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Abstract. Skeleton-based action recognition has achieved remarkable
progress by employing graph convolutional neural networks (GCNs) to
model correlations among body joints. However, GCNs have limitations
in establishing long-term dependencies and are constrained by the nat-
ural connections of human body joints. To overcome these issues, we
propose a Graph relative TRansformer (GTR) that captures tempo-
ral features through learnable topology and invariant joint adjacency
graphs. The GTR provides a high-level representation of the structure of
the spatial skeleton, seamlessly integrated into the time series. Moreover,
we introduce a Multi-Stream Graph Transformer (MS-GTR) to integrate
various dynamic information for an end-to-end human action recognition
task. The MS-GTR applies a double-branch structure, where the GTR
is implemented as the main branch to extract long-term dynamic fea-
tures, and an auxiliary branch processes short-term kinematic content.
Finally, we use cross-attention as an inter-branch interaction mediator.
Experimental results on the HDM05, NTU RGB+D, and NTU RGB+D
120 datasets demonstrate the potential of the proposed MS-GTR model
for improving action recognition.
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1 Introduction

Given its potential applications in video surveillance [13] and virtual reality
[11], human action recognition has garnered significant interest from academia
and industry. Compared to the original video data, skeleton data offers several
advantages, including mitigating complex background interference and adapting
to dynamic changes. Consequently, researchers have developed various skeleton-
based action recognition methods. While existing action recognition methods
exhibit diversity, there is a consensus that extracting sufficient spatial-temporal
information is crucial. Traditional approaches commonly use handcrafted fea-
tures to model the spatial human joint framework and dynamic information
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in the temporal dimension. However, these exquisitely designed features are
tailored to specific data and applications but are difficult to generalize. Deep
learning techniques have rapidly evolved in recent years and are widely used
for autonomous feature extraction. Representative networks include convolu-
tional neural networks (CNNs) for processing static images and recurrent neural
networks (RNNs) for modeling long-term contextual information in sequential
data, such as joint coordinate sequences. In virtue of the peculiarity of the non-
Euclidean data format of the natural physical connection of the skeleton struc-
ture, Yan et al. [32] pioneered graph-based approaches to model joints and their
contacts for skeleton-based action recognition using graph convolutional neural
networks (GCNs) and temporal convolution. Since then, GCNs have become the
dominant deep neural network architecture for skeleton-based action recogni-
tion. Despite their success, GCNs still struggle to establish long-term temporal
dependencies and often overlook joint cooperative relationships in motion. For
instance, the “clapping” motion heavily relies on the cooperation between the
left and right hands, but consciously focusing on the joint-to-joint relationship
can lead to computational problems in the model.

In this paper, we proposed a novel framework for skeleton-based action
recognition called Multi-Stream Graph Transformer (MS-GTR), as illustrated in
Fig. 1. This framework enables effective multi-scale processing of skeleton infor-
mation and extraction of representative spatio-temporal features. Concretely,
we improve the transformer not only to model sequence context dependencies
but also to incorporate the graph structure of the skeleton in action recogni-
tion. Additionally, we extract diverse information from the joint trajectories to
enrich the range of expressions. We divide the data into the main and auxiliary
branches to avoid computational complexity. While the main branch is always
involved in feature extraction, various extra streams, e.g., self-similarity matri-
ces(SSM) and difference, provide dynamic short-range information to support
the main feature extractor. We employ cross-attention for information exchange
between the branches to facilitate the efficient integration of motion features
across different scales.

As depicted in Fig. 1, the main unit provides only a token representing global
information and interacts with the feature conveyed by the auxiliary branch using
cross-attention. This token has absorbed the supplemental information, returns
to the main unit, and undergoes subsequent operations. We conducted experi-
ments on several human action datasets, including HDM05, NTU RGB+D, and
NTU RGB+D 120, and the obtained results validate the value of our approach
in improving action recognition performance.

Our main contributions to this work are summarized as follows:

1. A novel graph Transformer architecture is proposed to represent action
sequences’ higher-order spatial-temporal features and eliminate the redun-
dant dependencies associated with fixed body connectivity.

2. We propose the multi-stream model called MS-GTR that consists of two dis-
tinct branches. The main branch is designed to extract the long-term dynamic
features from the joint data directly. The auxiliary branch provides short-term
information.
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Fig. 1. Illustration of the proposed Multi-Stream Graph Transformer.

2 Related Work

2.1 Vision Transformer

The transformer [29] is a famous attention-based neural network architecture
initially proposed for natural language processing. In addition to its success
in NLP, the transformer has also proven its excellence for many fundamen-
tal computer vision tasks, e.g. classification [2,8,35], detection [1,12], and seg-
mentation [30,36]. In particular, Zhang et al. [35] introduced the Video Trans-
former (VidTr) with spatio-temporal separable attention, which outperformed
convolutional-based approaches for video classification. Sun et al. [27] built a
multi-stream transformer network to model motion at different scales, taking
advantage of the transformer’s ability to capture long-range time dependencies.
Chen et al. [2] applied a dual-branch vision transformer to complete the task of
multi-scale feature extraction and image classification. Moreover, a simple and
practical information exchange scheme between branches was proposed based
on cross-attention. Inspired by their work, we offer a novel network to pro-
vide supplementary information for motion sequences at different scales through
cross-attention. EAPT [47] proposes Deformable Attention, which learns offsets
for each position in patches to obtain non-fixed attention information that can
cover various visual elements.

2.2 Skeleton-Based Action Recognition

Skeleton-based action recognition aims to identify action through the human
skeleton sequence. The most significant advantage of the first category of net-
works is that they take complete account of the long-term contextual associ-
ations in action. For example, Du et al. [9] fed the hierarchical structure of
the human skeleton into an end-to-end hierarchical RNN, and the parts were
reused and spliced together as the number of layers in the network increased.
Two-stream temporal convolution networks proposed by Jia et al. [15] fully used
inter-frame and intra-frame action characteristics. Xie et al. [18] proposed a
temporal-then-spatial recalibration scheme that introduced the attention mech-
anism to recalibrate the temporal attention of frames and then further process
using a convolutional neural network.
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The above methods for skeleton-based action recognition primarily focused
on capturing temporal features from human skeleton sequences. Still, they strug-
gled to extract spatial characteristics from the topology of the connections
between joints. Graph convolutional networks (GCNs) have emerged as a promis-
ing solution to this challenge. Yan et al. [32] were the first to apply GCNs to
model dynamic skeletons for this task, but the graph topology heavily influ-
enced the expressiveness of the model. Compared to manually setting fixed graph
topology, Shi et al. [25] developed an adaptive GCN to learn the graph topol-
ogy uniformly or individually. Cheng et al. [5] used parameterized topology for
channel groups, but their model was bloated. Going a step further, Chen et al.
[4] proposed a channel-wise graph convolution that shared a learnable topology
as a generic prior for all channels and learned each channel-specific topology in
a refinement way, which overcomes the inflexibility of previous methods like 2s-
AGCN [25]. The adaptive graph convolutional block used in our proposed model
to capture the spatial features is similar to the channel-wise methods. GAT
[48] utilizes velocity information in a data-driven manner to learn discriminative
spatial-temporal motion features from the sequence of skeleton graphs.

3 Method

3.1 Graph Relative Transformer

Motivation. Expressing higher-order spatial topology, adequately capturing
contextual relationships, and effectively modeling spatial-temporal dependencies
are essential for the signature representation of human action. However, unbiased
modeling of long-term joint relationships can limit reliance on fixed natural
connections in the human body, resulting in redundant dependency problems. In
other words, due to the model’s excessive focus on the genuine relationships of
the body, the potential interactions between joints are easily overlooked. At the
same time, the extraction of temporal features is over-reliant on the temporal
convolution module. Adopting a fixed convolution kernel for feature extraction
cannot adapt to feature changes in different periods, resulting in inadequate
local feature extraction. As shown in Fig. 2, we aim to develop a graph topology
that goes beyond the natural connectivity of the human body and can represent
potential information of human pose. We use this topology to participate in the
spatial-temporal feature with the improved Transformer. The goal is to capture
long-term dependencies while retaining constraints on the higher-order spatial
information of the skeleton in a lightweight manner.

Implementation of Graph. We attempt to find a reasonable and relatively
accessible graph topology to guide us in constructing the spatial information of
the skeleton. Our model involves two forms of graph convolution units to gather
spatial details in a single frame. In the first approach, we follow the critical
design of the spatial graph convolutional neural network proposed by [32]. The
difference is that the sampling function is redefined using attention scores instead
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Fig. 2. Illustration of the proposed graph relative transformer.

of inter-joint connections, and the partition strategy is redesigned by manually
setting thresholds to extract different scales of joint information. We determine
the attention score among vertices as follows:

aij = xiwi · (xjwj)T (1)

where w is the weight parameter. After normalization we end up with a N × N
attention scores matrix and partition the vertex neighborhood by thresholds.
This partition strategy can filter the vertices that are more related to a certain
vertex as:

N(vi) = {vj |thresholdlow < aij ≤ thresholdup} (2)

where thresholdup and thresholdlow are the upper and lower limits of the thresh-
olds, respectively. However, this approach dramatically increases the computa-
tional complexity of the model when calculating the attention scores, resulting
in a waste of computational resources, and it does not show the expected effect
during the experiment as shown in Sect. 4.3.

Inspired by [4], we aim to capture potential dependencies between joints in
a manner that extends beyond the channels of the original spatial coordinates.
Therefore, we designed a learnable matrix to represent the degree of association
between joints, unlike the attention score matrix, which is parameterized and
obtained through model optimization. However, as this solution may lead to
the loss of some graph structure features by operating globally, we also add the
adjacency matrix as a guide to natural connection to complement it. Another
advantage of our approach is that the channels are grouped and globally averaged
within the group pooling, which helps simplify the network model. As shown in
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Fig. 2, relying on the joint association relationships provided by the learnable and
adjacency matrices, we apply a graph convolutional operation on the features
extracted by the depthwise separable convolution block to obtain an update
of the nodal expression features. The obtained feature vectors will be directly
involved in extracting the inter-frame dependencies.

Improved Transformer. The standard transformer is the backbone of our
model, which we improve to achieve better performance and establish a baseline
for subsequent experiments. To incorporate the spatial details of the skeleton,
we reconstruct the query vector in the following way:

qt
i =

∑

vt
j∈N(vt

i)

at
ijφq(xt

j) (3)

where at
ij denotes the weight coefficient of vertex i and vertex j at time t in

the generalized sense. After fully considering the spatial feature map, we obtain
each frame’s corresponding key-value vector pairs by transforming the channel
features using Eqs. (4) and (5):

kt
i = φk(xt

i) (4)

vt
i = φv(xt

i) (5)

In the temporal dimension, the focus is on modeling the frame-to-frame
dependencies to obtain a representative feature map that incorporates the atten-
tion mechanism of the transformer:

αij
n = qi

n · kj
n

T
(6)

where i, j is the frame number of the action sequence, and n is the index number
of the joint node. The joint characteristics of a given frame are updated based
on information shared from the same joint in other frames, which establishes
a strong long-term dependency. A global information token is introduced to
summarize events for the entire time sequence, similar to the approach used in
natural language processing. The update equation for a joint node’s features in
a given frame is as follows:

yi
n =

∑
σ(

αij
n√
dk

)vj
n (7)

where σ is an activation function that normalizes the input. After all the frames
have been aggregated, the subsequent feed-forward layer can adjust the dimen-
sions of the output, adding additional capabilities to the model.

3.2 Multi-stream Model Architecture

Based on GTR, we have constructed a robust MS-GTR model for integrating
a variety of dynamic information streams toward skeleton-based action recogni-
tion. The overall model architecture is shown in Fig. 1. The proposed algorithm
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operates on an action sequence S = {s1, . . . , st, . . . , sT }, consisting of T frames
where each element st ∈ R

N×3 represents the 3D coordinates of all available cap-
tured joints at a particular frame. We introduce the main and auxiliary branches
in the model to capture a broader range of action details.

The main branch is concerned with the long-term dynamic information rep-
resentation in the joint and bone data. Long-term dynamic information repre-
sentation refers to a change in motion over long periods, usually in terms of
modeling sequence contextual relationships. Specifically, we introduce bone rep-
resentation as an interpretation of inter-joint connection to obtain directly from
the original joint coordinates, which is then fed into the main branch along with
the underlying joint features. To calculate bone vectors, which describe the rela-
tionship between two joints, we adopt the same approach as in [25]. Given a pair
of head joint Ji = {xi, yi, zi} and tail joint Jj = {xj , yj , zj}, we calculate the
second-order information as Bi,j = {xj − xi, yj − yi, zj − zi}.

The auxiliary branch, in contrast, captures short-term features, such as the
self-similarity matrix (SSM) and the difference between frames(also known as
velocity). Given a set of joint features J = {J1, J2, . . . , JN}, we construct the
self-similarity matrix Mssm ∈ R

N×N by comparing all the elements in the joint
feature set with each other using the calculation formula M(i, j) = SSM(Ji, Jj).
The dot product of elements with each other is the simplest way to calculate
the self-similarity matrix. This SSM data is used as the input of the auxiliary
branch and as an additional information stream to the main branch regarding
joint tightness. Likewise, the motion velocity of joints contains a wealth of action
features. The velocity of a particular joint can be calculated as νt = st+1 − st,
where νt is a vector reflecting the difference between two continuous frames
in the original action sequence. This velocity information can be input into an
auxiliary branch to support the main component regarding speed characteristics.

To ensure simplicity and fluency, we limit the role of the auxiliary branch
to information transfer and rely on the main branch for capturing the most
useful action features. To facilitate interaction between the main and auxiliary
branches, we employ cross-attention. The remaining streams provide additional
supplements to the main branch through the participation of a token related
to global information. Specifically, the token of the main branch, tokenmain,
is concatenated with the sequence data Sauxiliary = {s1aux, . . . , sTaux} arising
from the auxiliary branch. Subsequently, a self-attention mechanism is imple-
mented on the updated sequence Sfresh = {tokenmain, s1aux, . . . , sTaux}, allowing
the tokenmain also to detect the characteristics of the auxiliary branch.

4 Experiments

4.1 Datasets

HDM05. HDM05 [22] is captured using optical marker-based technology, which
helps to reduce noise interference in the motion capture data. It contains trajec-
tories for 31 joints from 130 motion classes performed by five actors. And among
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these 130 categories, some can be grouped into one category due to the same
expression meaning, so we finally get the data of 65 action categories.

NTU RGB+D. The NTU RGB+D [23] involves the capture of motion
sequences using three synchronized Microsoft Kinect v2 devices. The dataset
contains 56,880 clips from 40 subjects, with each action organized into one of 60
action categories(including 11 multiplayer action categories). The skeleton data
includes the 3D coordinates of 25 major joints at each frame. The dataset offers
two evaluation criteria for action recognition methods: Cross-View is based on
the camera’s viewpoint that captured the action. The training set consists of
37,920 samples captured from a 45-degree view from the left and right, while the
test set contains 18,960 samples captured from the front view. Cross-Subject
validates the model in terms of different subjects. The experiment had 40 sub-
jects categorized into training and test groups, each containing 20 actors. The
training and test sets contain 40,320 and 16,560 samples, respectively.

NTU RGB+D 120. The NTU RGB+D 120 [40] is a large-scale dataset
expended from the NTU RGB+D dataset. In addition to the 60 categories in the
previous dataset, this dataset has an additional 60 types (i.e., 120 classes in NTU
RGB+D 120). This dataset comprises 114,480 action clips captured from 155
camera views with 106 subjects. The authors of this dataset likewise recommend
two benchmarks: Cross-Subject, similar to the previous dataset, are grouped by
subjects, with 53 subjects in each group (63,026 samples for training and 50,922
clips for validation). Cross-Set is based on the setup made at the cameras’
height and distance to the subjects to construct the training and testing set. The
training set consists of 54,471 samples, while the test set contains 59,477 samples.
The dataset includes 56,880 RGB+D video samples from 40 subjects, with each
action classified into one of 60 action categories (including 11 multiplayer action
categories).

4.2 Implementation Details

The implementation of our model is based on PyTorch and was run on an
NVIDIA GeForce RTX 3090 GPU. We use gradient descent to update the model
parameters. Specifically, we employed a stochastic gradient descent (SGD) opti-
mizer with a momentum of 0.9 and a weight decay of 0.0004. We set the max-
imum number of training epochs to 120 and the size of each batch to 64. The
initial learning rate is set to 0.01 and decays to 0.1 of the previous at epochs
45, 75, and 90. We employed the cross-entropy function as the loss function and
added label smoothing to alleviate over-fitting and improve the model’s gener-
alization ability.
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4.3 Ablation Study

We can demonstrate the contributions of the proposed components in GTR to
achieve the goal of action recognition through a series of relevant experiments
on the Cross-View benchmark of the NTU RGB+D dataset.

Graph Relative Transformer Block. First, we need to confirm whether it
is necessary to use graph convolution to construct skeletal spatial guidelines
instead of using transformers for the intuitive processing of time series. As pre-
viously mentioned, we feed the features extracted by the standard transformer
to the classifier for action recognition and compare the result. Additionally, this
section will discuss the implications of aggregating and updating graph nodes.
As shown in Table 1, the experiment result indicates that combining the initial
transformer model with the graph-related blocks significantly improves perfor-
mance. Therefore, the most effective GTR associated with channels is selected
as the foundational component for later model upgrades.

Table 1. Comparisons of the action recognition accuracy on Transformer with and
without graph dependencies.

Methods Accuracy (%)

Standard transformer 81.17
GTR (Threshold-dependent) 87.66
GTR (Learnable-matrix) 89.74

Table 2. Comparison of the effect of the presence or absence of auxiliary branch and
different action input modalities on recognition results.

Joint Bone SSM Difference Accuracy (%)
√ × × × 90.33
× √ × × 88.06√ √ × × 90.32
× × √ × 90.68√ × √ × 91.19
× × × √

85.17√ √ √ × 92.25

Multi-stream Framework. To improve the representation and generalization
ability of the model, we introduce an auxiliary branch to provide different forms
of action implications to supplement the main unit. We conducted experiments
by blocking the auxiliary streams and comparing their effects with those of the
main branch alone. The results in Table 2 show that the fusion of information
between branches can provide better semantic support for recognition. We also
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measured the strength of the different action dynamic expressions introduced to
the main branch for recognition. When only difference is available, the model
performance is most unsatisfactory. Although the joint flow alone can improve
the model to 90.33%, adding the self-similarity matrix to the main branch as
an auxiliary information flow improves the recognition accuracy by 0.86%. It
indicates that the collaboration of multi-stream information is more beneficial
for the final action recognition.

Fig. 3. Confusion matrix of skeleton-based action recognition with MS-GTR building
on the cross View validation of NTU RGB+D dataset.

4.4 Confusion Matrix Analysis

As shown in Fig. 3, we visualized the confusion matrix of the cross-view bench-
mark results on the NTU RGB+D dataset to identify the categories that caused
substantial interference leading to false recognition. Two situations can cause
confusion between classification categories. The first set included categories
where the inability to capture the reference led to some inaccuracy in recognition,
including “A11:reading”, “A12:writing”, “A29:playing with phone or tablet”, and
“A30:type on a keyboard”. These actions all involved manipulating the hands,
and the specific tools used varied between the categories. The second set of con-
fusing categories was the inverse order of each other, such as the pair of action

Table 3. Performance comparison on HDM05.

Methods Accuracy (%)

Hierarchical RNNs (2015) 96.92
Deep LSTM (2016) 96.80
DHMR (2021) [39] 98.30
MANs (2021) 99.04
GTR (Ours) 99.34
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sequences “A16:put on a shoe” and “A17:take off a shoe”. We provided an expla-
nation that as the network goes deeper, location information appears to become
less significant.

Table 4. Performance comparison on NTU RGB+D dataset.

Methods NTU RGB+D
Cross Subject (%) Cross View (%)

Hierarchical RNNs (2015) 59.10 64.00
Clips + CNN + MTLN (2017) [16] 79.57 84.83
IndRNN (2018) 81.80 87.97
VA-RNN (2019) [33] 79.80 88.90
AMCGC-LSTM (2020) [31] 80.10 87.60
RGB+Skeleton (2020) [10] 84.23 89.27
TS-TCNs (2020) 82.40 90.20
MANs (2021) 79.74 91.55

ST-GCN (2018) 81.50 88.30
AM-STGCN (2019) [17] 83.40 91.40
2s-AGCN (2019) 88.50 95.10
Advanced CA-GCN (2020) [38] 83.5 91.4
LSGM+GTSC (2020) [14] 84.71 91.74
MS-G3D (2020) [41] 91.50 96.20
MST-GCN (2021) [42] 91.50 96.60
FV-GCN (2022) [28] 81.70 89.80
STAR (2021) [24] 83.40 89.00

MS-GTR (Ours) 84.50 92.25

Table 5. Performance comparison on NTU RGB+D 120 dataset.

Methods NTU RGB+D 120
Cross Subject (%) Cross Setup (%)

ST-LSTM (2016) 55.7 57.9
GCA-LSTM (2017) 61.2 63.3
FSNet (2019) 59.9 62.4

ST-GCN (2018) 70.7 73.2
2s-AGCN (2019) 82.9 84.9
MS-G3D (2020) 86.9 88.4
SGN (2020) [46] 77.9 78.5
MST-GCN (2021) 87.5 88.8
EfficientGCN (2022) [43] 88.3 89.1

PGT (2022) [45] 86.5 88.8
KA-AGTN (2022) [44] 86.1 88.0

MS-GTR (Ours) 78.3 80.8



Multi-stream Graph Transformer 115

4.5 Comparison to the State of the Art

To visually verify the feasibility and effectiveness of our model on action recog-
nition, we conducted experiments on the HDM05 dataset (Table 3), the NTU
RGB+D dataset (Table 4), and the NTU RGB+D 120 dataset (Table 5).

Notably, on the HDM05 dataset, we are currently at the forefront with a
result of 99.34%. Whether it is the NTU RGB+D or the extended version,
our model always has an advantage in recognition accuracy compared to the
recurrent approaches, which indicates that our baseline model extracts supe-
rior features when establishing temporal dependencies. However, we still have a
long way to go regarding a series of graph convolution variants of the method.
Although our model is slightly less effective than 2 s-AGCN, we get a more sig-
nificant improvement when we introduce the adaptive graph convolutional block,
which proves the values of embedding the topology with the Transformer as the
baseline model. For STAR [24], which was designed with the same intention as
our baseline model, we used a graph structure to compensate for the lack of
purely self-attention mechanisms to capture spatial features. Compared to this
model, our recognition accuracy improved by 3.25% on Cross View and 0.75% on
Cross Subject. In particular, taking KA-AGTN as an example, this model is also
positioned as a graph transformer, but its model takes 2 s-AGCN as the base-
line model and interpolates the attention layer for enhancing the dependence of
local neighboring joints while preserving the spatio-temporal graph convolution
layer. Our model starts from the most basic Transformer rather than using the
currently available models as a baseline model to improve recognition accuracy,
which results in us not fully utilizing the computational resources to represent
the capabilities of our model. Therefore, to improve the model’s generalization
ability, we can use the existing pre-trained model to participate in the task,
which is the direction we can improve in the future.

5 Conclusion

In this work, we propose a novel approach called GTR, which utilizes a trans-
former to efficiently capture the temporal features of action progression instead of
solely relying on graph convolution neural networks. The proposed GTR involves
a graph based on the natural connection of body parts in the expression update,
which enhances the model expression diversification by motion features of differ-
ent scales and makes the results more credible. We also introduce motion features
with various expression meanings while reducing the complexity of model opera-
tions. In contrast to the direct fusion of action information from different scales,
MS-GTR involves auxiliary input under the guidance of the main branch with-
out introducing additional calculation costs. Our proposed MS-GTR achieves
state-of-the-art performance on datasets captured by motion capture devices
with widely varying accuracy and notably achieves leading recognition accuracy
on the HDM05 dataset.
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