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Abstract. This paper discusses time-optimal control problems and
describes a workflow for the use of analytically computed adjoint gra-
dients considering a discrete control parameterization. The adjoint gra-
dients are used here to support a direct optimization method, such as
Sequential Quadratic Programming (SQP), by providing analytically
computed gradients and avoiding the elaborate numerical differentiation.
In addition, the adjoint variables can be used to evaluate the necessary
first-order optimality conditions regarding the Hamiltonian function and
gives an opportunity to discuss the sensitivity of a solution with respect
to the refinement of the discretization of the control. To further empha-
size the advantages of adjoint gradients, there is also a discussion of
the structure of analytical gradients computed by a direct differentiation
method, and the difference in the dimensions compared to the adjoint
approach is addressed. An example of trajectory planning for a robot
shows application scenarios for the adjoint variables in a cubic spline
parameterized control.

1 Introduction

Optimal control theory is based on the calculus of variations and deals with
finding optimal trajectories for nonlinear dynamical systems, e.g. spacecrafts or
multibody systems like robots. The works by Kelley [4] and Bryson and Ho [1]
have to be mentioned as groundbreaking in the field of optimal control theory
and serve as basis for extensive subsequent research, also in the field of time-
optimal control.
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As a special class of time-optimal control problems considering final con-
straints, one can cite the control of a robot arm designed in such a way that the
operation time for a rest-to-rest maneuver becomes minimal. Following an indi-
rect optimization approach, such problems can be transformed into a two-point
boundary value problem, which can usually be solved by shooting or full colloca-
tion methods. Alternatively, a direct optimization approach can be pursued, in
which the boundary value problem is posed as a nonlinear programming prob-
lem method, see e.g. [12] for the time-optimal trajectory planning considering
the continuity required to respect technological limits of real robots.

An alternative to the mentioned methods is offered by indirect gradient meth-
ods, which are considered to be particularly robust with respect to initial con-
trols. The work by Bryson and Ho [1] shows how the gradient can be computed
straightforward using adjoint variables. With this gradient information optimal
control problems can be solved iteratively by the use of nonlinear optimization
routines, as described in the sense of optimal control or parameter identifica-
tion in multibody systems e.g. in [8]. The work by Eichmeir et al. [2] extends
the theory for time-optimal control problems to dynamic systems under final
constraints. Such problems arise e.g. in space vehicle dynamics during minimum
time moon ascending/descending maneuvers or in robotics in the case that the
time for a rest-to-rest maneuver should become a minimum. Such problems can
be considered as two-point boundary value problems, with the major drawback
of requiring an initial guess close to the optimal solution. Otherwise, the opti-
mal control problem could be solved via the adjoint method which is an effi-
cient way to compute the direction of the steepest descent of a cost functional.
However, when using such indirect methods to solve optimal control problems, a
major drawback appears in the computation of the Hamiltonian and the required
derivatives: they may be complex and furthermore need to be recomputed often
during the simulation. Moreover, depending on the variables or parameters to
be identified in the optimal control strategy, it is difficult to assign a physical
meaning to the adjoint variables.

This paper focuses on solving time-optimal control problems with a classical
direct optimization method and then evaluating the respective optimality con-
ditions based on an indirect optimization approach. The adjoint variables can
be investigated to efficiently compute the gradients of the cost functional and
the constraints. Moreover, the adjoint variables can be investigated to exploit
the optimality conditions regarding the Hamiltonian function. To demonstrate
the use of analytically computed adjoint gradients, the time-optimal trajectory
planning of a Selective Compliance Assembly Robot Arm (SCARA) is solved
by an SQP method and the optimality conditions regarding the Hamiltonian
function are evaluated by the adjoints. The application shows the easy access
to the adjoint gradients and discusses the latter mentioned role of the adjoint
variables in the optimality conditions.
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2 Use of Adjoint Variables in Direct Optimization
Approaches

The aim of this paper is to determine a control u(t) = u* and a final time ¢y = ¢}
of a dynamical system

x(t) = f(x(t),u(t)) with x(0) = xq, (1)
such that the scalar performance measure

T(x(t), u(t), ty) = / N (14 Plx(t) u(e)] at 2

to

~—

becomes a minimum with respect to a final constraint

(x(tr),tr) =0 € RY. (3)

Inequality constraints on the state x € R™ and the control u € R™ are consid-
ered by the scalar penalty function P. To be specific, violations of inequality
constraints within the time interval ¢ € [to, t¢] are taken into account as an
additional term in the cost functional in Eq. (2). The above optimal control
problem can generally be solved by a direct or indirect optimization approach.
In this paper, the original infinite dimensional optimization problem is trans-
formed into a finite dimensional one by parameterizing the control with a finite
set of optimization variables z € R* including the final time and the control
parameterization. Thus, the resulting nonlinear programming (NLP) problem
can be solved with classical direct optimization approaches such as the SQP
method [9].

How to Interpret the Results from a Direct Optimization Algorithm
An optimal point z = z* fulfills the well-known Karush-Kuhn-Tucker (KKT)
conditions [3,5], but these conditions do not provide any information about the
quality of the control parameterization with respect to the infinite dimensional
optimization problem. The basic idea to interpret an optimal point z* is to
relate the direct optimization approach to Pontryagin’s minimum principle [11].
The optimality conditions based on an indirect optimization approach [2] can
be used for this idea. Figure 1 illustrates a rough flowchart for the interpretation
of results obtained by a direct optimization approach. This approach requires
the Hamiltonian of the system to evaluate Pontryagin’s minimum principle. The
Hamiltonian for time-optimal control problems related to the cost functional in
Eq. (2) can be formulated as

H(x(t), ult), A1) =1+ P(x(t), u(t)) + X(t) £(x(t), u(t)), (4)

in which the multiplier A(t) = p(¢t) + R(¢)v is computed by a linear combination
of the adjoint variables p € R™ and R € R"*%. The vector v € R? is a multiplier
to combine both adjoint variables. A deep insight into the combination of both
adjoint variables is presented in [2]. The Hamiltonian in Eq. (4) is used in Sect. 4
to interpret the results of a time-optimal control problem obtained by a direct
optimization approach as depicted in Fig. 1.
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Fig. 1. Flowchart to interpret the results from a direct optimization algorithm with
Pontryagin’s minimum principle

3 Computation of First-Order Derivatives

Classical gradient-based optimization algorithms rely on the derivatives of the
cost functional and the constraints with respect to the optimization variables z.
The computation of these gradients takes a key role in such optimization algo-
rithms and the convergence of the optimization depends on the accuracy of the
gradients. In addition to accuracy, efficient computation of gradients is especially
important for large numbers of optimization variables. Thus, the computational
effort to solve the optimization problem depends significantly on the efficient
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computation of gradients. Figure 2 summarizes the most common approaches for
the computation of first-order gradients. The finite differences method is the eas-
iest approach to code, but suffers in terms of computational effort especially for
a large number of optimization variables. In case of using (forward or backward)
finite differences, the state equations have to be solved (1 + z) times in order to
evaluate the numerical gradients with respect to z optimization variables. Thus,
the number of forward simulations grows linearly with the number of optimiza-
tion variables. In contrast to this numerical approach, the direct differentiation
and the adjoint method are referred as analytical approaches to compute gradi-
ents. Both approaches lead to exact gradient information and using them in an
optimization scheme leads to an increase in efficiency. The characteristics of the
analytical approaches are discussed in the following sections.

3.1 Direct Differentiation Approach for Discrete Control
Parameterization

The direct differentiation approach is based on the sensitivity of the state
equations and is briefly discussed in this section. In this paper, the control is
described by u(t) = Cu, in which the vector u' = (4, ..., a,,) € R™* col-
lects k grid nodes of the m equidistant time-discretized controls and the matrix
C(t) € R™*™* maps the grid nodes to a time dependent function. The interpo-
lation matrix C has to be determined once a priori and depends on the chosen
interpolation order [6].

By using this control parameterization, the gradient of the cost functional is
directly obtained by differentiating it with respect to the grid nodes as

L1 roPOx  OP Odu
_ T — - -
Va/ /t x 9t gaa) (5)
ty
_ /t [Pxxﬁ +Puc] dt, (6)

finite differences

e casy to code

e high computational costs for large
number of optimization variables

direct differentiation adjoint method

o sensitivity of state equations e calculus of variations
e size of sensitivity system depends e size of adjoint system does not depend
on number of optimization variables on number of optimization variables

Fig. 2. Overview of approaches to compute first-order derivatives
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in which the partial derivative of the parameterized control with respect to the

grid nodes 5
u
ou C Q
has been utilized. Partial derivatives of an arbitrary function f with respect
to x are denoted with subscripts, i.e. f,. Similar to the gradient of the cost
functional, the gradient of the final constraints in Eq. (3) can be calculated by
direct differentiation as

Vad' = ¢, xq. (8)

The resulting gradients in Eq. (6) and Eq. (8) involve the system sensitivity xg €
R™ ™k wwhich is obtained by differentiating the state equations with respect to
the grid nodes as

).(ﬁ = foﬁ + fuuﬁ (9)
= fxq + £uC. (10)

Initial conditions of the system sensitivity are defined as
Xﬁ(o) = 0, (11)

since the initial conditions of the state equations do not depend on the grid
nodes, i.e. x(0) = xg. The system Jacobian fy € R™*" and f, € R"*™ have
to be calculated a priori, e.g., by analytical differentiation, in order to solve
the matrix differential system in Eq. (10). Remark that the differential system
depends on the number of grid nodes. Thus, the computational effort increases
with the number of grid nodes.

3.2 Adjoint Gradient Approach for Discrete Control
Parameterization

A large number of grid nodes leads to a large solution space and, therefore, the
gradient computation leads to a high computational effort resulting from finite
differences or direct differentiation. An efficient alternative to compute gradients
analytically is the adjoint variable method which is based on the calculus of
variations. Following the basic idea presented in the seventies by Bryson and
Ho [1], an adjoint gradient approach for discrete control parameterizations is
utilized. Lichtenecker et al. [6] derived the adjoint gradients for time-optimal
control problems defined in Eqgs. (1)—(3) for spline control parameterizations in
the following form:

ty
VT = / (p™fu + Pu) Cdt, (12)
to
tf
Vad' = / R'f,Cdt, (13)
to
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in which the adjoint variables fulfill the (adjoint) system of differential equations
p=-P —fp with p(ts) =0, (14)
k- IR with R(t;) = $L(x(tr)ty).  (15)

Due to the final conditions, they have to be solved backward in time to compute
the adjoint gradients. Moreover, it has to be emphasized that the size of the
adjoint system does not grow with the number of grid nodes which is not the
case for direct differentiation, see Sect.3.3. The adjoint gradients in Egs. (12)
and (13) prove to be preferable regarding computational effort and accuracy in
gradient based optimization strategies. For further details on adjoint gradients,
the reader is referred to [2,6].

How to Compute the Adjoint Gradients

The adjoint gradients in Eqgs. (12) and (13) can be used for direct and indirect
optimization algorithms. Both approaches are iterative methods and, therefore,
the gradients have to be recomputed in each iteration. In this paper, we use a
direct optimization method in order to compute the optimal control. Similar as
shown in [10], Fig. 3 illustrates the application of adjoint gradients provided to
a direct optimization method and is summarized with the following steps:

1. Select a direct optimization method which is able to use user-defined gradi-
ents, e.g. a classical SQP method or an Interior Point (IP) method.

2. The optimization algorithm proposes values z; for the optimization variables
associated to the current i-th iteration. Starting from this view, the gradients
have to be computed for the (i + 1)-th iteration.

3. Solve the state equations related to the actual optimization variables and
initial conditions using an ODE solver.

4. The cost functional and the final constraints can be evaluated.

5. Compute the adjoint variables p and R backward in time using Eqs. (14) and
(15).

6. Finally, the adjoint gradients of the cost functional and the final constraints
are computed by a time integration and provided to the optimization algo-
rithm for the next iteration.

7. Steps (2) through (6) are repeated until the KKT conditions are fulfilled with
respect to the optimal solution z*.

3.3 Discussion on Duality of Gradients

McNamara et al. [7] pointed out that the adjoint approach can be interpreted
as a special case of linear duality and that the core of this method is based on
a substitution of variables. This can be seen by considering the first term of the
gradients of the cost functional in Egs. (6) and (13), i.e.,

ty
Pyxgdt with x5 = fyxg + f,C and xg(0) =0, (a)
t
'
/ p'f,Cdt with p=—-P] —flp and p(t)=0. (b)
to
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updates forward integration

t=t t=1
z] = (ts, a'); . !
i-th iteration x(t) = £(x(t),u(t)), x(0)=x0
opt. algorithm .
evaluation

e.g.:
e SQP

e cost functional

e final constraints

o IP

T

gradient computation .
p=-P0—flp, plty)=0

tr .
Vag' = / RTf,Cdt R=-fR, R(ty) = qf)l(x(tf).z‘,f)

to

rt _
VﬁJT:/ (Pa+pTf)Cdt | =10 b=ty
to

backward integration

Fig. 3. Procedure for the use of adjoint gradients in direct optimization approaches

Both terms require the solution of a linear differential system, but it has to
be emphasized that the size of the systems is different. The size of the system
sensitivity depends on the number of states n, the number of controls m and
on the number of grid nodes k, while the size of the adjoint system depends
only on n. To compute the gradients, one can solve either the primal system (a)
with dimension (n X m - k) or the dual system (b) with dimension (n x 1). Thus,
the adjoint approach is an efficient technique to incorporate especially a large
number of grid nodes. A graphical interpretation of the dimensions occurring in
the gradients of the cost functional is shown in Fig. 4, with a special focus on
increasing the number of grid nodes.

4 Numerical Example

4.1 Task Description and Optimization Problem

The analytically derived adjoint gradients in [6] are used for a direct optimization
method in a time-optimal control problem of a SCARA with two rigid bodies.
The goal is to manipulate the tool center point (TCP) of the robot depicted
in Fig.5 from an initial state to a final state in minimal operation time t%}
with a discrete control parameterization. To meet industrial requirements, the
control is forced to be C? continuous. Hence, the matrix C is chosen such that the
interpolation of each discretized control subinterval is performed by a cubic spline
function. The state equations are obtained by introducing the state variables

x = (1, pa2, w1, w2)T, (16)
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direct differentiation approach:

ty
____________________ | [ ————
[ Vo' ] = [: Px {H Xa +{ Pa || C J]df
____________________ Lul|
o I
1xm-k 1xn ___n_;;n_-_k:___ 1xm mxm-k
adjoint approach:
, |
N [i"'};f""::fu;+:z5;:}: C J dt
__________ t —| | b
0 | |
| |
__1
1xm-k 1xn nxm 1xm mxm-k

—— dimensions with k optimization variables

dimensions with k& + ¢ optimization variables

Fig. 4. Graphical interpretation of the dimensions occurring in the gradient of the cost
functional with respect to the direct differentiation approach in Eq. (6) and the adjoint
approach in Eq. (13)

in which ¢; = w;. The model parameters for the simulation are set as follows:
my = mg = 1kg, me = 0.5kg, [; = 1m and J; = m;I?/12, in which i € {1,2}.
The mass mg3 is considered as a point mass attached to the TCP.

The cost functional of the optimization problem is given in Eq. (2), in which
the penalty term P(u) = 10(P;(u1) + P2(uz2)) is used with

{0 for u;| < wimax,
Pi(ui) == { %(|u1| — ui,max)2 otherwise. (17)

The final constraints of the system are defined as

Iy cos(p1) + Iz cos(ps) —
l; sin + I3 sin —
B(p1, 2,01, w2) = | (er) 51 (e2) =y : (18)
w2 t=t;
in which z; = 1m and y; = 1m denote the desired final configuration of the
TCP. Physical bounds of the controls are given by u1 max = 4 Nm and s max =
2Nm.
The NLP contains the optimization variables z' = (t;,u') and is solved
with an SQP method. As an initial guess, the assumption for the final time is
ty = 2s and the grid nodes are set to @i = 0. Initial conditions of the state
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Fig. 5. SCARA with two rigid bodies in a general configuration

variables are set to xg = (—7/4, 0, 0, 0)T. In order to analyze the sensitivity of
the solution to the refinement of the discretization of the control, both controls
are equidistantly discretized in the time interval ¢t € [0,tf] with a set of grid
nodes with various number k € {5, 10, 20, 30, 40, 50}.

4.2 Results

Figure 6 shows the optimal control history uj and the resulting trajectory of the
TCP with respect to the defined number of grid nodes k. One can observe that
the control becomes a bang-bang type control by increasing the number of grid
nodes. It can also be seen that the TCP trajectory with & = 5 grid nodes is
noticeably different compared to controls in which the number of grid nodes is
higher. This is due to the fact that in this case the optimal control cannot be
represent a bang-bang structure. Theoretically, an infinite number of grid nodes
will lead to the shortest possible final time. The final times for the six inde-
pendent optimizations are (k = 5,¢} = 1.9439s), (10,1.8633s), (20,1.8391s),
(30,1.83255), (40,1.8303s) and (50,1.8294 ).

The optimal control with k£ = 50 grid nodes and the corresponding switching
functions, as defined in [2] for bang-bang controls, are shown in Fig. 7. The zero
values of the control agree well with those of the switching functions h; and the
Hamiltonian of the system is sufficiently small. Thus, the termination criteria
shown in Fig. 1 is satisfied and a bang-bang control can be approximated with
a sufficient number of grid nodes.
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Fig. 6. Optimal control history and TCP trajectory for various number of grid nodes
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Fig. 7. Initial controls, optimal controls and switching functions considering a cubic
spline parameterization of the control

5 Conclusions

This paper presents a procedure for using adjoint variables in a direct opti-
mization approach. The adjoint variables are examined in the context of two
scenarios: The adjoint variables are used to compute the gradients during the
optimization. In addition, the adjoint variables are used to evaluate Pontryagin’s
minimum principle in order to discuss the optimization results obtained by an
SQP method. A time-optimal control problem of a SCARA shows the versatile
application of adjoint variables. Moreover, the computational effort for the com-
putation of gradients can be reduced by considering adjoint gradients, especially
when the number of grid nodes is large or the mechanical system is difficult to
solve forward in time.
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