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Preface Lecture Notes in Computer Science (14498)

CGI is one of the oldest annual international conferences on Computer Graphics in the
world. Researchers are invited to share their experiences and novel achievements in
various fields of Computer Graphics and Virtual Reality. Previous recent CGI confer-
ences have been held in Sydney, Australia (2014), Strasbourg, France (2015), Herak-
lion, Greece (2016), Yokohama, Japan (2017), Bintan, Indonesia (2018), and Calgary in
Canada (2019). CGI was virtual between 2020 and 2022 due to the COVID pandemic.
This year, CGI 2023 was organized by the Shanghai Jiao Tong University, with the
assistance of the University of Sydney and Wuhan Textile University, and supported by
the Computer Graphics Society (CGS). The conference was held during August 28 to
September 1, 2023.

These CGI 2023 LNCS proceedings are composed of 149 papers from a total of 385
submissions. This includes 51 papers that were reviewed highly and were recommended
to be published in the CGI Visual Computer Journal track. To ensure the high quality of
the publications, each paper was reviewed by at least two experts in the field and authors
of accepted papers were asked to revise their paper according to the review comments
prior to publication.

The CGI 2023 LNCS proceedings also include papers from the ENGAGE (Empow-
ering Novel Geometric Algebra for Graphics & Engineering) 2023 Workshop (11 full
papers), focused specifically on important aspects of geometric algebra including surface
construction, robotics, encryption, qubits and expression optimization. The workshop
has been part of the CGI conferences since 2016.

We would like to express our deepest gratitude to all the PC members and external
reviewers who provided timely high-quality reviews. We would also like to thank all the
authors for contributing to the conference by submitting their work.

September 2023 Bin Sheng
Lei Bi

Jinman Kim
Nadia Magnenat-Thalmann

Daniel Thalmann
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An Efficient Algorithm for Degree
Reduction of MD-Splines

Zushang Xiao and Wanqiang Shen(B)

School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
wq_shen@163.com

Abstract. This paper analyzes the computational time complexity of
the previously proposed methods for constructing dual basis functions.
It presents a method that employs discrete numerical summation for
computing the integral of a polynomial, enabling rapid calculation of the
inner product of two polynomial functions. Building on this approach,
an algorithm is obtained to address the degree reduction problem for
MD-spline curves. It efficiently computes the control points after degree
reduction, ensuring the least square approximation.

Keywords: B-splines · MD-splines · Degree reduction · Dual bases ·
Least square approximation

1 Introduction

Curve and surface degree reduction is crucial for product data exchange and
compression, leading to cost reduction in data storage and transmission [1–3].
An algorithm for B-spline curve degree reduction is proposed in [4], using a
constrained optimization approach to minimize the distance between high-degree
and reduced-degree B-spline curves [5,6]. Reference [7] introduces a simpler and
more intuitive method based on NURBS curves’ local control property.

The dual basis of spline functions is essential in least square approximation,
and several studies have explored the dual Bernstein polynomials [8–10], dual
polynomial bases [11], and dual B-spline functional [12]. Dual Wang-Bézier and
Bézier-Said-Wang type generalized Ball polynomials are investigated in [13–15],
while [16] presents the study of the dual NS power basis. Space extension meth-
ods, introduced in [17], are employed for constructing the dual basis. These
methods, particularly emphasized in [18] for their improved computational effi-
ciency, are subsequently applied to the dual basis for generalized B-splines in
[19].

MD-splines, allowing different degrees within intervals, extend B-splines [20].
Various studies propose polynomial functions with variable degrees for shape-
preserving interpolation [21,22]. The concept of MD-splines is introduced in [23],
and two types of MD-splines with different continuities are defined in [20,24]. [25]

Supported by the National Natural Science Foundation of China (Grant No. 61772013).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Sheng et al. (Eds.): CGI 2023, LNCS 14498, pp. 3–14, 2024.
https://doi.org/10.1007/978-3-031-50078-7_1
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4 Z. Xiao and W. Shen

provides an explicit expression for MD-splines, and [26] explores the property of
degree elevation. The definition of MD-splines is improved in [27] for creating
MD-splines with arbitrary continuity.

Numerical algorithms are proposed for MD-splines due to inefficiency in
integration-based definitions. They use simpler basis functions to compute the
representation matrix [28]. Chebyshev extension of this construction is presented
in [30], and the algorithm in [31] computes the transition matrix through reverse
knot insertion (RKI). Various improved algorithm versions are outlined in [32],
and recursive methods are provided in [33,34] to compute the representation
matrix between MD-spline basis functions and Bernstein basis functions.

Degree reduction for B-splines requires each segment to maintain the same
degree after reduction [1]. In contrast, MD-splines to MD-splines degree reduc-
tion allows local segment degree reduction and greater flexibility. The dual basis
of MD-spline functions can be used for least square approximation of MD-spline
curves in a lower-dimensional space. However, existing methods for construct-
ing the dual basis involve computing integrals, which lack efficiency [35]. In this
paper, we propose to optimize the degree reduction algorithm by directly dis-
cretely calculating the integral of the product of basis functions using the linear
representation coefficients of MD-spline’s Bernstein basis functions [36], leverag-
ing the integral properties of Bernstein basis functions.

2 Review

Given a breakpoint sequence Y := {xi}q
i=1 on [a, b], a degree vector D :=

(d0, d1, · · · , dq), and a continuity vector K := (k1, k2, · · · , kq) with a ≡ x0 <
x1 < · · · < xq < xq+1 ≡ b and 0 ≤ ki ≤ min(di−1, di), i = 1, · · · , q., two knot
sequences μ and λ are μ := {μj}V

j=1 = { a, · · · , a
︸ ︷︷ ︸

d0+1 times

, x1, · · · , x1
︸ ︷︷ ︸

d1−k1 times

, · · · , xq, · · · , xq
︸ ︷︷ ︸

dq−kq times

},

and λ := {λj}V
j=1 = {x1, · · · , x1

︸ ︷︷ ︸

d0−k1 times

, · · · , xq, · · · , xq
︸ ︷︷ ︸

dq−1−kq times

, b, · · · , b
︸ ︷︷ ︸

dq+1 times

}, where V := d0 +

1+
∑q

i=1(di−ki) is the dimension of the MD-spline space, denoted as S(Y ,D,K)
[23,27]. Let m := max{d0, · · · , dq}. The MD-spline basis functions {Ni,m(x)}V

i=1

are recursively generated from the function sequence Ni,n(x) on each non-empty
interval [xj , xj+1) ⊆ [μi, λi−m+n) with n = 0, 1, · · · ,m by

Ni,n(x) :=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, n = m − dj ,∫ x
−∞ Ni,n−1(u)du

∫ +∞
−∞ Ni,n−1(x)dx

−
∫ x

−∞ Ni+1,n−1(u)du
∫ +∞

−∞ Ni+1,n−1(x)dx
, n > m − dj ,

0, otherwise.

(1)

If the function Ni,n(x) is zero, then
∫ x

−∞ δi,nNi,n(u)du :=

{

0, x < μi,

1, x ≥ μi.
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Like the B-splines, {Ni,m(x)}V
i=1 have the following properties [27].

(i) Positivity and local support: Each Ni,m(x) =

{

> 0, for x ∈ (μi, λi),
= 0, for x /∈ [μi, λi];

(ii) End point: Each Ni,m(x) vanishes exactly dpμi
− max{j ≥ 0|μi = μi+j}

times at μi and dpλi−1 − max{j ≥ 0|λi−j = λi} times atλi,where pμi and
pλi are s.t. xpμi

= μi and xpλi
= λi;

(iii) Degree and continuity: EachNi,m is dj-degree polynomial onx ∈ [xj , xj+1)

and is Ckh continuity at xh for h = max{pμi, 1}, · · · ,min{pλi, q};
(iv) Partition of unity :

∑

V
i=1Ni,m(x) ≡ 1,∀x ∈ [a, b];

(v) B-spline subcase : If d0 = · · · = dq, then {Ni,m(x)}V
i=1 is the B-spline basis.

The MD-spline curve defined is given by P (x) =
∑V

i=1 Ni,m(x)P i, x ∈ [a, b],
where P 1,P 2, · · · ,P V are control points. MD-spline curves and B-spline curves
share many similar properties, including convex hull property, geometric invari-
ance property, degree property, and local control property.

Let lj :=

{

1, j = 0,
1 +

∑j
t=1(dt−1 − kt), 1 ≤ j ≤ q.

Then the curve on [xj , xj+1)

is P (x) =
∑dj

h=0 Nlj+h,m(x)P lj+h. Every Ni,m(x) on each interval [xj , xj+1) ⊆
[μi, λi) can be linearly represented by Bernstein basis of degree dj as Ni,m(x) =
∑dj

k=0 Bk,dj ,j(x)M i,j(k), Bk,dj ,j(x) =
(
dj

k

)
(

xj+1−x
xj+1−xj

)dj−k (

x−xj

xj+1−xj

)k

. where
M i,j is the coefficient vector. The vector M i,j is associated with the right deriva-
tives of Ni,m(x) at xj as N

(k)
i,m(xj+) = dj !

(dj−k)!(xj−xj+1)k

∑k
p=0(−1)p

(
k
p

)

M i,j(p).
The Bernstein basis functions have integral properties

∫ xj+1

xj
Bk,dj ,j(x)dx =

xj+1−xj

dj+1 , k = 0, 1, · · · , dj .

Let NV := {N1, · · · , NV } be a set consisting of V linearly independent
functions [17,18]. Let the linear space ΓV := span NV with an inner prod-
uct 〈·, ·〉 : ΓV × ΓV → C. The dual basis of NV with respect to 〈·, ·〉, noted as
DV := {D1, · · · ,DV }, satisfies span DV = ΓV , 〈Ni,Dj〉 = δij (1 ≤ i, j ≤ V ),
where δij is the Kronecker symbol, which is equal to 1 when i = j and 0
otherwise. Additionally, given any function f , its least square approximation
in ΓV can be expressed as g∗ :=

∑V
i=1 piNi, where pi := 〈f,Di〉. That is,

||f − g∗|| = min
g∈ΓV

||f − g||,where || · || := √〈·, ·〉.

3 Degree Reduction of Multi-degree Splines

3.1 Construction of the Dual Basis

Let Nj =
∑V

i=1 hijDi. From the properties of dual basis, we have hij = 〈Ni, Nj〉.
Assuming that H(NV , 〈·, ·〉) := (hij)V ×V , there exists

[

D1,D2, · · · ,DV

]T = H(NV , 〈·, ·〉)−1
[

N1, N2, · · · , NV

]T
, (2)
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In Table 1, the number of computational operations required for computing the
algorithm in [18] and the dual basis using (2) is tabulated separately. The table
indicates that while the algorithm in [18] for constructing dual bases reduce the
number of arithmetic operations, it increases the number of inner product com-
putations. Moreover, the actual number of arithmetic operations for a single inner
product computation will not be less than V . In fact, consider the commonly used
discrete inner product 〈Ni(x), Nj(x)〉G :=

∑G
h=0 Ni

(

a + b−a
G h

)

Nj

(

a + b−a
G h

)

on
[a, b] and G ≥ V − 1. Here, G cannot be smaller than V − 1, because even if we
use a vector over a field to describe a basis function of a V -dimensional space, if it
is not a vector of dimension greater than V , it cannot form a V -dimensional linear
space. Therefore, the actual number of arithmetic operations for the algorithm in
[18] will not be less than 3V 3−V 2, while computing the inner product using Eq. (2)
will not be less than 2V 3 + V 2

2 . It is evident that the number of arithmetic oper-
ations for constructing the dual basis of basis functions primarily depends on the
complexity of inner product calculations. The more inner product computations,
the more arithmetic operations are required.

Table 1. Comparison of Operation Count for the Dual Basis Construction Algorithms.

Operations In [18] In This Paper

Arithmetic Operations (3V 2 − V )/2 V 3

Function Inner Product (3V 2 − V )/2 (V 2 + V )/2

Function Scalar Multiplication V 2 V 2

Function Addition V 2 − V V 2 − V

Therefore, in terms of computation, using Eq. (2) takes an advantage of
constructing the dual basis.

Theorem 1. The least square approximation of f in the space ΓV is given by

g∗ =
[

N1 N2 · · · NV

]

H(NV , 〈·, ·〉)−1
[〈N1, f〉, 〈N2, f〉, · · · , 〈NV , f〉]T .

Proof. Based on the property of least square approximation by the dual basis
and relationship (2), the result are obtained.

3.2 Degree Reduction Algorithm for MD-Splines

After degree reduction, note that the degree and continuity vectors are ̂D and

̂K with each ̂di ≤ di and each ̂ki :=

{

ki, ki ≤ min{̂di−1, ̂di},

min{̂di−1, ̂di}, ki > min{̂di−1, ̂di}.
.

The breakpoint sequence ̂Y := Y , the space ̂S( ̂Y , ̂D, ̂K) with dimension ̂V :=
̂d0 +1+

∑q
i=1(̂di − ̂ki), the maximum degree m̂ := max{̂d0, ̂d1, · · · , ̂dq}, the MD-

spline basis is { ̂Ni,m̂(x)}V̂
i=1, and the curve ̂P (x) =

∑V̂
i=1

̂Ni,m̂(x)̂P i, x ∈ [a, b],
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Algorithm 1. Degree reduction for MD-splines
Input: Y , D, K , ̂D, P i, i = 1, 2, · · · , V. Output: ̂K , ̂P i, i = 1, 2, · · · , ̂V .
1: for i ← 1 to q do
2: if ki ≤ min{̂di−1, ̂di} then ̂ki = ki;

3: else ̂ki = min{̂di−1, ̂di};
4: end if
5: end for
6: for i ← 1 to ̂V do
7: for k ← i to ̂V do Ti,k ← 〈 ̂Ni,m̂, ̂Nk,m̂〉;
8: if k �= i then Tk,i ← Ti,k;
9: end if

10: end for
11: end for
12: for i ← 1 to ̂V do Fi ← 〈 ̂Ni,m̂(x), P (x)〉;
13: end for
14: for i ← 1 to ̂V do ̂P i ← ∑V̂

j=1 T−1
i,j Fj ;

15: end for

where ̂P 1, · · · , ̂P V̂ are the control points. To find the curve ̂P (x), which is the least
square approximation of P (x), we design Algorithm1 to calculate ̂K and {̂P }V̂

i=0.
According to Algorithm1, the degree reduction of MD-spline curves can be

performed using 〈·, ·〉G. The advantage of this method is its high efficiency. But
the issue with 〈·, ·〉G is that it cannot accurately characterize the basis func-
tions. In other words, using the discrete inner product may not yield the least
square approximation. Without considering computational errors, increasing the
value of G will bring the results closer to the desired outcome. However, con-
sidering both computational errors and costs, a larger value of G may lead to
increased errors and computational costs. Determining the appropriate value of
G to achieve the desired results is a complex problem.

The integral inner product is defined as 〈Ni(x), Nj(x)〉T :=
∫ b

a
Ni(x)Nj(x)dx.

It accurately characterizes the basis functions to obtain the desired least square
approximation, but its integral computation very challenging.

3.3 Simple Method to Compute Inner Product 〈·, ·〉T of Polynomials

Let f(x) :=
∑df

i=0 Mf (i)Bi,df ,j(x), g(x) :=
∑dg

k=0 Mg(k)Bk,dg,j(x), where df

and dg represent the degree of f(x) and g(x), respectively, and Bi,d,j(x) denotes
the (i+1)th Bernstein basis function of degree d over the interval [xj , xj+1), and
Mf (i) and Mg(k) are the i + 1th and k + 1th values of the coefficient vectors
representing f(x) and g(x), respectively.

Theorem 2. On the interval [xj , xj+1), there exists
∫ xj+1

xj
fg = xj+1−xj

df+dg+1

∑df+dg

h=0

(
df+dg

h

)−1 ∑min{df ,h}
i=max{h−dg,0} Mf (i)Mg(h − i)

(
df

i

)(
dg

h−i

)

.
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Proof.
∫ xj+1

xj
fg =

∫ xj+1

xj

∑df

i=0 Mf (i)Bi,df ,j(x)
∑dg

k=0 Mg(k)Bk,dg,j(x)dx

=
∫ xj+1

xj

∑df

i=0

∑dg

k=0 Mf (i)Mg(k)
(
df

i

)(
dg

k

)
(

xj+1−x
xj+1−xj

)df+dg−(i+k) (

x−xj

xj+1−xj

)i+k

=
∫ xj+1

xj

∑df+dg

h=0

∑min{df ,h}
i=max{h−dg,0} Mf (i)Mg(h − i) (

df
i )(

dg
h−i)

(df+dg
h )

Bh,df+dg,j(x)dx

=
∑df+dg

h=0

(
df+dg

h

)−1 ∑min{df ,h}
i=max{h−dg,0} Mf (i)Mg(h − i)

(
df

i

)(
dg

h−i

) ∫ xj+1

xj
Bh,df+dg,j .

To facilitate the computation of inner products, we store the binomial
coefficients in a matrix C such that Ck,i :=

(
k
i

)

. We store the integrals
of Bernstein basis functions in a matrix L such that ∀i = 0, · · · , k, Lj :=
∫ xj+1

xj
Bi,df+dg,j(x)dx =

xj+1 − xj

df + dg + 1
. Algorithm2 can compute the integration

of the product of two polynomials over the interval [xj , xj+1). Consider the inner
products between the basis functions after degree reduction and the inner prod-
ucts between the basis functions and the original curve.

Algorithm 2. Integrating the product of two polynomials on [xj , xj+1)
Input: C, Lj , M f , M g. Output: I :=

∫ xj+1
xj

f(x)g(x)dx.

1: function CalculateBernsteinInt(M f , M g, C, Lj)
2: I ← 0;
3: for h ← 0 to df + dg do I1 ← 0;
4: for s ←max{h − dg, 0} to min{df , h} do
5: I1 ← I1 + M f (s)M g(h − s)Cdf ,sCdg,h−s;

6: end for
7: I ← I + I1/Cdf+dg,h;

8: end for
9: I ← LjI;

10: return I;

According to the properties of the inner product, let’s assume i ≤ k. Based
on the local support property of MD-splines, we can obtain the inner prod-
uct as follows 〈 ̂Ni,m̂(x), ̂Nk,m̂(x)〉T =

∫ λ̂i

μ̂k

̂Ni,m̂(x) ̂Nk,m̂(x)dx. If ̂λi ≤ μ̂k, then
〈 ̂Ni,m̂(x), ̂Nk,m̂(x)〉T = 0. Otherwise, according to Theorem 2, we have

〈 ̂Ni,m̂(x), ̂Nk,m̂(x)〉T =
∑pλ̂i−1

j=pμ̂k

∫ xj+1

xj

̂Ni,m̂(x) ̂Nk,m̂(x)dx

=
∑pλ̂i−1

j=pμ̂k

xj+1−xj

2d̂j+1

∑2d̂j

h=0

(
2d̂j

h

)−1 ∑min{d̂j ,h}
s=max{h−d̂j ,0}

̂M i,j(s)̂Mk,j(h − s)
(
d̂j

s

)(
d̂j

h−s

)

,

where pμ̂i and p̂λi are such that xpμ̂i
= μ̂i and xpλ̂i

= ̂λi, ̂M i,j and ̂Mk,j rep-
resent column vectors formed by the Bernstein basis representation coefficients
of the basis functions ̂Ni,m̂(x) and ̂Nk,m̂(x), respectively, on [xj , xj+1). Assume
P (x) =

[

Nlj ,m(x) · · · Nlj+dj ,m(x)
][

P lj , · · · ,P lj+dj

]T

=
[

B0,dj ,j(x) · · · Bdj ,dj ,j(x)
] [

M lj ,j , · · · ,M lj+dj ,j

] [

P lj , · · · ,P lj+dj

]T
.
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〈 ̂Ni,m̂(x),P (x)〉T =
∫ λ̂i

μ̂i

̂Ni,m̂(x)P (x)dx =
∑pλ̂i−1

j=pμ̂i

∫ xj+1

xj

̂Ni,m̂(x)P (x)dx

=
∑pλ̂i−1

j=pμ̂i

xj+1−xj

d̂j+dj+1

∑d̂j+dj

h=0
1

(d̂j+dj
h )

∑min{d̂j ,h}
k=max{h−dj ,0}

(
d̂j

k

)(
dj

h−k

)

̂M i,j(k)

×∑dj

t=0 M lj+t,j(h − k)P lj+t.

We can obtain the Algorithm3 based on Theorem 1.

Algorithm 3. Degree Reduction of MD-Spline the Inner Product 〈·, ·〉T :

Input: Y , D, K , ̂D, P i, i = 1, 2, · · · , V. Output: ̂K , ̂P i, i = 1, 2, · · · , ̂V .
1: Perform 1 − 5 Row of the Algorithm 1;
2: M ←BernsteinRepresentationCalculate(Y , D, K);
3: ̂M ←BernsteinRepresentationCalculate( ̂Y , ̂D, ̂K);
4: for j ← 0 to q do U j ← ∑dj

i=0 M lj+i,jP lj+i;

5: end for
6: m ←max{D}, C ← 02m×(2m+1), L ← 02×(q+1);
7: for j ← 0 to q do
8: for k in {dj , ̂dj , 2̂dj , ̂dj + dj} do
9: if Ck,0 = 0 then

10: for i ← 0 to [k/2] do Ck,i ← (

k
i

)

; Ck,k−i ← Ck,i;
11: end for
12: end if
13: end for
14: end for
15: for j ← 0 to q do L0,j ← (xj+1 − xj)/(2̂dj +1); L1,j ← (xj+1 − xj)/(̂dj + dj +1);
16: end for
17: T ← 0V̂ ×V̂ ;
18: for i ← 1 to ̂V do
19: for k ← i to ̂V do
20: if ̂λi > μ̂k then
21: for j ← pμ̂k to p̂λi − 1 do
22: Ti,k ← Ti,k+ CalculateBernsteinInt(̂M i,j , ̂M k,j , C, L0,j);
23: end for
24: if k �= i then Tk,i ← Ti,k;

25: end if
26: end if
27: end for
28: end for
29: for i ← 1 to ̂V do
30: for j ← pμ̂i to p̂λi − 1 do Fi ← Fi+CalculateBernsteinInt (̂M i,j , U j , C, L1,j);
31: end for
32: end for
33: Perform 14 − 15 Row of the Algorithm 1;
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4 Other Applications

When d0 = d1 = · · · = dq, the MD-splines degenerate into traditional B-splines.
Therefore, the algorithm proposed in this paper can be used to reduce the degree
of traditional B-splines. Based on the idea of progressive iteration approxima-
tion [38,39], using MD-splines to approximate a set of discrete points can help us
quickly achieve curve modeling with MD-splines, which is a common modeling
technique. For any given ordered sequence of points Q := {qi}s

i=1, we consider
using MD-splines in the space S(Y ,D,K) to perform a least square approxima-
tion. Our approach is to discretize the basis functions in the space S(Y ,D,K)
into s-dimensional vectors in the number field. As mentioned before, the dimen-
sion of the discretized basis function vectors should not be smaller than the
total dimension V of the original space, i.e., s ≥ V . First, each point qi in Q
is assigned a parameter value ti, such that a = t1 < t2 < · · · < ts−1 < ts = b.
Then, the inner product is defined as 〈Nk,m(x),Q〉S :=

∑s
i=1 Nk,m(ti)qi, (1 ≤

k, j ≤ V ), 〈Nk,m(x), Nj,m(x)〉S :=
∑s

i=1 Nk,m(ti)Nj,m(ti). Finally, according to
Theorem 1, the control vertices of the MD-spline curve that provides the least
square approximation are given by

[P 1, · · · ,P V ]T = H(NV , 〈·, ·〉S)−1 [〈N1,m(x),Q〉S , · · · , 〈NV,m(x),Q〉S ]
T

.

5 Examples and Numerical Experiments

5.1 Degree Reduction Examples

Using the cumulative arc length parameterization method, assign correspond-
ing parameters {ti}s

i=1 to a given ordered set of points Q := {qi}s
i=1,

which t1 = a, ts = b, for i = 2, 3, · · · , s − 1, ti = ti−1 + ||qi−qi−1||
∑s

j=2 ||qj−qj−1|| .

The values of the discrete points are shown in Fig. 1(a). Setting the
MD-spline space as Y = {0, 3, 9, 14, 19, 23, 25, 27, 31, 36, 41, 47, 50},D =
(4, 4, 5, 6, 6, 4, 4, 6, 6, 5, 4, 4), K = (0, 2, 1, 3, 0, 1, 0, 3, 1, 2, 0), the shaped MD-
spline curve is shown in Fig. 1(b).

Using Algorithm3, the tree curve is reduced in degree. The vector represent-
ing the reduced degree is set as ̂D = (4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4). The result of
the degree reduction is shown in Fig. 1(c). The curve becomes a traditional B-
spline curve. Considering further reducing the traditional B-spline, the reduced
degree is ˜D := (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3). Using Algorithm3, the result of the
degree reduction is shown in Fig. 1(d). This completes the degree reduction of
the traditional B-spline curve.

5.2 Comparison of Our Algorithm with Other Methods

The MD-spline spaces for four degree reduction test experiments and the target
degrees to which they need to be reduced are shown in Table 2.

The experimental environment used for these computations is Matlab 2016a.
Algorithm3 is used to perform degree reduction on these four experiments, as
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Fig. 1. Degree reduction of fitted MD-spline. (a) Data point. (b) Fitted MD-spline. (c)
Degree reduction to B-spline of degree 4. (d) Degree reduction to B-spline of degree 3.

Table 2. Test Experiment Setup.

Y D K ̂D

Test1 {0, 2, 4, 7, 9, 11} (7, 4, 7, 6, 5) (1, 2, 3, 1) (4, 4, 3, 5, 3)

Test2 {0, 2, 5, 10} (15, 3, 15) (3, 1) (5, 3, 7)

Test3 {−102, −102 + 1, 0, 102 − 1, 102} (7, 8, 8, 7) (3, 2, 4) (6, 5, 4, 5)

Test4 {40, 41, 42, 43, 44, 45} (6, 7, 8, 9, 10) (1, 2, 3, 4) (3, 4, 5, 6, 7)

Fig. 2. Degree reduction by Alg. 3. (a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4.

Table 3. Efficiency Comparison between Alg. in [18] Using 〈·, ·〉T and Alg. 3(s).

Alg in [18] Alg in [18] Using Alg 2 Alg 3

Test1 2.231 × 101 7.708 × 10−3 6.273 × 10−3

Test2 5.411 × 101 9.166 × 10−3 9.051 × 10−3

Test3 1.783 × 102 7.571 × 10−3 6.915 × 10−3

Test4 3.302 × 103 1.401 × 10−2 1.210 × 10−2

Table 4. Efficiency Comparison between Alg. in [18] Using 〈·, ·〉G and Alg. 1(s).

[18] Using 〈·, ·〉G1 [18] Using 〈·, ·〉G2 Alg 1 Using 〈·, ·〉G1 Alg 1 Using 〈·, ·〉G2

Test1 6.804 × 10−3 8.232 × 10−3 5.914 × 10−3 6.624 × 10−3

Test2 8.806 × 10−3 1.177 × 10−2 7.390 × 10−3 1.007 × 10−2

Test3 1.086 × 10−2 1.504 × 10−2 9.723 × 10−3 1.148 × 10−2

Test4 1.398 × 10−2 1.856 × 10−2 1.095 × 10−2 1.300 × 10−2
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Table 5. Error Comparison between Alg. in [18] Using 〈·, ·〉T and Alg. 3.

Alg in [18] Alg in [18] Using Alg 2 Alg 3

Test1 1.316075193832 × 10−2 1.316075193832 × 10−2 1.316075193832 × 10−2

Test2 2.830374396924 × 10−1 2.830374396924 × 10−1 2.830374396924 × 10−1

Test3 2.249658336903 × 10−3 2.249658336903 × 10−3 2.249658336903 × 10−3

Test4 1.579026131912 × 10−2 1.579026131912 × 10−2 1.579026131912 × 10−2

Table 6. Error Comparison between Alg. in [18] Using 〈·, ·〉G and Alg. 1. (×10−3)

[18] Using 〈·, ·〉G1 [18] Using 〈·, ·〉G2 Alg 1 Using 〈·, ·〉G1 Alg 1 Using 〈·, ·〉G2

Test1 13.24404151245 13.16517325301 13.24404151245 13.16517325301

Test2 289.2057517905 283.4126629867 289.2057517905 283.4126629867

Test3 6.159172771991 2.903327500803 6.159172771991 2.903327500803

Test4 16.34737870912 15.79453479166 16.34737870910 15.79453479166

shown in Figs. 2(a), (b), (c) and (d). When computing the algorithm in [18] using
〈·, ·〉T , we use the integral formula (1) for generating MD-splines.

The algorithm used to compute the value of MD-spline at a point is based
on [28], while the algorithm to compute the linear representation coefficients
of MD-spline’s Bernstein basis is derived from [36]. The final results are shown
in Table 3 and Table 4. We computed the errors of each method after degree
reduction. The results are shown in Tables 5 and Tables 6.

6 Conclusions

This paper introduces a novel and efficient method for computing least square
approximations using dual basis properties. The method is applied to address
the degree reduction problem of MD-spline curves. Various degree-reducing algo-
rithms, utilizing different inner products, are proposed. An integration algorithm
for computing the product of polynomials represented by Bernstein bases is pre-
sented, crucial for the degree-reducing process. The algorithm enables direct
least square approximation after degree reduction, providing a practical and
fast modeling approach for MD-spline curves. Notably, this method can be used
for degree reduction of B-splines. The method’s limitation lies in its applicabil-
ity only to degree reduction of polynomial splines. While extensions to handle
the integration of more than two polynomials are possible, it cannot handle the
inner product of rational polynomial splines or other non-polynomial spline basis
functions. Consequently, special attention should be given to the inner product
calculation of the spline basis functions that require reduction.

Acknowledgements. We are very grateful to the referees for their helpful suggestions
and comments.
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Abstract. A ball B-spline curve (BBSC) is a skeleton-based 3D geomet-
ric representation, which can represent 3D tubular objects with varying
radius, such as trunks, plants, and blood vessels. To enhance the abil-
ity of BBSC, we propose a physics-based generalization of BBSC called
dynamic BBSC (D-BBSC), which can describe the deformation behav-
ior of a BBSC over time. We provide the mathematical expression of
D-BBSC and prove its several mathematical properties. We derive the
equations of motion of D-BBSC based on Lagrangian mechanics and
investigate the equations of motion when it is under linear geometric
constraints. Additionally, a D-BBSC physical simulation system based
on the finite difference method (FDM) is implemented and several exper-
imental results are demonstrated. The D-BBSC can be applied to sim-
ulate the elastic behavior of 3D tubular objects with varying radius in
entertainment applications.

Keywords: Dynamics · Physics-based model · Ball B-spline curves

1 Introduction

A ball B-spline curve (BBSC) is an extension of the B-spline curve that was
first proposed by [19]. It is widely used to represent 3D tubular objects with
varying radius, such as trunks, plants, and blood vessels [26,34]. However, all of
those studies focused on the static form of BBSC with limited capabilities and
flexibility, and several drawbacks remain to be improved:

1. It is difficult to adjust a BBSC to the expected shape in geometric modeling.
To adjust the shape of a BBSC to the expected result, users have to manipu-
late the control balls of the BBSC. This method is time-consuming and relies
on the skill of the designer.

2. It is cumbersome to generate physics-based computer animations using
BBSC. Users have to compute the instantaneous state of BBSC at each frame
and adjust the shape of the BBSC frame-by-frame, which requires a large
amount of work.

To overcome these drawbacks, in this paper, we propose a physics-based
generalization of a BBSC called dynamic BBSC (D-BBSC). A D-BBSC is an
extension of a BBSC in the time domain that can describe the deformation
behavior of BBSC over time. We employ Lagrangian mechanics to describe the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Sheng et al. (Eds.): CGI 2023, LNCS 14498, pp. 15–27, 2024.
https://doi.org/10.1007/978-3-031-50078-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-50078-7_2&domain=pdf
https://doi.org/10.1007/978-3-031-50078-7_2
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motion of a BBSC and incorporate several physical quantities into it, such as
mass, tension, rigidity, and external force distribution. We propose the D-BBSC
model for the fast simulation of 3D tubular objects with varying radius. Our
model can be applied in computer animation for entertainment applications

The physics-based D-BBSC model has the following important advantages:

1. D-BBSC is suitable for interactive geometric design. By applying a external
force or force field on a BBSC, users can manipulate the shape of the BBSC
directly to obtain the expected shape.

2. Generating physics-based animations using D-BBSC is convenient. Since D-
BBSC is physics-based, users can create physics-based animations automati-
cally by choosing proper initial physical parameters.

In this paper, we propose the D-BBSC concept and provide a mathematical
expression of D-BBSC. Based on Lagrangian mechanics, we derive equations of
motion of D-BBSC. Finally, we implement a D-BBSC physical simulation system
using the finite difference method and present several experimental results. Our
study makes the following contributions:

1. We propose the concept of D-BBSC and build the dynamics model of
BBSC based on Lagrangian mechanics. D-BBSC expands the BBSC modeling
method in time domain, can describe D-DBSC’s deformation under physical
laws over time.

2. We derive the motion equations of D-BBSC, and give the simplified and
discretized version of motion equations, which provides a foundation for future
research related to D-BBSC.

3. We give a numerical implementation of D-BBSC using a finite difference
method. This method is easy to implement in computer for entertainment
applications.

2 Related Work

Modeling a 3D tubular object with a varying radius is a classical problem in com-
puter graphics. Over the past few decades, several geometric modeling methods
for 3D tubular objects have been proposed. [15,16] proposed canal surfaces to
represent 3D tubular objects. Subsequently, they further used a curve in R4 to
represent the 3D rational canal surface and investigated its mathematical prop-
erties [14]. [11] investigated a similar problem, where they proposed a G1 contin-
uous surface to represent the skin of an ordered set of discrete circles. Researchers
proposed ball Bézier curves [12], interval Bézier curve [20], and interval B-spline
curve [25], which are skeleton based models. Our work is based on the BBSC
theory, which was proposed by [19]. Different from researches mentioned a bove,
BBSC uses a B-spline curve to represent the skeleton curve. Thus, nice mathe-
matical properties of B-spline curve can be adopted into BBSC.

Since the BBSC theory was proposed, several important studies of BBSC
have been performed. Researchers propose several models based on BBSC, such
as 3D trees [1,19,29], 3D plant models [34], real-time animation of 3D trees [1],
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a 3D human modeling method [30], and cerebral blood vessels model [26]. Some
researchers improve BBSC’s properties [8,27] and employ it in fitting [28].

Until now, there have been no related studies on a physics-based model sim-
ilar to D-BBSC. Since the D-BBSC is an extension of a B-spline curve, we will
review related studies of physics-based models of B-spline curves. [23] proposed
an elastically deformable model that uses the elasticity theory to simulate the
deformation behavior of nonrigid solids. Based on his work, [3] developed a free-
form design system, and [2] developed similar physics-based models based on B-
splines. [4] investigated physics-based models of B-splines with linear geomet-
ric constraints. [17,18,24] proposed a physics-based model of nonuniform ratio-
nal B-splines(NURBS) curves and surfaces called dynamic NURBS (D-NURBS).
Deformable B-spline curve are used in arbitrary shape text detection [33] and fair-
ing curve generation [9]. In deep learning, researchers proposed deformable feature
extraction framework [32] and Deformable Attention [13]. However, all these mod-
els are not designed specifically for BBSC, nor they cannot utilize the properties
of BBSC. The D-NURBS focuses on the spline surfaces, while the D-BBSC sim-
ulates 3D tubular objects’s deformation. Our model focuses on the surface of the
BBSC for the fast simulation of 3D tubular objects with varying radius.

Compared with physics-based models of B-spline and NURBS curves, devel-
oping a physics-based model of BBSC is more challenging. The BBSC has a
more complicated geometric expression than B-spline and NURBS, which make
deriving explicit expressions of partial derivative in the equations of motion dif-
ficult.

3 Fundamentals

In this section, we describe several mathematical and physical concept that are
relevant to our model and derive corresponding expressions and equations.

3.1 Lagrangian Mechanics

In the Lagrangian mechanics, a physical system is described by a finite set of
parameters, and that group of parameters is called generalized coordinates. Using
pi(t) to represent the i-th generalized coordinates of a physical system, we can
denote generalized coordinates of that physical system by p and their derivatives
with respect to time t by ṗ; then, we have

p =
[· · · pi(t) · · ·]T

, ṗ =
[· · · ṗi(t) · · ·]T

In this paper, we adopt the work-energy version of Lagrangian equations
[6,7]. We use T , U , and D to represent the kinetic energy, potential energy
and Raleigh dissipation energy, respectively, of a physical system. Then, we can
express the Lagrangian equations in matrix form:

d

dt

∂T

∂ṗ
− ∂T

∂p
+

∂D

∂ṗ
+

∂U

∂p
= fp (1)

where ∂T
∂ṗ =

[
· · · ∂T

∂ṗi
· · ·

]T

, fp =
[· · · fi · · ·]T , and the other terms are similar.
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3.2 Jacobian Matrix

The Jacobian matrix is a matrix-valued function, and every element of a Jacobian
matrix is the first-order derivative of a vector-valued function with respect to its
every parameter.

We use p to represent the generalized coordinates of a D-BBSC in vector
form. If there are N control balls, then p will be a vector of size 4N × 1:

p(t) =
[· · · xi(t) yi(t) zi(t) ri(t) · · ·]T (2)

An arbitrary point s(u, v,p) on the D-BBSC is determined by three variables
u, v, and p. However, we only pay attention to the Jacobian matrix with respect
to the generalized coordinates p. The Jacobian matrix J(u, v, t) of a D-BBSC
with respect to the generalized coordinates p is a 3 × 4N matrix that can be
written as

J =
(

∂s
∂p

)T

=

⎡

⎢
⎣

· · · ∂sx
∂xi

∂sx
∂yi

∂sx
∂zi

∂sx
∂ri

· · ·
· · · ∂sy

∂xi

∂sy
∂yi

∂sy
∂zi

∂sy
∂ri

· · ·
· · · ∂sz

∂xi

∂sz
∂yi

∂sz
∂zi

∂sz
∂ri

· · ·

⎤

⎥
⎦ (3)

where sx, sy, sz are components of vector s, namely, s =
[
sx sy sz

]T . Addition-
ally ∂s

∂p is an abbreviation of

[
· · · ∂s

∂xi

∂s
∂yi

∂s
∂zi

∂s
∂ri

· · ·
]T

For convenience, all parameters of functions are omitted. Note that we will
use similar notation in the subsequent sections.

4 Formulation of D-BBSC

In the first, we provide a geometric expression of BBSC. In the second, we
propose the D-BBSC concept and corresponding expressions. Then, We discuss
several important properties of the D-BBSC.

4.1 BBSC Representation

A BBSC is a skeleton-based 3D solid with varying radius and can be regarded as
an extension of a B-spline curve (see Fig. 1). A BBSC is controlled by a group of
control balls instead of control points. Its the skeleton curve and radius function
share the same B-spline basis functions

A ball 〈P;R〉 is a spherical solid in 3D space with center P and radius R. we
define a ball 〈P;R〉 specifically as

{
x ∈ R

3
∣
∣
∣ ‖x − P‖ ≤ R, P ∈ R

3, R ∈ R
+
}

.
and a BBSC can be represented as s(u) = {∑n

i=0 Ni,p(u)Pi;
∑n

i=0 Ni,p(u)Ri}.
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Fig. 1. Demonstration of a BBSC. Part (a) shows the surface of a BBSC. Part (b)
shows the sectional view of a BBSC. The blue balls are control balls, and the green
curve is the skeleton curve of the BBSC. (Color figure online)

where Ni,p(u) is i-th B-spline basis function of degree p. 〈Pi;Ri〉 is the i-th
control balls of the BBSC, and n+1 is the number of control balls of the BBSC.

The expression above provides the geometric expression of BBSC. Since the
expression is not an explicit expression of BBSC, it cannot be employed directly
for mathematical analysis.

For convenience of analyzing the mathematical properties of BBSC, we use
an alternative geometric expression of BBSC in this paper later. We use a vector
form pi =

[
xi yi zi ri

]T to represent the i-th control ball 〈Pi;Ri〉 >, use p∗
i =

[
xi yi zi

]T to represent the position of center Pi of i-th control ball, and ri is the
radius Ri of i-th control ball. We use c(u) and r(u) to represent the parametric
expression of the skeleton curve and varying radii along that curve, respectively.
Additionally, we define the Frenet frame along the skeleton curve of the BBSC
as T(u), B(u), and N(u). As a result, we have the following symbols:

c(u) =
∑

Ni,p(u)p∗
i r(u) =

∑
Ni,p(u)ri T(u) =

c′(u)
‖c′(u)‖

B(u) =
c′(u) × c′′(u)

‖c′(u) × c′′(u)‖ N(u) =
c′(u) × (c′′(u) × c′(u))
‖c′(u)‖‖c′′(u) × c′(u)‖

(4)

Then, the geometric expression of the surface of a BBSC can be defined in
an explicit form (see [5]):

s(u, v) = c(u) − r(u)r′(u)
‖c′(u)‖ T(u)

+ r(u)

√

1 −
(

r′(u)
‖c′(u)‖

)2

[cos(v)B(u) + sin(v)N(u)] v ∈ [0, 2π]

(5)

According to the explicit form of a BBSC, we can modify its’ shape by adjust-
ing control points. Compared to rational parametric form, the explicit form is
more convenient to the shape control.

4.2 D-BBSC Model

In this paper, we only focus on the changes of control balls of the D-BBSC, while
the numbers of control balls and the knot vector remains unchanged.
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Under this hypothesis, a D-BBSC is fully determined by its control balls. If
we denote by t the time parameter, we can use pi(t) =

[
xi(t) yi(t) zi(t) ri(t)

]T to
represent the i-th control ball of the D-BBSC over time during the deformation.
We can also represent all control balls in vector form denoted by p(t), which is
introduced in the Eq. 2.

In Lagrangian mechanics, we call p(t) generalized coordinates. If there are
N control balls, the vector p(t) will has 4N components.

A D-BBSC is a physics-based generalization of a BBSC in the time domain.
Thus, symbols in Eq. (4) all are influenced by the time parameter t.

Based on the geometric expression of the BBSC and the above hypothesis, a
D-BBSC is fully determined by its generalized coordinates p(t).

4.3 Mathematical Properties of D-BBSC

In this section, we will investigate the mathematical properties of D-BBSC. The
important properties that will be used in subsequent sections are listed as follows:

s = Jp ṡ = Jṗ J̇p = 0 (6)

where s is the position of an arbitrary point on the surface of a D-BBSC, J is
the Jacobian matrix that is introduced in the expression Eq. (3), and p are the
generalized coordinates.

For the property s = Jp, we can employ Euler’s theorem on homogeneous
function. First we prove s(p) is a homogeneous function: A function f : Rn → R

m

is said to be homogeneous of degree k if f(λx) = λkf(x) for any scalar λ.
From Eq. (4), we have

s(λp) = λ s(p) (7)

Since s(p) is a homogeneous function of degree 1, we have Jp = s.
The proof of the other properties refer to paper [21]. They are important

mathematical properties of D-BBSC that are used in Subsect. 6.2.

5 D-BBSC Dynamics

In this section, we will derive equations of motion of D-BBSC. Afterward, we
will consider a D-BBSC under linear geometric constraints and provide the cor-
responding equations of motion. The derivation of the equations of motion is
similar to [31].

5.1 Equations of Motion of D-BBSC

The D-BBSC system is defined in the Sect. 4.2. We apply the Lagrangian equa-
tions (1) to describe the motion of the D-BBSC system, and the definition of
control points is defined in the Eq. 2. Because of the existence of control radii,
D-BBSC is a nonlinear physical system, and several physical quantities such as
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the mass and the damping matrix should be recalculated at every frame during
simulation.

For a D-BBSC system, we use μ(u, v) and M(p) to represent the mass density
distribution and the mass matrix; therefore, kinetic energy T can be expressed
as

T =
1
2

∫∫
μṡT ṡdudv =

1
2
ṗTMṗ M =

∫∫
μJTJdudv (8)

Similarly, we denote by γ(u, v) and D(p) the damping density distribution
and the damping matrix; therefore, dissipation energy D can be expressed as

D =
1
2

∫∫
γṡT ṡdudv =

1
2
ṗTDṗ D =

∫∫
γJTJdudv (9)

To calculate the potential energy of a D-BBSC, we use the energy model pro-
posed in [22]. We denote by α(u, u), β(u, v) and K(p) the local tension function,
rigidity function and stiffness matrix, respectively; the potential energy of the
D-BBSC can be expressed as

U =
1
2
pTKp (10)

Using Eq. (6) leads to the following expression for the stiffness matrix K(p):

K(p) =
∫∫

(α1,1JT
uJu + α2,2JT

v Jv + β1,1JT
uuJuu

+β1,2JT
uvJuv + β2,2JT

vvJvv)dudv

(11)

where subscripts of J indicate partial derivatives.
The generalized external force fp can be obtained based on the principle

of virtual work [7]. We denote the external distribution force by f(u, v, t); the
generalized external force of the D-BBSC can be expressed as

fp =
∫∫

JT f(u, v, t)dudv (12)

Therefore, in a D-BBSC system, according to the mathematical properties
of D-BBSC [24] Eq. (1) can be transformed to:

Mp̈+Dṗ+Kp = fp − Iṗ I =
∫∫

μJT J̇dudv (13)

5.2 Linear Geometric Constraints

A D-BBSC with geometric constraints is pretty useful in many applications. For
example, users may rely on the two ends of the D-BBSC being fixed during the
deformation. Because linear geometric constraints can meet the needs of most
users, in this paper, we only investigate such constraints.
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In general, linear geometric constraints can be mathematically expressed as

C(p) = Ap+ b = 0 (14)

If there are M independent linear constraints, then A will be an M×N coefficient
matrix. Moreover, we can express generalized coordinates p as

p = Gq+ q0 (15)

where G is an N × (N − M) matrix, q0 is a constant vector, and q represents
the new lower-dimensional generalized coordinates that can be computed by the
Gaussian elimination method.

Using new generalized coordinates q, we can express the equations of motion
of a D-BBSC with linear geometric constraints as

Mqq̈+Dqq̇+Kqq = fq + gq − Iqq̇ (16)

where

Mq = GTMG, Dq = GTDG, Kq = GTKG

fq =
∫∫

LT f(u, v, t)dudv, gq = −GTKq0, Iq = GT IG
(17)

and L = JG is the new Jacobian matrix of s with respect to q. The detailed
proof of Eq. (16) can be found in [24].

6 Numerical Implementation

In this section, we will introduce the use of the finite difference method (FDM) in
our implementation and provide the discretized equations of motion of D-BBSC.

6.1 Finite Difference Method

Since the mathematical expression of D-BBSC is complicated, it is difficult to
derive an explicit expression for some terms. To solve this problem, we use
FDM to approximate the terms that are not easily derived. FDM is a tradi-
tional numerical approximation method, in which a continuous parameter field
is approximated by a finite set of nodes, and the derivatives of a function at one
node can be approximated by the finite difference of the values of that function
at adjacent nodes.

For the derivatives in the Eq. 13, we use FDM to approximate them. For
examples, the stiffness matrix K has the derivative Ju,Jv,Juv,Juu, and Jvv.
They can be derived by the finite difference of the values at adjacent nodes.
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6.2 Time Integration

Equation (13) is a second-order partial difference equation. In general, Eq. (13)
has no analytical solution; to solve this difference equation in our implementa-
tion, we discretize time t and approximate ṗ and p̈ using the finite difference
method in Eq. (13) to obtain a numerical solution. Given some specific physical
parameters, Eq. (13) will be a stiff physical system. In this case, explicit time
integration can lead to an unstable result. Therefore, in our implementation an
implicit Euler method is used to ensure stability:

p̈ =
p(t+Δt) − 2p(t) + p(t−Δt)

Δt2
, ṗ =

p(t+Δt) − p(t−Δt)

2Δt
(18)

We substitute the equations above into the Eqs. 13. For all matrices without
superscripts should be evaluated at time t + Δt. According to [10], we can use
the following approximation: M(t+Δt) = M(t)

Then, we can similarly write the corresponding discretized equation of
motion:

(
4Mq + 2ΔtDq + 4 (Δt)2 Kq

)
q(t+Δt) = 4(Δt)2(fq + gq)

+ 8Mqq(t) − (3Mq − 2ΔtDq)q(t−Δt) − GTMq0 −
∫∫

μLT s(t−Δt)dudv
(19)

7 Experimental Results and Analysis

In this section, we demonstrate and analyze several experimental results for D-
BBSC. Our model aims at simulating the deformation of the surface of BBSCs,
and the experiments in this section focus on the behavior of surfaces of tubular
objects.

7.1 Comparion Experiment

In this subsection, we design an experiment that compares the simulation results
of our model and D-NURBS model. We make a program to realize the D-NURBS
model, which refers to [24]. The material parameter of the tubular object is:
μ = 30, γ = 10, α1,1 = 40, α2,2 = 5, β1,1 = β1,2 = β2,2 = 10. The constant
radii constraint is applied to the D-BBSC model, and the constrained weight
vector evolution is applied to the D-NURBS model. For each model, we set
different force field to make sure that the two models’ deformation is not too
large. The original states of two models are shown in Fig. 2(a), 2(b). The states
of two models after deformation are shown in Fig. 2(c), 2(d). From the figures, we
find that the D-NURBS model is more likely to encounter the self-intersection
problem. As our model employs control balls to control tubular objects’ shapes,
our model is easier to avoid the problem above. Therefore, our model is more
suitable for simulating tubular objects’ deformation than the D-NURBS model.
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Fig. 2. The figures 2(a) 2(b) show the original state of a BBSC model a NURBS model.
The figures 2(c) and 2(d) show their states after deformation.

7.2 Demonstration of D-BBSC Application

In this subsection, we present several experimental results of our D-BBSC phys-
ical simulation system.

Figure 3 shows a metal pipe that is stretched by an external force. The mate-
rial parameter of the object is: μ = 30, γ = 10, α1,1 = 10, α2,2 = 5, β1,1 = 0.037
β1,2 = β2,2 = 10. Figure 3(c) shows a group of cerebral blood vessels that are
fitted by BBSCs.

Fig. 3. Figures 3(a) and 3(b) shows that a metal pipe is stretched when a horizontal
outward force is applied to it. Figures 3(c) and 3(d) shows the cerebral blood vessels
fitted by BBSCs. One of the blood vessels (orange) is stretched by an external force.
(Color figure online)

Fig. 4. Figures 4(a) and 4(b) show that leaves of a palm tree are blown by the wind.
Figures 4(c) and 4(d) show that a potted plant bent by a downward force.

Figure 4(a) shows a scenario simulated using D-BBSCs. In this simulated
scenario, wind blows on a palm tree.

Figure 4(c) shows a potted plant bent by an external force. The material
parameter of the object is: μ = 30, γ = 10, α1,1 = 10, α2,2 = 5, β1,1 = 0.0,
β1,2 = β2,2 = 10.



Dynamic Ball B-Spline Curves 25

Since we use an FDM as our numerical method, the time cost of our imple-
mentation mainly depends on the grid resolution in FDM. When the Grid reso-
lution u × v is 200× 20,1000× 20, and1000× 50, the corresponding time cost of
one frame is 0.76 s, 4.23 s, and 9.12 s.

8 Conclusion

In this paper, we propose a physics-based generalization of BBSC called D-
BBSC, which combines BBSC’s geometric expression with a time parameter to
describe the deformation behavior of a BBSC over time. We propose the concept
of D-BBSC and corresponding mathematical expression. Then, we derive and
prove several mathematical properties of D-BBSC. We derive the equations of
motion of D-BBSC based on Lagrangian mechanics and analyze the equation
under linear geometric constraints. Finally, we implement a D-BBSC physical
simulation system using the finite difference method, and demonstrate several
experimental results. The experimental results show that D-BBSC can reliably
describe the deformation behavior of a BBSC. We believe that D-BBSC will
be a useful tool in the domains of computer-aided design and 3D physics-based
animation.
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Abstract. Robust Principal Component Analysis (RPCA) is widely
used for low-rank matrix recovery, which restores low-rank structures
in damaged data through matrix decomposition. Existing approaches
adopt the nuclear norm as a convex approximation of rank function.
However, the nuclear norm treats the different singular values equally,
leading to suboptimal matrix representation. To better depict the low-
rank part, in this paper, we adopt a better surrogate of rank function,
namely Schatten Capped p regularization. Further, the Schatten Capped
p regularization-based RPCA model is proposed. And then we propose an
efficient Alternating Direction Method of Multiplier (ADMM) algorithm
to solve for the resulting optimization model. Experimentally, our algo-
rithm is compared to state-of-the-art methods in practical applications
such as image denoising, video background and foreground separation,
and face de-shadowing. Especially, our algorithm can separate the noise
better than other algorithms in the case of low noise levels in image
denoising.

Keywords: RPCA · schatten capped p regularization · ADMM ·
background subtraction · image denoising

1 Introduction

Robust Principal Component Analysis (RPCA) has gained significant attention
since Candès et al.’s seminal work [6]. The core idea of RPCA is to decompose
a data matrix into low-rank and sparse components [16]. This technique has
been extensively utilized in various research fields, including image denoising
[1,3,18,23,25], video surveillance [4,20], and face recognition [9,21].

Specifically, suppose that a matrix D ∈ R
m×n can be expressed by D =

X + E, where E ∈ R
m×n is sparse component (outliers) and X ∈ R

m×n is low-
rank component (clean data). And it can be mathematically described as the
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following optimization problem:

min
E,X

λ ‖E‖0 + rank(X) s.t. D = E + X, (1)

where rank(X) is the rank of the matrix X, ‖E‖0 denotes the number of nonzero
entries in E, and λ is a parameter balancing the two components. However,
problem (1) is nonconvex and discontinuous, solving this problem is NP-hard.
A common strategy is to relax the rank of matrix to the nuclear norm ‖·‖∗, and
the ‖ · ‖0 to the �1 norm, respectively. Hence, problem (1) can be reformulated
as:

min
E,X

λ ‖E‖1 + ‖X‖∗ , s.t. D = E + X, (2)

where ‖X‖∗ =
∑

r σr(X) denotes the nuclear norm of X, σr(X)(r =
1, 2, ...,min(m,n)) is the rth singular value of X, ‖E‖1 =

∑
ij |eij | denotes the �1

norm of E and eij is the element in the ith row and jth colunm of E. Although
the algorithm has strong theoretical guarantees and has been successfully used
to solve low-rank minimization problems, the nuclear norm can only obtain sub-
optimal solutions in practice due to its inability to accurately approximate the
rank of the matrix, which treats all non-zero singular values equally.

To alleviate the problems, some researchers have proposed non-convex alter-
natives to the relevant work. Hu et al. [13] proposed a new norm, named Trunca-
tion Nuclear Norm (TNN), which removes large singular values and adds smaller
ones to reduce the impact of large singular values on low-rank. The authors of
[19] proposed Capped Norm (CN) that minimizes insignificant singular values
less than a threshold. Both TNN and CN aim to suppress significant singular
values and penalize insignificant ones. The relationship between the two norms
has been derived from literature [24]. Gu et al. [12] introduced a weighted nuclear
norm to balance the contribution of different singular values to the rank function
and demonstrated its better approximation effect. However, these methods have
limitations in approximating the rank function and separating complex scenes.
For better approximation, Wang et al. [22] proposed a flexible model with a
novel nonconvex regularizer to overcome the rank function approximation. Nie
et al. [17] introduced a non-convex minimal optimal method, called Schatten p
Norm (SPN), to replace the nuclear norm. As p is a variable, it better approxi-
mates the rank of the matrix. However, like the nuclear norm, the SPN cannot
handle different singular values flexibly. Therefore, this has raised the question
of how to improve the accuracy of matrix rank approximation and provide the
flexibility to handle diverse singular values. Recently, Li et al. [14] proposed a
novel non-convex norm named the Schatten Capped p norm (SCP) to address
this issue. The SCP is defined as:

‖X‖sp,τ =
(∑min(m,n)

i=1 min (σi, τ)p
) 1

p

, (3)

where σi is ith largest singular value of X, τ > 0 is a threshold value to limit the
upper bound of σi, and p ∈ (0, 1]. The SCP combines the benefits of CN and
SPN. It balances rank function, treating large/small singular values differently
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for better accuracy. Experimental results have shown that the SCP has superior
image restoration performance.

To address the problem of matrix rank approximation and flexible handling
of different singular values for sparse and low-rank solutions simultaneously. This
paper introduces a new RPCA model, which uses the SCP to replace nuclear
norm, called Schatten Capped p minimization (SC2P).

However, the convexity property of the optimization problem cannot be pre-
served due to the truncation and capping in nuclear norm [13,24]. Therefore,
the non-convex relaxation brought by the SCP makes the problem much more
challenging. To obtain the optimal solution for our proposed model, we employ
the Alternating Direction Method of Multiplier (ADMM) [5] for solving. To the
best of our knowledge, our approach is the first to leverage SCP to approximate
the rank function in the RPCA model.

The main contributions of this study are summarized as follows:

– We propose a new RPCA method based on the SCP, which is called SC2P.
Due to the flexibility of parameter p and τ , this method achieves a closer
approximation to the rank function, while also flexibly handling different
singular values. Then, based on the ADMM framework, we have designed an
effective algorithm to solve the model.

– Experimental results demonstrate the superiority of our proposed method
over state-of-the-art algorithms in tasks such as image recovery, background
separation, and face de-shadowing. Especially in image denoising, our method
can restore the image structure more accurately, and the visual effect is better.

The structure of this paper is arranged as follows. In Sect. 2, our model
and the corresponding algorithm is proposed. In Sect. 3, we will present some
experimental results in order to demonstrate the effectiveness of our algorithm.
Finally we conclude the paper in Sect. 4, and discuss our future research.

2 The SC2P Model for Robust Principal Component
Analysis

2.1 The SC2P Model

The SCP improves low-rank matrix recovery performance compared to other
non-convex regularizers when 0 ≤ p < 1 and τ > 0, by approximating rank
function and flexibly handling singular values. SCP and �1-norm together provide
an interesting approach to non-convex RPCA:

min
E,X

λ ‖E‖1 + ‖X‖p
sp,τ s.t. D = E + X. (4)

Theoretically, if τ is sufficiently large (e.g., > all singular values), the SCP raised
to the power of p becomes equivalent to the Schatten p-norm. Setting p = 1 as
nuclear norm and large τ reduce SC2P model (4) to problem (2).
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2.2 Optimization Algorithm of SC2P Model

We employ ADMM to solve the above problem (4). And its augmented
Lagrangian function is as follows.:

L(X,E, Y, μ) = λ ‖E‖1 + ‖X‖p
sp,τ + 〈Y,D − X − E〉 +

μ

2
‖D − X − E‖2F , (5)

where Y ∈ R
m×n is the Lagrangian multiplier, and μ > 0 is the regularization

parameter. By following the framework of ADMM, we can solve the original
problem through optimizing its subproblems iteratively.

(I) Updating Xk+1: when we fix Ek and minimize L(X,E, Y, μ, λ) for Xk+1:

Xk+1 = arg min
X

‖X‖p
sp,τ + 〈Yk,D − X − Ek〉 +

μk

2
‖D − X − Ek‖2F , (6)

then, Xk+1 can be computed as follows:

Xk+1 = arg min
X

1
2

‖X − G‖2F + ψ ‖X‖p
sp,τ , (7)

where G = D − Ek + 1
μk

Yk and ψ = 1
μk

. For the subproblem (7), owing to the
fact that it is nonconvex, and it seems hard to solve. To achieve an effective
solution, we present the following lemma.

Lemma 1. [14] Let the SVD of matrix G be QΔRT with Q and R are the left
and right singular vector matrices of G, respectively. The optimal solution of X
is UΣV T , where U and V are the left and right singular vector matrices of X,
respectively. Additionally, Δ = diag(δ1, . . . , δr) and Σ = diag(σ1, . . . , σr) are a
diagonal matrix. The i-th diagonal element σi of Σ is given by the problem below:

min
σi≥0

1
2
(σi − δi)2 + ψ min (σi, τ)p. (8)

In order to solve the subproblem (8), the above equality can define:

σ =
{

1
2 (σ − δ)2 + ψσp, ifσ ∈ [0, τ ]
1
2 (σ − δ)2 + ψτp, ifσ ∈ [τ,∞]

. (9)

Lemma 2. [14] For given parameters p ∈ (0, 1] and ψ ∈
(
0, τ2−p

p(1−p)

)
, the mini-

mum solution of (9) is

σ̂ =
{

δ, if τ ∈ [0, τ∗]
x̂, if τ ∈ (τ∗,∞) , x̂ =

{
0, if δ ∈ [0, υ′]
x∗, if δ ∈ (υ′,∞) , (10)

where τ∗ =
(

1
2ψ (x̂ − δ)2 + (x̂)p

) 1
p

, υ′ = υ + ψpυp−1 and υ = (2ψ(1 − p))
1

2−p .
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For the proofs of Lemma 1 and Lemma 2, please refer to the paper [14]. To get
x̂ when δ > υ′, it can use the classical gradient descent method. Empirically,
this method yields satisfactory results with only a few iterations(i > 0): xi+1 =
δ − ψpxp−1

i . According to Lemma 1 and Lemma 2. The solution of subproblem
(7) can be constructed as follows:

Xk+1 = Udiag(σ̂1, σ̂2, . . . , σ̂r)V T . (11)

(II) Updating Ek+1: fix Xk and Yk to calculate Ek+1 as follows:

Ek+1 = arg min
E

λ ‖E‖1 + 〈Yk,D − Xk+1 − E〉 +
μk

2
‖D − Xk+1 − E‖2F , (12)

this can be rewritten as:

Ek+1 = arg min
E

1
2

‖E − Zk‖2F +
λ

μk
‖E‖1 , (13)

where Zk = D − Xk+1 + 1
μk

Yk. By the proximity operator [10], we can solve the
above subproblem (13) as:

Ek+1 = Sλ/μk
(Zk), (14)

the Sλ/μk
(·) = sign(·)max {| · | − λ/μk, 0} is the well-known soft-thresholding

operator.
(III) Updating Yk+1: fix Xk and Ek, calculate Yk+1 as follows:

Yk+1 = Yk + μk(D − Xk+1 − Ek+1). (15)

The μk+1 = min(ρμk, μmax), where ρ > 1 is a constant. The whole corresponding
procedure is summarized in Algorithm 1.

Algorithm 1. SC2P for RPCA
Input: observation data D.
Output: Matrix E and X.
1: Initialize μ0 > 0, ρ > 1, τ > 0, 0 < P ≤ 1, k = 0, Iter, X0= D, Y = 0.
2: while k > Iter and not convergence do
3: Update Xk+1 based on Eq. (7).
4: Update Ek+1 based on Eq. (13).
5: Update Yk+1 based on Eq. (15).
6: μk+1 = min(ρμk, μmax);
7: k = k + 1.
8: end while
9: return E = Ek+1 and X = Xk+1.
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3 Experiment Results

In this section, we assess the performance of our proposed method on image and
video datasets via three experiments. We compare it with ohter state-of-the-art
algorithms and set several parameters in the proposed algorithm. According to
the analysis of power p (discussed below), we tune p in the range of (0.1,10] for
noise level Φ = 0.1, 0.2 and 0.3 in the proposed SC2P and choose τ = 6. Other
parameters remain consistent with those used in NNM.

All experiments were conducted on a PC equipped with a 2.5 GHz CPU
and 16G RAM using Matlab R2021b. Specifically, we take the Peak Signal-to-
Noise Ratio (RSNR) and the Structural Similarity Index Measure (SSIM) as the
metrics:

PSNR = 10 · log10
MAX2

MSE
, SSIM(x, y) =

(2μxμy + c1)(σxy + c2)
μ2

x + μ2
y + c1(σ2

x + σ2
y + c2)

,

where the MAX represents the maximum gray value in an image. And μx and
μy represent the average values of x and y, and the σx and σy represent the
standard deviation of x and y, respectively. And c is constant.

Fig. 1. The PSNR of SC2P under different values of p and τ is displayed in the fig-
peppers image.

We evaluate the effect of the parameters p and τ on the low-rank matrices
decomposition. The parameter p is vital in regulating the non-convexity of the
objective function in problem (4). To investigate further, we added Φ = 0.1
random noise to a grayscale image of figpeppers (see Fig. 3). Figure 1 illustrates
PSNR accuracy variation of our proposed method across different p values. It
can be seen that the accuracy of our proposed method shows an initial rise as p
increases, followed by a gradual descent and the optimal recovery matrix corre-
sponds to a value of p between 0.6 and 0.7. Clearly, neither the recovery matrix
with the lowest rank nor the one obtained with the nuclear norm corresponds to
our intended optimal solution.
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Our proposed method also utilizes the τ parameter for minimizing insignifi-
cant singular values in the SC2P definition. In the experiment with a grayscale
figpeppers image, we added noise Φ = 0.1 and set p = 0.6. The PSNR was
depicted at different τ values in Fig. 1. It is evident that the PSNR of the image
increases rapidly with increasing τ , followed by a slight decrease, and then sta-
bilizes. Consequently, increasing τ keeps important information while improving
the validity of this decomposition. When τ exceeds the largest singular value, the
accuracy remains the same regardless of its value. Thus, the proposed method
of treating larger and smaller singular values differently offers higher precision
in matrix decomposition.

3.1 Image Denoising

We first assess the effectiveness of the proposed SC2P algorithm for image denois-
ing, and benchmark it against seven representative RPCA algorithms. These
include NNM [6], CPNM [19], NSA [2], TNNR [7], SPNM [8], WNNM [12], and
WSNM [23]. In total, we tested 20 common images that encompass both med-
ical and natural categories, as shown in Fig. 2. To generate noisy observations,
we introduced random noise to the images. All methods are generated from the
source codes or executables provided by their authors respectively.

Fig. 2. The 20 test images for image denoising.

Table 1. The mean SSIM of all images after denoising with different methods

Φ = 0.1

AVG. NOISE CPNM NAS NNM TNNR SPNM WNNM WSNM OURS

0.3162 0.8791 0.9009 0.8872 0.8963 0.8573 0.8593 0.8116 0.9102

Φ = 0.2

AVG. NOISE CPNM NAS NNM TNNR SPNM WNNM WSNM OURS

0.1847 0.8226 0.8309 0.8241 0.8003 0.8129 0.6237 0.7645 0.8290

Φ = 0.3

AVG. NOISE CPNM NAS NNM TNNR SPNM WNNM WSNM OURS

0.1275 0.6888 0.6917 0.6666 0.5674 0.7022 0.6459 0.6372 0.7482
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Table 1 and Table 2 report the SSIM and PSNR performance of seven com-
peting denoising algorithms (the highest values are marked in bold). As shown
in Table 2, the proposed SC2P method achieves the highest PSNR across almost
all cases, improving upon the NNM method by 3.95 dB on average, and sur-
passing the benchmark SPNM and CPNM methods by 3.89 dB and 4.32 dB,
respectively. To sum up, the SC2P method outperforms all other competitors in

Fig. 3. Denoising results of medical image (noise level Φ = 0.1) and peppers image
(noise level Φ = 0.3) for different models

Table 2. Denoising result PSNR by different methods (noise level Φ = 0.1)

NOISE CPNM NAS NNM TNNR SPNM WNNM WSNM OURS

camera 18.27 23.13 23.29 22.96 24.71 23.60 25.00 22.45 26.80

castle 18.16 27.11 27.24 26.92 28.87 27.50 28.24 25.35 30.74

elephant 18.31 28.44 28.75 28.56 30.02 28.81 28.69 26.64 31.45

formula1 18.37 24.30 24.50 24.31 26.57 24.98 26.26 23.55 28.29

Glass 17.96 24.61 24.88 25.23 25.94 25.58 25.23 23.64 26.62

house 18.86 26.52 26.65 26.31 29.59 27.54 29.50 26.17 32.63

kiln 19.02 29.41 29.70 29.61 30.87 29.52 29.16 27.54 32.42

mushroom 17.58 26.69 27.05 27.00 28.37 27.60 27.18 25.22 29.67

penguin 17.60 30.84 31.03 30.91 32.31 31.17 30.29 28.42 34.22

pine 17.77 23.90 24.00 23.67 25.41 24.31 25.29 23.09 27.38

slope 17.21 27.62 27.62 27.40 29.01 27.87 27.23 27.32 29.37

tower 17.98 26.89 27.08 26.83 28.87 27.48 27.48 27.13 30.51

papers 18.67 28.42 29.45 28.17 29.05 26.51 29.27 32.26 33.33

plane 18.01 25.19 25.42 25.02 28.71 24.22 28.09 30.10 31.78

Barbara 18.59 25.24 26.96 25.37 26.05 22.73 26.93 23.97 28.22

boat 18.71 26.92 27.92 26.84 27.64 24.56 28.17 24.84 30.36

dolphin 19.56 32.25 33.11 32.12 33.88 30.36 32.02 29.94 36.21

foot 15.75 23.98 25.26 23.20 26.00 21.83 27.94 24.54 33.10

goldhill 18.79 28.88 30.31 29.21 29.89 26.64 29.01 26.68 31.25

livingroom 19.46 28.04 29.17 27.90 28.66 25.92 28.23 25.80 32.29

AVG. 18.23 26.89 27.42 26.83 28.59 26.46 28.00 26.26 30.84
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terms of average performance at all noise levels, particularly at low noise, where
the improvement is most significant. In terms of visual quality, our proposed
method is also superior to other RPCA methods, as shown in Fig. 3 (the visual
effect can be better seen through the enlarged area). SC2P accurately recon-
structs the ankle structure, while CPNM and SPNM produce more artefacts.
Furthermore, at higher noise levels (0.3), SC2P effectively suppresses artifacts
and reconstructs pepper surface brightness. In conclusion, the SC2P method
offers exceptional denoising capabilities and maintains high PSNR values while
exhibiting strong visual quality.

3.2 Background Subtraction

Surveillance video data is typically low-rank, as it exhibits temporal continuity.
The stationary background of the video can be represented as a low-rank matrix,
while the moving objects can be represented as a sparse matrix.

We validate the superior performance of the SC2P algorithm in video back-
ground separation and compare it with state-of-the-art methods, including the
Mixture of Gaussians (MoG) [26], RegL1A, NNM, WNNM, WSNM, and TNNR.
We set the parameters as suggested in the original paper and analyzed various
standard video sequences from the I2R dataset [15], which include airport, cur-
tain, escalator, fountain, lobby, shopping center, and tree sequences. We con-
verted the original color videos to grayscale images, transformed each frame into
a long column vector, and combined all columns to form a data matrix. The
resulting data matrix, X ∈ R

25344×200, contains 200 grayscale frames of size
144 × 176 pixels.

To quantitatively compare the effectiveness of various methods, we use the
Area Under ROC Curve (AUC) measurement. The larger AUC, the more out-
standing the performance. AUC is calculated as follows:

AUC =

∑
positive ranki − M(1+M)

2

M ∗ N
,

where
∑

positive ranki is a rank summation for positive class samples, M and N
are the number of positive and negative samples, respectively, where positive
class samples represent video foreground. When we compared the background
separation results of multiple algorithms (as shown in Fig. 4), we found that
all algorithms were able to distinguish foreground from background, but our
algorithm was able to capture more complex details, such as a person holding
a suitcase in the airport background, that were not as apparent in the results
produced by other algorithms. For a more comprehensive comparison, Table 3
displays the AUC values, which indicate that our algorithm has higher accuracy
in extracting clear backgrounds and accurately separating foregrounds. In sum-
mary, our algorithm performs better in restoring backgrounds and eliminating
most shadows.
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Table 3. AUC of all methods on the I2R dataset.

method data avg.

airport curtain escalator fountain lobby shoppingMall tree

MoG 0.7937 0.8761 0.8038 0.9468 0.8736 0.9027 0.8923 0.8699

RegL1 0.8967 0.8460 0.9108 0.9538 0.9244 0.9083 0.8867 0.9038

RPCA 0.8721 0.8823 0.9112 0.9461 0.9222 0.9030 0.8943 0.9045

WNNM 0.8869 0.9049 0.9139 0.9260 0.8878 0.9100 0.8872 0.9024

WSNM 0.8721 0.8736 0.9021 0.9409 0.8804 0.9012 0.8867 0.8939

SC2P 0.9083 0.9061 0.9217 0.9545 0.9412 0.9115 0.8953 0.9198

3.3 Face Shadowing

The quality of face recognition is strongly influenced by lighting factors such as
shadows and brightness. By regarding shadows and light as sparse and facial
structure as low-ranking, removing these elements from facial images becomes a
low-rank and sparse decomposition challenge.

We employ our proposed algorithm to address the issue of removing shadows
from facial images, and compare its efficacy with MoG, RegL1, NNM, WNNM,
and WSNM. We conduct the experiment using the Extended YaleB dataset [11].

Figure 5 shows the visual quality of facial images for different algorithms.
The results indicate that our method outperforms MoG and RegL1 algorithms
in terms of shadow removal. Additionally, our approach skillfully maintains the
low-rank structure and sparse element information of the original image, while

Fig. 4. This figure shows the results of all methods in separating foreground and back-
ground before and after separation. From top to bottom is Airport and shoppingMall
video sequences.



38 L. Yang et al.

other methods suffer from either shadow artifacts or loss of fine details. This
observation clearly suggests that our proposed algorithm is better suited for
complex lighting conditions and significantly augments the accuracy and effi-
ciency of image processing.

Fig. 5. The figure showcasing the performance of various methods on processing facial
images in the extended Yale B dataset.

4 Conclusion and Future Work

This article studies a new RPCA model based on SCP. We further proposed an
effective ADMM algorithm to solve the new RPCA model. The obtained E and
X are optimal for the linearized sub-problem. We present extensive experiments
on real-world data to demonstrate the effectiveness of our method. Interesting
future work will be applying SC2P in the field of video denoising and color image
denoising.
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Abstract. Learning-based hashing has received increasing research
attention due to its promising efficiency for large-scale similarity search.
However, most existing manifold-based hashing methods cannot capture
the intrinsic structure and discriminative information of image samples.
In this paper, we propose a new learning-based hashing method, namely,
Sparse Graph Hashing with Spectral Regression (SGHSR), for approx-
imate nearest neighbor search. We first propose a sparse graph model
to learn the real-valued codes which can not only preserves the man-
ifold structure of the data, but also adaptively selects sparse and dis-
criminative features. Then, we use a spectral regression to convert the
real-valued codes into high-quality binary codes such that the informa-
tion loss between the original space and the Hamming space can be well
minimized. Extensive experimental results on three widely used image
databases demonstrate that our SGHSR method outperforms the state-
of-the-art unsupervised manifold-based hashing methods.

Keywords: Learning to hash · sparse graph hashing · spectral
regression

1 Introduction

Large-scale similarity search has become a challenging problem due to the rapid
growth of the scale and dimensions of internet data such as images, videos and
text. Thus, Approximate Nearest Neighbor (ANN) search, which can match
the most similar items from datasets, is proposed. As a promising solution to
the Approximate Nearest Neighbor (ANN) problem, hashing method aims to
map the original data into a low-dimensional Hamming space while preserving
the original similarity. The advantages of hashing make it more efficient and
powerful for practical search problems, such as image retrieval [1,2] and object
recognition [3]. In recent years, there have been a number of hashing methods
proposed in the literature, which can are roughly classified into: supervised, semi-
supervised and unsupervised based methods. Supervised-learning-based hashing
methods [4–9] generally generate efficient binary codes by analyzing the seman-
tic relevance of class labels, and the representative methods include Supervised
Discrete Hashing (SDH) [4] and Robust Supervised Discrete Hashing (RSDH)
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[5]. By contrast, semi-supervised-based hashing methods [10,11] aim to capture
the semantic relevance of unlabeled data by a few labeled data, and the typi-
cal methods include Semi-Supervised Hashing (SSH) [10] and Semi-Supervised
Metric Learning-based Anchor Graph Hashing (MLAGH) [11].

In recent years, unsupervised-learning-based hashing methods [12–18], which
can learn a binary representation without semantic labels, are the mainstream
of hash learning. For example, manifold-based methods, such as Spectral Hash-
ing(SH) [12], Anchor Graph Hashing (AGH) [13] and Large Graph Hashing
with Spectral Rotation (LGHSR) [14], learns a binary representation through
the graph Laplacian. Iterative Quantization (ITQ) [15] minimizes the quantiza-
tion loss by finding an orthogonal rotation matrix to rotate the PCA projection
into a more suitable space. Simultaneous Compression and Quantization (SCQ)
[16] is an ITQ-based method that combines dimensionality reduction and rota-
tion operations for hash code learning. Discrete Spectral Hashing (DSH) [17]
aim to transform the graph hashing problem into a discrete optimization frame-
work to learn discrete hash codes. Unsupervised Discrete Hashing (UDH) [18]
utilizes a balanced graph semantic loss to capture the semantic information of
data, thereby exploring the similarity and dissimilarity relations in the original
space. However, most unsupervised hashing methods focus only on preserving
the similarity of neighbor data and cannot capture the intrinsic structures of
data.

To address this, there have been some studies that uses the sparse feature
selection [19–24] to extract and preserve the sparse manifold structures in data.
For example, Hu et al. [19] proposed a sparse graph method to learn the mani-
fold information using sparsity and spectral embedding. Lai et al. [20] proposed a
Joint Sparse Hashing (JSH) to learn an optimal joint sparse projection matrix via
an �2,1-norm regularization for binary codes learning. Wang et al. [21] proposed a
Jointly Personalized Sparse Hashing (JPSH) to adaptively project different clus-
ters into corresponding personalized subspace. Wang et al. [22] proposed a sparse
graph based self-supervised hashing (SGSH) to use a new type of sparse nearest
neighbor graph to preserve neighborhood information. Wang et al. [23] proposed
a “Set and Rebase” mechanism to learn a sparse graph structure to preserve
the similarity information for hash code learning. While the afore-mentioned
sparse-based hashing methods have achieved encouraging performance in image
retrieval, they cannot assign different weights among the different instances to
select discriminative information. In addition, most existing sparse based hash-
ing methods are sensitive to the noise and outlier due to the quadratic forms of
graph embedding.

In this paper, we propose a two-step hashing method, namely, Sparse Graph
Hashing with Spectral Regression (SGHSR), to adaptively select sparse and
discriminative features for generating hash codes and hash functions. First, we
introduce a sparse graph model, which combines the graph Laplacian with re-
weighted �1- norm, to learn the real-valued hash codes. The proposed sparse
graph model can not only enhance the sparsity of hash codes to extract intrinsic
structure, but also adaptively choose parameters among the hash codes to select
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discriminative information. Then, we utilize a spectral regression model with �2-
regularization for alternately learning a projection matrix and encoding binary
codes, such that the information loss of discrete hash codes and hash functions
can be minimized. Extensive experimental results clearly show the effectiveness
and efficiency of the proposed method.

The remainder of this paper is organized as follows: Section 2 describes our
proposed SGHSR method. Section 3 presents the experimental results. Section 4
offers the conclusion of this paper.

2 SGHSR

In this section, we elaborate the Sparse Graph Hashing with Spectral Regression
method for robust image retrieval.

2.1 Notations and Definitions

In this paper, the matrix X = [x1, x2, · · · , xn]T represents the training sample
set, where xi ∈ R1×d represents the i-th training sample. The solutions in con-
tinuous space are denoted by Y ∈ Rk×n = [y1, y2, · · · , yn]T . The solutions in
Hamming space are denoted by B = [b1, b2, · · · , bn]T , where bi ∈ R1×k (k � d)
is the number of bits. I represents the identity matrix. 1T represents a column
vector in which all elements are 1. tr() denotes the matrix trace norm and sgn()
denotes the sign function, which equals to +1 if x > 0 and −1 otherwise. The
�p,q-norm is defined as follows:

‖x‖p,q =

⎛
⎜⎝

n∑
i=1

⎛
⎝

m∑
j=1

|xij |p
⎞
⎠

q
p

⎞
⎟⎠

1
q

. (1)

2.2 Learning Real-Valued Codes Using a Sparse Graph Model

Most manifold-based hashing methods focus most on preserving the data sim-
ilarity, which usually cannot well extract the intrinsic structure in data and
learn discriminative information. In this study, due to the fact that the similar
hash codes should be as close as possible in the Euclidean space, we aim to
learn more effective and efficient hash codes by making the hash codes sparse.
Moreover, since different instances have different total amounts of information,
we adaptively learn the hash codes to enhance the discriminative power of the
hash codes. To achieve this, we formulate a sparse graph model by imposing the
re-weighted �1-norm on manifold learning as follows:

min
Y TY=I

n∑
i,j=1

Aij ‖yi − yj‖2
∑
i,j

‖yi − yj‖2
, (2)
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where yi is the column of real-valued codes Y . A is an approximate adjacency
matrix for preserving local discriminative information [13]. In addition, the re-
weighted �1-norm is defined as ω‖Y ‖1, and ω is defined as follows:

ωi =
1

|yi| + ε
, (3)

where ε = 0.01 is a parameter for adaptive weight estimation. ωi represents
inverse of the magnitude of yi for avoiding inconsistency of the �1-norm. Obvi-
ously, if we use pij to denote the element ‖yi − yj‖2, the min

Y TY=1

∑
i,j=1

‖yi − yj‖2
can be presented as min

Y TY=I
‖p‖1. If we regard Ãij = Aij/ ‖yi − yj‖2 as a re-

weighted coefficient, the sparse graph model can be rewritten as a common

manifold learning problem (i.e., min
Y TY=I

n∑
i,j=1

Ãij ‖yi − yj‖2), which is equivalent

to a re-weighted �1-norm problem (i.e., min
Y TY=I

Ã‖p‖1). It can be seen that the

proposed sparse graph model combines the graph Laplacian with the re-weighted
�1-norm. Therefore, in comparison with SH, it can well alleviate the sensitivity
to outliers by using the residual ‖yi − yj‖2, and reduces the computational com-
plexity by using a sparse adjacency matrix A instead of a dense affinity matrix.

2.3 Learning Binary Codes and Projection Matrix via Spectral
Regression

As real-valued codes were learned by the graph Laplacian, we must convert
the real-valued codes into binary codes. For this, we still need to capture the
projection matrix since cannot be generalized to unseen data. To solve this prob-
lem, motivated by the fact that the local feature contains local discriminative
information for retrieval, in this study, we compute binary codes and projection
matrix by using spectral regression [25] as follows:

min
P

‖ZP − B‖22,
s.t.bi ∈ {−1, 1}k, B1T = 0, BTB = nI,

(4)

where bi ∈ {−1, 1}k represents the duality of the codes. B1T = 0 represents a
balanced probability for each bit to be zero or one. BTB = nI is added to make
binary bits irrelevant. Moreover, we impose �2-regularization on the projection
matrix P for discriminative information capture [26]. Therefore, this Problem
(4) can be formulated as follows:

min
P

‖ZP − B‖22 + α‖P‖22,
s.t.bi ∈ {−1, 1}k, B1T = 0, BTB = nI,

(5)

where P can be initialized by solving problem min
P

‖ZP − Y ‖22 + α‖P‖22. α ≥ 0

is a weighting parameter that is used to control the amounts of shrinkage. In
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Algorithm 1 SGHSR
Input: The original affinity matrix A ∈ Rn×n.
1: Use the k-means clustering algorithm to generate m anchors.
2: Construct anchor graph Z based on AGAH.
3: Construct approximate adjacency matrix A = ZTΛZ, where Λ = diag

(
ZT 1

)
.

4: Initialize real-valued codes Y as a random orthogonal matrix and set t = 1.
5: while not converge do
6: Calculate L̃t = D̃t − Ãt , where Ãij =

Aij/2
∥∥yi

t − yj
t

∥∥
2

and D̃t = diag
(
Ãt1

T
)
;

7: Calculate Yt+1 =
[(

y1
t

)T
,
(
y2
t

)T
, · · · , (yn

t )T
]T

,

where the columns of Yt+1 are the first eigenvectors
of k, which correspond to the first L̃ smallest eigen-
values (excluding trivial eigenvalues that are smaller
than 1e-3);

8: t = t + 1;
9: end while

10: Initialize the projection matrix P via solving min
P

‖ZP − Y ‖2
2 + α‖P‖2

2.

11: while not converge do
12: Update B by solving Eq.(8);
13: Update P by solving Eq.(5);
14: end while
Output: The real-valued codes Y ∈ Rn×k, binary codes

B ∈ Rn×k and projection matrix P ∈ Rd×k.

general, the Problem (5) can learn the discrete hash codes, while captures robust
local discriminative information and simultaneously minimizes the information
loss during projection.

2.4 Optimization

In this section, we iteratively optimize Problem (2) and Problem (5) to obtain
the solutions of real-valued codes Y , the projection matrix P and binary codes
B.

Solution of Y . The augmented Lagrangian function of Problem (2) is:

L(Y ) =
n∑

i,j=1

Ãij ‖yi − yj‖2 + tr
(
Λ

(
Y TY − I

))
, (6)

where Ãij = Aij/ ‖yi − yj‖2 is a re-weighted affinity matrix, L̃ = D̃ − W̃ is a

re-weighted graph Laplacian and D = diag
(
Ã1T

)
is a diagonal matrix. Since

the re-weighted coefficients form a symmetric matrix, re-weighted matrix Ã is
non-negative, sparse, low-rank and doubly stochastic, like the original affinity
matrix A. Taking the derivative of L(Y ) w.r.t Y and setting the derivative to
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zero yields:
∂L(Y )

∂Y
= L̃Y − Y Λ = 0, (7)

which indicates that the solution of Y is the top k eigenvectors of the re-weighted
graph Laplacian L̃. Since L̃ is a sparse Hermitian matrix, the solution of Y
satisfies the orthogonality constraint Y TY = I and can be efficiently calculated
by Lanczos algorithms [27].

Solution of P. When B is fixed, Problem (5) w.r.t B is a regularized least-
square problem, which is also called ridge regression. Ridge regression is com-
prehensively utilized to interpret data due to its homogeneity, graduality, and
robustness. Many existing iterative algorithms can effectively deal with a very-
large-scale least-square problem [28] to obtain the solution of P .

Solution of B. When P is fixed, the optimal method of solving for bj is to
assign the first half of descending-ordered wj to +1 and the second half to −1,
where wj is the column of projection result W = XP . This is formulated as:

bij =
{

1, q (wij) ≤ n/2,
−1, otherwise,

(8)

where q(wij) denotes the order of wij after sorting and the assigned vector
bj represents the binary codes B as a column vector. With this approach, all
columns of binary codes B have equal numbers of +1 and −1 entries.

To obtain the final solution, we repeatedly calculate the real-valued codes
of Y corresponding to the eigenvector of the re-weighted graph Laplacian L̃,
until convergence. Then, we alternately update the projection matrix P and
binary codes B until B is unchanged. The details of the proposed algorithm are
presented in Algorithm 1.

2.5 Computational Complexity Analysis

For each iteration, the memory cost of constructing L̃ is o
(
n2

)
, and the time

cost is o
(
n2

)
. Constructing L̃ requires a huge amount of memory when the sam-

ples are of large scale. To address this, we can solve this problem by using block
operation, which divides a large-scale samples into several blocks, such that a
small space is required for each block. For calculating the top k eigenvectors Y ,
it requires a memory cost of o(nk) and a time cost of o(n(r + 8)). For updating
P , it requires a memory cost of o(dk) and a time cost of o(2dn) for each iteration.
Therefore, the total memory cost of SGHSR is approximately o

(
n2 + nk + dk

)
and the total time cost is o

((
n2 + n(r + 8)T2

)
T1 + 2dnT3

)
, where Ti is the num-

ber of iterations.
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Fig. 1. (a) The original distributions of the training samples on the MNIST database
in two-dimensional space. The real values of the training samples that are learned by
the (b) SH, (c) AGH, (d) ITQ, (e) LGHSR, (f) JSH, (g) our proposed SGHSR method
without spectral regression and (h) the SGHSR method on the MNIST database with
2-bit length. The Euclidean-distance-based information losses are 2.468, 0.195, 0.422,
0.195, 0.700, 0.194 and 0.188, respectively, corresponding to (b) to (h). It can be seen
that the proposed SGHSR method performs the best in reducing the information loss
and preserving the manifold structure in binary codes.

3 Experiments

In this section, we evaluate the proposed method on three widely used image
databases: MNIST1, CIFAR-102 and SUN-3973 Five state-of-the-art unsuper-
vised manifold-based hashing methods, namely, SH [12], AGH [13], ITQ [15],
JSH [20] and LGHSR [14], are selected for comparison with our method. In the
experiment, we used a computer with Intel Core i5 13600KF processor, 32 GB
memory and 1 TB solid state, and installed Windows 10 Professional 64-bit
operating system on it. In addition, we used the MATLAB R2021b development
environment to realize the relevant functions of the experiment.

3.1 Databases

The MNSIST database contains 70,000 images of handwritten digits from 0 to 9
in 10 categories. In the experiments, we randomly select 6900 images from each
class as training samples, and the rest compose the testing samples. In addition,
all samples are converted into 784-dimensional vectors.

The CIFAR-10 database contains 60,000 tiny images of 10 objects, each of
which provides 6,000 samples. Similarly, we randomly select 5,900 images from

1 http://yann.lecun.com/exdb/mnist/.
2 https://www.cs.toronto.edu/∼kriz/cifar.html.
3 https://groups.csail.mit.edu/vision/SUN/.

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://groups.csail.mit.edu/vision/SUN/
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each class to form the training sample set and use the remaining samples as the
test samples. In the experiment, we extract the 512-dimensional GIST features
for each image as the data descriptors.

The SUN397 database contains 108,753 images of 397 scene categories, with
more than 100 samples for each category. In our experiment, we form a sample
set by selecting 10,756 samples from 7 common categories, where each category
contains at least 1,000 samples. Then, we randomly select 50 images per class
as the test samples and employ the remaining samples as the training samples.
All samples are converted into 1,600-dimensional vectors.

Table 1. MAP values of six methods with various code lengths on the MNIST, CIFAR-
10 and SUN397 databases

Method MNIST CIFAR-10 SUM397

12bits 16bits 32bits 64bits 96bits 128bits 12bits 16bits 32bits 64bits 96bits 128bits 12bits 16bits 32bits 64bits 96bits 128bits

SH 0.2943 0.2828 0.2636 0.2446 0.2368 0.2361 0.1314 0.1326 0.1303 0.1299 0.1289 0.1282 0.4146 0.3620 0.3095 0.2906 0.2815 0.2919

AGH 0.5526 0.5222 0.4301 0.3509 0.3201 0.3005 0.1534 0.1529 0.1509 0.1463 0.1418 0.1387 0.4307 0.4073 0.3559 0.3200 0.3085 0.2982

ITQ 0.3969 0.4267 0.4288 0.4263 0.4489 0.4516 0.1539 0.1557 0.1553 0.1554 0.1575 0.1616 0.5919 0.5732 0.5505 0.5443 0.5444 0.5440

JSH 0.3704 0.4264 0.5477 0.5485 0.5388 0.5591 0.2080 0.1781 0.1883 0.1693 0.1666 0.1714 0.5972 0.5750 0.6246 0.6336 0.6357 0.6401

LGHSR 0.6349 0.5724 0.5074 0.4167 0.3658 0.3386 0.1656 0.1638 0.1629 0.1573 0.1541 0.1503 0.5456 0.5254 0.4555 0.4428 0.4289 0.4225

SGHSR 0.6628 0.6720 0.6684 0.7188 0.7238 0.7224 0.2007 0.1987 0.1967 0.1966 0.1809 0.1854 0.5486 0.6480 0.6124 0.6355 0.6363 0.6447

Fig. 2. The Recall and F-measure curves of different methods on the (a) MNIST, (b)
CIFAR-10 and (c) SUN397 databases.

3.2 Experimental Results on MNIST

To illustrate the effects of our methods, we explore distributions of real-valued
samples that are learned by different methods in the MNIST database, as shown
in Fig. 1. The proposed method outperforms the compared methods. This is
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because the proposed method can better capture the intrinsic structures in data.
Moreover, the proposed method can use spectral regression to further fit the
binary codes to the original data.

In addition, we use three widely used metrics, including the Mean Average
Precision (MAP), Recall and F-measure, for consistent evaluation. In the exper-
iments, we set the repeat number of k-means clustering as 5 and choose the
common parameter settings of m = 300, s = 3 and α = 20 on the MNIST
database. The bits of binary codes are selected from the candidate set [12,16] to
evaluate the performances of the different methods.

The Hamming ranking performance (in MAP) of different methods on the
MNIST database is shown in Table 1 (left part). It can be seen that the pro-
posed SGHSR method outperforms most existing methods. This is because the
proposed method can better extract sparse and discriminative features using the
sparse graph model and can learn a valid projection matrix via spectral regres-
sion. Moreover, the proposed method avoids the degradation of the performance
as the length of the hash codes increase. A possible reason is that the proposed
method imposes the sparsity on manifold learning to extract complicated latent
structures of the data, which are insensitive to the dimension of hash codes. In
addition, the SGHSR achieves a higher accuracy than the JSH method. This
is because the proposed method can adaptively learn the optimal parameters
among the different instances to capture the most discriminative information.

The hash lookup results in terms of Recall and F-measure on the MNIST
database are plotted in Fig. 2(a). The performances of all the methods are grad-
ually degraded with increasing code lengths due to the accumulation of quanti-
zation error and the enlarged Hamming distance. In this scenario, our method
shows remarkable improvement on the hash lookup results and the best perfor-
mance among the methods. This is because, in the proposed method, the sparse
graph model can minimize the distance of similar hash codes and spectral regres-
sion can make the hash codes consistent with original data.

3.3 Experimental Results on CIFAR-10

The experimental settings on the CIFAR-10 database are the same as those
on the MNIST database. Table 1 (middle part) tabulates the Hamming ranking
performances (in MAP), and Fig. 2(b) shows the corresponding Recall and F-
measure results of different method on the CIFAR-10 database. It can be seen
our proposed method outperforms most compared methods, demonstrating the
promising effectiveness of the proposed method. In addition, it is worth noting
that all methods shows lower MAP on the CIFAR-10 database than that on
the MNIST database. A possible reason is that there exist large semantic gaps
between the samples of CIFAR-10 database.

3.4 Experimental Results on SUN397

For the complex images in the SUN397 database, we choose similar experimental
settings to those on the two databases above, except the number of repeats of
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k-means clustering is 15 and s = 5. The Hamming ranking performances (in
MAP) of different methods on the SUN397 database are presented in Table 1
(right part), and Recall and F-measure results are shown in Fig. 2(c). We can
see that our proposed SGHSR achieves better or comparable performance than
the state-of-the-art methods. Particularly, Fig. 2(c) shows that our method yields
much better recall and F-measure results than the state-of-the-art methods. It
demonstrates that the proposed SGHSR can efficiently obtain the most similar
items corresponding to the query items since neighbor data falls into the same
hashing balls as much as possible.

3.5 Convergence Analysis

The convergence curves of our method on the MNIST, CIFAR-10 and SUN397
databases are shown in Fig. 3. It can be seen that our proposed method can con-
verge in less than 10 iterations, which demonstrate that the SGHSR method has
a fast convergence speed. The convergence speed on real image databases such
as CIFAR-10 and SUN397 is faster than on digital databases such as MNIST,
which demonstrates the feasibility of practical application.

Fig. 3. The convergence lines of the SGHSR method with 32 bits on the (a) MNIST,
(b) CIFAR-10 and (c) SUN397 databases.

Table 2. Comparison between with/without using the re-weighted �1-norm and spec-
tral regression on the MNIST and CIFAR-10 databases

Database Code Length 12bits 16bits 32bits 64bits

Results MAP Recall MAP Recall MAP Recall MAP Recall

MNIST SGHSR-WRL 0.5874 0.4775 0.5623 0.3548 0.5651 0.1991 0.6625 0.1365

SGHSR-WSR 0.6364 0.6910 0.5274 0.6316 0.5885 0.2382 0.6609 0.1509

SGHSR 0.6628 0.7280 0.6720 0.6830 0.6684 0.3327 0.7188 0.2823

CIFAR-10 SGHSR-WRL 0.1738 0.2436 0.1798 0.1826 0.1831 0.0914 0.1858 0.0567

SGHSR-WSR 0.1743 0.8917 0.1687 0.8425 0.1405 0.5920 0.1288 0.1778

SGHSR 0.2007 0.6125 0.1987 0.4935 0.1967 0.4740 0.1966 0.3334
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3.6 Ablation Analysis

Effectiveness of the Re-Weighted �1-Norm. To investigate the effective-
ness of the re-weighted �1-norm on improving the manifold learning, we compare
the proposed model with that without using the re-weighted �1-norm (referred
to as SGHSR-WRL). Table 2 presents the MAP and recall results of SGHSR
and SGHSR-WRL on the MNIST and CIFAR-10 databases with various code
lengths. The results demonstrate the re-weight �1-norm of the SGHSR can facil-
itate the learning of sparse and discriminative features to obtain a superior
performance.

Effectiveness of Spectral Regression. To investigate the performance of
spectral regression on reducing the information loss between the original data
and the binary data, we compare the proposed model with that without using
the spectral regression (referred to as SGHSR-WSR), as tabulated in Table 2.
It can be seen that the spectral regression can effectively improve the overall
performance, especially in sparse Hamming space with long code lengths.

4 Conclusion

In this paper, we propose a Sparse Graph Hashing with Spectral Regression
method for efficient hash code learning. To make the learned binary code sparse
and discriminative, we enforce two important criteria, namely, re-weighted �1-
norm and spectral regression, on the manifold learning for hash codes. The exper-
imental results on three benchmark databases demonstrate that our SGHSR
method outperforms or performs competitively with the state-of-the-art hashing
methods. However, this method also has some limitations, such as quantization
loss and space cost are still too high. In future work, it could be an interest-
ing direction to improve the proposed method by integrating mapping with
quantization to simultaneously learn more discrete codes and to improve the
computational efficiency.
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Abstract. This study combines visual and athletic information to analyze crowd
performance, using performance density entropy and performance consistency as
visual descriptors and group collectivity as an athletic descriptor. We used these
descriptors to develop a crowd performance behavior classification algorithm that
can distinguish between different behaviors in large-scale performances. The study
found that the descriptors were weakly correlated, indicating that they capture
different dimensions of performance. The crowd behavior classification experi-
ments showed that the descriptorswere valid for qualitative analysis and consistent
with human perception. The proposed algorithm successfully differentiated and
described performance behavior in the dataset of a large-scale crowd performance
and was demonstrated to be effective.

Keywords: Crowd Behavior analysis · Large-scale crowd performances ·
Crowd descriptors

1 Introduction

Large-scale crowd performances are commonly used in athletic celebrations and national
ceremonies. Crowd performance analysis and evaluation are critical aspects for crowd
performance design, and computer technology plays a significant role in this field. The
analysis of artistic works such as crowd performance is beneficial for summarizing and
understanding the design standards [1].

Crowd performance behavior analysis currently relies on manual evaluation and
group behavior motion analysis. Human-centered qualitative evaluation, using artistic
experiences from audiences and artists, is a mainstream approach for manual evaluation
[1]. Analyzing groupmotion behavior involves extracting information on group trajecto-
ries, summarizingmotion flow [2], and constructing groupmotionmodels [3] to segment
groups and reduce behavioral analysis time. Feedback evaluation from audiences and
artists remains the primary performance analysis method, but generic evaluation metrics
can improve automatic analysis and reduce costs.

In summary, the purpose of our study is to define the evaluation metrics for crowd
performance and quantify crowd description information. The main contributions are as
follows.
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• Design descriptors for crowd performance behavior. We proposed descriptors
focusing on visual information to describe performances in spatial and temporal
dimensions, respectively.

• Analyze and understand crowd performances.Visual information descriptors can help
us understand crowd performances by analyzing variations in these descriptors. Our
study has shown that combining visual and motion information descriptors is better
than using only aspect descriptors for detecting performance behavior.

• Propose a qualitative and quantitative evaluation algorithm for crowd performances.
Through behavioral classification experiments, it is verified that the proposed algo-
rithm is effective in identifying different types of performance. In addition, the
performance scores represent formation-change degree levels.

This paper is organized as follows. Section 2 provides an overview of previous
work related to this paper. Section 3 focuses on the performance behavior descriptors,
the design of these descriptors and the analysis algorithm used. Section 4 reports our
experimental methodology and analysis of the results. Section 5 shows the application
results of these descriptors in a large-scale crowd performance. Section 6 summarizes
the current experimental results and describes future directions of this work.

2 Related Work

Refer to value-based approach [4], researchers in related fields shifted their focus
towards developing quantitative and qualitative evaluation methods with the continu-
ous improvement of digital art and CG technology [5]. The current dominant evaluation
method involves collecting questionnaires from audiences, performers, and artists [6]
and providing evaluation results based on post-hoc feedback.

In the last two decades, large-scale crowd performance simulation has rapidly grown
[7]. In 2008, multidimensional layered crowd performance parallel simulation was used
at the Beijing Olympics to assist in choreography realization [8]. Higher-order dynamic
information was utilized by Pierre A. et al. [9] to optimize group editing and their
framework has been borrowed by subsequent population crowd behavior simulation
methods. Lv L. et al. [7] proposed amethod for generating large-scale populationmotion
from a tiny population to address complex simulation and tedious manual planning.
And Li Y. et al. [10] proposed a strategy based on time-slicing and spatially hierarchical
layering to achieve dense group automated editing to some extent in 2020. While crowd
performance editing methods continue to evolve, there is still no convincing solution for
understanding crowd behavior.

Group analysis can be divided into two branches: group counting and group behav-
ior analysis [11]. Researchers typically approach group behavior analysis from two
perspectives: micro and macro, which represent the interpretation of group behavior
from individual and overall perspectives, respectively. The micro approach, based on
social forces of target agents proposed by Helbing D. et al. [12] has been widely used
by researchers for group behavior analysis. For instance, Ramin M. et al. [13] utilized a
social forces model to locate abnormal crowd behavior in video surveillance. Moreover,
it is also used in target tracking [14] and crowd simulation. Macro-level applications,
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such as dynamic target agents and the utilization of spatial and temporal features [15]
are popular methods for understanding and analyzing crowd behavior.

Researchers are focusing on the attributes of groups themselves for behavior analysis
in recent years. They extract descriptions like dispersion, collectivity, and stability for
dense crowd analysis and study normative definitions of group attributes [16]. Zhou
B. et al. [17] proposed a group collectiveness descriptor based on the observation that
groups self-organize into collective movements. Shao J. et al. [18] designed scenario-
independent descriptors by extracting basic attributes like collectivity and conflict. Zou
Y. et al. [19] proposed a new frameworkmeasuring crowd collectivity usingmacroscopic
and microscopic motion consistency. While progress has been made, achieving a fine-
grained group description in all scenarios remains challenging.

In contrast to previous studies on group behavior, we propose a novel method to
describe crowd performance behavior. Our method includes:

• Interpreting performance behavior from two aspects, visual information and motion
information.

• Focusing on behavioral changes that occur during performances and evaluating crowd
performance both qualitatively and quantitatively.

3 Method

3.1 Expression Approach of Crowd Performance

Fig. 1. Movement processes of formation-change and formation-keep.

Group formation and transformation are one of the focuses of crowd behavior
researchers [20]. Based on the effect of formation changes, the crowd behavior can
be divided into categorized formation-change performances and formation-keep perfor-
mances.As illustrated inFig. 1, the formation-changeperformance represents a transition
from one formation pattern to another. During this transition process, group members
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have their own target positions, and the group can be subdivided into small groups based
on their targets. In the formation-keep performance, collective crowd maintain a stable
formation structure [21], the spatial arrangement around each member and the k-nearest
neighbor (KNN) distance between them remaining steady. It results in a visually stable
group profile, with the crowd moving consistently in a same direction.

The expression of crowd performance state at moment t is shown in Eq. 1.

Pt = {D1,D2, . . .Di} (1)

The crowd performance state is divided into several aspects based on the information
changes: visual information D1, motion information D2, and auditory information et al
Di. We focus on visual and motion information in this study.

3.2 Visual Information Analysis

The spatial and temporal locations of the members in the performance crowd together
compose the information such as group shape or density. Thus, location information
of crowd members is stored in the array F{f1, f2, f3, ..., ft}. The array F can be seen as
keyframe information in formation transformation [22]. Here, ft indicates the location
of all members in the crowd at moment t.

A =
⎡
⎢⎣
a00 · · · a0n
...

. . .
...

am0 · · · amn

⎤
⎥⎦ (2)

aij = 2 ∗
(
g

′
ij ∗ d

′
ij

)
(
g

′
ij + d

′
ij

) (3)

Fig. 2. Visual information visualization process. Fig. a shows the membership distribution. Fig.
b illustrates the rasterized schematic representation. Fig. c shows the visualization results, with
redder colors indicatingmore persons and greater density in the corresponding raster space. (Color
figure online)

The process of visualizing visual information in crowd performance is shown in
Fig. 2. We use matrix G to store the number of people inside each raster grid gij and
matrix D to store the average KNN distance dij. Then, the elements in matrix D will
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be updated using dmax/dij. To avoid d
′
ij quantity becomes infinite, we set the minimum

value of dij equals dmax ∗ 0.01. Visual information for crowd performances is stored in
matrix A with m rows and n columns. The numerical values of m and n depend on the
size of the performing crowd. The aij is the harmonic average of the elements in the
normalized matrix of G and the normalized matrix of D.

Performance Density Entropy
In this section, a Performance Density Entropy (PDE) metric is proposed to quantify
the process of group density distribution uniformity changes within a performance clip,
with the calculation equations shown as follows. And PDE is represented as �.

ψt = 1

M

∑
aij>0

(
aij − a

)2 (4)

Ψ = 1

T

∑
t=1

|ψt − ψt−1| (5)

The element in Eq. 4 can only be calculated when aij > 0. M is the number of
elements greater than zero. ψt represents the degree of uniformity in group distribution
at time t. A smaller value of ψt indicates a more average density distribution of crowd.
Thus, the value of ψt will be minimum only when all elements in matrix A are the same.
The value range of ψt and � is [0,0.25).

Performance Consistency
In reality, a group formation’s most salient visual feature is generally its contour shape
[23]. And the motion-shape [24] of a crowd is a crucial factor in behavior detection.
Therefore, we proposed Performance Consistency (PC) to measures consistency in the
formation of the performing crowd between adjacent moments in crowd performance.
Since crowd performance has been visualized, we can use image processing methods to
calculate the PC metric.

Rt =
∑

i,j|It−1(i, j) · It(i, j)|√∑
i,j It−1(i, j)2 · ∑

i,j It(i, j)
2

(6)

Υ = 1

T

∑
t=1

Rt (7)

The PC metric is represented as Υ . Equation 6 presents a template matching algo-
rithm, specifically the normalized correlation coefficient. At time t, It represents the
density distribution visualization result, and Rt represents the degree of match between
the visual results of crowd performance between time t and time t − 1. Υ indicates the
average consistencies of group formations in the segment. A smaller value ofΥ indicates
a better retention effect of the group formation pattern. Same to the range of Rt , the value
range of Υ is [0,1].

3.3 Motion Information Analysis

Collective crowd movements are significant motion information in crowd performance
behavior [21]. The average velocity similarity of all individuals within a group does not
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provide clear feedback on individual collectivity. Therefore, MCC (Measuring Crowd
Collectiveness) [17] proposed a method deriving the global consistency among individ-
uals through path consistency, and integrating the group to derive the overall collective
consistency. As a general algorithm for measuring collective consistency, MCC and its
deformation algorithms are widely used in both group behavior analysis and group seg-
mentation. We also useMCC to calculate collective consistency result and the metric is
represented as Φ.

Φ = 1

|T |
∑

t=0
Φ
∧

(t) (8)

Φ
∧

(t) = 1

|C|
∑

i∈C Φ(i) = 1

|C|e
TZe (9)

Φ
∧

(t) denotes the quantitative value of the collectiveness of performance at momentt.
In Eq. 9, C is the set of all the members in the group, and a matrix e is used, where all
the elements are equal to 1. The quantified collectiveness value of member i isΦ(i), and
Z is the matrix containing information about path consistency of the individuals in the
group. In MCC [17], it is proved that Φ

∧

(t) has the value range [0, 1], and our metric Φ

is the same.

3.4 Behavior Analysis Method for Crowd Performances

We propose an algorithm to qualitatively and quantitatively analyze the group per-
formance based on the definitions of PDE, PC, and MCC, as shown in Algorithm
1.

Pψ =
⎧⎨
⎩
3, ψ ≥ k1 · ξ1

1, ψ ≥ ξ1andψ <k1 · ξ1

−1, ψ <ξ1

(10)

PΥ =
⎧⎨
⎩
3, Υ ≤ k2 · ξ2

1, Υ < ξ2and Υ > k2 · ξ2

−1, Υ ≥ ξ2

(11)

PΦ =
⎧⎨
⎩
3, Φ ≤ k3 · ξ3 Φ

1, Φ < ξ3 and Φ >k3 · ξ3

−1, Φ ≥ ξ3

(12)

Pt =
{
0,PΨ + PΥ + PΦ < 0
1,PΨ + PΥ + PΦ ≥ 0

(13)

The current crowd behavior is represented by either a formation-change state or a
formation-keep state, with 1 and -1 indicating a high probability for each state, respec-
tively. The threshold value for distinguishing between two states is denoted by ξ1. During
performance behavior detection, if � ≥ k1 · ξ1, it indicating an extremely high proba-
bility of formation-change state. To ensure that the final Pt is equals to 1, a weight value
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of 3 is assigned at that moment. Similarly, ξ2, ξ3, k2, and k3 are used in the same way.
In Eq. 13, a weighted analysis approach is employed to combine the three descriptors,
resulting in a binary performance state output with 1 indicating formation-change and
0 indicating formation-keep. In experiments, the numerical values of various empirical
parameters are as follows: ξ1 = 0.004, ξ2 = 0.6, ξ3 = 0.6, k1 = 1.333, k2 = 0.667,
k3 = 0.667.

4 Experiment and Analysis

4.1 Analysis for Descriptors

In this section, we explored the practical implications of visual information descriptors
to better analyze the change process of PDE and PC within a crowd performance. We
design a casewith the same start formation and end formationwith different performance
processes as shown in Fig. 3a. In this case, we set the rasterization parameters m = n =
8, and set the sliding window size num = 3. Visually, the formation changes of Per1
are more pronounced than in Per2. And in Fig. 3b, PDE value is larger in Per 1, which
means that the PDE is proportional to the degree of formation change.

In Fig. 3c, a case of consistent initial state and different final states is presented. Per
1 and Per 2 have the same movement trend and similar velocity directions, while Per 2
has obvious deformation. In this case, we set the rasterization parameters m = n = 5,
and set the sliding window size num = 3. In Fig. 3d, a smaller value of PC is observed
in adjacent moments for Per 2. It is the same as human visual perception.

4.2 Dataset Analysis

The data are from a large-scale crowd performance simulation dataset [10], which con-
tains more than 3,000 people performing. It can be divided into three chapters based on
the content. We use 1_0, 2_0, 3_0 to represent the three chapters.



A Crowd Behavior Analysis Method for Large-Scale Performances 61

Fig. 3. The examples for descriptors’ analysis

Fig. 4. The detailed information for the items in our dataset.

Based on the manual classification, the members within a chapter are grouped, and
different groups are labeled as formation-change grouping and formation-keep group-
ing based on their behavior, and these groups form the items of our dataset. The final
dataset has 14 formation-change performances and 10 formation-keep performances.
The details of the dataset are shown in Fig. 4. It shows the composition of the dataset in
the group performances and the number of people in performance segments. The naming
convention for the dataset is X _X . The first X represents which performance chapter the
current performance segment belongs, and the second X represents the number of the
current performance group in this corresponding chapter. In subsequent experiments, we
adjusted the rasterization parameters for each item based on the group size. Specifically,
we used three different m = n = 8 values of 25, 35, and 45.

4.3 Correlation Between Descriptors

In this section, we examined the correlation among different descriptors and demon-
strated their significance in describing crowd performance scenes while complementing
each other. In the following experiments, the k-nearest neighbor number is 5.
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From Fig. 5d, it is evident that there is a negative correlation between PC and both
PDE (correlation factor of –0.12) and MCC (correlation factor of –0.44). On the other
hand, PDE andMCC exhibit weak positive correlation with a correlation factor of 0.21.
ThemetricPDE reflects the level of uniformity in the distribution of group density during
the performance, while PC represents the change in performance formations over time.
MCC, on the other hand, characterizes the overall movement consistency exhibited by
the group. The correlation result shows these metrics capture different aspects of the
group performance process.

Fig. 5. Correlation analysis results

4.4 Evaluation of Descriptor Classification Results

Table 1. Evaluation Metrics for descriptors

Descriptor ACC P R F1

PDE 0.750 0.900 0.643 0.750

PC 0.583 0.667 0.571 0.616

MCC 0.750 0.833 0.714 0.769

PDE + PC 0.792 1.000 0.643 0.783

PC + MCC 0.750 1.000 0.571 0.727

PDE + MCC 0.792 0.846 0.786 0.815

All 0.875 0.867 0.929 0.897

Experiments using PDE, PC, andMCC descriptors separately, as well as their com-
binations, were performed to classify crowd performance behavior. The results of the
comparisons are obtained and presented in Table 1. Descriptors’ combination has a better
classification result in F1 value than considering these descriptors separately. Moreover,
the combination of all the three descriptors improved the recall R and F1 values for
crowd behavior classification.
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5 Crowd Performance Evaluation

Our performance behavior evaluation method was conducted on the using dataset of
large-scale square performance choreography. The results are presented in Fig. 6. This
data consisted of 60 keyframes of groupmember information, with each step comprising
5 keyframes (step = 1, 2,…, 12). The corresponding descriptor values at each step
indicate that the more intense the visual formation change process between adjacent
steps, the greater the change in PDE and the lower the PC value.

Fig. 6. The crowd performance behavior evaluation using three descriptors.

In Fig. 7a, the score represents the possibility of formation-change performance.
It shows the compare results between the MCC [17] method and ours. In most steps,
the results were consistent with ground truth. According to the scores, our method is
more sensitive to the degree levels of formation-change. Based on the visual effect, the
performance fragments can be divided into four stages, 1 to 5, 6 to 8, 8 to 10, 11 to
12. Among them, the average score in the 1–5 steps is higher. Observing the changes
between these performance clips, formation changes are more drastic in 1–5 steps.

We test the effectiveness of the proposed method in quantitative analysis of perfor-
mance behavior in the dataset. Choreographer artist have already divided the intensity of
formation-change for each performance chapterwhen designing the crowd performances
in the dataset. As a result, this section classifies the dataset into three levels of formation-
change behaviors based on the crowd performance chapters: weak formation-change (or
formation-keep), medium formation-change, and strong formation-change. It can be
observed from Fig. 7b that as the intensity of formation-change behavior increases, the
average weight score also increases.
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Fig. 7. Fig. a shows calculation score for formation-change behavior. Fig. b Score analysis about
different levels of formation-change performances.

6 Summary and Future Work

In this paper we propose two visual information descriptors:PDE andPC. Moreover, the
generic collective descriptorMCC is applied from the perspective ofmotion information.
The correlation analysis experiment demonstrate that the descriptors belong to different
dimensional information features. The classification results also indicate that combining
all the descriptors is better than using them separately. The designed descriptors can
quantitatively detect different performance stages during the performance evaluation
experiment, and the intensity of formation-change can be quantitatively described by
the formation-change weights using Algorithm 1.

As the method proposed in this article mainly focuses on studying overall visual
information based on formation patterns, it may not be well-suited for analyzing group
performances where member actions serve as the primary visual effects, such as large-
scale dance performances.

In the future, we will continue to design descriptors for crowd performance behav-
ior in different features such as music and rhythm. And we will conduct an in-depth
performance behavior analysis based on more crowd performance data.
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Abstract. In engineering applications, line, circle, arc, and point are
collectively referred to as primitives, and they play a crucial role in path
planning, simulation analysis, and manufacturing. When designing CAD
models, engineers typically start by sketching the model’s orthographic
view on paper or a whiteboard and then translate the design intent into a
CAD program. Although this design method is powerful, it often involves
challenging and repetitive tasks, requiring engineers to perform numerous
similar operations in each design. To address this conversion process, we
propose an efficient and accurate end-to-end method that avoids the
inefficiency and error accumulation issues associated with using auto-
regressive models to infer parametric primitives from hand-drawn sketch
images. Since our model samples match the representation format of
standard CAD software, they can be imported into CAD software for
solving, editing, and applied to downstream design tasks.

Keywords: Parametric primitive · End-to-end · Hand-drawn sketch
image · CAD software

1 Introduction

Parametric CAD starts with a 2D sketch containing geometric primitives such as
lines, circles, arcs, and points which is a widely used method in mechanical engi-
neering and aerospace. Engineers then import these primitives into CAD soft-
ware, which can be edited with constraints and position adjustments. Additional
CAD operations, like extrusion, result in the creation of a 3D model. Figure 1
illustrates a functionality achieved through our method. The process is robust
but repetitive, prompting the need for accurate pattern prediction to reduce
manual tasks and increase work efficiency. Converting hand-drawn sketches or
noisy inputs into editable models is a desired feature.

Object detection in computer vision, particularly the DETR [1] algorithm, a
transformer-based approach that eliminates the need for hand-designed compo-
nents and achieves good performance. However, DETR [1] has issues with slow
convergence during training and unclear interpretation of queries. To address
these, various approaches have been proposed, such as deformable attention [3]
and denoising techniques [12,26].
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Fig. 1. CAD model generation. Hand-drawn sketch images as input, we feed them into
image primitive network to generate parametric primitives. By adding constraints,
adjust the positions of primitives to create a coherent sketch, final extrusion the sketch
to generate a 3D model in CAD software.

Table 1. Parameter representation
for different primitives.

Line x1 y1 x2 y2 0 0

Circle x y r 0 0 0

Arc x1 y1 xmid ymid x2 y2

Point x y 0 0 0 0

All previous detection methods detect
the object category associated with fixed
four parameters (x, y, w, h) of the box. In
our task, as shown in Table 1, the param-
eter length of the primitive varies dynami-
cally according to its type, which is unsuit-
able for the anchor-based DETR [1] method
described above.

In this work, we introduce the PPI-NET network, a detection network that,
after training, detects geometric primitives to synthesize coherent CAD sketches.
The image primitive model uses the original Transformer and a denoising module
in DN-DETR [12] to infer the parameters of primitives end-to-end. We make the
following contributions:

1. We convert real hand-drawn sketches into editable forms within CAD soft-
ware, enabling designers to communicate and collaborate more efficiently with
team members, clients, and suppliers.

2. We can bind different parameters to various types of primitives by employing
primitives’ dynamic parametric inference.

3. We propose an end-to-end network called PPI-Net for inferring parametric
primitives from hand-drawn sketch images, which provides users with a more
flexible and manipulable data representation.

4. Our method has achieved better results compared with Vitruvion [21] in both
qualitative and quantitative aspects.

2 Related Work

2.1 Parametric Primitive Inference

Parameterized primitive fitting is a long-standing problem in the field of geomet-
ric processing. Researchers have explored methods for detecting or fitting param-
eterized feature curves, such as Bézier and B-spline, often using least squares
representation [6,11]. These methods [9,22–25] share the common characteristic
of taking three-dimensional point cloud data as input. In contrast, Vitruvion
[21] extracts parameterized primitives from real hand-drawn sketches.
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Fig. 2. Image Primitive Model Pipeline. Input a hand-drawn sketch image, and
the network predicts the type and parameters of the primitive. “C” means cat the noise
groups and object queries. “D” means decoupling the noise groups and object queries.

2.2 CAD Sketch Generation

The SketchGraphs dataset [20] was recently introduced to target the underly-
ing relational structure and construction operations found in mechanical design
software. [7,18,21,27] all utilize auto-regressive models to model the primitives
and the constraint relationships between them. However, this approach cannot
directly output results end-to-end and is easily influenced by the previous time
steps’ outputs. Vitruvion [21] is similar to our method, this input approach allows
for better reconstructing primitives from hand-drawn sketches.

2.3 Vector Graphics Generation

Vector graphics are used in commercial software to enable the resolution inde-
pendent design of fonts, logos, animations, and illustrations. In recent years,
generative models [2,5,8,10,15,17,19] have been successfully applied to the field
of vector graphics. [13] infers sketches from facial images. Conversely, our method
is similar to the image-conditional version of Vitruvion [21], which takes hand-
drawn raster images as input and generates vector graphics.

3 Method

The pipeline of PPI-Net network is illustrated in Fig. 2. Given an input image,
a detection module detects the four types of primitives implicitly embedded in
the image and extracts their parameterized information as object queries.

3.1 Denoising

We collect all ground-truth (GT) objects for each image and add random noises
to their parameter and class labels. We use multiple noised versions for each
GT object to maximize the utility of denoising learning. For label noise, we use
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label flipping, which means we randomly flip some GT labels to other labels.
The purpose of label flipping is to encourage the model to predict the GT labels
based on the noised primitives’ parameter, thus improving its ability to capture
the relationship between labels and primitives. We have a hyper-parameter γ to
control the ratio of labels to flip.

For primitives’ parameter noise, which is obtained by adding noise of stan-
dard normal distribution to the corresponding GT primitive parameters of each
GT primitive type, λ to control the ratio of noise to add, as qparameter =
(GTparameter + λ ∗ noise) ∗ maskGTtype

.
The losses of the denoising part are l1 loss and Chamfer Distance (CD) loss

for primitive of parameters and focal loss [14] for class labels as in DAB-DETR
[16]. In our method, we employ a function δ(·) to represent the noised GT objects.
Thus, each query in the denoising part can be expressed as qm = δ(GTm), where
GTm corresponds to the m-th GT object.

3.2 Attention Mask

The inclusion of an attention mask is vital in our model. It has been observed
from the results presented in Table 5, that the absence of an attention mask dur-
ing denoising training hinders performance rather than enhancing it. To intro-
duce attention mask, we need to first divide the noised GT objects into groups.
Each group is a noised version of all GT objects. The denoising part becomes
where gp is defined as the p-th noise group. Each noise groups contains N queries
where N is set to be significantly larger than the typical number of primitives
in an image. So we have where qnp = δ(GTn).

The purpose of the attention mask is to prevent information leakage. There
are two types of potential information leakage. One is that the matching part
may see the noised GT objects and easily predict GT objects. The other is
that one noised version of a GT object may see another version. Therefore, our
attention mask is to make sure the matching part cannot see the denoising part
and the denoising groups cannot see each other.

We use A = [aij ]W×W to denote the attention mask where W = P × N , P
is the numbers of groups. We let the first P × N rows and columns to represent
the denoising part and the latter to represent the matching part. aij = 1 means
the i-th query cannot see the j-th query and aij = 0 otherwise.

aij =

{
0, if P ∗ N ≤ (i, j) ≤ (P + 1) ∗ N,

1, otherwise.
(1)

3.3 Embedding

The decoder embedding is specified as label embedding in our model to sup-
port both primitive parameter denoising and label denoising. We embed the
noise label as a content query. We denote Pi = (p1, p2, p3, p4, p5, p6) as the noise
parameter information of the i-th primitive, p1, p2, p3, p4, p5, p6 ∈ [0, 1]. D is



PPI-NET: End-to-End Parametric Primitive Inference 71

the dimension of decoder embeddings and positional queries. Given a primi-
tive parameter Pi, its positional query Vi is generated by: Vi = MLP (PE(Pi)),
where PE means positional encoding to generate sinusoidal embeddings from
float numbers and the parameters of MLP are shared across all layers. In our
implementations, the positional encoding function PE maps a float to a vector
with D/2 dimensions as: R → RD/2. Hence the function MLP projects a 3D
dimensional vector into D dimensions: MLP: R3D → RD. The MLP module has
two submodules, each composed of a linear layer and a ReLU activation, and
the feature reduction is conducted at the first linear layer.

3.4 Image Primitive Model

The image primitive model is inspired by DETR [1] and applies the denoising
part of DN-DETR [12] to accelerate the convergence of DETR [1]. We hope it
can accurately recover parameterized primitives from hand-drawn sketches.

Architecture. The model is based on an image encoder using a visual converter
[4], which uses 128 × 128 size image as input. Extract size 16 from input image
16 × 16 non-overlapping square blocks are flattened to produce a sequence of 64
flattened blocks. Then, before entering the standard converter encoder, each one
undergoes a linear transformation of the embedding dimension of the model (256
in this case), and adds corresponding position encoding to each image sequence.
For the decoder, which is the same as DETR [1], we use learnable position
encoding as object queries and use it as input for each attention layer. Object
queries will be converted into outputs in each Decoder layer. Ultimately, they
will all independently pass the Type-FFN and Parameter-FFN, predicting the
corresponding primitive types and primitive parameters separately.

Denoising and Matching Part. The matching part uses the same method
as the DETR [1], which obtains the corresponding relationship to perform loss
calculations. Denoising part: since we know the primitive type and primitive
parameters that each query should correspond to when building the noise groups,
we can directly calculate the loss without bipartite matching. Please note that
the denoising part is only considered during training, removing the denoising
part during the inference process and leaving only the matching part.

Cost Matrix. Like DETR [1], each image contains different primitive types and
parameters, so we use bipartite matching to determine the corresponding rela-
tionship between prediction and ground truth. The cost matrix for classification
is the same as DAB-DETR [16]. Treating a parameter with a length of six as
the parameter to be used and directly comparing the parameter to be used with
the ground truth parameter for L1 loss as costp. The parameters to be used are
sampled according to four types: line, circle, arc, and point. The CD between
the sampling point of ground truth and prediction is calculated, and the type
with the smallest distance is taken for the cost matrix as costCD.

Cost Matrix = ωc ∗ costc + ωp ∗ costp + ωcd ∗ costCD, (2)
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This optimal assignment is computed efficiently with the Hungarian algorithm.

Loss. With the bipartite matching result, the one-to-one correspondence
between prediction and ground truth, we can calculate the classified loss as focal
loss for primitives type, as Lossc. Calculate the loss of primitive parameters,

Lossp =
1
K

K∑
i=1

||ŷ − y|| ∗ maskTy
, (3)

K is the actual number of primitives in the image, Ty is the corresponding
GT primitive type, ŷ is the predicted primitive parameter, and y is the ground
truth primitive parameter. Because different types of parameters use different
positions, so use the binary mask to calculate the actual loss.

Using the ŷ and y, we perform point sampling based on Ty, and calculate
the CD between the sampled points, which bind different parameters to various
types of primitives,

LossCD =
1
K

K∑
i=1

CD(ŷ, y, Ty), (4)

LossCD represents the sum of CD for all types of primitives. The final loss is
the weighted sum of the above loss,

Loss = ωc ∗ Lossc + ωp ∗ Lossp + ωcd ∗ LossCD. (5)

4 Experiments

4.1 Training Dataset

Our model is trained on a filtered version of the SketchGraphs dataset [20] by
Vitruvion [21], which has a collection of 1.7 million unique sketches. As shown in
the Fig. 4, we demonstrate the relative proportion of each primitives type in the
dataset. However, unlike Vitruvion [21], we do not consider the isConstruction
boolean of the parametric primitive in Table 1, which clarifies differences through
rendering as shown in Fig. 3. We randomly divided the filtered sketch set into
92.5% training, 2.5% validation, and 5% testing partitions. Before training the
image primitive model, we generate samples using the mathplotlib to simulate
sketches of hand-drawn style. The model selects one random image from the five
generated samples during each training epoch. Random affine transformations
are applied to the images to further augment the data during training. These
transformations include translation (up to 8 pixels), rotation (up to 10◦), shear
(up to 10◦), and scaling (up to 20%).

4.2 Evaluation Metrics

We implemented four metrics to measure the performance of the image primi-
tive model: (1) type accuracy, which measures the primitive type classification
performance, (2) The Chamfer Distance (CD), (3) precision, (4) recall.
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Fig. 3. Each primitive has an attribute
isConstruction, and when isConstruction
= True, Vitruvion renders the primitive
with a dashed line (left). In contrast, our
method disregards attribute isConstruction
and directly renders all primitives with
solid lines (right).

Fig. 4. The proportion of each
primitives type in the dataset.

Fig. 5. Comparison of the average
CD for each primitives type.

The type accuracy is calculated as: Type acc = 1
K

∑K
i=1 1(ti = t̂i), where K

is the actual number of primitives contained in the image, t̂i is the predicted
primitive type, and ti is the ground truth primitive type. Precision = TP

TP+FP ,
Recall = TP

TP+FN , We use the probabilities of the primitive types as the confi-
dence scores and the CD as one of the evaluation metrics.

TP = scoreconfidence > τcon & CD < τCD, (6)

FP = scoreconfidence > τcon & CD > τCD, (7)

FN = scoreconfidence < τcon & CD > τCD, (8)

In this case, we use τcon = 0.50 and τCD = 0.40 as the threshold values.

4.3 Parameter Setting

The training was conducted on a server with four Nvidia 3090 GPUs, and our
model was trained for 250 epochs, which took 72 h. Our model is configured
with standard Transformer encoder and decoder components, with six layers
each. We set γ = 0.4 to control the label flipping and λ = 0.3 to control the
noise parameter in the denoising part. We have also incorporated three sets of
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Fig. 6. Compare with Vitruvion [21]. Raster images of real hand-drawn sketches are
input to the image primitive model.

denoising groups and the weight parameters for loss are set to ωc = 2, ωp = 2,
and ωcd = 5. All models were trained with N = 20 decoder query slots. The
initial learning rate was set to 3e-5 (at reference batch size 128, scaled linearly
with the total batch size). The batch size was set 256 / GPU for the model.

4.4 Comparisons to the State-of-the-Art

Currently, there is relatively limited research on the task of inference parametric
primitives from real hand-drawn images. To the best of our knowledge, in 2021,
the Vitruvion [21] introduced this task for the first time and employed an auto-
regressive model to address it.

As seen in Fig. 5, compared with Vitruvion [21], the average CD between
primitives of the same type. The better support of Vitruvion’s [21] auto-
regressive model for the primitives’ types represented in long sequential lists
is reflected in the Fig. 5, where it can be observed that Point has the largest
CD, while Arc has the smallest CD. Each primitive in PPI-Net is treated as an
independent object, and there is a certain correlation between the number of
parameters and the average CD of the primitives.

Under the same input conditions, Fig. 6 showcases our model’s ability to
detect primitives, in Table 2 has been evaluated through quantitative compar-
isons with the image to primitive model of Vitruvion [21]. Our model demon-
strates outstanding performance in these aspects.
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Fig. 7. Editing infer primitives in CAD software. Hand-drawn sketch images (a), infer
parametric primitives (b), import the parametric primitives, add constraints in Onshape
Gui (c), adjust primitives’ positions, and use CAD operations to make the sketch to
generate a 3D model (d).

4.5 Import into CAD Software

As shown in the Fig. 7, the hand-drawn sketch is first input into the image
primitive network to extract primitives. These extracted primitives are then
imported into professional CAD software. Within the CAD software, tools and
commands are used to add constraint relationships (e.g., coincident, parallel)
and adjust positions and sizes, ensuring a coherent sketch. Once the sketch meets
the desired geometric criteria, CAD operations like extrusion, hole-cutting, and
rotation create the final CAD model.

4.6 Test Strategy

Table 3 presents the evaluation of the image primitive model on a dataset of
128×128-pixel human-drawn sketch images, as described in Sect. 4.2. We con-
duct tests on the model using different types of rendering: precise renderings,
renderings from the hand-drawn simulator, and renderings with random affine
augmentations from the hand-drawn simulator. The results show that both the
hand-drawn simulation and augmentations significantly enhance the model’s per-
formance.
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Table 2. Compare metrics with Vitru-
vion [21].

Metric Type acc↑ CD↓ Precision↑ Recall↑ GFLOPs Params

Vitruvion [21] 91.0% 0.0428 66.9% 65.3% 230 172

Ours 93.2% 0.0368 73.9% 71.1% 93 61

Table 3. The metrics highlighted in bold
indicate the optimal values.

Training regimen Type acc↑ CD↓ Precision↑ Recall↑
Precise rendering 82.5% 0.0597 58.6% 51.5%

Hand-drawn augmentation 92.6% 0.0383 71.2% 67.4%

Hand-drawn + affine 93.2% 0.0368 73.9% 71.1%

Table 4. Ablation results for comparing
the effects of denoising groups. The model
does not converge within the 250 epochs
if the denoising groups are not used.

Denoise Groups Type acc↑ CD↓ Precision↑ Recall↑ GFLOPs Params

No Group 80.2% 0.0581 58.9% 54.1% 93 61

1 Group 92.3% 0.0388 67.9% 66.1% 93 61

3 Groups 93.2% 0.0368 73.9% 71.1% 93 61

Table 5. Ablation results for denoising
part. All models use 1 denoising group
under the same default settings.

Parameter Denoise Label Denoise Attention Mask Type acc↑ CD↓ Precision↑ Recall↑
✓ ✓ ✓ 92.3% 0.0388 67.9% 66.1%

✓ ✓ 91.9% 0.0397 66.8% 65.3%

✓ 91.7% 0.0403 66.5% 65.1%

✓ ✓ 57.2% 0.0730 31.2% 26.7%

4.7 Ablation Study

We employ denoising groups to accelerate the convergence speed of the DETR
[1] model and improve the metric scores. In Table 4, we demonstrate the effects
of denoising groups and varying the number of denoising groups on the results
under the same conditions. The findings in Table 5 demonstrate that each com-
ponent utilized in the denoising training contributes to enhancing performance.
It is worth highlighting that the absence of an attention mask, which prevents
information leakage, leads to a significant decline in performance.

5 Conclusion

We propose PPI-Net, an end-to-end network for inferring parametric primitives
from hand-drawn sketches, providing a flexible data representation. This app-
roach optimizes primitive representation and facilitates efficient communication
and collaboration among engineers, team members, clients, and suppliers.

Fig. 8. Failure cases.

Limitation. As shown in Fig. 8(a), due to the
method being derived from object detection, its
inference capability for small primitives is not
strong. As shown in Fig. 8(b, c), there is a devia-
tion between the extracted circles and arcs com-
pared to the ground truth (GT). Therefore, we
hope further to enhance the inference capability
of the image primitive model.

Future Work. Currently, the main method involves inferring primitives from
hand-drawn sketch images, but it overlooks the constraints between primitives,
which are pivotal for constructing continuous sketches. Therefore, in future work,
we aim to achieve end-to-end inference primitives and the constraint relation-
ships between them from hand-drawn sketch images to improve the quality and
coherence of the generated sketches.
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Abstract. In real-time ray tracing applications, only a small number of
samples per pixel can be traced, limited by the computational power of
the hardware. Maximizing the rendering quality with a low sampling rate
is an important problem for real-time ray tracing. Reservoir-based spa-
tiotemporal importance resampling with multi-bounce global illumina-
tion (ReSTIR GI) improves the rendering quality of a low sampling rate.
However, the noise introduced by Monte Carlo sampling still exists. We
propose a lightweight and efficient sample-space filtering method applied
to ReSTIR GI that filters the sample distribution before resampling, thus
reducing the noise in the final rendering result. Compared to the original
ReSTIR GI, our method achieves a smaller mean squared error (MSE)
of 1.1× to 5.6× and a higher peak signal-to-noise ratio (PSNR) of 1.1×
at the cost of an average increase in rendering time of 12%.

Keywords: Real-time rendering · Filtering · Resampling

1 Introduction

The widespread use of real-time rendering places higher demands on both ren-
dering speed and quality. Even with the support of hardware-accelerated ray
tracing [11,16], achieving real-time path tracing with a high sampling rate is
still difficult. Moreover, restricting the number of samples per pixel (spp) results
in significant variance and noise. Therefore, some neural denoising methods [15]
or resampling methods have been raised to enhance the quality of low-sampling
rendered images.

Resampled importance sampling (RIS) [20] reuses existing sample sequences
and optimizes them iteratively to obtain samples that approximate the optimal
distribution. Based on RIS, Reservoir-based Spatiotemporal Importance Resam-
pling (ReSTIR) [3] was proposed to address the direct illumination sampling.
Then, the ReSTIR GI [17] extended the ReSTIR method to global illumination
by resampling indirect lighting paths obtained by path tracing.

Introducing such resampling methods to path tracing can reduce certain
noise by resampling and sharing important paths across frames and pixels. Nev-
ertheless, the resampling process cannot eliminate the noise from Monte Carlo
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Sheng et al. (Eds.): CGI 2023, LNCS 14498, pp. 79–92, 2024.
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estimation sampling, especially under a low sampling rate. Therefore, we pro-
pose a lightweight and efficient sample-space filtering method of ReSTIR GI that
reduces sample distribution noise by smoothing the radiance contribution in the
sample space. We apply the path space filtering [10] to the sample distribution
generated by ReSTIR GI and then use the smoothed distribution in the sample
space for further reuse. The results show that our method can reduce the MSE
of ReSTIR GI with a small additional overhead. Moreover, compared with post-
processing denoising methods such as Bilateral filtering and Optix denoiser [5],
our method can avoid over blur as it doesn’t directly filter the final shading
results.

2 Previous Work

Real-time rendering imposes a strict constraint on the frame time budget, which
makes it infeasible to use more than one sample per pixel (spp) per frame.
However, such a low sampling rate inevitably leads to noisy results. Therefore,
various methods have been developed to reduce the variance and noise of real-
time path tracing.

2.1 Resampling-Based Method

Talbot et al. [20] proposed the RIS method that extends the importance sampling
technique by resampling the initial samples to obtain candidate samples more
consistent with the target distribution. This method enhances the rendering
quality in complex scenes with multiple light sources and specular reflections.

Based on the RIS method, many studies have been explored to improve ren-
dering quality and efficiency. Bitterli et al. [3] presented the ReSTIR method,
which shares light samples in temporal and pixel space to improve the render-
ing quality of dynamic direct lighting. Ouyang et al. [17] introduced ReSTIR
GI, which applies ReSTIR to sample indirect light transport in global illumi-
nation. This method generates new paths by connecting resampled candidates
with existing path-traced samples. Lin et al. proposed Volume ReSTIR [13] that
uses ReSTIR in real-time volume rendering to achieve the fast and accurate
performance of volumetric data. Then, considering that the original ReSTIR GI
only resample the first indirect bounced samples of path tracing, Boissé et al. [4]
extended the sample reuse to the world space and allowed further light trans-
port bounces. Lin et al. [12] introduced a new theoretical generalized resampled
importance sampling (GRIS) in their ReSTIR PT, which selects samples from
independent samples in different domains. Moreover, they combined GRIS with
shift mapping to evaluate the final result to transform the different domains into
a unified integral field.

2.2 Path Space Filtering

Keller et al. [10] introduced the path space filtering method, which can enhance
the quality and efficiency of real-time path tracing in complex scenes. It smooths
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the radiance distribution by using the weighted average contribution of adjacent
samples within a specific range before image generation. Gautron et al. [8] pro-
posed a progressive real-time path space filtering method. They applied the
Fourier histogram descriptors to encode the statistical distribution of paths in
the frequency domain and used these descriptors to compare and match the
similarity of paths. However, storing and querying data in the path space is
expensive. Binder et al. [1] optimized the original path space filtering technique
by using a jittered spatial hashing data structure [21] to speed up the filtering
step and reduce computation costs. To efficiently map the path space filtering
process on the GPU, Binder et al. [2] proposed a massively parallel path space
filtering technique that splits the paths into smaller groups and allocates them
to multiple GPU cores. Each core then filters the paths independently and effi-
ciently using multi-resolution filtering techniques. The separate paths are then
combined using a parallel reduction method to generate the final image. Deng et
al. [7] proposed an iterative path space filtering method to identify and extract
relevant paths from a given graph based on certain criteria or constraints. The
process involves iteratively exploring the graph and filtering out less important
paths. This method helps to reduce noise and focus on the most important con-
nections in the graph.

Also, there are many other image restoration [18,23] and visual related meth-
ods. [14,24]

Our work filters the reservoir buffers generated by resampling in ReSTIR GI
in the sample space, instead of directly filtering the final radiance in the image
result. Our method can improve the quality of ReSTIR GI rendering and avoid
the over blur associated with directly filtering the final radiance in the screen
space.

3 Background

3.1 ReSTIR and ReSTIR GI

RIS is an effective method to approximate complex distributions that are difficult
to sample directly. It resamples the initial samples in order to obtain candidate
samples that are more consistent with the target distribution. Firstly RIS uses
a source distribution p to generate M candidate samples x = {x1, · · · , xM}
with proposal weight w(x). Then, it resamples N new samples yi ≡ xz, z ∈
{1, · · · ,M} from the candidate pool by a target distribution p̂, where the prob-
ability p(z | x) is proportional to w(x). The unbiased estimate of f given by
RIS:

〈Lr〉N,M
ris =

1
N

N∑

i=1

(
f(yi)
p̂(yi)

·
(

1
M

M∑

j=1

w(xij)

))
, (1)

where
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p(z | x) =
w(xz)∑M
i=1 w(xi)

with w(x) =
p̂(x)
p(x)

. (2)

Weighted reservoir sampling (WRS) [6] is a stream-based method that can obtain
a uniform random sample of all the items from a large population without storing
them in memory. The method only needs to store the selected samples in the
reservoir, making it very memory efficient.

ReSTIR enables RIS to be implemented on GPU through WRS. The method
employs chained reservoir resampling to share light samples between frames and
pixels. It repeatedly resamples the light sample candidate and applies further
spatial and temporal reuse to share information with relevant samples. This
reduces the cost of initializing new samples and improves the rendering quality.

ReSTIR GI is an extension of the ReSTIR method for global illumination
by using reservoirs to store and reuse the paths generated by path tracing.
Moreover, to exploit the temporal and spatial coherence, ReSTIR GI stores the
temporal and spatial coherence samples in temporal and spatial reservoir buffers
separately and shares them with existing samples in the initial sample buffer.
This allows us to share the radiance of important paths between samples in the
temporal or spatial reservoir buffer to update the final shading result.

In each frame, ReSTIR GI performs the following steps for each pixel. The
first step is to trace a ray from each visible point and record both the visible
point and the closest intersection as a sample point in the initial sample buffer,
along with their positions and face normals. The next step is to apply temporal
resampling. The sample in the temporal reservoir buffer of the current frame
is updated by selecting one candidate sample with a resampling weight from
the temporal reservoir of the previous frame. And the reprojection is applied to
find the corresponding sample in the last frame according to the motion vector.
Then, in the spatial reuse stage, the sample in the spatial reservoir is updated
by iterative choosing a sample of neighbor pixels with a resampling weight from
the temporal reservoir saved in the last frame. The final step is to shade the
pixel by combining the sampled path.

3.2 Path Space Filtering

The path space filtering approach uses a low discrepancy sequence to generate
path segments and computes the average radiance contribution. This approach
first selects a suitable vertex of the light transport path and replaces its radiance
contribution with the weighted averaging contributions of vertices inside the
filtering range.

Filtering with adjacent samples takes advantage of spatial coherence to
smooth the final rendering, although it introduces bias.
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4 Our Method

4.1 Overview of Our Method

Resampling methods make a significant contribution to sample reuse, which
can build a new sample distribution that is more consistent with the integrand
function. However, the noise introduced by rendering with a low sampling rate
still exists.

Fig. 1. Original ReSTIR GI and our method. (a) The original ReSTIR GI generates
initial samples by tracing ray paths to find the closest intersection in the scene. The blue
crosses represent the original initial samples. (b) ReSTIR GI performs spatiotemporal
reuse for samples, selecting one sample at a time from adjacent frames and pixels
for reuse. (c) Our method filters the initial samples to obtain the smoothed radiance
values of samples. The pink crosses represent the filtered samples, and the pink circles
represent the filtering range. (d) Our method applies the same sample reuse process as
ReSTIR GI. This allows more sample contributions to participate in the same reuse
process, thus reducing noise when only one single sample is reused. (Color figure online)

Figure 1(a)(b) shows the resampling process of ReSTIR GI. As we mentioned
in Sect. 3.2, ReSTIR GI only selects one sample to be reused for path reconnec-
tion for each time each pixel by temporal or spatial reuse. However, the samples
generated by 1 spp path tracing have high variance, and ReSTIR GI directly
performs reuse without filtering them. The reuse process can reduce noise to
some extent by sharing paths from existing samples, but the noise brought by
the original samples still exists in the reuse process.

We proposed a method that applies the sample-space filtering to ReSTIR
GI to reduce the noise of the initial sample buffer, as shown in Fig. 1(c)(d).
We use the weighted average radiance of neighboring samples to represent the
radiance of a single sample. Then, we apply spatial and temporal resampling on
the smoothed samples. Compared with ReSTIR GI, reusing the filtered sample
in this way can be seen as reusing a group of nearby samples at the same time.
However, the final shading result is optimized by reusing only one sample and
sharing one path for each pixel on each frame. This shared path is less noisy
than ReSTIR GI because it is smoothed by all the valid nearby paths around
the filtered sample.

To apply the sample-space filtering to smooth radiance contribution from
the reservoir buffer in ReSTIR GI, we assume that samples adjacent in the
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screen space are also adjacent in the path space. Moreover, since ReSTIR GI
only resamples indirect illumination and then accumulates the portion of direct
illumination, our filtering is only used for indirect illumination.

4.2 Sample Filtering

Based on our analysis in Sect. 3.2, both the temporal reservoir and spatial reser-
voir of ReSTIR GI store samples from the initial sample buffer generated by path
tracing. So we choose to filter the samples in the initial sample buffer, and the
average radiance contribution calculated in the sample space inspired by path
space filtering can be rewritten as:

(Lo)i =

∑xi+j∈B(n)
j=0 χB(n)(xi+j − xi) · wi+j · ci+j
∑xi+j∈B(n)

j=0 χB(n)(xi+j − xi) · wi+j

, (3)

where Lo is the outgoing radiance of the sample point, i and i + j is the sample
index, xi is the selected sample point in the initial sample buffer, xi+j is the
surrounding neighbor sample point within a circular range B(n). ci+j is the
radiance contribution of the sample point. To ensure the filtering performance
without reducing rendering speed, the filter range is not going to be set too large.
wi+j is the weight of the neighbor sample point. Due to the fact that we will
control the filter radius rn not to be set too large, it is usually within the size of
ten pixels. Inspired by original path space filtering, it is reasonable to directly
set wi+j ≡ 1 while limiting the filter radius to a small range, and doing so will
not cause over blur. So some complex methods for determining weights based
on distance, such as Gaussian filter, Bilateral filter, and irradiance interpolation
are not considered. χB(n) is a characteristic function to determine whether the
neighbor sample is within the circle B(n) with the radius of rn, which is computed
as follows:

χB(n)(xi+j − xi) :=

{
1 ||xi+j − xi||2 < rn

0 otherwise
. (4)

where

rn =
r0
nα

for α ∈ (0, 1). (5)

where r0 is the initial search radius. It should be noted that the radius we
discussed is measured in pixels in the screen space. n is the total number of
available samples within the range determined by the initial radius r0, and when
α = 1

4 turns out to be a robustly working choice.
It is also important to note that the data stored during path generation

can also be used to evaluate the validity of adjacent samples. And since our
method focuses on diffuse reflective materials, we compute the angle between the
normals of xi+j and xi. If the angle is below a threshold (||ni+j · ni||2 < 0.05),
the contribution of xi+j will be treat as a valid neighboring sample.



A ReSTIR GI Method Using the Sample-Space Filtering 85

The original path space filtering selects the initial radius proportional to the
length of the distance from the selected sample to the camera. Inspired by that,
we set the initial radius r0 according to the distance between the selected sample
point and the camera, which is computed as follows

r0 =
√S
f

d. (6)

We take the distance between the sample points in the reservoir and the
camera as the value of d, where d = ||xs, xc||2, xc is the position of the camera
in the scene. For simplicity, we set k =

√S
f , S is the footprint size and f is the

focal length. The value of footprint size is based on selected constants. Choosing
the footprint and focal length to define the parameters allows the filtering kernel
size to be adjusted with the zoom of the camera. The longer the focal length, the
smaller the field of view angle, the less footprint size and content presented on
the screen, and the results in more details of objects. Therefore, we can control
the initial radius by the footprint size, so that the initial radius can adapt to
different sizes of focal lengths.

Applying path space filtering to the sample space requires two range queries.
The first query searches the n valid samples within the circular area with initial
radius r0, while the second query searches for all neighbor samples within the cir-
cular with the optimized radius rn. Then, we use the neighbor samples searched
in the second query to filter the radiance values of the target sample. The com-
putation of the first query is complicated, especially for a large r0. Therefore, to
reduce the time cost in real-time applications, we designed an empirical formula
to obtain n by the r0 determined fixed range in the sample space as:

n = ncalculated = �πr0
2�. (7)

For some complex scenes, the value of r0 can be very large. Even with an
approximate estimation of n, the search range may contain hundreds of pixels.
Moreover, as the r0 increases, the search range will be closer to the real circle
(See Fig. 2). Therefore, we estimate the value of n using r0 through Eq. 7, but
still use Eq. 5 to calculate rn. The power calculation of the Eq. 5 can help us
reduce the error between our approximation of n to the actual value. Therefore,
this approximation of n can preserve the filtering algorithm’s denoising effect
and save the traversal cost in the first query.

5 Implementation

We implemented our algorithm in NVIDIA Falcor [9] ray tracer. Our filtering
and resampling process is performed after the original ReSTIR GI method stores
the corresponding sample information.

For efficiency, we treat samples adjacent in screen space as if they are also
adjacent in path space. This assumption is reasonable in general, except for edge
regions of objects and other specific cases.
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Fig. 2. Search range defined by r0. The gray and pink parts show the search range with
xi as the center and r0 as the radius, while the gray part represents the two central axes
of the circular area. In practice, r0 is usually very large reaching hundreds of pixels in
complex scenes. (Color figure online)

There are three reservoir buffers used in the ReSTIR GI. In order to balance
the filtering overhead with the rendering quality, we chose to filter the initial
sample buffer based on our experience and analysis.

For the search radius rn, we test the rendering performance for different
scenes and different rn. We find that filtering does not visually optimize the
original distribution when rn is too small (less than three pixels). Therefore, we
can adjust rn by the footprint size to avoid it being too small to achieve good
filtering results. However, it is still important to note that the value of rn should
not be too large (larger than ten pixels), as an excessively large filter range not
only affects rendering speed but may also lead to over blur.

6 Results

We evaluated our method in various scenes using an NVIDIA RTX 3070 GPU.
All the scenes were rendered at a resolution of 1920×1080 without applying any
post-processing effects.

We used a standard path tracer with next-event estimation for comparison.
Reference images are computed using the path tracer with high spp. Errors are
reported as the MSE and the PSNR. The rendering time that we report includes
the cost of sample generation, path tracing, ReSTIR GI, sample-space filtering,
and final shading.

6.1 Performance

In Fig. 3, we compared the rendering results of our method with those of path
tracing and ReSTIR GI for similar rendering times in different scenes. It can be
seen that our method can smooth the noise caused by Monte Carlo sampling.
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Fig. 3. Rendering results of standard path tracing, ReSTIR GI, and our method with
roughly equal rendering time. Two bouncing indirect lightings were rendered in each
scene. Our method exhibits a 1.1× to 5.6× improvement in MSE and a 1.1× improve-
ment in PSNR compared to ReSTIR GI.

We take the third scene as an example to demonstrate the time occupation of
the rendering pipeline, where 17.2 ms for trace rays and storing initial samples
of the direct and indirect illumination, 14 ms for the spatial resampling and
temporal resampling of the ReSTIR GI, 2.6 ms for our filter pass and the rest
of time for final shading. To summarize, our method outperforms ReSTIR GI,
delivering a smaller MSE ranging from 1.1× to 5.6× and a higher PSNR of about
1.1×, with only a slight increase in time consumption of approximately 12%.

The parameter setting of r0 significantly impacts the rendering results. Using
a small r0 cannot achieve good filtering effects, while a large value may give
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Fig. 4. Rendering results in different values of r0. Setting r0 to a small fixed parameter
(2*d) results in a large MSE, while a large fixed parameter (10*d) can significantly
increase the rendering time. Compared to the 2*d case, our method shows a significant
MSE improvement of 1.7× and 2.6× for focal lengths of 45 and 50, respectively. While,
compared to the 10*d case, our method can achieve a 1.17× average speed up.

Fig. 5. Comparison of our method, Bilateral filtering method, and OptixDenoiser. We
unify the filter radius of both to a relatively small value. The results show that our
method is 4.9× better than the Bilateral filtering method and 3.28× better than Optix
denoiser in MSE.

better results, but costs more time. In Fig. 4, we compared the rendering results
obtained using Eq. 6 with using two fixed parameters. It can be found that using
Eq. 6 reduces the MSE by 1.7× to 2.6× compared to the two fixed values. Using
flexible parameters in Eq. 6 also shows a PSNR of 1.1× higher than using a
small fixed parameter, and is significantly rendering faster than using the large
fixed value r0.
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Fig. 6. Comparison of convergence results. (Left) The result of the convergence of our
method. (Right) The reference result. Our method shows the MSE of 1.16e−3 compared
to the reference.

Simultaneously, we also compare our method with post-processing denoising
methods, as shown in Fig. 5. We consider two existing denoising methods, Bilat-
eral filtering and the OptixDenoiser in Falcor. The Bilateral filtering method
directly filters the final shading radiance resulting in pixel space generated by
ReSTIR GI so it inevitably leads to obvious over blur and brings great bias. The
OptixDenoiser is a model trained by a neural network using tens of thousands of
images rendered from one thousand 3D scenes. However, from the result, it can
be seen that its noise reduction effect blurs the geometric shape and material of
the model and still has a high MSE loss. Our method can effectively avoid these
unfavorable situations.

Figure 6 shows the bias between the convergence result of our method and
the reference. Our method can effectively converge and ensure a smaller bias
compared with the reference.

6.2 Limitations

Storing samples in reservoirs in screen space is easy to query and update. How-
ever, the drawback is that we mainly focus on the filtering effect of the diffuse
material scene, so the reused samples may not be suitable for specular or glossy
objects in the scene. Figure 7 shows the performance of our method in the glossy
scene. Even though the result of using filtering shows a smaller MSE than 1 spp
path tracing and ReSTIR GI. However, in terms of visual effects, filtering tends
to smooth out the results, making glossy objects lose high-frequency reflection
information.
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Fig. 7. Performance of our method in the glossy scene. Although our method shows a
smaller MSE of 3.13× compared with ReSTIR GI and 25.5× compared with 1 spp path
tracing. However, our result has a significant difference from the reference. Visually,
the result obtained by our method tends to be smoother and loses the glossy properties
of the material itself.

7 Conclusion and Future Work

We proposed a lightweight and efficient sample-space filtering method of ReSTIR
GI that filters the sample distribution before reusing them. Our method substan-
tially reduced the noise problem that cannot be solved by resampling in path
tracing. In our test scenes, our method outperformed ReSTIR GI with 1.1× to
5.6× MSE reduction and 1.1× PSNR improvement with only 12% rendering
time increasing. Compared with path tracing, our method can achieve 972.3×
MSE reduction and 2.7× PSNR improvement.

However, in this paper, we only consider the diffuse reflective materials in
the scene. Therefore, important future work is to design an adaptive filter kernel
for different materials in the scene to make the method more robust for com-
plex scenes. Moreover, extending our method to further bounces is also worth
researching since our method currently only filters the global illumination of
two bounces limited by ReSTIR GI. Another interesting direction is to try to
combine our method with image space denoising methods such as SVGF [19] or
some supersampling methods like neural supersampling [22].
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Abstract. Multi-object tracking (MOT) is an important and represen-
tative task in the field of computer vision, while tracking-by-detection is
the most mainstream paradigm for MOT, so that target detection qual-
ity, feature representation ability, and association algorithm greatly affect
tracking performance. On the one hand, multiple pedestrians moving
together in the same group maintain similar motion pattern, so that they
can indicate each other’s moving state. We extract groups from detec-
tions and maintain the group relationship of trajectories in tracking. We
propose a state transition mechanism to smooth detection bias, recover
missing detection and confront false detection. We also build a two-level
group-detection association algorithm, which improves the accuracy of
association. On the other hand, different areas of the tracking scene have
diverse and varying impact on the detections’ appearance feature, which
weakens the appearance feature’s representation ability. We propose a
self-adaptive feature fusion strategy based on the tracking scene and the
group structure, which can help us to get fusion feature with stronger
representative ability to use in the trajectory-detection association to
improve tracking performance. To summary, in this paper, we propose
a novel Group Perception based Self-adaptive Fusion Tracking (GST)
framework, including Group concept and Group Exploration Net, Group
Perception based State Transition Mechanism, and Self-adaptive Feature
Fusion Strategy. Experiments on the MOT17 dataset demonstrate the
effectiveness of our method. The method achieves competitive results
compared to the state-of-the-art methods.

Keywords: Multi-object tracking (MOT) · Group perception ·
Self-adaptive · Feature fusion

1 Introduction

Multi-object tracking (MOT) is an important and representative task in the field
of computer vision [1], which is widely used in security and safety, video under-
standing, autonomous driving and many other fields. Thanks to the significant
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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improvement in object detection methods, such as DPM [2], SDP [3] and FRCNN
[5], nowadays, tracking-by-detection is the most mainstream MOT paradigm,
which transforms tracking into data association [6], so that target detection
quality, feature representation ability, and association algorithm greatly affect
tracking performance [8]. When attempting to further improve tracking perfor-
mance, it is a feasible idea to start from these three aspects.

As shown in Fig. 1(a), there are multiple pedestrians moving together with
the same path in the tracking scene, which we called a tracking group [13].
The targets in the same group maintain a very similar motion pattern, so that
when one target disappears, other remained targets can help to indicate whether
the target is temporarily lost (like target 16 and 17) or permanently left from
the tracking scene (like target 18). This inspires us to improve tracking per-
formance through both target detection quality and association algorithm. We
extract groups from detections and maintain the group relationship of trajecto-
ries in tracking. Based on groups among detections, we can smooth detection
bias, recover missing detection and confront false detection, which can further
improve tracking performance through target detection quality. Based on groups
among trajectories, we can build a two-level group-detection association algo-
rithm, which achieves matching from collective to individual, from group to
detection. With this association algorithm, we can further improve the accuracy
of association, and improve tracking performance through association algorithm.

In previous methods, most of them use motion feature and appearance feature
to describe detection. As shown in Fig. 1(b), different areas of the tracking scene,
due to various factors such as scene background and lighting intensity, have
diverse and varying impact on the detections’ appearance feature, which weakens
the feature representation ability. When targets pass through such different areas
in sequence, their appearance features often show significant difference and are
hard to be associated with each other. This inspires us to improve tracking
performance through feature representation ability. We propose a self-adaptive
feature fusion strategy based on the tracking scene and the group structure.
Based on the group structure and the association status of group members in the
pre-tracking, we determine whether appearance features in current association
are reliable. We further balance appearance information and motion information
by a self-adaptive strategy, which can help us get fusion feature with stronger
representative ability to use in the trajectory-detection association to improve
tracking performance.

In this paper, we propose a novel Group Perception based Self-adaptive
Fusion Tracking (GST) framework.

– Based on the similarity of motion patterns, we define the concept of Group
in tracking. We design a special graph convolutional network called Group
Exploration Net to extract groups from detections.

– Based on the extracted groups, we propose a State Transition Mechanism to
maintain group structure, smooth detection bias, recover missing detection
and confront false detection.



Group Perception Based Self-adaptive Fusion Tracking 95

Fig. 1. Our main innovation points: (a) We extract groups from detections and main-
tain the group relationship of trajectories in tracking. (b) We propose a self-adaptive
feature fusion strategy based on the tracking scene and the group structure.

– We also design a Self-adaptive Feature Fusion Strategy to obtain a better
fusion of detection’s appearance and motion information for stronger repre-
sentation capability and better tracking performance.

2 Proposed Method

2.1 Overview

Some excellent previous works introduce advanced graph neural network or
graph fusion network to improve tracking accuracy, such as [9–11] and [12].
These works prove the meaning of introducing graph neural network and multi-
feature fusion in tracking and provide a foundation for constructing our method.
Our tracking-by-detection paradigm is the mainstream paradigm in the field of
MOT, which regards the tracking problem as the association problem between
detections. Different detections are linked to build track proposals frame-by-
frame, and the trackers finally link the best proposals as trajectories to represent
objects.

In this paper, we propose a novel Group Perception based Self-adaptive
Fusion Tracking (GST) framework, which also follows the tracking-by-detecting
paradigm as well. Different from the previous works, our GST framework intro-
duces the concept of group in tracking, correcting detection errors through
groups, and design self-adaptive feature fusion strategy in association.

As shown in Fig. 2, each node represents a detection in a frame, and the links
between nodes form trajectories of different objects. Firstly, we use a detector
to obtain the detections in the frame frt, such as detection d1 to d7. Then,
the Group Exploration Net is used to extract groups from detections (in step
1), such as Group G1 composed of d2 to d4, and Group G2 composed of d5
and d6. Based on the group relationship between detections, the State Tran-
sition Mechanism could smooth detection bias, recovers missing detection and
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confronts false detection (in step 2), as d8 added in G2. Since trajectories are
composed of detections frame-by-frame, they can obtain and maintain group
relationship from their detections. Considering group structure of trajectories,
finally, we performs the Self-adaptive Feature Fusion Strategy (in step 3). Based
on the trajectories’ internal information including group relationship, we decide
whether to use appearance feature in the data association of frame frt, as well
as the proportion of appearance feature and motion feature.

Fig. 2. The general overview of our GST framework.

2.2 Group Concept and Group Exploration Net

It has been proved by [21] that the relation between objects is a core clues for
MOT. Inspired by them, we introduce the group concept into the tracking field,
and build a social relationship graph G in tracking scene, using detections as
the nodes of the graph. We define the group in tracking scene as a collection
of multiple targets with similar motion patterns and stable relative positions.
Nodes corresponding to targets in the same group are connected by edges in
G. In real world, moving objects and scene background change smoothly in
adjacent frames, indicating that the motion features of the same object in con-
secutive frames can represent its motion pattern. Considering the complexity
of possible target-target interaction and target-background interaction, we use
both appearance feature and motion feature. Before learning group relationship,
an adjacency matrix of graph G, consisting of 1/0, is used to indicate whether
two targets are related to each other, which means whether they are in the same
group.

In this paper, we design our Group Exploration Net (GEN) based on graph
convolutional network and exploit its ability to process graph structure data
by aggregating high-level social relationship information from adjacent nodes
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to integrate information in the tracking social relationship graph. N targets in
tracking scene are regarded as N nodes in graph G, and each target has an M-
dimensional feature, so the graph G has a feature matrix FN×M, and their group
relations are represented by an adjacency matrix AN×N. The feature matrix
FN×M and the adjacency matrix AN×N are the inputs to the GEN model, and
the propagation pattern between the intermediate layers is shown in Eq. 1.

F (l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2 F (l)W (l)

)

= ReLU
(
D̃− 1

2 (A + I)D̃− 1
2 F (l)W (l)

) (1)

In Eq. 1, Ã is the sum of adjacency matrix A and identity matrix I, D̃ is the
degree matrix of Ã, F (l) and F (l+1) respectively represent the feature matrix
of the l and l + 1 layers of GEN model. In this paper, we design and train the
two-layer GEN model to propagate interaction information, which means that
l = 1 in Eq. 1, and use ReLU as the activation function.

f l
i =

∑
j∈[0,N),j∈N

vl−1
j eij∑

j∈[0,N),j∈N
eij

(2)

Equation 2 shows that social interactions pass along edges in the graph, giving
rise to the intermediate feature f l

i of node di. We adopt a common practice in
group network that the aggregated feature from adjacent nodes of di is adjusted
by weights of all its adjacent nodes, to avoid bias due to the different adjacent
number owned by different nodes. l ∈ {0, 1} indicates the depth of the GEN
network we use.

vl−1
j = ReLU(fC(f l−1

j )) (3)

Equation 3 shows the method for accumulating information to update the
state of node di. We use a fully connection layer fC for mapping with ReLU
activation, which can take any differentiable mapping function from tensor to
tensor together. l ∈ {0, 1} indicates the depth of the GEN network we use.

2.3 Group Perception Based State Transition Mechanism

The group maintains a stable structure and similar motion pattern over a short
period of time, which allows us to infer the state of target in the group through
its peer members, e.g. whether it is still in the tracking scene but just invisible,
or has left. We define five different tracking states for a single object, and then
obtain our state transition mechanism by analysing the interaction of the group
members’ states and the transfer relationships between the different states.

Table 1 shows the states defined and used in our state transition mechanism.
For each object in the tracking scene, its state varies between these five states.
We use d0 as the leading role to give the definition of these states. d0, d1, and
d2 together form group G.
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Table 1. The states in state transition mechanism.

State Symbol Description

No-group S0 d0 appears without group members.

Activated S1 d0 appears with group members.

Obscured S2 d0 disappears, but at least one group member remains.

Slumbering S3 d0 and all group members disappear temporarily.

Disappearing S4 d0 and all group members keep disappearing.

Table 2 shows the four types of object changes defined and used in our state
transition mechanism. These changes are possible for each object in the tracking
scene. For the purpose of scientific description, we evaluate the entropy level of
these four changes. Change with higher level is more active and represents more
group relationship. Ci = n in Tab. 2 indicates that the level of change Ci is n.

Table 2. The changes in state transition mechanism.

Change Symbol Description

Appear C0 = 2 d0 appears in the scene.

Group Founded C1 = 3 Find the group relationship between d0 and other objects.

Group Cancelled C2 = 1 Group relationship between d0 and other objects disappears.

Disappear C3 = 0 d0 disappears from the scene.

In order to obtain more general conclusions, we introduce the concept of peer
members’ change with symbol chp. For d0, its change is represented by ch0, and
its peer members are d1 and d2, whose changes are ch1 and ch2. As shown in
Eq. 4, peer members’ change chp is determined by ch1 and ch2.

chp = {chi | di ∈ G and ∀dj ∈ G, dj �= di, chi ≥ chj}
= max{ch1, ch2}

(4)

The process of transferring from state Si to state Sj is regarded as a basic
state transition action, donated as aij . The state transition action is determined
by object change ch0 and peer members change chp, as expressed in Eq. 5.

aij : Si
<ch0,chp>−−−−−−−→ Sj

(5)

The relationship between Si, aij and Sj is shown in Table 3. The two states
connected by the arrow are Si and Sj respectively, and the arrow points from Si

to Sj . The event on the arrow represents aij = {ch0, chp}. N means no change
happens for a fixed short period of time Twait.
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Table 3. The complete state transition mechanism.

Si
aij .5

Sj

ch0 chp

- C0 - S0

S0 C1 - S1

S0 C3 - S4

S1 C2 - S0

S1 C3 - S2

S1 - C3 S3

Si
aij .5

Sj

ch0 chp

S2 C0 - S1

S2 - C3 S4

S2 N N S4

S3 - C0 S1

S3 C3 - S2

S3 N N S0

2.4 Self-adaptive Feature Fusion Strategy

In the tracking-by-detection framework, the problem of assigning ID labels to
detections is transformed into the problem of data association between trajec-
tories and detections, meaning that the similarity measurement between tra-
jectories and detections is very important. We use smt

ij to denote the result
of similarity measurement for trajectory T t−1

i and detection dtj . Trajectory
T t−1
i = {d1, d2, · · · , dt−1} consists of a sequence of detections from frame fr1 to

frame frt−1, where di denotes the detection of T t−1
i in frame fri. Detection dt−1

also belongs to a group Gt−1 in frame frt−1. Detection dtj is one of the detections
in frame frt. In the previous methods, smt

ij typically integrated appearance and
motion information using subjective weight setting w, as shown in Eq. 6.

smt
ij = w ∗ fapp(T t−1

i , dtj) + (1 − w) ∗ fmov(T t−1
i , dtj) (6)

In Eq. 6, fapp(T t−1
i , dtj) and fmov(T t−1

i , dtj) represent the appearance mea-
surement and the motion measurement between trajectory T t−1

i and detection
dtj respectively. As shown in Eq. 7, the appearance measurement fapp(T t−1

i , dtj)
between trajectory T t−1

i and detection dtj is defined as

fapp(T t−1
i , dtj) =

F i
app · F j

app

||F i
app|| · ||F j

app||
(7)

F i
app means the appearance feature of trajectory T t−1

i in frame frt−1, and
F j
app means the appearance feature of detection dtj in frame frt.

As shown in Eq. 8, the motion measurement fmov(T t−1
i , dtj) between trajec-

tory T t−1
i and detection dtj is defined as

fmov(T t−1
i , dtj) = p(F j

mov|fp(F i
mov)) (8)

F i
mov is the motion feature of trajectory T t−1

i in frame frt−1, fp(F i
mov) is

the position prediction of this trajectory in frame frt, and F j
mov is the motion
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feature of detection dtj in frame frt. Equation 8 is the probability that trajectory
T t−1
i will be at the position represented by detection dtj in frame frt.

In our method, we take advantage of the stable group structure to replace
subjective weight settings with self-adaptive feature fusion strategy for better
fusion of appearance and motion, as shown in Eq. 9.

new smt
ij =wt−1

i ∗ fapp(T t−1
i , dtj)+

(1 − wt−1
i ) ∗ fmov(T t−1

i , dtj)
(9)

wt−1
i is the appearance-motion ratio of trajectory T t−1

i for data association in
frame frt, determined by the nature of the trajectory itself. Due to the fact that
trajectory T t−1

i is only composed of detection from frame fr1 to frame frt−1

before data association in frame frt, wt−1
i is only determined by the state of the

trajectory after completing data association in frame frt−1, or more precisely,
by the group structure of the trajectory at this time.

wt−1
i =

{
sin (coupling) fapp(T t−2

u , dt−1
v ) ≥ δ

0 fapp(T t−2
u fdt−1

v ) < δ
(10)

coupling =
π

2
− π

4
∗

∑
T t−1
k ∈Gt−1 fmov(T t−2

m , dt−1
n )∑

T t−1
k ∈Gt−1

(11)

In frame frt−1, trajectory T t−1
i belongs to a group, denoted as Gt−1. We

split trajectory T t−1
i in frame frt−1 into a combination of trajectory T t−2

u in
frame frt−2 and detection dt−1

v in frame frt−1, where T t−1
i = T t−2

u + dt−1
v . For

other trajectories T t−1
k in group Gt−1, there is a similar relationship T t−1

k =
T t−2
m + dt−1

n .
As described above, in the case of fapp(T t−2

u , dt−1
v ) < δ, the trajectory-

detection association in frame frt is performed based on motion informa-
tion only, without considering appearance information. In the case when
fapp(T t−2

u , dt−1
v ) ≥ δ, the association needs to consider both appearance and

motion aspects. δ is the association threshold. As shown in Eq. 11, when the
peer members of trajectory T t−1

i in group Gt−1, like T t−1
k in Gt−1, have high

motion matching degrees in their historical tracking process, which means high
fmov(T t−2

m , dt−1
n ) for any T t−2

m and dt−1
n , T t−1

i will increase the ratio of motion
feature in the association.

3 Experiments

3.1 Implementation Details

Dataset and Metrics: In our experiments, we test baseline and our method
using MOT17 dataset [18], which is the most widely used datasets in the MOT
field. We evaluate and compare our method with TrackEval, the official eval-
uation tool provided by MOT Challenge, focusing on metrics such as MOTA↑
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(multi-object tracking accuracy) [19], IDF1↑ (IDF1 score) [19], HOTA↑ (higher
order tracking accuracy) [23] and IDs↓ (identity switches) [19]. MOTA mainly
reflects the most tracks are tracked or not, which is easily affected by the total
number of detections. IDF1 concerns whether a target is labeled with a correct
ID. HOTA incorporates measuring the localisation accuracy of tracking results
which isn’t present in either MOTA or IDF1. IDs pays attention to the total
number of identity switching. To ensure the reliability of evaluation results and
the fairness of comparison results, all methods are tested using the public detec-
tions provided by the dataset.

Training: We further divided MOT17 training set into training set and val-
idation set, the model is trained with MOT17 training set, and the ablation
experiment is conducted with validation set. When the change of relative dis-
tance is less than 50% of the average target speed between the adjacent frames,
detections are divided into the same group. We randomly shifting bounding
boxes, randomly delete vertices and interpolate between tracklets (trajectory
fragments) to simulate the deviation and missing detection. We obtain positive
samples through the heuristic algorithm and set the ratio of positive and neg-
ative samples to 1:3. We train for 6000 iterations with a learning rate 5 · 10−4,
and weight decay term is 10−4. By searching and comparing the parameters in
training set, we obtained the optimal parameters.

Parameters: By searching and comparing the parameters in training set, we
obtained the optimal parameters. We use various excellent tracking algorithms
as our baseline, among which the experiment results in this chapter are based on
StrongSORT [24], a novel and powerful MOT algorithm and is built on Deep-
SORT [25]. In the tracking framework, we set the state transition waiting time
to 5 frames, the association threshold to 0.8, and all other parameters remain
the same as the baseline.

3.2 Ablation Study

Verification of each component in our method on MOT17 training set is shown
in Table 4. Since Group concept and Group Exploration Net are the most funda-
mental design in our tracking framework, using this design alone could not affect
the results, we don’t test the result of using this design only. In Table 4, S denotes
the Group Perception based State Transition Mechanism, and W denotes the
Self-adaptive Feature Fusion Strategy.

Table 4. Ablation study results on MOT17 training set.

Method MOTA↑ IDF1↑ HOTA↑ FP↓ FN↓ IDs↓
Baseline 75.0 79.5 64.6 469 27319 202

+S 75.1 80.8 65.1 443 27349 204

+S + W 75.2 81.7 65.8 437 27327 170



102 Y. Xing et al.

As shown in row 3 in Table 4, the increase of IDF1↑ (from 79.5 to 80.8) and
HOTA↑ (from 64.6 to 65.1) proves the effectiveness of our state transition mecha-
nism. It proves that by maintaining the group structure and inferring the status
of its members based on the group structure, we can smooth detection bias,
recover missing detection and confront false detection, which means improving
tracking performance through target detection quality; we can also build a two-
level group-detection association algorithm, which means improved association
strategy, thereby improving the tracking accuracy. Figure 3(a) shows the track-
ing results of baseline and method +S. It can be seen that using our method
can maintain the stability of the group during the tracking process, thereby
increasing association accuracy and reducing ID Switch.

As shown in row 4, by using the self-adaptive feature fusion strategy simul-
taneously, FP and IDs are significantly reduced, while MOTA, IDF1 and HOTA
increase. It proves that by adaptively fusing multiple target features in tracking,
the representation ability of target feature can be enhanced, thereby improving
the adaptability of our tracking model to complex and changing scenes, and
improving the tracker’s robustness and accuracy. Compared with baseline, in
the final result as shown in the fourth row, it is obvious that MOTA, IDF1 and
HOTA raise by 0.2, 2.2 and 1.2 respectively, while FP and IDs reduce by 32/469
and 32/202 respectively. Figure 3(b) shows the tracking results of baseline and
our tracking framework +S + W . It can be seen that using our tracking frame-
work can achieve more stable tracking and obtain more complete trajectory.

Fig. 3. The tracking results of baseline and our tracking framework.

3.3 Benchmark Evaluation

We compare our method with state-of-the-art methods on MOT17 benchmark.
In order to make a fair comparison and better evaluate the effect of our tracking
framework, all selected and listed methods use the public detections provided
by the benchmark. As shown in Table 5, We choose five state-of-the-art meth-
ods (as shown in row 2 to 6) from MOT Challenge website to compare with
our whole method (as shown in row 7, equals to method +S + W in Table 4).
The results show that our method conducts state-of-the-art performance among
other methods. We achieve the highest MOTA, IDF1 and HOTA by 81.7, 81.8
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and 66.1, 0.7, 1.8 and 2.1 higher than the second result given by GGDA respec-
tively. Although the FN of our method is not the best, but our methods have
the best (lowest) FN+FP by 102165. It proves that the group based data asso-
ciation strategy is conducive to achieve higher tracking accuracy. Our method
and GGDA have achieved the best IDs, with a gap of only 33/1335, which shows
our method’s ability in recovering missing detection, confronting false detection
and reducing ID switches. The results can be found on the official website of the
MOTChallenge.

Table 5. Comparison with state-of-the-art methods on MOT17 benchmark.

Method MOTA↑ IDF1↑ HOTA↑ FP↓ FN↓ IDs↓
STC [26] 75.8 70.8 59.5 33833 99074 3787

VAI [27] 77.0 74.4 61.0 31648 94966 3315

ppb [28] 79.4 76.7 62.9 31716 82257 2316

BoT [29] 79.6 77.3 63.1 26709 86424 1998

GGDA [21] 81.0 80.0 64.0 25786 79882 1335

Ours 81.7 81.8 66.1 30789 71376 1368

4 Conclusion

This paper aims to solve the difficulties in MOT in complex scenes with graph
network based method. In this paper, we propose a novel Group Perception
based Self-adaptive Fusion Tracking (GST) framework, including Group con-
cept and Group Exploration Net, Group Perception based State Transition
Mechanism, and the Self-adaptive Feature Fusion Strategy. Experiments on
the MOT17 dataset verify the effectiveness of different components of our
method. On the premise of fully respecting of previous state-of-the-art works, our
method achieves better results in benchmarks over other methods. The proposed
method has applications in the fields of security and safety, video understanding,
autonomous driving and so on.
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Abstract. Crowd counting is a fundamental and challenging task in com-
puter vision. However, existing methods are relatively limited in dealing
with scale and illumination changes simultaneously. To improve the accu-
racy of crowd counting and address the challenges of illumination and scale
changes, we adopt the concept of crowding degree information. Due to the
fact that a count map can accurately obtain the population in an image
and solve the occlusion problem, we use the count map as a specific form of
crowding degree information and propose a new cross-modal information
aggregation and distribution model for crowd counting. We first input the
crowding degree information into LibraNet and modify it with Information
Aggregation Transfer (IAT) and Information Distribution Transfer (IDT)
modules to obtain a count map. Then, light information, thermal informa-
tion and crowding degree information are respectively input into the net-
work through RGB image, themal image, and count map. A more accurate
density map can be obtained through multiple convolution operations and
IADMprocessing to improve counting accuracy. Finally, the densitymap is
integrated to obtain the number of people. Experiments demonstrate that
our methods provide superior quality and higher parallelism. Therefore,
we can obtain higher-accuracy density maps by using light information,
thermal information, and crowding degree information.

Keywords: Crowd counting · Cross-Modal · Density Map · Crowding
Degree Information

1 Introduction

Crowd counting is a highly important task that has received widespread atten-
tion in recent years due to its significant potential applications in traffic man-
agement, video surveillance, social distance detection, and other fields with high
application demand. As a method of crowd scene analysis, crowd counting has
rapidly evolved from simple pedestrian counting to crowd density map [1]. A
density map displays people’s spatial distribution and quantity information in
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a picture, allowing for the total number of people by integrating the density
map. The rapid development of crowd counting can be attributed to novel con-
volutional neural networks [2–4] and challenging datasets [5–7]. However, crowd
counting still faces challenges related to illumination and scale changes.

Fig. 1. The choice of Gaussian kernel σ, where (a) is the original image; (b) shows that
the smaller Gaussian kernel σ only contains parts; (c) depicts that the larger Gaussian
kernel σ contains the background; (d) shows that the geometry-adaptive kernel σ [7]
could not cover all heads precisely.

The problem of illumination change in crowd counting is a practical issue
in real-world application scenarios. To address this problem, Liu et al. [8] pro-
posed a method that leverages RGB image and thermal image to capture the
complementary aspects of multimodal data, which helps to overcome the effects
of illumination change, and proposed the RGBT-CC dataset [8]. In addition to
illumination change, scale change is another challenge in crowd counting. Due
to the irregular distribution of the crowd, differences between individuals and
the camera angle, people in an image are not equal, and the same person in a
picture from different angles or at different times may exhibit variation. This
inconsistency can cause issues when selecting the Gaussian kernel σ for the den-
sity map, as an inappropriate kernel may only cover part of the target (mainly
the person’s head) or even the background, resulting in a degradation of the
model’s generalization performance, as shown in Fig. 1.

To address the aforementioned problems, we adopt a concept called “crowd-
ing degree information [9]”. This information shows the approximate number of
people in each patch with the same number of pixels in a given image. We find
that patches with the same number of pixels have the same crowding degree and
the same scale level. Furthermore, we adopt the count map as a specific form
of the manifestation of crowding degree information. The count map is more
robust against Gaussian kernel variations within a certain interval [10]. Finally,
we develop a deep reinforcement learning model [11] for crowd counting using
LibraNet [12] to build count maps. While our methods do not require highly
accurate count maps, it still enables the approximate count of each patch to be
reflected, which allows for the identification of crowded or sparse patches (i.e.,
those with the same number of pixels). This is precisely what we need for obtain-
ing crowding degree information. By using count maps, we can determine each
patch’s relative change of scale and obtain crowding degree information.
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To tackle the issues of illumination and scale changes simultaneously, we
propose a new cross-modal information aggregation and distribution model for
crowd counting. This model can accept RGB image, thermal image, and count
map as a set of input models to obtain a more accurate density map. In summary,
the major contributions of the paper are shown as follows:

1. We adopt the concept of crowding degree information to handle the prob-
lems of illumination and scale changes [9]. To obtain an accurate count of the
population in an image, we adopt the count map as its concrete representa-
tion, which can reflect the approximate count of each patch and the crowding
degree information.

2. Based on the crowding degree information obtained from the count map, we
develop a cross-modal information aggregation and distribution (IADM [8])
model for crowd counting. This model is composed of Information Aggrega-
tion Transfer (IAT) and Information Distribution Transfer (IDT) modules [8],
inputting RGB image, thermal image and count map, generating a detailed
density map.

3. Our IADM model boasts superior quality, higher parallelism, and shorter
training time. Compared to existing crowd-counting methods, our model out-
performs all others on the RGBT-CC dataset. Moreover, our methods still
exhibit the best performance on other crowd-counting datasets.

2 Related Work

Crowd counting methods can be broadly categorized into three types: detection-
based, regression-based [13], and CNN-based methods. Of these, the CNN-based
method has emerged as the predominant approach in recent years, thanks to its
high accuracy and robustness.

CNN-based crowd-counting methods typically employ a multi-task frame-
work [14] and multi-level context feature fusion [15–18] to achieve high accuracy.
To further improve the precision, some researchers have incorporated perspec-
tive mechanism [19], Bayesian loss [20], the combination of attention map and
density map [21–23], and count map [10,12] into crowd counting.

Perspective was initially used to standardize the features extracted from fore-
ground objects [24]. In CNN-based crowd-counting methods, perspective infor-
mation is typically utilized as a preprocessing step to generate density maps
[7,25], but it is rarely encoded directly into the network architecture. Yan et al.
[19]. employed automatic coding to learn the perspective of an image, realizing
a more accurate estimation under the perspective mechanism. However, calcu-
lation errors may occur due to the precision of the perspective transformation
being affected by image quality.

Ma et al. [20] proposed Bayesian loss (BL) for crowd counting. Their approach
involved constructing a probability model of density contribution from point
annotations and applying it to crowd counting. However, BL may struggle to
cope with false positives in the background.
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Miao et al. [26] introduced the panoramic attention convolutional neural net-
work (PACNN), based on multi-column architecture with discrete scale. PACNN
produces two predicted density maps from two backbone networks. The two
predicted density maps are given weights generated from perspective and then
combined as final estimates. In contrast, Liu et al. [21] used a multiple extended
convolution structure [22] to generate an attention map, and then utilized
deformable convolution [23] to generate the estimated density map. However,
the size of the two-dimensional Gaussian kernel used to represent the estimated
human size in the density map directly impacts the final counting results, result-
ing in a significant error between the estimates and ground truth in crowded
scenes, which cannot be fully eliminated.

Due to the significant estimation error that density maps can incur in dense
scenes, some researchers have shifted their focus to count maps. This relatively
new approach was first introduced by Liu et al. [10]. However, the error caused
by the size of the Gaussian kernel in the count map is considerably smaller than
those in the density map. Subsequently, Liu et al. [12] designed a more precise
model by using deep reinforcement learning methods after generating a count
map.

While count maps can be more robust to the Gaussian kernel, there are still
some limitations. One significant drawback is that the size of the count map is
much smaller than that of a density map. No matter how much the size of the
count map can be enlarged by post-processing, the spatial information at the
pixel level is not as detailed as that of a density map. This is a critical disad-
vantage of a count map. Therefore, their effectiveness in practical applications
is not ideal.

In our work, we utilize LibraNet [12] to produce a count map, which is then
combined with the RGB image and thermal image and inputted into the CNN.
By employing multiple convolution operations and IADM processing, we obtain
a more accurate density map that significantly reduces estimation errors. Exper-
iments demonstrate that our methods exhibit stronger robustness when counting
in dense scenes.

3 Methods

In this section, we present the main body of our research and propose a novel
network architecture.

3.1 Overview

In this work, we propose a new cross-modal information aggregation and dis-
tribution model. Light information, thermal information, and crowding degree
information are three-dimensional indicators for crowd counting, and they are
captured by the RGB image, thermal image, and count map, respectively. We
first train the LibraNet [12] model and modify it with Information Distribution
Transfer (IDT) to obtain the count map. Then three kinds of images are input
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into the network as a set of input modes, and a more accurate density map can
be obtained through multiple convolution operations and IADM [8] processing.
Finally, we integrate the density map [1] to estimate the number of people in the
scene. As shown in Fig. 2, the thermal image is consistent with the annotation of
the RGBT-CC dataset, so we take a thermal image as a training sample instead
of an RGB image.

Fig. 2. The annotation point map is formed by the fusion of (a) RGB image and (b)
thermal image. The annotation points are consistent with the thermal image.

3.2 Network Structure

Fig. 3. The proposed architecture with BL as a backbone. Convi j indicates j convo-
lution layers with i channels in each layer. The count map is generated by LibraNet
[12]. IADM is composed of Information Aggregation Transfer (IAT) and Information
Distribution Transfer (IDT). Different from CMCRL [8], our IADM inputs features
from the branches of RGB image, thermal image, count map, and modality-shared
branch. The final output is the modality-shared feature.

Our framework is shown in Fig. 3, each layer is composed of four parallel
backbone networks and a module called Information Aggregation-Distribution
Module (IADM). The vertex backbones are designed for modality-specific repre-
sentation learning of the RGB image, thermal image, and count map, while the
middle backbone is used for learning modality-shared representation. To exploit
multi-modal information hierarchically, the IADM is embedded after different
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Fig. 4. Structure of IAT and IDT. [8]

layers. As illustrated in Fig. 2, the RGB image is not completely consistent with
the thermal image due to the different types of electronic sensors. Despite the
short interval, these differences can be compensated for by leveraging contextual
information [8]. Following the method of context information extraction in the
literature [8], at the lth level (l = 1, . . . , L), we apply a 2l−1 × 2l−1 max-pooling
layer to generate h

2l−1 × w
2l−1 feature F i,j,l, which is then upsampled to h ×w by

nearest neighbor interpolation. Finally, the context information Ii,j ∈ Rh×w×c

of feature F i,j is given by the following expression:

Ii,j = Conv1×1(F i,j,1 ⊕ F i,j,2 ⊕ · · · ⊕ F i,j,L), (1)

where ⊕ denotes feature concatenation and Conv1×1 is a 1 × 1 convolutional
layer.

Information Aggregation Transfer(IAT). We input the branch of RGB
image, thermal image, and count map in IAT. The formula is as follows:

Ii,j
r2s = Ii,j

r − Ii,j
s , ωi,j

r2s = Conv1×1(I
i,j
r2s),

Ii,j
t2s = Ii,j

t − Ii,j
s , ωi,j

t2s = Conv1×1(I
i,j
t2s),

Ii,j
c2s = Ii,j

c − Ii,j
s , ωi,j

c2s = Conv1×1(I
i,j
c2s),

F̂ i,j
s = F i,j

s + Ii,j
r2s � ωi,j

r2s + Ii,j
t2s � ωi,j

t2s + Ii,j
c2s � ωi,j

c2s, (2)

where Ii,j
r ,Ii,j

t and Ii,j
c are the features corresponding to the RGB image, thermal

image, and count map, respectively, calculated by Formula 1; ωi,j
r2s, ω

i,j
t2s, ω

i,j
c2s are

the gating weights, implemented by 1×1 convolutional layers, and � is element-
wise multiplication. Through this mechanism, the modality-shared feature F̂ i,j

s

can learn complementary information from each of RGB image, thermal image,
and count map.

Information Distribution Transfer (IDT). IDT is used to refine the features
of RGB, thermal image, and count map. The structure of IAT and IDT is shown
in Fig. 4.
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The refinement of RGB feature information is shown in Formula 3:

Ii,j
s2r = Ii,j

s − Ii,j
r , ωi,j

s2r = Conv1×1(I
i,j
s2r), F̂ i,j

r = F i,j
r + Ii,j

s2r � ωi,j
s2r. (3)

The refinement of thermal feature information is shown in Formula 4:

Ii,j
s2t = Ii,j

s − Ii,j
t , ωi,j

s2t = Conv1×1(I
i,j
s2t), F̂ i,j

t = F i,j
t + Ii,j

s2t � ωi,j
s2t. (4)

The refinement of count map feature information is shown in Formula 5:

Ii,j
s2c = Ii,j

s − Ii,j
c , ωi,j

s2c = Conv1×1(I
i,j
s2c), F̂ i,j

c = F i,j
c + Ii,j

s2c � ωi,j
s2c. (5)

We use Formula 1 to transform modality-shared features F̂ i,j
s into contextual

information Ii,j
s , and then input the three feature information to the next layer

of the corresponding branch.

3.3 Implementation Process

We select the RGBT-CC dataset [8], which contains 2,030 pairs of RGB thermal
images, along with 138,389 annotated pedestrians. The dataset also includes
1,013 pairs of images captured in bright scenes and 1,017 pairs of images captured
in dark scenes.

To implement our methods, we use PyTorch and employ MCNN [7], SANet
[27], CSRNet [28], and BL [20] as backbone networks. Due to the large number
of parameters in CSRNet and BL, we reduce the number of channels in these
two networks to 70% and 60% of their original values, respectively. We initialize
the kernel parameters using a Gaussian distribution with a mean of 0 and a
standard deviation of 1e−2.

4 Results

4.1 Ground Truth Generation

We use geometry-adaptive Gaussian kernel [7] to generate ground truth density
maps. The specific formula is as follows:

F (x) =
N∑

i=1

δ(x − xi) ∗ Gσi
(x), withσi = βdi, (6)

where x represents the position of the pixel in an image, Gσi
(x) is a Gaussian

kernel with parameter σi (standard deviation), di indicates the average distance
of k nearest neighbors, ∗ indicates convolution operations, and δ is the ground
truth dot annotation. According to the literature [7], we set k = 3, and β = 0.03.
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Fig. 5. Visualization of the density map.(a), (b) and (c) are RGB image, thermal image,
and count map, respectively; (d) is the estimated density map of RGB and thermal
image; (e) is the estimated density map of RGB, thermal image, and count map; (f) is
the ground-truth density map; From top to bottom, the number of people increases.

4.2 Experimental Results and Evaluation

The counting results are shown in Fig. 5. Although the count map may not
produce completely accurate results, it can reduce the influence of the choice
of Gaussian kernel σ on the density map. By allowing the model to learn this
ability, we are able to reduce the impact of inaccurate Gaussian kernel σ on
our experimental results. Therefore, we find that the model, which inputs RGB
image, thermal image, and count map as three models, yields counting results
that are closer to the ground truth, as compared to the model that inputs only
RGB image and thermal image as two models.

Model Performance. Table 1 indicates that our methods with different back-
bones perform better than the original methods. We select MCNN [7], SANet
[27], CSRNet [28], and BL [20] as different backbones for comparison, which are
typical networks with good results in crowd counting in recent years. Specifically,
for the CSRNet model, our methods achieve 22.5% and 25.7% improvement on
MAE and RMSE, respectively, compared to the original CSRNet model. In addi-
tion, our methods yield 11.9% and 15.2% improvement on MAE and RMSE,
respectively, compared to the model that uses only RGB image and thermal
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Table 1. Performance of different methods after post-processing.

Backbone MAE RMSE Backbone MAE RMSE

MCNN [7] 21.89 37.44 CSRNet [28] 20.40 35.26

MCNN+RGB+T [8] 19.77 30.34 CSRNet+RGB+T [8] 17.94 30.91

MCNN+Ours 17.16 27.03 CSRNet+Ours 15.81 26.20

SANet [27] 21.99 37.44 BL [20] 18.70 32.67

SANet+RGB+T [8] 18.18 33.72 BL+RGB+T [8] 15.61 28.18

SANet+Ours 17.76 28.40 BL+Ours 15.34 24.68

image. For the BL model, our methods perform 18.0% and 24.5% better on
MAE and RMSE, respectively, than the original BL model. Additionally, our
methods outperform the model that uses only RGB image and thermal image
by 1.7% and 12.4% on MAE and RMSE, respectively. Using MCNN or SANet
as a backbone also shows a significant performance improvement. These results
clearly demonstrate that with the help of a count map, our methods have been
significantly improved over the original ones.

Furthermore, we test our model under different illumination conditions and
the results are shown in Table 2. In this case, the backbone of our model and the
original model [8] are BL [20]. Under bright conditions, our methods perform
0.82% and 13.2% better on MAE and RMSE, respectively, than the original
method. Under dark conditions, our methods achieve 2.46% and 8.32% improve-
ment on MAE and RMSE, respectively, compared to the original method. These
results suggest that our methods perform better under both bright and dark
illumination conditions, highlighting the significance of our count map modality.

Post Processing. Given that the size of the count map output is only 1
32nd of

the original, it is necessary to apply upsampling or sliding window to match their
size. Previous research [10] has shown that sliding window is a post-processing
method. When evaluating an image, we input a series of offset images into the
network to obtain more accurate evaluation results. These offset S(Image) can
be defined as follows:

S(Image) = {Si,j |Si,j = Image(x + Xoff i, y + Yoff j)}, (7)

where Xoff i and Yoff j respectively represent the corresponding offsets. We set
Offset ∈ as(−16,−8,−4, 0, 4, 8, 16). To combine a series of results, we divide
the 32 × 32 count results into each pixel equally and calculate the density map
Cm:

Cm(x, y) =

∑
i,j C(x, y, i, j)

N(x, y)
, (8)

where C(x, y, i, j) indicates the image with offsets Xoff i and Yoff j , and N(x, y)
denotes the frequency of pixels calculated in the sequence.
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Table 2. Performance in different
illumination conditions. The RGBT
and RGBTC input data are fed into
CMCRL [8] and our network respec-
tively, and both backbones are BL [20].

Illumination Method Input Data MAE RMSE

Brightness CMCRL RGBT 15.82 28.17

Ours RGBTC 15.69 24.46

Darkness CMCRL RGBT 15.86 28.58

Ours RGBTC 15.47 24.79

Table 3. Performance of post-
processing methods.

Method MAE RMSE

LibraNet(No post-processing metod) 23.48 41.42

Nearest neighbor 16.86 26.76

Nearest neighbor & divided by 32 15.23 24.89

Nearest neighbor & divided by 32 × 32 15.32 25.35

Bilinear Interpolation 14.73 25.22

Sliding Window 15.34 24.68

Table 3 presents the results of different post-processing methods. We observe
that bilinear interpolation performs the best in MAE, while it has average perfor-
mance in RMSE. On the other hand, sliding window yields the best performance
in RMSE, but not in MAE. The nearest neighbor method divides each pixel value
by 32, and its performance is slightly inferior to sliding window in RMSE and
second only to bilinear interpolation in MAE.

4.3 Ablation Studies

In this subsection, to verify the effectiveness of each component in our framework,
we adopt BL [20] as the backbone network to perform extensive ablation studies.

Count Map or Class Map? A class map is the quantitative form of a count
map. We compare the performance of the count map and class map. As shown
in Table 4, we find that the count map outperforms the class map, regardless of
the post-processing method used. This may be because the count map is more
intuitive and better suited to reflect the changes in the number of people between
pixels, while the class map undergoes a discretization process that is not suitable
for our models.

Table 4. Performance of count map and
class map with different post-processing
methods.

Method Kind MAE RMSE

Bilinear Interpolation Class map 15.92 27.57

Count map 14.73 25.22

Sliding Window Class map 17.12 26.92

Count map 15.34 24.68

Nearest neighbor & Class map 16.04 27.09

divided by 32 Count map 15.23 24.89

Nearest neighbor & Class map 16.20 28.46

divided by 32 × 32 Count map 15.32 25.35

Table 5. Different Input Modals.

Method MAE RMSE

Early Fusion 17.59 31.30

Late Fusion 16.94 30.69

W/O Gating 16.93 29.79

W/O Modality-Shared Feature 16.91 28.72

W/O IDT 16.50 27.36

Ours 15.34 24.68
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Different Fusion Methods. As our model’s core component is the cross-modal
fusion module, we have enhanced the original IADM [8] module by adapting it
to the input of three models: RGB image, thermal image, and count map. We
perform ablation studies to compare the performance of different fusion methods
and demonstrate that the network with the IADM module performs the best.
The results are shown in Table 5, where all post-processing methods are sliding
windows.

“Early Fusion” refers to a serial input of RGB image, thermal image, and
count map into BL [20]. In contrast, “Late Fusion” uses three branches, each
dedicated to one modality, to extract features from the RGB image, thermal
image, and count map, and then combine their features to generate a density
map. “W/O Gating” means that information is directly transmitted between
different features without information filtering. “W/O Modality-Shared Feature”
means that the modal sharing branch is removed, and each modality’s specific
characteristics are directly refined. Finally, the features from the three branches
are connected to generate the density map. “W/O IDT” refers to using modal
sharing branches but only aggregating multi-modal information and refining the
features of the modal sharing branches without refining the features of RGB
image, thermal image, and count map.

Table 5 shows that the “Early Fusion” has an MAE of 17.59 and RMSE of
31.30; “Late Fusion” has an MAE of 16.94 and RMSE of 30.69; “W/O Gating”
has an MAE of 16.93 and RMSE of 29.79; “W/O Modality-Shared Feature” has
an MAE of 16.91 and RMSE of 28.72; and “W/O IDT” has an MAE of 16.50
and RMSE of 27.36. “W/O IDT” performs the best out of the five methods,
with a 7.03% decrease in MAE and a 27.35% decrease in RMSE. These results
demonstrate that our proposed module has the most significant effect, achieving
the lowest MAE of 15.34 and the lowest RMSE of 24.68.

Different Input Modals. We further perform ablation studies using different
input models with the count map, including RGB image and count map, thermal
image and count map, and all three models. The results are shown in Table 6,
where all post-processing methods are sliding windows.

Table 6. Performance of different input models.

Input Modals MAE RMSE

RGB + Count map 24.64 45.34

Thermal + Count map 17.72 30.98

RGB + Thermal + Count map 15.34 24.68

We can make the discovery that the MAE and RMSE for the input data
of RGB image and count map are 24.64 and 45.34, respectively, indicating the
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poorest performance among the tested combinations because it is based on ther-
mal image. In contrast, the combination of thermal image and count map shows
better performance with an MAE of 17.72 and RMSE of 30.98. The best perfor-
mance is achieved when using all three RGB image, thermal image, and count
map: for the input data of thermal image and count map, the MAE decreased
by 13.4% and the RMSE decreased by 20.3%, while for the input data of RGB
image and count map, the MAE decreased by 37.7% and the RMSE decreased
by 45.6%. Based on these results, we conclude that the model compose of RGB
image, thermal image, and count map has the best performance.

Table 7. Estimation errors on ShanghaiTechA [7].

Methods MAE RMSE

BL [20] 62.8 101.8

LibraNet [12] 55.9 97.1

ADCrowdNet [21] 63.2 98.9

AMRNet [29] 61.6 98.4

DM-Count [30] 59.7 95.7

Ours 55.1 93.1

4.4 Other Datasets

We test the dataset ShanghaiTechA [7] without thermal images. We use the pre-
training model provided by [12] to generate a count map and input the RGB
image and the count map into the network to generate a density map. Results
are shown in Table 7. It can be concluded that whether it is compared with the
backbone BL [20] or the model LibraNet [12] that generates the count map, our
methods have practical improvements.

5 Conclusions

In this work, to deal with scale and illumination changes simultaneously, we
propose a new cross-modal information aggregation and distribution model to
capture the complementary information of light information, thermal informa-
tion, and crowding degree information, so that the model can better deal with
the scale change and illumination change of image, and higher-accuracy density
maps are output to improve the counting accuracy. We also evaluate the per-
formance of various post-processing methods and demonstrate the effectiveness
of our proposed models. In the future, we aim to explore alternative models to
replace the crowding degree information modal and further enhance the perfor-
mance of our model.
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Abstract. The advancement of deep learning has significantly increased
the efficiency of picture dehazing techniques. Convolutional neural net-
works can’t, however, be implemented on portable FPGA devices because
to their high computing, storage, and energy needs. In this paper, we pro-
pose a generic solution for image dehazing from CNN models to mobile
FPGAs. The proposed solution designs lightweight network using depth-
wise separable convolution and channel attention mechanism, and uses
an accelerator to increase the system’s processing efficiency. We imple-
mented the entire system on a custom and low-cost FPGA SOC plat-
form (Xilinx Inc. ZYNQTM XC7Z035). Experiments can conclude that
our approach has compatible performance to GPU-based methods with
much lower resource usage.

Keywords: FPGA-based · Dehazing · Lightweight Network ·
Accelerator

1 Introduction

Images captured by cameras can have poor visibility due to the loss of saturation
and contrast caused by the presence of cloudy media such as water vapour, mist,
dust and smoke in the atmosphere. With these hazy images as input, autonomous
systems such as self-driving cars, intelligent traffic surveillance and unmanned
aerial vehicles face degraded performance or severe failures. In addition these
systems are used in scenarios where efficiency and low power consumption are
sought. Therefore, a dedicated dehazing hardware solution is required to meet
these limitations.

Early hardware systems for image dehazing were only designed to speed up
software algorithms. Lu et al. [18] combines dark channel prior algorithm to
implement an improved fast image dehazing system on a DSP embedded plat-
form. In particular, the system’s computing effort is drastically lowered while
yet maintaining the highest possible image quality. However, as camera technol-
ogy continues to evolve and the resolution of images becomes higher and higher,
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DSP-based hardware systems struggle to keep up with the speed of image pro-
cessing. To enhance the apparent size of various objects in a depth picture,
Kasauka [14] installs a multi-scale retinex approach using an FPGA. However,
when the haze concentration is not uniformly distributed, the image dehazing
effect will be unsatisfactory. With the low-power flexibility of FPGAs, Ju et al.
[13] successfully dehaze photos using the dark channel prior approach, but pro-
cesses low-resolution images and still lacks the ability to process high-definition
images.

In all, FPGA-based image dehazing system promises for a universal solution
to FPGAs with high image definition. The hardware implementation of deep
learning based image dehazing algorithms is constrained by the on-chip memory.
Both the image frames and the hardware resources required to implement the
dehazing logic need to be stored in on-chip memory. When implementing image
dehazing algorithms in hardware, it is a challenging task to perform complex
mathematical operations with minimal logic resources without compromising
the quality of the output image. In this study, we implemented a convolutional
accelerator and a lightweight end-to-end neural network for the FPGA. The
processing speed of the system is increased while ensuring the dehazing effect.
Lightweight networks can utilise fewer hardware resources. It also requires less
consideration when deploying on hardware and enables faster deployment on the
hardware side.

2 Related Work

The primary available approaches may be roughly categorized as prior-based
and deep learning-based methods, with the goal of single picture dehazing
being to restore a hazy image to a clear one.

The prior-based technique uses a physical scattering model to produce crisp
pictures, but it also needs a natural prior to calculate the transmission map and
atmospheric light. He et al. [10] discovered that the majority of partially clear
pictures included at least one color channel with multiple extremely low intensity
pixels and suggested the Dark Channel Prior (DCP) technique of dehazing.

A non-local prior dehazing technique was suggested by Berman et al. [5] when
they noticed that the colors of a clear image can closely resemble hundreds of
other colors that group together in small groups in the RGB color space. In
order to perform picture dehazing, Zhu et al. [28] suggest using a color attenu-
ation prior approach to learn the scene depth of a hazy image using supervised
learning. This method then calculates the transmission and recovers the scene
radiance. Prior-based methods only work well when the assumed prior is appro-
priate, and results are often poor when the prior is not satisfied.

Researchers have started to recognize deep learning-based picture dehazing
solutions more and more recently. Although some methods [8,20,24,27] have
been proposed with high dehazing effect, these models have high model com-
plexity, complex computation and huge storage requirements, which make them
difficult to deploy in resource-limited platforms. Ren et al. [21] learn to antici-
pate the scene transmission map using a coarse-scale neural network, then learn
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local information that used a fine-scale neural network, and lastly recover a clean
picture that use the output of both scales of the network. By learning to derive
the confidence map of the input, Ren et al. [22] developed a multi-scale gated
fusion network based on an encoder decoder network to tackle the single-image
dehazing problem. A generative adversarial network (GAN) and an enhancer
make up the image dehazing network (DCPDN) that Zhang et al. [25] sug-
gested. The enhancer creates high-quality images after the discriminator directs
the generator to create images at a coarse scale.

Although the above mentioned methods are effective in image dehazing, their
high number of parameters and high computational effort hinder their deploy-
ment on resource-limited platforms. Cai et al. [6] propose the DehazeNet deep
learning neural network for estimating media transmission map. The network
receives a bad photo as input and then waits for the image to be recovered using
its transmission map and atmospheric light. By integrating an atmospheric scat-
tering model into the network and fusing the two variables in the model into a
single K parameter, Li et al. [16] design a lightweight trainable end-to-end image
dehazing network (AOD-Net) in order to minimize errors. However, the qual-
ity of these lightweight networks is not high enough for high resolution image
recovery while few people deploy them to hardware platforms, such as FPGAs.

Fig. 1. An overview of the development of the mentioned FPGA-based CNN acceler-
ator for image dehazing.
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3 Approach

Figure 1 shows the process of implementing an FPGA-based image dehazing
system. First, an embedded-friendly lightweight dehazing deep learning network
is designed and trained. Then, a CNN accelerator is designed using the HLS
compiler. Finally, a device driver is created using a standard C++ compiler. The
designed and developed accelerator and device driver will control and accelerate
the model inference on the hardware platform.

3.1 Network Structure

In this research, we build an encoder-decoder structure-based residual attention-
based picture dehazing system. The multi-scale feature extraction blocks, gated
fusion sub-network, channel attention block, and encoder-decoder block are the
four modules that make up this algorithm’s network model. The overall network
structure proposed in this paper is shown in Fig. 2. We apply depthwise sepa-
rable convolution to decrease the total amount of parameters and constructed a
lightweight network framework to enable deployment on devices with restricted
resources.

Fig. 2. The overall of our proposed encoder-decoder network. The network contains a
feature extraction block, a gated fusion sub-network and a channel attention unit.

Encoder-Decoder Block. The input hazy image is first put into the encoder
module as a feature map, and the encoder part uses three convolutional layers to
learn the haze image, with the last convolutional layer downsampling the feature
map by a factor of 1/2. On the contrary, the decoder module contains a transpose
convolution to upsample the feature map to it’s own original resolution. The next
two convolutional layers then nonlinearly map the upsampled feature to produce
the desired final hazy residual map.

Feature Extraction Block. Spatially separable convolution was used to
improve computational efficiency as early as 2012 [19]. Sooner or later, a depth-
wise version of AlexNet [15] has been added in order to increase accuracy, speed
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up convergence, and compact the model. Recently, several light-weight network
architectures with accuracy, MobileNet [11] and ShuffleNet [26], have been devel-
oped for edge devices. Due to the limited computational resources of the FPGA
platform, it was found from these research concepts that depth-wise separa-
ble convolution could be less complex in terms of computational resources and
we introduced it as the base module for feature extraction. Although minimal
parameters are used, the quality of image dehairing is still guaranteed. Each
feature extraction block (FEBi, i = 1, 2, 3) contains two depth-wise separa-
ble convolution (DSConv) and two relu layers(ReLU). The feature extraction
module FEBi(x) is represented as

FEBi(x) = ReLUi2(DSCi2(ReLUi1(DSCi1(Fi−1(x)))) (1)

where Fi−1(x) denotes the current input feature and DSCi(x) denotes the depth-
wise separable convolution.

Gated Fusion Sub-Network. Based on Chen’s [7] research, we fuse the char-
acteristics among several layers using a gated fusion sub-network. In order to fuse
the feature maps, F0, F1 and F2 are first extracted from the feature extraction
block and then linked in series by channel. The fused feature maps are then sent
into the gated fusion sub-network. The weights of the preceding three related
feature maps (W0, W1 and W2) are the output of the gated fusion sub-network.
The last step is to multiply the three relevant feature maps F0, F1 and F2 by the
appropriate weight layers. As shown, the gated fusion sub-network is as follows:

(W0,W1,W2) = Gat (F0, F1, F2)
Fo = W0 ⊗ F0 + W1 ⊗ F1 + W2 ⊗ F2

(2)

The CAU receives additional input from the combined feature map Fo. The
gated fusion sub-network in this study has three output channels and one kernel
size 3 × 3 convolutional layer with a cascade of F0, F1 and F2 inputs.

Channel Attention Unit. Inspired by PCNet [12] with high effective channel
attention units, we use the CAU as our basic block in the proposed network.
Depth-wise separable convolution, which performs similarly to regular convo-
lution while being more computationally more efficient, is employed to design
CAU in order to further minimize the number of parameters. The depth-wise
separable convolution is immediately followed by a global average pooling with-
out changing the dimensionality. Then two convolutional layers of 1 × 1 size for
cross-channel information interaction. The weights are then used to adjust the
input feature map to produce the output feature map after the feature map has
been through the Sigmoid function to obtain the weight values. By weighing
and filtering out the prominent characteristics at the present scale instead of
the original features for backward propagation, an efficient channel attention
is employed to increase the network’s efficiency and performance. The efficient
channel attention mechanism CAUi(x) is expressed as
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DSCi(x) = DSConv2i(ReLU(DSConv1i(Fi−1))
CAUi(x) = σ(Conv2i(Conv1i(g(DSCi(x))))) ⊗ DSCi(x)

(3)

where DSConv(x) denotes the depth-wise separable convolution, σ denotes the
Sigmoid function and g(x) denotes the global average pooling function. By
dynamically adjusting the feature map channel weights to reduce redundancy
and learning rich contextual information to enhance the network’s ability to
extract haze density images, the effective Channel Attention Unit (CAU), when
used after the gated fusion sub-network, enables a more detailed dehazing.

Fig. 3. Hardware architecture of the proposed CNN accelerator for image dehazing.

3.2 Hardware Optimizations

The most frequent and largest operation in the network is convolution opera-
tion, because convolution operation requires a lot of multiplication and addition
operations, and a large number of access operations on parameters during the
operation also consumes a lot of time. The hardware architecture of the dehaz-
ing network is designed around the convolution operations and access features
in the network layer, so we need to design a convolution accelerator to ensure
the speed of convolutional operations while balancing the relationship between
hardware resources and memory bandwidth.

Huge data must be stored on off-chip resources due to the FPGA’s restricted
on-chip capacity. Nevertheless, data from the off-chip memory must first be
transmitted through AXI to the on-chip memory within the FPGA before the
device can run a parallel on-chip program. Every time the FPGA runs a task,
it will have to read data from off-chip memory, which will take a lot of time
and cause performance to suffer. We store as much data as we can in FPGA
on-chip memory on our limited on-chip resources to prevent constantly reading
and writing data from off-chip memory. In designing the memory access section,
we used a cyclic partitioning approach. Suppose the size of input feature map
In is N × Hin × Win, the weight is M × N × K × K, the size of output feature
map Out is M ×Hout×Wout, and the input channel, output channel and output
feature map height and width of the partitioning factor are Tn, Tm, Tr and Tc
respectively. During each calculation, we load Tn× (Tr+K −P )× (Tc+K −P )
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size of the input feature block, Tm × Tn × K × K weights, and then perform a
convolution calculation to obtain an output feature block of size Tm × Tr × Tc.
Once the computation is complete, we will read the input features and weights for
the next block and continue the computation until the convolution is complete.
As shown in the Fig. 3, we store the intermediate output of each operation on a
feature buffer in on-chip memory. This saves a lot of time by reading the data
directly from the on-chip each time a new convolution calculation is performed.

The computation of the convolutional layers is that of a multi-layer loop
nested, which means that the computation of the convolution is very slow. The
PIPELINE command, which defines the loop to be enlarged and informs the
compiler how many times the loop needs to be expanded, is used to optimize
the program’s parallel execution speed. By running computations in parallel
and quickening the system’s inference, PIPELINE takes use of the parallelism
between the convolution kernels to maximize the usage of processing resources.

4 Results and Analysis

4.1 Experimental Setup and Data Set

We refer to the work of [7] for network architecture design and training. An
Intel(R) Xeon(R) Processor E5-2620 v3 @ 2.40 GHz processor, 16.0 GB of Mem-
ory, and two NVIDIA Titan Xp graphics cards made up the experimental setup.
The network was created using the Pytorch framework, with a training batch
size of 16. The learning rate started out at 0.01 and declined to 0.1 times every
40 iterations for a total of 100. We used the Indoor Training Set (ITS), a subset
of the publicly accessible image dehazing RESIDE [17] dataset, as the training
dataset. Using a special development board made by Xillinx Inc., the suggested
image dehazing technology is put into practice. It was made up of an XC7Z035
FPGA and a dual-core ARM Cortex-A9 CPU. Prior to deployment, we per-
formed a tuning optimization of the network. There are a large number of con-
volutional and batch normalisation layer structures in the network. Due to their
computational properties, we can reduce the model inference time by merging
the batch normalization layers into the convolutional layers.

4.2 Comparisons with State-of-Arts

Compare with Other GPU-Based Methods. Table 1 gives the results
of this experiment tested on synthetic datasets and compared quantitatively
and qualitatively with recent methods, including AODNet [16], DehazeNet [6],
DCPDN [25] and GCANet [7]. Peak Signal to Noise Ratio (PSNR) and Structural
Similarity (SSIM) index measurements were also used for quantitative evalua-
tion, with higher values indicating greater dehazing. Our approach gives a com-
petitive performance to GPU-based methods with a relative small parameter
size, which is around 0.1 million. For visual comparisons on the SOTS test set,
hazy pictures of various intensities were also chosen for the evaluation of subjec-
tive quality. Figure 4 displays the dehazing impacts of each approach together
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with the related peak signal-to-noise ratios. The photos that were recovered
using AODNet techniques had dark colors and insufficient dehazing. Neverthe-
less, when eliminating intense haze, the pictures recovered by DehazeNet and
DCPDN approaches are prone to insufficient dehazing. Our approach shows a
better dehazing effect, no obvious color distortion, more complete dehazing of
dense hazy images, and the recovered image details and colors are closer to the
original clear image. Although the dehazing effect of GCANet is slightly bet-
ter than the method in this paper, the model size of GCANet is about 7 times
larger than ours. And when processing some photographs with sections of sky,
GCANet warps the colors. By contrast, our method does a good job of restoring
the original colours.

Fig. 4. Qualitative comparison of different image dehazing methods on the SOTS
dataset.

Compare with Other Traditional Methods. As for the evaluation dataset,
as deep learning based methods are mostly trained on the RESIDE dataset,
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Table 1. Quantitative comparisons of image dehazing on the SOTS indoor dataset
from RESIDE.

Methods PSNR SSIM Par. (Million)

AODNet [16] 19.06 0.85 0.002
DehazeNet [6] 21.14 0.84 0.0802
DCPDN [25] 15.85 0.82 66.89
GCANET [7] 30.06 0.96 0.7028
Ours 27.26 0.93 0.1297

Table 2. Scores for structural similarity, peak signal to noise ratio (PSNR), and mean
squared error (MSE) on various datasets. The best result is shown in red.

DATASET He et al. [10] Zhu et al. [28] Berman et al. [5] Cho et al. [9] Our
MSE SSIM MSE SSIM MSE SSIM MSE SSIM MSE SSIM

FRIDA2 0.0744 0.5969 0.0744 0.5473 0.0705 0.6603 0.1559 0.5517 0.0642 0.6687
D-HAZY 0.0309 0.8348 0.0483 0.7984 0.0492 0.7473 0.0606 0.7212 0.0458 0.7629
O-HAZE 0.0200 0.7709 0.0226 0.6647 0.0255 0.8024 0.0196 0.7745 0.0197 0.6319
I-HAZE 0.0535 0.6580 0.0362 0.6864 0.0275 0.7959 0.0344 0.7693 0.0308 0.7169
Dense-Haze 0.0549 0.4662 0.0646 0.4171 0.0597 0.5225 0.0549 0.5254 0.0613 0.4174
Total 0.0467 0.6653 0.0492 0.6227 0.0464 0.7056 0.0650 0.6684 0.0444 0.6396

their performance on this dataset is better than other datasets. For the sake of
fairness, when comparing with traditional methods, we employ FRIDA2 [23], D-
HAZY [3], O-HAZE [2], I-HAZE [4], and Dense-Haze [1]. Moreover, we employ
Mean Square Error (MSE) and Structural Similarity (SSIM), two full-reference
criteria, to quantitatively assess the dehazing performance. The results of this
experiment tested on the five datasets mentioned previously and compared with
conventional FPGA-based dehazing methods, those proposed by He et al. [10],
Zhu et al. [28], Berman et al. [5], and Cho et al. [9], are given in the Table 2.
The traditional methods cannot effectively handle the sky region leading to their
poor performance on FRIDA2. On the contrary, our approach ranks first in the
overall SSIM evaluation, which is the primary indicator for visible edges, on five
databases from different conditions.

Table 3. Ablation study on SOTS dataset.

Depth-Wise Convolution ✓ ✓

Gated Fusion ✓ ✓

CAU ✓ ✓

PSNR 22.93 24.24 23.43 26.44 27.26
Par. (Million) 0.1288 0.1250 0.1309 0.1336 0.1297
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4.3 Ablation Study

We combine the depth-wise separable convolution, channel attention unit, and
gated fusion sub-networks into our suggested model, as was already indicated.
To confirm the contribution of each component to the final dehazing perfor-
mance, we conduct ablation experiments on the SOTS dataset. Instead of using
depth-wise separable convolution, we use conventional convolution instead, and
we change the number of convolutions to roughly equalize the size of the net-
work overall. As demonstrated in the Table 3, the introduction of the channel
attention module significantly improves the model’s performance, demonstrating
the efficacy of CAU. Subsequently, the performance of the model is somewhat
improved by the addition of deep separable convolution and gated sub-networks.
Eventually, including all three modules into the model yields the optimal out-
come.

Table 4. Convolutional Accelerator Resource utilization.

Resource DSP48E BRAM_18K LUT FF

Used 213 161 60803 58930
Available 900 1000 171900 343800
Utilization 23 16 35 17

Table 5. Comparison with other platforms.

Platform GPU CPU FPGA

Device Titan Xp i7-8700 XC7Z035
Power (Watt) 250 85 4.2
Performance (FPS) 394 1.5 8.3
Energy efficiency (FPS/W) 1.57 0.017 1.97

4.4 Hardware Evaluation

In this subsection, we first provide the resource utilization rate. Then, we com-
pared the software implementation (on CPU and GPU) with our accelerator on
FPGA. Placement and wiring are done through the Vivado toolset. After the
collection is completed, the resource utilization rate we achieved is reported, as
shown in the Table 4. We can see that our CNN accelerator requires very lit-
tle FPGA hardware resources. We compared our method on FPGA with other
platforms. We selected NVIDIA Titan-Xp GPU and Intel i7-8700 CPU for com-
parison. We tested the power consumption of the FPGA end, and the power con-
sumption of the GPU and CPU came from the user manual. From the Table 5, it
can be concluded that our method is suitable for edge platforms with low power
consumption and few resources.
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5 Conclusion

In this research, we provide a lightweight FPGA-based deep learning-based app-
roach for image dehazing. A CNN network based on depth-wise separable con-
volution and channel attention to limit the network size is suggested in order
to lower the storage and computing requirements. Then, using our suggested
accelerated design strategy, we deploy the entire algorithm on a low-cost cus-
tom FPGA development board from Xilinx Inc. Therefore, our method is an
universal solution to image dehazing on FPGAs.
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tion of China (62202347) and the Natural Science Foundation of Hubei Province
(2022CFB578).
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Abstract. Paranasal sinus surgery is an established treatment option
for chronic rhinosinusitis. Because this surgery is performed inside the
nasal cavity, where critical anatomical structures, such as optic nerves
and pituitary glands, exist nearby, surgeons usually rely on computer-
aided surgical navigation (CSN) to provide a wide field of view in the
surgical site and to allow for precise control of surgical instruments. In
the CSNs, it is essential to register the surgical site of the actual patient
with the corresponding view from the preoperative computed tomogra-
phy (CT) images. The traditional registration approaches are performed
manually by the user or automatically by attaching fiducial markers on
both the patient’s surgical site and preoperative CT images for every
surgery before use. In this work, we propose an automated approach to
register patient-to-preoperative CT image without fiducial markers. The
proposed approach detected and extracted facial anatomical landmarks
in 2D RGB images through the use of deep learning models. These land-
marks were located in 3D facial mesh reconstructed from depth images
by using unprojection and ray-marching algorithms. The facial landmark
pairs acquired from the patient site and the preoperative CT images are
then registered with singular value decomposition and iterative closet
point algorithms. We demonstrate the registration capability of our app-
roach using Microsoft HoloLens 2, a mixed reality head-mounted dis-
play because it facilitates the acquisition of RGB-depth images and the
prototype development of in-situ visualization to illustrate how the CT
images are properly registered on the target surgical site. We compared
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our automated marker-less registration approach to the manual counter-
part using a facial phantom with three participants. The results show
that our approach produces relatively good registration accuracy, with
a marginal target registration error of 4.4 mm when compared to the
manual counterpart.

Keywords: Automated marker-less registration · Computer-aided
surgical navigation · Paranasal sinus surgery · Facial landmarks

1 Introduction

Chronic rhinosinusitis is a prevalent and persistent condition that occurs in 1% to
5% of the United State population and significantly impacts the quality of daily
life [8,21]. This clinical condition occurs when acute sinusitis is not effectively man-
aged or when there is a recurrence of inflammation. In cases where pharmacological
interventions fail to alleviate the symptoms, paranasal sinus surgery (PSS) is the
commonly available treatment alternative [12]. It is a minimally invasive proce-
dure that uses a nasal endoscope to access the sinus and ease inflammation. The
high field of view in the surgical sites and precise control over surgical instruments
is fundamental for PSS because the sinus is typically located near critical anatom-
ical structures within the skull, such as the orbit, optic nerve, carotid arteries, and
pituitary gland [29]. To enhance the precision of the surgical instrument pathing
and thus the outcomes of surgeries, computer-aided surgical navigation (CSN) is
commonly employed to guide an operator through the visualization of preopera-
tive medical images such as computer tomography (CT) or magnetic resonance
(MR) images. In cases of PSS, CSN relies on CT images to provide timely and pre-
cise localization of surgical instruments in terms of the actual inner surgical site of
the nasal cavity [23].

CSN essentially requires an easy-to-use, rapid, accurate patient-to-
preoperative medical image registration process that correlates the surgical site
of the actual patient with the corresponding view from the preoperative medi-
cal images. Traditionally, this registration process is performed manually by the
user, or automatically by using fiducial markers such as adhesive and implantable
ones. In the manual registration approaches, a set of landmarks in the outer
surfaces to approximate surgical sites are carefully defined with a pointer tip
by a user, which is then registered to the predefined corresponding landmarks
in the preoperative images through point-to-point matching algorithms. These
approaches have been widely investigated to develop a variety of CSNs [2,7,13].
They, however, are time-consuming, require a high-level of human involvement,
and more importantly introduce intra- and inter-observer errors [14]. Further-
more, there is a potential risk of infection due to the unnecessary physical con-
tact with the patient during the registration process. The use of fiducial mark-
ers addressed the shortcomings of the manual registration approaches to some
extent by using them as landmarks to be tracked and registered in an auto-
mated manner [9,16,27,30]. However, none of them was a complete solution.



Automated Marker-Less Registration Approach 137

The marker attachment needed to be done individually for every patient before
use. In addition, adhesive markers carried the risk of marker point migration,
and implantable markers could cause complications by surgical trauma.

Several studies have been conducted to attempt the patient-to-preoperative
medical image registration approach without relying on fiducial markers [1,5,
10,11]. These marker-less approaches extracted relevant image features to the
patient’s surgical sites from camera feeds and registered them with the correspond-
ing features in the preoperative medical images. These features vary depending on
the surgical sites and include surface shapes or anatomical landmarks, acquired
with the use of computer vision algorithms. Fan et al. [5] used the point cloud of the
patient’s surface, obtained through a 3D scanner, and registered with the surface
mesh extracted from CT images. This registration was applied in the field of neuro-
surgery. Long et al. [10] focused on reconstructing facial surfaces fromdepth images
captured using structured light techniques. They applied a registration approach
with CT images based on the scale-invariant feature transformations. Addition-
ally, Kang et al. [11] performed registration of a maxillofacial model by leveraging
anatomical landmarks such as tooth cusps, bony landmarks, and the anterior wall
region of the maxillary sinus.

In this work, we propose a new automated marker-less registration approach
for use in PSS-CSN. Our approach is designed to locate facial anatomical land-
marks in the vicinity of the sinus from RGB-depth (RGB-D) images using deep
learning models. The landmark pairs in the patient site and preoperative CT
image are then registered based on a 3D point-to-point matching algorithm.
This enhances the registration approach by ensuring that the relevant facial land-
marks are acquired and tracked consistently and automatically. We demonstrate
our approach using Microsoft HoloLens 2 [18], a mixed reality head-mounted
display, due to the capabilities in the easy acquisition of RGB-D images and
the fast development of in-situ visualization prototypes to illustrate how the
virtual preoperative contents are registered on the target sites. We evaluate
the registration accuracy of our approach using a phantom by comparing to a
manual registration counterpart. The contributions of our work are summarized
as follows: (1) We propose a new automated marker-less registration approach
dedicated for the sinus in facial anatomy and potential use in PSS-CSN, and
(2) We validate our registration approach under practical environments using a
commodity device of Microsoft HoloLens 2.

2 Method

2.1 Overview

We outline an overview of the proposed marker-less registration approach in
Fig. 1 using a facial phantom. Our approach consists of four components: (i)
2D facial landmark extraction in patient (phantom) sites; (ii) the corresponding
facial landmark extraction in preoperative CT images; (iii) the 3D localization
of the extracted 2D landmarks and; (iv) 3D to 3D registration between the land-
mark pairs (patient-to-CT). For the patient sites, we acquired the RGB-D images
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Fig. 1. Overview of our marker-less patient-to-preoperative CT image registration app-
roach.

using HoloLens 2 to extract and locate the facial landmarks. With the acquired
RGB images, we detected and cropped the facial region from the background
using multi-task cascaded convolutional network (MTCNN) [31] and utilized
high-resolution network (HRN) [24,26] to extract 2D eighteen facial landmarks
within the bounding box region. We relied on the corresponding depth image to
reconstruct the 3D facial mesh with a ball pivot algorithm [3], which was used
to locate the positions of the landmarks in 3D space. For the 3D localization,
we introduced an unprojection and a ray-marching algorithm. We performed a
similar procedure in preoperative CT images to extract and locate facial land-
marks. Here, we used the 2D frontal view and the 3D mesh reconstructed by a
marching-cube algorithm [28]. Finally, a registration between the 3D landmark
pairs was performed to derive a transformation matrix. We adopted a two-stage
registration using singular value decomposition (SVD) [25] and iterative closest
point (ICP) [4] algorithms.
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2.2 Deep Learning Models for 2D Facial Landmark Extraction

We designed a two-stage 2D facial landmark extraction in RGB images: (i) facial
bounding box region detection using MTCNN [31] and; (ii) facial landmark
extraction based on HRN [24,26]. Our two-stage facial landmark extraction was
fully automated and did not require any user involvement.

MTCNN was an established deep learning model for detecting face regions
in a RGB image. We chose MTCNN model due to its multi-step architecture
being robust to variations in image resolutions, face shapes, and location of
viewpoints. MTCNN consisted of two cascaded networks: a proposal network
and a refinement network. The proposal network served, as the initial step,
generating a set of candidate bounding boxes and their confidence scores, indi-
cating the likelihood of each box containing a face. The subsequent refinement
network enhanced the bounding boxes by eliminating redundant detections and
raising their accuracy through regression. The final output of the MTCNN was
a minimal bounding box that contains the detected face within the RGB image.
This stage effectively constrained the region of interest for the subsequent facial
landmark extraction stage, thereby mitigating the risk of inaccurate extraction.

We employed the HRN model, which has demonstrated outstanding perfor-
mance in capturing fine-grained details, such as facial landmarks. HRN was a
high-resolution convolutional neural network architecture that excelled in han-
dling tasks that required sophisticated feature descriptions, such as facial land-
marks. Instead of downsampling the feature maps at early streams to reduce
computational complexity, HRN maintained multiple parallel streams with dif-
ferent resolutions throughout the network. HRN then employed multi-resolution
fusion to integrate features derived from various resolutions. It enabled the
enhancement of higher resolution representations through the incorporation of
information from lower resolution representations, and vice versa. This multi-
resolution design enabled HRN to capture both local and global information
effectively to extract representative landmarks for human faces.

2.3 3D Localization of 2D Facial Landmarks

Like Zhang et al. [33], we estimated 2D landmarks from RGB and localized 3D
landmarks using depth images. We noted that the acquired depth images inher-
ently had missing values (depth holes) due to the physical properties including
light reflection, object boundaries, and inaccurate refraction. The direct use of
the depth images could produce imprecise 3D localization of 2D facial landmarks.
We, instead, reconstructed the 3D mesh using the depth image and it allowed
us to fill the missing values by interpolating the neighboring depth values. Our
mesh-based 3D landmark localization consisted of (i) unprojection of 2D facial
landmarks; (ii) 3D facial mesh reconstruction based on depth images; and (iii)
ray-marching of the unprojected landmarks in the 3D facial mesh.

The unprojection of 2D facial landmarks was based on camera calibration
parameters and geometric transformation matrix to the camera origin. The
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unprojection stage lets us know the 3D directional vector of the facial land-
marks in 2D image planes to the camera origin. For the 3D facial mesh recon-
struction, we employed two distinct algorithms. For patient sites, the ball pivot
algorithm [3] was employed. It involved iteratively selecting seed points within
the depth images and constructing mesh triangles by pivoting balls around the
seeds. It incrementally expands the mesh by effectively filling gaps, resulting
in the reconstruction of a complete and accurate 3D mesh representation. The
facial mesh reconstruction in CT images was based on a marching-cube algo-
rithm [28] with an intensity threshold range from 0 to −300 that is representative
of the facial skin. It partitioned the CT volumetric space into small cubic cells
and determined the surface configuration within each cell based on the inten-
sity range threshold. By connecting the vertices of these cells, a triangulated
mesh representation of the facial surface was constructed. Finally, ray-marching
was performed from the camera origin to the directional vector of the facial
landmarks to obtain the intersection points with the facial mesh. We used the
intersection points as the 3D location of the facial landmarks. We performed
averaging the 3D locations of the same facial landmark from multi-views to
compensate for potential errors caused by a single-view depth image.

2.4 3D to 3D Registration

We obtained an initial transformation matrix between the 3D facial landmarks
pairs (patient-to-CT) using the SVD algorithm [25], which was then fine-tuned
based on the ICP algorithm [4]. The SVD algorithm enabled effective initial
matching through data compression and denoising, whereas the ICP algorithm
has been shown to produce accurate 3D geometry matching when initial points
were well-defined. This enabled our registration approach to be robust to initial-
ization variations in 3D facial landmarks and to produce a precise final trans-
formation matrix.

In the SVD algorithm, we first constructed a covariance matrix using the
correspondences between the patient landmark and CT landmark pairs. This
covariance matrix captured the statistical relationship between them. By per-
forming SVD decomposition on the covariance matrix, we obtained the singular
vectors and singular values. The singular vectors represented the optimal rota-
tion matrix that aligns the landmark pairs, while the singular values indicated
the scaling factors along each axis. The registration performance of the ICP
algorithm largely relied on the quality of initializations, and only local opti-
mality is guaranteed. We employed the ICP algorithm to iteratively refine the
initial transformation matrix from the SVD algorithm. In each iteration, the
ICP algorithm estimated an intermediate transformation matrix by minimizing
a distance value between point (landmark) pairs. The distance value calculated
the discrepancy between a point in the patient site to the closest point in the
CT images for all points. This iterative optimization process continued until
convergence is achieved, resulting in a highly accurate transformation matrix.
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Fig. 2. Overview of performance evaluation and comparison experiment.

3 Experiment

For our experiment, we prepared a facial phantom affixed to a support structure
and its CT images. To make the phantom as similar as possible to the human
face, masking tape was attached to the eyebrows and eyes of the phantom face.
We evaluated the registration capability of our automated marker-less approach
by comparing with a manual counterpart based on ground truth (GT) sample
points. We employed the HoloLens 2 to acquire RGB-D images with camera
parameters, which were transferred through TCP connection for a remote PC
to compute the transformation matrix of our marker-less approach. The manual
registration approach was based on an optical tracking system, OptiTrack V120
Trio [20], certified for 6 degrees of freedom tracking of marker ball-equipped
pointer tips, and 3D Slicer PC software [6].

We illustrate our performance evaluation and comparison experiment proce-
dure in Fig. 2. Our experiment was divided into three phases. Initially, a partic-
ipant manually performed phantom-to-CT registration in the OptiTrack envi-
ronment. The participant was required to choose 18 facial landmarks by using
the pointer tip tracked by the OptiTrack. The ICP algorithm [4] computed
a transformation matrix between the facial landmarks and the corresponding
ones in the CT images. As the second phase, the participant conducted our
marker-less registration in the HoloLens 2 environment (see Sect. 2.2 and Fig. 1).
Lastly, we prepared the predefined five GT points in the phantom and asked the
participant to select the corresponding points using the pointer tip. The user-
selected five points were applied to both our automated approach and the manual
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counterpart. The five points were transferred to the CT space using the transfor-
mation matrix and compared to the corresponding GTs in the same CT space to
measure the target registration error (TRE) [17]. We compared TRE of our auto-
mated approach with the manual approach. The experiment was conducted by
alternating both the approaches and repeated two times to mitigate participant
learning. We invited three participants who are familiar with the registration
procedure and averaged their TRE.

4 Results and Discussions

Table 1. Comparison results of TRE between our automated marker-less registration
approach and the manual counterpart for three participants.

TRE (mm) Participant 1 Participant 2 Participant 3 Total

Our automated marker-less Mean 11.1016 10.2548 10.8204 10.7257

Standard deviation 2.1580 1.5812 1.9831 1.8894

Manual Mean 5.7740 7.6058 5.5344 6.3047

Standard deviation 2.4294 2.4245 2.6074 2.5790

Fig. 3. In-situ visualization results to augment the virtual rendering contents of the CT
images on the target phantom using the transformation matrix from our automated
marker-less registration approach. The phantom is augmented with the sinus in (a)
bottom view; (b) top view; and (c) lateral view.

We present the mean and standard deviation of TRE for three participants, com-
paring our automated marker-less registration approach to the manual counter-
part in Table 1. The results show that our approach was able to obtain relatively
good registration accuracy with TRE mean of 10.7 mm. It is also observed that
although our approach was inferior to the manual counterpart in terms of TRE
mean, the difference was not obvious with a 4.4 mm error. Our approach also
produced a lower standard deviation of TRE, indicating that it was more robust
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to the intra- and inter-observer errors that usually encounter when the manual
counterparts are used. These findings suggested that our automated approach
could be an alternative as it could produce comparable registration accuracy and
minimize the tedious human involvement and the unnecessary physical contact
during the manual registration process.

We attempted in-situ visualization, since previous studies [22,32] have shown
the benefit of representing it in a 3D model for better comprehension of the
anatomy. In-situ visualization results using the transformation matrix from our
automated marker-less registration approach were shown in Fig. 3, where the
preoperative rendering of the CT images was augmented on the target phantom.
In the visualization, the sinus structure was situated within the intracranial
space of the skull bone. The augmentation results from all three views show
that the internal invisible sinus structures of the phantom seem to be accurately
registered with the virtual rendering. It shows the practical applicability of our
approach in the context of PSS-CSN, where the precise alignment of the internal
structural details of the sinuses is paramount to guide the surgical instrument
path routing.

5 Conclusion and Future Work

In this work, we proposed a registration process for use in PSS-CSN by auto-
matically detecting and registering the anatomical landmarks relevant to the
sinus. Our results demonstrated that our approach did not require any manual
procedures, such as marker attachment or landmark selection, and could be an
easy-to-use and intuitive tool, particularly for novice users in CSN. More impor-
tantly, our approach produced relatively comparable registration accuracy to the
manual counterpart, thus providing users with an effective alternative.

Our current work poses some limitations. Our approach has been only eval-
uated with the limited experimental environments, not yet clinically. We are
currently investigating the integration of our registration approach to the pilot
version of the commercial PSS-CSN [15], and this would provide an opportunity
to conduct a user study with real patient cases, where we could evaluate the clin-
ical utility of our registration approach. Our results showed our approach was
still inferior to the manual counterpart in terms of registration accuracy. The
higher TRE from our approach could be partially attributed to the low-quality
depth images of Microsoft HoloLens 2 used for data acquisition. The low-quality
images (e.g., depth holes) impacted on the 3D localization of the anatomical
landmarks being detected. We addressed the issue by complementing the miss-
ing depth values with the multi-view images, but the solution was not sufficient
enough to address all and outperform the manual approach. We believe that
adopting the image restoration algorithms, e.g., neural radiance fields [19], may
largely improve the quality of the depth images and thus the registration accu-
racy. Furthermore, our approach is methodological, meaning that the elements
that make up our approach can be modularized and replaced with other state-
of-the-art techniques to improve performance. We consider these as interesting
future work.
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Abstract. Mesh representation of medical imaging isosurfaces are essential for
medical analysis. These representations are typically obtained using mesh extrac-
tion methods to segment 3D volumes. However, the meshes extracted from such
methods often suffer from undesired staircase artefacts. In this paper, we evaluate
the existing mesh deformation methods that deform a template mesh to desired
shapes.We evaluate two variants of suchmethod on three datasets of varying topo-
logical complexity. Our objective is to demonstrate that, despite the mesh defor-
mation methods having their limitations, they avoid the generation of staircase
artefacts.

Keywords: Medical Imaging Rendering · Mesh Deformation · Deep Learning

1 Introduction

Polygon meshes have seen great advances in the medical imaging community, propelled
by modern graphics processing units (GPUs) that are optimized for mesh rasterization.
These advances have facilitated the polygon mesh representation to be easily rendered,
and the adoption of powerful modern rendering engines, such as Unity, are enabling
efficient visualization. Although previous works such as [3] enable directly rendering
the polygonised isosurface of binary volumes, the ray casting technique used is much
more computational expensive than mesh rasterization. The polygon mesh is a graph-
based representation that consists of vertices and their connecting edges to model the
isosurfaces of objects in 3D space. The graph-based data structure enables arbitrary
vertex placements in continuous 3D space, therefore the isosurface can be stored in
varying levels-of-detail and resulting in a highly compact data structure. Moreover, the
shape of the mesh can be easily deformed by displacing the vertices, and the spatial
topology is preserved by the edges that connect the vertex pairs, making it ideal for
medical simulations such as cardiac cycles [4].

However, generation of meshes of segmented isosurfaces from medical images is a
complex task involving a pipeline that consists of segmentation of the regions of inter-
est (ROIs) and polygon extraction from volumetric segmentation data. Example ROIs
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Fig. 1. A close-up visual comparison of the mesh surface extracted using (a) MC, (b) MC with
TwoStep Smooth filter from Voreen [1], and (c) Voxel2Mesh [2]. The contour of (c) is slight
different from (a) and (b) due to the limited deformation ability.

include specific anatomical structures such as the boney structures e.g., skull and ribs,
and organs such as the liver structure. The conventional approach to generating polygon
mesh is by reconstruction from 3D volumetric data acquired by imaging techniques such
as computed tomography (CT) and magnetic resonance imaging (MRI). The acquired
3D volumetric data uses a dense discrete voxelized grid of uniform precision to represent
the internal spatial properties. It is subsequently segmented to a volumetric mask of the
desired ROI, either by scanning each slice of the input volume, such as U-Net [5], or by
processing the entire input volume, as in the case of 3D U-Net [6].

MarchingCubes (MC) [7] is the conventionalmethod to generate 3Dpolygonmeshes
from volumetric segmentation masks. The quality of the extracted mesh is determined
by the resolution of the 3D volumetric data, where the z-axis resolution is often limited
by the medical imaging protocols. The meshes extracted by volumes with low z-axis
resolution suffer from the staircase artefacts and the visual quality is degraded. Although
smoothing filters can be applied to mitigate the staircase artefacts, they often cause
volume shrinkage and losing overall shape [8].

To eliminate the staircase artefacts and create smooth meshes while keeping the
volume shape, Wickramasinghe et al. proposed Voxel2Mesh [2], a mesh deformation
deep neural network for medical ROI representation. The mesh deformation approach
is inspired by the Pixel2Mesh [9] and its following Pixel2Mesh++ [10], which utilized
graph convolutional network (GCN) to optimize the vertex displacement of an ellipsoid
mesh template from a single image. In Voxel2mesh, the authors adapted the Pixel2Mesh
to process 3D volumetric data as input and generate mesh representation of the ROIs.

The staircase artefacts often occurwhen using theMCprocess to extractmeshes from
discrete volumetric data of low resolution, as the low level-of-detail limits the volumetric
representation to capture the smooth curvatures of the surfaces. On the other hand, the
mesh template is a continuous representation of the shape that allows arbitrary level-
of-details that are capable of capturing the details of the curvatures. The deformation
network bypasses the MC process and performs deformation on the mesh template in
continuous space to produce smooth surfaces, and therefore avoid the staircase artefacts,
as shown in Fig. 1.

However, a key limitation is that the graph convolution layers cannot alter the con-
nections of the edges, therefore it cannot change the topological structure, e.g., genus
value, which describes the number of handles or “holes” in the surface of a 3D object.
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This limitation hinders the ability of Voxel2Mesh to deform the spherical template mesh
to complex anatomical structures with higher genus values, such as the pelvis.

In this study, we evaluate the numerical and visual quality of the medical mesh defor-
mation networks, on three anatomical structures of varying degrees of complexity and
topological structures, pelvis from CTPelvic1K [11], liver from CHAOS [12], and kid-
ney from CT-ORG [13]. For evaluation and demonstrate the general challenges and con-
straints of deformation-based medical mesh representation, in addition to Voxel2Mesh,
we also usedPixel2Mesh-3D, a variant of Pixel2Meshwith 3Dconvolution layers instead
of 2D convolution layers. The purpose of these experiments is to investigate the unique
characters of deformation networks that bypass the MC process and demonstrate their
current limitations in optimizing topological structures. The goal is to provide insights for
the medical mesh representation community regarding the importance of such networks
and the key challenges to be addressed in future research.

2 Related Work

2.1 Medical Imaging Mesh Generation

The medical isosurface mesh generation consists of the volumetric segmentation task
and themesh extraction process. Convolutional neural networks (CNNs) are widely used
for medical imaging segmentation tasks, e.g., fully convolutional networks (FCNs) [14],
PSPNet [15], and U-Net [5]. Among which, U-Net and its variants [6, 16–18] are the
most popular choices for this task. The U-Net utilizes the encoder-decoder architecture
with skip connections, which enables direct connections between mirroring layers of the
encoder and the decoder. These skip connections help preserve both the coarse infor-
mation and the fine details in the results. However, both the vanilla U-Net and many of
its variants operate on 2D image slices, without utilizing the spatial information of the
3D volume. Both 3D U-Net [6] and V-Net [18] were proposed to directly operate on 3D
volume by replacing the 2D operations found in vanilla U-Net to their 3D counterparts.
To solve the foreground-background imbalance problem, which becomes exponentially
severe in 3D, V-Net also introduced a new loss function based on Dice coefficient. How-
ever, due to the hardware limitation and the medical restrictions on radiation dosage, the
resolution of the result volume is limited, therefore the extracted mesh would suffer from
staircase artefacts. MC is the most prominent method for mesh extraction, it extracts a
triangle mesh isosurface from the volumetric data using pre-calculated potential cube
configurations to match the ROI’s boundary of the volumetric data. However, the MC
process is non-differentiable, therefore the extracted mesh cannot be end-to-end trained
for mesh optimization. Liao et al. [19] and Chen et al. [20] used deep learning networks
to learn the optimal cube configuration instead of using the pre-calculated configuration
during the surface extraction process, therefore making the mesh extraction process dif-
ferentiable, and the output mesh can be directly optimized using deep learning methods.
However, their works are limited by hardware constraints and extracted meshes from
smaller volumetric data (up to 1283 volume resolution) [21].
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2.2 Mesh Deformation Models

The deformable mesh models was first introduced by Terzopoulos et al. [22, 23], and
was quickly adapted for medical image segmentation tasks [24, 25]. By implementing
the graph convolutional network (GCN) model [26] that optimize the vertex place-
ment, Wang et al. [9] introduced the first deep learning based mesh deformation model
Pixel2Mesh, which generates a 3D mesh from a single image by deforming an ellipsoid
mesh template. This model takes a 2D image as input and cannot be used to process
the 3D volumetric data. Wickramasinghe et al. then utilized its GCNmodel and adapted
to process 3D volumetric data in Voxel2Mesh [2]. In Voxel2Mesh, an encoder-decoder
network with skip connections is used to extract features from the input volume, where
these features are then sampled by an adaptive mesh unpooling strategy that maps the
spatial features in volume space to the corresponding vertices in mesh space. The sam-
pled features are used to guide the GCN to deform the sphere template to desired shape.
The Voxel2Mesh is then extended for various medical mesh generation tasks [4, 27–
30] where sophisticated data-driven templates of the target anatomical structures are
used, to minimize the required deformation. The quality of the result mesh is heavily
dependent on the initialization of the deformable templates [31], as misaligned spatial
features in volume space and mesh space would destabilize the deformation. Kong et al.
[4] solved this problem by predicting the displacement of a control point grid to align the
features in different space. Although there are works [32–34] addressing the topology-
dependent problem of using pre-defined templates, the template selection process is
non-differentiable and therefore cannot be end-to-end trained, it is hard to address in the
deep learning context.

3 Experiments

3.1 Data and Experiment Setup

Three datasets of varying shape complexity are used to evaluate the deformation
networks.

Fig. 2. The templates used for deformation networks. The 162-face icosahedron template (a) is
used for both the CHAOS and Pelvic1K dataset, and the twin 162-face icosahedrons template (b)
is used for CT-ORG dataset.

1) Liver segmentation (simple shape complexity): The CHAOS dataset [12] consists of
20 CTs of human abdomen and their liver segmentation masks.
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2) Kidney segmentation (moderate shape complexity): The CT-ORG dataset [13] con-
sists of 40 CTs of the lower human body and their kidney (among other organs) seg-
mentation masks. The two kidneys are selected because of their different topological
structures.

3) Pelvis segmentation (high shape complexity): CTPelvic1K dataset [11] consists of
103 CTs and the pelvis segmentation masks. The pelvis is selected for its complex
topological structures such as the obturator foramen.

Each dataset is randomly divided into a training set and a testing setwith a ratio of 7:3.
Each volume is down-sampled using trilinear interpolation to 2562 in slice resolution,
with proportional slice counts for training,while the ground truth isosurfacemeshmodels
are generated using MC with step size 1 on the full-resolution segmentation labels to
minimize the staircase artefacts.

We evaluate the deformation networks visually and numerically with a traditional
pipeline that uses the standard U-Net for ROI segmentation andMC for mesh extraction.
As shown in Fig. 2, the deformation models use a 162-face icosahedron as the template
for CHAOS and Pelvic1K, and a twin 162-face icosahedron as the template for CT-
ORG to accommodate the two kidneys. The U-Net uses RMSprop optimizer, BCE with
logits loss, and has a batch size of 8. The U-Net is trained on the same datasets used for
Voxel2Mesh until convergence. The step size of MC is 1.

We conducted all our experiments, both training and inference, on a workstation
with NVIDIA Tesla V100 GPUwith Ubuntu 20.04. All the mesh rendering images were
captured using MeshLab [35].

3.2 Metrics

The following 3 metrics were used to evaluate our mesh quality quantitatively:
The average symmetric surface distance [36] (ASSD), measures all the average

distance of all points from one mesh to the other’s isosurface, and vice versa, hence the
name symmetric; the lower the better;

The Hausdorff distance [37] (HD), measures the maximum distance of all the
minimum-distance pair of the points between two meshes; the lower the better;

The Chamfer distance [38] (CD), measures the average distance of all the minimum-
distance pair of the points between two meshes; the lower the better;

For all point-based metrics (ASSD, HD, CD), we randomly sample 100,000 points
on the isosurface for each mesh model.

3.3 Quantitative Result

In Table 1, the U-Net reports best scores of all three metrics in CHAOS dataset. The
U-Net also reports best score in ASSD of the Pelvic1K dataset. The Voxel2Mesh reports
the best scores of all threemetrics in CT-ORG, and best score of HD andCD in Pelvic1K.
The Pixel2Mesh-3D reports the worst scores in all experiments.
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Table 1. Quantitative comparison of Voxel2Mesh, Pixel2Mesh-3D and 2D U-Net, using three
metrics, over three different datasets. The best score of the three is in bold font.

CHAOS Voxel2Mesh Pixel2Mesh-3D U-Net

ASSD↓ 0.012034↓ 0.047262 0.005411

HD↓ 0.154371 0.244806 0.124324

CD↓ 0.001177 0.007982 0.003276

CT-ORG Voxel2Mesh Pixel2Mesh-3D U-Net

ASSD↓ 0.008519 0.089067 0.010392

HD↓ 0.098444 0.098721 0.165157

CD↓ 0.006342 0.006593 0.007234

Pelvic1K Voxel2Mesh Pixel2Mesh-3D U-Net

ASSD↓ 0.028900 0.069296 0.012221

HD↓ 0.199291 0.286626 0.383156

CD↓ 0.002640 0.016262 0.005481

3.4 Qualitative Result

In Fig. 3, the U-Net (a) exhibits high visual similarity with the ground truth mesh (c)
in both tasks of liver (first row) and kidney (second row). However, the U-Net fails
to reconstruct the lower parts of the pelvis, as indicated by the blue arrow. Moreover,
the U-Net also reconstructed parts of the spine and femur that were outside the ROIs
(see the red arrow). The visual quality of all three meshes from U-Net, as well as the
ground truth images which are extracted using MC, are compromised by the staircase
artefacts. The mesh liver generated by both Voxel2Mesh (b), and Pixel2Mesh-3D (c)
is unable to preserve the sharp edges of the organ, as indicated by the blue arrows in
the first row. We note that in the second row, The lower parts of the kidney pairs are
stretched to the opposite kidneys in both deformation networks. In the third row, Both
Voxel2Mesh and Pixel2Mesh3D results suffer from the problem of fixed topology and
thereby fail to reconstruct the pelvis with the detailed structures such as the obturator
foramen, indicated by the red arrows, and resulted in a basin-shaped mesh.

We applied the curvature principal directions from MeshLab to examine the stair-
case artefacts. We visualize the magnitude of the curvature by encoding the maximum
curvature direction with red, the minimum curvature direction with green, and the third
principal direction that is perpendicular to both maximum and minimum direction with
blue. The intensity of each colour channel indicates the magnitude of each curvature
direction, that is, the green regions indicate flat surface, the red and blue regions indicate
sharp edges. In Fig. 4, the mesh generated by Pixel2Mesh (a–c) exhibits high strength of
curvature in regions corresponding to the overall shape. The mesh extracted from MC
(d), however, exhibits distinct steep edges along the shape curves.
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Fig. 3. Visual comparison of the CHAOS (first row), CT-ORG (second row), and Pelvic1K (third
row) meshes between (a) U-Net, (b) Voxel2Mesh, (c) Pixel2Mesh-3D,(d) the ground truth, and
(e) a coronal view of the CT used as input.

Fig. 4. The visualization of curvature principal directions where red encodes maximal curvature
and green encodes minimal curvature. (a–c) are taken from the mesh generated by Voxel2Mesh
from different viewpoints, and (d) is taken from mesh extracted by MC for reference of staircase
artefacts.

4 Discussion

We observed several limitations in the performance of the mesh deformation networks
when evaluating the reconstructed meshes of various complexity. Specifically, we found
that:

The networks are unable to reconstruct the meshes with sharp edges,
The networks are unable to deform templates with multiple objects, and
The networks are unable to reconstruct organs of different topological structures.
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As shown in the first row of Fig. 3, both Voxel2Mesh and Pixel2Mesh-3D can
deform their icosahedron templates to simple shapes, such as the liver in CHAOSdataset.
However, it fails to preserve the fine details such as the sharp edges indicated by the blue
arrows in the first row of Fig. 3.

In the second row of Fig. 3, where the deformation networks deform the template
of a icosahedron pair, the networks failed to differentiate the vertices from the two
icosahedrons, causing the vertices to be misplaced to match the surface of the opposite
kidney.

Furthermore, due to its graph convolution network (GCN) structure, it is unable to
deform to complex shapes. The GCN consists of graph convolution layers that modify
the value of graph vertices but are constrained by the topology of the graph as it cannot
change the connectivity of the mesh edges. As shown in the third row, both networks
were able to deform the template to the shape of a basin. However, the details of the
pelvis and the foramen are all missing from the mesh. This again is due to the limited
capacity of the sphere to deform to a complex basin shape with multiple openings.

In comparison to the mesh models extracted from a U-Net segmented volume using
MC, which are affected by the staircase artefacts, the meshes deformed from templates
remain unaffected. This is because the sphere template with smooth surfaces is directly
deformed into the output shape, without using the voxelized grid which causes the
artefacts. In the third row of Fig. 3, the U-Net fails to reconstruct thin structures such
as indicated by both red and blue arrows, and erroneously reconstructs parts outside the
ROIs. Conversely, these issues are not presented in the deformation networks’ outputs,
as the topology structure is constrained by the pre-defined template.

We further verify the absence of staircase artefacts in meshes generated by
deformation-based networks by examining the curvature direction distribution in Fig. 4.
The staircase artefacts can be visually identified by the contrastive colour ripples that
indicate high strength of curvatures and high homogeneity along the z-axis, as shown
in (d). However, such ripples are not presented in (a–c), which are generated from a
deformation network.

In future work, we will investigate other medical isosurface representations that can
minimize the staircase artefacts and can be used for more complex anatomical structures,
such as the signed distance functions (SDF) [38] that uses mathematical functions to
represent the 0-level distance isosurfaces of the desired shape. As this representation
does not require any template as initial input, it is not restricted by the pre-defined shape
and can be used to represent any arbitrary shapes.Moreover, the SDF describes the shape
in a continuous space, and therefore it can be sampled at arbitrary high resolution when
MC is used for mesh extraction; this potentially can minimize the staircase artefacts that
are mainly caused by low z-axis resolution.

5 Conclusion

In this study, we highlighted the existing limitations of utilizing a mesh deformation net-
work for representing medical ROIs, which includes the restricted ability to reconstruct
shapes with sharp edges, and the inability to change the topological structures of the
template. Although the visual quality is inferior compared to the traditional pipelines
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that utilize theMC for mesh extraction, deformation networks’ benefit to bypass theMC
process and avoid the staircase artefacts makes it worthwhile for future research.
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Abstract. Coronavirus Disease 2019 (COVID-19) ravaged the world in
early 2020, causing great harm to human health. However, there are sev-
eral challenges to segment the infected areas from computed tomography
(CT) image, including blurry boundaries between the lesion and normal
lung tissues, and uncertain characteristics about lesion’s scale, location,
and texture. To solve these problems, a COVID-19 lesion segmentation
network (LS-Net) based on probabilistic diffusion model is proposed to
segment lesion areas from CT images. The feature fusion decoder module
is introduced to aggregate high-level features and generate a guidance as
the next steps so that the small lesion could not be omitted. In addition,
the attention mechanism is set to pay attention to the information about
position of lesion’s edge. So, the LS-Net framework can improve the pre-
cision of lesion segmentation result from CT image slice. Experiments
on datasets such as the COVID-19 CT Segmentation dataset shows that
LS-Net is advanced than most current segmentation models.

Keywords: COVID-19 · computed tomography · lesion
segmentation · feature fusion · diffusion probabilistic

1 Introduction

Causing by severe acute respiratory syndrome coronavirus type 2 (SARSCoV-2),
the coronavirus disease 2019 (COVID-19) has exploded around the world, with a
massive increase in the number of people who infected with the virus [1]. Updated
8 October, 2022, more than 620 million infections have been recorded, including
about 6.55 million deaths (data from the World Health Organization). These
cases caused a significant public health concern in the international community
[2]. Therefore, in the absence of specific therapeutic drugs or vaccines for COVID-
19 [3], it is great important for the treatment of patients and public health
safety that accurate and rapid diagnosis of suspected cases at the early stage
and immediate isolation of infected people from healthy people.

Reverse transcriptase polymerase chain reaction (RT-PCR) is considered to
be the primary standard for COVID-19 screening, according to the Diagnosis
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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and Treatment Protocol for COVID-19 (Trial Version 9) officially issued by the
National Health Commission [4]. However, the process could be affected by the
course of disease, specimen collection, testing process, testing reagents and other
factors, even the time limit of specimen transportation, which can lead to that
the sensitivity of RT-PCR for early COVID-19 with a high false-negative rate.
The asymptomatic patients do not have clinical symptoms in the early stage, but
chest CT images can show lesions [4]. With the use of advanced medical imaging
equipment, the sensitivity of chest computed tomography (CT) on early COVID-
19 has reached 0.98 [5]. Therefore, in clinical diagnosis, because of being easy to
operate and fast to diagnose, chest CT is often preferred to make a comprehensive
judgment based on clinical manifestations and underlying diseases [4].

CT images can show different features of patients from infection to recov-
ery [6,7]. In the early stage of COVID-19, the image showed single or multiple
ground-glass opacity (GGO) in both lung tissues. At next stage, they were over-
laid with consolidation and crazy dotted pattern, which were absorbed over the
course of the treatment (usually after 14 days), then the lesion would leaving
only the GGO [6–8]. Therefore, GGO is an important criterion for CT-based
assessment of COVID-19 severity [6]. However, in the early stage of COVID-19,
the location and size of the lesions in CT image slices are not fixed. At the
meantime, its shape and texture also have different performance [8]. Moreover,
GGO tended to have blurred edges, which was similar to consolidation, and thus
showed a small inter-class difference that was difficult to distinguish from other
lung tissues. In addition, due to privacy and other reasons [9], manual annota-
tion for dataset segmentation is very limited, which would increase the difficulty
of the segmentation task.

Fig. 1. Comparing to other’s result, our result is more precise and complete of lesion’s
edge and some small lesion. Original CT image is in the left, and the otherside is ground
truth. The left circled by orange line is the comparision between our result and other’s
sgmentation result about lesion’s edge, the right circled by red line is the comparision
between our result and other’s sgmentation result about small lesion. (Color figure
online)

In order to solve these problems, we propose a novel CT lesion segmentation
network based on diffusion probability model. And we have obvious result, it is
shown in Fig. 1. The main contributions of the work are:
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• We modify the neural network model in the reverse diffusion process to
improve the accuracy of localization and segmentation of infection/non-
infection areas. By extracting and aggregating the high-level features of the
input image, the information includs global features and local features, then
applies to the problem of lesion segmentation in COVID-19 CT images.

• We propose the FFD module to aggregates high-level features without omit-
ting small lesion areas, because it will generate a global map combined with
features obtain context information, which will serve as a guidance for the
next steps and up-sampling. The attention mechanism is introduced to pay
attention to local features such as the edge of the lesion, so that our network
can improve the segmentation accuracy of the blurry edge of the lesion.

• We consider the characteristics of both the neural network model and the
probability diffusion model, and use the hybrid loss function to improve the
robustness of the model. In the experiment process, we explore the influence
of hyperparameter T in the network to determine the optimal number of
iterations, and then average to improve model performance and generalization
ability.

2 Related Work

2.1 COVID-19 CT Lesion Segmentation

Chest CT is currently the main means of screening and diagnosis of COVID-19,
and image segmentation is a key step in the study of the disease [8]. Currently,
chest CT images usually delineate regions of interest (ROI), such as infected
areas or lesions in the lung tissue [8,10]. Segmentation methods based on deep
learning have been widely used in lung lesion segmentation, among which the
most widely used is the U-net network model and its variants [11–13]. For exam-
ple, Ferdinandus [11] used the U-Net model for CT image semantic segmenta-
tion, while Adnan [12] et al. compared the U-Net model and the SegNet model,
and concluded that they are suitable for multi-class lung disease classification
and infection/non-infection area segmentation, respectively. After segmenting
the ROI, the lesion features are further extracted for the next training net-
work model [14,15]. For example, Zhang [14] et al. used cross-modal feature
fusion to learn rich feature representations by transferring knowledge across dif-
ferent modal data and fusing knowledge from different modal data. Cheng [15]
combined semantic branch and a detail branch. One focuses on extracting the
semantic features from shallow and deep layers, the other one is used to enhance
the contour information implied in the shallow layers.

2.2 Deep Learning for COVID-19 Detection

Deep learning is an emerging technology in the field of medical imaging [16,
17] that has made a positive contribution to the fight against COVID-19. The
application of deep learning in COVID-19 can solve the problem of insufficient
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label data and small inter-class variance between itself and other pneumonias
[18,19]. For example, Ebenezer [18] et al. used false-positive and false-negative
ensemble data to increase the diversity of models and reduce the error rate
of detecting diseases. Chen [19] et al. proposed a segmentation model based on
unsupervised region adaptation, which uses synthetic data and limited unlabeled
data to jointly train the network. In addition, attention mechanisms, combined
with convolutional neural networks in medical image segmentation, are widely
used to suppress irrelevant information and highlight the ROI [20–23]. Zhao [21]
et al. proposed a supervised spatial attention mechanism, which combines the
attention of the lesion region with the features extracted by the network, so that
the multi-lesion segmentation is decomposed into two simpler stages: coarse and
fine. Li [22] et al. added an attention module between every two features of the
middle layer feature map of the model to capture global information and place
it in the process of feature fusion to enhance the features. These studies coupled
with the use of deep learning to segment lesions in CT images, so the quantitative
features obtained can be used for COVID-19, which can help clinicians assess
the extent of disease and timely treatment.

2.3 Diffusion Drobabilistic Model in Segmentation

Generative models have a long history in traditional machine learning, which
focus on using some internal mechanism to characterize the distribution of things
that are actually observed. With the rising of deep learning, generative models
have formed a new concept by combining with deep neural networks: deep gen-
erative models (DGMs). That is, using a neural network with a certain amount
of parameters to simulate the process of data generation [24]. In the past two
years, DGM has made new developments [25,26], Prafula [26]and others have
demonstrated that the diffusion model becomes a new SOTA in DGM, because
of solving the problems of slowly sampling speed, maximum likelihood difference
and weakly data generalization ability in the original diffusion models [27], which
leads to a widely application in many fields and has achieved good performance
[28], etc. Recently, there are studies on the application of the diffusion proba-
bilistic model to medical image segmentation with excellent results [29–32]. For
example, Kim [31] et al. introduced a diffusion adversarial representation learn-
ing (DARL) model, in which the latent features of diffusion module provide
vessel information and thus improve the segmentation performance. And the
model has a good generalization ability. Wu [32] et al. combined with dynamic
coding methods to establish state adaptive conditions for sampling during the
denoising process, and used the characteristic frequency analyzer (FF-Parser)
to eliminate the interference of high-frequency noise during the segmentation
process, then achieved good performance in brain tumor segmentation on MRI
images and thyroid nodule segmentation on ultrasound images.
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3 Method

We designed our models based on the denoising diffusion probability models.
In this section, we explain how to modify the neural network model during the
reverse process and show the main equation from the probability diffusion model,
which also is the framework of our LS-Net. In addition, we introduce the core
network structure and loss function in our model in detail.

3.1 Lesion Segmentation Network (LS-Net)

In short, the diffusion probability model can be roughly divided into two pro-
cesses. One is the forward diffusion process, which is to add Gaussian noise to the
segmentation label X through a series of steps T . Another is the reverse denois-
ing process, which trains the neural network to gradually denoise the noisy in to
the picture, until restoring the original picture. Actually, the forward diffusion
process P is a Markov chain process that can be expressed as:

p (X1:T | X0) =
T∏

t=1

N
(
Xt;

√
1 − βtXt−1;βtI

)
(1)

In each iteration of the forward difussion process, T is the number of steps in
the model, X1,X2, · · · XT is the latent variables, and X0 is the data sample. βt

is the constant that defines the addition noise schedule, and I is the identity
matrix of size of n × n. Since the added noise parameters are determined by βt

and Xt−1. It is a fixed value rather than a learnable process. Therefore, in the
forward diffusion process, it is not necessary to go from X0,X1, · · · to XT which
could be calculated at any moment. The method is completed through parameter
retuning techniques. The variance parameter for the forward diffusion process is
a liner function [24] from β1 = 10−4 to βT = 2 × 10−2, and the expression is:

βt =
10−4 (T − t) + 2 × 10−2 (t − 1)

T − 1
(2)

In the section of experiment, we will explain the reason of chosing the liner
function.

The reverse denoising process is the learning of a neural network to approx-
imate the conditional probability distribution q (Xt−1 | Xt) that simulates this
process:

qθ (X0:T ) = q (XT )
T∏

t=1

qθ (Xt−1 | Xt)

qθ (Xt−1 | Xt) = N (Xt−1;μθ (Xt, t) ,
∑

θ (Xt, t))

(3)

The μθ is mean function and the
∑

θ variance function. This is also the main
part of our LS-Net model.

Our neural network structure is based on the denoising diffusion probability
models. As can be seen from the previous work, the forward diffusion process is a
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Fig. 2. The architecture of our proposed LS-Net model, which bases of diffusion prob-
ability model, and consists of feature fusion decoder (FFD) and attention mechanism
and other details.

mathematical process. We add Gaussian noise to the image I, after determining
the input image I and the variance parameter βt, the image Xt which can be
calculated at any moment in the process. In the reverse denoising process, the
function pθ is used to approximate the probability of simulated conditions which
is obtained by learning a neural network with structural details, as shown in
Fig. 2. The diffusion probability model is modified using the function pθ, which
combines the information of the image Xt at the current moment and the infor-
mation of the input image I. The function pθ is modified on the basis of the
Res2Net network model. As can be seen from the Fig. 2, the CT image Xt at
the current moment is first transmitted to two low-level convolutional layers
to extract low-level features with high resolution but weak semantic informa-
tion, and then the obtained low-level features are input to the next three high-
level convolutional layers to extract high-level features with low resolution but
strong semantic information, and finally we use the feature fusion decoder mod-
ule (FFD) to aggregate these high-level features. FFD modules are connected in
parallel to generate images of coarse localization of lung lesions. Image S works
with the higher features to direct the attention mechanism to focus on the edge
information of the lesion, and it will feed back directly to the higher features.
The output of advanced features is cascaded, i.e. the output of f4 is determined
by f5 and image S, and the output of f3 is determined by f4. The final output f3
will be used with ground truth as the next output image of the inverse diffusion
process. Next we will cover the details of the FFD module and our loss function.

3.2 Feature Fusion Decoder Module

In medical image segmentation networks, it is often the case that the ROI
region, such as organs or lesions, is segmented and then aggregated [33,40] from
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the low/high level features. Generally speaking, low-level features have more
fine-grained feature information than high-level features, which will increase the
demand for computing resources while contributing less to performance. Based
on this principle, we only select the output features of the last three convolu-
tion blocks of the encoder, and do not use the first two, because the first two
convolution blocks will consume a lot of computing resources. We recommend
aggregating high-level features using only parallel partial decoder components,
as shown in Fig. 3. Specifically, for the input CT image I, we utilize the first
of the five convolutional blocks of Res2Net to extract two sets of low-level fea-
tures {fi, i = 1, 2} firstly,and utilize the last three groups of high-level features
{fi, i = 3, 4, 5}. Then, we leverage this decoder component to connect and aggre-
gate three sets of advanced features in parallel. In order to accelerate, each branch
uses 1× 1 convolution to reduce channel dimension. In particular, the high-level
feature f5 separately uses a combination of 1×1 convolution and 3×3 convolution
modules to extract key feature information again. Finally, features aggregated
by feature fusion decoder module will generate a rough global map S, which is
then used to adjust the three sets of advanced features {fi, i = 3, 4, 5} and serve
as a guide for up-sampling.

Fig. 3. Feature fusion decoder is utilized to generate the global map.

After rough localization of FFD, we also introduced attention mechanisms
in three groups of high-level features {fi, i = 3, 4, 5} for fine segmentation of
lesion edges. The attention mechanism will select the edge information of learn-
ing attention lesion location from the characteristics of S feedback by refining
the features of the three convolution blocks from high-lever and eliminate the
abnormal information in the features. Then, we will use the following formula
to calculate the weight Rt of the output image Xt−1,

Ri = Ai ⊕ fi + Ri+1

Ai = P (S)
(4)

which Ri represents the feature weight output at each step, i = 3, 4, 5, and A
represents the feature information obtained after the attention mechanism learns
S, which P represents the upsampling operation, and Ri = R3 is the final output
result.
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3.3 Loss Function

When setting the loss function Lloss, we also considered the differences between
the denoising diffusion probability model and the convolutional neural network
model. The loss function Lloss will eventually consist of these two parts together,
here are the details.

In the reserve denoising process, it is mainly the calculation of the loss func-
tion of the convolutional neural network training process. Following the previous
work [33,40], we define LIoU as the loss function of the roughly extracted lesion
features, which is the loss LIoU of each inverse diffusion step segmentation super-
vision, calculated as :

LIoU =
step∑

i=1

TP (y, yi)
FP (y, yi) + FN (y, yi) + TP (y, yi)

(5)

where TP is the true positive between the ground truth y and output mask yi,
FN is a false negative, and FP is a false positive. And the step is the number
of diffusion steps.

For the fine extraction of the loss function of lesion edge features, we set it
to Lam:

Lam =
w∑

x=1

h∑

y=1

[GelogSe + (1 − Ge) log (1 − Se)] (6)

where (x, y) are the coordinates of each pixel in the predicted edge map Se and
edge of ground truth map Ge. The Ge is calculated using the gradient of the
ground truth map.

Additionally, w and h denote the width and height of corresponding map,
respectively. Finally, we pay additional attention to the three high-level feature
outputs, setting our loss function to:

Lroi = LIoU (G,S) + Lam +
i=5∑

i=3

LIoU (G,Si) (7)

Therefore, Lroi provides pixel-level supervision for both the coarse segmentation
process and the fine edge segmentation process of lesions.

For the entire denoising diffusion probability model, according to [25], it is
found that the diffusion model can be trained better with the simplified objective
function ignoring the weighted terms, so we set the loss function for this part as:

Ls
t = EX0,Zt

[∥∥Zt − Zθ

(√
ᾱtX0 +

√
1 − ᾱtZt, t

)∥∥2
]

(8)

Therefore, the final simplified objective function is:

Lloss = Ls
t + Lroi (9)
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4 Experiment

The basis of our LS-Net is denoising diffusion probability model, so the forward
diffusion process is a computable mathematical process. Xt can be viewed as a
linear combination of the original image X0 and the noise βt. This process is
important because the next steps will only yield meaningful information if the
resulting Xt is completely lost to the original data and reduced to a random
noise. As a result, the forward process usually uses a defined variance schedule.
In the forward diffusion process, we decide to adopt linear function [25].

4.1 Datasets

According to [33], there are very few datasets applied for image segmentation.
So, the dataset we chose was the COVID-19 CT Segmentation dataset, which
consists of 100 different axial CT images of COVID-19 patients, all collected
by the Italian Society of Medical and Interventional Radiology. Radiologists
segmented the images using three labels, ground-glass opacities, consolidation,
and pleural effusion, to identify areas of lung lesions. We randomly select 50
images as the training dataset, and the remaining 50 randomly form the test
dataset and validation dataset according to the 9:1 ratio.

In addition, we also used another dataset, the COVID-19 infection segmen-
tation dataset (COVID-SemiSeg), to increase the amount of training data. The
dataset is from the dataset collected in Inf-net, derived from the COVID-19 CT
Collection consisting of 20 CT volumes from different COVID-19 patients, from
which 1600 two-dimensional CT axial slides have been labeled with lesion areas.

4.2 Evaluation

The end result of our measurement is the similarity problem between the pre-
diction image and the ground truth [33]. So we use the common metrics of mean
intersection over Union (mIoU)as evaluation, which is the average of the ratio
of the intersection and union of each CT image.

In addition, we also used three evaluation indicators that are widely used
in segmented areas, the Dice similarity coefficient, Sensitivity (Sen.), Specificity
(Spec.) as auxiliary evaluation indicators, caculated as:

Dice =
2TP

FP + 2TP + FN

Sen =
TP

TP + FN

Spec =
TN

TN + FP

(10)

where TP is the true positive between the ground truth y and output mask
yi, FN is a false negative, TN is a truth negative, and FP is a false positive
(Fig. 4).
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Fig. 4. (a) is input image,(b) is a subset of the obtained results for multiple runs on
the same input,(c) is average result, and (d) is ground truth.

4.3 Training Details

The training of our model is implemented in Pytorch, the model is trained on
ground truth many times and averaged as the final segmentation result, by the
scheme of random sampling and extraction of training images. Following the
previous working, although the more diffusions, the more accurate of the model.
For example, there are people with a diffusion step of 1000 or even 4000. But in
order to segment the immediacy of the lesion, we decided to use 100 diffusion
steps, and did a set of comparative experiments to study the effect of the number
of diffusion steps on the accuracy and running time of the model.

All of our experiments used the Adam optimizer with a learning setup rate of
1e-5. Before training, we uniformly adjust the image size of all inputs to 256×256,
resample the training image, that is, randomly scale within the range of [0.75,
1.25], and rotate horizontally with a probability of 0.5. The resampled image is
then used for model training, which can improve the generalization ability of the
model.

The process of 1600 images which have been labeled, we trained them by the
batch size of 8, and it would take nearly 80 h. We followed the same channels
setting as in SegDiff, the network had 15 RRDB blocks and a depth of 6. The
number of channels was set [C, C, 2C, 4C, 4C], with C = 128. We returning
the 50 CT images that have been labeled by ground truth labels. Our network
randomly initializes the weights with every training. In our experiment, when
using only one GPU that usually takes like 20 h to train one single model for a
dataset. Compared to the previous one single network based denoising method,
our method indeed requires much more time for inference.
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4.4 Result

As shown in Table 1, we compare the U-Net and SegNet models which perform
best in the filed of COVID-19 lesion segmentation with three aspects of Dice,
Sen., and Spec.. It can be seen that LS-Net proposed in this paper is superior to
U-Net and SegNet [12] in these three aspects, and also has obvious advantages
compared with other methods [10,14,33,40,41], and it mainly reflected in the
two aspects of Dice. and Sen.. This is due to the improvement of the model
based on the diffusion probabilistic model, and the introduction of the feature
fusion decoder module and attention mechanism, focusing on the segmentation
of lesion edges and small lesion locations. This is at the expense of a decline
in Spec., we also referenced [31,32,36] as a comparison, and these are the same
uses of the diffusion probabilistic model for image segmentation.

And mIoU as the main evaluation measure of the segmentation model, as
shown in Table 2. The diffusion probabilistic model also has some advantages

Table 1. Quantitative results of our’s LS-Net compare to others. The upper part of
the table compares with other network models, while the lower part compares with the
diffusion models.

Method Backbone Param. ELOPs Dice Sen. Spec.

DeCovNet [10] ResNet50 0.35M 10.6G 0.947 0.786

CMFT [14] VGG16 19.85M 31.73G 0.843 0.867

FCF-Dense [40] DenseNet 24.20M 13.20G 0.956

CR-Net [41] ResNet34 21.94M 37.95G 0.901 0.934

Inf-Net [33] Res2Net 33.12M 13.92G 0.739 0.725 0.960

U-Net [12] U-Net 17.2M 80.5G 0.964 0.948 0.733

SegNet [12] VGG16 9.16M 65.84G 0.956 0.954 0.749

MedSegDiff [32] SegNet 0.905

DARL [31] PatchGAN 0.636

CS40DB [36] U-Net 0.910 0.750

LS-Net Res2Net 34.2M 13.5G 0.967 0.961 0.843

Table 2. Segmentation results evaluates with mIoU by our LS-Net. And other methods
include diffusion models and models applied in medical image segmentation.

Method backbone mIoU

Axial-Deeplab-L [35] ResNet 62.49

DTC [37] V-Net 64.75

MedT [34] U-Net 66.17

PP-DDPM [38] AttU-Net 68.90

MGCC [39] U-Net 68.06

LS-Net ResNet 69.01
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compared to the model [34,35,37–39] and the it’s variant. However, compared
with other medical image segmentation models [34,37,39], mIoU has no obvi-
ous improvement, which we believe is caused by the imaging characteristics of
medical image itself, which is jointly affected by the physical equipment and the
patient’s state at the time of detection.

4.5 Ablation Study

We evaluate our method by following experiments, including the importance of
FFD module and the influence of diffusion steps.

The Effect of FFD. In this part, to exploring the importance of the feature
fusion decoder module, we performed an ablation experiment, and derived two
baselines: No.1 (backbone) and No.3 (backbone + FFD) in table. The result has
shown the necessary of the Feature Fusion Decoder module in the network. In
addition to, the No.1 and No.2 (backbone + attention mechanism) in Table 3, the
result shows the attention mechanism can enable our model to accurately distin-
guish true infected areas. Finally, we introduced the FFD module and attention
mechanism at the same time, it can effectively improve the segmentation per-
formance in our network.

Table 3. Ablation studies of our LS-Net, the results are shown.

Method Dice Sen Spec. mIoU

backbone 0.648 0.657 0.825 58.25

backbone+attention mechanism 0.724 0.848 0.817 62.12

backbone+FFD 0.819 0.756 0.840 65.86

backbone+attention mechanism+FFD 0.967 0.961 0.843 69.01

Varying the Number of Diffusion Steps T. We explored the influence
of the number of diffusion steps T to our network from two aspects: accuracy
and runtime. The experiment had two different datasets setting, the one is only
COVID-19 CT Segmentation dataset(D1), and another one is adding COVID-19
CT Collection dataset (D1 + D2). The result has shown in Fig. 5.

As shown in Fig. 5(a), the mIoU values of D1 and D2 increase slightly when
the diffusion step increases, and decrease when the diffusion step continues to
increase, but overall, the segmentation results do not fluctuate significantly.

As shown in Fig. 5(b), the sample generation time is proportional to the
diffusion step, and the elapsed time increases faster when the diffusion step
increases substantially.
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Fig. 5. Generation time in seconds and mIou per number of diffusion steps for COVID-
19 CT Segmentation datasets and COVID-SemiSeg datasets. (a) Time adds with dif-
fusion step increase, (b) mIoU changes with diffusion step increase.

5 Conclusion

As so far, a large number of studies have been applied to the field of medical
image segmentation which has broad development prospects, with U-Net and its
variant models being the most widely used. In this work, we propose a COVID-19
CT image lesion segmentation technology based on diffusion probabilistic model,
which adopts ResNet architecture. And we introduce feature fusion decoder mod-
ule and attention mechanism to improve the recognition accuracy of early lesion
edges and subtle lesion locations. The COVID-19 CT Segmentation dataset and
COVID-SemiSeg showed that our model significantly outperformed other mod-
els on a range of different baselines. However, the diffusion probabilistic model
is usually slow in the training and inference stage, it cannot be well adapted to
clinical medicine. So, finding the way to reduce the time required is the direction
of our future research.
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Abstract. Conic sections are extensively encountered in a wide range
of disciplines, including optics, physics, and various other fields. Conse-
quently, the geometric algebra community is actively engaged in develop-
ing frameworks that enable efficient support and manipulation of conic
sections. Conic-conic intersection objects are known and supported by
algebras specialized in conic sections representation, but there is yet
no elegant formula to extract the intersection points from them. This
paper proposes a method for point extraction from an conic intersec-
tion through the concept of pencils. It will be based on QC2GA, the 2D
version of QCGA (Quadric Conformal Geometric Algebra), that we also
prove to be equivalent to GAC (Geometric Algebra for Conics).

Keywords: Conics · Geometric Algebra · Projective Geometry ·
Clifford Algebra · QCGA (Quadric Conformal Geometric Algebra) ·
GAC (Geometric Algebra for Conics) · Pencil

1 Introduction

Geometric algebras (GA) are a convenient way to represent and manipulate
geometric primitives. They have been used in physics for decades [12,15,16] to
unify and simplify some models.

Presently, GA applications in computer sciences are widespread, used in var-
ious domains such as neural networking [4,21] and computer graphics - where
they can be used to manipulate geometric primitives [6]. For an introduction to
geometric algebras, please refer to Perwass’ and Dorst’s textbooks [7,19].

Because polynomial embedding [19] is done very naturally in geometric alge-
bras, polynomial curves and geometric algebra form a promising marriage. This
is why several GA frameworks have already been proposed for both curves and
surfaces in order to represent, transform and intersect these objects.

Perwass [19] started with a simple blade-based approach in G5,3 to represent
2D conics constructed from 5 points. This algebra also supports translations
and rotations of conics, but is presented as just a proof of concept to be further
developed. Later on, Goldman et al. proposed R(4, 4) [11], an algebra composed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Sheng et al. (Eds.): CGI 2023, LNCS 14498, pp. 175–187, 2024.
https://doi.org/10.1007/978-3-031-50078-7_14
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of two projective R
4 basis capable of supporting quadrics (and so conic when

one dimension is removed). Similarly, DCGA introduced by Easter et al. [8] is
composed of two CGA basis and can represent general Darboux cyclide, which
embeds quadrics. The common weakness of those two algebras is that their curves
and surfaces are not constructed from control points.

Another algebra supporting quadric surfaces is QCGA (Quadric Conformal
Geometric Algebra) [1] from Breuils et al, which is a 3D extension of Perwass’
conic algebra that explores intersections and transformations. QCGA can be
lowered in dimension (by removing 7 vectors of its basis) to get QC2GA, an
algebra for handling conics. Finally, GAC (Geometric Algebra for Conics) [17]
is a more recent proposition from Hrdina et al., which unlike the other ones, is
fully dedicated to conics. It is very similar to QC2GA, the 2D version of QCGA.
These two algebras, just like Perwass’, support constructing their object from
points, and notable distinction between the two lies in the inclusion of a third
spatial dimension within QCGA, while GAC (Geometric Algebra of Conics)
offers a broader range of geometric transformations. The common point of these
algebras is the lack of way to process conic intersection objects into points, and
other things that would be extremely useful such as determining the type of a
conic. We also want to be able to tell if a conic is a pair of lines, and if so, we
should have a way to extract these two lines. Conic section also have a center
and several other relevant lines and foci that would be interesting to extract and
manipulate. GAC is actually able to extract points from conic intersection on
some very specific and easy cases [5], but what we want is a general method that
works on any intersection.

This paper presents a method to extract the points from any conic inter-
section objects. The paper is organized as follows: Sect. 2 introduces state-of-
the-art of conic intersection in both projective geometry and geometric algebra.
Section 3 focuses on QC2GA and GAC. Section 4, as a first contribution, demon-
strates that they are actually equivalent. Our major contribution is detailed in
Sect. 5 that presents an algorithm to find the intersection points of two conics in
QC2GA by using an associated cubic polynomial and the naturally-supported
pencils of conics.

2 Conics Theoretical Background

This section introduces various ways of representing conics and their properties.

2.1 Conics Representation

Conics’ traces can be found as far as 380 BC by Menaechmus in the ancient
Greece. In the last couple of centuries, mathematicians linked these planar curves
to the quadratic equations of two variables and projective algebra. This is the
formalism that this paper uses.

As stated by Faucette [9], conics are planar polynomial curves of degree 2:

C : g(x, y) = ax2 + by2 + cxy + dx + ey + f = 0 (1)
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With (a, b, c, d, e, f) ∈ K
6 and K = R or C. When not degenerate and not com-

plex, a conic can be seen as the intersection between a double cone and a plane.
It is common to work in the projective space P

2 to represent points and in P
5

to represent conics. Pn is the set of all equivalence classes (ai)i∈[1,n+1] ∈ K
n+1 \

{0n} under the equivalence relation (a1, . . . , an+1) ∼ (b1, . . . , bn+1) ⇐⇒ ∃λ ∈
K, (a1 . . . , an+1) = λ(b0, . . . , bn+1). A finite point (x, y) of K2 is then embedded
as (x, y, 1) (or more generally as (wx,wy,w)) in P

2, and infinite points of direc-
tion (x, y) is embedded as (x, y, 0). In order to embed P

2 into P
5, we consider

the polynomial map Q : P2 → P
5 so that Q(x, y, w) = (x2, y2, xy, xw, yw,w2).

Conics are then represented by the vectors of P5, and the Eq. (1) becomes

C : C� · Q(x, y, w) = 0 with C = [a, b, c, d, e, f ]� ∈ P
5 (2)

Conics are also often represented by their Hessian matrix, which enables to
reformulate Eq. (1):

C : p�Hp = 0 with H =

⎡
⎢⎢⎢⎢⎢⎣

a
c

2
d

2
c

2
b

e

2
d

2
e

2
f

⎤
⎥⎥⎥⎥⎥⎦

(3)

Assume five linearly independent points (pi)i∈[1,5] with coordinates
(xi, yi, wi)i∈[1,5] ∈ P

2 and another point p0 of coordinate (x, y, w) ∈ P
2. Let

qi = Q(pi),∀i ∈ [0, 5]. The conic equation (C) is often expressed in the form of
the vanishing determinant of a matrix P = [qi,j ] [13]:

C : det(P) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 xy xw yw w2

x2
1 y2

1 x1y1 x1w1 y1w1 w2
1

x2
2 y2

2 x2y2 x2w2 y2w2 w2
2

x2
3 y2

3 x3y3 x3w3 y3w3 w2
3

x2
4 y2

4 x4y4 x4w4 y4w4 w2
4

x2
5 y2

5 x5y5 x5w5 y5w5 w2
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (4)

Then, if we denote by mj
i (A) the respective minor of matrix A, i.e. the determi-

nant of A with its i-th column and j-th line removed. If we drop the superscript
for j = 1, i.e. mi = m1

i we have:

a = m1(P) b = −m2(P) c = m3(P)
d = −m4(P) e = m5(P) f = −m6(P)

(5)

There is a more general rule to that: the set of conics passing through n non-
aligned points is a dimension (5 − n) vector subspace of P5 [10]. We could then
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argue that 4 control points would form at most a 1-vector subspace, 3 points a 2-
vector subspace, etc. This implies that the n-intersection of two conics Ca and Cb

is more than their n common points, as the 3 points of a 3-intersection generates
a 2-vector subspace when the two conics only creates a 1-vector subspace.

2.2 Type of a Conic and Degenerate Case

When K = R, the type of the conic is ruled by these two discriminants [20]:

Δ2(C) = m3
3(H) = ab − 1

4
c2 (6)

Δ3(C) = det(H) = abf +
ced − c2f − bd2 − ae2

4
(7)

Δ2(C) Δ3(C) type of C

+ �= 0 Ellipse (may be imaginary)
0 �= 0 Parabola
− �= 0 Hyperbola
+ 0 Point
0 0 Two parallel lines
− 0 Two intersecting lines

Whether K = R or C, if Δ3(C) = 0, C is called degenerate or reducible,
meaning that it can be factored into two complex lines.

2.3 Pencils

Let Ca : ga(x, y) = 0 and Cb : gb(x, y) = 0 be two conics and λ ∈ R
∗. Cλ :

gλ(x, y) = ga(x, y)+λgb(x, y) = 0 is also a conic since ga and gb are linear forms
of P5 and

Ca ∩ Cb = Ca ∩ Cλ = Cb ∩ Cλ (8)

where ∩ is the set theory intersection operator.
This is because gλ(x, y, w) = ga(x, y, w)+λgb(x, y, w) then if two of the terms

are 0, the third one is also 0, and if one term is not zero, then at least one other
is not zero. The 1-vector space generated Ca and Cb is called their pencil.

Pencil(Ca, Cb) = {K(Ca + λCb) K,λ ∈ K} (9)
= {K(cos(θ)Ca + sin(θ)Cb) K, θ ∈ K} (10)

Four non-aligned points also generate a pencil of conics, but the reciprocal is
not true: the intersection of two conics might contain less than 4 points (when
K = R) or have one or several multiple points (see Fig. 1).
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Fig. 1. The pencil (in grey) generated by two conics (in red and yellow) with 4 inter-
section points (left) and 2 intersection points (right). (Color figure online)

2.4 Intersecting Conics

Finding the intersection between two conic sections is an old problem. Two
different conics can have from 0 to 4 points of intersections (the intersection
of a conic with itself is of course the whole conic). Gröbner basis [14] can be
used to express the conic intersection problem as a quartic polynomial. Also,
Faucette [9] describes a method to solve any quartic polynomial by finding the
intersection points of two conics. Therefore, finding the intersection points of
two conic sections is equivalent to find the root of a quartic polynomial.

The method described by Faucette [9] consists of finding a degenerate conic
(i.e. that can be factored into two lines) in the pencil generated by the two
intersecting conics. That pair of lines is then separated into two distinct lines,
which can be subsequently used to find the intersection points with one of the
conics of the pencil. Another method is to directly solve the associated quartic
equation of the problem . Richter-Geber [20] reformulates this method in a more
complete way and gives a detailed process to find the intersections. Just like [9],
they solve the associated cubic equation, find any complex solution using a given
formula, split the resulting degenerate complex conic into two complex lines and
intersect the two resulting complex lines with one of the intersecting conic. Both
of these method heavily relies on complex numbers and lines, but one could
choose to only use real lines if they limited themselves to conic-lines intersections.

Now that conic intersections are introduced, the following section will present
two algebras that handle conics.
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3 A Look into QC2GA and GAC

3.1 Conics and Geometric Algebra

Let’s look back at Eqs. (4) and (5), assuming that K = R. Computing the
determinant of the matrix P can be done by working in G6 =

∧
P
5 [18,19],

where we find that the parameters of the conic (a, b, c, d, e, f) are the coordinates
of the blade of grade 5,

∧
i∈[1,5]

qi. The equation of the conic (4) then becomes.

C : q1 ∧ q2 ∧ q3 ∧ q4 ∧ q5 ∧ q = 0 (11)

Hence five points determines a conic gives us a natural outer product repre-
sentation of the implicit equation of the conic. This leads directly to Perwass’
proposition [19], and then to QC2GA [1] and GAC [17]. In these algebras, points
and conics are represented this way with their respective G5,3 bases:

p = x2e1 + y2e2 + xye3 + xe4 + ye5 + e6 (12)
C = p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5 ∧ e7 ∧ e8 (13)

= aec
1 + bec

2 + cec
3 + dec

4 + eec
5 + fec

6 (14)

In (12), ec
1, . . . , e

c
6 denotes the (right) complement-dual of the multivectors

e1, . . . , e6, defined through m ∧ mc = I for all multivector m [3].

3.2 Two-Dimensional Quadric Conformal Algebra (QC2GA)

QC2GA is the 2D-version of the QCGA algebra [1] by Breuils et al. Its signature
is R

5,3, but we use this more convenient non-diagonal basis:

e1 e2 eo1 e∞1 eo2 e∞2 eo3 e∞3

e1 1 . . . . . . .
e2 . 1 . . . . . .
eo1 . . 0 −1 . . . .
e∞1 . . −1 0 . . . .
eo2 . . . . 0 −1 . .
e∞2 . . . . −1 0 . .
eo3 . . . . . . 0 −1
e∞3 . . . . . . −1 0

QC2GA formalism relies on the following blades:

eo = eo1 + eo2 (15) e∞ =
e∞1 + e∞2

2
(16)

I�
o = (eo1 − eo2) ∧ eo2 (17) I�

∞=(e∞1 −e∞2)∧e∞2 (18)
Io = eo1 ∧ eo2 ∧ eo2 (19) I∞ = e∞1 ∧ e∞2 ∧ e∞3 (20)
Iε = e1 ∧ e2 ∧ e3 (21) I = Iε ∧ I∞ ∧ Io (22)
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QC2GA points
QC2GA

p and conics
QC2GA

C are defined as follows:

QC2GA
p = eo + xe1 + ye2 + x2 e∞1

2
+ y2 e∞2

2
+ xye∞3 (23)

QC2GA

C =
QC2GA

p1 ∧ QC2GA
p2 ∧ QC2GA

p3 ∧ QC2GA
p4 ∧ QC2GA

p5 ∧ I�
o (24)

QC2GA

C∗ = a(
e∞1

2
)−1 + b(

e∞2

2
)−1 + ce−1

∞3
+ de−1

1 + ee−1
2 + fe−1

o (25)

= −2aeo1 − 2beo2 − ceo3 + de1 + ee2 − fe∞ (26)

With (a, b, c, d, e, f) ∈ R
6 the parameters of the conic C represented by

QC2GA

C .
QC2GA supports intersections of conics, and evaluating if a point lies on one:

QC2GA

Inter =
QC2GA

C1 ∨
QC2GA

C2 = (
QC2GA

C∗
1 ∧

QC2GA

C∗
2 )∗ (27)

QC2GA
p ∈

QC2GA

C ⇐⇒ QC2GA
p ∧

QC2GA

C = 0 ⇐⇒ QC2GA
p · (

QC2GA

C∗ ) = 0 (28)

3.3 Geometric Algebra for Conics (GAC)

GAC is another geometric algebra for conics from [17] by J. Hrdina et al. Its
basis (e1, e2, n̄+, n+, n̄−, n−, n̄×, n×) has the same signature as QC2GA.

Points
GAC
p and conics

GAC

C are constructed this way in GAC:

GAC
p = n̄+ + xe1 + ye2 +

x2 + y2

2
n+ +

x2 − y2

2
n− + xyn× (29)

GAC

C =
GAC
p1 ∧ GAC

p2 ∧ GAC
p3 ∧ GAC

p4 ∧ GAC
p5 ∧ eo2 ∧ eo3 (30)

GAC

C∗ = −(a + b)n̄+ − (a − b)n̄− − cn̄× + de1 + ee2 − fn+ (31)

The usage we have of GAC is the same than QC2GA.

GAC

Inter =
GAC

C1 ∨
GAC

C2 = (
GAC

C∗
1 ∧

GAC

C∗
2 )

∗ (32)
GAC
p ∈

GAC

C ⇐⇒ GAC
p ∧

GAC

C = 0 ⇐⇒ GAC
p · (

GAC

C∗ ) = 0 (33)

4 GAC and QC2GA Are Equivalent

The metric of GAC and QC2GA are identical, and at first sight the objects of
these algebras looks very similar. It would make sense to find out that these
two algebras are the same thing, which would unify all the work done on these
two algebras. We actually can express GAC basis with QC2GA’s, which shows
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a direct equivalence between QCGA and GAC objects:

n̄+ = eo1 + eo2 (34) n̄− = eo1 − eo2 (35) n̄× = eo3 (36)

n+ =
e∞1 + e∞2

2
(37) n− =

e∞1 − e∞2

2
(38) n× = e∞3 (39)

GAC
p = eo + xe1 + ye2 +

x2e∞1 + y2e∞2

2
+ xye∞3 =

QC2GA
p (40)

GAC

C = −2aeo1 − 2beo2 − ceo3 + de1 + ee2 − fe∞ =
QC2GA

C (41)

Thanks to this reformulation, we establish the equivalence of GAC and QC2GA.
GAC possess versors for rotation, translations, dilation and even “general reflec-
tion” (which looks similar as a CGA’s spherical inversion but with conics [19]).
QC2GA also have rotations and translations (inherited directly from Perwass’
conformal conic algebra), and its translator is easier to express than GAC’s.
Due to the equivalence of these two algebras, tools from GAC and QC2GA can
be utilized interchangeably. For the rest of this article, we will then omit the
“QC2GA” or “GAC” on top of the geometric objects and follow the formalism of
QC2GA, and every property relative to QC2GA will also hold for GAC.

5 Extracting Points from QC2GA Conics Intersections

An intersection might contain from 0 to 4 points. However, the grade of that
object is always 6. Therefore it is neither trivial to distinguish the type of inter-
section nor to extract the points, hence our method. By selecting a real degen-
erate conic from the intersection object’s pencil, the conic is factorized into two
lines. These lines are then intersected with another conic from the same pen-
cil, resulting in the desired intersection points. Notably, this method exclusively
operates on real objects, unlike from Faucette’s approach that uses complex
lines.

5.1 Pencil of Conics in QC2GA

Let Inter be an intersection of two conics and p a point not in Inter, we define
C = Inter ∧ p as the conic passing through every point of Inter and through p.
Summation of two conics is allowed by QC2GA, hence we can write ∀λ ∈ R, Cλ =
Ca + λCb. Summations of points is also supported, which gives the following:

Inter = Ca ∨ Cb = (C∗
a ∧ C∗

b )
∗ (42)

Ca = Inter ∧ pa pa ∈ Ca \ Cb (43)
Cb = Inter ∧ pb pb ∈ Cb \ Ca (44)
Cλ = Inter ∧ (pa + λpb) (45)

The pencil of Ca and Cb is then generated by their intersection Inter.
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5.2 Extraction Method

The next step consists in the extraction of the points contained in an intersection.
The two conics will be used to find a new pair of conics with one degenerate,

by finding the root of an associated cubic polynomial. The degenerate conic will
then be factored into two lines, that will be intersected with the other conic to
get the intersection points using a simpler algorithm.

Building Two Conics from Inter. In order to build two conics from Inter,
one could just pick two random points and use the formulas of (42)–(45), but
this would lead to possibilities of pa and pb to generate the same conic. In order
to avoid that, it is possible to only pick one point pa randomly, to generate a
conic Ca from it and Inter and to extract Cb as the normed element in the
2D-vector space Inter perpendicular to Ca.

Ca = Inter ∧ pa (46) Cb = Inter ∧ Ca
c (47)

Finding a Degenerate Conic (Algorithm 1). Now that we have two rele-
vant conics to work with, we would like to find a degenerate conic, because a
degenerate conic is either a point (which makes the problem trivial as we just
take that point as the eventual solution), or a pair of lines that we will treat as
two distinct lines, which reduces the conic-conic intersection to the simpler task
of determining conic-line intersections. Finding a degenerate conic in the pencil
of C1 and C2 can be done by solving the equation Δ3(C1 +λC2) = 0, which can
be expanded into Eq. (48).

Δ3(C2)λ3 +

(
Δ3(C1 + C2) + Δ3(C1 − C2)

2
− Δ3(C1)

)
λ2

+

(
Δ3(C1 + C2) − Δ3(C1 − C2)

2
− Δ3(C2)

)
λ + Δ3(C1) = 0

(48)

To solve this cubic equation, we use a formula similar than Cardano’s, but which
allows to do less divisions and which allows us to easily obtain a real root when
k = 0:

Δ0 = b2 − 3ac Δ1 = 2b3 − 9abc + 27a2d (49)

Ω± =
3

√
Δ1 ±

√
Δ2

1 − 4Δ3
0

2
xk = −b + ei 2πk

3 Ω+ + ei−2πk
3 Ω−

3a
(50)

Using this approach, we may write the Algorithm 1 that samples a degenerate
conic and another conic significantly different (noticing that λCa + μCb is a
rotation of angle arctan(μ/λ) in the pencil) from the degenerate one from the
pencil of conic of Inter. The variables a, b, c, d are not conic parameters, but
rather the four parameters of the cubic polynomial.
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Algorithm 1: Find a degenerate conic and a different one in the pencil
of Inter

Function gen_degen_and_other
Input: Inter
Output: Cdeg, C⊥

do pa ← random_point() while pa ∧ Inter = 0
Ca ← Inter ∧ pa Cb ← Inter ∧ (Cc

a)

a ← Δ3(Cb) b ← Δ3(Ca + Cb) + Δ3(Ca − Cb)

2
− Δ3(Ca)

d ← Δ3(Ca) c ← Δ3(Ca + Cb) − Δ3(Ca − Cb)

2
− Δ3(Cb)

Δ0 ← b2 − 3ac Δ1 ← 2b3 − 9abc + 27a2d

Ω− ← 3

√
Δ1 − √

Δ2
1 − 4Δ3

0

2
Ω+ ← 3

√
Δ1 +

√
Δ2

1 − 4Δ3
0

2
λ ← −3a μ ← b + Ω− + Ω+

Cdeg ← λCa + μCb C⊥ ← −μCa + λCb

Factorize Lines Pairs (Algorithm 2). A line pair is of the form:

l1 = cos(α1)x + sin(α1)y + w1 (51)
l2 = cos(α2)x + sin(α2)y + w2 (52)

C : Kl1l2 = ax2 + by2 + cxy + dx + ey + f = 0 (53)

where K ∈ R
∗ is a multiplicative constant coming from the projective aspect of

the conic (it can be any constant). These two lines can be extracted using the
method presented by Richter-Gebert [20]. This method is also used by Byrtus
et al. for their specific GAC intersection extraction [5]. Algorithm 2 implements
that.
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Algorithm 2: Line pair factorization algorithm
Function factor_line_pair

Input: Cdeg

Output: α1, α2, w1, w2 // lines angles and offsets

H ← hessian_matrix(Cdeg) A ← adjoint(H) i ← arg min
k

{Ak,k}

D ←
⎡
⎣

0 −Ai,2 +Ai,1

+Ai,2 0 −Ai,0

−Ai,1 +Ai,0 0

⎤
⎦ /

√−Ai,i N ← H + D

u1, v1, w1 ← N
[
∗, arg max

j
{N [1, j]2 + N [2, j]2]}

]

u2, v2, w2 ← N
[
arg max

j
{N [j, 1]2 + N [j, 2]2]}, ∗

]

α1 ← arctan2(v1, u1) α2 ← arctan2(v2, u2)
return {α1, α2, w1/

√
u2
1 + v2

1 , w2/
√

u2
2 + v2

2}

Conic-Line Intersection (Algorithm 3). The idea is to rotate the problem
to have the line vertical (which means a known x), and we are then left with a
trivial quadratic polynomial in y.

Algorithm 3: Conic-Line intersection algorithm
Function conic_line_inter

Input: C, θ, w
Output: points

R ← qc2ga_rotor(−θ) [a, b, c, d, e, f ] ← RCR̃

x ← −w δ ← (cx + e)2 − 4b(ax2 + dx + f) γ ← cx + e

2b

p0 ←
(
cos(θ)x − γ sin(θ)
sin(θ)x + γ cos(θ)

)
u ← 1

2b

(− sin(θ)
cos(θ)

)

switch sgn(δ) do
case + do return {p0 ± √

δu}
case 0 do return {p0}
case − do return {}

end

5.3 Full Algorithm

Using the algorithms we just presented, we can write the Algorithm 4 that
extracts the points in an intersection object. This algorithm have been imple-
mented in C++ with Garamon [2] (see https://github.com/technolapin/qc2ga-
intersection). Figure 2 gives outputs of our code.

https://github.com/technolapin/qc2ga-intersection
https://github.com/technolapin/qc2ga-intersection
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Algorithm 4: Point extraction algorithm
Function extract_pts_from_inter

Input: Inter
Output: a set of points

Cdeg, C⊥ ← gen_degen_and_other(Inter)
α1, α2, w1, w2 ← factor_line_pair(Cdeg)
return conic_line_inter(C⊥, α1, w1) ∪ conic_line_inter(C⊥, α2, w2)

Fig. 2. Extraction of 0,1,2,3 and 4-intersections where the green curve is the degenerate
conic, which can be a line pair or a point. The 4-intersection is depicted twice with
different line pairs. (Color figure online)

6 Conclusion

This paper established the equivalence of QC2GA and GAC, and presented a
geometric-algebra driven method for the decomposition of a conic-conic inter-
section object into points. Further work is to be done to increase the part of
geometric algebra in the process.
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Abstract. The detection of concavity and convexity of vertices and edges of three-
dimensional (3D) geometric objects is a classic problem in the field of computer
graphics. As the foundation of other related graphics algorithms and operations,
scholars have proposed many algorithms for determining the concavity and con-
vexity of vertices and edges. However, existing concavity and convexity detection
algorithms mainly focus on vertices and not on concavity and convexity detec-
tion methods for edges of 3D geometric objects. Furthermore, existing algorithms
often require different detectionmethodswhen dealingwith two-dimensional (2D)
planar geometric objects and 3D spatial geometric objects. This means that the
algorithm structure of those algorithms becomes very complex when dealing with
concavity and convexity judgments involving both planar polygon vertices and
3D geometric object edges. To solve the above problems, this paper proposes
a multi-dimensional unified concave convex detection algorithm framework for
geometric objects taking advantage of geometric algebra in multi-dimensional
unified expression and calculation. The method proposed in this article can not
only achieve concavity and convexity detection of planar polygon vertices and 3D
geometric object vertices based on unified rules, but also further achieve concavity
and convexity detection of 3D geometric object edges on this basis. By unifying
the framework and detection rules of different dimensional geometric object con-
cavity detection algorithms, the complexity of synchronous detection algorithms
for planar polygon vertices and 3D geometric object vertices and edges concavity
can be effectively simplified.

Keywords: concavity-convexity detection · geometric algebra · outer product ·
three-dimensional objects · multi-dimensional unified
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1 Introduction

The detection algorithm of concavity and convexity of 3D space objects is the basis of
many computer graphics algorithms [1–9]. Related algorithms for concavity-convexity
detection are widely used in fields such as convex hulls method [10], angle method
[11], left-right-point method [12], vector area method [13], the cross product method
[14], slope method [15] and extremity vertices sequence methods [16]. Among them, the
angle method, left and right point method, and vector area method utilize the inherent
properties of simple polygons for algorithm design, while the cross product method,
ray method, slope method, and pole order method greatly reduce the complexity of
the algorithm in determining the convexity of simple polygons at fixed points. The
existing research on vertex concavity detection algorithms mainly focuses on the field of
two-dimensional polygons, lacking research on methods for detecting vertex concavity
and concavity of 3D polyhedron and 3D object edges (Fig. 1). In recent years, the
rapid development of virtual simulation reality, real 3D modeling, 3D printing and other
technologies has greatly expanded the application scope of 3D modeling and 3D spatial
analysis technology. As a fundamental algorithm in 3D spatial graphics, the detection of
concavity and convexity of 3D spatial entities plays an extremely important supporting
role in improving the performance of algorithms such as 3D spatial modeling, analysis,
and visual rendering.

Fig. 1. Concave Convexity of Objects in 3D Space.

Most existing vertex concavity and convexity detection algorithms are based on
Euclidean geometry design, which is limited by itself. When dealing with geometric
relationships of objects with different dimensions, different calculation methods are
often required. When dealing with the detection of concavity and convexity of 3D spa-
tial objects, these methods based on Euclidean geometry can lead to a sharp increase
in algorithm complexity. Although optimization methods can improve the efficiency
of algorithm operation, the complex algorithm structure causes a lot of invariance in
algorithm maintenance.

In recent years, the wide application of geometric algebra in computer graphics
[17–23], GIS 3D modeling [24–31], and other fields has fully proved its advantages
over traditional linear algebra and Euclidean geometry. The advantages of geometric
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algebra in performing related algebraic operations based on spatial object representation,
handling geometric problems in an algebraic manner, and unifying the expression and
operation rules of different dimensional spaces make the geometric calculation process
more intuitive and concise. This provides a foundation of mathematics for the unified
expression of 3D complex entities and spatial analysis operations.

In previous research explored vertex concavity and convexity detection methods
applicable to geometric objects of different dimensions using the properties of outer
product operations in geometric algebra. A unified framework for vertex concavity and
convexity detection algorithm applicable to geometric objects of different dimensions
has been proposed. The above research solves the problems faced by current vertex
concavity detection algorithms based on Euclidean geometry, such as the lack of 3D
vertex concavity detection and complex algorithm structure.

On the basis of existing research, this article summarizes the previous research
results. At the same time, based on the previous research results, a method for detecting
the concavity and convexity of 3D spatial object edges was further explored. This study
further expands the application of geometric algebra in the field of 3D computer graphics.

2 Basic Idea

Among numerous polygon vertex concavity and convexity detection algorithms based
on Euclidean geometry, the cross product algorithm is one of the most commonly used
algorithms.The core of the cross product algorithm is to use the directional characteristics
contained in the cross product result vector to determine vertex concavity and convexity.
However, the cross product operation in Euclidean space is only applicable between
vectors. This means that vertex concavity detection based on the cross product method is
only applicable to planar polygons and cannot be used for 3D object concavity detection.

The outer product operation in geometric algebra is a type of operation extending the
cross product [32]. Like the cross product, the result of the outer product operation also
has directionality, which can be used to determine the topological direction. But unlike
the cross product result being a vector as shown in Fig. 2a, the outer product operation
between two vectors results in a 2D bivector as shown in Fig. 2b. The outer product in
geometric algebra can achieve dimensional enhancement. More importantly, the outer
product operation in geometric algebra can be applied to all dimensional objects and
has a unified and clear geometric meaning. The above characteristics of outer product
operation provide an ideal operational tool for conducting multidimensional unified
spatial object concavity and convexity judgment.

The characteristic of outer product operation is themain theoretical basis for themul-
tidimensional unified object concavity and convexity judgment algorithm constructed in
this article. We constructed a detection method for the inner and outer spaces of objects
using the directionality of the outer product operation results. On this basis, the topo-
logical relationship features between convex objects and adjacent objects, as well as the
topological relationship features between concave objects and adjacent objects, are stud-
ied separately. By analyzing the differences between the two topological relationships
mentioned above, a detection method suitable for the concavity and convexity of objects
with different dimensions has been proposed in this paper.
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Fig. 2. Schematic diagrams of the cross product (a) and outer product (b) operation results (the
blue objects are the results of calculation). (Color figure online)

3 Method for Concavity and Convexity Detection

3.1 Directionality of Spatial Objects

The directionality of a spatial object is reflected by the order of its topological boundary
features. This means that the boundary features of a spatial object should have the
same topological order. For example, the four edges of the polygon in Fig. 3 should be
connected end-to-end to form a closed loop, while meeting the right-hand rule. For 3D
objects, the direction of all the bounding surfaces that make up the body should follow
the same rule (for example, in Fig. 3, all the bounding surface directions of the cube
comply with the right-hand rule).

Polygon Cube

Fig. 3. Schematic diagram of spatial object directionality.

3.2 Internal and External Spatial Detection of Geometric Objects

It is well known from geometric algebra that the outer product operation in geometric
algebra has directionality. We can use the property of outer product to determine the
internal and external spaces of an object. Taking the polygon in Fig. 4 as an example, the
coordinates of points in the figure are expressed in conformal geometric algebra space
with five basis vectors knowing as e1, e2, e3, e0, e∞. And the coordinates of vertices
in the figure are p1(-0.47, -0.50, 1.92, 1.00, 2.08), p2(-0.44, -1.82, -0.22, 1.00, 1.77),
p3(0.58, 0.81, -2.07, 1.00, 2.64), p4(0.67, 2.53, -0.07, 1.00, 3.42), p5(0.28, 0.90, -0.25,
1.00, 0.48) and point p6(-1.05, -2.33, 2.31, 1.00, 5.92).
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Fig. 4. Schematic diagram of the interior and exterior space of a polygon.

According to the outer product expression of lines in conformal geometric algebra,
we can obtain the outer product expression of the four edges of polygon in Fig. 4 as
follows.

lp1p2 = p1
∧p2∧e∞
= 0.63 ∗ e1

∧e2∧e∞ + 0.94 ∗ e1
∧e3∧e∞ + 3.60 ∗ e2

∧e3∧e∞
− 0.03 ∗ e1∧e0∧e∞ + 1.32 ∗ e2

∧e0∧e∞ + 2.14 ∗ e3
∧e0∧e∞

lp2p3 = p2
∧p3∧e∞
= 0.69 ∗ e1

∧e2∧e∞ + 1.03 ∗ e1
∧e3∧e∞ + 3.93 ∗ e2

∧e3∧e∞
− 1.01 ∗ e1∧e0∧e∞ − 2.62 ∗ e2

∧e0∧e∞ + 1.86 ∗ e3
∧e0∧e∞

lp3p4 = p3
∧p4∧e∞
= 0.91 ∗ e1

∧e2∧e∞ + 1.35 ∗ e1
∧e3∧e∞ + 5.18 ∗ e2

∧e3∧e∞
− 0.10 ∗ e1∧e0∧e∞ − 1.72 ∗ e2

∧e0∧e∞ − 2.00 ∗ e3
∧e0∧e∞

lp4p1 = p4
∧p1∧e∞
= 0.85 ∗ e1

∧e2∧e∞ + 1.26 ∗ e1
∧e3∧e∞ + 4.83 ∗ e2

∧e3∧e∞
+ 1.14 ∗ e1∧e0∧e∞ + 3.02 ∗ e2

∧e0∧e∞ − 1.99 ∗ e3
∧e0∧e∞

We calculate the outer product between point p5 and the four edges of the polygon,
as well as the outer product between point p6 and the four edges of the polygon in Fig. 4.
The following calculation results can be obtained.

p5∧lp1p2 = 1.03 ∗ e1∧e2∧e0∧e∞ + 1.53 ∗ e1∧e3∧e0∧e∞ + 5.86 ∗ e2∧e3∧e0∧e∞ + 0
∗e1∧e2∧e3∧e∞

p5∧lp2p3 = 0.87 ∗ e1∧e2∧e0∧e∞ + 1.29 ∗ e1∧e3∧e0∧e∞ + 4.94 ∗ e2∧e3∧e0∧e∞ + 0
∗e1∧e2∧e3∧e∞

p5∧lp3p4 = 0.52 ∗ e1∧e2∧e0∧e∞ + 0.77 ∗ e1∧e3∧e0∧e∞ + 2.94 ∗ e2∧e3∧e0∧e∞ + 0
∗e1∧e2∧e3∧e∞

p5∧lp4p1 = 0.67 ∗ e1∧e2∧e0∧e∞ + 0.99 ∗ e1∧e3∧e0∧e∞ + 3.80 ∗ e2∧e3∧e0∧e∞ + 0
∗e1∧e2∧e3∧e∞

p6∧lp1p2 = −0.83 ∗ e1∧e2∧e0∧e∞ − 1.23 ∗ e1∧e3∧e0∧e∞ − 4.42 ∗ e2∧e3∧e0∧e∞
−0.13 ∗ e1∧e2∧e3∧e∞
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p6∧lp1p2 = 1.09 ∗ e1∧e2∧e0∧e∞ + 1.41 ∗ e1∧e3∧e0∧e∞ + 5.66 ∗ e2∧e3∧e0∧e∞
−0.14 ∗ e1∧e2∧e3∧e∞

p6∧lp3p4 = 2.50 ∗ e1∧e2∧e0∧e∞ + 3.67 ∗ e1∧e3∧e0∧e∞ + 13.81 ∗ e2∧e3∧e0∧e∞
−0.18 ∗ e1∧e2∧e3∧e∞

p6∧lp4p1 = 0.33 ∗ e1∧e2∧e0∧e∞ + 0.72 ∗ e1∧e3∧e0∧e∞ + 2.49 ∗ e2∧e3∧e0∧e∞
−0.17 ∗ e1∧e2∧e3∧e∞

Obviously, to determinewhether a point is inside a polygon,we only need to calculate
the outer product of themodified point and the four edges of the polygon.And then, based
on the outer product result, make the following judgment: If the coefficient symbols of
the corresponding dimensional blade in the calculation results are completely consistent;
then this point is located inside the polygon, otherwise it is located outside the polygon.
The method for determining the internal and external spaces of a polyhedron is exactly
the same as for polygons. The only difference is calculating the outer product of the
fixed point and the faces of the polyhedron.

3.3 Concave-Convexity Detection for Vertices

A vertex concavity convex algorithm based on outer product operation is proposed in
this paper. This algorithm can be used to simultaneously determine the vertex concavity
and convexity of planar polygons and polyhedron in 3D space. The core idea of the
algorithm is to carry out the outer product between the point to be detected and the
boundaries of geometric objects. The difference among coefficient symbols in the results
of above outer product is used to determine the concavity and convexity of the vertex.
The specific framework of the algorithm is shown in Fig. 5. The first part of the algorithm
is to determine the coefficient symbol in the result of outer product between the internal
points of the geometric object and the boundaries of the same geometric object. And
then record all end nodes (such as point p6 and p8 in Fig. 6a, or point p6, p8 and p10
in Fig. 6b) connected to the vertex to be determined (such as point p7 in Fig. 6a, or
point p7 in Fig. 6b). The third step is to generate new judgment objects with the same
dimensions with current geometric object’s boundaries using the outer product of these
end nodes (such as the yellow segment p6p8 in Fig. 6a, or the yellow triangle p6p8p10
in Fig. 6b). The fourth step is to calculate the outer product between the vertex to be
detected and the newly generated geometric object. Finally, the concavity and convexity
of vertices are determined by comparing the same blade coefficient symbols in the two
outer product results obtained in the first and fourth steps.
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OR: Results of outer product between internal points and

boundary objects of geometry objects

Obtain all end nodes connected to the vertex to be detected

Generate a new geometric object with the same boundary

dimension as the current geometric object from end nodes using

outer product

DOR: Results of outer product between the vertex to be

detected and the newly generated geometric object

Fig. 5. Algorithm flow for detecting vertex concavity and convexity.

Fig. 6. Schematic diagrams of vertex concavity and convexity detection.

3.4 Concave-Convexity Detection for Edges

The convexity of edges in three-dimensional space is shown in Fig. 6b, the edge p7p10
is concave while the other edges are convex. The detection of concavity and convexity
of 3D object’s edge is based on the concavity and convexity detection results of vertexes
composing the edge. The concavity and convexity detection results of the two vertices
that make up the edge is used to determine the concavity and convexity of the edge. The
concavity and convexity detection method for edges includes the following two main
steps:

(1) Firstly, detect the concavity and convexity of the two vertices that make up the edge
to be detected (such as edge p6p7 and edge p7p10 in Fig. 6b).
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(2) Secondly,Basedon the detection results of vertex concavity and convexity, determine
the concavity and convexity of edges using the following rules: If both vertices that
make up an edge are concave points (such as point p7 and p10 in Fig. 6b, then the
edge is concave (like edge p7p10 in Fig. 6b), otherwise, the edge is convex (such as
edge p6p7 in Fig. 6b with convex point p6 and concave point p7).

Fig. 7. Polyhedron and Polygon Case Test Graphics.
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4 Case study

This article takes the polyhedron and polygon in Fig. 7 as an example to validate the
concavity and convexity detection method for vertices and edges proposed in the arti-
cle. The vertex conformal coordinates as well as vertex concavity detection results for
polyhedron and polygons in Fig. 7 can be found in Tables 1 and 2. And the concavity
and convexity detection results of each edge of the polyhedron are shown in Table 3.

Table 1. Conformal coordinates and detection results of points in Fig. 7a.

Point e1 e2 e3 e0 e∞ Result

p1 1.57 −0.84 −0.18 1 1.61 convex

p2 0.79 −1.03 1.28 1 1.66 convex

p3 0.19 0.31 1.01 1 0.57 convex

p4 1.1 0.46 −0.52 1 0.85 convex

p5 −0.15 −0.31 −1.23 1 0.82 convex

p6 0.73 −1.67 −0.85 1 2.02 convex

p7 0.71 −1.43 0.03 1 1.28 concave

p8 −0.16 −1.87 0.78 1 2.06 convex

p9 −1.01 −0.44 0.35 1 0.67 convex

p10 −0.1 −0.11 −0.26 1 0.05 concave

Table 2. Conformal coordinates and detection results of points in Fig. 7b.

Point e1 e2 e3 e0 e∞ Result

p1 −2.65 −1.73 −2.5 1 8.15 convex

p2 −2.01 −2.21 −1.81 1 6.09 concave

p3 −2.2 −3.56 −1.87 1 10.52 convex

p4 −1.66 −2.64 −1.41 1 5.87 concave

p5 −1.49 −3.17 −1.19 1 6.84 convex

p6 −0.8 −1.74 −0.63 1 2.04 concave

p7 0.43 −1.31 0.56 1 1.11 convex

p8 −0.35 −0.96 −0.26 1 0.55 concave

p9 1.16 0.22 1.15 1 1.35 convex

(continued)
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Table 2. (continued)

Point e1 e2 e3 e0 e∞ Result

p10 0.13 −0.35 0.17 1 0.08 concave

P11 1.11 1.52 0.97 1 2.24 convex

p12 0.75 2.18 0.54 1 2.8 convex

p13 −0.18 0.48 −0.23 1 0.16 concave

p14 0.46 2.69 0.2 1 3.75 convex

p15 −0.63 0.92 −0.72 1 0.89 concave

p16 −1.12 1.03 −1.23 1 1.92 convex

p17 −1.15 −0.38 −1.12 1 1.36 concave

p18 −1.88 0.21 −1.92 1 3.63 convex

p19 −1.89 −0.74 −1.83 1 3.75 concave

P20 −2.71 −0.8 −2.65 1 7.49 convex

Table 3. Detection results of edges in figure 7a.

Edge Result Edge Result Edge Result

p1p2 convex p5p10 convex p6p1 convex

p2p3 convex p7p6 convex p5p6 convex

p3p4 convex p8p7 convex p8p9 convex

p4p1 convex p10p9 convex p9p3 convex

p4p5 convex p10p7 concave p2p8 convex

5 Case study

Based on the directionality of the outer product result of geometric algebra, this paper
explores the detection method of topological space of geometric objects based on the
outer product result. A multidimensional unified vertex concavity and convexity detec-
tion algorithm based on the results of outer product operation is proposed in this paper.
Meanwhile, utilizing the concavity and convexity of vertices, a method for detecting the
concavity and convexity of polyhedral edges is proposed.

This article summarizes the previous research results on vertex concavity detection
and further explores polyhedral edge detectionmethods based on vertex concavity detec-
tion results. Geometric algebra has been introduced into the field of vertex concavity and
convexity detection of spatial objects and related topology detection in this paper. The
advantages of geometric algebra in calculating geometric relationships of spatial objects
can be used for other graphic and topological relationship calculations, including the
detection of concave and convex edges of three-dimensional spatial objects. However,
this study only utilizes knowledge related to geometric algebra for application research,
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lacking rigorous mathematical and logical reasoning verification. In the later research,
the logical derivation and completeness verification of relevant rules need to be further
carried out.
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Abstract. This paper provides an overview of spherical blossoms, called
splossoms, and some of its implications.

The blossom of a polynomial is a multi-affine function of euclidean
space with the same number of variables as the degree of the polynomial.
It provides many insights to the polynomial and simplifies methods not
otherwise apparent. One example is the de Casteljau algorithm for com-
puting and subdividing a Bezier curve. This report describes a blossom
for a parametric de Casteljau-like curve on the sphere, leading to similar
insights and simplification of algorithms on the sphere. Two earlier such
methods are the well-known SLERP and SQUAD interpolations of points
on the sphere. These methods are re-formulated with our new concept,
the splossom, which plays the role of a blossom in spherical space. Some
of its implications are briefly sketched to illustrate its potential.

The splossom itself is neatly described in terms of spinors in Geomet-
ric Algebra. This development follows the Geometric Algebra approach
and points to considerable further research within its broad vista.

1 Introduction

Position parameters alone are not always adequate to represent object motion.
Orientation of the object is often needed, e.g. its heading, pitch, and roll. Rep-
resenting orientation is central to disciplines such as computer graphics, com-
puter vision, photogrammetry, robotics, CAD/CAM, and extended reality XR,
among others. A typical example from computer graphics is the interpolation of
keyframe orientations to compute esthetically pleasing results in the motion of
an object, not only in terms of position, but also in terms of the changes in its
orientation [1,2,4]. In an inverse fashion, 3D computer vision often takes images
from an unknown object, captured from unknown positions, then automatically
constructs a 3D representation plus camera parameters and their poses [8].

Orientation can be represented succinctly by points on the unit sphere; its
motion is typically modeled as interpolating curves on the sphere. Keyframes,
for example, are usually given as points on the unit sphere and the path between
them is computed as a curve on the sphere that passes through the keyframes.

In euclidean space, interpolation curves are commonly parametric polynomi-
als, e.g., Bezier, B-spline, Hermite, Lagrange, etc. Associated with every polyno-
mial of degree d is a multi-affine function of d variables called the blossom [6].
The blossom gives insight and leads to algorithms about the polynomial that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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are not nearly as apparent without it. Although a circle cannot be expressed as
a polynomial (nor curves on a sphere), there are many analogs to polynomial
curves on a sphere. A well known example is the SLERP algorithm for computing
curves in the same way the de Casteljau algorithm computes Bezier polynomi-
als [7]. In the Bezier case, iterated linear interpolation is used. In SLERP, one
iterates on arcs of great circles. This leads to the question:- does there exist a
blossom for curves on the sphere? We answer this in the affirmative, defining the
spherical blossom, the splossom, and show some of the directions this leads.

We choose Geometric Algebra (GA) as the language of convenience for defin-
ing the splossom. In particular, the concepts of spinor and rotor are foundational.
This paper assumes a modicum of familiarity to GA. We recommend [3,5] as
background material.

This is a preliminary paper; a more detailed version is planned.

2 The Blossom

For every polynomial P of degree d, there exists a multi-affine function BlP with
d variables such that

(1) BlP (u1, ... , ud) = BlP (π(u1, ... , ud)) , where π permutates. (permutation)
(2) BlP (u, ... , u) = P (u) (diagonal)
(3) BlP (u1, ...αu + βv... , ud) = αBlP (u1, ...u... , ud) + βBlP (u1, ...v... , ud),

where α, β are constant and α + β = 1. (affine).

For example, the blossom for P (x) = x
3 + 6x2 − 3x + 3 is

BlP (u, v, w) = uvw + 2uv + 2vw + 2uw−u − v − w + 3.
The reader should check that it satisfies the three properties above. Surpris-

ingly, one rarely uses the blossom per se; it is enough to know that the blossom
exists for every polynomial. This existence was proven in [6], which also details
many of its ramifications. The blossom extends trivially to parametric polyno-
mials in Rd via its component functions.

The sublime idea behind blossoms is that given d samples of the blossom,
one can discover a rich set of algorithms that evaluate, transform bases, embed
in higher degree, approximate in lower degree, subdivide, induce continuity
between abutting polynomials, and so forth. This is done by simply applying the
three properties on the sample points. As an example, we show that the points
BlP (0, 0), BlP (0, 1), and BlP (1, 1) are control points for the Bezier form of a
quadratic polynomial P . We do this by evaluating the polynomial at u. In other
words, according to the diagonal property (2) we seek BlP (u, u) = P (u) in terms
of the given three points. The blossoming technique works iteratively, replacing
arguments of the points with u (see Fig. 1); therefore from the affine property
(3), we find BlP (u, 0) = (1 − u)BlP (0, 0) + uBlP (1, 0), which is a point along
the line segment between BlP (0, 0) and BlP (1, 0). We do this by replacing the 0
and 1 in the terms on the right with u. Similarly, BlP (u, 1) = (1 − u)BlP (0, 1)
+ uBlP (1, 1). In the final step we obtain P (u) = BlP (u, u) = (1 − u)BlP (u, 0)
+ uBlP (u, 1). Notice we have freely permuted parameters for understanding.
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The astute observer will recognize the steps from the de Casteljau algorithm
for computing the Bezier curve; thus the given points must be Bezier control
points. Using the blossom technique we have not only evaluated the polynomial,
but regenerated the de Casteljau algorithm.

Fig. 1. Using the blossom to compute the value of a quadratic Bezier curve. Function
values are abbreviated by just the parameter values

If we had chosen arguments of the points in a shifted sequence, viz. BlP (0, 1),
BlP (1, 2), and BlP (2, 3), then the method would have yielded the well-known de
Boor algorithm for B-splines and evaluated the quadratic B-spline. Extensions
to higher degrees are straightforward. There is no longer any need to memorize
the sundry algorithms for polynomials, the blossom technique will recreate them!

3 Spinors, Rotors and Spirals

A good basic introduction to the GA that follows can be found in [5, Sec 2.7.1].
For vectors a, b, the geometric product in GA defines a bivector S = a ∧ b.
The familiar sandwich operation of S and its reverse S∼

v′ = SvS∼ (1)

spins a vector v about the vector dual IS of S, which is the normal of the bivector
S, where I is the pseudoscalar of the space.
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It is often desirable in (1) to preserve the vector length, that is keep |v’| =
|v|. It is sufficient that vectors a, b are unit length to ensure this. In this case
we call S a rotor, denote it as R = ab, then

u′ = RvR∼ (2)

preserves length. Formula (2) yields a pure rotation, whereas (1) might scale the
vector as well as rotate. We derive a rotor by dividing through with the lengths,
thus R = 1

|a||b|ab. Furthermore, we can unitize the bivector part of R

R = a • b/|a||b| +
1

|a||b| sin θ
a ∧ b, (3)

where θ is the angle between a and b. (It is shown that (a ∧ b)2 = −sinθ in [5,
Sec 2.7]).

Therefore, we write

R = cosθ − Bsinθ = e−Bθ/2, (4)

where B = a∧b
|a||b| sin θ . We rewrite (2) as

u′ = e−Bθ/2veBθ/2. (5)

Hestenes [3, pp. 58–60] shows that quaternions (used by SLERP [7]) are a
special case of spinors, the even subalgebra of GA over 3D vectors. Hestenes
also shows that the spinor can be decomposed into 1) a rotation and 2) a linear
function of the angle θ. Case 1) connects SLERP-like interpolation schemes with
GA. These routines are analogs to the affine iterative routines for polynomials
such as de Casteljau, or de Boor algorithms [4]. In SLERP one iterates with the
great circle on the sphere instead of line segments in euclidean space as with
de Casteljau. GA has the advantage that it works in any dimension, and being
coordinate free, is more succinct and mathematically expressible without the
need for extensive translation between other mathematical forms such as Euler
angles or Euler matrices [3, pp. 289].

In the second case 2), it is readily apparent that the GA spinor on the bivector
plane in polar coordinates is equivalent to the Archimedean spiral created by a
point moving at constant speed along a line that rotates with constant angular
velocity (Fig. 2). In polar coordinates (r, θ) it is described by

r = p + q∗θ (6)

with scalars p and q. Changing the parameter p moves the centerpoint out-
ward from the origin (positive p on θ = 0 and negative p on θ = π), while
q controls the distance between loops. In 3D, the spiral is best represented as
a rotation/dilation, i.e., a spinor in geometric algebra:

A(θ) = (1 + off θ)e−Bθ/2 a eBθ/2, (7)
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Fig. 2. Archimedean spiral

where (1 + off θ) is the dilation which grows linearly with θ for constant off.
The rest of Formula (7) is the familiar sandwich form of a rotation in the bivector
plane B (4). Hence, A(θ) is an arc of the Archimedean spiral lying in the bivector
plane B, starting at a and subtending an angle θ.

The absolute value |A(θ)| is affine invariant, symmetric and diagonally equiv-
alent. The rotor part of (7) is unitary so it disappears in the norm, leaving only
the linear scale function. Formula (7) is the lynchpin; it is our definition for the
splossom, i.e., the blossom of the spherical curve.

4 The Splossom

As in Fig. 3, a de Casteljau-like iteration for (1) is formed by spinning a point a
on the control frame at parameter θ, and then spinning that point with respect
to another leg of the control frame by a parameter φ. From a blossom/splossom
point of view, this is evaluating the multi-affine function at the two parameters.
From a formulaic point of view it looks like

F (θ, φ) = (1 + off φ) (1 + off θ) e−B2φ/2(e−B01θ/2 a eB01θ/2 )eB2φ/2, (8)

where e−B2φ/2 is the spinor from e−B01θ/2 to e−B10θ/2. It is like the SQUAD
method [9], except that instead of unit quaternions, we use non-unitary spinors.
Think of e−B2φ/2 as the second iterate in the SQUAD algorithm, if we were
restricted to 3D and to quaternions. The splossom |F (θ, φ) | satisfies our con-
ditions for a blossom. This is a key point.

The control points for the curve in Fig. 3 are (1, 0, 0), (0, 1, 0) and (−1, 0, 0).
The curved edge seen on the left is the curve lying on the sphere. Figure 4 shows
two more views of its splossom.

The splossom is a pencil, i.e., a parametrized family of spinor curves.
(Archimedean spiral arcs in the corresponding bivector planes). The intersec-
tion of the splossom with the unit sphere is the spinor “polynomial.” It is the
left hand envelope in Fig. 3. We call it the spolynomial. It is a designable curve
which we propose for our applications.
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Fig. 3. The splossom

Fig. 4. Two views of the pencil of spirals defining the splossom.

5 Some Implications

The range of implications will be expanded later in a full report, but several
consequences are worth noting here. The first is that, as with Bezier curves,
Bezier spolynomials can be joined at endpoints if the ending bivector of the first
curve has the same orientation as the beginning bivector of the second curve,
and they match at end/beginning points. The result of this is the spline in Fig. 5.
The proof follows by use of the blossom principles. Other proofs and algorithms
are anticipated akin to the blossom for polynomials, such as conversions between
bases.
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Fig. 5. Splining two spolynomials with matching great circle legs. Dots are displayed
at equal parameter steps

Other results come immediately from the Archimedean spiral; thus, for exam-
ple, given the parametrization in cartesian coordinates:

f(θ) = (r cos θ, r sin θ) = (bθ cos θ, bθ sin θ),

the total length from θ1 to θ2 is L(θ2) − L(θ1) where

L(θ) =
b

2
[θ + ln(θ+)].

The curvature is given by

κ =
θ2 + 2

b (θ2 + 1)
3
2
.

In shape design, it is the manifold swept out by the function that is usually
important, e.g. two curves that meet with tangent continuity (G1 continuity)
may be sufficient. The more restrictive parameter continuity (C1 continuity) is
often unneeded. Applications that use orientation paths are, however, notably
dependent on parametrization. Following an animation path can be quite dis-
tracting if there is a sudden jump in viewpoint speed. Similarly, discontinuous
rotational speed of a robot arm is physically impossible to achieve. The SQUAD
approach of [9] was an early attempt to achieve C1 continuity of SLERP splines
on the sphere. It required inserting extra control points that had no design
purpose and made subsequent modification awkward. A great deal of research
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has focused on this problem, much of it looking at post-processing optimization
approaches (see [8] and its references). The splossom approach offers a new tool
for this problem.

Figure 6 shows the dotted sploynomial curve of Fig. 3 from a different view.
The boundary curves of its splossom are shown in black and gray. Spiral arcs
for one parameter go from the left black curve to the right gray curve. Similarly,
the gray/black curves are the boundaries of the arc in the other parameter. Sur-
prisingly, the manifold of the spolynomial is the same regardless of the number
chosen for the offset off in (8). Note that the dots are from the same curve which
represents the intersection of the splossom arcs with the sphere. It is less mys-
terious when one thinks of the splossom as measuring distance to the sphere in
a linear fashion with respect to angle θ.

Fig. 6. Dots are spolynomial parameter steps. Splossom boundaries are solid.

Although changing the offset does not change the manifold of the spolyno-
mial, it does change the parameterization. The black and gray pairs of points
were produced at the same parameter steps respectively, though they differ in
position on the curve in Fig. 7. It shows two instances of differing offsets pro-
ducing the same spolynomial manifold, but differing parameterizations. This
attribute of blossoming can be used to match parametrizations e.g., C1 continu-
ity, at endpoints among other possibilities.
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Fig. 7. Two views of the same spolynomial with different parameterizations based on
different offsets for the splossom.

6 Conclusion

This report briefly describes a new approach for interpolation and design of ori-
entations on the unit sphere, called splossoms. They are the analog to blossoms
for polynomials. Since all polynomials can be viewed as iterated linear interpo-
lation based on blossoms, we suggest the curves based on iterated splossoms be
called spolynomials.

We allude to a few of the implications, including a new and more general
way to conceive the well-known SLERP/SQUAD methods, the connection to the
Archimedean spiral, and a new way to reparametrize the spolynomial. We have
shown the development for the quadratic spolynomial. Higher order spolynomials
follow from nesting Archimedean arc interpolations, based on the order, in the
same way as linear interpolants are nested for polynomials. Conceptually this is
creating multi-affine functions on n-spheres.

Future research should consider re-formulating the common blossom algo-
rithms for degree elevation, degree reductions, subdivision, basis conversion
knot insertion, etc. as splossom algorithms. Extending this work to spolynomial
splines with controllable parametrizations is of particular interest.

The conformal geometric algebra [5] linearizes conformal space and is, there-
fore, an obvious candidate to explore the blossoming technique, which might
then allow for polynomial-like descriptions of hyper-spherical and hyper-planar
curves and splines.

Finally, we note that as the control points get close to each other, i.e., the size
of the splossom gets smaller compared to the sphere, the shape of the splossom
approaches that of a blossom and the spolynomial approaches the polynomial.
There is a Lie group/Lie algebra relationship that should be investigated.

We anticipate a collection of papers that include a rigorous development for
all algorithms and degrees, and a broader set of applications.
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Abstract. The quality of multi-focus microscopic image fusion hinges upon the
precision of the image registration technology. However, algorithms for regis-
tration tailored specifically for multifocal microscopic images are lacking. Due
to the presence of fuzzy regions and weak textures of multi-focus microscope
images, the registration of patches is suboptimal. For these problems, this paper
formulates a hybrid supervised deep learning model. It can improve the accuracy
of registration and fusion. The generalization ability of the model to the actual
deformation field enhance by the artificial deformation field. A step of patch
movement simulation is employed to blur the multi-focus microscopic images
and make synthetic flow, thus emulating distinct fuzzy regions in the two images
to be registered, consequently enhancing the model’s generalization ability. The
experiments demonstrate that our proposed approach is superior to the existing
registration algorithms and improves the accuracy of image fusion.

Keywords: Multi-focus microscope images · Supervised registration · Fusion

1 Introduction

In biology andmedicine, microscopic analysis often provides sample information. How-
ever, conventional opticalmicroscopes possess a limited depth of field, resulting in taking
clear images on a single focal plane solely. For slightly larger or three-dimensional sam-
ples, achieving distinct single-image imaging or extracting three-dimensional structural
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information presents difficulties. Multi-focus image fusion technology synthesizes a
range of images with different focal planes to obtain a full-depth image that increases
the efficiency of medical personnel.

The accuracy of image registration is closely related to the results of multifocal
image fusion. Inefficient registration of image sequences may lead to the introduction of
substantial artifacts in fusion results. Currently, most algorithms researching multifocal
image fusion assume that the source image sequences are aligned and that the in-focus
regions of the source images have the same magnification. However, in practical appli-
cation scenarios, some surgical microscopes are operated by surgeons, and there may be
significant differences in translation, rotation, viewing angle, andmagnification between
captured images. Therefore, image registration is a necessary step in image fusion. Typ-
ically, every pixel must transform into the reference image’s spatial coordinate system
according to a non-linear mapping relationship for the registration method to function,
that is, to construct the deformation field between images. Achieving precise simula-
tion of the practical mapping relationship between image sequences is challenging. For
example, microscope images have the characteristics that the texture features are not
obvious, which can easily lead to a high mismatch rate.

In order to solve the above problems, this paper advances a comprehensive chain
pipeline for fusion based on the registration process utilizing hybrid supervision meth-
ods. The main work has the following aspects: (1) In the registration model of the
framework, a hybrid supervise method is employed to improve registration accuracy.
The artificial deformation field is used as the ground truth in supervised learning to
assist the registration model optimization parameters. (2) According to the characteris-
tics of the multi-focus microscopic images, the artificial generation of the deformation
field and Gaussian blur data processing methods are carried out to improve the gener-
alization ability of the model. (3) By training and testing the model with various types
of microscopic images, the model has a wide range of applications. The model can be
applied not only to images of biological cells but also to images of objects such as teeth
and small electronic components.

2 Related Work

2.1 Image Registration

Image registration is for imaging sequences of the same object having different envi-
ronmental contexts, devices, or perspectives in quest of corresponding spatial transfor-
mation. Depending on the selection of the feature space, image registration techniques
can be potentially categorized into region-based [1–4] or feature-based approaches such
as Harris, SIFT, SURF and so on [5–12]. If the image quality is low, or there are many
repetitive texture features, there remains the possibility of significant mismatches in the
matching results.

Deep learning tackles the constraints of traditional registration techniques. There
are various techniques, such as deep iterative registration [13], supervised learning, and
unsupervised learning. The supervised learning method directly estimates the deforma-
tion field by the model and relies on the actual deformation field to refine the trans-
formation parameters and boost learning speed [14, 15]. However, obtaining authentic
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label information from manual labeling during practical applications poses a challenge
for the supervised learning method. The unsupervised learning methods majorly revolve
around feature [17, 18] or similarity learning of image data [16].

2.2 Multi-focus Image Fusion

Multi-focus image fusion can execute in various ways, including spatial domain [19],
transform domain, and deep learning [22, 23]. The transform domain method converts
the image into another feature domain for effective fusion. The Laplace pyramid decom-
position, curvelet transform, contourlet transform, discrete wavelet transform, and other
fusion algorithms have been proposed by researchers [20, 21]. The deep learningmethod
can thoroughly leverage the strengths of robust learning capability and generalization.
Nonetheless, the network fusion capability is confined since only image blocks or image
grayscale information utilize for fusion.

3 Method

A comprehensive framework for registration and fusion of multi-focus microscopic
images is presented in this paper. The moving image serves as the image to be registered,
while the fixed image acts as the reference image. The moving and fixed image are fed
into the hybrid supervised model to realize the registration. And the registered image is
eventually fused with the fixed image. The structure of the framework is shown in Fig. 1.

Fig. 1. The structure of the framework

3.1 Dataset and Preprocessing

Dataset. The data presented in this paper are collected using two microscopes, a bio-
logical microscope, and a dental surgical microscope. The dataset contains a total of
115 images, 68 of which are acquired using a biological microscope with a magnifi-
cation of 10–30 times and an image resolution of 1024*768. On the other hand, the
remaining images are obtained by the dental surgical microscope, with a magnification
of approximately ten times and an image resolution of 1920*1080.
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Data Augmentation. In hybrid supervised models, we employ artificially generated
deformation fields as labels to help the model parameter optimization. We perform
a similarity transformation on the original images to generate their deformation field
labels and corresponding fixed images. We randomly generate the translation vector [tx,
ty] and the rotation angle θ, and use Eq. (1) to transform the image to generate a fixed
image.

⎡
⎣
x′
y′
1

⎤
⎦ =

⎡
⎣

cosθ sinθ tx
−sinθ cosθ ty
0 0 1

⎤
⎦

⎡
⎣
x
y
1

⎤
⎦ (1)

The deformation vector [u, v] of each pixel is calculated by Eq. (2).

[
u
v

]
=

[
x

′ − x
y

′ − y

]
(2)

3.2 Deep Learning Registration Algorithm

Dense deformable registration [24] is selected. Consequently, the registration challenge
is converted into a pursuit of nonlinear dense deformation field, as explicated by Eq. (3).
Herein, f andm respectively denote the fixed and moving image. The function Simmea-
sures the similarity between the fixed image f and the moving image m are transformed
by φ.

arg minE(φ) = min
φ

(Sim(f ,m · φ)) (3)

If the deformation field derived through the traditional registration method is used
as the ground truth, the model performance is inevitably capped at that of the traditional
algorithm. Given that the registration task is an unsupervised task, the establishment
of a universally-applicable image similarity measurement standard proves daunting,
given the differentiation within different datasets. Thus, in this paper, a hybrid super-
vision model is posited, maintaining the unsupervised underpinnings characteristic of
the registration problem while concurrently providing the network with supplementary
information to facilitate superior convergence.

Registration Network. Figure 2 portrays a comprehensive depiction of the proposed
methodology. Primarily, in the training stage of the model, in order to better fit the
real deformation field, supervised learning needs to preprocess the input image. Subse-
quently, the CNN module is leveraged to acquire knowledge of the registration function
parameter gθ (f ,m) = φ. The spatial transformation layer [24] prognosticates a defor-
mation field utilizing a grid generator, which is subsequently mapped onto the moving
image through interpolation operations through a sampler. This process eventually pro-
duces a moved image similar to the fixed image, that is, mzφ. The CNN module adopts
the structure of the Unet model.
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Fig. 2. The registration network of our method

The loss function of the unsupervised network comprises two individual components:
the similarity loss (Lsim) and the smoothing loss (Lsmooth), as shown in Eq. (4). The
similarity loss gauges the similarity between the moved and fixed image, while the
smoothing loss incorporates a regularization loss that serves to optimize the deformation
field and ensure the network generates a sufficiently smooth deformation field.

Lus(f ,m, φ) = Lsim(f ,m ◦ φ) + λLsmooth(φ) (4)

The similarity loss is related to the local gray level and structural similarity of image.
The normalized cross-correlation is utilized in this paper as the similarity loss function.

The smoothing loss of the deformation field is shown in Eq. (5), where, r, c and ch
represent the rows, columns and channels of the image.

Lsmooth(φ) =
∑r

i=1

∑c

j=1

∑ch

k=1
‖∇φ(i, j, k)‖2, ∇φ(i, j, k)

=
(

∂φ(i,j,k)
∂x ,

∂φ(i,j,k)
∂y ,

∂φ(i,j,k)
∂z

)
,

∂φ(i, j, k)

∂x
≈ φ(i + 1, j, k) − φ(i, j, k) (5)

Supervised Learning. We have used the generation of artificial deformation fields in
order to simulate the movement of a microscope lens. The fixed image and artificially
transformed image by applying a deformation field are used as inputs for supervised
learning. In the case of closer object distances, the Gaussian blur is closer to the real
blur model, and the variance in the Gaussian blur can represent the depth of field. So we
chose to use a Gaussian filter to simulate the blur effect in the multi-focus images.

f
′ = gaussian(m ◦ φ

′
) (6)

The artificial deformation field φ′ is obtained by the data augmentation method
featured in Sect. 3.1. The more similarity between the deformation field(φ′′) that is
output through the use of supervised learning methods, and the artificial deformation
field (φ′), the more precise will be the prediction derived via this supervised learning.
The similarity between the artificial deformation field φ′ and the deformation field φ′′
predicted by the supervised learning serves as the loss function Ls.

Ls
(
φ′, φ′′) = 1

r × c × ch

∑r

i=1

∑c

j=1

∑ch

k=1
(φ′′(i, j, k) − φ′(i, j, k))2 (7)
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Hybrid Supervised Learning. The deformation field generated by random is usually
too simple, which restricts the type of image transforms. Therefore, we use a mixture
of unsupervised and supervised learning methods to simulate the actual deformation
field better. The moving image and the fixed image, the moving image and the fixed
image which is corresponding to the manual transformation of the moving image are
the two image pairs as inputs in the hybrid training method. The former is the input
of unsupervised learning, and the latter is the input of supervised learning so that the
network can better simulate the real deformation field between the moving image and
the fixed image.

The hybrid supervised loss function can be expressed as Eq. (8). The employment
of the supervised loss function is limited to the model training.

Lh
(
f ,m, φ, φ′, φ′′) = Lus(f ,m, φ) + γLs

(
φ′, φ′′) (8)

3.3 Fusion Method

The wavelet transform enables to decompose of the image into low-frequency and high-
frequency information, thereby taking into account the image’s details and average infor-
mation that can be processed through diverse methods. Furthermore, its reconstruction
aptitude is excellent, leading to information preservation, and themulti-scale transforma-
tion is better aligned with human visual cognition and the characteristics of a multi-focus
image.

To preserve more image details in the image fusion process, this paper uses the
wavelet-based image fusion technique and subsequently evaluates the fusion efficiency.
TheGabor filter delivers good localization competency in frequency and spatial domains.
Through the selection of an optimal low-end center frequency, low-pass filtering via the
Gabor filter is realized. By filtering the image along diverse directions, the low-frequency
components obtainable in different directions facilitate the extraction of characteristics
in various orientations. The original image is then subtracted from the low-frequency
output in each direction to get the high-frequency component in every direction. The
sum of the high frequency energy output from all directions is used as the fusion decision
rule.

4 Experiments

The experimental PC platform configuration is: the system is Ubuntu 20.04, the graphics
card is NVIDIA RTX A6000, and the memory is 46G.

4.1 Comparison of Unsupervised, Supervised and Hybrid Supervised Models

We have employed a total of 91 out of the available 115 microscopic images for both
training and validation, allocating the remaining 24 images for testing purposes. Each
group of training images was paired in pairs, thus generating a grand total of 660moving
and fixed image pairs. The model training iteration has been set to 100 rounds with a
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Table 1. Deep learning algorithm registration evaluation comparison

Algorithm Group EN (mean) MI(mean) PSNR(mean)

before after before after before after

supervised powder 1 1.576 1.450 0.805 0.121 35.509 18.616

powder 2 0.663 0.533 1.137 0.311 29.134 16.293

flower 0.271 0.427 1.591 0.693 24.884 10.732

teeth 0.181 0.223 0.845 0.67 21.584 12.552

object 0.91 0.922 1.491 1.124 24.884 10.928

supervised (with
Gaussian blur)

powder 1 1.576 1.481 0.816 0.118 35.617 18.586

powder 2 0.663 0.536 1.142 0.335 30.072 16.414

flower 0.271 0.431 1.612 0.718 25.12 11.008

teeth 0.181 0.217 0.854 0.701 21.734 12.824

object 0.91 0.918 1.503 1.186 24.913 10.928

unsupervised powder 1 1.576 1.967 0.805 1.542 35.509 35.865

powder 2 0.663 1.119 1.137 1.554 29.134 35.93

flower 0.271 0.891 1.591 1.811 24.884 20.461

teeth 0.181 0.590 0.845 1.512 21.584 19.892

object 0.91 1.696 1.491 1.518 24.884 20.461

hybrid powder 1 1.576 2.323 0.805 1.707 35.509 34.956

powder 2 0.663 1.274 1.137 1.726 29.134 36.595

flower 0.271 0.907 1.591 1.878 24.884 21.703

teeth 0.181 0.602 0.845 1.742 21.584 21.885

object 0.91 1.778 1.491 1.535 24.884 20.671

hybrid (with
Gaussian blur)

powder 1 1.576 2.379 0.805 1.771 35.509 35.207

powder 2 0.663 1.331 1.137 1.827 29.134 36.679

flower 0.271 1.12 1.591 1.889 24.884 20.98

teeth 0.181 0.705 0.845 1.824 21.584 21.861

object 0.91 1.982 1.491 1.572 24.884 20.979

batch of 16. The unsupervised, supervised, and hybrid supervised networks have adopted
normalized cross-correlation as their Lsim. In the hybrid supervised network, the weight
of Lsim stands at 1, that of Lsmooth at 0.1, and that of Ls at 0.01.

In Table 1, we have conducted a comparison of the alterations in image similarity
before and after registration. The entropy (EN), mutual information (MI), and peak
signal-to-noise ratio (PSNR) of moving and fixed images remain the same across all
these algorithms prior to registration. The similarity between images increases with
higher values of these three similarity indices. And the average values are separately
calculated for each set of different images.
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As the image is a micro-multi-focus image, it encompasses a significant amount
of fuzzy regions and weak texture areas, rendering its entropy, mutual trust and peak
signal-to-noise ratio lower than that of a clear natural image. The supervised network
has employed an artificially generated deformation field as its ground truth, a simulation
that cannot ideally replicate the deformation field of the actual image, thus, the indices
after registration are comparatively lower than those beforehand. That means, the indices
after registration of both the unsupervised network and hybrid supervised network stand
significantly higher than those before registration. It is worth mentioning that one of the
indices recordedby the hybrid supervised network following registration has experienced
a significant improvement. The image post application of the Gaussian blur renders
superior results in contrast to the one without such filter.

4.2 Comparison of Harris, SIFT, our Registration Algorithm Based on Feature
Points and Our Hybrid Supervised Algorithm

For purposes of evaluating the model’s effectiveness, we have conducted a comparative
analyzing the registration outcomes of the traditional registration algorithm [25] against
those attained by our model.

Table 2. Performance of the three traditional registration algorithms on different images

Algorithm Group Feature
points
(mean)

Matching
accuracy(mean)

EN (mean) MI(mean) PSNR(mean)

before after before after before after

Harris powder 1 372 65.23% 1.576 1.662 0.805 1.19 35.509 18.516

powder 2 388 62.68% 0.663 0.804 1.137 1.337 29.134 16.094

flower 416 70.37% 0.271 0.75 1.591 1.605 24.884 10.245

teeth 392 36.08% 0.181 0.418 0.845 0.929 21.584 20.221

object 387 60% 0.91 1.152 1.491 1.483 24.884 10.245

SIFT powder 1 272 78.67% 1.576 1.583 0.805 1.276 35.509 17.532

powder 2 625 89.07% 0.663 0.814 1.137 1.19 29.134 16.496

flower 1046 91.32% 0.271 0.719 1.591 1.472 24.884 17.274

teeth 541 72.03% 0.181 0.42 0.845 1.037 21.584 17.103

object 878 93.29% 0.91 1.667 1.491 1.543 24.884 17.274

Harris-SIFT powder 1 358 96.02% 1.576 1.740 0.805 1.37 35.509 22.611

powder 2 429 93.05% 0.663 1.138 1.137 1.422 29.134 16.978

flower 687 94.11% 0.271 0.763 1.591 1.71 24.884 19.345

teeth 314 80.77% 0.181 0.507 0.845 1.495 21.584 21.379

object 357 79.31% 0.91 1.65 1.491 1.605 24.884 19.345

Our Registration Algorithm Based on Feature Points Used for Comparison. Using
Harris, SIFT and the Harris-SIFT algorithms, experiment with the test set in the data set.
Then, calculate the number of feature points, matching accuracy and other indicators,
and take the average value, as shown in Table 2. Due to the texture features of the
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circuit element images in the last row are richer and closer to natural images, the SIFT
algorithm performs better than our algorithm in such images. The improved Harris-SIFT
algorithm generally performs better than the Harris algorithm and SIFT algorithm on
the three similarity indexes EN, MI and PSNR. However, compared with the data of
Table 1 in Sect. 4.1, it is relatively less effective than the hybrid supervised registration
algorithm proposed in this paper.

4.3 Evaluation of Fusion Effectiveness

Utilizing a multi-directional Gabor filter to fuse registered images using six algorithms,
the results are depicted in Fig. 4. The foremost row showcased in the figure represents
the moving and fixed images, whereby moving image is transformed into a moved
image to being fused with the fixed image. To better understand the effectiveness of
the fusion process, we have selected a group of flower images with obvious differences
in displacement and blurred areas to showcase. The second and third rows in Fig. 8
provide a magnified display of the sections targeted by the red box in the moving and
fixed images. Observing the resulting image, it becomes obvious that Harris, SIFT, and
Harris-SIFT algorithm has obvious artifacts near the edges of petals in the image due to
the low accuracy of registration. When relying solely on supervised registration models,
discrepancies between the predicted deformation field and real deformation field notably
impair fusion accuracy. Conversely, unsupervised and hybrid supervised models yield
a superior level of output, reducing the presence of artifacts and enhancing the natural
effect of the fused image, with results that indicate the hybrid supervised approach
produces the most effective outcomes overall.

Fig. 4. The fusion results of the moved and fixed images from different registration algorithms

Calculate the evaluation indicators after image fusion, the higher the value of these
indicators, the result of fusion is better. As shown in Table 3, the Harris-SIFT registra-
tion algorithm can improve the quality of the fusion to some extent. The unsupervised
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learning algorithm can achieve better performance. The best evaluation of image quality
is obtained among these algorithms by using the hybrid supervised model.

Table 3. Comparison of these registration algorithms in fusion evaluation indicators

Algorithm Group EN MI PSNR AG NCC VIF

Harris powder 1 5.403 3.613 71.768 2.313 0.632 1.125

powder 2 6.002 2.695 61.391 3.708 0.711 1.488

flower 5.794 3.209 62.061 3.834 0.730 0.724

teeth 7.084 3.171 71.326 10.861 0.86 0.657

object 7.228 4.098 66.419 7.668 0.639 0.685

SIFT powder 1 5.454 3.218 70.567 2.794 0.599 0.945

powder 2 6.034 2.595 68.44 4.017 0.506 0.934

flower 5.697 3.213 61.44 4.915 0.752 0.902

teeth 7.038 3.18 62.606 12.368 0.903 0.673

object 7.239 3.58 62.265 7.593 0.69 0.745

Harris-SIFT powder 1 5.507 4.494 75.463 3.455 0.759 1.548

powder 2 6.112 3.029 70.48 4.163 0.853 1.736

flower 5.870 3.635 63.758 6.989 0.821 1.27

teeth 7.323 3.203 72.287 12.838 0.878 0.711

object 7.33 4.32 72.997 7.685 0.778 0.708

Supervised (with
Gaussian blur)

powder 1 4.208 3.221 61.654 2.558 0.567 0.758

powder 2 5.314 3.164 59.76 2.657 0.527 0.824

flower 5.560 3.135 55.873 4.041 0.65 0.717

teeth 5.013 2.955 58.904 7.352 0.509 0.684

object 5.855 2.833 54.34 5.926 0.531 0.486

Unsupervised powder 1 6.056 7.368 84.068 4.456 0.926 1.889

powder 2 6.127 7.523 83.831 4.728 0.934 1.898

flower 7.545 9.171 73.297 8.379 0.932 1.059

teeth 7.744 7.24 70.465 12.206 0.837 0.806

object 7.124 7.146 72.378 6.624 0.922 0.971

Hybrid (with
Gaussian blur)

powder 1 6.318 7.913 88.479 4.873 0.94 1.938

powder 2 6.232 7.873 89.725 4.942 0.938 1.941

flower 7.562 9.891 75.222 8.912 0.944 1.12

teeth 7.775 8.389 74.855 18.73 0.905 1.167

object 7.312 7.787 72.848 10.545 0.934 1.191

* EN = entropy, MI = mutual information, PSNR = peak signal-to-noise ratio, AG = average
gradient, NCC = nonlinear correlation coefficient, VIF = visual fidelity.



220 Q. Yang et al.

5 Conclusion

In this paper, we propose a hybrid supervised deep learning registration and fusion
framework for multi-focus images taken through microscopes. The artificial deforma-
tion field is introduced as a label in the supervised learning training to help optimize
the model parameters. Moreover, the steps of patch movement simulation can better
simulate the features of the multi-focus image, so that the model is closer to the real
data. Experimental results show that the registration and fusion framework proposed in
this paper can improve the accuracy of fused images. The images obtained by this algo-
rithm perform better in terms of mutual information, entropy, signal-to-noise ratio and
other indicators, with an average performance improvement of 31.7%, 17.6% and 38.2%
respectively compared to our Harris-SIFT registration algorithm. The quality evaluation
indicators related to the final fusion image are also improved, and the indicators such as
entropy are increased by an average of 10.3%, 130%, 13.2%, 34.1%, 14.4% and 31.5%
respectively. Our current framework employs traditional image fusion method, we shall
explore the feasibility of using an end-to-end deep-learning-based fusion method. Due
to the small number of images in the dataset, we will further collect images and evaluate
and optimize the model.
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Abstract. Recently, vision transformers have become outstanding seg-
mentation structures for their remarkable global modeling capability. In
current transformer-based models for medical image segmentation, con-
volutional layers are often replaced by transformers, or transformers are
added to the deepest layer of the encoder to learn the global context.
However, for the extracted multi-scale feature information, most exist-
ing methods tend to ignore the multi-scale dependencies, which leads
to inadequate feature learning and fails to produce rich feature repre-
sentations. In this paper, we propose ScaleNet from the perspective of
feature interaction at different scales that can alleviate mentioned prob-
lems. Specifically, our approach consists of two multi-scale feature inter-
action modules: the spatial scale interaction (SSI) and the channel scale
interaction (CSI). SSI uses a transformer to aggregate patches from dif-
ferent scale features to enhance the feature representations at the spatial
scale. CSI uses a 1D convolutional layer and a fully connected layer to
perform a global fusion of multi-level features at the channel scale. The
combination of CSI and SSI enables ScaleNet to emphasize multi-scale
dependencies and effectively resolve complex scale variations.

Keywords: medical image segmentation · transformer-based method ·
multi-scale feature interaction · multi-organ and skin lesion
segmentation tasks

1 Introduction

Medical image segmentation is an important task in medical image analysis.
Accurate segmentation of lesion size and morphology is helpful for determining
the grade of the disease, as well as guiding the pre-surgical analysis and the fol-
lowing treatment plan. As the utilization of medical image analysis continues to
increase, the need for highly accurate and reliable medical segmentation becomes
even more critical.
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Fig. 1. Visualization of decoder feature maps from different models, especially for small
objects. The CNN-based model U-Net only focuses on some of the targets due to its
lack of global modeling capability. Our ScaleNet enhances the learning capability of the
transformer-based model by considering multi-scale feature interaction and producing
effective feature representations.

For a considerable amount of time, fully convolutional networks (FCNs),
as well as convolutional neural networks (CNNs) more broadly, have been the
leading approaches in deep learning and have been extensively utilized for med-
ical image segmentation. With their remarkable capability to extract image fea-
tures, various architectures based on CNNs have been used for image segmen-
tation task. However, these architectures face a huge challenge, important fea-
ture information is often lost in the deeper layers of the network. To solve this
problem, medical image segmentation architectures use a symmetric top-down
encoder-decoder design and develop a U-shaped network family, where the most
classical network is U-Net [1]. U-Net innovatively incorporates the horizontal
propagation of intermediate signals into the traditional symmetrical top-down
encoder-decoder structure. This integration enhances the ability of the decoder
to recover the predicted results by supplementing the spatial information lost in
the downsampling process. Due to its simplicity and scalability advantages, many
improved models are proposed, such as U-Net++ [2] and mU-Net [3]. Andrity et
al. [4] used autoencoder regularization for MRI brain tumor segmentation. Oktay
et al. [5] combined the skip connection with the attention mechanism for med-
ical image segmentation. However, despite the great success of the CNN-based
approaches mentioned above, CNNs fail to model explicit long-range relation-
ships beyond the local region (as shown in Fig. 1(d)), since the effective receptive
of the network is severely limited [6].

Recently, motivated by the outstanding achievements of transformers in nat-
ural language processing (NLP), vision transformers have been developed to
mitigate the shortcomings of CNNs in image processing tasks. Transformers pri-
marily use a multi-head self-attention (MSA) mechanism, which plays a crucial
role in constructing long-range dependencies between the sequence of tokens. ViT
[7] has better performance compared to CNNs, but requires a large amount of
data to generalize and has the problem of quadratic complexity. Several methods
have been developed to tackle these limitations. DeiT [8] designs a highly effi-
cient training framework for knowledge extraction, addressing the challenge that
vision transformers require large amounts of data to learn. Huimin et al. [9] used
multi-level feature aggregation to reduce computational effort while maintaining
semantic information. Although vision transformers can model global context,
their self-attention mechanism may lead to the neglect of low-level features.
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To address this issue, many hybrid transformer-CNN methods have been pro-
posed. TransUNet [10] replaces the deepest feature map in the encoder of U-Net
with the feature extracted by ViT. LeVit-UNet [11] uses a lightweight trans-
former embedded in U-Net to improve efficiency. STM-UNet [12] adds Swin
Transformer [13] block to the skip connection to improve the ability to build
long-range dependency.

However, the previous works still have the following problems. Firstly,
although the transformer blocks in the hierarchical encoder capture global infor-
mation at various stages, the transformer only processes a single scale feature,
and can only learn global context information at a single receptive field. Thus,
the multi-scale dependencies are not properly exploited within each stage. Tran-
sUnet only adds the transformer to the deepest layer of the encoder, which
leads to learning insufficient information to recognize small objects (as shown in
Fig. 1(c)). SwinUnet [14] is a pure transformer-based medical image segmenta-
tion model that can learn information from multiple scales but has more invalid
information (as shown in Fig. 1(b)). Secondly, most models tend to focus only on
spatial scale operations when extracting feature information, ignoring the inter-
channel interaction. Our main motivation is using multi-scale feature interaction
to learn rich feature representations at the spatial scale and channel scale.

In this paper, we propose an encoder-decoder network called ScaleNet that
realizes multi-scale feature interaction to explore the application of medical
image segmentation. In the encoder, we use CNN and Swin Transformer [13]
to effectively leverage the global long-range relationships of transformers and
local feature representations of CNNs for an accurate medical image segmenta-
tion task. For the acquisition of multi-stage and multi-scale information, feature
interaction modules are proposed for spatial and channel scales, dubbed as spa-
tial scale interaction (SSI) and channel scale interaction (CSI). With the help
of the modules mentioned above, we can extract more feature information and
maintain a competitive segmentation effect. Our main contributions are as fol-
lows:

• A new deep neural network (ScaleNet) is proposed. To the best of our knowl-
edge, it is the first model to realize multi-scale feature interaction at the
spatial and channel scales.

• We innovatively design the combination of CNN and Swin Transformer, which
can effectively fuse the local features and global features of each layer and
enhance the modeling ability of long-range dependency.

• Experimental results demonstrate the effectiveness and superiority of the pro-
posed ScaleNet compared to the competing methods on several publicly avail-
able medical image segmentation datasets.

2 Related Work

In the most current research, firstly, most hybrid transformer CNN methods
often consider the transformer as a complement to the CNN encoder. Tran-
sCASCADE [15] is an efficient and simple segmentation framework that can
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Fig. 2. An overview of our ScaleNet, which consists of two interaction modules, SSI
and CSI.

obtain features through a hierarchical transformer encoder. HST-MRF [16] learns
dependencies between pixels in a single scale image by adding the transformer
into the skip connection structure. The methods mentioned above do not con-
sider the interaction of CNN and transformer. Different from existing methods,
we design a novel encoder that couples local CNN blocks and global Swin Trans-
former [13] blocks at each scale. Secondly, multi-scale features are important for
improving image segmentation performance. U-Net3+ [17] uses full-scale skip
connection and deep supervision to enhance feature representation. Missformer
[18] uses enhanced transformer block and context bridge to learn multi-scale fea-
ture dependencies. CASTformer [19] adjusts the multi-head self-attention (MSA)
mechanism from the perspective of spatial multi-scale feature extraction. The
above networks are designed to extract multi-scale features while ignoring the
dependencies and interaction between different scales. Therefore, based on pre-
vious studies, this paper proposes a multi-scale feature interaction model for
medical image segmentation.

3 Proposed Method

Sufficient feature representations are important for fine-grained medical image
segmentation. The core idea of ScaleNet is to enhance the feature representation
by interacting multi-scale features. The proposed ScaleNet is shown in Fig. 2,
which consists of a proposed encoder and two feature interaction modules, SSI
and CSI. In the encoder, we extract global features and local features using Swin
Transformer and CNN. Then we implement multi-scale feature interaction using
SSI and CSI at the spatial and channel scales. Finally, the reinforced feature
maps are fed into the decoder block for the final segmentation. Then, we will
elaborate each module of ScaleNet specifically in the following subsections.
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3.1 Hierarchical Encoder Module

As shown in Fig. 2, the initial Swin Transformer only receives input from the
CNN branch of the same stage, whereas the input of other Swin Transformer
blocks combines global information from previous Swin Transformer and CNNs
stages to aggregate fine-grained details and coarse semantics information. Let i
denote the index of the down-sampling layer along the transformer branch. N
indicates the stage of Swin Transformer. The feature map X i

trans can be expressed
as follows:

X i
trans =

{
Trans(X i

cnn), i = 1

Trans([X i
cnn ,Down(X i−1

trans)]), i = 2, ..N
(1)

where the Down function represents the patch embedding, which consists of a
convolution operation followed by a batch normalization and a ReLU function.
[·] is an add operation that can simultaneously keep the local feature informa-
tion from CNNs. Trans(·) represents the Swin Transformer block, which can
efficiently focus on local and global features.

Fig. 3. An overview of the spatial scale interaction (SSI)

3.2 Spatial Scale Interaction

Multi-scale feature information is important for complex vision tasks, especially
medical image segmentation. To refine the feature information, we design a novel
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Fig. 4. An overview of the channel scale interaction (CSI)

SSI, a transformer-based block that interacts among different scales, as shown
in Fig. 3. The input sequence of SSI is initially reorganized into a 2D lattice.
Instead of directly concatenating all tokens of different scale feature maps, the
same number of patches are sampled from different scales of feature maps, which
is called Patch Division . Taking a partial feature map as an example, Fig. 3
illustrates how to generate the same number of spatially-aware patches on three
consecutive feature maps from i -th to (i + 2 )-th scale. Specifically, we obtain
the feature map Xi at different scales by the encoder, where Xi ∈ R

hi×wi×ci , hi,
wi, and ci respectively denote the spatial resolution and the number of channels
of the i -th feature map. The size of the tokens pi that the Xi generates is
(hi × wi, ci). Let L represent the kind of feature map, as in Fig. 3, L=3. Next,
let zi denote a scale factor which is used to adjust the size of the patch, and zi
∈ 2L−i−1. Let di denote the number factor, and di ∈ 4i, where i = 0,1,2. In this
way, we make Xi have the same number of patches. The expression of pi is as
follows:

pi = (hi

zi × wi

zi , zi × zi × di, ci
di ) (2)

in this way, we maintain the spatial size and correspondence as well as reduce
the redundancy. Then, we concatenate all pi to obtain ps , and the expression of
ps is as follows:

ps = (hi

zi × wi

zi , zi × zi × di,

2∑
i=0

ci
di ) (3)
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later, ps is fed into a transformer to obtain the enhanced sequence p̂s. This
process is as follows:

p′
s = MSA

(
LN

(
ps

))
+ ps (4)

p̂s = MLP
(
LN

(
p′
s

))
+ p′

s (5)

where MSA [7], MLP [7], and LN(·) denote multi-head self-attention, multi-layer
perception, and layer normalization. Then we use Patch Restore to reverse the
enhanced sequence to patches according to the order of concatenation:

p0, p1, p2 = Split(p̂s) (6)

where Split(·) is an inverse process of the previous concatenation operation.
Contrary to the process of Patch Division, Patch Restore combines all patches
of the same spatial scale into a feature map.

Table 1. Quantitative results of our segmentation model compared to SOTA on
Synapse Dataset.

Method DSC(↑) HD(↓)) Aorta Gallbladdr Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

DARR [21] 69.77 – 74.74 53.77 72.31 73.24 94.08 54.18 89.90 45.96
U-Net [1] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
R50 Att-UNet [22] 75.57 36.97 55.92 63.91 79.20 72.71 93.56 49.37 87.19 74.95
Att-UNet [22] 77.77 36.02 89.55 68.88 77.98 71.11 93.57 58.04 87.30 75.75
TransUNet [10] 77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62
SwinUNet [14] 79.12 21.55 85.47 66.53 83.28 79.61 94.29 56.58 90.66 76.60
LeVit-UNet [11] 78.53 16.84 78.53 62.23 84.61 80.25 93.11 59.07 88.86 72.76
MT-UNet [23] 78.59 26.59 87.92 64.99 81.47 77.29 93.06 59.46 87.75 76.81
HiFormer [24] 80.69 19.14 87.03 68.61 84.23 78.37 94.07 60.77 90.44 82.03
MISSFormer [18] 81.96 18.20 86.99 68.65 85.21 82.00 94.41 65.67 91.92 80.81
CASTformer [19] 82.55 22.73 89.05 67.48 86.05 82.17 95.61 67.49 91.00 81.55
TransCASCADE [15] 82.68 17.34 86.63 68.48 87.66 84.56 94.43 65.33 90.79 83.52
ScaleNet (w/o SSI) 81.42 19.88 88.75 72.93 83.71 78.37 95.12 63.25 89.37 79.87
ScaleNet (w/o CSI) 81.86 19.07 88.56 73.26 84.57 79.98 95.14 62.62 89.40 81.37
ScaleNet 83.26 16.24 88.98 72.97 85.33 80.88 95.43 69.30 91.31 82.14

3.3 Channel Scale Interaction

Inspired by CBAM [20], both spatial scale and channel scale are equally impor-
tant for refining image features. Therefore, we propose a channel scale interaction
module, CSI, as shown in Fig. 4. It is used to generate channel attention maps
by concatenating features of different scales to better integrate feature informa-
tion. Let yi denote the feature maps of different scales extracted in the previous
stage. Firstly, we perform a pooling and concatenation operation to fuse chan-
nel information from different scale features, and this process is called Scale
Division :

y
′
i = GAP (yi) (7)

Y = Concat(y
′
1 , y

′
2 , . . . , y

′
s) (8)
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where GAP represents global average pooling, and s denotes the total number
of stages. Next, we fuse the feature information by the following operations:

Y
′
= Conv1D(Y ) (9)

Y
′′
i = σ(FCi(Y

′
)) (10)

where Conv1D denotes 1D convolution operation, and FCi is the fully connected
layer, and σ denotes the sigmoid function. Finally, we use Scale Restore to get
the enhanced features, and this process is as follows:

Outi = yi + yi � Y
′′
i (11)

where � denotes the element-wise multiplication. Specifically, we focus on local
and global full-scale channel information by performing 1D convolution and fully
connected layer operations. Then in the decoder, feature maps are progressively
upsampled for the final segmentation.

4 Experiments

4.1 Datasets

Multi-organ CT segmentation (Synapse): Synapse [25] consists of 30
abdominal CT scans, where 13 organs are annotations. Following [10], after pre-
processing, we extract 3,779 slices from all CT cases. We split the whole dataset
into training (18 scans, 2,211 slices) and test (12 scans, 1,568 slices) sets. We
report the Dice Coefficient (DSC) and Hausdorff Distance (HD) on 8 different
organs.

Automated cardiac diagnosis (ACDC): The automated cardiac diagno-
sis challenge [26] contains 100 MRI scans involving three organs: myocardium
(MYO), right ventricle (RV), and left ventricle (LV). Consistent with [19], we
present the DSC results using a random split of 70 training cases, and 30 testing
cases.

Skin Lesion Segmentation: To validate the universality of ScaleNet, we fur-
ther evaluate its performance using the ISIC2018 [27] dataset, consisting of 2594
images and corresponding labels. We randomly divide the dataset into 1816, 260,
and 518 for training, validation, and testing, respectively. We use the Dice score
(DSC), Sensitivity (SE), Specificity (SP), and Accuracy (ACC) as evaluation
metrics for the dataset.

4.2 Implementation Details

Our proposed method is implemented using the PyTorch library and is trained on
a single Nvidia RTX 3090 GPU without any pre-trained weights. All the images
and masks are resized to 224×224, and we set the batch size and learning rate
to 8 and 0.003 during training, respectively. The maximum number of training
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epochs is set to 600. Our model is optimized using the SGD optimizer with a
momentum of 0.9 and weight decay of 0.0001. For a fair comparison, we use the
same experimental settings and combine dice loss and cross entropy loss for all
experiments.

Fig. 5. Visualization results on Synapse dataset. All columns respectively represent:
(a) Ground Truth; (b) U-Net; (c) TransUNet; (d) SwinUNet; (e) CASTformer; (f)
ScaleNet.

4.3 Results of Multi-organ Segmentation

Table 1 presents the performance of our proposed ScaleNet on Synapse dataset.
ScaleNet surpasses the previous state-of-the-art (SOTA) methods in terms of

Table 2. Comparison to SOTA methods on ACDC dataset.

Methods DSC(↑)) RV Myo LV

U-Net [1] 87.55 87.10 80.63 94.92
Att-UNet [22] 86.75 87.58 79.20 93.47
ViT [7] 87.57 86.07 81.88 94.75
TransUNet [10] 89.1 88.86 84.54 95.73
SwinUNet [14] 90.00 88.55 85.62 95.83
MT-UNet [23] 90.43 86.64 89.04 95.62
MISSFormer [18] 90.86 89.55 88.04 94.99
CASTformer [19] 91.18 87.34 88.16 95.03
ScaleNet 92.03 89.97 90.17 95.95
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DSC score. Compared with CNN-based methods, ScaleNet has a significant
improvement in segmentation results. Furthermore, we confirm an increase in
the Dice score and HD by 0.58% and 1.1 compared to the previous state-of-
the-art method, TransCASCADE [15]. Figure 5 shows the visualization of the
segmentation maps. We can observe that the competitive methods fail to accu-
rately predict small organs, such as the pancreas, while our model successfully
produces a smooth segmentation for all organs. Table 2 presents the DSC score
on the ACDC dataset, and our ScaleNet achieves the best performance, which
denotes the superior robustness and generalization of ScaleNet.

4.4 Results of Skin Lesion Segmentation

Table 3. Performance comparison of the proposed method against the SOTA
approaches on skin lesion segmentation benchmarks.

Methods DSC SE SP ACC

U-Net [1] 85.45 88.00 96.97 94.04
Att-UNet [22] 85.66 86.74 98.63 93.76
TransUNet [10] 84.99 85.78 96.53 94.52
TransNorm [28] 89.51 87.50 97.90 95.80
MCGU-Net [29] 89.50 84.80 98.60 95.50
TMU-Net [30] 90.59 90.38 97.46 96.03
SwinUNet [14] 89.46 90.56 97.98 96.45
TransCeption [31] 91.24 91.92 97.44 96.28
ScaleNet 91.36 92.28 97.26 96.58

The comparison results of the ISIC2018 skin segmentation tasks against
state-of-the-art methods are presented in Table 3. Our ScaleNet performs bet-
ter than other competitors in most of the evaluation metrics. Specifically, the
superiority of ScaleNet on the skin segmentation dataset demonstrates its excel-
lent generalization ability. Additionally, in Fig. 6, we visually compare the skin
lesion segmentation results, demonstrating that our proposed method effectively
captures finer structures and produces more accurate contours. Despite the pres-
ence of overlapping regions between the background and the skin lesion class, our
method still achieves highly accurate segmentation results. ScaleNet outperforms
models such as the SwinUNet [14] in terms of boundary precision.

4.5 Ablation Study

In order to understand the different factors on the performance of the proposed
ScaleNet, we conduct an ablation study using the Synapse dataset. This study
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Fig. 6. Visual comparisons of different methods on the ISIC2018 skin lesion medical
segmentation dataset, where the ground truth boundaries are shown in green, and the
predicted boundaries are shown in blue. (Color figure online)

focuses on examining the effect of the feature interaction modules, SSI and CSI,
and the number of multi-scale features, which are discussed in detail below.

Effect of SSI and CSI. The impact of SSI and CSI on the segmentation results
is presented in Table 1. The results indicate that both feature interaction mod-
ules play a crucial role in improving the segmentation performance significantly.
Moreover, we also verify the effect of the sequential order of SSI and CSI on the
segmentation performance, and the results are shown in Table 4. We can see that
it is better to perform multi-scale feature interaction at the spatial level first than
at the channel level. To demonstrate the robustness and generalization of our
proposed feature interaction modules SSI and CSI, we embed them into some
typical medical segmentation networks, such as U-Net, TransUNet, and Swin-
UNet. As shown in Table 5, it is evident that the features interaction modules
have good generality over many models and significantly improve segmentation
results.
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Table 4. Different order of feature interaction modules on Synapse Dataset.

1px Methods DSC(↑)) HD(↓))

ScaleNet (CSI, SSI) 83.04 18.85
ScaleNet (SSI, CSI) 83.26 16.24

Table 5. Effectiveness and generalization of the feature interaction modules on Synapse
Dataset.

Methods DSC(↑) HD(↓)

U-Net [1] 76.85 39.70
TransUNet [10] 77.48 31.69
SwinUNet [14] 79.12 21.55
U-Net (SSI, CSI) 78.04 25.85
TransUNet (SSI, CSI) 79.26 24.27
SwinUNet (SSI, CSI) 81.25 17.62

Effect of the number of multi-scale features. Based on the architecture
of ScaleNet, we perform the ablation of its multi-scale feature in Table 6. The
original spatial size of the input image is H × W . The feature maps that are
fed into the SSI and CSI are F1 (H /4, W /4), F2 (H /8, W /8), F3 (H /16,
W /16), and F4 (H /32, W /32). By changing the number of multi-scale features,
we verify the influence of different scale features on the segmentation results
of our ScaleNet. The results in Table 6 show that the number of multi-scale
features has an important effect on the segmentation performance. Our proposed
ScaleNet demonstrates an enhanced segmentation effect as the number of multi-
scale features increases. ScaleNet achieves superior results when the number of
multi-scale features is 4, highlighting the effectiveness of multi-scale interaction
in preserving the information from both deep and shallow features.

Table 6. Ablation study on the number of multi-scale features on Synapse Dataset.

multi-scale features DSC(↑) HD(↓)

None 80.78 19.01
F4 81.28 18.91
F3, F4 81.97 18.36
F2, F3, F4 82.46 17.48
F1, F2, F3, F4 83.26 16.24
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5 Conclusion

In this paper, from the perspective of multi-scale feature interaction, we present
ScaleNet, a novel hybrid transformer-CNN method for medical image segmen-
tation. Specifically, we introduce two feature interaction modules named spatial
scale interaction (SSI) and channel scale Interaction (CSI) to jointly enhance the
feature representations of the model. SSI uses a transformer to aggregate feature
information from different scales at the spatial level, and CSI uses pooling and
convolution operations to learn global information at the channel level. The com-
bination of SSI and CSI makes ScaleNet effective for segmenting even small-sized
objects. Experimental results on several datasets show that our method achieves
substantial improvement over many methods in medical image segmentation.
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Abstract. Geometric algebra serves as the unified language of mathematics,
physics, and engineering in the 21st century. Coinciding with the era of artificial
intelligence, the utilization of a Large Language Model (LLM) can significantly
benefit the learning and application of geometric algebra. This study develops a
representative application called PrivateGPT, based on the ggml-ggml-nous-gpt4-
vicuna-13b model, to explore the integration of geometric algebra and LLM by
building a knowledge base of geometric algebra expertise. TheGeometric Algebra
Knowledge Base was created by collecting 20,711 papers and data, categorizing
them by topics. This application possesses the capability of iterative refinement,
enhancing its understanding and reasoning of geometric algebra knowledge. It
accomplishes the textual summarization of research content, methods, innova-
tions, and conclusions. It facilitates the development of tailored learning plans for
students from diverse fields to acquire knowledge of geometric algebra in their
specific domains. Additionally, we compared the performance of PrivateGPT and
ChatGPT in providing personalized learning paths for the same group of learners
and evaluated their responses through a questionnaire survey. The results showed
that PrivateGPT has an advantage in devising tailored learning plans for learners
from various disciplines.

Keywords: Large Language Model · Geometric Algebra · Geometric Algebra
Learning

1 Introduction

Geometric algebra serves as the unified language of mathematics, physics, and engi-
neering in the 21st century [1]. Geometric algebra is a versatile mathematical tool that
encompasses highly specialized mathematical abstractions, rigorous logical thinking,
and intricate symbol systems. However, the lack of standardization in terminology and
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symbols across different domains within geometric algebra, due to its intricate dis-
ciplinary branches, presents challenges for effectively integrating geometric algebra
knowledge [2]. Proficiently mastering geometric algebra requires not only learning a
vast amount of knowledge and formulas but also developing one’s mathematical abstrac-
tion and logical thinking abilities. This process incurs significant learning costs. Exist-
ing educational methods, such as specialized classes, textbook studies, online learning,
and graphical approaches, offer some assistance to students in their learning journey.
However, these methods have limitations in terms of limited audience reach and low
generality. The core issue in geometric algebra education lies in constructing a teach-
ing methodology that combines disciplinary expertise with cross-branch universality to
address the current challenges in geometric algebra learning.

Large Language Models (LLMs) play a significant role in geometric algebra learn-
ing. Especially in the acquisition of domain-specific knowledge and intricate knowledge
relationships in geometric algebra. LLM are crucial tools that support artificial intelli-
gence in learning domain-specific knowledge in geometric algebra [3]. The mainstream
LLM frameworks include GPT [4], LLaMa [5], and BERT [6]. These language models,
composed of neural networks with a vast number of parameters, undergo unsupervised
or semi-supervised training on large language datasets to aid machines in understanding
and processing human language [7–9]. With the aid of AI, interaction with LLMs, and
relevant knowledge documents, users can pose questions to computers and receive the
desired knowledge. This approach exhibits considerable generality across diverse fields
and yields high-quality responses. Its application has already made significant strides,
particularly in the realm of medical education [10]. By leveraging LLM to aid students
in learning elementary geometric algebra knowledge, the challenges of learning costs
and scattered learning resources in geometric algebra can be addressed. However, Gen-
eral LLM may struggle to comprehend intricate language expressions and lack exper-
tise in relatively specialized domains. Consequently, formulating question templates for
LLM and enhancing and supplementing the knowledge base of LLMs with rule con-
straints become pivotal in further integrating artificial intelligence and geometric algebra
education [11, 12].

This paper aims to address the complexity of learning geometric algebra, the limited
applicability of traditional teaching methods, and the challenges posed by the shortcom-
ings of general artificial intelligence in specialized fields. It does so by constructing a
localized knowledge repository for geometric algebra vectorization, utilizing geometric
algebra literature, books, formulas, and code. Through the interaction between the LLM
and the knowledge repository, users can receive question-and-answer assistance based
on their specific needs. Furthermore, user data and feedback are collected to enable the
self-refinement of the model, thereby strengthening the understanding and reasoning
abilities of PrivateGPT. The feasibility of this approach is demonstrated through case
studies on geometric algebra paper interpretation and the development of Geometric
Algebra Learning Routes in different fields within the paper.
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2 PrivateGPT Construction Based on GA Knowledge

2.1 Geometric Algebra

Geometric algebra serves as an algebraic language used to describe and compute geo-
metrical problems. Geometric algebra is formed based on the Hamilton quaternion and
Grassmann’s extended algebra, utilizing dimensional operations. Geometric algebra’s
key fundamental elements are multivector and geometric products, combining multidi-
mensional objects into a single structure and incorporating the notions of orthogonality
and collinearity into one operation. GA can be used for multidimension-unified expres-
sion and analysis in a coordinate-free way. The compactness of expression of GA and
the multidimension-unified operations is conveyed, which greatly reduces the compu-
tation complexity and improves the analysis abilities. Geometric algebra has already
become an important tool in various fields, including mathematical analysis, theoretical
physics, geometry, mechanical theorem proving, computer graphics, Geographic Infor-
mation Systems (GIS), robotics, and physics. Many study materials such as books exist
for Geometric Algebra, however, these study materials cover different fields and the lack
of standardization of terms and notation for Geometric Algebra in different fields makes
it difficult to learn Geometric Algebra. Therefore, there is a need to develop learning
programs that are more appropriate for different learners in terms of their disciplinary
backgrounds and fields of application.

2.2 Construction of PrivateGPT and GA Knowledge

The limited representation of geometric algebra disciplines in general language models’
training datasets can lead to responses that seem plausible but are ultimately incorrect or
nonsensical when faced with such specialized inquiries. Geometric algebra, as a highly
specialized field with multiple branches and concepts prone to ambiguity, and having a
complex symbol system, necessitates constraints on the localized knowledge repository.
PrivateGPT is an application capable of local private deployment.With the help of LLM,
PrivateGPT can interact with the professional knowledge base using natural language.
The localized nature of PrivateGPT fulfills this requirement. The localized version of
PrivateGPT primarily includes three key aspects: establishing a localized knowledge
repository, question answering constrained by the localized knowledge repository, and
self-iterative refinement of the model. The construction process is illustrated in Fig. 1.

The constraints on the geometric algebra knowledge base primarily lie in the con-
struction of the knowledge base itself. A knowledge base of geometric algebra is con-
structed by collecting 20,711 papers and books from sources such as arXiv and AACA
and categorizing them based on research area, research space, and other relevant factors.
This knowledge base is specifically designed to extract specialized geometric algebra
knowledge. The clustering results based on the keywords from the knowledge base are
illustrated in Fig. 2.

Utilizing the aforementioned data sources, establish a localized knowledge repos-
itory focused on geometric algebra, requiring the vectorization of geometric algebra
documents. Due to the considerable scale of the documents and the complexity of seman-
tic relationships, it is crucial to begin by segmenting the documents. This enables the
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Fig. 1. Knowledge base data processing process and model self-iteration.

model to comprehend the context of each unitmore effectively and capturemore nuanced
semantics.After completing the processing, block data and correspondingmetadata (e.g.,
file names, types, and page numbers) can be obtained. As geometric algebra involves
numerousmathematical symbols, equations, and operators, whichmay not be effectively
extracted and learned from PDF and similar files, perform data extraction from the seg-
mented text after segmenting the documents. Extract code snippets and mathematical
formulas from papers and books, categorizing the data into four categories: Paper, Book,
Code, and Math.

Fig. 2. Geometric Algebra Paper Key Words K-Means Cluster Graph.
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Figure 1 illustrates the construction of the knowledge base constraints. Text con-
taining mathematical symbols and formulas can be converted into LaTeX representation
using conversion operators. This process translates mathematical language into a spe-
cific textual format. For documents such as PDFs that cannot directly interpret formulas,
OCR can be utilized to identify the mathematical language and convert it into cor-
responding LaTeX code, facilitating the vectorization of mathematical language. For

example, when considering the scaling operator I(xe) = ρ2(xe−Ce)
xe−Ce

+ Ce, convert it to
Latex format \[I({x_e})= \frac{{{\rho ^2}({x_e} - {c_e})}}{{{{({x_i} - {c_e})}^2}}}
+ {c_e}\], this formula represents scaling based on a ball or circle, whereCe is the circle
and ρ is the radius. Code vectorization involves dividing the code into different units,
such as functions, statements, or lines, based on its structure and syntax. The structural
information of the code, such as indentation, spaces, and line breaks, remains preserved.
Code parsing tools, like abstract syntax trees, are employed to extract the structural
information of the code and transform it into markdown code blocks for further process-
ing. Consequently, the original data, including papers and books, is transformed into
Text+Latex+markdown, formulas into LaTeX, and code into markdown. Next, employ-
ing techniques like a bag of words models, word embeddings, or pre-trained language
models, the text is transformed into vector representations. Finally, leveraging rich repre-
sentations of text vectors, such as LangChain[13] and Chroma[14], provides additional
linguistic features and semantic information about the text. This process leads to the
construction of a geometric algebra vectorized knowledge base, which includes paper
knowledge, book knowledge, code knowledge, and formula knowledge.

Besides converting the external knowledge repository into vectors, the user’s query
is also vectorized. The user’s inquiry is transformed into a vector representation and
subsequently compared and matched with the text vectors in the knowledge repository.
By utilizing similarity calculation methods like cosine similarity, the similarity between
the query-generated vector and the text vectors in the knowledge repository is assessed.
The top sentences that exhibit the highest similarity to the query vector are selected and
sorted based on their similarity scores. The highest scoring k texts are selected as the
matching results and presented as the answer generated in response to the user’s query.

The constraints of the geometric algebra knowledge base are evident in the model’s
fine-tuning [15, 16], driven by user feedback on generated answers, which indicates their
quality as “better” or “worse”. If users are dissatisfied or identify errors in the model’s
feedback, such as incorrect mathematical symbols, operators, or code, the answer is
directly categorized as “worse,” prompting themodel tomake corrections. The correction
process may involve users providing more accurate information, such as supplying the
correct answer or pointing out errors in themodel’s response. These user-provided inputs
serve as training data, which includes the question, the original answer, and the user’s
perceived correct answer or error indication. Repeating these steps, continuously collect-
ing user feedback, and making corrections facilitate an iterative reinforcement learning
process, gradually enhancing the model’s understanding and inference capabilities in
geometric algebra knowledge.
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3 PrivateGPT Application Based on GA Knowledge

3.1 LLM Assisted Geometric Algebra Learning

The role of the Prompt [17] can be understood as how we engage in dialogue with the
model. Similar to how we pose questions or provide contextual information when com-
municating with others, the Prompt offers guiding clues that assist the model in under-
standing our intentions and generating corresponding responses. Thus, this paper aims to
enhance the relevance and accuracy of the model’s outputs by designing a Prompt tem-
plate tailored to geometric algebra education. Taking into consideration the depth of stu-
dents’ desired learning, the language of instruction, the language of instruction, com-
munication methods, language style, research domain, research space, students’ disci-
plinary background, and learning approaches, the template aims to facilitate PrivateGPT
in addressing instructional inquiries about geometric algebra. as shown in Table 1 and 2.

Table 1. Geometric Algebra Learning Prompt.

Geometric Algebra Learning Prompt Template xx

I hope you will play a teacher in the field of {Field of Study} in the {Research Space} of
geometric algebra. You will use {Learning Styles} learning methods and
{Communication} like communication methods for teaching. Your reasoning framework
is {Reasoning Frameworks} and I hope your tonal style is {Tone Styles}. Your students
want to delve deeper into {Depth} studies, and their academic background is {Students’
Academic Background}. I will play your student, I hope to learn in {Method of Study},
and I hope you can assist me in my studies, your student’s native language is {Language},
next is the student’s first question:

xx

3.2 Geometric Algebra Paper Automation Summary

Considering the various areas of specialization and intricate notation systems in geo-
metric algebra across different fields, a concise review of papers covering diverse fields
and notation systems benefits researchers in exploring applications and learning geomet-
ric algebra. Thus, utilizing LLM for automated summarization of scientific papers can
significantly aid scholars in efficiently exploring various domains in geometric algebra.
Firstly, the paper should be automatically divided into four sections: abstract, intro-
duction, method, and conclusion. As the abstract does not provide a comprehensive
description of the research content, it is necessary to summarize the paper’s research
content in the Abstract and Introduction sections. Next, use the Method section to sum-
marize the methods and innovations of the thesis. Lastly, summarize the conclusion
based on the preceding content from the output and conclusion sections. The keywords
represent the paper’s key terms, and the content of each section is retrieved from the
knowledge base. The template is presented in Table 3.
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Table 2. Geometric Algebra Learning Prompt Option.

Configuration Options

Depth Elementary (Grade 1-6), Middle School (Grade 7-9), …,
Undergraduate, Graduate, Master’s, Doctoral Candidate,
Postdoc, Ph.D.

Learning Styles Sensing, …, Verbal, Deductive, Reflective

Reasoning Frameworks Deductive method, …, causal method

Language English (support for other languages)

Communication Stochastic, Formal, Textbook, …, Storytelling

Tone Styles Encouraging, …, Neutral, Informative, Friendly

Field of Study GIS, Computer animation and video processing, …, GA
for artificial intelligence

Research Space Conformal Space, Homogeneous Space, …, Projective
Space

Students’ Academic Background GIS, …, Geometric mathematics

Method of Study Computing machines, code, ..., formulas

Table 3. GA Paper Summary Prompt.

GA Paper Summary Prompt Template

As a researcher proficient in the field of {Key Word}, your expertise lies in crafting succinct
summaries of academic papers. I kindly request you to utilize the {Abstract} and
{Introduction} sections of the {Paper Name} to summarize the research content of the paper.
Additionally, please use the {Methodology} section to outline the methods and innovative
aspects of the paper. Finally, based on the previous outputs and the {Results} section of the
paper, please provide a comprehensive conclusion in the specified format.
1. Research Contents: XXX/n
2. Methods: XXX/n
3. Innovation points: XXX/n
4. Results:- XXX /n - XXX /n - XXX /n - XXX /n

4 Assisting in GA Research and Learning

4.1 Assisted Learning

Using a learning plan formulation for introducing conformal GA into Geographic Infor-
mation Systems (GIS) as an exemplar, this paper employed the provided prompt from
Tables 1 and 2. This paper showcases the responses from both ChatGPT and PrivateGPT,
utilizing the identical prompt, in Table 4. Both sources provide valuable guidance on
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devising a learning plan for incorporating conformal GA in GIS, covering aspects like
utilizing conformal GA for spatial data representation. Compared to ChatGPT, the pri-
vateGPT developed in this study demonstrates the ability to provide reasoning behind its
responses, thereby assisting students in retracing their learning through scholarly papers,
code, and other resources.

This paper conducts a questionnaire survey to compare the two learning routes based
on 5 aspects. Each question is rated on a scale of 1 to 10,where 1 indicates dissatisfaction,
and 10 indicates satisfaction. The survey yielded 12 pieces of valid data, and the average
score of the two learning routes for the 5 questions is calculated. Based on the average
score, PrivateGPT outperforms ChatGPT in responding to professional questions by
1.75 points, which can be attributed to its reliance on a professional knowledge base.
Moreover, PrivateGPT provides reference resources when answering questions, making
it beneficial for beginners to learn Geometric Algebra, as evidenced by the fourth and
fifth items in Table 5.

4.2 Analysis and Summary of Geometric Algebra Papers

This paper experimented with evaluating PrivateGPT’s capability to comprehend and
summarize research content, research methods, innovation, and conclusions. The exper-
iment used the paper titled “Multilevel Declassification Method for Geographic Vector
Field Data: A Geometric Algebra Approach” by Luo et al. [23]. Based on the given
prompt, PrivateGPT accurately summarized the aforementioned aspects of the paper, as
shown in Fig. 3 [24, 25]. In general, this method effectively captures the essence of Luo’s
paper, which introduces a multilevel decryption method for geographic vector field data
based on geometric algebra, which can progressively hide detailed information while
retaining general geospatial features.

Table 4. GIS Learning Plan under Conformal GA.

PrivateGPT ChatGPT

PrivateGPT Prompt: I hope you will play a teacher in the field of geographic information systems in the
conformal space of geometric algebra. You will use inductive learning methods and textbook-like communication
methods for teaching. Your reasoning framework is deductive and I hope your tonal style is encouraging. Your
students want to delve deeper into undergraduate studies, and their academic background in computer science. I
will play your student, I hope to learn in computer science, and I hope you can assist me in my studies, your
student’s native language is English, next is the student’s first question: Please help me discuss a learning outline
in detail, and its output format is as follows:
1. XXX\n a): XXX; \n b): XXX; \n c): XXX; \n
2. XXX\n a): XXX; \n b): XXX; \n c): XXX; \n .......

(continued)
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Table 4. (continued)

PrivateGPT ChatGPT

Response:
1. Introduction to GIS and its applications
a): Definition of GIS and its importance in various fields
b): Types of data used in GIS
c): Applications of GIS in urban planning, natural
resource management, and other fields
2. Basic concepts of GA
a): Definition and introduction to GA
b): Vectors and bivectors in GA
c): Geometric product and wedge product
d): Introduction to conformal space and its
representation in GA
3. Representation of spatial data using GA
a): Introduction to spatial data and its representation in
GIS
b): Repression of spatial data using GA
c): Example problems and solutions using GA
4. Computing with GA in GIS
a): Introduction to computing with GA
b): Implementation of geometric algebra in GIS
software
c): Examples of computational problems and their
solutions using geometric algebra
5. Spatial analysis and modeling using geometric
algebra
a): Introduction to spatial analysis and modeling
b): Application of geometric algebra in spatial analysis
and modeling
c): Example problems and solutions using geometric
algebra
6. Advanced topics in GIS and geometric algebra
a): Introduction to advanced topics in GIS and
geometric algebra
b): Current research and trends in GIS and geometric
algebra
c): Example problems and solutions using advanced
topics in GIS and geometric algebra
7. Project work on real-world GIS problems using
geometric algebra
a): Introduction to project work
b): Selection of real-world GIS problems for a solution
using geometric algebra
c): Implementation of geometric algebra in solving the
selected problem I hope this helps! Let me know if you
have any questions or need further clarification on any
of these topics.

Response:
1. Introduction to Geographic Information Systems
(GIS)
a) Definition and fundamental concepts of GIS
b) Applications of GIS in various domains (e.g.,

environmental science, urban planning,
transportation)

c) Overview of the conformal space of GA and its
relevance to GIS

2. Basics of GA
a) Introduction to GA and its mathematical foundations
b) Geometric interpretation of GA elements (e.g.,

points, lines, planes)
c) Geometric operations in conformal GA (e.g.,

intersection, projection, duality)
3. Geospatial Data Representation
a) Representation of spatial data using geometric

algebra
b) Conformal representation of points, lines, polygons,

and other spatial objects
c) Transformation and manipulation of geospatial data

using GA operations
4. Geometric Analysis in GIS
a) Spatial analysis techniques using GA
b) Geometric relationships and operations (e.g.,

distance, area, buffering)
c) Topological analysis and spatial queries in

conformal GA
5. Spatial Data Visualization
a) Visualization techniques for geospatial data b)

Cartographic principles and map design
c) Visualization of conformal GA objects and

operations
6. GIS Data Management
a) Data acquisition and preprocessing
b) Data models and database design for GIS
c) Conformal geometric algebra-based data storage

and retrieval
7. GIS Algorithms and Applications
a) Advanced algorithms in GIS (e.g., spatial

interpolation, network analysis)
b) Applications of GIS in computer science domains

(e.g., machine learning, computer vision)
c) Case studies and practical examples illustrating the

use of conformal geometric algebra in GIS
8. Project Work and Practical Applications
a) Hands-on projects to reinforce learning and apply

GIS concepts
b) Developing geospatial applications using geometric

algebra libraries
c) Presenting and discussing project outcomes for

feedback and improvement

(continued)
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Table 4. (continued)

PrivateGPT ChatGPT

ChatGPT Source: null
PrivateGPT Source:
1. Guide to Geometric Algebra in Practice[18](Book):
PhD projects in this direction!
To conclude this introduction, some sobering thoughts. Geometric algebra has been with us in application form
for about 15 to 20 years now, with general application software available for the last 10 years. There have been
tutorial books written for increasingly applied audiences, migrating the results from mathematics to physics, to
engineering and to computer science. Still, a conference on applications.
2. Articulating Space: Geometric Algebra for Parametric Design —Symmetry, Kinematics, and Curvature.
[19](Book):
ability to communicate form. Each synthesis technique has relied heavily on the previous work of others, both
inside and outside the geometric algebra community, and by sheer necessity we have built upon known algorithms
by unearthing details critical to their use in construction. Throughout we have consistently returned to the
groundbreaking textbook by Dorst, Mann, and Fontijne [45](References in the original literature[20]), which
provides much of the syntax of geometric relationships
3. Introducing Geometric Algebra to Geometric Computing Software Developers A Computational
Thinking Approach[21] (Paper):
implementable by a digital or human computing device. CT relies on using abstraction and decomposition when
attacking a large complex task or designing a large complex system; it requires thinking at multiple levels of
abstraction [42] ( References in the original literature[22]). Geometric Algebra can be a valuable mathematical
language to acquire and develop such CT skills for handling Geometric Computing problems. As illustrated in
Fig. 1.1, a Geometric Algebra is an abstract, elegant, and

Table 5. GIS Learning Plan under Conformal Geometric Algebra.

Questionnaire contents PrivateGPT ChatGPT

Is the teaching objective of the learning routes clear? 8.75 8.75

Are the learning routes effectively integrating geometric algebra
with Geographic Information Systems for study?

8.67 8.25

Can a specialized knowledge base improve the credibility of
LLM output?

8.42 6.67

For beginners, what kind of learning routes would you prefer to
follow to learn the integration between GA and GIS?

7.83 7.33

Can learning routes be an aid to geometric algebra? 9.08 8.33

https://doi.org/10.1007/978-3-031-50078-7_1
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Fig. 3. Paper Summary System Demonstration Diagram.
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5 Summary and Outlook

This article introduces PrivateGPT, a large language model that addresses challenges
in geometric algebra. PrivateGPT constructs a localized knowledge database using
resources on geometric algebra and transforms data into LaTeX andMarkdown formats.
This process results in a vectorized knowledge base of geometric algebra, encompassing
papers, books, code, and formulas. Incorporating user feedback enhances PrivateGPT’s
understanding and reasoning capabilities. Experimental cases have demonstrated Pri-
vateGPT’s ability to summarize the research content, methodologies, innovations, and
conclusions presented in geometric algebra papers. This feature aids both researchers
and beginners in efficiently comprehending cross-disciplinary geometric algebra papers.

The prospects presented in this article encompass several optimization directions.
First, there is a need to construct an efficient and standardized geometric algebra dataset,
which involves integrating open-source data sources like Bivector.net. This integration
aims to enhance the model’s understanding of geometric algebra knowledge. Second,
the combination of geometric algebra with a mathematical knowledge graph has the
potential to augment the mathematical reasoning capabilities of LLMs. Finally, build a
website to be used by a total number of people.
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Abstract. We describe an example of using a Geometric Algebra algo-
rithm to compute motion in a game physics engine, we optimise the
Geometric Algebra algorithm using GAALOP and utilise RISC-V Vec-
tor Extensions (RVV) to perform computations on vectors, we combine
this with vectors used to represent a number of Fourier series to model x,
y and z components of gravity, wind and surface friction. When RISC-V
Vector Extension devices become available, we anticipate this method
will lead to performance improvements over alternative approaches.

Keywords: Geometric Algebra algorithm · GAALOP · RISC-V
Vector Extension (RVV) · Fourier series · Game physics engine

1 Introduction

Computer games perform many calculations in real-time to model game physics.
Improving performance of software algorithms by using optimisation and new
hardware designs to take advantage of vector operations will allow for more
realistic game physics and allow game developers to design more complex games.

In this paper we introduce related work on game physics engines (Sect. 2.1),
Geometric Algebra and Geometric Algebra algorithms (Sect. 2.2), GAALOP
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(Sect. 2.3), the RISC-V Instruction Set Architecture and RISC-V Vector Exten-
sion (RVV) (Sect. 2.4), and Fourier series (Sect. 2.5).

We demonstrate how Geometric Algebra algorithms can be used to compute
the forces acting on a particle in a game physics engine (Sect. 3) as well as show
optimised code that can be generated by GAALOP, which uses vector opera-
tions on hardware that supports RISC-V Vector Extensions (RVV) (Sect. 4), we
provide an example of code that uses a bitmask to select data in a Fourier series
(Sect. 5). Future work is described in Sect. 6. Code examples are available at the
repository [1], for quick reference relevant source code has also been listed in the
Appendix (Sect. A).

2 Related Work

2.1 Game Physics Engines

Computer games and simulation software use physics engines to perform real-
time calculations using mathematical models to provide a realistic approximation
for the motion of objects and effects of forces and collisions [2–4]. These calcu-
lations need to be performed with low latency using the hardware computing
resources available on game consoles and gaming computers.

2.2 Geometric Algebra

Geometric algebra is a powerful mathematical framework that has applications
in all areas of physics and engineering [5]. It is well suited for game physics
engine development [2–4]. Geometric Algebra algorithms use the mathematical
objects in Geometric Algebra for computational tasks. For the examples in this
paper, we will be using 3D Projective Geometric Algebra which has a signature
of (3, 0, 1).

2.3 GAALOP

GAALOP (Geometric Algebra ALgorithms OPtimizer) [6] is an open-source soft-
ware to optimize geometric algebra algorithms [7–9]. Geometric Algebra algo-
rithms can be described using GAALOPScript1, and code can be generated for
C/C++, Python, Java and many other languages. In 2009, a Geometric Algebra
robotics grasping algorithm optimised by GAALOP running on CUDA hardware
saw a speed-up by 44 times compared to conventional math running on a CPU
[10]. We anticipate performance improvements with hardware such as RISC-V
Vector Extensions that allow vector operations to be computed efficiently.

1 See Sect. 3.2 of [7].
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2.4 RISC-V and RISC-V Vector Extension (RVV) Instructions

RISC-V is an open-source instruction set architecture (ISA). RISC-V stands for
Reduced Instruction Set Computing - Version 5. RISC-V is an open standard,
its specifications are freely available for anyone to use, modify, and implement
[11].

RISC-V Vector Extension (RVV) [12,13] is an extension to the RISC-V
instruction set architecture that introduces vector instructions. Vector instruc-
tions allow processors to perform operations on multiple data elements simul-
taneously, which can accelerate certain types of computations, such as signal
processing, scientific simulations, and machine learning.

2.5 Fourier Series

A Fourier series is an expansion of a periodic function into a sum of trigonometric
functions [14]. There are many applications of the Fourier series [15], and a
Fourier series in 1-D, 2-D, or 3-D can be used to describe a wave, surface or
shapes of objects [16].

Related work is the use of 3D Fourier Descriptors with Conformal Geometric
Algebra which has been described in [17] and Chap. 7 of [18].

In a game physics engine, a vector (an array of floating-point numbers) can
be used to represent a 3D Fourier Descriptor [19], tracing the surface of an object
(See Fig. 4. in [16]), it is possible to compute interactions with the environment
e.g. collision detection with other objects, forces acting on object points touch-
ing the ground or ray-tracing using mathematical computations such as linear
algebra, although these will not be discussed in this paper.

To illustrate how Fourier Descriptors can be used to model terrain in a com-
puter game, a simple script generated using ChatGPT [20] to create 1,000,000
random points in a 1,000 × 1,000 × 1,000 pixel 3D volume to represent moun-
tains. The terrain data was compressed using a Fast Fourier Transform and the
coefficients of the Fourier Descriptor were reduced to 10,000, 5,000, 2,000, 1,000,
500, 200, 100 and 50 coefficients, to illustrate how 3D shapes and surfaces can be
modelled using Fourier Descriptors with a level of resolution that is appropriate
for the design of the game. The Python code used to generate the data and high
resolution images of the charts are available at [21].

While there are methods to generate more realistic terrain or have the terrain
data imported from computer graphics software, this is outside the scope of this
paper.

The normal at each point on the mesh can be used to calculate a multi-
dimensional vector field that represents the x, y and z components of the force
of gravity at each point, as well as store the coefficient of friction due to the
material properties at that point of the surface.

The pre-computed values in the vector field can be used to speed up game
physics engine calculations, with the accuracy and level of approximations
adjusted depending on game needs, with trade-offs between processing power
required, time of computation for each object and frame rate requirements taken
into consideration (Fig. 1).
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Fig. 1.
a) Plot of 1,000,000 generated points in 3D Euclidean space representing terrain,
b) Mesh reconstructed from Fourier Descriptor with 10,000 coefficients,
c) Mesh reconstructed from Fourier Descriptor with 5,000 coefficients,
d) Mesh reconstructed from Fourier Descriptor with 2,000 coefficients,
e) Mesh reconstructed from Fourier Descriptor with 1,000 coefficients,
f) Mesh reconstructed from Fourier Descriptor with 500 coefficients,
g) Mesh reconstructed from Fourier Descriptor with 200 coefficients,
h) Mesh reconstructed from Fourier Descriptor with 100 coefficients,
i) Mesh reconstructed from Fourier Descriptor with 50 coefficients.
Compression errors can be seen as the resolution of the terrain is reduced due to
the reduction of coefficients in the Fourier Descriptor used to reconstruct the mesh.
Features in the terrain are smoothed out as the number of coefficients used are reduced.
Higher resolution images and the Python script used to generate charts are available
[21].
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3 Simulation Algorithm in GAALOPScript

We have based our example on the tutorial [22] available on the bivector.net [23]
website, with code [24] available on the Ganja.js CoffeeShop [25] website. Listing
1. 2 shows an example of GAALOPScript code describing a Geometric Algebra
algorithm to compute the motion of a point mass affected by gravity, wind and
friction. A macro named Line is used to create a bivector which can model the
forces for gravity, wind, friction and a component for a motor (motion operator)
which can describe the position and orientation of the point (the orientation is
not relevant in this example).

The macro nextM is used for the computation of the next motor (used to
model the position and orientation), the macro nextB is used to compute the
next bivector which is used to model the direction and velocity of the point
at the next instant of time, in Projective Geometric Algebra (PGA) force and
torque are unified with a force line, the F macro is used to compute the line that
represents the sum of the effects of the forces for gravity, wind and friction.

4 Generation of Optimized RISC-V Code that Utilises
Vector Extensions

The GAALOPScript code is optimised by GAALOP to generate the C code in
Listing 1. 3 that utilises RISC-V Vector Extension (RVV) instructions called in
the assembler code in Listing 1. 4 for vector operations such as loading array
data into a vector memory (vle32.v) element-wise multiplication/Hadamard
product (vfmul.vv) and sum of vector values (vfredusum.vs).

A vector dot-product operation takes two or more vector values, multiplies
each element in the vector(s) element-wise (Hadamard product), and then sums
all of the values in the resulting array to obtain a scalar value. A dot-product
can be performed by using Multiply Accumulate (MAC) operations on individ-
ual elements. GAALOP reduces algorithms to simple arithmetic operations on
values of dot-products. This can be seen in Listing 1. 3, with functions named
dot product 2 and dot product 3 that are called in the C program which are
implemented in the assembler code in Listing 1. 4 with the same function names.

5 Fourier Series to Represent X, Y and Z Components
of Forces in a Game Physics Engine

Fourier series are useful in a game physics engine to represent computed values
of the x, y and z components of forces such as gravity, wind and surface friction.

The coefficients used in the Fourier series can be stored in a single vector,
with design decisions for constants such as the length of the vector, range of
output values and level of resolution being set as per requirements of the game
and the target hardware.

In the example of a golf game, once a terrain is generated, the normal at
each point on the surface of the ground can be used to generate a vector field
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for the x, y and z components of the force of gravity. A Fourier transform can
be used on the vector field data to compute a Fourier series for the x, y and z
components. In games where the terrain doesn’t change this can be computed as
soon as the terrain is generated, or an in-game computation thread can update
the vector values of the Fourier series, when events such as collisions with the
ground change the terrain surface.

Similarly, for dynamic forces such as wind, a Fourier series can be computed
for the x, y, z components. An in-game thread can update vector values for wind
using an algorithm, e.g., taking account air pressure and fluid mechanics for
wind.

The surface friction can be modelled in the same way, i.e., a Fourier series can
be computed for the x, y, z components, and once again the values of the vector
can be updated as the surface changes or substances, such as water, change
the surface friction. For realism, the surface friction value at a point can be
multiplied with a factor or a computation that takes into account the velocity
of the object at that point.

Compressing all of the data for a terrain or wind and friction forces into
a single vector can be beneficial when performing many computations in real-
time on many different objects as required in a computer game physics engine.
The number of computations increases exponentially when the configuration
parameters such as number of objects, the number of surfaces on a terrain and
the resolution of the effects of wind are increased. Memory utilisation can be
reduced substantially when using a Fourier series representing vectors in a 3D
space such as required for modelling the wind.

When computing the value for a force component, the bits of the three
floating point numbers x, y, z representing position can be used as a mask to
include/exclude Fourier series vector values. The RISC-V Vector Extension vec-
tor load assembler instruction has an optional parameter (vm) that is a vector
mask that includes/excludes values depending on if the vector mask element is
0. The vfmerge.vfm instruction can also be used for this process.

Listing 1. 1. RISC-V Vector Extension vector load and vector merge instructions.
1 vle32.v vd, (rs1), vm
2 vfmerge.vfm vd, vs2 , rs1 , v0
3 # vd[i] = v0.mask[i] ? f[rs1] : vs2[i]

Once the vector is loaded, it can be multiplied with another vector containing
base elements that correspond with the magnitude of the vector element, that
is an exponentially increasing value for the vector elements, which give a range
of the minimum and maximum values for a 32-bit floating point number.

Listing 1. 6 shows an example of a C program making use of RISC-V Vector
Intrinsics [27], this program uses an unsigned integer as a bitmask to filter values
from a vector.

We have included the Makefiles we have used in Listing 1. 5 and Listing
1. 7 to assist researchers as there is limited documentation, tutorials or exam-
ples available online. The RISC-V GNU Compiler Toolchain has been used in
compilation [28].
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This C code can be combined with the function generated with GAALOP to
compute forces acting on an object efficiently, by taking advantage of Geometric
Algebra algorithms and data in Fourier series.

Hardware emulators such as the open-source QEMU emulator [26], or
MachineWare [29] SIM-V simulator [30] can emulate RISC-V devices that sup-
port RISC-V Vector Extensions, allowing testing of code before hardware is
available.

We anticipate that the first RISC-V devices that ratify the RISC-V Vector
Extensions v1.0 will be available this year, allowing us to benchmark performance
of software on hardware that supports vector operations.

6 Future Work

Potential directions of future work are:
Development of example computer game using Geometric Algebra algorithms,
with code optimised by GAALOP to use RISC-V Vector Extensions running on
simulated RISC-V hardware.

When RISC-V Vector Extension hardware devices are available, benchmark-
ing performance of software algorithms and comparing with other hardware.

Coding a more complete physics engine using Geometric Algebra, for exam-
ple, modelling the physics required to make a realistic car racing game, taking
into account physical properties of components in a race car, e.g. size of wheels,
weight distribution of car, engine power, car aerodynamic profile, forces acting on
car such as gravity, centripetal forces, tire friction, effects of race track banking.

7 Conclusion

We have described an example of using a Geometric Algebra algorithm to com-
pute motion in a game physics engine, we optimised the Geometric Algebra
algorithm code using GAALOP and utilised RISC-V Vector Extensions (RVV)
to perform computations on vectors, we combined this with vectors used to rep-
resent a number of Fourier series to model x, y and z components of gravity,
wind and surface friction.

Once RISC-V devices that provide vector operation functionality are avail-
able, we anticipate performance improvements of computations required for a
game physics engine over existing software/hardware systems.

Acknowledgements. This research is partly supported by an Australian Government
Research Training Program Scholarship.
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A Appendix

A Code Listing for GAALOPScript Code

Listing 1. 2. GAALOPScript code calculating motion of object affected by gravity,
wind and friction.
1 Line = {
2 x = _P(1); y = _P(2); z = _P(3);
3 x * (e0 ^ e1) + y * (e0 ^ e2) + z * (e0 ^ e3);
4 }
5
6 Point = {
7 px = _P(1); py = _P(2); pz = _P(3);
8 e0 + px * e1 + py * e2 + pz * e3;
9 }

10
11 F = {
12 M = _P(1);
13 gx = _P(2); gy = _P(3); gz = _P(4);
14 wx = _P(5); wy = _P(6); wz = _P(7),
15 fx = _P(8); fy = _P(9); fz = _P(10);
16
17 gravity = Line(gx, gy, gz);
18 wind = Line(wx, wy, wz);
19 friction = Line(fx, fy, fz);
20
21 dG = *(~M * gravity * M);
22 dW = *(~M * wind * M);
23 dF = *(~M * friction * M);
24 dG + dW + dF
25 }
26
27 nextM = {
28 M = _P(1);
29 B = _P(2);
30 dM = -0.5 * M * B;
31 M + dM
32 }
33
34 nextB = {
35 M = _P(1);
36 B = _P(2);
37 gx = _P(3); gy = _P(4); gz = _P(5);
38 wx = _P(6); wy = _P(7); wz = _P(8);
39 fx = _P(9); fy = _P(10); fz = _P(11);
40
41 B_dual = *B;
42 forque = F(M,gx,gy,gz,wx,wy,wz,fx,fy,fz);
43 dB = *( forque -0.5 * (B_dual * B - B * B_dual));
44 B + dB
45 }
46
47 M = m0 + Line(mx, my, mz);
48 B = Line(bx, by, bz);
49 P = Point(px, py, pz);
50
51 ?MNew = nextM(M,B);
52 ?BNew = nextB(M,B,gx,gy,gz,wx,wy,wz,fx,fy,fz);
53 ?PNew = MNew * P * ~MNew;
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B Code Listings for C Code Generated by GAALOP
Making Use of RISC-V Vector Extension Instructions,
Assembler Code Calling RISC-V Vector Extension
Instructions for Vector Multiplication and Sum,
and Makefile

Listing 1. 3. C code generated by GAALOP making use of RISC-V Vector Extension
instructions.
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <math.h>
5
6 float vector_sum(float *v1, int size);
7 float dot_product_2(float *v1, float *v2, int size);
8 float dot_product_3(float *v1, float *v2, float *v3, int size);
9

10 float MNew [16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
11 float BNew [16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
12 float PNew [16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
13
14 void script(float bx,float by,float bz,
15 float fx,float fy,float fz,
16 float gx,float gy,float gz,
17 float m0,
18 float mx,float my,float mz,
19 float px,float py,float pz,
20 float vx,float vy,float vz){
21
22 MNew [0] = m0;
23 // MNew [0] = m0
24
25 float ve0[2] = {mx , -0.5};
26 float ve1[2] = {1.0,bx};
27 float ve2[2] = {1.0,m0};
28 MNew [5] = dot_product_3(ve0 ,ve1 ,ve2 ,2);
29 // MNew [5] = mx - ((0.5 * bx) * m0)
30
31 float ve3[2] = {my , -0.5};
32 float ve4[2] = {1.0,by};
33 float ve5[2] = {1.0,m0};
34 MNew [6] = dot_product_3(ve3 ,ve4 ,ve5 ,2);
35 // MNew [6] = my - ((0.5 * by) * m0)
36
37 // much of the code is repeated with the
38 // same structure and has not been included
39 }
40
41 int main(int argc , char *argv []){
42
43 float bx = 5.0, by = 0.0, bz = 10.0;
44 float fx = 0.0, fy = 0.0, fz = 0.0;
45 float gx = 0.0, gy = 0.0, gz = -9.8;
46
47 float m0 = 1.0;
48 float mx = 0.0, my = 0.0, mz = 0.0;
49 float px = 0.0, py = 0.0, pz = 20.0;
50 float vx = 0.0, vy = 5.0, vz = 0.0;
51
52 script(bx, by, bz, fx, fy, fz, gx, gy, gz, m0,
53 mx, my, mz, px, py, pz, vx, vy, vz);
54 }
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Listing 1. 4. Assembler code calling RISC-V Vector Extension instructions for vector
multiplication and sum.
1 .text
2 .align 2
3
4 .globl vector_sum
5 vector_sum:
6 vsetvli t0, a1, e32
7 fmv.w.x fa0 , zero
8 vfmv.s.f v1, fa0
9 vle32.v v0, (a0)

10 vfredusum.vs v1, v0, v1
11 vfmv.f.s fa0 , v1
12 ret
13
14 .globl dot_product_2
15 dot_product_2:
16 vsetvli t0, a2, e32
17 fmv.w.x fa0 , zero
18 vfmv.s.f v3, fa0
19 vle32.v v0, (a0)
20 vle32.v v1, (a1)
21 vfmul.vv v2, v1, v0
22 vfredusum.vs v3, v2, v3
23 vfmv.f.s fa0 , v3
24 ret
25
26 .globl dot_product_3
27 dot_product_3:
28 vsetvli t0, a3, e32
29 fmv.w.x fa0 , zero
30 vfmv.s.f v5, fa0
31 vle32.v v0, (a0)
32 vle32.v v1, (a1)
33 vle32.v v2, (a2)
34 vfmul.vv v3, v1, v0
35 vfmul.vv v4, v3, v2
36 vfredusum.vs v5, v4, v5
37 vfmv.f.s fa0 , v5
38 ret

Listing 1. 5. Makefile using the RISC-V GNU Compiler Toolchain, compiling C code
with assembler code file making use of RISC-V Vector Extension instructions, the
executable is run in the QEMU emulator.
1 go : main
2 qemu−r i s c v64 −cpu rv64 , v=true , zba=true , v len=128 ./ main
3
4 main : main . c vec . S make f i l e
5 r i s cv64−unknown−e l f −gcc −ggdb −O main . c vec . S −o main −march=rv64gcv zba −lm
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C Code Listing for C Code Using a Bitmask to Mask
Vector Values and Makefile

Listing 1. 6. C Code using a bitmask to mask vector values
1 #include <stdio.h>
2 #include <riscv_vector.h>
3
4 #define NUM_VALUES 32
5
6 void merge(uint32_t bitmask , float* result) {
7 asm volatile("vsetvli�zero ,�%0,�e32 ,�m1,�ta,�mu" : : "r"(1));
8 // load 32-bit bitmask
9 asm volatile("vle32.v�v0,�(%0)" : : "r"(& bitmask) );

10 size_t l = 0;
11 for (size_t avl = NUM_VALUES; avl > 0; avl -= l) {
12 asm volatile("vfmv.v.f�v1,�%0" : : "f"(0.0f));
13 asm volatile("vsetvli�%0,�zero ,�e32 ,�m1,�ta,�mu" : "=r"(l) : );
14 asm volatile("vfmerge.vfm�v3,�v1,�%0,�v0" : : "f"(1.0f));
15 size_t index = NUM_VALUES - avl;
16 asm volatile("vse32.v�v3,�(%0)" : : "r"(& result[index]) );
17 bitmask >>= l;
18 // load shift 32-bit bitmask
19 asm volatile("vle32.v�v0,�(%0)" : : "r"(& bitmask) );
20 }
21 }
22
23 int main() {
24 float values[NUM_VALUES] = {0.5};
25 uint32_t bitmask = 0b11110101;
26 merge(bitmask , values);
27 for (size_t i = 0; i < NUM_VALUES; ++i) {
28 printf("%f�", values[i]);
29 if (!((i + 1) % 4))
30 printf("\n");
31 }
32 return 0;
33 }

Listing 1. 7. Makefile using clang compiler and GNU linker for the RISC-V 64-bit
architecture when targeting a Linux environment.
1 clang -I/usr/riscv64 -linux -gnu/include/ \
2 -I/usr/riscv64 -linux -gnu/include/c++/11/ \
3 --target=riscv64 -march=rv64gcv main.c -c -o main.o
4 riscv64 -linux -gnu -ld -o main -dynamic -linker \
5 /usr/riscv64 -linux -gnu/lib/ld-linux -riscv64 -lp64d.so.1 \
6 /usr/riscv64 -linux -gnu/lib/crt1.o \
7 /usr/riscv64 -linux -gnu/lib/crti.o \
8 -lc main.o /usr/riscv64 -linux -gnu/lib/crtn.o
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Abstract. Based on the quaternion domain Fourier transform (QDFT)
of 2016 and the quadratic-phase Fourier transform of 2018, we introduce
the quadratic-phase quaternion domain Fourier transform (QPQDFT)
and study some of its properties, like its representation in terms of the
QDFT, linearity, Riemann-Lebesgue lemma, shift and modulation, scal-
ing, inversion, Parseval type identity, Plancherel theorem, directional
uncertainty principle, and the (direction-independent) uncertainty prin-
ciple. The generalization thus achieved includes the special cases of
QDFT, a quaternion domain (QD) fractional Fourier transform, and a
QD linear canonical transform.

Keywords: Fourier transforms · quaternion algebra · quaternion
domain functions · linear canonical transform · fractional Fourier
transform · uncertainty

1 Introduction

Quaternions were introduced in the 19th century [10] and soon applied in physics,
e.g. by J.C. Maxwell to electro-magnetism [17]. Nowadays, in theory and applica-
tions they are widely known and applied, e.g. in aero-space engineering [16], color
image and signal processing [6], crystallography and material science [2,18], and
machine learning [20]. Quaternion analysis for holomorphic functions in the plane
and space may be found in [9]. Quaternion based Fourier transforms are reviewed
in [4] and [14]. In particular we refer to the quaternion domain Fourier transform
(QDFT) introduced in 2016 [13] also described in Sect. 4.3.3 of [14]. A general-
ization to a special affine quaternion domain Fourier transform (SAQDFT) was
undertaken in [15]. Independently, in 2018 the classical Fourier transform has
been generalized to the quadratic-phase Fourier transform [5], with favorable
new convolution identities. Most recently, the quadratic-phase Fourier trans-
form (QPFT) has been extended to a new quaternion quadratic-phase Fourier
transform (Q-QPFT) [3] for two-dimensional quaternionic signals in L2(R2;H),
with the well-known QFT [6,11] as a special case. Following up on these recent
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developments we extend in our current work the QPFT to quaternion domain
function signals in L1(H;H) resulting in a quadratic-phase QDFT (QPQDFT).

The paper is organized as follows. Section 2 gives a brief introduction to
quaternions and the QDFT, introducing some of its properties needed later
in this work. Then Sect. 3 defines the QPQDFT and studies its basic prop-
erties, including its representation in terms of the QDFT, linearity, Riemann-
Lebesgue lemma, shift and modulation, scaling, inversion, Parseval type identity
and Plancherel theorem. Next, Sect. 4 investigates uncertainty relationships for
(directed) effective spatial- and spectral (obtained from the QPQDFT) width of
a quaternion domain signal. The paper concludes with Sect. 5, acknowledgments
and references. Some proofs are given explicitly while others are only outlined.

2 Quaternions and the Quaternion Domain Fourier
Transform

Gauss, Rodrigues and Hamilton’s four-dimensional (4D) quaternion algebra H

is defined over R with three imaginary units:

ij = −ji = k, jk = −kj = i, ki = −ik = j,

i2 = j2 = k2 = ijk = −1. (1)

Every quaternion can be written explicitly as

q = qr + qii+ qjj + qkk ∈ H, qr, qi, qj , qk ∈ R, (2)

and has a quaternion conjugate

q̃ = qr − qii − qjj − qkk, p̃q = q̃p̃. (3)

This leads to the norm of q ∈ H

|q| =
√

qq̃ =
√

q2r + q2i + q2j + q2k, |pq| = |p||q|. (4)

The inverse of a non-zero quaternion q ∈ H is

q−1 =
q̃

|q|2 . (5)

The (symmetric) scalar part of a quaternion is defined as

〈q〉0 = Sc(q) =qr =
1
2
(q + q̃), Sc(pq) = Sc(qp) = Sc(p̃q̃), (6)

Sc(pqr) = Sc(qrp) = Sc(rpq). (7)

Every quaternion a ∈ H, a �= 0, can be written as scalar part plus (pure) vector
part

a = ar + aii+ ajj + akk = ar + a = |a|(cosα +
a
|a| sinα) = |a|eâα, (8)
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with â = a/|a|, cosα = ar/|a|, α ∈ [0, π).
A scalar product of quaternions can be defined for x, y ∈ H as

x · y = Sc(x̃y) = xryr + xiyi + xjyj + xkyk, x · x = x̃x = |x|2. (9)

Every quaternion valued quaternion domain function f maps H → H, and its
four coefficient functions fr, fi, fj , fk, are in turn real valued quaternion domain
functions:

f : x �→ f(x) = fr(x) + fi(x)i+ fj(x)j + fk(x)k ∈ H. (10)

Quaternion valued quaternion domain functions have been historically studied
in [8,19,21,22], and applications are described in [9].

We define for two functions f, g : H → H the following quaternion valued
inner product1

(f, g) =
∫

H

f(x)g̃(x)d4x (11)

with d4x = dxrdxidxjdxk ∈ R.
Let S be the Schwartz space, and C0(H) the Banach space of all continuous

quaternion domain functions that vanish at infinity, with the supremum norm
|| · ||∞. In L1(H;H) we use the norm defined by

||f ||1 :=
1

(2π)2

∫

H

|f(x)|d4x, (12)

where 1/(2π)2 is for convenience later on. For 1 < p < ∞ the space Lp(H;H)
has the norm

||f ||p =
(

∫

H

|f(x)|pd4x
)

1
p

. (13)

Definition 1 (Quaternion Domain Fourier Transform (QDFT) [13]).
The quaternion domain Fourier transform2 (QDFT) for h ∈ L2(H;H) is defined
as

FQDFT {h}(ω) = ĥ(ω) =
1

(2π)2

∫

H

h(x)e−Ix·ωd4x, (14)

with x, ω ∈ H, and some constant pure unit quaternion3 I ∈ H, I2 = −1.
1 We note that (11) is quaternion valued, but by construction (f, f) = ||f ||22 is real

valued and positive for f �= 0.
2 We also assume always that

∫
H

|h(x)|d4x exists as well. But we do not explicitly write
this condition again in the rest of the paper. Strictly speaking, the integral definition
of Definition 1 only works for h ∈ L1(H;H). But one can first define the QDFT on
the dense subset L1(H;H)

⋂
L2(H;H), and then use the continuity of the Fourier

transform on L1(H;H)
⋂

L2(H;H), due to Plancherel’s theorem for the QDFT, see
equations (4.19) to (4.201) in [13], to define the QDFT on L2(H;H), see e.g. [7]. .

3 The QPQDFT of Definition 2 inherits this choice of constant pure unit quaternion
I ∈ H, I2 = −1. We thank one of the reviewers to draw our attention to [1], which
appears to allow for another use of pure quaternions in the kernel factor of (14).
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The QDFT has the following inverse transform [13].

Lemma 1 (Inverse QDFT). For h,FQDFT ∈ L2(H;H), we obtain the inverse
transform as

h(x) =
1

(2π)2

∫

H

FQDFT {h}(ω)e+Ix·ωd4ω, d4ω = dωrdωidωjdωk. (15)

We will also need the directional uncertainty principle for the QDFT of (4.24)
in [13].

Theorem 1 (Directional QDFT Uncertainty Principle). For unit norm
signals f ∈ L2(H;H), ||f || = 1, and constant quaternions a, b ∈ H, we have

ΔxaΔωb ≥ |a · b|
2

, (16)

with (directed) effective spatial and spectral widths

Δxa = ||(x · a)f ||2 =

√

∫

H

(x · a)2|f(x)|2d4x,

Δωb = ||(ω · b)FQDFT {f}||2 =

√

∫

H

(ω · b)2|FQDFT {f}(ω)|2d4ω. (17)

3 The Quadratic-Phase Quaternion Domain Fourier
Transform

Generalizing (1.1) of [5] to quaternionic variables, for parameters a, b, c ∈ R

(with b �= 0) and d, e ∈ H, we define the quadratic phase function for x, ω ∈ H,

Q(x, ω) := a|x|2 + bx · ω + c|ω|2 + d · x + e · ω. (18)

Remark 1. Note that in (18) the entities d, e need to be quaternions and not
scalars in order to construct a scalar phase function Q(x, ω). This means the
parameter dimension of Q(x, ω) consists of three real and two quaternionic
degrees of freedom corresponding to a total of 11 real degrees of freedom.

Definition 2. The quadratic-phase quaternion domain Fourier transform4

(QPQDFT) for h ∈ L2(H;H) is defined as

F{h}(ω) = ĥ(ω) =
1

(2π)2

∫

H

h(x)e−IQ(x,ω)d4x, (19)

with x, ω ∈ H, some constant pure unit quaternion I ∈ H, I2 = −1, and phase
Q(x, ω) of (18).
4 We refer the reader to footnote 2 for the density argument that also applies for

the QPQDFT, where we note also the computation of the QPDFT in terms of the
QDFT according to Lemma 2.
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Remark 2 (Special QPQDFT Cases).

(i) For the parameter values a = c = d = e = 0 and b = ±1 we obtain the
QDFT and its inverse transform.

(ii) For parameters d = e = 0, the QPQDFT includes linear canonical trans-
forms and fractional Fourier transforms for quaternion domain functions,
up to constant factors, like

√−i for the linear canonical transform, and
√

(1 − i cot(α)/2π for the fractional Fourier transform.

Defining the function
g(x) := h(x)e−I(a|x|2+d·x), (20)

it is possible to compute the QPQDFT of h ∈ L1(H;H) in terms of the QDFT
of g.

Lemma 2.
F{h}(ω) = FQDFT {g}(bω)e−I(c|ω|2+e·ω). (21)

Then we obtain the following lemmata.

Lemma 3. The L2-norms of F{h} and FQDFT {h} are related by

||F{h}||2 =
1
b2

||FQDFT {h}||2. (22)

Proof.

||F{h}||2 =
[

∫

H

|F{h}(ω)|2d4ω
]

1
2

=
[

∫

H

|FQDFT {h}(bω)|2d4ω
]

1
2

=
[

∫

H

1
b4

|FQDFT {h}(ω′)|2d4ω′
]

1
2

=
1
b2

[

∫

H

|FQDFT {h}(ω)|2d4ω
]

1
2

=
1

|b|2 ||FQDFT {h}||2, (23)

Lemma 4 (Riemann-Lebesgue lemma). If h ∈ L1(H;H) then F{h} ∈
C0(H), and ||F{h}|| ≤ ||h||1.
Proof. Because |e−IQ(x,ω)| = 1, we have

||F{h}||∞ = sup
ω∈H

|F{h}(ω)| = sup
ω∈H

1
(2π)2

∣

∣

∣

∫

H

h(x)e−IQ(x,ω)d4ω
∣

∣

∣

≤ sup
ω∈H

1
(2π)2

∣

∣

∣

∫

H

|h(x)||e−IQ(x,ω)|d4ω
∣

∣

∣ = ||h||1. (24)
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Furthermore, the function g(x) of (20) is in L1(H;H) if and only if h ∈ L1(H;H).
Hence the classic Riemann-Lebesgue lemma results in

|F{h}(ω)| = |e−I(c|ω|2+e·ω)|
(2π)2

∣
∣
∣

∫

H

e−Ibx·ωg(x)d4x
∣
∣
∣ =

1

(2π)2

∣
∣
∣

∫

H

e−Ibx·ωg(x)d4x
∣
∣
∣ → 0,

(25)
as |ω| → ∞, completing the sketch of the proof.

The QPQDFT has the following linearity properties.

Theorem 2 (Linearity). The QPQDFT is left linear with respect to coeffi-
cients α1, α2 ∈ H for h1, h2 ∈ L1(H;H)

F{α1h1 + α2h2}(ω) = α1F{h1}(ω) + α2F{h2}(ω). (26)

It is right linear for coefficients β1, β2 ∈ H that commute with the unit pure
quaternion I of Definition 19.

F{h1β1 + h2β2}(ω) = F{h1}(ω)β1 + F{h2}(ω)β2,

∀β1, β2 ∈ H : β1I = Iβ1, β2I = Iβ2. (27)

The QPQDFT has the following shift-, modulation-, and scaling properties
obtained by straightforward computation.

Theorem 3 (Shift). For h ∈ L1(H;H), x, ω ∈ H and constant quaternion
s ∈ H we have

F{h(x − s)}(ω) = F{h(x)}(ω − 2a
b

s)e−I( 4ac
b ω·s− 4a2c

b2
|s|2+ 2a

b e·s). (28)

Remark 3. Alternative ways of expressing the shift property are

F{h(x − s)}(ω) = F{h(x)e−2Iax·s}(ω) e−I(bs·ω+a|s|2+d·s) (29)

or
F{h(x − s)}(ω) = 1

(2π)2

∫

H

h(x) e−IQ′(x,ω)d4xe−I(a|s|2+d·s), (30)

with

Q′(x, ω) := a|x|2+bx ·ω+c|ω|2+d′ ·x+e′ ·ω, d′ = d+2as, e′ = e+bs. (31)

Theorem 4 (Modulation). For h ∈ L1(H;H), x, ω ∈ H and constant quater-
nionic frequency μ ∈ H we have

F{h(x)eIx·μ}(ω) = F{h(x)}(ω − μ

b
)e−I

(

2 c
b ω·μ+ 1

b e·μ− c
b2

|μ|2
)

. (32)

Theorem 5 (Quaternionic Scaling). For h ∈ L1(H;H), x, ω ∈ H and con-
stant quaternionic scaling factor p ∈ H, hp(x) = h(px), we have

F{hp(x)}(ω) = 1
(2π)2|p|4

∫

H

h(x)e−I 1
|p|2 Q′(x,pω)

d4x, (33)

with

Q′(x, ω) = a|x|2 + bx · ω + c|ω|2 + d′ · x + e′ · ω, d′ = pd, e′ = pe. (34)
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Corollary 1 (Real Scaling). For h ∈ L1(H;H), x, ω ∈ H and constant real
scaling factor r ∈ R, hr(x) = h(rx), we have

F{hr(x)}(ω) = 1
(2π)2r4

∫

H

h(x)e−I 1
r2

Q′(x,rω)d4x, (35)

with

Q′(x, ω) = a|x|2 + bx · ω + c|ω|2 + d′ · x + e′ · ω, d′ = rd, e′ = re. (36)

The QPQDFT has the following inverse.

Theorem 6 (Inverse QPQDFT). For h,F ∈ L2(H;H), we obtain the inverse
QPQDFT transform as

h(x) =
b4

(2π)2

∫

H

F{h}(ω)e+IQ(x,ω)d4ω. (37)

Proof.

b4

(2π)2

∫

H

F{h}(ω)e+IQ(x,ω)d4ω

=
b4

(2π)2

∫

H

FQDFT {g}(bω)e−I(c|ω|2+e·ω)e+I(c|ω|2+e·ω)eI(a|x|2+bx·ω+d·x)d4x

=
b4

(2π)2

∫

H

FQDFT {g}(bω)eIbx·ωd4ωeI(a|x|2+d·x)

=
b4

(2π)2b4

∫

H

FQDFT {g}(μ)eIx·μd4μeI(a|x|2+d·x)

= h(x)e−I(a|x|2+d·x)eI(a|x|2+d·x) = h(x), (38)

where in the first equality we used Lemma 2 with g given by (20), and for the
third we substituted μ := bω, d4μ = b4d4ω, and in the fourth we used the inverse
QDFT of Lemma 1 and (20).

Theorem 7 (Parseval-Type Identity, Plancherel Theorem). (i) For any
f, h ∈ L2(H;H), the following identity holds

(F{f},F{h}) = 1
b4
(f, h). (39)

In the special case of f = h, we have

||F{f}||22 =
1
b4

||f ||22. (40)

(ii) Plancherel Theorem. If b = ±1, then F defines a unitary operator in
L2(H;H).



Quadratic Phase Quaternion Domain Fourier Transform 269

Proof. By simple computations we have

(F{f},F{h})
=

1
(2π)4

∫

H

∫

H

∫

H

f(x)e−IQ(x,ω)e+IQ(y,ω)g̃(y)d4xd4yd4ω

=
1

(2π)4

∫

H

∫

H

∫

H

f(x)e−I(c|ω|2+e·ω)eI(c|ω|2+e·ω)e−Ibx·ωe+Iby·ωd4ω

e−I(a|x|2−d·x)e+I(a|y|2−d·y)g̃(y)d4xd4y

=
1
b4

∫

H

∫

H

f(x)δ(x − y)e−I(a|x|2−d·x)e+I(a|y|2−d·y)g̃(y)d4yd4x

=
1
b4

∫

H

f(x)g̃(x)d4x =
1
b4
(f, g), (41)

where we have applied that (see Appendix A for more details)

1
(2π)4

∫

H

e−Ibx·ωe+Iby·ωd4ω = δ(b(x − y)) =
1
b4

δ(x − y). (42)

This proves proposition (i). For f = g we have (40), and for b = ±1 we obtain
proposition (ii).

4 QPQDFT and Uncertainty

Theorem 8 (Directional Uncertainty). Let h ∈ L2(H;H) with QPQFT
F{h}. Assume that ||h||2 < ∞, then the following inequality holds for arbitrary
constant quaternions v, w ∈ H:

||(x · v)h||2 ||(ω · w)F{h}||2 ≥ 1
|b|

|v · w|
2

||h||2 ||F{h}||2. (43)

Proof. By direct computation we obtain

||(ω · w)F{h}||2 =
[

∫

H

(ω · w)2|F{h}(ω)|2d4ω
]

1
2

=
[

∫

H

(ω · w)2|FQDFT {h}(bω)|2d4ω
]

1
2

=
[

∫

H

1
b4
(ω′ · w′)2|FQDFT {h}(ω′)|2d4ω′

]
1
2

=
1
b2

[

∫

H

(ω · w′)2|FQDFT {h}(ω)|2d4ω
]

1
2

=
1

|b|3
[

∫

H

(ω · w)2|FQDFT {h}(ω)|2d4ω
]

1
2

=
1

|b|3 ||(ω · w)FQDFT {h}||2, (44)
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where for the second equality we applied Lemma 2, for the third we substituted
ω′ = bω, d4ω′ = b4d4ω, w′ = 1

b w (then ω ·w = ω′ ·w′), for the fourth equality we
renamed ω′ → ω, for the fifth we inserted w′ = bw again, and the last equality
applied the definition of || · ||2 of (13) for p = 2. According to the directional
uncertainty principle for the QDFT of Theorem 1 we have (not assuming unit
norm signals)

||(x · v)h||2 ||(ω · w)FQDFT {h}||2 ≥ v · w

2
||h||2 ||FQDFT {h}||2, (45)

and with the norm relation of Lemma 3 we finally obtain

||(x · v)h||2 ||(ω · w)F{h}||2 ≥ 1
|b|

|v · w|
2

||h||2 ||F{h}||2. (46)

Remark 4. For b = ±1 and unit norm signals, i.e., ||h||2 = ||F{h}||2 = 1, we
obtain the familiar form of the directional uncertainty principle, relating the
(directed) effective spatial and spectral widths by

ΔxvΔωw ≥ |v · w|
2

, (47)

where

Δxv = ||(x · a)h||2 =

√

∫

H

(x · v)2 h(x)|2d4x,

Δωw = ||(ω · a)F{h}||2 =

√

∫

H

(ω · w)2|F{h}(ω)|2d4ω. (48)

Corollary 2 (Uni-directional Uncertainty Principle). For the single direc-
tion w = ±v, |v| = 1, we get the following uni-directional uncertainty principle

||(x · v)h||2 ||(ω · v)F{h}||2 ≥ 1
2|b| ||h||2 ||F{h}||2. (49)

Remark 5. In (49) equality holds for Gaussian wave packets

G(x) = Ae−k|x|2 , (50)

with x ∈ H, and constants A ∈ H, k ∈ R, k > 0.

Corollary 3 (Uncertainty and Orthogonal Directions). For orthogonal v
and w, i.e., v · w = 0, the uncertainty can be zero

||(x · v)h||2 ||(ω · w)F{h}||2 ≥ 0. (51)

Finally, we can extend the directional uncertainty principle to the direction-
independent QPQDFT uncertainty principle

Theorem 9 (QPQDFT Uncertainty Principle). Let h ∈ L2(H;H) with
QPQFT F{h}. Assume that ||h||2 < ∞, then the following inequality holds:

||xh||2 ||ωF{h}||2 ≥ 1
|b| ||h||2 ||F{h}||2. (52)
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5 Conclusion

This paper first gave a brief introduction to quaternions and the quater-
nion domain Fourier transform (QDFT). Then the quadratic-phase QDFT
(QPQDFT) was defined and its basic properties established, including its repre-
sentation in terms of the QDFT, linearity, Riemann-Lebesgue lemma, shift and
modulation, scaling, inversion, Parseval type identity and Plancherel theorem.
Finally, the uncertainty relationships for (directed) effective spatial- and spec-
tral (obtained from the QPQDFT) width of a quaternion domain signal were
investigated.

Following [5], it may be interesting to see how far the favorable convolution
properties of the scalar quadratic-phase Fourier transform can be extended to
the quaternion domain function case, to study related Young type inequalities,
the asymptotic behavior of quaternionic oscillatory integrals and solvability of
quaternionic convolution integral equations. Future research should also look into
establishing quadratic-phase quaternion domain wavelets and their application
in science and technology. Rich applications are expected in fields like physics,
electro-magnetism, aero-space engineering, color image and signal processing,
crystallography and material science, machine learning, and quaternion analysis
for holomorphic functions in the plane and space, etc.
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A Quaternion Domain Intergration and Dirac Delta
Function

We want to look at Eq. (42) in some more detail:

1
(2π)4

∫

H

e−Ibx·ωe+Iby·ωd4ω = δ(b(x − y)) =
1
b4

δ(x − y). (53)

We do have the variables b ∈ R, b �= 0, and the three quaternion variables
x, y, ω ∈ H. But they only appear in the scalar product, i.e.

x · ω = Sc(x̃ω) = xrωr + xiωi + xjωj + xkωk ∈ R, (54)

y · ω = Sc(ỹω) = yrωr + yiωi + yjωj + ykωk ∈ R. (55)

Furthermore we have the pure unit quaternion I ∈ H, I2 = −1. This means
that the arguments of the exponential functions commute and therefore we can
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rewrite the product of the two exponential factors as

e−Ibx·ωe+Iby·ω = e−Ib[(x−y)·ω]

= e−Ib(xr−yr)ωre−Ib(xi−yi)ωie−Ib(xj−yj)ωje−Ib(xk−yk)ωk . (56)

We further note that
d4ω = dωrdωidωjdωk. (57)

Therefore the integral has simplified to

1
(2π)4

∫

H

e−Ibx·ωe+Iby·ωd4ω

=
1

(2π)4

∫

H

e−Ib(xr−yr)ωre−Ib(xi−yi)ωie−Ib(xj−yj)ωje−Ib(xk−yk)ωkdωrdωidωjdωk

=
( 1
2π

∫

R

e−Ib(xr−yr)ωrdωr

)( 1
2π

∫

R

e−Ib(xi−yi)ωidωi

)

×
( 1
2π

∫

R

e−Ib(xj−yj)ωjdωj

)( 1
2π

∫

R

e−Ib(xk−yk)ωkdωk

)

= δ(b(xr − yr)) δ(b(xi − yi)) δ(b(xj − yj)) δ(b(xk − yk)). (58)
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Abstract. In this work, an improved end-to-end U-Net structure, a hier-
archical multi-scale interconnection network (HMINet), is proposed to
make full use of the information contained in different feature maps in
encoders and decoders to improve the accuracy of medical image seg-
mentation. The network consists of two main components: a multi-scale
fusion unit (MSF) and a multi-head feature enhancement unit (MFE). In
the encoder part, the multi-scale fusion unit is used to fuse the informa-
tion between the feature maps of different scales. By using convolution
at different levels, a wider range of context information can be captured
and fused into a more comprehensive representation of features. In the
decoder part, multiple feature enhancement units can fully pay atten-
tion to the coordinates and channel information between feature maps,
and then splice the encoded feature maps step by step to maximize the
use of information from different feature maps. These feature maps are
joined by a well-designed skip connection mechanism to retain more fea-
ture information and minimize information loss. The proposed method is
tested on four public medical datasets and compared with other classical
image segmentation models. The results show that HMINet can signif-
icantly improve the accuracy of medical image segmentation tasks and
exceed the performance of other models in most cases.

Keywords: Transformer-based method · Multi-scale fusion · Feature
enhancement · Encoder-decoder network · Medical image segmentation

1 Introduction

Convolutional neural networks (CNNs) have revolutionized medical image seg-
mentation, playing a vital role in advancing the field of medical image segmen-
tation. U-Net [1], a widely recognized and influential architecture, has demon-
strated exceptional performance in segmenting medical images. However, as the
demand for more accurate and efficient segmentation models grows, researchers
have developed various U-Net variants [2,3] that leverage the benefits of CNNs.
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One such variant is U-Net3+ [4], which uses several layers of depth adjustable
submodules in the encoder to capture more context information and enhance fea-
ture representation consistency. In the decoder, U-Net3+ introduces an atten-
tion gating mechanism to adaptively focus on the region of interest and suppress
irrelevant information. It also uses atrous convolution and inversion convolution
to increase the receptive field size and improve feature recovery ability. These
improvements make U-Net3+ perform better in medical image datasets, espe-
cially in processing high-resolution images. Similarly, Azad et al. [5] combined
bi-directional ConvLSTM with skip connection for medical image segmentation.
Gu et al. [6] integrated dense atrous convolution blocks and residual multi-kernel
pooling blocks into U-Net to capture more advanced feature information. By
leveraging these advanced feature extraction techniques, the model can capture
more detailed and informative representations, ultimately enhancing segmenta-
tion performance. Xie et al. [7] used CNNs to extract MRI image features and
feed these features into a recurrent neural network with memory modules for
processing in order to effectively capture spatial relationships and contextual
information in MRI images. Oktay et al. [8] combined jump connection with
gating mechanisms, This approach allows the network to focus more on areas
of interest, resulting in more accurate segmentation results. SegNet [9] uses a
hierarchical CNN to extract features and pairs them with deconvolution layers
in the decoder to generate masks. In encoders and decoders, SegNet uses the
max pooling operation to reduce the size of the feature map, which is conducive
to increasing the computational efficiency and memory utilization of the model.
SFNet [10] combines two different types of convolutional neural networks: the
fully convolutional network and the spatio-temporal convolutional network. In
this way, Semantic Flow can make use of multi-scale information and spatio-
temporal information at the same time to improve the effect of scene analysis.
DFM [11] uses directional convolution and directional pooling operations on the
basis of CNN to capture richer local spatial information and to segment hearts
of different sizes and shapes using feature maps with multiple resolutions.

While CNN-based methods have made significant strides in medical image
segmentation, they still face inherent limitations. One such limitation is the
restricted receptive field of convolutional operations. Convolutional filters are
localized and can only capture information within a limited neighborhood, which
restricts the model’s ability to capture long-range dependencies and global con-
text. To overcome this limitation, researchers have turned to Transformer mod-
els, which have demonstrated exceptional performance in capturing global fea-
tures and dependencies.

Transformers [12] have gained attention in natural language processing tasks,
where they excel in modeling relationships between distant words in a sentence.
One notable example is TransUNet [13], which transforms medical images into
sequences and leverages the Transformer’s attention mechanism to encode global
information. By encoding the images as sequences, TransUNet enabled the model
to capture contextual dependencies across the entire image, enhancing segmen-
tation accuracy.
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Fig. 1. Overview of the proposed HMINet.

Another approach is UTNet [14], which combines self-attention with relative
location coding. By incorporating spatial relationships between pixels, the model
can capture remote dependencies of different sizes, further improving segmenta-
tion performance. Levit-UNet [15] takes a different approach by incorporating
LeViT transformer modules into the U-Net architecture. This integration enables
fast and accurate medical image segmentation by leveraging the benefits of both
CNNs and Transformers. TCRNet [16] uses CNN module to extract local fea-
tures from input sequences, RNN module to capture global context information,
and Transformer module to integrate both local features and global information.
SwinUNet [17] uses Swin Transformer [18] to extract features from the input
image in the encoder stage, and uses UNet-like structure to gradually reduce the
size of the feature map. In the decoder stage, a structure similar to UNet was
adopted, the feature map output from the encoder was gradually upsampled,
and the low-level information was combined with the high-level information by
cross-layer connection.

Despite these advancements, CNN-Transformer hybrid methods face two pri-
mary challenges. Firstly, effectively utilize the information contained within
feature maps of different scales remains a challenge. Large-scale feature maps
capture fine-grained details [19], while small-scale feature maps provide crucial
semantic information for accurate segmentation [20]. Current methods strug-
gle to fully exploit the complementary nature of these scales. Secondly, existing
methods primarily focus on channel-wise information in skip connections and
overlook the long-distance positional dependencies between feature maps. These
positional dependencies carry essential spatial information that can aid in accu-
rate segmentation.
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To address these challenges, we propose a novel encoder-decoder network
called HMINet, which effectively leverages multi-scale feature maps in both the
encoder and decoder stages. In the encoder, we introduce a multi-scale fusion
unit (MSF) designed to fuse information from feature maps of different scales.
The MSF facilitates the combination of fine-grained and semantic information,
ensuring that the full potential of feature maps at different scales is harnessed.

In the decoder, we introduce a multi-head feature enhancement unit (MFE)
to encode both the coordinate and channel information of the feature maps.
While existing methods mainly focus on channel-wise information, we recognize
the importance of positional dependencies and incorporate coordinate informa-
tion into the segmentation process. HMINet can capture long-distance positional
dependencies and enhance the overall information content of the feature maps,
leading to improved segmentation accuracy. The MFE module in HMINet uti-
lizes multiple heads to capture different aspects of the feature maps. By encoding
both the coordinate and channel information, the model can effectively exploit
the rich spatial and semantic information within the feature maps.

2 Methodology

2.1 Overview of the Proposed HMINet

The structure of HMINet is shown in Fig. 1, where the encoder contains CNN,
Transformer, and MSF, the decoder contains MFE. In the encoder, MSF is used
to complete information fusion, Transformer is used to complete global feature
extraction, and then MFE is used in the decoder for further information fusion
to obtain segmentation results.

2.2 Hybrid Encoder Combining CNN and Transformer

In the encoder of HMINet, as illustrated in the left part of Fig. 1, the process
begins with an input image, denoted as x ∈ R

C×H×W , where C, H, and W
represent the number of channels, height, and width of the image, respectively.
If the input consists of multiple modalities, they are concatenated along the
channel dimension for joint processing.

Initially, the image undergoes convolutional operations in a CNN to generate
feature maps at different scales. These feature maps are denoted as {Fi}i=1,2,...,5,
where the subscript i represents the scale, ranging from 1 to 5, ci, hi, and wi

denote the number of channels, height, and width of Fi, respectively.
As the encoder progresses, the number of channels in the feature maps dou-

bles while their height and width are halved compared to the previous scale. This
hierarchical structure captures increasingly abstract and high-level information
as the encoder deepens.

However, CNNs have limitation in capturing global contextual information
due to their localized receptive fields. To overcome this limitation, a Transformer
unit is incorporated at the bottom of the CNN. The Transformer unit is applied
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to the feature map F5 since it has the largest receptive field and contains the
richest semantic information. Before feeding F5 into the Transformer unit, it is
resized to F̂5 ∈ R

c5×r×r to match the input requirements of the Transformer,
where c5 is the number of channels in F5, and r represents the length of the
longer side in F5.

The Transformer unit processes F̂5 and generates a global feature represen-
tation denoted as F′

5 ∈ R
c5×r×r. This global feature incorporates long-range

dependencies and captures the contextual information across the entire feature
map. To fully leverage the semantic information from both local and global per-
spectives, the resized feature map F̂5 and the Transformer output F′

5 are added
together:

S5 = F̂5 + F′
5 (1)

Here, S5 ∈ R
c5×r×r represents a feature map that combines complementary

local and global features. By fusing these features, HMINet benefits from both
the detailed local information captured by the CNN and the global contextual
information captured by the Transformer. This fusion process enhances the rep-
resentation power of the feature map and contributes to improved segmentation
accuracy.

To sum up, the encoder in HMINet applies a CNN to generate multi-scale
feature maps, with the largest-scale feature map undergoing additional process-
ing in a Transformer unit to capture global contextual information. The resized
feature map and the Transformer output are then combined to create a feature
map that integrates both local and global features. This fusion process enables
HMINet to effectively leverage information from different scales and enhance the
segmentation performance.

2.3 Multi-scale Fusion Unit

Considering that the existing U-Net structures do not make full use of the seman-
tic information between feature maps of different scales, we design a MSF in the
decoder to fuse feature maps on the first four feature maps of different scales
generated by CNN. Each decoder layer of MSINet contains feature maps of the
same scale, smaller scale and larger scale from the encoder to capture feature
maps of fine-grained details and coarse-grained semantics at full scales. Figure 1
illustrates the construction process of feature map E2. The process of MSF is as
follows:

Ei =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

CBR
(∑4

k=2 B (Xk) + X1

)
, if i = 1

CBR
(∑i−1

k=1 M(Xk) + Xi +
∑4

k=i+1 B (Xk)
)

, else

CBR
(∑3

k=1 M(Xk) + X4

)
, if i = 4

(2)

where {Ei}i=1,2,...,4 denote the fused feature maps obtained from the feature
maps of different scales through MSF. B (·) represents bilinear interpolation; M
(·) represents maximum pooling. CBR(·) represents convolution, batch normal-
ization and ReLU activation.
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2.4 Multi-head Feature Enhancement Unit

To obtain accurate segmentation results, it is necessary to better fuse the four
feature maps {Ei}i=1,2,...,4 generated by MSF and S5. Therefore, we propose
a MSF to encode channel information and coordinate information of feature
maps in the encoder and decoder. As the right part of Fig. 1, the input of MFE
consists of two parts, one is the fusion feature maps {Ei}i=1,2,...,4 generated
in the encoder, and the other is the feature maps {Di}i=1,2,3 generated in the
decoder. D4 is obtained by bilinear interpolation of S5. After concatenating the
output of MFE {Oi}i=1,2,...,4 with {Di}i=1,2,...,4, the upsampling operation is
performed to obtain {Di}i=1,2,3.

As shown in Fig. 1, given the inputs Ei and Di, for each input, we use the
average pooling operation to encode each channel along the horizontal and ver-
tical directions, the step can be formulated as follows:

ec(h) =
1
W

∑

0≤i<W

Ec(h, i) (3)

ec(w) =
1
H

∑

0≤j<H

Ec(j, w) (4)

dc(h) =
1
W

∑

0≤i<W

Dc(h, i) (5)

dc(w) =
1
H

∑

0≤j<H

Dc(j, w) (6)

where ei(·) denotes the output obtained by encoding Ei in both horizontal and
vertical directions, and di(·) denotes the output obtained by encoding Di in both
horizontal and vertical directions.

After obtaining the outputs, we concatenate the outputs of the corresponding
stages along the channel, followed by a CBR operation to produce the interme-
diate variables, represented as:

êi = CBR (c [ei(h), ei(w)]) (7)

d̂i = CBR (c [di(h), di(w)]) (8)

To reduce the model complexity, we consider an appropriate compression of the
number of channels of the intermediate variables, and the compression ratio
is set to σ. Then, êi and d̂i are split to obtain the intermediate variables
e′
i(h) ∈ R

C/σ×H , e′
i(w) ∈ R

C/σ×W , d′
i(h) ∈ R

C/σ×H , d′
i(w) ∈ R

C/σ×W and the
number of channels, width and height of the intermediate variables are adjusted
to be be consistent with {Ei}i=1,2,...,4 and {Di}i=1,2,...,4 using 1 × 1 convolutional
transformations Th and Tw. To fully capture the channel dependency, the inter-
mediate variables and the corresponding initial inputs are multiplied to obtain
the corresponding outputs, and the outputs of the two processes are added to
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obtain the output of each stage of the MFE. The process can be expressed as
follows:

Êi = δ (Th (e′
i(h))) � δ (Tw (e′

i(w))) � Ei (9)

D̂i = δ (Th (d′
i(h))) � δ (Tw (d′

i(w))) � Di (10)

Oi = Êi + D̂i (11)

where δ(·) is the ReLU activation function, � denotes multiply operation.
Finally, we make full use of the coordinate information and channel information
of the feature maps in the MFE and obtain the prediction result ŷ ∈ R

C×H×W .

3 Experiment

3.1 Datasets and Implementation

The proposed method is evaluated on four different datasets: Choledoch [21],
HVSMR [22], MRBrainS [23], and BrainWeb [24]. Each dataset serves a specific
segmentation goal and consists of a varying number of images. Sample images
are shown in Fig. 2, and Table 1 displays the specific information of the four
datasets.

Table 1. The specific information of BrainWeb, MRBrainS, HVSMR and Choledoch.

Name Num Resolution Modality Segmented regions

BrainWeb 399 181×181 T1, T2, PD WM, GM
217×181 CSF, BG
181×217

MRBrainS 174 240×240 T1, T1ir, Flair WM, GM
CSF, BG

HVSMR 3341 100×300 – Blood pool,
Myocardium, BG

Choledoch 514 1280×1024 – Cancerous,
Normal Areas

The Choledoch dataset comprises hyperspectral images focusing on the bile
duct. It is divided into cancerous and normal areas, providing a basis for differ-
entiating between the two. The dataset consists of 514 high-resolution images
with dimensions of 1280×1024 pixels. The HVSMR dataset focuses on cardio-
vascular magnetic resonance imaging (MRI) and aims to segment blood pools
and myocardium. It contains 3341 slices from 10 MRI volumes. The MRBrainS
dataset is a widely recognized resource for brain MRI segmentation. It consists
of 174 images, each with a size of 240×240 pixels. The dataset includes cere-
brospinal fluid (CSF), white matter (WM), gray matter (GM), and background



MSINET: Multi-scale Interconnection Network 281

classes. The BrainWeb dataset is another well-known resource for brain MRI seg-
mentation. It comprises 399 images with three different sizes: 181×181, 181×217,
and 217×181 pixels. Similar to MRBrainS, BrainWeb includes CSF, WM, GM,
and background classes. The dataset provides images with different dimensions,
enabling the evaluation of the proposed method’s scalability and adaptability.

Fig. 2. Sample images from Choledoch, HVSMR, MRBrainS and BrainWeb.

For the experimental setup, all experiments are conducted on an
Intel�Xeon�Gold 6230 CPU @ 2.10 GHz machine with a total of 40 CPU cores.
The implementation is based on PyTorch 1.6.0.

The joint loss function used in the experiments is a combination of cross-
entropy loss and generalized Dice loss. The SGD optimizer is employed with an
initial learning rate of 0.003, a momentum of 0.9, and a weight decay of 0.0001.
The batch size is set to 1, and a total of 30,000 iterations are performed during
training.

For evaluating the performance of the proposed method, two metrics are
selected: pixel accuracy (PA) and dice similarity coefficient (DSC). These metrics
provide quantitative measures of segmentation accuracy.
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3.2 Ablation Study

To assess the individual contributions of each proposed module, we perform
ablation experiments on the four datasets by removing each module. The results
of these experiments are presented in Fig. 3.

Fig. 3. Experimental results of ablation study.

From Fig. 3, we observe that HMINet without the Transformer module fails
to effectively extract global feature maps and essentially reduces to a pure CNN
model. This demonstrates the importance of the Transformer module in achiev-
ing global feature extraction.

Similarly, HMINet without the MSF module struggles to fuse information
from multi-scale feature maps, resulting in a significant performance degradation.
This highlights the crucial role of the MSF module in information fusion across
different scales.

Additionally, when the MFE module is excluded from HMINet, the model
loses the ability to capture channel information and coordinate information of
the feature maps. Consequently, the segmentation performance is significantly
compromised. This emphasizes the necessity of the MFE module.

In conclusion, HMINet outperforms the ablated versions by effectively lever-
aging feature map information, capturing channel information, and incorporating
coordinate information. These findings highlight the significance of the proposed
modules and demonstrate the superior segmentation performance of HMINet.

3.3 Comparison with State-of-the-Art Methods

To evaluate the performance of HMINet, we compare it with leading medical
image segmentation methods and present the results in Table 2. To ensure a fair
comparison, all images are adjusted to a resolution of 256× 256. The top part
of Table 2 includes methods that use either a pure CNN architecture or a pure
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Table 2. Segmentation results of comparison on Choledoch, HVSMR, MRBrainS and
BrainWeb datasets.

Method Metrics on Choledoch Metrics on HVSMR Metrics on MRBrainS Metrics on BrainWeb
PA(%) DSC(%) PA(%) DSC(%) PA(%) DSC(%) PA(%) DSC(%)

U-Net [1] 65.57 62.10 92.51 83.67 91.83 74.02 93.26 80.89
U-Net3+ [4] 71.09 67.36 93.42 86.37 96.73 89.19 99.05 98.12
FCN-8 s [25] 66.35 61.84 91.79 82.93 92.61 75.70 90.30 78.89
Attn-UNet [8] 68.20 64.98 93.72 87.90 97.09 89.33 99.71 99.42
SFNet [10] 69.02 64.20 92.98 86.24 97.02 90.07 99.48 99.02
SegNet [9] 65.66 61.46 90.27 80.99 92.44 75.60 93.36 86.13
SwinUNet [17] 77.47 73.15 93.58 86.73 97.28 90.83 99.59 99.34
CRDN [7] 72.50 66.83 93.36 87.00 97.18 90.38 99.64 99.32
UTNet [14] 70.63 67.57 92.54 86.53 96.83 89.60 99.05 98.13
TransUNet [13] 71.15 68.36 92.06 85.78 92.87 79.68 94.40 88.97
LeVit-UNet [15] 74.67 71.93 93.26 86.54 95.98 88.84 99.41 99.24
TCRNet [16] 76.38 72.80 93.49 86.66 97.23 90.81 99.70 99.40
HMINet 81.60 79.93 94.33 87.93 97.38 90.91 99.74 99.46

Transformer architecture, such as FCN [25], U-Net [1], SegNet [9], and SwinUNet
[17]. The bottom part includes methods that combine CNN and Transformer,
such as TransUNet [13] and LeVit-UNet [15].

Existing methods that focus on multi-scale fusion, such as U-Net3+ [4], only
consider feature fusion in the encoder using CNN, thus lacking global feature
information. Other methods, like UCTransNet [26], only consider channel infor-
mation while disregarding coordinate information, resulting in underutilization
of feature map information. In contrast, HMINet integrates both channel infor-
mation and coordinate information in the decoder, making full use of feature
map information.

Comparing HMINet with representative CNN-based methods such as U-Net
[1], U-Net3+ [4], and SegNet [9], we observe significant improvements across all
four datasets. When compared to methods combining CNN and Transformer,
such as TransUNet [13], HMINet achieves an increase of 11.57%, 2.15%, 11.23%,
and 10.49% in performance on the respective datasets. These comparisons clearly
demonstrate the effectiveness of HMINet in medical image segmentation.

In Fig. 4, we provide a visual comparison of the segmentation maps from
various models. We can see that HMINet identifies the details of Blood Pool and
CSF in HVSMR and BrainWeb, respectively, which indicates that our method
obtains sufficient feature representations.

Therefore, the results presented in Table 1 highlight the superior performance
of HMINet compared to state-of-the-art methods. HMINet surpasses existing
CNN-based approaches and outperforms methods that combine CNN and Trans-
former, showcasing its effectiveness in medical image segmentation tasks.
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Fig. 4. Some visualization results of the proposed HMINet and other encoding-
decoding methods, i.e., U-Net, TransUNet and SwinUNet. The top three rows are
samples from HVSMR(Myocardium in white, Blood Pool in gray), the fourth and the
last rows are samples from MRBrainS and BrainWeb (CSF in white, GM in green, WM
in yellow) (Color figure online)

4 Conclusion

In this paper, from multi-scale fusion and information capture, we propose a
novel medical segmentation network based on CNN and Transformer called
HMINet. Specifically, we introduce two new modules named multi-scale fusion
unit (MSF) and multi-head feature enhancement unit (MFE). In the encoder,
MSF is used to carry out multi-scale feature fusion for feature maps of differ-
ent scales generated by CNN, and Transformer is used to supplement global
information. In the decoder, MFE is used to capture the coordinate information
and channel information of feature maps. Experimental results on four datasets
validate the effectiveness of HMINet.
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Abstract. Cough is a common symptom of respiratory disease, which
produces a specific sound. Cough detection has great significance to pre-
vent, assess, and control epidemics. This paper proposes CASCO (Cough
Analysis System using Short-Time Fourier Transform (STFT) and Con-
volutional Neural Networks (CNN) in the WeChat mini Program), a
cough detection system capable of quantifying the number of coughs
through an audio division algorithm. This system combines STFT with
CNN, achieving accuracy, precision, recall, and F1-score with 97.0%,
95.6%, 98.7%, and 0.97 respectively in cough detection. The model is
embedded into the WeChat mini program to make it feasible to apply
cough detection on smartphones and realize large-scale and contactless
cough screening. Future research can combine audio and video signals to
further improve the accuracy of large-scale cough screening.

Keywords: Cough detection · Deep neural network · Audio Signal
Processing

1 Introduction

Cough is a common symptom associated with various respiratory diseases such
as bronchitis, and asthma. It serves as a powerful mechanism of the human body
to expel foreign particles and clear secretions from the upper respiratory tract,
resulting in a specific sound that plays a significant role in disease diagnosis [1].

Respiratory diseases pose a significant threat to human health worldwide [2].
As the details about the cough frequency, intensity, and sound help physicians
in their diagnostics of respiratory diseases, the field of automatic cough sensor
research has been established with various systems achieving high precision and
sensitivity. The Leicester cough monitor consists of an audio recorder and a
microphone and detects the time-varying spectral features of cough sound based
on hidden Markov models [3]. Costa et al. [4] applied a mechanomyography sen-
sor on the abdominal region to detect cough events. Doddabasappla et al. [5]
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achieved cough detection using the multiband spectral summation features of
acceleration signal measured by a portable accelerometer. Most of these auto-
matic cough sensors are considered to be uncomfortable to wear during daily
activities, and their expensive cost hindered the application of large-scale cough
screening.

Large-scale cough detection plays a pivotal role in epidemiological research,
disease screening, and epidemic control efforts. The global impact of the COVID-
19 pandemic, which primarily affects the respiratory system, has resulted in a sig-
nificant number of confirmed cases worldwide, as reported by the World Health
Organization (WHO) by March 2, 2022 [6]. The emergence and dominance of the
Omicron variant, along with other COVID-19 variants, have further exacerbated
the health crisis and posed immense challenges to human health and the global
economy [7]. Given that cough is a prominent symptom of COVID-19, there has
been a growing focus on developing large-scale and contactless cough detection
systems in research initiatives. These systems hold immense potential in facil-
itating early detection, monitoring, and effective control of infectious diseases.
By enabling non-invasive and convenient screening, they can contribute signifi-
cantly to mitigating disease transmission, informing public health strategies, and
supporting timely interventions. The development and implementation of such
systems are crucial steps toward safeguarding public health and minimizing the
impact of future epidemics and pandemics.

In response to the distinct acoustic characteristics associated with cough
events, several studies have made significant strides in developing models that
utilize cough audio features for remote and contactless detection of cough events.
For instance, Islam et al. proposed an algorithm that leverages acoustic features
extracted from cough sound samples, combined with a deep neural network,
for automated and noninvasive diagnosis of COVID-19 [8]. Tena et al. focused
on extracting time-frequency cough features from audio signals and applied a
supervised machine-learning algorithm to identify the most relevant features
for COVID-19 diagnosis [9]. Another notable study by Monge-Álvarez et al.
involved the construction of a machine hearing system specifically designed for
robust cough detection, incorporating short-term spectral features and the stan-
dard deviation of short-term descriptors [10]. These advancements demonstrate
the potential of using cough audio analysis in developing efficient and accurate
diagnostic tools, providing valuable insights for the detection and management
of respiratory diseases.

The widespread use of smartphones has made large-scale cough detection
possible. Patients and medical professionals now have the convenience of cap-
turing cough audio signals using the built-in microphone and voice recorder on
their smartphones, eliminating the need for additional specialized cough assess-
ment devices. Notably, Hoyos-Barcelo et al. proposed a cough detector on smart-
phones that leverages local Hu moments as robust features, combined with an
optimized k-NN classifier [11]. Imran et al. built a COVID-19 diagnosis app ana-
lyzing cough sound by an Artificial Intelligence (AI)-based engine [12]. Most of
the aforementioned studies utilizing AI algorithms failed to accurately measure
cough frequency and intensity.
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One significant challenge in utilizing smartphones for cough detection is the
limited battery consumption of these devices. Executing complex machine learn-
ing or deep learning algorithms directly on smartphones can quickly drain the
battery and hinder their practicality. Consequently, alternative approaches are
necessary to overcome this limitation and enable efficient cough analysis [13,14].
One feasible solution is to leverage the capabilities of external servers for audio
signal processing. With the widespread application of 5G technology, it becomes
increasingly feasible to use smartphones solely for audio collection while offload-
ing computationally intensive tasks to remote servers [2]. The high-speed and
low-latency characteristics of 5G networks facilitate seamless and efficient trans-
mission of cough audio signals from smartphones to external servers.

In this paper, we propose a novel cough detection system called CASCO,
which can calculate the number of coughs by an audio division algorithm. This
system combines STFT with CNN, achieving an impressive accuracy rate of
97.0% in classifying cough sounds and non-cough sounds. The integration of this
system into the WeChat mini program enables the deployment of cough detection
on smartphones, enabling widespread and contactless screening for coughs at a
large scale. Furthermore, by processing the audio recorded on smartphones in
an external server, we alleviate the issue of high battery consumption associated
with complex algorithms, ensuring a smoother user experience. The subsequent
sections of this paper are organized as follows: In Sect. 2, we outline the method-
ology and the specific procedure of cough detection system. In Sect. 3, we explain
the dataset we used and the training process, compare the experimental results
in terms of performance metrics, and discuss the potential and limitations of the
study. We conclude the paper by summarizing the key findings and contributions
of the research.

2 Cough Detection System

The overall system architecture is shown in Fig. 1. The WeChat mini program in
a smartphone records sound when the “Start recording” and “Finish recording”
buttons are pressed. When the “Detect cough” button is pressed, the recorded
sounds are transmitted to the server for further processing. At the server, the
audio division algorithm extracts the high parts above the threshold from a
long piece of audio. This process divides the long audio into shorter segments,
each containing only a single suspicious sound. Then STFT is applied to the
short audio to generate a spectrogram that serves as the feature of the audio.
Subsequently, the spectrogram is forwarded to CNN, classifying cough samples
and non-cough samples. The server performs cough detection and counts the
number of coughs in the long audio. Finally, the output results are displayed in
the WeChat mini program for user accessibility.

The details of detection and diagnosis classifiers are presented below.
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Fig. 1. Pipeline of the CASCO cough detection system: a) record a long piece of audio
to be detected via the WeChat mini program; b) divide the long audio into several
short sounds and extract features using STFT; c) classify cough sounds and non-cough
sounds through CNN; d) display the result and the number of coughs on the WeChat
mini program.

2.1 Audio Division

To select a suitable threshold for extracting a single suspicious sound, we use
Otsu’s thresholding method in the audio division algorithm. Otsu’s method is
a global thresholding algorithm, which can automatically generate the optimal
segmentation threshold based on the input signal [15]. For the input audio signal,
we suppose the number of points is denoted as N , which are dichotomized into
two classes: the low part C0 and the high part C1, using a threshold at level T .
The proportion of points belonging to the low part in the whole audio is denoted
by ω0 and its average amplitude level is μ0. Similarly, the proportion of points
belonging to the high part in the whole audio is denoted by ω1 and its average
amplitude level is μ1. Then the total average amplitude level of the audio is
given by:

μT = ω0μ0 + ω1μ1 (1)

We can easily verify the following relation for any choice of T :

ω0 + ω1 = 1 (2)

To evaluate the class separability of the threshold at level T , we introduce
the following between-class variance used in the discriminant analysis:

σ2
B = ω0 (μ0 − μT )2 + ω1 (μ1 − μT )2

= ω0ω1 (μ1 − μ0)
2

(3)

In Eq. (3), it can be observed that the farther the two means μ0 and μ1 are
from each other, the larger the between-class variance is, which indicates that the
between-class variance serves as an effective measure of differentiability between
classes. To determine the optimal threshold T ∗ that maximizes the between-class
variance, we employ the following equation:

σ2
B (T ∗) = max σ2

B(T ) (4)
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Fig. 2. Processing steps of the audio division algorithm.

After selecting a suitable threshold, we extract the high parts above the
threshold from a long piece of audio. This process involves splitting the long
audio into shorter segments, each containing only a single suspicious sound. The
length of the short segments is not fixed but adaptively determined based on the
threshold and characteristics of the audio signal. It is expected to implement the
function of counting the number of coughs. The processing steps of the audio
division algorithm can be seen in Fig. 2.

2.2 Feature Extraction

For automatic speech recognition, STFT has been considered to be an effective
feature extraction method. The spectrogram generated by STFT can show the
relationship of time and frequency of audio signals, thus extracting features of
audio and then differentiating different audio signals [16]. The process of STFT
is illustrated in Fig. 3. The STFT form of signal x(t) can be defined by the
following equation:

STFT(t, f) =
∫ ∞

−∞
x(τ)h(τ − t)e−j2πfτdτ (5)

where h(τ − t) means window function.
The audio signal is first pre-emphasized by a first-order high-pass filter to

improve the signal-to-noise ratio in the high-frequency portion of the signal.
After the audio signal is framed and windowed, Fast Fourier Transform (FFT)
is applied to all the frames and generates spectrums. The amplitude values of
the spectra are quantified and mapped to different colors, providing a visual
representation of the frequency content. Finally, the transformed multi-frame
spectrums are stitched together in the time dimension to form a final spectrogram
of the audio signal.

We apply the STFT to the short audio to generate a spectrogram with time
on the horizontal axis, frequency on the vertical axis and color indicating ampli-
tude as the feature of the audio. The spectrogram generated through STFT
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enables visual representation and facilitates accurate differentiation of cough
sounds.

2.3 Classification

Mapping the time-frequency spectrogram into a color representation as the input
to a CNN serves two main purposes: 1) Channel dimensions: By converting the
time-frequency spectrogram to a color image with three channels (R, G, B), it
aligns with the common CNN input format, such as RGB images. This allows
the CNN to process the spectrogram as image-like input, with height, width,
and three color channels, enabling the use of standard image-based CNN archi-
tectures. CNNs excel in learning hierarchical features, progressing from local
patterns to global representations. 2) Feature representation: The STFT output
consists of the real and imaginary parts (or magnitude and phase), representing
different aspects of the audio signal. By mapping it to a color spectrogram, the
CNN can potentially learn distinct features from different parts of the spectro-
gram. For instance, the CNN can capture spatial patterns, temporal changes,
and frequency content from the color representation, leading to a more compre-
hensive and distinctive feature representation for cough detection.

The generated spectrogram is then fed into the CNN to decide whether the
audio corresponds to a cough or not. An overview of the used CNN structure is
illustrated in Fig. 4. The CNN consists of eight layers: 5 convolutional layers, 2
fully connected layers, and a softmax classification layer. In each convolutional
layer, the Rectified Linear Unit (ReLU) is utilized as the activation function. The
first, second, and fifth convolutional layers are connected to a 3×3 max-pooling
layer, which is performed with a stride of 2. The first convolutional layer takes
in the 224×224×3 spectrogram as inputs and consists of 96 filters of kernel size
11×11, a stride of 4, and padding of 2. It is followed by a 5×5 convolutional
layer with a padding of 2. The last three convolutional layers all have filters of
size 3×3 and padding of 1. The features are then passed to two fully connected
layers with 4,096 neurons each, which also employ 0.5 dropout regularization
to avoid overfitting. Finally, the last layer, comprising two neurons, takes the
outputs from the second fully connected layer and employs the softmax func-
tion to classify the spectrograms as either cough or non-cough. By utilizing this
CNN architecture, we aim to capture and learn the distinguishing patterns and
characteristics of cough events, enabling accurate classification of cough and
non-cough spectrograms. The combination of convolutional layers, max-pooling
layers, fully connected layers, and the softmax classification layer provides the
necessary capacity for CNN to effectively differentiate between cough and non-
cough audio samples.

3 Experiments

3.1 Dataset Explanation

To train and build the proposed system, we create a dataset consisting of
cough samples and non-cough samples. The dataset of cough samples comprises
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Fig. 3. Processing steps of generating spectrogram by STFT: a) the amplitude-time
graph of the original signal; b) the separated signals after framing and windowing; c)
multi-frame spectrums with amplitude values mapped into colors; d) the final spectro-
gram.
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Fig. 4. Structure of the used CNN classifier: the network consists of eight layers, includ-
ing five convolutional layers, two fully connected layers and a softmax classification
layer.

self-recorded coughing audio, cough recordings sourced from the Environmental
Sound Classification (ESC-50) dataset [17], and inpatient cough recordings col-
lected from individuals diagnosed with respiratory diseases. The inpatient cough
recordings were collected from 24 patients, including 15 males and 9 females,
in the respiratory disease department at Ruijin Hospital [18]. The inpatient’s
cough samples ranged in age from 48 to 85 years old and suffered from respi-
ratory diseases with symptoms of cough. The non-cough samples contain self-
recorded environmental audio and labeled environmental recordings from the
ESC-50 dataset, including interior sounds, exterior noises, natural sounds, and
human (non-speech) sounds [17]. Both the self-recorded samples and inpatient
cough recordings were recorded using mobile phone microphones, incorporating
background noise in these samples.

Before training, we apply the audio division algorithm to split the long audio
from the previously collected dataset into shorter audio clips, each containing
a single suspicious sound. The preprocessed audio has durations ranging from
230 ms to 670 ms. In total, we obtain 13,529 samples, comprising 6,985 cough
samples and 6,544 non-cough samples. To facilitate the training process, we
divide the dataset into a training dataset and a testing dataset. The training
dataset consists of 5,588 cough samples and 5,235 non-cough samples, while the
test dataset comprises 1,397 cough samples and 1,309 non-cough samples.

3.2 Network Training

The convolutional network employed in this study is trained using the Adam
optimizer, which is a first-order gradient-based optimization algorithm for
stochastic objective functions [19]. The Adam optimizer leverages adaptive esti-
mates of lower-order moments, making it well-suited for handling large datasets
and sparse gradients. To train the convolutional network, the cross entropy loss
function is utilized. This loss function is commonly employed in classification
tasks and measures the dissimilarity between the predicted probabilities and the
true labels. An initial learning rate of 0.0002 is set, allowing the network to
gradually adjust its weights based on the optimization process.
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During the training process, a batch size of 32 is utilized. The batch size deter-
mines the number of samples processed in each iteration, allowing for efficient
utilization of computational resources and improved generalization performance.
By carefully selecting these hyperparameters and leveraging the capabilities of
the Adam optimizer, we optimize the performance of the convolutional network
and enhance its ability to accurately classify cough and non-cough samples.

3.3 Experimental Results

To evaluate and compare the performance of the system in cough detection, two
experiments are undertaken.

In the initial experiment, we assess the system’s performance using True
Positive (TP), False Negative (FN), False Positive (FP), and True Negative
(TN) values obtained from the confusion matrix presented in Table 1. From
this matrix, we derive several performance metrics including accuracy, precision,
sensitivity/recall, and F1-score. These metrics provide valuable insights into the
effectiveness and reliability of the model when applied to the test dataset. The
calculation of these metrics is as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(6)

precision =
TP

TP + FP
(7)

sensitivity/recall =
TP

TP + FN
(8)

F1-score = 2 ∗
(

precision × recall
precision + recall

)
(9)

Table 1. Confusion matrix for cough detection.

True Class Predicted Class

Cough Non-cough

Cough TP: 1379 FN: 18

Non-cough FP: 63 TN: 1246

Based on the classification results presented in Table 2, the cough detec-
tion model demonstrates excellent performance in distinguishing between cough
events and non-cough samples. The accuracy of the model is measured at 97.0%,
indicating a high level of overall correct classification. Additionally, the recall
(also known as sensitivity) is calculated at 98.7%, which signifies the model’s
ability to correctly identify the majority of actual cough events. The precision
of the model stands at 95.6%, indicating the proportion of correctly identified



296 X. Zhang et al.

cough events among the total number of predicted cough events. Moreover,
the F1-score, which combines both precision and recall, is calculated as 0.97.
The F1-score is a measure that balances the trade-off between precision and
recall, providing an overall assessment of the model’s performance. These results
demonstrate its potential as a reliable tool for large-scale and contactless cough
screenings.

Table 2. Comparison of SM, SVM, CNN, ResNet, and VGG for cough classification.

Model Accuracy (%) Sensitivity/Recall (%) Precision (%) F1-Score

MFCC+SM 85.7 87.4 83.9 0.86

MFCC+SVM 94.9 97.1 93.1 0.95

STFT+CNN 97.0 98.7 95.6 0.97

STFT+ResNet 94.2 95.6 92.9 0.94

STFT+VGG16 95.4 97.8 94.1 0.95

In the second experiment, we conduct a comprehensive comparative analysis
to assess the effectiveness of the cough detection model in comparison to machine
learning and other deep learning algorithms for cough classification. Considering
the widely-used Mel-Frequency Cepstral Coefficients (MFCC) as classical speech
recognition features, we construct a Support Vector Machine (SVM) model using
MFCC features to examine how a more complex machine learning classifier per-
forms in comparison to the CNN-based model. Additionally, we train a model
using the softmax (SM) function on the MFCC features to directly compare
with CNN’s classification layer. Furthermore, we build comparative deep learn-
ing models utilizing ResNet [20] and VGG16 [21] architectures.

The performance metrics of these comparative models are summarized in
Table 2, providing insights into their respective accuracy, recall, precision, and
F1-score. The results clearly demonstrate that the cough detection model out-
performs the SVM model employing MFCC features, exhibiting a remarkable
improvement of 2.1% in terms of accuracy.

The main reasons for the superiority of STFT+CNN over other combinations
lie in its feature representation, deep learning architecture, and data represen-
tation. STFT extraction captures rich time-frequency information, providing a
comprehensive description of cough sounds, whereas MFCC only considers Mel
frequency information, and SM and VGG16 may not effectively utilize time-
frequency information. CNN, designed for image processing, excels in handling
color spectrograms and can learn spatial, temporal, and frequency features, facil-
itating accurate cough sound classification and detection. The color spectrogram
leverages the three channels to enhance feature diversity, while other combina-
tions might not fully exploit audio data characteristics. This comparative exper-
iment highlights the superiority of the CNN-based approach over traditional
machine learning algorithms and other deep learning architectures in accurately
detecting and classifying cough sounds.
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3.4 Discussion

The remarkable accuracy achieved by the cough detection model, surpassing that
of the comparative models, clearly demonstrates the immense potential of the
system. However, the system’s capabilities extend beyond accurate detection. It
also offers the ability to count the number of coughs through the implementation
of the audio division algorithm, providing valuable information such as cough fre-
quency and intensity. This has various applications, including respiratory health
monitoring, identifying cough outbreaks, and tracking medical interventions. For
instance, in a healthcare setting, the system could be deployed in hospitals or
clinics to monitor the cough frequency and intensity of patients with respiratory
conditions, enabling healthcare professionals to gain insights into the severity
and progression of their conditions. One of the key advantages of the system
is its integration with a WeChat mini program, enabling the implementation of
cough detection on smartphones and facilitating large-scale, contactless cough
screenings.

By processing the audio recordings on an external server, the issue of high
battery consumption typically associated with continuous audio processing on
mobile devices is mitigated. This opens up a wide range of possibilities for deploy-
ing the system in various public settings, including hospital wards, subway sta-
tions, and classrooms, where monitoring the frequency of coughs is essential.
With the ability to accurately assess coughing incidents, the system can con-
tribute to proactive measures in maintaining public health and safety. Further-
more, the non-intrusive nature of the system, coupled with its ease of deploy-
ment, allows for efficient monitoring and analysis of coughing patterns in real
time. This information can aid in identifying potential outbreaks, tracking the
effectiveness of preventive measures, and providing early warnings in situations
where the spread of respiratory illnesses is a concern.

The performance of the cough detection model is subject to certain limita-
tions, which we acknowledge and aim to address in future improvements. Two
key factors affecting model performance are given below:

Feature Extraction Method: In real-world environments, noise poses a challenge
to system accuracy, especially in cases of confusion between cough and speech
sounds. Low-amplitude cough signals may be masked or overlooked by high-
amplitude background noise, affecting threshold selection and segmentation. To
overcome these limitations, future research can employ novel noise suppression
techniques to reduce the impact of background noise on threshold selection. Uti-
lizing multiple Otsu’s thresholds for multi-scale analysis can detect cough sig-
nals with different amplitudes, reducing the likelihood of missing low-amplitude
cough signals [22]. Data augmentation by adding various noise and low-amplitude
cough signals can enhance the model’s adaptability to different audio conditions
and improve cough signal detection accuracy. Moreover, considering the fusion
of other signals, such as video or sensor data, can provide comprehensive infor-
mation about cough events, aiding in more accurate cough signal detection and
enhancing the model’s robustness to various types of background noise.
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Furthermore, the distance between the smartphone and the user during cough
sound recording can affect the volume of the recorded signal. If users are at a con-
siderable distance from the smartphone while recording cough sounds, the cough
volume may be lower, resulting in the potential masking or reduced detectability
of cough signals, especially in environments with higher background noise. To
address this issue, multiple microphones or microphone arrays can be employed
to capture sound from different angles, and adaptive volume control or dynamic
gain adjustment techniques can be introduced in the system. These measures
ensure that cough sounds can be effectively captured under various distances and
environmental noise conditions, thereby enhancing the reliability and robustness
of cough signal detection.

Additionally, we will continue to refine the models by incorporating new
feature extraction methods and exploring advanced deep learning architectures.
By combining multiple feature extraction techniques, such as MFCCs and other
spectral or temporal features, we can capture a broader range of characteristics
related to cough events. This will help us improve the discrimination between
coughing and other sounds, further enhancing the precision and reliability of the
system.

Limited Types of Signals Collected: The current system solely relies on audio
signals for cough detection. However, in certain situations where cough wave-
forms densely overlap, distinguishing individual cough events becomes challeng-
ing, leading to inaccurate cough counting. To enhance system performance, it
is crucial to incorporate additional signals. Coughing is often accompanied by
specific movements and physical cues, which can be valuable in understanding
coughing events comprehensively. By incorporating additional signals, we can
gain a more comprehensive understanding of coughing events. The integration
of motion or video data can provide valuable insights into the physical manifesta-
tions of coughing, such as body movements, hand gestures, or facial expressions.
These cues can contribute to more accurate and reliable detection of cough
events, reducing both false negatives and false positives.

In future research, we will explore the fusion of audio and image sequence
data to develop a more robust and comprehensive cough detection system. By
leveraging the complementary nature of these modalities, we aim to achieve
even higher accuracy and reliability in detecting and analyzing cough events,
contributing to the advancement of large-scale and contactless cough screenings
in various fields.

4 Conclusion

Cough detection plays a vital role in epidemiological research, disease screening,
and epidemic control. In this paper, we present CASCO, an advanced cough
detection system that combines CNN with a WeChat mini program. The system
accurately detects cough events in real time and provides an automated count of
the number of coughs. To train the robust cough detection model, we construct
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a comprehensive dataset comprising self-recorded audio samples, labeled envi-
ronmental recordings from the ESC-50 dataset, and inpatient cough recordings
from respiratory disease patients.

The WeChat mini program integrated into smartphones serves as the primary
interface for the system, allowing users to record audio and view the cough detec-
tion results. The recorded audio is then processed on an external server using the
sophisticated cough detection model. An audio division algorithm is employed
to extract high-intensity segments from the audio, isolating individual cough
events. The extracted segments are subsequently converted into spectrograms
using STFT, capturing the distinctive time-frequency patterns of cough sounds.
These spectrograms are then fed into the CNN model, which categorizes them
as either cough or non-cough samples.

Extensive evaluations demonstrate the outstanding performance of the cough
detection model, achieving an accuracy, recall, precision, and F1-score of 97.0%,
98.7%, 95.6%, and 0.97, respectively. The integration of the system with the
WeChat mini program allows for large-scale and contactless cough screenings,
overcoming the limitations of traditional detection methods. Additionally, pro-
cessing audio on an external server reduces battery consumption while leveraging
the server’s computational power for faster and more accurate detection.

In future work, we will focus on improving the noise robustness of the model
and exploring new application scenarios for the CASCO cough detection system.
The goal is to develop a versatile and user-friendly solution that enhances public
health monitoring through reliable and scalable cough detection.
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Abstract. Point cloud analysis is a technique that performs analysis
and processing of point cloud data. In the medical field, point cloud
analysis has been widely used. However, the existing common neighbor
aggregation module in point cloud analysis networks can only aggregate
some of the neighbor features, which will lead to the omission of valid
information and affect the performance of point cloud analysis, which
may lead to serious consequences in the medical diagnosis process. In
this paper, we improve the ability of point cloud analysis networks to
extract complex biological structures by improving the neighbor aggre-
gation module in point cloud analysis. Specifically, we enable the module
to efficiently extract more adequate information by softening the max
pooling function commonly used in the neighbor aggregation module.
In particular, we improve 2.18% IoU on the IntrA dataset compared
to the previous state-of-the-art method, and we also surpass the previ-
ous state-of-the-art method on the S3DIS dataset. Code is available at
https://github.com/wfan1203/PointSWT.

Keywords: Point Cloud · Aneurysm · Neighbor Aggregation Function

1 Introduction

Compared to 2D medical images, 3D medical images can carry more information
to help medical professionals make the right judgment [1,10,36]. As a 3D rep-
resentation of data, point cloud can show the patient’s organs and lesions very
visually, so they are also widely used in tasks such as medical image processing
and medical diagnosis. The classification, segmentation, and detection of medical
point cloud data can effectively assist medical personnel in more accurately iden-
tifying lesion areas, measuring lesion size, and locating structures. Point cloud
technology can also be used for surgical planning, where medical personnel can
use pre-surgical data to model and simulate surgical procedures in order to avoid
accidents.

In recent years, point-based point cloud processing methods [14,22,25,26,
28,41] are attracting more and more researchers’ attention. In previous study
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Sheng et al. (Eds.): CGI 2023, LNCS 14498, pp. 301–312, 2024.
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[15], several typical and excellent models of point-based point cloud processing
methods have been analyzed by researchers. They found that the encoder part
of many models can be unified into a meta-architecture. This meta-architecture
consists of four main parts: neighbor update module, neighbor aggregation mod-
ule, point update module, and position embedding module. Although the design
and details of each model are different, they can be divided into these four main
parts. In many point-based point cloud processing methods, max pooling func-
tion [25], Vector Self-attention (VSA) [41], or other similar operators are usually
specified as the neighbor aggregation module. However, there are some draw-
backs to using max pooling function as a neighbor aggregation module. First,
max pooling function does not work well when dealing with sparse point cloud
data. Second, since max pooling function can only retain the maximum value of
the neighbor point information vector, it can lead to the loss of some important
information, which also affects the accuracy of the analysis and thus has a neg-
ative impact on medical diagnosis. So exploring a more effective and robust way
of neighbor aggregation is an important issue for research in the field of point
cloud.

According to our analysis, max pooling function can be regarded as an atten-
tion mechanism with sparsity, which applies all the attention to the information
with the highest intensity in the neighbor aggregation process while ignoring
other valid information, which is unacceptable in the field of medical image
processing. In order to capture the information in medical point cloud data
more accurately and efficiently, we propose a new neighbor aggregation func-
tion: SWT, which is instantiated as a softmax operator with temperature in the
point cloud network, where the temperature is a parameter that can be learned
during the training process. We can use this parameter to dynamically adjust
the information aggregation ratio of each point in the point cloud for different
neighbors, so as to obtain the optimal information aggregation method. Our
method has the advantage of low computational performance consumption com-
pared to VSA. Compared with max pooling function, it can significantly improve
the performance of point cloud analysis. Our method improves PointMetaBase
[15] to make it more suitable for processing point cloud data, and provides a
more high-performance solution for medical point cloud data processing. Our
contributions are summarized as follows:

• We analyze the advantages and disadvantages of the classical, computation-
ally efficient max pooling function and the high-performance VSA (Vector
Self-attention) module as a neighbor aggregation module in point cloud pro-
cessing networks. We argue that max pooling function should be considered
as a binary attention mechanism for neighbor point information, which can
lead to performance loss in medical point cloud data processing.

• According to our analysis, in order to overcome the shortcomings of max pool-
ing function as a neighbor aggregation module, we propose a new neighbor
aggregation function, called SWT, based on soft attention mechanism, which
is computationally friendly compared to VSA and performs better in medical
point cloud processing tasks compared to the max pooling function.
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2 Related Work

2.1 Point Cloud

The applications of deep learning [12] are widespread, including image classifica-
tion [5] and image quality assessment [7,16–20], among others. As deep learning
continues to advance, researchers have proposed some methods for point cloud
analysis by combining deep learning techniques with point cloud.

Point cloud is a discrete data structure consisting of a large number of 3D
coordinate points representing the geometry of an object or scene surface [4].
Point cloud alignment, classification, segmentation [24] and reconstruction are
all common tasks in point cloud processing. The point cloud classification and
segmentation task also has some applications in the field of medical image pro-
cessing.

Unlike traditional two-dimensional data, point cloud data are located in
higher dimensions and are very irregular, which makes handling such data very
challenging and requires special methods. So far, the mainstream approaches for
point cloud processing can be categorized into three types: projection-based
[11,30,35], voxel-based [23,47] and point-based [14,22,25,26,28,41] methods.
The point-based method is a common approach for point cloud processing with
better performance at present. This method has a good ability to deal with the
irregularity of point cloud data, and its basic idea is to analyze the interaction of
each point in point cloud data with its neighboring points, and analyze the prop-
erties and categories of the point cloud by processing the features and attributes
of these neighboring points.

The neighbor aggregation module is an important part of the model used
in this series of methods, which determines how each point in the point cloud
obtains information from its neighbors. Pointnet [25] uses max pooling function
to aggregate the information of neighboring points. Point transformer [41] intro-
duces a self-attention mechanism, and proposes Vector Self-attention. Pospool
[21] has analyzed the neighbor aggregation module in point cloud analysis.

Designing effective neural network architectures is crucial for obtaining high-
performance neural networks. To automate the process, some researchers have
proposed Neural Architecture Search (NAS) techniques for designing neural net-
work architectures [42–44,46]. Although NAS has been combined with point
clouds [31], such methods require significant computational resources and, in
practice, manual design of the network architecture is still necessary.

2.2 3D Medical Image Processing

Deep learning is widely used in the field of medical image processing, which
provides doctors with a traversal in medical diagnosis [37,40]. 3D medical imag-
ing is a rapidly growing field that provides doctors and researchers with more
accurate and comprehensive information compared to ordinary 2D medical imag-
ing medical image data. The most common imaging technologies are Computed
Tomography (CT), Magnetic Resonance Imaging (MRI) and Positron Emission
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Tomography, (PET), which produce high-quality 3D images of the human body.
In the same way as 2D image processing, 3D medical image data can be classified,
segmented, and detected.

The 3D U-NET [3] series is an excellent method for 3D medical image seg-
mentation. 3D U-Net is the pioneer of this series and uses 3D convolutional
neural network to compose the model. DUNet [9] uses deformable convolution
to replace each 3 × 3 convolutional layer in the original UNet, which can adapt
to different shapes of input. to improve performance.

The nnFormer [45] combines transformer [34] and nn-UNet [8], using different
attention mechanisms in the shallow and deep layers of the model, and also
achieves good performance in 3D medical image processing tasks.

It is also possible to convert 3D medical image data into point cloud data for
processing, which can be processed using traditional point cloud analysis net-
works, and the attention module included in 3DMedPT [39] can better capture
global information.

3 Method

3.1 Preliminary

Some researchers [15] have analyzed the structure of different point-based point
cloud analysis models in detail and found that the core modules of different
point cloud analysis networks can be defined as a unified building block, and the
building block can be defined as a combination of four sub-modules.

• Neighbor update module: This sub-module contains the operations to obtain
and update the neighboring points of each point in the point cloud. The
common group method is usually K-Nearest query or ball query, and the
MLP is often used to update the features of each point in order to make the
neighbor update function with permutation equivariance.

• Neighbor aggregation module: This sub-module aggregates the features of
each group of points grouped and updated in the Neighbor update sub-
module, and generally uses the max pooling operator to satisfy the permuta-
tion invariance.

• Point update module: This sub-module, usually in the form of MLP, is usually
used for further extraction of the assembled features.

• Position embedding module: Each building block in the point cloud analysis
needs to obtain the position information of each point in the point cloud to
help the point cloud model to better analyze the point cloud data.

Each sub-module can be represented using a formula. The forward pass of
the whole building block can be expressed as:

fN (i) = φn ◦ φe(fi, pi) (1)

f
(1)
i = φa ◦ φe(fi, pi,fN (i),pN (i)) (2)
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f
(2)
i = φp(f (1)

i , pi) (3)

where φn, φa, φp, φe denote the neighbor update function, neighbor aggregation
function, point update function and position embedding function in the building
block. fi and pi represent the feature and the coordinate of point i respectively.
The neighbors of point i are denoted by N (i).

The above four sub-modules can be instantiated as different components com-
bined into different point cloud analysis models, of which many existing classical
as well as recent models such as PointNet++ [26], PointCNN [14], PointNeXt
[28], etc.

Fig. 1. The process of neighbor aggregation: (b) Using max pooling function as the
neighbor aggregation function, it will only select the largest value to participate in
the aggregation process, and smaller values will be directly ignored. (c) Using SWT in
the neighbor aggregation phase, it aggregates the information of all neighbor nodes to
reduce the information loss.

f
(1)
i = Max(fN (i)) (4)

Figure 1 visualizes the neighbor point aggregation process using the max
pooling function and using SWT as the neighbor aggregation function. In fact,
we can intuitively find that when max pooling function is used as the neighbor
aggregation function in point cloud analysis, it only aggregates to the maximum
value of each dimension of all points and ignores all other features, and these
ignored features often contain a lot of important information as well. In medical
diagnosis, such a loss is not tolerated.

Recently, there are many approaches to introduce attentional mechanisms
into the neighbor aggregation process of point cloud analysis to selectively obtain
the information of neighbor points. But in fact, max pooling function is also an
atypical, binary and sparse attention mechanism from the attention point of
view. So is there a way of neighbor aggregation that is adaptive in obtaining
information about neighbor points and does not consume as much computa-
tional resources as ordinary attention? We find that, from the same perspective,
the softmax operator is also a special attention mechanism that fits the require-
ments as a function of the neighbor aggregation module. At the same time,
we can define a learnable parameter to be added to the softmax operator to
adaptively select the information aggregation ratio and refer to this learnable
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parameter as temperature. The new softmax with temperature function we use
can be considered as a max pooling function with soft, learnable properties,
which improves performance at the cost of a small increase in computational
effort. It can be expressed using the following equation:

f
(1)
i = SoftmaxT (fN (i)) (5)

In this subsection we present the building block that we ended up using, which
is a simple modification of the neighbor aggregation module of PointMetaBase
[15], which uses max pooling function as the neighbor aggregation function. The
building block is also a combination of four sub-modules, specifically, the building
block of PointSWT uses explicit position embedding. The points in the point
cloud are first grouped by ball query, then the grouped features are updated using
MLP to reduce the model computation, then the updated neighboring features
are aggregated using our proposed SWT module, and finally the InvResMLP is
passed through two layers of MLP.

The entire forward pass of our PointSWT module can be expressed using the
following equation:

The neighbor update is described as:

f ′
i = MLP1(fi) (6)

fN (i),pN (i) = Group(fi, pi). (7)

The neighbor Aggregation module is an SWT that uses our proposed:

f
(1)
i = SoftmaxT (fN (i)) (8)

Finally, a two-layer MLP is used for Point update:

f
(2)
i = MLPinv

(
f
(1)
i

)
+ fi (9)

Fig. 2. The overall architecture of our proposed model.
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3.2 PointSWT

The overall architecture of our model is shown in Fig. 2. The model can be
divided into three components: PointSWT block, Set Abstraction block and
Feature Propagation block, where PointSWT block is the main module, Set
Abstraction block can be regarded as a kind of PointSWT-like module that
implements the downsampling function, and the Feature Propagation block is
responsible for decoding the features into the final result.

We construct our PointSWT family:

PointSWT-S : C = 32, B = (0, 0)

PointSWT-L : C = 32, B = (2, 4, 2, 2)

PointSWT-XL : C = 64, B = (3, 6, 3, 3)

The notations used in our proposed model are as follows: C represents the
channel size of the stem MLP, while B denotes the number of PointSWT blocks
in each stage. It is noteworthy that when B = 0, only one Set Abstraction block
is employed in each stage without PointSWT blocks.

4 Experiments

4.1 IntrA

Table 1. Segmentation results on IntrA dataset.

Method PointConv PointNet++ 3DMedPT PointMetaBase PointSWT-S

IoU (%) 79.53 76.21 80.13 84.37 86.55

IntrA [38] dataset is a 3D point cloud dataset containing 116 divisible vascular
segment samples, each of which is divided into aneurysm segment and normal
vessel segment, which can be used as the standard dataset for binary segmen-
tation task to verify the performance of our proposed point cloud model. We
used four-fifths of the data as the training set, the rest as the test set, and the
IoU as the evaluation metric. In the experiment, we use cross entropy as the loss
function and Adam optimizer to optimize the model. The initial learning rate is
set to 0.001, the number of input points is set to 2048, and the batch size of each
iteration is set to 16. A total of 400 epochs were trained on the PointSWT-S
model on an NVIDIA Tesla V100 GPU and a 12-core Intel Xeon @ 2.40GHz
CPU.

As shown in the Table 1, compared to other point cloud models, our
PointSWT-S achieves higher performance in the point cloud segmentation task
on the IntrA dataset, and the increase in performance is mainly attributed to
our superior neighbor aggregation function compared to other models.
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We set the initial temperature parameter in the SWT module to 0 and col-
lected the changes in the mean values of all temperature parameters in the
PointSWT-S model throughout the training process. As shown in the Fig. 3a, it
can be observed that the mean values of the temperature parameters show an
increasing trend as the model is optimized. The characteristic of our proposed
SWT module is that the closer its temperature parameter is to 0, the closer the
SWT module acts with the max pooling function, and when the temperature
parameter is equal to 0, the SWT module becomes a pure max pooling function.
The rise of the temperature parameter with the training process indicates that
during the training process of the point cloud analysis network, the model will
be biased to utilize more comprehensive information, i.e., it is necessary to use
SWT as the function of the neighbor aggregation module.

Fig. 3. (a) The change in the mean value of the temperature parameters included in
the model throughout the training process. (b) The change of temperature parameters
in all SWT modules in the model during training, where xth param T denotes the
temperature parameter in the xth temperature SWT module from shallow to deep in
the model.

In addition to this, as shown in the Fig. 3b, we also collected the changes
of each temperature parameter included in the model during the training pro-
cess separately in order to analyze the effectiveness of the SWT module from
a spatial perspective. We used PointSWT-S which contains a total of four tem-
perature parameters distributed in four Set Abstraction modules. According to
the data we collected, there are regular differences in the values of the temper-
ature parameters depending on the depth. Specifically, as the depth increases,
the temperature parameter of the model becomes larger, where the temperature
parameter of the shallowest layer tends to be close to 0 even at the end of train-
ing, indicating that the shallow layers of the model requires less information,
while the temperature parameter of the deeper layer has steadily increased at
the beginning of training, and its dependence on the SWT module is stronger.
The functions used by the neighbor aggregation module can be selected more
rationally according to the characteristics of the model at different layer depths
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in order to weigh the cost and performance, which will be the focus of our next
work.

4.2 S3DIS

S3DIS [2] is a widely used dataset for 3D semantic segmentation, comprising a
total of 6 large-scale indoor areas with a total of 271 rooms, which are classified
into 13 semantic categories.

In our experiments, we use mIoU and overall accuracy (OA) as evaluation
metrics, use cross-entropy as loss function, optimize the model using Adamw
optimizer, set the initial learning rate to 0.01 and the batch size of each iteration
to 8. As shown in the Table 2, our model outperforms existing SOTA methods in
terms of performance due to our use of a better neighbor aggregation function.
We also collected the temperature parameters of the model and found similar
phenomena as in the experiments conducted on the IntrA dataset.

Table 2. Semantic segmentation results on the S3DIS Area 5 dataset.

Method
S3DIS Area-5 Params. FLOPs Throughput
mIoU
(%)

OA
(%)

M G (ins./sec.)

PointNet++ [26] 53.5 83.0 1.0 7.2 237
PointCNN [14] 57.3 85.9 0.6 - -
DeepGCN [13] 52.5 - 3.6 - -
KPConv [33] 67.1 - 15.0 - -
RandLA-Net [6] - - 1.3 5.8 -
BAAF-Net [29] 65.4 88.9 5.0 - -
Point Transformer [41] 70.4 90.8 7.8 5.6 -
CBL [32] 69.4 90.6 18.6 - -
ASSANet [27] 65.8 88.9 2.4 2.5 300
ASSANet-L [27] 68.0 89.7 115.6 36.2 136
PointNeXt-L [28] 69.0 ± 0.5 90.0 ± 0.1 7.1 15.2 109
PointMetaBase-L[15] 69.5 ± 0.3 90.5 ± 0.1 2.7 2.0 187
PointSWT-L 70.1 ± 0.2 90.9 ± 0.1 2.7 ≥2.0 136

5 Conclusion

In this paper, we first present a brief analysis of the point cloud analysis model,
focusing on the advantages and disadvantages of existing neighbor aggregation
functions. In order to solve the disadvantage of max pooling function as a neigh-
bor aggregation function, which is difficult to aggregate all the valid informa-
tion, we propose a new neighbor aggregation function: SWT, which can take
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into account all the neighbor point information and thus improve the model per-
formance. Our experiments demonstrate the effectiveness of this improvement,
which provides a new idea for future point cloud analysis studies in the medical
field.
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Abstract. Glaucoma is one of the leading causes of irreversible blind-
ness worldwide. Numerous studies have shown that a larger vertical Cup-
to-Disc Ratio (CDR) is closely associated with the glaucoma diagnosis.
CDR is highly useful in the clinical practice and evaluation of glaucoma.
However, the determination of CDR varies among clinicians and is highly
dependent on the doctor’s subjectivity. Existing methods only segment
the cup and disc features without considering the nearby vascular infor-
mation. Based on guidance and criteria from experienced clinicians in
diagnosing glaucoma, we incorporate segmented essential vascular infor-
mation to constrain CDR segmentation. We add key vessel information
to the network as the prior knowledge to better guide the model to
distinguish the boundary of the optic cup. The effectiveness of incor-
porating essential vascular information has been demonstrated through
experiments conducted on the public dataset REFUGE as well as the
home-made dataset. The home-made dataset consists of high-quality
CDR images and remade CDR images, corresponding to the diagnosis
scenario and the screening scenario in which the patient needs to upload
the fundus image by taking photos. The model is deployed on the Wechat
mini-program for practical glaucoma diagnostic and screening applica-
tions.

Keywords: Cup-disk ratio segmentation · Retinal vascular ·
Glaucoma diagnostic and screening

1 Introduction

Glaucoma is currently the leading cause of irreversible blindness worldwide [2],
and it is one of the major causes of irreversible vision loss in the world. It
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Fig. 1. Top image illustrates the difference in visual fields between non-glaucoma and
glaucoma patients [1]. Glaucoma patients often experience blurry vision and visual
field loss. The images below are from the REFUGE dataset, with the left showing a
non-glaucomatous retinal image and the right showing a glaucomatous retinal image.

has a high prevalence and blindness rate. According to estimates by the World
Health Organization, the number of glaucoma patients worldwide exceeded 88
million in 2020 [3]. The progression of glaucoma is initially asymptomatic and
gradually leads to vision loss, which can only be observed in the late stage.
Once diagnosed, it results in permanent visual impairment. Early detection and
timely treatment of glaucoma can further control disease progression, making it
an important means of preventing glaucoma [4,5]. It is usually caused by elevated
intraocular pressure (IOP), which leads to mechanical strain and torsion of the
optic nerve, as well as loss of retinal nerve fibers. Glaucoma alters the morphology
of the optic nerve head (ONH), typically manifesting as a larger CDR, pale optic
disc, disc hemorrhage, etc. Digital fundus imaging is an important medical tool
that assists doctors in diagnosing and analyzing glaucoma [6,7]. Fundus images
include various features of the fundus area, such as the optic disc, cup, arterioles,
and venules. As shown in Fig. 1, the visual field of a normal individual and that
observed by glaucoma patients differ [8].

In digital fundus images, the optic disc (OD) appears as a pale yellow region,
and within the OD, there is a relatively bright elliptical or circular area called
the optic cup (OC). The CDR, which represents the ratio of the size of the
central depression to the size of the OD, is an important auxiliary parameter for
glaucoma diagnosis. Clinicians identify the specific boundaries of the OD and
OC and calculate the corresponding ratio to assist in determining whether it
is glaucoma. Although both the OC and disc exist in normal individuals, the
area or diameter ratio of the OD and OC in glaucoma patients’ fundus images



Cup-Disk Ratio Segmentation Joint 315

is higher than that of normal individuals. Due to elevated IOP, the size of the
OC is larger than that of normal individuals. Therefore, when the vertical CDR
ratio exceeds 0.65 [9], the patient is classified as having glaucoma according to
clinical standards.

Fig. 2. Fundus images of non-glaucoma and glaucoma. (a) depicts a glaucomatous
retinal image where VC, primarily concentrated at the OD and OC boundaries, is
caused by glaucoma. In non-glaucoma fundus images as (b), the blood vessels at the
boundary are not curved.

Since doctors need to manually segment the OD and OC regions in fun-
dus images and estimate the approximate CDR value for classification, this
glaucoma diagnosis method requires a considerable amount of manual effort,
is time-consuming, and inefficient. Moreover, it depends to some extent on the
expertise of ophthalmologists, and the information extracted manually from
fundus images is limited. Therefore, computer-assisted medical diagnosis is of
paramount importance.

In recent years, there have been numerous efforts to utilize computer-aided
medical diagnosis, broadly categorized into traditional methods and deep learn-
ing methods. Traditional methods include approaches based on color, contrast
thresholds, and morphological operations on the OD. These traditional methods
are sensitive to image quality and pathological variations, resulting in low accu-
racy. Studies have employed edge detection methods to segment the OD and
OC, assuming clear boundaries between them. Nevertheless, in certain cases,
the boundaries may be indistinct, leading to inaccurate segmentation. Machine
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learning algorithms have also been applied to the OD and OC segmentation,
relying on manual feature extraction and lacking the ability to automatically
learn complex features.

Significant progress has been made in OD and OC segmentation using deep
learning methods [10–12]. These approaches employ convolutional neural net-
works (CNNs) [13,14] to learn complex features from input images. Studies use
CNNs with encoder-decoder structures, such as U-Net [15] and Mask R-CNN
[16], for OD and OC segmentation. These methods have achieved high accuracy,
but they still face challenges in accurately segmenting the boundaries between
the OD and OC. This is because blood vessels near the fundus can influence the
OD and OC segmentation, causing the models to struggle with precise boundary
delineation.

Existing methods for CDR segmentation do not consider the information
from blood vessels in the segmentation of the OD and OC. Based on the clinical
experience of expert ophthalmologists, in the segmentation of CDR for glau-
coma, doctors pay attention to the curvature of blood vessels within the OC to
determine the boundary of the OC. As shown in the Fig. 2, there is a curvature
in the blood vessels of glaucoma, and doctors use the location of vessel curvature
to assist in determining the boundary of the OC.

Motivated by this observation, we incorporate the information of retinal
blood vessels into the network for learning. By learning the prior information
about blood vessels through the network, we aim to assist in the segmentation of
the OD and OC. We introduce the concept of Vascular Curvature (VC), as VC
can affect the boundaries of the OD and OC. If the model can utilize this vessel
information to assist in the OD and OC segmentation, similar to how clinicians
do, the performance of CDR segmentation can be improved. Therefore, we define
how blood vessels in retinal images impact the OD and OC segmentation, as well
as the VC degree. We incorporate the VC information into the model to enable
it to learn the vessel information that affects the boundaries of the disc, thereby
assisting in the OD and OC segmentation.

2 Related Work

Lalonde et al. initially proposed a template matching-based approach to obtain
the boundary of the OD [17]. Since the shape of the OD and OC [18] is generally
elliptical or circular, the method segments the OD and OC by extracting the
edges of the retinal image and matching them with a template [19–21]. Due to
the heavy reliance on template matching, the method suffers from poor perfor-
mance when the shape of the boundary is affected by the surrounding blood
vessels. Mendels et al. employed a contour model to detect the boundary of the
OD based on image gradients [22–24]. To suppress the influence of blood vessels
on the boundary, an active contour model based on Gradient Vector Flow (GVF)
was used for disc boundary detection, followed by minimizing the high gradients
caused by vessel locations to reduce the impact [25,26]. Lowell et al. employed
circular transform techniques to obtain the boundary of the OD [27,28]. The
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segmentation of the OC, which is located within the disc and has low contrast,
poses a greater challenge. Li et al. proposed a variational level set-based algo-
rithm for OD segmentation, utilizing ellipse fitting operations for smoothing to
obtain the segmentation result of the disc [29]. Li et al. represented features for
OC segmentation based on visual characteristics such as color histograms [30].
Relying on manually extracted features, the method heavily depends on image
quality and the position of pathological regions, resulting in poor robustness.
Wong et al. first discovered the usefulness of vessel tortuosity for OC segmenta-
tion [20], but did not consider the influence of natural vessel curvature around
the OC. There are also some methods [27,31,32] combining vascular informa-
tion that do not solve the OD and OC segmentation problem. Sevastopolsky et
al. proposed a modified U-Net for OD and OC segmentation [33], but did not
perform joint OD and OC segmentation, instead separating them in a sequential
manner. Zilly et al. proposed an integrated learning method based on CNN for
OC and OD extraction [34].

3 Methods

3.1 Background

Our goal is to address the CDR measurement in real glaucoma diagnosis and
screening scenarios. Directly applying models trained on public datasets to real-
world applications results in poorer performance due to the inherent blurriness
of images in screening scenarios compared to the original fundus images. To
better align with real-world application scenarios, we not only require the orig-
inal fundus images as data for glaucoma diagnosis, but also incorporate user-
uploaded fundus images taken manually during the screening process into the
training set. We collect 400 images captured by users from different angles using
mobile phones during the glaucoma screening phase, which are included as part
of the training set. Additionally, we performed joint training using the REFUGE
dataset, which represents the diagnostic scenario.

3.2 Data Preprocessing

For semantic segmentation using deep learning methods, data plays a crucial role.
Previous studies have utilized retinal datasets such as REFUGE [21], ORIGA
[35], Drishti [36], and others. These datasets consist of images captured using
professional equipment and annotated by experts, ensuring high data quality
and relieving the pressure on neural networks to learn from them. To address
the issues of model overfitting and poor generalization caused by limited data,
researchers employ various data augmentation techniques to enhance model per-
formance. In real-world scenarios, acquiring high-quality datasets is challenging,
making data preprocessing even more important.
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Fig. 3. Overall framework for CDR segmentation. In this diagram, we describe the
entire process of the model. We first pre-train the model using vascular data, then
transfer learning on OC and OD data, and expand the classification head for new
tasks.

The ultimate goal is to apply this model to real clinical diagnostics and
screenings. Existing methods perform well on publicly available datasets such as
REFUGE, but they often struggle with generalization in real-world diagnostic
and screening scenarios. Various factors and conditions can impact the perfor-
mance of existing algorithms in practical applications. To enhance the model’s
generalization, we include images collected during actual diagnostic processes
as part of the dataset and perform joint training with the REFUGE dataset.
This approach better aligns with the requirements and scenarios encountered in
real-world applications.

In this work, we employ object detection algorithms to locate the OD region
in retinal images and crop fixed-size regions to reduce interference from complex
backgrounds and noise. Since we emphasize the learning of vascular information
and useful VC information is primarily present within the OD region, cropping
the region of interest may aid in learning vessel information and the OD and OC
segmentation. Additionally, some retinal datasets provide only annotations for
the OD and OC without corresponding vessel information. To strengthen the
influence of vessels, two approaches can be adopted: explicit intervention and
implicit intervention.
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In this task, explicit intervention refers to directly utilizing the position infor-
mation of VC as the criterion for OC segmentation. For example, we employ
feature point detection or curvature calculation to obtain VC information and
use it as the boundary for the OC. Such an approach overlooks the impact of
other important information in retinal images on OC segmentation. In complex
vessel scenarios, this judgment method poses a significant challenge to the model
robustness. The impressive performance demonstrated by neural networks leads
us to believe that they are capable of learning hierarchical feature information
from retinal images and considering it comprehensively. Therefore, we adopt an
implicit intervention approach, providing label information for vessels that influ-
ence the boundary of the OC in retinal images, thereby enhancing the network’s
ability to discriminate vessels and making VC information one of the key factors
improving the final segmentation results.

3.3 Blood Vessel Feature Extraction and Information Fusion

After implicitly introducing VC information, we divide the entire training process
into two parts. In the first step, the network learns vessel information from retinal
images. Convolutional neural network based methods have achieved remarkable
results for vessel segmentation. The label information provides for retinal images
contains only a portion of vessels that may affect the OC boundary, which may
lead to fragmented vessel states and higher requirements for positional infor-
mation. While CNN demonstrates powerful feature extraction capabilities and
can handle most vessel segmentation tasks, it falls short compared to Trans-
formers in capturing contextual information and extracting global information.
To enable the network to better learn crucial vessel information, we adopt a
network that combines CNN and Transformers, as shown in Fig. 3. The orig-
inal image undergoes CNN to obtain feature distribution data, which is then
combined with positional information and fed into the Transformer. This com-
bination leverages the strengths of both CNN and Transformers to enhance the
acquisition of specific vessel information. Notably, the incorporation of vascu-
lar information fundamentally serves as prior knowledge for model learning. The
selection of different network architectures leads to variations in the final results,
which can be categorized as horizontal comparisons. The vertical enhancement
brings by vascular information proves effective for CNNs as well, providing a
novel perspective primarily aims at improving the OD and OC segmentation
performance.

After fully learning vessel information from retinal images, a key challenge is
how to incorporate it into the OD and OC segmentation task. As mentioned ear-
lier, the implicit intervention approach embeds vessel information in the model,
allowing us to utilize this knowledge as prior information for guiding the model
in learning OD and OC segmentation. Previous work has demonstrated the effec-
tiveness of transfer learning using pre-trained models. The challenges we face are
similar yet distinct. Transfer learning primarily involves pre-training on large-
scale datasets to obtain powerful feature extraction models and achieve excel-
lent performance on downstream tasks. In contrast, the data we train on the
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Fig. 4. Typical examples in GSD dataset. (a) represents the original retinal image, (b)
displays the retinal image with added noise, (c) shows screen-captured images, and (d)
exhibits retinal images uploaded by portable devices such as mobile phones or tablets.

pre-training and fine-tuning stages lack such features, and thus, factors improv-
ing the final performance mainly stem from the prior knowledge provided by
vessels. We use the vessel information learning model as a pre-trained model
and fine-tune it on the new OD and OC segmentation task. Given the signifi-
cant differences between the two tasks, to preserve the guiding function of vessel
information, we need to consider retaining information from the old task while
adjusting to the new task. We transfer the feature extraction component from
the existing vascular model to a new model, while incorporating a novel clas-
sification head for the new model. Moreover, we adopt a lower learning rate to
ensure a smooth transition from old knowledge to new knowledge.

4 Experiment

4.1 Dataset

GSD: GSD dataset is collected for Glaucoma Screening and Diagnosis. We col-
lect a dataset consisting of images specifically acquired for glaucoma screening
and diagnosis. The real screening scenario comprises 400 images captured during
actual clinical procedures. Images taken toward a screen may exhibit variations
in clarity and angles due to differences in shooting angles and imaging devices.
The dataset collects under various conditions aligns with real-world scenarios
encountered in clinical practice. In addition to the data presented above, we have
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Fig. 5. Comparison of model performance. Input consists of fundus photos from four
different scenes; GT refers to the pre-annotated ground truth; The rest is the result of
Segtran [35] prediction visualization under different dataset and different conditions.
R represents the model trained on REFUGE dataset, J represents the model jointly
trained on REFUGE and GSD dataset, and V represents the model obtained by adding
key blood vessel information and jointly trained.

collected some additional processed data. Among them, 400 images are captured
from the screen with reference to the REFUGE dataset, and 200 images are arti-
ficially augmented with noise on the REFUGE dataset, including Gaussian noise,
contrast adjustment, brightness conversion and other operations. Some typical
examples of the GSD dataset are shown in Fig. 4.

Table 1. Experimental results. We conduct joint training on the REFUGE dataset
and the GSD dataset separately using the U-Net [15], TransU-Net [37], Segtran [38]
architecture. This process yields models that are subsequently utilized to make predic-
tions on both the REFUGE dataset and the GSD dataset. V C represents only critical
vascular information.

REFUGE GSD

Dice (OD) Dice (OC) Average dice Dice (OD) Dice (OC) Average dice

U-Net [15] 0.873 0.805 0.839 0.490 0.715 0.603

U-Net with VC 0.927 0.819 0.873 0.872 0.813 0.843

TransU-Net [37] 0.958 0.900 0.929 0.899 0.801 0.850

TransU-Net with VC 0.956 0.901 0.929 0.913 0.819 0.859

Segtran [38] 0.870 0.835 0.853 0.917 0.849 0.883

Segtran with VC 0.895 0.841 0.868 0.942 0.845 0.894
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Table 2. Ablation study results. To verify the validity of blood vessel information on
the model, we add all blood vessel information and only key blood vessel information
into the model for training, and make predictions on REFUGE and GSD datasets. V
represents all vascular information, and V C represents only critical vascular informa-
tion. The result is the average Dice of all data.

Methods Dice (OD) Dice (OC) Average dice

U-Net [15] 0.682 0.760 0.721

U-Net with all V 0.490 0.715 0.603

U-Net with VC 0.900 0.816 0.858

Segtran [38] 0.848 0.834 0.841

Segtran with all V 0.820 0.811 0.816

Segtran with VC 0.936 0.846 0.891

REFUGE: It consists of a dataset of 400 images for OD and OC segmentation,
including 40 images of glaucomatous fundus and 360 images of non-glaucomatous
fundus with different sizes and resolutions.

4.2 Experimental Setting

To assess the impact of data quantity in different scenarios on the model, we
add 200 noisy images created by introducing noise to the original images in the
dataset. Using an initial model as the pre-training model, we select 75% of the
retinal fundus photographs from each respective scenario as the training set and
performed joint training on retinal fundus photographs from different scenarios,
resulting in the current model. To enhance user experience, we incorporate func-
tionalities for retinal photograph localization and automatic classification of left
and right eyes. The experimental results are shown in Fig. 5.

To evaluate the performance of the model, we use the remaining 25% of the
dataset as the test set, including 100 original images from REFUGE dataset,
50 images with added noise, 100 images captured from screens, and 100 actual
diagnostic images. We conduct separate tests on the initial model trained on
REFUGE dataset and the existing model trained on retinal fundus photographs
from multiple scenarios. The test results are presented in Table 1, and a subset
of actual segmentation results is shown in Fig. 5. The dice coefficient serves as
an evaluation metric for image segmentation.

4.3 Ablation Study

We evaluate the usefulness of the newly introduced VC information for CDR
segmentation, we utilize the PyTorch framework with identical hyperparameters.
We employ SegTran as the baseline model and compared its performance with
the addition of key vessel information. Furthermore, to demonstrate the efficacy
of glaucoma-induced VC, we incorporate all vessel information learned by the
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model. The ablation results, depicted in Table 2, indicate that only the glaucoma-
induced VC information is beneficial for CDR segmentation.

Fig. 6. Interface of our designed WeChat mini-program. Users can choose to upload
images from their photo album or capture images using portable devices such as mobile
phones or tablets. The lower section displays the segmentation of the OD and OC, as
well as the calculation of the CDR after evaluation by the intelligent model. In response
to practical requirements from patients, the user interface of our system is designed
in Chinese. For the sake of convenience in presentation, we have chosen to display the
interface in English.

4.4 Intelligent Diagnostic System

We develop a WeChat mini-program to deploy the model, allowing users to
upload their original retinal fundus images or directly capture images of their
own cases using the built-in camera. The system diagram is shown in Fig. 6.
Upon completion of the upload, the intelligent model deployed in the backend
automatically performs CDR segmentation and visualizes the results on the user
interface, along with the automatic calculation of the CDR. To enhance user
experience, we introduce functionalities for retinal photograph localization and
automatic classification of left and right eyes. Retinal photograph localization
is implemented to accommodate various scenarios. Users may upload retinal
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fundus images captured under different conditions, which may not be the original
images. In such cases, we localize the retinal photographs to the most suitable
central regions within the images. Since the positions of the left and right retinal
fundus images differ, we facilitate identification by automatically classifying the
user-uploaded retinal fundus images and visualizing them as left or right eye
images. The user interface of the system is illustrated in Fig. 6. The system is
used for the screening and diagnosis of glaucoma.

5 Conclusion

In this paper, we incorporate glaucoma-affected VC information into CDR seg-
mentation based on recommendations from clinically experienced doctors. We
create the GSD dataset and achieve promising results on both the REFUGE
dataset and the GSD dataset. This demonstrates that the curved vessel infor-
mation surrounding the OD and OC can assist in the segmentation process. By
focusing solely on key vessel information, the model reduces the influence of
other retinal vessels. Additionally, we design and deploy an intelligent glaucoma
diagnosis system. In the future, we will continue to collaborate with hospitals
and patients to collect diverse datasets, encompassing various scenarios and more
data, to enhance the model’s generalization and robustness. We will also optimize
and improve the intelligent glaucoma diagnosis system based on user feedback.
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Abstract. At present, face 3D reconstruction has broad application
prospects in various fields, but the research on it is still in the devel-
opment stage. In this paper, we hope to achieve better face 3D recon-
struction quality by combining a multi-view training framework with
face parametric model FLAME, and propose a multi-view training and
testing model MFNet (Multi-view FLAME Network). We build a self-
supervised training framework and implement constraints such as multi-
view optical flow loss function and face landmark loss, and finally obtain a
complete MFNet. We propose innovative implementations of multi-view
optical flow loss and the covisible mask. We test our model on AFLW
and facescape datasets and also take pictures of our faces to reconstruct
3D faces while simulating actual scenarios as much as possible, which
achieves good results. Our work mainly addresses the problem of com-
bining parametric models of faces with multi-view face 3D reconstruction
and explores the implementation of a FLAME-based multi-view training
and testing framework for contributing to the field of face 3D reconstruc-
tion.

Keywords: 3D face reconstruction · Multi-view · Parametric model

1 Introduction

Face 3D reconstruction [13] mainly focuses on the reconstruction of human facial
regions, and broadly speaking, also includes hair, ear, neck, and other regions.
The human face is a special 3D object that has not only more complex shape
and texture features, but also strong prior constraints. This poses a great chal-
lenge to face 3D reconstruction on one hand, and on the other hand, it also
provides feasible technical approaches to reconstruct the face 3D structure from
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2D information, and the face parametric model is one of them. The face para-
metric model is a statistical model based on a large number of faces, and its
core idea is that faces can be matched one-to-one in the 3D feature space and
can be obtained by weighted linear summation of orthogonal bases for a large
number of other faces. The most widely used model is 3DMM [1,2], but it has
two core problems: (1) 3DMM is in a low-dimensional space and thus the face
detail characterization is weak; (2) 3DMM only reconstruct the front face region
without neck or hindbrain. Therefore, we choose FLAME [11], which has a bet-
ter characterization of details and more complete reconstruction. FLAME has
three parameters: shape, pose, and expression, which can more accurately clas-
sify faces into more dimensions, and the face reconstructed by FLAME includes
the whole head. However, there is not much research work on FLAME so far, and
there is a gap in the field of multi-view training using FLAME. Our work fills
this gap and makes an exploratory contribution to FLAME-based multi-view
training.

In the past decade, deep learning technologies have become a dominant trend
in face 3D reconstruction. Some works [7,15] use neural networks to regress
end-to-end to compute the inputs needed for face parameterization models, but
are limited to single-view, while our proposed MFNet can utilize features from
multiple views and fuse them to obtain more complete face information. In this
paper, we use FLAME as a powerful tool to reconstruct fine-grained 3D face
models with low cost and only 2D RGB images.

Our main contributions are listed as follows:

– We innovatively combine multi-view training with FLAME, propose a multi-
view self-supervised framework, and implement a complete multi-view train-
ing and testing process. Our proposed model MFNet achieves good results on
both test datasets and actual captured images.

– We propose a multi-view optical flow loss for our multi-view training frame-
work and propose a novel implementation of the technical details such as
covisible mask.

2 Related Work

2.1 Parametric Model

In 1999, Blanz and Vetter et al. [1,2] proposed the 3D Morphable Model (3DMM)
for the human face, which is the most widely used 3D face reconstruction model.
Subsequent studies related to 3DMM have been published in the next decade,
either by adding coefficients to the original model, such as Pascal Paysan et
al. [9] updated the expression coefficients of the 3DMM model for BFM (Basel
Face Model) model in 2017, or build larger datasets, such as James Booth et
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al. [4] built a dataset of 9663 faces, or propose better ways to optimize the solu-
tion coefficients, such as adding deep learning ideas to the coefficient solution in
recent years to achieve better results [3,19], or make nonlinear adjustments to
the model, such as the nonlinear 3DMM model proposed by Luan Tran et al.
[18], but none of them have departed from the original framework of 3DMM.
This also leads to the fact that these changes do not solve the two core prob-
lems of 3DMM mentioned above. Therefore, we choose FLAME [11] as our face
parametric model.

FLAME was proposed by Li Tianye et al., referring to the expression of
the body model SMPL [12], combining linear blend skinning (LBS) and the
corresponding corrected blendshape. Not many researches have been done on
FLAME [7,15], and they are all limited to single-view. We want to utilize the
features and data from multiple perspectives, so we propose a self-supervised
multi-view training framework and achieve better reconstruction results.

2.2 Multi-view Reconstruction

There are many works based on face parametric models, but very few of them
[16,21] are trained using multi-view data, and the only ones are based on 3DMM.
MVFNet [21] is the first work that proposed the idea of multi-view parametric
model training, but it is based on 3DMM and the implementation is very rough,
which leads to poor results. MGCNet [16] makes some improvements on its
basis, proposing novel multi-view loss functions, using multi-view training, but
only using a single image for testing. It does improve the quality of the face
reconstruction, but the reconstructed faces were still rough and incomplete. The
field of FLAME-based multi-view training remains a gap. To the best of our
knowledge, MFNet is the first work on 3D face reconstruction using multi-view
training and testing framework based on the face parametric model FLAME.

3 Method

3.1 Overall Architecture

The overall architecture for our proposed is show in Fig. 1. Resnet is a highly
mature technology that has performed well in numerous image recognition and
classification. So we extract features from each input image by a shared weight
Resnet50, and then concatenate the features together and put them into a fully
connected layer to regress a set of flame parameters for the person. Also, we
separate a pose and texture feature from Resnet50 for each perspective for sub-
sequent reconstruction work and calculate loss.
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Fig. 1. Architecture of MFNet.

3.2 FLAME

After extracting features from the multi view images in the input batch through
Resnet50 and converting them into fully connected layers, we can obtain the
desired FLAME model input vectors β, pose θ, expression ψ. Next, the FLAME
model acts as a decoder to convert these hidden layer vectors into three-
dimensional facial information. These three-dimensional information mainly con-
sists of two parts, the first is the information of each vertex, such as coordinate
TP , Normal vector Nuv and faces F , and the second is landmark coordinates of
the face. The equation of the FLAME model is as follows:

M(β,θ,ψ) = W (TP (β,θ,ψ),J(β),θ,W) (1)

3.3 Feature Extraction

We use part of DECA [7] as the pretrained model of Resnet50 for better feature
extractoin and finetune it. In order to obtain better feature information, we
use a fully connected layer to fuse the features extracted by Resnet50 from
three perspectives together for consideration, thereby obtaining a more accurate
model.

3.4 Differentiable Renderer

After getting the 3D information of the face through FLAME model, we need to
use 3D rendering to get the 2D image.Our shadow facial image B(alpha, l,NUV )
is calculated based on the following equation:

B(α, l,Nuv)i,j = A(α)i,j �
9∑

k=1

lkHk(Ni,j) (2)
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In the Eq. 2, A(α) represents UV albedo map, NUV is the normal vector of the
face surface output by FLAME. Bi,j ∈ R3, Ai,j ∈ R3, Ni,j ∈ R3 represents
the various attributes of pixel (i, j) in the UV coordinate system. � represents
Hadamard product.

In addition, we also need to extract texture from the original input image
and obtain vertex coordinates TP and faces F to calculate the correspondence
between points in the 3D mesh and the 2D texture map UV . Then, the texture
map I ′

uv is obtained from the original input image by using this correspondence
UV , and the missing part in the middle is supplemented by bilinear interpolation.
We extract the texture of multi views and perform simple fusion to obtain I ′

uv,
which contains information from multi views. Finally, we use facial mask Mface

to get UV texture map Iuv:

Iuv = Mface � I ′
uv (3)

Given the geometric parameters (β,θ,ψ), albedo α, lighting condition l, and
camera parameter c of the mesh, we can render different two-dimensional face
images Ir from various perspectives:

Ir = R(M,B, c, Iuv) (4)

3.5 Loss Function

Multiview Optical Loss. The optical flow loss [22] calculates the optical flow
between the rendered facial image and the original image. The design of the
optical flow loss is based on an intuitive fact. That is, the coordinates of a point
on a correct 3D model projected onto a 2D plane should be the same as the
original image. We hope that these two points can coincide, so the distance
should be as close to zero as possible. And that’s exactly what the optical flow
loss does (Fig. 2).

Fig. 2. Optical flow estimation. From left to right are original image, rendered image
and the optical flow. We use RAFT [17] to extract optical flow.

However, due to the occlusion of the face, the reconstruction of the invisible
part of the image view becomes very blurry. So we proposed an implementation
method for a covisible mask. It can mask the blurry parts, so that these parts
do not participate in the calculation of the optical flow loss. For the input face
image, we first generate a projected two-dimensional face mask MF according
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to the position of the three-dimensional face model. Then we use face landmarks
to roughly extract the parts that can be seen from two viewpoints and get MB.
The bounding box MB composed of keypoints and the face mask MF can be
combined to obtain a better covisible mask MC:

MCa,b = MBa,b � MFb (5)

Here we show the usage of the covisible mask (Fig. 3). In order to reduce the
estimation error of the optical flow for the uninterested region, we also mask the
complex regions such as the mouth, so that the covisible mask basically achieves
our expected goal.

Fig. 3. Covisible mask. From left to right are original images, rendered images and
covisible masked images.

Given the image Ib and the rendered image Ia→b, the optical flow estimator
F, the covisible mask MCa,b, we can calculate the multi-view optical flow loss
function Lmultiop:

Lmultiop(Ib, Ia→b) = |F(MCa,b � Ib,MCa,b � Ia→b)| (6)

Single View Keypoint Loss. We project the 3D face keypoints to the 2D
image and re-projecte them back to compared them. We hope that this can
provide stronger face constraints for the model and prevent it from ignoring the
constraints of the face itself:

Lsinglelmk(ka, ka→a) =
∑

i∈MFa

‖ka(i) − ka→a(i)‖1 (7)

Eye and Lip Keypoint Loss. Since the eye and lip area of the face is relatively
complex, we implemented an eye keypoint loss and a lip keypoint loss to achieve
better face reconstruction results. We compute the relative offset between the
keypoints ka(i) and ka(j) of the upper and lower eyelids and lips on a certain
view a, and measure the difference between their offset and the offset between
the corresponding re-projected keypoints ka→a(i) and ka→a(j) of the 3D model:
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Leye(ka, ka→a) =
∑

(i,j)∈Ea

‖ka(i) − ka(j) − (ka→a(i) − ka→a(j))‖1 (8)

Llip(ka, ka→a) =
∑

(i,j)∈Pa

‖ka(i) − ka(j) − (ka→a(i) − ka→a(j))‖1 (9)

Regularized Loss. We need to regularize some vectors to prevent overfitting,
including shape vector β regularization, expression vector ψ regularization and
albedo α regularization:

Lreg = ‖β‖2 + ‖ψ‖2 + ‖α‖2 (10)

Total Loss. The total loss function is shown below:

Ltotal = λ1Lmultiop + λ2Lsinglelmk + λ3Leye + λ4Llip + λ5Lreg (11)

4 Experiments

In this section, we first introduce our implementation details for conducting the
experiments, including the datasets and evaluation metrics (Sect. 4.1). Then we
make qualitative and quantitative comparisons to other 3D face reconstruction
methods (Sect. 4.2 and Sect. 4.3). Finally, we demonstrate the effectiveness of
the proposed method with extensive ablation studies in Sect. 4.4.

4.1 Implementation Details

Training Datasets. Our training is performed on Multi-PIE dataset, which
contains over 750,000 images recorded from 337 subjects using 15 cameras in
different directions 963 under various lighting conditions. We take frontal-view
images as anchorsand randomly select side-view images (left and right) to form
a three view triplet which is the input of our model. In this way, we take 36k
training triplets.

Evaluation Datasets. We mainly perform quantitative and qualitative evalu-
ations on the facescape benchmark containing in-the-wild and in-the-lab data.
14 recent methods are evaluated on the dimensions of camera pose and focal
length, which provides a comprehensive evaluation.
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Hyper-parameters Setting. In actual training, we set the hyper-parameters
in Eq. (11) to λ1 = 1, λ2 = 1, λ3 = 1, λ4 = 0.5, λ5 = 1e − 04. learning rate
= 1e − 3. Train epochs on multi-PIE are 10.

4.2 Qualitative Results

We first present our reconstruction results, as shown in Fig. 4. It can be seen
that MFNet’s reconstructed facial model performs well in various perspectives.

Fig. 4. MFNet reconstruction. From left to right are input images, MFNet reconstruc-
tion.

Next, we compared the reconstruction results of DECA and MFNet. We
used DECA and our model to reconstruct 2000 images from AFLW2000-3D
respectively. Some of them are shown in Fig. 5. Through observation, it can be
found that DECA has problems in predicting facial edges in certain situations,
but MFNet can reconstruct more accurately due to the involvement of multiple
perspectives.

Fig. 5. Qualitative experiment of DECA
and MFNet.

Fig. 6. MFNet reconstruction.

We also set up three-viewed cameras on site to take images of the people
around us, obtaining multi-view images that are close to the real environment.
We tested the reconstruction effect of MFNet on these images and added texture,
as shown in the Fig. 6.
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Table 1. Comparison with other single-view methods.

methods 0–5 5–30 30–60 60–90

CD MNE CR CD MNE CR CD MNE CR CD MNE CR

extreme3dface [20] 5.02 0.16 0.62 5.512 0.18 0.56 7.91 0.20 0.40 25.3 0.26 0.27

PRNet [8] 2.61 0.12 0.83 3.11 0.11 0.83 4.25 0.11 0.78 3.88 0.14 0.75

Deep3DFaceRec [6] 2.30 0.07 0.83 2.50 0.07 0.83 3.56 0.08 0.77 6.81 0.14 0.62

RingNet [15] 2.40 0.08 0.99 2.99 0.09 0.99 4.78 0.10 0.98 10.7 0.18 0.97

DFDN [24] 3.67 0.09 0.87 3.27 0.09 0.86 7.29 0.12 0.84 27.4 0.30 0.57

DF2Net [24] 2.92 0.12 0.57 4.21 0.13 0.56 6.54 0.15 0.46 19.7 0.30 0.30

UDL [5] 2.27 0.09 0.69 2.59 0.09 0.68 3.45 0.10 0.64 6.32 0.17 0.49

facescape opti [23] 2.81 0.09 0.84 3.17 0.09 0.82 4.08 0.10 0.78 6.57 0.16 0.67

facescape deep [23] 2.70 0.08 0.87 3.69 0.09 0.86 4.22 0.09 0.85 9.09 0.15 0.70

MGCNet [16] 2.97 0.07 0.84 2.94 0.07 0.85 2.78 0.07 0.81 4.20 0.09 0.74

3DDFA V2 [10] 2.49 0.07 0.86 2.66 0.07 0.86 3.17 0.07 0.83 3.67 0.09 0.79

SADRNet [14] 6.60 0.11 0.90 6.87 0.11 0.89 6.39 0.10 0.84 8.62 0.16 0.82

LAP [25] 4.19 0.11 0.94 4.47 0.12 0.93 6.15 0.14 0.87 13.7 0.20 0.68

DECA [7] 2.88 0.08 0.99 2.64 0.07 0.99 2.88 0.08 0.99 4.83 0.11 0.99

MFNet 3.98 0.11 0.99 4.07 0.11 0.99 3.60 0.10 0.99 5.25 0.12 0.99

4.3 Quantitative Results

At present, there are few benchmarks suitable for multi-view reconstruction test
for face parametric models. Therefore, in order to conduct a broader comparison,
we test our model on a single view setting and compare it with other algorithms.
Due to the original intention of designing MFNet for multi view input methods,
this testing method inevitably reduces the reconstruction effect of MFNet. As
shown in Table 1, MFNet can not perform best on a single-view testing, but it
has already surpassed most models.

To demonstrate the complete performance of MFNet, we also compared
it with other models on facescape-lab dataset, which is a multi-view dataset.
MFNet used inputs from three views, and others randomly selected one view as
input. As can be seen in Table 2, the performance of the complete MFNet model
is comprehensively ahead of other models.

It can be seen that on the facescape-lab dataset, when MFNet was tested with
a complete multi-view input, its various indicators showed significant improve-
ment compared to DECA and also other single-view models, indicating that our
multi-view training gives MFNet better reconstruction ability and achieves our
expected goals.
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Table 2. comparison of MFNet and other single-view models.

method facescape-lab

CD MNE CR

DECA [7] 5.25 0.16 0.97

LAP [25] 9.76 0.20 0.85

SADRNet [14] 7.21 0.18 0.89

DFDN [24] 14.10 0.32 0.93

Deep3DFaceRec [6] 5.28 0.15 0.80

extreme3dface [20] 15.38 0.26 0.66

PRNet [8] 4.97 0.15 0.85

facescape opti [23] 5.14 0.16 0.76

DF2Net [24] 7.39 0.17 0.67

MFNet 4.89 0.14 0.99

4.4 Ablation Study

In this section, we conduct an ablation study on the mentioned loss function. In
the ablation experiment, we remove one Loss function, keep other Loss function
unchanged, and train the same epochs on the same training set. Testing is per-
formed on the fasescape-wild dataset. The results are shown in Table 3. We can
see that the whole MFNet has the best performance.

Table 3. Ablation study of loss function.

methods 0–5 5–30 30–60 60–90

CD MNE CR CD MNE CR CD MNE CR CD MNE CR

- multiop 4.29 0.12 0.98 4.43 0.12 0.99 3.62 0.09 0.99 5.12 0.12 0.99

- singlelmk 6.54 0.14 0.99 5.85 0.13 0.99 12.2 0.18 0.97 38.6 0.25 0.93

- eye 140 0.33 0.99 423 0.38 0.98 61.8 0.24 0.96 5.91 0.14 0.99

- lip 6.95 0.13 0.99 11.2 0.15 0.98 13.7 0.17 0.94 13.6 0.18 0.95

- reg 23.3 0.19 0.99 32.3 0.19 0.99 7.39 0.12 0.99 8.75 0.16 0.99

MFNet 3.98 0.11 0.98 4.06 0.11 0.98 3.60 0.10 0.99 5.25 0.12 0.99

We also reconstruct each ablation model on the alfw dataset as shown in Fig. 7.
In general, the ablation experiment shows that the performance of the model has
declined after the removal of some loss function, which shows that the design of
our loss function is reasonable.
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Fig. 7. Ablation study of loss function. From left to right are the images with reg, lip,
lmk, eye, multiop removed respectively, and the last column is the reconstruction of
MNFet.

5 Conclusion

In this paper, we innovatively combine multi-view training with FLAME, pro-
pose a multi-view self-supervised framework and implement a complete multi-
view training and testing process. Our proposed model MFNet achieve good
results on both test datasets and actual captured images. For the implementation
of MFNet, we propose a multi-view optical flow loss for our multi-view training
framework and propose a novel implementation of the technical details such as
covisible mask. Experiments show that our model outperforms other methods in
face reconstruction and detail capture, which indicates that the combination of
multi-view and FLAME is reasonable.
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Abstract. The versors of a homogeneous-point-based geometric alge-
bra Rd,0,1 (dubbed HGA) are related to the basic operations in geomet-
ric paraxial optics. Odd versors represent reflections in spherical mirrors
(be they concave or convex) and even versors implement the lens equa-
tion. We extend the results to arbitrarily positioned optical elements by
embedding Rd,0,1 into CGA Rd+1,1. The total transformation through a
paraxial optical system now consists of successive teleportation (by CGA
dot and outer product) to the next optical center, and then applying its
local HGA versors.

The result is a straightforward sequence of operations which imple-
ments a total system of arbitrarily placed paraxial lenses and mirrors
in 3D (or any dimension), parameterized by their CGA tangent vec-
tors (from each optical center to the corresponding focal point) for each
optical component. This can be used to compile the homogeneous trans-
formation matrices of a total paraxial system in terms of those geometric
parameters.

Keywords: paraxial geometric optics · geometric algebra ·
homogeneous coordinates

1 HGA: The Geometric Algebra of Homogeneous
Coordinates

Ray transfer matrices have traditionally been used to compute with planar
paraxial optical systems, but in a height/slope parametrization of rays that
includes a needless linearizing approximation. Recently, [1] showed that by using
homogeneous coordinates in 2D, the ray matrices can be exact, and matrices
for point imaging also be included. The homogeneous matrices of rigid body
transformations can then be employed to process optical systems with different
optical axes, still on the 2D optical table. In the present paper, we demonstrate
how the geometric algebra HGA of homogeneous coordinates affords a natu-
ral parametrization to unify the imaging of geometric primitives by a generally
placed system of paraxial optical elements in 3D space (with 2D still included,
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of course). It can then be used to generate the corresponding 4×4 homogeneous
matrices, if desired.

The homogeneous coordinates of a point at location x = [x1, · · · , xd]� in a
Euclidean space Rd are obtained by adding one extra representational dimension;
they are [1, x1, · · · , xd]�. In geometric algebra, we introduce a basis vector e0
for the extra dimension, and we need to decide the metric relationships for all
vectors. The metric for the Euclidean part remains Euclidean (so ei · ej = δij
for an orthonormal basis). Relative to the Euclidean basis vectors ei, we set
e0 · ei=0; the extra representational dimension is orthogonal to the Euclidean
spatial aspects. But we will explicitly choose e0 to be a null vector (i.e., e20 = 0),
so that our algebra is of signature Rd,0,1; let us call it HGA, for homogeneous
geometric algebra.

This signature differs from the ‘homogeneous model’ in [2] (where e20 = ±1),
but is used in [3] for the point-based algebra of Euclidean space. It should not be
confused with the plane-based Euclidean PGA R

∗
d,0,1 in [4,5] (although they sug-

gest that the Cayley-Klein approach would dually associate the different point-
based GA R1,0,d with that plane-based GA).

A point with homogeneous weight α at location x is represented by the HGA
1-vector:

X = α(e0 + x),

employing a bold notation for the Euclidean part, and Greek for the real scalars.
The null basis vector e0 of HGA thus represents the point at the origin, where
x = 0. Since X2 = α2x2, the vector e0 is the only null point in the algebra.
Thus the origin is special in HGA; and this implies that HGA does not contain
translation versors (there is no equivariant way of changing the origin). That will
be an issue for using HGA in physical modelling, resolved later in this paper.

We look upon any geometric algebra through the Cartan-Dieudonné per-
spective: the vectors of the algebra represent reflections, their geometric prod-
uct generates (as versors) the orthogonal transformations, whose application by
sandwiching (aka conjugation) is equivariant for all operations and elements in
the algebra. Our approach in interpreting the HGA algebra of points is therefore
to determine its elementary motions by applying its vectors in a sandwiching
manner; first to its vectors, then to general elements, and interpret the result.
We will find that HGA is the algebra of d-dimensional paraxial geometric optics,
with its versors representing paraxial imaging by lenses, and by spherical and
planar mirrors (all with optical center at the origin). It is capable of imaging
arbitrary flats (points, lines, planes), also those that are not meridional (in a
plane through the optical axis; in contrast to [6], though they do go beyond the
paraxial framework). The desire to concatenate the imaging by such elements
leads us to extend the use of HGA in a manner that permits arbitrary trans-
lations as versors. This will be done by viewing HGA as a subalgebra of CGA
Rd+1,1 (conformal geometric algebra), by placing a copy of HGA Rd,0,1 at each
point in space.

This paper is meant to demonstrate the tools that HGA and CGA offer to
encode the straightforward geometry of paraxial imaging – it is an algebraic
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rather than a physics treatise. Our focus is the simple parametrization of the
system of paraxial lenses and mirrors that it facilitates (just locations of optical
center and focus of each component), and how that immediately generates the
composite imaging operators.

1.1 The Paraxial Lens Equation

Let us briefly derive the basic Gaussian lens equation of paraxial geometric
optics, so that we may recognize it when it occurs in HGA. We give a derivation
in the Euclidean GA Rd of directions, for the location of a point imaged by a
thin convex lens with focal length f in the paraxial approximation of geometric
optics, with Fig. 1 as our guide. Here we use a Cartesian sign convention (see
e.g. [6]), in which coordinates are chosen such that the focal point is at the
positive side of the lens, and the input objects at the negative side.

A point X is characterized by its location vector x relative to the optical
center O, and the lensed result is at x′ = λx. If x is far enough from the lens,
we should find λ < 0, so x′ is at the opposite side of optical center, see Fig. 1.
Algebraically and geometrically, λ is determined from the usual construction:
the line from X parallel to the optical axis, which runs in the direction of the
focal point vector f , hits the lens in a point; the line from that point through the
focal, point intersected with the line from X through the optical center, gives
the image point. This leads to the linear equations x+ μf + ν(x+ μf − f) = λx
and f · (x + μf) = 0. Reduce these to scalar equations for the unknowns, by
using the operations ‘f∧’ and ‘x∧’, and solve to find that the imaged point is at
location

x �→ x
1 + f−1 · x , (1)

where f−1 ≡ f/(f · f) is the reciprocal of f .

Fig. 1. (a) A convex lens in the paraxial approximation of geometric optics, viewed in
a plane containing the optical axis. F and O are focal point and optical center, x points
at the input point, x′ at the output point imaged by the lens. (b) The reflection in a
planar mirror represented by a vector m. (c) Paraxial reflection in a spherical mirror
with radial center at r is represented as versor sandwiching by the homogeneous point
at r. It transforms directly along the dotted line, or by the classical ray construction
using a focal point halfway.
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1.2 The Vectors of HGA Rd,0,1

HGA Rd,0,1 is an algebra in which homogeneous points are represented as vectors.
We choose a basis {e0, e1, · · · , ed} with (e0)2 = 0 and e2i = 1 for i �= 0, the
Euclidean subalgebra. There are three kinds of vectors, differing in their algebraic
properties and their geometric semantics:

– Directions: A purely Euclidean vector m represents a direction in d-
dimensional space. Its inverse is m−1 ≡ m/(m ·m). In terms of homogeneous
coordinates, one may view directions as ‘ideal points’, i.e., points at infinity.

– The origin: The point at the origin is represented by the null vector e0.
Since the square of e0 equals zero, it is not invertible, and therefore it cannot
be used as a versor, or as a versor factor.

– Non-origin points: A general point is of the form P = α(e0 + p). Geo-
metrically, it represents a point of weight α at the location p. Its inverse is
P−1 = P/(P · P ) = P/(α2p2), and thus exists iff α �= 0 and p2 �= 0. It is
unfortunately customary to ignore the weight α in a ‘projective geometry’
approach to homogeneous coordinates, but both it and its sign contain rel-
evant information, especially for a point constructed from other primitives
(such as the intersection of lines [2]). Since sandwiching is insensitive to a
non-zero weight α, we will use normalized point vectors for which α = 1 for
our versor factors (though not for the arguments and results of operators!).

Let us determine the semantics of the versors we can construct from a HGA
vector.

1.3 Reflection in a Direction: Planar Mirror

A purely Euclidean vector indicates a 1-dimensional direction. Such a vector
versor m acts on a point X = e0 + x by sandwiching, to produce:

−mXm−1 = −m (e0 + x)m−1 = e0 − mxm−1,

and we recognize in −mxm−1 = (xm − 2(m · x)
)
m−1 = x − 2(m · x)m−1 the

reflection of the vector x in a plane with normal m passing through the origin.
Thus X reflects in the origin plane with normal m; the point is seen at the other
side of the mirror, at the same perpendicular distance as X (see Fig. 1b).

1.4 Reflection in a Point: Spherical Mirror

A general unit weight vector R = e0+r (geometrically the point at location r) can
also be used in sandwiching as a versor to transform points. With R−1 = R/r2
we obtain:

−R (e0 + x)/R = −(e0 + r) (e0 + x) (e0 + r)/r2 = −e0xr
−1 − r−1xe0 − re0r

−1 − rxr−1

= (1 − 2r−1 · x) e0 − rxr−1 = (1 − 2r−1 · x)
(
e0 +

−rxr−1

1 − 2r−1 · x
)
. (2)
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Note in Eq. 2 how the versor action produces an additional factor for e0, pro-
portional to the r-component of the input term x. In the final expression, we
factored out the ‘weight’ of the point to expose its Euclidean location. The loca-
tion is a vector proportional to the reflection of x in the plane with normal r by
an x-dependent factor 1/(1 − 2r−1 ·x). If r−1 ·x is sufficiently large, that factor
is negative, and the image is a negatively weighted point at the same side of the
r-plane as the input point x.

The outcome is almost, but not quite, entirely unlike Eq. 1: the scaling factor
of the coordinates seems similar to what happens in the thin lens; but there is
a strange reflection in the plane with normal r included, making the point end
up at the wrong side.

In fact, when we take r on the negative side of the origin on the optical
axis (in the Cartesian sign convention), this is the GA form of the formula for
reflection in a concave spherical mirror with spherical center R = e0 + r, in the
paraxial approximation of geometric optics, see Fig. 1a and 3a. Choosing r on the
positive side gives a convex spherical mirror, see Fig. 3b. Thus a homogeneous
point R acts as a spherical mirror versor in HGA.

1.5 The Lensing Versor Lf

It is now natural to consider a lens as the combination of a spherical mirror
and a reflection, so to use a versor L = mR to represent it. Let us see if this
works; from the above we suspect that we should take m = r and relate R to
the desired focal point F .

The post-reflection factor in the plane with normal r gives the HGA versor:

r (e0 + r) = r2 − e0r = r2 (1 − e0r−1).

We can divide out the factor r2: scaling is irrelevant since the versor is always
applied in a sandwiching with its inverse. We also replace r by the parameter
f = −r/2 (which will turn out to be the location of the focal point of the lens,
in the Cartesian sign convention) so that we effectively use the versor

Lf ≡ 1 + 1
2e0f−1.

This gives as a result of sandwiching the homogeneous point

Lf (e0 + x)L−1
f = (1 + 1

2
e0f

−1) (e0 + x) (1 − 1
2
e0f

−1) = e0 + x + 1
2
e0f

−1x − 1
2
xe0f

−1

= (1 + f−1 · x) e0 + x = (1 + f−1 · x)
(
e0 +

x

1 + f−1 · x
)
. (3)

The resulting location indeed corresponds to the Euclidean result of lensing of
Eq. 1.
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Fig. 2. Imaging a point at x by a lens, in the paraxial geometric optics approximation.
a) convex lens, real image; b) convex lens, virtual image; c) convex lens, real image of
infinite point; d) concave lens, virtual image. All situations are generated by the HGA
versor 1+ e0f

−1/2, which gives x′ = x/(1+ f−1 ·x) for the point. The versor moreover
applies to lines, planes, etc.

1.6 Convex and Concave Mirrors and Lenses, Virtual Images

We thus found for the convex lens mapping:

Lf (e0 + x)L−1
f = (1 + f−1 · x) e0 + x, (4)

with Lf = 1 + e0f−1/2 as the versor for a thin convex lens at the origin, with
focal vector f . Like all even versors, it can also be written in an exponential
form: Lf = exp(e0f−1/2). Replacing f by −f (or taking f to be negative) gives
the formula for a concave lens.

The imaged point is at x′ = x/(1 + f−1 · x), and corresponds to the usual
construction, see Fig. 2a. It is easy to derive the common formula for object
and image distances from this, by taking the dot product with the unit vector
f̄ ≡ f/‖f‖:

1
f̄ · x′ =

1
f̄ · x +

f−1 · x
f̄ · x =

1
f̄ · x +

1
‖f‖ . (5)

Due to our formulation in terms of dot products, the ‘distances’ along the optical
axis are signed distances. With the Cartesian sign convention, f̄ · x is negative
for a convex lens, and positive for a concave lens (which has its focal point at
the same ‘negative’ left side as the object point x). For a concave lens, the image
point is thus always at the same side as the object point; this is called a ‘virtual
image’, Fig. 2d. For a convex lens, a virtual image happens for object points too
close to the lens, namely when 0 > f̄ · x > −‖f‖, see Fig. 2b.

Incidentally, one can also easily retrieve Newton’s characterization of imaging
by a convex lens, involving the signed distances from object and image point to
the focal point at their side of the lens:

(
(x + f) · f̄) (

(x′ − f) · f̄) = −‖f‖2.



346 L. Dorst

Fig. 3. Imaging a point at x by a spherical mirror, in the paraxial geometric optics
approximation. a) concave mirror, real image; b) concave mirror, virtual image; c) con-
cave mirror, infinite point; d) convex mirror, virtual image. All situations are captured
by the HGA versor e0 + r, which gives x′ = −rxr−1/(1 − 2r−1 · x) for the point by a
special reflection along the dotted line where it intersects the reflected x-carrier. The
versor moreover applies to lines, planes etc.

From the lens versor expression we can now return to the earlier odd versor
R of a single point, simply by reflecting once more in the f -plane (i.e., the plane
with normal f through the optical center). We then get a formula for the spherical
mirror characterized by its ‘focal point’ f = −r/2 rather than by its center of
curvature r, as

x′ = (−f x f−1)/(1 + f−1 · x).

The image is thus along the reflected ray from the optical center to x (reflected
in the mirror). All plots of Fig. 3 show this, but also that the imaged point is
along the line connecting x and the radius center at r = −2f , as follows from
the point-like nature of the mirroring versor e0 + r. A convex spherical mirror
is characterized by a positive f−1 · x, and thus always results in a virtual image
(at the other side of the mirror, see Fig. 3d); a concave mirror has a real image
when f−1 · x < −1, i.e. f̄ · x < −‖f‖, the object point is far enough to the left,
see Fig. 3b.

Thus multiplication by f (normalized to f̄ if you wish) swaps the versor Lf for
a convex lens into the versor for a concave mirror. All is consistent: letting ‖f‖
go to infinity (a lens with infinite focal point) shows that f̄(1+e0f−1) becomes a
purely directional element f̄ , and thus becomes the reflection in a planar ‘lens’,
like the planar mirror versor m above.

For the lenses and mirrors, when the weight factor 1+f−1 ·x of e0 is positive,
the point is virtual; when negative, real.
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2 Imaging Arbitrary Flats

Once we have specified how points are imaged, we can of course also know how
lines and planes are imaged. This is true in any formalism, but in HGA it takes
a particularly simple form.

2.1 Equivariance of the Versor Mapping

The versor computation may seem needlessly involved compared to the Euclidean
computation of Sect. 1.1, but it has a property that the earlier derivation lacked:
it is equivariant under composing points into lines, planes etc. Any element X
of the algebra representing an affine subspace (be it point, line or plane) will be
imaged by the lens as

X �→ LfX/Lf with Lf = 1 + 1
2e0f−1. (6)

It is the integrated manner in which general flats are represented in HGA (see
e.g. [2]) that enables this. A general flat in d dimensions is the element

A = (e0 + p) ∧ A,

with A its k-dimensional direction blade, and p a Euclidean location vector. It is
formed by the outer product ∧ of the algebra, which can be defined as a specific
weighted linear sum of geometric products. And the geometric product of two
elements transforms equivariantly under a versor L, due to its associativity:

(LX L−1) (LY L−1) = L (X Y )L−1.

It also transforms linearly:

LX L−1 + LY L−1 = L (X + Y )L−1.

So when we image a line that was constructed as the join of two points X1

and X2, there is no need to first image these points and then join the results
to obtain the resulting line. HGA allows you to make the geometric line as the
algebraic element � = X1 ∧ X2, and this is imaged by the versor Lf to Lf �/Lf ;
which is automatically identical to the element (LfX1/Lf ) ∧ (LfX2/Lf ) which
would have been obtained by joining the imaged points.

Applying the versor, a general flat with directional part A and passing
through p lenses to:

(e0 + p) ∧ A
Lf�→ (e0 + p) ∧ A+ e0 ∧ (f−1 · (p ∧ A) = e0 ∧ (

A+ f−1 · (p ∧ A)
)
+ p ∧ A.

(7)

This uses x ∧ A = 1
2 (xA + Â x) with Â ≡ (−1)grade(A)A, with the grade

being the dimensionality of a blade, i.e., its number of outer product factors.
Note that if A = 1, the flat is a point, and we retrieve the earlier Eq. 4.
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2.2 Homogeneous Matrix Representation

If you wish, you could compose a matrix for the linear map X �→ LfX/Lf , rather
than characterize it by a versor. However, this matrix would depend on the type
of element X (just like the 2D homogeneous matrices from [1]). If X was a
3D point, you would express it on the 4D basis {e0, e1, e2, e3}, by transforming
each of the basis vectors and finding the transformed coefficients as columns
of a 4 × 4 matrix. If X was a 3D line, you would express it on the 6D basis
{e01, e02, e03, e23, e31, e12} of Plücker coordinates, by transforming each of the
basis bivectors and finding the transformed coefficients as columns of a 6 × 6
matrix.

For points, it follows from Lf (e0+p)/Lf = (1+f−1 ·p)e0+p that the matrix
representation of Lf on a homogeneous vector [p�, 1]� is:

[
p
1

]
Lf�→

[
[1] 0

[f−1]� 1

] [
p
1

]
.

For lines in 3D, we effectively have a Plücker coordinate representation on a
bivector basis, but this is usually encoded on a 6D vector basis. We can convert
the outer product on a coordinate basis to the classical cross product and its
corresponding matrix. We find after some manipulation using f−1 · (p ∧ u) =
f−1 × (p × u) ≡ [f−1]×(p × u):

[
u

p × u

]
Lf�→

[
[1] 0

[f−1]× 1

] [
u

p × u

]
.

Note that the line transformation matrix works on any 3D line, not just those
in a plane containing the optical axis.

3D planes in HGA are represented as (e0 + p) ∧ N, with N a Euclidean
unit 2-vector. In homogeneous coordinates one uses the unit normal vector m =
Ne3e2e1 and the scalar signed distance δ = p · m. Re-expressing Eq. 7 in those
parameters, the plane transforms as:

[
m
−δ

]
Lf�→

[
[1] −[f−1]
0� 1

] [
m
−δ

]
.

The homogeneous coordinate matrices should look familiar from the literature
on imaging in computer graphics. If you need to transform many elements of
the same type (points, lines), then these matrices may offer a computational
advantage. But note that they lose the explicit connection between the trans-
formations of points and lines (and planes). Explicitly computing the proper
matrices is better left to an LA compiler, based on an algebraic specification at
the symbolic level of the required computation given by the HGA approach, or
more generally by the CGA approach that follows.

3 Paraxial Geometric Optics Anywhere in Space

The null vector e0 encoding the optical center makes the lensing versor work
properly. If we want to move the lens to another location than the origin, we
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therefore need a null vector at that new location. That is not possible in HGA,
where e0 is the only null point. Rigid body motions are simply not among the
versors of HGA, all of which we just exposed.

3.1 Placing a HGA at Any Spatial Location

We move to the larger algebra CGA Rd+1,1 (conformal geometric algebra), which
has all points as null vectors, and construct a copy of HGA at every point. Then
locally, we can perform the lens versor construction we had before at any point
we like. Concatenation of lenses will then be done by hopping from one optical
center to the next, for each choosing the corresponding algebraic embedding.

CGA is the algebra of spheres, and (by their intersections) of circles, point
pairs, in general ‘rounds’. It does contain planes, lines, points, but those ‘flat’
elements are based on spheres passing through infinity. Precisely those flat ele-
ments correspond to the geometric primitives of HGA. Since in CGA planes can
be (dually) represented by vectors, among its versors are multiple reflections
in planes, which generate the motions of Euclidean geometry. Therefore CGA
allows us to produce Euclidean equivariant constructions, which HGA could not.
And because CGA thus has translation versors, we will be able to put lenses any-
where, and construct composite optical systems.

We will use CGA with its null basis elements o and ∞ orthogonal to the
Euclidean basis e1, · · · , ed [2]. The null basis vector o can be interpreted as
the CGA origin point (though any point may be taken as origin, since CGA
is translation invariant), and the null basis vector ∞ can be interpreted as the
point at infinity. The two are related by o · ∞ = −1, using the dot product of
CGA.

A point at location p in CGA is represented by the vector p = o+p+ 1
2p

2∞;
this is a null vector. The origin point of HGA denoted by its null vector e0 seems
to correspond naturally to the vector o of CGA; however, the whole purpose of
embedding into CGA is our desire to have a HGA at any point p of CGA. Since
any CGA point is a null vector (a sphere of zero radius), such recasting will not
affect the local algebra and geometry of lensing as designed with HGA.

A geometrical point, such as might occur in the intersection of a line and
a plane, is a ‘flat point’ in CGA, of the form p ∧ ∞, since those intersecting
flat elements always also have the point at infinity ∞ in common. A unit flat
point squares to 1: (p · ∞)2 = (∞ · p)2 = 1. The flat point can be rewritten as
p∧∞ = (o+p)∧∞, and we recognize in the first factor a natural identification
with the point representation e0+p of HGA. With the identification of the origin
elements of the two algebras e0 = o, we can write the HGA point e0 + p as an
element o + p of CGA,1 parametrized by CGA point p:

e0 + p ↔ o + p = o · (−∞ ∧ p). (8)
1 Considered as an element of CGA, o · (−∞ ∧ p) is geometrically an oriented dual

sphere with center p, and passing through o. While that geometric interpretation
can be maintained through the subsequent algebra, it is rather distracting, so we
will not emphasize it.
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This final form of the point representation contains explicitly the point o which
we took as the origin of our local HGA. Without changing the algebra, we can
now choose any other CGA point as corresponding to the null vector e0 of HGA;
then a HGA point at location x but viewed from another ‘origin’ c is represented
by the CGA element:

x|c ≡ c · (−∞ ∧ x). (9)

where c and x are CGA points. You may pronounce ‘|c’ as ‘from c’. This operation
considers x in a copy of HGA at the location c. It is structure-preserving: the
formation of new elements by the HGA outer product is equivariantly preserved
by this construction (it is a linear outermorphism):

x|c ∧ y|c =
(
c · (−∞ ∧ x)

) ∧ (
c · (−∞ ∧ y)

)
=

(
x + ∞ ∧ (c · x)) ∧ (

y + ∞ ∧ (c · y))

= x ∧ y − ∞ ∧ x ∧ (c · y) + ∞ ∧ (c · x) ∧ y = x ∧ y + ∞ ∧ (
c · (x ∧ y)

)
= c · (−∞ ∧ x ∧ y)

= (x ∧ y)|c. (10)

Therefore an arbitrary HGA element X (point, line, plane, direction element)
can be embedded into CGA as a ‘from c’-element through:

X �→ X|c ≡ c · (−∞ ∧ X), (11)

(where we substitute HGA’s e0 always by CGA’s o before putting X in the ‘from
c’ formula, to make the formula computable within CGA). Note that c|c = c.
The original HGA element X can be retrieved from this as:

X|c �→ X = o · ( − ∞ ∧ (X|c)
)
, (12)

and then substituting e0 �→ o (to formally get out of CGA back to standard
HGA). Therefore the re-representation of HGA element X as CGA element X|c
is invertible.

A highly useful property is that the ‘from c’ mapping can be applied multiple
times, but that the result only depends on the last application (we could call
this ‘neopotent ’, it is more general than ‘idempotent’):

(X|c1)|c2 = X|c2 . (13)

This is easily shown:

(X|c1 )|c2 = c2 ·(−∞∧(c1 ·(−∞∧X))) = c2 ·(−∞∧(X+∞∧(c1 ·X)) = c2 ·(−∞∧X) = X|c2 .

We can therefore always rerepresent a rerepresented element, and in a concate-
nation of operations there is no need to revert from X|c to the original X before
we can perform the next step. Jumping to a new viewpoint c is not a relative
translation, but an absolute teleportation.
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3.2 The HGA Lens Versor in CGA

For a lens with optical center c, we should move its lens versor (which was
exp( 12e0 ∧ f−1) at the origin) also to that location. With the substitution e0 �→
o, the lens versor becomes a versor exp( 12o ∧ f−1) in CGA (it is a conformal
transformation called a transversion, see [2]). It involves the CGA tangent vector
o ∧ f−1, and it and its versor can be moved to c by the CGA translation versor
exp(−∞ ∧ c/2), which transforms that tangent vector into

�c,f ≡ c ∧ (f−1 + (f−1 · c)∞). (14)

Perhaps more elegantly, we can rewrite the original tangent vector at the origin
as:

o ∧ f−1 = o/(o ∧ ∞ ∧ f) = o/(o ∧ ∞ ∧ f),

with f the CGA version of the focal point, and then simply substitute c for o to
move it. That gives the same result as the translation versor approach, but in a
factorized geometric format (as a point divided by a line through it):2

�c,f = c/(c ∧ ∞ ∧ f) = c/(c ∧ ∞ ∧ f), (15)

with f the focal point, and f the relative vector from c to f . Note that in this
format, either point f or relative vector f could be used as input parameter for
an identically defined function computing the tangent vector; no conversion is
required since c ∧ ∞ ∧ f = c ∧ ∞ ∧ f . With that tangent vector �c,f , the lens
versor is:

Lc,f = exp(12�c,f ) = 1 + 1
2�c,f . (16)

The full lens mapping cannot simply be this CGA versor applied to a CGA point
– that would be a conformal transformation, and lensing is not (it transforms
circles to ellipses, not to other circles as a conformal map would).3 In our local
copy of HGA at the point c, the lens versor should act on an element X by first
converting that to the ‘relative to c’ form X|c and then applying the c-based
versor:

X �→ X ′|c = Lc,f (X|c)L−1
c,f ≡ Lc,f [X|c]. (17)

(The underline notation is a common compact way to denote the versor
sandwiching/conjugation operation.) The result X ′|c is again a ‘from c’ type
element of CGA. The corresponding flat element is −∞ ∧ (X ′|c), but it is more

2 To show that this is equivalent to Eq. 14, we compute: c/(c ∧ ∞ ∧ f) = c (c ∧ ∞ ∧
f)/(c∧∞∧f)2 = c·(c∧∞∧(f−c))/(−2(c·f)2) = c·(c∧∞∧f)/f2 = c·(c∧∞∧f−1) =
c ∧ (f−1 + (f−1 · c) ∧ ∞).

3 Actually, in CGA X|c is a round element (a sphere for a point, a circle for a line,
a point pair for a plane), and the versor Lc,f maps it to another round element
of the same kind, so a conformal transformation does take place; but only on the
CGA-embedded version X|c of X, not on X itself.
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Fig. 4. Propagation of a point on a line through two lenses parametrized by centers
and foci in 3D using Eq. 20 implemented in GAviewer [7].

convenient to keep it in the ‘from c’ form if one wants to apply another lens to it
next. We can write Eq. 17 more explicitly, and rewrite slightly, using Lc,f [c] = c:

c · (−∞ ∧ X ′) = Lc,f [c · (−∞ ∧ X)] = c · Lc,f [−∞ ∧ X]. (18)

The latter shows clearly that the lens versor action is concentrated on the flat
elements of CGA, of the form −∞∧X. We cannot also pull ∞ out of the versor,
since ∞ is not invariant under the action of Lc,f .4

The spherical mirroring versor R = o − 2f can also be brought into a form
in which it may be parametrized by either the relative Euclidean vector f or by
the CGA point f , namely:

spherical mirror versor R at c with focus f : R = c − 2 (c ∧ ∞ ∧ f)/(c ∧ ∞).

Remember from general GA that this odd versor should be applied to an element
X|c as R[X|c] = R X̂|c R−1, the grade involution̂ giving a minus sign for odd-
grade X. Only then do weight signs in the homogeneous representation maintain
their geometric meaning.

3.3 Concatenation of Lenses

With the above, one can compute the paraxial image of an element X in HGA
through a succession of n lenses and/or mirrors in d-dimensional space, by the
CGA embedding.

1. Let the lenses have optical centers at CGA points ci, and focal points at CGA
points fi (or have relative focal vectors fi from their ci). Form the lens versors

Li ≡ 1 + 1
2 ci/(ci ∧ ∞ ∧ fi) (19)

4 In fact, L∞/L = Tc+2f [o]/(2f
2), a conformal point at location c+2f . The ‘point at

infinity’ in HGA is not ∞, but o+x for large ‖x‖; it maps to a point on the parallel
plane at f behind the lens, at location (f−1 ·x)/x)−1 determined by the direction of
x.
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or the spherical mirror versor Ri = ci −2(ci ∧∞) · (ci ∧∞∧fi), or the planar
mirror versor Mi = (ci ∧ ∞) · (ci ∧ ∞ ∧ fi) (for which fi is the mirror normal
vector pointing from ci to fi).

2. Embed the HGA element X into CGA by replacing its e0 by o. Then perform
the iteration:

X0 = X, Xi = ci · Li[−∞ ∧ Xi−1] for i = 1, · · · , n. (20)

(or similarly for Ri[] and Mi[], with the grade involution in both sandwich-
ings).

3. After processing all n optical elements, the result is X ′ = o · (−∞ ∧ Xn)
relative to an origin o; it can be converted back to HGA by replacing o by
e0, if desired.

Figure 4 shows a 3D example of a point and line imaged through two lenses by
this method, using GAviewer [7].

3.4 Generating Optical System Matrices

Since any flat geometric primitive can be propagated through the system, it
is now easy to find the total homogeneous matrix for a composition of opti-
cal elements, for any flat geometric element. For instance, if you need the
matrix for the imaging of an arbitrary 3D line, use the Plücker coordinate basis
{e01, e02, e03, e23, e31, e12} to represent both it and the result. Simply process
the i-th basis element by Eq. 20 and denote the resulting components as the i-th
column of the transformation matrix. This extends the 2D techniques of [1] to
3D, and conveniently parametrizes the system by the absolute position and focal
points of the optical elements.

4 Conclusion

We have shown that by using the geometric algebra HGA Rd,0,1 of points,
directly related to homogeneous point coordinates, one obtains an extended set
of tools to handle paraxial optics. To build composite paraxial systems, one
embeds HGA in CGA Rd+1,1. The versorial form of the resulting lensing equa-
tion means that arbitrary flat elements (points, lines, planes etc.) can be imaged
by exactly the same formulas. The parametrization, by merely the location of
optical center and focal point of each component of the system, is very easy
to use in specifications of composite 3D paraxial optical systems. The versors
can be used to generate homogeneous ray tracing matrices in 3D, considerably
extending current 2D capabilities.
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Abstract. In this paper we study the geometry and kinematics of sta-
bilizing a moving camera in order to track a stationary scene both in the
2D and 3D setting. This is being done initially in a rather straightforward
manner, using the tools of analytic and differential geometry, after which
we discuss the advantages of the so-called ‘projective geometric algebra’
(PGA) approach in this context. In the planar case one can easily get
equivalent results with complex numbers, but in 3D it is a convenient
substitute for Plücker line geometry and the theory of screws. While a lot
can be done using quaternions and differential geometry, PGA is quite
handy when there are different rotation or screw axes involved. Its basic
constructions and properties are briefly summarized in the appendix.

Keywords: surveillance drones · attitude kinematics · differential
geometry · camera motion correction · PGA

1 Introduction

Video stabilization designed to eliminate shakiness or blurriness has three main
types: digital, optical, and mechanical [1,2]. Digital stabilization estimates the
motion vectors of the successive frames and warps the images to compensate
for the motion. Optical stabilization is widely used in smartphones and SLR
cameras. This stabilization moves the lens group on a plane perpendicular to the
optical axis to offset image vibration. Mechanical stabilization usually employs a
gyroscopic stabilizer. One more recent application of these types of problems has
been used to control a drone for cinematography [3,4] and of course, there are
also new methods based on deep learning [5]. Our analysis is especially relevant
to mechanical stabilization where we have some control over the pose of the
camera and want to keep it pointed at a static object and preserving the initial
orientation. We first derive our results in a classical manner and only then discuss
the advantages of the PGA approach. Examples for illustration are given as well.
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https://doi.org/10.1007/978-3-031-50078-7_28
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2 The Planar Setting

Fig. 1. Camera following a smooth plane trajectory while keeping a static object in
sight (a) and a primitive version of the ‘Dolly’ camera-on-rails system (b).

We begin with a simple setting used in cinema: the camera K moves along
straight tracks at constant speed v and the object, O, being filmed is static,
at non-zero distance d from the tracks. It is convenient to choose a Cartesian
coordinate system with O at the origin, in which the camera’s path � has the
slope-intercept equation y = kx + n. Note also that the counter-clockwise ori-
entation angle ϕ(t) added in order keep the camera pointing to O at all times
(with ϕ = 0 along the normal to �) varies as K follows its path according to

ϕ = − arctan
x

y
− arctan k ⇒ ϕ̇ =

xẏ − yẋ

x2 + y2
· (1)

The problem becomes much more interesting if we allow the camera to follow a
generic smooth path γ in the plane (Fig. 1a), in this case, the orientation ϕ is
corrected by the angle equal to arctan y′, i.e. the one the tangent makes with Ox

ϕ = − arctan
x

y
− arctan y′(x) = − arctan

x

y
− arctan

ẏ

ẋ
(2)

where for the second equality it is convenient to use the time-parametrization
for the curve γ : r = r(t). It allows us to compute the angular velocity via

ϕ̇ =
r ∧ ṙ
r2

− ṙ ∧ r̈
ṙ2

=
r ∧ v
r2

− |v|κ (3)

where v(t)= ṙ(t) is the linear velocity and κ(t) stands for the curvature of γ. On
the other had, the orientation angle is easily determined using the wedge and
dot products of the radius-vector r(t) parameterizing γ with the normal n(t) as

ϕ = arctan
r ∧ n
r · n = arctan

〈rn〉2
〈rn〉0

= ln(rn). (4)
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For example, if γ is introduced as a level curve with the implicit function
F (x, y) = const., we use the gradient (∇-operator) to determine the normal
n = ∇F corresponding to ϕ = 0 at any point. In particular, for parameterized
γ = γ(t) and explicitly given curves γ : y = y(x) the above provides respectively

ϕ = arctan
xẋ + yẏ

yẋ − xẏ
, ϕ = arctan

x + yy′

y − xy′ · (5)

Apart from being covariant, formula (4) is written in terms of operations in the
geometric algebra Cliff(R2), namely the ratio of the bivector and the scalar part
of the geometric product rn. But the even subalgebra in this case is C, so we
may use the complex representation γ : z = x(t) + iy(t) and a few tricks from
elementary trigonometry to obtain

ϕ = arctan
ln′ |z|
arg′ z

= arg (iz̄ż). (6)

In particular, if we choose a circular trajectory around the object of interest,
i.e., γ : z = reiω◦t (ω◦ > 0), so

ż = irω◦eiω◦t ⇒ iz̄ż = −r2ω◦ ∈ R
−

which yields ϕ = π. Similarly, (3) now takes the form1

ϕ̇ = r−2Im(z̄ż) − r−1|ż| = ω◦ − ω◦ = 0

since the curvature on the circle is the inverse radius.

Note that the ambiguity in the angle ϕ has several reasons. Firstly, it is associated
with the choice of default orientation (ϕ = 0) which we relate to the normal
direction, but instead one may use the tangent vector, which in a way is more
natural and makes sense also in the 3D setting. Secondly, the orientation of the
normal is ambiguous itself until we link the parametrization to a given direction
of motion, then we assume n points to the right with respect to v, i.e., n∧v > 0.
Thirdly, the ‘arctan’ function yields only solutions in half the circle, so one may
use the so called ‘proper quadrant inverse tangent’ atan2(y, x) instead as it takes
into account the individual signs of x and y, e.g. atan2(1,−1) �= atan2(−1, 1)
and the two differ by π which remains hidden in the usual inverse tangent. Also,
since we use polar angles, there is a coordinate singularity at the origin, resulting
in a phase shift by π. However, it is safe to assume that the camera will not move
directly through the object which is being observed, due to the laws of physics.

1 the cancellation of the two terms is well known from geostationary satellites and
other cases of circular orbits (see Fig. 1b).
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3 Cameras Floating in Space

Fig. 2. Camera’s gimbal axes (a); the Frenet frame of a smooth spatial curve (b).

As in the previous section, we begin with a simplified version of the problem
considering aircraft with the ability to spin around its axis which floats along a
straight trajectory � (assuming O /∈ �). Since � and O determine a unique plane
α, we simply refer to our previous solution (1) using coordinates in α. However,
it is not always convenient to change the coordinate system so we may instead
resort to vector covariance and simply write

ϕ = ± arctan
r · ṙ

|r × ṙ| , ϕ̇ = ±|r × ṙ|
r2

(7)

where the sign depends on the choice or normal to � and the orientation of
the plane, according to our previous convention. Every plane trajectory γ may
be treated in this manner as long as O belongs to the same plane: the default
camera axis at ϕ = 0 will then be restricted to α as well. Otherwise, we need
spherical coordinates with azimuth ϑ ∈

[
0, π

2

]
measuring the deviation from the

vertical axis, while ϕ remains a polar angle measuring the camera rotation in
the plane α determined by γ and the above results apply to it if we replace O
with its orthogonal projection O′ in α. As for ϑ, using the altitude h of α and

ρ =
√

x2 + y2

as a radial variable measuring the distance to O′, one can easily show that

ϑ = arctan
ρ

h
, ϑ̇ =

hρ̇

h2 + ρ2
· (8)

Although this particular setting is rather specific, plane trajectories are impor-
tant for the applications, e.g. in the case of surveillance drones at fixed altitude.
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Let us briefly discuss the PGA approach in this relatively simple setting. Firstly,
we need the construction of α for which it is sufficient to have three points Pi ∈ γ
and use the ‘join’ operator: α = P1∨P2∨P3. The projection of O in α is given as
Πα(O) = (O · α)α−1 and we define ρ as the magnitude of the projection Πα(r).

Finally, we are going to approach the general 3D setting in the context of rel-
ative orientation and parallel transport in the frame bundle (see [6] for more
details). The moving Frenet frame {K} attached to the camera is spanned by
the unit tangent, normal and binormal vectors {t,n,b}. On the other hand, the
aircraft has its local frame {K ′} determined by the three axes allowing for atti-
tude adjustment, labeled respectively ‘roll’, ‘pitch’ and ‘yaw’ (see Fig. 2a) and
at some point we are going to need the relations between the {K}, {K ′} and
{O} frames.

This local frame {K} evolves according to the famous Frenet-Serret equations
⎛

⎝
ṫ
ṅ
ḃ

⎞

⎠ = |v|

⎛

⎝
0 κ 0

−κ 0 τ
0 −τ 0

⎞

⎠

⎛

⎝
t
n
b

⎞

⎠ (9)

where κ and τ are respectively the curvature and torsion of γ defined as

κ =
|ṙ × r̈|
|ṙ|3 , τ =

(ṙ × r̈) · ...
r

|ṙ × r̈|2 (10)

and if we consider both the aircraft and the camera as point objects, it has the
same center as {K ′} in aircraft typically the ‘roll’ axis is collinear with t at all
times due to aerodynamics, so the two frames are calibrated by a simple (typ-
ically small) phase shift φ ∈ S

1 between b and the ‘yaw’ axis in the common
normal plane (Fig. 2b). The default orientation of the camera would be down-
wards when the two axes coincide, so φ provides one source of correction to the
azimuthal angle ϑ. Another one would be the changing orientation of K with
respect to O described by the system of ODE’s (9) and a third one: the transla-
tional component of this change. We discuss these in the following sections.

At the initial moment of departure, one may choose a common orientation for
the three frames, but even then O appears on the screen relative to the distance
vector r connecting it with K. More precisely, the position on the viewing sphere
would be given by the spherical coordinates of its normalized reverse −|r|−1r.
As the aircraft travels along r = r(t) this point moves on S

2 accordingly and
at the same time the unit sphere itself undergoes two rotations: one described
by the Frenet equations (9) and another one calibrating the axes of {K} and
{K ′} via the phase φ. While the latter yields more of an engineering problem,
the former one is quite interesting even from a purely mathematical perspective.



360 D. Brezov and M. Werman

4 Parallel Transport and Calibration

In this section we formulate the general 3D problem in more abstract terms in
an attempt to provide a covariant solution, similar to (3). To begin with, the
geometry and kinematics are modeled on the pull-back ι� of the (orthogonal)
frame bundle F(E3) over affine 3-space, given by the inclusion map ι : γ → E

3,
i.e., the curve’s parametrization. Since we know that F(E3) is identical with the
Euclidean group E(3), the fibre of F(γ) = ι�F(E3) over any given base point
r◦ = r(t◦) on γ is isomorphic to SO(3). For the Frenet frame {K} this fibre
is described by the orthogonal matrix A(t◦) = {t,n,b}r◦ whose entries are the
coordinates of the unit tangent, normal and binormal vectors at r◦ ∈ γ in the
standard basis, associated with the fixed frame {O}. The time-evolution of this
matrix is given by (9), which one may also define with its kinematic equation

Ȧ = Aω ⇒ ω = AtȦ = Ω× ∈ so3 (11)

where Ω(t) = |v| (τ, 0, κ)t is the angular velocity of {K} whose adjoint yields
the generator ω(t) in the Lie algebra of the orthogonal group. In particular, for
plane curves τ = 0 and the solutions are rotations about the binormal vector
with angle given by the line integral

ϕ(t) =

t∫

t◦

κ(t) ds(t), ds = |v|dt (12)

while for the general case, it is convenient to use quaternion description with
q ∈ SU(2) and kinematic equation

q̇ =
1
2
ω̂q, ω̂ = i|v|

(
τ κ
κ −τ

)
∈ su2. (13)

The latter may easily be integrated in the case of constant curvature or more
generally, as long as ω̂ commutes with its integral, the above time-ordered expo-
nent reduces to a regular one (see [7]). The path q(t) on S

3 is then projected
to A(t) ∈ SO(3) and its action on p(t), i.e., the trace of −r(t) on S

2, yields the
camera orientation in {K}. Finally, to calibrate {K} and {K ′}, we perform an
additional rotation by an angle φ about the tangent t. As already pointed out,
this is an engineering problem depending on the particular hardware setting.
For some applications it may not be needed to invoke the use of {K} at all: the
camera’s local frame would be determined by the attitude axes and its rotation
by the corresponding sequence of adjustments, provided by the board computer.
Hence, the path p(t) ∈ S

2 describing the camera orientation is derived from
r(t) and A(t), i.e., the translational and rotational components of the Euclidean
group action on the frame bundle F(γ). Our goal here is to find this connection.
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One familiar example

Let us consider as an illustrative example a classical trajectory: the helix given
in cylindrical coordinates as ρ = a, ψ = t, z = bt with a, b > 0. Since (10) yields

κ =
a

a2 + b2
, τ =

b

a2 + b2

from (13) we have

ω̂ =
i√

a2 + b2

(
b a
a −b

)
⇒ ω̂2 = −I

which allows us to use Euler’s formula and represent the matrix exponential

q(t) = exp

⎛

⎝1
2

t∫

0

ω̂ dt′

⎞

⎠ = I cos
t

2
+ ω̂ sin

t

2
(14)

so the local frame {K} gradually rotates by an angle t about the unit vector

Ω =
1√

a2 + b2

(
b, 0, a

)t

and since the parametrization in (10) is arbitrary, for any constant circular fre-
quency ω◦ > 0 of the helix ψ(t) = ω◦t we may simply substitute a → aω◦.
Next, we denote b = aω◦ tan ϕ◦ which yields Ω = (cos ϕ◦, 0, sinϕ◦)

t, thus
obtaining from (14) the expression (see [7] for similar examples)

q =
(

cos ω◦t + i sin ϕ◦ sin ω◦t i cos ϕ◦ sin ω◦t
i cos ϕ◦ sin ω◦t cos ω◦t − i sin ϕ◦ sin ω◦t

)

and to apply the inverse rotation to −r we express it in quaternion basis as

−r ∈ E
3 → ξ =

(
ia cos ω◦t ibt + a sin ω◦t

ibt − a sin ω◦t −ia cos ω◦t

)
∈ su2.

The inverse adjount action ξ̃ = q†ξq then yields the camera’s direction vector in
the form r̃ = −Atr with

At =

⎛

⎝
1 + aκ cos ω◦t

√
aκ sin ω◦t aτ cos ω◦t

−√
aκ sin ω◦t 1 + cos ω◦t

√
bτ sin ω◦t

aτ cos ω◦t −
√

bτ sin ω◦t 1 + bτ cos ω◦t

⎞

⎠·

The above solution, however, has one major drawback: it ignores the camera’s
axial rotation needed to stabilize the picture. This problem may be addressed
using classical Euler decomposition once we study the overall impact of camera
motion - considering both translations and rotations, as we are about to do next.
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5 Putting It All Together

In practice, one rarely has the luxury of knowing the time-parameterized path
γ = γ(t), except in the case of pre-calculated trajectories, e.g. interplanetary
missions or aircraft put on auto-pilot. What we typically have as initial data
instead, are the spatial coordinates of the camera’s carrier, given by the GPS
and altitude devices, plus the instantaneous linear v and angular ω̂ velocity or
relevant physical quantities from which they may be derived. So, we may use
(13) and (9) to retrieve the time-evolution of the Frenet frame at least locally,
via simple numerical integration. This step is needed at the final stage to obtain
the desired patch of a smooth trajectory on the covering group

Fig. 3. Planes through the origin in {O} represented as great circles on S
2 (a) and the

order of the camera’s orientation corrections as viewed form p◦ (b).

G̃ ∼= SU(2) × R
+ ∼= R

4/{0} ∼= H
× (15)

parameterizing the camera orientation and zoom. It is more accurate to take
G ∼= SO(3) × I where I is a finite interval, but it is nicely embedded in G̃ which
we may describe using quaternions or PGA, thus avoiding some singularities.
Then, the q-solution may easily be expressed in terms of physically relevant
parameters for the camera manipulator, such as Euler angles, matrices or axis-
angle coordinates (with an additional zoom factor) derived from q(t), namely

q ∈ H
× −→ p ∈ S

2, ψ ∈ S
1, d ∈ R

+ (16)

where p is the projection of the observed object’s center onto the celestial sphere
of the moving camera, given with its polar angle ϕ and azimuth ϑ, while d is
the relative distance, compensated with zoom and focus adjustments; ψ here
measures the of the camera’s axial spin. The latter is irrelevant if we consider
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only point objects, in which case the spherical coordinates of the relative radius-
vector r connecting the two frames are sufficient. Hence, this additional degree of
freedom allows us to fix two pixels on the screen (one adjusting p and the other
- circling around it), preserving the orientation by keeping the horizontal axis
steady at all times. One more thing to consider in real-life scenarios is that the
aircraft is not a point object either, but rather a rigid body floating in space. The
sensors, the camera, and the geometric center have different trajectories, so one
should properly compose the corresponding infinitesimal motions before looking
for a solution. Moreover, the typical aircraft axes differ from the Frenet frame, as
mentioned above, except for the “roll” which is aligned with the tangent during
maneuvering, so additional adjustment is required to determine κ and τ .

T-motion

For clarity, we consider separately pure translations (T-motion) of the camera’s
local frame {K} with respect to the one attached to the observed object {O},
and rotations (R-motion) of the Frenet basis, described by (9), although they are
generally entangled. If the moving camera is considered point object observing
a faraway scene for instance, the relative T-motion of {O} with respect to {K}
simply adds to the radius-vectors of all points in the observed object a fixed
translation vector Δr:

Δr =

t∫

t◦

v(t)dt, v(t) = ṙ(t) (17)

where r(t) represents the origin2 of {O} in the camera’s local frame. We choose
r◦ = r(t◦) to be aligned with the z-axis of the camera, or the north pole (ϑ = 0)
in spherical coordinates. As the polar angle is arbitrary, we may pick a second
reference point r, corresponding to some initial ϑ◦ within the viewing angle
and ϕ◦ = 0. Thus, we have a line connecting r◦ and r that projects onto the
Greenwich meridian ϕ = 0 of the camera’s celestial sphere and may be used
for orientation of the observed image, e.g. as the horizontal axis. To keep both
the center ϑ = 0 and the orientation ϕ = 0 fixed at all times, the camera’s
manipulator needs to counter the shifts in the spherical angles caused by Δr
performing a ϑ-correction followed by a ϕ-correction. Moreover, to keep the
scale of the image consistent, one uses optical or digital zoom compensating
for the variable distance between {K} and {O}. Ideally, one knows the pre-
calculated time-parameterized trajectory γ(t), e.g. for spacecraft and satellites,
which means we can easily obtain the corresponding path r(t) and therefore, its
trace p(t) on S

2. To preserve orientation however, one needs to take into account
a second point on the object whose radius-vector in the moving frame {K} we
denote with r′. Then, r and r′ determine a plane α intersecting the camera’s

2 the preferred reference point of the observed object.
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viewing sphere at a great circle c (Fig. 3a) which intersects the ϕ = 0 meridian
g = S

2 ∩ {y = 0} at a point S
2 � p̃ = c ∩ g easily determined by (see Fig. 3b)

p̃ :

∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 1
x y z 1
x′ y′ z′ 1

sin ϑ̃ 0 cos ϑ̃ 1

∣
∣
∣
∣
∣
∣
∣
∣

= 0 ⇒ tan ϑ̃ =

∣
∣
∣
∣
x y
x′ y′

∣
∣
∣
∣

∣
∣
∣
∣
z y
z′ y′

∣
∣
∣
∣

· (18)

The next step is to bring p̃ to the north pole p◦ adjusting the azimuth by an
angular correction ϑ̃ and rotate in the equatorial plane in order to make p and
p′ incident with g. The corresponding polar angle ϕ̃ = �(c, g) equals the one
between the normal nc = r× r′ and the y-axis, for which we obtain (see Fig. 3b)

ϕ̃ = ± arccos
∣
∣
∣
∣
z x
z′ x′

∣
∣
∣
∣ = ± arccos �(r ∧ r′ ∧ e2) (19)

with sign depending on the orientation. Finally, we need to bring p back to p◦
which requires an additional ϑ-adjustment along g by an angle ψ̃, equal to the
spherical distance between p◦ and p, followed by proper scaling (zoom), keeping
the distance between p and p′ fixed. For faraway objects it is given by |r|−1|Δr|.

The above conclusions are quite easy to derive using PGA, e.g. in the frame {O}
the plane α = O ∨ P ∨ P ′ = nc intersects β = e2 at the line � = e2 ∧ nc whose
directional vector u = �(r∧ r′ ∧ e3, 0, −r∧ r′ ∧ e1)t can be represented in polar
coordinates in the plane β as u = |u|(e1 cos ϑ̃+e3 sin ϑ̃), so we end up with (18).
The other two rotations, as well as the scale factor, are quite easy to obtain and
do not need special treatment. Note, however, the relation to spherical geometry.

R-motion and Euler angles

One cannot help but notice that the rotation scheme proposed above invokes the
classical YZY Euler decomposition in the camera reference frame. We refer to a
method used in [8], providing the decomposition parameters in the simple form

τ1 =
r23

r23 ±
√

1 − r222
, τ2 = ±

√
1 − r22
1 + r22

τ3 =
r32

−r12 ±
√

1 − r222
(20)

where rij denote the compound rotation’s matrix entries in the local camera
frame and the Euler angles are given respectively as φk = 2arctan τk. Next,
we need to add the motion due to internal rotations, not related to the Frenet
equations (9). The composition of rotations is an easy task, but since they do not
commute, the issue of order becomes relevant. The same refers to the composition
of rotations with translations, so the screw interpretation comes handy as both
components commute according to the famous Mozzi-Chasles’ theorem. Any
rotation R(t) of the frame {K}, whether due to the curvature and torsion of
the camera’s trajectory or due to maneuvering, corresponds to a rotation R−1

of the object with respect to that frame, can be effectively compensated by a
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proper rotation of the camera itself. In general, we need to deal with both types
of motions simultaneously and trajectories are not always predetermined but
often depend on various conditions and thus calculated in real time using data
from the sensors. Moreover, the camera’s coordinate frame {K} and the one of
the aircraft are generally different {K ′}, as mentioned before, which needs to be
taken into account prior to any calculations. One major advantage of the PGA
approach in this context is that it deals with these issues almost automatically.

Final remarks

The present paper suggests a straightforward analytic approach to the problem
of camera motion correction in the case of a stationary scene and discusses
some advantages of the PGA representation in this context. Exact solutions may
not always more efficient, but they are at least a valuable aid to the numerical
algorithms and especially in the study of theoretical aspects, such as singularities,
or possible generalizations, some of which we leave for a future research projects.

Appendix: PGA in a Nutshell

Here we provide a brief idea how projective geometric algebra (PGA) works in
this setting. The classical Clifford’s geometric algebra is often introduced as a
factorization of the tensor algebra or an extension to the Grassmann exterior
algebra. However, it is easier to understand starting with a vector space V ∼= R

n

with additional structure, called geometric multiplication, which for vectors is
just the sum of the familiar‘dot’ (interior) and‘wedge’ (exterior) products, i.e.,

ξη = ξ · η + ξ ∧ η, ξ,η ∈ V. (21)

This yields a scalar and a bivector component, referred to as grade zero and grade
two elements, respectively. Using grade projectors we may write 〈ξη〉0 = ξ · η
and 〈ξη〉2 = ξ∧η. The maximal possible grade equals n and is one-dimensional,
spanned by the so-called pseudo-scalar I. It yields the Hodge operator � switch-
ing from k to n−k grades by sending each element to its orthogonal complement.
This convenient duality is extensively used in all of geometry, and PGA in par-
ticular. Allowing hyperbolic or parabolic signatures we model different isometry
groups, e.g. Lorenz transformations via the space-time algebra Cliff(R3,1) or 3D
Euclidean motions via PGA: Cliff(R3,0,1). They are contained in the subalgebra
of even grade elements, justified by the Z2-grading of Cliff(V ), and generated by
bivectors. One simple example is the algebra of complex numbers C ∼= Cliff◦(R2)

e21 = e22 = 1, e1 · e2 = 0, e1 ∧ e2 = e1e2 = I

spanned by mutually commuting scalars and bivectors, where we also have

I2 = (e1e2)2 = −e21e
2
2 = −1 ⇒ Cliff◦(R2) ∼= R[i] ∼= C.
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Restriction to elements of unit norm yields the orthogonal group in the plane
O(2) ∼= U(1). Similarly, the even part of Cliff(R3) gives rise to the quaternion
algebra H spanned by the scalars in R and the three basic bi-vectors

i = e2e3, j = e3e1, k = e1e2

carved on that famous Dublin bridge by Hamilton, while Cliff(R3) ∼= Cliff◦(R3,1)
includes also reflections, interpreted as boosts from the relativistic perspective. In
order to extend to the Galilean group of rigid transformations in E

n, however,
one needs to add one more dimension spanned by e◦ with e2◦ = 0. Then, it
is convenient to use the �-duality and represent points as n-vectors, lines as
(n−1)−vectors etc., with actual vectors corresponding to their orthogonal hyper-
planes. In the 3D setting for instance, points are given by their homogeneous
coordinates {pi} in the basis of three-vectors as

P = p◦I3 − e◦(p1i + p2j + p3k), I3 = e1e2e3

and the Euclidean projection is in the plane p◦ = 1, i.e., rp has coordinates pi/p◦,
while p◦ = 0 corresponds to a ‘point at infinity’ and cannot be normalized in
this way. Similarly, lines are presented by their Plücker coordinates

� = u1i + u2j + u3k − e◦(m1e1 + m2e2 + m3e3)

with u and m denoting the so-called displacement and moment vector, respec-
tively. Finally, planes are given by vectors in Cliff(R3,0,1), namely as:

α = n1e1 + n2e2 + n3e3 − δe◦

and the incidence relation P ∈ α is now written as P ·α = 0 instead of the usual
n · rp = δ. If we denote bivectors with v̂ = vI3, the so-called ‘flats’ are given as

P = p◦I3 − e◦p̂, � = û − e◦m, α = n − δe◦ (22)

and we can use the wedge product as a ‘meet’ operator to find intersections, e.g.

� ∧ α = (û − e◦m) ∧ (n − δe◦) = u · nI3 − e◦(δû − n ∧ m)

which seems more handy that resolving linear algebraic systems. Note that if
u ⊥ n, the two flats are parallel and we end up with a point at infinity (p◦ = 0).
Likewise, two parallel lines meet at infinity unless their moments are equal. We
interpret e◦ as the normal vector to the plane at infinity (and to all E3) but
should resist the temptation to replace it with the hypercomplex unit ε used in
dual numbers D ∼= R[ε] as it does not commute with all elements of our algebra.
The interior product on the other hand, is used for projections, e.g. (� · α)α−1

yields the α-‘shadow’ of �. Using the Hodge duality, we define the ‘join’ operator

A ∨ B = �−1(�A ∧ �B), �A = AI−1
3 = −AI3 (23)

via the famous De Morgan’s law and due to its symmetry, we also have

A ∧ B = �−1(�A ∨ �B).
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In particular, one may use ∨ to represent the line � = P ∨ Q through points
P and Q, or the plane α = � ∨ P determined by the line � and a point P /∈ �,
i.e. � ∧ R = 0, etc. Finally, let us see how these geometric objects produce
transformations. We begin with plane reflections as they generate all isometries
in 3D due to the famous Catrtan-Dieudonne theorem, and in PGA they act as

α : P → P̃ = Mα(P ) = −αPα−1. (24)

They are interpreted as Lie elements generation motion via the exponential map

T� : P → P̃ = e−�Pe� (25)

which corresponds to either a rotation (�2 < 0), translation (�2 = 0) or a screw
displacement if � is not a blade3. The magnitude of � is proportional to the rota-
tion angle, as we know from the examples of quaternions and complex numbers.
For a more elaborate introduction to PGA we refer the reader to [9] and [10].
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Abstract. Octonions are 8-dimensional hypercomplex numbers which
form the biggest normed division algebras over the real numbers. Moti-
vated by applications in theoretical physics, continuous octonionic anal-
ysis has become an area of active research in recent year. Looking at
possible practical applications, it is beneficial to work directly with dis-
crete structures, rather than approximate continuous objects. Therefore,
in previous papers, we have proposed some ideas towards the discrete
octonionic analysis. It is well known, that there are several possibilities
to discretise the continuous setting, and the Weyl calculus approach,
which is typically used in the discrete Clifford analysis, to octonions
has not been studied yet. Therefore, in this paper, we close this gap by
presenting the discretisation of octonionic analysis based on the Weyl
calculus.

Keywords: Octonions · Discrete Dirac operator · Weyl calculus ·
Discrete octonionic function theory

1 Introduction

Generalisations of complex analysis have been area of active research for many
years. Similar to the classical complex analysis, its higher-dimensional generali-
sations aim to develop tools of function theory and operator calculus for solving
boundary value problems in higher dimensions. Typically, engineering appli-
cations have focus mainly on three-dimensional settings and, thus, requiring
tools of quaternionic analysis, see for example [14,16]. Applications in theoreti-
cal physics however require consideration of dimensions n > 3: for example, Ein-
stein’s relativity theory implies consideration of a four-dimensional case. Modern
results on models of a generalised standard model, e.g. [4,13,22], indicate that
an eight-dimensional setting should be considered. Hence, octonions, which are
exactly 8-dimensional hypercomplex numbers, are suitable candidates to address
this generalised standard model.

Broadly speaking, complex numbers and complex analysis can be extended
to higher dimensions in two general ways: (i) constructing associative Clifford
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Sheng et al. (Eds.): CGI 2023, LNCS 14498, pp. 368–378, 2024.
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algebras leading to several function theories that consider functions defined on
open subsets of an arbitrary dimensional vector space R

n+1 that take values in a
2n-dimensional Clifford algebra C�n; or, (ii) the Cayley-Dickson duplication pro-
cess can be applied to the complex numbers leading first to the four-dimensional
Hamiltonian quaternions (which is a Clifford algebra), and after the second appli-
cation, we obtain a new algebra, namely the octonions, see [1]. The Clifford alge-
bra approach gave rise to the function theory known as Clifford analysis, e.g.
[2], and provides a complete toolbox of generalised function theory including a
Cauchy integral formula, Taylor and Laurent series expansions, a residue theory
and a toolkit to study operators of Calderon-Zygmund type on strongly Lips-
chitz surfaces, and many more. In contrast to Clifford algebras, octonions are
not any more associative, and, therefore, they are neither a Clifford algebra nor
representable with matrices in general. It is important to remark that in [21] it
has been shown, that octonions can be embedded into geometric algebra of space
time, which itself can be represented by matrices. Therefore, because of this con-
nection between octonionc and geometric algebra, a matrix embedding of low
dimensions is nonetheless possible. Despite of non-associativity, it is nonetheless
possible to construct octonionic generalisation of the classical complex analysis,
see for example works [9,12,17,18,23–25] and references therein.

Looking at practical applications of function theory, it is necessary to approx-
imate the tools of continuous theories, because explicit calculations of integral
formulae can only be done for some canonical domains. An alternative approach
to the approximation of continuous structures, is to work directly at the dis-
crete level, implying that a discrete counterparts of continuous theories need
to be constructed. In the context of Clifford analysis, a lot of results address-
ing bounded and unbounded settings have been presented in recent years, see
[3,5–8,10,11,15] among others. However, in octonionic setting, the situation is
different, since only recently first ideas related to discrete octonionic analysis
have been presented in [19,20].

It is known that there are several ways to introduce a discrete counterpart
of a continuous theory, which will affect the structure of the discrete setting.
In [19,20] discrete octonionic analysis has been discretised by help of a direct
discretisation of the continuous Cauchy-Riemann operators by help of finite
difference operators. In particular, discrete forward Cauchy-Riemann operator
D+ : lp(Ωh,O) → lp(Ωh,O) and a discrete backward Cauchy-Riemann operators
D− : lp(Ωh,O) → lp(Ωh,O) have been introduced as follows

D+
h :=

7∑

j=0

ej∂
+j
h , D−

h :=
7∑

j=0

ej∂
−j
h .

Factorisation of the star-Laplacian Δh by help f these operators has a more
complicated form compared to the continuous setting:

Δh =
1
2

(
D+

h D−
h + D−

h D+
h

)
with Δh :=

7∑

j=0

∂+j
h ∂−j

h ,
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where D+
h and D−

h are the discrete conjugated forward and backward Cauchy-
Riemann operators, respectively. In [20], discrete Cauchy formula, discrete Borel-
Pompeiu formula, as well as discrete Hardy spaces have been introduced for
the operators D+

h and D−
h . However, if it is desired to preserve the classical

factorisation of the discrete Laplace operator, it is necessary to consider another
setting. In the discrete Clifford analysis, this problem is overcome by considering
the Weyl calculus approach consisting in splitting basis elements ei into positive
and negative parts. Further, this splitting is required to satisfy specific relations
for non-commutativity. In this paper, we present ideas of using the Weyl calculus
approach to discretise octonionic analysis. As we will see, the splitting of basis
elements must satisfy also non-associativity conditions for preserving the non-
associative structure of octonions.

2 Preliminaries and Notations

Let us now briefly recall some basic facts about octonions and continuous octo-
nionic analysis. Let us consider 8-dimensional Euclidean space R

8 with the basis
unit vectors ek, k = 0, 1, . . . , 7 and points x = (x0, x1, . . . , x7). Now an element
of R8 can be expressed as follows

x = x0e0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7,

where the basis elements satisfy e4 = e1e2, e5 = e1e3, e6 = e2e3 and e7 =
e4e3 = (e1e2)e3. Moreover, we have e2i = −1 and e0ei = eie0 for all i = 1, . . . , 7,
and eiej = −ejei for all mutual distinct i, j ∈ {1, . . . , 7}, as well as e0 is the
neutral element and, therefore, often will be omitted. Multiplication rules for real
octonions are shown in Table 1. In particular, it can be clearly seen from this
table that the octonionic multiplication actually is closed but not associative,
because we have (eiej)ek = −ei(ejek).

Table 1. Multiplication table for real octonions O

· e0 e1 e2 e3 e4 e5 e6 e7

e0 1 e1 e2 e3 e4 e5 e6 e7

e1 e1 −1 e4 e5 −e2 −e3 −e7 e6

e2 e2 −e4 −1 e6 e1 e7 −e3 −e5

e3 e3 −e5 −e6 −1 −e7 e1 e2 e4

e4 e4 e2 −e1 e7 −1 −e6 e5 −e3

e5 e5 e3 −e7 −e1 e6 −1 −e4 e2

e6 e6 e7 e3 −e2 −e5 e4 −1 −e1

e7 e7 −e6 e5 −e4 e3 −e2 e1 −1

As it has been already mentioned in the introduction, octonions are different
to classical Clifford analysis. Firstly, octonionic analysis addresses functions from
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R
8 to R

8, while the Clifford algebra C�7 is actually isomorphic to R
128 and not

to R
8. Secondly, left or right octonionic monogenic functions do neither form a

right nor a left O-module, see [18] for concrete examples. Nonetheless, it is still
possible to construct a consistent function theory and the theory of generalised
Hilbert function spaces in octonionic settings, see [9] and references therein.

Another distinct feature of the octonionic analysis is presence of the associ-
ator in some of construction, which appears because of the lack of associativity.
For example, the octonionic Stokes’ formula [25] has the form:

∫

∂G

g(x) (dσ(x)f(x)) =

∫

G

(
g(x)(Df(x)) + (g(x)D)f(x) −

7∑

j=0

[ej ,Dgj(x), f(x)]

)
dV,

(1)

where the associator is given by the expression [a, b, c] := (ab)c − a(bc). It
was expected that the associator appears also in the discrete setting. However,
the results presented in [19,20] show that the associator surprisingly disappear
from the constructions. Studying of different discrete Cauchy-Riemann opera-
tors, namely discrete forward, backward, and central operators, indicated that
the disappearance of the associator is a particularity of the discrete setting.
Nonetheless, it is interesting to study if the associator also disappears in the
case of Weyl calculus approach to the discrete octonionic analysis.

For introducing discrete setting, let us consider at first the unbounded uni-
form lattice hZ8 with the lattice constant h > 0:

hZ8 :=
{
x ∈ R

8 |x = (m0h,m1h, . . . ,m7h),mj ∈ Z, j = 0, 1, . . . , 7
}

.

Classical forward and backward differences ∂±j
h are defined in the classical way

as follows:
∂+j

h f(mh) := h−1(f(mh + ejh) − f(mh)),
∂−j

h f(mh) := h−1(f(mh) − f(mh − ejh)),
(2)

with mh ∈ hZ8 and for discrete functions f(mh), which are defined on Ωh ⊂ hZ8

and taking values in octonions O.
Because our goal is to study the Weyl calculus approach to the discretisa-

tion of octonionic analysis, we follow the ideas from [3,11], and split each basis
element ek, k = 0, 1, . . . , 7, into positive and negative directions e+k and e−

k ,
k = 0, 1, . . . , 7, i.e., ek = e+k + e−

k . Further, the splitting of basis elements must
satisfy the following relations:

⎧
⎨

⎩

e−
j e

−
k + e−

k e
−
j = 0,

e+j e
+
k + e+k e

+
j = 0,

e+j e
−
k + e−

k e
+
j = −δjk,

(3)

where δjk is the Kronecker delta. The main advantage of this approach is that
it leads to a canonical factorisation of a star-Laplacian Δh by a pair of discrete
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Cauchy-Riemann operators, which are defined by help of the splitting of basis
elements and finite difference operators as follows

D+−
h :=

7∑

j=0

e+j ∂+j
h + e−

j ∂−j
h , D−+

h :=
7∑

j=0

e+j ∂−j
h + e−

j ∂+j
h .

Hence, the following factorisation of the star-Laplacian is obtained

(D+−
h )2 = (D−+

h )2 = −Δh,

with

Δh :=
7∑

j=0

∂+j
h ∂−j

h .

While working with splitting of basis elements, it is important to address the
non-associativity of octonionic multiplication. Therefore, later on, during the
proof of discrete octonionic Stokes’s formula, we will introduce relations similar
to (3) for addressing the non-associativity in Weyl calculus setting.

3 The Discrete Octonionic Stokes’ Formula

In this section, we introduce the discrete Stokes’ formula in octonionic setting
based on the Weyl calculus approach. Since previous results presented in [19,20]
have shown the surprising effect of the associator disappearing in the discrete
setting, the main interest here is to study if the approach based on the Weyl
calculus leads to structurally another form of the discrete Stokes’ formula in
comparison to the results presented in [19,20]. Precisely, we would like to under-
stand, if the associator will appear in this case. In particular, the proof of the
discrete Stokes’ formula is the main part of this study, while the discrete for-
mulae for the upper and the lower half-lattices will be obtained immediately by
using the same ideas as in [19]. In this regard, the main point is to study, if the
associator could be obtained under the splitting of the basis elements respecting
the non-associativity.

The following theorem presents the discrete octonionic Stokes’ formula for
the whole space:

Theorem 1. The discrete Stokes’ formula for the whole space with the lattice
hZZ8 is given by

∑

m∈Z8

{[
g(mh)D−+

h

]
f(mh) − g(mh)

[
D+−

h f(mh)
]}

h8 = 0 (4)

for all discrete functions f and g such that the series converge.

Proof. For providing a clear picture of how Weyl calculus setting can be brought
together with the non-associativity of octonionic multiplication, we will present
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the proof of Stokes’ formula with all explicit calculations. Additionally, for short-
ening the notations, the lattice constant h will be omitted in the argument of
discrete functions from now on and we will write simply f(m) or f(m0, . . . ,m7)
instead of f(mh) or f(m0h, . . . ,m0h), respectively.

At first, we start the first term on the left-hand side in (4):

∑

m∈Z8

[
g(m)D−+

h

]
f(m)h8 =

∑

m∈Z

7∑

j=0

[
∂−j

h g(m)e+j + ∂+j
h g(m)e−

j

]
f(m)h8

=
∑

m∈Z

7∑

j=0

7∑

i=0

[
∂−j

h gi(m)
(
e+i + e−

i

)
e+j + ∂+j

h gi(m)
(
e+i + e−

i

)
e−

j

]
f(m)h8.

Splitting similarly the unit vectors of function f and finite difference operators,
and multiplying the result, we obtain the following expression:

∑

m∈Z

7∑

j=0

7∑

i=0

7∑

k=0

[
∂−j

h gi(m)fk(m)
(
e+i e

+
j

)
e+k + ∂−j

h gi(m)fk(m)
(
e+i e

+
j

)
e−

k

+∂−j
h gi(m)fk(m)

(
e−

i e
+
j

)
e+k + ∂−j

h gi(m)fk(m)
(
e−

i e
+
j

)
e−

k

+∂+j
h gi(m)fk(m)

(
e+i e

−
j

)
e+k + ∂+j

h gi(m)fk(m)
(
e+i e

−
j

)
e−

k

+∂+j
h gi(m)fk(m)

(
e−

i e
−
j

)
e+k + ∂+j

h gi(m)fk(m)
(
e−

i e
−
j

)
e−

k

]
h8.

For preserving the anti-associativity of octonionic multiplication, the splitting
of basis elements e must satisfy also the following anti-associative relations:

(
e+i e

+
j

)
e+k = −e+i

(
e+j e

+
k

)
,
(
e+i e

+
j

)
e−

k = −e+i
(
e+j e

−
k

)
,(

e−
i e

+
j

)
e+k = −e−

i

(
e+j e

+
k

)
,
(
e−

i e
+
j

)
e−

k = −e−
i

(
e+j e

−
k

)
,(

e+i e
−
j

)
e+k = −e+i

(
e−

j e
+
k

)
,
(
e+i e

−
j

)
e−

k = −e+i
(
e−

j e
−
k

)
,(

e−
i e

−
j

)
e+k = −e−

i

(
e−

j e
+
k

)
,
(
e−

i e
−
j

)
e−

k = −e−
i

(
e−

j e
−
k

)
.
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Taking into account these relations and the definition of finite difference opera-
tors leads to the following expression

∑

m∈Z

7∑

j=0

7∑

i=0

7∑

k=0

[
gi(m − ej)fk(m)e+i

(
e+j e

+
k

) − gi(m)fk(m)e+i
(
e+j e

+
k

)

+gi(m − ej)fk(m)e+i
(
e+j e

−
k

) − gi(m)fk(m)e+i
(
e+j e

−
k

)

+gi(m − ej)fk(m)e−
i

(
e+j e

+
k

) − gi(m)fk(m)e−
i

(
e+j e

+
k

)

+gi(m − ej)fk(m)e−
i

(
e+j e

−
k

) − gi(m)fk(m)e−
i

(
e+j e

−
k

)

−gi(m + ej)fk(m)e+i
(
e−

j e
−
k

)
+ gi(m)fk(m)e+i

(
e−

j e
−
k

)

−gi(m + ej)fk(m)e+i
(
e−

j e
+
k

)
+ gi(m)fk(m)e+i

(
e−

j e
+
k

)

−gi(m + ej)fk(m)e−
i

(
e−

j e
+
k

)
+ gi(m)fk(m)e−

i

(
e−

j e
+
k

)

−gi(m + ej)fk(m)e−
i

(
e−

j e
−
k

)
+ gi(m)fk(m)e−

i

(
e−

j e
−
k

)]
h8.

Performing change of variables in the last expression and bringing together com-
mon terms, we get

∑

m∈Z

7∑

j=0

7∑

i=0

7∑

k=0

[
gi(m)e+i (fk(m + ej) − fk(m))

(
e+j e

+
k

)

+gi(m)e+i (fk(m + ej) − fk(m))
(
e+j e

−
k

)
+ gi(m)e−

i (fk(m + ej) − fk(m))
(
e+j e

+
k

)

+gi(m)e−
i (fk(m + ej) − fk(m))

(
e+j e

−
k

)
+ gi(m)e+i (fk(m) − fk(m − ej))

(
e−

j e
−
k

)

+gi(m)e+i (fk(m) − fk(m − ej))
(
e−

j e
+
k

)
+ gi(m)e−

i (fk(m) − fk(m − ej))
(
e−

j e
+
k

)

+gi(m)e−
i (fk(m) − fk(m − ej))

(
e−

j e
−
k

)]
h8,
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which is by using difference operators and definition of the splitting of basis
elements further simplified to

∑

m∈Z

7∑

j=0

7∑

i=0

7∑

k=0

[
gi(m)e+i ∂+j

h fk(m)
(
e+j e

+
k

)
+ gi(m)e+i ∂+j

h fk(m)
(
e+j e

−
k

)

+gi(m)e−
i ∂+j

h fk(m)
(
e+j e

+
k

)
+ gi(m)e−

i ∂+j
h fk(m)

(
e+j e

−
k

)

+gi(m)e+i ∂−j
h fk(m)

(
e−

j e
−
k

)
+ gi(m)e+i ∂−j

h fk(m)
(
e−

j e
+
k

)

+gi(m)e−
i ∂−j

h fk(m)
(
e−

j e
+
k

)
+ gi(m)e−

i ∂−j
h fk(m)

(
e−

j e
−
k

)]
h8

=
∑

m∈Z

7∑

j=0

7∑

i=0

7∑

k=0

[
gi(m)e+i ∂+j

h e+j fk(m)ek + gi(m)e−
i ∂+j

h e+j fk(m)ek

+gi(m)e+i ∂−j
h e−

j fk(m)ek + gi(m)e−
i ∂−j

h e−
j fk(m)ek

]
h8

=
∑

m∈Z

7∑

j=0

[
g(m)∂+j

h e+j f(m) + g(m)∂−j
h e−

j f(m)
]
h8

=
∑

m∈Z

g(m)
[
D+−

h f(m)
]
h8.

Thus, the statement of the theorem is proven.

Evidently, the discrete octonionic Stokes’ formula (4) does not contain the
associator, similar to the results based on forward, backward, and central
Cauchy-Riemann operators presented in [19,20]. This fact confirms a possible
reason for this behaviour hypothesised in [20], that this is the effect of a dis-
cretisation. Further, again we have that the non-associativity is reflected in the
change of the sign of the second summand in (4) in comparison to the discrete
Clifford analysis case [6,8].

To complete the discussion of discrete Stokes’ formula, let us present now this
formula for two cases of interest: upper and lower half-spaces (or half-lattices).
The half-lattices are defined as follows

hZ8
+ :=

{
(hm, hm7) : m ∈ Z

7,m7 ∈ Z+

}
,

hZ8
− :=

{
(hm, hm7) : m ∈ Z

7,m7 ∈ Z−
}

.

Next, we present two theorems providing discrete octonionic Stokes’ formulae
for hZ8

+ and hZ8
−, respectively. The proofs of these theorems will be omitted,

since they follow the general strategy of the proofs presented in [19] while con-
sidering also non-associativity relations for splitting of basis elements presented
in the proof of Theorem 1.
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Theorem 2. The discrete Stokes’ formula for the upper half-lattice hZ8
+ is given

by ∑

m∈Z
8
+

{[
g(mh)D−+

h

]
f(mh) − g(mh)

[
D+−

h f(mh)
]}

h8

=
∑

m∈Z7

[
e+7 (g(m, 0)fk(m, 1)) + e−

7 (g(m, 1)fk(m, 0))
]
h8

(5)

for all discrete functions f and g such that the series converge.

Theorem 3. The discrete Stokes’ formula for the lower half-lattice hZ8
− is given

by ∑

m∈Z
8
−

{[
g(mh)D−+

h

]
f(mh) − g(mh)

[
D+−

h f(mh)
]}

h8

= −
∑

m∈Z7

[
e+7 (g(m,−1)fk(m, 0)) + e−

7 (g(m, 0)fk(m,−1))
]
h8

(6)

for all discrete functions f and g such that the series converge.

4 Summary

First results in the discrete octonionic analysis, which are based discrete forward
and discrete backward Cauchy-Riemann operators, have been presented recently.
Looking at the results in the discrete Clifford analysis, the typical approach there
is use the Weyl calculus approach, since it preserves the canonical factorisation
of the discrete Laplace operator. Therefore, in this short paper, we discussed
the Weyl calculus approach to the discrete octonionic analysis, since it is of
particular interest to see how the non-associativity of octonionic multiplication
will affect the constructions, as well as if the associator appears in this case.

The results presented in this paper show, that the Weyl calculus approach
follows the same steps as previous results meaning that the discrete octonionic
Stokes’s formula has structurally the same form (different in sign to the case of
discrete Clifford analysis) as in the previous works and the associator does not
appear. Hence, it is safe to assume that the disappearance of the associator is a
distinct feature of the discrete setting. It is particularly interesting to study in
future work the approximation properties of discrete structures, because if we
take the limit h → 0, then the associator must appear, because it is present in
the continuous case. This topic will be addressed in the future works.
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Abstract. The power of Clifford or, geometric, algebra lies in its abil-
ity to represent geometric operations in a concise and elegant manner.
Clifford algebras provide the natural generalizations of complex, dual
numbers and quaternions into non-commutative multivectors. The paper
demonstrates an algorithm for the computation of inverses of such num-
bers in a non-degenerate Clifford algebra of an arbitrary dimension. The
algorithm is a variation of the Faddeev-LeVerrier-Souriau algorithm and
is implemented in the open-source Computer Algebra System Maxima.
Symbolic and numerical examples in different Clifford algebras are pre-
sented.

Keywords: multivector · Clifford algebra · computer algebra

1 Introduction

Clifford algebras provide the natural generalizations of complex, dual and split-
complex (or hyperbolic) numbers into the concept of Clifford numbers, i.e. gen-
eral multivectors. The power of Clifford or, geometric, algebra lies in its ability
to represent geometric operations in a concise and elegant manner. The devel-
opment of Clifford algebras is based on the insights of Hamilton, Grassmann,
and Clifford from the 19th century. After a hiatus lasting many decades, the
Clifford geometric algebra experienced a renaissance with the advent of con-
temporary computer algebra systems. Clifford algebras can be implemented in
a variety of general-purpose computer languages and computational platforms.
Recent years have seen renewed interest in Clifford algebra platforms: notably,
for Maple, Matlab, Mathematica, Maxima, Ganja.js for JavaScript, GaLua for
Lua, Galgebra for Python, Grassmann for Julia.

Computation of inverses of multivectors has drawn continuos attention in the
literature as the problem was only gradually solved [1,4,5,9]. The present contri-
bution demonstrates an algorithm for multivector inversion, which involves only
multiplications and subtractions and has a variable number of steps, depending
on the spanning subspace of the multivector. The algorithm is implemented in
Maxima using the Clifford package [6,8].
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In order to compute an inverse of a multivector, previous contributions use
series of automorphisms of special types. This allows one to write basis-free for-
mulas with increasing complexity. On the other hand, the present algorithm is
based on Faddeev–LeVerrier–Souriau (FVS) algorithm for characteristic polyno-
mial and matrix inverse computation. The correctness of the algorithm is proven
using an algorithmic, constructive representation of a multivector in the matrix
algebra over the reals, but it by no means depends on such a representation.
The present FVS algorithm is in fact a proof certificate for the existence of an
inverse. To the present author’s knowledge the FVS algorithm has not been used
systematically to exhibit multivector inverses.

2 Notation and Preliminaries

C�n will denote a Clifford algebra of order n but with unspecified signature.
Clifford multiplication is denoted by simple juxtaposition of symbols. Algebra
generators will be indexed by Latin letters. Multi-indices will be considered as
index lists and not as sets and will be denoted with capital letters. The operation
of taking k-grade part of an expression will be denoted by 〈.〉k and in particular
the scalar part will be denoted by 〈.〉0. Set difference is denoted by �. Matrices
will be indicated with bold capital letters, while matrix entries will be indicated
by lowercase letters. The scalar product of the blades will be denoted by ∗; t
in superscript will denote the grade negation operation, while ∼ – the Clifford
product reversion.

Definition 1. The generators of the Clifford algebra will be denoted by indexed
symbol e. It will be assumed that there is an ordering relation ≺, such that
for two natural numbers i < j =⇒ ei ≺ ej. The extended basis set of the
algebra will be defined as the ordered power set B := {P (E),≺} of all generators
E = {e1, . . . , en} and their irreducible products.

Definition 2. Define the diagonal scalar product matrix as G := {σIJ = eI ∗
eJ | eI , eJ ∈ B, I ≺ J}.
A multivector will be written as A = a1 +

∑r
k=1 〈A〉k = a1 +

∑
J aJeJ . The

maximal grade of A will be denoted by gr[A]. The pseudoscalar will be denoted
by I.

3 Clifford Algebra Real Matrix Representation Map

In the present we will focus on non-degenerate Clifford algebras, therefore the
non-zero elements of G are valued in {−1, 1}. Supporting results are presented
in Appendix A.

Definition 3 (Clifford coefficient map). Define the linear map acting
element-wise Ca : C�n 	→ R by the action Ca(ax + b) = x for x ∈ R, a, b ∈ B.

Define the Clifford coefficient map indexed by eS as AS :=
CS(M), where M is the multiplication table of the extended basis M =
{R(eMeN ) | eM , eN ∈ B}, and AS action of the map.
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Definition 4 (Canonical matrix map). Define the map π : B 	→ MatR(2n×
2n), n = p + q + r as π : eS 	→ Es := GAs where s is the ordinal of eS ∈ B and
AS is computed as in Definition 3.

Proposition 1. The π-map is linear.

The proposition follows from the linearity of the coefficient map and matrix
multiplication with a scalar.

Theorem 1 (Semigroup property). Let es and et be generators of C�p,q .
Then the following statements hold

1. The map π is a homomorphism with regard to the Clifford product (i.e. π
distributes over the Clifford products): π(eset) = π(es)π(et).

2. The set of all matrices Es forms a multiplicative semigroup.

Proof. Let Es = π(es),Et = π(et),Est = π(eset). We specialize the result of
Lemma 2 for S = {s} and T = {t} and observe that mλλ′ est = mλμσμmμλ′ est

for λ, λ′, μ ≤ n and σλmλλ′ = σλmλμσμmμλ′ . In summary, the map π acts on
C�p,q according to the following diagram:

es Es

eset ≡ est Est ≡ EsEt, st = s ∪ t

et

π

Et

π

Therefore, Est = EsEt. Moreover, we observe that π(eset) = Est = EsEt =
π(es)π(et).

For the semi-group property observe that since π is linear it is invertible.
Since π distributes over Clifford product its inverse π−1 distributes over matrix
multiplication:

π−1(EsEt) ≡ π−1(Est) = est ≡ eset = π−1(Es) π−1(Et)

However, C�p,q is closed by construction, therefore, the set {E}s is closed under
matrix multiplication.

Proposition 2. Let L := {li| li ∈ B} be a column vector and Rs be the first
row of Es. Then π−1 : Es 	→ RsL.

Proof. We observe that by the Proposition 4 the only non-zero element in the
first row of Es is σ1m1s = 1. Therefore, RsL = es.

Theorem 2 (Complete Real Matrix Representation). Define the map
g : A 	→ GA as matrix multiplication with G. Then for a fixed multiindex s
π = Cs ◦ g = g ◦ Cs. Further, π is an isomorphism inducing a Clifford algebra
representation in the real matrix algebra:
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C�p,q(R) MatR (2n × 2n)
π

π−1

Proof. The π-map is a linear isomorphism. The set {Es} forms a multiplicative
group, which is a subset of the matrix algebra MatR(N × N), N = 2n. Let
π(es) = Es and π(et) = Et. It is claimed that

1. EsEt �= 0 by the Sparsity Lemma 1.
2. EsEt = −EtEs by Proposition 5.
3. EsEs = σsI by Proposition 6.

Therefore, the set {ES}P (n)
S={1} is an image of the extended basis B. Here P (n)

denotes the power set of the indices of the algebra generators.

What is special about the above representation is the relationship

trA = 2n 〈A〉0 (1)

for the image π(A) = A of a general multivector element A and it will be used
further in the proof of FVS algorithm.

Remark 1. The above construction works if instead of the entire algebra C�p,q

we restrict a multivector to a sub-algebra of a smaller grade max gr[A] = r. In
this case, we form grade-restricted multiplication matrices Gr and Mr.

4 FVS Multivector Inversion Algorithm

Multivector inverses can be computed using the matrix representation and the
characteristic polynomial. The matrix inverse is A−1 = Â/detA, whereˆdenotes
the adjunct operation and detA is the determinant. The formula is not prac-
tical, because it requires the computation of n2 + 1 determinants. By Cayley-
Hamilton’s Theorem, the inverse of A is a polynomial in A, which can be com-
puted as the last step of the FVS algorithm [3]. The algorithm has a direct
representation in terms of Clifford multiplications as follows:

Theorem 3 (Reduced-grade FVS algorithm). Suppose that A ∈ C�p,q is
a multivector of maximal grade r ≤ s and A ⊆ span[e1, . . . , es]. The Clifford
inverse, if it exists, can be computed in k = 2�s/2� steps as

m1 = A c1 = −kA ∗ 1, t1 := −c1
m2 = Am2 − t1 c2 = −k

2A ∗ m1, t2 := −c2
. . . . . .
mk = Amk−1 − tk ck = −A ∗ mk−1, tk := −ck

until the step where mk = 0 so that

A−1 = −mk−1/ck. (2)
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The inverse does not exist if ck = −det A = 0.
The (reduced) characteristic polynomial of A of maximal grade r is

pA(λ) = λk + c1λ
k−1 + . . . ck−1λ + ck. (3)

Proof. The proof follows from the homomorphism of the π map. We recall the
statement of FVS algorithm:

pA(λ) = det (λIn − A) = λn + c1λ
n−1 + . . . cn−1λ + cn, n = dim(A),

where
M1 = A, t1 = tr[M1], c1 = −t1
M2 = AM1 − t1In, t2 = 1

2 tr[AM1], c2 = −t2
. . . . . . . . .
Mn = AMn−1 − tnIn, tn = 1

n tr[AMn−1], cn = −tn.

The matrix inverse can be computed from the last step of the algorithm as
A−1 = Mn−1/tn under the obvious restriction tn �= 0.

Therefore, for the kth step of the algorithm application of π−1 leads to

π−1 : Mk = AMk−1 − tkI 	→ mk = Amk−1 − tk.

Furthermore, tr[Mk] = n 〈mk〉0 = tk by Eq. 1. Moreover, the FVS algorithm
terminates with Mn = 0, which corresponds to the limiting case n = 2p+q

wherever A contains all grades.
On the other hand, examining the matrix representations of different Clifford

algebras, Acus and Dargys [2] make the observation that according to the Bott
periodicity the number of steps can be reduced to 2�n/2�. This can be proven as
follows. Consider the isomorphism C�p,q ⊃ C�+p,q

∼= C�q−1,p−1. Therefore, if a
property holds for an algebra of dimension n it will hold also for the algebra of
dimension n−2. Therefore, suppose that for n even the characteristic polynomial
is square free: pA(v) �= q(v)2 for some polynomial. We proceed by reduction.
For n = 2 in C�2,0 and A = a1 + e1a2 + e2a3 + e12a4 we compute pA(v) =
(
a2
1 − a2

2 − a2
3 + a2

4 − 2a1v + v2
)2 and a similar result holds also for the other

signatures of C�2 . Therefore, we have a contradiction and the dimension can be
reduced to k = n/2.

In the same way, suppose that n is odd and the characteristic polynomial is
square-free. However, for n = 3 in C�3,0 and A = a1 + e1a2 + e2a3 + e3a4 +
a5e12 + a6e13 + a7e23 + a8e123 it is established that pA(v) = q(v)2 for q(v) =

(a2
1−a2

2−a2
3−a2

4+a2
5+a2

6+a2
7−a2

8+2i(a3a6−a4a5−a2a7+a1a8)−2(a1+ia8)v+v2)

(a2
1−a2

2−a2
3−a2

4+a2
5+a2

6+a2
7−a2

8+2i(a4a5−a3a6+a2a7−a1a8)−2(a1−ia8)v+v2).

The above polynomial is factored due to space limitations. Similar results hold
also for the other signatures of C�3 . Therefore, we have a contradiction and the
dimension can be reduced to k = (n + 1)/2. Therefore, overall, one can reduce
the number of steps to k = 2�n/2�.
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As a second case, suppose that gr[A] = r. Let Er = span[A] be the set of
all generators, represented in A and s their number. We compute the restricted
multiplication tables M(Er) and respectively G(Er) and form the restricted
map πr. Then

πr(AA−1) = πr(A)πr(A−1) = AA−1 = In, n = 2s.

Therefore, the FVS algorithm terminates in k = 2s steps. Observe that π−1 :
AMk 	→ Amk. Therefore, tr[AMk] will map to nA∗mk by Eq. 1. Now, suppose
that tk �= 0; then for the last step of the algorithm we obtain:

Amk−1 − tk = 0 ⇒ Amk−1/tk = 1 ⇒ A−1 = mk−1/tk.

Therefore, by the argument of the previous case, the number of steps can be
reduced to k = 2�s/2�.

5 Implementation

Computations are performed using the Clifford package in Maxima, which was
first demonstrated in [8]. The present version of the package is 2.5 and it is
available for download from a Zenodo repository [6]. The function fadlevicg2cp
returns the inverse (if it exists) and the reduced characteristic polynomial pA(v)
of a multivector A (Appendix B).

6 Experiments

Experiments were performed on a Dell 64-bit Microsoft Windows 10 Enter-
prise machine with configuration – Intel R© CoreTM i5-8350U CPU @ 1.70 GHz,
1.90 GHz and 16 GB RAM. The computations were performed using the Clifford
package version 2.5 on Maxima version 5.46.0 using Steel Bank Common Lisp
version 2.2.2.

6.1 Symbolical Experiments

Example 1. For C�2,0 and a multivector A = a0+a1e1+a2e2+a3e12 the reduced
grade algorithm produces

t1 = −2a1, m1 = a1 + e1a2 + e2a3 + a4e12,

resulting in A−1 = (a1 − e1a2 − e2a3 − a4e12)/(a2
1 − a2

2 − a2
3 + a2

4) and the char-
acteristic polynomial is pA(v) = a2

1 − a2
2 − a2

3 + a2
4 − 2a1v + v2.

Example 2. For C�1,1 and a multivector A = a0+a1e1+a2e2+a3e12 the reduced
grade algorithm produces

t1 = −2a1, m1 = a1 + e1a2 + e2a3 + a4e12,

resulting in A−1 = (−a1 + e1a2 + e2a3 + a4e12)/(−a2
1 + a2

2 − a2
3 + a2

4) and the
characteristic polynomial is pA(v) = a2

1 − a2
2 + a2

3 − a2
4 − 2a1v + v2.
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Example 3. For C�0,2 and a multivector A = a0+a1e1+a2e2+a3e12 the reduced
grade algorithm produces

t1 = −2a1, m1 = a1 + e1a2 + e2a3 + a4e12,

resulting in A−1 = (a1 − e1a2 − e2a3 − a4e12)/(a2
1 + a2

2 + a2
3 + a2

4) and the char-
acteristic polynomial is pA(v) = a2

1 + a2
2 + a2

3 + a2
4 − 2a1v + v2.

Bespoke computations are practically instantaneous on the testing hardware con-
figuration. Higher-dimensional symbolic examples produce very long expressions
and are not particularly instructive.

6.2 Numerical Experiments

Note that the trivial last steps will be omitted because of space limitations.
To demonstrate the utility of FVS algorithm here follow some high-dimensional
numerical examples.

Example 4. Let us compute a rational example in C�2,5 . Let A = 1 − 2B + 5C,
where B := e15 and C := e1e3e4. Then span[A] = {e1, e3, e4, e5} and for the
maximal representation we have k = 24 = 16 steps:

t1 = −16, m1 = −15 + 5C − 2B;
t2 = 288, m2 = 252 − 70C + 28B;
t3 = −2912, m3 = −2366 + 1190C − 476B;
t4 = 29456, m4 = 22092 − 10640C + 4256B;
t5 = −213696, m5 = −146916 + 99820C − 39928B;
t6 = 1509760, m6 = 943600 − 634760C + 253904B;
t7 = −8250496, m7 = −4640904 + 4083240C − 1633296B;
t8 = 43581024, m8 = 21790512 − 19121280C + 7648512B;
t9 = −181510912, m9 = −79411024 + 89831280C − 35932512B;
t10 = 730723840, m10 = 274021440 − 307223840C + 122889536B;
t11 = −2275435008, m11 = −711073440 + 1062883360C − 425153344B;
t12 = 6900244736, m12 = 1725061184 − 2492483840C + 996993536B;
t13 = −15007376384, m13 = −2813883072 + 6132822080C − 2453128832B;
t14 = 32653412352, m14 = 4081676544 − 7936593280C + 3174637312B;
t15 = −39909726208, m15 = −2494357888 + 12471789440C − 4988715776B.

Therefore, A−1 = (1 − 5C + 2B) /22 and pA(v) = (22 − 2v + v2)8. Evaluation
took 0.0469 s using 12.029 MB memory on Maxima. On the other hand, the
reduced algorithm will run in k = 2�4/2� = 4 steps:

t1 = −4, m1 = 1 + 5C − 2B;
t2 = 48, m2 = −24 − 10C + 4B;
t3 = −88, m3 = 66 + 110C − 44B;

and pA(v) = 484−88v+48v2−4v3+v4 = (22−2v+v2)2. Evaluation took 0.0156 s
using 2.512 MB memory on Maxima. Note, that in this case detA = AA∼ = 22.
Therefore, in accordance with Shirokov’s approach A−1 = A∼/22.
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Example 5. Consider C�5,2 and let A = 1 − e2 + I. The full-grade algorithm
takes 128 steps and will not be illustrated due to space limitation. The reduced
grade algorithm can be illustrated as follows. Let C = e134567. Then

t1 = −16, m1 = 1 − e2 + I;
t2 = 120, m2 = −15 + 14e2 − 14I + 2C;
t3 = −560, m3 = 105 − 89e2 + 93I − 26C;
t4 = 1836, m4 = −459 + 340e2 − 388I + 156C;
t5 = −4560, m5 = 1425 − 881e2 + 1145I − 572C;
t6 = 9064, m6 = −3399 + 1682e2 − 2562I + 1454C;
t7 = −14960, m7 = 6545 − 2529e2 + 4557I − 2790C;
t8 = 20886, m8 = −10443 + 3096e2 − 6648I + 4296C;
t9 = −24880, m9 = 13995 − 3051e2 + 8091I − 5448C;
t10 = 25480, m10 = −15925 + 2386e2 − 8242I + 5694C;
t11 = −22416, m11 = 15411 − 1475e2 + 7007I − 4934C;
t12 = 16716, m12 = −12537 + 596e2 − 4932I + 3548C;
t13 = −10480, m13 = 8515 − 35e2 + 2795I − 1980C;
t14 = 5400, m14 = −4725 − 50e2 − 1150I + 850C;
t15 = −2000, m15 = 1875 + 125e2 + 375I − 250C,

resulting in A−1 = (1 − e2 − 3 I + 2C)/5.. The characteristic polynomial can
factorize as pA(v) = (1 + v2)4(5 − 4v + v2)4.

It should be noted that in this case, the determinant detA can be computed
by the sequence of operations B = AAt = 1−2I, followed by detA = BB∼ = 5.
This allows for writing the formula

A−1 = At(AAt)∼/5

in accordance with Shirokov’s approach.

7 Concluding Remarks

The maximal matrix algebra construction exhibited in the present paper allows
for systematic translation of matrix-based algorithms to Clifford algebra simul-
taneously allowing for their direct verification.

The advantage of the multivector FVS algorithm is its simplicity of imple-
mentation. This can be beneficial for purely numerical applications as it involves
only Clifford multiplication, and taking scalar parts of multivectors, which can
be encoded as the first member of an array. The Clifford multiplication com-
putation can be reduced to O(N log N) operations, since it involves sorting of
a joined list of algebra generators. On the other hand, the present algorithm
does not ensure optimality of the computation but only provides a certificate of
existence of an inverse. Therefore, optimized algorithms can be introduced for
particular applications, i.e. Space-Time Algebra C�1,4 , Projective Geometric
Algebra C�3,0,1 , Conformal Geometric Algebra C�4,1 , etc. As a side product,
the algorithm can compute the characteristic polynomial of a general multivector
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and, hence, its determinant also without any resort to a matrix representation.
This could be used, for example, for computation of a multivector resolvent or
some other analytical functions.

One of the main applications of the present algorithms could be in Finite
Element Modelling where the Geometric algebra can improve the efficiency and
accuracy of calculations by providing a more compact representation of vectors,
tensors, and geometric operations. This can lead to faster and more accurate
simulations of elastic deformations.

Acknowledgment. The present work is funded in part by the European Union’s
Horizon Europe program under grant agreement VIBraTE, grant agreement 101086815.

A Supporting results

Definition 5 (Sparsity property). A matrix has the sparsity property if it
has exactly one non-zero element per column and exactly one non-zero element
per row. Such a matrix we call sparse.

Lemma 1 (Sparsity lemma). If the matrices A and B are sparse then so is
C = AB. Moreover,

cij =

{
0
aiqbqj

(no summation!) for some index q.

Proof. Consider two sparse square matrices A and B of dimension n. Let cij =∑
μ aiμbμj . Then as we vary the row index i then there is only one index q ≤ n,

such that aiq �= 0. As we vary the column index j then there is only one index
q ≤ n, such that bqj �= 0. Therefore, cij = (0; aiqbqj) for some q by the sparsity
of A and B. As we vary the row index i then cqj = 0 for i �= q for the column j
by the sparsity of A. As we vary the column index j then ciq = 0 for j �= q for
the row i by the sparsity of B. Therefore, AB is sparse.

Lemma 2 (Multiplication Matrix Structure). For the multi-index disjoint
sets S ≺ T the following implications hold for the elements of M :

mμλ eS mμλ′eT

mλμeS mλμmμλ′eS�T mλλ′′eS�T

∃

∃λ′ > λ

∃ ∃λ′′ = λ′

so that mλλ′ = mλμσμmμλ′ for some index μ.
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Proof. Suppose that the ordering of elements is given in the construction of
C�p,q,r . To simplify presentation, without loss of generality, suppose that es

and et are some generators. By the properties of M there exists an index λ′ > λ,
such that eMeL′ = mμλ′ et, L′\M = T for L ≺ L′. Choose M , s.d. L ≺ M ≺ L′.
Then for L ≺ M ≺ L′ and S ≺ T

eMeL = mμλ es, L�M = S ⇔ eLeM = mλμ es

eMeL′ = mμλ′ et, L′�M = T

Suppose that eset = est, st = S ∪ T = S�T . Multiply together the diagonal
nodes in the matrix

eL eMeM︸ ︷︷ ︸
σµ

eL′ = mλμmμλ′ est

Therefore, s ∈ L and t ∈ L′. We observe that there is at least one element (the
algebra unity) with the desired property σμ �= 0.

Further, we observe that there exists unique index λ′′ such that mλλ′′est.
Since λ is fixed. This implies that L′′ = L′ ⇒ λ′′ = λ′. Therefore,

eLeL′ = mλλ′est, L′�L = {s, t}

which implies the identity mλλ′ est = mλμσμmμλ′ est. For higher graded elements
eS and eT we should write eS�T instead of est.

Proposition 3. Consider the multiplication table M. All elements mkj are dif-
ferent for a fixed row k. All elements miq are different for a fixed column q.

Proof. Fix k. Then for eK , eJ ∈ B we have eKeJ = mkjeS , S = K�J . Suppose
that we have equality for 2 indices j, j′. Then K�J ′ = K�J = S. Let δ = J∩J ′;
then

K� (J ∪ δ) = K�J = S ⇒ K�δ = S ⇒ δ = ∅
Therefore, j = j′. By symmetry, the same reasoning applies to a fixed column q.

Proposition 4. For es ∈ E the matrix As = Cs(M) is sparse.

Proof. Fix an element es ∈ E. Consider a row k. By Proposition 3 there is a j,
such ekj = es. Then akj = mkj , while for i �= j aki = 0.

Consider a column l By Proposition 3 there is a j, such ejl = es. Then
ajl = mjl, while for i �= j ail = 0. Therefore, As has the sparsity property.

Proposition 5. For generator elements es and et EsEt + EtEs = 0.

Proof. Consider the basis elements es and et. By linearity and homomorphism of
the π map (Theorem 1): π : eset + etes = 0 	→ π(eset) + π(etes) = 0. Therefore,
for two vector elements EsEt + EtEs = 0.
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Proposition 6. EsEs = σsI

Proof. Consider the matrix W = GAsGAs. Then wμν =
∑

λ σμσλaμλaλν

element-wise. By Lemma 1 W is sparse so that wμν = (0;σμσqaμqaqν).
From the structure of M for the entries containing the element eS we have

the equivalence {
eMeQ = as

μqeS , S = M�Q

eQeM = as
qμeS ,

After multiplication of the equations we obtain eMeQeQeM = as
μqeSas

qμeS , which
simplifies to the First fundamental identity :

σqσμ = as
μqa

s
qμσs (4)

We observe that if σμ = 0 or σq = 0 the result follows trivially. In this case
also σs = 0. Therefore, let’s suppose that σsσqσμ �= 0. We multiply both sides
by σsσqσμ to obtain σs = σqσμas

μqa
s
qμ. However, the RHS is a diagonal ele-

ment of W, therefore by the sparsity it is the only non-zero element for a given
row/column so that W = E2

s = σsI.

B Program code

The Clifford package can be downloaded from a Zenodo repository [6]. The
examples can be downloaded from a Zenodo repository and it includes the file
climatrep.mac, which implements different instances of the FVS algorithm [7].

Listing 1.1. FVS Maxima code based on the Clifford package

1 f ad l e v i c g2 cp (A, v ) := block (
[M: 1 , K, i : 1 , n , k : l ength ( c l v (A) ) , cq , c , s s ] ,

n : 2 ˆ ( c e i l i n g (k/2) ) ,
array ( c , n+1) , f o r r : 0 thru n+1 do c [ r ] : 1 ,
A: ra t (A) ,

6 s s : c [ 1 ] ∗ vˆˆn ,
whi l e i<n and K#0 do (

K: dotsimpc ( expand (A.M) ) ,
cq :−n/ i ∗ s c a l a r p a r t (K) ,
i f debug1=a l l then p r i n t ( ” t {” , i , ”}=” , cq , ”

m {” , i , ”}=” ,K, ”\\\\” ) ,
11 i f K#0 then

M: ra t (K + cq ) ,
c [ i +1] : cq , s s : s s+c [ i +1]∗vˆˆ(n−i ) ,
i : i+1

) ,
16 K: dotsimpc ( expand (A.M) ) ,

cq :−n/ i ∗ s c a l a r p a r t (K) ,
i f debug1=a l l then p r i n t ( ” t {” , i , ”}=” , cq , ” m {” ,

i , ”}=” ,K, ”\\\\” ) ,
s s : s s+cq ,
i f cq=0 then cq : 1 , M: f a c t o r (−(M) /cq ) ,

21 [M, s s ]
) ;
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Abstract. This paper is a brief note on the natural implementation
of singular value decomposition (SVD) and polar decomposition of an
arbitrary multivector in nondegenerate real (Clifford) geometric algebras
of arbitrary dimension and signature. We naturally define these and other
related structures (operation of Hermitian conjugation, Euclidean space,
and Lie groups) in geometric algebras. The results can be used in various
applications of geometric algebras in computer graphics, computer vision,
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1 Introduction

This paper is a brief note on the natural implementation of singular value decom-
position (SVD) and polar decomposition of an arbitrary multivector in nonde-
generate real (Clifford) geometric algebras of arbitrary dimension and signature.
We naturally define these and other related structures (operation of Hermitian
conjugation, Euclidean space, and Lie groups) in geometric algebras. “Natural”
means that our definitions and statements involve only operations in geometric
algebra and do not involve the corresponding matrix representations. Detailed
proofs and examples will be in the extended version of this paper.

The method of singular value decomposition for matrices was discovered
independently by E. Beltrami in 1873 [3] and C. Jordan in 1874 [7,8]. Nowa-
days it is very important because of various applications in computer science,
engineering, physics, big data, machine learning, etc. Applications of quaternion
singular value decomposition in image processing are considered in [12]. Polar
decomposition of complexified quaternions and octonions is discussed in [13].
In the present paper, we present the natural implementation of SVD and polar
decomposition in geometric algebras. Theorems 4 and 8 are new.
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2 Geometric Algebra (GA)

Let us consider the real Clifford geometric algebra (GA) Gp,q [4,9,10,20] with the
identity element e ≡ 1 and the generators ea, a = 1, 2, . . . , n, where n = p+q ≥ 1.
The generators satisfy the conditions

eaeb + ebea = 2ηabe, η = (ηab) = diag(1, . . . , 1
︸ ︷︷ ︸

p

,−1, . . . ,−1
︸ ︷︷ ︸

q

).

Consider the subspaces Gk
p,q of grades k = 0, 1, . . . , n, which elements are linear

combinations of the basis elements eA = ea1a2...ak
= ea1ea2 · · · eak

, 1 ≤ a1 <
a2 < · · · < ak ≤ n, with ordered multi-indices of length k. An arbitrary element
(multivector) M ∈ Gp,q has the form

M =
∑

A

mAeA ∈ Gp,q, mA ∈ R,

where we have a sum over arbitrary multi-index A of length from 0 to n. The
projection of M onto the subspace Gk

p,q is denoted by 〈M〉k.
The grade involution and reversion of a multivector M ∈ Gp,q are denoted

by

̂M =
n

∑

k=0

(−1)k〈M〉k, ˜M =
n

∑

k=0

(−1)
k(k−1)

2 〈M〉k (1)

and have the properties

M̂1M2 = ̂M1
̂M2, M̃1M2 = ˜M2

˜M1, ∀M1,M2 ∈ Gp,q. (2)

3 Euclidean Space on GA

Let us consider an operation of Hermitian conjugation † in Gp,q (see [11,20]):

M† := M |eA→(eA)−1 =
∑

A

mA(eA)−1. (3)

We have the following two other equivalent definitions of this operation:

M† =

{

e1...p ˜Me−1
1...p, if p is odd,

e1...p
˜
̂Me−1

1...p, if p is even,
(4)

M† =

{

ep+1...n
˜Me−1

p+1...n, if q is even,

ep+1...n
˜
̂Me−1

p+1...n, if q is odd.
(5)

The operation1

(M1,M2) := 〈M†
1M2〉0

1 Compare with the well-known operation M1 ∗M2 := 〈 ˜M1M2〉0 in the real geometric
algebra Gp,q, which is positive definite only in the case of signature (p, q) = (n, 0).
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is a (positive definite) scalar product with the properties

(M1,M2) = (M2,M1), (6)
(M1 + M2,M3) = (M1,M3) + (M2,M3), (M1, λM2) = λ(M1,M2), (7)
(M,M) ≥ 0, ∀M ∈ Gp,q; (M,M) = 0 ⇔ M = 0 (8)

for arbitrary multivectors M1,M2,M3 ∈ Gp,q and λ ∈ R.
Using this scalar product we introduce inner product space over the field of

real numbers (euclidean space) in Gp,q. We have a norm

||M || :=
√

(M,M) =
√

〈M†M〉0 (9)

with the properties

||M || ≥ 0, ∀M ∈ Gp,q; ||M || = 0 ⇔ M = 0, (10)
||M1 + M2|| ≤ ||M1|| + ||M2||, ∀M1,M2 ∈ Gp,q, (11)
||λM || = |λ|||M ||, ∀M ∈ Gp,q, ∀λ ∈ R. (12)

4 Matrix Representation of Gp,q and Lie Groups

Let us consider the following faithful representation (isomorphism) of the real
geometric algebra Gp,q

β : Gp,q →

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

Mat(2
n
2 , R), if p − q = 0, 2 mod 8,

Mat(2
n−1
2 , R) ⊕ Mat(2

n−1
2 , R), if p − q = 1 mod 8,

Mat(2
n−1
2 , C), if p − q = 3, 7 mod 8,

Mat(2
n−2
2 , H), if p − q = 4, 6 mod 8,

Mat(2
n−3
2 , H) ⊕ Mat(2

n−3
2 , H), if p − q = 5 mod 8.

(13)

These isomorphisms are known as Cartan–Bott 8-periodicity.
Let us denote the size of the corresponding matrices by

d :=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

2
n
2 , if p − q = 0, 2 mod 8,

2
n+1
2 , if p − q = 1 mod 8,

2
n−1
2 , if p − q = 3, 5, 7 mod 8,

2
n−2
2 , if p − q = 4, 6 mod 8.

(14)

Note that we use block-diagonal matrices in the cases p − q = 1, 5 mod 8.
Let us present an explicit form of one of these representations of Gp,q (see also

[15,21–23]). We denote this fixed representation by β′. For the identity element,
we always use the identity matrix β′(e) = I of the corresponding size d. We
always take β′(ea1a2...ak

) = β′(ea1)β
′(ea2) · · · β′(eak

).
In some particular cases, we construct β′ in the following way:

– In the case G0,1: e1 → i.
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– In the case G1,0: e1 → diag(1,−1).
– In the case G0,2: e1 → i, e2 → j.
– In the case G0,3: e1 → diag(i,−i), e2 → diag(j,−j), e3 → diag(k,−k).

Suppose we know β′
a := β′(ea), a = 1, . . . , n for some fixed Gp,q, p+ q = n. Then

we construct explicit matrix representation of Gp+1,q+1, Gq+1,p−1, Gp−4,q−4 in
the following way using the matrices β′

a, a = 1, . . . , n.

– In the case Gp+1,q+1: ea → diag(β′
a,−β′

a), a = 1, . . . , p, p+2, . . . , p+ q+1. In
the subcase p − q �= 1 mod 4, we have

ep+1 →
(

0 I
I 0

)

, ep+q+2 →
(

0 −I
I 0

)

.

In the subcase p − q = 1 mod 4, we have

ep+1 → diag(β1 · · · βnΩ,−β1 · · · βnΩ), ep+q+2 → diag(Ω,−Ω),

where

Ω =
(

0 −I
I 0

)

. (15)

– In the case Gq+1,p−1: e1 → β′
1, ei → β′

iβ
′
1, i = 2, . . . , n.

– In the case Gp−4,q+4: ei → β′
iβ

′
1β

′
2β

′
3β

′
4, i = 1, 2, 3, 4, ej → β′

j , j = 5, . . . , n.

Using these recurrences and the Cartan–Bott 8-periodicity, we obtain explicit
matrix representation β′ of all Gp,q.

It can be directly verified that for this matrix representation we have

ηaaβ
′(ea) =

⎧

⎪
⎨

⎪
⎩

(β′(ea))T, if p − q = 0, 1, 2 mod 8,
(β′(ea))H, if p − q = 3, 7 mod 8,
(β′(ea))∗, if p − q = 4, 5, 6 mod 8,

a = 1, . . . , n, (16)

where T is transpose of a (real) matrix, H is the Hermitian transpose of a (com-
plex) matrix, ∗ is the conjugate transpose of a matrix over quaternions. Using the
linearity, we get that these matrix conjugations are consistent with Hermitian
conjugation of corresponding multivector:

β′(M†) =

⎧

⎪
⎨

⎪
⎩

(β′(M))T, if p − q = 0, 1, 2 mod 8,
(β′(M))H, if p − q = 3, 7 mod 8,
(β′(M))∗, if p − q = 4, 5, 6 mod 8,

M ∈ Gp,q. (17)

Note that the formulas like (17) are not valid for an arbitrary matrix rep-
resentation β of the form (13). They are true for the matrix representations
γ = T−1β′T obtained from β′ by the matrix T such that

– TTT = I in the cases p − q = 0, 1, 2 mod 8,
– THT = I in the cases p − q = 3, 7 mod 8,
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– T ∗T = I in the cases p − q = 4, 5, 6 mod 8.

Let us consider the following Lie group in Gp,q

GGp,q = {M ∈ Gp,q : M†M = e}, (18)

where † is (3). Note that all the basis elements eA of Gp,q belong to this group
by the definition.

Using (13) and (17), we get the following isomorphisms of this group to the
classical matrix Lie groups:

GGp,q �

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

O(2
n
2 ), if p − q = 0, 2 mod 8,

O(2
n−1
2 ) × O(2

n−1
2 ), if p − q = 1 mod 8,

U(2
n−1
2 ), if p − q = 3, 7 mod 8,

Sp(2
n−2
2 ), if p − q = 4, 6 mod 8,

Sp(2
n−3
2 ) × Sp(2

n−3
2 ), if p − q = 5 mod 8,

(19)

where we have the following notation for (orthogonal, unitary, and symplectic
correspondingly) classical matrix Lie groups

O(k) = {A ∈ Mat(k, R) : ATA = I}, (20)
U(k) = {A ∈ Mat(k, C) : AHA = I}, (21)
Sp(k) = {A ∈ Mat(k, H) : A∗A = I}. (22)

The group Sp(k) sometimes is called quaternionic unitary group or hyperunitary
group. Note that this group also has the following realization in terms of complex
matrices:

Sp(k) � {A ∈ Mat(2k, C) : ATΩA = Ω, AHA = I},

where Ω is (15).

5 On the Classical SVD of Real, Complex,
and Quaternion Matrices

We have the following well-known theorems on singular value decomposition of
an arbitrary real, complex, and quaternion matrices (see, for example, [5,6,24]).

Theorem 1. For an arbitrary A ∈ R
n×m, there exist matrices U ∈ O(n) and

V ∈ O(m) such that

A = UΣV T, (23)

where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R � λ1, λ2, . . . , λk ≥ 0.

Note that choosing matrices U ∈ O(n) and V ∈ O(m), we can always arrange
diagonal elements of the matrix Σ in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.
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Diagonal elements of the matrix Σ are called singular values, they are square
roots of eigenvalues of the matrices AAT or ATA. Columns of the matrices U
and V are eigenvectors of the matrices AAT and ATA respectively.

Theorem 2. For an arbitrary A ∈ C
n×m, there exist matrices U ∈ U(n) and

V ∈ U(m) such that

A = UΣV H, (24)

where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R � λ1, λ2, . . . , λk ≥ 0.

Note that choosing matrices U ∈ U(n) and V ∈ U(m), we can always arrange
diagonal elements of the matrix Σ in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Diagonal elements of the matrix Σ are called singular values, they are square
roots of eigenvalues of the matrices AAH or AHA. Columns of the matrices U
and V are eigenvectors of the matrices AAH and AHA respectively.

Theorem 3. For an arbitrary A ∈ H
n×m, there exist matrices U ∈ Sp(n) and

V ∈ Sp(m) such that

A = UΣV ∗, (25)

where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R � λ1, λ2, . . . , λk ≥ 0.

Diagonal elements of the matrix Σ are called singular values.

6 SVD in GA

In the following theorem, we present singular value decomposition of an arbitrary
multivector in geometric algebra Gp,q. Note that the statement involves only
operations in Gp,q.

Theorem 4 (SVD in GA). For an arbitrary multivector M ∈ Gp,q, there
exist multivectors U, V ∈ GGp,q, where

GGp,q = {U ∈ Gp,q : U†U = e}, U† :=
∑

A

uA(eA)−1,

such that

M = UΣV †, (26)

where multivector Σ belongs to the subset K of Gp,q, which is real span of a set
of d (14) fixed basis elements (always including the identity element e):

Σ ∈ K := span({eBi
, i = 1, . . . , d}) = {

d
∑

i=1

λieBi
, λi ∈ R}. (27)
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Proof. Let us use the matrix representation β′ of Gp,q from Sect. 4. Then we use
the isomorphisms (19) and SVD of matrices (see Sect. 5). In the cases p−q = 1, 5
mod 8, the matrix representation is block-diagonal and we use SVD for each of
two blocks. The singular values are always real and we get a real span of d basis
elements of Gp,q with real diagonal matrix representation. ��

Thus the meaning of SVD in geometric algebra is the following: after mul-
tiplication on the left and on the right by elements of the group GGp,q (18),
any multivector M ∈ Gp,q can be placed in a d-dimensional subspace K of Gp,q,
where d is (14).

Example 1. In the case G2,0, we have

β′(e) =
(

1 0
0 1

)

, β′(e1) =
(

0 1
1 0

)

, β′(e2) =
(−1 0

0 1

)

, β′(e12) =
(

0 1
−1 0

)

.

The matrices β′(e) and β′(e2) are real and diagonal, we get the 2-dimensional
subspace

K = span(e, e2).

Example 2. In the case G2,1, the matrices β′(e), β′(e1), β′(e23), and β′(e123) are
real and diagonal. We get the 4-dimensional subspace

K = span(e, e1, e23, e123).

Example 3. In the case G1,3, the matrices β′(e), β′(e14) are real and diagonal.
We get the 2-dimensional subspace

K = span(e, e14).

7 On the Classical Polar Decomposition of Real,
Complex, and Quaternion Matrices

Let us consider a classical polar decomposition (right and left) of arbitrary square
real, complex, and quaternion matrices (for quaternion case, see [24]).

Theorem 5. For an arbitrary A ∈ R
n×n, there exist positive semi-definite sym-

metric matrices P and S ∈ R
n×n (i.e. PT = P and zTPz ≥ 0, ∀z ∈ R

n; ST = S
and zTSz ≥ 0, ∀z ∈ R

n) and matrix W ∈ O(n) such that

A = WP = SW. (28)

Given a real symmetric matrix P , the following statements are equivalent:

– P is positive semi-definite,
– all the eigenvalues of P are non-negative,
– there exists a matrix B such that P = BTB.



398 D. Shirokov

If we have SVD of the real matrix A = UΣV T, then we can take W = UV T,
P = V ΣV T, and S = UΣUT. Note that P =

√
ATA and S = WPWT =

√
AAT.

Theorem 6. For an arbitrary A ∈ C
n×n, there exist positive semi-definite Her-

mitian matrices P and S ∈ C
n×n (i.e. PH = P and zHPz ≥ 0, ∀z ∈ C

n; SH = S
and zHSz ≥ 0, ∀z ∈ C

n) and matrix W ∈ U(n) such that

A = WP = SW. (29)

Given a complex Hermitian matrix P , the following statements are equiva-
lent:

– P is positive semi-definite,
– all the eigenvalues of P are non-negative,
– there exists a matrix B such that P = BHB.

If we have SVD of the complex matrix A = UΣV H, then we can take W =
UV H, P = V ΣV H, and S = UΣUH. Note that P =

√
AHA and S = WPWH =√

AAH.

Theorem 7. For an arbitrary A ∈ H
n×n, there exist quaternion positive semi-

definite Hermitian matrices P and S ∈ H
n×n (i.e. P ∗ = P and z∗Pz ≥ 0,

∀z ∈ H
n; S∗ = S and z∗Sz ≥ 0, ∀z ∈ H

n) and matrix W ∈ Sp(n) such that

A = WP = SW. (30)

Given a quaternion Hermitian matrix P , the following statements are equiv-
alent:

– P is positive semi-definite,
– all the eigenvalues of P are non-negative,
– there exists a matrix B such that P = B∗B.

If we have SVD of the quaternion matrix A = UΣV ∗, then we can take
W = UV ∗, P = V ΣV ∗, and S = UΣU∗. Note that P =

√
A∗A and S =

WPW ∗ =
√

AA∗.

8 Polar Decomposition in GA

In the following theorem, we present polar decomposition of an arbitrary mul-
tivector in geometric algebra Gp,q. Note that the statement involves only opera-
tions in Gp,q.

Theorem 8 (Left and right polar decomposition in GA). For an arbi-
trary multivector M ∈ Gp,q, there exist multivectors P, S ∈ Gp,q such that

P † = P, S† = S, U† :=
∑

A

uA(eA)−1, (31)

P = B†B, S = C†C for some multivectors B,C ∈ Gp,q, (32)
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and multivector
W ∈ GGp,q = {U ∈ Gp,q : U†U = e}

such that
M = WP = SW.

Proof. The statement follows from the results of the previous sections of this
paper. Namely, we use the matrix representation β′ of Gp,q from Sect. 4, the
relation (17) between matrix operations and Hermitian conjugation in geometric
algebras, and the classical polar decomposition of matrices discussed in Sect. 7. ��
Note that

P =
√

M†M, S = WPW † =
√

MM†. (33)

If we have the SVD of multivector M = UΣV † (26), then

W = UV †, P = V ΣV †, S = UΣU†. (34)

9 Conclusions

In this paper, we naturally implement SVD and polar decomposition in real Clif-
ford geometric algebras without using the corresponding matrix representations.
Note that we use matrix representations in the proofs, namely, we use the classi-
cal SVD and polar decomposition of real, complex, and quaternion matrices. The
new Theorems 4 and 8 involve only operations in geometric algebras. The theo-
rem on SVD in geometric algebras states that after left and right multiplication
by elements of the group GGp,q (18), any multivector M ∈ Gp,q can be placed in
d-dimensional subspace of Gp,q, where d is equal to (14). The polar decomposition
is a consequence of the SVD. We expect the use of these theorems in different
applications of geometric algebra in computer science, engineering, physics, big
data, machine learning, etc. This paper continues our previous research [1,2,14–
19] on the extension of matrix methods to geometric algebras, presented at
previous ENGAGE workshops within the CGI 2020–2022 conferences.

As noted by one of the reviewers, despite the statements of Theorems 4
and 8 involve only operations in a geometric algebra, their proofs use matrix
representation; it could be interesting to investigate, in a future work, alternative
and more direct proofs involving only operations in the corresponding geometric
algebra. Also note that we do not present a method (algorithm) to find the SVD
in this paper. We present an existing theorem. How to find elements Σ, U , and
V in (26) using only the methods of geometric algebra and without using the
corresponding matrix representations is a good task for further research. The
problems of numerical accuracy and computation speed can also be considered.
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