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Abstract. Mesh representation of medical imaging isosurfaces are essential for
medical analysis. These representations are typically obtained using mesh extrac-
tion methods to segment 3D volumes. However, the meshes extracted from such
methods often suffer from undesired staircase artefacts. In this paper, we evaluate
the existing mesh deformation methods that deform a template mesh to desired
shapes.We evaluate two variants of suchmethod on three datasets of varying topo-
logical complexity. Our objective is to demonstrate that, despite the mesh defor-
mation methods having their limitations, they avoid the generation of staircase
artefacts.
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1 Introduction

Polygon meshes have seen great advances in the medical imaging community, propelled
by modern graphics processing units (GPUs) that are optimized for mesh rasterization.
These advances have facilitated the polygon mesh representation to be easily rendered,
and the adoption of powerful modern rendering engines, such as Unity, are enabling
efficient visualization. Although previous works such as [3] enable directly rendering
the polygonised isosurface of binary volumes, the ray casting technique used is much
more computational expensive than mesh rasterization. The polygon mesh is a graph-
based representation that consists of vertices and their connecting edges to model the
isosurfaces of objects in 3D space. The graph-based data structure enables arbitrary
vertex placements in continuous 3D space, therefore the isosurface can be stored in
varying levels-of-detail and resulting in a highly compact data structure. Moreover, the
shape of the mesh can be easily deformed by displacing the vertices, and the spatial
topology is preserved by the edges that connect the vertex pairs, making it ideal for
medical simulations such as cardiac cycles [4].

However, generation of meshes of segmented isosurfaces from medical images is a
complex task involving a pipeline that consists of segmentation of the regions of inter-
est (ROIs) and polygon extraction from volumetric segmentation data. Example ROIs
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Fig. 1. A close-up visual comparison of the mesh surface extracted using (a) MC, (b) MC with
TwoStep Smooth filter from Voreen [1], and (c) Voxel2Mesh [2]. The contour of (c) is slight
different from (a) and (b) due to the limited deformation ability.

include specific anatomical structures such as the boney structures e.g., skull and ribs,
and organs such as the liver structure. The conventional approach to generating polygon
mesh is by reconstruction from 3D volumetric data acquired by imaging techniques such
as computed tomography (CT) and magnetic resonance imaging (MRI). The acquired
3D volumetric data uses a dense discrete voxelized grid of uniform precision to represent
the internal spatial properties. It is subsequently segmented to a volumetric mask of the
desired ROI, either by scanning each slice of the input volume, such as U-Net [5], or by
processing the entire input volume, as in the case of 3D U-Net [6].

MarchingCubes (MC) [7] is the conventionalmethod to generate 3Dpolygonmeshes
from volumetric segmentation masks. The quality of the extracted mesh is determined
by the resolution of the 3D volumetric data, where the z-axis resolution is often limited
by the medical imaging protocols. The meshes extracted by volumes with low z-axis
resolution suffer from the staircase artefacts and the visual quality is degraded. Although
smoothing filters can be applied to mitigate the staircase artefacts, they often cause
volume shrinkage and losing overall shape [8].

To eliminate the staircase artefacts and create smooth meshes while keeping the
volume shape, Wickramasinghe et al. proposed Voxel2Mesh [2], a mesh deformation
deep neural network for medical ROI representation. The mesh deformation approach
is inspired by the Pixel2Mesh [9] and its following Pixel2Mesh++ [10], which utilized
graph convolutional network (GCN) to optimize the vertex displacement of an ellipsoid
mesh template from a single image. In Voxel2mesh, the authors adapted the Pixel2Mesh
to process 3D volumetric data as input and generate mesh representation of the ROIs.

The staircase artefacts often occurwhen using theMCprocess to extractmeshes from
discrete volumetric data of low resolution, as the low level-of-detail limits the volumetric
representation to capture the smooth curvatures of the surfaces. On the other hand, the
mesh template is a continuous representation of the shape that allows arbitrary level-
of-details that are capable of capturing the details of the curvatures. The deformation
network bypasses the MC process and performs deformation on the mesh template in
continuous space to produce smooth surfaces, and therefore avoid the staircase artefacts,
as shown in Fig. 1.

However, a key limitation is that the graph convolution layers cannot alter the con-
nections of the edges, therefore it cannot change the topological structure, e.g., genus
value, which describes the number of handles or “holes” in the surface of a 3D object.
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This limitation hinders the ability of Voxel2Mesh to deform the spherical template mesh
to complex anatomical structures with higher genus values, such as the pelvis.

In this study, we evaluate the numerical and visual quality of the medical mesh defor-
mation networks, on three anatomical structures of varying degrees of complexity and
topological structures, pelvis from CTPelvic1K [11], liver from CHAOS [12], and kid-
ney from CT-ORG [13]. For evaluation and demonstrate the general challenges and con-
straints of deformation-based medical mesh representation, in addition to Voxel2Mesh,
we also usedPixel2Mesh-3D, a variant of Pixel2Meshwith 3Dconvolution layers instead
of 2D convolution layers. The purpose of these experiments is to investigate the unique
characters of deformation networks that bypass the MC process and demonstrate their
current limitations in optimizing topological structures. The goal is to provide insights for
the medical mesh representation community regarding the importance of such networks
and the key challenges to be addressed in future research.

2 Related Work

2.1 Medical Imaging Mesh Generation

The medical isosurface mesh generation consists of the volumetric segmentation task
and themesh extraction process. Convolutional neural networks (CNNs) are widely used
for medical imaging segmentation tasks, e.g., fully convolutional networks (FCNs) [14],
PSPNet [15], and U-Net [5]. Among which, U-Net and its variants [6, 16–18] are the
most popular choices for this task. The U-Net utilizes the encoder-decoder architecture
with skip connections, which enables direct connections between mirroring layers of the
encoder and the decoder. These skip connections help preserve both the coarse infor-
mation and the fine details in the results. However, both the vanilla U-Net and many of
its variants operate on 2D image slices, without utilizing the spatial information of the
3D volume. Both 3D U-Net [6] and V-Net [18] were proposed to directly operate on 3D
volume by replacing the 2D operations found in vanilla U-Net to their 3D counterparts.
To solve the foreground-background imbalance problem, which becomes exponentially
severe in 3D, V-Net also introduced a new loss function based on Dice coefficient. How-
ever, due to the hardware limitation and the medical restrictions on radiation dosage, the
resolution of the result volume is limited, therefore the extracted mesh would suffer from
staircase artefacts. MC is the most prominent method for mesh extraction, it extracts a
triangle mesh isosurface from the volumetric data using pre-calculated potential cube
configurations to match the ROI’s boundary of the volumetric data. However, the MC
process is non-differentiable, therefore the extracted mesh cannot be end-to-end trained
for mesh optimization. Liao et al. [19] and Chen et al. [20] used deep learning networks
to learn the optimal cube configuration instead of using the pre-calculated configuration
during the surface extraction process, therefore making the mesh extraction process dif-
ferentiable, and the output mesh can be directly optimized using deep learning methods.
However, their works are limited by hardware constraints and extracted meshes from
smaller volumetric data (up to 1283 volume resolution) [21].
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2.2 Mesh Deformation Models

The deformable mesh models was first introduced by Terzopoulos et al. [22, 23], and
was quickly adapted for medical image segmentation tasks [24, 25]. By implementing
the graph convolutional network (GCN) model [26] that optimize the vertex place-
ment, Wang et al. [9] introduced the first deep learning based mesh deformation model
Pixel2Mesh, which generates a 3D mesh from a single image by deforming an ellipsoid
mesh template. This model takes a 2D image as input and cannot be used to process
the 3D volumetric data. Wickramasinghe et al. then utilized its GCNmodel and adapted
to process 3D volumetric data in Voxel2Mesh [2]. In Voxel2Mesh, an encoder-decoder
network with skip connections is used to extract features from the input volume, where
these features are then sampled by an adaptive mesh unpooling strategy that maps the
spatial features in volume space to the corresponding vertices in mesh space. The sam-
pled features are used to guide the GCN to deform the sphere template to desired shape.
The Voxel2Mesh is then extended for various medical mesh generation tasks [4, 27–
30] where sophisticated data-driven templates of the target anatomical structures are
used, to minimize the required deformation. The quality of the result mesh is heavily
dependent on the initialization of the deformable templates [31], as misaligned spatial
features in volume space and mesh space would destabilize the deformation. Kong et al.
[4] solved this problem by predicting the displacement of a control point grid to align the
features in different space. Although there are works [32–34] addressing the topology-
dependent problem of using pre-defined templates, the template selection process is
non-differentiable and therefore cannot be end-to-end trained, it is hard to address in the
deep learning context.

3 Experiments

3.1 Data and Experiment Setup

Three datasets of varying shape complexity are used to evaluate the deformation
networks.

Fig. 2. The templates used for deformation networks. The 162-face icosahedron template (a) is
used for both the CHAOS and Pelvic1K dataset, and the twin 162-face icosahedrons template (b)
is used for CT-ORG dataset.

1) Liver segmentation (simple shape complexity): The CHAOS dataset [12] consists of
20 CTs of human abdomen and their liver segmentation masks.
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2) Kidney segmentation (moderate shape complexity): The CT-ORG dataset [13] con-
sists of 40 CTs of the lower human body and their kidney (among other organs) seg-
mentation masks. The two kidneys are selected because of their different topological
structures.

3) Pelvis segmentation (high shape complexity): CTPelvic1K dataset [11] consists of
103 CTs and the pelvis segmentation masks. The pelvis is selected for its complex
topological structures such as the obturator foramen.

Each dataset is randomly divided into a training set and a testing setwith a ratio of 7:3.
Each volume is down-sampled using trilinear interpolation to 2562 in slice resolution,
with proportional slice counts for training,while the ground truth isosurfacemeshmodels
are generated using MC with step size 1 on the full-resolution segmentation labels to
minimize the staircase artefacts.

We evaluate the deformation networks visually and numerically with a traditional
pipeline that uses the standard U-Net for ROI segmentation andMC for mesh extraction.
As shown in Fig. 2, the deformation models use a 162-face icosahedron as the template
for CHAOS and Pelvic1K, and a twin 162-face icosahedron as the template for CT-
ORG to accommodate the two kidneys. The U-Net uses RMSprop optimizer, BCE with
logits loss, and has a batch size of 8. The U-Net is trained on the same datasets used for
Voxel2Mesh until convergence. The step size of MC is 1.

We conducted all our experiments, both training and inference, on a workstation
with NVIDIA Tesla V100 GPUwith Ubuntu 20.04. All the mesh rendering images were
captured using MeshLab [35].

3.2 Metrics

The following 3 metrics were used to evaluate our mesh quality quantitatively:
The average symmetric surface distance [36] (ASSD), measures all the average

distance of all points from one mesh to the other’s isosurface, and vice versa, hence the
name symmetric; the lower the better;

The Hausdorff distance [37] (HD), measures the maximum distance of all the
minimum-distance pair of the points between two meshes; the lower the better;

The Chamfer distance [38] (CD), measures the average distance of all the minimum-
distance pair of the points between two meshes; the lower the better;

For all point-based metrics (ASSD, HD, CD), we randomly sample 100,000 points
on the isosurface for each mesh model.

3.3 Quantitative Result

In Table 1, the U-Net reports best scores of all three metrics in CHAOS dataset. The
U-Net also reports best score in ASSD of the Pelvic1K dataset. The Voxel2Mesh reports
the best scores of all threemetrics in CT-ORG, and best score of HD andCD in Pelvic1K.
The Pixel2Mesh-3D reports the worst scores in all experiments.
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Table 1. Quantitative comparison of Voxel2Mesh, Pixel2Mesh-3D and 2D U-Net, using three
metrics, over three different datasets. The best score of the three is in bold font.

CHAOS Voxel2Mesh Pixel2Mesh-3D U-Net

ASSD↓ 0.012034↓ 0.047262 0.005411

HD↓ 0.154371 0.244806 0.124324

CD↓ 0.001177 0.007982 0.003276

CT-ORG Voxel2Mesh Pixel2Mesh-3D U-Net

ASSD↓ 0.008519 0.089067 0.010392

HD↓ 0.098444 0.098721 0.165157

CD↓ 0.006342 0.006593 0.007234

Pelvic1K Voxel2Mesh Pixel2Mesh-3D U-Net

ASSD↓ 0.028900 0.069296 0.012221

HD↓ 0.199291 0.286626 0.383156

CD↓ 0.002640 0.016262 0.005481

3.4 Qualitative Result

In Fig. 3, the U-Net (a) exhibits high visual similarity with the ground truth mesh (c)
in both tasks of liver (first row) and kidney (second row). However, the U-Net fails
to reconstruct the lower parts of the pelvis, as indicated by the blue arrow. Moreover,
the U-Net also reconstructed parts of the spine and femur that were outside the ROIs
(see the red arrow). The visual quality of all three meshes from U-Net, as well as the
ground truth images which are extracted using MC, are compromised by the staircase
artefacts. The mesh liver generated by both Voxel2Mesh (b), and Pixel2Mesh-3D (c)
is unable to preserve the sharp edges of the organ, as indicated by the blue arrows in
the first row. We note that in the second row, The lower parts of the kidney pairs are
stretched to the opposite kidneys in both deformation networks. In the third row, Both
Voxel2Mesh and Pixel2Mesh3D results suffer from the problem of fixed topology and
thereby fail to reconstruct the pelvis with the detailed structures such as the obturator
foramen, indicated by the red arrows, and resulted in a basin-shaped mesh.

We applied the curvature principal directions from MeshLab to examine the stair-
case artefacts. We visualize the magnitude of the curvature by encoding the maximum
curvature direction with red, the minimum curvature direction with green, and the third
principal direction that is perpendicular to both maximum and minimum direction with
blue. The intensity of each colour channel indicates the magnitude of each curvature
direction, that is, the green regions indicate flat surface, the red and blue regions indicate
sharp edges. In Fig. 4, the mesh generated by Pixel2Mesh (a–c) exhibits high strength of
curvature in regions corresponding to the overall shape. The mesh extracted from MC
(d), however, exhibits distinct steep edges along the shape curves.
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Fig. 3. Visual comparison of the CHAOS (first row), CT-ORG (second row), and Pelvic1K (third
row) meshes between (a) U-Net, (b) Voxel2Mesh, (c) Pixel2Mesh-3D,(d) the ground truth, and
(e) a coronal view of the CT used as input.

Fig. 4. The visualization of curvature principal directions where red encodes maximal curvature
and green encodes minimal curvature. (a–c) are taken from the mesh generated by Voxel2Mesh
from different viewpoints, and (d) is taken from mesh extracted by MC for reference of staircase
artefacts.

4 Discussion

We observed several limitations in the performance of the mesh deformation networks
when evaluating the reconstructed meshes of various complexity. Specifically, we found
that:

The networks are unable to reconstruct the meshes with sharp edges,
The networks are unable to deform templates with multiple objects, and
The networks are unable to reconstruct organs of different topological structures.
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As shown in the first row of Fig. 3, both Voxel2Mesh and Pixel2Mesh-3D can
deform their icosahedron templates to simple shapes, such as the liver in CHAOSdataset.
However, it fails to preserve the fine details such as the sharp edges indicated by the blue
arrows in the first row of Fig. 3.

In the second row of Fig. 3, where the deformation networks deform the template
of a icosahedron pair, the networks failed to differentiate the vertices from the two
icosahedrons, causing the vertices to be misplaced to match the surface of the opposite
kidney.

Furthermore, due to its graph convolution network (GCN) structure, it is unable to
deform to complex shapes. The GCN consists of graph convolution layers that modify
the value of graph vertices but are constrained by the topology of the graph as it cannot
change the connectivity of the mesh edges. As shown in the third row, both networks
were able to deform the template to the shape of a basin. However, the details of the
pelvis and the foramen are all missing from the mesh. This again is due to the limited
capacity of the sphere to deform to a complex basin shape with multiple openings.

In comparison to the mesh models extracted from a U-Net segmented volume using
MC, which are affected by the staircase artefacts, the meshes deformed from templates
remain unaffected. This is because the sphere template with smooth surfaces is directly
deformed into the output shape, without using the voxelized grid which causes the
artefacts. In the third row of Fig. 3, the U-Net fails to reconstruct thin structures such
as indicated by both red and blue arrows, and erroneously reconstructs parts outside the
ROIs. Conversely, these issues are not presented in the deformation networks’ outputs,
as the topology structure is constrained by the pre-defined template.

We further verify the absence of staircase artefacts in meshes generated by
deformation-based networks by examining the curvature direction distribution in Fig. 4.
The staircase artefacts can be visually identified by the contrastive colour ripples that
indicate high strength of curvatures and high homogeneity along the z-axis, as shown
in (d). However, such ripples are not presented in (a–c), which are generated from a
deformation network.

In future work, we will investigate other medical isosurface representations that can
minimize the staircase artefacts and can be used for more complex anatomical structures,
such as the signed distance functions (SDF) [38] that uses mathematical functions to
represent the 0-level distance isosurfaces of the desired shape. As this representation
does not require any template as initial input, it is not restricted by the pre-defined shape
and can be used to represent any arbitrary shapes.Moreover, the SDF describes the shape
in a continuous space, and therefore it can be sampled at arbitrary high resolution when
MC is used for mesh extraction; this potentially can minimize the staircase artefacts that
are mainly caused by low z-axis resolution.

5 Conclusion

In this study, we highlighted the existing limitations of utilizing a mesh deformation net-
work for representing medical ROIs, which includes the restricted ability to reconstruct
shapes with sharp edges, and the inability to change the topological structures of the
template. Although the visual quality is inferior compared to the traditional pipelines
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that utilize theMC for mesh extraction, deformation networks’ benefit to bypass theMC
process and avoid the staircase artefacts makes it worthwhile for future research.
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