration starts at s2 in order to reach the
speed limit of sf at the time it enters it, resulting in a slower speed profile. As
a result, time expands from the deceleration starting point and onwards.

Table 3. Path layout (Example 3)

Segment s Length l(s) (m) vmax(s) (m/s)

s0 150 20

s1 150 20

s2 800 50

s3 700 65

s4 600 85

sf 150 10

Table 4. Train T characteristics, init and goal states for Example 3.

Parameters Value

Length l(T ) 150 m

Maximum speed vmax(T ) 78 m/s

Acceleration maxacc(T ) 1.5 m/s2

Deceleration maxdec(T ) 0.5 m/s2

init ((s0, 0), 0)

goal ((sf , 0), 0)

Algorithm 1 details the main procedure that iteratively detects events during
the train’s journey. An event happens in three cases: (a) head(T ) enters a new
segment; (b) tail(T ) exits a segment; and (c) the train reaches the effective
speedLimit (which is the trains’s speed limit or the minimum speed limit of
the segments where the train spans). The input to this algorithm includes the
train attributes, the given path with its segments’ attributes as well as, the init
and goal states. The position of train T in init comprises a prefix of the path,
whereas the position of train in goal comprises a suffix of the path. The output
of the algorithm is the optimal speed profile SP , in terms of journey duration.
A speed profile is represented as a finite list of pairs (state(T ), t), with the train
being in the same mode between subsequent states. Time at init is considered
0. SP [i] denotes the ith node of SP , with SP [0] = (init, 0) and the last node
of SP , denoted as SP [−1], being of the form (goal, ttotal) where ttotal is the
duration of the journey. Between SP [i] and SP [i + 1] the train remains in the
same mode (acceleration, deceleration or steady speed), which is determined
from the difference between the train speeds in the two subsequent nodes.
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Fig. 3. Speed Profile until reaching the end of s4 (before backtrack).

Fig. 4. Speed Profile until reaching the end of s4 (after backtrack).

Concerning goal, the head(T ) position can be at any point of the last seg-
ment. Without loss of generality, we assume that in goal the train must reach
the end of the last segment (if this is not the case, we can split the last segment
in two ones). Furthermore, we assume an additional segment, after the last one,
with a speed limit equal to the desired speed of the train in goal. In this way, the
goal can be restated as having the train ready to enter this additional segment
with a speed equal to its speed limit.

Note that in general the problem may not have a solution. This may happen
in two cases: The first one is when the goal speed is too high and the train
cannot accelerate early enough (because of either a low initial state speed or low
speed limits in the segments before the goal) in order to reach it. The second
scenario is when the initial speed is very high and the train cannot decelerate
early enough, in order to enter a segment with a low speed limit or to reach the
goal state with the desired slow speed.
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Algorithm 1. Finding the optimal speed profile
Input: Path = (s0, .., sf ), T,
init = ((s0, .., sk), initX), initV ),
goal = ((sm, .., sf ), goalX), goalV )
Output: SP

1: Initialize currentV, hSgm, tSgm,
hExit, tExit, currentAcc, SP, ttotal

2: speedLimit ← getSL(T, (stSgm, ..., shSgm))
3: (tmin, t1, t2, t3) ← getMinT (currentAcc, currentV,

tExit, hExit, speedLimit)
4: while SP [−1] �= goal do
5: Proceed by tmin

6: p ← currentV ∗ tmin + (1/2) ∗ currentAcc ∗ t2min

7: currentV ← currentV + tmin ∗ currentAcc
8: hExit ← hExit − p, tExit ← tExit − p
9: ttotal ← ttotal + tmin

10: if t2 = tmin then
11: hSgm ← hSgm + 1, hExit ← l(shSgm)
12: speedLimit ← getSL(T, (stSgm, ..., shSgm))
13: if currentV > speedLimit then
14: Apply Algorithm 2
15: if Algorithm 2 returns False then
16: EXIT
17: end if
18: end if
19: end if
20: if t1 = tmin then
21: tSgm ← tSgm + 1, tExit ← l(stSgm)
22: speedLimit ← getSL(T, (stSgm, ..., shSgm))
23: if currentV < speedLimit then
24: currentAcc = maxacc(T )
25: end if
26: end if
27: if t3 = tmin AND currentV = speedLimit then
28: currentAcc = 0
29: end if
30: SP.append((PathtSgm:hSgm, hExit), currentV, ttotal)
31: if dist(SP [−1]) = dist(goal) AND currentV �= goalV then
32: EXIT
33: end if
34: (tmin, t1, t2, t3) ← getMinT (currentAcc,

currentV, tExit, hExit, speedLimit)
35: end while
36: return SP

Algorithm 1 begins with initiliazing all the necessary variables. currentV
tracks the train’s current speed and is initialized to be equal to the starting
speed initV of the init state. hSgm and tSgm represent the indices of the
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segments in which head(T ) and tail(T ) reside respectively. At the init state the
train is in (s0, .., sk) hence, hSgm = k and tSgm = 0. hExit and tExit concern
the distance of head(T ) and tail(T ) from the end of segments hSgm and tSgm
respectively. The initial values for hExit is initX which are provided by init.
If hExit = 0, hSmg is incremented by one and hExit is set to be equal to the
length of next segment l(shSgm). tExit is initialized using the following equation:

tExit ← l(s0) − (
k∑

i=0

l(si) − hExit − l(T ))

currentAcc keeps the train’s acceleration and is initialized to be equal to
maxacc(T ). The init state is stored in SP [0]. ttotal is used to keep track of the
duration so far and is initialized with 0. For the initialization of the speedLimit
that is in effect for the first event, the getSl() function is used, that takes as input
the train characteristics and the segments it is currently in. In case speedLimit
is equal to currentV , currentAcc is set to 0.

Having initialized all variables, getMinT () is called to detect which type
of event is upcoming, by computing the time tmin = min(t1, t2, t3) needed to
reach each one of them. t1 is the time needed for the tail to exit its segment;
t2 is the time needed for the head to enter a new segment; and t3 is the time
needed for the train to reach the speedLimit, provided that it is in accelerating
mode. When the train is accelerating, t1 and t2 are computed as the roots of the
quadratic equation:

(1/2) ∗ currentAcc ∗ t2 + currentV ∗ t − distance = 0

maxRoot() returns the positive root (there is always one). t3 is computed as
the time needed in order to accelerate from currentV to the speedLimit with
an acceleration of maxacc(T ).

Having completed the preliminary computations, the while-loop updates all
the relevant variables such as currentV , the distance travelled p that is used to
update tExit and hExit. Based on the type of the event that occurred, either
hSgm and hExit or tSgm and tExit or none of them are updated. The train’s
currentAcc is also updated accordingly; to 0 if the train reached the speedLimit
and to maxacc(T ) if currentV is lower than the speedLimit.

function getSL(T, (stSgm, ..., shSgm))
lowestV max ← min(si), i ∈ [tSgm..hSgm]

return min(lowestV max, vmax(T ))
end function
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function getMinT(currentAcc, currentV,
tExit, hExit, speedLimit)

if currentAcc > 0 then
t1 ← MaxRoot((1/2) ∗ currentAcc, currentV,

− tExit)
t2 ← MaxRoot((1/2) ∗ currentAcc, currentV,

− hExit)
else

t1 ← tExit/currentV
t2 ← hExit/currentV

end if
if currentAcc > 0 AND speedLimit > currentV then

t3 ← speedLimit−currentV
currentAcc

else
t3 ← Infinite

end if
return min(t1, t2, t3), t1, t2, t3
end function

function MaxRoot(a, b, c)
Δ ← b2 − 4ac
t ← −b+

√
Δ

2a

return t
end function

The most complicated case occurs when head(T ) is about to enter a new
segment (t2 = tmin) with currentV higher than the new segment’s speed limit
vmax(shSgm), that is the new speedLimit. In this case the speed profile must be
recomputed by adding a deceleration point at the latest possible time, when the
train should start decelerating in order to reach the new segment with a speed
equal to speedLimit (denoted as v0 in Algorithm 2). Intermediate speed profile
entries are removed from SP . Algorithm 2 handles this case, by backtracking in
previous states stored in SP , searching for the optimal point to decelerate. In
order to access information stored in an entry i of SP , we use dist(SP [i]) for
the total travelled distance, speed(SP [i]) for the train’s current speed. Finally,
length(SP ) denotes the total number of entries in SP .

The algorithm searches for previous speed profile segments during which the
train was either accelerating or maintaining its speed, starting from the most
recent one. A speed profile segment is defined by two consecutive speed profile
nodes. The train’s mode in a speed profile segment is determined by comparing
its speed at the two defining speed profile nodes, (denoted by v1 and v2). If
v1 > v2, meaning that at this segment the train was already decelerating, the
for-loop continues to the previous speed profile segment (deceleration cannot
start at a speed profile segment where the train was already decelerating) until
an appropriate segment of the speed profile is found. If v2 ≥ v1, d1 becomes
the cumulative travelled distance till SP [j], while d represents the cumulative
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travelled distance at SP [−1]. The next step is to find whether the optimal decel-
eration point xdec lies between these two positions, as well as computing the
train’s speed v# at that point, with d1 ≤ xdec ≤ d and v1 ≤ v# ≤ v2. There are
two modes for the train’s motion in this segment, since it will accelerate or keep
steady until it reaches xdec at time t#1 with a speed of v1 and then decelerate
until d at time t#2 with a speed of v0.

Algorithm 2. Finding the deceleration point
for j ← length(SP ) − 2 to 0 do

v0 ← speedLimit
v1 ← speed(SP [j]), v2 ← speed(SP [j + 1])
if v2 ≥ v1 then

if v2 = v1 then
a = 0

else
a = maxacc(T )

end if
d1 ← dist(SP [j]), d ← dist(SP [−1])

xdec ← v2
0−v2

1+2(ad1+bd)

2(a+b)

v# ← √
v2
1 + 2a(xdec − d1)

if v# > v1 then
SP ← SP [0 : j]

t#1 ← v#−v1
a

, t#2 ← v#−v0
b

Add two new states in SP
currentV ← v0, currentAcc ← 0
Return True

end if
if v# = v1 then

SP ← SP [0 : j]
if xdec > d1 then

t#1 ← xdec−d1
v# , t#2 ← v#−v0

b

Add two new states in SP
else

t# ← v#−v0
b

Add one new state in SP
end if
currentV ← v0, currentAcc ← 0
Return True

end if
end if

end for
return False
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If v# > v1, this means that the deceleration point lies between d1 and d.
Existing SP nodes after SP [j] are removed, while two new SP nodes are added,
SP [j + 1] at the beginning of deceleration and S[j + 2] at the end of it. In case
v# = v1, the train maintains steady speed between SP [j] and S[j + 1]. In case
xdec = d1, SP [j+1] is removed, so SP [j+2] becomes SP [j+1]. Finally, execution
returns of Algorithm 2 on Algorithm 1 with the train at the start of the new
segment having a speed equal to the new speedLimit and and currentAcc = 0.
If Algorithm 2 returns False, Algorithm 1 terminates since the train started the
path with a speed high enough that a deceleration to speedLimit is not possible.

Algorithm 1 ends by saving the new state in SP , proceeding by tmin. It is
also checked whether the train has arrived at the position of the goal state but
with a speed different than goalV , which means that it is impossible to reach it
thus, the algorithm terminates.

5 Shortest Path Finding

Algorithm 3. Shortest path with A*
Input: T, G, init = ((s0, .., sk), initX), initV ),
goal = ((sm, .., sf ), goalX), goalV )
Output: SPdict[min(openDict)], min(openDict)

1: Initialize start, openDict.
2: openDict ← generatePaths(G, start)
3: openDict ← expandPaths(G, openDict)
4: For path ∈ openDict, openDict[path] = f(path)
5: Update SPdict.
6: while openDict is not empty do
7: current ← min(openDict).
8: openDict ← openDict − current
9: current ← generatePaths(G, current)

10: successors ← expandPaths(G, current)
11: For path ∈ successors, successors[path] = f(path)
12: Update SPdict.
13: openDict ← openDict ∪ successors
14: lastState ← (SPdict[min(openDict)])[−1]
15: if lastState = goal then
16: return SPdict[min(openDict)], min(openDict).
17: end if
18: end while

In this section we employ the A* algorithm to compute the shortest path
in terms of time for the general form of the problem, that is over an arbitrary
graph. Algorithm 3 takes as input a Problem (T, G, init, goal) and outputs
the solution, that is the pair (path, SP ) (if it exists). openDict contains all
the discovered paths and is initialized to include only the start path, that is a
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sequence of nodes (u0, u1, ..., uk, sk), defined by the segments (s0, .., sk) in init.
For each path in openDict, generatePaths() iterates through the outgoing edges
(of the last vertex of the path), generating new paths (which are extensions of
the current path, with a single or more segments added to it) that are stored
temporarily in neighbors, before entering openDict. In the example of Fig. 2,
sk = s0 with s0 = (S,A) hence, the start path is (S,A). Using the neighboring
nodes B and C, extended paths (S,A,B) and (S,A,C) are created.

function generatePaths(G, path)
node ← path[−1]
for (u, v) in G.edges do

if u = node then
path ← (node, v)
neighbors.insert(path)

end if
end for

return neighbors
end function

function expandPaths(G, paths)
for path in paths do

v ← path[−1]
while v not a junction AND v �= vf do

extension ← generatePaths(G, v)
v ← extension[−1]
path ← path ∪ v

end while
expandedPaths.insert(path)

end for
return expandedPaths
end function

In the next step, these paths are further expanded until the first junction, by
applying the expandPaths() function. This function takes as input a list of paths
and for each path (saved as a sequence), it iteratevily expands it by applying the
generatePaths() function on its last node v. If v has a single outgoing edge, it
has a single neighbor and the generatePaths() function returns only one path
(of two nodes) that is stored in the set extension. The last element of extension
is the new node, that is added to the path. Moreover, if v has multiple outgoing
edges or it is the destination node (the end of segment sf , that is vf ), the path
is not expanded. The expandedPaths are stored in openDict. In our example
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this means that the path (S,A,B) is expanded into (S,A,B,D,G) while path
(S,A,C) remains unchanged, since node C has more than one outgoing edges.

As mentioned previously, Algorithm 1 stores train states in the list SP .
In contrast, Algorithm 3 handles multiple paths, each one having its own SP
list. Whenever a path is expanded, its SP is used as the starting point. This
functionality is implemented by using the dictionary SPdict that stores the SP
arraylist for each path. openDict is a another dictionary as well; the keys identify
all the discovered paths, while the values concern the f values for a particular
path.

A* scores all paths in openDict with their f value. The g function makes use
of Algorithm 1, in order to calculate the traversal time for each path, reaching
the end of the path with the maximum possible speed, irrelevant to the next
segments. In our example, the g values for paths [A,B,D,G] and [A,C] are
59.16 and 33.15 seconds respectively. The f function values for each path are
computed in the usual way using an admissible heuristic function h that that
computes the time needed to travel the straight line distance between the last
node of a path and the destination node using maxv(T ).

Note that min(openDict) denotes the key of openDict with the lowest f
value. The successors dictionary contains the expansions of the current path
with neighboring nodes. In our example this means that path [A,C] generates
the paths [A,C,E] and [A,C, F ]. Path [A,C, F ] is expanded to path [A,C, F,H]
and path [A,C,E] is expanded to path [A,C,E,H] since there is no junction at
nodes F and E. After the calculations of the f , g and h values, SPdict is updated
with the new paths and their SP arraylists, while openDict and successors are
merged. Finally, if lastState, that is the final state in the SP of the current
shortest path, is the goal state, the algorithm terminates and returns the speed
profile of the solution path as well as, the optimal path.

Fig. 5. Speed and Position vs. time graph for the optimal path

Figure 5 presents the optimal speed profile for the shortest path [A,C, F,H]
that has a duration of 91.02 s.
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6 Conclusions and Future Challenges

Our work resulted in the development and the implementation of two algorithms
for the tasks of computing the optimal speed profile over a given path, as well as,
that of computing the shortest path in terms of journey duration, over arbitrary
directed graphs. We provided a realistic problem formulation that makes use
of train characteristics, including its length, maximum speed, acceleration and
deceleration capabilities, while also including path characteristics, such as the
speed limits that apply in the path segments. The algorithm handles cases in
which the train is in multiple segments concurrently, with multiple effective speed
limits, as well as cases where speed profiles must be recomputed recursively
because of the need for deceleration.

The main advantage of the presented approach is that it employs basic kine-
matics, without resorting to micro-simulation, but taking advantage from kine-
matic equations that are solved for any segment of the journey where the train
maintains a constant acceleration. Thus, the proposed approach is able to find
optimal speed profiles in time linear in the length of a path, whereas it exhibits
the same worst case algorithmic complexity as the Dijkstra algorithm to find
the optimal path and speed profile over arbitrary graphs (of course, A* usually
results in much lower average complexity).

Future challenges include the extension of our work in order to handle more
physical characteristics of the problem, such as railway machine power profile,
train load, ground slopes, optimizing other metrics, like fuel consumption. Offline
and online scheduling of multiple trains, in order to satisfy particular transporta-
tion needs, is another significant, while optimizing the aforementioned metrics,
is another significant future challenge. Finally, integrating our work with an
information system with real data about railway networks, such as openrail-
waymap.org, is needed to have a fully functional product.
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Abstract. Bus Bunching is caused by irregularities in demand across
the bus route, together with other factors such as traffic. The effect of
this problem is that buses operating on the same route start to catch
up with each other, severely impacting the regularity and the quality
of the service. Control actions such as Bus Holding and Stop Skipping
can be used to regulate the service and adjust the headway between
two buses. Traditionally, this phenomenon is mitigated either reactively
online through simple rule-based control, or preemptively through ana-
lytical scheduling solutions, such as mathematical optimization. Over
time, both approaches degrade to an irregular service.

In this work, we investigate the use of Deep Reinforcement Learning
algorithms to train a policy that determines which actions should take
place at specific control points to regularise the bus service. While prior
studies are typically restricted to one control action, we consider both
Bus Holding and Stop Skipping. We replicate benchmarks found in the
latest literature, and also introduce traffic to increase the realism of the
simulation. Furthermore, we also consider scenarios where the service is
already unstable and buses are already bunched together, a first of this
kind of study. We compare the performance of the RL-based policies with
a no-control policy and a rule-based policy. The learnt policies not only
keep a significantly lower headway variance and mean waiting time, but
also recover from unstable scenarios and restore service regularity.

Keywords: Deep Reinforcement Learning · PPO · TRPO ·
Autonomous Control · Bus Bunching · Bus Service Regularity

1 Introduction

Bus bunching is a phenomenon of public transport services operating on a sched-
ule and a fixed route [12,21], which occurs when the buses in front start to fall
behind due to various factors such as passenger demand at upcoming bus stops,
or traffic conditions. When the buses behind start to catch-up, not enough time
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Nowaczyk et al. (Eds.): ECAI 2023 Workshops, CCIS 1947, pp. 138–155, 2024.
https://doi.org/10.1007/978-3-031-50396-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50396-2_8&domain=pdf
http://orcid.org/0000-0002-8274-6177
http://orcid.org/0000-0001-7120-202X
https://doi.org/10.1007/978-3-031-50396-2_8


Deep Reinforcement Learning to Improve Bus-Service Regularity 139

would have passed from when the previous bus last picked up passengers from
the upcoming stops, which makes the buses behind catch-up even faster. After
some time, unless there is an intervention, the bus behind gets close to the bus
in front of it, causing the two buses serving the same route to arrive together
[7]. Figure 1 illustrates the effect of bus bunching on service regularity.

Fig. 1. The effect of bus bunching on service regularity.

On high-frequency and high demand routes, public transport operators pub-
lish expected arrival rates for each specific bus stop, rather than a fixed schedule
with absolute arrival times. This gives them some flexibility to apply control
actions in an attempt to regularise the service. These include Bus Holding [8,28],
where the bus waits at specific control points, Speed Adjustments, where the bus
cruising speed is adjusted to restore the gap between two buses [9], Stop Skipping,
where the bus is instructed to skip the next stop [25], and imposing Boarding
Limits, such that not all passengers waiting at a specific bus stop board the first
bus [10,30]. While these actions help to regulate the headway, the distance or
temporal gap between two buses, they have a negative effect on other aspects,



140 J. Bajada et al.

such as the waiting time passengers spend on bus stops, or the overall trip dura-
tion. One has to find the right balance in the trade-off between regularising the
service and the time passengers spend commuting.

In this work we present a formal model for the bus bunching problem. We
then propose a method with which an effective automated policy for a specific
route can be found. We trained a policy using Deep Reinforcement Learning
(DRL), which adapts to the dynamic and stochastic properties of the route,
while considering both bus capacity constraints and different passenger demand
levels at each bus stop. We also introduce traffic as an extra dynamic factor.
While other similar studies typically only consider a single action, such as Bus
Holding [24] or Stop Skipping [14], we incorporate both actions. Furthermore,
while other techniques aim to maintain a stable service with minimal headway
variance [6,8,24,29], we also train our policy to recover from unstable situations
that are unavoidable in real-life due to the stochastic and dynamic nature of the
environment.

We trained our DRL model on a simulated environment using the SUMO1

microsocopic urban mobility simulator. The simulation is configured with the
information that is typically available to transport planners, such as traffic counts
and passenger arrival rates. Our results show that our DRL model can learn a
robust bus-dispatching policy that adapts to the route’s characteristics. It not
only maintains a low headway variance, but also recovers from bunched scenarios
to restore the regularity of the service.

We also analyse the effect of the policy on the waiting time, and show that
with the trained policy we maintain a low mean waiting time, even under traffic
conditions, when compared to leaving the service run its course without any
corrective actions, or when a simple rule-based policy is applied. Finally, we
measure the occupancy dispersion of the buses, to determine whether they are
filling up to capacity along the route or the load is being distributed evenly.

The proposed approach only requires a limited amount of real-time teleme-
try, primarily the location of each bus, together with a basic communication
mechanism to control or instruct the bus to perform an action at the next con-
trol point. This means that this approach can be adopted to a bus fleet that has
a mix of both human-driven and autonomous vehicles.

2 Background

2.1 The Bus Bunching Problem

We define the bus bunching problem as the tuple 〈B,C,A〉. B = (b1, b2, ..., bn)
is the list of buses operating on a route simultaneously, C = (c1, c2, ..., cm) is
the list of bus stops in the route, and A is the set of discrete corrective actions.
For the scope of this work they are defined as {Hold, Skip, Proceed}. The Hold
action has a predefined holding duration. If necessary, a longer holding time can
be achieved by multiple consecutive discrete Hold actions while the bus is at the
1 https://www.eclipse.org/sumo/.

https://www.eclipse.org/sumo/
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same stop. The Skip action instructs the bus not to board any passengers from
the next bus stop. The Proceed action allows the bus to take its natural course
of disembarking and embarking passengers, leaving from the stop immediately
after. Each of these actions is applied on a specific bus, b ∈ B, when it reaches
specific control points, which in our case are the instants when a bus approaches
a stop c ∈ C.

Each bus, b ∈ B, has a maximum passenger capacity, Φ(b), where Φ : B →
N>0, and the current occupancy level, φ(b), where φ : B → N and 0 ≤ φ(b) ≤
Φ(b). Each bus stop c has an arrival rate, λ(c), which indicates the passenger
demand of that stop. The set of passengers waiting at a stop c at some point in
time t, is denoted, ηt(c). The demand, dt(c) = |ηt(c)|, corresponds the number
of passengers waiting at bus stop c at some instant in time t. For each passenger,
ρ ∈ ηt(c), the waiting time, ω(ρ) is the time elapsed from when ρ arrived at stop
c to the time p embarked on some bus, b.

ω̂t(c) corresponds to the maximum waiting time for stop c at some instant in
time t, that is the longest a passenger has been waiting at that stop, as defined
in Eq. 1:

ω̂t(c) = max
ρ∈ηt(c)

ω(ρ) (1)

The headway h(bi, bj) is the gap between bus bi and bus bj . This gap is
typically either calculated in terms of time, or in terms of distance. The forward
headway, h−(bi) = h(bi−1, bi) is the headway to bus bi from the preceding bus in
front of it, bi−1, while the backward headway, h+(bi) = h(bi, bi+1) is the headway
from bus bi to the one following it bi+1.

The dwell time, θ(b, c), is the time spent by bus b at stop c, including dis-
embarking and embarking passengers. This depends primarily on the number of
passengers waiting to embark a bus at the bus stop c, ψe(c), together with the
number of passengers who want to disembark from bus b at stop c, ψd(b, c). A
Hold action naturally inflates the dwell time.

The problem can be modelled as a Markov Decision Process (MDP) [27].
Each state, s ∈ S, corresponds to the set of relevant observations, where S is the
set of all possible states. Each state contains the relevant information, such as
positions of the buses, forward and backward headways, number of passengers
waiting at each bus stop, waiting times, and bus capacities. Given the set of all
possible actions, A, the expression p(s′, r|s, a) represents the probability of an
action, a ∈ A, applied within state, s, of transitioning to a new state s′ ∈ S
and obtaining the immediate reward r ∈ R. This reward indicates whether the
situation improved or degraded from the previous state. The reward function for
r depends on the objective being optimized. This is typically defined in terms
of some service quality measure, such as the headway variability or change in
waiting time. In this work we focus on the difference between the forward and
backward headway. The chosen reward function is discussed later in Sect. 4.3.

A discount factor, γ ∈ [0, 1] can be used to determine how much weight future
rewards should be given future time steps importance that rewards obtained in
future time steps should be given. A low discount factor indicates that we are only
interested in the immediate or short-term effects of the chosen actions, while a
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high discount factor indicates that we are also interested in how decisions impact
the long-term future of our state trajectory.

The solution is an n × m matrix of partially-ordered actions, where each
action, a(b, c) ∈ A, corresponds to the action taken by bus b ∈ B at bus stop
c ∈ C. Ordering constraints between actions can be defined using the temporal
precedence operator, ≺. Given that t(a) refers to the instant in time when action
a takes place, t(a) ≺ t(a′) states that action a must happen before a′. Each
bus stop must be visited in sequence according to the pre-established route,
and thus: ∀b, ci : t(a(b, ci)) ≺ t(a(b, ci+1)). If bus overtaking is not allowed,
∀bi, c : t(a(bi, c)) ≺ t(a(bi+1, c)), that is, bus bi has to visit a bus stop c before
the following bus bi+1 visits the same bus stop c. Such a solution can be optimised
in terms of various metrics, such as the standard deviation of the headway across
all stops and buses, σh, as defined in Eq. 2, the mean of the maximum registered
waiting time of each bus stop, as shown in Eq. 3, and the occupancy dispersion,
φd, the variance-to-mean ratio of the occupancy of all buses, shown in Eq. 4.

σh =

√∑n
i=1(|h−(bi) − h+(bi)| − μ)

n
,

s.t. μ =
1
n

n∑
i=1

(|h−(bi) − h+(bi)|
(2)

ω̄ =
1
m

m∑
i=1

max
t

ŵt(ci) (3)

φd =
σ2

φ

μφ
, s.t. σ2

φ =
1
n

n∑
i=1

(φ(bi) − μφ)2,

and μφ =
1
n

n∑
i=1

φ(bi)

(4)

To generate the solution, one could take a search-based approach, where
the schedule of when each action is likely to take place is computed. In this
approach, alternative actions are considered to improve the solution according
to some objective function, which is typically optimised using a mixed-integer
programming approach. Another approach is to find a policy, π, which given
the current state of the service at a specific control point, determines which is
the best action to apply. While the former is model-based and requires accurate
predictions of the effects of each action on the schedule, the second requires a
high-fidelity simulation of the transport network to train the policy. Given that
the probabilistic properties of a transport network are typically non-stationary,
both approaches can be improved and adjusted with real-world data such as
seasonal traffic counts, observed delays, and passenger demand. In this work we
adopt the second approach and make use of Reinforcement Learning (RL) to
find such a policy.
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2.2 Reinforcement Learning

RL is a family of machine learning techniques that aims to solve sequential
decision making problems. It is typically modelled in terms of states, actions
that correspond to transitions between states, and rewards, scalar signals that
can be positive or negative. Some of the RL techniques, such as SARSA and
Q-Learning [27], are referred to as model-free, because they infer the model
implicitly through the data collected from observations. On the other hand,
model-based RL is also possible, using algorithms such as Dyna-Q and Monte
Carlo Tree Search [27], where the dynamics of the model are either provided by
experts, or learnt from observations.

Another characteristic of modern state-of-the-art RL techniques is that they
make use of function approximation techniques to manage large, and poten-
tially infinite state spaces, including ones with continuous values. These tech-
niques incorporate ideas from supervised learning approaches, and often make
use of Deep Learning techniques such as Convolutional Neural Networks (CNNs)
[18] and Recurrent Neural Networks (RNNs) [4,5,20]. The trade-off of these
approaches, however, is that one needs to have a sufficiently large source of data,
often taking the form of a simulated environment, to explore the effects of differ-
ent sequences of actions. The result of this process is a policy that chooses which
action is best to take in a specific situation. RL algorithms typically learn poli-
cies that optimise the return, that is the cumulative discounted reward, rather
than just the immediate reward of an action. This means that a policy can learn
to sacrifice some immediate reward, or even incur some immediate penalty, to
reach a state that has a higher expected return.

While some RL algorithms, such as DQN [18] and A2C only support discrete
action spaces, others like DDPG and TD3 [13] support continuous action spaces.
TRPO [22] and PPO [23] support both. For the scope of this work, we will only be
using a discrete action space. Furthermore, the chosen algorithms are model-free,
and thus require only the observation for the current state, the set of possible
actions, and the appropriate reward function.

3 Related Work

The bus bunching problem was originally defined in [21], and since then, various
approaches to mitigate it have been proposed. More recently, with the advent of
real-time telematic data, it is possible to react more quickly to irregularities in
the service. [11] formulate the bus bunching problem as a vehicle holding prob-
lem, and take a quadratic programming approach. They assume a deterministic
environment, with a rolling horizon. Similarly, [16] also takes a quadratic pro-
gramming approach to find the optimal holding time for a vehicle at a single
control point. In this case, stochastic service attributes were considered such
as passenger boarding and alighting times. [26] revisited this quadratic pro-
gramming approach, but this time using multiple control points and potentially
holding multiple vehicles concurrently. However, these optimization approaches
fail to account for uncertainties due to traffic or variations in demand.
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Instead of bus holding, which has the adverse effect of delaying the whole
service, [25] proposed Stop Skipping. They model the problem as a nonlinear
integer programming problem, and assume that passenger boarding and alighting
follow predefined binomial and Poisson distributions. They use an exhaustive
search approach, assuming that the problem will not grow beyond a tractable
size.

[8] introduced the idea of using real-time headway measurements as input for
a dynamic bus holding strategy. This holding takes place at predefined control
points and operates on a single bus line operated on a regular schedule, assuming
time-independent conditions. They proposed the use of a simple policy where
the headway is increased when buses are too close, and decreased when buses
are too far away. Under the simplifying assumptions used at that time, it was
proven that granular control actions at specific control points can mitigate sig-
nificant deviation from the schedule. However, the local and myopic nature of
the strategy, without considering what else is bound to happen on the route,
only makes this approach effective when disturbances are small. To address this
issue, [9] proposed to use bus-to-bus cooperation, where the forward and back-
wards headways are monitored continuously, and buses slow down to adjust
these headways, aiming to maintain an equilibrium. Nonetheless, more complex
environment properties, such as passenger demand or traffic were not taken into
consideration. A similar approach was also reconsidered more recently by [2],
where rather than using specific control points, a follow-the-leader bus-to-bus
communication system ensures that the desired headway is maintained.

[10] analysed the effects of both vehicle holding and also imposing boarding
limits, applied over a rolling horizon. Imposing boarding limits has the opposite
effect of bus holding, and avoids holding back the service, thus decreasing the
waiting time of passengers at bus stops further ahead. An optimisation app-
roach, based on the MINOS solver, was used, which assumes deterministic pas-
senger demand and travel times. Despite these limitations they report significant
improvements in terms of total waiting times, when compared to a no control
strategy.

[19] acknowledged that advancements in telematics and telecommunications
offered opportunities for more real-time control. They used data collected from 18
bus routes in Porto, Portugal, to train an Artificial Neural Network and predict
headways depending on the current state and the chosen corrective action, being
either Bus Holding or Stop Skipping. They managed to reduce the number of
bus bunching events by 67.59%, with the neural network choosing to perform
Bus Holding for 81.86% of the control actions. This is one of the few studies
where both actions were considered simultaneously.

[3] take a different approach, and use a predictive-control strategy to miti-
gate bus bunching. They predict future headways using data collected from a
busy real-world bus route, formulated as a time series. Historical data is used
to determine the likely headway trajectory for the specified prediction horizon.
They evaluate various prediction techniques, including linear regression, kernel
regression, multilayer perceptrons, and autoregressive-moving-average models.
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They adopt the same headway-based bus holding strategy introduced by [8].
However, they do not take into account the stochastic effects of high passenger
demand, and also observe that the control actions themselves will impact the
accuracy of the predictions of the chosen models. They acknowledge that a rein-
forcement learning approach that accounts for future control actions is probably
more appropriate.

More recently, researchers have started to explore a Reinforcement Learning
approach to solving the bus bunching problem. [28] propose to use multi-agent
deep reinforcement learning based on PPO. They use a reward function which
promotes headway regularisation. They introduce different passenger arrival
rates per bus-stop, which is more realistic, since parts of a bus route are typi-
cally more popular then others. However, they only consider a single action, bus
holding, and do not take into consideration traffic conditions. Furthermore, their
scenarios always start out with evenly spaced buses, with the aim of maintaining
such regularity. [15] use a Q-Learning algorithm to determine whether to apply
bus holding at a specific bus stop. They also account for passenger demand by
specifying different passenger arrival rates for each bus stop. While they do not
consider traffic, it is one of the few studies that takes into consideration traf-
fic signals. [24] use a distributed deep reinforcement learning approach, trained
using historical traffic data. They use a distributed PPO algorithm implemen-
tation, where each bus is controlled separately in a multi-agent fashion. Rather
than enforcing the use of Bus Holding actions, they introduce the concept of con-
trol force between two stops. This determines to which direction the bus needs to
adjust its headway, using either bus holding or other ways such as speed control,
or early departure. While their experiments were based on historical data, these
strategies proved to be effective in maintaining a reasonably stable headway and
minimising schedule deviation.

4 Proposed Solution

We propose to use an RL approach to learn a policy that maintains the service
stable with no bus bunching and minimal waiting time. We first trained a policy
with simple scenarios that do not include traffic and where the buses start evenly
spaced. Subsequently, we trained a policy with a mix of scenarios where some-
times buses start evenly spaced, while in others the buses start already bunched,
all of which include traffic. Both policies were evaluated separately.

The scenarios were generated using the SUMO simulation framework,
through which the road network, location of the bus stops, passenger arrival
rates, bus routes and behaviour of different vehicles, were defined. SUMO also
provides a programmatic Traffic Control Interface, TraCI2, through which the
behaviour of vehicles and the observation data we need to collect for our states
can be obtained. The simulator was wrapped within a Gymnasium environment3,

2 https://sumo.dlr.de/docs/TraCI.html.
3 https://github.com/Farama-Foundation/Gymnasium.

https://sumo.dlr.de/docs/TraCI.html
https://github.com/Farama-Foundation/Gymnasium
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such that off-the-shelf RL algorithm implementations can instruct our simula-
tor to execute the respective actions. The Stable Baselines34 implementations of
TRPO and PPO were used to train our policy.

Following the same approach of prior studies [1,10,29], we use a circular
route, where buses restart the route as soon as they finish the prior lap. We use
the same scenario described in [28] with 12 bus stops and 6 buses. Each bus
stop has a different passenger arrival rate, as shown in Table 1, with passenger
arrival events generated using a Poisson distribution. Apart from the circular
route, the road network also includes feeder roads through which vehicles enter
and leave the scenario, generating traffic which interferes with the bus service.
When training with traffic, a car is added to the simulation every 2.25min,
and assigned one of 4 possible speeds randomly: 12km/h, 24km/h, 36km/h, and
60km/h, and loops around the same loop used by the buses for 1 to 3 times,
to create stochastic traffic congestion levels. The default bus cruising speed was
configured to 20km/h, in line with the conditions described in [28].

Table 1. Passenger arrival rates for each bus stop. (Adopted from [28].)

Bus Stop Rate (per minute)

1 0.5
2 0.5
3 0.8
4 1.0
5 1.0
6 3.0
7 4.0
8 2.0
9 1.0
10 0.65
11 0.55
12 0.5

Since we only apply actions at specific control points (when the bus is
approaching a bus stop), the RL time-steps are less granular than the time-
steps of the SUMO simulation. After each action, the environment proceeds
with running the simulation until the next control point is reached. This takes
places when a bus is approaching one of the bus stops on its route. At this point
the observation and the reward obtained from the previous action is passed to
the RL algorithm, which then selects the next action.

4 https://stable-baselines3.readthedocs.io.

https://stable-baselines3.readthedocs.io
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In order to train a robust policy that can handle both stable and unstable
scenarios, we alternate between scenarios that start with buses evenly spaced,
and scenarios where the buses are already bunched together. This is a departure
from the work of [28] where buses always start evenly distributed, and it serves
to train the policy with a more diverse distribution of states. In our scenarios,
buses are not allowed to overtake each other.

4.1 Baseline Control Strategies

Two baseline control strategies were implemented. The first one is a no-control
policy, where buses are left to fulfil their routes according to the demand without
any intervention. The second one is a rule-based control policy, where the system
reacts to significant deviations in the forward or backwards headway, and applies
control actions to recover. A minimum threshold level, H is selected, and a
control action is taken if the forward or backwards headway is less than this
threshold. This is similar in principle to the Naive Hard-holding Control used in
[28], with the difference that in their case, they only apply Holding control if the
forward headway, h−(bi) is smaller than the threshold, H, while in our case we
also apply Stop Skipping if the backward headway, h+(bi) is smaller than the
threshold, H. For this work H was set to 0.433km, which was equivalent to half
of the ideal headway of 0.886km for the route. These values were obtained from
[28] and scaled to the length of our route.

4.2 Observation and Action Spaces

The observation data consists of the following elements for the selected bus, bi,
for which an action a(bi, c) needs to be taken when approaching bus stop c,
at some time step t: The stop, c, that the bus, bi, is at, the forward headway,
h−(bi), and backward headway, h+(bi), for the selected bus, b, the estimated
dwell time, θ(bi, c), according to the number of people embarking to and alighting
from bus bi at stop c, the number of passengers on the bus, φ(bi), together
with the number of passengers on the previous bus, φ(bi−1) and the next bus,
φ(bi+1), the number of persons waiting at each stop, (ψe(c1), ψe(c2), ..., ψe(cm)),
the maximum passenger waiting time at each stop (ω̂t(c1), ω̂t(c2), ..., ω̂t(cn)),
and the speed factor of the selected bus, together with those of the previous and
next buses, which measures how slow the buses are traveling due to traffic, with
respect to their predefined cruising speed, which is calculated as shown in Eq. 5.

ft(b) = vt(b)/vc(b) (5)

where vt(b) is the current velocity of bus b, and vc(b) is the cruising velocity for
bus b without traffic, which in our experiments was set to 20km/h for all buses.

The action space is discrete and consists of 3 actions, Hold (0), Skip (1), and
Proceed (2). In case of the Hold action, the holding duration was set to 135 s.
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4.3 Reward Function

The reward function is based on the difference between the forward and backward
headway. The reasoning here is that a balanced headway should result in a
higher reward, thus guiding the RL algorithm to prefer actions that distribute
the headway evenly. The equation for the reward function is defined below:

Rt = −|h−
t (b) − h+

t (b)| (6)

where h−
t (b) is the forward headway of bus b at time step t, for which the action

was taken, and h+
t (b) is the backward headway. Naturally, Rt <= 0, reaching its

maximum, 0, when the forward and backward headways for the same bus are
equal, h−

t (b) = h+
t (b).

4.4 The Reinforcement Learning Algorithms

We use the Trust Region Policy Optimisation (TRPO) [22] algorithms, and the
Proximal Policy Optimisation (PPO) [23] algorithms. The latter combines ideas
from the Advantage Actor Critic (A2C) algorithm [17] to parallelize learning and
Trust Region Policy Optimisation (TRPO) [22]. These two algorithms empiri-
cally proved to be more stable, and converge more reliably than other discrete RL
algorithms, such as DQN and DDQN (the results for these methods are omitted
for brevity). The algorithm implementations internally use a Multi-Layer Per-
ceptron Actor-Critic policy, based on the PyTorch library5, and optimised using
the Adam algorithm. We used the default Stable Baselines3 configuration of 2
fully connected layers of 64 units per layer, with the tanh activation function.
Table 2 shows the training configuration for each algorithm and scenario.

Table 2. Training configuration for both TRPO and PPO under different scenarios.
(NT = no traffic, T+A = traffic and alternating bunched and un-bunched scenarios)

Algorithm Episodes Time (hrs) Learning Rate Batch Size Discount
Factor (γ)

TRPO (NT) 720 7.5 0.001 128 0.99

TRPO (T+A) 1000 12.8 0.001 128 0.99

PPO (NT) 720 7.1 0.001 64 0.99

PPO (T+A) 1000 11 0.001 64 0.99

Since actions are only applied at specific control points, the duration of a
time step from an RL algorithm perspective, is the time needed for some bus to
reach any stop from the instant when another bus departs from its stop. Thus,
the duration of each time step is not constant. Through trial and error it was
observed that bus bunching starts to manifest itself after about 200 time steps.

5 https://pytorch.org.

https://pytorch.org


Deep Reinforcement Learning to Improve Bus-Service Regularity 149

Thus, the episode length was set to 250 time steps, to ensure the phenomenon
manifests itself in each episode. Training was done on an Intel R© CoreTM i7-
10710U CPU at 1.10Ghz, and 16Gb RAM, running Windows 10 64 bit. The
implementation of the environment was done in Python. The source code for
these experiments is publicly available6.

The trained policies were evaluated and compared to a no-control policy,
where the buses were left to fulfil their route without any intervention, and a rule-
based control policy, applying Hold and Skip actions according to the forward
and backward headway deviations, as described in Sect. 4.1. The headway of
each bus at each bus stop, together with the mean waiting times and occupancy
dispersion levels were recorded at each control point.

5 Results

The trained policies were evaluated on the three criteria described in Sect. 2.1;
headway standard deviation as a measure of headway regularity throughout the
route, mean of the maximum waiting time at each stop, as a measure of service
quality, and occupancy dispersion, as a measure of capacity availability through-
out the route. These were measured for three scenarios, without any traffic, with
traffic and buses starting evenly spaced (as in [28]), and with traffic and buses
starting already bunched together. The latter scenario tests the policy’s ability
to recover from the scenario and regularise the headway.

As shown in Fig. 2, with no control, headway starts to become highly irregular
after some time for both no traffic and traffic scenarios. While the rule-based
policy manages to keep the headway variance under control initially, it still
degrades over time. Both TRPO and PPO produce a policy that keeps the
headway variance low over time, even under traffic. For the scenario where the
buses start already bunched, the no control policy never recovers, and buses stay
travelling as one for the remaining of time of the run. Rule-based control manages
to restore some of the headway between the buses, until the same degradation
observed in the other scenarios takes place. The policies produced by TRPO
and PPO both recover from the bunched scenario and restore the stability of
the service within a shorter time period when compared to the Rule-based policy,
with TRPO stabilising the headway almost twice as fast as PPO.

Figure 3 shows the effect of the different policies on the maximum waiting
time. With no control, it starts to increase as the network regularity degrades, for
both no traffic and traffic scenarios. The rule-based policy manages to maintain a
lower mean waiting time, although it has higher fluctuations than the RL-based
policies, especially when traffic is introduced. On the other hand, both the TRPO
and PPO-based policies maintain a low mean of the maximum waiting times
throughout, with TRPO having a slightly lower waiting time on average. For
the scenario where the buses start bunched, the mean of the maximum waiting
time for the no control policy immediately goes up and fluctuates between 22
and 38min. The three other policies, manage to bring the waiting time within
6 https://github.com/josephgrech01/BusBunchingRL.

https://github.com/josephgrech01/BusBunchingRL
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Fig. 2. Headway Standard Deviation for three scenarios (no traffic, with traffic but
starting evenly spaced, and traffic starting bunched), with No Control, Rule-based
Control, TRPO and PPO-based policies. The RL steps on the x-axis correspond to the
number of control points at which a control action was taken.
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Fig. 3. Mean of the Maximum Waiting Time at each stop, for three scenarios (no
traffic, with traffic but starting evenly spaced, and traffic starting bunched), with No
Control, Rule-based Control, TRPO and PPO-based policies. The RL steps on the
x-axis correspond to the number of control points at which a control action was taken.
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Fig. 4. Occupancy Dispersion for three scenarios (no traffic, with traffic but starting
evenly spaced, and traffic starting bunched), with No Control, Rule-based Control,
TRPO and PPO-based policies. The RL steps on the x-axis correspond to the number
of control points at which a control action was taken.
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acceptable levels, with TRPO maintaining the lowest and most stable levels
fluctuating mostly around the 3min mark.

Finally, Fig. 4 shows the occupancy dispersion levels under the different poli-
cies. With no control, the occupancy levels start to get unbalanced and fluctuate
heavily as time goes by and the network destabilises itself, for both the no traffic
and traffic scenarios. The Rule-based control policy also has a similar effect but
to a much lesser extent. TRPO and PPO both maintain a very low occupancy
dispersion, indicating that passengers are relatively well distributed across the
buses circulating on the route. For the scenario where the buses start bunched,
the no control policy keeps fluctuating between extremes, reflecting the fact that
the front bus would be full and the one behind would be empty. Interestingly,
the rule based control policy manages to recover the occupancy dispersion faster
than all the other policies, but still retains the fluctuating behaviour. The PPO-
based policy takes longer to regularise the occupancy dispersion and also suffers
from the same fluctuating behaviour. On the other hand, although TRPO does
not recover as fast as the other two polices, it recovers completely after 200 steps
and does not exhibit any fluctuating behaviour, which is a desirable character-
istic for a reliable service.

6 Conclusion

In this work we have presented a formal definition of the bus bunching problem,
a combinatorial problem where actions need to be assigned to control points
with the objective to minimise service quality criteria such as headway variance,
waiting time and occupancy dispersion. We proposed to use TRPO and PPO to
find an effective policy that selects the right actions to take at control points,
with a reward function formulated from the difference between the forward and
backward headway of the bus on which the action is being taken. We compared
the performance of these algorithms with a No Control policy and a Rule-based
Control policy. While previous studies typically focus on the application of one
action, such as Bus Holding, we propose the use of both Bus Holding and Stop
Skipping. Furthermore, we introduce a high level of traffic which intentionally
interferes with the simulated bus service, making the environment more dynamic
and stochastic. Finally, apart from training our policy to maintain headway
regularity, we also train the policy to recover from bunched scenarios, making
this study a first of its kind. Our results show that our proposed RL-based
policies not only maintain a low headway variance, but also achieves a low waiting
time, a low occupancy disperation, and are capable of recovering from scenarios
where the buses are bunched together, thus restoring regularity, with TRPO
outperforming PPO in most metrics.

This work opens up various avenues for possible further research. Firstly, the
current work limited the actions to Bus Holding and Stop Skipping. Another
possibility is to use boarding limits, where the chosen action also determines the
maximum target dwell time, from which the boarding limit for a stop can be
inferred. One could also explore how speed adjustments could be used to adjust
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the service regularity. Another possibility is to investigate the effect of using a
multi-objective reward function that includes the waiting time or the travel time,
apart from the headway. Another limitation of this study is that the passenger
arrival rates were fixed, following those defined in prior work by [28]. A more
realistic approach would be to have time-varying arrival rates which take into
account the time of day and also the days of the week, which can be simulated
using a non-homogeneous Poisson process. This could be combined with training
on larger bus routes with even higher passenger demand. Finally, since in reality
bus routes often overlap, and the same subset of bus stops are used by multiple
routes, we also plan to investigate the possibility of applying the same approach
on a more complex multi-route bus bunching problem.
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Abstract. Ensuring autonomous driving systems’ safety, reliability, and
trustworthiness is paramount to preventing incorrect or unexpected sys-
tem behaviors and hazardous scenarios. However, due to the complexity
of such systems and the immense search space of possible scenarios, test-
ing could be infeasible, necessitating the need to detect critical situations
during operation. This paper proposes a hybrid approach that combines
qualitative reasoning and object detection to prevent and discover critical
driving scenarios. The proposed approach relies on identifying spatiotem-
poral patterns of detected objects in the driving environment that are
indicative of critical scenarios, such as specific changes in movement or
physical impossibilities. We evaluate the approach’s effectiveness on real-
world driving data and demonstrate its ability to identify critical driving
situations successfully. Moreover, we discuss the challenges associated
with the approach and outline future research activities.

Keywords: Qualitative reasoning · Autonomous driving · Quality
assurance of safety-critical systems

1 Introduction

Autonomous driving has emerged as a critical application area of artificial intel-
ligence (AI) in recent years. With the development and integration of advanced
sensors, algorithms, and software, advanced driver assistant systems (ADAS) and
autonomous driving (AD) have achieved remarkable progress toward the vision
of safe, efficient, and comfortable transportation. However, ensuring their safety
and reliability remains a significant challenge due to the complexity and diversity
of driving scenarios. The need for extensive testing and validation to ensure the
trustworthiness and dependability of such systems has been widely recognized
in the research community, e.g., Koopman and Wagner [16] or Wotawa [24].
However, testing such systems is challenging due to the enormous search space
that must be examined, making it infeasible to test all possible parameters and
combinations. With this in mind, new methodologies have been introduced over
the last few years, focusing on the virtual validation of ADAS/AD. It is worth
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Fig. 1. Real-world example where the mirroring of an approaching object is detected
instead of the actual object.

noting that these methods have improved testing and validation significantly
compared to simple road testing, but these approaches also have their limita-
tions. For example, let us consider a driving scenario consisting of 50 parameters
that describe the static properties, e.g., weather conditions, road networks, or
traffic signs, and dynamic properties like other traffic participants. Assuming
that each parameter takes at least five values, the entire search space is 550,
roughly 9 · 1034. Therefore, verifying the correct behavior of the system in all
of the resulting scenarios is not feasible even with virtual verification methods.
Thus, revealing a wrong behavior during the operation is likely that testing could
not detect. Unfortunately, several fatal incidents, like the Uber self-driving car
accident in 2018 or the Tesla autopilot crash in 2016, highlighted the difficulty
of detecting and correctly responding to unexpected events during autonomous
driving.

Figure 1 illustrates an interesting real-world example we discovered during
our experiments. The image is extracted from our dataset on which we performed
object detection with a modified version of YOLOv4 [3]. As seen, the mirroring of
the approaching object within a building fooled the object detection algorithm.
Moreover, the object detector only detected the mirrored object but not the
actual object. The showcased example might lead to unwanted actions based on
the internal control logic of the integrated system. An example could be that the
autonomous car tries to evade a possible collision with the wrongly detected car
and drives on the left side of the road to ensure a safe distance. However, precisely
with this action, it would collide with the actual car that the object detector
missed. The mentioned incidents and real-world examples emphasize the need
to prevent critical scenarios during operations where the safety of passengers,
pedestrians, and other road users is at risk. Hence, trustworthy systems require
strict verification during development and the validation of the system behavior
during operation to prevent hazardous situations and harm.

Therefore, this paper proposes a hybrid approach that utilizes qualitative
reasoning (QR) complementary to object detection and object tracking in the
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Fig. 2. Simplified view from the front window of a car driving straight towards a
junction together with an approaching car at two different time steps.

autonomous driving domain. The proposed method uses spatiotemporal proper-
ties of detected objects and formalized expectations to identify possible critical
situations. QR provides the necessary concepts to efficiently implement formal
representations of a general view of the autonomous system and its environment
and common sense interpretations of critical and non-critical situations.

In Fig. 2, we illustrate with a simplified example the use of qualitative rep-
resentations. Let us assume that an autonomous car drives straight on the road
and recognizes a car at time t1 driving towards a T-junction. When approach-
ing the detected car, its visual appearance enlarges at time t2. In addition, the
angle of the bearing line between the car’s center view and the detected object
stays constant over the two consecutive time steps. With the help of two quali-
tative properties like object size (“increased”), and object angle (“constant”), we
could reason that we are on a potential collision course if we do not take any
countermeasures.

The paper aims to demonstrate the necessity of quality assurance during the
operation of autonomous systems and the applicability of qualitative reasoning
(QR) as a suitable methodology. We first give an overview of related work in
applying QR in the automotive driving domain and identify related challenges.
Moreover, we outline how to utilize qualitative reasoning to solve some of the
discovered challenges. Then, in more detail, we introduce a simple qualitative
model capable of detecting situations where the autonomous system is on a colli-
sion path with other traffic participants. In addition, we present the first results
obtained from applying our proposed methodology to the Audi Autonomous
Driving Dataset (A2D2) [10].

2 Related Work

With recent advancements in the development of ADAS/AD, more and more of
these systems are integrated into new vehicles. This can be mostly accredited
to significant improvements in the field of computer vision algorithms and espe-
cially those liable for detecting and tracking objects within the autonomous car’s
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vicinity. Reliably perceiving and interpreting the surroundings is inevitable to
take appropriate actions and avoid hazardous situations with other traffic par-
ticipants. Object detection algorithms like YOLOv4 [3] or Faster R-CNN [18]
and object tracking algorithms, e.g., SORT [2], achieved remarkable results in
various benchmarks and are capable of detecting and tracking objects with high
accuracy. However, even if we could guarantee that all objects are correctly
detected and classified, the autonomous car still must take adequate actions to
ensure safe behavior.

Therefore, quality assurance for ADAS/AD is of uttermost importance, and
several publications have been published in the last decade, including Schuldt
et al. [20], or Wotawa and colleagues [26]. It is important to note that simple
road testing is infeasible in practice, as expressed by Kalra and Paddock [12],
who calculated that an autonomous vehicle has to operate 275 million miles for
verification. With this, testing activities focus more on developing sophisticated
methods within virtual environments and simulation. For instance, Klück and
colleagues [15] and Klampfl et al. [13] proposed methods utilizing genetic algo-
rithms for testing ADAS. However, also virtual testing methods need to consider
various scenario properties, e.g., different traffic participants, road conditions, or
dynamic entities like different velocities, resulting in numerous diverse driving
scenarios that must be explored. Thus, in addition to testing during develop-
ment, we require methods that assure the safety of autonomous systems during
operation.

To ensure that an autonomous system operates as intended, it is necessary
to have a mechanism to distinguish between desirable and undesirable behav-
iors. One way to accomplish this is through qualitative reasoning and identifying
relations between the system and its perceived environment. Spatial and tem-
poral reasoning are important capabilities for formalizing relationships between
detected objects and the autonomous system being validated. Therefore, qual-
itative reasoning can provide a solid foundation for checking if correct actions
are performed or if countermeasures need to be triggered. Qualitative reason-
ing has already been applied successfully in the context of autonomous driv-
ing. In [21,22] Suchan and colleagues introduce a modular framework for visual
sensemaking using answer set programming (ASP) [5] as well as a qualitative
model for tracking objects in traffic, including occlusion handling. Furthermore,
Wotawa and Klampfl pursued a similar idea and introduced logic models for
explaining object motion in a sequence of images [25] as well as three appli-
cation scenarios where qualitative reasoning can be utilized in the autonomous
driving domain, i.e., assuring the safety, improving computer vision, and the
testing of autonomous systems [14]. In addition, Gilpin [11] proposed methods
for monitoring autonomous driving systems and comparing their behavior with
driving knowledge, regulatory knowledge, and safety requirements.
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3 Methodology

Qualitative reasoning (QR) has a long research history in the field of artificial
intelligence and is often used when dealing with uncertain or incomplete infor-
mation. Rather than dealing with precise numerical values, qualitative reasoning
focuses on understanding and making sense of information based on its quali-
tative properties and relationships with other variables. QR has applications in
various fields, including computer sciences, engineering, and social sciences. For
example, it can be used in physics to understand the behavior of systems besides
unknown precise measurements. Within the last decades, many subclasses like
qualitative spatial reasoning, qualitative temporal reasoning, and qualitative
simulation were established. Especially for systems where spatial information
is utilized for performing a certain task, e.g., robotics or autonomous vehicles,
spatial reasoning can support drawing the correct conclusions since, in most
cases, not a complete a priori quantitative knowledge is necessary, but quali-
tative abstractions [4]. Additionally to the theory behind spatial and temporal
reasoning like for example, the research carried out by Forbus [6], research on
fundamental reasoning mechanisms have been conducted, e.g., [1,19], or [22],
covering logic and constraints as well as advanced logic reasoning methods like
answer set programming.

This paper’s contribution continues the research performed in the area of
qualitative reasoning, spatial reasoning, and temporal reasoning. It proposes
using advanced logic reasoning methods, i.e., ASP, complementary to established
methods in computer vision to identify critical situations in driving scenarios
and, with this, ensure the safety of autonomous systems and vehicles during
operation. Moreover, we want to answer whether qualitative knowledge about
detected objects within the vicinity of the autonomous vehicle is sufficient to
draw an appropriate conclusion about the movement of the objects and, with
this, identify possible collision paths to trigger countermeasures to avoid danger.
We suggest that the angle between the bearing line of the autonomous car’s cen-
ter to the object of interest and the change in distance to the object are suitable
candidates for indicating if a situation is critical. To evaluate our proposal, we
use the output of object detection and tracking algorithms as a knowledge base
for extracting the respective qualitative measures and applying the ASP model
to compute the respective answer sets stating if a scenario can lead to a potential
risk for traffic participants.

The following paragraphs outline the basic definitions of detecting criti-
cal situations during autonomous driving operations. We start defining the
autonomous driving runtime verification setup comprising a set of observations
obtained from measurements in the ego vehicle and the set of properties that
must hold for ordinary driving situations not considered critical.

Definition 1 (Runtime Verification Setup (RVS)). A runtime verification
setup (RVS) is a tuple (OBS,PROP ) comprising a set of observations OBS and
a set of properties PROP . Both sets comprise knowledge specified in first-order
logic (or any similar representation).
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In the above definition of an RVS, properties are assumed to specify con-
straints that must hold during ordinary operation. These properties utilize data
and information from the sensors, e.g., the bearing angle to objects outside the
car obtained from computer vision systems. A property specifies, for example,
that the bearing angle is not allowed to be constant over successive time steps.
Formally, we can specify this as follows: ∀t ∈ TIME, o ∈ OBJECTS, α ∈
ANGLE : ¬(ba(o, α, t) ∧ ba(o, α, succ(t))). If there are observations OBS =
{ba(car, 45, 100), ba(car, 45, 110)} and assuming that succ(100) = 110, this prop-
erty is obviously not fulfilled, and we have detected a critical situation. This
example leads to the following definition of criticality.

Definition 2 (Critical situation). Given an RVS (OBS,PROP ).
(OBS,PROP ) is considered a critical situation if and only if OBS ∪ PROP is
inconsistent (i.e., not satisfiable).

Hence, we can formalize detecting critical situations as not confirming to
given pre-defined runtime properties. We can distinguish properties accordingly
to their underlying source of origin, which might be useful for formalization.

– Spatial and temporal knowledge: This class of properties includes all rules that
deal with spatial and temporal knowledge. Stating that the bearing angle is
not allowed to be constant over time or indicating that the distance with an
object in the front should not be less than a predefined value are examples of
this type of property.

– General driving knowledge: We may also indicate that an autonomous vehicle
should not violate traffic regulations. For example, the vehicle should not
exceed the speed limit on highways or in rural areas.

– Physical impossibilities: Sensors might indicate the existence of objects irrel-
evant to autonomous driving or not in conformance with the laws of physics.
In [7], handling such physical impossibilities for restricting the search space of
diagnosis was introduced. Similarly, we may come up with rules like stating
that an object cannot appear immediately in front of a car without being
tracked over time. In addition, we might specify that cars or similar objects
cannot fly. Hence, detecting a car at a place within the field of view requir-
ing cars to fly would allow us to raise an issue with vision and may lead to
ignoring such objects in analysis.

– Safety-specific knowledge: Due to circumstances like bad lightning condi-
tions, sensors may not consistently track objects over time. Such objects
may be ignored, leading to crashes. Hence, we may indicate a rule stating
that object detection is not working appropriately under some conditions,
requiring slower driving or the ego vehicle to consider unstable object detec-
tion as a real object and use estimations for tracking it. Of course, there is
more safety-specific knowledge someone should consider for detecting critical
scenarios.

It is worth noting that we do not require full-blown first-order logic to check
properties for a particular ego vehicle and situation. In particular situations,
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all variables are replaced by constants representing the current parameters and
objects. Hence, satisfiability checks only require propositional SAT solving for
which efficient solvers exist. However, first-order logic allows for a more easy
representation of knowledge. Hence, we suggest using ASP solvers like Clingo [8]
that come with an automated grounding procedure.

In contrast to other research like [22,23], we do not consider sophisticated
knowledge representations. Instead, we focus on simple properties that can be
efficiently checked during operation for detecting critical situations fulfilling soft
real-time requirements.

In the next section, the experiment design with its details is explained before
showing the first results of the method and indicating the challenges and limi-
tations we faced during the implementation and testing phase.

4 Experiment Design

To demonstrate the successful application of our proposed methodology, we set
up an experiment framework comprising an object detector, an object tracking
algorithm, data pre-processing and post-processing pipelines, and qualitative
reasoning models. The next section gives a detailed overview of the individual
framework components.

4.1 Data Processing

To perform object detection and tracking, a comprehensive dataset that includes
a variety of different traffic participants, as well as driving scenarios, is needed.
Fortunately, with the recent advances in the field of ADAS/AD, numerous
datasets were collected for research, development, and testing purposes, e.g.,
KITTI [9] or the A2D2 dataset [10]. For our experiments, we decided to use the
latter for the following reasons. First, it is a large-scale dataset containing dif-
ferent high-resolution sensor data, including not only cameras but also LiDARs
and the vehicle’s bus giving insights into the vehicle state, e.g., velocities, accel-
erations, and positions. Second, the dataset provides time series data within
three different cities, i.e., Gaimersheim, Munich, and Ingolstadt, with more than
15,000 camera images and LiDAR scans each, which is especially crucial for
performing object tracking and identifying movement patterns of objects.

To fully utilize the dataset, we implemented dedicated data processing pipe-
lines responsible for performing four main tasks:

1. Data Synchronization: Although each sensor data, i.e., camera images,
LiDAR scans, vehicle bus data, has a unique timestamp indicating the time
of data retrieval, it was necessary to synchronize the different sensor data
due to the fact of different component working frequencies. For instance,
vehicle bus data was not always available at the exact image and LiDAR
timestamps. To compensate for this, we applied interpolation to the vehicle
data, e.g., velocities, and positions, to acquire estimates at the respective time
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steps of the images and LiDAR scans. It should be noted that this was only
necessary for the vehicle bus data. Camera images and LiDAR scans were
already synchronized.

2. Camera/LiDAR Data Transformations: With the objective of using
information included in the LiDAR scans complementary to camera images,
there was the need to transform each point included in the LiDAR scan to the
correct coordinate frame to be able to map it onto the image. For implement-
ing the respective transformations, we adapted the code base provided with
the dataset and which can be found on the A2D2 homepage.1 In summary,
we applied different rotation and translation matrices on each LiDAR point
so that it can be represented in the desired view.

3. Object Detection and Tracking: Object detection, classification, and
tracking are indispensable for ADAS/AD to perceive other traffic partici-
pants as well as static objects like traffic signs within the environment of the
autonomous car. When talking about object detection and tracking, there
is always a trade-off that has to be made between performance in the sense
of how fast frames are processed and accuracy. Since our proposed method
should ensure safety during operation, object detection needs to be executed
in real-time. YOLOv4 [3] is a well-established open-source object detection
model that is known for its high performance and accuracy and, therefore,
a perfect candidate. Since the purpose is not to develop new object detec-
tion algorithms, we used a model pre-trained on the COCO [17] dataset and
integrated it into our experiment framework. For the purpose of tracking and
assigning unique IDs to each object detected, we integrated the lightweight
object tracking algorithm SORT [2]. SORT is based on a combination of
Kalman filtering and the Hungarian algorithm and is able to track multiple
objects within a scene in real-time.

4. Distance Extraction: For reasoning about the spatiotemporal behavior of
detected objects, it is necessary to have at least an estimate of the object’s
distance relative to the vehicle. To obtain distance values, we extracted dis-
tance values provided by the LiDAR scans. In more detail, we looked at all
LiDAR points within the object bounding box and obtained the distance
values from the respective points.

All of the above-mentioned parts were implemented in Python version 3.10
using a Macbook Pro with a 2.9 GHz Intel Core i7 processor, 16 GB memory,
and an integrated Radeon Pro 560 graphics card.

4.2 QR Model and Solver

An autonomous car must have the capability to react correctly to unseen and
unknown situations. In the best case, the car should perform common sense
reasoning and infer the appropriate actions based on previously experienced sit-
uations, similar to what we do as humans when driving. However this is a chal-
lenging task, but the first steps to achieve this goal might be the implementation
1 https://www.a2d2.audi/a2d2/en.html.

https://www.a2d2.audi/a2d2/en.html
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of different logical models representing knowledge about possible situations, like
the simplified introductory example where we could reason that a dangerous
situation will occur if no countermeasures are taken due to the constant bear-
ing angle and the enlargement of the object’s appearance. Qualitative spatial
and temporal models have already been explored in research to support and
enhance perception systems and autonomous driving (see Sect. 2). Inspired by
previous work in this area, we introduce logical models for certain situations
that are indicative of critical situations. In Listing 1.1, a simple model showing
the application of qualitative reasoning implemented in answer set programming
(ASP) [5] is shown.

ASP is a programming paradigm that adopts a declarative approach and
draws upon logic programming and non-monotonic reasoning. Essentially, an
ASP model comprises logical rules, integrity constraints, i.e., rules that lead to
a contradiction, and facts, including constants and observations.

For simplicity and space reasons, the depicted ASP model shows only one
specific implementation for the case of a detected object in front of us. However,
in the same manner, additional situations, like objects that are passing by the
vehicle or approaching traffic participants, can be represented and encoded. For
defining the objects and their corresponding properties, e.g., the unique object
ID, the point in time where it appears, or the bearing angle relative to our
vehicle, specific predicates like objID/1 are defined (see source code line 1 ).
Due to space reasons, we omitted the definition of other predicates used in the
implementation since they follow the same principle. In source code line 2, a
sit/6 predicate is defined. Based on the observations illustrated in Listing 1.2,
for each detected object, all possible situation combinations are derived. In more
detail, this means that we get for each object a situation predicate indicating
the Start and End of the situation, as well as the corresponding properties of
the specific object.

Within source code lines 3, we define the predicate crit sit/3, which encodes
a possible problematic situation in the following way: First, we retrieve all gener-
ated situations of the detected objects with their specific parameters. Second, we
define constraints that need to be fulfilled to be considered severe. For instance,
in our example, we want to identify objects that are in front of us and with
which we are on a potential collision path. This is the case if the bearing angle
is either constant over consecutive time steps, like in the introductory example,
or if it is in the range of −20◦ and +20◦ when assuming that 0◦ is represented
by the vertical center line of our camera image. It should be noted that the
set boundary conditions are estimates, and adaption and calibration would be
needed for other scenarios or the actual integration within a vehicle.

After defining our ASP model, we can pass the model and our observations
from Listing 1.2 to an answer set solver to compute statements describing at
which frames our vehicle is on a collision path with detected traffic participants.
For our implementation, we rely on the Potassco answer set solver2 and would
acquire one answer set, namely crit sit(5, 1, 10), indicating that there is a poten-

2 https://potassco.org/.

https://potassco.org/
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Listing 1.1. Simplified ASP model for applying qualitative reasoning and identifying
objects over consecutive time steps that are on a collision path with the vehicle.

1 objID (ObjID ) :− obs (ObjID , , , , , ) .
2 s i t (ObjID , Start , End ,A2 , A2 q ,Dy2) :− objID (ObjID ) ,

frame (F1) , frame (F2) , F1 < F2 ,
ang le (ObjID , F2 ,A2) , ang l e q (ObjID , F2 , A2 q ) ,
dy (ObjID , F2 ,Dy2) , S ta r t = F1 , End = F2 .

3 c r i t s i t (ObjID , Start , End) :−
s i t (ObjID , Start , End ,A2 , A2 q ,Dy2) , Dy2 = ”decr ” ,
1{A2 <= 20 ; A2 q = ” const ”} ,
1{A2 >= −20 ; A2 q = ” const ”} .

Listing 1.2. Observations provided to the ASP model in Listing 1.1 and retrieved
from the data piplines described Section 4.1.

1 obs (5 ,” car ” ,1 ,11 ,” i n c r ” ,” decr ”) .
2 obs (5 ,” car ” ,10 ,19 ,” i n c r ” ,” decr ”) .
3 obs (5 ,” car ” ,20 ,22 ,” i n c r ” ,” decr ”) .

tially hazardous situation with an object having the unique identifier 5 within
time 1 and 10 if no countermeasures are taken, e.g., braking or changing direc-
tion. In the upcoming section, we will present our results obtained when applying
our ASP model to the A2D2 real-world dataset.

5 Results

For the purpose of evaluating our method, we applied our ASP model to the
A2D2 dataset. In more detail, on the pre-processed data for driving in the city of
Gaimersheim. The drive comprises a total number of 15,688 images and LiDAR
scans. Since no ground truth is provided for this data, we rely solely on the
objects detected by our implemented object recognition algorithm YOLOv4 and
SORT algorithm for tracking each observed object. Figure 3 gives an overview of
the number of objects detected (blue), the number of unique objects identified
(orange), and the number of critical scenarios obtained through our ASP model
(green).

In total, we identified 79,592 objects within all images captured by the cam-
era sensor. As it can be seen, with a total number of 71,921 detections, the
object class car is the most prominent within the used dataset. With this, it is
not surprising that also the number of unique objects extracted by the SORT
tracking algorithm is the highest for the category car, i.e., 1,922 out of 2,270
unique objects are represented by cars. When having a closer look at the critical
situations obtained by our logic model, we discovered 183 instances where the
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vehicle is on a potential collision path with a car. Respectively, seven times with
an object classified as a truck, one time with a bus, and five times with a person.

Fig. 3. Bar graph showing the number of detected objects, unique objects, and critical
situations per object class.

Before looking at a real-world example where we extracted a potentially haz-
ardous situation, let us consider the situation illustrated in Fig. 4. The drawing
shows a simplified situation at a junction from a top-view perspective, with the
ego vehicle in yellow and the object of interest in black. Furthermore, −α and
+α indicate the previously mentioned angle threshold from −20◦ and +20◦.
The angle β represents the calculated bearing angle relative to the ego vehicle.
In addition, the two black dashed arrows show the indented driving paths of the
ego vehicle and the object of interest.

Let us consider three discrete points in time, t1 where the objects are at
their initial positions, t3 where the objects are at their final destinations, and t2
somewhere in the middle of both. When executing this scenario, we can certainly
infer that at some point in time, i.e., between t1 and t3, both objects are on a
potential collision course if, for instance, the steering control would malfunction
and therefore not be able to follow the path planned by the control logic. This
is, for instance, a situation that we are interested in identifying when applying
our ASP models to real-world data or during operation.

Fortunately, during conducting our experiments and applying our model to
the A2D2 dataset, we were able to identify numerous potential critical scenarios
(see Fig. 3). One example is shown in Fig. 5 and displays a situation discussed in
Fig. 4. The figure shows three frames at three consecutive points in time. Within
each image, the current bearing angle relative to the ego vehicle is indicated with
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Fig. 4. Simplified top view schematic of the situation shown in Fig. 5.

a blue line. Similarly, the red lines represent the range of −20◦ and +20◦ and
mark the threshold where we consider a detected object as critical if no actions
are taken. In addition, each image contains the results from the object detection
algorithm, indicated by a bounding box, and estimates for the distance to the
object.

When looking at the situation’s first frame (t1), we see that the ego vehicle
is approaching a junction with another object approaching the same junction
from the opposite direction. Although we do not know the intended path of the
detected object in advance, we can state that there is no potential risk for a
crash, i.e., the object is outside our set threshold. Moreover, when looking at the
following frame, i.e., t2, we see that the detected object crosses our projected
path, and we would face a potentially hazardous situation if we drove straight.
In this case, our ASP model would compute the respective output and could, for
instance, trigger a warning to the vehicle’s passenger. However, since the dataset
does not contain data where actually a crash happens, the situation gets resolved
in the last image displayed (t3) since the planned paths of the ego vehicle as well
as of the detected object are the same as illustrated in Fig. 4.
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Fig. 5. Example result obtained from applying our ASP model on the A2D2 dataset.
Left: no collision is expected with the detected object at time t1. Middle: on collision
path at time t2. Right: critical situation resolved at t3.

Given that no ground truth is available, indicating if our identified scenar-
ios are indeed critical within the calculated time frame, we relied on manually
evaluating our observations. For this, we selected critical and non-critical repre-
sentatives from each object class and investigated the results by looking at the
video sequence including the critical and non-critical objects. Evaluating in total
20 critical and 20 non-critical situations, we can state that for the selected can-
didates, our method positively delivered correct results. In contrast to the dan-
gerous situation illustrated in Fig. 5, non-critical scenarios included for instance
parked objects on the side of the street where the bearing angle increased within
consecutive frames when the object was on the right side relative to the ego
vehicle, and respectively decreased when parked on the left side.

Despite successfully applying our ASP model and identifying critical situa-
tions within the A2D2 real-world dataset, we faced some challenges during the
implementation process as well as some limitations were identified that need to
be tackled in future work. In the next section, we give a short overview of those
and explain how they were solved and which remain currently open.

6 Challenges and Limitations

Throughout the process of establishing our experiment framework and during
the execution of our first test runs, we encountered some major and minor chal-
lenges and limitations. Especially when working with real-world sensor data, one
has to deal with noise and different update frequencies of the included compo-
nents and sensors. Although the A2D2 dataset was collected with a sophisticated
sensor setup and additional components for time stamping, e.g., GNSS clocks,
embedded computers, and gateways, pre-processing before being able to use
it for our experiments was necessary. While this was relatively easily possible
for some vehicle bus data, e.g., velocities or acceleration, through interpolation
algorithms, for some signals like longitude and latitude values, this was not
straightforward. In particular, longitude and latitude values were not updated
as frequently as other bus signals, resulting in a delayed position reporting of
the vehicle. Unfortunately, within the scope of this paper, we have not found
an acceptable solution for this problem. However, since using position data in
addition to the already used object-related measures could further improve the
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accuracy of our method as well as can be used to implement additional logic
models, for instance, for identifying if objects are within a building like illus-
trated in Fig. 1, we plan to solve this problem in our future work.

As described in the previous sections, we used the bearing angle relative to
the ego vehicle as well as distance estimations for encoding critical situations
with other traffic participants in our ASP model. However, since the bearing
angle and distances are calculated based on the center of the bounding boxes
computed by the object detector and tracking algorithm, we might encounter
imprecise angles and distances at some points in time. For instance, on some
occasions, we received increasing angles and distance values, although the values
theoretically should be decreasing. This can be accredited to the fact that the
camera sensors of the vehicle capture images at a frame rate of 30 frames per
second. Hence when detecting an object in two consecutive frames, the situation
is basically still the same since only 30 milliseconds have passed. However, if the
bounding box is not exactly the same as in the previous frame, this results in
imprecise angle and distance measures, i.e., decreasing instead of increasing. To
compensate for this problem, we implemented a sliding window approach that
eliminated, for most cases, the resulting variances for the angle to the object as
well as the distance.

Let us assume that X is a time series dataset with length N , and let W be
the size of the sliding window. The sliding window approach involves dividing
the time series into overlapping windows of size W and sliding the window over
the time series with a certain stride, i.e., S where S < W . The resulting sliding
window can be denoted by a tuple (i, i+W − 1), where i is the index of the first
element in the window. By using the sliding window approach and calculating
the change rate of angles and distances over each window, we were able to reduce
the short-term fluctuations while ensuring that no frame is ignored.

When talking about limitations, it must be mentioned that our proposed
approach is currently implemented with a fixed angle α (see Fig. 4). However, this
might not be appropriate for driving scenarios where a lot of objects are near the
ego vehicle, e.g., driving within a city or traffic jams, since in such cases, it is often
the case that detected objects are very close and therefore would be permanently
within the critical threshold. A possible solution for this, which will be tackled
in future work, might be to adapt the critical angle range depending on the
driving environment or, alternatively, to calculate it dynamically dependent on
the distance of the nearest detected objects. Furthermore, the current approach
evaluates only the criticality with respect to one object at a time. However,
it would be desirable to implement additional logical models that are able to
evaluate the criticality of the complete scenario, including all objects involved.
For instance, we might encounter a situation where although no critical situation
is identified when looking at all objects separately, the overall situation is critical
because of the combination of maneuvers performed by the individual traffic
participants. As a last limitation it should be mentioned that validation of the
output produced with our ASP model was done manually by having a look on
the specific frames where a critical situation was identified. Nonetheless, as a
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next step we want to evaluate our approach based on simulated scenarios in
order to automatically obtain ground truth data for the sensors used on the one
hand, and certainty if a scenario was really critical on the other hand. All of the
mentioned unresolved challenges and limitations will be tackled in future work.

7 Conclusion

In this paper, we motivated the use of qualitative reasoning to identify crit-
ical scenarios in autonomous driving. We highlighted the necessity of quality
assurance during operation in addition to strict testing and verification methods
within the development phase of such systems. Furthermore, we argued that
by explaining spatiotemporal patterns of detected objects in the vicinity of the
autonomous vehicle, it is possible to distinguish potentially dangerous situa-
tions from uncritical ones. In more detail, we used the bearing angle between
the detected object and the autonomous vehicle and estimates for the distance
extracted from the output of implemented object detection and tracking algo-
rithms. Furthermore, we used answer set programming for encoding our logic
models. To test our approach, we set up an experiment framework consisting of
an object detector algorithm, an object tracking algorithm, a data preprocessing
pipeline, and an ASP model. We performed the evaluation on the well-known
A2D2 dataset, where we successfully showed that scenarios could be identified
as critical based on qualitative reasoning principles.

We plan to extend the introduced qualitative model to be able to not only
capture critical objects separately but also take into account situations where
each object on its own presents no danger but the combination of maneuvers
performed by the detected objects does. Furthermore, we want to carry out more
exhaustive experiments based on different datasets and especially on simulated
scenarios in order to validate our method automatically.
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1 Introduction

Explainable Artificial Intelligence (XAI), algorithmic transparency, interpretability,
accountability and finally, explainability of algorithmic models and decisions are
important and prominent research themes. The XI-ML workshop on explainable and
interpretable machine learning tackles these themes, in particular, from the modeling
and learning perspective. Here, it specifically targets interpretable methods and models
being able to explain themselves and their output, respectively. Overall, the workshop
aims to provide an interdisciplinary forum to investigate fundamental issues in
explainable and interpretable machine learning as well as to discuss recent advances,
trends, and challenges in the targeted scope.

With this third edition of the workshop, we aimed to provide a discussion platform
for the topics of explainable and interpretable learning in the scope of XAI. The main
emphasis of the call was on explainability approaches within which the editors were
acquainted in their prior research. This included symbolic, intrinsically explainable
methods such as rule learning and pattern mining (cf. e. g., [2, 4]), as well as repre-
sentations of complex data [6, 13] like networks/graphs and time series. An equally
important emphasis was put on cognitive approaches [1, 9, 12], human concept
learning and contrastive explanation [11]. The workshop did not intend to cover only
supervised (classification approaches) but also research on XAI in the unsupervised
domain such as clustering [14], or subgroup discovery [8]; this also relates to chal-
lenges and pitfalls in those areas, specifically regarding, training and evaluation [7].
The third focus area was explanations of black box models as well as applications of all
of the above (i. e., [3, 5, 10]).
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The first edition of the XI-ML (Explainable and Interpretable Machine Learning)
workshop was held on September 21, 2020, at the 43rd German Conference on Arti-
ficial Intelligence, Bamberg, Germany. The second edition of the workshop was held
on September 20, 2022, in co-location with the 45th German Conference on Artificial
Intelligence, Trier, Germany (virtually). This third edition of the workshop was held on
September 30, 2023, colocated with the European Conference on Artificial Intelligence
(ECAI), Krakow, Poland.

For the workshop, there were 16 accepted papers out of 25 submissions in total.
Below, we structure these according to the general topics and/or their specific
methodological foci in the context of explainable and interpretable machine learning, as
well as individual applications. These 16 accepted papers were presented within four
internally topically related sessions:

Explanations Through Trees, Rules, and Subgroups

– Julia Herbinger, Susanne Dandl, Fiona Katharina Ewald, Sofia Maria Loibl and
Giuseppe Casalicchio Leveraging: Model-based Trees as Interpretable Surrogate
Models for Model Distillation

– Tanmay Chakraborty, Christian Wirth and Christin Seifert: Post-hoc Rule Based
Explanations for Black Box Bayesian Optimization

– Dan Hudson and Martin Atzmueller: Subgroup Discovery with SD4Py
– Ruth Cohen Arbiv1, Laurence Lovat, Avi Rosenfeld, and David Sarne1: Opti-

mizing Decision Trees for Enhanced Human Comprehension

Domain- and Application-Specific Explainability Methods

– Emanuel Slany, Stephan Scheele and Ute Schmid: Bayesian CAIPI: A Probabilistic
Approach to Explanatory and Interactive Machine Learning

– Munkhtulga Battogtokh, Michael Luck, Cosmin Davidescu and Rita Borgo: Simple
Framework for Interpretable Fine-grained Text Classification

– Francisco N. F. Q. Simoes, Thijs van Ommen and Mehdi Dastani: Causal Entropy
and Information Gain for Measuring Causal Control

– Nghia Duong-Trung, Duc-Manh Nguyen and Danh Le-Phuoc: Temporal Saliency
Detection Towards Explainable Transformer-based Timeseries Forecasting

Interdisciplinary Approaches

– Stefanie Krause and Frieder Stolzenburg: Commonsense Reasoning and Explain-
able Artificial Intelligence Using Large Language Models

– Foivos Charalampakos and Iordanis Koutsopoulos: Exploring Multi-Task Learning
for Explainability

– Ondřej Vadinský and Petr Zeman: Towards Evaluating Policy Optimisation Agents
using Algorithmic Intelligence Quotient Test

– Federico Sabbatini and Roberta Calegari: Achieving Complete Coverage with
Hypercube-Based Symbolic Knowledge-Extraction Techniques
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Image and Prompt-Based Medical Explanations
and Feature-Based Importance Methods

– Kirill Bykov, Klaus-Robert Müller and Marina Höhne: Mark My Words: Dangers
of Watermarked Images in ImageNet
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Abstract. Symbolic knowledge-extraction (SKE) techniques are cur-
rently employed for various purposes, particularly addressing the chal-
lenge of explaining opaque models by generating human-understandable
explanations. The existing literature encompasses a diverse range of tech-
niques, each relying on specific theoretical assumptions and possessing
its own advantages and disadvantages. Amongst the available choices,
hypercube-based SKE techniques are notable for their adaptability and
versatility. However, they may suffer from limited completeness when
utilised for making predictions. This research aims to augment the pre-
dictive capabilities of hypercube-based SKE techniques, striving for a
completeness rate of 100%. Furthermore, the study includes experiments
that assess the effectiveness of the proposed enhancements.

Keywords: Explainable artificial intelligence · Symbolic knowledge
extraction · PSyKE

1 Introduction

Ensuring the explainability of predictions made by machine learning (ML) mod-
els is crucial, especially in critical domains where the outcomes significantly
impact human well-being, such as health, wealth, and safety. To address the opac-
ity of ML predictors, the explainable artificial intelligence (XAI) community pro-
poses two primary approaches [8]: (i) utilizing inherently human-interpretable
models, such as decision trees with limited depth [13]; or (ii) employing sym-
bolic knowledge-extraction (SKE) techniques to extract post-hoc explanations
from trained opaque models [12]. This paper focuses on SKE techniques.

Over the past few decades, numerous SKE algorithms have been proposed
in the literature. While these techniques exhibit diversity, certain common char-
acteristics can be identified amongst the most widely adopted approaches. For
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example, G-REX [11], Trepan [4] and Cart [2] offer human-understandable
knowledge in the form of decision trees. However, it should be noted that Trepan
is only applicable to binary input feature classification tasks. On the other hand,
G-REX and Cart can be utilised also for regression tasks and accept inputs that
are either discrete or continuous.

SKE techniques often exhibit a recurring pattern of employing hypercubic1

partitioning of the input feature space [22,24]. This approach aims to generate
interpretable predictions. The identification of specific regions within the input
feature space, characterised by interval inclusion constraints – typically one con-
straint per input feature –, forms the basis of these methods. Consequently,
the outputs of these techniques can be easily understood by human users. Each
hypercubic region that is identified is associated with a comprehensible output
value, which could be a class label, a constant value, or a linear combination of
the input features.

SKE algorithms based on hypercubes can be executed using either a top-
down or a bottom-up workflow [15]. The bottom-up approach is particularly
susceptible to non-exhaustivity issues, referring to the potential inability to gen-
erate predictions for instances belonging to certain subregions of the input space.
Generally, the bottom-up strategy involves iteratively expanding the hypercubes
created in the input feature space, one cube and one dimension at a time. The
cubes are initially defined as multidimensional points, and achieving conver-
gence (i.e., complete coverage of the input feature space) may require a signifi-
cant number of iterations, especially for data sets with numerous input features.
Consequently, the presence of non-exhaustivity in bottom-up hypercube-based
SKE techniques depends on the complexity of the data set being analyzed. An
example of an SKE algorithm that suffers from this drawback is Iter [9].

Due to the time-consuming process of iterative hypercube expansion, bottom-
up algorithms like Iter may terminate after a specific number of user-defined
iterations, even if they have not yet achieved convergence. This means that cer-
tain subregions of the input space remain uncovered by the identified hypercubes,
resulting in the inability to predict instances belonging to these uncovered subre-
gions. As a result, the completeness of SKE becomes a crucial factor to consider
when evaluating the quality of a technique [7].

The significance of completeness in assessing the quality of knowledge
extracted through SKE methods is also emphasised in [18,19], where two metrics
are introduced to evaluate knowledge quality. These metrics utilise other indices
commonly employed to assess the quality of SKE techniques, namely correctness
and compactness [7]. Correctness measures the ability of the SKE technique to
replicate the predictions of the underlying opaque predictor. On the other hand,
compactness is a measure of human readability, as knowledge with a smaller
dimension is more understandable for end users compared to knowledge with a
large size.

1 We use the term “hypercube” also for referring to actual hyperrectangles, as com-
monly made in the literature [9, for instance].
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In this paper, we address the significance of obtaining comprehensive inter-
pretable models by introducing a set of vicinity-based extensions for hypercube-
based SKE methods. These extensions aim to provide human-interpretable pre-
dictions even for instances that do not belong to any identified hypercube. The
proposed extension is not limited to a specific SKE algorithm or task. Therefore,
it can be applied to any type of SKE technique that relies on hypercubic parti-
tioning of the input feature space, regardless of whether it involves classification
or regression tasks with categorical, discrete, or continuous outputs.

The paper is organised as follows: Section 2 resumes background notions on
SKE, Sect. 3 describes the proposed extensions, and Sect. 4 shows the effective-
ness of our proposal via several experiments on real world data sets. Finally,
Sect. 5 summarises our conclusions.

2 Symbolic Knowledge Extraction

Knowledge-extraction mechanisms usually aim to reverse-engineer an opaque
model in order to understand the rationale behind the output predictions it
provides [10]. SKE algorithms may be categorised along several dimensions,
including (but not limited to) the expressive power of the extracted knowl-
edge (e.g., propositional, fuzzy, oblique rules) and the translucency extent of
the technique [1]. According to the translucency dimension, SKE methods may
be classified as decompositional or pedagogical.

A group of pedagogical SKE techniques [9,14,20,25] rely on hypercubic
partitioning of the input feature space to establish input/output relationships
between queries made to opaque models and their corresponding output pre-
dictions. These techniques fall into a category that typically generates human-
interpretable outcomes in the form of propositional rules presented as a list or
tree structure. In the following, we delve into the specifics of these hypercube-
based SKE methods to elucidate the potential causes of their non-exhaustivity.
Additionally, we highlight the advantages of employing the presented extension
to achieve complete coverage, addressing the limitations of these techniques.

2.1 Iter

Iter [9] is a bottom-up SKE technique originally designed for regression tasks
described by continuous input features. It is based on the creation of a user-
defined number of small hypercubes randomly placed inside the input feature
space (i.e., multidimensional points) and on the iterative expansion of these
cubes until the whole input space is covered (i.e., convergence) or it is not pos-
sible to further expand them. Hypercubes are always non-overlapping, to avoid
ambiguity in the prediction phase.

The expansion step of Iter may terminate without reaching convergence
after a user-defined number of iterations. In this case some portions of the input
feature space remain unassociated with the found hypercubes and the result-
ing interpretable model will be unable to provide predictions for all instances
belonging to these unassociated regions.



182 F. Sabbatini and R. Calegari

The non-exhaustivity of Iter is thus due to the slow convergence of its
expansion phase, given that at each iteration only one cube is expanded along
a single dimension and such expansion is generally represented by a small user-
defined amount of input space.

2.2 GridEx and GridREx

GridEx [25] is a top-down algorithm to perform knowledge extraction from any
kind of opaque predictor. It has been designed to overcome the non-exhaustivity
issues deriving from the usage of Iter. To do so, GridEx recursively splits the
input feature space in a set of symmetric, disjoint partitions according to some
criteria. In particular, GridEx identify 3 classes of input space regions: negligible
if there are no training samples belonging to them; permanent if they contain
training samples and the associated predictive error is below the user-defined
threshold; and eligible if they contain samples and the corresponding error is
above the threshold. From a workflow standpoint, negligible regions are dis-
carded, permanent regions are converted into human-readable rules and eligible
regions are further split during the recursive phase of the algorithm.

A consequence of the splitting strategy adopted by GridEx is the possibility
to produce a non-exhaustive input space partitioning when applied to data sets
having sparse data points, due to the discarded negligible regions. In this case
GridEx cannot predict instances falling inside these input space portions.

GridREx [14] is an extension of GridEx aimed at achieving better predictive
performance. Since GridEx associates constant output values to the identified
hypercubes, it introduces an undesired discretisation impinging the predictive
performance of the interpretable model. GridREx overcomes this drawback by
substituting the constant output of each hypercube with a regression law express-
ing a linear combination of the input features. However, it shares with GridEx the
same splitting strategy and thus the same issues related to the non-exhaustivity
due to negligible regions.

2.3 CREEPY

CReEPy [20] is a top-down SKE technique producing a hypercubic partitioning
of the input feature space organised as a binary tree. It is based on an underlying
explainable clustering algorithm that may be selected by users, together with the
corresponding parameters. Available clustering techniques are ExACT [16] and
CREAM [17].

The tree structure produced by this algorithm is created by recursively split-
ting input space regions into two subregions: a hypercube and a difference cube,
obtained by subtracting the hypercubic subregion from the starting region. As
a consequence, each node of the tree is associated with a constraint describing a
hypercube. The two child nodes are then associated with inclusion in/exclusion
from that hypercube.
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Since CReEPy produces human-intelligible rules by traversing the binary
tree, it is always possible to provide an output prediction for a given query and
therefore it is a complete technique by design.

3 Vicinity-Based Extensions to Achieve Complete
Coverage

In order to address the completeness of the interpretable models obtained
through SKE techniques, we have developed an extension that can be applied
to any SKE algorithm utilizing hypercubic input space partitioning for predic-
tions. The problem of drawing predictions for uncovered queries has already been
investigated in the literature [5,27]. In particular, [5] emphasises the need for a
more sophisticated strategy than majority-based assignments and proposes an
alternative method based on rule stretching. On the other hand, [27] exploits
Euclidean distance to assign a point to the nearest hypercube, selected amongst
a set of possibly nested hypercubes.

It is important to note that our proposed extension does not impact the
prediction phase for data points that fall within the identified hypercubes during
knowledge extraction. These instances can be predicted as intended by the design
of the SKE algorithm. Instead, our focus is solely on predicting instances that
are included in regions not covered by any hypercube, referred to as uncovered
instances hereafter.

The core concept behind this extension is to assign each uncovered instance
to an existing hypercube based on a vicinity criterion. This approach ensures
that the readability extent of the interpretable model obtained through SKE
remains unchanged, as it is directly related to the size of knowledge represented
by the number of identified hypercubes, which remains unaltered with our exten-
sion. Additionally, employing a vicinity criterion enables the assignment of out-
liers to the closest hypercube. Experimental tests have shown that the proposed
extension, which in the following we refer to as brute prediction, can enhance
the predictive performance of the interpretable model by accurately assigning
uncovered instances to the correct hypercube.

Brute prediction depends on the closest hypercube w.r.t. the query. The dis-
tance between a data point and a cube may be calculated according to more
than one definition. In the following several strategies are defined, each one pre-
senting a trade-off between computational complexity and expected predictive
performance. In particular, we propose to assimilate the distance between a
point and a cube to the Euclidean distance between the point and the relevant
points of the cube. The selection of Euclidean distance derives from the need
to maintain the highest possible degree of human interpretability for the SKE
outputs. Indeed, the most natural method to assess distance for humans is in
terms of “straight lines” between two points. Other commonly used metrics are
the Manhattan distance or the Chebyshev distance. We briefly recall that the
Manhattan distance between a pair of points is calculated as the sum of the
absolute differences of the points’ Cartesian coordinates (“city block” strategy).
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On the other hand, the Chebyshev distance between two points is the greatest
distance amongst those calculated for each point dimension (“chessboard” strat-
egy). In our opinion, these alternatives hinder the immediacy of the knowledge
representation, even if they may be more computationally efficient.

In our proposed extension we consider the following points of the hypercube
as relevant: the centre, barycentre, vertices, and edge points. This allows us to
employ different approaches for brute prediction, such as centre-based, density-
based, corner-based, and perimeter-based methods. Additionally, we introduce
an additional majority criterion that disregards the identified hypercubes and
instead relies solely on the average output observed for the instances provided
during the extraction phase of the SKE technique. This criterion can be used as
an alternative prediction strategy.

To establish the different strategies for brute prediction, we begin by for-
malising the concepts of a data set and a hypercube. We define a data set D
as a collection of n-dimensional points, where n represents the number of input
features in the data set. For the purpose of this definition, without loss of gener-
ality, we will ignore the output feature since the hypercubes created using SKE
techniques are based on the dimensions of the input features alone. The domain
of data set D, i.e. Dom(D), is defined as the Cartesian product of the domains
of each input feature f of D:

Dom(D) = Dom(f1) × Dom(f2) × · · · × Dom(fn). (1)

Hypercube-based SKE algorithms work upon continuous input features, there-
fore

Dom(fi) ⊆ R ∀i = 1, . . . , n. (2)

As a consequence
Dom(D) ⊆ R

n. (3)

A hypercube H is defined as a portion of the input feature space:

H ⊆ D. (4)

The corresponding domain is thus a subset of the domain of data set D. We
denote with h1, h2, ..., hn the n individual dimensions of the cube, with the
following domains:

Dom(hi) ⊆ Dom(fi) ∀i = 1, . . . , n. (5)

It is worthwhile to notice that hypercubes (and their corresponding domains)
are usually strict subsets of the data set (and its corresponding domain), except
for the surrounding cube, defined as the cube enclosing all the instances of the
data set. Therefore, this cube coincides with the data set and its domain coincides
with the one of the data set.
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Fig. 1. Example of centre-based distance calculation.

3.1 Majority-Based Assignment

The simplest option to provide predictions for data instances belonging to uncov-
ered input space regions is to consider a surrounding hypercube enclosing all
the possible queries. This enables SKE techniques to exhibit a default behaviour
when there are no cubes providing the needed prediction. To minimise the predic-
tive error of this default prediction it is necessary to consider the most common
output values observed in the whole data set. When performing classification
tasks, it is possible to consider as default output the most common class label
in the data set. Conversely, for regression tasks the output feature can be aver-
aged over all the data points to provide a constant value. Alternatively, it is
possible to express the output value as a linear function of the input features
approximating the data point distribution within the whole data set.

With this majority-based criterion brute predictions may be provided in con-
stant time, regardless of the number of input features describing the data set,
and without calculating any distance between queries and hypercubes found via
SKE. However, the default output value is strongly subject to the data used
to extract knowledge. For instance, if a balanced data set with 3 classes is ran-
domly split into training and test sets and only the training set is used to extract
knowledge (as usually done), the default value will be determined based on the
class label distribution after the random train/test splitting, leading to arbitrary
brute predictions.

3.2 Centre-Based Assignment

A slightly more complex solution, albeit with comparable computational com-
plexity, resides in the calculation of the Euclidean distance between the query
and the centre of each identified hypercube. The brute prediction is then pro-
vided based on the hypercube whose centre is the closest to the query.

We define the centre of a hypercube H as the multidimensional point whose
coordinates are the centres of the cube’s dimensions:

Centre(H) = (Centre(h1), Centre(h2), ..., Centre(hn)). (6)
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Fig. 2. Example of density-based distance calculation.

We finally define the centre of a hypercube dimension h as the dimension mid-
point:

Centre(h) =
max(h) + min(h)

2
. (7)

The centre-based criterion requires the calculation and comparison of a single
distance for each hypercube since the only relevant point is the cube centre.
However, it may be not a proper strategy when there are cubes having very
different sizes. In this case, small cubes are arbitrarily privileged since instances
belonging to uncovered regions have more probability of being closer to the
centre of small cubes than to those of large cubes.

An example of an expected centre-based assignment is reported in Fig. 1a,
where the point belonging to the uncovered region (red point) is associated with
the closest cube (the blue one). The issue due to high diversity in the cube sizes
is reported in Fig. 1b, where the point is associated with the green hypercube,
given the vicinity to its centre, even if the point is visibly closer to the blue
hypercube.

3.3 Density-Based Assignment

Centre-based brute predictions may be theoretically enhanced by adding aware-
ness of the data set instance distribution within the identified hypercubes. In
this case we move towards a density-based assignment of the uncovered queries
since the brute prediction is based on the distance between a query and the
barycentres of the cubes identified via SKE.

We define the barycentre of a hypercube H as the multidimensional point
whose coordinates are the barycentres of the cube’s dimensions:

Barycentre(H) = (Barycentre(h1), Barycentre(h2), ..., Barycentre(hn)). (8)

We finally define the barycentre of a hypercube dimension h as the mean value
calculated for that dimension on the data set instances enclosed within the hyper-
cube:

Barycentre(h) = h. (9)
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Fig. 3. Example of corner-based distance calculation.

The density-based criterion for brute prediction has the same computational
complexity as the centre-based criterion. In both cases, only a single distance
calculation and comparison are required for each identified hypercube in the SKE
technique. However, the density-based criterion may encounter drawbacks when
it comes to assigning instances to hypercubes that have a uniform distribution
of data points. In such cases, the barycentres of the hypercubes are equivalent
to the centres, resulting in similar issues as those described for the centre-based
brute prediction.

Examples of density-based assignments are shown in Fig. 2a (expected assign-
ment) and Fig. 2b (incorrect assignment due to hypercubes with uniform den-
sity).

3.4 Corner-Based Assignment

Given that manual assignments of uncovered instances to hypercubes performed
by human users would take into account the distance of the data point to the
edges of the cube, we formalise accordingly a corner-based criterion considering
the cube vertices.

We define the corners of a hypercube H as the set of points obtained via the
Cartesian product of the sets of corners corresponding to the individual cube’s
dimension:

Corners(H) =
n×

i=1
Corners(hi). (10)

We finally define the corners of a hypercube dimension h as the set containing
its minimum and maximum values:

Corners(h) = {min(h),max(h)} . (11)

The computational complexity of corner-based brute prediction is no longer
constant. For each assignment, it is necessary to calculate the distance between
the uncovered instance and each corner of each identified hypercube. Therefore,
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Fig. 4. Example of midpoint-based distance calculation.

the complexity of corner-based brute prediction is directly related to the dimen-
sionality of the hypercubes, which corresponds to the number of input features in
the data set, denoted as n. The number of corners in an n-dimensional hypercube
is equal to 2n. This means that as the dimensionality of the hypercube increases,
the number of corners and the computational complexity of corner-based brute
prediction also increase. However, corner-based brute prediction remains feasi-
ble even with high-dimensional data sets. It is worth noting that when using
the corner-based strategy, there can be challenges when assigning instances to
hypercubes of different sizes. In such cases, smaller cubes may be privileged, lead-
ing to potential issues in the assignment process. The assignment may become
arbitrary and dependent on the positioning of the hypercubes within the input
space. Examples of corner-based assignments are reported in Figures 3a and 3b,
which demonstrate the expected behavior and highlight the issues that can arise
when hypercubes of significantly different sizes are present.

3.5 Midpoint-Based Assignment

Alternatively, other relevant multidimensional points laying on the hypercube
edges may be selected to compute the Euclidean distances. For instance, one
can use edge midpoints instead of vertices.

We define the midpoints of a hypercube H as the set obtained through the
union of the Cartesian products of an edge midpoint with the corners of all the
other cube edges:

Midpoints(H) =
n⋃

i=1

{
{Centre(hi)} × ×

j∈{1,...,n}\{i}
Corners(hj)

}
. (12)

The computational complexity of midpoint-based brute prediction is slightly
higher than that of corner-based assignments. This strategy involves calculating
the distance between the uncovered instance and every midpoint of each iden-
tified hypercube. The number of midpoints in an n-dimensional hypercube is
equal to the number of edges, which is given by n · 2n−1. However, it is worth
noting that the negative effects on computational complexity become noticeable
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Fig. 5. Example of perimeter-based distance calculation, p = 5.

when the dimensionality of the hypercube exceeds 6. Therefore, midpoint-based
assignments can still be computationally feasible for data sets with dimensions
up to a certain threshold. Similar to corner-based assignments, midpoint-based
assignments also face challenges when dealing with hypercubes of significantly
different sizes. The issues arising from these cubes are shared between the two
strategies, as shown in Fig. 4.

3.6 Perimeter-Based Assignment

The notion of midpoint-based assignment may be relaxed in order to enable a
more fine-grained sampling of edge points and to overcome the issues of cubes
having different sizes. We then introduce the p parameter to indicate how many
equispaced points have to be selected on edges and modify Eq. (12) accordingly:

Perimeter(H, p) =
n⋃

i=1

{
Equispaced(hi, p) × ×

j∈{1,...,n}\{i}
Corners(hj)

}
,

(13)
where Equispaced(h, p) denotes the set of p equispaced points for the hypercube
dimension h.

The accuracy of perimeter-based brute prediction is greater with greater val-
ues of p, however, the computational complexity grows together with p. Indeed,
the number of relevant points identified for a single n-dimensional cube is equal
to p · n · 2n−1 (i.e., p points per edge). This value is actually reduced in prac-
tice, given that duplicate points corresponding to the cube edges are ignored.
An n-dimensional cube has (n − 1) · 2n duplicate points. The number of rele-
vant points without duplicates is thus p · n · 2n−1 − (n − 1) · 2n, equivalent to
(p − 2) · n · 2n−1 + 2n. Perimeter-based assignments are exemplified in Fig. 5.



190 F. Sabbatini and R. Calegari

Fig. 6. Computational complexity of the proposed vicinity-based assignments.

It is worthwhile to notice that with p = 1 this strategy corresponds to the
midpoint-based brute prediction, whereas with p = 2 it corresponds to the
corner-based one.

3.7 On the Computational Complexity

The computational complexity of each brute prediction strategy described in this
work is reported in Fig. 6. The figure shows the complexity of perimeter-based
assignments for different values of the p parameter, up to 6.

Unfortunately, there is an important trade-off between the quality of the
brute prediction and the corresponding computational complexity. Indeed, as
described in this section, the simplest and fastest strategies to be applied are
the most prone to provide predictive errors, e.g., when the sizes of hypercubes
are strongly unbalanced. On the other hand, perimeter-based predictions have
more probability to give the correct results. However, this strategy becomes quite
unfeasible for p = 3 when n > 6, given that the overall amount of relevant points
of a single cube would be greater than 576 (corresponding to the calculation and
comparison of as many distances for each query to predict). For the same reason
the perimeter-based strategy is not recommended with p ∈ {4, 5} if n > 5 and
with p = 6 if n > 4.

Obviously, the complexity of the adopted strategy also depends on the num-
ber of cubes identified via the SKE technique, given that the reported measure-
ments have to be multiplied by the number of cubes. SKE algorithms usually out-
put a limited amount of hypercubes to preserve human readability and therefore
the overall complexity of the vicinity-based assignments is not strongly altered.
However, there may be applications where the hypercube amount is bound to
the domain itself and it has a heavy impact on the computational complexity of
vicinity-based brute prediction, e.g., classification tasks for handwritten digits
or characters. Even by assuming an optimal hypercubic partitioning of the input
feature space, resulting in only a single cube per possible output class, 10 or 26
different cubes are identified, respectively, thus causing a non-negligible impact
on the overall computational complexity.
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4 Experiments

To evaluate the effectiveness of our proposed extension, we performed a number
of experiments with the aid of the PSyKE2 Python framework [3,21,23,26].

We selected the Iris data set3 [6] to exemplify our proposed vicinity-based
brute prediction strategies since it can be easily visualised as a bidimensional
projection. In particular, we privileged the petal length and width input features,
given that these are the most relevant input features to perform the classification.

The experimental setup is the following. The sepal length and width input
features have been first removed from the data set. Then, the 150 available data
instances were split into 2 halves, one to train an opaque model and extract
knowledge, the other to test the predictive performance of both the model and
the knowledge.

A k-nearest neighbours with k = 7 (7-NN) has been selected as opaque
underlying model for the GridEx hypercube-based knowledge extractor. Data
samples and decision boundaries of the 7-NN and the GridEx extractor are
shown in Fig. 7.

From Fig. 7c it is possible to notice that GridEx identifies 3 different hyper-
cubes, one per output class of the data set. The cubes do not cover the whole
input feature space, yet they enclose the majority of data samples. Only 2
instances of Virginica Iris are outside the boundaries of the cubes (green stars
with blue and magenta contour in Fig. 7c) and thus they cannot be predicted
through the interpretable model provided by GridEx.

In Fig. 7 the proposed vicinity-based brute predictions are exemplified. In
particular, Fig. 7d shows the majority-based assignment of the 2 uncovered
instances. Since the random train/test splitting produced a training set where
the Versicolor output class label is predominant, both uncovered instances are
wrongly classified as Versicolor Iris. This very simple strategy is thus easy to
compute but not accurate from a predictive standpoint.

Figure 7e and 7f reports the assignment obtained according to the centre- and
density-based strategies, respectively. In both cases only one uncovered instance
is correctly classified as Virginica Iris (the magenta one), whereas the other is
misclassified as Versicolor Iris (the blue one).

The inverse situation is present by adopting a corner-based brute prediction,
as depicted in Fig. 7g. According to the distance between uncovered instances
and cubes’ corners, the blue instance is incorrectly associated with the Versicolor
class and the magenta one is correctly classified as a Virginica Iris.

Both instances are misclassified by adopting midpoint-based assignments (cf.
Fig. 7h).

Finally, Fig. 7i shows the effectiveness of perimeter-based brute prediction.
Indeed, both uncovered instances are correctly classified by adopting this strat-
egy with p = 5.

2 https://github.com/psykei/psyke-python.
3 https://archive.ics.uci.edu/dataset/53/iris.

https://github.com/psykei/psyke-python
https://archive.ics.uci.edu/dataset/53/iris
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Fig. 7. Example of vicinity-based assignments for GridEx on the Iris data set.

4.1 Experiments on Real World Data Sets

A quantitative assessment of the predictive performance obtained for the
distance-based brute prediction on the Iris data set is reported in Table 1. In this
case the data set has been used without removing input features. The same train-
ing/test splitting strategy (50% + 50%) has been adopted. A new 7-NN has been
trained accordingly, achieving an accuracy score of 0.96. A set of non-exhaustive
hypercube-based SKE techniques (i.e., Iter and 2 instances of GridEx, having
different parameters) are compared with 2 instances of CReEPy, used as bench-
mark for hypercube-based SKE methods complete by design. The parameters of
each algorithm are reported in the table. In particular, Iter requires the size
of the single updates, the maximum number of iterations (it), the number of
starting points, and an error threshold (θ). GridEx requires a splitting strat-
egy, a maximum depth (δ) and an error threshold (θ). We selected for GridEx
adaptive strategies based on the input feature relevance: we let the 2 algorithm
instances perform 5 or 8 slices along features with relevance greater than 0.5 or
0.85, respectively, and only a single slice along all the others. Finally, CReEPy
requires an underlying explainable clustering technique, a maximum depth (δ)
and an error threshold (θ).
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Table 1. Predictive performance of brute predictions for the Iris data set.

k-NN Iter GridEx GridEx CReEPy CReEPy

update = 0.1 adaptive split adaptive split Clustering: Clustering:

it = 100 if relev. < 0.5: if relev. < 0.85: ExACT CREAM

Parameters k = 7 points = 1 1 split else 5 1 split else 8 δ = 2 δ = 2

θ = 0.1 δ = 1 δ = 1 θ = 0.1 θ = 0.1

θ = 0.1 θ = 0.1

Accuracy 0.96 0.97 0.96 0.90 0.92 0.93

Rules 3 6 3 3 3

Completeness 0.93 0.92 0.92 1.00 1.00

Majority 0.91 0.88 0.83

Centre 0.97 0.96 0.91

Density 0.97 0.96 0.91

Corner 0.97 0.96 0.91

Midpoint 0.97 0.96 0.91

Perimeter, p = 3 0.97 0.96 0.91

Perimeter, p = 5 0.97 0.96 0.91

For each SKE instance the fidelity w.r.t. the 7-NN expressed as classification
accuracy, the number of extracted rules and the completeness expressed as per-
centage of test set covered by the identified hypercubes are reported in Table 1.
For the non-exhaustive SKE techniques, several vicinity-based brute prediction
strategies have been tested and the corresponding results are reported in the
same table.

From the table, it is possible to notice that CReEPy outperforms the other
techniques on 2 different dimensions, indeed it has the smallest amount of rules
and the highest completeness. However, thanks to the proposed brute prediction
strategies, Iter and GridEx may achieve complete coverage of the input feature
space as well. As a result, Iter becomes the best algorithm in the examined pool,
since it maximises both the completeness and the accuracy of its predictions
with only 3 extracted rules. As for GridEx, an instance is able to outperform
CReEPy in terms of accuracy but produces a double amount of rules, whereas
the other exhibits the same rule amount but smaller classification accuracy. The
proposed extension to draw predictions for uncovered instances is thus effective
in obtaining better overall results.

We conclude this experimental section with a regression case study on the
Combined Cycle Power Plant (CCPP) data set [28]. A random forest (RF) regres-
sor based on 20 decision trees (DT) with unbounded depth (δ) and leaf amount
(λ) has been selected as opaque model. The pool of SKE techniques is composed
of GridEx, GridREx, CReEPy adopting CREAM clustering, and 2 different
instances of Iter. We omitted the results of CReEPy adopting ExACT clus-
tering, since it showed the same input space partitioning obtained by adopting
CREAM, with the same performance measurements, by setting δ = 3. Results
are reported in Table 2, where predictive performance is expressed through the
R2 score.
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Table 2. Predictive performance of brute predictions for the CCPP data set.

RF Iter Iter GridEx GridREx CReEPy

upd. = 0.03 upd. = 0.07 adaptive split adaptive split CREAM clust

DT = 20 it = 100 it = 150 if relev. < 0.7: if relev. < 0.7: δ = 2

Parameters λ = ∞ points = 1 points = 2 1 split else 3 1 split else 3 θ = 0.1

δ = ∞ θ = 10 θ = 10 δ = 1 δ = 1 output: linear

θ = 1 θ = 1 functions

R2 0.96 0.62 0.86 0.98 0.93 0.97

Rules 4 13 3 9 4

Completeness 0.58 0.93 0.99 0.99 1.00

Majority 0.31 0.77 0.97 0.93

Centre 0.65 0.86 0.98 0.93

Density 0.61 0.84 0.98 0.93

Corner 0.60 0.81 0.98 0.93

Midpoint 0.62 0.87 0.98 0.93

Perimeter, p = 3 0.62 0.87 0.98 0.93

Perimeter, p = 5 0.63 0.86 0.98 0.93

In this case study GridEx is superior to CReEPy from the predictive perfor-
mance and rule amount standpoints. However, only CReEPy provides complete
knowledge. Our proposed extension enables GridEx to achieve 100% complete-
ness as well. GridEx empowered with brute prediction capabilities outperforms
CReEPy and it is thus the best SKE technique in the pool.

Amongst all the proposed vicinity-based strategies, from our experiments,
the majority-based criterion appears to be the simplest but also the least per-
forming in terms of prediction accuracy. Conversely, the other alternatives do
not exhibit very noticeable differences in the measured predictive performance.
For this reason we suggest applying one of the least computationally expensive
strategies to empower non-exhaustive hypercube-based SKE techniques.

5 Conclusions

In this paper, we introduce a vicinity-based extension for SKE techniques that
ensures 100% completeness in predictions. This extension can be applied to
any hypercube-based SKE method and offers flexibility to users in selecting
the desired trade-off between computational complexity and predictive perfor-
mance. We define different strategies based on vicinity for the extension, allowing
users to tailor the approach to their specific needs. Additionally, we provide an
analytical study of the computational complexity associated with the proposed
extension. Furthermore, we present experimental results that demonstrate the
effectiveness of the extension in practical applications.

Our future work aims to enhance the selection of relevant points within
hypercubes to achieve smaller sets of points while maintaining comparable or
even improved predictive performance with reduced computational complexity.
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Specifically, we plan to consider points on the surface of the hypercubes and
to develop mechanisms for coarse-grained sampling of relevant points in low-
importance regions of the cubes, such as cube edges near the boundaries of the
data set domain or perimeter sampling for very small cubes. These advancements
will further refine and optimise the extension of SKE techniques.

Acknowledgments. This work has been supported by European Union’s Hori-
zon Europe AEQUITAS research and innovation programme under grant number
101070363.
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Abstract. Part-prototype models are explainable-by-design image clas-
sifiers, and a promising alternative to black box AI. This paper explores
the applicability and potential of interpretable machine learning, in par-
ticular PIP-Net, for automated diagnosis support on real-world medical
imaging data. PIP-Net learns human-understandable prototypical image
parts and we evaluate its accuracy and interpretability for fracture detec-
tion and skin cancer diagnosis. We find that PIP-Net’s decision making
process is in line with medical classification standards, while only pro-
vided with image-level class labels. Because of PIP-Net’s unsupervised
pretraining of prototypes, data quality problems such as undesired text
in an X-ray or labelling errors can be easily identified. Additionally, we
are the first to show that humans can manually correct the reasoning
of PIP-Net by directly disabling undesired prototypes. We conclude that
part-prototype models are promising for medical applications due to their
interpretability and potential for advanced model debugging.

Keywords: Explainable AI · prototypes · medical imaging ·
interpretable machine learning · hybrid intelligence

1 Introduction

Deep learning has shown great promise in medical imaging tasks, as neural net-
works can outperform clinicians in fracture detection [17] or have equivalent per-
formance in medical diagnosis [20]. Machine learning (ML) models are usually
evaluated in terms of predictive performance, e.g., classification accuracy. How-
ever, performance metrics do not capture whether the evaluated model is right
for the right reasons [18]. ML models can replicate biases and other confounding
patterns from the input data when these are discriminative for the downstream
task. For example, COVID-19 detectors were found to rely on markers, image
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edges, arrows and other annotations in chest X-rays [11], and [4] showed that
deep learning models can predict hip fractures indirectly through confounding
patient and healthcare variables rather than directly detecting the fracture in
the image. This so-called “Clever Hans” behaviour [18] makes a medical classi-
fier right for the wrong reasons, by basing its predictions on clinically irrelevant
artefacts that are not representative for the actual data distribution [12,32].
Such shortcut learning will therefore lead to a lack of generalisation and in turn
unsatisfactory performance once deployed in clinical practice [12].

Detecting shortcut learning and other undesired reasoning is challenging since
neural networks are black boxes [1]. Explainable AI (XAI) aims to provide insight
into the reasoning of a predictive model. A commonly used explanation method
in medical imaging is the feature attribution map [7], a heatmap that highlights
relevant regions in an input image [36]. These explanation methods are, however,
post-hoc, i.e., they reverse-engineer an already trained predictive model. With
the explanation method detached from the predictive model, the explanation is
not guaranteed to truthfully mimic the internal calculations of the black box.
Additionally, such heatmaps do not explain the full reasoning process but only
give an intuition, making them irrelevant to tasks in realistic scenario’s [10,33,
37]. Specifically, it has been shown that feature attribution maps do not fulfil
clinical requirements to correctly explain a model’s decision process [14].

Recently, as an alternative to post-hoc explanations, intrinsically inter-
pretable models are proposed based on prototypical parts [8,26,27,35]. Their
reasoning follows the recognition-by-components theory [6] by analysing whether
patches in an input image are similar to a learned prototypical part. Impor-
tantly, part-prototype models do not require any part annotations and only rely
on image-level class labels. Most of these models have been developed for fine-
grained natural image recognition, including recognising bird species and car
types. Only a few works apply part-prototype models to medical images: Pro-
toPNet [8] is also applied to chest X-rays [38] and MRI scans [24], ProtoMIL [34]
is developed for histology slide classification and [5] adapted ProtoPNet for mam-
mography by including a loss based on fine-grained expert image annotations.

In this work, we show the applicability and potential of PIP-Net for under-
standing and correcting medical imaging classification, and thus contribute
towards explanatory interactive model debiasing [3,29,40]. PIP-Net [27] is a
next-generation interpretable ML method that lets users understand its sparse
reasoning with prototypical parts and will abstain from a decision for out-of-
distribution input. In addition, its intuitive design empowers users to make
adjustments in the model’s reasoning. We investigate to what extent PIP-Net
can be used for revealing and correcting shortcut learning when applied to
fracture detection and skin cancer diagnosis. Generally, one can identify three
ways of debugging models: either by adapting the dataset to neutralise the bias
(e.g. [28]), by adapting the model’s loss function (e.g. [5,31]), or by adapting the
predictive model directly. Steering a model’s reasoning through a loss function
requires manual annotations that indicate where a model should or should not
focus. Although such additional annotations could improve predictive accuracy,
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providing such annotations by physicians is complex and time-consuming, and
therefore expensive and often unfeasible. Instead, the interpretable scoring sheet
of PIP-Net allows debugging the model directly by simply disabling shortcut
prototypes.

In summary, we show that PIP-Net applied to medical imaging:

– learns an interpretable, sparse scoring sheet with semantically meaningful
prototypical parts (Sect. 4.1 and 4.2),

– can reveal data quality problems, including spurious artefacts and labelling
errors (Sect. 4.3),

– learns interpretable reasoning that is in line with medical domain knowledge
and classification standards (Sect. 5),

– can reveal shortcut learning and subsequently be ‘debugged’ by clinicians by
disabling undesired prototypes (Sect. 6).

2 Background on PIP-Net

PIP-Net [27] is a deep learning model designed with interpretability integrated
into its architecture and training mechanism. It consists of a convolutional neural
network (CNN) with loss terms that disentangle the latent space and optimise
the model to learn semantically meaningful components, while only having access
to image-level class labels and thus not relying on additional part annotations.
The learned components are “prototypical parts” (prototypes) which are visu-
alised as image patches. Subsequently, PIP-Net classifies images by connecting
the learned prototypes to classes via a sparse, linear layer. The linear decision
making process is therefore globally interpretable as a scoring sheet where the
presence of a prototypical part in an input image adds to the evidence for a par-
ticular class. In case no relevant part-prototypes are found, all output scores stay
zero. Hence, PIP-Net can abstain from a decision for out-of-distribution input.
An overview of the architecture is shown in Fig. 1. In contrast to ProtoPNet [8]
that requires a fixed number of prototypes per class, PIP-Net has a novel train-
ing mechanism and is optimised for sparsity and accuracy. It therefore learns the
suitable number of prototypes itself. Training of PIP-Net consists of two stages:
in the first stage, the latent space is automatically disentangled into prototypes
that are learned self-supervised with contrastive learning. In this stage, no image
labels are needed and hence would allow the use of additional unlabelled data,
which is highly relevant due to expensive labelling effort in the medical domain.
The second training stage learns the weights in the sparse classification layer
while finetuning the prototypes based on image-level labels.

3 Datasets and Experimental Setup

We evaluate the predictive accuracy and interpretability of PIP-Net with two
open benchmark datasets on skin cancer diagnosis (ISIC [9]) and bone abnormal-
ity detection in bone X-rays (MURA [30]), and two real-world data sets from a



Interpreting and Correcting Medical Image Classification with PIP-Net 201

+2.6

+0.2
+5.8

+2.1
+7.2

visualized

Fig. 1. PIP-Net consists of a CNN backbone (e.g. ConvNeXt with D = 768) with
a novel training mechanism to disentangle the latent space and learn prototypical
representations z. The feature representations are pooled to a vector of prototype
presence scores p. Prototypes and classes are connected via a sparse linear layer. Model
outputs during inference are not normalised and allow the outputs to be interpreted as
a simple scoring sheet. A prototype can be visualised as an image patch by upsampling
the corresponding patch in z.

Dutch hospital on hip and ankle fracture detection (HIP resp. ANKLE). Table 1
shows descriptions of the datasets and Fig. 2 some example images.

Data Preprocessing: We sample a random split of 20% of the HIP and ANKLE
datasets as test sets. For ISIC, we use the same 361 malignant images in the test
set as [28] and randomly sample a similar fraction from the benign images. The
MURA dataset contains a fixed training and validation split (which we use as
test set as the hidden test set competition is closed). All images are resized to
224× 224 and augmented with TrivialAugment [25]. We account for imbalanced
data with class over-sampling using a weighted sampler. Code including the data
preprocessing is available at https://github.com/M-Nauta/PIPNet.

In radiography, usually multiple X-rays (with different views) are taken for
one study. Therefore, images in MURA, HIP and ANKLE are annotated at the
study level. In this work, we assign the study label to each image individually
and prevent data leakage by splitting data in train and test sets per study.
Conceptually, we think that PIP-Net could also be used for interpretable multi-
instance classification by doing a max-pooling operation over all latent image
representations z in a study, rather than a single image embedding (see Fig. 1).
PIP-Net can then indicate in which image and at which location evidence for
a certain class is found. We leave experimental investigation on multi-instance
PIP-Net for future work.

Model Training: We use a ConvNeXt-tiny [21] backbone, adapted to output fea-
ture maps of size 13×13 and pretrained on ImageNet, as it is shown that CNNs
pretrained on natural images and with adequate fine-tuning outperform, or per-
form just as well as, CNNs trained for radiology from scratch [39]. Similar to the
training process for PIP-Net on natural images, we train PIP-Net with a learning
rate of 0.05 for the linear classification layer, and 0.0001 for the backbone. We
use a batch size of 64 and adapt the number of epochs, such that the number
of weight updates is similar for all datasets. We apply roughly 2,000 updates for

https://github.com/M-Nauta/PIPNet
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Table 1. Description of the datasets, including their number of samples. All used
datasets are binary labelled (indicating presence or absence of abnormality).

Description Label present/absent

ISIC Public skin cancer dataset from the International Skin Imaging

Collaboration (ISIC) [9]. Specifically selected as it is known to

contain confounding artefacts [28,31]: half of the images of benign

lesions contain elliptical, coloured patches (colour calibration

charts [23]), whereas the malignant lesion images contain none.

# Train images:

2,192 / 16,998

# Test images:

361/2,736

MURA Public dataset with musculoskeletal radiographs [30] from different

body parts, including the shoulder, humerus, elbow, forearm, wrist,

hand, and finger. The bone X-rays are labelled as ‘normal’ or

‘abnormal’. Images with the ‘abnormal’ label have any abnormal

finding, including the presence of a fracture, hardware, lesions and

joint diseases.

# Train images:

14,873 / 21,935

# Test images:

1,530 / 1,667

HIP Dataset from hospital Ziekenhuisgroep Twente (ZGT). Included

were hip/pelvis radiographic studies (2005–2018, patients ≥ 21y

old). Studies were labelled based on an administrative code and by

analysing radiology reports with a rule-based approach. Images

from follow-up studies were excluded. A sample of the selected

studies (127 with fracture and 204 without) was manually verified

by a radiologist. Images were anonymised by removing Protected

Health Information (PHI). All radiographic images were converted

from DICOM format [15] to JPG.

# Train images:

3,468/4,080

# Test images: 859

/ 1,005

ANKLE Dataset from ZGT. Selected were ankle studies (2005–2020) based

on administrative code for “ankle fracture” or “ankle distortion”

(no fracture). Images from follow-up studies were excluded, PHI

information removed and images converted from DICOM to JPG.

# Train images:

12,233 / 8,602

# Test images:

3,033/ 2,169

pretraining the prototypes and 10,000 updates for the second training stage. This
calculation results in 6 (pretrain) and 34 (training) epochs for ISIC, 4 and 18
epochs for MURA, 16 and 85 epochs for HIPS and 6 and 31 epochs for ANKLE.
Results reported in this paper are based on a slightly older version of PIP-Net.
On natural images, the final published version of PIP-Net gives similar or higher
prediction accuracy and similar prototypes when compared to this older version,
hence we don’t expect significant differences.

4 Interpretable and Accurate Image Classification

We evaluate the applicability and potential of PIP-Net for binary medical image
classification by first analysing its classification performance (Sect. 4.1), fol-
lowed by evaluating the interpretability of the learned prototypes (Sect. 4.2)
and exploring its capabilities to reveal data quality issues (Sect. 4.3). In Sect. 5
we then evaluate to what extent the learned reasoning is aligned with medical
domain knowledge, and the possibilities for manually correcting shortcut learn-
ing are investigated in Sect. 6.
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Fig. 2. Example images from medical datasets (resized to 224 × 224).

Table 2. PIP-Net’s performance on the test sets. Reporting accuracy (Acc), F1 score,
sensitivity (Sens), and specificity (Spec). Sensitivity corresponds to the absent-class.
Sparsity is the ratio of weights in the classification layer with a value of zero. # Proto
indicates how many prototypes have at least one non-zero weight to a class, and there-
fore indicates the global explanation size of PIP-Net. The local explanation size indi-
cates the average number of found (p > 0.1) and relevant (to any of the classes)
prototypes in a single test image.

Dataset Acc F1 Sens Spec Sparsity # Proto Local size

ISIC 94.1% 72.6% 97.7% 67.0% 92.3% 119 13.8

MURA 82.1% 84.2% 91.3% 72.0% 95.1% 75 7.6

HIP 94.0% 94.4% 93.2% 94.9% 93.6% 99 7.4

ANKLE 77.3% 74.0% 77.8% 76.9% 98.1% 29 2.5

4.1 Classification Performance and Sparsity

Table 2 reports the predictive performance of PIP-Net, and shows that PIP-Net
can successfully classify images from all four medical datasets. The ISIC predic-
tive performance is comparable to a standard black box classifier which achieves
a sensitivity of 0.90 and a specificity of 0.75 (results from [28]). Additionally,
PIP-Net achieves a high sparsity ratio, thereby lowering the explanation size.
These results show that the training mechanism of PIP-Net, originally developed
for multi-class classification of natural images [27], also works well for medical
binary classification. Figure 3 shows that the sparsity of PIP-Net’s classification
layer slowly increases during training, while predictive performance is relatively
stable. Therefore, the number of training iterations mainly influences the trade-
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off between explanation size and prototype purity (see also next Sect. 4.2). While
a smaller explanation size is generally favourable, it limits the amount of dis-
tinct visual concepts that can be represented by separate (pure) prototypes. The
tradeoff between explanation size and prototype purity can be tuned based on
visual inspection of the prototypes or automated purity evaluation with part
annotations (as done in the original PIP-Net paper [27]).

Fig. 3. MURA Plot of PIP-Net’s sparsity ratio and F1-score during training.

4.2 Perceived Prototype Purity

An important aspect of interpretability of learned medical prototypes, is the
purity of the set of image patches corresponding to a prototype. A pure proto-
type clearly represents a single visual concept, such as a metal screw and does
not mix multiple concepts, e.g., fractures and metal parts. We visually assess the
prototypes of the MURA, ANKLE and HIP datasets for fractures and abnormal-
ities. Figure 4 (top and center row), visualises image patches for the most relevant
(i.e., highest weight in the classification layer) prototypes for the ANKLE and
HIP dataset. It can be seen that image patches for one prototype, either fully
trained or only pretrained, look similar, and generally correspond to semantically
meaningful concepts. Our findings on medical data are therefore in accordance
with high prototype purity for natural images as reported for PIP-Net [27].

Figure 4 (bottom row) visualises the 10 most relevant prototypes per class
for the MURA dataset. Images in MURA are labelled as normal or abnormal
without any additional description. Hence, either the presence of a fracture,
hardware lesions or other diseases could be the reason for the abnormal label.
The part-prototypes of PIP-Net can provide fine-grained insight into the model’s
learned reasoning. Figure 4, bottom left, shows that most prototypes relevant to
the abnormal class represent metal parts, such as operative plates, screw fixation
and shoulder prostheses. Prototypes for the normal class mainly focus on bones
and joints, but PIP-Net also reveals spurious correlations, such as rotated text
(cf. Figure 4 bottom center, 6th row). This potential is further investigated in
Sect. 6.

To facilitate easier interpretation of the prototypes, Fig. 5 shows representa-
tive images from which the prototype image patches are extracted. While the
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Fig. 4. Top-10 image patches for the most relevant prototypes per class. One row
corresponds to one prototype. ANKLE showing 8 relevant prototypes, since only 8
are relevant for the fracture class. HIP and MURA showing top-10 prototypes. Last
column: showing prototypes after pretraining that are eventually not relevant for the
classification task, including markers, tags and background.

MURA dataset contains images from different body parts, which are shuffled
during training, it can be seen that a prototype often relates to a single body
part. This is however not always the case, as shown in Fig. 5(d) where a proto-
type represents different types of hardware in different body parts. The optimal
trade-off between prototype purity and sparsity can be decided by the user upon
visual inspection and tuned with the number of training iterations.

4.3 Prototypes for Data Quality Inspection

Since PIP-Net first learns prototypes in a self-supervised fashion, the pretrained
prototypes can inform the user about artefacts and patterns hidden in the train-
ing data. Even when these are not discriminative for the prediction task, such
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(a) Prototype for hand-specific hardware (b) Prototype for shoulder prosthesis

(c) Prototype for joint disease in finger (d) Prototype for various metalware

Fig. 5. MURA Prototypes relevant to class abnormal, visualised with a set of image
patches and four representative images indicating where the prototype is detected.

HIP ANKLE

Pretrained prototype for images with text
in the upper-right corner

Prototype relevant for the Fracture class
that represents orthopedic cast and splint

Fig. 6. An inspection of PIP-Net’s prototypes can reveal data quality issues.

as the prototypes shown in Fig. 4 (third column), they can facilitate data qual-
ity inspection. For example, visual inspection of the prototypes could be used
for anomaly detection, or to check whether all individually identifiable informa-
tion is removed to ensure sufficient anonymisation. Additionally, PIP-Net could
assist in quickly identifying labelling errors. For example, the top-left image in
Fig. 5(a) has the ground-truth label normal in MURA but is mislabelled since
the presence of metal, a reason for abnormality, is detected. Two examples of
data quality issues discovered with PIP-Net are shown in Fig. 6. Visual analysis
of the pretrained prototypes from the HIP dataset reveals that a few images con-
tain text in the upper-right corner. Similarly, on the ANKLE dataset we find a
prototype that relates to orthopedic cast and splint (although it is also activated
by a few images with soft tissue, as shown in the rightmost image). X-rays with
cast and splints should have been excluded from the dataset as they are taken
as part of a follow-up study. Such data collection problems can be easily solved
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Fig. 7. ANKLE Correspondence to ankle fracture classification standard, related to
three highly relevant prototypes. Visualised with a set of image patches and four rep-
resentative images indicating where the prototype is detected.
Top left: Weber classification standard; Top right: Prototype relevant to fracture, cor-
responding to Weber B and, with lower presence scores, to Weber C; Bottom left:
Prototype relevant to fracture, consistently found at the distal end of the medial malle-
olus, a common location for fractures; Bottom right: Prototype relevant to no fracture,
located at the joint where the fibula, tibula and talus meet.

with PIP-Net by removing the images where the prototype is found, in order to
prevent that casts and splints become a shortcut for fracture recognition.

5 Alignment of Prototypes with Domain Knowledge

This section evaluates how well the prototypes align with medical domain knowl-
edge. We evaluate prototypes from the ANKLE and HIP datasets by compar-
ing them with medical literature and classification standards, supported by the
expert knowledge of a trauma surgeon from hospital ZGT. We find that a learned
prototype of PIP-Net is generally consistently found at the same location in the
body and that most, but not all, of these locations are medically relevant.

5.1 ANKLE Dataset

Figure 7 visualises a representative subset of PIP-Net’s most relevant prototypes
for ankle fracture recognition. The sketch on the top left illustrates the anatomy
of the ankle and additionally indicates the three types of fibula fractures accord-
ing to the Weber classification standard [41]. The most frequently occurring
prototype is shown in Fig. 7 (top right) and consistently locates fibula fractures.
The prototype corresponds to Weber B fractures, which is the most common
fracture type [13]. The prototype is also activated by Weber C fractures (most-
right image), although with a lower prototype presence score. The prototype in
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Prototype consistently found at the joint
where the femoral head and the socket
meet

Prototype consistently found at the
trochanter minor, an indication for a
pertrochanteric fracture

Fig. 8. HIP Visualisations of the two most relevant prototypes for the fracture class.
Visualised with a set of image patches and four representative images indicating where
the prototype is detected.

Fig. 7 (bottom left) is consistently found at the distal end of the medial malleolus,
which is reasonable as this is a common location for fractures [13]. These differ-
ent prototypes show that PIP-Net’s reasoning can distinguish between different
types of fractures, even though the model is only trained on binary labels.

Lastly, Fig. 7 (bottom right) shows a highly relevant prototype for the no
fracture class. It focuses on the ankle joint where the tibia, fibula and talus
meet, and is only detected in the anteroposterior (AP) views. Another prototype
(not shown here) finds the same area in lateral views. It is reasonable that the
model checks that this area does not contain any fracture, as Weber B fractures
usually end at this joint. Additionally, clear space widening is a radiographic
sign which has been shown to be relevant to the diagnosis of ankle fractures [19].
We conclude that PIP-Net learns prototypes for ankle fracture detection that
are in line with existing domain knowledge. However, we also find that a few
prototypes with a lower but non-zero weight are focusing on regions that do
not seem to have any medical relevance, such as soft tissue at the top of the
foot or ankle. Further future investigation of the prototypes could analyse what
discriminative information these image patches hold.

5.2 HIP Dataset

Figure 8 shows the two most relevant prototypes for the fracture class. The
prototype visualised on the left is consistently located at the joint where the
femoral head and the socket meet. Although all images contain fractures, the
actual fracture is often located slightly below the femoral head. Instead of, or
potentially, in addition to locating the fracture, the white lines in the image
patches might be a sign of arthritis and degeneration of the bone. This indicates a
decrease in bone mass and correlates with age, making it a plausible indicator for
fractures. The second most relevant prototype, visualised in Fig. 8 (right), is also
consistently found at the same location and is identified in images that include
a fracture. The prototype correctly locates the fracture in some images (e.g. two
left images showing a pertrochanteric fracture), while focusing below the actual
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fracture for others (two right images showing a femoral neck fracture). As future
work, further investigation can be conducted to identify whether evidence for
the fracture is present at these exact locations, or that a learned shortcut is
discovered.

6 Revealing and Correcting Shortcut Learning

In this section, we investigate shortcut learning by PIP-Net for the ISIC dataset,
which is known to contain coloured patches which spuriously correlate with
benign lesions [28,31]. Additionally, we investigate a shortcut that was found
in the HIP dataset. We evaluate whether the shortcuts can be suppressed by
disabling the corresponding prototypes.

6.1 ISIC Dataset

To evaluate whether PIP-Net bases its decision making process on the presence
of coloured patches, a known bias, we first analyse how many learned prototypes
correspond to a coloured patch. We use the segmentation masks from [31] to
locate coloured patches and calculate their overlap with image segments where
a prototype is detected1. We label a prototype as related to a coloured patch
when at least 20% of the image patches where the prototype is found (prototype
presence score p > 0.1) has overlap with the patch segmentation mask. We then
find that 43 prototypes are related to the spurious coloured patches. Figure 9
(left) visualises 10 of these prototypes, which have a positive weight to the benign
class.

Relevant to Benign, located
on coloured patches

Relevant to Benign, not on
coloured patches

Relevant to Malignant

Fig. 9. ISIC Top-10 image patches for the 10 most relevant prototypes per class. One
row corresponds to one prototype.

1 If segmentation masks were not available, patch-related prototypes could efficiently
be collected manually, since the sparsity of PIP-Net results in a reasonable number
of relevant prototypes (only 119 for ISIC).
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Table 3. ISIC Classification performance for different data subsets. Reporting Accu-
racy (Acc), Sensitivity (Sens), and Specificity (Spec). All images with patches are cor-
rectly classified as benign. Inserting spurious patches into malignant images tricks the
model into classifying malignant images as benign, revealing unreliable behaviour when
used in clinical practice. Disabling patch-related prototypes repairs this behaviour.

ISIC Original PIP-Net Adapted PIP-Net

Data subset Acc Sens Spec Acc Sens Spec

Full test set 94.1% 97.7% 67.0% 93.5% 96.7% 69.3%

Excl. images w/patches 89.9% 95.6% 67.0% 88.9% 93.8% 69.3%

Benign w/ patches 100.0% 100.0% n.a. 99.9% 99.9% n.a.

Malignant w/ inserted patches 9.1% n.a. 9.1% 65.7% n.a. 65.7%

To validate that PIP-Net bases its decision on these patch-prototypes, we
apply PIP-Net to an artificial test set where coloured patches are pasted into
malignant images, using the same dataset as [28]. Table 3 shows that the accu-
racy for these malignant images (specificity) drops from 67% to only 9% when the
coloured patch is inserted, confirming that the patch shortcut is indeed exploited.
When used in clinical practice, a patient with a malignant lesion could then be
misdiagnosed purely because of the presence of a coloured patch. Concluding,
these findings motivate the usage of interpretable models: only judging a model
based on its predictive performance would not have revealed the shortcut learn-
ing.

We investigate whether the shortcut learning in PIP-Net can be corrected by
setting the weights of all patch-related prototypes to zero. Disabling all patch-
related prototypes reduces the global explanation size from 113 to 75 prototypes
in total. The bottom row of Table 3 shows that this manual intervention is effec-
tive: the adapted PIP-Net reaches almost the same accuracy on the adapted
malignant patches compared to their original, non-adapted counterparts. Addi-
tionally, the accuracy of benign images with patches is barely changed. Disabling
the patch-related prototypes reduces their local explanation size from 13.6 to
2.6 prototypes, but PIP-Net still finds sufficient evidence to classify the benign
images correctly. This is supported by the visualised prototypes in Fig. 9 (centre
and right) which indicate that PIP-Net also learned other class-relevant proto-
types. In addition to these global explanations, Fig. 10 shows two local explana-
tions for a test image from both the original and adapted model.

6.2 HIP Dataset

Based on visual inspection of the learned prototypes for the HIP dataset, we
found that 20 of the 42 prototypes that were relevant to the fracture class, were
only activated on a specific image view, as shown in Fig. 11 (left). These views
are only taken in the emergency room for immobile patients, and are not part of
standard X-ray examinations performed in the outpatient clinic. As immobility
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Fig. 10. ISIC Local explanations indicating where prototypes were found, shown for
both the original PIP-Net and its adapted version where patch-prototypes are disabled.
Left: benign image with patch, right: malignant image with inserted patch.

is highly correlated with the presence of a hip fracture, it is likely that any
deep learning method will use this correlation as a shortcut. We follow a similar
approach as for the ISIC dataset, and disable all prototypes that are related to
this particular view. Whereas the adapted PIP-Net still found sufficient evidence
for correct classifications in the ISIC dataset, it outputs zero scores for roughly
half of the images with that specific view, as shown in Fig. 11 (left). These
results indicate that PIP-Net had indeed learned a shortcut, as it was basing
its decision for some of these images solely on that particular type of view.
Once this shortcut information is suppressed, the output scores will be zero and
the model will abstain from a decision. Adapting the model after suppressing
shortcut information opens interesting opportunities for future research, such as
partial retraining with constraints or integrating human-in-the-loop feedback.

Fig. 11. HIP Shortcut learning by PIP-Net for predicting fracture. Left: Shortcut
prototype that detects a particular view that is only made for immobile patients in
the emergency room. In some images, the edge of the bed is still visible. Center: The
adapted model does not find evidence anymore for the fracture class. Right: output-
score for the fracture class decreases to zero after suppressing shortcut prototypes.

7 Conclusion

We demonstrated the wide applicability of PIP-Net by successfully employing it
for real-world binary medical image classification. We see a controlling role for
PIP-Net in the medical domain to support human decision making by providing
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another pair of eyes, underpinned by explanations. Mawatari et al. [22] already
showed that the diagnostic performance of radiologists for detecting hip frac-
tures in X-ray images improves when they are additionally provided with the
prediction of a trained neural network. Rather than only showing predictions,
PIP-Net can also show its reasoning based on interpretable prototypical parts.
Visual analysis showed that image patches corresponding to a learned prototype
are coherent and semantically meaningful. We also found that prototypes focus
on specific areas that are relevant according to medical classification standards.

Additionally, PIP-Net can reveal hidden biases and shortcuts in the data
that may cause unintended behaviour. The interpretable design of PIP-Net can
support the user in quickly identifying these data quality problems. Lastly, we
explored whether shortcut learning can be suppressed by directly adapting the
reasoning of the model and have shown that disabling prototypes can be an
effective way of repairing the reasoning of PIP-Net. This capability empowers
users not only to uncover improper reasoning, but to take immediate action for
correcting it. In contrast, commonly applied black-box models require model
adaptations with unclear outcome and costly retraining cycles.

8 Future Work

Future research could explore whether retraining the last classification layer
after disabling the prototypes could improve predictive performance further.
We identify this as a promising research opportunity given that the last layer
of a standard, uninterpretable neural network can be successfully retrained with
only a small subset of the data where the spurious correlation is not present [16].

Rather than only disabling undesired prototypes after fully training the
model, we see an interesting research opportunity to have a human in the loop
who identifies and disables undesired prototypes in an earlier stage, such that
the model can adapt itself immediately. It might be even more effective when
users can also add desired prototypes. When provided with a manual hint, PIP-
Net could then automatically refine the prototype in the subsequent learning
process. This would allow, for example, to already start with a set of prototypes
based on established medical standards. Such an approach would enable a bidi-
rectional feedback loop: an ML model learns prototypes and could start to aug-
ment existing medical standards, while medical experts can additionally suggest
extra prototypes to the model and disable undesired prototypes. An immedi-
ate step towards augmenting existing medical standards could be the detailed
inspection of the prototypes found in Sect. 5 and whether they indeed contain yet
unknown discriminative features. This work is therefore a step towards hybrid
AI [2], where artificial intelligence complements human intelligence.
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Nensa, F.: Explainable ai in medical imaging: An overview for clinical practitioners
- saliency-based xai approaches. Europ. J. Radiol. 162, 110787 (2023). https://doi.
org/10.1016/j.ejrad.2023.110787, https://www.sciencedirect.com/science/article/
pii/S0720048X23001018

8. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.: This looks like that:
Deep learning for interpretable image recognition. In: NeurIPS (2019). https://
proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-
Abstract.html

9. Codella, N., et al.: Skin lesion analysis toward melanoma detection 2018:
a challenge hosted by the international skin imaging collaboration (ISIC).
arXiv:1902.03368 [cs] (2019). http://arxiv.org/abs/1902.03368

10. Colin, J., Fel, T., Cadene, R., Serre, T.: What i cannot predict, i do not understand:
a human-centered evaluation framework for explainability methods. In: Advances
in Neural Information Processing Systems (Oct 2022)

11. DeGrave, A.J., Janizek, J.D., Lee, S.I.: Ai for radiographic covid-19 detection
selects shortcuts over signal. Nature Machi. Intell. 3(7), 610–619 (2021)

12. Geirhos, R., et al.: Shortcut learning in deep neural networks. Nature Mach. Intell.
2(11), 665–673 (2020)

13. Han, S.M., et al.: Radiographic analysis of adult ankle fractures using combined
danis-weber and lauge-hansen classification systems. Sci. Rep. 10(1), 7655 (2020)

14. Jin, W., Li, X., Hamarneh, G.: Evaluating explainable AI on a multi-modal medical
imaging task: can existing algorithms fulfill clinical requirements? Proc. AAAI
Conf. Artif. Intell.36(11), 11945–11953 (Jun 2022). https://doi.org/10.1609/aaai.
v36i11.21452, https://ojs.aaai.org/index.php/AAAI/article/view/21452

15. Kahn, C.E., Carrino, J.A., Flynn, M.J., Peck, D.J., Horii, S.C.: Dicom and radiol-
ogy: past, present, and future. J. Am. Coll. Radiol. 4(9), 652–657 (2007)

16. Kirichenko, P., Izmailov, P., Wilson, A.G.: Last layer re-training is sufficient for
robustness to spurious correlations. arXiv preprint arXiv:2204.02937 (2022)

https://doi.org/10.1109/MC.2020.2996587
https://doi.org/10.1016/j.inffus.2021.07.015
https://doi.org/10.1016/j.inffus.2021.07.015
https://www.sciencedirect.com/science/article/pii/S1566253521001573
https://www.sciencedirect.com/science/article/pii/S1566253521001573
https://doi.org/10.1038/s41746-019-0105-1
https://www.nature.com/articles/s41746-019-0105-1
https://www.nature.com/articles/s41746-019-0105-1
https://doi.org/10.1016/j.ejrad.2023.110787
https://doi.org/10.1016/j.ejrad.2023.110787
https://www.sciencedirect.com/science/article/pii/S0720048X23001018
https://www.sciencedirect.com/science/article/pii/S0720048X23001018
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/adf7ee2dcf142b0e11888e72b43fcb75-Abstract.html
http://arxiv.org/abs/1902.03368
http://arxiv.org/abs/1902.03368
https://doi.org/10.1609/aaai.v36i11.21452
https://doi.org/10.1609/aaai.v36i11.21452
https://ojs.aaai.org/index.php/AAAI/article/view/21452
http://arxiv.org/abs/2204.02937


214 M. Nauta et al.

17. Langerhuizen, D.W.G., et al.: What are the applications and limitations of artificial
intelligence for fracture detection and classification in orthopaedic trauma imaging?
a systematic review. Clin. Orthopaedics Related Res. R©477(11), 2482 (Nov 2019).
https://doi.org/10.1097/CORR.0000000000000848
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35. Rymarczyk, D., Struski, �L., Górszczak, M., Lewandowska, K., Tabor, J., Zieliński,
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Abstract. Artificial intelligence models and methods commonly lack
causal interpretability. Despite the advancements in interpretable
machine learning (IML) methods, they frequently assign importance to
features which lack causal influence on the outcome variable. Selecting
causally relevant features among those identified as relevant by these
methods, or even before model training, would offer a solution. Fea-
ture selection methods utilizing information theoretical quantities have
been successful in identifying statistically relevant features. However, the
information theoretical quantities they are based on do not incorporate
causality, rendering them unsuitable for such scenarios. To address this
challenge, this article proposes information theoretical quantities that
incorporate the causal structure of the system, which can be used to
evaluate causal importance of features for some given outcome variable.
Specifically, we introduce causal versions of entropy and mutual infor-
mation, termed causal entropy and causal information gain, which are
designed to assess how much control a feature provides over the outcome
variable. These newly defined quantities capture changes in the entropy
of a variable resulting from interventions on other variables. Fundamental
results connecting these quantities to the existence of causal effects are
derived. The use of causal information gain in feature selection is demon-
strated, highlighting its superiority over standard mutual information in
revealing which features provide control over a chosen outcome variable.
Our investigation paves the way for the development of methods with
improved interpretability in domains involving causation.

Keywords: Causal Inference · Information Theory · Interpretable
Machine Learning · Explainable Artificial Intelligence

1 Introduction

Causality plays an important role in enhancing not only the prediction power
of a model [19] but also its interpretability [4]. Causal explanations are more
appropriate for human understanding than purely statistical explanations [12].
Accordingly, comprehending the causal connections between the variables of a
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system can enhance the interpretability of interpretable machine learning (IML)
methods themselves.

Interpretable models such as linear regression or decision trees do not, despite
their name, always lend themselves to causal interpretations. To illustrate this
point, consider running multilinear regression on the predictors X1,X2 and out-
come Y within a system whose variables are causally related as depicted in the
graph of Fig. 1. The regression coefficients β1 and β2 of X1 and X2 might yield
large values, which may be (and are often in practice) interpreted as suggest-
ing a causal relationship. However, a causal interpretation of β1 would not be
appropriate. Although X1 might provide predictive power over Y , this does not
imply a causal relationship, since this predictive power is due to the confounder
W . Consequently, intervening on X1 would not impact the outcome Y .

In current model-agnostic methods, a causal interpretation is often desirable
but rarely possible. In partial dependence plots (PDPs) [6], the partial depen-
dence of a model outcome Ŷ on a variable Xi coincides with the backdoor crite-
rion formula [15] when the conditioning set encompasses all the other covariates
Xj �=i [24]. Consequently, there is a risk of disregarding statistical dependence or,
conversely, finding spurious dependence, by conditioning on causal descendants
of Xi [24]. Therefore, PDPs (along with the closely related individual condi-
tional expectation (ICE) lines [7]) generally lack a causal interpretation. Simi-
larly, when utilizing (Local Interpretable Model-Agnostic Explanations) LIME
[18] to evaluate the importance of a feature for an individual, a causal inter-
pretation cannot be guaranteed. LIME fits a local model around the point of
interest and assesses which features, when perturbed, would cause the point to
cross the decision boundary of the model. However, intervening on a feature in
such a way as to cross the model’s decision boundary does not guarantee an
actual change in the outcome in reality. This is because the model was trained
on observational data, and that feature may merely be correlated with the out-
come through a confounding factor, for example, rather than having a causal
effect on the outcome.

In both cases just described, it is the presence of confounders, selection bias,
or an incorrect direction of causality seemingly implied by the model that can
lead to misleading predictions and interpretations. We need a way to select
which features are causally relevant — i.e. give us control over the chosen out-
come variable. Information theoretical quantities such as mutual information are
often used to assess the relevance of a feature with respect to a given outcome
variable [2,20,25], but this relevance is still purely statistical. This is a common
issue when using standard information theoretical quantities in situations that
require consideration of the underlying causal relationships. A version of mutual
information which takes into account the causal structure of the system would
solve this problem. This is what we set out to develop in this work.

In our research, we extend traditional conditional entropy and mutual infor-
mation to the realm of interventions, as opposed to simple conditioning. This
extension drew inspiration from the conceptual and philosophical work pre-
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sented in1 [8]. We dub these constructs “causal entropy” and “causal information
gain”. They are designed to capture changes in the entropy of a given variable
in response to manipulations affecting other variables. We derive fundamental
results connecting these quantities to the presence of causal effect. We end by
illustrating the use of causal information gain in selecting a variable which allows
us to control an outcome variable, and contrast it with standard mutual infor-
mation.

The novelty of our work consists of providing rigorous definitions for causal
entropy and causal information gain, as well as deriving some of their key prop-
erties for the first time. These contributions set the foundations for the develop-
ment of methods which correctly identify features which provide causal control
over an outcome variable.

This paper is organized as follows. In Sect. 2, we introduce the definitions of
quantities from the fields of causal inference and information theory that will be
used throughout the rest of the paper. Section 3 includes a simple example of
a structural causal model where standard entropy and mutual information are
inadequate for obtaining the desired causal insights. In Sect. 4, we define causal
entropy and explore its relation to total effect. Section 5 discusses the definition
of causal information gain and investigates its connection with causal effect.
Furthermore, it revisits the example from Sect. 3, showing that causal entropy
and causal information gain allow us to arrive at the correct conclusions about
causal control. In Sect. 6, we compare the definitions and results presented in this
paper with those of previous work. Finally, in Sect. 7, we discuss the obtained
results and propose future research directions.

2 Formal Setting

In this section we present the definitions from causal inference and information
theory which are necessary for the rest of this paper. All random variables are
henceforth assumed to be discrete and have finite range.

2.1 Structural Causal Models

One can model the causal structure of a system by means of a “structural
causal model”, which can be seen as a Bayesian network [10] whose graph G
has a causal interpretation and each conditional probability distribution (CPD)
P (Xi | PAXi

) of the Bayesian network stems from a deterministic function fXi

(called “structural assignment”) of the parents of Xi. In this context, it is com-
mon to separate the parent-less random variables (which are called “exogenous”
or “noise” variables) from the rest (called “endogenous” variables). Only the
endogenous variables are represented in the structural causal model graph. As is
commonly done [16], we assume that the noise variables are jointly independent
and that exactly one noise variable NXi

appears as an argument in the structural
assignment fXi

of Xi. In full rigor2 [16]:
1 The reader is referred to Sect. 6 for a detailed discussion about this.
2 We slightly rephrase the definition provided in [16] to enhance its clarity.
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Definition 1 (Structural Causal Model). Let X be a random variable with
range RX and W a random vector with range RW. A structural assignment
for X from W is a function fX : RW → RX . A structural causal model (SCM)
C = (X,N, S, pN) consists of:

1. A random vector X = (X1, . . . , Xn) whose variables we call endogenous.
2. A random vector N = (NX1 , . . . , NXn

) whose variables we call exogenous or
noise.

3. A set S of n structural assignments fXi
for Xi from (PAXi

, NXi
), where

PAXi
⊆ X are called parents of Xi. The causal graph GC := (X, E) of C has

as its edge set E = {(P,Xi) : Xi ∈ X, P ∈ PAXi
}. The PAXi

must be such
that the GC is a directed acyclic graph (DAG).

4. A jointly independent probability distribution pN over the noise variables. We
call it simply the noise distribution.

We denote by C(X) the set of SCMs with vector of endogenous variables X.
Furthermore, we write X := fX(X,NX) to mean that fX(X,NX) is a structural
assignment for X.

Notice that for a given SCM the noise variables have a known distribution
pN and the endogenous variables can be written as functions of the noise vari-
ables. Therefore the distributions of the endogenous variables are themselves
determined if one fixes the SCM. This brings us to the notion of the entailed
distribution (See Footnote 2) [16]:

Definition 2 (Entailed distribution). Let C = (X,N, S, pN) be an SCM.
Its entailed distribution pC

X is the unique joint distribution over X such that
∀Xi ∈ X, Xi = fXi

(PAXi
, NXi

). It is often simply denoted by pC. Let x−i :=
(x1, . . . , xi−1, xi+1, . . . , xn). For a given Xi ∈ X, the marginalized distribution
pC
Xi

given by pC
Xi

(xi) =
∑

x−i
pC
X(x) is also referred to as entailed distribution

(of Xi).

An SCM allows us to model interventions on the system. The idea is that an
SCM represents how the values of the random variables are generated, and by
intervening on a variable we are effectively changing its generating process. Thus
intervening on a variable can be modeled by modifying the structural assignment
of said variable, resulting in a new SCM differing from the original only in the
structural assignment of the intervened variable, and possibly introducing a new
noise variable for it, in place of the old one. Naturally, the new SCM will have an
entailed distribution which is in general different from the distribution entailed
by the original SCM.

The most common type of interventions are the so-called “atomic interven-
tions”, where one sets a variable to a chosen value, effectively replacing the dis-
tribution of the intervened variable with a point mass distribution. In particular,
this means that the intervened variable has no parents after the intervention.
This is the only type of intervention that we will need to consider in this work.
Formally (See Footnote 2) [16]:
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Definition 3 (Atomic intervention). Let C = (X,N, S, pN) be an SCM,
Xi ∈ X and x ∈ RXi

. The atomic intervention do(Xi = x) is the function
C(X) → C(X) given by C �→ Cdo(Xi=x), where Cdo(Xi=x) is the SCM that dif-
fers from C only in that the structural assignment fXi

(PAXi
, NXi

) is replaced
by the structural assignment f̃Xi

(ÑXi
) = ÑXi

, where ÑXi
is a random vari-

able with range RXi
and3 pÑXi

(xi) = 1x(xi) for all xi ∈ RXi
. Such SCM is

called the post-atomic-intervention SCM. One says that the variable Xi was
(atomically) intervened on. The distribution pdo(Xi=x) := pCdo(Xi=x)

entailed by
Cdo(Xi=x) is called the post-intervention distribution (w.r.t. the atomic interven-
tion do(Xi = x) on C).

We can also define what we mean by “X having a total causal effect on
Y ”. Following [14,16], there is such a total causal effect if there is an atomic
intervention on X which modifies the initial distribution of Y (See footnote 2)
[16]:

Definition 4 (Total Causal Effect). Let X, Y be random variables of an
SCM C. X has a total causal effect on Y , denoted by X�Y , if there is x ∈ RX

such that p
do(X=x)
Y �= pY .

In this work, all variables of the form Xi, Yi or Zi are taken to be endogenous
variables of some SCM C.

2.2 Entropy and Mutual Information

Since the quantities defined and studied in this article build upon the standard
entropy and mutual information, it is important for the reader to be familiar
with these. In this subsection we will state the definitions of entropy, conditional
entropy and mutual entropy. In the interest of space, we will not try to motivate
these definitions. For a pedagogical introduction the reader is referred to [5,11].
We will also clarify what we precisely mean by causal control.

Definition 5 (Entropy and Conditional Entropy [5]). Let X be a discrete
random variable with range RX and p be a probability distribution for X. The
entropy of X w.r.t. the distribution p is4

HX∼p(X) := −
∑

x∈RX

p(x) log p(x). (1)

Entropy is measured in bit. If the context suggests a canonical probability distri-
bution for X, one can write H(X) and refers to it simply as the entropy of X.
The conditional entropy H(Y | X) of Y conditioned on X is the expected value
w.r.t. pX of the entropy H(Y | X = x) := HY ∼pY |X=x

(Y ):

H(Y | X) := Ex∼pX
[H(Y | X = x)] . (2)

3 We denote by 1x the indicator function of x, so that 1x(xi) =

{
1, xi = x

0, otherwise
.

4 In this article, log denotes the logarithm to the base 2.
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This means that the conditional entropy H(Y | X) is the entropy of H(Y )
that remains on average if one conditions on X.

An essential concept closely associated with entropy is that of “uncer-
tainty.” This qualitative concept is often present when interpreting information-
theoretical quantities. The entropy of a variable X purports to measure the
uncertainty regarding X. In this paper, we use another qualitative concept called
“causal control” (or simply “control”). The (causal) control that variable X has
over variable Y is the level of uncertainty remaining about Y after interven-
ing on X. It indicates how close we are to fully specifying Y by intervening on
X. This understanding of the term “control” has been implicitly utilized in the
philosophy of science literature [3,17].

Remark 1. Notice that H(Y | X = x) is seen as a function of x and the expected
value in Equation (2) is taken over the random variable x with distribution pX .
This disrespects the convention that random variables are represented by capital
letters, but preserves the convention that the specific value conditioned upon
(even if that value can be randomly realized — i.e. is a random variable) is
represented by a lower case letter. Since we cannot respect both, we will follow
the common practice and opt to use lower case letters for random variables in
these cases.

There are two common equivalent ways to define mutual information (often
called information gain).

Definition 6 (Mutual Information [5]). Let X and Y be discrete random
variables with ranges RX and RY and distributions pX and pY , respectively.
The mutual information between X and Y is the KL divergence between the
joint distribution pX,Y and the product distribution pXpY , i.e.:

I(X;Y ) :=
∑

x,y∈RX×RY

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
. (3)

Or equivalently:

I(X;Y ) := H(Y ) − H(Y | X) (4)
= H(X) − H(X | Y ).

The view of mutual information as entropy reduction from Equation (4) will
be the starting point for our definition of causal information gain.

3 Running Example - Comparing Control
over an Outcome

We provide a simple example showcasing how the standard entropy and mutual
information can fail to assess which variable gives us more control over a chosen
outcome variable. We will later (Sect. 5) check that using causal entropy and
causal information gain enable us to correctly make this assessment.
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Example 1. Let us consider an ice-cream shop where the sales volume Y on a
given day can be categorized as low (Y = 0), medium (Y = 1), or high (Y = 2).
We would like to find a way to control Y . Assume that the sales volume is
influenced by two factors: the temperature W , characterized as warm (W = 1)
or cold (W = 0), and whether the ice-cream shop is being advertised, represented
by the binary variable X2. Additionally, we introduce a discrete variable X1 to
represent the number of individuals wearing shorts, which can be categorized as
few (X1 = 0), some (X1 = 1), or many (X1 = 2). Naturally, higher temperatures
have a positive influence on the variable X1. We do not consider any other
variables.

One can crudely model this situation using an SCM with endogenous vari-
ables X1,X2,W and Y , as specified in Fig. 1. The chosen structural assignments
and noise distributions reflect the specific scenario where: the temperature W is
warm about half of the time; the number X1 of people wearing shorts is highly
determined by the weather conditions; and the ice-cream shop is advertised occa-
sionally. W , X2 and all noise variables of the SCM are binary variables, while
X1, Y ∈ {0, 1, 2}. Assume we cannot intervene on W . We would like to decide
which of the variables X1 or X2 provide us with the most control over Y . It
is clear that being able to intervene on X1 gives us no control whatsoever over
Y . Any observed statistical dependence between X1 and Y comes purely from
the confounder W . Consequently, interpreting a non-zero correlation or mutual
information between X1 and Y as indicative of a causal connection between these
variables would be a mistake, and an instance of conflation between correlation
and causation.

Fig. 1. An SCM3. It models the real-world scenario described in Example 1, where Y
is the sales volume of an ice-cream shop, W is the temperature, X1 is the amount of
people wearing shorts, and X2 stands for the advertisement efforts of the ice-cream
shop. The notation NZ ∼ Bern(q) signifies that the random variable Z follows the
Bernoulli probability distribution with parameter q. Grayed out variables cannot be
intervened on. 3(The careful reader may notice that there is no noise variable NY for
Y , which seems to conflict with Definition 1. Such apparent conflicts are resolved by
seeing a deterministic assignment function such as Y := X2 + W as having a trivial
additive dependence on a noise variable NY with a point mass distribution at 0.)

If we naively use the mutual information to assess whether one should inter-
vene on X1 or X2 for controlling Y , one wrongly concludes that one should use
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X1. Intuitively, this happens because knowing X2 provides us with less informa-
tion about Y than W , and X1 is very close to W . The (approximate) values can
be consulted5 in Table 1.

Table 1. Information theoretical values for Fig. 1.

H(Y ) ≈ 1.41 H(Y | X1) ≈ 0.85 H(Y | X2) = 1

I(Y ;W ) ≈ 0.60 I(Y ;X1) ≈ 0.56 I(Y ;X2) ≈ 0.41

Notice that I(Y ;W ) > I(Y ;X1), as it should be: W has more information
about Y than X1 has. We also see that I(Y ;X2) < I(Y ;X1). If mutual infor-
mation were a suitable criterion for selecting the variable to intervene on, the
contrary would be expected. In the context of our real-world scenario, interven-
ing on the number X1 of people wearing shorts would not be a logical approach
for controlling ice cream sales. Instead, allocating more resources to advertising
efforts (represented by X2) would be more appropriate.

The issue is that the mutual information I(Y ;X1) includes the information
that one has about Y by observing X1 which flows through the confounder W .
But what we want is a metric quantifying how much control we can have over Y
by intervening on X1. We will see that the generalization of mutual information
studied in this paper (“causal information gain”) satisfies these requirements.

4 Causal Entropy

The causal entropy of Y for X will be the entropy of Y that is left, on average,
after one atomically intervenes on X. In this section we give a rigorous definition
of causal entropy and study its connection to causal effect.

We define causal entropy in a manner analogous to conditional entropy (see
Definition 5). It will be the average uncertainty one has about Y if one sets
X to x with probability pX′(x), where X ′ is a new auxiliary variable with the
same range as X but independent of all other variables, including X. In contrast
with the non-causal case, here one needs to make a choice of distribution over
X ′ corresponding to the distribution over the atomic interventions that one is
intending to perform.

Definition 7 (Causal entropy, Hc). Let Y , X and X ′ be random variables
such that X and X ′ have the same range and X ′ is independent of all variables
in C. We say that X ′ is an intervention protocol for X.

The causal entropy Hc(Y | do(X ∼ X ′)) of Y given the intervention protocol
X ′ for X is the expected value w.r.t. pX′ of the entropy H(Y | do(X = x)) :=
H

Y ∼p
do(X=x)
Y

(Y ) of the interventional distribution p
do(X=x)
Y . That is:

Hc(Y | do(X ∼ X ′)) := Ex∼pX′ [H(Y | do(X = x))] (5)
5 The details of the computations can be found in Appendix A.
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We will now see that, unsurprisingly, if there is no total effect of X on Y , then
the causal entropy is just the initial entropy H(Y ). Perhaps more unexpectedly,
the converse is not true: it is possible to have Hc(Y | X ∼ X ′) = H(Y ) while
X�Y . One way this can happen is due to the non-injectivity of entropy when
seen as a mapping from the set of distributions over Y , i.e. it may happen that
p
do(X=x)
Y �= pY but H

Y ∼p
do(X=x)
Y

(Y ) = HY ∼pY
(Y ).

Proposition 1. If there is no total effect of X on Y , then Hc(Y | do(X ∼
X ′)) = H(Y ) for any intervention protocol X ′ for X. The converse does not
hold.

Proof. The proof can be found in Appendix B. 	

If there is a total causal effect of X on Y , there cannot be a total causal

effect of Y on X (if X is a cause of Y , Y cannot be a cause of X) [16]. This
immediately yields the following corollary.

Corollary 1. If Hc(Y | do(X ∼ X ′)) �= H(Y ) for some intervention protocol
X ′ for X, then Hc(X | do(Y ∼ Y ′)) = H(X) for any intervention protocol Y ′

for Y .

Proof. Suppose that Hc(Y | X ∼ X ′) �= H(Y ). By the contrapositive of Propo-
sition 1, this means that there is a total effect of X on Y . Hence there is no total
effect of Y on X, which again by Proposition 1 yields the desired result. 	


5 Causal Information Gain

Causal information gain extends mutual information to the causal context. The
causal information gain of Y for X will be the average decrease in the entropy of
Y after one atomically intervenes on X. We start this section by giving a rigorous
definition of causal information gain, and proceed to study its connection with
causal effect. We end this section by revisiting Example 1 armed with this new
information theoretical quantity. We will confirm in this example that causal
information is the correct tool for assessing which variable has the most causal
control over the outcome, as opposed to standard mutual information.

Recall the entropy-based definition of mutual information in Equation (4).
The mutual information between two variables X and Y is the average reduction
in uncertainty about Y if one observes the value of X (and vice-versa, by sym-
metry of the mutual information). This view of mutual information allows for
a straightforward analogous definition in the causal case, so that one can take
causal information gain Ic(Y | do(X ∼ X ′)) to signify the average reduction in
uncertainty about Y if one sets X to x with probability pX′(x).

Definition 8 (Causal Information Gain, Ic). Let Y , X and X ′ be random
variables such that X ′ is an intervention protocol for X. The causal information
gain Ic(Y | do(X ∼ X ′)) of Y for X given the intervention protocol X ′ is the
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difference between the entropy of Y w.r.t. its prior and the causal entropy of Y
given the intervention protocol X ′. That is:

Ic(Y | do(X ∼ X ′)) := H(Y ) − Hc(Y | do(X ∼ X ′)). (6)

A few properties of causal information gain can be immediately gleaned from
its definition. First, in contrast with mutual information, causal information
gain is not symmetric. Also, similarly to causal entropy, one needs to specify an
intervention protocol with a distribution to be followed by interventions on X.

We can make use of the relation between causal entropy and causal effect
to straightforwardly deduce the relation between causal information gain and
causal effect.

Proposition 2. If Ic(Y | do(X ∼ X ′)) �= 0 for some protocol X ′ for X, then
X�Y . The converse does not hold.

Proof. The implication in this proposition follows directly from Definition 8 and
the contrapositive of the implication in Proposition 1. The converse does not
hold simply because it is equivalent to the converse of the contrapositive of the
implication in Proposition 1, which also does not hold. 	

Corollary 2. Let X ′ and Y ′ be intervention protocols for X and Y , respectively.
At least one of Ic(Y | do(X ∼ X ′)) or Ic(X | do(Y ∼ Y ′)) is zero.

Proof. Suppose both Ic(Y | do(X ∼ X ′)) and Ic(X | do(Y ∼ Y ′)) are non-zero.
Then by Corollary 2 we have both X�Y and Y�X, which is not possible in the
context of an SCM. 	


It is worth noting that the last part of Corollary 2 contradicts [17]. In that
work, it is stated without proof that “causation is equivalent to non-zero speci-
ficity”, wherein the term “specificity” coincides with what we refer to as causal
information gain given a uniformly distributed intervention protocol.

5.1 Comparison of Causal Information Gain and Mutual
Information in Running Example

Consider again Example 1. Compare the causal entropy and causal information
gain values6 in Table 2 with the conditional entropy and mutual information
values from Table 1.

We see that using causal information gain allows us to correctly conclude that
using X1 to control Y would be fruitless: intervening on X1 does not change the
entropy of Y . This is reflected by the fact that the causal information gain
of Y for X1 is zero. Since X1 has no causal effect on Y , this result was to
be expected by the contrapositive of Corollory 2. On the other hand, X2 does
6 In this particular case it does not matter what intervention protocol X ′ we choose,

since Hc(Y | do(X1 = x1)) = H(Y ) ≈ 1.41 for all x1 and Hc(Y | do(X2 = x2)) = 1
for all x2.
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Table 2. Causal information theoretical values for Fig. 1.

Hc(Y | do(X1 ∼ X ′
1)) ≈ 1.41 Hc(Y | do(X2 ∼ X ′

2)) = 1

Ic(Y | do(X1 ∼ X ′
1)) = 0 Ic(Y | do(X2 ∼ X ′

2)) ≈ 0.41

provide us with some control over Y : intervening on X2 decreases the entropy
of Y by 0.4 bit on average. In the real-world scenario described in Example 1,
utilizing causal information gain to determine which variable to intervene on
for controlling the sales volume Y would lead us to make the correct decision of
intensifying advertising efforts (X2). Furthermore, it would enable us to conclude
that manipulating the number of people wearing shorts (X1) provides no control
whatsoever over Y . Thus, causal information gain could be used in this case to
assess whether statistical dependence between Y and another variable in this
causal system can be interpreted to have causal significance.

6 Related Work

Previous work has aimed to provide causal explanations of machine learning
models through “counterfactual explanations” [13,21]. These explanations reveal
what the model would have predicted under different feature values. However,
they do not offer insights into the causal significance of a feature in influencing
the outcome variable. Instead, they merely inform us about the behavior of
the model itself. In other words, counterfactual explanations inform us about
the changes required for the model to produce a different prediction, but not
the changes necessary for the outcome to differ in reality. While counterfactual
explanations can be useful, for instance, in advising loan applicants on improving
their chances of approval [13], they fall short in providing causal interpretations
for tasks such as scientific exploration [23], where it is crucial to understand
the actual causal relationships between features and the chosen outcome. As
discussed in Sect. 1, the quantities investigated in this paper can precisely address
this need.

Information theoretical quantities aimed at capturing aspects of causality
have been previously proposed. An important example is the work in [9]. In that
paper, the authors suggest a list of postulates that a measure of causal strength
should satisfy, and subsequently demonstrate that commonly used measures fall
short of meeting them. They then propose their own measure (called “causal
influence”), which does satisfy the postulates. Causal influence is the KL diver-
gence of the original joint distribution and the joint distribution resulting from
removing the arrows whose strength we would like to measure, and feeding noise
to the orphaned nodes. Thus although it utilizes information theory, it does not
purport to generalize entropy or mutual information to the causal context. One
information-theoretical measure mentioned in [9] is closer to ours. It is called
“information flow” [1]. Similarly to causal information gain, this quantity is a
causal generalization of mutual information. Their goal was to come up with a
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generalization of mutual information that would be a measure of “causal inde-
pendence” in much the same way as standard mutual information is a measure
of statistical independence. They take the route of starting from the definition
of mutual information as the KL divergence between the joint distribution and
the product of the marginal distributions (Equation (3)), and proceed to “make
it causal” by effectively replacing conditioning with intervening everywhere. In
contrast, we treat entropy as the main quantity of interest, and start from the
definition of mutual entropy as the change in entropy due to conditioning (Equa-
tion (4)), and proceed to define its causal counterpart as the change in entropy
due to intervening. This then results in a quantity that is the appropriate tool
for evaluating the control that a variable has over another.

The basic idea of extending the concept of mutual information to the causal
context as the average reduction of entropy after intervening was introduced in
the philosophy of science literature, as part of an attempt to capture a property
of causal relations which they refer to as “specificity” [8]. This property can be
thought of as a measure of the degree to which interventions on the cause vari-
able result in a deterministic one-to-one mapping [22]. This means that maximal
specificity of a causal relationship is attained when: (a) performing an atomic
intervention on the cause variable results in complete certainty about the effect
variable’s value; and (b) no two distinct atomic interventions on the cause vari-
able result in the same value for the effect variable [8]. Notice that (a) means
precisely that the cause variable provides maximal causal control over the effect
variable. The causal extension of mutual information proposed in [8] was named
“causal mutual information”. They call “causal entropy” the average entropy
of the effect variable after performing an atomic intervention on the cause vari-
able. Their “causal mutual information” is then the difference between the initial
entropy of the effect variable and the causal entropy. Although they do not say
so explicitly, their definition of causal entropy assumes that one only cares about
the entropy that results from interventions that are equally likely: the average
of post-intervention entropies is taken w.r.t. a uniform distribution — hence
their “causal entropy” is the same as the causal entropy defined in this paper,
but restricted to uniform intervention protocols. This was also noted in [17],
where the authors propose that other choices of distribution over the interven-
tions would result in quantities capturing causal aspects that are distinct from
the standard specificity. In this paper we both generalized and formalized the
information theoretical notions introduced in [8]. We provided rigorous defini-
tions of causal entropy and causal information gain which allow for the use of
non-uniform distributions over the interventions. Our causal entropy can thus be
seen as a generalized version of their causal entropy, while our causal information
gain can be seen as a generalization of their causal mutual information7. Armed

7 The term causal mutual information may be misleading given the directional nature
of the relationship between cause and effect. We thus prefer the term causal infor-
mation gain, drawing inspiration from the alternate name “information gain”, which
is frequently employed in discussions about decision trees when referring to mutual
information.
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with concrete, mathematical definitions, we are able to study key mathematical
aspects of these quantities.

7 Discussion and Conclusion

The motivation behind extending traditional entropy and mutual information
to interventional settings in the context of interpretable machine learning (IML)
arises from the necessity to determine whether the high importance assigned to
specific features by machine learning models and IML methods can be causally
interpreted or is purely of a statistical nature.

Information theoretical quantities are commonly used to assess statistical fea-
ture importance. We extended these quantities to handle interventions, allowing
them to capture the control one has over a variable by manipulating another.
The proposed measures, namely causal entropy and causal information gain, hold
promise for the development of new algorithms in domains where knowledge of
causal relationships is available or obtainable. It is worth noting that the utility
of these measures extends well beyond the field of IML, as both information-
theoretical quantities and the need for causal control are pervasive in machine
learning.

Moving forward, a crucial theoretical endeavor involves establishing a fun-
damental set of properties for the proposed causal information-theoretical mea-
sures. This can include investigating a data processing inequality and a chain
rule for causal information gain, drawing inspiration from analogous properties
associated with mutual information. Other important research directions involve
the extension of these definitions to continuous variables, as well as investigat-
ing the implications of employing different intervention protocols. Furthermore,
the design and study of appropriate estimators for these measures constitute
important avenues for future research, as well as their practical implementa-
tion. Ideally, these estimators should be efficient to compute even when dealing
with high-dimensional data and complex, real-world datasets. Additionally, they
ought to be applicable to observational data. In cases where the structural causal
model is known, this could be accomplished by utilizing a framework such as do-
calculus [14] when devising the estimators. This could allow for their application
in extracting causal insights from observational data.

A Computations for the Running Example

We have

H(Y ) = pY (0) log(
1

pY (0)
) + pY (1) log(

1
pY (1)

) + pY (2) log(
1

pY (2)
)

=
3
8

log(
8
3
) +

1
2

log(2) +
1
8

log(8) = 2 − 3
8

log(3) ≈ 1.41 (bit),
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and

H(Y | W ) = H(Y | W = 0) =
3
4

log(
4
3
) +

1
4

log(4) ≈ 0.81 (bit),

where we used that H(Y | W = 0) = H(Y | W = 1), so that taking the average
is unnecessary.

Notice that X1 = 0 implies W = 0, in which case Y = X2. Hence H(Y |
X1 = 0) = H(Y | W = 0) ≈ 0.81 (bit). By a similar argument, H(Y | X1 =
2) = H(Y | W = 1) ≈ 0.81 (bit). Now, denote q = 1

64 . It is easy to check that
pY |X1=1(0) = 3q

4 , pY |X1=1(1) = 3
4 − q

2 and pY |X1=1(2) = 1
4 (1 − q). Then

H(Y | X1 = 1) = −3q

4
log(

3q

4
)−(

3
4
−q

2
) log(

3
4
−q

2
)−1

4
(1−q) log(

1
4
(1−q)) ≈ 0.89 (bit).

We can then compute:

H(Y | X1) = pX1(0)

0.81
︷ ︸︸ ︷
H(Y | X1 = 0) +pX1(1)

0.89
︷ ︸︸ ︷
H(Y | X1 = 1) +pX1(1)

0.81
︷ ︸︸ ︷
H(Y | X1 = 2)

=
1
2

× (1 − q) × 0.81 +
1
2

× 0.89 +
q

2
× 0.81 ≈ 0.85 (bit).

We also have:

H(Y | X2) = pX2(0)

1
︷ ︸︸ ︷
H(Y | X2 = 0) +pX2(1)

1
︷ ︸︸ ︷
H(Y | X2 = 1) = 1 (bit),

It immediately follows that I(Y ;W ) ≈ 0.60, I(Y ;X1) ≈ 0.56 (bit) and
I(Y ;X2) ≈ 0.41 (bit).

Moving on to the causal information theoretical quantities, we have H(Y |
do(X1 = x1)) = H(Y ) ≈ 1.41 (bit) for every x1 ∈ RX1 and H(Y | do(X2 =
x2)) = H(W ) = 1 (bit) for every x2 ∈ RX2 . Hence Hc(Y | do(X1 ∼ X ′

1)) ≈
1.41 (bit) and Hc(Y | do(X2 ∼ X ′

2)) = 1 (bit) for any intervention protocols
X ′

1,X
′
2. It follows that Ic(Y | do(X1 ∼ X ′

1)) = 0 (bit) and I(Y | do(X2 ∼
X ′

2)) ≈ 0.41 (bit).

B Proof of Proposition 1

Proof. Suppose X has no causal effect on Y . Then ∀x ∈ RX , p
do(X=x)
Y = pY .

The expression for the causal entropy then reduces to Ex∼X′ H(Y ) = H(Y ).
This shows the implication in the proposition.

We will check that the converse does not hold by giving an example where
X has a causal effect on Y but Hc(Y | X ∼ X ′) = H(Y ). Consider the SCM
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with three binary endogenous variables X,Y and M specified by:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fM (NM ) = NM

fX(M,NX) =

{
(NX + 1) mod 2,M = 1
NX ,M = 0

fY (M,NX) =

{
X,M = 1
(X + 1) mod 2,M = 0

NX , NM ∼ Bern(q), for some q ∈ (0, 1).

(7)

Then p
do(X=0)
Y ∼ Bern(q) and p

do(X=1)
Y ∼ Bern(q). Also,

pY = pX|M=1(1)pM (1) + pX|M=0(0)pM (0) = 1 − q ⇒ Y ∼ Bern(1 − q) (8)

Hence pY �= p
do(X=1)
Y , meaning that X�Y . And since both post-intervention

distributions have the same entropy HY ∼Bern(q)(Y ) = HY ∼Bern(1−q)(Y ), then
the causal entropy will also be Hc(Y | X ∼ X ′) = HY ∼Bern(1−q)(Y ) = H(Y )
(for any chosen of X ′). 	


References

1. Ay, N., Polani, D.: Information flows in causal networks. Adv. Complex Syst.
11(01), 17–41 (2008)

2. Beraha, M., Metelli, A.M., Papini, M., Tirinzoni, A., Restelli, M.: Feature selection
via mutual information: new theoretical insights. CoRR abs/1907.07384 (2019).
http://arxiv.org/abs/1907.07384

3. Bourrat, P.: Variation of information as a measure of one-to-one causal specificity.
Eur. J. Philos. Sci. 9(1), 1–18 (2019)

4. Confalonieri, R., Coba, L., Wagner, B., Besold, T.R.: A historical perspective of
explainable artificial intelligence. Wiley Interdisc. Rev.: Data Min. Knowl. Disc.
11(1), e1391 (2021)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience
(2006)

6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat., 1189–1232 (2001)

7. Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box:
visualizing statistical learning with plots of individual conditional expectation. J.
Comput. Graph. Stat. 24(1), 44–65 (2015)

8. Griffiths, P.E., Pocheville, A., Calcott, B., Stotz, K., Kim, H., Knight, R.: Mea-
suring causal specificity. Philos. Sci. 82(4), 529–555 (2015)

9. Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Schölkopf, B.: Quantifying causal
influences. Ann. Stat. 41(5), 2324–2358 (2013)

10. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

11. MacKay, D.J., Mac Kay, D.J.: Information Theory, Inference and Learning Algo-
rithms. Cambridge University Press, Cambridge (2003)

12. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

http://arxiv.org/abs/1907.07384


Causal Entropy and Information Gain for Measuring Causal Control 231

13. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

14. Pearl, J.: Causality. Cambridge University Press, Cambridge (2009)
15. Pearl, J., Glymour, M., Jewell, N.P.: Causal inference in statistics: a primer. John

Wiley & Sons (2016)
16. Peters, J., Janzing, D., Schölkopf, B.: Elements of causal inference: foundations

and learning algorithms. The MIT Press (2017)
17. Pocheville, A., Griffiths, P., Stotz, K.: Comparing causes - an information-theoretic

approach to specificity, proportionality and stability. In: 15th Congress of Logic,
Methodology, and Philosophy of Science (2015)

18. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the pre-
dictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

19. Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K., Mooij, J.: On causal
and anticausal learning. arXiv preprint arXiv:1206.6471 (2012)
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Abstract. Surrogate models play a crucial role in retrospectively inter-
preting complex and powerful black box machine learning models via
model distillation. This paper focuses on using model-based trees as sur-
rogate models which partition the feature space into interpretable regions
via decision rules. Within each region, interpretable models based on
additive main effects are used to approximate the behavior of the black
box model, striking for an optimal balance between interpretability and
performance. Four model-based tree algorithms, namely SLIM, GUIDE,
MOB, and CTree, are compared regarding their ability to generate such
surrogate models. We investigate fidelity, interpretability, stability, and
the algorithms’ capability to capture interaction effects through appro-
priate splits. Based on our comprehensive analyses, we finally provide an
overview of user-specific recommendations.

Keywords: Interpretability · Model distillation · Surrogate model ·
Model-based tree

1 Introduction

Various machine learning (ML) algorithms achieve outstanding predictive perfor-
mance, but often at the cost of being complex and not intrinsically interpretable.
This lack of transparency can impede their application, especially in highly reg-
ulated industries, such as banking or insurance [8]. A promising class of post-hoc
interpretability methods to provide explanations for these black boxes are so-
called surrogate models, which are intrinsically interpretable models – such as
linear models or decision trees – that approximate the predictions of black box
models [21]. The learned parameters of surrogate models (e.g., the coefficients
of a linear model or the tree structure) are thereby used to provide insights
into the black box model. The usefulness of these explanations hinges on how
well they approximate the predictions of the original ML model. If a surrogate
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model is too simple to accurately approximate a complex black box model on
the entire feature space, it cannot reliably explain the general behavior of the
underlying ML model. This is especially the case if the underlying ML model
comprises feature interactions and highly non-linear feature effects. Other exist-
ing methods have, therefore, focused on local surrogate models to explain single
observations. The idea is that while simple surrogate models may not accurately
approximate the complex ML model on the entire feature space, they might be a
good approximation in the immediate vicinity of a single observation. However,
such local explanations cannot be used to explain the general model behavior.
We would require to produce and analyze multiple local explanations to get an
understanding of the general model behavior, which is inconvenient because the
sheer number of local models increases run-time while impeding interpretability.

One promising idea to trade-off between global and local explanations is to
train a global surrogate model that automatically finds regions in the feature
space where the ML model’s predictions can be well described by interpretable
surrogate models using only main effects.1 [14] introduced surrogate locally-
interpretable models (SLIM) using model-based trees (MBTs) to find distinct
and interpretable regions in the feature space where the ML model’s predictions
can be well described by a simple additive model that consists only of feature
main effects in each leaf node. As such, SLIM generates regional additive main
effect surrogate models which approximate the underlying ML model predictions
and can be combined into a global surrogate model. Other MBT algorithms have
already been introduced before SLIM, but not as a surrogate model for post-hoc
interpretation, for example, model-based recursive partitioning (MOB) [28], con-
ditional inference trees (CTree) [11], and regression trees with unbiased feature
selection and interaction detection (GUIDE) [17]. All these MBT algorithms are
decision trees and usually differ in their splitting procedure and the objective
used for splitting. While the well-known CART algorithm [3] estimates constant
values in the leaf nodes, MBTs fit interpretable models – such as a linear model.

Contributions. This paper aims to inspect SLIM, MOB, CTree, and GUIDE
and their suitability as regional additive main effect surrogate models2 which
approximate the underlying ML model predictions well. We specifically focus on
main effect models because they enable good interpretability of the models in
the leaf nodes. In the ideal case, interactions should then be handled by splits,
so that the leaf node models are free from interaction effects. In a simulation
study, we apply the four MBT approaches as post-hoc surrogate models on the
ML model predictions and compare them with regard to fidelity, interpretability,
and stability – as tree algorithms often suffer from poor stability [4]. We analyze
their differences and provide recommendations that help users to choose the

1 In regions where only a few feature interactions are present, an additive main effect
model is expected to be a good approximation.

2 Meaning surrogate models that partition the feature space into interpretable regions
and fit an additive main effect model within each region (e.g., a linear model using
only first-order feature effects).
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suitable modeling technique based on their underlying research question and
data.

Reproducibility and Open Science. The scripts to reproduce all experiments can
be found at https://github.com/slds-lmu/mbt comparison. It also contains the
code for the SLIM and GUIDE algorithms, displaying (to the best of our knowl-
edge) the first implementations of these approaches available in R. For the MOB
and CTree algorithms the implementations of the R package partykit [12] were
used.

2 Related Work

The purpose of surrogate models is to approximate the predictions of a black
box model as accurately as possible and to be interpretable at the same time
[21]. Global or local surrogate models are used based on whether the goal is to
achieve a global interpretation of the black box model (model explanation) or
to explain predictions of individual input instances (outcome explanation) [19].

Global Surrogate Models. The concept of global surrogate models is also known
as model distillation, which involves training a simpler and more interpretable
model (the distilled model) to mimic the predictions of a complex black box
model. If the performance is good enough (i.e., high fidelity), the predictions of
the black box model can be explained using the interpretable surrogate model.
The main challenge is to use an appropriate surrogate model that balances the
trade-off between high performance and interpretability [21]. For example, linear
models are easily interpretable, but may not capture non-linear relationships
modeled by the underlying ML model. Some researchers explore tree-based or
rule-based approaches for model distillation [2,5,20]. Others propose promising
models like generalized additive models plus interactions (GA2M) that include
a small number of two-way interactions in addition to non-linear main effects to
achieve both high performance and interpretability [18].

Local Surrogate Models. Local interpretable model-agnostic explanations
(LIME) [23] is probably the most prominent local surrogate model. It explains a
single prediction by fitting a surrogate model in the local neighborhood around
the instance of interest. This can, for example, be achieved by randomly sam-
pling data points following the distribution of the training data and weighting
the data points according to the distance to the instance of interest. This local
approach offers an advantage over global surrogate models, as it allows for a
better balance between model complexity and interpretability by focusing on
a small region of the feature space, thereby achieving a higher fidelity in the
considered locality. However, the selection of an appropriate neighborhood for
the instance of interest remains a challenging task [16]. A major drawback of
LIME is its instability, as a single prediction can obtain different explanations
due to different notions and possibilities to define the local neighborhood. Sev-
eral modifications of LIME have been proposed to stabilize the local explanation,
including S-LIME [29] and OptiLIME [27].

https://github.com/slds-lmu/mbt_comparison
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Regional Surrogate Models. The idea of regional surrogate models is to partition
the feature space into appropriate regions in which fitting a simple interpretable
model is sufficient. For example, K-LIME [7] uses an unsupervised approach to
obtain K partitions via K-means clustering. In contrast, locally interpretable
models and effects based on supervised partitioning (LIME-SUP) [13] – also
known as SLIM [14] – use a supervised approach (MBT) to partition the feature
space according to a given objective.

To the best of our knowledge, the suitability of well-established model-based
tree algorithms (e.g., MOB, CTree, and GUIDE) as surrogate models has not
been investigated so far.

3 Background: Model-Based Trees

In the following, the general framework underlying MBTs is introduced and the
different algorithms are presented.

3.1 General Notation

We consider a p−dimensional feature space X and a target space Y (e.g., for
regression Y = R and for classification Y is finite and categorical with |Y| = g
classes). The respective random variables are denoted by X = (X1, . . . , Xp) and
Y . The realizations of n observations are denoted by (y(1),x(1)), ..., (y(n),x(n)).
We further denote xj as the j-th feature vector containing the observed feature
values of Xj . Following [28] and [26], let M((y,x), θ) be a parametric model,
that describes the target y as a function of a feature vector x ∈ X and a vector
of parameters θ ∈ Θ. As a surrogate model the notation M((ŷ,x), θ) is used,
i.e. the surrogate estimates the predictions of the black box model ŷ. Thus, y
denotes the observed ground truth, ŷ the black box model predictions, and ˆ̂y the
surrogate model predictions. For regional surrogate models, the feature space is
partitioned into B distinct regions {Bb}b=1,...,B with the corresponding locally
optimal vector of parameters θb in each partition b = 1, ..., B.

3.2 Model-Based Tree (MBT) Algorithms

In this section, the four MBT algorithms SLIM, MOB, CTree, and GUIDE are
described, and theoretical differences are explained. All MBTs can be described
by the following recursive partitioning algorithm:

1. Start with the root node containing all n observations.
2. Fit the model M to all observations in the current node to estimate θ̂b.
3. Find the optimal split within the node.
4. Split the current node into two child nodes until a certain stop criterion3 is

met and repeat steps 2–4.
3 For example, until a certain depth of the tree, a certain improvement of the objective

after splitting, or a certain significance level for the parameter instability is reached.
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Table 1. Comparison of MBT algorithms

Algorithm Split point selection Test Implementation

SLIM exhaustive search – –

MOB two-step score-based fluctuation R partykit

CTree two-step score-based permutation R partykit

GUIDE two-step residual-based χ2 binary executable

SLIM uses an exhaustive search to select the optimal split feature and split point.
Due to the exhaustive search, SLIM might suffer from a selection bias similar
to CART.4 MOB, CTree, and GUIDE apply a 2-step procedure to combat the
selection bias [25]:

1. Select the feature with the highest association with the target y to perform
the splitting (partitioning). The hypothesis tests used to determine the most
significant association differ between the MBT algorithms.

2. Search for the best split point only within this feature (e.g., by exhaustive
search or again by hypothesis testing).

We will use all four algorithms as surrogate MBTs in conjunction with a lin-
ear main effect model M((ŷ,x), θb) = θ0,b + θ1,bx1 + ... + θp,bxp with θb =
(θ0,b, ..., θp,b)T for a (leaf) node b such that the splits are based on feature inter-
actions. The assumption here is that if the main effects in the nodes are well-
fitted, any lack of fit must come from interactions. Therefore, each feature can
be used for splitting as well as for regressing (i.e., to train the linear main effect
model in each node). In the following, the four approaches are presented in more
detail. Table 1 gives a concise comparison of them.

SLIM. The SLIM algorithm performs an exhaustive search to find the optimal
split point based on a user-defined objective function. [14] use the sum of squared
errors – similar to CART but fit more flexible parameterized models (such as an
L1-penalized linear model) instead of constant values. The computational effort
for estimating all possible child models that are trained at each potential split
point becomes very large with an increasing number of possible partitioning
features. For this reason, [14] developed an efficient algorithm for estimating
them for the case of linear regression, linear regression with B-spline transformed
features, and ridge regression (see [14] for more details).

To avoid overfitting and to obtain a small interpretable tree, [14] use the
approach of post-pruning. In order to keep the computational effort as low as
possible, we use an early stopping mechanism: a split is only performed if the
4 According to [11] an algorithm for recursive partitioning is called unbiased when,

under the conditions of the null hypothesis of independence between target y and
features x1, ...,xp, the probability of selecting feature xj is 1/p for all j = 1, ..., p
regardless of the measurement scales or the number of missing values.
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objective after the best split improves by at least a fraction of γ ∈ [0, 1] (com-
pared to the objective in the parent node). To the best of our knowledge, no
openly accessible implementation of SLIM exists and we implemented SLIM in
R as part of this work.

MOB. After an initial model is fitted in step 2, MOB examines whether the
corresponding parameter estimates θ̂b are stable. To investigate this, the score
function of the parametric model trained in the node is considered, which is
defined by the gradient of the objective function with respect to the parameter
vector θb. To test the null hypothesis of parameter stability, the M-fluctuation
test is used [28]. The feature for which the M-fluctuation test detects the highest
instability (smallest p-value) is chosen for splitting. The choice of the optimal
split point with respect to this feature is then made by means of an exhaustive
search, analogous to SLIM. MOB uses the Bonferroni-adjusted p-value of the
M-fluctuation test as an early stopping criterion. That means a split is only
performed if the instability is significant at a given significance level α. MOB
generally distinguishes between regressor features, which are only used to fit the
models in the nodes, and features, which are only used for splitting. However, [28]
do not explicitly exclude overlapping roles as assumed here. MOB is implemented
in the partykit R package [12].

CTree. CTree – similarly to MOB – tries to detect parameter instability by
measuring the dependency between potential splitting features and a transfor-
mation h() of the target. A common transformation used in MBTs is the score
function, which is also used for MOB. Also, other transformations such as the
residuals could be used. However, [25] argues that the score function is generally
preferred since it performs best in detecting parameter instabilities.

CTree uses a standardized linear association test to test the independence
between the transformation h() and the potential split features. In the linear
model case with continuous or categorical split features, this is equal to the
Pearson correlation and one-way ANOVA test, respectively [25]. The final test
statistic follows an asymptotic χ2–distribution under the null hypothesis. The
feature with the smallest p-value is selected as the splitting feature. As for MOB,
a Bonferroni-adjusted p-value is used as an early stopping criterion [11].

Unlike SLIM and MOB, the split point is selected by a statistical hypoth-
esis test. The discrepancy between two subsets is measured with a two-sample
linear test statistic for each possible binary split. The split that maximizes the
discrepancy is chosen as the split point [11]. [25] state that the linear test used in
CTree has higher power in detecting smooth relationships between the scores and
the splitting features compared to the M-fluctuation test in MOB. MOB, on the
other hand, has a higher ability in detecting abrupt changes. An implementation
of CTree is also part of the partykit R package [12].

GUIDE. GUIDE [17] uses a categorical association test to detect parame-
ter instabilities. Specifically, a χ2–independence test between the dichotomized
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residuals at 0 (only the sign of the residuals matter) of the fitted model and
the categorized features are performed and the p-values of these so-called cur-
vature tests are calculated. In addition to the curvature tests, GUIDE explicitly
searches for interactions by using again χ2–independence tests. If the smallest
p-value comes from a curvature test, the corresponding feature is chosen as the
partitioning feature. If the smallest p-value is from an interaction test, the cat-
egorical feature involved, if any, is preferably chosen as the splitting feature. If
both involved features are categorical, the feature with the smaller p-value of
the curvature test is chosen for splitting. In the case of two numerical features,
the choice is made by evaluating the potential child models after splitting with
respect to both features. Subsequently, a bootstrap selection bias correction is
performed. In the original GUIDE algorithm developed by [17], categorical fea-
tures are only used for splitting due to the large number of degrees of freedom
that are needed for the parameter estimation of categorical features. GUIDE is
only available as a binary executable under https://pages.stat.wisc.edu/∼loh/
guide.html. We incorporated GUIDE as an option for the SLIM implementation
in R. Pruning is therefore carried out in the same way as for SLIM.

4 Comparison Study

Here, we first define desirable properties of MBTs when used as surrogate models
on the predictions of an ML model. To quantify these properties and compare
them for the different MBT algorithms, we define several evaluation measures.
Then, we compare SLIM, MOB, CTree, and GUIDE based on these measures
for different experimental settings and provide recommendations for the user.

4.1 Desirable Properties and Evaluation Measures

The following properties of MBTs are desirable:

– Fidelity: To derive meaningful interpretations, the predictions of the ML
model need to be well approximated by the MBT.

– Interpretability: To provide insights into the inner workings of the ML
model, the MBT needs to be interpretable and hence not too complex to be
understood by a human.

– Stability: Since MBTs are based on decision trees, they might be unstable
in the sense that they are not robust to small changes in the training data
[4]. However, stable results are needed for reliable interpretations.

These properties are measured using the evaluation metrics below.

Fidelity. To evaluate the fidelity of an MBT as a surrogate model, we use the
R2, which is defined by

R2
({

ŷ, ˆ̂y
})

= 1 −
∑n

i=1(ˆ̂y(i)−¯̂y)2
∑n

i=1(ŷ(i)−¯̂y)2
,

https://pages.stat.wisc.edu/~loh/guide.html
https://pages.stat.wisc.edu/~loh/guide.html


Leveraging Model-Based Trees for Model Distillation 239

where ˆ̂y(i), i = 1, ..., n are the predictions of the MBT model and ¯̂y is the arith-
metic mean of the ML model predictions ŷ(i). Fidelity is measured on training
data but also on test data in order to evaluate the MBT’s fidelity on unseen
data.

Interpretability. If different MBTs fit the same interpretable models within the
leaf nodes (as done in the following experiments), the interpretability comparison
of MBTs reduces to the complexity of the respective tree structure. Therefore,
the number of leaf nodes is used here to evaluate the interpretability, since fewer
leaf nodes lead to shallower trees which are easier to understand and interpret.

Stability. We consider an MBT algorithm stable if it partitions the feature
space in the same way after it has been applied again on slightly different training
data. To compare two MBTs, an additional evaluation data set is used that is
partitioned according to the decision rules learned by each of the two MBTs. If
the partitioning is identical for both MBTs, the interpretation of the decision
rules is also assumed to be identical, which suggests stability.

To measure the similarity of regions found by MBTs trained on slightly
different data, the Rand index (RI) [22], which was introduced for clustering
approaches, is used. The RI defines the similarity of two clusterings A,B of n
observations each by the proportion of the number of observation pairs that
are either assigned to the same partition in both clusterings (n11) or to differ-
ent partitions in both clusterings (n00) measured against the total number of
observation pairs [6]:

RI(A,B) =
n11 + n00(

n
2

) .

When comparing MBTs, the clusterings in the RI are defined by the regions
based on the decision rules learned by the MBTs. Since the number of leaf nodes
influences the RI, we only compute RIs for MBTs with the same number of leaf
nodes. A high RI for a pair of MBTs with the same number of leaf nodes indicates
that the underlying MBT algorithm is stable for the analyzed scenario.

Additionally, the range of the number of leaf nodes is used as a measure of
stability. It is assumed that MBTs are more unstable if the number of leaf nodes
for different simulation runs varies strongly.

4.2 Experiments

Here, we empirically evaluate the four presented MBT algorithms with respect to
fidelity, interpretability, and stability as surrogate models to interpret the under-
lying ML model. Therefore, we define three simple scenarios (linear smooth, lin-
ear categorical, linear mixed) which mainly differ regarding the type of interac-
tions. Thus, we evaluate how well the MBT algorithms can handle these different
types of interactions to provide recommendations for the user at the end of this
section, depending on the underlying data and research question.
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Simulation Setting. Since the measures for interpretability and fidelity
strongly depend on the early stopping configuration of γ for SLIM and GUIDE
and α for MOB and CTree, the simulations are carried out for three different
values of each of these parameters for all three scenarios and for a sample size
of n = 1500 of which ntrain = 1000 observations are used for training and
ntest = 500 observations for testing. All MBT algorithms are fitted as surrogate
models on the predictions of a correctly specified linear model (lm) or gener-
alized additive model (GAM) and on an XGBoost model with correctly speci-
fied interactions. Further specifications of the hyperparameters for the XGBoost
algorithm for each scenario can be found in Online Appendix B.1 [10]. Table 2
provides an overview of all 3 × 3 × 2 = 18 variants for each of the four MBT
algorithms. Hyperparameters that are fixed in all variants are a maximum tree
depth of 6 and a minimum number of observations per node of 50. We perform
100 repetitions.

Table 2. Definition of variants for all simulation settings.

Varied factors levels

Scenario linear smooth, linear categorical, linear mixed

Early stopping config α ∈ {0.05, 0.01, 0.001}, γ ∈ {0.05, 0.1, 0.15}
Surrogate model lm/GAM, XGBoost

Fidelity and interpretation measures are calculated in each simulation run. The
RIs are calculated after the simulation based on pairwise comparisons of the final
regions of an evaluation data set. More detailed steps on the quantification of the
RI for the stated simulation settings are explained in Online Appendix A [10].

Linear Smooth

Scenario Definition. The DGP in this scenario includes one smooth two-
way interaction between two numeric features and is defined as follows: Let
X1,X2,X3 ∼ U(−1, 1), then the DGP based on the n drawn realizations is given
by y = f(x) + ε with f(x) = x1 + 4x2 + 3x2x3 and ε ∼ N (0, 0.01 · σ2(f(x))).

Results. Aggregated results on interpretability and fidelity are provided for all
four MBT algorithms as surrogate models on the respective black box model in
Table 3. Since the DGP is rather simple, all MBTs have a high fidelity but they
also require a very high number of leaf nodes since the smooth interactions can
only be well approximated by many binary splits. To compare the fidelity, we
focus on configuration γ = α = 0.05 since this configuration leads to a similar
mean number of leaf nodes for all four algorithms. We see that, for a similar
number of leaf nodes, the fidelity is equally high for the four MBTs, whereby
the fidelity of MOB and CTree deviate less over the repetitions.
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The number of leaf nodes fluctuates considerably more for SLIM and GUIDE
than for MOB and CTree even when γ and α are fixed. In general, we can see
that the R2, which measures fidelity, increases with an increasing number of leaf
nodes for all models, reflecting the trade-off between fidelity and interpretability.

Table 3. Simulation results on 100 simulation runs for all four MBTs as surrogate
models on the scenario linear smooth with sample sizes ntrain = 1000 and ntest = 500
for different values of γ and α. The mean (standard deviation) fidelity on the training
data for the lm is 0.9902 (0.0006) and for the XGBoost 0.9858 (0.0008). On the test data
set the respective fidelity values for the lm are 0.9901 (0.0008) and for the XGBoost
0.9768 (0.0018).

Black box MBT γ/α Number of Leaves R2
train R2

test

mean min max mean sd mean sd

lm SLIM 0.15 2.06 2 3 0.9650 0.0043 0.9631 0.0046

lm SLIM 0.10 12.11 5 16 0.9965 0.0052 0.9958 0.0060

lm SLIM 0.05 15.70 14 16 0.9995 0.0001 0.9993 0.0001

lm GUIDE 0.15 2.07 2 3 0.9651 0.0044 0.9632 0.0049

lm GUIDE 0.10 12.03 5 16 0.9965 0.0051 0.9957 0.0060

lm GUIDE 0.05 15.75 14 16 0.9995 0.0001 0.9993 0.0001

lm MOB 0.001 15.78 14 16 0.9994 0.0001 0.9993 0.0001

lm MOB 0.010 15.78 14 16 0.9994 0.0001 0.9993 0.0001

lm MOB 0.050 15.78 14 16 0.9994 0.0001 0.9993 0.0001

lm CTree 0.001 15.22 13 17 0.9993 0.0001 0.9992 0.0001

lm CTree 0.010 15.22 13 17 0.9993 0.0001 0.9992 0.0001

lm CTree 0.050 15.22 13 17 0.9993 0.0001 0.9992 0.0001

XGBoost SLIM 0.15 2.31 2 6 0.9665 0.0069 0.9629 0.0079

XGBoost SLIM 0.10 7.33 2 14 0.9850 0.0060 0.9814 0.0062

XGBoost SLIM 0.05 14.30 8 17 0.9948 0.0010 0.9909 0.0017

XGBoost GUIDE 0.15 2.26 2 5 0.9664 0.0067 0.9628 0.0077

XGBoost GUIDE 0.10 6.92 2 14 0.9847 0.0061 0.9811 0.0062

XGBoost GUIDE 0.05 14.15 8 17 0.9945 0.0010 0.9906 0.0017

XGBoost MOB 0.001 10.89 8 13 0.9944 0.0005 0.9904 0.0011

XGBoost MOB 0.010 11.96 9 15 0.9946 0.0005 0.9906 0.0011

XGBoost MOB 0.050 12.86 11 15 0.9948 0.0005 0.9908 0.0011

XGBoost CTree 0.001 12.09 9 15 0.9940 0.0006 0.9900 0.0012

XGBoost CTree 0.010 13.21 10 15 0.9943 0.0006 0.9902 0.0013

XGBoost CTree 0.050 14.09 11 17 0.9944 0.0006 0.9904 0.0012
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Considering stability, SLIM and GUIDE provide – for each configuration of
γ – similar results for the number of leave nodes (interpretability) and for the
R2 values (fidelity). While these measures are rather sensitive with regard to the
value of γ, the variation of α has a much smaller impact on the results for MOB
and CTree. Moreover, Fig. 1 shows the RIs of the four algorithms applied to the
XGBoost model for tree pairs with identical numbers of leaf nodes. For a lower
number of leaf nodes, MOB and CTree seem to generate more stable trees for
this scenario. This effect diminishes with an increasing number of nodes and is
also not apparent for the linear model (see Fig. 1 in Online Appendix B.2 [10]).

Fig. 1. RI for the four MBT algorithms when used as surrogate models for an XGBoost
model for the scenario linear smooth with ntrain = 1000 and ntest = 500, α = γ = 0.05.
The numbers below the boxplots indicate the number of tree pairs, for which both trees
have the respective number of leaf nodes. Higher values are better.

Linear Categorical

Scenario Definition. Here, a scenario definition based on [9] with linear main
effects and interactions between numerical and binary features (i.e., subgroup-
specific linear effects) is regarded: Let X1,X2 ∼ U(−1, 1), X3 ∼ Bern(0.5),
then the DGP based on n drawn realizations is defined by y = f(x) + ε with
f(x) = x1 − 8x2 + 16x21(x3=0) + 8x21(x1>x̄1) and ε ∼ N (0, 0.01 · σ2(f(x))). In
this scenario, the DGP is not determined by a smooth interaction but can be
fully described by main effect models in four regions. Assuming that the ML
model accurately approximates the real-world relationships, if the regions of the
MBTs are defined by a (first-level) split with respect to the binary feature x3

and by a (second-level) split at the empirical mean of feature x1, the final regions
only contain main effects of the given features as defined in the DGP.

Results. Aggregated results on interpretability and fidelity are provided for all
four MBT algorithms as surrogate models on the respective black box model
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in Online Appendix B.3 [10]. In all scenarios – independent of the early stop-
ping configurations – SLIM and GUIDE lead to fewer leaves than MOB and
CTree. This can be explained by the chosen split features. SLIM and GUIDE
perform splits with respect to features x1 and x3, which lead to the subgroup-
specific linear effects defined by the DGP and thus, only need a few splits to
well approximate the DGP. In contrast, MOB and CTree rather choose x2 for
splitting, resulting in many splits to achieve a comparable fidelity. Hence, MOB
and CTree lead to a worse fidelity and due to many more leaf nodes to a worse
interpretability than SLIM and GUIDE for this scenario.

Figure 2 shows that, while the number of leaf nodes for SLIM and GUIDE is
always four for the regarded setting (α = γ = 0.05, see Online Appendix B.3 [10]
for an overview), the number of leaf nodes for MOB and CTree varies strongly
for the different simulation runs. It is also noticeable that MOB performs better
than CTree with the same number of leaf nodes. A possible explanation is that
the fluctuation test used within the splitting procedure of MOB performs better
in detecting abrupt changes than the linear test statistic used in CTree [25].
Online Appendix B.3 [10] also shows that SLIM and GUIDE show a better
mean fidelity compared to MOB and CTree when applied to a GAM.

Fig. 2. Test accuracy R2 vs. number of leaf nodes for the four MBT algorithms as
surrogate models for XGBoost for scenario linear categorical with ntrain = 1000 and
ntest = 500, α = γ = 0.05. The numbers below the boxplots indicate the number of
trees (from 100 simulation runs) which have the respective number of leaf nodes for
the regarded algorithm.

Linear Mixed

Scenario Definition. The third scenario combines the linear smooth and the
linear categorical scenarios. Hence, the DGP is defined by linear main effects,
interaction effects between categorical and numerical features, and smooth inter-
actions: Let X1,X2 ∼ U(−1, 1), X3,X4 ∼ Bern(0.5), then the DGP based on n
drawn realizations is defined by y = f(x) + ε with f(x) = 4x2 + 2x4 + 4x2x1 +
8x21(x3=0) + 8x1x21(x4=1) and ε ∼ N (0, 0.01 · σ2(f(x))).
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Results. Aggregated results on interpretability and fidelity are provided for all
four MBT algorithms as surrogate models on the respective black box model in
Online Appendix B.3 [10]. To compare the different MBT algorithms, we choose
the early stopping configurations, which lead to a similar mean number of leaf
nodes (γ = α = 0.05). Figure 3 shows that SLIM and GUIDE achieve a slightly
better trade-off between fidelity and interpretability than MOB and CTree in
this scenario. This can be reasoned as follows: SLIM and GUIDE split more often
with respect to the binary features compared to the other two MBT algorithms
(see Fig. 4). Thus, SLIM and GUIDE use the categorical features more often to
reveal the subgroups defined by them, while MOB and particularly CTree split
almost exclusively with respect to the numerical features and hence perform
slightly worse for the same mean number of leaf nodes.

Fig. 3. Test accuracy R2 vs. number of leaf nodes for the four MBT algorithms when
used as a surrogate model on the xgboost model for scenario linear mixed with ntrain =
1000 and ntest = 500, α = γ = 0.05. The numbers below the boxplots indicate the
number of trees (from 100 simulation runs) which have the respective number of leaf
nodes for the regarded algorithm.

Fig. 4. Relative amount of partitions which use features x3,x4 for splittings vs. the
number of leaf nodes for the four MBT algorithms when the XGBoost model is used
as a surrogate model for the scenario linear mixed with n = 1500, α = γ = 0.05.
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However, MOB and CTree provide on average more stable results regarding
the RI for a fixed number of leaf nodes compared to SLIM and GUIDE (see
Fig. 5).

4.3 Recommendations

Based on our analyses in this work, we provide some general recommendations
on how to choose the MBT algorithm based on the underlying data and research
question. The recommendations are based on the given assumption that we are
interested in partitioning the feature space in such a way that we receive inter-
pretable and distinct regions where regional relationships are reduced to additive
(linear) main effects of the features. Hence, the feature space is partitioned such
that feature interactions are reduced.

Fig. 5. RI for the four MBT algorithms when used as a surrogate model for the scenario
linear mixed with ntrain = 1000 and ntest = 500, α = γ = 0.05. The numbers below
the boxplots indicate the number of tree pairs (from 4950 pairs), for which both trees
have the respective number of leaf nodes. Higher values are better.

If features cannot be separated into modeling and partitioning features (as
is the case here), we recommend to

1. use SLIM and GUIDE on subgroup detection tasks (scenario linear categor-
ical and linear mixed) since they provide a better trade-off between fidelity
and interpretability than MOB and CTree. CTree performed worst in these
settings. This is often the case when there is a higher number of categorical
features with low cardinality included in the dataset (which interact also with
numeric features in the data set).

2. use MOB and CTree in scenarios with smooth interactions (scenario linear
smooth and linear mixed) for which these algorithms produce more stable
trees while performing as well as SLIM and GUIDE. These settings are more
likely for data sets with a high number of numerical features that are interact-
ing with each other. However, smooth interactions can often only be modeled
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well by a large number of binary splits, which makes MBTs difficult to inter-
pret on such data. Thus, depending on the underlying feature interactions,
MBTs might not be the best choice. Global modeling approaches such as
GA2M [18] or compboost [24] should be considered or at least compared to
MBTs in this case.

If features can be separated into modeling and partitioning features (e.g.,
based on domain-specific knowledge), we recommend using MOB which has been
developed and analyzed in detail for these settings and showed good fidelity and
stable results [1,15].

4.4 Extensions Beyond Linearity

When the main effects learned by the black box model are non-linear, the
MBTs will not only split according to feature interactions but also according
to non-linear main effects to approximate the main effects within regions by
linear effects. This leads to deeper trees, which again are less interpretable. An
alternative to fitting linear models within MBTs would be to use, for example,
polynomial regression, splines, or GAMs. These models are able to account for
non-linearity such that splits can be placed according to feature interactions.
However, not all MBTs provide this flexibility to adapt the fitted model within
the recursive partitioning algorithm (at least not out-of-the-box). [14] provide
these alternatives, including efficient estimation procedures for SLIM. We apply
SLIM with more flexible models fitted within the regions on a non-linear set-
ting in Online Appendix B.5 [10] to demonstrate the differences and improved
interpretability compared to the usage of linear models. We leave adaptions and
analyses of GUIDE, MOB, and CTree for these scenarios to future research.

It is also helpful to add a regularization term for settings with many potential
noise features to obtain more interpretable and potentially more stable results.
SLIM again allows adding any regularization term (e.g., Lasso regularization
for feature selection) out of the box. Such an analysis can be found in Online
Appendix B.6 [10] for the MBTs as surrogate models for the (correctly specified)
linear model and as a standalone model on the DGP. Further analyses using other
ML models and diverse hyperparameters are also a matter of future research.

5 Discussion

While SLIM and GUIDE performed strongly in most of our simulation settings,
they often showed less stable results compared to MOB and CTree in our anal-
yses. In some scenarios, the tree size varied greatly for both algorithms. This
observation might depend on the chosen hyperparameter configuration. Thus,
SLIM and GUIDE could be improved by tuning the early stopping hyperparam-
eters or by adding a post-pruning step to receive more stable results.

Furthermore, SLIM might be sensitive regarding a selection bias which is
common in recursive partitioning algorithms based on exhaustive search. In
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contrast, MOB, CTree, and GUIDE circumvent that problem by a two-step
approach in their splitting procedure which is based on parameter stability tests
[25]. How the selection bias influences the trees fitted in these settings as well as
the investigation of an extended setup of more complex scenarios and real-world
settings are interesting open questions to analyze in future work.

In conclusion, it can be said that MBT algorithms are a promising addition
– although not a universal solution – to interpreting the black box models by
surrogate models. By combining decision rules and (non-linear) main effect mod-
els, we might achieve high fidelity as well as high interpretability at the same
time. However, interpretability decreases very quickly with a high number of
regions. Thus, the trade-off between fidelity and interpretability remains, and
the compromise to be found depends on the underlying use case.
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Abstract. Despite the notable advancements in numerous Transformer-
based models, the task of long multi-horizon time series forecasting
remains a persistent challenge, especially towards explainability. Focus-
ing on commonly used saliency maps in explaining DNN in general, our
quest is to build attention-based architecture that can automatically
encode saliency-related temporal patterns by establishing connections
with appropriate attention heads. Hence, this paper introduces Tempo-
ral Saliency Detection (TSD), an effective approach that builds upon the
attention mechanism and applies it to multi-horizon time series predic-
tion. While our proposed architecture adheres to the general encoder-
decoder structure, it undergoes a significant renovation in the encoder
component, wherein we incorporate a series of information contracting
and expanding blocks inspired by the U-Net style architecture. The TSD
approach facilitates the multiresolution analysis of saliency patterns by
condensing multi-heads, thereby progressively enhancing the forecasting
of complex time series data. Empirical evaluations illustrate the superi-
ority of our proposed approach compared to other models across multiple
standard benchmark datasets in diverse far-horizon forecasting settings.
The initial TSD achieves substantial relative improvements of 31% and
46% over several models in the context of multivariate and univariate
prediction. We believe the comprehensive investigations presented in this
study will offer valuable insights and benefits to future research endeav-
ors.

Keywords: Time Series Forecasting · Saliency Patterns ·
Explainability · Pattern Mining

1 Introduction

Time series forecasting empowers decision-making on chronological data, and
performs an essential role in various research and industry fields such as health-
care [34], energy management [48], industrial automation [60], planning for
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infrastructure construction [43], economics and finance [44]. Time series obser-
vations can be a single sequence addressed by traditional time series forecasting
approaches such as autoregressive integrated or exponentially weighted moving
averages. However, actual time series data may consist of several channels as pre-
dictors for future forecasting and thus require more effective approaches. Multi-
horizon prediction allows us to estimate a long sequence, optimizing intervened
actions at multiple time steps in the future where performance improvements are
precious. Hence, a significant challenge for time series forecasting is to develop
practical models dealing with the heterogeneity of multi-channel time series data
and produce accurate predictions in multi-horizon.

Fig. 1. Multivariate time series forecasting comparison. The lower lines indicate better
forecasting capacity. y-axis indicates the MSE loss while x -axis presents the prediction
horizon.

Following the great success of attention mechanisms in machine translation,
recent research has adapted it for time series forecasting [6,13,21,63,64,66]. Self-
attentions consider the local information that the models only utilize point-
wise dependencies. Benefiting from the self-attention mechanism, Transformers
achieve significant efficiencies in dependency modeling for sequential data, allow-
ing for constructing more powerful large models. However, the forecasting prob-
lem is highly challenging in the long term and when many variables affect the
target. First, detecting temporal dependencies directly from long-horizon time
series is unreliable because the dependencies can be spread across many variables,
and each variable tends to be different. Second, the canonical Transformer with
self-attention requires high-power computing for long-term forecasting because
of the quadratic complexity of the sequence length. Thus, to solve the compu-
tational hardware bottleneck, the previous Transformer-based predictive models
mainly focused on improving the full self-attention to a sparse version. For the
information aggregation, Autoformer adopts the time delay block to aggregate
the similar sub-series from underlying periods rather than selecting scattered
points by dot-product. The Auto-Correlation mechanism can simultaneously
benefit the computation efficiency and information utilization from the inherent
sparsity and sub-series-level representation aggregation. Despite the significantly
improved performance, this approach has to sacrifice information usage because
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point connections lead to long-term time series forecasting bottlenecks that make
it difficult to explain the trained models.

Towards explainability, saliency maps have been widely used to highlight
important input features in model predictions to explain model behaviors in
computer vision [9,27,62] and recently also apply for time series. In fact, [11]
introduces the saliency-guided architecture that shows it works CNN and LSTM.
However, it is still being determined whether such an approach will work with the
recent transformer-based approach above, especially with the ones using spar-
sifying techniques. For example, [12] pointed out that attention-based methods
can be insufficient for interpreting multivariate time-series data, e.g., saliency
maps fail to reliably and accurately identify feature importance over time in time
series data. We hypothesize that we need a technique to automatically encode
the saliency-related temporal patterns via connecting to the suitable attention
heads. Thus, we attempt to go beyond heuristic approaches such as Informer,
e.g., sparse point-wise connection, Autoformer, e.g., sub-level-wise connection,
and propose a generic architecture to empower forecasting models with auto-
matic segment-wise interpolation. Inspired by saliency detection theory [65] in
images and video recognition [19,53], we propose a method to weigh the proper
attention to possible emerging temporal patterns.

This method is realized as a learning architecture called Temporal Saliency
Detection, which can be categorized into Transformer-family for far-horizon time
series forecasting. Our proposed architecture still follows a general encoder-
decoder structure but renovates the encoder component with a series of informa-
tion contracting and expanding blocks inspired by U-Net style architecture [39].
The fundamental architecture of a U-net model comprises two distinct paths. The
first path, referred to as the contracting path, encoder, or analysis path, closely
resembles a conventional convolutional network and is responsible for extract-
ing pertinent information from the input data. On the other hand, the second
path, known as the expansion path, decoder, or synthesis path, encompasses up-
convolutions and feature concatenations derived from the contracting path. This
expansion process facilitates learning localized extracted information and con-
currently enhances the output resolution. Subsequently, the augmented output
passes through a final convolutional layer to generate the fully synthesized data.
The resultant network exhibits an almost symmetrical configuration, endowing
it with a U-like shape. To this end, similar to the latent diffusion models for
high-resolution image synthesis [38], by allowing the attention mechanism and
the information contraction to work in concert, our architecture can construct
temporal saliency patterns through segment-wise aggregation. While U-Net style
architecture [46] can pay the way for temporal saliency patterns to emerge like
in [30], the challenge is how to match the performance of heuristics point-wise
or sub-series-wise methods (e.g., Informer, LogTrans, and Autorformer). The
experiments in Section 4 show that our approach can be competitive with sev-
eral state-of-the-art methods as visually summarized in Fig. 1. The contributions
of the paper are summarized as follows:
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– We introduce the Temporal Saliency Detection model as a harmonic combina-
tion between encoder-decoder structure and U-Net architecture to empower
the far-horizon time series forecasting towards explainability.

– Our proposed approach discovers and aggregates temporal information at the
segment-wise level. TSD consistently performs the prediction capacity in ten
different multivariate-forecasting horizons.

– At the current initial investigation, TSD achieves a 31% and 46% relative
improvement over compared models under multivariate and univariate time
series forecasting on standard benchmarks.

2 Related Work

Long and Multi Horizon Time Series Forecasting has been a well-
established research topic with a steadily growing number of publications due
to its immense importance for real applications [25,26]. Classical methods such
as ARIMA [1], RNN [37,58,61], LSTM [2] and Prophet [50] serve as a standard
baselines for forecasting. One of the most ubiquitous approaches in a wide vari-
ety of forecasting systems is deep time series which have been proven effective
in both industries [24,28] and academic [7,51]. Amazon time series forecasting
services build around DeepAR [42], which combines RNNs and autoregressive
sliding methods to model the probabilistic future time points. Attention-based
RNNs approaches capture temporal dependency for short and long term predic-
tions [36,45,47]. CNN’s models for time series forecasting also provide a notice-
able solution for periodically high-dimensional time series [17,18,56]. Another
deep stack of fully-connected layers based on backward and forward residual
links, named N-BEATS, was proposed by [29] and later improved by [3], called
N-HITS, have empowered this research direction. Those forecasting approaches
focus on temporal dependency modeling by current knowledge, recurrent con-
nections, or temporal convolution.

Transformers Based on the Self-attention Mechanism, originating from
the machine translation domain, have been successfully adapted to address dif-
ferent time series problems [5,17,20,22,45,47]. Attention computation allows
direct pair-wise comparison to any uncommon occurrence, e.g., sale seasons,
and can model temporal dynamics inherently. However, pair-wise interactions
make attention-based models suffer from the quadratic complexity of sequence
length. Recent research, Reformer [14], Linformer [57], and Informer [66], pro-
poses multiple variations of the canonical attention mechanisms have achieved
superior forecasting while in parallel reducing the complexity of pair-wise inter-
actions. Another exciting paper that belongs to the attention-based family of
models is the Query Selector [15], where the idea of computing a sparse approx-
imation of an attention matrix is exploited. Note that these forecasting models
still rely on point-wise computation and aggregation. Nevertheless, those models
have improved the self-attention mechanism from a full to a sparse version by
sacrificing information utilization. In this context, we call them as sparsification
architectures. Along the same line, YFormer [23] adjusted the Informer model by
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integrating a U-Net architecture into Informer’s ProbSparse Self-attention mod-
ule. While it is also inspired by U-Net like us, YFormer inherits the problem of
sacrificing the information utilization of Informer. Originated from the medical
image segmentation problem, U-Net is capable of condensing input information
to several intermediate embeddings and up-sampling them to the same resolu-
tions as the input [10,16,39]. Apart from the image domain, the U-Net approach
has proven noticeable results for sequence modeling [49] and time series segmen-
tation [33].

Auto-correlation Mechanism. A noticeable encoder-decoder architecture
that utilizes Fourier transform is Autoformer [59] with decomposition capacities
and an attention approximation. Autoformer is based on the series periodic-
ity addressed in the stochastic process theory, where trend, seasonal, and other
components are blended [4]. Hence, the model does not depend on temporal
dependency as with the transformer-based solutions, but the auto-correlation
emerging from data. The series-wise connections replace the point-wise repre-
sentation.

Saliency has emerged as a prominent and effective method for enhancing inter-
pretability, providing insights into why a trained model produces specific predic-
tions for a given input. One approach to leveraging saliency is through saliency-
guided training, which aims to diminish irrelevant features’ influence by reducing
the associated gradient values. This is achieved by masking input features with
low gradients and then minimizing the KL divergence between the outputs gen-
erated from the original input and the masked input, in addition to the main
loss function. The effectiveness of the saliency approach has been demonstrated
across various domains, including image analysis, language processing, and time
series data [41,52]. Another saliency technique involves extracting a series of
images from sliding windows within time series data and defining a learnable
mask based on these series images and their perturbed counterparts. This app-
roach, series saliency, acts as an adaptive data augmentation method for training
deep models [31]. In exploring perturbed versions of data, Parvatharaju et al.
introduced a method called perturbation by prioritized replacement. This tech-
nique learns to emphasize the timesteps that contribute the most to the clas-
sifier’s prediction, indicating their importance [32]. Saadallah et al. tackled the
challenge of searching for an optimal network architecture by considering candi-
date models from various deep neural network architectures. They dynamically
selected the most suitable architecture in real-time using concept drift detec-
tion in time series data. Saliency maps were utilized to compute the region of
competence for each candidate network [40].

3 Attention with Temporal Saliency

3.1 Problem Definition and Notation

A time series is composed of N univariate time series where each i “ 1 . . . N , we
have yi

t as a value of the univariate time series i at time t. Given the look-back
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window τ , xi
t are exogenous inputs as associated co-variate values, e.g., day-of-

the-week and hour-of-the-day. We can formulate the one-step-ahead prediction
model as follows:

ŷi,t`1 “ f(yi
t´τŻt, x

i
t´τŻt) (1)

where yi
t´τŻt “ {yi

t´τ , ..., yi
t} and xi

t´τŻt “ {xi
t´τ , ..., xi

t}.
As a common practice in transformer-based model, e.g., [57] and [59], the

inputs yi
t´τŻt, x

i
t´τŻt are encoded under a vector of hidden states z to serve as

the inputs for an attention block as the below step. The size |z| is aligned with
the number of input tokens for the transformer-based encoding block.

To prepare for the description of our architecture in the next section, we
introduce two fundamental building blocks Conv↓ and Conv↑, with two following
equations, e.g., downsampling and upsampling blocks, respectively. They are two
parameterized sub-modules used in U-Net [39] style architecture. They both have
two parameters, namely, H and d, which are the hidden input states and the
drop-out parameter.

Conv↓(H, d) “ DropOut(MaxPool(ReLU(Conv1d(H))), d) (2)

Conv↑(H, d) “ DropOut(ConvT1d(ReLU(Conv1d(H))), d) (3)

where ConvT1d is shorted for ConvTranspose1d.

3.2 Architecture for Temporal Saliency Detection

This section will introduce our proposed learning architecture illustrated in
Fig. 2.

The description will be followed from left to right according to the input
flow. The critical novel aspect of this architecture is that the Temporal Saliency
Detection (T SD) block can work in tandem with the Temporal Self-Attention
(T SA) block. During the training process, the weights in both these blocks can
be automatically adjusted to reveal temporal saliency maps in a similar fashion to
semantic segmentation in computer vision. While our implementation is proven
to outperform its competitors by a large margin, the saliency aspect will open
the door for supporting the interpretability of our models as a natural next step
for this work.

Time Series Tokenization. To prepare the input for the below T SA block, our
architecture will encode time series into a Linear Embedding z to make it com-
patible with token inputs of the attention module T SA. Next, we use convolution
block Conv1d to encode z from input time series (yi

t´τŻt, x
i
t´τŻt). Note the num-

ber of the tokens |z| is a hyper-parameter for our architecture (see Ablation
study in Sect. 5).

z “ Conv1d(yi
t´τŻt, x

i
t´τŻt) (4)
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Fig. 2. The high-level design of the Temporal Saliency Detection (TSD) model.

Temporal Self-Attention (T SA). We use a multi-attention block to encode the
correlation of temporal pattern, similar to [57]. Here, we only use one multi-
attention block to mitigate the memory problem of dot products similar to
Informer and the like. The subsequent convolution blocks can be adjusted to
avoid the quadratic memory consumption of multiple attention blocks of vanilla
transformers. Our evaluation results and ablation study show that this block
alone can work in concert with T SD to adjust the learning weights allowing
temporal saliency patterns to emerge so that our trained models could outper-
form those of specification architectures in similar memory consumption. Also,
as a common practice, we add the position encoding PE [54] to z to create T SA
as follows.

T SA “ LN(FFN(LN(SelfAttention(z ` PE)))) (5)

where LN(.), FFN(.) and SelfAttention(.) are LinearNorm, FeedForward and
Self-Attention blocks, respectively.

Temporal Saliency Detection (T SD). Inspired by saliency map generation using
U-Net in semantic segmentation, this block consists of two mirroring paths: con-
tracting and expanding with Conv↓ and Conv↑ blocks, respectively. The below
equations define such L block pairs. L is also considered as a hyper-parameter
that can be empirically adjusted based on the data and the memory availability
of the training infrastructure. Figure 2 illustrates L “ 4.

ConvDowni “ Conv↓(ConvDowni´1
, di) (6)

where i = 2, ..., L and ConvDown1 “ Conv↓(TSA, d1).

ConvUpi “ Conv↑(ConvDowni ‘ ConvUpi`1, di) (7)

where i = 1, ..., L ´ 1 and ConvUpL “ Conv↑(ConvDownL, dL). ‘ is the con-
catenation operator.

Note that the skip connections are specified as the concatenations between
ConvDowni and ConvUpi`1. These skip connections are used to connect different
patterns that emerged from different time scales. They also help avoid informa-
tion loss due to the compression process that sparsification architectures suffer.
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Moreover, [55] indicated that such skip connections could be well integrated well
with attention heads of T SA. In this design, we can see the features for z after
the T SA might be at different scales or magnitudes. This can be due to some
components of z or later T SA having very sharp or very distributed attention
weights when summing over the features of the other components. Addition-
ally, at the individual feature/vector entries level, concatenating across multiple
attention heads-each of which might output values at different scales-can lead to
the entries of the final vector having a wide range of values. Hence, these skip
connections and the up-down sampling process work hand-in-hand to enable the
temporal saliency patterns to emerge while canceling the noise. In the sequel,
we have the definition of T SD block as follows.

T SD “ LN(ConvUp1) (8)

Regarding L in our implementation for evaluated datasets, both contracting
or expanding paths contain three or four repeated blocks, i.e., L “ 3 or L “
4. Note that L can be seen as a counterpart of the k parameters in ’top-k’
components for sparsification architectures such as Informer and Autoformer.
In our evaluation and ablation studies, L and associated parameters are more
intuitive and easier to adjust to optimize the model performance empirically.
Forecasting. The forecasting operation involves one-step-ahead prediction ŷi,t`1

powered by T SD that can dynamically uses to compute a new hidden state yi
t`1

for each element i “ 1...N from the τ previous states yi
t´τŻt from t.

4 Experiment

4.1 Datasets

To have a fair comparison with the current best approaches, we select the public
data files from the Informer’s Github page1, including ETTh1, ETTh2, and
ETTm1, and Autoformer’s Github2, e.g., Exchange and ILI. We evaluate all
baselines and our model on a wide range of prediction horizons within {24, 36,
48, 60, 96, 168, 288, 336, 672, 720}.

ETT: Electricity Transformer Temperature is a real-world dataset for electric
power deployment. The dataset is further converted into different granularity,
e.g., ETTh1 and ETTh2 for 1-h-level and ETTm1 for 15-min-level. Each data
point consists of six predictors and one oil temperature target value.

ILI: Influenza-like illness dataset3 reports weekly recorded influenza patients
from the Center for Disease Control and Prevention of the United States. It
measures the ratio of illness patients over the total number of patients in a
week. Each data point consists of six predictors and one target value.

1 https://github.com/zhouhaoyi/Informer2020.
2 https://github.com/thuml/Autoformer.
3 https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html.

https://github.com/zhouhaoyi/Informer2020
https://github.com/thuml/Autoformer
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Exchange: The dataset is a collection of daily exchange rates of different coun-
tries from 1990 to 2016 [17]. Each data point consists of seven predictors and
one target value.

We follow the splitting protocol mentioned in the Autoformer paper [59]
by the ratio of 7:1:2 for all datasets. Figure 3 visualizes the challenge of real-
world finance Exchange, disease ILI, and energy consumption ETT datasets.
To be more precise, we choose time series that exhibit either a trend or are
exceptionally challenging to predict.

Fig. 3. A visualization of datasets’ forecasting targets.

4.2 Experimental Setup

Baselines. We compared our TSD model with six baseline approaches. Regard-
ing multivariate time series forecasting, we designed the experiments similar to
the Autoformer model [59], a standard benchmark for much following-up time
series forecasting research. More concretely, we compare TSD with Autoformer
[59], Informer [66], LogTrans [20], Reformer [14], LSTNet [17], and LSTM [8].
We reused the experimental reports in the Autoformer paper after randomly
double-checking by re-running several experiments not to repeat all implemen-
tations on all datasets. Additionally, regarding univariate time series prediction,
we designed the experiments similar to the Informer model [66]. Here, we com-
pare our model with Informer, Reformer, LogTrans, DeepAR [42], Yformer [23],
and Query Selector [15]. The Git repository is available at4.

Hyperparameter Optimization. We conduct a grid search over the hyper-
parameters, and the ranges are given in the following. We set the number of
the encoder as one while mainly focusing on the Conv-down-up architecture
design, which is the core power of the TSD model. The hidden state sequence
z size is selected from {512, 1024, 1280, 1536} while the number of heads is
{8, 16, 32}. The number of up-sampling and down-sampling blocks is {3, 4, 5}.
The dropout values are searched from {0.05, 0.1, 0.2, 0.3}. We performed a grid
search of the learning rate of {0.00001, 0.00002, 0.000001, 0.000005, 0.0000001}.
Furthermore, we apply a scheduling reduction of learning rate by a factor γ of
{0.97, 0.95, 0.87, 0.85} with a step size of {2, 5, 8}. The training epoch range is
{15, 20, 25, 30, 35}. The number of heads in self-attention is from {8, 16}. Regard-
ing the optimizer, we select AdamW.
4 https://github.com/duongtrung/time-series-temporal-saliency-patterns.

https://github.com/duongtrung/time-series-temporal-saliency-patterns
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Metrics and Implementation Details. We trained the TSD model regarding
optimizing the mean absolute error MAE “ 1

n

∑n
i“1 |y ´ ŷ| and mean squared

error MSE “ 1
n

∑n
i“1(y ´ ŷ)2 losses on each prediction horizon. We conducted

most of Pytorch implementation on high-performance computing nodes equipped
with a GeForce RTX 2080Ti 32GB. We ran all experiments three times and
reported the average results.

4.3 Results and Analysis

We select datasets under a wide range of horizon lengths from 24 to 720-time
points to compare prediction capacity in the challenging multivariate scenario.
Regarding the multivariate time series forecasting, Table 1 summarizes the exper-
imental results of all models and benchmarks, while Fig. 1 visualizes a rela-
tive comparison in trends. As for this experimental scenario, TSD has achieved
remarkable performance in all benchmarks and all forecasting horizons, as illus-
trated in Table 2. Especially under the optimization for the MSE loss, TSD out-
performs six baselines in all 23 different forecasting lengths. Autoformer achieves
better results in only 4 MAE cases out of 46 cases in both MSE and MAE. How-
ever, these better results fall into short forecasting horizons, e.g., (48, 168) and
(96, 192) in ETTh2 and Exchange, respectively. The trends of ETTh1, ETTh2,
ILI, and ETTm1 in Fig. 1 have proven the consistent prediction power of TSD
in far horizons. Especially, under the MSE loss, compared to the previous best
state-of-the-art performance, TSD gives average 65% reduction in ETTh1, 29%
in ETTh2, 65% in ETTm1, 18% in Exchange, and 56% in ILI. A similar reduc-
tion is observed regarding the MAE loss. The error reduction harmonizes with
trends and nature of the data as shown in Fig. 1. ETTh1 and ETTm1 share a gen-
eral downward trend, and the data part corresponding to the test set has a small
fluctuation amplitude. Contrary to ETTh1 and ETTm1, the ILI dataset tends to
increase, and the corresponding test set data has a larger fluctuation amplitude.
Due to the unforeseen interaction between countless economic phenomena, the
Exchange dataset is comparatively challenging. Therefore, a reduction of 18%
is achieved. Overall, 46 reported results in 10 different forecasting horizons, TSD
yields a 31% reduction in both MSE and MAE losses. It proves TSD’s superior-
ity against several current best models for many complex real-world multivari-
ate forecasting applications, including early disease warning, long-term financial
planning, and resource consumption arrangement.

As for the univariate scenario, i.e. N “ 1, TSD has also achieved consistent
performance in all benchmarks and all forecasting horizons. TSD yields the best
scores in 28 out of 30 experimental cases within five different horizons. Note that
TSD has noticeably outperformed DeepAR, the back-bone model for Amazon
Forecast Service. The Query Selector model is a robust approach outperforming
Informer in all three datasets in both losses. However, compared to our model,
the Query Selector is only better in two cases, e.g., ETTm1 at 672 horizons for
MSE and MAE. The relative error reduction in both MSE and MAE losses is
46%.
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Table 1. Multivariate time series forecasting results. A lower MSE or MAE indicates
better forecasting. The best scores are in bold.

Model TSD Autoformer Informer LogTrans Reformer LSTNet LSTM
Data & Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 24 0.115 0.285 0.384 0.425 0.577 0.549 0.686 0.604 0.991 0.754 1.293 0.901 0.650 0.624
48 0.119 0.279 0.392 0.419 0.685 0.625 0.766 0.757 1.313 0.906 1.456 0.960 0.702 0.675

168 0.191 0.313 0.490 0.481 0.931 0.752 1.002 0.846 1.824 1.138 1.997 1.214 1.212 0.867
336 0.141 0.285 0.505 0.484 1.128 0.873 1.362 0.952 2.117 1.280 2.655 1.369 1.424 0.994
720 0.233 0.416 0.498 0.500 1.215 0.896 1.397 1.291 2.415 1.520 2.143 1.380 1.960 1.322

ETTh2 24 0.189 0.270 0.261 0.341 0.720 0.665 0.828 0.750 1.531 1.613 2.742 1.457 1.143 0.813
48 0.242 0.538 0.312 0.373 1.457 1.001 1.806 1.034 1.871 1.735 3.567 1.687 1.671 1.221

168 0.320 0.493 0.457 0.455 3.489 1.515 4.070 1.681 4.660 1.846 3.242 2.513 4.117 1.674
336 0.309 0.462 0.471 0.475 2.723 1.340 3.875 1.763 4.028 1.688 2.544 2.591 3.434 1.549
720 0.314 0.472 0.474 0.484 3.467 1.473 3.913 1.552 5.381 2.015 4.625 3.709 3.963 1.788

ETTm1 24 0.145 0.306 0.383 0.403 0.323 0.369 0.419 0.412 0.724 0.607 1.968 1.170 0.621 0.629
48 0.143 0.293 0.454 0.453 0.494 0.503 0.507 0.583 1.098 0.777 1.999 1.215 1.392 0.939
96 0.268 0.390 0.481 0.463 0.678 0.614 0.768 0.792 1.433 0.945 2.762 1.542 1.339 0.913

288 0.157 0.316 0.634 0.528 1.056 0.786 1.462 1.320 1.820 1.094 1.257 2.076 1.740 1.124
672 0.149 0.313 0.606 0.542 1.192 0.926 1.669 1.461 2.187 1.232 1.917 2.941 2.736 1.555

Exchange 96 0.184 0.369 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 1.551 1.058 1.453 1.049
192 0.262 0.445 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.477 1.028 1.846 1.179
336 0.293 0.422 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 1.507 1.031 2.136 1.231
720 1.307 0.758 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016 2.285 1.243 2.984 1.427

ILI 24 1.514 1.103 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382 6.026 1.770 5.914 1.734
36 1.449 1.086 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 5.340 1.668 6.631 1.845
48 1.186 0.971 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 6.080 1.787 6.736 1.857
60 1.140 0.946 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483 5.548 1.720 6.870 1.879

4.4 Discussions

When applying prediction principles to sequential data, e.g., natural language
or time series, contextual information weighs a lot, primarily when long-range
dependencies exist. In this context, the issues of gradient vanishing and explo-
sion, model size, and dependencies depend on the length of the sequential data.
Transformer’s self-attention approach successfully addressed those mentioned
issues by designing a novel encoder-decoder architecture [54]. Developed upon
that architecture, the Probsparse self-attention was introduced to overcome the
memory bottleneck of the transformer while acceptably handling extremely
long input sequences. Table 4 presents the evolutional simplification of gen-
eral encoder-decoder pairs throughout the research. Employing model design,
the complexity of an encoder-decoder architecture is significantly reduced. For
instance, the number of encoders and decoders in the Informer model was
reduced from 6 to 4 and 6 to 2, respectively. However, the long-term forecasting
problem of time series remains challenging, although various self-attention mech-
anisms were adopted. In far-horizon forecasting, a model, instead of attending
to several single points, treat sub-series level and aggregates dependencies dis-
covery and representation. Consequently, the auto-correlation mechanism was
developed [59], which yielded a 38% relative improvement on compared models.
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The number of encoders and decoders was noticeably reduced from 4 to 2 and 2
to 1, respectively. One point to note is that the authors of those mentioned mod-
els do not provide any ablation study on why they chose the number of encoders
and decoders. However, the core idea is to balance forecasting accuracy and
computation efficiency. As discussed in Sect. 1, our hypothesis is to automati-
cally encode the correct temporal pattern to the suitable self-attention heads
and to learn saliency patterns emerging from the sequential data. Hence, one
encoder is enough to output a self-attention representation. Unlike the existing
methods, we completely replace a general decoder with a U-sharp architecture,
effectively addressing the image segmentation task. Generally speaking, we also
want to segment time series in automatic processing and discovery.

Table 2. Univariate time series forecasting results. A lower MSE or MAE indicates
better forecasting. The best scores are in bold.

Models TSD Informer Reformer LogTrans DeepAR Yformer Query
Selector

Dataset & Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 24 0.018 0.102 0.098 0.247 0.222 0.389 0.103 0.259 0.107 0.280 0.082 0.230 0.043 0.161
48 0.043 0.166 0.158 0.319 0.284 0.445 0.167 0.328 0.162 0.327 0.139 0.308 0.072 0.211

168 0.082 0.225 0.183 0.346 1.522 1.191 0.207 0.375 0.239 0.422 0.111 0.268 0.093 0.237
336 0.094 0.237 0.222 0.387 1.860 1.124 0.230 0.398 0.445 0.552 0.195 0.365 0.126 0.284
720 0.129 0.291 0.269 0.435 2.112 1.436 0.273 0.463 0.658 0.707 0.226 0.394 0.213 0.373

ETTm1 24 0.011 0.082 0.030 0.137 0.095 0.228 0.065 0.202 0.091 0.243 0.024 0.118 0.013 0.087
48 0.019 0.110 0.069 0.203 0.249 0.390 0.078 0.220 0.219 0.362 0.048 0.173 0.034 0.140
96 0.038 0.161 0.194 0.372 0.920 0.767 0.199 0.386 0.364 0.496 0.143 0.311 0.070 0.210

288 0.057 0.199 0.401 0.554 1.108 1.245 0.411 0.572 0.948 0.795 0.150 0.316 0.154 0.324
672 0.341 1.052 0.512 0.644 1.793 1.528 0.598 0.702 2.437 1.352 0.305 0.476 0.173 0.342

ETTh2 24 0.075 0.210 0.093 0.240 0.263 0.437 0.102 0.255 0.098 0.263 0.082 0.221 0.084 0.223
48 0.073 0.213 0.155 0.314 0.458 0.545 0.169 0.348 0.163 0.341 0.139 0.334 0.111 0.262

168 0.110 0.270 0.232 0.389 1.029 0.879 0.246 0.422 0.255 0.414 0.111 0.337 0.175 0.332
336 0.121 0.273 0.263 0.417 1.668 1.228 0.267 0.437 0.604 0.607 0.195 0.391 0.208 0.371
720 0.123 0.273 0.277 0.431 2.030 1.721 0.303 0.493 0.429 0.580 0.226 0.382 0.258 0.413

5 Ablation Study

5.1 Pooling Selection

TSD comprises u-pair blocks of down-sampling and up-sampling that play a
central role in current architecture. At each block l, we propose to use a pooling
layer with a kernel size of kl “ 3 to help the layer focus a specific scale if its
input. It helps reduce the input’s width, release memory usage, reduce learnable
parameters, alleviate the effects of overfitting, and limit the computation. We
carefully explore max and average pooling operations and the model’s stability
under various far-horizon. Table 3 presents the empirical evaluation of pooling
configurations. This ablation shows that max pooling is more stable in long-term
forecasting, e.g., from a horizon of 60 and beyond.
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Table 3. Empirical evaluation of eight different horizons with two pooling settings.
The best scores are in bold.

Data Horizon MaxPool AveragePool
MSE MAE MSE MAE

ILI 24 1.514 1.103 1.577 1.108
36 1.449 1.086 1.429 1.042
48 1.186 0.971 1.239 0.962
60 1.140 0.946 1.146 0.947

Exchange 96 0.184 0.369 0.985 1.263
192 0.262 0.445 0.347 0.453
336 0.293 0.422 0.455 0.513
720 1.307 0.758 1.620 1.787

Table 4. The simplification of models’ architecture and its reason. Referring to Atten-
tion, we mean the model developed by [54].

Model # encoder # decoder Reason of simplification

Attention 6 6 Replacement of recurrent layers with encoder-decoder pairs
Informer 4 2 Introduction of Probsparseself-attention
Autoformer 2 1 Introduction of auto-correlationmechanism
Our model 1 1 Introduction of saliency detection mechanism

5.2 Architecture Variations

In this ablation, we test several variations of TSD architecture and its per-
formance in three alternative layouts: {3, 4, 5} conv-down-up blocks. We believe
that the advantages of TSD architecture are rooted in its flexibility in multi-block
design for a specific dataset. Table 5 compares TSD alternatives qualitatively. All
hyperparameters are the same, excluding the block design. Most importantly, the
best model design is to have a balance between forecasting accuracy and com-
putation costs. Therefore, in this paper, we chose a TSD architecture with four
conv-down-up blocks for all experiments.

6 Future Work

Although the concept of TSD demonstrates remarkable experimental outcomes,
it requires a thorough hyperparameter search, as outlined in Sect. 4.2. The pre-
defined range of hyperparameters heavily relies on domain expertise provided
by an expert in the field. Specifically, the investigation involves determining
the appropriate layer size in the convolutional blocks, establishing the optimal
sequence of layers and examining its impact on prediction, and exploring poten-
tial interactions between the number of heads and conv-down-up blocks. This
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Table 5. Evaluation of architectural variations of our proposed model. The best scores
are in bold.

Model Horizon 3 conv-down-up blocks 4 conv-down-upblocks 5 conv-down-upblocks
MSE MAE MSE MAE MSE MAE

ILI 24 1.519 1.081 1.514 1.103 1.537 1.107
36 1.396 1.080 1.449 1.086 1.405 1.128
48 1.224 0.958 1.186 0.971 1.278 0.978
60 1.126 0.924 1.140 0.946 1.125 0.930

Exchange 96 0.643 1.442 0.184 0.369 3.109 1.406
192 1.818 1.676 0.262 0.445 0.287 0.458
336 0.934 1.343 0.293 0.422 0.463 0.494
720 1.411 0.937 1.307 0.758 1.505 1.040

process entails over 700 manual trial-and-error iterations in selecting the hyper-
parameter ranges, further enhancing performance. We acknowledge that hyper-
parameter optimization remains a limitation of the model.

While U-Net architectures are predominantly employed in biomedical image
segmentation to automate identifying and detecting target regions or sub-
regions, our study demonstrates that TSD can be effectively utilized for time
series data. It is essential to highlight that a thorough analysis of U-Net variants
[35,46], encompassing inter-modality and intra-modality categorization, holds
significance in gaining deeper insights into the challenges associated with time
series forecasting and saliency detection. This analysis recommends a valuable
avenue for future research endeavors in this field.

This study scrutinizes the efficacy of automatically encoding saliency-related
temporal patterns by establishing connections with appropriate attention heads
by incorporating information contracting and expanding blocks inspired by the
U-Net style architecture. To substantiate our claims, we utilize an embarrassingly
simple TSD forecasting baseline. It is crucial to note that the contributions
of this work do not solely lie in proposing a state-of-the-art model; instead,
they stem from posing a significant question, presenting surprising comparisons,
and elucidating the effectiveness of TSD, as asserted in existing literature, from
various perspectives. Our comprehensive investigations will prove advantageous
for future research endeavors in this domain. The initial TSD model exhibits
limited capacity, and its primary purpose is to serve as a straightforward yet
competitive baseline with robust interpretability for subsequent research. TSD
sets a new baseline for all pursuing multi-discipline work on popular time series
benchmarks.

7 Conclusion

This research introduces an effective time series forecasting model called Tem-
poral Saliency Detection, inspired by advancements in machine translation and
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down-and-up samplings in the context of image segmentation tasks. The pro-
posed TSD model leverages the U-Net architecture and demonstrates superior
predictability compared to existing models. This work’s fundamental premise is
the need for a technique to encode saliency-related temporal patterns through
appropriate attention head connections automatically. The outcomes of our
study underscore the significance of automatically learning saliency patterns
from time series data, as the proposed TSD model significantly outperforms
several state-of-the-art approaches and benchmark methods. In the multivariate
scenario, our experiments reveal that TSD achieves a remarkable 31% reduction
in MSE and MAE losses across 46 reported results encompassing ten diverse fore-
casting horizons. Similarly, in the univariate forecasting setting, TSD yields a
noteworthy 46% reduction in both MSE and MAE losses. The authors conducted
an ablation analysis to ensure the proposed model’s effectiveness and expected
behavior. However, it is worth noting that further potential for improvement is
evident, suggesting the need for hyperparameter optimization and the exploita-
tion of U-net variants. These findings underscore the efficacy and promise of
the TSD model in the context of time series forecasting while also highlighting
avenues for future research and refinement.
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Abstract. The prediction of city-wide taxi demand is used to proac-
tively relocate idle taxis. Often neural network-based models are applied
to tackle this problem, which is difficult due to its multivariate input and
output space. As these models are composed of multiple layers, their pre-
dictions become opaque. This opaqueness makes debugging, optimising,
and using the models difficult. To address this, we propose the usage of
eXplainable AI (XAI) – feature importance methods.

In this paper, we build and train four city-wide taxi demand prediction
models of commonly used neural network types on the New York City
Yellow Taxi Trip data set. To explain their predictions, we select three
existing XAI techniques – reduced Layerwise Relevance Propagation,
Local Interpretable Model-agnostic Explanation, and Shapely Additive
Explanations – and enable their usage on the specified problem. In addi-
tion, we propose a suite of five quantitative evaluation metrics suitable
for explaining models that tackle regression problems with multivariate
input and output space. Lastly, we compare the selected XAI techniques
through the proposed evaluation metrics along four real-world scenarios.

Keywords: XAI · LRP · LIME · SHAP · Multivariate regression ·
taxi demand prediction

1 Introduction

Demand-driven industries like taxi services require timely product supply, e.g.
taxis at certain locations of a city. The mismatch between demand and supply
can be reduced by predicting the demand, i.e. the number of required taxis for
each area of a city in the next 30 min, and relocating the product accordingly.
Consequently, corresponding demand prediction models can contribute to the
optimisation of taxi services, e.g. serving more customers and reducing cruising
fuel consumption [18,31].
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To predict the taxi demand, typically, a city is divided spatially, e.g. by a
500 m square grid with 20× 20 cells, and temporally, e.g. into 30-min time bins.
Then, a demand prediction model can use the demand over the last two hours
(corresponding shape of 4× 20× 20) to predict the demand for each cell of the
whole city in the next half an hour (20× 20). Typically, neural network-based
models, which are considered as black-box models due to their opaqueness, are
used for the prediction; see, e.g. [13,38,44,46]. An illustration of such a taxi
demand prediction is shown in the upper part of Fig. 1.

Fig. 1. Illustration of how a neural network-based taxi demand prediction model
(black-box model) that receives the demand for taxis of the last four time bins for
each cell in the city (green heatmap) and predicts the city-wide demand for the next
time bin (blue heatmap) is explained through a local, post-hoc, feature importance-
based method (red heatmap is the explanation). (Color figure online)

However, the positive effect of these opaque neural network-based prediction
models can only be utilised if the models are reliable, trusted, and understood.
To enhance their understanding – which might even be mandatory as humans
are affected [11,12] – XAI methods can be utilised. Typically, XAI is applied in
high-risk domains, e.g. the medical [32,39] or financial domain [14], where the
convenience and accuracy of models based on neural networks are essential [37].

Attempting to explain the predictions of existing taxi demand prediction
models, we focus on local, post-hoc XAI methods that explain through feature
importance, e.g. SHAP (see [28]). As illustrated in Fig. 1, these XAI methods
assign one feature importance value per input feature. Although there are many
well-established XAI methods, the explanation of taxi demand prediction – a
two-sided multivariate regression problem – is an open research gap.

To investigate this research gap, we enable the use of three commonly
used, local, post-hoc, feature importance-based XAI methods for city-wide taxi
demand prediction models of four neural network types. To understand the bene-
fits and drawbacks of applying these XAI methods to this two-sided multivariate
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regression problem, we evaluate them through four scenarios and a novel set of
five evaluation metrics specifically designed to match the requirements of the
problem class.

2 State of the Art

Taxi Demand Prediction through AI. A straightforward approach to explaining
taxi demand prediction models involves simple Artificial Intelligence (AI) mod-
els [33], which are interpretable if kept simple [12]. Another approach involves
using sophisticated AI models like Support Vector Machines (SVM) [17], Fully
Connected Neural Network (FCNN) [38], the spatial Convolutional Neural Net-
work (CNN) [13], the temporal Recurrent Neural Network (RNN), Long-Short-
Term Memory (LSTM) [20,42,46], or graph-based models such as Graph Atten-
tion Network (GAT) [43,44]. Other researchers use external data, e.g. popula-
tion, weather, and contextual parameters such as time, temperature, humidity,
and weather conditions [16,40] to enhance the training data. Another approach
includes the tessellation of grid cells [21]. The sophisticated solutions are com-
plex, making model optimisation and understanding challenging.

Explaining AI Models. XAI has the potential to mitigate risks of complex AI
models, i.e. the cost of erroneous predictions, leading to spread and adoption
of these AI models in different fields [29]. An overview can be found in [9,26].
Intrinsic and global explanations aim to explain the whole model, e.g. Accu-
mulated Local Effects (ALE) calculate local effects as a global explanation [3],
which is complex for multiple input and output features. Local explanations
such as gradient-based Layer-wise Relevance Propagation (LRP) [7], surrogate-
based Local Interpretable Model-agnostic Explanations (LIME), and SHapley
Additive exPlanations (SHAP) [28,34] are often used to explain a single output
prediction, reducing the complexity. Other cases include explaining action for
multiple agents, e.g. multi-agent systems [22].

Explainable AI in Demand Prediction. XAI is applied to demand predictions,
including demand for energy [19,41], bus passengers [30], travel [1], teachers [23],
anomaly in oil wells [6], and fashion pre-season decision support [36]. The applied
XAI methods use one output dimension and combine global and local explana-
tions. There is no universal XAI metric and no established ground truth [47].
Evaluations of explanations can include Trojan input data [24] or the faith-
fulness of feature attribution methods [4]. In contrast to a holistic approach,
the evaluation can be over four dimensions: the difference between explanation
and prediction, complexity, number of features, and stability of the explanation.
Qualitative metrics measure different concepts to quantitative metrics [8].

Research Gap and Questions. Even though many well-established XAI meth-
ods like SHAP exist, their usage is limited to relatively simple uncorrelated
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demand prediction problems. We consider the explanation of multivariate regres-
sion problems as an open research gap. To tackle this gap, we investigate the
following research questions:

(RQ1) Which XAI methods are feasible for the considered taxi demand prediction
models, i.e. a two-sided multivariate regression problem?

(RQ2) Which metrics can a developer use to evaluate the soundness of the XAI
methods applied to this problem?

(RQ3) Given these metrics, which XAI methods satisfactorily explain the taxi
demand prediction models?

3 Methodology

We denote the selected models with prefix M, the explanations with X, and the
explanation metrics with MX.

3.1 Dataset

We use the publicly available Yellow Taxi Trip data set for Manhattan from
January 2015 to June 2016 [10]. The region is divided into a 20 × 20 grid and
aggregated into 30-min time bins, resulting in 14.49M trips or 18,652 data points
– 12,618 for training, 3,154 for validation, and 2,880 for testing. We used standard
score normalisation to stabilise the prediction results.

3.2 Demand Prediction Models

Based on the state of the art, we select and adapt four models that represent the
most commonly used AI techniques in the prediction of taxi demand: M1-LSTM
with three LSTM layers with 20% and 50% dropout; M2-FCNN consisting of five
FCNN layers with 1600, 1440, 1280, 1120, 800, and 400 neurons and Rectified
Linear Unit (ReLU); M3-CNN with three CNN layers connected through ReLU
with kernel sizes of 3 × 3 × 4, 5 × 5 × 64, and 7 × 7 × 64; M4-GAT with three
GAT layers and multi-head attention, dropout, and ReLU.

Each model receives four 30-min aggregated time bins of the last two hours
as input (4×20×20) and predicts the demand for the next 30 min (20×20). We
train the models for up to 90 epochs to optimise the Mean Squared Error (MSE)
and use Adam optimizer with a learning rate of 0.001. The performance over all
models is relatively consistent. At the same time, the M1-LSTM achieves a Mean
Absolute Error (MAE) of 0.5049. This value is interpreted as a missed prediction
against the real value of half a trip on average. The M2-FCNN achieves 0.4926,
the M3-CNN 0.4987, and the M4-GAT 0.6472.
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3.3 Selection of XAI Methods

Given the constraints of the two-sided multivariate demand prediction problem,
not all XAI methods are applicable. As we aim to explain specific predictions
rather than a general model behaviour, we focus on local explanation methods
and exclude global ones (e.g. ALE). As demand prediction models are typi-
cally based on neural networks, the explanation methods need to apply to such.
Furthermore, the explanations must be observable quickly, leading to an aggre-
gated visualisation through salience maps [45]. Consequently, we select LRP –
referred to as X1-LRP and based on the implementation from Anders et al. [2]
– LIME, and SHAP (see Table 1). For LIME, there are implementation deriva-
tives provided by Ribeiro et al. [34] for different data types; only the image- and
table-like derivatives are suitable – X2-LIME-Tabular and X3-LIME-Image. For
SHAP, we select X4-SHAP-Kernel and X5-SHAP-Deep which were provided by
Lundenberg and Lee [28]. The LIME- and SHAP-based explanation methods
perturbate the data around the instance to generate the explanation. Table 2
provides an overview of the select XAI-methods. All five chosen explanation
methods attribute importance values to features, i.e. feature importance.

Table 1. Available XAI methods

Method Local/global Specific/agnostic Selected

ALE Global Agnostic ✗

LRP Local Agnostic† ✓

LIME Local Agnostic ✓

SHAP Local Agnostic ✓

† For neural networks

Table 2. Selected XAI methods

Name XAI method Type

X1-LRP LRP [2] LRP

X2-LIME-Tabular LIME [34] LIME Tabular explainer

X3-LIME-Image LIME [34] LIME Image explainer

X4-SHAP-Kernel SHAP [28] SHAP Kernel explainer

X5-SHAP-Deep SHAP [28] SHAP Deep explainer

3.4 Technical Challenges of Explaining

We adopt LRP by using the GuidedBackprop for the activation functions and the
AlphaBeta rule for the layers, as the rule allows negative importance values. For
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LIME, we adjust parameters such as kernel size to 5, mode to regression, number
of samples to 100, and slic for image fragmentation. In the case of SHAP, we use
a background size of 1000 by default and modify the configuration for M4-GAT
to 100. This step is necessary as the build graph would be too storage-intensive
with a more extensive background size.

The previous demand given to the prediction models is normalized to stabilise
learning. For the LIME and SHAP derivatives, we include the normalization into
the model to receive explanations in the unit trips rather than normalized trips.
To enable X2-LIME-Tabular, we reshape the image-like data into table-like data
by enhancing each row with the corresponding x, y, and z index. Regarding
X3-LIME-Image, we transform the input data into a single-channel or grayscale
image.

3.5 Scenarios

To evaluate the generated explanations, i.e. feature importance values, we iden-
tify four scenarios in our dataset that have a specific meaning and can occur in a
week: (SC1) the lowest point of the demand in a week on Mondays at 11:30pm;
(SC2) the lowest demand in times of high demand, i.e. the demand prediction on
Thursday at 12:30pm; (SC3) the highest demand during a week is on Fridays at
3pm; (SC4) the highest demand on weekends, i.e. the prediction of the demand
on Sundays at 8:30am. Each scenario consists of nine samples per scenario. The
scenarios are shown in Fig. 2.

Fig. 2. Scenarios SC1 to SC4 (blue average, gray real values) (Color figure online)

3.6 Evaluation Metrics

Evaluating explanations using human test subjects, e.g. measuring their satis-
faction with an explanation with a scale proposed by Hoffman et al. [15], is
common. However, our demand prediction problem requires expert users, who
are hard to find. Therefore, we need to evaluate the explanations quantitatively.
Although some evaluation metrics have been proposed for classification, e.g. by
Arras et al. [5], for two-sided multivariate regression, no ground truth exists.
To be able to evaluate beyond visually inspecting the explanation, we propose
a suite of five quantitative evaluation metrics: MX1-Unwanted, MX2-Hotspots,
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MX2-Correlation, MX3-Time, MX4-Importance, and MX5-Temporal. The areas
of no demand for MX1 and the areas of hotspots for MX2 are shown in Fig. 3.
We compute each metric per combination of a demand prediction model, XAI
method, and scenario.

MX1-Unwanted. This evaluation metric uses the ground truth available in the
data and is inspired by Trojan pixels (proposed by Lin et al. [25] for classifica-
tion) for evaluating the faithfulness of an explanation method. We identify areas
with no demand throughout the dataset and calculate the sum of explanations
in these areas. A constant absence of demand cannot influence a prediction, so
a nonzero value indicates an undesired attribution of the corresponding expla-
nation method. Consequently, the closer the value is to zero, the better the
explanation method is.

Fig. 3. Area of unwanted attribution for MX1-Unwanted (left) and the demand
hotspots of MX2-Hotspots (right)

MX2-Hotspots. When changing the data relevant to a prediction, we expect
a proportional change in the corresponding explanation. To evaluate this
behaviour, we compare the change in prediction and explanation when the
demand in the city’s busiest areas is set to zero. We calculate the impact of
a change by applying a mask to areas of high demand. The prediction model is
evaluated on the masked and original data, and the XAI method explains both
cases. We analyse the effect by comparing the masked hotspot to the prediction
and dividing it by the stimulus on the prediction [35]. This metric is calculated
through

mhotspot :=
∑n

i |εmi | − |εi|∑n
i |ŷm

i | − |ŷi| . (1)

Here, n is the number of features per prediction, ε indicates an explanation, ŷ is
the prediction and m indicates whether a prediction or explanation is masked. If
the difference between εmi and εi is marginal, the metric approaches 0 even if the
difference of ŷm

i and ŷi is substantial. Conversely, if the effect of the explanation
drastically differs from the effect of the prediction, the metric would increase
rapidly, even if the absolute difference is negligible. A value close to 1 indicates
an explanation that faithfully explains a model.
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MX3-Correlation. As the input data and the prediction are similar for different
samples of one scenario, we expect the explanations to be similar as well – an
explanation method should generate a stable explanation. Therefore, we calcu-
late the average correlation between an explanation and a scenario. Next, we
use cross-correlation between each method and average the correlation over one
row, excluding perfect self-correlation.

MX4-Time. This evaluation metric measures the duration of an explanation
generation process for different XAI methods. We use CPU time for all expla-
nations.

MX5-Temporal. To better understand the temporal pattern that a demand pre-
diction model has learned, this evaluation metric analyses the impact of each
input time step on the prediction by aggregating the importance values (expla-
nations) and comparing them to the actual demand.

4 Experimental Results

Here, we describe the results of the explanation methods for all evaluation met-
rics. Sample explanation for each explanation method are shown in Fig. 4. Those
of the remaining evaluation metrics are shown in Table 3.

4.1 X1-LRP

As shown in Table 3, all results for X1-LRP and MX1-Unwanted are far away
from the desired value of 0. We believe that this relatively poor performance
of X1-LRP is caused by catching noise of the gradients. While the values of
M3-CNN and M4-GAT are relatively close to 1 for MX2-Hotspots, those of
M1-LSTM and M2-FCNN are off to a high degree. This could mean that the
AlphaBeta rule used does not fit well with the M1-LSTM and M2-FCNN. How-
ever, as shown in Table 3, the MX3-Correlation, MX4-Time, and MX5-Temporal
are the strong forts of the X1-LRP, with the latter two metrics achieving the best
results among all explanation methods. These results are caused by a relatively
close link of the explanation model to the prediction model. Consequently, this
method can be used for the M3-CNN and M4-GAT.

4.2 X2-LIME-Tabular

In general, the visual representations of the explanations generated by X2-LIME-
Tabular (one visual representation is shown in Fig. 4) are very similar. As shown
in Table 3, X2-Lime-Tabular is close to 0 with MX1-Unwanted for all models,
achieving the best results for this evaluation metric compared to the other expla-
nation methods. The results regarding MX2-Hotspot are not perfect, but in com-
parison to the other explanation methods relatively consistent. The correlation
between the different explanations over one scenario is good. Unfortunately, the
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Fig. 4. Input data (first row) and the corresponding explanations generated through
the explanation methods X1-LRP to X5-SHAP-Deep (five remaining rows; varying
scales) for the M1-LSTM and SC3; e.g. dt−120:t−90 refers to the aggregated demand
from the current point in time t minus 120min to t minus 90min and the heatmaps
below show the corresponding feature importances for the different explanation meth-
ods.

X2-LIME-Tabular is with an average of around 450 s per explanation one of the
slowest explanation methods. Thus, the performance can be considered relatively
poor for the MX4-Time. Also, the MX5-Temporal is poor and does not represent
the observed predictions for all models.

4.3 X3-LIME-Image

The visual representations of X3-LIME-Image are very granular. Further, the
performance on the MX1-Unwanted evaluation metric is rather poor. The expla-
nation method slightly overestimated the role of hotspots and performed the sec-
ond best on this metric. X3-LIME-Image performs relatively poor on the super
pixels used for MX3-Correlation. However, it performs the best on MX4-Time,
the time needed for the generation. However, this explanation method performs
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poorly on the MX5-Temporal as the importance is relatively similar over the
four time steps.

Table 3. Mean and standard deviation (M±SD) for each explanation method, model,
and evaluation metric; the desired value for each evaluation metric is shown in brackets
beside it and the best value per explanation method and metric is highlighted; the
values of the evaluation metrics are comparable across the explanation methods.

MX1-Unwanted (0) MX2-Hotspots (1) MX3-Correlation (↑) MX4-Time (↓) MX5-Temporal (↑)

X1-LRP

M1-LSTM 7.24 ± 46.79 10.63 ± 5.88 0.65 ± 0.16 0.01 ± 0 1.00 ± 0

M2-FCNN −69.65 ± 59.13 21.55 ± 21.21 0.63 ± 0.14 0.00 ± 0 1.00 ± 0

M3-CNN 9.90 ± 5.67 0.25 ± 0.07 0.70 ± 0.09 0.01 ± 0 1.00 ± 0

M4-GAT 19.34 ± 13.1 1.47 ± 0.36 0.72 ± 0.08 0.01 ± 0.02 1.00 ± 0

X2-LIME-Tabular

M1-LSTM −0.01 ± 0.02 4.80 ± 2.26 0.48 ± 0.23 451.07 ± 80.12 0.10 ± 0

M2-FCNN 0 ± 0.02 6.98 ± 5.12 0.43 ± 0.22 447.73 ± 80.07 0.20 ± 0

M3-CNN 0 ± 0.03 3.28 ± 1.49 0.37 ± 0.22 448.78 ± 79.16 0.10 ± 0

M4-GAT 0 ± 0.02 3.82 ± 2.03 0.30 ± 0.21 471.75 ± 80.43 0.10 ± 0

X3-LIME-Image

M1-LSTM 17.75 ± 15.9 3.82 ± 2.99 0.27 ± 0.1 0.36 ± 0.01 0.20 ± 0

M2-FCNN 24.42 ± 15.68 4.25 ± 3.69 0.24 ± 0.13 0.19 ± 0.01 0.40 ± 0

M3-CNN 26.47 ± 17.89 1.49 ± 0.67 0.34 ± 0.09 0.24 ± 0 0.30 ± 0

M4-GAT 9.22 ± 14.93 1.50 ± 0.83 0.31 ± 0.12 0.93 ± 0.01 0.30 ± 0

X4-SHAP-Kernel

M1-LSTM 3.73 ± 10.03 5.61 ± 1.7 0.59 ± 0.08 516.20 ± 20.03 0.80 ± 0

M2-FCNN −8.87 ± 9.57 12.53 ± 8.63 0.54 ± 0.12 549.02 ± 31.13 0.80 ± 0

M3-CNN −32.06 ± 5.83 2.78 ± 0.81 0.69 ± 0.11 523.83 ± 7.54 0.80 ± 0

M4-GAT 14.01 ± 6.65 1.94 ± 0.48 0.63 ± 0.16 479.54 ± 8 0.80 ± 0

X5-SHAP-Deep

M1-LSTM −13.05 ± 0 0.72 ± 0.36 0.75 ± 0.1 5.03 ± 0.03 0.60 ± 0

M2-FCNN −22.04 ± 0 1.76 ± 1.3 0.73 ± 0.13 1.48 ± 0.02 0.60 ± 0

M3-CNN −44.98 ± 0 0.74 ± 0.21 0.71 ± 0.13 3.51 ± 0.04 0.60 ± 0

M4-GAT 4.54 ± 0 0.12 ± 0.05 0.63 ± 0.16 4.54 ± 0.02 0.60 ± 0

4.4 X4-SHAP-Kernel

The visual representation of the X4-SHAP-Kernel is excellent for all models.
However, the performance of MX1-Unwanted is poor. This could result from the
wrong attribution of importance to irrelevant features learned by the correspond-
ing explanation model. This explanation method overvalues the importance of
hotspots. The correlation in a scenario is relatively high. However, the method is
the slowest one of the selected. On the other hand, the generated MX5-Temporal
values are quite diverse and usable.

4.5 X5-SHAP-Deep

This method generates good visual representations of explanations. However,
the MX1-Unwanted is poor as the method considers areas without demand as
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relevant. MX2-Hotspot performs well on the first three models and poorly on
the M4-GAT. This method performs the best on the correlation in the scenarios
and is relatively fast – on average less than 5.03 s. The MX5-Temporal values
are worse than the values from the X1-LRP and X4-SHAP-Kernel, but still
high. Due to the fast explanation generation and the usability on all models, we
consider this method as the best-selected one.

5 Discussion

We enabled the usage of five model-agnostic explanation methods to the two-
sided multivariate regression problem of city-wide taxi demand prediction and
were able to explain four corresponding models post-hoc and locally. In par-
ticular, we showed that LRP, LIME (derivatives X2-LIME-Tabular and X3-
LIME-Image), and SHAP (derivatives X4-SHAP-Kernel and X5-SHAP-Deep)
are feasible for these problems (RQ1).

Regarding the metrics to evaluate the soundness of these XAI methods
(RQ2), we chose and developed five metrics to evaluate multivariate explana-
tions. The proposed evaluation metrics are quantitative and feasible for our two-
sided multivariate regression problem. Especially, the comparison of the expla-
nation to the ground truth available in the data (MX1-Unwanted to measure
the influence of unimportant features, MX2-Hotspots to evaluate the influence
of influential changes, and MX3-Correlation that measures that similar sam-
ples should generate similar explanations) can be beneficial for other regression
problems in general.

Table 4 shows an overview of the results when explaining the taxi demand
prediction models with the explanation methods and evaluating them with the
proposed evaluation metrics. The X1-LRP method was poor for the M1-LSTM
and M2-FCNN models, as the rules did not fit well with these models. However,
it was usable for the M3-CNN and M4-GAT models, although the interpreta-
tion of results differed from those of the other methods. The X2-LIME-Tabular
and X3-LIME-Image methods had poor performance due to the local accuracy
not guaranteeing fair attribution of important values. However, the X2-LIME-
Tabular performed well on the MX1-Unwanted metric, possibly due to similar
highlighted areas in the visualisation. The X4-SHAP-Kernel and X5-SHAP-Deep
methods showed excellent performance, with the X5-SHAP-Deep method being
faster and easier to use. The M1-LSTM and M2-FCNN models had impractical
results with the X1-LRP, X2-LIME-Tabular, and X3-LIME-Image methods due
to excessive noise. However, the X4-SHAP-Kernel and X5-SHAP-Deep methods
provided useful information. For the M3-CNN and M4-GAT models, the X1-
LRP, X4-SHAP-Kernel, and X5-SHAP-Deep methods were suitable, with the
X1-LRP method having better time performance (see Sect. 4).

Local explanations must cover edge cases from a legal perspective. However,
some chosen methods are slow and only suitable for case-based reasoning. SHAP
methods approximate Shapely values and provide fair contribution calculations.
Visualizations should be more precise and less cluttered for drivers, while devel-
opers prefer validation and faster methods. Negative influences in initial input
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Table 4. Comparison of XAI methods; −− denotes a poor, − a weak, o an acceptable,
+ a good, and ++ an excellent performance

Metric X1-LRP X2-LIME-Tabular X3-LIME-Image X4-SHAP-Kernel X5-SHAP-Deep

MX1-Unwanted − ++ − o +

MX2-Hotspot o − o o +

MX3-Correlation + o − + +

MX4-Time ++ − ++ − +

MX5-Temporal ++ −− − ++ +

maps can impact explanation aggregation. Noise and shade in models may orig-
inate from hidden gradients or incorrect calculations.

Our results are limited as the explanations given by the feature importance
values used for this paper do not have ground truth. Further, using homogeneous
data made it easier to interpret but harder to generalize. The dataset used,
including areas with no demand, limited the applicability of MX1-Unwanted
to similar datasets. The limitation of using only feature attribution methods
prevents making a general statement about the explainability of taxi demand
prediction.

6 Conclusion

Explanations are essential to foster an understanding of the model predictions.
They can help to optimize and use a given prediction. We showed a reasonable
method to apply explanations to high-dimensional prediction models. Then we
evaluated these methods based on a novel suite of quantitative evaluation metrics
suitable for two-sided multivariate regression problems. This suite can be applied
to optimize and understand prediction models.

Future Work. One idea to improve the perturbation-based methods is to use
MX1-Unwanted for better random sampling. Another idea is human evalu-
ation through questionnaires or experiments, which can be used to compare
the methods against human understanding. The generated explanations can be
used as a component for more straightforward, human-interpretable explana-
tions. Explaining multidimensional input and output models is challenging due
to dense explanations. The different methods perform similarly across the pro-
posed metrics despite visual differences. Developers can benefit from the gen-
erated explanations for model selection and understanding. The X1-LRP and
X5-SHAP-Deep are recommended for real-world scenarios based on their high
scores on the metrics. In conclusion, the explanations always depend on the
model, even if they are model-agnostic.
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Abstract. Explanatory Interactive Machine Learning queries user feed-
back regarding the prediction and the explanation of novel instances.
CAIPI, a state-of-the-art algorithm, captures the user feedback and
iteratively biases a data set toward a correct decision-making mecha-
nism using counterexamples. The counterexample generation procedure
relies on hand-crafted data augmentation and might produce implausible
instances. We propose Bayesian CAIPI that embeds a Variational Autoen-
coder into CAIPI’s classification cycle and samples counterexamples from
the likelihood distribution. Using the MNIST data set, where we distin-
guish ones from sevens, we show that Bayesian CAIPI matches the predic-
tive accuracy of both, traditional CAIPI and default deep learning. More-
over, it outperforms both in terms of explanation quality.

Keywords: Explanatory Interactive Machine Learning · CAIPI ·
Variational Autoencoders · Image Classification

1 Introduction

Explanatory Interactive Machine Learning (XIML) [19] enables users to be
involved in the optimization cycle as well as in the inference step of machine
learning (ML) models. Hereby, XIML goes an essential step beyond classical
active learning [15], as users are not only asked to correct the prediction of the
most informative instance. Moreover, dedicated user feedback regarding local
explanations – assuming that they highlight the model’s decision-making mech-
anism – allows to adapt how the model conducts decisions. CAIPI [19], a state-
of-the-art XIML framework, iteratively trains a model on a small labeled data
set, selects the most informative instance from a larger pool of unlabeled data,
and queries user feedback regarding its prediction and explanation. Using aug-
mented versions of the most informative instance, so-called counterexamples,
CAIPI adapts the model toward correct decision making. Disclosing and shap-
ing the decision-making mechanism is a meaningful step toward robust machine
learning models, which ultimately strengthen their trustworthiness [11,19].
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Fig. 1. Data augmentation procedure [17]. Selected features of an image, displaying a
seven, are scaled, rotated, and translated.

Crucially, CAIPI overweights so-called decisive features by data augmenta-
tion in counterexamples [19]. Although data augmentation procedures require
domain-specific knowledge, they are generally more likely to be implemented by
ML engineers than by domain experts [17]. Our running example (Fig. 1) shows
that this knowledge gap might have serious consequences for XIML procedures,
e.g., when a counterexample mimics a one but is supposed to display a seven. To
solve this shortcoming, we propose Bayesian CAIPI that extends CAIPI with a
novel counterexample generation procedure using the likelihood distribution of
Variational Autoencoders. We ask the following research questions:

(R1) Do counterexamples improve the model’s predictive quality [19]?
(R2) Do counterexamples contribute to disclose the model’s mechanism?
(R3) Is Bayesian CAIPI superior to traditional CAIPI / default deep learning?

Problem. Counterexample generation algorithms in XIML that are using
image-specific augmentation techniques might produce implausible results.

Solution. By replacing frequently handcrafted data augmentation procedures
by Variational Autoencoders, the counterexample generation procedure is auto-
mated to a large extent. High-quality Variational Autoencoders allow us to gen-
erate realistic counterexamples by sampling from the likelihood distribution.

Contribution. (i) We propose Bayesian CAIPI, where we embed a Variational
Autoencoder into the CAIPI optimization cycle and essentially fit a generative
model on all available training examples. Samples from the likelihood distribu-
tion replace the iterative execution of data augmentation algorithms. (ii) We
integrate the classification task into the Variational Autoencoder. In each opti-
mization iteration, we abstract the input data into a latent distribution, which
functions as the classifier’s input.

2 Related Work

XIML has first been introduced by Teso and Kersting (2019) [19] with their
CAIPI algorithm. CAIPI iteratively optimizes a classification model and queries
user feedback regarding prediction and explanation. Since then, CAIPI has been
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enriched with user interfaces that enable domain experts to interact with ML
models, e.g., physicians in the context of cancer detection [17]. The traditional
explanatory component within CAIPI is LIME [11], Local Interpretable Model-
agnostic Explanations, where even CAIPI’s name originates, since “CAIPIrinhas
are made out of LIMEs” [19]. LIME produces an interpretable model for a specific
instance using super-pixels within image classification. CAIPI’s core idea is to
add synthetic instances, so-called counterexamples, to the data set that move the
decision-making mechanism into the presumably correct direction. This idea has
been generalized to increase the applicability for deep learning models: Instead
of adding counterexamples, indecisive gradients are penalized [14]. XIML has its
sources in active learning [15], where an oracle labels instances that were selected
from a ML algorithm. The idea of involving humans, or domain experts, inter-
actively into model training is even older [21] and has reached the surface again
in 2014, where Amershi and co-authors [1] present specific interactive learning
case studies that outperform fully-automated learning procedures. Another ded-
icated XIML approach, called Explanatory Debugging, includes an explanatory
component, which lets users interact with the model’s underlying mechanism [7].
It has recently been applied to increase the fairness of classification systems [8].
Explanatory Debugging, in contrast to CAIPI, does not align the interaction
iteratively in an optimization cycle. Current XIML research has caught atten-
tion by the action design research community, where specific architectures are
introduced to include human experts in the optimization process [9].

Crucial for CAIPI is the counterexample generation procedure that might
be problematic, when ML engineers lack domain knowledge (Fig. 1). We extend
CAIPI such that counterexamples are sampled from a Variational Autoencoder,
which requires us to embed a classification model into the Variational Autoen-
coder’s latent space. This idea is also not new and Variational Autoencoders
have been used to label images and, thus, construct training data for super-
vised image classification algorithms [10]. Also, vice versa, classification models
have been used to improve the quality of the latent space [23]. Let us consider
two use cases that closely relate to our architecture, where the combination of
supervised ML models and Variational Autoencoders outperform state-of-the-
art methods: In [4], a Variational Autoencoder is used to extract robust features
from a high-dimensional feature space, applied for anomaly detection where the
focus is on classification. Another application is demonstrated in [22] for brain-
aging analysis, where the Variational Autoencoder’s generation process includes
the regression target and hereby allows to execute simulations.

3 Foundations

Bayesian CAIPI replaces the counterexample generation of CAIPI by samples
from the likelihood of a Variational Autoencoder. This section covers both, XIML
and Variational Autoencoders. But let us first introduce the general notation:

Notation. Formally, let X be an image matrix of a data set X ⊆ R
W×H of

fixed width W and height H and let l : X → Y be a labeling function to retrieve



288 E. Slany et al.

corresponding class labels from Y. Let f : X → Y be a differentiable classification
model and ŷ = f(X) denote model inference. Moreover, let L ⊆ X×Y and U ⊆ X
denote subsets of labeled and unlabeled instances, where we write XL and YL
for the domain and range of L. Further, we write X(n) (y(n)) for the n-th image
(label) in X (Y), when the associated set is clear from the context, or add a
subscript like X(n)

L (y(n)
L ) and X(n)

U to explicitly indicate the associated set.

3.1 Explanatory Interactive Machine Learning

Explanatory Interactive Machine Learning (XIML) unifies two components: the
tractability of the decision-making mechanism of ML models by explanatory
ML techniques and the human-in-the-loop capability of interactive learning [19].
However, in contrast to interactive learning [15,16], XIML allows the user to
highlight interactively the important features, and in this sense, the user is able
to refine and shape the model’s mechanism. There exist three cases for prediction
outcomes in the XIML framework CAIPI [19]: (i) Right for the right reasons
(RRR), i.e., both, the explanation and the prediction are correct. (ii) Wrong
for the wrong reasons (W), where both are wrong. (iii) Right for the wrong
reasons (RWR) i.e., the prediction is correct, but the explanation is false.

The two erroneous cases W and RWR require human intervention. In the
former case, we require the user to provide a label correction for the wrong pre-
diction outcome. In the latter case, the user is interactively asked in the role of
a human annotator to highlight the correct reasons of a wrong explanation out-
come. In our use case using image data from MNIST, the explanation is given by
an image mask that highlights relevant pixels, which can be interactively refined
by an user. Additional synthetic instances, so-called counterexamples, overweight
the human feedback in the classifier’s training data set such that the model’s
mechanism moves into the desirable direction. We assume our explanatory and
interactive learner provides a procedure Gen to generate such counterexamples.
The resulting counterexample data set contains a fixed amount of novel images
that contain only the decisive pixels of an input image for a corresponding class
label. The matrix of decisive pixels origins in human feedback.

Definition 1 (Counterexamples). Let D ∈ {0, 1}W×H be a binary image
mask, where 1 encodes a decisive and 0 an indecisive pixel wrt. a label y. More-
over, let Gen(X, y,D, c) be a procedure that outputs a counterexample data set of
size c ∈ N in the form {(X′, y) | X′ fresh} that includes freshly generated images
representing decisive features only, taking as input a given image X, input label
y and an input mask D of the same dimensions as X.

In order to enable users to correct the decision-making mechanism of a classi-
fication model in the RWR case, CAIPI retrieves local explanations by explana-
tory ML techniques first. We assume that local explanations correspond to the
underlying mechanism of a classification model. Hence, our explanation proce-
dure Exp needs to visualize the reasons why a certain image is associated with a
certain prediction. Traditional CAIPI uses LIME [11,19], which fits a simplified
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surrogate model on aggregated parts of an image, so-called super-pixels. We pre-
fer Integrated Gradients (IG) [18], as LIME is known to be sensitive to the under-
lying super-pixel segmentation algorithm [13]. IG takes partial derivatives of a
classification model to calculate attribution values that represent the importance
of pixels for the prediction outcome. This, of course, requires a differentiable clas-
sifier, which, in contrast to traditional CAIPI, is a restricting assumption. Out
of efficiency reasons, IG approximates gradients with the Riemman summation:

IGapprox
i =DF (Xi − XBi

)
k∑

k′=1

∂f(XB + k′
k × (X − XB))
∂Xi

× 1
k

, (1)

where Xi indicates a pixel in X, XB is a baseline image (a black image with pixel
values zero) with the same shape as X, f is a classification model, and k′ is a
single iteration of k differentiation steps. Intuitively, the gradient is approximated
by the sum of small increments between the input X and the baseline XB . Thus
the resulting attribution values tell us how much a pixel Xi contributes to a
prediction f(X) relative to a baseline pixel XBi

. Our explanation procedure
Exp visualizes the attribution values in an explanation mask M.

Definition 2 (Explainer). The explainer has a procedure Exp(X,XB , f, β)
that takes as input an image X, a baseline image XB, a differentiable classifica-
tion model f and a threshold β. It returns an explanation mask M ∈ {0, 1}W×H

with shape corresponding to X, where Mi = 1 indicates high-activated (deci-
sive) and Mi = 0 low-activated (indecisive) pixels for a prediction ŷ = f(X).
High-activated pixels have absolute attribution values greater than β (1).

Caipi shown in Alg. 1 is a cyclic and iterative optimization procedure. It
pre-trains a model on a set of labeled images. We assume that the explanatory
and interactive learner provides a procedure Fit(L) for training and update of
a model. In each iteration, it chooses the most-informative instance from the
remaining (unlabeled) images, which is the one whose classification score is clos-
est to the decision boundary. Therefore, we introduce the procedure Mii that
takes a set of predictions and the decision boundary as input and returns the
index of the most-informative instance. We assume to have access to both, the
classification scores and the decision boundary. We argue that the instance is
most-informative, as we associate prediction scores closer to the decision bound-
ary with higher uncertainty. Human feedback will reduce the classifier’s uncer-
tainty in the next iteration and, thus, maximize the information gain.

Definition 3 (Most-informative instance). Consider the set of predictions
Ŷ = {f(X) | X ∈ X}. We assume a procedure Mii(Ŷ, α) that returns the index
of the most-informative instance from Ŷ, whose classification score is closest to
a decision boundary α.
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Fig. 2. User interface [17]. CAIPI presents the image and its prediction and explanation
(which is empty) to an user (left). The user selects the appropriate prediction outcome
state – in this case RWR (True(WR)) – and annotates CAIPI’s local explanation (right).

In the following, we denote interaction with the human annotator by a pro-
cedure Interact() to query for either a label or an explanation correction.
We assume that the human annotator possess sufficient domain knowledge to
solve the interaction tasks. We reference to our prior publication [17], where we
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equip CAIPI with an user interface (Fig. 2). CAIPI presents the most-informative
instance together with the classifier’s prediction and the corresponding explana-
tion. Here: The prediction is correct, but the explanation is empty. No pixels are
considered to be decisive. The user suspects a random guess of the classification
model and selects the appropriate prediction outcome state, which is RWR in
our example. This opens an annotation prompt, where the user highlights the
truly decisive pixels, which are subject of the generated counterexamples.

To finalize this section, let us formalize Caipi in Alg. 1: In each iteration,
CAIPI trains a model on the labeled data sets in line 2 and draws predictions
on the unlabeled data set afterwards in line 3. It selects the most-informative
instance (l. 4), whose prediction is evaluated by an user. If the prediction is
wrong compared to the labeling coming from a human annotator, then CAIPI
uses the true label (l. 7). Otherwise, it generates an explanation in line 9. If the
explanation is correct, i.e. the decisive features retrieved from the explainer are
equal to the perceived decision mechanism D from a human annotator, then the
instance is appended to the labeled data set (l. 12). If not, CAIPI queries an
explanation correction and generates counterexamples (l. 14). Finally, the image
is removed from the unlabeled data set to prepare the next iteration (l. 15).

3.2 Variational Autoencoders

Autoencoders compress data into a smaller representation that is known as the
latent space and reconstruct the input from the latent space afterwards [20].
Variational Autoencoders [6] introduce a so-called prior distribution over the
latent space and treat the data itself as probability distribution, also called the
marginal distribution. This, in contrast to classical Autoencoders, allows us to
generate an unlimited number of novel instances – Variational Autoencoders can
therefore be subsumed into the class of generative models [3] (Fig. 3).

Definition 4. (Variational Autoencoder [3]). Let a Variational Autoen-
coder vae : X → X̂ consist of an encoder network enc : X → Z and a decoder
network dec : Z → X̂ , where Z = {zX(1) , ..., zX(n)} is the latent space represen-
tation of X , and X̂ is the reconstruction of X wrt. Z. We assume a procedure
FitVae for fitting the Autoencoder. Further, we define the following probabil-
ity distributions: the marginal distribution p(X), the latent distribution p(z),
also known as prior, the decoder’s likelihood distribution p(X|z, θ), as well as
the posterior qθ(z|X) retrieved from the encoder. The parameter θ informally
aggregates the inherent parametrization of the Variational Autoencoder.

Variational Autoencoders are optimized by Variational Inference using the
Evidence Lower Bound (ELBO) [2,12]. Therefore, let us introduce the Kullback-
Leibler (KL) divergence [3] between a distribution q with known functional form
that depends on network parameters θ and the intractable posterior p(z|X) as

KL [qθ(z|X) ‖ p(z|X)] = log p(X)
+ Eqθ(z) [log qθ(z|X) − log p(X|z) − log p(z)] ,

(2)
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Fig. 3. Variational Autoencoder. The encoder abstracts an input image into the latent
space. The decoder reconstructs the image from the latent space.

where the right-hand side expresses the KL divergence under consideration of the
Bayes rule and removes log p(X) from the expectation as it is constant. Since
we only observe a subset of the data, the marginal distribution p(X), which
reflects the data generating process, remains unknown. Similar to Autoencoders,
their variational counterpart aims to reconstruct input data. Hence, Variational
Autoencoders for image data approximate p(X|z) by a loss function – frequently
the categorical cross-entropy [3]. Let us now express the difference between the
proposal posterior qθ(z|X) and the prior p(z) as second KL divergence [2]

log p(X) =Eqθ(z) [log p(X|z)] − KL [qθ(z|X) ‖ p(z)]
+ KL [qθ(z|X) ‖ p(z|X)] ,

(3)

where we define the first two parts of the right-hand side as ELBO [2]:

KL [qθ(z|X) ‖ p(z|X)] = −ELBO(q) + log p(X) . (4)

1 Maximizing the ELBO implies a small KL divergence, which ultimately leaves
us with a well-approximated posterior. Additionally, ELBO is a suitable evidence
lower bound for the marginal, as it is the difference between the marginal distri-
bution and the KL divergence (4). Hence, using ELBO as optimization criteria
ensures both, a high latent space and a high marginal approximation quality.

4 The Bayesian CAIPI Algorithm

This section derives Bayesian CAIPI by refining Alg. 1: We embed the classifier
into a Variational Autoencoder as depicted in Fig. 4. The adapted architecture
has three different paths: an encoding and a decoding path, corresponding to the
Variational Autoencoder’s encoder and decoder, as well as a classification path,
taking a latent space abstraction of an image as input and returning a predicted
class. The latter leaves us with a single notational adjustment:

Notation. Let g : Z → Y be a differentiable binary classification model and
let ŷ = g(z) for some z ∈ Z indicate an inference. We obtain Z by using the
encoder Z = enc(X ) according to Def. 4.
1 Figure adapted from https://danijar.com/building-variational-auto-encoders-in-

tensorflow/, 2023/07/11.

https://danijar.com/building-variational-auto-encoders-in-tensorflow/,
https://danijar.com/building-variational-auto-encoders-in-tensorflow/,
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Fig. 4. Bayesian CAIPI backbone. A Variational Autoencoder extended with a classi-
fier that takes an encoded image as input.

The former change in notation has three algorithmic consequences: (i) We
train a Variational Autoencoder on all available training images. Of course, this
includes the assumption to have a sufficient amount of training images for a
high-quality latent abstraction. (ii) The classification model now takes encoded
images as input. Hence, we first fit the classification model on the encoded labeled
images and afterwards predict encoded unlabeled images to select the most infor-
mative instance. (iii) Finally, we refine the counterexample generation procedure
(Def. 1) as Gen’ in Alg. 2: A priori, the user selects decisive features. We sample
repeatedly from the likelihood distribution (l. 3), until the desired amount of
counterexamples is met. We element-wise multiply the mask of decisive features
D with the novel image matrix X̂ (l. 4). As a consequence, indecisive features
are blacked out and our counterexample contains only decisive features.

Alg. 3 formalizes BayesianCaipi. Different from Caipi (Alg. 1), we train a
Variational Autoencoder prior to optimization (l. 1). We encode labeled (l. 3)
as well as unlabeled images (l. 5) and our explainer (Def. 2) propagates the
prediction backward to the input – through the classifier and the encoder (l. 12).

5 Experiments

5.1 Architecture

Using a Variational Autoencoder2, we abstract the images into two latent dimen-
sions. We use a standard normal distribution as prior. Hence, the posterior is
also multivariate normally distributed. Our encoder has two convolutional layers
with kernel size three and a stride parameter two in each dimension. It has 32
filters in the first convolutional layer and 64 in the second. We flatten the out-
put for the dense layer that ends in the posterior distribution. Practically, the
2 Architecture adapted from https://www.tensorflow.org/tutorials/generative/cvae,

2023/07/11.

https://www.tensorflow.org/tutorials/generative/cvae
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encoder’s output dimensionality is four, where the first two entries correspond
to the first moment and the final entries to the second moment of the posterior.

The decoder starts with a dense layer with 1, 568 neurons. After reshaping the
image into two dimensions, the following three transposed convolutional layers
reconstruct the image. Similar to the encoder, the decoder uses kernel size three
and stride parameter two in each dimension. We invert the encoder and start
with 64 filters that are reduced to 32 and a single filter in the final layer. All
but the final layers of encoder and decoder use rectified linear unit activation
functions. We attempt to maximize the ELBO by stochastic optimization for 20
epochs with the Adam optimizer [5] and learning rate 0.0001.
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The classifier that is attached to the latent space (Fig. 4) has two dense
layers: 512 neurons and rectified linear unit activation in the first and a single
neuron with sigmoid activation in the second layer. Similar to the Variational
Autoencoder, we use the Adam optimization function. However, we increase the
learning rate to 0.001, use the binary cross-entropy loss function, and train for
50 epochs. Whereas the Variational Autoencoder is only fitted once prior to the
optimization, we re-train the classification model in each iteration.

5.2 Setup

Using the MNIST data set3, we distinguish ones from sevens. Our training data
size is 12, 000 and 2, 000 images serve as test data. For the research questions R1
and R2, we start with ten labeled images, where each pixel is sampled from an
uniform distribution with lower bound zero and upper bound one. At the start of
the optimization cycle, we expect a poor classification and explanation quality.
We add {0, 1, 3, 5} counterexamples per RWR iteration for 100 iterations. During
optimization, we expect the predictive as well as the explanation quality to be
improving, where counterexamples should have a positive impact, as we increase
the training data set. All experiments are repeated five times.

We measure the predictive quality by the accuracy metric. Distinguishing
ones from sevens can presumably be abstracted into distinguishing vertical from
horizontal bars – we suspect that sevens have a horizontal bar, whereas ones
have a vertical bar. We investigate the position of activation values in the expla-
nation mask with absolute value greater than 0.025. The explanation is correct
if at least a single high-activated pixel detects the horizontal bar for a seven
and the vertical bar for a one. A horizontal bar is defined as a minimum of
five consecutive pixels aligned horizontally. Consequently, a vertical bar has a
minimum of five consecutive pixels aligned vertically. The explanation correct-
ness criteria are reflected in the counterexample generation procedure. There,
we consider horizontal bars to be decisive for sevens and vertical bars for ones.
Counterexamples bias the classification task to horizontal versus vertical bars.

5.3 Benchmark

To evaluate research question R3, we conduct two benchmark tests: First, we
execute our encoding and classification path, but replace the counterexample
generation procedure with classical image augmentation, where we scale and
translate the decisive features. This, in fact, is similar to traditional CAIPI [17,
19]. For the benchmark, we restrict ourselves to five counterexamples per RWR
iteration. Second, we compare Bayesian CAIPI to default deep learning, where
we use all available training data to train the classification path.

CAIPI with image-specific data augmentation achieves a predictive accuracy
of 97.97% and explains 68.67% of the ones in the test data set correctly. However,
it fails to explain a single seven wrt. to our defined criteria. With the default deep
learning pipeline, we obtain an accuracy of 98.06%, where the correct explanation
is retrieved for class one in 36% and for class seven in 0.69%.
3 http://yann.lecun.com/exdb/mnist/, 2023/07/11.

http://yann.lecun.com/exdb/mnist/
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Table 1. Bayesian CAIPI evaluation. We evaluate the accuracy and the ratio of correct
explanations for each class wrt. c = {0, 1, 3, 5} counterexamples per RWR iteration.

Metric Counterexamples c

0 1 3 5

Predictive Accuracy (%) 98.60 (0.55) 98.40 (0.55) 98.40 (0.55) 98.40 (0.55)

Ratio correct explanations (%)

Class one 77.70 (10.47) 77.62 (19.83) 44.94 (34.96) 58.63 (17.73)

Class seven 0.30 (0.17) 0.64 (1.26) 1.19 (1.44) 8.38 (1.70)

5.4 Results

The Variational Autoencoder’s average ELBO is −28.22 (0.64). Figure 5 visu-
alizes a single Bayesian CAIPI optimization cycle with five counterexamples
per RWR iteration: We see that counterexamples are added in only 17 RWR
iterations. More often, Bayesian CAIPI queries a prediction correction, which
equals 44 W outcomes. In 39 iterations, Bayesian CAIPI predicts and explains
the most-informative instance correctly, where we observe that RRR iterations
tend to occur more likely in the second half of the optimization cycle.

Table 1 reveals that active learning, which in fact is adding zero counterex-
amples per RWR iteration, achieves a comparatively high accuracy. The accu-
racy values are nearly stable over the course of adding counterexamples. Hence,
regarding R1, we cannot say that an increasing amount of counterexamples
improves the predictive quality. This finding is underpinned by Fig. 6, where the
Bayesian CAIPI optimization cycle with five counterexamples per RWR itera-
tion offers only minor accuracy benefits compared to zero counterexamples per
RWR iteration. Remarkably, counterexamples contribute to stabilize the predic-
tive performance, as they preserve Bayesian CAIPI from sudden performance
shifts over the course of optimization iterations.

Further, we observe a trade-off regarding the explanation quality of the
classes one and seven in Table 1. Whereas for zero counterexamples, most expla-
nations for class one are correct, only a few sevens are explained correctly. We
observe that the explanation quality of ones plummets, when the explanation
quality for class seven increases. Apparently, adding five counterexamples per
RWR iteration, breaks the negative trend for class one, where by far the highest
ratio of sevens is explained correctly. As we defined the correct decision-making
mechanism for distinguishing ones from sevens as a task of identifying verti-
cal versus horizontal bars, we can state for R2 that adding counterexamples
improves the explanation quality. Figure 7 visualizes Bayesian CAIPI’s explana-
tion mask of a seven wrt. several optimization iterations. Brighter pixels indicate
a greater attribution value. Only attribution values in red, which are greater than
0.025, mark a high-activated attribution value. Hence, only red pixels define the
explanation correctness. The attribution intensity shifts from vertical and hor-
izontal bars in iteration 1 to the horizontal bar exclusively in iteration 30. In
iteration 60, the horizontal bar’s attribution values increase and lead to a single
high-activated pixel in iteration 100, which yields a correct explanation.
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Fig. 5. Prediction outcome states. Visualization of prediction outcome states of a single
Bayesian CAIPI run with five counterexamples per RWR iteration.

Fig. 6. Accuracy evaluation. Comparison of two experimental iterations of Bayesian
CAIPI with zero and five counterexamples per RWR iteration.

Fig. 7. Explanation quality evaluation. Visualization of an explanation mask for
Bayesian CAIPI with five counterexamples per RWR iteration. Brighter values indicate
more attribution. Attribution values greater than 0.025 are colored red. (Color figure
online)

For R3, we take the benchmark tests into account: We observe that Bayesian
CAIPI with five counterexamples per RWR iteration outperforms default deep
learning as well as traditional CAIPI in terms of identifying correct explana-
tions for sevens. Bayesian CAIPI even outperforms the explanation quality for
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class one in the default deep learning setting. Both findings are accompanied by
a consistent predictive accuracy, where Bayesian CAIPI requires less than 1%
labeling effort compared to default deep learning.

6 Discussion

Bayesian CAIPI samples from the likelihood distribution of a Variational
Autoencoder to generate counterexamples. Similar to prior CAIPI publica-
tions [14,17,19], we investigate the predictive as well as the explanatory qual-
ity in context of an increasing amount of counterexamples per RWR iteration.
Whereas, despite of a continuously high predictive accuracy, we cannot observe a
positive impact of adding counterexamples, the explanatory quality at least par-
tially profits from more counterexamples – explanations for class seven improve
steadily and explanations for class one improve comparing five and three coun-
terexamples per RWR iteration. Our findings are in line with existing CAIPI
evaluations, as we match the predictive accuracy of default deep learning [17].
Given that we outperform CAIPI with its traditional data augmentation proce-
dure in terms of explanation quality, we argue that Bayesian CAIPI utilizes a
suitable counterexample generation alternative.

In the following, we emphasize four major critical points regarding the exper-
imental setup: (i) The binary MNIST classification task is too simple to observe
predictive performance differences. Even standard active learning matches the
predictive performance of deep learning optimization with 12,000 labeled images.
(ii) Even if the explanation quality of class seven improves by adding counterex-
amples, it still remains on a low level. Taking into account that the explanation
quality is superior to the one of default deep learning and traditional CAIPI,
this is an improvement. However, additional experiments are required. (iii) In
this context, the concept of correct explanations should also be re-evaluated: Is
IG a suitable method? And, can the classification task of ones versus sevens be
abstracted by vertical versus horizontal bars? Using IG as explanation method,
ones will be explained correctly if the attribution is sufficiently high, as only
vertical bars exist. This is an indicator for the highly imbalanced explanation
quality. Finally, (iv) the high standard deviations for the explanation quality,
especially for three counterexamples per RWR iteration, motivate more sophis-
ticated experiments. This discloses an issue of numerical instability, which might
be located in the latent dimension of the Variational Autoencoder.

In summary, the role of counterexample generation for CAIPI has already
been investigated [14]. This work is located in the same niche and searches for a
substitute for data augmentation. We propose to sample counterexamples from
the likelihood distribution of Variational Autoencoders. Therefore, we integrate a
classification model into a Variational Autoencoder, which is also strongly related
to existing research [4]. The novelty of our approach is to connect Variational
Autoencoders with classification models in the context of XIML, where we utilize
mostly unlabeled data to generate additional novel training instances.



Bayesian CAIPI 299

7 Conclusion and Future Work

CAIPI, a state-of-the-art XIML algorithm, queries user feedback regarding the
prediction and explanation of a ML model to move the decision-making mech-
anism into a presumably correct direction form a user’s perspective. Hereby,
traditional CAIPI’s counterexample generation procedure relies on data aug-
mentation. Depending on the domain, data augmentation might cause unre-
alistic counterexamples. We propose Bayesian CAIPI that integrates CAIPI’s
classification task into a Variational Autoencoder and samples counterexamples
from the likelihood distribution. This decouples the counterexample generation
from domain knowledge and, given a sufficiently high quality of the Variational
Autoencoder, creates an unlimited number of realistic counterexamples. The
experimental evaluation shows that Bayesian CAIPI achieves a stable high pred-
icative accuracy and adding counterexamples partially benefits the explanations
quality. In relation to traditional CAIPI and default deep learning optimization,
we observe that Bayesian CAIPI matches the predictive accuracy and outper-
forms both in terms of explanation quality. Hence, we argue that Variational
Autoencoders are a suitable alternative to generate counterexamples for CAIPI.

For future work, we will investigate the role of decisive features. Do we still
need their annotation? If not, Bayesian CAIPI would be capable of including
implicit knowledge, as users must only be aware of the correct decision-making
mechanism without being able to correct it manually. This extends the poten-
tial user group from domain experts to novices. Furthermore, we will sharpen
our experiments: Powerful generative models, such as Variational Autoencoders,
appear to be suitable for complex multi-label classification tasks, where images
have larger dimensions and their decisive features might be ambiguous. Probably
because of data augmentation limitations, CAIPI still is restricted to classifica-
tions. What happens if we apply Bayesian CAIPI to regression tasks? Is the
generation ability of Variational Autoencoders still sufficient? In this context,
we will also experiment with logical constraints, as especially for tabular data,
we suspect implausible results, when we rely on generative models exclusively.

Acknowledgments. This research is funded by BMBF Germany (hKI-Chemie, #
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Abstract. Commonsense reasoning is a difficult task for a computer,
but a critical skill for an artificial intelligence (AI). It can enhance the
explainability of AI models by enabling them to provide intuitive and
human-like explanations for their decisions. This is necessary in many
areas but especially in the field of question answering (QA), which is one
of the most important tasks of natural language processing (NLP). Over
time, a multitude of methods have emerged for solving commonsense rea-
soning problems such as knowledge-based approaches using formal logic
or linguistic analysis.

In this paper, we investigate the effectiveness of large language models
(LLMs) on different QA tasks with focus on their abilities on reason-
ing and producing explanations. For this, we study the recent and very
prominent LLM ChatGPT and evaluate the results by means of a ques-
tionnaire. We demonstrate ChatGPT’s ability to reason with common
sense, and although ChatGPT’s accuracy ranges from 56% to 93% on var-
ious QA benchmarks, it outperforms human accuracy. Furthermore we
can appraise that, in the sense of explainable artificial intelligence (XAI),
ChatGPT gives good explanations for its decisions. In our questionnaire
we found that 68% of the participants quantify ChatGPT’s explanations
as “good” or “excellent”. Taken together, these findings enrich our under-
standing of current LLMs and pave the way for future investigations of
reasoning and explainability.

Keywords: large language models · explainable AI · commonsense
reasoning · question answering · ChatGPT

1 Introduction

LLMs are an important ingredient in developing adaptable, general language
systems [3], and scaling up languages models has recently shown great results
for various NLP tasks. Lately, a media hype was triggered by the LLM Chat-
GPT.1 This new AI model uses an easy interface and performs very well on
1 https://chat.openai.com/.
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different tasks [9]. The current generation of AI systems offers tremendous ben-
efits, but their effectiveness is limited by the inability of the machine to explain
its decisions and actions to users. They perceive the models as black boxes
although insights about the decision making are mostly opaque [4]. In response
to increasing political, ethical, economical, and curiosity-driven theoretical pres-
sure on ML researchers, the field of XAI tries to solve this black-box problem
[36]. According to [2], it is important to focus on the audience for which explain-
ability is sought. They define XAI as follows: “Given an audience, an XAI is
one that produces details or reasons to make its functioning clear or easy to
understand.” They further distinguish between different terms: explainability and
interpretability. Explainability means that a model’s outcome can be explained
in human-readable form, e.g., by explanatory text. Interpretability of a model on
the other hand refers to the design of the model itself, e.g., so-called heatmaps
that visualize neural network activity for image recognition helping to under-
stand the (possibly fallacious) behavior of neural networks [18]. We focus in our
work on explainability of AI models in the above sense with the goal of XAI to
provide human-readable explanations to make users understand the automated
decision-making of large language models a posteriori.

There is a strong connection between XAI and commonsense reasoning,
as both concepts are concerned with improving the explainability of AI mod-
els. Commonsense reasoning can enhance the explainability of AI models by
enabling them to provide intuitive and human-like explanations for their deci-
sions. According to [8], starting with a better understanding of human cognition
is a solid foundation. Humans use cognitive reasoning to draw meaningful con-
clusions despite incomplete and inconsistent knowledge [13]. For us, cognitive
reasoning is particularly useful when we encounter new situations that are not
covered by formal rules or guidelines. In these situations, we rely on our com-
monsense to make judgments and decisions that are appropriate and effective.
Furthermore, commonsense reasoning is essential in interpersonal interactions
and communication. It allows us to understand the perspectives of others and to
navigate social situations effectively. Commonsense reasoning can help AI mod-
els to be more robust in the context of novel situations. A model that can reason
based on commonsense principles is better equipped to handle situations that it
has not explicitly encountered before, as it can draw on its general understand-
ing of the world to make informed decisions. So far commonsense reasoning is
intuitive for humans but has been a long-term challenge for AI models.

We assume that an LLM can reason similar to humans without the need
of logical formulas or explicit ontology knowledge. Recent advances in LLMs
(e.g. [22]) have pushed machines closer to human-like understanding capabili-
ties. We believe that language comprehension and commonsense reasoning do
not require formal structures, although they eventually may provide a better
understanding afterwards for humans. Instead we assume LLMs are the appro-
priate way towards human-like ability to reason as well as explain decisions. To
tackle growing demand of explainability for AI systems we aim to prove that
generated explanations by LLMs are helpful for users to understand AI deci-
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sions. There is no specific structure of learning necessary: LLMs like ChatGPT
can generate human-like explanations a posteriori. For this reason we formulate
the following hypotheses:

1. LLMs like ChatGPT can handle commonsense reasoning in question answer-
ing tasks with near-human-level performance.

2. LLMs like ChatGPT are able to generate good, human-understandable expla-
nations for their decisions.

We start our paper by giving an overview of important research directions
in Sect. 2. Then, we evaluate the performance of the recent LLM ChatGPT on
commonsense reasoning tasks in Sect. 3. Since measuring explainability is still a
problem we address this by first testing ChatGPT on eleven QA datasets where
commonsense capabilities are required. With a random sample of each bench-
mark dataset, subsequently we evaluate the quality of ChatGPT’s responses with
a questionnaire (Sect. 4). The main contributions of this paper are described
in Sect. 5 and can be summarized as following:

– evaluation of ChatGPT’s ability to perform commonsense reasoning
– quality measurement of ChatGPT’s explanations by a questionnaire

2 Foundations

2.1 Approaches for Commonsense Reasoning

Commonsense reasoning is a difficult task for a computer to handle [32].
To address this problem, various approaches have been followed in the past.
McCarthy [23] was the first who outlined the basic approach of representing
commonsense knowledge with predicate logic. Symbolic logic approaches were
the main representation type, see e.g. [12,19]. While still in use today [7] for this
extremely complex task to work well it requires a large amount of additional
logical scaffolding to precisely define the terms used in the statement and their
interrelationships [21].

There is a big gap between the logical approach with deductive reasoning
and human reasoning, which is largely inductive, associative, and empirical, i.e.,
based on former experience. Human reasoning, in contrast to formal logical rea-
soning, does not strictly follow the rules of classical logic. There have been efforts
to utilize an approach which uses an automatic theorem prover (that allows to
derive new knowledge in an explainable way), large existing ontologies with
background knowledge, and recurrent networks with long short-term memory
(LSTM) [16] but still did not stand out much from the baseline [32].

Recent efforts to acquire and represent commonsense knowledge resulted in
large knowledge graphs, acquired through extractive methods [34] or crowdsourc-
ing [30]. Some approaches use supervised training on a particular knowledge base,
e.g., ConceptNet for commonsense knowledge. ConceptNet is a crowd-sourced
database that represents commonsense knowledge as a graph of concepts con-
nected by relations [34].
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Interestingly, LLMs (cf. Section 2.2) do not contain any explicit semantic
knowledge or grammatical let alone logical rules that would allow an explicit
reasoning process, not even the large ontologies from the logical knowledge rep-
resentation like Cyc [19] or Adimen-SUMO [1]. A way out might be to have neu-
ral networks learn reasoning explicitly, possibly by focusing on certain sentence
forms as in syllogistic reasoning maybe implemented with neural-symbolic cogni-
tive reasoning by specifically structured neural networks [14,15,39]. In contrast
to simple deep learning, information from different places and/or documents
must be merged here in any case. It does not suffice to investigate any local text
properties, e.g., determining the text form.

2.2 Commonsense Reasoning with LLMs

In the past, most deep learning methods used supervised learning and therefore
require substantial amounts of manually labeled data. Recent research has shown
that learning good representations in an unsupervised fashion can provide a sig-
nificant performance boost. An example for a premier LLM that can handle a
wide range of natural language processing tasks is OpenAI’s GPT-3 [3]. GPT-3
(Generative Pre-trained Transformer) is a third-generation, autoregressive lan-
guage model that uses unsupervised learning to produce human-like text. The
language model of ChatGPT is trained on an unlabeled dataset of texts, such as
Wikipedia to predict the next word for a given text. The capacity of language
model is essential to the success of zero-shot task transfer [28]. ChatGPT per-
forms impressive without the need of finetuning on different natural language
processing tasks.

The GPT series focuses on pre-training transformer decoders on language
modeling. A similar LLM is the Bidirectional Encoder Representations from
Transformers (BERT) which uses the transformer encoder as its backbone archi-
tecture [10]. BERT obtained new state-of-the-art results on eleven natural lan-
guage processing tasks already in October 2018 [10]. As well BERT achieved
new state-of-the-art performance for example on the SWAG benchmark [38]
that exceeded even that of a human expert [5]. However, BERT does not pos-
sess human-level commonsense in general [5]. Therefore BERT has been opti-
mized only one year later to RoBERTa to achieve better results [22]. There is
also the Bidirectional Auto-Regressive Transformer (BART) [20], a denoising
autoencoder for pretraining sequence-to-sequence models, which can be seen as
generalizing BERT due to the bidirectional encoder. In our further investigation
we will focus solely on ChatGPT. It is a version of GPT with an easy to use
interface and at the moment the most prominent LLM.

3 Evaluating ChatGPT on QA Tasks

We assess ChatGPT twofold: First, we evaluate the accuracy of ChatGPT on QA
benchmarks with multiple-choice questions. In the benchmarks we considered,
the correct answer is indicated, although it is not always clear whether this
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answer really is the best one. Second, we take part of the questions from the
QA benchmarks for a questionnaire to evaluate the quality of the responses
and explanations of ChatGPT and compare the performance of humans and
ChatGPT on QA examples.

3.1 Benchmark Datasets

We use 11 benchmark datasets carefully designed to be difficult to solve without
commonsense knowledge (see below). From each dataset, we select 30 random
examples, covering different QA tasks like text completion or providing cause or
effect. In addition, different fields like medicine, physics, and everyday life situa-
tions are covered. We evaluate the performance of ChatGPT with the following
QA benchmarks:

– Story Cloze Test [25]: is based on ROC Stories for evaluating story under-
standing and generation. This test requires choosing the correct ending of a
four-sentence story.

– Commonsense Reasoning over Entity Knowledge (CREAK) [26]: contains
knowledge about specific entities, e.g., deciding the truthfulness of the claim
“Harry Potter can teach classes on how to fly on a broomstick.”, i.e., including
fictional worlds. It is bridging fact-checking about entities with commonsense
inferences using 13,000 human-authored English claims about entities that
are either true or false.

– COmmonsense Dataset Adversarially-authored by Humans (CODAH) [5]:
forms a challenging extension to the SWAG dataset [38] which tests common-
sense knowledge using sentence-completion questions that describe situations
observed in video.

– COM2SENSE [33]: comprises true/false statements, with each sample paired
with its complementary counterpart, resulting in 4,000 sentence pairs.

– Cosmos QA [17]: is constructed to test machine reading comprehension
with contextual commonsense reasoning. It is a large-scale dataset of 35,600
multiple-choice questions. It focuses on reading between the lines over a
diverse collection of people’s everyday narratives.

– Explainable CAusal REasoning dataset (e-CARE) [11]: contains over 21,000
causal reasoning questions, together with natural language formed explana-
tions of the causal questions.

– AI2 Reasoning Challenge (ARC) [6]: covers natural, grade-school science ques-
tions that are authored for human tests, and is the largest public-domain set
of this kind with 7,787 questions.

– Social IQa [31]: contains 38,000 multiple choice questions for probing emo-
tional and social intelligence in a variety of everyday situations.

– Choice Of Plausible Alternatives (COPA) [29]: is an open-domain common-
sense reasoning QA task where each question gives a premise and two plausi-
ble causes or effects, where the correct choice is the alternative that is more
plausible than the other. The cause category requires backward causal rea-
soning, while the result category requires forward causal reasoning.
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– Multiple-Choice Question Answering (MedMCQA) [27]: is designed to
address real-world medical entrance exam questions. It is covering more than
2,400 healthcare topics and 21 medical subjects.

– CommonsenseQA [35]: for this dataset crowd-workers authored multiple-
choice questions that mention the source concept extract from ConceptNet
[34] multiple target concepts that have the same semantic relation to a single
source concept.

3.2 Method

Using all these eleven datasets we randomly selected 30 examples from each
dataset and tested the respective QA tasks with ChatGPT. Over all datasets
ChatGPT answered 242 out of 330 tasks correctly which equals an accuracy of
73.33%, 77 tasked were answered incorrectly (23.33%), and we did not get a
valid response for 11 QA tasks (3.33%). Not valid means that ChatGPT does
not respond which answer option is correct and instead asks for further context
information, see Fig. 1 for an example. Note that there are tasks with two answer
options and tasks with five answer options and everything in between.

Fig. 1. Example for a not valid response from ChatGPT due to insufficient context
information (COPA example 612). While option 1 is correct, the authors agree that
option 2 could also be possible as well (but less likely).

A more detailed representation of the performance on each of the eleven
datasets is shown in Table 1. We found that ChatGPT has the lowest per-
formance on CommonsenseQA dataset with 56.67% accuracy and the highest
accuracy on Story Cloze Test with 93.33%.
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Table 1. Overview of eleven publicly available datasets for commonsense reasoning.
For each dataset we report the year the dataset was published and the percentage of
correct, incorrect and invalid answers of ChatGPT on 30 randomly selected examples
per dataset.

dataset year correct incorrect invalid

Story Cloze Test [25] 2017 93.33% 6.67% 0.00%
CREAK [26] 2021 86.67% 13.33% 0.00%
CODAH [5] 2019 80.00% 20.00% 0.00%
COM2SENSE [33] 2021 76.67% 23.33% 0.00%
CosmosQA [17] 2019 76.67% 23.33% 0.00%
e-CARE [11] 2022 76.67% 23.33% 0.00%
ARC [6] 2018 70.00% 30.00% 0.00%
Social IQa [31] 2019 66.67% 33.33% 0.00%
COPA [29] 2011 63.33% 3.33% 33.33%
MedMCQA [27] 2022 60.00% 40.00% 0.00%
CommonsenseQA [35] 2018 56.67% 43.33% 0.00%

3.3 Analysis

In our error analysis we found that there are six kinds of problems where Chat-
GPT still struggles:

1. missing context: In cases where ChatGPT has little knowledge of the con-
text provided, it sometimes does not give an answer to the QA task. This has
happened 10 times in total and solely with examples of the COPA dataset.
This could be due to the very short premise texts in the COPA dataset, see
Fig. 1. In this dataset the premise texts consist of only five to nine words
(on average six words) in the cases where ChatGPT complained about not
having enough information to answer the question. In some cases, ChatGPT
explains which context information is missing: “The actual outcome would
depend on a variety of factors, such as the political climate, the credibility
of the politician, and the specific details of the argument in question. With-
out this information it is impossible to determine which alternative is more
likely.” (COPA example 619).

2. comparative reasoning: ChatGPT has problems when more than one
option is plausible. This is the case in comparative scenarios in the
COM2SENSE and Social IQa dataset. In such cases, the commonsense rea-
soner must explicitly investigate the likelihood of different answer candidates.
For the Social IQa example 26823 “Sasha was throwing a party in her new
condo which they bought a month ago. What does Sasha need to do before
this?” ChatGPT answers “Turn music on” which is likely but the correct and
even more likely answer is “needed to buy food for the party”.

3. subjective reasoning: Some answers depend on the personality of the rea-
soner, e.g. Social IQa example 18571: “Alex’s powers were not as strong since
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he was just starting out. Alex used Bailey’s powers since hers were stronger.
How would Bailey feel as a result?” the correct answer according to the bench-
mark is “good” but instead ChatGPT answers “upset” and explains “Bailey
may feel that her powers are being taken advantage of . . . ” which we think is
more a personalized subjective inference instead of a commonsense answer.

4. slang, unofficial abbreviations, and youth language: ChatGPT has its
difficulties to understand slang, unofficial abbreviations and youth language
like “subs” for “subscribers” or “yrs” for “years”. This could be observed in
Cosmos QA examples 6599 and 5748.

5. social situations: We identified a lack of understanding social situations
correctly especially in the Social IQa dataset. For example, for the question
“Kai was visiting from out of state and brought gifts for Quinn’s family. What
will Kai want to do next?” ChatGPT picked the answer “needed to leave his
hometown” instead of the correct answer option “watch the opening of gifts”
(Social IQa example 6863).

6. medical domain: The analysis of MedMCQA showed that ChatGPT is lack-
ing a deep domain knowledge in the medical field. The answers of ChatGPT
were always plausible and explained with a lot of details (on average 43 words
per explanation) but 40% were incorrect. This was because of many medical
technical terms that are not common knowledge, e.g., “Styloglossus muscle”
or “Genioglossus muscle” that are different muscles in the tongue (MedMCQA
example 23b363d6-8210–4657-b293-54c9e28bdf31). For a non-medical profes-
sional or student, these questions are difficult to answer, too (including the
authors of this paper).

Please be aware that for certain questions to be answered correctly, one must
possess in-depth knowledge rather than commonsense reasoning ability, e.g., you
have to know that “Prison Break” is a television show, not a movie in a theater
to tell that “The couple went to the movie theater to watch Prison Break” is
a correct or wrong statement (CREAK example 98). Additionally, the authors
hold the viewpoint that out of the 78 incorrect answers, 12 of them were very
likely to be correct as well and therefore quite hard for an AI to answer correctly.

3.4 Design of the Questionnaire

To evaluate the quality of ChatGPT’s responses on different benchmark datasets
and to make a comparison to human performance, we created a questionnaire. We
used two randomly selected examples for each of the above mentioned datasets
– except for MedMCQA because we feel these questions are too difficult for
non-medical people to answer.

We created an online survey questionnaire using SoSciSurvey2 that was open
to the public on social media, e.g., LinkedIn, Xing, and platforms like Survey-
Circle and we send the questionnaire via e-mail directly to students at the Harz
University of Applied Sciences in Germany. Participation was voluntary; partici-
pants could not be identified from the material presented and no plausible harm
2 https://www.soscisurvey.de/.

https://www.soscisurvey.de/
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to participating individuals could arise from the study. Survey content validity
was reviewed in a pretest by one professor, one academic staff and one non-
academic volunteer (business consultant) who did not participate in developing
the survey. The questionnaire was structured in three parts, first containing
demographic and personal information (gender, age, nationality, English level).
The main part then consists of the QA tasks of the different datasets as well
an evaluation of ChatGPT’s explanations. For each QA task we have the same
structure, as follows:

1. The question and answer options for each QA task were given for the survey
participants.

2. We ask how comprehensible the question above is using a five-level Likert
scale.

3. The question and answer options were repeated and ChatGPT’s explanation
for one possible answer option is presented (this answer may be incorrect).
Then using a five-level Likert scale we ask how good the explanation is.

4. An optional free text field to tell what could be improved in the given expla-
nation.

To see an example of this main questionnaire section, refer to Fig. 2. We used
this structure for 10 datasets and randomly selected two examples from every
dataset. Therefore we considered 2 · 10 = 20 QA tasks. In the third part of the
questionnaire, the participants should guess how many explanations have been
generated by an AI among others. Note that the survey participants did not
know that all responses have been generated by ChatGPT.

4 Results

4.1 Questionnaire Participants

In total, 103 people participated in the questionnaire, but because of missing
data we only used the responses of 49 participants. The time to fully answer the
whole questionnaire was about 25min, that is probably why many participants
did not complete the questionnaire until the last question. The participants
English level was mainly advanced or excellent so that there is no language
barrier in understanding the QA tasks. Among the completed questionnaires,
71% of the participants were male and the average age was 26 years, with a
minimum of 19 years and maximum of 49 years. Most of the participants were
German with 45% and Indian with 40% and only 5% of Bangladeshi, Pakistan,
Finland, Russian Federation and Switzerland.

4.2 Questionnaire Responses

We found that the participants answered 73.72% of the 20 QA tasks correctly
compared to ChatGPT’s 90.00% on the same questions. Note that these 20
in detail analyzed QA tasks are not as representative as the 330 QA tasks
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Fig. 2. Example of one question answering task with the common structure of four
questions per task (CREAK example 1344). After participants answer the first two
questions the next two questions with the possible response and explanation are shown.

from Sect. 3.2. Even though we selected the 20 QA tasks randomly, ChatGPT
performed much better on these subset than on the overall set of QA tasks.
Over all datasets, except MedMCQA, ChatGPT answered 74.67% correct of the
30 ·10 = 300 tasks. Figure 3 shows a comparison of the performance of ChatGPT
and the survey participants on the different datasets. The performance of Chat-
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Fig. 3. Comparison of accuracy of ChatGPT (blue) and our survey participants
(orange) on ten different QA datasets. (Color figure online)

GPT is better than humans on six datasets and in four datasets humans are
superior. The dataset ChatGPT performs worst is also the dataset humans had
the most problems (CommonsenseQA). The greatest difference between human
and ChatGPT performance is on the COPA and Cosmos QA datasets. In this
study, for COPA examples, humans were 26.47% better than ChatGPT and,
for the Cosmos QA examples, ChatGPT outperforms humans with 19.53% dif-
ference in accuracy. It is quite interesting that ChatGPT performs better on
Cosmos QA than the survey participants as contextual commonsense reason-
ing is needed for this dataset. It focuses on reading between the lines over a
diverse collection of people’s everyday narratives. In contrast, humans perform
a lot better than ChatGPT on COPA where understanding of causes and effects
is necessary as well as choosing the most likely alternative. Our study showed
that ChatGPT has problems with comparative reasoning in case of more than
one likely option. Maybe here explicit traditional reasoning approaches from AI
maybe would perform better (cf. Section 1).

We were interested in investigating the relationships between tasks compre-
hensibility and ChatGPT’s explanations. It is worth noting that most questions
of the different QA tasks are comprehensible according to the participants. We
observed that there is a mean linear positive correlation of 0.58 between the com-
prehensibility of the QA tasks and that of ChatGPT’s explanations. This means
that the way the users understand the QA tasks has an impact on the estimated
quality of the explanation from ChatGPT. The Social IQa examples 23772 and
11339 were rated 22 times out of 56 total times as very poorly comprehensible.
Nevertheless, ChatGPT answered these tasks correctly but only 56.13% survey
participants answered these questions correctly.
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Furthermore, we found that the explanations for COPA example 610 was
often rated “poor” or “very poor”, and for this example ChatGPT’s answer was
invalid as it could not decide for one option saying: “It is not specified in the given
information which alternative is the more likely cause.” In general, explanations
were mostly rated “good” or “excellent” with 67.60% and only 42 times very poor
(see Fig. 4). Explanations were rated “fair” or better with 84.80%. In this study,
12 out of 42 times the explanations were rated “very poor” for the undefined
responses, where ChatGPT was unable to answer the question due to missing
context information (see example above in Fig. 1). The average length of Chat-
GPT’s explanations is 38 words for both correct and incorrect responses. From
the optional free text field we received mostly the same possible improvement
for ChatGPT’s explanation: ChatGPT should explain why the other answering
options are false or less likely and not only focus on explaining why one option
is correct. This is in particular important in comparative reasoning tasks.

Fig. 4. Participants’ rating of all explanations from “very poor” to “excellent”.

Figure 5 shows the participants’ guess how many responses are created by
an AI according to the survey participants. In the chart one can see that the
mode is 10 and 15 explanations. While all respondents thinks that at least five
explanations are generated by an AI, the mean amount of AI answers is 13. Thus
all participants believe that at least 25% of the explanations were AI generated.

To further determine how helpful explanations are, we ask our study partici-
pants if they agree that AI tools that give not only a decision but also an expla-
nation should be preferred. The majority (52.08%) of the participants agreed to
this statement, 31.25% agree strongly and 10.42% are neutral while less than
7% disagree or strongly disagree.
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Fig. 5. Bar chart of participants option how many explanations are generated by an
AI. The average number of assumed AI answers is 13 while actually all 20 explanations
were generated by ChatGPT.

5 Discussion and Future Directions

Over the past, research often focused on logical approaches and large knowledge
graphs to deal with commonsense reasoning. Given that we are currently in the
era of LLMs which have shown substantial performance improvements across
various tasks, we hypothesized that LLMs are capable of handling commonsense
reasoning in QA tasks with almost human-level performance (Hypothesis 1).
As ChatGPT is trained on a large number of data and produces human-like
text, we assume that it can perform commonsense reasoning without explicit
semantic knowledge or logical rules. To proof that we evaluated ChatGPT on
eleven different QA benchmark datasets which are difficult to solve without
commonsense reasoning.

Moreover we evaluated explanations generated with ChatGPT by means on
an online questionnaire to investigate how sufficient explanations are to users.
Our Hypothesis 2 is that an LLM like ChatGPT is able to provide good explana-
tions to users without the need of explicit formalized knowledge representation.
Most participants are content with ChatGPT’s explanations. Thereby appar-
ently the problem of explainability of AI decisions can be overcome easily.

5.1 Main Findings

This study shows that ChatGPT reached an overall accuracy of 73.33% on eleven
QA datasets that are difficult to handle without commonsense reasoning. While
there are still problems (cf. Section 3.3), ChatGPT still outperforms our sur-
vey participants in six out of ten datasets (not considering the medical dataset
MedMCQA). The results of our questionnaire show that participants answered
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73.72% of the 20 QA tasks correctly compared to 90.00% of ChatGPT on the
same questions. Although we only compared performance of humans vs. Chat-
GPT on a small amount of examples, we beforehand evaluated ChatGPT on
eleven different benchmarks on a larger set of examples. Consequently, we believe
that the outcome indicates that our Hypothesis 1 is true and LLMs like Chat-
GPT can handle commonsense reasoning in QA tasks with near-human-level
performance.

This research focused as well on assessing explainability of LLMs, recognizing
the significant importance of addressing the black-box problem. This is particu-
larly relevant as users need to understand AI decisions. By means of a web-based
questionnaire we evaluated ChatGPT’s explanations for 20 QA tasks. We found
a mean linear positive correlation of 0.58 between the comprehensibility of the
QA tasks and that of ChatGPT’s explanations. This observation is relevant for
the way ChatGPT’s users describe their tasks as it has an impact on the quality
of the explanation they receive. In our questionnaire, ChatGPT’s explanations
were mostly rated “good” or “excellent” with 67.60%. Our Hypothesis 2 that
LLMs can generate good explanations could be confirmed. However, to improve
explanations, it is recommended to not only focus on explaining why one option
is correct but also why the other answering options are false or less likely.

5.2 Impact on the Field

The development of XAI is facing both scientific and social demands [37], and
scientists aim to achieve this without sacrificing performance. So far, this grand
challenge is mainly dealt by explicit knowledge, such as knowledge graphs. How-
ever, we found that implicit knowledge in the form of probabilistic models can
generate good explanations. LLMs, such as GPT, made significant advancements
in NLP tasks in recent years. Due to the chat function of ChatGPT, users can
easily ask for explanations to understand the response of the AI system. This
can tackle the lack of explainability and is a quite simple and yet effective way.
Using a questionnaire, we could measure and quantify explanations of ChatGPT
and investigate the effectiveness of AI explanations.

Moreover, commonsense reasoning is very important for various NLP tasks.
It assesses the relative plausibility of different scenarios and recognizes causal-
ity. Until now, research focuses on mathematical logic and the formalization of
commonsense reasoning knowledge. However, some philosophers, e.g., Wittgen-
stein, already claimed that commonsense reasoning knowledge is unformalizable
or mathematical logic is inappropriate [24]. As seen in our evaluation, the LLM
ChatGPT can handle different QA tasks that require commonsense reasoning.
Nevertheless, we detected six problems (cf. Section 3.3) where ChatGPT has
still problems and further research is necessary. These difficulties are little con-
text information, comparative reasoning, subjective reasoning, slang, unofficial
abbreviations and youth language, social situations and knowledge in the medi-
cal domain.

Evaluation of the LLM ChatGPT brings AI closer to making a practical
impact in the area of XAI and commonsense reasoning. There are still rich
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opportunities for novel AI research to further measure the quality of explanations
as well as opportunities in tackling difficult commonsense reasoning tasks like
CommonsenseQA. In future research, one can also investigate other LLMs than
ChatGPT, e.g., BERT, BART, RoBERTa, etc.

5.3 Limitations

Our study has limitations that need to be acknowledged. The number of survey
participants we included was rather small, which limits generalization of our
results. The average age was 26 years with 49 years as maximum, and primar-
ily the participants were university students. In general more participants with
diverse gender, age and nationality would help to strengthen the results. Fur-
thermore the key challenge for explainability is to determine what constitutes a
“good” explanation, since this is subjective and depends on context. We evalu-
ated explanations using a five-level Likert scale from “very poor” to “excellent”.
However, we only analyzed 20 explanations of ChatGPT and argue that our
Hypothesis 2 (that LLMs can generate good explanations) can be confirmed.
Nevertheless, explainability is very important in the medical field, but we did
not consider the MedMCQA dataset in our questionnaire due to a supposed lack
of participants knowledge in medicine.

6 Conclusion

The field of AI has made considerable progress towards large-scale models, espe-
cially for NLP tasks. Although the field requires more testing, we argue that
LLMs can be used for commonsense reasoning tasks and as well generate helpful
explanations for users to understand AI decisions. The use of LLMs is a promis-
ing area of research that offers many opportunities to enhance explainability.
However, to unleash their full potential for XAI, it is crucial to approach the
use of these models with caution and to critically evaluate their limitations.
We have shown important future directions and rich opportunities for novel AI
research involving XAI and commonsense reasoning. LLMs have proven capa-
ble of human-like performance on a variety of different QA tasks which require
commonsense reasoning.

Despite the potential of the field of LLMs, important questions remain for
a comprehensive evaluation of ChatGPT’s explanations. As these key issues are
systematically addressed, the potential of AI to significantly improve the future
of XAI may be realized. In particular, the stochastic aspects of LLMs, where
repeated queries may lead to different answers, should be considered in future
work. This would also allow for a better assessment of the error in the ChatGPT
performance estimates.
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Abstract. Explainable Artificial Intelligence (XAI) aims to enhance
transparency and trust in AI systems by providing insights into their
decision-making processes. While there has been significant progress in
developing explainability methods for AI, such advancements do not
consider black-box optimization algorithms. In this paper, we present
RX-BO (Rule based Explanations for Bayesian Optimization), a novel
framework that brings explainability to black-box Bayesian optimization
with a Gaussian process (GP) backbone. Leveraging the GP model’s
approximation and uncertainty estimation capabilities, RX-BO extracts
distribution-aware rules through a post-hoc rule based explainability
method. These rules shed light on different regions of the posterior dis-
tribution, enabling transparent and trustworthy decision making. The
framework incorporates a pairwise Mahalanobis distance-based hierar-
chical agglomerative clustering algorithm with Ward criterion for gener-
ating rule proposals. It also employs traditional metrics such as support,
coverage, and confidence for selecting high-quality explanations. We eval-
uate RX-BO on an example optimization problem and six hyperparame-
ter optimization tasks involving three machine learning models (classifi-
cation and regression) across two datasets. The results demonstrate that
RX-BO improves rule confidence and rule granularity control compared
to decision trees and Rule based XAI frameworks. Furthermore, RX-BO
introduces a novel approach by identifying interesting areas in the search
space based on likelihood. This measure allows to rank explanations on
how interesting they would be for an end user. Overall, RX-BO enhances
the understanding and interpretability of black-box Bayesian optimiza-
tion algorithm results, contributing to the broader field of XAI.

Keywords: Artificial Intelligence · Black-box Optimization ·
Explainable Artificial Intelligence (XAI) · Bayesian Optimization

1 Introduction

Recent advances in explainable artificial intelligence (XAI) have improved trans-
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including rule-based approaches, model-agnostic methods, and visual explana-
tions, enhance user understanding, trust, and compliance with ethical and regu-
latory requirements [37]. However, a significant gap exists in addressing explain-
ability for black-box optimization algorithms, such as Bayesian optimization
(BO).

BO is a sequential, model-based optimization technique that leverages a prob-
abilistic model for optimization, usually a Gaussian Process (GP). Its objective is
to find the maximizing solution for a black-box optimization problem with as few
evaluations as possible [11]. BO is crucial for various complex tasks, like param-
eter optimization [39,40], hyperparameter tuning (HPO) in various domains e.g.
automotive [17], aerospace engineering [19], machine learning [16,41].

In industry, the challenging task of parameter optimization in cyber-physical
systems includes cases where adapting applications to specific environmental
conditions is essential. Manual parameterization and tuning are time-consuming
and expensive, making optimization algorithms like BO invaluable. Explaining
the optimization decisions to engineers in the loop who are not data scientists is
safety critical in these scenarios. [44] An explainability method would offer the
ability to identify ranges of “good” parameters, providing a broader perspective
beyond the single “best” solution obtained from optimization algorithms. This
facilitates easy tuning of black-box systems for engineers and narrows down the
search space for consecutive BO runs. Despite this importance, explainability of
BO optimization algorithms has received limited attention, urging the need to
extend explainability methods to cover black-box optimization algorithms and
bridge this gap.

Applying existing regression based XAI methods [20] directly to black-box
BO is not recommended because of the following differences between BO and
regression [11]:

D1: The optimization search space for BO is defined during its initialization.
However, regression is usually not subject to such a predefined search space.

D2: BO’s “regression” target has an implicit meaning, typically related to the
utility.

D3: Unlike regression, BO prioritizes high-quality approximations in costly
regions of the search space.

D4: BO employs a biased sample selection/generation process for optimization.
D5: Regression can function without incorporating uncertainty, but uncertainty

estimation is crucial in BO.
D6: BO aims to find the minimal utility point without the need for generaliza-

tion to unseen data.

A tailored explainability method for BO must fulfill the following specific
requirements to address its unique characteristics effectively:

R1: The method should handle the bounded optimization space with contin-
uous targets and provide suitable responses when queried beyond these
boundaries (D1, D6).
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R2: The method should elucidate the underlying data distribution process and
the optimization space with the utility (D3, D4).

R3: Given the significance of uncertainty in BO, the method must effectively
handle and incorporate this uncertainty into its explanations (D5).

R4: By leveraging the probability distribution inherent in BO, the method
should employ appropriate metrics to identify relevant areas and select
explanations that respect the implicit meaning (D2).

Existing explainability methods fail to meet these requirements. In this
paper, we introduce RX-BO (Rule based Explanations for Bayesian Optimiza-
tion), a rule-based post-hoc explainability method designed explicitly for black-
box BO tasks. RX-BO leverages the GP surrogate model of BO to provide expla-
nations to end users through ‘IF-THEN ’ rules. RX-BO introduces rule coverage
control through a hyperparameter ts. For evaluation purposes, we utilize the
HPO task in AI [46] as a proxy task for the parameter optimization task of
cyber-physical systems, as data in the latter task is not public.

In summary, the contributions of this paper are:

– We present a novel method for explaining BO processes, satisfying the require-
ments R1-R4 stated above. (cf. Sec. 4)

– We show empirically that RX-BO achieves higher rule confidence and rule
support when compared with baseline decision tree based rule generation for
XAI [9,15,24]. We also show RX-BO is a better fit for the HPO task through
an example based comparison with out-of-the-box RuleXAI method [23]. (cf.
Sec. 5.2)

– We show in an ablation study that the generated explanations exhibit a
decrease in rule length and an increase in interestingness as the hyperpa-
rameter ts is increased. (cf. Sec. 5.3)

In the remainder of our paper we begin with the review of related work,
highlighting the inapplicability of various XAI methods to BO. We outline BO
and GPs briefly, vital for comprehending RX-BO’s design. RX-BO’s performance
is assessed via a case study and hyperparameter optimization task. We discuss
RX-BO’s threshold trends. Lastly, we chart future research directions.

2 Related Work

The domain of XAI has witnessed the emergence of various methods aimed at
elucidating black-box models. In this Section, we review common rule-based XAI
techniques and post-hoc approaches for application in BO domain and discuss
why they cannot be directly applied to BO.

Rule-based XAI techniques provide definitive and intuitive rules humans
can readily comprehend, thus promoting transparency and understanding of the
underlying decision logic [42]. Anchors [35,43], counterfactuals [12,14,27], and
decision trees [15,24], offer transparent and interpretable representations of the
decision-making process. However, these rule-based explanations are designed
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for categorical targets. While Rule XAI [23] is a rule-miner for regression cases,
it does not incorporate uncertainty and cannot be directly applied to BO (cf.
Sec. 1, R3.).

Post-hoc approaches like LIME [34] and SHAP [21,22] aim to provide
explanations that are model agnostic, enhancing their versatility. Model specific
explanations such as concept highlights [25,29] and GradCAM [4,38], leverage
gradients and visualizations to enhance interpretability. While the aforemen-
tioned XAI methods share the goal of explaining black-box models, they are not
suitable when applied to BO, as they do not explain the full input space but
rather find features that maintain a decision boundary (cf. Sec. 1, R2).

Existing literature on explaining black-box optimization methods is
limited, with Moosbauer et al. [26] utilizing partial dependence plots for HPO.
However, these plots are complex and require expert knowledge for interpre-
tation. We draw inspiration from rule-based explainability models, particularly
the work by Amoukou et al. [1], which generates rule sets for regression tasks
but lacks the incorporation of uncertainty. Additionally, we draw ideas from the
conversion of classification models to decision trees [5,10].

In summary, no existing methods satisfy all the requirements for BO explain-
ability (cf. Sect. 1, R1 – R4)

3 Background

In this Section, we provide background for understanding the RX-BO method.
Bayesian Optimization (BO):Given a black-box objective function f(x),

the goal of BO is to solve the problem

xopt = arg max
x∈D

f(x), (1)

where x ∈ D and D ⊂ Rd is the bounded search space. The black-box function
f is assumed to be continuous, expensive to evaluate, noisy, and unknown in the
closed form. [3]

BO is employed in these conditions to find the global optimum for the black-
box function f . The primary component of BO is a surrogate model for statistical
inference, typically employing Gaussian Processes (GPs) [8]. The GP approxi-
mates the unknown objective function during the optimization process. BO aims
to estimate the optimum for the objective function with limited evaluations, aim-
ing for efficient and effective optimization.

Gaussian Process (GP): A GP consists of a group of random variables
where the joint distribution of any finite number of variables follows a Gaussian
distribution. A GP describes a distribution over functions, where a mean m(x)
and a covariance function k(x,x′), also known as the kernel function, characterize
each function f(x) at location x. If the mean is m(x) = E[f(x)], and kernel
function is k(x,x′) = E[(f(x) − m(x))(f(x′) − m(x′))], then the GP can be
described asf(x) ∼ GP (m(x), k(x,x′)). [33]
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4 Methodology

In this section, we formulate the problem setting, describe RX-BO, and our
design choices.

4.1 Problem Setting

We start with a BO setting as given in Eq. 1, where we can access the bounds
of the search space D = {x ∈ Rd : lbj ≤ xj ≤ ubj ,∀j ∈ 1, 2, ..., d}, and the GP
model. The posterior distribution of the GP represents the approximation of the
black-box objective function. To explain the posterior distribution, we divide the
distribution into smaller areas based on the GP uncertainty to construct rules
for each area, which allows us to approximate the distribution well. The goal is
to find a rule list ρ that can effectively explain the GP posterior distribution.
RX-BO assumes a completed BO procedure on an optimization problem, access
to the final learned GP model, and the search space.

4.2 Rule Based Explanations for Bayesian Optimization (RX-BO)

RX-BO first constructs an explanation set over a bounded space (R1 & R2).
Then it generates a set of candidate rules based on uncertainty (R3), which is
filtered to relevant rules (R4). Rule quality metrics (R4) allow the ranking of
rules and the generation of the final explanations. We explain the steps in detail
in the following, a concise overview is given in Alg. 1.

A rule from RX-BO is a textual representation of concatenation of antecedent
ρi

� and consequent ρi
�:

Rule i:
IF x1 : [lbx1, ubx1], ..., xn : [lbxn, ubxn]
THEN UTILITY (lby, uby)

where lb and ub are lower bounds and upper bounds of each dimension of the
input space respectively, and “UTILITY” is the utility range where the rule is
valid.

1. Construction of an Explanation Set over a Bounded Space: In BO all
generated samples are used in the training phase of BO. A test set is not available
in standard BO procedure. Thus, to create an explanation dataset, additional
samples are generated by uniformly sampling the search space. Samples are
then represented as sampled set Xe which is the union of the train set X and
uniformly sampled instances from the search space U(D), then the GP is queried
with Xe in prediction mode to obtain the posterior distribution over i runs Yi

e =
GPpredict(Xe). The posterior distribution then is represented by the vectors of
mean μ = m(Ye) and standard deviation σy = σ(Ye). Then the explanation
dataset is E = [Xe;μ;σy ].
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Algorithm 1. RX-BO Algorithm
Require: X, D, Nsamples, Psamples, ts
1: procedure RX − BO(X, D, Nsamples, Psamples, ts)
2: Xe ← X

⋃ U(D, Nsamples)
3: for i ∈ Psamples do
4: Yi

e ← GPpredict(Xe)
5: end for
6: μ ← m(Ye)
7: σy ← σ(Ye)
8: E ← [Xe; μ; σy ] � 1. Creating explanation set over bounded space
9: Edist ← pdist(E) � 2. Computation of pairwise distance

10: ρ�, ρ� ← Ward(E,Edist, ts) � (2,3) Proposal & selection of rules
11: for i in ρ� do � 4. Metrics Computation for every rule in rule list
12: ρi

temp ← find(Xe ∈ [ρi
�; ρi

�]) � Find samples from Xe that agree to a rule
13: Ri ← max(likelihood(GPpredict(ρ

i
temp))) � Computing relevance

14: Ci ← ECDF (ρi
�,Xe) � Computing ECDF for Coverage

15: Si ← ECDF ([ρi
�; ρi

�], [Xe; μ]) � Computing ECDF for Support
16: ζi ← Si/Ci � Computing Confidence
17: αi ← weightedSum(Ri, Ci, Si, ζi) � Computing Interestingness
18: end for
19: ρ ← SortRules([ρi

�; ρi
�], α) � 5. Explanation ranking

20: return ρ
21: end procedure

2. Construction of Candidate Rule Set Based on Uncertainty: First,
pairwise Mahalanobis distance computation over the dataset E is computed and
represented as Edist. Then, hierarchical agglomerative clustering based on Ward
criterion is employed on Edist (cf. Sec 4.3)1 This generates several clusters, which
represent all possible rules that can be generated from the dataset E. Hierarchical
agglomerative clustering generates multiple rules that cover the same space with
different degrees of specificity which results in a rule list ρall containing highly
specific rules with very low coverage and highly general rules (one rule for the
entire space).

3. Filtering of Candidate Set to Relevant Rules: From candidate rule
list, we filter out rules that are in the middle, i.e. not highly specific as well
as not highly general. We use a threshold ts over the distance metric to group
data points that are in close proximity. By tuning this parameter, we can control
the specificity of the rules. In hierarchical agglomerative clustering based on the
Ward criterion, this idea of distance is based on the variance of the data, so
the resulting clusters represent the different regions of the posterior space with
different levels of uncertainty.

1 The design choices are mentioned here.



326 T. Chakraborty et al.

For a lower dimensional optimization problem, the threshold ts can be tuned
with the aid of a dendrogram as well. For a higher dimensional problem, this
visual aid is complex but still helpful (cf. Sect. 5.1).

4. Computing Rule Quality Metrics: Applying the threshold results in the
final rule list ρ which needs to be ranked based on their interest to the end user.
To do this, first, we identify interesting areas of the posterior space. We define
this area of interest as a space in the posterior distribution where the samples
have a high likelihood of being the optimal point because such areas indicate
regions of the parameter space that are likely to yield better outcomes or optimal
solutions. This can be identified by taking the maximum of the log-likelihood of
the examples that satisfy a rule. Let the log-likelihood of examples that satisfy a
rule be ls, and the log-likelihood of the overall dataset be represented by l. The
relevance metric then is defined as

Rρi = maxls∈l(ls) (2)

Detailed computation of log likelihood l = log p(y|X) is given in [33, Chapter
2].

Furthermore, probabilistic area-based metrics such as coverage, support, and
confidence are calculated as well. These metrics, commonly used in traditional
rule mining literature, provide measures of the quality and significance of the
rules [45]. Coverage represents the extent to which the rule covers the posterior
distribution,

C = P (ρ�) =
Nρ�

N
(3)

where Nρ� represents the |E| satisfying ρ� part of a rule and N represents the
total |E|. Support indicates the overlap between ρ� and ρ� parts of the rule,

S = P (ρ� ∩ ρ�) =
Nρ�∩ρ�

N
(4)

where Nρ�∩ρ� represents the |E| satisfying both the antecedent and consequent
parts of a rule and N represents the total |E|. Confidence is the ratio of support
to coverage

ζ = P (ρ�|ρ�) =
S

C
(5)

The aforementioned metrics are calculated using empirical cumulative probabil-
ity distribution computation [6], offering insights into the areas covered by each
rule relative to the entire dataset. Finally, a weighted sum of relevance, support,
coverage, and confidence metrics is computed to derive an interestingness rule
induction metric, defined as

α = w1 ∗ R + w2 ∗ S + w3 ∗ C + w4 ∗ ζ (6)
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The ranges of all metrics are in between (0,1]. Currently, the weights are manu-
ally set, allowing the data scientist to divide the overall weight of 1 among the
4 weight values. We recommend putting more weight on R to make sure the
metric captures the interesting regions with priority. But for use cases where it
is not a priority, an equal weight of 0.25 can be set for all.

5. Rank Rules and Generate Final Explanations: The rules are sorted
based on the interestingness metric Eq. 6, and a global explanation is provided.
For local explanations, the method matches the user’s provided parameter set
with the global rules to identify the applicable rule to display as an explana-
tion. RX-BO responds to user queries with arbitrary parameter sets outside the
defined search space D by stating “no rules found”, maintaining consistency and
avoiding erroneous results.

4.3 Design Choices

This section discusses in detail our design choices for RX-BO.

Choice of Clustering Method: Hierarchical agglomerative clustering with
Ward criterion is widely used for finding clusters of data that have minimum vari-
ance. It produces compact, evenly-sized clusters, making it suitable for datasets
with varying sizes and shapes [28]. The Ward criterion is relevant in the con-
text of explainability in BO as it captures the underlying data distribution by
dividing the posterior into smaller subspaces where each subspace has similar
characteristics. It identifies different levels of uncertainty present in the poste-
rior distribution and relies on that to cluster samples together. By using the
Ward criterion, rules can be generated to capture the entire space by focusing
on the model’s uncertainty within smaller areas. The method also allows con-
trol over rule granularity by setting a distance-based threshold determining the
optimal size of smaller areas for rule generation. However, there are drawbacks.
The Ward criterion only works with continuous data, requiring one-hot encoding
for categorical inputs and resulting in longer rules. Additionally, the choice of
threshold ts affects rule specificity, resembling the challenge of finding optimal
clusters in unsupervised learning.

Choice of Rule Based Explanations: Rule based explanations in BO done
with RX-BO are faithful by design. Firstly, RX-BO operates by sampling within
the bounded search space D to generate explanations. As a result, the explana-
tions remain faithful to this bounded space. Even if the samples within D are
perturbed, it does not affect the explanations provided by RX-BO. Secondly,
traditional fidelity computation methods, i.e. Fidelity = 1

N

∑N
i=1

|f(xi)−f̂(xi)|
max(f(xi),f̂(xi))

,

where N is the number of evaluation points, f(xi) represents function output
at location xi and f̂(xi) is the explanation based prediction at location xi, rely
on explicit decision boundary. It is not relevant in the context of BO. BO does
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not rely on defining explicit decision boundaries. Instead, RX-BO focuses on
capturing the optimization space. This ensures that the explanations generated
by RX-BO faithfully represent the model’s behavior within the bounded region.

5 Evaluation

To gain a understanding of RX-BO in practical scenarios, we evaluated RX-BO
on a toy optimization problem and on real-world machine learning tasks. The
tasks involve HPO with BO for algorithms like Decision Trees (DT), Support
Vector Machines (SVM), and Multilayer Perceptron (MLP) for regression and
classification [46]. We use the California housing dataset2 for regression and the
MNIST dataset for classification [7]. Additionally, we compared quantitatively
with decision trees and qualitatively with RuleXAI [23] highlighting the advan-
tages of RX-BO over baseline approaches. Our evaluation was guided by the
following questions:

– How does RX-BO work on an optimization problem? (cf. Sec. 5.1)
– How does RX-BO perform compared to a baseline method? (cf. Sec. 5.2)
– How does the threshold parameter influence rule generation and metrics? (cf.

Sec. 5.3)

5.1 Case Study

Given an example black-box objective function as defined in the Bayesian Opti-
mization Python library, f(x) = e−(x−2)2 + e−(x−6)2/10 + 1

x2+1 the goal is to
find the value of x that maximizes f(x) [31]. We set parameters Nsamples =
1000 & Psamples = 500.

Figure 1 (a), (b) visually represents the black-box function and the completed
BO process. The figure highlights the optimal region with low uncertainty, while
the other regions display higher uncertainty. The complete optimization results
can be seen here with red marks over the points evaluated by BO while explor-
ing the function space. Figure 1 (c) represents the posterior distribution with
an augmented explanation set, which is the approximation of the learned data
distribution. In Fig. 1 (d), the generated dendrogram is depicted, and threshold
ts is marked at 5. In this dendrogram, moving up the Y axis indicates greater
separation between clusters. Reducing the tree to some height, different numbers
of clusters can be formed, i.e. control the rule specificity visually. In RX-BO, the
dendrogram can act as an aid for threshold ts tuning in lower dimensional prob-
lems. In higher-dimensional cases, it can be complex but helpful. Finally, Fig. 1
(e) represents the rule rectangles over the complete space. These rectangles are
then transformed into textual rules for the end user.

2 https://www.dcc.fc.up.pt/ltorgo/Regression/cal housing.html, accessed on:2023/
05/04.

https://www.dcc.fc.up.pt/ltorgo/Regression/cal_housing.html
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Fig. 1. In (a,b), we observe the black-box function f(x) optimized by BO with 50
iterations, higher uncertainty regions depicted with green highlights (95% confidence
interval). Red marks indicate points evaluated by BO during the optimization process.
In (c), the posterior distribution generated by 500 GP sampling runs with the explana-
tion dataset is depicted, which is an approximation of the learned data distribution. In
(d), we observe the generated dendrogram with a threshold marked at 5 generates the
clusters formed over the posterior distribution of the GP. In (e), we observe clusters
that are utilized to induce rules, which effectively capture the uncertainty of the model.
An example rule for the optimal area Rule 1: ‘IF x : [1.664, 2.296] THEN UTILITY
(1.312, 1.401)’
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Table 1. Hyperparameters for regression models optimized

DT-R SVM-R MLP-R

max features: Integer(1, 8) C: Real(1, 50) optimizer: adam, rmsprop

max depth: Integer(5, 5000) kernel: poly, rbf, sigmoid activation: relu, tanh

min sample leaf: Integer(2, 100) epsilon: Real(0, 1) loss: MSE, MAE

min sample split: Integer(1, 100) - batch-size: [16, 32, 64]

criterion: MSE,MAE - neurons: Integer(10, 100)

- - epoch: [20, 50]

- - patience: Integer(3, 10)

5.2 Empirical Evaluation

In this study, we replace our hierarchical agglomerative clustering based rule
proposal algorithm with a decision tree based rule proposal which employs the
CART algorithm. The decision tree method with CART algorithm, known for its
explainability, is a good baseline because a number of other methods of regres-
sion XAI build upon it, such as Rulefit [9], TE2Rules [18], Random Forest to
rules [2], Skope rules [13]. It is worth noting that the existing body of literature
on BO explainability lacks adequate methods for conducting comprehensive com-
parisons (cf. Sec. 2). Consequently, we compared the performance of the decision
tree-based rule proposal method with our method using various metrics from the
XAI literature [30].

We will evaluate HPO task on regression and classification models with RX-
BO and compare it with the baseline.

Machine Learning Models. We focused on explaining the HPO task for
three regression models applied to the California housing dataset The models
considered for this analysis were DTR, SVM, and MLP. [46]

Initially, these models were run with their default settings obtained from
scikit-learn version 0.24 [32]. Subsequently, a BO method from the skopt library
was employed to optimize their hyperparameters and improve their performance
in terms of Mean Squared Error (MSE) with 3-fold cross-validation3. The skopt
library uses the Matern kernel with a length scale of 1 as the default for the
backbone GP. Table 1 provides an overview of the parameters optimization for
each model. For the categorical parameters in the input, we employ one-hot
encoding. In the output, we will get a longer rule with all categories included.

Similar models were used for classification task from sklearn with MNIST
dataset [7] with 3-fold cross-validation [46]. In this case, accuracy was utilized as
the performance metric. We can see in Table 2 the different parameters optimized
with skopt. Like the regression case, we now employ RX-BO to these models and
generate explanations. For the categorical parameters in the input, we do a one-
hot encoding as well. In the output for these cases, we will get a longer rule
similar to the regression set.
3 https://github.com/scikit-optimize/scikit-optimize, accessed on:2023/03/08.

https://github.com/scikit-optimize/scikit-optimize
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Table 2. Hyperparameters for classification models optimized

DT-C SVM-C MLP-C

max features: Integer(1, 64) C: Real(0.01, 50) optimizer: adam, rmsprop, sgd

max depth: Integer(5, 50) kernel: linear, poly, rbf, sigmoid activation: relu, tanh

min sample leaf: Integer(1, 100) - loss: MSE, MAE

min sample split: Integer(2, 100) - batch-size: [16, 32, 64]

criterion: gini, entropy - neurons: Integer(10, 100)

- - epoch: [20, 50]

- - patience: Integer(3, 20)

Experimental Setup. Although a direct comparison between the decision tree
and RX-BO is not possible due to differences in their approaches, we aimed to
make them comparable by enforcing similar rule set lengths for both approaches
(similar meaning |ρ| ± 5). This was achieved by tuning the threshold ts for
RX-BO and running the decision tree from the scikit-learn library with default
parameters. We observe the mean coverage, mean support, and mean confi-
dence of the rule sets produced by both methods. For the RX-BO method
Nsamples = 1000 & Psamples = 500 was set as default to have sufficient data
for the explanation set.

Since decision tree is not inherently capable of incorporating the data uncer-
tainty, an additional preprocessing step was necessary. We performed binning
of the explanation dataset E utilizing the standard deviation of the targets to
account for the data’s inherent uncertainty and enable the decision tree to cap-
ture this uncertainty. Conversely, RX-BO required no data binning step, as its
design inherently facilitated the separation of data based on uncertainty. As a
result, RX-BO improved over the baseline approach in data handling, as it effec-
tively handled uncertainty without the need for additional preprocessing steps
like binning. (cf. Sec. 1, R1)

Quantitative Results. The results from the comparison are given in Table 3.
The research findings reveal that the decision tree variant exhibits higher mean
coverage compared to RX-BO. This is because decision tree-based rules con-
sistently capture a similar number of samples per rule, disregarding the data
distribution. Consequently, the decision tree variant yields significantly lower
mean support, indicating that it generates inconsistent rules that do not always
align with the target.

The lower mean rule coverage observed in RX-BO is because RX-BO’s rule
generation process relies on the variance of the posterior distribution. This sug-
gests that the rule coverage is not solely determined by the number of samples
covered by a rule but is also influenced by the data distribution. This achieves
consistent rules that represent the data distribution, leading to similar coverage
and support metrics for RX-BO. This approach leads to the creation of more con-
sistent rules that better capture the nuances and patterns in the data, resulting
in rules that accurately represent the data distribution. (cf. Sect. 1, R4)
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Table 3. Comparison between Decision tree-based rule mining and RX-BO averaged
over five runs.

Models Method Threshold Rule set length Mean Coverage↑ Mean Support↑ Mean Confidence↑
opt prob RX-BO 5 14±1 0.079±0.003 0.079±0.003 0.99± 0

- DT - 12±0 0.284±0.001 0.096±0 0.58±0.065

DT-R RX-BO 20 10.66±1.154 0.087±0.019 0.087±0.019 0.99±0

- DT - 9.66±2.081 0.107±0.006 0.092±0.004 0.55±0.141

SVM-R RX-BO 20 11±1 0.118±0.006 0.118±0.006 0.998±0.001

- DT - 11±1 0.146±0.044 0.089±0.009 0.363±0.085

MLP-R RX-BO 15 9.33±1.154 0.088±0.007 0.083±0.005 0.99±0

- DT - 9.33±2.309 0.096±0.006 0.044±0.002 0.371±0.086

DT-C RX-BO 20 11±1 0.078±0.007 0.078±0.006 0.99±0

- DT - 10.33±2.309 0.127±0.017 0.063±0.002 0.315±0.023

SVM-C RX-BO 20 8.66±1.520 0.156±0.014 0.156±0.014 0.998±0.001

- DT - 9.33±0.577 0.115±0.024 0.085±0.011 0.304±0.077

MLP-C RX-BO 15 9.33±0.570 0.088±0.001 0.088±0.001 0.99±0

- DT - 13±1 0.101±0.014 0.059±0.009 0.350±0.033

Regarding the mean confidence metric, several observations can be made.
Firstly, RX-BO outperforms the decision tree variant in terms of rule confi-
dence. The decision tree approach disregards the target when proposing rules
and instead focuses on segmenting the posterior distribution based on input
parameter subsets. RX-BO is purposefully designed to address this limitation
by considering the utility while proposing rules. By including the joint relevance
of input parameters and the target, RX-BO significantly improves the confidence
level in its generated rules. (cf. Sec. 1, R2)

Secondly, the design of decision trees renders them incapable of handling
uncertainty even when extensively aided by a preprocessing step (data binning),
which is effectively addressed in RX-BO. By separating the optimization space
based on uncertainty, RX-BO captures rules for each subspace where data sample
characteristics are equivalent. Consequently, the rules generated by RX-BO are
more representative of the respective space, thus resulting in higher confidence
levels. (cf. Sec. 1, R3)

Therefore, it can be concluded that RX-BO is a superior method for gener-
ating explanations in complex spaces compared to decision trees.

Qualitative Comparison to RuleXAI. A qualitative comparison was con-
ducted between RX-BO and RuleXAI [23]. RuleXAI operates by divide and con-
quer mechanism of rule mining. It then uses feature relevance computation from
SHAP [22] method to generate rules containing a subset of the most relevant
features based on a decision boundary. Here, individual rules are often smaller
in length, containing fewer features as ranked by SHAP. This method is vastly
different from RX-BO, where there is no feature relevance, feature ranking, or
divide and conquer based rule mining. Thus making a quantitative comparison
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unfeasible. Below is an example from RuleXAI applied out-of-the-box on an
HPO task on the decision tree classifier model. The best parameter that the BO
process provides is given below.

Sample: (‘criterion’:‘entropy’), (‘max-depth’: 38), (‘max-features’: 30),
(‘min-samples-leaf ’: 1), (‘min-samples-split’: 2)]) - Accuracy:0.795

The goal is to explain this parameter by providing rule/rules indicating from
where in the optimization space this parameter comes. The rules from RuleXAI
can be seen below for this case:

Example RuleXAI:
Rule 1: ‘IF max-features = <28, 30) THEN UTILITY = 0.78’; Rule 2: ‘IF

max-features = <28.02, 30.45) AND min-samples-split = <36.89, 40.63) THEN
UTILITY = 0.78’

Here, we can see multiple smaller sizer rules for the given sample, and each
rule does not incorporate all the input parameters.

Similarly, the rule from RX-BO is seen here: A single rule encompassing all
parameters. Example RX-BO:

Rule 1: ‘IF entropy : [0.99, 1.00] and gini : [-0.00, 0.00] and max-depth :
[35.00, 40.90] and max-features : [29.99, 35.07] and min-samples-leaf : [0.99,
2.10] and min-samples-split : [1.99, 3.00] THEN UTILITY (0.78, 0.81)’

Firstly, It is easier for a user to tune hyperparameters when the “good”
ranges of all parameters are known. RuleXAI does not fulfill that; by providing
shorter rules, it omits parameters, which might make it difficult for a user of the
HPO use case. Secondly, RuleXAI is not fit as a method for BO, for it fails to
incorporate the different requirements listed in (Sect. 1 R1-R4). These findings
highlight the superiority of RX-BO over regression-based XAI methods in the
optimization use case.

5.3 Influence of Threshold Parameter ts

Two studies were conducted to investigate the impact of the threshold parameter
ts in RX-BO. The first study analyzed the effect of ts on the number of global
rules generated. The second study examined its influence on the average interest-
ingness α of the rules. Weight values of w1 = 0.5, w2 = 0.2, w3 = 0.1, w4 = 0.2
were used for interestingness computation. For this study, the threshold was
tuned for ts = 1, 10, 20, 30, 40. This selection was made based on the min/max
distance for clusters, as observed in the problems we tackled.

The relationship between ts, rule length, and interestingness is depicted in
Fig. 2. We can observe as ts increases, the number of rules decreases, indicating a
shift from specific to more general rules, which aligns with the expected behavior
of a clustering method. Highly general rules tend to have higher interestingness
values, but excessively general rules may not provide desirable explanations as
they would capture the whole space as one single rule, thereby failing to provide
granular information. Since interestingness is a combination metric of different
other metrics with higher influence from relevance, we can also say that a higher
threshold value would have a higher relevance, which is also expected as the
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Fig. 2. In (a), we observe a trend in the length of rule list vs. threshold point, and in
(b), we observe the trend in interestingness vs. threshold point.

coverage increases for rules. They contain a lot more samples, including the
optimal sample, making this value high.

ts can be tuned with the aid of a dendrogram which can help to identify the
range of the threshold variable. An example dendrogram is depicted in Fig. 1
(d), one can observe the possible values ts can take on the Y axis of this. It can
also help in determining the optimal number of clusters and reveals the hier-
archical structure of the data distribution, allowing to identify natural clusters
and partition in the data effectively. For very high dimensions, it is complex to
use this aid. And it is still an open research direction.

6 Conclusion

This research has introduced RX-BO, a novel method that enhances the trans-
parency and interpretability of black-box BO algorithms. By leveraging GP mod-
els and a rule-based explainability method, RX-BO extracts distribution-aware
rules that provide insights into the decision-making process of BO by elucidat-
ing the learned data distribution. Compared to traditional rule-based explainers,
RX-BO offers higher rule confidence, improved rule granularity control, and the
identification of interesting areas based on likelihood when compared to base-
line frameworks like Decision trees and RuleXAI. The framework’s contributions
to the field of XAI significantly improve the understanding and trustworthiness
of black-box BO, making it a valuable tool for researchers and practitioners
in various domains. For future work, expanding this framework to explain other
probabilistic optimization algorithms would be desirable. While refining the data
handling and explanation representation capabilities of RX-BO.
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Abstract. We present SD4Py, a free open-source Python package for
performing subgroup discovery and analysis. SD4Py makes it easy to dis-
cover subgroups from data stored in a Pandas data frame, to undertake
follow-on analysis to examine the variability in the quality of the sub-
groups and to visualise important parameters. The core algorithms for
discovering subgroups are implemented by an existing well-established
and efficient Java back-end, but are exposed through a user-friendly
Python interface. SD4Py offers a concise workflow for not only discover-
ing but also comparing subgroups, in order to select those of interest, and
for gaining insights into what is distinctive about individual subgroups.

Keywords: Subgroup Discovery · Visualisation · Python Package

1 The SD4PY Package: An Overview

Subgroup discovery [1,27,28,44], an approach closely related to association rule
mining [1,40], allows the analyst to extract interpretable patterns according to
a given quality function (also called ‘interestingness measure’). For instance, it
can identify circumstances in which some variable of interest (the ‘target’) has
an extreme distribution of values. When examining a dataset, subgroups of data
points are identified through a combination of membership conditions in the
form of attribute-value pairs; any data points that meet the conditions count as
members. For example, when analysing industrial sensor data, a subgroup might
have the conditions “Blade pressure” is Low AND “Vacuum strength” is High.
The subgroup consists of all data points matching this description. The most
interesting subgroups are identified using a quality function, e. g., quantifying
how extreme the values of target variable are within the subgroup and includes
some adjustment to favour larger subgroups. Extensions consider, e. g., sets of
target variables [17,22,32] or complex network measures [3,12].

Subgroup discovery is applicable to various domains, e. g., medicine [18],
industrial [4] as well as business analysis [15], cyber-security [6,13] or social
contexts [2,7]. Since subgroups are interpretable, they are highly relevant for
knowledge discovery, including hypothesis generation based on existing data.
Taking a medical context as an example, subgroup discovery could be used to
identify groups of individuals who are especially likely to have a certain medical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Nowaczyk et al. (Eds.): ECAI 2023 Workshops, CCIS 1947, pp. 338–348, 2024.
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condition. Each subgroup would specify some factors that potentially combine
to increase the risk of the condition; if a subgroup seems promising, follow-on
confirmatory research could then establish whether a causal relationship exists.

In another setting the goal may be, say, to predict the selling price of second-
hand cars from various properties like the year and brand. Here, subgroup dis-
covery can be used to find simple descriptions of groups of cars that have a
high selling price on average. Once subgroups have been identified, they can also
be applied to unseen data to decide if a car belongs to a group with a high
selling price on average. Thus, each such decision is entirely explainable, being
based on a set of explicit rules. Therefore, this directly connects explainable and
interpretable machine learning [16,39], via subgroup discovery as a local pattern
mining technique for both exploratory and explanatory data analysis, in order
to provide insights into the data and obtain explanations about its structures
and relations.

Although there is a quality function which ranks the subgroups, often many
interesting candidate subgroups are discovered. Here, the open-source SD4Py
Python package also provides methods to compare and contrast subgroups, and
obtain insights into their distinctive characteristics. This aids the analysis pro-
cess by making it quicker to refine results and form a selection of the most
interesting subgroups. Our package provides several novel contributions in this
regard, including methods to analyse variability in the ‘quality’ of subgroups,
and visualisation methods to present their important characteristics. In earlier
work, we demonstrated the value of applying these visualisations to study team-
work interactions, in order to find moments when a change in group dynamics is
especially likely [24]. These visualisation options augment SD4Py, and provide
an additional contribution that is specific to our package.
SD4Py is available via several options:

– SD4Py Github: https://github.com/cslab-hub/sd4py,
– the Python Package Index (PYPI), or
– the pip package manager.

A Jupyter notebook showcasing SD4Py via several examples can be found
at https://github.com/cslab-hub/sd4py/blob/main/sd4py examples.ipynb
Detailed documentation is provided at: https://cslab-hub.github.io/sd4py Fur-
thermore, a brief video is available at
https://myshare.uni-osnabrueck.de/f/17689a78ff414cac9f04/

For subgroup discovery, there are implementations in Java (VIKAMINE [5,9],
Cortana [36]), and R (rsubgroup1, SDEFSR2). In Python there is Orange3 and
pysubgroup [31]. Focusing on a light-weight, seamless, extensible and easy-to-
use integration into Python for subgroup discovery and analysis, SD4Py pro-
vides an alternative based on the efficient, state-of-the-art implementation of

1 https://rsubgroup.org.
2 https://github.com/SIMIDAT/SDEFSR.
3 http://kt.ijs.si/petrakralj/SubgroupDiscovery/.

https://github.com/cslab-hub/sd4py
https://github.com/cslab-hub/sd4py/blob/main/sd4py_examples.ipynb
https://cslab-hub.github.io/sd4py
https://myshare.uni-osnabrueck.de/f/17689a78ff414cac9f04/
https://rsubgroup.org
https://github.com/SIMIDAT/SDEFSR
http://kt.ijs.si/petra kralj/SubgroupDiscovery/
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Fig. 1. Income prediction use case: The distribution of mean target values from boot-
strapping simulations – assessing variability of subgroup quality and generalisability
to new data.

VIKAMINE [5], whilst extending VIKAMINE by introducing a series of new
functions to perform additional analysis and visualisation of subgroups.

Compared to pySubgroup and Orange, SD4Py provides a more comprehen-
sive set of state-of-the-art subgroup discovery methods, including in particular
the SD-Map/SD-Map* algorithms [10,30], as well as a more comprehensive set
of quality functions (for nominal, numeric, ordinal target variables, cf. [1,30])
which we now present through an easy-to-use Python interface. The SD-Map*
algorithm in particular is a state-of-the-art method for discovering subgroups,
based on the FP-Growth algorithm [21]; SD-Map* specifically applies optimistic
estimates in order to provide a performance advantage. This algorithm offers the
potential to speed up the subgroup discovery process compared to the available
alternatives, and thus is an important addition to SD4Py.

It is important to note that the SD4Py Python interface requires no inter-
action with Java. Instead, SD4Py offers suitable abstractions as an easy-to-use
interface on top of the Java functionality, enabling seamless access via Python.
Also, SD4Py extends on previous approaches by providing a number of addi-
tional analysis functions that support the analysis workflow after the initial dis-
covery of subgroups. Specifically, this relates to analysis options regarding, for
example, subgroup interpretation and analysis via visualisation as well as spe-
cific statistical assessment approaches (e. g., boostrapping analytics) described
below. Furthermore, different techniques for analysing complex data like time
series data [23,24] are provided by SD4Py, integrating into the rich Python
software ecosystem, thus enabling sophisticated analytical solutions. These addi-
tional analysis options are gathered into a sub-module, which sits alongside and
extends the core subgroup search functionality based on VIKAMINE, and which
provides a distinguishing characteristic of SD4Py.
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2 Example Application Use Cases

Now, we present an example of how subgroup discovery via SD4Py can be
applied to a classification scenario. In this example, we use variables gathered
from US census data to identify whether an individual is particularly likely to
earn more than $50,000 annually. This dataset is freely available from the UCI
Machine Learning Repository, under the name ‘Adult’4. It contains 48842 data
points, described by the target variable and 14 additional demographic variables,
such as education level and country of birth. The data was obtained from the
1994 US Census, and has been filtered to only include individuals who are older
than 16, work, and receive an income. The dataset has been used previously
to evaluate machine learning classification algorithms, and although state-of-
the-art neural network classifiers are now likely to be evaluated on larger and
more complex datasets, it functions well as a nontrivial case study in order to
demonstrate subgroup discovery.

Fig. 2. Income prediction use case: Visualisation of the overlap between subgroups.

In SD4Py, the core operation of discovering subgroups is exposed through a
simple function, which is called with a Pandas data frame and the name of the
target variable, with additional optional parameters for configuring the search
process. This means that subgroup discovery can be performed with a single line
of code:

subgroups = sd4py.discover_subgroups(
data, target=‘target_variable_name’)

Note that the discover_subgroups function is highly flexible, providing an
interface into the diverse functionality of the underlying VIKAMINE software.

4 https://archive.ics.uci.edu/ml/datasets/Adult.

https://archive.ics.uci.edu/ml/datasets/Adult
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Full details of the parameters that can be used to control this functionality can
be accessed via the help function, or via the online documentation.5

Subgroup discovery was performed with the goal of identifying groups of
data points where an income above $50K is especially common. This returns
numerous candidate subgroups. To gain a better understanding of these, we first
investigate the variability of quality measures, giving an improved understanding
of how different subgroups seem likely to generalise. This uses a bootstrapping
approach in which the quality of the subgroups is evaluated on repeated over-
lapping samples (with replacement) of the dataset. The quality metric to use,
such as the average value of the target variable, precision, recall, or F1-score,
can be decided by the user. The dataset from which samples are created can also
be chosen; it could be the same data used for subgroup discovery or could be a
separate validation set. The associated visualisation depicts the average target
value (mean for numeric targets, proportion of ‘positives’ in the subgroup for a
nominal target) across bootstrapping samples as a series of boxplots. The size of
the subgroups, understood as what fraction of each bootstrapping sample they
select on average, is represented in the plot by the thickness of the boxes. All
of this functionality is exposed through simple functions in SD4Py. In Fig. 1,
various subgroups that were found are displayed. The average likelihood of a sub-
group member earning more than $50K varied between subgroups, from around
0.4 on average to approximately 0.7, compared to a likelihood of 0.24 across the
full dataset. The size of the subgroups was also variable, with there being fewer
members in the subgroups with a higher average target value.

A few attributes appear in many of the subgroup definitions, such as the
members being married, working an ordinary number of hours per week, and
having a high educational level. This can lead to subgroups having a high overlap,
essentially selecting the same data points. When this occurs, it may be desirable
to choose a smaller number of more diverse subgroups for further analysis, cf. [1,
8,24,34]. To support this, SD4Py includes a function to operate over an ordered
collection of subgroups and remove those that overlap highly with subgroups
encountered previously. The threshold used for this is configurable, and expressed
in terms of the Jaccard similarity (the size of the intersection divided by the size
of the union, a value which varies between 0 and 1). An associated visualisation
shows how subgroups cluster together based on their overlap. A weighted network
diagram is constructed in which nodes represent subgroups and the weight of an
edge connecting two nodes is determined by the Jaccard similarity. This gives
a visual basis for selecting subgroups, in which it is possible to see how much
subgroups respectively differ (how distant they are in the diagram) and also
consider which subgroups are central within a neighbourhood and so likely to be
representative. As shown in Fig. 2, although the subgroups often involve similar
rules, the amount that they overlap with one another is not consistent – some
pairs overlap much more than others. This information could be used by the
analyst in selecting subgroups for further investigation.

5 https://cslab-hub.github.io/sd4py/sd4py/sd4py.html#discover subgroups.

https://cslab-hub.github.io/sd4py/sd4py/sd4py.html#discover_subgroups
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Fig. 3. Income prediction use case: Summary of a single subgroup.

To look more deeply into a single subgroup, we use the ‘subgroup overview’
visualisation. Once a selection of the most interesting subgroups has been made,
it is possible to make a more in-depth examination of individual subgroups, in
order to understand how a subgroup characteristically differs from the general
tendencies of the dataset. SD4Py provides a visualisation for this purpose. Four
panels show important attributes of a single subgroup, presenting the distri-
bution of values for subgroup members compared to the distribution of values
for non-subgroup members. In the top-left panel, the target variable is shown;
in the top-right, the selector variables used to define the subgroup are shown;
in the bottom panels, multiple interesting variables are selected based on esti-
mated effect size (comparing the subgroup to non-subgroup members) and also
displayed, with numeric variables on the left and nominal variables on the right.
One particular subgroup is shown in Fig. 3, in this case focusing on the subgroup
defined by Martial Status is Spouse. Numerous important observations can be
made from this visualisation that could be missed otherwise. For one thing,
we can see that married people tend to be older than unmarried people. The
increased income of married individuals could therefore in part be due to the fact
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that they are often in a more mature period of their career. Another observation
is that the relationship is almost always husband, not wife. It is not clear why
this is the case. Perhaps it is because the census was often filled in by the hus-
band on behalf of the whole household, or it could be that data filtering by the
dataset creator disproportionately removed wives. The almost exclusively male
composition of this subgroup in the data also might be expected to influence
income, if it reflects a social bias towards men having higher earnings.

In summary, this case study shows how SD4Py can be applied to analyse
data based on a target classification, in this case an income category based
on census data. The discovered subgroups provide rules that can be applied to
new data, to understand whether individuals are likely to have a higher income.
Importantly, the results also gave indications as to which demographic group-
ings are likely to have a high income, providing a potential starting point for
further research. Visualisations provided by the SD4Py package made it possible
to quickly gain additional insights, supporting and enriching the interpretable
subgroup definitions found through subgroup discovery.

Fig. 4. Paper mill use case: Multiple variables over time, showing when subgroup
member occurred.

Besides these visualizations, we also include a visualisation that specifically
applies to time series data, when the goal of subgroup discovery is to identify
interesting time windows. To demonstrate, we focus upon a second example
application, namely the paper mill dataset [41], which contains sensor recordings
from a production process for rolls of paper. In this process, a sheet of paper
runs through a sequence of mechanical components, and a common cause of
faults is that this sheet breaks, making a restart necessary. This is a costly
issue for the paper industry, and understanding the circumstances in which it is
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likely to happen could help to reduce the associated costs. Therefore, we use the
occurrence of a fault as a target variable, and search for subgroups of time points
in which a fault is especially likely. Measurements are at 2-minute intervals,
totalling 18398 time points, of which 124 were faults. Using this data as an input,
we search for subgroups where a fault is particularly likely to occur within the
next 10 min. After using the box plots and network visualisations to select a
single subgroup for further investigation, SD4Py makes it possible to visualise
the subgroup members, which represent points in time when a fault is especially
likely to occur. One such subgroup member is shown in Fig. 4. Multiple relevant
variables, such as raw sensor recordings, derived time-series features, and the
target variable, are plotted over time whilst windows belonging to the subgroup
are highlighted in the background. This makes it possible to visually inspect the
progression of multiple variables and subgroup membership over time, providing
additional information that can help an expert review the subgroup and better
understand how the system progresses towards a fault state.

3 Conclusion

In this paper, we have presented the SD4Py Python package enabling seam-
less subgroup discovery implemented in Python via an accessible programming
interface. SD4Py enables interpretable local pattern detection, thus enabling
explainable and interpretable machine learning. In particular, this also pro-
vides for a powerful exploratory but also explanatory data analysis approach.
From a technical perspective, for efficiency SD4Py relies on the state-of-the-art
VIKAMINE Java implementation for its core subgroup discovery algorithms [1];
SD4Py extends this via a Python API for easy-to-use analysis and integration
into the rich Python data analysis environment. It is important to note that
the SD4Py Python interface requires no interaction with Java, solely relying
on the Python API abstractions. Also, SD4Py specifically extends on previous
approaches by providing a number of additional analysis functions that support
the analysis workflow after the initial discovery of subgroups. Here, in particu-
lar, rich visualisation, post-processing and explanatory functions can be imple-
mented.

We have demonstrated the application of SD4Py in two example use case
studies – namely, a task of income prediction, and a task of analysing time series
data in the scope of industrial fault analysis. For both, we have demonstrated the
applicability and versatile analysis options of SD4Py, in particular highlighting
the visualisation and exploratory subgroup analysis approaches, showcasing the
overall exploratory and explanatory potential of subgroup discovery via SD4Py.

For future work, we consider to extend SD4Py via more complex quality
functions on sets of subgroups [8,14,42,43], e. g., in the spirit of exceptional
model mining on such selected (sub-)sets [17,29], also regarding further algo-
rithmic options, e. g., [35,37,38]. Furthermore, we aim to enhance the package
further for interactive use by advancing on subgroup (set) visualisation and
specifically explanation generation and presentation, e. g., [11,19,20,25,26,33].
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15. Berlanga, F., del Jesus, M.J., González, P., Herrera, F., Mesonero, M.: Multiob-
jective evolutionary induction of subgroup discovery fuzzy rules: a case study in
marketing. In: Perner, P. (ed.) ICDM 2006. LNCS (LNAI), vol. 4065, pp. 337–349.
Springer, Heidelberg (2006). https://doi.org/10.1007/11790853 27

16. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey.
In: IJCAI-17 Workshop on Explainable AI (2017)

17. Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. DMKD
30(1), 47–98 (2016)

18. Gamberger, D., Lavrac, N.: Expert-guided subgroup discovery: methodology and
application. J. Artif. Intell. Res. 17, 501–527 (2002)

19. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining
explanations: an overview of interpretability of machine learning. In: 2018 IEEE
5th International Conference on data science and advanced analytics (DSAA), pp.
80–89. IEEE (2018)

20. Guven, C., Seipel, D., Atzmueller, M.: Applying ASP for knowledge-based link pre-
diction with explanation generation in feature rich networks. IEEE Trans. Network
Sci. Eng. 8(2), 1305–1315 (2021)

21. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In: Chen, W., Naughton, J., Bernstein, P.A. (eds.) 2000 ACM SIGMOD Intl. Con-
ference on Management of Data, pp. 1–12. ACM Press (05 2000)

22. Hendrickson, A.T., Wang, J., Atzmueller, M.: Identifying exceptional descriptions
of people using topic modeling and subgroup discovery. In: Ceci, M., Japkowicz,
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Sánchez, J.R., de la Paz López, F., Adeli, H. (eds.) Bio-inspired Systems and
Applications: from Robotics to Ambient Intelligence, pp. 34–44. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06527-9 4

25. Iferroudjene, M., Lonjarret, C., Robardet, C., Plantevit, M., Atzmueller, M.: Meth-
ods for explaining top-n recommendations through subgroup discovery. Data Min.
Knowl. Disc. 37(2), 833–872 (2023)

26. Jorge, A.M., Pereira, F., Azevedo, P.J.: Visual interactive subgroup discovery with
numerical properties of interest. In: Todorovski, L., Lavrač, N., Jantke, K.P. (eds.)
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Abstract. Machine Learning (ML) model understanding and inter-
pretation is an essential component of several applications in different
domains. Several explanation techniques have been developed in order
to provide insights about decisions of complex ML models. One of the
most common explainability methods, Feature Attribution, assigns an
importance score to each input feature that denotes its contribution (rel-
ative significance) to the complex (black-box) ML model’s decision. Such
scores can be obtained through another model that acts as a surrogate,
e.g., a linear one, which is trained after the black-box model so as to
approximate its predictions. In this paper, we propose a training proce-
dure based on Multi-Task Learning (MTL), where we concurrently train
a black-box neural network and a surrogate linear model whose coef-
ficients can then be used as feature significance scores. The two mod-
els exchange information through their predictions via the optimization
objective which is a convex combination of a predictive loss function for
the black-box model and of an explainability metric which aims to keep
the predictions of the two models close together. Our method manages
to make the surrogate model achieve a more accurate approximation of
the black-box one, compared to the baseline of separately training the
black-box and surrogate models, and therefore improves the quality of
produced explanations, both global and local ones. We also achieve a
good trade-off between predictive performance and explainability with
minimal to negligible accuracy decrease. This enables black-box models
acquired from the MTL training procedure to be used instead of normally
trained models whilst being more interpretable.

Keywords: Multi-Task Leaning · Explainable Artificial Intelligence ·
Feature Attribution methods

1 Introduction

Contemporary, complex Deep Neural Networks (DNNs) are increasingly used in
order to assist the decision-making process. Despite their impressive predictive
abilities, these networks provide a very limited understanding of the reasoning
behind their decisions [15]. In domains with high-stakes applications such as
law, finance and healthcare, model understanding and therefore interpretation
is essential so that the model’s predictions can be trusted [15]. Interpretability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Nowaczyk et al. (Eds.): ECAI 2023 Workshops, CCIS 1947, pp. 349–365, 2024.
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of ML algorithms has thus become a pressing issue, and the field of eXplainable
- or Interpretable - Artificial Intelligence (XAI) has emerged and constitutes an
important component of Trustworthy AI.

XAI methods can be arranged to several categories according to different cri-
teria. The most apparent distinction is the one of ‘transparent’ versus ‘opaque’
models. The former category concerns models like Linear/Logistic Regression
and Decision Trees whose structure is simple, and their decision-making process
is understandable by humans. Unfortunately, the simplicity of these models often
comes with an unsatisfactory performance in real-world applications. This caveat
is known as the accuracy-interpretability trade-off. XAI aims to fill this gap by
providing explainability for ‘opaque’ models such as Neural Networks and Ran-
dom Forests which require the development of separate specialized algorithms
in order to render their predictions interpretable [15]. Usually, these algorithms
make use of the predictions produced by the model after its training, and are
referred to as post-hoc explainability methods.

Post-hoc methods can be further categorized into global and local methods.
The former aim at explaining the general machinery of the ML model, by describ-
ing its average behavior over the entire dataset [5], while local methods focus on
explaining predictions for individual data instances [5]. Another categorization
is based on whether the algorithm is model-agnostic (i.e., it does not require
access to the model architecture) or model-specific.

One well-known class of explainability algorithms are the Feature Attribu-
tion (FA) methods [6] which rely on a score that captures how much the input
features contribute to the model’s output. FA methods can be used in both
global and local settings, as well as in model-specific [2] and model-agnostic [6]
contexts. On the other hand, the class of counterfactual explanations [7] con-
cerns local model-agnostic methods that describe the smallest changes to the
feature values that change the output of the prediction for a given instance,
while decision rule-based explanations are simple IF-THEN natural language
hypothetical statements, consisting of a condition which contains one or more
input features, and a corresponding prediction based on the values of the features
involved in the condition [5].

Real-world problems are multi-objective ones, which means that ML train-
ing should address multiple tasks simultaneously, possibly belonging to different
data modalities. For example, an autonomous vehicle should be able to segment
the lane markings, detect humans, locate road signs, and identify their meaning
[21]. In the medical sector, prediction accuracy and prediction explainability are
simultaneously required, e.g., when a patient should be informed about poten-
tial side-effect risks for a particular tretment plan. Such problems motivate the
development of Deep Learning models that, given an input, can infer several
desired task outputs [21]. This kind of models can be trained using the Multi-
Task Learning (MTL) paradigm that permits multiple tasks to be concurrently
learned by a single model, enabling the different tasks to share potential common
underlying information, and removing the need for training different models for
each task. In the case of XAI, a way to use MTL is to think of prediction and



Exploring Multi-Task Learning for Explainability 351

explainability as two distinct tasks, and to simultaneously solve for these tasks
in order to allow information exchange between the two tasks and to produce
more specific and accurate explanations for the predictions.

In this work, we utilize the MTL paradigm, which has recently been used
in the field of XAI [8,24,37], in order to develop a framework that concurrently
solves a ML prediction task and an explainability task. We focus on surrogate
models and employ them to produce FA explanations. We aim at finding a black-
box neural network model f along with a surrogate approximation model g, by
forcing the former to take into account, during training, how well it is approxi-
mated by the latter. To that end, we optimize a loss function that includes a term
for predictive training loss and an explainability-based metric. For the latter, we
use a known explainability metric such as fidelity, which measures the difference
between the predictions of g and f . This component aims to improve f ’s approx-
imation through g and to enhance the quality of post-hoc explanations of the
black-box model. Furthermore, the combined objective acts as the information-
sharing ‘channel’ between the two models in the course of back-propagation [18]
during the joint training. In another point of view, g could be considered as an
explainability-regularizing model that constrains the values of f ’s predictions to
being similar to those of the interpretable model g. In order to demonstrate the
concept of our approach, we choose g to be a parameterized linear model which
can be trained along with the black-box, but other choices are possible as well.
Using such linear models, feature importance explanations for the predictions of
f can be acquired through the coefficients of g [5].

We experiment with a variety of regression and binary classification tasks,
where we compare models trained with and without MTL. We show that, our
approach that uses MTL to concurrently train f and g, results in a more accurate
approximation of the black-box by the surrogate linear model, compared to the
standard practice where the two models are trained sequentially and separately.
Therefore, the global explanation’s fidelity is very much improved and in addi-
tion, only a minimal drop in the predictive performance is observed as a trade-off.
Furthermore, we show that the same black-box model can be more accurately
approximated by local linear explainers (like Local Interpretable Model-Agnostic
Explanations (LIME) [6]), thus resulting on a lower-fidelity local explanation.

2 Related Work

2.1 Feature Attribution (FA) Methods for Explainability

FA algorithms are most commonly used as local explainers and assign importance
scores to how much a given input feature contributes to the model’s prediction
result for a single instance of interest. Much work has been done on model-
specific techniques that are gradient-based and work for DNNs by computing
the significance of input features based on the gradient values of the model’s
parameters [2,25]. Another line of research works create a local neighborhood
around the instance of interest x based on perturbations of x’s feature values and
measure the change in the model’s output in order to calculate the significance
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of each feature [6,29,35], based on a surrogate model. One of the most popu-
lar FA explanation systems, LIME [6], results to a local surrogate model-based
explanation by optimizing the following objective, given the instance of interest
x and a trained black-box model f :

e(x, f) = argmin
g∈G

[ ∑
x′∈Nx

wx (f(x′) − g(x′))2 + Ω(g)

]
(1)

where Nx is the neighborhood around x, consisting of synthetic perturbations of
x. The class of surrogate models is denoted by G (e.g., linear models or decision
trees), and Ω(g) is a measure of complexity that encourages desirable properties
of g such as sparsity, i.e., using a small number of features [6]. LIME also weighs
each neighbor of x to denote its importance, using a proximity measure (e.g.,
�2-distance from x) and solves a weighted linear regression objective, using a
weight vector wx. The form of the resulting explanation e(x, f) depends on G.
For instance, if G includes all possible linear functions, then e(x, f) will consist
of the coefficients of the learned linear function g, while in the case of decision
trees, e(x, f) will consist of decision rules based on the trained tree.

In addition to local explainability, FA methods have also been used for
global explainability through global surrogate models which aim to approxi-
mate (mimic) the predictions of the underlying black-box model [5,10]. Global
surrogate models are similar to local surrogate models, except that they are
trained by using the whole dataset and not just a generated neighborhood of
a specific instance x. The most common way to learn a global surrogate model
is to train it on the predictions {xi, f(xi)}N

i=1 of the black-box model, where
xi, f(xi) respectively are the i-th input training feature vector and the corre-
sponding black-box model’s output. This is also the baseline that we use in our
experiments for global explainability.

2.2 Multi-Task Learning

MTL has been extensively studied for training a model on multiple tasks at
the same time. This formulation can result in both improved training efficiency
and better model performance for each task [14]. The most widely used multi-
task learning architecture comprises a shared-parameter model structure, where
the first (representation learning) layers are shared across tasks [21] and N task-
specific parallel heads are added on top, one for each task. This approach is called
a hard parameter-sharing one, where essentially the parameters are divided into
shared and task-specific [21]. In an alternative approach, the soft parameter-
sharing one, there are no shared layers, and each task is assigned its own set of
parameters, a subset of weights of the DNN corresponds to a certain task. In
addition, a mechanism is employed to allow information flow among tasks (i.e.,
soft sharing) [21,22]. For example, individual (task) modules could exchange
information by sharing a segment of their learned latent features (also see Fig. 1).
Clearly, the soft parameter-sharing approach requires more training time and
computational resources due to the larger number of task-specific parameters.
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However, it can prove more useful in settings where the tasks at hand are not
so closely related.

Fig. 1. Two widely used MTL architectures. Each box represents a layer. In (a), the
hard parameter-sharing approach is depicted. Grey boxes denote shared layers while
colored ones denote task-specific heads. In (b), the soft parameter-sharing approach
is shown with no shared layers. Three dedicated subsets of the model’s parameters
correspond to the three different tasks. Figure is taken from [21] (Color figure online).

In this work, a soft sharing-based approach is utilized, where the surrogate
model g does not share parameters with the black-box f in order to preserve
the former model’s transparency (by keeping its linear structure), and the two
models exchange information only through their respective predictions which we
aim to make as similar as possible. In other words, we treat the black-box model
f and the surrogate model g as two separate sets of parameters, one for each
task, which however communicate through the optimization of the joint training
loss function which includes both f and g.

MTL has recently been used as a facilitator of XAI in specific settings.
Some works propose its use in the design of explainable recommendation sys-
tems, either by producing accompanying textual explanations about the rec-
ommendation [8] or by solving joint tensor factorization objectives of “user
preference modeling for recommendation” and “opinionated content modeling
for explanation” that involve tensors regarding the user, the items and the
users’ preferences on individual items’ features [37]. Another line of work,
related to ours [24], considers MTL for weakly-supervised concept-based explain-
ability. In a fraud detection setting, the authors employ distant supervi-
sion using domain knowledge and a rule-based database in order to acquire
imprecise (noisy) concept explainability labels. They map rule descriptions
present in the database that hold for specific data instances to concepts
which stem from a concept taxonomy (related to the task). For instance:
{Rule: Order contains risky product styles. → Concepts: Suspicious Items}.

They also explore various training strategies for jointly training ML models
for two classification tasks, one about a prediction task and one based on the
concept labels which is essentially a multi-label classification task.
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Following a rationale similar to that of [8,24], in this work, we jointly solve a
prediction and an explainability task. However, our approach differs in the follow-
ing. First, instead of solving an additional supervised learning task such as text
generation [8] or classification of concept categories [24], we make use of a quan-
titative explainability-related metric as one of the two objectives, corresponding
to the task of explainablity, and we incorporate it into the loss function. Addi-
tionally, we focus on surrogate models that produce feature importance values
without the need for any additional labeled data (e.g., text reviews or inter-
pretable concepts). Our method aims at obtaining an accurate black-box model
while at the same time learning a better approximation of it through the surro-
gate model. On the contrary, in the baseline, currently used method, a surrogate
is obtained separately, after the training of the black-box is completed. Thus,
the adoption of MTL allows us to achieve this improved approximation as the
parameters of the black-box model are updated through the shared optimization
objective with respect to the performance of the explainability task which quan-
titatively measures how accurate the approximation is between the black-box
and the surrogate models.

2.3 Explainability Through Regularization

Some works consider the direction of explainability-based model optimization,
which we also address in this work. However, they use various types of regular-
izers in the optimization scheme of the black-box model. The method of Func-
tional Transparency for Structured Data (FTSD) [33] uses a non-differentiable
game-theoretic approach to regularize black-box models so that they become
more locally interpretable. It focuses on graph and time-series data, and thus
requires domain knowledge to define the neighborhood Nx. Self-Explaining Neu-
ral Networks (SENN) [31] generalize linear models, enriching them with complex
features and maintaining interpretability via gradient regularization and an auto-
encoder network. The Right for the Right Reasons (RRR) method [11] and some
similar works [4,30,36] use domain knowledge to decide on the features that are
used by the underlying model through a loss regularizer. This regularization
affects the model’s explanations. Regularization for tree-based approximation
was proposed in [12,13]. Finally, Explanation-based Optimization (ExpO) [1]
uses a model-agnostic regularizer based on XAI metrics aiming at improving the
quality of local post-hoc explanations of the black-box model.

Our work is related to these methods on the aspect of explainability-based
optimization. However, different from these works, we utilize MTL, which allows
us to obtain a more interpretable black-box model as well as an explainer with-
out affecting the black-box architecture. Furthermore, our approach does not
require access to domain knowledge, thus removing the need for costly feature
engineering and supplementary data.
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3 MTL-Inspired Explainability

In this section, we present our proposed framework that leverages MTL in order
to enhance explainability. Our approach addresses both a prediction and an
explainability task, each characterized by a distinct loss function. We use a for-
mulation in which these two losses are fused using a convex combination. The
goal is to jointly train a black-box model and a surrogate model that tries to
approximate the predictions of the former. We concurrently update the param-
eters of the two models using the combined loss objective that consists of the
two loss components. The first component represents the predictive training loss
of the black-box model, while the second one utilizes an explainability metric to
assess the quality of the surrogate model’s approximation.

3.1 Background

We consider a supervised learning setting [34], where the objective is to learn a
ML model f , namely a mapping from a vector space X to a target space Y, with
f ∈ F : X → Y, where F is the function family, and the target variable y ∈ Y
can be either a real value (in regression problems) or a categorical value (in
classification problems). In ML settings, f is modeled as a DNN parameterized
by a set of parameters θ (henceforth fθ) that is trained with data D = {xi,yi}N

i=1

using a loss function LSTL in the single-task scenario (e.g., cross-entropy for a
classification task - note that STL stands for Single-Task Loss).

In MTL, fθ is learned with respect to multiple objectives which are most
commonly combined in a weighted linear sum:

LMTL =
m∑

j=1

αjLSTLj
(2)

where αj ∈ R is the weight for the j-th task and m is the number of dis-
tinct tasks. In addition, the model is trained using data in the form of D =
{xi, [yi1, . . . ,yij , . . . ,yim]}N

i=1 where yij is the target for the i-th training exam-
ple and the j-th task.

In this work, we aim to generate explanations in the form of feature impor-
tances. Therefore, one of the objectives will be responsible for the explainability,
while the other will be responsible for the prediction task. A system that pro-
duces such explanations is denoted as e : X × F → E , where E is the family of
possible explanations and is defined as E = {gq ∈ G | gq : X → Y}. In this work,
G is the set of linear functions which are suitable for producing feature-based
explanations. Therefore, since the explanations will be based on the coefficients
of the learned linear function, we have that E = G. Moreover, q denotes the
parameter set (i.e., the coefficients) of gq.

3.2 Explainability Metrics: Fidelity

Several metrics have been developed to objectively assess the quality of expla-
nations according to different criteria [3]. A common choice for the evaluation
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of feature-based explanations is to estimate how accurately gq approximates the
behavior of fθ for each target sample x [1,23]. This can be captured through the
squared difference:

PF(fθ, gq,x) = (gq(x) − fθ(x))
2 (3)

which is referred to as Point Fidelity [6,29]. The Global Fidelity is obtained as
the average of Point Fidelity values, across all N samples,

GF(fθ, gq) =
1
N

N∑
i=1

[PF(fθ, gq,xi)] . (4)

Fidelity is also used in cases that involve locality, where it is used to measure
how good gq is in modeling fθ in a local neighborhood Nx of point x, which
consists of synthetically generated perturbations of x’s feature values [1,23],

NF(fθ, gq,x) =
1

|Nx|
∑

x′∈Nx

[
(gq(x′) − fθ(x′))2

]
(5)

and is called Neighborhood Fidelity [1]. Similar to Point Fidelity, we can average
across all data points to get a ‘global’ Neighborhood Fidelity (GNF) measure
for the entire dataset:

GNF(fθ, gq) =
1
N

N∑
i=1

[NF(fθ, gq,xi)] . (6)

3.3 Optimization Objective

As mentioned above, the intention is to compute the parameters of both the
black-box and the explainable models in a way that gq’s predictions are as close
as possible to fθ’s ones, while also catering for the latter model’s predictive
performance.

Specifically, we want to train fθ and gq by solving the following optimization
problem:

(f̂θ, ĝq) = argmin
(fθ,gq)∈F×E

1
N

N∑
i=1

[α · Lbase(fθ(xi), yi) + (1 − α) · PF (fθ, gq,xi)] (7)

where f̂θ, ĝq are the acquired black-box and surrogate models respectively, after
the MTL training process. The function Lbase(·) is a prediction loss function
(e.g., squared error loss for regression, cross-entropy loss for classification, etc.),
PF is the point fidelity metric (3) and α ∈ (0, 1) is a hyper-parameter that
controls the relative weight of the two loss functions (Fig. 2). The optimization
problem in (7) can be solved using a gradient-based optimization algorithm.
The obtained surrogate model ĝq can be used as a global explanation method
regarding the obtained f̂θ.
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Fig. 2. The proposed MTL framework. We represent a data point as a feature vector xi

with fθ and gq being the black-box and explainable models respectively. Ground-truth
response is denoted by yi, while the black-box’s and the linear model’s predictions
are denoted by ŷi and ỹi respectively. Red dashed lines denote the back-propagated
gradients which allow the information exchange between the two tasks via the joint
optimization of the parameter sets θ and q. (Color figure online)

4 Experimental Results

This section provides results and insights from the experiments that we carried
out in order to assess the performance of the MTL-based framework and compare
it with state-of-the-art, single-task (STL) approaches. We experimented with
global and local explainability performance metrics. For simplicity, we considered
experiments on tabular datasets in which attribution is directly awarded on the
input features without further processing (e.g., formation of super-pixels for
imaging data [6]).

4.1 Model Architectures and Training

For the black-box fθ, we experimented with Multi-Layer Perceptrons (MLPs).
We acquired the final architecture through a tuning process in which the number
of hidden layers as well as the number of neurons per layer were selected based on
the performance in a held-out validation set. We set ReLU [19] as the activation
function of the hidden layers. For training, we used SGD with Adam [17] and
starting learning rate η = 10−3. Additionally, we used the binary cross-entropy
loss for binary classification tasks, the logarithm of the hyperbolic cosine for
regression tasks and an early stopping criterion. For the MTL paradigm, a linear
model was used for gq.

4.2 Datasets

We tested our models on a variety of regression and binary classification problems
from the UCI database [20], the California Housing dataset1 [27] and the Titanic
dataset2 [32]. Information about characteristics of these datasets can be found
1 https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html.
2 https://www.openml.org/search?type=data&sort=runs&id=40945&status=active.

https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.html
https://www.openml.org/search?type=data&sort=runs&id=40945&status=active
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in Table 1. For each dataset, we standardized numerical features to have mean
zero and variance one.

Table 1. Statistics of the datasets.

Dataset # samples # features Type

(Red) Wine Quality [16] 1,599 12 regression
Adult [26] 48,842 14 classification
California Housing [27] 20,640 8 regression
Titanic [32] 1,309 14 classification
AutoMPG [28] 398 7 regression

4.3 Evaluation Measures

For the prediction tasks, we relied on traditional metrics such as Accuracy and
the F1 score for classification, and Mean Squared Error (MSE) for regression, in
order to measure the predictive performance of the models. For the explainability
task, we used the GF and GNF metrics, defined in (4) and (6), in the experiments
regarding global and local explainability respectively.

4.4 Global Explainability Evaluation

Our method provides global explanations through the coefficients of ĝq in the
form of feature importance scores. We compared the models trained in the MTL
fashion to the ones obtained using separate, single-task training. For the single-
task scenario, we used a global surrogate model to approximate the single-task
trained model after the end of its training. For classification tasks, the compar-
ison in predictive performance is made based on Accuracy, while in regression
tasks, MSE is used. Table 3 shows the results of the experiments on the test
set of each dataset. For α, we experimented with step = 0.1 in the range (0, 1),
resulting in 9 values. Additionally, for the sake of completeness, we present pre-
diction test scores from a linear model baseline trained with STL in Table 2 in
order to justify the use of a non-linear black-box model.

The results show that training by using the MTL setting improves the GF
metric. Lower GF is better as it measures the difference of predictions. The
improvement holds for all values of α, but especially for the lower values of
α it does so by a large margin, compared to STL. This is expected, since for
low values of α, the Fidelity loss component has a large coefficient, and the
optimization process is highly influenced by it. However, for low values of α,
we see that the predictive performance of f̂θ decreases only by a small margin.
This effect diminishes as α takes on higher values, but so does the margin of
the decrease of GF, compared to the STL baseline. This is also anticipated as
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Table 2. Comparison of single-task trained MLP and linear models.

Metric Dataset Linear Non-linear (MLP)

accuracy/mse wine (mse) 0.598 0.541
adult (acc.) 0.824 0.850
housing (mse) 0.410 0.237
titanic (acc.) 0.774 0.785
autompg (mse) 0.176 0.098

Table 3. Comparison of a single-task trained MLP model (STL) with MTL train-
ing for various values of α based on the corresponding metric for the predictive task
performance and GF for the global explainability task. Results are shown across 5 runs.

Metrics Datasets STL MTL - parameter α

- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

accuracy/
mse

wine (mse)
adult (acc.)
housing (mse)
titanic (acc.)
autompg (mse)

0.541
0.850
0.237
0.785
0.098

0.569
0.836
0.403
0.764
0.153

0.558
0.839
0.381
0.767
0.148

0.544
0.842
0.381
0.775
0.137

0.544
0.844
0.340
0.781
0.126

0.540
0.848
0.307
0.776
0.117

0.539
0.849
0.279
0.776
0.110

0.536
0.850
0.262
0.781
0.104

0.540
0.849
0.221
0.780
0.096

0.547
0.850
0.204
0.776
0.105

Global
Fidelity (GF)

wine
adult
housing
titanic
autompg

0.034
0.033
0.199
0.048
0.093

0.001
0.001
0.0006
0.001
0.001

0.003
0.004
0.002
0.004
0.001

0.005
0.007
0.006
0.007
0.004

0.009
0.010
0.015
0.011
0.008

0.014
0.013
0.025
0.017
0.013

0.025
0.016
0.038
0.020
0.024

0.036
0.018
0.056
0.026
0.039

0.056
0.021
0.100
0.026
0.055

0.086
0.021
0.152
0.028
0.083

a higher weight for the predictive loss allows it to affect training to a greater
extent and thus increase the predictive performance.

This accuracy-interpretability trade-off for the different values of α is
depicted in Fig. 3 for each dataset. The larger sized (circled) points represent
the Pareto optimal points (i.e., the optimal trade-offs between the two tasks).
The behavior is consistent for all the datasets where a monotonicity of GF is
observed, except for the Wine Quality dataset where the fidelity metric is slightly
worse than the single-task baseline for large values of α (e.g., 0.7, 0.8, 0.9). This
could be explained by the fact that we treat the target variable of the dataset
as continuous, thus solving a regression problem. It could be possible that since
the linear model cannot predict the target as accurately as the neural network
model, and since for large values of α the Fidelity component takes a small
weight in the loss function, the result of the approximation is less accurate.

4.5 Local Explainability Evaluation

We additionally experimented with local explainability, in order to assess if the
acquired black-box f̂θ could be better explained by local surrogate models. We
used a post-hoc local explainability method and specifically, LIME [6]. We eval-
uated the explanations produced by LIME based on the acquired black-box f̂θ
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Fig. 3. Visualization of the predictivity-explainability trade-off. Prediction accuracy
vs. Global Fidelity results for different values of α on different datasets. Datasets: (a)
Adult, (b) California Housing (c) AutoMPG, (d) Titanic, (e) Wine Quality.
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using the GNF metric. We again compared a single-task trained black-box model
against black-box models trained with MTL (α ∈ (0, 1), step = 0.1).

After the training procedure of f̂θ was completed, we used LIME to produce
local explanations for each instance in the test set. For the GNF metric, we
generated neighbors for Nx using perturbations stemmed from N (x, μ, σ2) with
μ = 0, σ2 = 0.1 and used 10 neighbors (|Nx| = 10) for the evaluation.

Table 4 contains the results of the experiments for all datasets.

Table 4. Comparison of a single-task trained (STL) MLP model with MTL training
for various values of α based on the corresponding metric for the predictive task perfor-
mance and GNF for the local explainability task. Because calculation of GNF is slow
due to a separate training of a surrogate model for each instance, results are shown for
a single run. In addition, for the adult and housing datasets, 500 test points were
used.

Metrics Datasets STL MTL - parameter α

- 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

accuracy/
mse

wine (mse)
adult (acc.)
housing (mse)
titanic (acc.)
autompg (mse)

0.541
0.850
0.237
0.785
0.098

0.584
0.834
0.403
0.778
0.156

0.557
0.838
0.391
0.774
0.141

0.545
0.842
0.355
0.774
0.135

0.537
0.843
0.334
0.770
0.123

0.551
0.845
0.348
0.774
0.118

0.529
0.850
0.264
0.767
0.113

0.518
0.852
0.251
0.782
0.103

0.509
0.851
0.234
0.774
0.104

0.540
0.852
0.195
0.771
0.112

Global
Neighborhood
Fidelity
(GNF)

wine
adult
housing
titanic
autompg

0.019
0.084
1.260
0.131
0.111

0.001
0.048
0.003
0.048
0.027

0.002
0.047
0.052
0.120
0.039

0.003
0.057
0.085
0.140
0.016

0.008
0.061
0.134
0.164
0.022

0.008
0.067
0.369
0.119
0.035

0.014
0.078
0.230
0.009
0.033

0.031
0.074
0.937
0.153
0.041

0.018
0.051
0.242
0.225
0.047

0.029
0.083
0.616
0.105
0.126

Results show that GNF is also improved when MTL is employed. This shows
that the acquired black-box model f̂θ which was trained with regard to having
similar predictions to those of a linear model ĝq can also be more accurately
approximated by local linear explanations. However, local explainability results
seems to be independent regarding the value of α which could be explained by
the fact that the objective (7) does not involve a local explainability optimiza-
tion component. A possible solution would be the incorporation of a component
similar to [1] that will also account for local explainability performance during
the training process.

4.6 Lessons Learned from the Experiments

Overall, our results showcase that using the proposed MTL training procedure
allows the surrogate linear model ĝq to better approximate the black-box model
f̂θ, compared to the standard baseline of training them sequentially and sep-
arately. We also appose Table 5 which contains the R2 score between the pre-
dictions of f̂θ and ĝq in the single-task and multi-task settings on the adult
dataset.
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Table 5. R2 score between the predictions of the black-box and the surrogate models
on adult, in single-task and multi-task settings.

Approach STL α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

R2 0.57 0.97 0.93 0.89 0.85 0.83 0.78 0.77 0.72 0.73

The following key points can be observed from our experiments:

• The produced global and local explanations are more accurate than the expla-
nations produced by the single-task trained black-box model. This means that
f̂θ can be more accurately approximated even from local explainability meth-
ods compared to a black-box trained with STL.

• For global explainability, we observe a high improvement in the Global
Fidelity metric for low values of α and a slight decrease in the predictive
performance of f̂θ, compared to the baseline of the single-task training. The
decrease diminishes as α gets larger and even disappears on certain datasets.

• For local explainability, we also observe an improvement on the Fidelity of
the local explanations produced by LIME [6], compared to the Fidelity of
the same explanations when the black-box neural network is trained in a
traditional single-task fashion, but the improvement seems to be independent
of the value of α. This could be explained by the fact that the optimization
objective manages to make f̂θ more ‘interpretable’ but does not account for
local explainability performance per se.

5 Conclusions

In this work, we propose and evaluate a novel Multi-Task Learning framework in
which we train a black-box neural network model together with a surrogate linear
model in order to obtain Feature Attribution explanations. We use a convex com-
bination of two loss components. The first component assesses the black-box’s
predictive performance in terms of a training loss function, while the second one
evaluates the surrogate’s approximation quality through the fidelity metric. We
demonstrate that this paradigm improves the quality of the surrogate model’s
approximation to the black-box, thus resulting in more accurate (fidelity-wise)
global explanations on unseen test data compared to the standard used method,
which is to train the surrogate model separately from, rather than concurrently
with the black-box one. Finally, we also showcase the effectiveness of the frame-
work on a local explainability setting where again, more accurate (fidelity-wise)
local explanations are produced.

Future work could generalize the current setting through more explainabil-
ity metrics such as faithfulness, complexity [9] and stability [1] to the training
procedure. We could also consider other forms of optimization like constrained
optimization, namely minimize the prediction accuracy subject to a constraint
on an explainability metric. The objective would be to optimize the predictive
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training loss while enforcing a constraint on the value taken by the fidelity metric
in order to keep it below a desired threshold.

Lastly, an area we would like to study is related to user-perception based
explainability metrics. In the current work, we use a quantitative metric for
explainability, however, the real perceived experience on the end-user is not
clear. As explainability of ML models touches upon the end-users more than
any other ML model property, the grand objective would be to translate met-
rics such as fidelity to new ones that are closer to the user perception of what
explainability means to them and how it is perceived, and at the same time con-
tinue to follow a systematic optimization approach, similar to what we describe
in this paper. This of course necessitates that the new metrics are differentiable
or can be approximated by differentiable functions, so that they can be incorpo-
rated in a Deep Learning-based framework. Learning this mapping from the set
of quantitative explainability metrics such as fidelity, faithfulness, complexity, to
perceived user experience is a challenging goal which calls for ML methods on
crowdsourced datasets collected from human feedback that we intend to pursue
in the future.
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Abstract. This paper studies a novel approach for training people to
perform complex classification tasks using decision trees. The main objec-
tive of this study is to identify the most effective subset of rules for
instructing users on how to excel in classification tasks themselves. The
paper addresses the challenge of striking a balance between maximizing
knowledge by incorporating numerous rules and the need to limit rules to
prevent cognitive overload. To investigate this matter, a series of experi-
ments were conducted, training users using decision trees to identify cases
where cancer is suspected, and further testing is required. Notably, the
study revealed a correlation between the decision tree characteristics and
users’ comprehension levels. Building on these experimental outcomes, a
machine learning model was developed to predict users’ comprehension
levels based on different decision trees, thereby facilitating the selection
of the most appropriate tree. To further assess the machine learning
model’s performance, additional experiments were carried out using an
alternative dataset focused on Crohn’s disease. The results demonstrated
a significant enhancement in user understanding and classification perfor-
mance. These findings emphasize the potential to improve human under-
standing and decision rule explainability by effectively modeling users’
comprehension.

Keywords: Explainable Artificial Intelligence · Adaptive User
Modeling · Medical Diagnoses

1 Introduction

As human beings, we are inherently inclined to make classifications in our daily
lives, as we encounter a multitude of situations where accurate categorization is
crucial [1]. Consider for instance the act of distinguishing between safe and poten-
tially harmful technology, such as determining whether a link is safe to click.
Similarly, the ability to discern fraudulent financial behavior is of paramount
importance to safeguard our personal information and assets. In the context
of medical diagnosis, correctly classifying various diseases or conditions based
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on symptoms, test results, and patient information is critical for appropriate
treatment and care. Furthermore, even during a seemingly simple field trip, the
identification of poisonous plants becomes essential for ensuring personal safety
and well-being.

Undoubtedly, while expert guidance or accessing relevant resources on the
internet can aid in making accurate classifications for most tasks, there are
numerous situations where the ability to make prompt decisions or the disruption
caused by seeking advice become a significant factor. Moreover, when faced with
repetitive classification tasks, developing sufficient competency to make accu-
rate judgments proves far more efficient than repeatedly seeking guidance. By
acquiring the skill to classify different events effectively, individuals can enhance
their autonomy, streamline decision-making processes, and minimize reliance on
external sources for every instance of classification.

This paper aims to provide an effective method for teaching and training
people in classification tasks in which they have no prior experience, focusing pri-
marily in medical classification and diagnosis. In medical domains there is much
merit in studying decision models, especially for purposes of training and evalu-
ating the competence of interns. Here, rules produced through Machine Learning
(potentially based on expert opinions) can substantially shortened the intern’s
learning curve, resulting in a relatively accurate diagnosis which improves the
detection rates of diseases such as cancer. This has been successfully demon-
strated by Sehgal et al. [15] who used decision trees for training medical interns
in the diagnosis of esophageal dysplasia by performing endoscopy. This approach
has been successfully used also in non-medical domains, e.g., for the purpose of
training helicopter pilots in cockpit operation [10].

Our motivation is to strike a balance between incorporating more rules to
enhance user knowledge and on the other hand to limiting these rules to prevent
overwhelming them. This balance is crucial not only for learning new tasks but
also for the field of explainable artificial intelligence (XAI). Previous studies
have suggested that the number of rules a system generates can serve as an
effective metric for objectively measuring the effectiveness of XAI [12]. However,
the question of how many rules can be learned and how to optimize this balance
with performance has remained unanswered. We present a machine learning
approach to learn this value.

There are various machine learning methods that can be used for generating
the classification guidelines to train people. Some models, such as decision trees,
provide explicit classification rules [6]. Others, like Random Forest, Support
Vector Machines (SVM), Naive Bayes classifiers and Neural Networks do not
directly provide explicit decision rules, however it is possible to derive decision
rules based on the output [14]. Taking SVM as an example, one can gain insights
into the important features and their contributions to the classification decision
by analyzing the support vectors and their associated weights. Similarly, decision
rules can be derived based on the relationships between the features as reflected
by the decision boundary and its representation as a hyperplane in the feature
space. Additionally, techniques like feature importance or feature ranking can
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be applied to guide the formulation of decision rules by considering the relative
importance and thresholds associated with different features.

In this paper we produce decision rules using decision trees due to their
numerous advantages which make this method highly popular in XAI-based sys-
tems. Decision trees generate rules in a clear and interpretable format, i.e., can
be easily understood and followed by humans [2,4–6,9,14]. This transparency
makes decision trees particularly useful when the interpretability of the classi-
fication rules is important, such as in domains where explanations are required
or legal and ethical considerations come into play. Furthermore, decision trees
naturally form a hierarchy of rules, with higher-level rules capturing broader
patterns and lower-level rules handling more specific conditions [5]. This hierar-
chical structure allows decision trees to effectively handle complex classification
tasks by breaking them down into a series of simpler decision rules. Decision
trees can provide insights into the importance of different features in the clas-
sification process, which aids in understanding the underlying factors driving
the classification decisions and can be valuable for the training process. Finally,
decision trees are robust to noise and outliers in the data, can handle missing
values by utilizing surrogate splits and are less sensitive to irrelevant features.

The main contribution of this paper is the learning process presented in
Sect. 3. Here we present a task-independent framework for identifying which
decision tree rules should be presented to trainees as part of the training process,
using machine learning. In Sect. 4 we present details for how this process was
successful in learning what rules were necessary to teach for a cancer prediction
task and also show how the same learning process can be validated on a second
medical dataset– Crohn’s prediction. In Sect. 5 we present results detailing the
effectiveness of this approach, demonstrating how XAI can be created based on
the outputted rules. Section 6 concludes.

2 Related Work

While this paper focuses on the set of rules that a user should be presented
for a learning task, previous works have primarily focused more on the learning
process itself: what the learning order should look like, whether the learning
process should be based on examples [18], whether the learning should be visual
or verbal. Instead, we focus on what explanation should be given, emphasizing
finding the size and content that will be effective for the person’s learning.

Our problem is directly connected to Explainable artificial intelligence (XAI)
- to date, XAI is a relatively young field and some confusion exists about ter-
minology. The terms explainability and interpretability are often used inter-
changeably with the machine learning community often focusing on the sys-
tem’s machine learning logic while the human-agent communities often focusing
on how understandable the system’s logic is to the intended user [4,14,17]. The
opposite of explainable or interpretable systems are “opaque” or “black box”
systems that do not provide insight into their decisions and it is not possible to
understand how the inputs led to the system’s decision [3]. Following previous
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definitions, [14] we refer to Explicitness as the extent to which the system’s logic
is understandable to the intended user, Faithfulness as the extent to which the
explanation’s logic is similar to the actual logic being used, and Transparency
as the case for which the explanation is both explicit and faithful. We chose to
present the system’s logic using a decision tree because it is transparent - that
is, both explicit and faithful, making it the most understandable for the human
user to learn and apply [2,4,11].

The hierarchical structure inherent in decision trees yields itself to under-
standing which attributes are most important, of second-most importance, etc.
[11]. Furthermore, assuming the size of the tree is relatively small due to Occam’s
Razor [16], the if-then rules that can be derived directly from decision trees are
both particularly explicit and faithful [11]. However, in practice not all decision
trees are easily understood. Large decision trees with hundreds of nodes and
leaves are often more accurate than smaller ones, despite the assumption inher-
ent within Occam’s Razor [7]. Such trees are less explicit, especially if they con-
tain many attributes and/or multiple instances of nodes using the same attribute
for different conditions. As we now describe the goal of our paper is to find the
optimal subset of decision tree rules to maximize a person’s ability to learn and
apply those rules, thus demonstrating its explainability.

3 Problem Statement and Proposed Solution

We consider a model for a problem where a continuous stream of instances from
the same application domain needs to be classified according to a predefined set
of k target class values. The classification is being performed by an untrained
person (i.e., with no preliminary knowledge related to classification rules). Train-
ing is based on a decision tree - the human learner is presented with a decision
tree that captures some of the classification rules and the system iterates over
several examples (paths) and the resulting classification for each. The underlying
decision tree can either be picked from a set of given trees (and their accuracy
measures) or produced based on a given set of annotated (i.e., correctly classi-
fied) instances. The goal of this research is thus to come up with an effective
method for picking the tree based on which training will take place in a way that
maximizes the percentage of correct classification made by the human classifier
for their task.

Figure 1 depicts the logical flow of the proposed solution. The process can be
initiated either based on a set of trees provided by a domain expert or based on a
labeled database (i.e., with cases that need to be classified and their correct clas-
sification). In the latter case, we produce the set of potential trees using standard
libraries such as Sklearn by controlling parameters such as min samples leaf or
max depth of the tree. We emphasize that with both methods we only need a
small initial set of decision trees, as we can substantially augment that set by
including different variants of each tree, resulting from the removal of some of its
sub-trees. For each tree, we predict the percentage of cases the user will be able
to correctly classify with respect to the classification rules defined by that tree.
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This can be done either by developing the prediction model based on trees (i.e.,
provide a training set in the form of trees used and the percentage of correct
classifications obtained for each tree) or based on paths (provide a training set
in which each record represents a path within a tree and whether or not the user
provided the correct classification) and aggregating according1

Fig. 1. The proposed solution architecture.

We incorporate features pertaining to the specific user that needs to be
trained, such as age, gender and education in both methods. To create the pre-
diction model, we must conduct some initial experiment in which different users
are trained with different trees to record the percentage of correct classifications
they achieve. Once the prediction models are established, we can use them as-
is in different domains, without the overhead of running new experiments for
collecting the training data. It is important to note that using pre-established
models in new domains may lead to a slight decrease in accuracy compared to
developing fresh models from scratch because there’s no assurance that the dis-
tribution of paths or cases in the new domain matches the one used for training
in the original domain. Nevertheless, our experimental evaluation demonstrates
impressive performance, particularly when the prediction is based on tree paths.

Once we have gained the ability to predict the ability of the user to replicate
the logic encapsulated in a given tree, we can calculate her predicted perfor-
mance in classifying the stream of instances that she is about to encounter next.
The calculation takes into account the fact that even when correctly classify-
ing according to the learned tree, a misclassification is still possible as the tree
1 We do not include the underlying distribution of paths while doing the training, as

this is already implicitly encapsulated in the label provided to each record in the
training set (e.g., when doing this based on paths we know that this path was used
for training according to its frequency in the population).
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its does not have perfect, 100%, accuracy. We can quantify this expected mis-
classification by noting the original tree’s accuracy error. When using a predic-
tion model based on trees, the user’s expected absolute performance (i.e., with
respect to the ground truth) when using a tree Ti with accuracy accuracy(Ti)
and predicted recollection Pm(Ti) which is the prediction of how well the user
will remember the tree, denoted Pa(Ti), is thus:

Pa(Ti) = accuracy(Ti) · Pm(Ti) +
(1 − accuracy(Ti)) · (1 − Pm(Ti))

k − 1
(1)

where the first product relates to the case of where the model’s rule is correct
and the user manages to successfully follow it and the second relates to the case
where the model’s rule is incorrect however the user did not follow that rule and
picked the correct classification. The probability of the latter event is 1/(k − 1)
(assuming the user randomly picks one of the remaining k − 1 classification
values). When using a prediction model based on paths, we rely on the accuracy
of each path pj which represents the portion of cases correctly classified by the
rule captured by that path. The user’s expected absolute performance of using
a tree Ti is given by:

Pa(Ti) =
∑

pj∈Ti

f(pj)
(
accuracy(pj)·Pm(pj)+

(1 − accuracy(pj)) · (1 − Pm(pj))
k − 1

)

(2)
where f(pj) is the portion of cases that match the decision rule represented by
path pj . The selected tree is thus the one associated with the maximum expected
absolute performance, formally: arg maxTi

Pa(Ti).
The specific steps of this process were as follows:

1. Experimental Framework: Using the cancer dataset, we generated many
decision trees. We then constructed an initial experiment in which we
attempted to teach human participants without cancer diagnostic background
the correct diagnosis for the database instances. The results of the experiment
were saved in the learning repository.

2. Machine Learning: We then applied different machine learning (ML) algo-
rithms to the repository to create a general predictive model Pm as to which
decision trees are worth presenting in future cases. The prediction model
was based on learning the expected probability a person would remember a
given tree and correctly learning a set of tree rules against the expected value
(utility) for the prediction value of that tree. We successfully modeled this
task with machine learning for regression (e.g. the expected utility value) and
classification (e.g. the likelihood the person would remember a given tree).

3. Independent Validation: To confirm the result of these models, we applied
the prediction models learning from the cancer database to another medical
disease– Crohn’s. As we present in the results section, this model was suc-
cessful here as well.
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Each of these steps are further detailed in Subsect. 4.1, 4.2, 4.3 respectively.

4 Experimental Setup and Methods

4.1 Experiment Research Framework

In order to develop methods and algorithms to improve XAI within Human-
Agent Learning Systems, we built an application called “Learn how to diag-
nose cancer” using an ASP.NET interactive web-based application for conduct-
ing experiments with human participants. Data was collected through the use
of Amazon Mechanical Turk (AMT, MTurk). AMT has proven to be a well-
established method for data collection in tasks which require human intelligence
[8]. We recruited 200 participants from the United States equally divided between
5 decision trees that we generated. The average participant age was 40.29 (rang-
ing between 18–76), of which 50% were men and 50% were women. Each of the
five decision tree models were built from oncological data from patients that had
or did have suspected esophageal cancer. Our decision tree model was based on
important features for the patient’s final diagnosis of cancer/not cancer. The
features were selected according to previous work done [13] which investigated
what important features can be extracted to diagnose cancer.

Five different decision trees were built in order of most simple to most com-
plex. The more complex models had higher accuracy, but also more rules (symp-
toms/characteristics) which was reflected in the size of the tree. We took care
to not include overfitted trees to isolate the relationship between increased rules
and a person’s ability to perform better. Two examples of these decision trees are
presented in Fig. 2. The complete list of trees used, as well as their differentiating
characteristics is given in Sect. 4.2.

Fig. 2. Two examples of learning trees for diagnosing suspected cancer given to learning
in our experiment

The experiment consisted of a learning phase and test phase. In the learn-
ing phase, participants were shown patient data along with a system-generated
diagnosis, which included a decision tree explaining the decision-making pro-
cess. Each participant encountered 12 different cases, each with varying tree
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sizes. The participant’s objective was to “learn” to diagnose cancer based on the
rules he was taught. After completing the learning phase, participants moved
on to the test phase, where they were presented with 12 new real-world patient
cases. They were then asked to make their own diagnoses based on what they
had learned during the learning phase from the provided explanations. The cases
presented to participants in both the learning and test phases were selected based
on the distribution of cases in the database. Additionally, the labeling of cases
was designed so that each tree represented the percentage of successful clas-
sifications for the model accurately. To assess the participants’ understanding,
the researchers measured the percentage of cases that each participant correctly
labeled during the test phase.

4.2 Machine Learning-Prediction Model

Based on the results of this experiment, we created repository that would be used
for machine learning to identify which trees are generally best to present to future
users to maximizes their performance in new classification tasks. We recorded
three types data to build the repository for the machine learning model – specific
information about the structure of the decision tree, user demographic informa-
tion, and user performance information. Tree structure information included
properties such as the number of nodes, depth, and theoretical accuracy of
the tree. User demographic information included peoples’ gender, age, educa-
tion level, and medical knowledge. User performance information was related to
logged information about their task progress, such as the amount of time they
spent for each question in the learning and testing phases. Twelve questions were
presented in both the learning and testing phases. The participant’s response was
stored in the learning repository for both the correct model value which is the
true/false value indicating whether the participant’s classification answer is cor-
rect compared to the model’s classification answer, and the correct truth value
which is the true/false value indicating whether the participant’s classification
answer is correct compared to the true label of the case, e.g. the ground truth.
It should be noted that at times the participant’s answer was wrong according
to what the presented model attempted to teach (correct model) but actually
correct according to the objective labelled data (correct truth). As such, these
two variables help catch this nuanced difference. Based on the correct truth
and (correct model) values, we created two different accuracy metrics used
for building the repository for effectively decision the best tree size required for
a given user, Accuracy model and Accuracy truth. Accuracy model rep-
resents the percent of the 12 questions answered correctly. In other words, the
percentage of the tree a person will remember through the learning process. This
can numerically be represented as:

Accuracy model =
N∑

i=1

correct model
N

∗ 100 (3)

Accuracy truth measures the success of the participant’s diagnosis in relation
to ground truth based on the labeled data. It is an indication of the level of his
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success in classifying instances in relation to the real world. It can be numerically
represented as:

Accuracy truth =
N∑

i=1

correct truth
N

∗ 100 (4)

For example, assume a user received a decision tree with an accuracy level of
80%, and successfully memorized the entire model and correctly classifying all
presented cases according to the learned model. This user would receive a score
of 100% according to the first metric, and a score of 80% according to the second
metric, as the model itself had an error rate of 20%. The prediction model was
based on learning the expected probability a person would remember a given tree
and correctly learning a set of tree rules against the expected value (utility) for
the prediction value of that tree. We successfully modeled this task with machine
learning for regression (e.g. the expected utility value) and classification (e.g. the
likelihood the person would remember a given tree).

Based on these metrics collected from the experiment and saved in the repos-
itory, we built the Pm(Ti) learning model. As we mentioned earlier, we exam-
ined two learning methods: tree-based learning and path-based learning. In the
tree-based learning method we examined the Linear Regression, Stacking and
Random Forest algorithms, denoting them as: PmLinearregression(Ti)

, PmStacking(Ti)

and PmRandomForest(Ti)
respectively. These algorithms were utilized to effectively

tackle the regression problem of predicting the score of the entire tree, e.g.
the results of “Accuracy model,” for the entire tree. The path-based predic-
tion model used logistic regression, denoted as PmLogisticregression(Ti)

, to use each
user decision labeled with a binary classification, “correct model.” By analyzing
the experiment results, the algorithm measures and predicts the probability that
a user will recall a specific path. While the tree-based learning had a numeric
target (e.g. the percentage of the tree learned), the path-based repository used
a binary classification target variable to represent if the participant succeed in
remembering the branch or not.

An advantage of path-based learning over tree-based learning is the abil-
ity to utilize a much larger repository of data. As each participant answered
12 questions, we now have 12 times more data available for learning compared
to the tree-based repository. Additionally, the path-based repository includes
branch-specific information such as the number of nodes in the branch and its
size relative to the tree. While the tree-based learning had a numeric target
(e.g., the percentage of the tree learned), the path-based repository employed a
binary classification target variable to indicate whether the participant success-
fully remembered the branch or not.

4.3 Independent Validation

In order to properly test the system’s performance, we conducted another exper-
iment in which we built decision trees based on a Crohn’s dataset independent
of the cancer dataset used in the previous experiment. The experiment protocol
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was similar to the first experiment except that here we created 4 decision trees
of different sizes as we eliminated validating the most complicated tree as it was
overfitted. We again recruited groups of 40 participants which were each given
a different sized trees for a total of another 160 participants in this experiment.
Here too, the experiment was carried out in two phases: The training phase and
the testing phase, and scores were given to each participant. We present two
generated trees for the validation experiment in Fig. 3.

Fig. 3. Two examples of learning trees for diagnosing suspected cancer-on left side and
Crohn’s disease given to learning in our experiment

5 Results and Analysis

In this section we detail the results from the experiment and machine learning in
this study, including what performance metrics were used to measure the user’s
ability to learn the classification rules. We then present the results from the
validation study from Crohn’s disease to highlight the generality of this work.

5.1 Experiment Results

Table 1. Table showing that were generated for diagnosis of suspected Esophageal
Cancer in order of the most simple (TreeA) to most complex (TreeE) tree.

TreeA TreeB TreeC TreeD TreeE

SIZE (Number of nodes = rules): 3 5 6 8 26

ACCURACY: 60% 77% 75% 80% 89%

Accuracy model: 90.10 83.72 83.10 74.81 57.31

Accuracy truth: 55.18 56.58 62.96 68.41 53.40

As expected, we found that the more complex decision trees built for cancer
prediction were harder for people to remember, thus impacting their ability to
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remember and apply the model. This in turn negatively impacted their ability to
successfully classifying new cases in the real world. Our result analysis relies on
the two metrics Accuracy model and Accuracy truth mentioned in the previous
section. As previously mentioned, we generated 5 trees with different sizes with
different levels of accuracy, shown in Table 1. Note the values for these trees
relative to the model (Accuracy model) and to the truth (Accuracy truth). In
the following figure we present the result of the two metrics explained in Sect. 4.2.

Fig. 4. The success rates of each group to classify correctly, in relation to the model
(blue) and in relation to the truth (red). (Color figure online)

Figure 4 shows the success rates of each group to correctly classify new
instances. The X-axis represents the tree name and Y-axis represents the accu-
racy grade per each group of participants. It can be seen that the group that
received the small tree - TreeA (with 2 nodes-size 2), was able to remember the
model and classify according to this model 90.1% of the time, but its success in
classifying cases in the real world is only 55.18% because of the low accuracy of
that tree. The group that received the medium tree, TreeD (size 8), was able to
remember and apply the model 74.81% of the time and their real-world case clas-
sification increased significantly to 68.41%. As expected, the group that received
the big tree, TreeE (size 26), was able to remember and apply the model only
57.31% of the time, and their ability to classify cases in the real world was also
low at 53.04%.

5.2 Machine Learning Results

Recall that Pm is a prediction model for the percentage of the tree a human
person will remember. We took two learning approaches to learn this value: a
prediction model based on full tree learning and a prediction model
based on tree path learning.
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The prediction model based on full tree learning- gives a numeric
prediction for the percentage of the tree the user is predicted to remember. To
solve this regression problem, we tested different ML models, such as: Linear
regression, Random Forest and Stacking. We found that the simple regression
model:

P m Simple Linear Regression(T i) = − 0.0124 ∗ Number of nodes + 0.877

had a Correlation coefficient = 0.46, and Mean absolute error = 0.164.
While this simple model quantified the relationship between tree complex-

ity and predicted success, we studied what additional variables collected from
learning repository could improve the results. After studying different ML
algorithms and testing them with cross-validation, we found that the rela-
tionship between the variables: Gender, Learning Phase Time Minutes, Num-
ber of nodes, Tree Depth and the variable we wanted to predict, Accuracy model
was slightly better with a Correlation coefficient = 0.48, and Mean absolute
error = 0.161. This model was:

P m Linear Regression(T i) = 0.8747
+ 0.0445 ∗ Gender = Female

+ 0.034 ∗ Learning Phase T ime Minutes

− 0.0186 ∗ Number of nodes

− 0.0505 ∗ depth

Note that per this relationship females were slightly better than males at remem-
bering the learning tree, people who spent more time in the learning phase typ-
ically remembered the tree better, but on the other hand people had a harder
time remembering trees with more nodes and greater depths. We considered more
complex models with slightly improved results. A Random Forest model yielded
a correlation coefficient = 0.58 and Mean absolute error = 0.143. An Ensemble-
Stacking Algorithm with a LinearRegression meta learner and the weak learners
of LinearRegression and Random Forest yielded similar results with a corre-
lation coefficient = 0.58 and Mean absolute error = 0.144. The results of the
categorical prediction model based on logistic regression for modeling how well
people remembered individual paths of the tree. We found that this approach
was overall successful with a ROC Area of 0.703 after performing 10-fold cross
validation.

5.3 External Validation Results

We now present the results of the experiment for predicting suspected Crohn’s
disease, which was used to validate the proposed machine learning model similar
to the previous cancer diagnosis experiment. As we mentioned, we created 4
trees of different sizes with different levels of accuracy, and in Table 2 you can
see for each tree how many of the participants were able to remember the tree
model - this is a measure Accuracy model we mentioned earlier, and how well
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the participants were able to classify new cases that were presented to them,
which is measure Accuracy truth. It can be seen from the table that trees with
fewer vertebrae showed success in the model recall, but the accuracy of the tree
is low and anyway the value of the second index is also low.

Table 2. Table showing the accuracies of the decision trees that were generated for
diagnosis of suspected Crohn’s disease in order of the most simple (TreeA) to the most
complex (TreeD) tree.

TreeA TreeB TreeC TreeD

SIZE (Number of nodes = rules): 3 5 7 11

ACCURACY: 72% 80% 81% 82%

Accuracy model: 89.41 83.83 76.33 65.59

Accuracy truth: 69.14 71.46 69.00 61.29

Fig. 5. The success rates of each group to classify correctly, in relation to the model
(blue) and in relation to the truth (red). (Color figure online)

Figure 5 shows the success rates of each group to correctly classify new
instances of Crohn’s disease. The X-axis again represents the tree name and Y-
axis represents the accuracy grade per each group of participants. It can again
be seen that the group that received the small tree - TreeA (with 2 nodes-size
2), was able to remember the model and classify according to this model 89.41%
of the time, but its success in classifying cases in the real world is only 69.14%
because of the low accuracy of that tree. Conversely, the group that received the
big tree, TreeD (size 11), was able to remember and apply the model 65.59% of
the time, and their ability to classify cases in the real world was also relatively
low at 61.29%. It can be seen that the tree in which the participants were most
successful in the classification performance in relation to the ground truth is
TreeB (its Accuracy truth is: 71.46%), therefore, according to the experiment
we did, this is the most useful tree to teach human users.
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We then examined how successful our prediction models were in predict-
ing the classification success of participants in the real world (P a), versus the
success of the participants in classifying in the real world as measured by the
Accuracy truth metric. The first row in Table 3 shows the Accuracy truth for
each of the four trees (also the last row in Table 2). The next four rows show the
P a prediction for the different models (Linear Regression, Stacking, Random
Forest, and Logistic Regression).

Table 3. The results of the P ai model for predicting the success of learning each tree
by a human user according to i = 4 different learning algorithms, this when trained
over Crohn’s and the prediction is over Crohn’s database.

Tree Used: TreeA TreeB TreeC TreeD MAE to Accuracy truth

1. Accuracy truth: 69.14 71.46 69.00 61.29 0

2. P a Linear Regression: 65.75 67.88 63.62 58.53 3.77

3. P a Stacking: 65.45 68.07 65.56 60.76 2.76

4. P a Random Forest: 65.64 68.42 66.88 61.63 2.25

5. P a Logistic regression: 68.91 69.61 65.17 59.10 2.02

Our objective was twofold: to compare these prediction models with the
actual values (Accuracy truth) and to determine if they could recommend the
best tree among the options (TreeB). To illustrate, let’s focus on the fifth row
of Table 3, where we analyze the Logistic Regression (RL) model’s performance
compared to Accuracy truth (row 1). The RL model predicted a classification
success rate of 68.91% in the real world, while the actual value was 69.14% (cor-
responding to the value in the first row under the TreeA column). Similarly, for
TreeB, the RL model predicted a 69.61% success rate compared to the actual
value of 71.46%. For TreeC, the model expected a 65.17% success rate compared
to the actual value of 69.00%, and for TreeD, the model predicted a 59.10% suc-
cess rate compared to the actual value of 61.29%. To quantify these differences,
we calculated the Mean Absolute Error (MAE), presented in the last column,
which amounted to 2.02 for this model across the four trees. The LR model had
the smallest MAE and performed the best in predicting the experimental results.

It’s worth noting that all the other models also achieved impressive results,
unanimously recommending TreeB for the user as it received the highest success
prediction (highlighted in red). This aligns with the experiment’s findings, where
TreeB proved to be the most effective in facilitating user learning.

6 Conclusions and Future Work

In this paper we proposed a model for optimizing how many rules could be
comprehended by people learning new information. This model is critical not
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only for this specific application, but is generally applicable to many other prob-
lems, such as learning the number of rules an XAI should present to a user.
The learned model used tree general information such as the size and number of
nodes in the tree and general demographic data to determine how many rules
to present. We built this model using extensive human trials from a dataset of
esophageal cancer to build a repository of information about when additional
rules were useful. Not only did this repository help us accurate model human
behavior within this task, but we were able to externally validate the model on
a second medical dataset – diagnosing Crohn’s disease.

In theory, more complex variations of the problem could be considered such
as how to order specific rules importance. For example, it could be that certain
rules, such as well-known differences based on age or gender, might be easier
to remember than obscure rules such medical rules based on specific enzyme
marker levels in blood tests. However, for purposes of this work, we assume that
all rules are of equal importance and difficulty to learn, similar to previous XAI
work [12].

For future work, we hope to extent this success by considering additional task
and tree features. We hope to both demonstrate the success of this approach in
new tasks and consider if additional information about decision trees may be
incorporated. For example, this work considered all rule information as being
equally hard for users to learn. It is likely this is not always the case, and as such
the learning algorithm should learn which rules are better to present to a given
user based on previous experience with other users or even previous experience
with this specific user. It is possible that users can and should be modeled
differently over time, and such elements will be considered in future versions of
this work. For example, it seems reasonable that during a learning process one
might initially begin with a small set of rules, but add them as the user seems
ready based on previous experience and as knowledge is acquired. In theory this
process could be either implicit or explicit, learning either implicitly based on a
user’s previous responses or by incorporating feedback within the system. Last,
we are studying how these results can be directly applied to XAI applications.
As the number of rules or the amount of information an XAI outputs is often
a critical component, we believe that many possible improvements to XAI are
possible based on this work – something we are currently studying.
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Abstract. This study presents an innovative approach to the applica-
tion of large language models (LLMs) in clinical decision-making, focus-
ing on OpenAI’s ChatGPT. Our approach introduces the use of con-
textual prompts-strategically designed to include task description, fea-
ture description, and crucially, integration of domain knowledge-for high-
quality binary classification tasks even in data-scarce scenarios. The nov-
elty of our work lies in the utilization of domain knowledge, obtained from
high-performing interpretable ML models, and its seamless incorporation
into prompt design. By viewing these ML models as medical experts, we
extract key insights on feature importance to aid in decision-making
processes. This interplay of domain knowledge and AI holds significant
promise in creating a more insightful diagnostic tool.

Additionally, our research explores the dynamics of zero-shot and
few-shot prompt learning based on LLMs. By comparing the perfor-
mance of OpenAI’s ChatGPT with traditional supervised ML models
in different data conditions, we aim to provide insights into the effective-
ness of prompt engineering strategies under varied data availability. In
essence, this paper bridges the gap between AI and healthcare, proposing
a novel methodology for LLMs application in clinical decision support
systems. It highlights the transformative potential of effective prompt
design, domain knowledge integration, and flexible learning approaches
in enhancing automated decision-making.

Keywords: Healthcare · LLM · ChatGPT · XAI

1 Introduction

Motivation. The ever-evolving field of Natural Language Processing (NLP) has
opened the door for potential advancements in a variety of sectors, the medical
and healthcare field being no exception. The latest breakthroughs achieved by
large language models (LLMs) such as OpenAI’s GPT [3], Google’s PALM [4],
and Facebook’s LaMDA [11], has sparked intriguing speculation about the inte-
gration of AI in clinical decision-making and healthcare analytic. Consider a
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scenario where a healthcare professional, seeking a second opinion on a com-
plex case, turns to an AI-powered system such as ChatGPT instead of con-
sulting another colleague. With the provision of all relevant medical data and
context, the model could provide a comprehensive interpretation of the informa-
tion, potentially suggesting diagnoses or treatment options. This application is
no longer purely speculative; models such as OpenAI’s ChatGPT have already
demonstrated their potential to understand and generate contextually relevant
responses, indicating a potential to become supportive aids in clinical decision-
making.

Notwithstanding their great promise, it is important to underline that LLMs
gain their power from being trained on billions of documents on internet data,
allowing them to identify connections between words in various settings and
formulate the most likely word sequences in a given new context. As promis-
ing as this might seem, the application of LLMs in the healthcare field is not
without risks, including potential inaccuracies due to a lack of specific medical
training, misinterpretation of context, or data privacy concerns, all of which
could have serious consequences in this critical domain. Enhancing the perfor-
mance of LLMs for specific applications typically involves two major strategies,
namely fine-tuning and prompt design [9,13,15]. Both serve similar goals in LLM
enhancement to accomplish desired tasks, however, they differ significantly in
their approaches. Prompting manipulates the model at inference time by pro-
viding context, instruction, and examples within the prompt, leaving the model’s
parameters unchanged. In contrast, fine-tuning modifies the model parameters
according to a representative dataset, demanding more resources, however result-
ing in more specialized and consistent outcomes across similar tasks.

Prompt-design strategies for LLMs can be categorized based on task complex-
ity and the degrees of contextual examples provided. These categories include
zero-shot, one-shot, and few-shot prompting. Zero-shot prompting is ideal for
straightforward, well-defined tasks that do not require multiple examples. It
involves providing a single, concise prompt and relying on the model’s pre-
existing knowledge to generate responses. For instance, in the medical field,
zero-shot prompting could be employed to provide a broad overview of common
diseases. On the other hand, the techniques of one-shot and few-shot prompt-
ing involve guiding the model with one or more examples or queries to steer
it toward generating desired outputs. An example prompt might be, “Consider
a 57-year-old male with high cholesterol, abnormal ECG, and exercise-induced
angina, who shows signs of heart disease. Conversely, a 48-year-old male experi-
encing typical angina, but maintaining normal blood sugar levels and ECG, and
without exercise-induced angina, is likely not suffering from heart disease. Based
on these examples, predict the presence or absence of heart disease for a newly
presented individual with specified medical conditions, using the narratives pro-
vided as guidance.” Historically, GPT-1 was evaluated for its zero-shot capabil-
ities, demonstrating encouraging results. As language models evolved, however,
there was a shift towards the use of few-shot prompting in subsequent iterations
such as GPT-2 and GPT-3 [1]. Despite the success of these models, the format
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of the prompt and the sequence of examples can have a substantial impact on
task performance [2]. As a result, optimizing the use of prompts in these mod-
els continues to be an area of active research. While tasks requiring specialized
skills often benefit from fine-tuning, this methodology is beyond the scope of our
current research. Instead, our focus lies in employing guided prompt-design
to improve decision-making processes within the medical domain.

Contributions. This paper aims to explore the application of OpenAI’s Chat-
GPT to tackle binary classification tasks within clinical decision support sys-
tems, utilizing contextual prompts for high-quality predictions with minimal
data. Our method underscores the incorporation of “domain-specific knowl-
edge,” extracted from interpretable ML models, to enhance prediction tasks and
foster few-shot (and also zero-shot) learning. We showcase how OpenAI models
can handle downstream tasks, matching the performance of traditional super-
vised ML models with ample data, even in data-scarce scenarios. We further
discuss the relative advantages of zero-shot and few-shot prompts engineering.

Figure 1 symbolically presents our novel approach to enhancing medical
decision-making by leveraging interpretable ML. The core novelty of our work lies
in crafting effective prompts that will function as inputs for OpenAI’s ChatGPT.
To generate these prompts, we start with a basic version containing the task
description. To provide more context, we integrate a feature description, which
highlights key features relevant to the classification task at hand. Crucially, we
also incorporate domain knowledge, obtained by separately training ML models
and using their feature-based explanations as a source of expert insights. These
ML models can be metaphorically seen as doctors, each emphasizing specific
features deemed important for diagnosing particular diseases. This integration
of expert-driven knowledge aims to enrich the diagnostic process. Further, we
study the dynamics of zero-shot versus few-shot prompt engineering by varying
the number of examples supplied to the prompt, thus enabling us to evaluate the
system’s adaptability to different data volumes. In summary, our contributions
are summarized as follows:

– Utilizing OpenAI’s ChatGPT for Clinical Decision Support. We
exploit the potential of OpenAI’s ChatGPT in clinical decision support sys-
tems, specifically for binary classification tasks, demonstrating its practical
application in this domain.

– Advancing Prompt Engineering and Domain Knowledge Integra-
tion. Our study introduces a novel approach to prompt engineering using
“contextual prompts” and underscores the integration of domain-specific
knowledge. These carefully crafted prompts lead to high-quality predictions
even in scenarios with limited data. We further enhance this process by creat-
ing a domain knowledge generator, which leverages high-performing ML
tasks. We treat these ML models as metaphorical medical experts, enhancing
prediction tasks and facilitating these models to operate as few-shot learners.

– Exploring Few-Shot vs. Zero-Shot Learning: Our work contrasts the
few-shot learning capability of OpenAI’s ChatGPT with traditional super-
vised ML models, trained with ample data. We highlight the benefits of zero-
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Fig. 1. Flowchart illustrating the conceptual framework of the paper

shot and few-shot prompt engineering, shedding light on the interplay between
data availability and prediction quality.

The structure of this paper is as follows: Sect. 2 presents the related work,
detailing the history of Transformers and Large Language Models, prompt engi-
neering, and the use of LLMs in clinical decision-making. Section 3 introduces our
novel OpenAI-ML framework. Section 4 outlines our experiments and method-
ology, followed by Sect. 5, which discusses the performance outcomes and risks
associated with our proposed system.

2 Related Work

2.1 History of Transformers and Large Language Models

The evolution of language models has been marked by the ongoing pursuit of
more complex, versatile, and human-like machine representations of language.
Prior to 2017, Natural Language Processing (NLP) models were largely trained
on supervised learning tasks, limiting their generalizability [9]. However, the
advent of the transformer architecture by Vaswani et al. [12], a self-attention
network, led to the development of ground-breaking models such as Generative
Pretrained Transformers (GPT) and Bidirectional Encoder Representations from
Transformers (BERT) [7]. These models use a semi-supervised approach, com-
bining unsupervised pre-training with supervised fine-tuning, to achieve superior
generalization capabilities. In recent years, we have witnessed a rapid progres-
sion in GPT models, resulting in the creation of GPT-3, a behemoth model with
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175 billion parameters. Notwithstanding, these models still face significant chal-
lenges, including alignment with human values and the potential for generating
biased or incorrect information. Efforts have been made to mitigate these issues,
with the introduction of reinforcement learning from human feedback (RLHF)
for improved model fine-tuning and alignment, as exemplified in the evolution
of GPT-3 into ChatGPT [10].

2.2 Prompt Engineering

Prompts play a crucial role in controlling and guiding the application of Large
Language Models (LLMs). Essentially, a prompt is a set of instructions given to
the model using natural, human language to define the task to be performed
and the desired output. Prompts can be broadly categorized into two main
types: manual prompts and automated prompts [13]. Manual prompts are care-
fully designed by human specialists to provide models with precise instructions.
However, their creation requires substantial expertise and time, and even minor
adjustments can significantly affect the model’s predictions. To overcome these
limitations, various automated methods for prompt design have been developed.

Automated prompts, including discrete and continuous prompts, have gained
popularity due to their efficiency and adaptability. They are generated using
a variety of algorithms and techniques, thereby reducing the need for human
intervention. Continuous prompts consider the current conversation context to
generate accurate responses, while discrete prompts depend on predefined cat-
egories to produce responses. There are also both static and dynamic prompts
that interpret the historical context differently. Ultimately, the performance and
effectiveness of LLMs are significantly influenced by the quality and efficiency of
these prompts [9].

2.3 Use of LLMs in Clinical Decision Making

Prompt engineering and LLMs such as ChatGPT and GPT-4 have shown promis-
ing performance in advancing the medical field. Their diverse applications in
various tasks, including unique prompt designs, multi-modal data processing,
and deep reinforcement learning, are discussed comprehensively in Wang et al.
[13]. The LLMs demonstrate promising potential for clinical decision-making
due to their adaptive abilities, enabling zero-shot and few-shot in-context learn-
ing despite the scarcity of labeled data. They contribute to offering diagnos-
tic insights, treatment suggestions, and risk assessments. However, while these
advancements demonstrate the transformative potential of LLMs in healthcare,
it underlines the need for additional research to address prompt engineering
limitations and ensure the ethical, reliable, safe, and effective use of LLMs in
healthcare settings.

3 OpenAI-ML Framework for Health Risk Assessment

Overview of the Proposed System. We propose a system for health risk
assessment that leverages OpenAI’s advanced language model, ChatGPT-3.5
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Fig. 2. Flowchart illustrating the proposed guided prompt design process for inte-
grating contextual information in the medical field, emphasizing the sequential steps
involved in designing effective prompts.

-Turbo. This system employs a conversation-based strategy to predict the risk
of heart disease. It is designed to output binary responses (‘1’ or ‘0’), which cor-
respond to high and low risk of heart disease, respectively. A detailed flowchart
of our proposed system can be seen in Fig. 2.

– Part 1: Task Instruction: The model is provided a task to assess heart dis-
ease risk based on given attributes. Here, the degree of diameter narrowing in
the blood vessels informs the risk assessment, where less than 50% narrowing
indicates low risk (‘0’) and more than 50% indicates high risk (‘1’);

– Part 2: Attribute Description: The model is informed about the meaning
of each attribute involved in the risk assessment. This ranges from the indi-
vidual’s age, sex, and chest pain type (cp), to their cholesterol levels (chol),
among others. Each attribute is clearly defined, aiding the model to under-
stand its relevance and role in the task at hand;

– Part 3: In-context Examples: The model is given example scenarios with
specific attribute inputs and corresponding risk assessment answers, aiding it
to understand the pattern and relationship between the attributes and the
risk level;

– Part 4: Integration of Domain Knowledge: The model is given
domain knowledge which is simulated by best-performing interpretable
ML models, such as RandomForestClassifier, LogisticRegression, and
XGBClassifier. These models offer an ordered list of feature importance,
which can aid the ChatGPT model in making a more informed assessment;

– Part 5: Formulation of a Question/Problem: The model is presented
with an test instance. The instance involves specific inputs for each attribute
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Table 1. Summary of Domain Knowledge Types

dk0 Odd dk (MLFI) Even dk
(MLFI-ord)

Name N/A ML defines feature
importance

Similar to MLFI,
includes feature
order

Description No extra domain
knowledge

Feature importance
defined by ML
algorithms

Includes both
feature importance
and order

Focus N/A Feature Attribution Feature Attribution
with
order-awareness

Implementation Solely data-driven XGB, RF, AdaBoost,
LR

XGB, RF,
AdaBoost,LR

Usage Scenarios Zero-shot scenarios;
Simple tasks with
no specific domain
knowledge required

Few-shot scenarios;
Tasks requiring the
understanding of
feature importance;

Few-shot scenarios;
Tasks requiring the
understanding of
both feature
importance and
order;

and the model is asked to assess the risk level based on the prior instructions,
examples, attribute descriptions, and domain knowledge. This allows for the
practical application of the instruction in a real-world example.

Domain Knowledge Integration. Domain knowledge integration is catego-
rized into three types as shown in Table 1. These types are designed to handle
different tasks based on the requirements of domain knowledge and the order of
features.

– dk0: This scenario involves no additional domain knowledge, where learning
is purely data-driven. It is most suitable for simple tasks that do not require
specific domain knowledge, making it an effective choice for testing zero-shot
scenarios;

– Odd dk or MLFI: This category identifies the importance of features as
determined by various ML algorithms such as XGB, RF, Ada, and LR. It is
particularly useful in tasks requiring the understanding of feature importance,
and it is used to test few-shot scenarios (MLFI is short for Machine learning
Feature Importance);

– Even dk or MLFI-ord: This category not only considers the importance
of features but also their order, as determined by ML algorithms. It is ideal
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for tasks that require an understanding of both feature importance and their
order, and it is also used to test few-shot scenarios (MLFI is short for Machine
learning Feature Importance-ordered).

More detailed information regarding the conversation used is depicted below.

Part 1: Task Instruction
Given the provided input attributes, evaluate the risk of heart disease for
the individual. The diagnosis of heart disease (angiographic disease status)
is based on the degree of diameter narrowing in the blood vessels:

– 0: Less than 50% diameter narrowing, implying a lower risk.
– 1: More than 50% diameter narrowing, indicating a higher risk.

If the assessment determines a high risk, the output should be ‘1’. If the
risk is determined to be low, the output should be ‘0’. Evaluate the heart
risk based on given attributes. If good, respond with ‘1’, if bad, respond
with ‘0’.

Part 2: Attribute Description
The explanation of each attribute is as follows:

– Age: Age of the individual
– Sex: Sex of the individual (1 = Male, 0 = Female)
– Cp: Chest pain type (1 = typical angina, 2 = atypical angina, 3 =

non-anginal pain, 4 = asymptomatic)
– Trestbps: Resting blood pressure (in mm Hg on admission to the hos-

pital)
– Chol: Serum cholesterol in mg/dl
– Fbs: Fasting blood sugar > 120 mg/dl (1 = true, 0 = false)
– Restecg: Resting electrocardiographic results (0 = normal, 1 = having

ST-T wave abnormality, 2 = showing probable or definite left ventricular
hypertrophy)

– Thalach: Maximum heart rate achieved
– Exang: Exercise-induced angina (1 = yes, 0 = no)
– Oldpeak: ST depression induced by exercise relative to rest
– Slope: The slope of the peak exercise ST segment (1 = upsloping, 2 =

flat, 3 = downsloping)
– Ca: Number of major vessels (0-3) colored by fluoroscopy
– Thal: Thalassemia (3 = normal, 6 = fixed defect, 7 = reversible defect)
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Part 3: In-Context Example
Example 1:
<Inputs 1>: age: 57, sex: 1, cp: 2, trestbps: 140, chol: 265, fbs: 0, restecg:
1, thalach: 145, exang: 1, oldpeak: 1, slope: 2, ca: 0.2, thal: 5.8
<Answer 1>: 1
Example 2:
<Inputs 2>: age: 48, sex: 1, cp: 2, trestbps: 130, chol: 245, fbs: 0, restecg:
0, thalach: 160, exang: 0, oldpeak: 0, slope: 1.4, ca: 0.2, thal: 4.6
<Answer 2>: 0
Example 3:
<Inputs 3>: age: 44, sex: 1, cp: 4, trestbps: 112, chol: 290, fbs: 0, restecg:
2, thalach: 153, exang: 0, oldpeak: 0, slope: 1, ca: 1, thal: 3
<Answer 3>: 1

Part 4: Domain Knowledge Integration using Interpretable ML
Domain Knowledge:
– dk0: None
– dk1: According to a randomforestclassifier classifier, the most

important features in assessing heart disease risk include cp, ca, chol,
oldpeak, exang, and thalach. Features like fbs and restecg have rela-
tively lower importance;

– dk2: The order of features is critically important when evaluating
heart disease risk. The sequence of features according to their impor-
tance starts with cp, followed by ca, then chol, oldpeak, exang, thalach,
thal, age, slope, trestbps, sex, fbs, and finally restecg;

– dk3: According to a logisticregression classifier, the most impor-
tant features in assessing heart disease risk include cp, oldpeak, ca,
exang, sex, and thal. Features like restecg and trestbps have relatively
lower importance;

– dk4: The order of features is critically important when evaluating
heart disease risk. The sequence of features according to their impor-
tance starts with cp, followed by oldpeak, then ca, exang, sex, thal, chol,
thalach, fbs, age, slope, restecg, and finally trestbps;

– dk5: According to a xgbclassifier classifier, the most important fea-
tures in assessing heart disease risk include exang, cp, sex, ca, oldpeak,
and fbs. Features like trestbps and restecg have relatively lower impor-
tance;

– dk6: The order of features is critically important when evaluating
heart disease risk. The sequence of features according to their impor-
tance starts with exang, followed by cp, then sex, ca, oldpeak, fbs, slope,
thal, chol, thalach, age, trestbps, and finally restecg;
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Part 5: Final Task Question
Now, given the following inputs, please evaluate the risk of heart disease:
<Inputs>: age: 46.0, sex: 1.0, cp: 3.0, trestbps: 150.0, chol: 163.0, fbs: 0.2,
restecg: 0.0, thalach: 116.0, exang: 0.0, oldpeak: 0.0, slope: 2.2, ca: 0.4,
thal: 6.2
<Answer>: ?

4 Experimental Setup

Task. This work focuses on binary classification within a health risk assessment
context in machine learning (ML). The task involves learning a function f : X →
{0, 1}, predicting a binary outcome y ∈ {0, 1} for each feature instance x ∈ X .

Dataset. We used the Heart Disease dataset [8] was collected from four hospitals
located in the USA, Switzerland, and Hungary. The task associated with this
dataset is binary classification, aimed at determining the presence or absence of
heart disease. The dataset initially contains 621 out of 920 samples with missing
values, which were all successfully imputed using the KNN method, resulting in no
samples with missing values. The distribution of males to females in the dataset
is approximately 78% to 21%, while the disease prevalence ratio between males
and females is approximately 63% to 28% in the given population, males tend
to suffer from heart disease more frequently than females).

Baseline Prediction Models. To assess the performance of our model under
varying levels of dataset skewness, we implemented three baseline prediction
models that operate independently of features. These include, Maj Class-1
Prediction: generates predictions with 90% of them belonging to class 1, chosen
randomly; Maj Class-0 Prediction: generates predictions with 90% of them
belonging to class 0, chosen randomly; Random Prediction: Generates predic-
tions by randomly.

Table 2. Summary of ML models and their Hyper-parameters

Algorithm Parameters Total

RF n_estimators, max_depth, min_samples_split,
min_samples_leaf, bootstrap

5

LR C, penalty, solver 3
MLP hidden_layer_sizes, activation, solver, alpha, learning_rate,

learning_rate_init, tol, max_iter
8

KNN n_neighbors, weights, algorithm, leaf_size, p 5
XGB use_label_encoder, eval_metric, n_estimators,

learning_rate, max_depth, colsample_bytree
6

AdaBoost n_estimators, learning_rate 2
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Hyperparameters and ML Models. We employed six ML models, each with
a distinct set of hyperparameters. These were optimized using a randomized
search cross-validation (CV) strategy, with a total of 29 unique hyperparameters
across all models. This led to an extensive model tuning process involving numer-
ous model iterations. We used a 5-fold CV (0.8, 0.2) with RandomizedSearchCV
over 20 iterations. The exact hyperparameters depended on the specific model
and are listed in Table 2.

OpenAI Model. We utilized the OpenAI’s GPT-3.5-turbo model to perform
heart disease risk assessment based on patient health data. The model interacts
through a chat-like interface, taking a sequence of messages and user inputs as
prompts and generating corresponding output responses. The model was config-
ured with a temperature setting of 0, dictating no randomness of the model’s
responses. The usage of the OpenAI model involved the generation of requests,
comprising individual patient data features. Each request was processed by the
model, returning an output prediction. For efficiency, these requests were sent
in batches. The Python code made use of the OpenAI API, the tenacity library
for retrying failed requests, and other common data processing libraries such as
pandas. The code is available for reproducibility at this link.1

5 Results

Table 3 provides an in-depth comparison of heart health risk prediction perfor-
mance using traditional ML models and OpenAI-based predictions. We have
excluded results from Random, Maj0, and Maj1 for average calculations and high-
lighted utilized values in the table for better tracking. We evaluated OpenAI pre-
dictions against conventional models such as RF, LR , MLP, KNN, XGB, AdaBoost,
with prompts categorized based on the integration of extra domain knowledge or
without it. We also considered the number of examples used in prompt formu-
lation (represented as Nex). The results are presented in two main dimensions:
overall performance (F1 and Acc.) and risks (FPC, FNC, and cost-sensitive
accuracy). In this context, a particular emphasis was placed on false-negative
costs due to the significant health risk of incorrectly diagnosing a healthy indi-
vidual as sick. Lastly, we introduced a new metric, cost-sensitive accuracy, with
specific weights (FP=0.2, FN=0.8) that may vary based on the scenario.

5.1 Overall Performance

The section sheds light on the comparative performance between classical
machine learning (ML) models and OpenAI-based models, with and without
the incorporation of domain knowledge as proposed in this paper (cf. Section 3).
Classical ML vs. OpenAI Without Domain Knowledge. From the pro-
vided table, it is clear that the OpenAI-based models using prompts have pro-
duced varied results depending on the number of examples used in their con-
struction (denoted by Nex). Specifically, looking at prompt-0 which uses no
1 Source code.https://github.com/atenanaz/ChatGPT-HealthPrompt.

https://github.com/atenanaz/ChatGPT-HealthPrompt
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extra domain knowledge, we see that its performance significantly improves as
Nex increases. At ‘Nex = 0’, the F1 score is 0.7402 and the Accuracy is 0.6413,
which are better than those of Maj-1, Maj-0, and random, indicating an advance-
ment of OpenAI-ML in zero-shot scenarios over those basic models. Yet, they
are still below the average of classical Machine Learning models.

Progressing forward, in few-shot scenarios, there is a noticeable improvement
in the performance of prompt-0, which does not leverage any domain knowledge.
As Nex (the number of examples) increases, this model even surpasses some tra-
ditional machine learning counterparts. At ‘n=16’, it reaches an F1 score of
0.8241 and an Accuracy of 0.7935, which are closely comparable to the average
F1 (0.8576) and Accuracy (0.8203) of classical ML models. This showcases the
robustness and potential of the OpenAI-based prediction model when a larger
number of examples are used for prompt construction. It demonstrates that while
classical machine learning methods have more consistent performance, the Ope-
nAI models have the ability to learn and improve from more example prompts,
achieving competitive performance with an increasing number of examples.

The study underscores the potential of prediction models based on OpenAI.
Even though these models initially perform at a lower level compared to tradi-
tional ML models, the inherent iterative learning and enhancement capabilities
of OpenAI models become increasingly clear as the number of examples used for
prompt construction increases.

Classical ML vs. OpenAI-ML with Domain Knowledge. The compari-
son between OpenAI’s GPT-3.5 and classical machine learning models reveals
intriguing insights. The OpenAI prediction prompts adopt two strategies: some
without extra domain knowledge, while others integrate results from classical ML
models (RF, LR , XGB). We selected these models due to their capability to yield
attribute-based explanation outcomes, as illustrated in Fig. 1, and their inherent
diversity. The sequence of features is contemplated in half of these prompts, par-
ticularly the even-numbered ones (prompt-2, prompt-4, and prompt-6). Moving
forward to the analysis, in the second type of prompts (prompt-1, prompt-3,
and prompt-5) that utilize the prediction results of classical ML models with-
out considering their order of importance, there is a noticeable improvement
as n increases, similar to prompt-0, however, the increase is more drastic. For
instance, at ‘n=8’, prompt-5 outperforms all models, yielding the highest F1
score (0.8711), Accuracy (0.8424), clearly surpassing all the baseline ML mod-
els. Note that here, using just 8 examples (about 2–3% of the total training data)
seems to be enough for the model to significantly outperform the average results
of classical ML models, particularly in terms of cost-sensitive accuracy.

Lastly, the prompts where the order of features was considered (prompt-2,
prompt-4, and prompt-6) generally show a similar pattern, with performance
improving as n increases. However, their results appear to be slightly lower than
the prompts using classical ML model results without considering feature order.
This may suggest that for certain tasks, the added complexity of considering
feature order does not always translate into a clear performance advantage.
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Summary. This study contrasted the performance of classical Machine
Learning (ML) models and OpenAI-based models, with and without
the integration of domain knowledge. The initial performance of Ope-
nAI models is lower than classical ML models in zero-shot scenarios,
but exhibits substantial enhancement with an increase in the number
of examples, i.e., in few-shot scenarios, eventually attaining comparable
metric values. Upon domain knowledge integration, particularly the
prediction results of classical ML models, OpenAI models show signifi-
cant performance improvement, with some surpassing all baseline ML
models. However, the benefit of incorporating feature order is not always
clear.

5.2 Risks

It can be observed that on average, False Negatives (FN) in a majority of exper-
imental cases of OpenAI remain below those of the classical Machine Learning
(ML) models. For example, OpenAI models recorded FN of 3.08, 10.7, 8.6, and
9.37 compared to an average FN of 10.9 for ML models. This advantage, how-
ever, comes with a trade-off of higher False Positives (FP). OpenAI models on
average scored higher in FP with values such as 12.77, 8.971, 80.578, and 6.4571,
compared to the classical ML models.

Interestingly, the best-performing prompts within the OpenAI models
demonstrated very low FP and FN rates (e.g., 4.6 and 4.8), which in terms
of FN, remain much lower than even the best ML models. Summarizing the key
observations, it can be stated that while OpenAI models may present better
results in specific cases, care should be taken when discussing the risk of these
models’ predictions in clinical decision support. This caution is due to the high
variability and variance these models show (e.g., in one case, FN reaches 20.8),
and simply considering average statistics may not provide an accurate represen-
tation of their performance. On the other hand, ML models show more homo-
geneous performance. This phenomenon might be attributed to the tendency of
prompt-based predictions to produce more 1 s than 0 s, thereby decreasing FN.
However, considering the accuracies, it is evident that the results are not ran-
domly generated, and OpenAI models are indeed capable of making sense of the
data. This demonstrates the potential power of these models but also the need
for careful design and implementation in clinical decision-making scenarios.
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Table 3. Performance comparison: Green boxes highlight key values, bold and italics
denote top results in classical and OpenAI models.

Model
DK
Type

DK
source

Nex Pre.↑ Rec↑ F1↑ Acc.↑ FP

Cost
↓ FN

Cost
↓ Cost-Sens

Acc.
↑

RF 0.8585 0.875 0.8667 0.8478 3.0 10.4 0.9208

LR 0.8241 0.8558 0.8396 0.8152 3.8 12.0 0.9047

MLP 0.8381 0.8462 0.8421 0.8207 3.4 12.8 0.9031

KNN 0.8654 0.8654 0.8654 0.8478 2.8 11.2 0.9176

XGB 0.8667 0.875 0.8708 0.8533 2.8 10.4 0.9224

AdaBoost 0.8304 0.8942 0.8611 0.8370 3.8 8.8 0.9243

Maj1 0.5576 0.8846 0.6840 0.5380 14.6 9.6 0.8035

Maj0 0.6842 0.125 0.2114 0.4728 1.2 72.8 0.5403

random 0.5326 0.4712 0.5 0.4674 8.6 44.0 0.6204

Avg. 0.8472 0.8686 0.8576 0.8368 3.26 10.9 0.9155

prompt-0 NO - 0 0.6267 0.9038 0.7402 0.6413 11.2 8.0 0.8600

prompt-1 MLFI RF 0 0.6121 0.9712 0.7509 0.6359 12.8 2.4 0.8850

prompt-2 MLFI-ord RF 0 0.5976 0.9712 0.7399 0.6141 13.6 2.4 0.8759

prompt-3 MLFI LR 0 0.6242 0.9904 0.7658 0.6576 12.4 0.8 0.9016

prompt-4 MLFI-ord LR 0 0.6111 0.9520 0.7444 0.6304 12.6 4.0 0.8748

prompt-5 MLFI XGB 0 0.6108 0.9808 0.7528 0.6359 13.0 1.6 0.8890

prompt-6 MLFI-ord XGB 0 0.5941 0.9712 0.7372 0.6087 13.8 2.4 0.8736

Avg. - - 2 0.6109 0.9629 0.7473 0.6319 12.77 3.08 0.8799

prompt-0 NO - 2 0.6375 0.9808 0.7727 0.6739 11.6 1.6 0.9037

prompt-1 MLFI RF 2 0.6415 0.9808 0.7757 0.6793 11.4 1.6 0.9057

prompt-2 MLFI-ord RF 2 0.6358 0.9904 0.7744 0.6739 11.8 0.8 0.9077

prompt-3 MLFI LR 2 0.6159 0.9712 0.7537 0.6413 12.6 2.4 0.8872

prompt-4 MLFI-ord LR 2 0.6711 0.9615 0.7905 0.7120 9.8 3.2 0.9097

prompt-5 MLFI XGB 2 0.8548 0.5096 0.6386 0.6739 1.8 40.8 0.7442

prompt-6 MLFI-ord XGB 2 0.7935 0.7019 0.7449 0.7283 3.8 24.8 0.8241

Avg. - - 2 0.6928 0.8708 0.7500 0.6832 8.971 10.74 0.8689

prompt-0 NO - 4 0.6978 0.9327 0.7984 0.7337 8.4 5.6 0.9060

prompt-1 MLFI RF 4 0.8659 0.6827 0.7634 0.7609 2.2 26.4 0.8303

prompt-2 MLFI-ord RF 4 0.5886 0.9904 0.7384 0.6033 14.4 0.8 0.8795

prompt-3 MLFI LR 4 0.8257 0.8654 0.8451 0.8207 3.8 11.2 0.9096

prompt-4 MLFI-ord LR 4 0.6375 0.9808 0.7727 0.6739 11.6 1.6 0.9037

prompt-5 MLFI XGB 4 0.6205 0.9904 0.7630 0.6522 12.6 0.8 0.8995

prompt-6 MLFI-ord XGB 4 0.8350 0.8269 0.8309 0.8098 3.4 14.4 0.8932

Avg. - - 4 0.7244 0.8956 0.7874 0.7220 8.058 8.6857 0.8888

prompt-0 NO - 8 0.8041 0.7500 0.7761 0.7554 3.8000 20.8000 0.8496

prompt-1 MLFI RF 8 0.8515 0.8269 0.8390 0.8207 3.0000 14.4000 0.8967

prompt-2 MLFI-ord RF 8 0.6944 0.9615 0.8065 0.7391 8.8000 3.2000 0.9189

prompt-3 MLFI LR 8 0.6242 0.9904 0.7658 0.6576 12.4000 0.8000 0.9016

prompt-4 MLFI-ord LR 8 0.6776 0.9904 0.8047 0.7283 9.8000 0.8000 0.9267

prompt-5 MLFI XGB 8 0.8099 0.9423 0.8711 0.8424 4.6000 4.8000 0.9428

prompt-6 MLFI-ord XGB 8 0.8478 0.7500 0.7959 0.7826 2.8000 20.8000 0.8592

Avg. - - 8 0.7585 0.8873 0.8084 0.7608 6.4571 9.3714 0.8993

prompt-0 NO - 16 0.7946 0.8558 0.8241 0.7935 4.6000 12.0000 0.8979

prompt-1 MLFI RF 16 0.7965 0.8654 0.8295 0.7989 4.6000 11.2000 0.9029

prompt-2 MLFI-ord RF 16 0.7538 0.9423 0.8376 0.7935 6.4000 4.8000 0.9288

prompt-3 MLFI LR 16 0.8554 0.6827 0.7594 0.7554 2.4000 26.4000 0.8284

prompt-4 MLFI-ord LR 16 0.7339 0.8750 0.7982 0.7500 6.6000 10.4000 0.8903

prompt-5 MLFI XGB 16 0.7638 0.9327 0.8398 0.7989 6.0000 5.6000 0.9269

prompt-6 MLFI-ord XGB 16 0.8198 0.8750 0.8465 0.8207 4.0000 10.4000 0.9129

Avg. - - 16 0.7884 0.8612 0.8193 0.7872 4.9429 11.54 0.8983
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Summary. The study of risk and false predictions shows that while Ope-
nAI models on average produced fewer False Negatives (FN) compared
to traditional Machine Learning (ML) models, they came with a signifi-
cant trade-off of higher False Positives (FP). Notably, the OpenAI models
demonstrated high variability in their results, indicating that relying on
average statistics may not provide a comprehensive view of their per-
formance. The observations underscore the need for careful design and
implementation of OpenAI models in clinical decision-making scenarios,
especially considering their potentially higher risk of incorrect predic-
tions.

6 Conclusion

In this work, we investigated the utility and implications of employing large
language models, particularly OpenAI’s ChatGPT, within the healthcare sec-
tor. We aimed to demonstrate their potential role in enhancing decision-making
processes, drawing particular attention to the use of contextual prompts for high-
quality predictions and the value of integrating domain-specific knowledge from
interpretable Machine Learning (ML) models.

Our analysis affirmed the strength and promise of OpenAI’s ChatGPT for
clinical decision-making. In zero-shot scenarios, its initial performance was found
to lag behind classical ML models. However, with an increase in the number of
examples used for prompt construction, i.e., in few-shot scenarios, ChatGPT
showcased the ability to improve significantly, reaching, and in some instances
surpassing, the performance of traditional supervised ML models. This capacity
to learn and adapt with additional examples emphasizes the potential of these
models in contexts with limited data.

A key finding from our study was the notable performance improvement
in ChatGPT when domain knowledge was integrated, specifically prediction
outcomes from high-performing ML models such as XGB. This underscores the
value of harnessing domain knowledge information and corroborates our hypoth-
esis that expert knowledge (here obtained through XGB) provides the beneficial
domain knowledge input. Such integration of AI with medical expertise holds
immense potential for healthcare applications, illustrating the ability of AI mod-
els to leverage traditional ML insights.

However, we identified considerable variability in the performance of OpenAI
models, along with the potential risk of higher False Positives (FP) even though
False Negatives (FN) were generally lower compared to traditional ML models.
n the medical field, both types of errors have serious implications, however, the
cost of FN can sometimes be particularly high, such as in critical diagnoses like
cancer, where a missed detection could lead to dire consequences. On the other
hand, a higher rate of FP, as seen in the OpenAI models, while concerning, could
be viewed as a safer error direction in these high-stakes situations. In general,
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both types of incorrect predictions bear significant implications within a med-
ical context, introducing over-diagnosis, and unnecessary treatments, causing
physical, emotional, and financial burdens to patients.

Looking ahead, future endeavors should persist in refining the design of
prompts, mitigating social and ethical risks [5,6,14], and optimizing perfor-
mance. An in-depth examination of zero-shot and few-shot learning dynamics
would offer valuable insights for designing more reliable AI systems. Expanding
the application of these techniques to different healthcare realms could broaden
the impact of AI-assisted decision-making tools. Given the potential risks, we
suggest the cautious use of these models in clinical settings, accentuating the
importance of careful model design and implementation. Ultimately, the seam-
less blending of AI with domain-specific expertise will be the key to successfully
deploying large language models within the healthcare sector.
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Abstract. Fine-grained text classification with similar and many labels
is a challenge in practical applications. Interpreting predictions in this
context is particularly difficult. To address this, we propose a simple
framework that disentangles feature importance into more fine-grained
links. We demonstrate our framework on the task of intent recognition,
which is widely used in real-life applications where trustworthiness is
important, for state-of-the-art Transformer language models using their
attention mechanism. Our human and semi-automated evaluations show
that our approach better explains fine-grained input-label relations than
popular feature importance estimation methods LIME and Integrated
Gradient and that our approach allows faithful interpretations through
simple rules, especially when model confidence is high.

Keywords: Interpretability · Text understanding · Language models

1 Introduction

In practical applications, text classification tasks often have fine-grained labels
that are difficult to distinguish from each other [3,25,37], which make interpret-
ing predictions particularly challenging. Overcoming this challenge is impor-
tant to trustworthiness, which is indispensable for automated systems to be
deployed in production where business relationships, user experience, and valu-
able resources are at stake. Interpretability provides reassurance that predictions
are right for the right reasons, allows debugging and continuous development,
and ultimately enables developers to gauge their trust in a system by revealing
what to expect.

Existing approaches in explainable AI (XAI) for interpreting text classifica-
tion models are ill-equipped for explaining distinctions between highly similar
labels. The most common paradigm for explaining predictions is feature impor-
tance [20,26,32], which ranks input features in terms of importance to a given
label. It falls under the category of extractive explanations, whose expressiveness
is fundamentally limited to the input features only, which unfortunately means
that they cannot draw links from those features to the fine-grained nuances of
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the labels or reveal any implicit knowledge such as common sense that influenced
a prediction. On the other hand, more emerging approaches such as natural lan-
guage explanations generated using large language models (LMs), often together
with the predictions by the same model [21], are theoretically expressive enough
to reveal common sense reasoning or accommodate fine-grained explanations,
but they can be unfaithful to actual model reasoning and have been shown to
be unreliable in practice [43]. Furthermore, generative large LMs are expensive,
especially if label-specific explanations are required as prompt context and if
there are many labels [30], while smaller bidirectional Transformer encoder [38]
LMs like BERT [6], DeBERTa [7] and RoBERTa [19] still achieve state-of-the-art
performance on classification tasks more cost-effectively.

In this work, we first identify the key problems with current methodologies
in text classification for predicting and explaining, which hinder those method-
ologies from being interpretable, especially for fine-grained practical tasks that
require trustworthiness. Then, we propose our simple framework for interpretable
fine-grained classification, which allows fine-grained links to be drawn between
input features and labels by requiring the labels to be broken down into meaning-
ful constituents. Our framework can be seen as extending the feature importance
paradigm by disentangling a given feature importance score into multiple links,
which explain input-label correspondence more precisely. We demonstrate our
framework with the white-box attention mechanism of state-of-the-art LMs, as
we prefer intrinsic interpretability to black-box post-hoc explanations because
how to evaluate explanations is still an open question and it is thus unverifiable
to what extent black-box explanations truly reflect model reasoning, whereas
white-box mechanisms directly show at least some parts of a model’s actual
prediction process. We evaluate on the task of intent recognition, which is well-
known to be fine-grained and is widely used in real-life task-oriented dialogue
systems across application domains such as banking [3] and customer service [24]
where trustworthiness is crucial.1

Our human evaluation, head-to-head comparisons between feature impor-
tance explanations and ours, show that our explanations better explain pre-
dictions on two well-known intent recognition datasets, which recent work has
identified as especially fine-grained [30]. Furthermore, our semi-automated eval-
uation of explanation faithfulness, the degree to which they accurately represent
model reasoning, shows that our explanations are faithful across three intent
recognition datasets, especially when the model is confident in its prediction.

In summary, our main findings include 1) an understanding of the limita-
tions of current methodologies including the feature importance paradigm and
importance of task formulation in interpretability, 2) a simple framework for
interpretable fine-grained classification, and 3) a demonstration and evaluation
of our framework, which show that our explanations are faithful and better
explain predictions with fine-grained labels than feature importance.

1 Intent recognition remains important in high-responsibility applications despite gen-
erative LM-based conversational tools like ChatGPT, which suffer from issues like
hallucination, unpredictability, difficulty to control, and privacy concerns [2,28,39].
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2 Related Work

2.1 Fine-Grained Text Classification

Fine-grained text classification involves a high number of class labels with subtle
differences between them [34]. This is an emerging challenge driven by techno-
logical progress in natural language processing (NLP) and practical needs across
different tasks, including emotion recognition [25], sentiment analysis [37], and
intent recognition [3]. Previous work tailoring to this challenge, especially those
focusing on interpretability, is severely limited.

Our focus, intent recognition, is the practical task of assigning an intent
label to a user utterance. The intent labels in this task are well-known to be
fine-grained and challenging to distinguish, especially in practical applications
[3], even for recent very large LMs like GPT-3 [30]. For this work, we consider two
different text classification approaches that have been applied to intent recogni-
tion, primarily in terms of their intrinsic interpretability (see Sect. 3.1).

The traditional approach is to formulate the task as a single-sentence clas-
sification problem and use neural encoder models like BERT with classification
heads [3]. The lack of interpretability in this approach is broadly attributed to
the black-box nature of the models. Interestingly, this approach is also known
to be limited in its ability to generalize to new labels due to its convention of
label encoding, which means that the intent labels are encoded into arbitrary
numeric indices [44]. Surprisingly, previous works have not considered its effect
on interpretability. Nevertheless, a different approach [44] has shown that adopt-
ing lexicalized natural language representations of the labels and reformulating
classification tasks as sentence-pair classification enables zero-shot generaliza-
tion. This approach has also been shown to be effective for intent recognition,
which has complex and fine-grained labels that can benefit from being explicitly
described [14]. The explicit human-readable descriptions can also be useful for
interpretability, but previous works have not explored that opportunity.

2.2 XAI for NLP

Existing explanation methods have been categorized along many axes in previous
literature [5]. Firstly, they can be either local or global depending on whether
they aim to explain the output of a model for a specific input instance or if they
aim to explain the general model behavior. We focus on local explanations in this
work, as we require the ability to explain certain input instances for practical
purposes such as understanding and debugging specific errors. Examples of local
explanation methods include the well-known LIME [26] or Integrated Gradient
[32], whereas those of global explanations include probing classifiers [4].

Along another important taxonomy axis, explanations can be black-box or
white-box. Black-box explanations do not require access to the internal compo-
nents or intermediate outputs of their target model. They explain a model from
the outside by analyzing model output with respect to different inputs. Exam-
ples include testing the model with counterfactual perturbations and analyzing
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the output (e.g., change in prediction probability in the case of a classification
model [26]), or presenting a historical example based on output similarity (e.g.,
outputs of an encoder model [33]) in the case of example-based explanations. On
the other hand, white-box explanations or interpretations of self-explaining mod-
els rely on intrinsically interpretable mechanisms of the models, e.g., attention
mechanism in language models [4].

The former, black-box explanations, have the advantage of being model-
agnostic, but they can lack robustness to small perturbations [31], and are costly,
especially for use on LMs [43]. More importantly, they infer an explanation for
a given input instance indirectly based on other similar instances without ever
directly explaining how the given instance itself was processed by the model.
This is problematic considering that how to evaluate explanation faithfulness [8]
is still an open question and it is thus currently impossible to fully verify a given
local explanation. On the other hand, white-box explanations directly rely on
mechanisms that are part of a model’s actual prediction process. While they too
can be misinterpreted in an unfaithful way by humans and any interpretations of
white-box mechanisms should also be validated as much as possible [8], they at
least do not have the problem of potentially misrepresenting the model’s predic-
tion process as they themselves are the process, whereas black-box explanations
can both misrepresent the model and be misinterpreted by humans.

Finally, recent work on natural language explanations has categorized expla-
nations into extractive versus free-text based on expressiveness [40]. The for-
mer includes discrete rationales and continuous feature importance explanations,
which are limited in expressiveness to the input features only. On the other hand,
the latter refers to natural language explanations that are highly expressive and
intuitive to understand. Unfortunately, free-text explanations are far from appli-
cable in high-responsibility practical tasks, as they can be unreliable (inconsis-
tent with the prediction and not factually grounded in the input instance [43]).

3 Feature Relation Framework

3.1 Interpretability Bottleneck in Existing Conventions

In this section, we describe an interpretability bottleneck in existing conventions
of single-sentence text classification and extractive explanations. Conventionally,
text classification tasks are formulated as single-sentence classification [3,45], in
which labels are traditionally encoded into arbitrary numeric indices. A previous
work [44] argued that this label-encoding prevents models from “understanding”
a label. We agree and add that label-encoding also prevents us humans from
understanding what the model understands about labels.

The convention obscures the fine-grained aspects of the labels and sets a
bottleneck on how fine-grained an explanation can be, i.e., how fine-grained the
links drawn between an input and a label can be. The underlying problem is
treating the labels as if they were atomic (see Fig. 1a). As a result, explanations
cannot explain how features relate to the different aspects of labels, and why
features relate to the labels in the ways they do (unlike in Fig. 1b), which leads
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Fig. 1. Fine-grained label representations can enable fine-grained explanations.

to explanations that are ambiguous for similar fine-grained labels. Unfortunately,
this bottleneck applies to extractive (e.g., feature importance) explanations in
general, the predominant paradigm in XAI, which goes hand in hand with the
traditional classification approach.

For example, Fig. 2 shows results by existing extractive methods. The expla-
nations seek to answer why an incorrect label was predicted rather than the
ground truth. Figures 2a and 2b show LIME-based [26] importance of each
word to each label, which lack clarity as to why certain words have negative
importance while others have positive. For example, although both labels are
about verifying identity, “verify” confusingly has negative importance for the
label why_verify_identity but positive importance for verify_my_identity
while “identity” has positive importance for both. Figure 2c shows an explana-
tion by a method from a different work [9], which can be seen in a sense as
more fine-grained, as it aims to highlight only the most contrastive word that
distinguishes between two labels. It highlights the word “identity” as the most
contrastive word, but also leaves unclear why, as it does not reveal how “identity”
(or other words) relates to each label.

Fig. 2. Extractive explanations of “Why c1 rather than c2?” for a text x where c1 is an
erroneous label (verify_my_identity) and c2 (why_verify_identity) is the ground-
truth label. The text x and the labels c1 and c2 are from a public fine-grained text
classification dataset for banking domain [3].
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Fig. 3. Given an input and its corresponding label, our feature relation explanation
framework treats each of them as a collection of features and explains the input-label
correspondence in terms of links between the two collections.

3.2 Beyond Feature Importance: Feature Relations as Fine-Grained
Explanation

To overcome the interpretability bottleneck described in Sect. 3.1, which stems
from neglecting fine-grained label-specific information, we propose our input-
label feature relation framework (see Fig. 3). Intuitively, our framework aims
to dissect a label into its fine-grained constituents and then to disentangle the
importance of features with respect to those. Our simple but powerful feature
relation framework is generalizable across all data types just like feature impor-
tance but more fine-grained thanks to our formulation based on relations rather
than the coarse-grained idea of importance.

Relations. We define relation as a mapping R : A × B → R that assigns a
strength score l to each (a ∈ A, b ∈ B) pair/link where A and B are collections
of features. Figure 3 illustrates this as lines between input features {f1, f2, ...,
fn} and label features {p1, p2, ..., pk}. In text classification, fi would be a word
or a token of an input text x whereas pi could be any type of feature that
can characterize the labels. For example, the labels could be represented simply
by their label names, which distinguish the labels from each other in a human-
readable manner (e.g., “verify my identity” versus “why verify identity” in Fig. 2),
or they could even be represented with free-text descriptions or representative
examples. In those cases, pi would be words or tokens but our relation concept
is generalizable beyond text processing to all data types as long as the data
instances and the labels/targets are collections of features, e.g., sequences of
tokens like the above, or tabular data entries, or even image patches. The process
of inferring a relation R is not limited to any specific method, which means
different methods (e.g., attention, or mutual information between contextual
encodings [16]) can be used for this.

Feature. Our general framework is not tied to a specific type of feature either.
In existing feature importance explanations, a feature can be of a wide variety



404 M. Battogtokh et al.

Fig. 4. The process of inferring a relation R(x, ci) (rightmost) from the attention out-
puts of a sentence-pair model m. It involves extracting the cross-sentence attention
between x and ci and aggregating them.

of types, e.g., lexical (words/tokens, n-grams, etc.), feature-engineered, graphic
(pixels), or even latent [5]. By combining this general definition of features
and our above definition of relations, our general framework extends the fea-
ture importance paradigm to a more fine-grained paradigm of feature relations.
Instead of considering the importance of only input features (like in Fig. 1a), our
framework considers the relations from input features to target/output features
(like in Fig. 1b). In general, the relations may be between even different types
of features (e.g., n-grams of text x to tokens of label ci) depending on task and
implementation.

3.3 Input-Label Cross Attention

We demonstrate our framework based on attention between input text tokens
and label tokens (when the label is represented in natural language), using the
sentence-pair approach [14] and state-of-the-art Transformer encoder models [6,
7], for which the attention mechanism is fundamental.

Broadly, interpreting the attention outputs of models is common [4,27,36].2
However, exactly in what scenarios attention serves as useful explanations is not
fully understood and existing works that use attention for interpretability often
lack rigorous evaluation of the attention-based explanations [1,10,41]. Unlike
such existing works, we evaluate our interpretations thoroughly using human
and automated evaluations in the next section.

We extract explanations from attention as follows. Firstly, we concatenate
the input pair (x, ci) together with a special token “[SEP]” as a delimiter, where
x is an example of an input text and ci is the label name, and input the result
into the sentence-pair model m, which in turn outputs the prediction score pi,

2 A concurrent work has used cross-attention of text-to-image stable diffusion models
to interpret which parts of images correspond to which words [35]. This fits our
general framework but our work differs in that we apply our framework to identify
text-label relations for practical fine-grained classification tasks.
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to obtain the intermediate attention outputs. Then, we sum them together the
attention outputs (matrices) into a single aggregate attention matrix.

Figure 4 (leftmost) shows an example of such an attention matrix, which
consists of four quadrants, separated by two crossing lines that correspond to
the “[SEP]” token. Two quadrants (top left and bottom right) represent the
intra-sentence attention within each of x and ci, while the other two (circled)
represent the cross-sentence attention between x and ci.

We extract a relation R(x, ci) from the cross-sentence quadrants by summing
them together (with one transposed), which results in a matrix [lij ] ∈ R

m×n

where lij is the strength value of the link between the ith of the m tokens in x
and jth of the n tokens in ci (see Fig. 4).

4 Evaluation

In this section, we present qualitative results and evaluate our framework by
comparing it against feature importance and measuring how faithful our expla-
nations are. The rest of this section details our evaluation methods and results.

4.1 Qualitative Results

Figure 5 shows examples of our feature relation explanations next to feature
importance explanations. We visualize our explanations similarly to the saliency

Fig. 5. Feature importance versus feature relation explanations. The labels and the
texts are from intent recognition datasets BANKING77 [3] and HWU64 [18]. In each
feature relation explanation (Fig. 5b), the label is placed below the text. (Color figure
online)
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visualization of LIME (opacity of the input token highlights corresponds to
the total attention they receive from the label tokens and vice versa) and self-
attention visualization of BertViz [4]. Unlike feature importance, which can have
positive and negative importance (encoded by blue and red highlights respec-
tively), attention values can only be positive (hence only blue highlights). To
prevent visual clutter, we only show up to the three strongest links of each token
if their strengths exceed a fixed threshold. Our explanations leave less to guess
even if the same words are highlighted as important by both explanations (e.g.,
“pub”, “off”, “list”, “Where”, etc.), as the links clarify what fine-grained aspects
of the label those words correspond to.

4.2 Head-to-Head Comparison with Feature Importance

Following previous work [29,40], we compare our framework with feature impor-
tance in head-to-head comparisons of explanations of each paradigm on examples
from two well-known intent recognition datasets employing crowdworkers. The
two datasets are BANKING77 [3] and HWU64 [18], which are known to be espe-
cially fine-grained [30]. First, we randomly sample 300 test examples from each of
the datasets. Then, we visualize two explanations for each sample (a prediction
is made using a fine-tuned sentence-pair BERT model) using feature importance
(half the time with LIME and the other half with Integrated Gradient) and our
feature relations framework (with the same type of visualizations as in Fig. 5).
We presented each sample’s text and corresponding correct label along with the
two alternative visualizations to our study participants and asked them which
one best explained the correspondence between the text and the label. For each
sample, we asked three different annotators. Appendix B provides further details
on our crowdsourcing method. Figure 6 below shows the overall results.

Fig. 6. Head-to-head comparison between feature importance explanations, obtained
using LIME or Integrated Gradient (InteGrad), and our feature relation explanations
across two fine-grained classification datasets.
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Do Humans Prefer Feature Relations to Feature Importance? Figure 6
shows the head-to-head comparison results on BANKING77 and HWU64. Across
both datasets and both feature importance methods, crowdworkers strongly pre-
ferred our feature relation explanations (60.4% to 84.0%) to feature importance
(7.1% to 15.3%). In the strongest case, on HWU64, our explanations topped Inte-
grated Gradient explanations with roughly a 12 to 1 win-rate ratio, whereas in
the weakest case, our explanations topped LIME with roughly a 4 to 1 win-rate
ratio (also on HWU64). LIME was relatively more competitive than Integrated
Gradient on both datasets but its win rate against our framework was at best
15.3% and always lower than its tie rate.

Inter-annotator Agreement. Table 1 shows the agreement levels among the
annotators in terms of the percentages of examples for which the three annotators
had full agreements (3/3), partial agreements (2/3), and full disagreements, as
well as Krippendorff’s α, which indicates agreement among judges with a value
between −1 (systematic disagreement) and 1 (full agreement) [12].

Table 1. Levels of agreement among annotators across conditions.

BANKING77 HWU64
Agree Partial Disagree α Agree Partial Disagree α

LIME 32.0 60.7 7.3 0.1 19.3 64.7 16.0 0.0
InteGrad 53.3 39.3 7.3 0.2 62.7 33.3 4.0 0.3

Comparisons against Integrated Gradient had moderate agreements, as the
annotators fully agreed on more than half of the samples from both datasets
and fully disagreed on only 4–7% of the samples. Agreements were lower in the
comparisons against LIME, as annotators only partially agreed on the major-
ity of the samples (roughly 60%) and fully agreed on 19–32% of the samples.
Krippendorff’s α indicated low agreement in general, which could be due to the
subjectivity of preferences. However, both full and partial agreements were on
strongly preferring our explanations.

Figure 7 shows that more than 90% of the full agreements were on preferring
our explanations to both LIME and Integrated Gradient on both datasets. In
each combination of a dataset and a feature importance method, there was at
most only one full agreement on preferring the feature importance explanation
to our explanation. On BANKING against Integrated Gradient and on HWU
against LIME, there were zero full agreements on preferring feature importance.
This shows that feature importance is highly unlikely to definitively win against
our framework, whereas our framework is highly likely to definitively win. Simi-
larly, at least about three-quarters (up to 86.8%) of the partial agreements agreed
on preferring our explanations, which further supports that humans prefer fea-
ture relations as explanations to feature importance.
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Fig. 7. Preferences with different levels of agreement

4.3 Faithfulness

We measure the faithfulness of our attention-based feature relation explanations
using a semi-automated evaluation. Faithfulness refers to how accurately expla-
nations represent the reasoning behind model predictions. Previous work has
outlined the various evaluation methods in existing works by which faithfulness
has been measured and the general reasoning behind those methods [8]. We espe-
cially emphasize the reasoning among those that an explanation is unfaithful if it
disagrees with the decision of the model that it is explaining. We agree that this
is a minimum requirement of a local explanation’s faithfulness regardless of the
explanation’s form (e.g., feature importance, feature relations, natural language,
etc.).

A broadly applicable way to measure faithfulness based on the above rea-
soning is to reproduce model predictions from the explanations [8,13,17,23].
This can be done by tasking humans to guess (predict) model predictions from
explanations [23], or using another model or the model itself to do so [13].

In our case, as we utilize attention outputs, which the model is already rely-
ing on to make its predictions, we sought to answer how humans can interpret
those outputs faithfully, i.e., such that they can guess the model prediction.
Toward answering this question, we manually analyzed a few dozen misclassified
examples for which we were presented with label-specific attention heatmaps for
the predicted and the gold label. As a result, we observed a few simple rules
that allowed us to guess model predictions fairly well. From this point, to verify
our hypothesis that these rules faithfully predict model predictions for a larger
set of examples, we automated them and measured their reproduction accu-
racy (see Table 2). Unlike tasking humans (or other black-box models) to guess
model predictions from explanations without clarifying how they interpreted the
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explanations, automatically evaluating the faithfulness of human-friendly rules
allows us to make clear exactly how the explanations should be interpreted by
humans and how and how much they can trust the explanations.

Our two main rules based on our manual analysis, which take two label-
specific explanations R(x, c1) and R(x, c2) as inputs and predict ci ∈ {c1, c2},
are as follows:

1. Magnitude. A higher total magnitude of link strength in input-label relation
indicates a higher probability of the label. Predicts c1 if Inequality 1 holds
(c2 otherwise).

∑
li ∈ R(x, c1) >

∑
lj ∈ R(x, c2) (1)

2. Concentration (on top-K links). An input-label relation with a higher
concentration of link strength (regardless of total magnitude) indicates a
higher probability of the label. Predicts c1 Inequality 2 holds (c2 otherwise).

∑K
i=1 l1i∑

l1
>

∑K
i=1 l2i∑

l2
(2)

where l1 ∈ R∗(x, c1), l2 ∈ R∗(x, c2) while R∗(x, ci) denotes R(x, ci) that is
flattened and sorted from the largest to smallest value.

Experiments

Datasets and Model. Our results are reported on the previous two datasets
BANKING77 [3], HWU64 [18], and an additional intent recognition dataset
CLINC150 [15]. Our main results are based on sentence-pair BERT models fine-
tuned on each of the datasets (see Appendix A for training details).

Main Evaluation Loop. Algorithm 1 describes how we measure reproduction
accuracy on error sets (misclassified examples) in pseudo-code. Given a collec-
tion F of rules, we calculate how often each rule fi successfully reproduces a
prediction pn. We say that fi reproduces pn if and only if fi predicts pn from
each possible pair (pn, cj) (where pn ∈ C, cj ∈ C \ {pn}, and C is the set of all
possible intents) given the explanations R(xn, pn) and R(xn, cj).

Can Our Explanations Faithfully Reproduce Model Predictions?
Table 2 shows the reproduction accuracy of our rules. We used the parameter
K = 1 in the concentration rule, based on additional experiments (see Appendix
C.4). In addition to the two main rules from earlier, we evaluated a “Mean” rule,
which compares two relations by the mean link strength (added as an alternative
to “Magnitude”), and compound rules such as “Mag. + Con.” that combine the
individual rules by conjugating their Boolean conditions with the logical opera-
tor OR. We do so motivated by our observation that the cross-sentence attention
for the predicted intent often tends to be either higher across all links or strongly
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Algorithm 1: Main evaluation loop
input : C = {ci}, D = {xi}, P = {pi ∈ C}, F = {fi}
output: S = {si ∈ [0, 1]}
S ← sequence of zeros repeated |F | times ;
for xn ∈ D do

for fi ∈ F do
Pfi ← {};
for cj ∈ C \ {pn} do

p ← fi(R(xn, pn), R(xn, cj));
Pfi .add(p);

end
if ∀p∈Pfi

(p = pn) then
S[i] ← S[i] + 1

|D| ;
end

end
end
return S

concentrated on a few links between the keywords. We also include a “Reference”
baseline, which compares two relations R(x, c1) and R(x, c2) by randomly pick-
ing a single value from each and comparing those values with one another, and
a “Random” baseline, which makes a random guess between two relations.

Table 2. Reproduction accuracy (%)

BANKING77 HWU64 CLINC150
Mag.+ Con.+ Mean 72.8 58.4 68.0
Mag. + Con. 63.8 54.0 63.6
Mag. + Mean 34.8 30.1 48.1
Mean + Con. 28.8 28.3 22.5
Mean 14.8 17.7 14.9
Mag. 5.8 15.9 16.5
Con. 0.9 2.7 1.6
Reference 0.0 0.0 0.9
Random 0.0 0.0 0.0

As expected, reproducing model predictions with the random rule is highly
improbable as there are many labels in each dataset (the chance is 2−(|C|−1)

where |C| is the number of labels; see Algorithm 1). Considering this, each non-
compound rule was able to reproduce a significant (though low) percentage of
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Fig. 8. Relation between confidence threshold and reproduction accuracy for different
rules (Color figure online)

model predictions. Compound rules from combining two individual rules per-
formed better than both their individual counterparts and those combined with
the random rule. Furthermore, in line with our manual analysis, the combina-
tion of the magnitude and concentration rules led to a fair reproduction accuracy
(54%–63.8%) that is the highest by far among the other two-way combinations.
Combining the three rules (magnitude, concentration, and mean) resulted in
a higher reproduction accuracy (up to 72.8%). In summary, these results show
that cross-sentence attention relations can be interpreted fairly faithfully through
simple rules.

Does Model Confidence Correlate with Faithfulness? To understand
why reproduction sometimes failed, we investigated how reproduction success is
related to relative prediction scores. Therefore, we experimented with different
confidence thresholds (the minimum confidence |pc1 − pc2 | with which to filter

Table 3. Spearman correlations

BANKING77 HWU64 CLINC150
Mag.+ Con.+ Mean 0.952 0.915 0.964
Mag. + Con. 0.952 0.976 0.988
Mag. + Mean 0.964 0.632 0.927
Mean + Con. 0.976 0.903 0.770
Mean + Random 0.891 0.948 0.491
Mag. + Random 0.685 0.345 0.721
Mean 0.988 0.855 0.733
Mag. −0.875 0.564 0.952
Con. + Random 0.261 0.285 0.988
Con. −0.792 0.867 1.000
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out examples from our main evaluation loop) based on our observation that
when a reproduction failed, the model often had low prediction scores for both
c1 and c2, i.e., the confidence was also low.

Figure 8 shows that the reproduction rate of our best rules “Mag. + Con. +
Mean” and “Mag. + Con.” increased up to perfect accuracy as the confidence
threshold was increased. These rules achieved strong faithfulness (above 90%
reproduction accuracy, indicated by the gray dotted line in Fig. 8) across all
datasets (with a confidence threshold of as little as 0.5). Additional experiments
further show that our approach achieves highly faithful explanations, even with
a different BERT-like model (see Appendix C and D).

Indeed, there was a strong tendency for a positive monotonic correlation
between confidence threshold and reproduction accuracy (see Table 3). The
reproduction accuracy of the “Mag. + Con.” rule had the highest average cor-
relation with confidence threshold across the three datasets, while “Mean” was
the only non-compound rule that consistently had a strong positive correlation
score. These results show that when model confidence is high, our cross-sentence
attention relations can be interpreted with high faithfulness using just simple
rules.

5 Conclusion and Future Work

Firstly, we found that conventions of single-sentence classification and extrac-
tive explanations suffer from a fundamental interpretability bottleneck, as they
ignore fine-grained label information. Based on this insight, we proposed a gen-
eral framework that prevents the said bottleneck. Subsequently, we demonstrated
our framework using the attention mechanism of state-of-the-art Transformer
encoder models and evaluated our explanations by comparing them against fea-
ture importance explanations and measuring faithfulness. Our results showed
that crowdworkers strongly preferred feature relation explanations to feature
importance and that our attention-based explanations can be faithfully inter-
preted through simple rules, especially when model confidence is high.

In future work, we are interested in exploring feature relation explanations
in the context of free-text label descriptions (rather than label names). We are
also interested in exploring explanations that are expressive enough to not only
incorporate the input features and the label but also implicit or external knowl-
edge. In this direction, we find natural language explanations promising (but
with its own set of challenges).

Acknowledgement. This work was supported by UK Research and Innovation [grant
number EP/S023356/1], in the UKRI Centre for Doctoral Training in Safe and Trusted
Artificial Intelligence (www.safeandtrustedai.org).

A Model Fine-Tuning

For each of the three datasets (BANKING77, CLINC150, and HWU64), we train
two models: a conventional single-sentence (1sent) model and a sentence-pair

www.safeandtrustedai.org
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(2sent) model. The default initial model checkpoint (which we fine-tune) in the
main body of this paper is BERT-base [6], distributed on Huggingface’s Trans-
formers library [42] with apache-2.0 license. The datasets BANKING, CLINC,
and HWU were accessed from Amazon Alexa AI’s DialoGLUE benchmark’s
repository [22] with CC-BY-4.0, CC-BY-SA 3.0, and CC-BY-SA 3.0 licenses
respectively.3

For both formulations, we fine-tuned BERT-base on all examples in the train-
ing splits and evaluated on the test sets. The training script was run on NVIDIA
Quadro T1000 4GB GPU, which allowed for a batch size of 8 (for both 1sent
and 2sent) for the BERT-base model with nearly 110 million parameters. The
1sent models took approximately 20min to train on average across the three
datasets, while the 2sent models took approximately one hour on average. For
each dataset, we optimized using an Adam optimizer [11] with learning rate
3 × 10−5 for 3 epochs, with the rest of the training hyperparameters set to
default (by the Transformers library version 4.8.2).

Given an example x from the test or the training set, the 1sent model m1

calculates |C| (the number of intents in the set of all candidate intents C) pre-
diction scores [yi] ∈ R

|C| and outputs the index i with the highest prediction
score. On the other hand, the 2sent model m2 outputs a match score (m2 makes
a binary prediction; we treat the prediction score for the positive class as this
match score) given x and the natural language name ci of the intent concate-
nated together with a special separator token “[SEP]”. During the evaluation, we
generate |C| inputs per x, pairing x with each intent cj , and identify the intent
with the highest match score as the 2sent prediction.

However, during training, it is not required to pair an example x with all
intents. Therefore, given an example x annotated with an intent ctrue, we gen-
erate 2 × N + 1 inputs, where N < |C|. The N of those are x paired with N
random intents (negative labels) that are not ctrue. Another N are random N
example texts from the training split that do not have the intent ctrue (nega-
tive examples), paired with ctrue. We set N equal to 5 to limit training time
according to our resource constraints.

Table 5 reports the accuracy achieved by our main sentence-pair model
(BERT-2sent) along with benchmark performances (BERT-fixed and BERT-
tuned) from [3] and the accuracy of a single-sentence BERT model (BERT-1sent)
that we trained for reference. BERT-2sent is on par with the benchmark model
BERT-fixed4 and approaches BERT-1sent in accuracy (Table 4).

B Crowdsourcing Details

Our study design followed those of previous work [29,40]. We presented crowd-
workers (on Prolific) with two alternative types of explanations and asked them

3 https://github.com/alexa/dialoglue.
4 BERT-fixed uses mean-pooling of the token encodings as sentence embedding unlike

BERT-tuned, which instead uses the encoding of the special token “[CLS]”.

https://github.com/alexa/dialoglue
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Table 4. Overview of the datasets

BANKING77 HWU64 CLINC150
Train examples 8622 8954 15000
Test examples 3080 1076 4500
Num. intents 77 64 150
Domains 1 21 10

Table 5. Accuracy on the three datasets

Model BANKING77 HWU64 CLINC150
BERT-fixed 87.2 85.8 91.8
BERT-tuned 93.7 92.1 96.9
BERT-1sent 91.5 90.8 95.4
BERT-2sent 85.6 89.5 93.0

to select their preference. We screened participants based on their English lan-
guage proficiency and location (also as a proxy of language proficiency following
[40]) because our evaluation datasets were in English, and based on their educa-
tion level (at least undergraduate level) because our study involved non-trivial
language understanding and familiarity with visualizations. We employed par-
ticipants from the United Kingdom, the United States, Canada, Australia, and
New Zealand with a minimum approval rate of 98% and a minimum of 100 previ-
ous submissions on Prolific. All submissions were anonymous and all participants
were presented with an information sheet providing the details of our study and
were asked for their consent at the beginning of our study.

Quality Control. Before our main head-to-head comparisons, we selected par-
ticipants based on two preliminary rounds of questions. In the first preliminary
round, we presented the crowdworkers with 12 multiple-choice questions based
on example texts from fine-grained classification datasets (intent recognition and
sentiment analysis) in order to test their ability to understand the fine-grained
differences between English texts. We only selected participants who answered
at least 11 questions correctly. In the second preliminary round, we presented
the participants with 12 explanations, half of them feature importance and the
other half feature relation (ours), and asked them to rate how well those expla-
nations explained the correspondence between a given text and its label. We
acknowledged that subjectivity can play a significant role here and participants
can disagree with us on non-trivial cases or be more or less generous than us (but
with similar relative ratings of the different explanations). Therefore, we passed
participants through this round based on manually checking their submissions
mostly for only low-quality responses (same choice for all questions, too short
time spent per question, obvious random clicking on trivial cases, etc.).
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Fig. 9. User-interface of our head-to-head comparison study (example)
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Payment. Our two preliminary rounds paid £1 (20£/h) and £1.5 (15£/h) for
3 and 6min respectively. Our main survey was expected to take 8–13 minutes
and participants were paid £3 (at least 12£/h).

User Interface. Figure 9 shows the user interface of our study, which is imple-
mented on Qualtrics.

C Further Evaluation

In this section, we report the results from our initial (less computationally expen-
sive) evaluation setting, which we refer to as the lite evaluation setting. The
results from this setting are on both full test splits and the error sets (the sub-
set of misclassified examples) of the three datasets BANKING77, HWU64, and
CLINC150. The key difference from the main evaluation setting is that the lite
setting asks the contrastive question “Why c1 rather than c2?” only once per
example whereas the main setting asks it for all possible values of c2. Moreover,
the lite setting only evaluates the subset of the rules.

Within the lite setting, for each example in the error set, we aim to explain
why the model made an error, i.e., “Why c1 rather than c2?”, where c1 is the
predicted intent and c2 is the correct (ground-truth) intent. On the full sets, our
aim is the same for misclassified examples, but for correctly classified examples,
it is to explain “why not c2?”, i.e., “Why c1 rather than c2?” where c1 is predicted
and c2 is an intent similar to c1. For this work, we pick such c2 from the set of all
intents other than c1, by the highest vector similarity between the intent names
(using the spaCy library).

C.1 Faithfulness

Tables 6 and 7 show the lite reproduction accuracy of our rules on the error and
full sets respectively. We used the parameter K = 1 in the concentration rule
since reproduction rate has a strong negative and monotonic correlation with K
(see Appendix C.4).

Table 6. Reproduction accuracy (error set)

BANKING77 HWU64 CLINC150
Random 49.2 53.1 49.1
Magnitude 59.6 65.5 63.3
Concentration 57.1 52.2 47.8
Mag. + con. 94.6 83.2 89.6
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Table 7. Reproduction accuracy (full set)

BANKING77 HWU64 CLINC150
Random 48.0 49.5 50.7
Magnitude 82.5 83.7 81.3
Concentration 57.6 65.0 59.8
Mag. + con. 98.6 96.2 98.7

All rules consistently achieved higher reproduction accuracy than random
guesses. Magnitude consistently outperformed concentration with an average of
62.8% on the error sets and 82.5% on the full sets. Combining magnitude and
concentration (mag. + con.) achieved the highest values with an average of
89.1% on the error sets and 97.8% on the full sets. The highest reproduction
accuracy scores were 98.7% and 98.6%, which were on the full sets of CLINC150
and BANKING77 respectively. These high values suggest that our explanations
faithfully explain model predictions.

Table 8. Spearman correlations

BANKING77 HWU64 CLINC150
error full error full error full

Mag.+con −0.10 0.98 0.93 0.98 0.99 1.
Mag. 0.94 1. 0.70 1. 0.95 1.
Con. −0.39 −0.39 0.85 0.85 1. 1.

C.2 Correlation between Confidence and Reproduction Accuracy

Figure 10 shows that the reproduction rate of our best rule mag. + con. increased
up to perfect accuracy on the error sets and near perfect on the full sets as we
filtered out evaluation examples with increasing confidence threshold. This was
the case despite decreasing number of examples, i.e., a higher drop in accuracy
with each failure (see Fig. 11).

Just like in our main results, there was a strong tendency for positive and
monotonic correlation (see Table 8, in which most correlation values are close to
+1) between the two variables: reproduction accuracy and confidence threshold.
The error set of BANKING77 had a weak correlation (value near 0) against this
tendency, but Fig. 10a shows that the reproduction accuracy increased even for
this case, though non-monotonically.

C.3 Importance of Special Tokens

We also hypothesized that certain reproductions may have failed because our
cross-sentence relations did not always fully capture model reasoning. Impor-
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tantly, we ignored the special tokens “[CLS]” and “[SEP]”, which are known for
aggregating the input and receiving high levels of attention [4], to focus only
on human-readable tokens (see Fig. 4). There are three special tokens in each
concatenated input that we feed into our model: “[CLS]” as the first token, and
two “[SEP]” tokens (one for delimiting the input pairs and one at the end of
the input). We experimented with treating the “[CLS]” and the first “[SEP]” as
features of text x, while treating the last “[SEP]” as a feature of intent ci. This
led to higher reproduction rates on all datasets (see Table 9).

Fig. 10. Graphs showing the correlation between confidence threshold and reproduc-
tion accuracy

Fig. 11. Graphs showing the correlation between confidence threshold and number of
examples
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C.4 Correlation Between Concentration Parameter K
and Reproduction Accuracy

Figure 12 shows the relation between the parameter K (see Sect. 4.3) in our con-
centration rule and the reproduction accuracy (under the lite evaluation setting;
see Appendix C.1) of the rule.

As Table 10 shows, there is a strong negative and monotonic correlation
between the parameter K and reproduction accuracy.

Fig. 12. Correlation between concentration parameter K and reproduction accuracy
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Table 9. Reproduction accuracy (full set) when special tokens are treated as features
of text x and intent ci (with confidence threshold) under lite evaluation setting (see
Appendix C.1)

Min. confidence BANKING77 HWU64 CLINC150
0 99.81 99.91 99.87
0.1 99.96 100 99.95
0.2 99.96 100 99.95
0.3 99.96 100 99.98
0.4 99.96 100 99.98
0.5 99.95 100 99.98
0.6 99.95 100 99.97
0.7 100 100 99.97
0.8 100 100 99.97
0.9 100 100 99.97

Table 10. Spearman correlations between K and reproduction accuracy. There is a
strong negative correlation between K and reproduction accuracy across all datasets.

BANKING77 HWU64 CLINC150
error full error full error full
−0.975 −0.979 −0.833 −0.989 −0.975 −0.980

D Experiments with DeBERTa

Model training followed. Model training followed the same process for both
DeBERTa and BERT except for a few details (see Appendix A). We used
microsoft/deberta-base [7] with approximately 140 million parameters, dis-
tributed on Huggingface’s Transformers library [42] with an MIT license. We used
learning rates of 1×10−2 or 2×10−2 selected by greedy search (due to resource
constraints), and batch size of 1 or 2 with our DeBERTa models. Training took
approximately one hour for the 1sent models across the three datasets, and 4–
6 h for the 2sent models. On the other hand, our main evaluation loop takes
approximately less than 5min on the full set for both 1sent and 2sent models.
The DeBERTa model trained with single-sentence formulation (DeBERTa-1sent)
achieved the highest accuracy among the models we trained. However, DeBERTa
trained with the sentence-pair formulation (DeBERTa-2sent) achieved scores
lower than BERT-2sent, possibly due to non-optimal choices of hyperparameters
(especially learning rate). Nevertheless, we proceeded to use this DeBERTa-2sent
model since its performance is adequate for our primary purpose of evaluating
interpretability (Table 11).
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Table 11. Accuracy of our fine-tuned models including DeBERTa trained with single-
sentence (DeBERTa-1sent) and sentence-pair (DeBERTa-2sent) approaches

Model BANKING77 HWU64 CLINC150
BERT-1sent 91.5 90.8 95.4
BERT-2sent 85.6 89.5 93.0
DeBERTa-1sent 92.8 91.0 96.0
DeBERTa-2sent 75.3 84.5 90.7

Faithfulness Results. The faithfulness results with DeBERTa-2sent were similar
to those with BERT-2sent (under the lite evaluation setting; see Appendix C),
since the mag. + con. rule achieved high reproduction accuracy on both the
error and full sets (see Tables 12 and 13). However, an interesting difference was
that magnitude was better at reproducing model prediction than concentration
with BERT, but it was the other way around with DeBERTa.

Table 12. Reproduction accuracy (error set) with DeBERTa

BANKING77 HWU64 CLINC150
Random 53.0 47.0 46.0
Magnitude 47.0 56.0 44.4
Concentration 58.6 65.7 56.8
Mag. + con. 93.6 93.4 86.3

Table 13. Reproduction accuracy (full set) with DeBERTa

BANKING77 HWU64 CLINC150
Random 50.6 51.7 49.0
Magnitude 63.9 76.0 58.3
Concentration 57.9 63.8 70.6
Mag. + con. 96.1 97.3 95.9
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Abstract. The utilization of pre-trained networks, especially those
trained on ImageNet, has become a common practice in Computer
Vision. However, prior research has indicated that a significant number of
images in the ImageNet dataset contain watermarks, making pre-trained
networks susceptible to learning artifacts such as watermark patterns
within their latent spaces. In this paper, we aim to assess the extent
to which popular pre-trained architectures display such behavior and to
determine which classes are most affected. Additionally, we examine the
impact of watermarks on the extracted features. Contrary to the popu-
lar belief that the Chinese logographic watermarks impact the “carton”
class only, our analysis reveals that a variety of ImageNet classes, such as
“monitor”, “broom”, “apron” and “safe” rely on spurious correlations.
Finally, we propose a simple approach to mitigate this issue in fine-tuned
networks by ignoring the encodings from the feature-extractor layer of
ImageNet pre-trained networks that are most susceptible to watermark
imprints.

Keywords: Explainable AI · Representation Analysis · Spurious
correlation identification

1 Introduction

In recent years, the utilization of ImageNet [5] pre-trained models has become
a standard practice in Computer Vision applications [13]. Trained on the large
and diverse collection of images, these models obtain the ability to extract high-
level visual features that later could be transferred to a different task. This
technique, referred to as transfer learning (see e.g. [27] for a review), has proven
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to be highly effective, leading to significant advancements in various computer
vision applications, such as object detection [24], semantic segmentation [26] and
classification [30].

Deep Neural Networks (DNNs), despite being highly effective across a vari-
ety of applications, are prone to learning spurious correlations, i.e., erroneous
relationships between variables that seem to be associated based on a given
dataset but in reality lack a causal relationship [12]. This phenomenon, referred
to as the “Clever-Hans effect” [15] or “shortcut-learning” [7], impairs the model’s
ability to generalize. In Computer Vision (CV), such correlations may manifest
as DNNs’ dependence on background information for image classification [28],
textural information [8], secondary objects [18], or unintended artifacts, such
as human pen markings in skin cancer detection [1] and patient information in
X-ray images for pneumonia detection [32].

Recent studies have uncovered the presence of spurious correlations in the
ImageNet dataset, specifically, the connection of the Chinese logographic water-
marks (illustrated in the Fig. 1) to the “carton” class [1,3,16]. Such correla-
tions potentially render networks trained on ImageNet susceptible to developing
watermark detectors within their latent space, which can result in inaccurate
predictions when confronted with similar patterns in the data. Alarmingly, this
tendency persists even post fine-tuning on diverse datasets [3], suggesting that
the susceptibility to watermarks may not be confined to ImageNet networks, but
could possibly extend to all models that undergo fine-tuning.

Fig. 1. A number of watermarked images have been identified within the ImageNet
training dataset.

In this study, we investigate the specific ImageNet classes that are impacted
by the artifact-driven behavior of watermarks. We provide evidence that models
trained on ImageNet display a considerable dependency on Chinese watermarks,
extending beyond the previously considered “carton” class to include various
other classes. Remarkably, in some models, the proportion of high-level repre-
sentations that are able to detect watermarks exceeds 10%. Finally, we suggest a
simple solution to mitigate such behavior during transfer learning, which involves
the elimination of the most artifact-sensitive representations, while maintaining
the model’s performance with negligible impact.
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Fig. 2. The illustration shows the image in the baseline dataset and its corresponding
watermarked versions.

2 Method

In this work, we define neural representations as sub-functions of a model that
map the input domain to a scalar value indicating the activation of a specific
neuron. Our analysis focuses on two primary scenarios: scalar representations
of output classes and feature-extractor representations, which correspond to the
layer preceding the output logit layer1.

To evaluate the susceptibility of individual representations to watermarks, we
created binary classification datasets between normal and watermarked images
and assessed their ability to distinguish between the two classes. We followed the
approach outlined in [3] and used a baseline dataset of 998 ImageNet images2.
We created four probing datasets by inserting random textual watermarks in the
three most popular languages (Chinese, Latin, Hindi) [19] and Arabic numerals,
as illustrated in Fig. 2. For each image in the baseline dataset, we inserted a
random string of 7 symbols, selected from the set of the 20 most frequently
occurring characters in each language [4,25] (for Arabic numerals we sample
digits out of 10 available numbers). The watermark was placed randomly within
the image, subject to the requirement of full visibility. The font size for all
watermarks has been set to 30, while the image dimensions remain standard at
224 × 224 pixels.

We evaluated the representations’ ability to differentiate between water-
marked and normal classes using AUC ROC, a widely used performance metric
for binary classifiers. To do so, we utilized the true labels provided by the two
datasets, where class 1 represents images with a watermark and class 0 repre-
sents those without. We first calculated the scalar activations from a specific
neural representation for all images from both classes. Then, utilizing the binary
labels, we calculated the AUC ROC classification score based on the differences in
activations. AUC ROC score of 1 indicates a perfect classifier, ranking the water-
marked images consistently higher than normal ones, and 0.5 a random classifier.

1 In the case of neurons that produce multi-dimensional activations, such as convo-
lutional neurons, the channel neurons were analyzed by taking the average of the
activation maps per each channel.

2 Images were obtained from https://github.com/EliSchwartz/imagenet-sample-
images, excluding 2 images that already contained Chinese logographic watermarks.

https://github.com/EliSchwartz/imagenet-sample-images
https://github.com/EliSchwartz/imagenet-sample-images
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However, we can also observe scores less than 0.5, such as the score of 0 illus-
trating the perfect classifier, that is de-activated by the watermarked images. To
measure the general ability of representations to differentiate between the two
classes and provide evidence that the concept has been learned, we defined a
differentiability measure d = max (A, 1 −A) , where A is the AUC ROC score of
the representation in the particular binary classification problem.

3 Results

To analyze the effects of watermarked images on learned representations,
we employed 20 popular ImageNet-pre-trained Computer Vision architectures,
namely AlexNet [14], ResNet 18, 50, 101, and 152 [10], ResNext 101 [29],
WideResNet 101 [31], ViT [6], BEiT [2], Inception V3 [23], DenseNet 121, 161,
and 201 [11], GoogLeNet [22], MobileNet V2 [20], ShuffleNet V2 [17], VGG 11,
13, 16, and 19 [21].

Fig. 3. ImageNet classes with the highest mean AUC ROC scores across the models
analyzed in 4 different scenarios (Chinese, Latin, Hindi, and Numeric watermarks).
Each dot represents the AUC ROC performance of the class representation for a single
model.

For the 4 different scenarios, we collected the AUC ROC scores for every class
logit representation across all 20 ImageNet pre-trained networks. Figure 3 illus-
trates the top-5 ImageNet classes by the highest average AUC ROC across the
20 models. We can observe the clear distinction between the different scenarios –
Chinese watermarks show significantly higher average classification scores, com-
pared to the other three watermarks, namely Latin, Hindi, and Arabic numerals.
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Furthermore, it can be observed that classes with a high capability for detect-
ing Chinese watermarks are not inherently linked to textual objects, whereas
classes for other watermarks have a natural association with text, such as “web
site” or “book jacket”. This observation supports the conclusion that the ability
of DNNs to detect Chinese logograms results from the Clever-Hans effect and
is not desirable, whereas this cannot be said for other text detectors. Interest-
ingly, by analyzing the classes with the lowest average AUC ROC we could even
reveal—for the first time—the ability of ImageNet classes to detect the absence
of the Chinese watermarks in images, which was not given for the other types of
watermarks, illustrated in the Fig. 4.

Fig. 4. Top-5 ImageNet classes ranked by the lowest average AUC ROC across 20
analyzed models for 4 different scenarios.

Figure 5 illustrates the number of representations that are sensitive to the
Chinese symbols, across the logit and feature-extractor layers (layers of repre-
sentations, preceding the last prediction layer) of different networks. From the
left figure, which represents the sensitivity of output logits, we can observe that
nearly all of the networks exhibit sensitive logit representations. This could be
the reason for the average drop of 10.6% in model performance when trans-
parent Chinese watermarks are added to the ImageNet validation dataset, as
reported in [16]. Some networks, such as GoogleNet, have up to 285 output
classes (out of 1000) that are susceptible to Chinese watermarks. The right
figure, which represents the ratio of sensitive representations to the total number
of representations in the feature-extractor layers, reveals a significant proportion
of representations that have a high degree of differentiability toward the Chi-
nese watermarks. Furthermore, we can observe that several networks, including
DenseNet-161, ResNet-18, and GoogLeNet exhibit at least several representa-
tions with very high watermark differentiability scores (d > 0.95), which is in
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line with the reported high number of Chinese-sensitive class representations
across output logit layer.

Fig. 5. Left : Number of output class representations that exhibit a high degree of
differentiability towards Chinese watermarks across various ImageNet models. Right :
Percentage of representations in the feature-extractor layers of various networks that
demonstrate a high degree of differentiability towards Chinese watermarks.

4 Ignoring Sensitive Embeddings During Fine-Tuning

Pre-trained ImageNet models are frequently utilized as feature extractors, where
the pre-trained weights are kept fixed and only the final layer of the network
is trained on a new task-specific dataset. To disable the undesired, but inher-
ent correlations of the classes in fine-tuned networks, we propose the method
that simply ignores the most sensitive representations from the feature-extractor
model.

To demonstrate this, we conduct an experiment, where we employed a pre-
trained DenseNet-161 model as a fixed feature-extractor and fine-tuned the last
linear layer on the CalTech-256 image classification dataset [9] while varying
the amount of the most sensitive representations omitted from the embeddings.
Specifically, we ranked the representations from the DenseNet-161 [11] feature-
extractor layer based on the differentiability towards Chinese watermarks and
retrained the last linear layer while ignoring a varying amount of the most sen-
sitive representations. To determine the effect of this procedure, we evaluated
both the accuracy of each fine-tuned model, as well as the distribution of AUC
ROC and differentiability scores across 256 output representations. The results
of the experiment, displayed in Fig. 6, demonstrate that by excluding 0.5% of
the most sensitive representations from the DenseNet-161 feature extractor, the
dependence of the newly learned logit representations on Chinese watermarks
can be significantly reduced. Furthermore, omitting up to 10% of the most sensi-
tive embeddings has no significant impact on the performance of the fine-tuned
model while significantly suppressing the Clever-Hans effect of the new model.
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Fig. 6. Left : The accuracy of the fine-tuned model and the maximum differential ability
towards Chinese symbols across output representations, with respect to the number of
representations ignored in the DenseNet-161 feature-extractor layer. Right : The distri-
bution of AUC ROC scores across output representations, with respect to the number
of representations omitted from the feature extractor.

Additionally, it can be observed that excluding the most sensitive representa-
tions from the feature-extractor layer narrows the distribution of AUC ROC
scores, making the output classes less likely to be highly differentiable towards
spurious concepts.

5 Discussion and Conclusion

With this paper, we aim to bring awareness to the potential risks of water-
marked images present in ImageNet and their impact on popular DNNs trained
on this dataset. It is known that the “carton” class is impacted by the Chinese
watermarks - however, we were able for the first time to demonstrate and iden-
tify the significant amount of other ImageNet classes, which are affected by the
Chinese watermarks across popular ImageNet pre-trained models. Our results
indicate that the sensitivity to watermarks is a common trait among all stud-
ied networks and this poses significant risks for transfer learning, as new models
could be also vulnerable to unintended concepts. We demonstrate that by simply
omitting the most watermark-sensitive representations, fine-tuned networks can
suppress the reliance on the watermarks without incurring a significant decline
in model performance. Overall, this study highlights the importance of paying
attention to the presence of watermarks in image datasets and their impact on
the performance of machine learning models.
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Abstract. With the advent of more powerful AI systems, the issue of
theoretically well-founded and more robust methods for general evalu-
ation of intelligence in (not only) artificial systems increases in impor-
tance. The Algorithmic Intelligence Quotient Test (AIQ test) is an exam-
ple of a reasonably well-founded yet practically feasible test of intelli-
gence. Deep Reinforcement Learning offers a powerful framework that
enables artificial agents to learn how to act in unknown environments of
realistic complexities. Vanilla Policy Gradient (VPG) and Proximal Pol-
icy Optimisation (PPO) are two examples of model-free on-policy deep
reinforcement learning agents. In this paper, a computational experiment
with the AIQ test is conducted that evaluates VPG and PPO agents and
compares them to classical off-policy Q-learning. An initial analysis of the
results indicates that while the maximum AIQ achieved is comparable
for the tested agents given sufficient training time, large differences show
with short training times. Corresponding to previous research, on-policy
methods have lower starting positions than off-policy methods, and PPO
learns faster than VPG. This further depends on steps-per-epoch param-
eter setting of PPO and VPG agents. These findings indicate the utility
of the AIQ test as an AI evaluation method.

Keywords: Reinforcement learning · Vanilla Policy Gradient ·
Proximal Policy Optimisation · Evaluating intelligence of artificial
systems · Universal Intelligence definition · Algorithmic Intelligence
Quotient test

1 Introduction

As we are witnessing the recent bloom of powerful AI systems (aptly coined as
Multimodal Models [26]) that manifest unprecedented levels of generality, thus
furthering the advent of Artificial General Intelligence [10], let us take a sidestep
towards the question of AI evaluation and, specifically, the issue of artificial
agent evaluation.

Historically, artificial intelligence evaluation has been focused on a few
selected tasks. While this was natural since AI has been mostly viewed as a
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means to solve particular tasks or problems [39], such evaluation does not inform
us about the intelligence of evaluated systems or even about their broader capa-
bilities. More recently, a shift towards more general AI benchmarks and com-
petitions, such as Arcade Learning Environment (ALE) [4], OpenAI Gym [5],
and General Game Competition [8,9], can be seen. However, mainstream AI
evaluation still lacks solid theoretical foundations.

Since the pioneering work of Hernández-Orallo on C-test [13], an increasing
effort can be seen that tries to base artificial intelligence evaluation on algo-
rithmic information theory (AIT), see e.g. [6,7]. Resulting methods for general
evaluation of intelligence in (not only) artificial systems [11] consist of a wide
range of tools such as formal definitions of intelligence and measures of some of
its aspects [14,20], as well as test proposals and prototypes of practically feasi-
ble tests [12,17,22]. While these methods are theoretically well-founded and, in
some cases, also practically feasible, they have not seen an extended use apart
from brief demonstrations with a few simple agents. An opportunity arises to
extend this evaluation to more advanced agents.

Reinforcement learning (RL) [34] offers a powerful framework based on feed-
back (in the form of rewards) that the artificial agent receives from an environ-
ment in which it performs actions. Deep learning techniques [32] can be used
to approximate (action-)value functions and/or policies of RL agents and thus
enable them to scale well to some realistically complex problems [23]. There are
many different RL architectures (both classical and deep) that were applied to
various tasks of differing levels of difficulty [27]. A theoretically well-founded
general evaluation of advanced RL architectures is missing.

An example of a feasible yet sufficiently general and theoretically well-
founded test is Algorithmic Intelligence Quotient test (AIQ test) [22]. As an
in-depth analysis shown [37,38], AIQ test is not without its limits, yet since
some of them were addressed, we chose this test to evaluate further agents.

Since the AIQ test was originally demonstrated with classical off-policy Q-
learning and its variants [16,40], we see merit in applying it to on-policy deep
RL agents, namely Vanilla Policy Gradient [3] and Proximal Policy Optimisation
[31].

More details on the AIQ test will be given in Sect. 2. Section 3 will cover the
chosen Policy Optimisation agents. Section 4 will give an initial comparison of
these agents using the AIQ test. The paper will be concluded, and a possible
future work will be discussed in Sect. 5.

2 Algorithmic Intelligence Quotient Test

In an attempt to give a definition of intelligence meaningful for AI, Legg and
Hutter [19] surveyed a broad variety of existing definitions, tests and theories
from many scientific fields. They abstracted the following informal definition:
“Intelligence measures an agent’s ability to achieve goals in a wide range of
environments.” The main contribution of Legg and Hutter [20] is, however, the
definition of Universal Intelligence, where they formalize the working definition
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above into a form rooted in AIT concepts such as algorithmic probability and
Kolmogorov complexity [18]. Since they strove to define intelligence as broadly
as possible, their definition is uncomputable, requiring a practical test to be
some kind of approximation.

Legg and Veness [22] introduced such an approximation of the Universal
Intelligence [20] that also includes some of the ideas from the Anytime Intel-
ligence Test proposal [12]. The resulting practically feasible test is called the
Algorithmic Intelligence Quotient, and its main idea is described in Eq. 1.

Three main components make the AIQ test [22] computable in contrast to
the Universal Intelligence definition [20]:

1. limiting episode length at finite k steps,
2. using a finite sample of N environment programs pi that describe environ-

ments,
3. and switching from Kolmogorov Complexity [18] to a related Solomonoff’s

Universal Distribution [33] that is used to sample environment programs.
Multiple programs can, however, describe the same environment.

Putting these together, Legg and Veness [22] give the following Equation of the
Algorithmic Intelligence Quotient :

Υ̂ (π) :=
1
N

N∑

i=1

V̂ π
pi

, where V̂ π
pi

:=
1
k

k∑

j=1

rj , (1)

where the AIQ estimate of Universal Intelligence Υ̂ of an agent π is given by
its ability to achieve goals as described by the empirical value function V̂ π

pi

as an average reward achieved by the agent over k interactions with an envi-
ronment program pi from a finite sample of N environment programs that
are sampled according to Solomonoff’s Universal Distribution [33]: MU (x) :=∑

p:U(p)=x∗ 2−l(p).
Solomonoff’s Universal Distribution [33] prefers short environment programs

over long ones with respect to a particular reference machine U . As a result, the
choice of the language of the environment programs in the AIQ test determines
the classes of programs that are likely to be included in the sample [22]. Legg
and Veness attempted to minimise this issue by using a minimalist BF reference
machine [24]. The BF (as implemented in the AIQ test) is a low-level language
that only uses ten instructions which are closely related to operating a Turing
machine, yet the programs can be nondeterministic [21]. Environment programs
of the selected minimum length can be sampled in the updated version of the
test [37] that implements a possible solution given by Hibbard [15].

Since the AIQ test is a practical test, it needs to deal with limited resources
that are available to test the agents [21,22]. This, in turn, introduces further
requirements, as analysed by Hernández-Orallo and Dowe [12]. The AIQ test
meets them in the following way:

1. Since the interaction sequence is limited to k steps and received rewards are
simply averaged, environments need to be balanced [12]. Legg and Veness
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[21,22] normalize the rewards to an interval [−100,+100]. As each program
is tested twice (once with negative and once with positive rewards), this also
ensures that a randomly behaving agent will reach AIQ close to 0 [21,22].

2. Since the sample of the environment programs has a fixed size, environments
should be discriminative so that they can meaningfully contribute to the
evaluation of intelligence of the tested agent [12]. Legg and Veness [21,22]
partially fulfil the requirement by excluding programs without read or write
instructions as well as by excluding programs that return constant rewards. In
an updated version of the test [38], further programs without discriminative
power can be omitted from the sample.

For the purpose of practical testing of selected agents with respect to available
resources, a reasonable episode length of k steps and sample size of N programs
has to be decided. Setting the episode length increases the “learning time” avail-
able to the agent. As previous results suggest [22,37,38], this is very much agent
dependent, and k = 100000 was often used for simple agents. Setting the sample
size influences the precision of the estimate. Legg and Veness [21,22] employed
several variance reduction techniques to speed up the AIQ estimation. While
N = 10000 gives small confidence intervals, it may not be practically feasible for
demanding agents [22,37,38].

Finally, the complexity of the interaction space of the BF reference machine
can be influenced by two parameters [21,22]: The number of symbols used by the
machine directly translates into the number of available actions for the agent to
choose from, as well as it determines the granularity of rewards and observations.
Number of output observations can be further increased independently.

3 Reinforcement Learning Using Policy Optimisation

Various approaches to Reinforcement learning [34] exist that can be categorised
according to several criteria. In this paper, we focus on model-free on-policy
methods that are also called Policy Optimisation [2]. Such methods do not have
a known model of the environment, nor do they learn one. Instead, they learn
policies (explicit prescriptions of how to act), which they optimise directly based
on information from a value function. As both policies and value functions can
get impractically large for interesting environments, they are often approximated
usually using some kind of a neural network.

In Sect. 3.1, the Vanilla Policy Gradient agent will be introduced. Section 3.2
will cover the Proximal Policy Optimisation agent.

3.1 Vanilla Policy Gradient Agent

Vanilla Policy Gradient (VPG) [3] is an example of a simple policy gradient
algorithm. It is a more advanced and robust variant of Williams’ classical REIN-
FORCE agent [41]. VPG extends the original REINFORCE agent by incorpo-
rating ideas from [28,30,35], most notably utilising Generalised Advantage Esti-
mation, allowing for better computation of required policy gradient.
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Vanilla Policy Gradient is an on-policy agent without an internal model of
the environment directly optimising its policy through Gradient methods. VPG
utilises two neural networks. A policy network (Actor) is the main part of the
agent responsible for deciding which actions to take. By updating this network,
the agent works towards maximising the reward received by actions done by
this network. This network is trained with the help of a baseline in the form of
advantage estimation based on the value network, which informs the policy on
how well it did in its last action. Value network (Critic) is trained to minimise
the mean squared error between the estimated value to be received in the state
and the actual value received. Together, these two networks work to improve the
performance of the agent. The actor selects actions with the highest probabil-
ity of maximising reward based on the current state, and Critic informs about
the quality of the selected action to allow for improving the agent’s policy. By
optimising both policy and value networks, agents can achieve an optimal policy
that maximises the expected total reward over time.

The code of the VPG agent used in our experiments draws heavily from
[3] introducing only minimal changes needed for the AIQ test. These changes
concern a different design of agent-environment interaction. While in the AIQ
test implementation [21], the test and its environments are central and direct
the communication to the agent, in the implementation by [3] the agent is cen-
tral and directs the communication towards environments. The behaviour of
the resulting agent can be influenced by setting the following hyperparameters
(where applicable, default values were taken from [3]):

– SPE – number of environment interaction steps per epoch,
– VFTI – number of gradient descent iterations for value function optimisation

per epoch (80),
– γ – discount factor (0.99),
– PLR – policy learning rate (0.0003),
– VFLR – value function learning rate (0.001),
– Λ – balances variance (0) and bias (1) in generalised advantage estimation

(0.97).

Number of gradient ascent iterations for policy optimisation per epoch (PTI ) is
fixed at a single iteration for the VPG agent.

3.2 Proximal Policy Optimisation Agent

Proximal Policy Optimisation (PPO) [1,31] is an example of a more advanced
policy gradient algorithm that enables larger steps in policy optimisation com-
pared to VPG [3]. PPO utilises the idea behind Trust Region Policy Optimisation
(TRPO) [29] in a different, more efficient way, most notably by using Clipped
Surrogate Objective.

Proximal Policy Optimisation is an agent without an internal model of
the environment directly optimising its policy through Gradient methods. Like
TRPO, PPO focuses on improving the performance of simple Policy Gradient
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agents by allowing larger steps in policy optimisation. Unlike TRPO, which uses
a hard constraint based on relative entropy (KL-Divergence) calculated through
multiple complex equations, PPO elegantly introduces a new method of con-
straining policy changes without introducing any additional complex equations.
This method, called Clipped Surrogate Objective “relies on specialised clipping
in the objective function to remove incentives for the new policy to get far from
the old policy.” [2]. This is achieved by keeping two separate policy networks, one
to refine and one to collect samples. While keeping both policies also allows eval-
uating new policies with samples collected from older policies, the main reason
for this change happens every few iterations where synchronisation between poli-
cies happens to avoid inaccuracy. During this synchronisation, a ratio between
the old and the new policy is computed to find the difference between the two
policies. If the difference falls outside the specified range [1 − ε, 1 + ε], a new
objective function is constructed to clip the estimated advantage function. This
discourages large policy changes and allows multiple optimisation steps during
policy updates.

The code of the PPO agent used in our experiments draws heavily from [1],
introducing only minimal changes needed for the AIQ test. As is the case with
VPG described in Sect. 3.1, these changes concern a different design of agent-
environment interaction. The behaviour of the resulting agent can be influenced
by setting the following hyperparameters (where applicable, default values were
taken from [1]):

– SPE – number of environment interaction steps per epoch,
– PTI – maximum number of gradient ascent iterations for policy optimisation

per epoch (80),
– VFTI – number of gradient descent iterations for value function optimisation

per epoch (80),
– γ – discount factor (0.99),
– PLR – policy learning rate (0.0003),
– VFLR – value function learning rate (0.001),
– Λ – balances variance (0) and bias (1) in generalised advantage estimation

(0.97),
– ε – clip ratio for new policy clipping (0.2),
– TKL – (approximate) KL-Divergence between new and old policy that trig-

gers early-stopping of policy gradient update (0.01).

4 Initial Comparison of Policy Optimisation Agents

For the initial comparison, the default settings of the AIQ test [22] with improved
discriminative power of environments [38] was used. While these settings create
rather low-dimensional action and observation spaces that may not give promi-
nence to the ability of deep RL agents to approximate complex functions, it is
still a necessary first step in any more extensive evaluation which brings infor-
mational value even in itself.
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4.1 Hypotheses

Experiments with the AIQ test in [22,37] show that it is not only the final
AIQ score at a chosen episode length that is of interest when evaluating agents,
but also the characteristics of AIQ convergence. Experiments conducted in [31]
suggest, that PPO should perform better than VPG. Increasing the SPE hyper-
parameter of VPG and PPO agents (given a constant episode length in the AIQ
test) effectively decreases the number of possible policy updates [1,3] impacting
the ability of the agent to learn about its environment. While off-policy algo-
rithms tend to be less stable than on-policy methods, they also tend to learn
better, as off-policy methods can also utilise experience gained beyond currently
followed policy [2,34].

Based on the above-mentioned considerations, we formulated the following
hypotheses:

1. AIQ scores of tested agents are significantly different.
2. There are significant differences in the AIQ convergence of tested agents.
3. AIQ scores of PPO are significantly higher than those of VPG.
4. AIQ of PPO converges significantly faster than VPG.
5. Increasing the values of SPE hyperparameter decreases AIQ scores of both

PPO and VPG.
6. Increasing the values of SPE hyperparameter slows down AIQ convergence

of both PPO and VPG.
7. AIQ scores of on-policy agents are significantly lower than off-policy agents.
8. AIQ of on-policy agents converges significantly slower than off-policy agents.

4.2 Experiment Settings

We noticed (and fixed) a typo in one of the regular expressions of the SEP-ext
method of [38]. As expected due to the nature of the typo, testing revealed a
negligible yet statistically significant decrease in AIQ score. Thus, the results
achieved with patched SEP-ext cannot be directly compared to the results of
[38].

For the experiment, we generated 200,000 new environment programs using
the improved version of the BF sampler [38]. We employed the (patched) SEP-
ext and SDP options suggested by [38] to increase the discriminative power of
the environment programs. Descriptive statistics according to a program length,
as well as the number of the unique programs in the new sample, correspond
well with the statistics reported in [38]. Only a few minor differences among the
samples were identified by a semantic analysis conducted with a tool provided
by [38]. The newly generated sample, as well as the results of the conducted
analysis, is included in the Appendix.

Since our patched SEP-ext has an impact on the AIQ scores of agents, we
retested the configurations of freq, Q0, Qλ and HLQλ used by [37,38]. For the
newly implemented VPG and PPO agents, we used (except for SPE ) the default
hyperparameter values as described in Sect. 3.1 and 3.2 respectively. For the SPE
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hyperparameter, we varied its values in the following way: 10, 50, 100, 500, 1000
and 5000. This gives us the opportunity to observe the agents both with relatively
short as well as with relatively long epoch lengths, enabling us to analyse the
trade-off between the number of policy updates during the test and times to
discover environment under the given policy. Full configurations of all tested
agents are given in the Appendix.

To estimate the AIQ score of all the mentioned configurations of agents, the
episode length of 100,000 interactions and sample size of 10,000 programs were
used as suggested by [22,37,38]. Intermediate results were saved every 1,000
interactions to enable an analysis of the AIQ score convergence. BF reference
machine with 5 symbol action and observation spaces was used that returns
1 reward symbol and 1 observation symbol each interaction. A script that can
run our setting of the experiment with the AIQ test is included in the Appendix.

4.3 Results

Figure 1 shows the highest achieved AIQ score estimates for each agent after
the tested number of interactions. The best configuration of each agent was
selected based on the highest AIQ score achieved at the episode length of 100,000
interactions. Detailed results of all tested VPG and PPO configurations are
shown by Fig. 2. Full results of all tested agent configurations are part of the
Appendix.

Fig. 1. Highest achieved estimated AIQ scores of agents as a function of episode length
on BF 5 reference machine with patched SEP-ext and SDP functionality.
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Fig. 2. An impact of modifying SPE of VPG and PPO on achieved estimated AIQ
scores as a function of episode length on BF 5 reference machine with patched SEP-ext
and SDP.

All the tested agent configurations successfully finished the test with the
exception of PPO with SPE = 10. We noticed that this configuration often expe-
rienced NaN errors, most likely due to the advantages between policy changes
being almost 0 in some environments. In order to understand the issue, we
extended the test to log the cases when an agent fails and reset the agent. We
then recomputed all the PPO and VPG configurations. The resulting number
of environments that caused the agent to fail is listed in Table 1. Nevertheless,
given the limited computational resources, we only managed to test PPO with
SPE = 10 on a sample size of 5,000 programs. The high number of errors in the
case of SPE = 10 and the resulting agent resets are most likely responsible for
the AIQ score fluctuations in Fig. 2a.

Table 1. The impact of SPE hyperparameter on the number of errors of VPG and
PPO (PPO with SPE = 10 tested on 5,000 programs, the other configurations tested
on 10,000 programs).

Agent Number of Errors for SPE

10 50 100 500 1000 5000

PPO 2186 435 49 25 16 7

VPG 3697 348 23 16 8 6



444 O. Vadinský and P. Zeman

4.4 Data Analysis

To evaluate hypotheses 1 and 2, we will look at the results of the highest perform-
ing configuration for each agent. For the remaining hypotheses, we will consider
all the tested agent configurations, in order to understand their performance in
more detail.

Hypothesis 1. As can be seen in Fig. 1, the AIQ estimates of the tested agents
at the episode length of 100,000 differ. In some cases, however, these estimates
are within confidence intervals. Two-sample t statistics were computed to deter-
mine the significance of the differences. In most cases, the differences indeed are
significant, the exception being: Q0 vs. Qλ, and Q0 vs. VPG, see Appendix for
details. Thus, the highest AIQ of 65.6± 0.5 was achieved by HLQλ, closely fol-
lowed by PPO with 64.6± 0.4. Qλ, Q0 and VPG closely follow bundled around
the AIQ of 63. Finally, freq has a far lower AIQ of 56.8 ± 0, 5. Overall, the
hypothesis has been rejected.

Hypothesis 2. As can be seen from the shape of curves in Fig. 1, there are some
pronounced differences in AIQ convergence among agents. HLQλ still performs
the highest on all episode lengths. The curves of Qλ and Q0 are rather similar,
with PPO starting far lower with the AIQ of 28.3± 0.3 but getting significantly
above both of them quickly at EL of 5,000 interactions. VPG starts the lowest
with AIQ of 4 ± 0.1 and converges the slowest significantly outperforming freq
only at EL of 49,000 and getting on par with Q0 at EL of 97,000 interactions.
This is further confirmed by the area under the curve (AUC) analysis computed
according to the Simpson’s rule as listed in Table 2a. Thus, the hypothesis holds.

Hypothesis 3. As can be seen in Fig. 3, the AIQ estimates of the PPO agent are
not always higher than that of VPG at the episode length of 100,000. Further,
Fig. 2 suggests that the AIQ of both VPG and (to a lesser degree) PPO depends
on the SPE hyperparameter. Looking at the results with SPE hyperparameter
fixed, the AIQ of PPO is significantly higher than that of VPG for all but one
SPE configuration. In the case of 10 steps per epoch, however, the AIQ of PPO
is significantly lower that the AIQ of VPG. Overall, the hypothesis has been
rejected.

Hypothesis 4. As can be seen from the shape of curves in Fig. 3, it is not always
the case, that PPO converges faster that VPG. Again, Fig. 2 suggests there is
a dependence of the AIQ convergence on the SPE hyperparameter. Looking at
the results with this hyperparameter fixed, PPO performs higher than VPG
in all cases except for ten steps for an epoch. Even then, PPO starts with a
significantly higher AIQ than VPG, but it is overcome rather swiftly at the EL
of 20,000. Overall, the hypothesis has been rejected.
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Hypothesis 5. As can be seen in Fig. 3, the AIQ estimates of VPG at the
episode length of 100,000 decrease with increasing values of SPE hyperparameter
except for SPE = 10. In all cases, the estimates lie outside the confidence
intervals, so the differences are significant. In the case of PPO, the AIQ scores
at the episode length of 100,000 are mostly within confidence intervals, and only
the configurations with extreme values of SPE 10 and 5,000 achieved noticeably
(and significantly) lower AIQ. Overall, the hypothesis has been rejected.

Hypothesis 6. As can be seen from the shape of curves in Fig. 3, increasing the
values of SPE hyperparameter slows down the convergence of both VPG and
PPO. While the curves with SPE = 10 are not the highest for all episode lengths,
they start the highest for both agents. In the case of PPO, it is outperformed
quickly at the episode length of 3,000, while for VPG it is only significantly out-
performed at EL of 59,000. This is further confirmed by AUC analysis computed
according to Simpson’s rule as listed in Table 2b. Thus, the hypothesis holds.

Hypothesis 7. As can be seen in Fig. 1, the AIQ estimate of the highest per-
forming on-policy algorithm (PPO) at the episode length of 100,000 is indeed
significantly slightly lower than the estimate of the highest-performing off-policy
algorithm (HLQλ). Further, the lowest AIQ score was achieved by VPG (with
SPE of 5,000). However, there is no clear-cut difference among all the tested
agent configurations, and we consider their number to be too small to warrant
a meaningful t-test between the groups. Thus, the results are inconclusive.

Hypothesis 8. As can be seen from the shape of curves in Fig. 1, both PPO and
VPG start (significantly) far lower than the off-policy agents. This holds for all
the tested agent configurations, as can be seen from full results in the Appendix.
Apart from this clear-cut difference, the other parts of the curves are not so
clearly differentiated, and the same limitations apply as with the hypothesis 7.
Overall, the results are inconclusive.

4.5 Discussion

Based on the data analysis above, we will now interpret the findings with respect
to hypotheses from Sect. 4.1 and discuss the limits of the research so far. The
main considerations are as follows:

1. The number of configurations tested for each agent is rather limited. Instead
of statistical testing over a “population” of agent configurations, we used
as a proxy the current highest performing configuration. This allows for a
statistical comparison of AIQ scores with respect to their confidence intervals
that are robust due to a large sample size of environment programs. However,
as most of the agents have many hyperparameters, the results of particular
configurations may not be representative of the agent’s performance.
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Table 2. Area under the curve of the AIQ scores acquired through Simpson’s rule.

(a) Highest performing agent configurations

Agent AUC

HLQλ 6388.77

PPO 6102.47

Qλ 5999.79

Q 0 5904.27

freq 5472.47

VPG 5131.48

(b) The impact of SPE hyperparameter on VPG and PPO.

Agent AUC for Steps Per Epoch

10 50 100 500 1000 5000

PPO 5318.38 6102.47 5977.23 5756.87 5307.15 3006.89

VPG 5441.08 5131.48 4714.94 2470.08 1374.39 212.70

2. A suitable method to formally evaluate hypotheses concerning the speed of
AIQ score convergence is missing. We tried to supplement the visual analysis
of the shape of AIQ curves with the area under the curve analysis, however,
AUC is, in this case, strongly dependent on the episode length.

3. Further limitations when comparing deep and classical RL techniques stem
from the chosen BF 5 reference machine that has rather low-dimensional
action and observation spaces. While this setting will likely not show the
power of deep RL agents, it can serve as a baseline for future experiments
that would test changes in agent performance when increasing the dimension-
ality of action and observation spaces.

With these considerations in mind, we can now formulate some insights with
respect to the hypotheses.

Differences Among Tested Agents (hypotheses 1 and 2). While the
maximum achieved AIQ scores of tested agents are significantly different in most
of the cases, the scores are also quite comparable given the sufficiently high
episode length. Only freq (a very basic learning agent) achieves notably lower
maximal score. It is the short episode length and the speed of AIQ convergence
that show the most pronounced differences between the agents.

The Case of HLQλ and PPO. From the overall comparison, HLQλ seems
to be a more capable agent (both with respect to its maximum AIQ as well as
its speed of convergence) than PPO. This might come as a surprise since PPO
is a rather popular state-of-the-art deep RL agent [31], and HLQλ is just an
improved version of tabular Q-learning (albeit with automatic learning rate) [16].
But these might actually be the causes of these results. As the BF 5 settings used
for our initial evaluation of the agents has a rather low dimensionality, strong
points of a deep RL technique may not show, and a tabular solution is still
feasible (and possibly even more accurate than an approximation learned by the
deep technique). If this is the case, increasing the dimensionality of BF reference
machine should impede HLQλ more than PPO. Further, the automatic learning
rate might make HLQλ more adaptive with respect to a sample of different
environments than PPO (and all other agents) that has all hyperparameters
fixed for all the environments in the sample.
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Comparison of VPG and PPO (hypotheses 3–6). In case of PPO and
VPG comparison it is also the speed of convergence that distinguishes the agents
most clearly and shows that PPO is a more capable learning agent. Apart from
the slower convergence, VPG also achieves notably lower AIQ with higher values
of SPE hyperparameter than PPO, and overall, it seems to be more impacted
by changing its values.

On-Policy Vs. Off-Policy Agents (hypotheses 7 and 8). The differences
between the on-policy and off-policy agents also show the most in the speed
of AIQ convergence and, especially in their AIQ at the EL of 1,000, which is
noticeably lower than that of off-policy agents.

These insights are consistent with the observations made in previous works
with the AIQ test [22,37,38] as well as with the existing experiments with VPG
and PPO [31] and the general knowledge of on-policy and off-policy agents [2,34].

5 Conclusion and Future Work

In this paper, we presented the initial results of Vanilla Policy Gradient [3] and
Proximal Policy Optimisation [31] evaluation using the Algorithmic Intelligence
Quotient test [22] including a comparison of these agents to a classical off-policy
Q-learning and its variants [16,40]. An initial analysis of the results indicates
that while the maximum AIQ achieved is comparable for the tested agents given
sufficient training time, large differences show with short training times and the
speed of AIQ convergence. Corresponding to previous research [2,31,34], on-
policy methods have lower starting positions than off-policy methods, and PPO
learns faster than VPG. This further depends on steps-per-epoch hyperparame-
ter setting of PPO and VPG agents. While only initial insights were drawn from
a relatively small number of tested agent configurations, these findings indicate
the utility of the AIQ test as an AI evaluation method.

As part of future work, we would like to focus on the following areas:

– Finding a suitable method to formally compare the speed of AIQ convergence.
– Testing a higher number of agent configurations in a more systematic way to

get a better picture of agents’ performance.
– Analysing the results of various agents on particular environment programs

to get a better understanding of the AIQ test limits.
– Comparing deep and classical RL agents in a more robust way using larger

action and observation spaces of the BF reference machine.

In the field of explainable reinforcement learning [25], the AIQ test might
be used as a more robust measure of both the black box as well as the derived
interpretable model capabilities, thus ensuring the same level of performance is
attained. Furthermore, the insights gained from the interpretable models would
be beneficial to the AIQ test development since a better understanding of the
environments used in the test is also needed.



448 O. Vadinský and P. Zeman
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Appendix

A compact view of the results of all tested VPG and PPO configurations to
facilitate visual comparison is shown by Fig. 3.

Fig. 3. Achieved estimated AIQ scores of VPG and PPO as a function of episode length
on BF 5 reference machine with patched SEP-ext and SDP.

Full experiment settings, as well as results of the conducted analyses and
experiments, are available from: https://github.com/xvado00/TEPOA/archive/
refs/tags/XI-ML23.zip.

Full sources of the AIQ test (a Python 3 conversion of [36]), including the
implementation of VPG and PPO agents, are available from: https://github.
com/zemp02/AIQ/archive/refs/tags/v2.1.zip.

https://github.com/xvado00/TEPOA/archive/refs/tags/XI-ML23.zip
https://github.com/xvado00/TEPOA/archive/refs/tags/XI-ML23.zip
https://github.com/zemp02/AIQ/archive/refs/tags/v2.1.zip
https://github.com/zemp02/AIQ/archive/refs/tags/v2.1.zip
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Szelążek, Maciej II-36, II-48

T
Taghiyarrenani, Zahra I-101
Theodorou, Andreas I-7
Tintarev, Nava I-43

V
Vadinský, Ondřej I-435
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