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Abstract. Segmentation is an important step in medical imaging. In
particular, machine learning, especially deep learning, has been widely
used to efficiently improve and speed up the segmentation process in
clinical practices of MRI brain images. Despite the acceptable segmen-
tation results of multi-stage models, little attention was paid to the use
of deep learning algorithms for brain image segmentation, which could
be due to the lack of training data. Therefore, in this paper, we propose
MRI — GAN, a Generative Adversarial Network (GAN) model that
performs segmentation M RI brain images. Our model enables the gen-
eration of more labeled brain images from existing labeled and unlabeled
images. Our segmentation targets brain tissue images, including white
matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). We
evaluate the performance of the M RI — GAN model using a commonly
used evaluation metric, which is the Dice Coefficient (DC). Our exper-
imental results reveal that our proposed model significantly improves
segmentation results compared to the standard GAN model while tak-
ing shorter training time.

1 Introduction

The significant growth of medical imaging applications in the last decade has
witnessed a matching increase in image segmentation and classification. Such
growth has encouraged researchers in clinical fields to develop models that make
segmentation work similar to the human process in clinical practices [1,2,28,
30]. To this end, machine learning-based brain segmentation, in which brain
images are divided into multiple tissues, has emerged as it makes brain image
segmentation more accurate [3,4].

Many brain image segmentation models have been proposed in the litera-
ture. A common technique is to use two-stage models, which involves fusing
global information with local information generated in two subsequent stages,
to achieve acceptable segmentation results. The design of multi-stage models, in
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general, allows achieving better results, since it helps solve the information loss
problem [5-8].

There have been many studies [10-12,15,26,27] proposing techniques to
improve the accuracy of brain image segmentation to reach results that are
close enough to manual reference. Recently, the use of deep learning algorithms
for brain image segmentation started to emerge. However, there is still a lack of
available data to train deep learning models. To address such an issue, adver-
sarial learning and few-shot learning techniques have been developed to perform
well in cases where only a few labeled images are available [9,13|. For example,
Mondal et al. [9] proposed a few-shot 3D multi-modal image segmentation using
a GAN model, which consists of U-net, a generator, and an encoder [9]. Fake
images were first generated using the generator, then used along with labeled and
unlabeled data to train the discriminator, which in turn distinguishes between
generated and true data. The encoder was used to compute the predicted noise
mean and log-variance. Despite the merits of such a model, its achieved results
were not significantly higher than previous state-of-the-art models.

While previous techniques enabled neural networks to produce acceptable
segmentation output, there were very few models that address the segmentation
of infant brain images into White Matter (W M), Grey Matter (GM), and Cere-
brospinal Fluid (CSF). As an example, Dolz et al. [14] proposed a model to
segment infant brain images, which was evaluated using the iSEG Grand MIC-
CAI challenge dataset. The model utilized the direct connections between layers
from the same and different paths, which were used to improve the learning pro-
cess. However, that model did not take into consideration deeper networks with
fewer filters per layer. Moreover, individual weights from dense connections were
not investigated.

Therefore, in this paper, we propose M RI —GAN, a novel Generative Adver-
sarial Network (GAN) model that performs segmentation of M RI brain images,
particularly WM, GM, and CSF. Our model enables the generation of more
labeled data from existing labeled and unlabeled data. To do this, we employ an
M RI encoder with a ground truth encoder to compress the features and convert
them into low-dimensional M RI and tissues vectors. Each encoder is capable
of compressing one or more inputs. In summary, this paper makes the following
contributions:

e Novel MRI-GAN Model: Introduces a new GAN model for segmenting brain
MRI images into WM, GM, and CSF tissues.

e Data Augmentation: Enables data modeling from labeled and unlabeled data,
addressing limited annotated datasets.

o Integrated Encoders: Uses M RI and ground truth encoders for efficient fea-
ture compression and vector conversion.

e Improved Accuracy: Outperforms existing methods in accurate tissue segmen-
tation.

The remainder of this paper is organized as follows. Section 2 reviews related
work. Section 3 presents the M RI — GAN model. Section 4 presents our setup
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materials and methods. Section 5 presents and discusses our experimental results.
Finally, Sect. 6 concludes the paper and suggests possible future work.

2 Related Work

This section reviews the work related to our study.

2.1 Generative Adversarial Network for Brain Segmentation

GANSs have shown promising results in both medical image diagnostics [20] and
brain image segmentation [19,23]. The standard GAN has two parts: The gen-
erator is to generate the data and the discriminator is to distinguish between
the generated data and real data. Much research on brain image segmentation
has been conducted using GANs. For example, Cirillo et al. [21] proposed a 3D
volume-to-volume (GAN) to segment the images of brain tumors. Their model
achieved 94% result when the generator loss was weighted five times higher than
the discriminator loss. The proposed model was evaluated on the BraTS 2013
dataset. Their model outperformed previous models with an overall accuracy of
66%. Delannoy et al. [22] proposed a super-resolution and segmentation frame-
work using GANSs to neonatal brain M RI images. The framework composed of
(a) a training of a generating network that estimates the corresponding high
resolution (H R) image for a given input image and (b) a discriminator network
D to distinguish real HR and segmentation images. Their model outperformed
previous models with an overall accuracy of 83%.

2.2 Encoder/Decoder

The encoder/decoder model emerged more than a decade ago as a concept to
describe an image [5]. A well-known study of encoder/decoder was the auto
encoder/decoder [17], which has investigated the encoder and decoder model
based on pixel-wise classification. In addition, this model enabled the use of
nonlinear upsampling and a smaller number of parameters for training, which
requires higher computational power than any other deep learning architectures.
However, many studies that performed encoding/decoding considered mapping
a dense block into a standard encoder/decoder model. We expect that applying
encoder/decoder models in a GAN model will provide more accurate segmen-
tation results for brain images. To achieve this, we first develop a new encoder-
decoder model that compresses the feature of the inputs and also maps the
tissues’ information to the decoder. Results show that our M RI — GAN model
exhibits results that are fairly close to the manual reference, and a significant
reduction in training time compared to the state-of-the-art models. Further-

more, the Dice coefficient is applied to better demonstrate the significance of
the M RI — GAN model.
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3 Proposed Model

This section describes the structure of our proposed GAN model.

3.1 Encoder/Decoder

Our M RI — GAN model consists of generator and discriminator. Fig.1 shows
our proposed GAN model. All the M RI encoder, ground truth encoder, tissues
mapping, boundary detection network, and decoder together represent the gen-
erator of the M RI — GAN model. M RI encoder and ground truth encoder take
M RI image and ground truth then convert them to M RI and ground truth
vectors. The detection network provides more information about the boundary.
The output of the decoder is a GT image where GT' denotes the image generated
from the generator.

Ground images
FIm
T —

Boundary tissues
G1' nn-ges
MRlimages ~ Boundary detection network
l\’ﬁ Decoder

S rgm
MRIEncoder MRIvector MRI images m
Ground images
“1”' U-net Tissue classes (WM, GM, CSF)
l" I

y

Ground Encoder Ground vector ~Mapping  AdalN params Ground images

L J L J
T T

Generator Discriminator

Fig. 1. Illustration of our proposed GAN model

3.2 Mapping

The decoder upscales the MRI code into a 3D geometry using SpiralBlocks
that are conditioned by the ground code using Adaptive Instance normalization
(AdaIN) [29]. Given a sample x that is passing through the network, AdalN
first normalizes the activations in each channel of z to a zero p and unit o. The
activations are then scaled on a per-channel basis. We use a mapping function
R that maps a ground code y into (i, o) parameters for every channel of each
AdalIN layer. Hence the following equation:

z — p(z)

AdaIN(z,y) = Ro(y) @)

+ Ru(y) (1)
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where R is a learned affine function composed of multiple fully connected layers,
taking the ground latent code as input. Since the AdalN transformation operates
on whole channels, the ground code alters global appearance information while
the local features are determined by the M RI code.

3.3 Loss Function

Discriminator Loss Function. The discriminator in the M RI — GAN model
has labeled data loss, unlabeled data loss, and GT images loss (fake loss). We
formulate the overall loss function of M RI — GAN as follows:

1discriminator = )\labeledllabeled + Aunlabeledlunlabeled + )\fakelfake7 (2)

where Alabeled; Aunlabeled; and Afke are hyper-parameters. We set the hyper-
parameters in Equation (2) to Alabeled = 1.0, Aunlabeled = 1.0, and Agare = 2.0.

We used the proposed loss functions from Mondal et al. [9], where Pmodel
refers to the probability distribution of the data. More details about loss func-
tions can be found in [9].

HXxW xD
habeled = _Ex,y ~pdata(x,y) Z IOg PmOdel(yJﬂf) (3)
i=1
HxWxD
Zi(x)
lunlabeled = — x~pdata(x) ; log m (4)
HxW xD 1
la e — _EZ ~noise lo b
o 2 P Gea T ®)
K
Zi(z) =Y explli ()] (6)
k=1

Generator Loss Function. We propose a novel generated loss to induce G to
generate real data. Let x and z denote real data and noise, respectively.

C= Ex~pdata(x)f(‘r) - lOg(l - D(G(Z)))7 (7)

In our paper, we consider f(x) to contain the activation of the last layer.

L(G) =l C ~x I3, (®)

By minimizing this loss, we force the generator to generate real data in order
to match our data and the corresponding K classes of real data, which are defined
as classes =1, ..., K.
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4 Setup Materials and Methods

This section describes the setup materials and methods used in our paper.

4.1 Datasets

MICCAI iSEG Dataset. The MICCAIiSEG organizers' introduced a pub-
licly available evaluation framework to allow comparing different segmentation
models of WM, GM, and CSF on Tl-weighted (T'1) and T2-weighted (7'2).
The MICCAI iSEG dataset contains: 10 images (i.e., subject-1 up to subject-
10), subject T'1 : T'1-weighted image, subject T2 : T'2-weighted, and a manual
segmentation label. All these images are used as a training set. The dataset also
contains 13 images (i.e., subject-11 up to subject-23), which are used as a testing
set. An example of the MICCAI iSEG dataset (T'1, T2, and manual reference
contour) is shown in Fig. 2.

Table 1 shows the parameters used to generate T'1 and T2. The dataset has
two different times: the longitudinal relaxation time and the transverse relaxation
time, which are used to generate T'1 and T'2. The dataset has been interpolated,
registered, and the images are skull-removed by the MICCAI iSEG organizers.

Table 1. Parameters used to generate 7’1 and T2

Parameter | TR/TE Flip angle | Resolution
T1 1,900/4.38ms | 7 1x1x1
T2 7,380/119ms | 150 1.25%x1.25%1.25

MRBrains Dataset. The M RBrains dataset contains 20 adult images for
the segmentation of (a) cortical gray matter, (b) basal ganglia, (c) white matter,
(d) white matter lesions, (e) peripheral cerebrospinal fluid, (f) lateral ventricles,
(g) cerebellum, and (h) brain stem on T'1, 72, and FLAIR. Five images (i.e., 2

Fig. 2. An example of the MICCAI iSEG dataset (71, T2, and manual reference con-
tour)

! http://iseg2017.web.unc.edu.
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male and 3 female) are provided as a training set and 15 images are provided
as a testing set. For segmentation evaluation, these structures merged into gray
matter (a—b), white matter (c—d), and cerebrospinal fluid (e— f). The cerebellum
and brainstem were excluded from the evaluation.

4.2 Experimental Setup

The experiments of the proposed model were conducted using Python on a PC
with NVIDIAGPU running Ubuntu 16.04. Training M RI—G AN took 30 hours
in total, whereas testing took 5 minutes.

4.3 Segmentation Evaluation

Dice Coeflicient (DC). To better highlight the significance of our proposed
MRI — GAN model, we use the Dice Coefficient (DC) metric to evaluate the
performance of the M RI — GAN model. Dice Coefficient (DC) has been used to
compare state-of-the-art segmentation models. We use V¢ for reference segmen-
tation and Vo for automated segmentation. The DC is given by the following
equation:

|‘/ref| + |Vauto|

where DC' values range between [0, 1], where 1 indicates a perfect overlap and
0 indicates a complete mismatch.

DC(V;efy Vauto) [18]7 (9)

5 Result and Discussion

We train and test the M RI—G AN model on two datasets of different ages: adults
and infants. Table 2 presents the results of the M RI — GAN model to segment
CSF ,GM, and W M using the MICCAI iSEG dataset. Our M RI — GAN model
achieves a DC value of 93% in C'SF segmentation. In contrast, the DC values
achieved from segmenting C'SF by Standard GAN is 86%, which is 7% less
accurate. In addition, our M RI — GAN model achieves DC' values of 94% and
92% in segmenting GM and W M, respectively. The Standard GAN model, in
contrast, achieves a DC value of 80% (14% lower) for GM segmentation and
81% (11% lower) for WM segmentation. These results highlight the remarkable
efficiency achieved by the M RI — GAN model compared to the standard GAN.



MRI-GAN: Generative Adversarial Network for Brain Segmentation 253

Table 2. Dice Coefficient (DC) results of the segmentation achieved on the MICCAI-
iSEG dataset. The best performance for each tissue class is highlighted in bold.

Model Dice Coefficient (DC) Accuracy
CSF |GM |WM

Standard GAN 86% |80% |81%

3D, FCN + MIL+G+K [15] | 94.1% | 90.2% | 89.7%

Multi-stage [24] 95% |94% | 92%

Our MRI-GAN 93% |94% |92%

Table 3 presents the results achieved using the MR Brains dataset. We observe
that our M RI — G AN model achieves a DC value of 91% on C'SF segmentation,
90% on GM segmentation, and 95% on WM segmentation. Such results are
superior to the results achieved by the Standard GAN model.

Figure 3 shows a sample visualized result of our M RI — GAN model on a
subject used as part of the validation set. As the images show, we observe that the
segmentation achieved by the M RI — GAN model is fairly close to the manual
reference (ground truth) contour provided by the MICCAI iSEG organizers.

Table 3. Dice Coefficient (DC) results of the segmentation achieved on the MRBrains
dataset. The best performance for each tissue class is highlighted in bold.

Model Dice Coefficient (DC) Accuracy
CSF |GM |WM

Standard GAN 8% |87% |85%

3D, FCN + MIL+G+K [15] | 87.4%  90.6% | 90.1%

Multi-stage [24] 93% | 93% |88%

Our MRI-GAN 91% |90% |95%

Our evaluation results show that the proposed model not only outperforms
two baselines (Standard GAN and 3D, FCN + MIL+G+K [15]) on the three
tissues, but also attempts to outperform Multi-stage [24] on two tissues. The
proposed M RI — GAN model improved the results in GM and WM on the
MICCAISEG dataset and WM on the MRBrains dataset compared with Multi-
stage [24]. We acknowledge that our model may not perform well for all cases
and still has limitations due to the small number of images available, which we
aim to improve further in the future.
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Fig. 3. A sample visualized result from the MICCAI iSEG dataset

6 Conclusion

In this paper, we proposed M RI — GAN, a novel Generative Adversarial Net-
work (GAN) model that performs segmentation of MRI brain images. Our model
makes segmentation more accurate by applying encoder and decoder algorithms
separately, which demonstrated a significant increase in the accuracy of brain
image segmentation results. We first extracted and compressed the features of
the M RI encoder and ground truth encoder inputs, and then mapped the infor-
mation to the decoder. Our experimental results show that the M RI — GAN
model is a viable solution for brain segmentation as it achieves a significant
improvement in the accuracy of brain segmentation compared to the standard
G AN model while taking a shorter training time.

Directions for Future Work. Based on our model, we have a number of
possible directions for future work. We aim to investigate our model performance
in segmenting more brain tissues and consider pathological brain images, such
as with tumours or edema. Pathological brain images are not included in this
study due to the lack of data.
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7.3 Availability of Data and Materials

The data that support the findings of this study are available from MICCAI
grand challenge on 6-month infant brain M RI segmentation [1] and MRBrainS
and are publicly available (see Footnote 1).
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