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Abstract. Next event estimation has been widely applied to Monte
Carlo rendering methods such as path tracing since estimating direct
and indirect lighting separately often enables finding light paths from
the eye to the lights effectively. Its success heavily relies on light sam-
pling for direct lighting when a scene contains multiple light sources since
each light can contribute differently to the reflected radiance on a surface
point. We present a light sampling technique that can guide such a light
selection to improve direct lighting. We estimate a spatially-varying func-
tion that approximates the contribution of each light on surface points
within a discretized local area (i.e., a voxel in an adaptive octree) while
considering the visibility between lights and surface points. We then con-
struct a probability distribution function for sampling lights per voxel,
which is proportional to our estimated function. We demonstrate that
our light sampling technique can significantly improve rendering quality
thanks to improved direct lighting with our light sampling.
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1 Introduction

Global illumination methods such as path tracing [16] and bidirectional path
tracing [31] have been widely adopted in production rendering scenarios [5,9,
10], where simulating accurate light propagation between lights and 3D virtual
models should be conducted. While such Monte Carlo (MC) integration-based
algorithms can reduce errors in their rendering images by increasing the number
of samples, it often requires non-trivial rendering times to generate a visually
acceptable rendering output without noticeable noise.

A commonly adopted technique for reducing the variance in the rendered
images is to split the light transport equation into direct and indirect illumination
parts and then attempt to connect the eye subpaths, determined by ray tracing
from the eye, to lights by casting shadow rays from a surface point (i.e., direct
lighting). This simple but effective strategy is commonly referred to as next event
estimation (NEE) and has been widely employed in rendering frameworks [15,25]
since it often reduces the MC variance drastically.
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While this direct lighting is conceptually simple and can be easily imple-
mented, it technically requires determining a sampling probability for selecting
a light source when multiple light sources exist in a scene. A straightforward light
selection approach is uniform sampling (i.e., allocating the equal probability for
each light), but it can be ineffective since the contribution of light sources can
vary significantly per light and surface point.

A natural extension to uniform sampling is to assume that all light sources are
visible from surface points and to adjust the light selection probability of being
proportional to a potential contribution (e.g., light power) of each light source,
referred to as spatial sampling [29]. This simple light selection strategy, spatial
sampling, can be effective when all light sources are unoccluded from surface
points. However, it is often suboptimal when selected light sources are invisible
from the points. Unfortunately, exact visibility information between two points
(e.g., a surface point and a point on a light) cannot be pre-determined since it
requires tracing a shadow ray that is typically computationally expensive. As a
result, a computationally efficient process that closely approximates the visibility
information is a technical requirement for an ideal light selection process.

As a recent example of guiding light sampling using visibility information,
Guo et al. [12] discretized the scene space, i.e., a space determined by the axis-
aligned bounding box of a scene, into a 3D regular grid and estimated the vis-
ibility between two voxels using uniformly generated but with a small number
of visibility samples. Then the stored visibility was used as the light selection
probability so that the lights with high probability, which can be likely visi-
ble from a surface point, could be more selected than the other lights with low
probability. It enables avoiding unnecessary sample allocations to invisible lights,
but it can also be sub-optimal when the contributions of multiple visible lights
are significantly different. One may extend this method to consider the potential
contributions of lights together with their estimated visibility via multiple impor-
tance sampling [28,30], but its performance improvement can still be restricted
due to the sparse visibility approximation with a uniform grid structure.

This paper also addresses the light sampling problem (i.e., selecting a light
for direct lighting at a surface point). However, we approximate more compre-
hensive information, a potential light contribution (e.g., light power) together
with visibility, so that we can guide the light selection more effectively by form-
ing a light sampling probability of being proportional to the contribution of light
sources to a surface point. To this end, we estimate a spatially-varying function
that approximates the contribution of each light source per local region using
an adaptively constructed octree.

We demonstrate that our approach can produce more accurate rendering
results (e.g., up to 7× lower errors) than the existing approaches (e.g., spatial
sampling and [12]) given equal-time budgets, thanks to improved direct lighting
with our light selection for various rendering scenes where multiple lights exist.

2 Related Work

To solve the direct illumination integral, one typically applies a Monte Carlo
(MC) integration (i.e., a numerical approximation of the integral), and its
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approximation quality (i.e., the difference between the approximate value and
the unknown ground truth), mainly depends on the randomly chosen light sam-
ples. One of the most popular approaches is to reduce the approximation error
(i.e., the variance of the MC integration) using carefully selected light sam-
ples by adjusting the probability of generating such samples [29]. Such tech-
niques often constructed their sampling probability by taking terms in the direct
light transport equation into account (e.g., the emissive light energy [1,23], the
bidirectional reflectance distribution function (BRDF) [19], and both the light
energy and BRDF [4,6]). Ghosh and Heidrich [11] presented a two-stage sam-
pling method where they applied a Monte Carlo sampling using the BRDF and
lights at the first stage and then used a mutation strategy to allocate more
samples to partially-occluded regions in the later stage.

Importance sampling for direct lighting has also received attention for ren-
dering scenarios where many lights exist. A well-known approach to making the
sampling scalable against many lights (e.g., hundreds of thousands of lights) is to
use light clusters maintained in an acceleration structure (e.g., a light tree) and
select a light according to their importance (i.e., the radiance contribution at
a surface point) [7,17,20,35,36]. Additionally, progressively refining the sample
distribution was recently explored [18,24,33] so that the sample distribution for
direct lighting can have a similar shape to the unknown radiance contribution
as collecting more samples in rendering.

The sophisticated importance sampling aforementioned can be necessary
when rendering a scene with environment lights or thousands of lights. Nonethe-
less, it can be preferable in practice to choose a simpler alternative that does
not require an expensive data structure (e.g., light trees) for typical scenes with
moderate numbers of small lights. For example, one can select a light according
to the light power, the area, and the distance to a surface point, and then sample
a point on the selected light [29]. A variant of this technique was implemented,
referred to as spatial sampling, in a well-known rendering framework [25]. While
this simple approach can behave well when all lights are visible to the shading
point, its efficiency gain over the most straightforward approach (i.e., uniform
light selection) can disappear when the visibilities between shading points and
lights vary significantly. Guo et al. [12] employed a computationally efficient data
structure (i.e., a uniform grid), to contain estimated visibility between two vox-
els, and showed that this estimated visibility could be exploited for selecting a
visible light. However, this approach did not consider the relative importance of
unoccluded light sources (e.g., light power). Like these simple methods, we focus
on rendering scenarios where the number of lights is moderate and propose an
improved light sampling using a more comprehensive estimation of light contri-
butions while maintaining a low computational overhead so that our technique
can be a practical choice for rendering scenarios where multiple lights exist.

Path Guiding. Importance sampling for indirect lighting also has been actively
explored. A widely adopted strategy is to adjust the sampling density of sec-
ondary rays to be proportional to the incoming radiance from the rays per
surface point [30], often called path guiding. Well-known approaches include
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Fig. 1. Equal-time comparisons (in twenty secs) of light sampling techniques for a
scene with three lights. We render the scene without indirect illumination to show
the visual differences among the tested methods clearly. We measured the numerical
accuracy of rendered images using a relative L2 error (relL2) [27].

approximating the contribution of indirect light radiance with the Gaussian mix-
ture model [13,34] and a spatial-directional tree [8,21]. Rath et al. [26] recently
showed that considering the variance of the pixel estimator can make path guid-
ing effective. A popular alternative to such approaches is to devise a deep neural
network that can guide the sampling of indirect light paths [2,14,22,37–39].
The path guiding techniques are orthogonal to importance sampling for direct
lighting, including ours, and can be used together for more effective rendering.

3 Problem Statement and Motivation

This paper aims to reduce the variance of direct lighting by carefully choosing
lights to be sampled according to their estimated contribution. This section
provides a background on direct lighting and present a light selection problem
for direct lighting, followed by a motivation for our light selection approach. The
computation of the direct illumination can be formulated into an area form [29]:

Ld(x, ω) =
∫
A

Le(x, x′)ρ(x, x′, ω)V (x, x′)G(x, x′)dx′, (1)

which produces the outgoing radiance Ld(x, ω) on a surface point x with direc-
tion ω by integrating the emitted radiance Le(x, x′) from the points x′ on the
surface A of light sources. ρ(x, x′, ω) is the bidirectional reflectance distribution
function (BRDF), V (x, x′) is the visibility (one if x and x′ are mutually visible
and zero otherwise), and the geometric term G(x, x′) = cos θx cos θx′

||x−x′||2 . A Monte
Carlo (MC) estimator for the direct lighting (Eq. 1) can be written by

〈Ld(x, ω)〉 =
Le(x, x′)ρ(x, x′, ω)V (x, x′)G(x, x′)

p(x′|x)
, (2)

which provides an unbiased estimate of the ground truth radiance Ld(x, ω) by
randomly selecting a light sample x′ given the surface point x. This sampling



Enhanced Direct Lighting Using Visibility-Aware Light Sampling 191

process is controlled by the selection probability, probability density function
(PDF) p(x′|x). Note that one can simply take an averaged value of the estimates
when selecting multiple light samples.

The PDF p(x′|x) can be decomposed into two terms, one for selecting a
light and the other for sampling a point on the chosen light, i.e., p(x′|x) =
p(El|x)p(x′|El) where El is a l-th light (l ∈ [1, L]) given L lights in the scene.

A common choice of choosing El (i.e., p(El|x)) is to consider the contribution
of the light into the outgoing radiance Ld(x, ω). For example, a well-known
renderer, PBRT [25], exploits the spatial sampling strategy that varies the PDF
of selecting a light per a discretized scene region. Specifically, it divides a scene
space into M voxels, each of which contains a PDF (e.g., p(El|x) for surface
points x in the m-th voxel Vm). The spatial sampling constructs the probability
p(El|x) for selecting the l-th light El to be proportional to the following function:

f(x,El|x ∈ Vm) =
1

Nm

Nm∑
i=1

Le(xi, x
′
i)G(xi, x

′
i)

p(x′
i|El)

, (3)

which is computed using Nm number of randomly generated points xi inside
the voxel and light samples x′

i on the l-th light. The function f(·) varies per
voxel and light, and thus the function should be evaluated for each voxel and
light using the randomly selected points xi and x′

i. Then, the PDF p(El|x) at a
surface point x in the m-th voxel is determined to be proportional to the f(·),
i.e., p(El|x) ∝ f(·).

The PDF p(x′|El) of selecting a specific point x′ on the l-th light depends on
the properties of the light (e.g., the shape) and was well-established in an early
method [29]. We employ the existing technique for the PDF p(x′|El) and refer
to PBRT [25] for more details on this sampling.

Our Motivation for the Light Selection p(El|x). The estimated direct illumination
term (〈Ld(x, ω)〉 in Eq. 2) is an unbiased estimate of the ground truth Ld(x, ω).
Still, it typically suffers from non-trivial variance (thus a noisy estimate) unless
many samples are used. As a result, a careful light selection strategy, whose PDF
varies per surface point x, is required to minimize the variance of the estimate.

Spatial sampling offers a simple means that builds a spatially-varying PDF
using a discretized data structure (i.e., voxels), but it does not consider the visi-
bility V (x, x′) between two points x and x′ (see Eq. 3). Similarly, Guo et al. [12]
proposed NEE++ that is an improved direct light sampling considering voxel-to-
voxel visibility. Then, given a surface point, it tries to choose only visible lights
that can contribute to the radiance but does not consider relative importance
among visible lights introduced by the other terms such as Le(xi, x

′
i) in Eq. 2.

To make the direct lighting more effective, we extend the spatial sampling
into a more comprehensive one that includes the visibility term additionally while
considering the original terms (Le(xi, x

′
i) and G(xi, x

′
i)). Figure 1 shows an exam-

ple result where the existing techniques (spatial sampling [25] and NEE++ [12])
do not effectively reduce the noise from the direct illumination due to their
incomplete consideration. On the other hand, our technique shows a rendering
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Fig. 2. As a pre-processing step, we determine the surface points through path tracing
with one sample per pixel (a) and split the space adaptively according to the density of
vertices to estimate the contribution of each local region from each light (b). Then, we
perform the original path tracing with direct lighting whose light selection probability
is proportional to our target function stored in the octree (c).

result with much-reduced noise thanks to a more effective light sampling, which
will be presented in the following section.

4 Visibility-Aware Light Sampling with an Adaptive
Octree

This section presents a simple but effective light sampling by estimating
spatially-varying light contributions. Analogously in the existing sampling strat-
egy (e.g., spatial sampling), we discretize the scene space into multiple voxels,
each of which contains a localized target function:

g(x,El|x ∈ Vm) =
Nm∑
i=1

Le(xi, x
′
i)G(xi, x

′
i)V (xi, x

′
i)

Nmp(x′
i|El)

, (4)

which approximates the l-th light contribution to the points within a local space
(i.e., the m-th voxel Vm). The major modification to the existing one (Eq. 3) is
that we incorporate the visibility term V (xi, x

′
i) so that visible lights can have

more chance to be selected for direct lighting.
Our next task is to compute the localized function per voxel for each light

using Nm samples so that the light selection PDF p(El|x) (i.e., a probability
of selecting l-th light at the surface point x within m-th voxel) can be con-
structed to be proportional to the target function (i.e., p(El|x) ∝ g(·)). Figure 2
illustrates our framework where we estimate our localized target function as a
pre-processing (Sect. 4.1) and perform the rendering using direct lighting with
our light sampling.

4.1 Estimation of Our Localized Target Function

We estimate the localized target function g(x,El|x ∈ Vm) (Eq. 4) to locally
vary the light selection probability p(El|x) for direct lighting in the original
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rendering. Analogously in spatial sampling (in Sect. 3), we discretize the scene
space into disjoint voxels where each voxel contains L light contributions, i.e.,
g(x,E1|x ∈ Vm),...,g(x,EL|x ∈ Vm). Note that all the points x within a voxel
Vm share the same target function, g(x,El|x ∈ Vm), and thus we can reduce its
approximation errors by creating more voxels. Unfortunately, estimation of the
target function requires non-trivial computational efforts since each voxel should
evaluate Nm samples (see Eq. 4). As a result, we should employ a simple but
compact data structure that approximates the light contributions appropriately
without forming a large number of voxels.

To this end, we present an octree-based estimation where each leaf node (a
voxel) estimates L light contributions. Specifically, we perform path tracing to
collect samples (L-dimensional vectors) for constructing the octree. We generate
one sample per pixel to make the computational overhead of this process small
and set the maximum ray depth of the path tracing to three to approximate light
contributions for scene areas where direct lighting can be potentially performed,
i.e., not just the region intersected by the camera rays. Whenever we find an
intersection point xi, we cast a shadow ray towards a light sample x′

i for each
light and evaluate

g(xi, El) =
Le(xi, x

′
i)G(xi, x

′
i)V (xi, x

′
i)

p(x′
i|El)

. (5)

Note that the g(xi, El) is computed for each light (i.e., for E1,...,EL) per a
surface point xi and thus we have an L-dimensional value at a surface point xi.
We treat the g(xi) = {g(xi, E1),...,g(xi, EL)} as a sample in R

L for our octree
construction.

Once the samples are generated, we construct an adaptive octree whose leaf
node contains roughly the same number of samples g(xi). Note that the density
of surface points xi is typically non-uniform, and thus the voxel size of each leaf
node needs to be adaptively determined by the density of the points. To control
this adaptive process, we take an input parameter that controls the number of
leaf nodes, which will be detailed in the subsequent paragraph.

After collecting Nm samples for each voxel (i.e., a leaf node in the tree),
we compute our localized target function g(x,El|x ∈ Vm) (Eq. 4) using the Nm

samples (i.e., g(xi) whose xi ∈ Vm). Note that once the tree is generated (i.e.,
evaluating the target function per each leaf node), we do not need to store the
individual samples. Once this tree-building process is completed, we perform the
original rendering, i.e., a standard path tracing with direct lighting. For direct
lighting in the rendering process, we select a light according to the light selection
probability p(El|x) that is proportional to our target function.

Implementation Details. We initially divide the bounding box of the scene space
into 4×4×4 equal-sized voxels (i.e., a uniform octree with depth two). Then, we
recursively divide the voxels by limiting the number of samples inside the voxels.
Specifically, we split a voxel only if the number of samples within the voxel is
larger than 4N

T where N and T are the total sample count and a user-specified
parameter that controls the number of leaf nodes, respectively. We observed that
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Lamp relL2 0.0139
4500 spp (232.6 s)

relL2 0.0599
4500 spp (234.7 s)

relL2 0.0563
4096 spp (232.3 s)

relL2 0.0077
4096 spp (229.7 s)

Reference

Hotel relL2 0.0165
1120 spp (243.9 s)

relL2 0.0077
1140 spp (243.6 s)

relL2 0.0090
1040 spp (243.4 s)

relL2 0.0038
1024 spp (242.9 s)

Reference

Whiteroom relL2 0.0139
1175 spp (205.9 s)

relL2 0.0103
1155 spp (207.3 s)

relL2 0.0387
930 spp (206.6 s)

relL2 0.0052
1024 spp (204.2 s)

Reference

(a) Reference (b) Uniform (c) Spatial (d) NEE++ (e) Ours (f) Reference

Fig. 3. Equal-time comparisons of light sampling techniques. We vary the samples per
pixel (spp) per each method for the same-time test. The Lamp scene has two lights (in
the bulb and on the ceiling), the Hotel has nine area lights, and the Whiteroom has
eight area lights. The times in the parenthesis are the total rendering times, including
the overheads of tested methods.

the number of leaf nodes increases roughly proportional to the parameter T with
this setting. We set the T to 4096 unless otherwise specified. We integrated our
light selection into a well-known rendering framework, PBRT [25]. The original
implementation of PBRT treats each primitive of a mesh light as an individual
light source, increasing the number of lights L unnecessarily. We modified the
existing implementation to treat a mesh light as a single light source.

5 Results and Discussion

We compare our method with existing light sampling techniques, spatial sam-
pling [25] and NEE++ [12]. As a baseline, we also test the most straightforward
choice, uniform sampling, which assigns the same probability for all lights. We
use path tracing while varying the light sampling strategy for direct lighting. All
tests have been done on a PC with an AMD Ryzen 3990X CPU.

Comparisons of Light Sampling Methods. Figure 3 shows equal-time compar-
isons of our method and existing light sampling techniques. Spatial sampling
and NEE++ produce higher errors than the uniform sampling method for the
Lamp and Whiteroom scene. It indicates that considering a partial term (e.g.,
light sampling without visibility consideration or only using visibility estimation)
is not robust. Ours, however, consistently generates lower errors than the base-
line and the existing methods, thanks to our more accurate estimation of light
contribution. In addition, NEE++ fails to capture the spatially varying visibility
due to their use of sparse uniform structure, worsening the results even than the
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Fig. 4. Numerical convergences of path tracing with different light selection strategies.

Table 1. Breakdowns of our total rendering times (in secs) for the results in Fig. 3.

Scene spp Sample generation Octree building Rendering Total

Lamp 4096 0.12 0.47 229.1 229.7

Hotel 1024 0.74 1.78 240.4 242.9

Whiteroom 1024 0.63 1.21 202.3 204.2

uniform sampling method even in the relatively simple scene with respect to the
visibility (i.e., the Lamp). On the other hand, our selection using an adaptive
octree structure makes a much-improved result than the existing methods, e.g.,
more than 7× lower errors than NEE++. We also test the numerical convergence
of the tested methods over time in Fig. 4. As shown in the figure, the benefit of
our technique for path tracing is consistently maintained over time.

Our Computational Overhead. Table 1 shows a breakdown of the total rendering
times reported in Fig. 3. Note that our pre-processing is decomposed into two
stages, the sample generation and the octree construction (see Fig. 2). As seen
in the table, our computational overhead is minor (e.g., 0.257% to 1.046%) in
the total times, given the offline settings.

Analysis of Our Voxel Granularity. Our method controls the voxel granularity of
the octree by a user-specified parameter T (discussed in Sect. 4). Table 2 shows
our computational and memory overheads with rendering accuracy by varying
the T . Using a large T (and thus many voxels) does not necessarily improve the
rendering quality since the number of samples, g(xi) used to construct the local-
ized target function within a voxel, decreases and thus leads to noisy estimates
of the light contributions. Also, with a small T , the rendering quality degrades
as our light selection strategy cannot appropriately capture the locally varying
light contributions due to a high discretization error. Consequently, we set the
T to the chosen number, 4096, for all tested scenes.

Limitations and Future Work. The main limitation of the proposed method
is that, like the other light selection methods, it cannot drastically improve the
rendering quality for the scenes where most of the scene regions are lit by indirect
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Table 2. Analysis of the voxel granularity for our adaptive octree.

Scene T Number of leaf nodes relL2 Memory (KB) Time (s)

Overhead

Lamp 512 778 0.0102 35 0.50

4096 5349 0.0077 239 0.59

32768 43527 0.0081 1945 0.77

Hotel 512 596 0.0051 43 1.97

4096 4789 0.0038 345 2.54

32768 38914 0.0037 2801 2.99

Whiteroom 512 505 0.0073 34 1.47

4096 4537 0.0052 309 1.90

32768 39250 0.0089 2672 2.21

Fig. 5. Failure cases of the light sampling techniques for the Veach-Ajar scene with
4K spp. The spatial sampling (relL2: 0.104) and ours (relL2: 0.103) become ineffective
and do not improve the uniform sampling (relL2: 0.106).

lighting. Figure 5 shows a clear example where our method does not improve the
rendering quality compared to the baseline (i.e., uniform sampling). Given the
specific scene setting, light sources are located behind the door, and thus our
light selection for direct lighting cannot be effective. Note that this is also a
counter-example of the use of direct lighting.

In addition, our target function (Eq. 4) does not fully consider the direct
lighting integrand (Eq. 2) since we do not consider the BRDF. Note that our
method is unbiased, like the other light selection methods, and this partial con-
sideration does not indicate that one cannot use general materials. Nevertheless,
it is desirable to extend our method to a more comprehensive one with BRDF
for further improving direct lighting. Also, we test our light sampling with unidi-
rectional path tracing, but it would also be interesting to integrate our sampling
into other light transport techniques (e.g., bidirectional path tracing [31] and
metropolis light transport [32]) and path-reusing techniques (e.g., [3]). We leave
such extensions to future work.
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