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Abstract. Recommender Systems (RS) are information retrieval systems that can
be used for serving personalized content to online users. Most industrial recom-
mendation systems utilize a large amount of online data to generate personalized
recommendations for users. The quality of the data plays an important role in
the performance of the RS. The majority of the RS data is generated from event
data that are stored in data lakes through multiple data pipelines. Event-based data
pipelines have emerged as a popular approach to handle the massive amount of
data generated by modern applications. In this paper, we explore the impact of
event-based data pipelines on recommendation systems. We discuss how these
pipelines enable efficient data ingestion, real-time processing, and low-latency
recommendations.

Keywords: Information Retrival · Data Engineering · Data Pipeline ·
Recommender Systems

1 Introduction

Recommendation Systems have become a crucial component of modern applications,
providing users with personalized content and product suggestions based on their pref-
erences, behavior, and context. However, as the volume and velocity of data continue
to grow, traditional data processing methods struggle to keep up with the demand for
real-time recommendations. Event-based data pipelines, which rely on asynchronous
data streaming and processing, have emerged as a promising solution to address these
challenges.

In this section, we provide a complete background of our study. First, we briefly
describe recommendation systems and event-based data pipelines. Next, we present the
importance of incorporating event-based data pipelines in RS. We also provide a real-
world example of RS, demonstrating the use of event-based pipelines. Finally, we present
the key contributions of our study.
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Recommendation Systems: RS analyze user data to provide personalized suggestions
and enhance user experience. They can be classified into three major categories: col-
laborative filtering, content-based filtering, and hybrid systems. Collaborative filtering
leverages user-item interactions, content-based filtering considers item features, whereas
hybrid systems combine both approaches.

Event-Based Data Pipelines: They are designed to handle high-velocity and high-
volume data streams. They are built using event-driven architectures, where events rep-
resent changes in the state of an application. The main components of event-based data
pipelines include event producers, event brokers, and event consumers. Producers gen-
erate events, brokers manage and route events, and finally consumers process and react
to events.

Advantages of Event-Based Data Pipelines on Recommendation Systems: An
event-based data pipeline can play a pivotal role in the performance of a recommen-
dation system as compared to a traditional data processing pipeline. Below we discuss
some of the advantages of event-based data pipelines.

– Efficient Data Ingestion: Event-based data pipelines enable efficient ingestion of
user activity and content metadata, providing a scalable and fault- tolerantmechanism
for handling large-scale data streams. This capability is critical for recommendation
systems, as the volumeandvariety of data candirectly impact the quality and relevance
of recommendations [21].

– Real-Time Processing: By enabling real-time data processing, event-based data
pipelines allow recommendation systems to react to user behavior and preferences
more rapidly. Real-time recommendations can significantly enhance user experience,
thereby increasing engagement, satisfaction, and conversion rates [21].

– Low-Latency Recommendations: Event-based data pipelines facilitate low-latency
recommendations by minimizing the time between data ingestion and recom-
mendation generation. This feature is especially important for applications with
highly dynamic content, such as news or e-commerce platforms, where outdated
recommendations can lead to reduced user satisfaction and missed opportunities.

Motivating Real-World Example: In the context of the rapid growth of digital plat-
forms, YouTube, a prominent online video-sharing platform, faced difficulties in provid-
ing real-time, relevant recommendations to its users due to the high volume and variety
of data generated by user interactions and content updates [9]. This issue resulted in
decreased user satisfaction as the users did not receive accurate video recommendations
and missed opportunities for both YouTube and its content creators. The platform had
to deal with an extensive catalog of videos, constantly updated content, and a myriad of
user interactions that included views, likes, comments, and shares. The complexity and
scale of this data overwhelmed their traditional data processing pipelines.

This real-world example highlights the need for a more robust and efficient event-
based data pipeline to address the challenges faced by recommendation systems in
similar scenarios. YouTube’s struggles and solutions underscore the importance of effi-
cient data engineering in improving personalized recommendations and enhancing user
experiences in today’s large-scale digital platforms.
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Contributions: Below we list the key contributions of this work which includes-

– A detailed study and presentation of event-based pipeline issues: The paper provides
in-depth knowledge of problems that can arise in event-based pipelines, a crucial
component for recommender systems. By elaborating on challenges like event dupli-
cation, missing events, and event corruption, the paper provides a framework for
practitioners and researchers to analyze their own systems.

– Performance improvement of recommender systems: By addressing the identified
issues, the recommender system’s performance can be enhanced, leading to better
resource utilization, accurate recommendations, and improved end-user experience.

In the next section, we discuss the gaps in relevant literature focusing on event-based
pipelines. Next, we present in detail all the possible challenges associated with event-
based pipelines. We further present a case study that helps us understand these existing
issues better. Finally, we discuss our observations and some of the possible solutions to
the existing problems. We then conclude with future directions of our work.

2 Related Work

In several existing literature, such as the survey byBobadilla et al. [4], various challenges
and data quality issues are outlined that affect recommender systems. However, these
work do not exclusively focus on event-based pipelines. They provide some general
insights that can be applied to this context.

Several studies have highlighted the importance of data pipelines in the context
of recommender systems. Chen and Gao [7] proposed a comprehensive pipeline for
a hotel recommendation system, which involved pre-processing raw data and training
prediction models. Their work emphasized the importance of data organization and
analysis in building effective recommender systems.

Deng et al. [10] provided a comprehensive review of recommender systems based
on graph embedding techniques. The study proposed a general design pipeline and
compared graph embedding-based recommendation models with conventional models,
suggesting a trade-off between the two approaches in different tasks. Mazaheri et al. [17]
explored the feasibility of a collaborative filtering system to recommend pipelines and
datasets based on provenance records from previous executions. Their work underscored
the potential of data pipelines in enhancing the performance of recommender systems.
Vrijenhoek et al. Vrijenhoek et al. [27] conducted an analysis of the MIND dataset [31]
for their research focused on diverse news recommendations. They further discussed
the effects that various stages of the recommendation pipeline have on the distribution
of different article categories. Tagliabue et al. [25] have argued that immature data
pipelines are preventing a large portion of industry practitioners from leveraging the
latest research on recommender systems. The study proposed a template data stack for
machine learning at a reasonable scale, demonstrating how many challenges can be
addressed by embracing a serverless paradigm.

While these studies implicitly acknowledge the importance of data pipelines in rec-
ommender systems, they do not explicitly discuss the role of event-based data pipelines.
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This observation underscores the motivation for our study, which aims to explore the
potential challenges, impact, and solutions of event-based data pipelines in recommender
systems.Bydoing so,wehope tofill this gap in the literature andprovidevaluable insights
for other researchers and practitioners in the field.

3 Challenges with Event-Based Pipelines

In this section, we first present an overview of the different components of the rec-
ommendation system architecture. Next, we identify and discuss some common issues
associated with event-based pipelines in RS.

Fig. 1. Architecture of data pipelines for Recommendation Systems

Figure 1 delineates the various stages involved in the development and operation of
the recommender system. It commences with feature engineering and model training,
which are crucial for the recommendation engine to generate relevant suggestions.

The data validation and quality check stage ensures the integrity and accuracy of the
data being processed. This stage is critical for maintaining the reliability of the system
and ensuring that the recommendations generated are based on valid and high-quality
data.

The monitoring and alerting stage is responsible for overseeing the system’s per-
formance and raising alerts in case of any anomalies or issues. This stage is essential
for maintaining the system’s robustness and swiftly addressing any problems that could
impact its performance or the quality of its recommendations. The recommendation
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engine, which is prominently featured in the diagram, is the core of the system. It
utilizes processed and validated data to generate recommendations.

Having outlined the architecture and operational flow of the recommender system
from a data engineering perspective, it is essential to address the inherent challenges
that come with designing, implementing, and maintaining such complex data-driven
recommender systems. In the following section, we delve into these challenges, their
impact on the data engineering landscape, and the potential solutions to mitigate them.

3.1 Event Duplication

Event duplication is a common problem in event-based pipelines in recommendation
systems. The event duplication results from inadequate event auditing and a lack of a
de-duplication pipeline. The system contains multiple components that trigger events
regularly, causing some events to be logged repeatedly. Such an event may also include
additional logic to collect logs from various system sections. For instance, in a music
streaming platform like Spotify, user interactions such as playing a song, liking a song,
adding a song to a playlist, and browsing through song recommendations are collected
[3]. These events are crucial for generating personalized recommendations for users.
However, when not instrumented properly, these events may generate many duplicate
entries in the database.

The duplicate entries can lead to several negative effects, such as increased storage
consumption, reduced query performance, and data inconsistencies. Increased storage
consumption in turnmay result in higher infrastructure costs and can become a bottleneck
for systems with limited resources. Duplicate entries could also slow down query per-
formance, as the database has to process redundant data, leading to increased latency for
real-time analytics and user-facing applications.Moreover, data inconsistencies can arise
when multiple duplicate records are updated with different values, causing confusion
and errors in the downstream processes [3, 6].

Impact: Event duplication can cause multiple problems in the performance of the rec-
ommendation system. In sequential recommendation, a duplicate event might create a
popularity or repeatability bias. For example, an online streaming service can create
false data about users’ repeated play of content, such as a song being played multiple
times due to duplicate events. Such behavior can incorrectly infuse a popularity bias into
the system. It can also lead to overfitting of the model.

Potential Solution: In order to avoid event duplication, performing a proper audit
of the event is necessary. It also involves performing rigorous testing of the system’s
event instrumentation to ensure accurate tracking and logging of user interactions, thus
eliminating duplicate entries and improving the recommendation system’s performance.

3.2 Missing Events

Missing events can occur when an event doesn’t fire correctly or is implemented incor-
rectly. For example, in an e-commercewebsite, the systemmay not capture user behavior
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entirely, such as failing to log product views or add-to-cart actions. A real-world exam-
ple of the impact of missing events can be found in a study by Zhang and Jansen [32],
which investigated the effects of missing click-through data on click-through rate (CTR)
estimation in sponsored search advertising.

Impact: Missing data in a machine learning model can lead to several disadvantages,
including reduced accuracy, biased predictions, poor performance, and difficulty in
model training. Algorithms may struggle to handle incomplete data, causing longer
training times, which is detrimental when time is a critical factor.

Potential Solution: To tackle the issue of missing events, it is crucial to establish a
well-designed and reliable event tracking system, such as using a combination of client-
side libraries and server-side event collectors. For example, implementing a solution
such as a custom-built event tracking system can provide comprehensive event capture
and logging. This solution should encompassmeticulous testingmethods for client event
instrumentation, ensuring accurate capture of all relevant user events, minimizing the
risk of data loss, and seamless integration with the existing data pipeline. In addition,
incorporating resilient monitoring systems, such as Prometheus or ELK stack, and error
reporting techniques, like Sentry or Rollbar, can help detect and resolve missing event
problems promptly. These tools enable real-time tracking and alerting on potential issues,
allowing developers to address them proactively. Adopting this strategy guarantees that
the recommendation system functions with comprehensive and precise data, resulting
in enhanced model performance and dependable recommendations [11, 12, 22, 30].

3.3 Event Corruption

The primary reason for event corruption is the faulty implementation of events on the
client or server side. If an event is not correctly captured, it adds noise to the machine-
learning model. One such example of event corruption is capturing an incorrect input of
a click event from the user. Many e-commerce websites add multiple buttons to capture
various user actions. However, due to faulty implementation, it may capture false clicks
of events and thus add noise to the data.

Impact: Noisy data can have a negative impact on the performance of a machine learn-
ing model. If the data used to train the model is noisy, meaning it contains a lot of
irrelevant or incorrect information, it can cause the model to make inaccurate predic-
tions. This is because the model is being trained on data that doesn’t accurately capture
the real-world phenomenon it is trying to model. So the model does not learn the correct
patterns and relationships. As a result, the model is unable to generalize well to new data
and might produce poor results when used in practice. It is therefore important to clean
and preprocess the data before using it to train a machine learning model, to ensure that
it is as accurate and relevant as possible.

Potential Solution: To mitigate event corruption, it is essential to adopt a compre-
hensive approach encompassing thorough event examination and validation processes.
By crafting tailored test cases that align with the specific client event instrumentation,
data integrity can be maintained. Furthermore, integrating advanced real-time tracking
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systems, along with machine learning based anomaly identification techniques, allows
for the swift detection and resolution of event corruption issues. One notable example
is the use of machine learning for anomaly detection in e-commerce platforms, where
event data can be monitored and analyzed for inconsistencies, such as unusual patterns
in user clicks or browsing behavior [30]. By following this proactive strategy, the rec-
ommendation system can work with high-quality data, resulting in improved model
performance.

3.4 Data Association

Data association refers to the process of linking and correlating various data points, often
originating fromdifferent sources, to create a comprehensive and cohesive understanding
of user behavior and preferences. In recommendation systems, data association plays a
vital role in generating accurate and personalized recommendations by leveraging the
relationships between different data elements.

Impact: Inadequate or incorrect data association can lead to an incomplete or dis-
torted view of user preferences, resulting in sub-optimal recommendations being gen-
erated. Therefore, it is essential to ensure accurate and robust data association in
recommendation systems to optimize the quality of generated recommendations.

Potential Solution: To tackle data association challenges in recommendation systems,
it is crucial to implement a robust data integration and preprocessing pipeline. This
pipeline should involve merging data from multiple sources, cleaning and transforming
data, and identifying meaningful relationships among various data elements. Employing
advanced techniques such as entity resolution, record linkage, and feature engineering
can help improve data association and create a more accurate representation of user
preferences.

3.5 Data Evolution

Data evolution refers to the continuous changes in data patterns and distributions over
time, which can result from shifts in user preferences, market trends, or system updates.
In the context of recommendation systems, data evolution can lead to challenges when
adapting to these changes to maintain the accuracy and effectiveness of the recommen-
dations. Understanding these evolution patterns is key to understanding the structures
of input data for recommender systems, highlighting the importance of considering data
evolution in the design and implementation of recommender systems [28].

Impact: As data evolves, the underlying relationships and patterns in the datamay shift,
which can render a previously effective machine learning model less accurate or even
obsolete. Failing to adapt the model to these changes can result in recommendations
that are less relevant to users. Consequently, it is crucial to monitor data evolution in
recommendation systems and update the models to reflect the changing data landscape.
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Potential Solution: Toaddress data evolution in recommendation systems, it is essential
to establish a dynamic and adaptive modeling process. This process should include
continuous monitoring of data trends, timely model retraining with up-to-date data,
and fine-tuning model parameters as necessary. Leveraging techniques such as online
learning, transfer learning, and active learning can also help in adapting to data evolution
effectively. Employing these methods would help the recommendation system in staying
attuned to the ever-changing data environment, thus ensuring the provision of relevant
and accurate recommendations to users.

3.6 Cold Start

Recommender systems, particularly those employed in e-commerce platforms, rely
heavily on user interactions such as browsing, searching, adding items to a cart, making
purchases, leaving reviews, and providing feedback. However, a significant challenge
arises when a new user visits the platform for the first time. In such instances, the system
lacks any prior information about the user, leading to what is known as the ‘cold-start’
problem. This issue hampers the system’s ability to provide recommendations with the
same confidence as it does for existing users. Furthermore, each time a user visits the
website, their interests might differ, adding another layer of complexity to the problem.

Impact: The cold-start problem in recommender systems can significantly impact their
performance and user experience. As per Bouneffouf et. al [5], this issue can lead to
inefficiency, as the system may struggle to provide accurate recommendations due to
a lack of data, leading to potential resource wastage. It can further result in poor user
experience. Furthermore, this problem can lead to a loss of revenue, as users may not
engage with poorly targeted recommendations, leading to missed sales opportunities.
Finally, the cold-start problem can make it difficult for the system to evaluate new
items accurately, affecting the overall quality of recommendations. Thus, addressing the
cold-start problem is crucial for the effectiveness of recommender systems [16, 28].

Potential Solution: To address the cold-start problem, it is crucial to monitor the data
fed into the recommender systems meticulously. One potential solution proposed in the
literature involves the use of a new algorithm named DotMat. The DotMat algorithm,
designed to address the cold-start problem in recommender systems, leverages Zipf’s
Distribution and the RankMat algorithm. Zipf’s Distribution, a statistical law observed in
many natural phenomena, states that a few items occur very frequently while many items
occur rarely. For example, in a large text, a few words like “the”, “and”, “of” are used
very often, while most words are used infrequently. This principle is also applied in the
RankMat algorithm, which remodels the probabilistic framework of matrix factorization
using power lawdistribution, a pattern often observed in user behavior.Wecould consider
a music streaming platform where a few songs are played very frequently while many
songs are played rarely. RankMat leverages this pattern to predict user preferences,
enabling accurate recommendations even with limited user history. Thus, by combining
the principles of Zipf’s Distribution and RankMat, DotMat offers a promising solution
to the cold-start problem, ensuring accurate and high-quality recommendations [16, 28].
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3.7 Sparsity

Sparsity in recommender systems refers to situations where there is insufficient transac-
tion and feedback data available, making the prediction process biased and less optimal.
This problem can arise when the end-user interacts with only a small portion of items in
a particular application domain. For instance, in datasets containing ratings of movies,
there may exist rating matrices that are not fully populated, say only about 10% of that
matrix bears ratings. Another common issue is the lack of data about new entities such
as a new item or a new user. Whenever a new user is added to a system, where they
have not yet had an opportunity to rate any items, the system cannot compute similarity
to other users. Similarly, for a new product, the system can’t recommend the product
before a rating has actually been received for it [8, 28].

Impact: The sparsity problem can significantly affect the quality of recommendations.
With sparse data, it becomes difficult for the system to make high-quality recommen-
dations. This can lead to a sub-optimal user experience, as the recommendations may
not align with the user’s preferences or needs. Furthermore, the lack of data about new
entities can hinder the system’s ability to provide relevant recommendations for new
users or to promote new products.

Potential Solution: A proposed solution to the sparsity problem is the DotMat algo-
rithm [28]. This algorithm, which does not require any additional input data, can be used
as a preprocessing step for recommender systems to alleviate sparsity problems. This
process allows us to fill in the missing values in the user-item rating table by using the
features of users and items, before generating any recommendations.

3.8 Maintaining the Integrity of the Specifications

When designing recommender systems, it is crucial to consider various design aspects
relevant to structuring and handling the specific design complexities from the applica-
tion’s context. However,most of the existing literature does not presentmodels for easing
the capture and use of requirement specificationswhen designing recommender systems.
There is a scarcity of models that provide an overview and explanation of the design
considerations engineers face when developing recommender systems, particularly for
domain-specific complex recommender system applications.

Impact: The lack of models and methods for maintaining the integrity of specifications
in recommender systems can lead to inefficiencies in the design process and potential
inaccuracies in the resulting recommendations.

Potential Solution: To support the designer in this task ofmaking awellconsidered rec-
ommender system design, it is necessary to develop and incorporate methods tomaintain
the integrity of requirements specifications. Following good practices as described for
software requirements engineering would be helpful in this case [2].
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3.9 Event Corruption

Event corruption refers to the distortion or degradation of data as it moves through the
data pipelines. This typically occurs when there is a loss of data due to missing informa-
tion, discrepancies between expected and actual values, or intentional or unintentional
tampering with the data pipelines. Event corruption can also be caused by mismatches
in database schemas. A lack of error handling and validation safeguards can further
amplify the occurrence of event corruption incidents.

Impact: Wrong data about user interactions or user interests might make their way to
the recommender system loop, which can cause the system to make incorrect recom-
mendations and in turn lead to a loss of revenue. For example, if a user’s preferences
are recorded incorrectly, the recommendations may not align with their actual prefer-
ences. Or, if a popular item is mistakenly labeled as having high user ratings, it may be
recommended more often, even if it is not a good match for a particular user.

Potential Solution: One could ensure data quality checks where returning user data is
compared to the user’s previous visits to a site. These could include a data-completeness
check where the matrix that is provided as input to the recommender system is complete.
An alternatemethodmay include data consistency checks. If user information is stored in
multiple databases, then it must be consistent across all of them. While data duplication
can occur if a user has rated the product twice, the system must take only a single record
when considering that particular user. Lastly, data timeliness checks are also necessary.
For such a check, only the latest interaction data for the user is considered and provided
as input to the recommender system. Finally, it is also necessary to establish appropriate
ranges on the data that is being provided to the recommender system.

3.10 Data Volume

The event-based data pipeline processes a large amount of data. This substantial bulk
of event-based data primarily originates from transaction records. Many recommender
system algorithms, such as collaborative filtering, utilize vast amounts of user-item data.
High volume of such data may contribute to several issues in event-based data pipelines.

Impact: As data volume increases, the scalability of the recommender system must be
increased. If the data volume is large and the system is not scaled enough, it may lead
to slow response times, high resource utilization, and difficulty in adapting to changing
data. These factors can yet again lead to low user engagement for any business.

Potential Solution: With improvements in cloud computing, recommender systems
can be scaled to handle larger volumes of data. Also, parallel processing and distributed
computing can be leveraged to distribute the computation workload across multiple
processors or machines, allowing the system to handle large volumes of data more
efficiently. Another important remedy for large data volumes is incremental learning,
which involves updating the recommendation algorithm in real-time as newdata becomes
available. This can help the system adapt to changing data and improve accuracy over
time, while also reducing the volume of data that needs to be processed at once.
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3.11 Data Diversity

As the number of users and items in a recommender system increases, the diversity of
the data also escalates. This escalating diversity poses a challenge in generating accurate
recommendations. Particularly, if the data is skewed towards a specific demographic
or genre, the system may struggle to provide precise recommendations for a broader
audience [15, 29].

Impact: The increasing data diversity in recommender systems can lead to biased rec-
ommendations, especially when the data is skewed towards a particular demographic
or genre. This bias can result in less accurate recommendations for a broader audience,
thereby reducing the effectiveness of the recommender system. The issue becomes more
pronounced as the number of users and items in the system grows, making it more
challenging to create accurate recommendations [15, 29].

Potential Solution: To address the problem of data diversity, it is beneficial to incorpo-
rate contextual data such as user demographics, location, and browsing history. This data
can be used to personalize recommendations and make them more relevant to the user.
By incorporating contextual data, the system can better understand the user’s preferences
and provide recommendations that are tailored to their interests. Additionally, ensemble
methods can be used, which involve combining multiple recommendation algorithms
to produce more accurate and diverse recommendations. By using different algorithms,
the system can account for the diversity of user preferences and item characteristics,
leading to more accurate and diverse recommendations. Diversity constraints can also
be added to the recommendation algorithm to ensure that the system generates a diverse
set of recommendations. For instance, the system can be designed to recommend items
from different categories or genres to provide a broader range of options [15, 29].

4 Comparative Analysis of Research Studies

In this section, we present an analysis by studying several work which highlight the
issues related to event-based data pipelines for recommender systems. We identify the
issues discussed earlier in these studies and try to correlate the dependency of such issues
on each other. We further present the areas where certain issues are more likely to occur
than others.

Table 1 provides a brief survey of different Recommendation System papers that
covers various related problems commonly observed for recommendation systems. We
linked each of those problems with the associated event-based problems.

In our comparative analysis of research papers, we identified key challenges and
related problems in the context of event-based data pipelines for recommender systems.
The table above presents a succinct overview of these issues. The challenges were cat-
egorized into nine distinct problems: Gathering Known Ratings for Matrix, Cold Start,
Sparsity, Scalability, Over Specialization, Lack of Data, Changing Data, Changing User
Preferences, and Unpredictable Items [1, 2, 13, 14, 18–20, 23, 24, 26]. Each of these
problems has associated issues related to event-based data, such as Missing Events,
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Table 1. Different problems in data pipelines along with related event-based issues

Problem Related Problems Event Based Issues

Gathering Known
Ratings for Matrix

Sparsity, Cold Start Missing Events

Cold Start Gathering Known Ratings
for Matrix, Sparsity

Missing Events, Duplicate
Events

Sparsity Gathering Known Ratings
for Matrix, Cold Start

Missing Events

Scalability Lack of Data Missing Events

Over Specialization Lack of Diversity Missing Events

Lack of Data Scalability Duplicate Events, Event
Corruption

Changing Data Unpredictable Items,
Changing User Preferences

Duplicate Events, Event
Corruption

Changing User Pref-
erences

Changing Data, Unpredictable Items Duplicate Events

Unpredictable Items Changing Data, Changing
User Preferences

Duplicate Events, Missing
Events

Duplicate Events, and Event Corruption. Moreover, each problem is intricately con-
nected to other challenges, thereby forming a complex web of interrelated issues. For
instance, the “Gathering Known Ratings for Matrix” issue is closely related to the spar-
sity and the cold start problem, and this issue is further exacerbated in an event-based
context due to the occurrence of missing events. Similarly, “Cold Start”, “Sparsity”, and
“Scalability” issues all grapple with the challenge of missing events.

The “Over Specialization” and “Lack of Data” issues share the common event-based
issue ofMissing Events, with the latter also facing challenges related toDuplicate Events
and Event Corruption. Furthermore, the problems of “Changing Data”, “Changing User
Preferences”, and “Unpredictable Items” are intertwined,with all three facing difficulties
related to Duplicate Events and Event Corruption. The “Unpredictable Items” problem
also involves the additional challenge of Missing Events.

This summary underscores the complexity and inter-connectedness of the complexi-
ties in developing andmaintaining event-based data pipelines for recommender systems.
Addressing these issues requires a holistic approach that takes into account the multi-
faceted nature of these problems and the intricate ways in which they interact within an
event-based environment.

Figure 2 presents the occurrence of a specific issue as indicated in related literature.
The y-axis represents the issues observed and the x-axis denotes the percentage of time
a specific issue is observed out of the total papers reviewed. We see that Cold-Start,
Scalability and Sparsity issues are the most frequently occurring problems as noted by
other users. On the other hand, issues such as ones related to Latency and Changing User
Preferences are fairly common but less frequent than some other problems.
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Fig. 2. Distribution of occurrence (in %) of problems observed in event based Recommender
Systems

5 Conclusion

Event-based data pipelines can facilitate the creation of more personalized and relevant
recommendations, leading to improved user engagement and satisfaction. Event-based
data pipelines are likely to play an increasingly important role in the development of
next-generation recommendation systems.

This work includes a comprehensive review of the challenges associated with event-
based data pipelines in recommendation systems, such as event duplication, missing
events, event corruption, data association, cold start, data evolution, sparsity, integrity,
event corruption, data volume, and data diversity issues. We analyzed the impact of
these challenges on the performance and effectiveness of recommendation systems. We
further explored potential solutions for mitigating the issues listed. In this study, we
presented the key takeaways that would be helpful for engineers and other stakeholders
building recommender systems.

In conclusion, event-based data pipelines can have a significant impact on the per-
formance of recommendation systems. By enabling efficient data ingestion, real-time
processing, and low-latency recommendations, event-based data pipelines can provide
a more scalable and effective solution for handling high-velocity and high-volume data
streams.

6 Limitations and Future Work

There are several impediments in the sharing of information by companies that build
and use event-based recommendation system architectures. This may include security,
data privacy, and other constraints. The lack of such information makes it difficult for
researchers in this area to understand or reproduce similar issues and challenges.

In order to alleviate these problems, we need a standardized framework that can help
us catalog multiple types of architectures that can be used for different types of systems.
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For instance, in some cases, a monolithic architecture may provide better performance
over micro-service-based architectures. Future research could explore the impact of
event-based data pipelines on different types of recommendation systems, including
collaborative filtering, content-based filtering, and hybrid systems.
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