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Abstract The phase equilibria of the Ag–Ga–S–AgBr system in the part GaS– 
Ga2S5–AgBr–Ag2S below 600 K were investigated by the modified electromotive 
force (EMF) method using the Ag+ catalysts as small nucleation centers of equilib-
rium phases. Division of the GaS–Ga2S5–AgBr–Ag2S was carried out with the partic-
ipation of the following compounds Ag2S, GaS, Ga2S3, AgBr,  Ag9GaS6, AgGaS2, 
Ag3SBr, Ag3Ga2S4Br, and Ag27Ga2S12Br9. Reactions were performed by applying 
electrochemical cells (ECs) with the structure: (−) IE | NE | SSE | R{Ag+} | PE | IE  
(+), where IE is the inert electrode (graphite powder), NE is the negative electrode
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(silver powder), SSE is the solid-state electrolyte (glassy Ag3GeS3Br), PE is the posi-
tive electrode, R{Ag+} is the region of Ag+ diffusion into PE. The measured EMF 
and temperature values of ECs were used to determine the standard thermodynamic 
functions of the compounds Ag3Ga2S4Br and Ag27Ga2S12Br. 

Keywords Photovoltaic compounds · Phase equilibria · Thermodynamic 
properties · EMF method · Gibbs energy 

Introduction 

To date, establishing the phase composition of the equilibrium T-x space of multi-
component inorganic systems at T ≤ 600 K, when there are kinetic obstacles to 
achieving a state of thermodynamic equilibrium, remains relevant. The effect on 
samples of such external factors as long-term annealing during temperature and 
pressure variations is ineffective in many cases. The possibility of overcoming such 
kinetic obstacles was established in Refs. [1, 2]. For this purpose, the silver ions Ag+ 

were used as catalysts, i.e., small nucleation centers of equilibrium phases. 
The concentration tetrahedra of the Ag–Ga–X–Y (X = S, Se, Te; Y = Cl, Br, I) in 

part of the quasi-ternary Ag2X–Ga2X3–AgY systems are characterized by the pres-
ence of semiconductor compounds of the formula composition AgGa2X3Y (structure 
type CuIn2Te3Cl, space group I–4) [3]. Quaternary compounds decompose upon 
annealing at 600 K [4]. 

For the case X = S and Y = Br, the quasi-ternary Ag2S–Ga2S3–AgBr system, in 
addition to the quaternary compound AgGa2S3Br, is characterized by the following 
ternary phases Ag9GaS6, AgGaS2 (quasi-binary system Ag2S–Ga2S3) and Ag3SBr 
(quasi-binary system Ag2S–AgBr) [5, 6]. The solid-state phase equilibria in the Ag– 
Ga–S system and thermodynamic properties of ternary phases were reported in Ref. 
[7]. The argyrodite family compound Ag9GaS6 is a promising thermoelectric mate-
rial with the figure of merit parameter ZT ~ 0.6 and has intrinsic ultralow lattice 
thermal conductivity [8]. Moreover, Ag9GaS6 has a high silver ionic conductivity 
[9, 10]. The AgGaS2 belongs to the chalcopyrite-structured ternary semiconductor 
compounds with a direct band gap of (2.48–2.75) eV. This compound has a high 
transparency in the mid-IR range and can be used as a commercial material for 
photovoltaic and nonlinear optical applications as well as a promising candidate for 
X-ray dosimetry [11–13]. The Ag3SBr compound belongs to the class of superionic 
materials [14]. Thus, the multi-component compounds and solid solutions based on 
phases of the Ag–Ga–S system have been considered interesting scientific objects due 
to the diversity of their crystal structures and physicochemical properties [15–19]. 
However, these compounds no longer fully meet all the requirements of a new gener-
ation of devices for modern applications. For example, the band gap value and weak 
absorption in the visible light region limit the use of AgGaS2 as absorber material 
for photovoltaic solar cells. Recently, the photo-electrochemical cells based on the 
AgGaS2 compound showed an efficiency of 5.85% [20]. Optimization technology
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for the synthesis of new materials and improving their technical characteristics is 
impossible without a comprehensive analysis of the thermodynamic properties of 
intermediate phases and construction equilibrium phase diagrams. 

The points of intersection of the cross-sections AgGaS2–AgBr and Ag9GaS6– 
AgBr of the quasi-ternary system with the tie-line Ga2S3–Ag3SBr are places of poten-
tial formation of quaternary compounds Ag3Ga2S4Br and Ag27Ga2S12Br9. There are 
no previous reports on quaternary compounds of mentioned composition. The ther-
modynamic conditions for the formation of quaternary phases likely correspond to 
the temperature values T < 600 K, where there are kinetic obstacles to such a process. 

The purpose of this work was to establish by the electromotive force (EMF) 
method the phase composition of the Ga2S3–Ag3SBr cross-section of the Ag2S– 
Ga2S3–AgBr system below 600 K and to determine the values of the standard 
thermodynamic functions of the quaternary compounds in the system. The two-
phase equilibrium between compounds of the AgGaS2–Ag3Ga2S4Br and Ag9GaS6– 
Ag27Ga2S12Br9 cross-sections can be used to vary the nonlinear optical properties 
of the phases in the way of forming solid solutions on a mutual basis. 

Experimental 

The high-purity substances Ag (> 99.9 wt%, Alfa Aesar, Germany), Ga, and S (> 
99.99 wt%, Alfa Aesar, Germany) were used to synthesize the binary compounds 
Ag2S, GaS, and Ga2S3. Melts of the Ag2S, GaS, and Ga2S3 compounds in an inert 
atmosphere were cooled to room temperature, then crushed to a particle size of ~ 
1 × 10–6 m for preparation of the positive electrodes (PE) of electrochemical cells 
(ECs) [21, 22]. 

The modified EMF method [1, 2] was used both to establish the phase equilibria in 
the GaS–Ga2S5–AgBr–Ag2S part of the Ag–Ga–S–AgBr concentration tetrahedron 
below 600 K and to determine the thermodynamic parameters of compounds. For 
these investigations, a certain number of ECs were assembled: 

(−) IE|NE|SSE|R{
Ag+}|PE|IE(+), 

where IE is the inert electrode (graphite powder), NE is the negative electrode (silver 
powder), SSE is the solid-state electrolyte (glassy Ag3GeS3Br [23]), and R{Ag+} 
is the region of PE that contacts with SSE. At the stage of cell preparation, PE is 
the non-equilibrium phase mixture of the well-mixed powdered binary compounds 
Ag2S, GaS, Ga2S3, and AgBr (99.5 wt%, Alfa Aesar, Germany). Compositions of 
these mixtures covered the entire concentration space of the GaS–Ga2S5–AgBr– 
Ag2S region. An equilibrium set of phases was formed in the R{Ag+} region at  
600 K for 48 h. The Ag+ ions, displaced for thermodynamic reasons from the NE 
to the PE electrodes of the ECs, acted as catalysts, i.e., small nucleation centers of 
equilibrium phases [21, 22].
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The experiments were performed in a resistance furnace described in Ref. [24, 
25]. To assemble the ECs, a fluoroplastic base with a hole with a diameter of 2 mm 
was used. The powder components of ECs were pressed at pressure 108 Pa into the 
hole under a load of (2.0 ± 0.1) tons to a density of ρ = (0.93 ± 0.02) ρ0, where 
ρ0 is the experimentally determined density of cast samples. The assembled cells 
were placed in a quartz tube with nozzles for the purging of argon gas [26, 27]. The 
argon gas had a direction from the NE to PE of ECs at the rate of (10.0 ± 0.2) cm3 

min–1. The temperature of ECs was maintained by an electronic thermostat with ± 
0.5 K accuracy. A Picotest M3500A digital voltmeter with an input impedance of > 
1012 Ohms was used to measure the EMF (E) values of the cells (accuracy ± 0.3 
mV) at different temperatures. The reproducibility of the E versus T dependences 
of ECs in heating–cooling cycles was a criterion for completing the formation of the 
equilibrium set of phases in the R{Ag+} region [28]. 

Results and Discussion 

The division of the concentration tetrahedron Ag–Ga–S–AgBr into separate four-
phase regions in the GaS–Ga2S5–AgBr–Ag2S part below 600 K is shown in Fig. 1. 
The division was carried out based on the experimental results of the E versus T 
relations of the ECs with PE of different phase regions and taking into account the 
basic rules of the EMF method [29–31]: 

(1) within a specific phase region, the EMF value of the cell does not depend on 
the phase composition of the PE; 

(2) ECs with PE of different phase regions are characterized by different EMF 
values at T = const, Table 1;

Fig. 1 Spatial position of tetrahedra GaS–Ga2S3–AgBr–Ag3Ga2S4Br (left) and GaS–AgBr– 
Ag27Ga2S12Br9–Ag3Ga2S4Br (right) in the concentration space of the Ag–Ga–S–AgBr system 



Phase Equilibria and Thermodynamic Properties of Selected … 261

Table 1 Measured values of temperature (T ) and  EMF (E) of the ECs with PE of different phase 
regions at pressure P = 105 Pa 
T /K Phase regions T /K Phase regions 

(I) (II) (I) (II) 

E/mV E/mV E/mV E/mV 

390.4 211.1 204.1 420.5 224.3 209.4 

395.4 213.4 204.9 425.4 226.6 210.2 

400.4 215.4 205.9 430.4 228.8 211.2 

405.4 217.7 206.8 435.3 231.1 212.1 

410.4 219.8 207.6 440.4 233.4 212.9 

415.4 222.2 208.5 445.4 235.5 213.7 

Standard uncertainties u are u(T ) = 0.5 K, u(P) = 104 Pa, and u(E) = 0.3 mV 

(3) the four-phase region further away from the figurative point of Ag is character-
ized by a higher EMF value at a specific temperature, Fig. 2. 

The spatial position of the established four-phase regions GaS–Ga2S3–AgBr– 
Ag3Ga2S4Br (phase region (I)) and GaS–AgBr–Ag27Ga2S12Br9–Ag3Ga2S4Br 
(phase region (II)) relative to the silver point was used to establish the overall 
potential-determining reactions: 

2Ag + 2Ga2S3 + AgBr = Ag3Ga2S4Br + 2GaS, (R1) 

8Ag + 5Ag3Ga2S4Br + 4AgBr = Ag27Ga2S12Br9 + 8GaS. (R2) 

Reactions (R1) and (R2) were carried out in the PE of ECs, and the phase mixtures 
correspond to phase regions (I) and (II), respectively. According to reactions (R1)

Fig. 2 E versus T 
dependencies of the ECs 
with PE of the phase regions 
(I) and (II) 
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and (R2), the ratios of binary compounds for assembling the PE of ECs were estab-
lished. In particular, the compounds Ag3Ga2S4Br and Ag27Ga2S12Br9 are present in 
the PE compositions in the following ratios of mixtures of the binary compounds: 
Ag2S:Ga2S3:AgBr = 1:1:1 and Ag2S:Ga2S3:AgBr = 9:1:9, respectively. 

From the data analysis of Fig. 2, it follows that the E versus T dependencies of 
the ECs in the phase regions (I) and (II) are linear. Therefore, the results of EMF 
measurements processed by the least squares method [32] can be presented in the 
form of Eq. (1): 

E = a + bT ≡ E + b
(
T − T

)
, (1) 

where E =
∑

Ei 

n , T =
∑

Ti 
n (Ei is the EMF of the cell at temperature Ti ; n is a 

number of experimental pairs Ei and Ti ). 
Coefficients a and b were calculated by the following Eqs. (2) and (3): 

a = E − bT , (2) 

b =
∑[(

Ei − E
)(
Ti − T

)]

∑(
Ti − T

)2 . (3) 

The statistical dispersions of the measurement uncertainties consisted of the calcu-
lation variances of experimental values of EMF E (u2 E ), coefficients b (u

2 
b) and a 

(u2 a), as well as dispersions of the calculated by Eq. (1) EMF values Ẽ (u2 
Ẽ 
): 

u2 E =
∑(

Ei − Ẽi

)2 

n − 2 
, (4) 

u2 b(T ) =
u2 E

∑(
Ti − T

)2 , (5) 

u2 a(T ) = 
u2 E 
n 

+ u2 E T 
2

∑(
Ti − T

)2 , (6) 

u2 
Ẽ 
(T ) = 

u2 E 
n 

+ u2 b
(
T − T

)2 
. (7) 

Uncertainties (Δi ) of the corresponding quantities can be calculated by the Eq. (8):

Δi = kStui (8)
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where kSt is the Student’s coefficient, and ui is the standard deviation. At the confi-
dence level of 95% and n = 12, the Student’s coefficient is equal kSt = 2.179 
[32]. 

According to [33, 34], the final equation of the E versus T dependences together 
with the statistical dispersions can be expressed as: 

E = a + bT ± kSt

√(
u2 E 
n 

+ u2 b
(
T − T

)2
)

. (9) 

An example of calculating the coefficients of Eq. (9) for the phase region (I) is 
given in Table 2. 

Analogously to the phase region (I), coefficients E versus T dependence of the 
cell with PE of the phase region (II) were calculated. The results of the calculations 
are listed in Table 3.

The Gibbs energies (ΔrG), enthalpies (Δr H ), and entropies (ΔrS) of the reactions 
(R1) and (R2) were calculated by the following thermodynamic equations:

ΔrG = −z F  E, (10)

Δr H = −z F[E − (dE/dT )T ], (11)

Table 2 Coefficients of the E versus T dependence of the cell with PE of the phase region (I) 

Ti Ei
(
Ti − T

) (
Ti − T

)2
Ẽi

(
Ei − Ẽi

) (
Ei − Ẽi

)2 

K mV K K2 mV mV mV2 

390.4 211.1 − 27.50 756.25 211.04 0.06 0.00 

395.4 213.4 − 22.50 506.25 213.26 0.14 0.02 

400.4 215.4 − 17.50 306.25 215.49 − 0.09 0.01 

405.4 217.7 − 12.50 156.25 217.71 − 0.01 0.00 

410.4 219.8 − 7.50 56.25 219.94 − 0.14 0.02 

415.4 222.2 − 2.50 6.25 222.17 0.03 0.00 

420.5 224.3 2.60 6.76 224.44 − 0.14 0.02 

425.4 226.6 7.50 56.25 226.62 − 0.02 0.00 

430.4 228.8 12.50 156.25 228.84 − 0.04 0.00 

435.3 231.1 17.40 302.76 231.02 0.08 0.01 

440.4 233.4 22.50 506.25 233.29 0.11 0.01 

445.4 235.5 27.50 756.25 235.52 − 0.02 0.00 

T = 
417.90 

E = 
223.28 

–
∑ (

Ti − T
)2 = 

3572.02 
– –

∑ (
Ei − Ẽi

)2 = 
0.09 

T is the average temperature value, Ẽ is the EMF of the cell calculated according to Eq. (1) 
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Table 3 Coefficients and statistical dispersions of the E versus T dependencies of the ECs in the 
phase regions (I) and (II) 

Phase 
regions E = a + bT ± kSt

√(
u2 E 
n + u2 b

(
T − T

)2
)

(I) 
E = 37.25 + 445.15 × 10−3T ± 2.179

√(
8.95×10−3 

12 + 2.51 × 10−6(T − 417.90)2
)

(II) 
E = 135.35+176.09×10−3T ±2.179

√(
3.52×10−3 

12 + 9.86 × 10−7(T − 417.90)2
)

Table 4 Values of standard 
thermodynamic function of 
the reactions (R1) and  (R2) 

Reactions −ΔrG◦ −Δr H◦ ΔrS◦ 

kJ mol–1 J (mol K)−1 

(R1) 32.79 ± 0.08 7.19 ± 0.28 85.90 ± 0.66 
(R2) 144.98 ± 0.20 104.47 ± 0.70 135.92 ± 1.67 

Uncertainties for ΔrG◦, Δr H◦, and ΔrS◦ are standard uncertain-
ties

ΔrS = z F(dE/dT ). (12) 

where z is the number of electrons involved in the reactions (R1) and (R2), F is the 
Faraday’s constant, and E is the EMF of the ECs. 

The values of the thermodynamic functions of reactions (R1) and (R2) in the  
standard state (T = 298 K and P = 105 Pa) were calculated according to Eqs. 
(10)–(12) and are listed in Table 4. 

The Gibbs energy, enthalpy, and entropy of the reaction (R1) are related to the 
Gibbs energy, enthalpy, and entropy of the compounds Ga2S3, AgBr,  Ag3Ga2S4Br, 
GaS, and pure substance Ag by the following equations:

Δr(R1)G
◦ = ΔfG

◦ 
Ag3Ga2S4Br 

+ 2ΔfG
◦ 
GaS − 2ΔfG

◦ 
Ga2S3 − ΔfG

◦ 
AgBr, (13)

Δr(R1) H
◦ = Δf H

◦ 
Ag3Ga2S4Br 

+ 2Δf H
◦ 
GaS − 2Δf H

◦ 
Ga2S3 − Δf H

◦ 
AgBr, (14)

Δr(R1)S
◦ = S◦ 

Ag3Ga2S4Br 
+ 2S◦ 

GaS − 2S◦ 
Ag − 2S◦ 

Ga2S3 − S◦ 
AgBr. (15) 

It follows from Eqs. (13)–(15) that:

ΔfG
◦ 
Ag3Ga2S4Br 

= 2ΔfG
◦ 
Ga2S3 + ΔfG

◦ 
AgBr − 2ΔfG

◦ 
GaS + Δr(R1)G

◦, (16)

Δf H
◦ 
Ag3Ga2S4Br 

= 2Δf H
◦ 
Ga2S3 + Δf H

◦ 
AgBr − 2Δf H

◦ 
GaS + Δr(R1) H

◦, (17)
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S◦ 
Ag3Ga2S4Br 

= 2S◦ 
Ag + 2S◦ 

Ga2S3 + S◦ 
AgBr − 2S◦ 

GaS + Δr(R1)S
◦. (18) 

Reactions to determine the standard thermodynamic propertiesΔfG◦,Δf H ◦, and 
S◦ of the Ag27Ga2S12Br9 compound were written in similarity using (R2) with the 
corresponding stoichiometric numbers. 

For the first time, the standard thermodynamic quantities of the quaternary 
compounds of the Ag–Ga–S–AgBr system were determined using Eqs. (16)–(18) and 
thermodynamic data of pure substances (Ag, Ga, S, Br2) and the binary compound 
GaS, Ga2S3, AgBr [35]. The results of the calculations are listed in Table 5. 

The temperature dependences of the Gibbs energies of formations of the quater-
nary compounds of the Ag–Ga–S–AgBr system are described by the following 
equations:

ΔfGAg3Ga2S4Br/
(
kJ mol−1

) = −(722.0 ± 10.2) − (33.4 ± 0.4) × 10−3 T/K, (19)

ΔfGAg27Ga2S12Br9 /
(
kJ mol−1

) = −(2443.1 ± 31.7) − (377.3 ± 4.9) × 10−3 T/K. 
(20) 

Included in Table 5 values ofΔfG◦
Ag3Ga2S4Br 

andΔfG◦
Ag27Ga2S12Br9 

do not contradict 
the hypothetical reactions of the synthesis of quaternary compounds from binary 
phases under standard conditions: 

Ag2S + Ga2S3 + AgBr = Ag3Ga2S4Br, (R3)

Table 5 Values of standard (T = 298 K and P = 105 Pa) thermodynamic properties of selected 
compounds of the Ag–Ga–S–AgBr system 

Phases −ΔfG◦ −Δf H◦ S◦ References 

kJ mol–1 J (mol K)−1 

Ag 0 0 42.677 [35] 

Ga 0 0 40.828 [35] 

S 0 0 32.056 [35] 

Br2 0 0 152.210 [35] 

GaS 204.685 209.200 57.739 [35] 

Ga2S3 505.702 516.306 142.256 [35] 

AgBr 97.095 100.575 107.110 [35] 

Ag3SBr 132.0 ± 0.6 117.0 ± 0.4 50.2 ± 0.6 [36] 

Ag3Ga2S4Br 731.9 ± 8.9 722.0 ± 10.2 447.4 ± 5.8 Present study 

Ag27Ga2S12Br9 2555.5 ± 28.4 2443.1 ± 31.7 2680.9 ± 34.9 Present study 

Uncertainties for ΔfG◦, Δf H◦, and  S◦ are standard uncertainties 
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9Ag2S + Ga2S3 + 9AgBr = Ag27Ga2S12Br9. (R4) 

Calculated values of the Gibbs energies of reactions (R3) and (R4) are equal, 
respectively: Δr(R3)G◦ = −40.4 kJ  mol−1 and Δr(R4)G◦ = −811.3 kJ  mol−1 . 

Conclusions 

The phase space of the Ag–Ga–S–AgBr system in the GaS–Ga2S5–AgBr–Ag2S 
part is characterized by the binary (Ag2S, GaS, Ga2S3, AgBr), ternary (Ag9GaS6, 
AgGaS2, Ag3SBr), and quaternary (Ag3Ga2S4Br, Ag27Ga2S12Br9) compounds. 
Quaternary compounds are components of the concentration tetrahedra GaS–Ga2S3– 
AgBr–Ag3Ga2S4Br and GaS–AgBr–Ag27Ga2S12Br9–Ag3Ga2S4Br. The spatial posi-
tion of the established tetrahedra relative to the silver point was used to establish the 
overall potential-determining reactions of the synthesis of compounds. The synthesis 
of quaternary compounds was carried out from the calculated amounts of binary 
phases in the positive electrodes of the cells with the participation of the Ag+ catalyst. 
For the first time, the values of standard thermodynamic functions (Gibbs energies, 
enthalpies, and entropies) of quaternary compounds were calculated based on the 
temperature dependences of the EMF of electrochemical cells. The variation of the 
composition of ternary and quaternary compounds within the homogeneity regions 
opens wide possibilities for changing their physicochemical properties. 
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