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Abstract. Feedforward control of a manipulator can be generated with
a sufficiently accurate stable inverse model of the manipulator. A Feed-
forward Neural Network (FNN) can be trained with experimental data
to generate feedforward control without knowledge about the system at
hand. However, the FNN output can show unphysical behaviour espe-
cially in operational regimes where the training data is sparse. Instead,
the output of a Lagrangian Neural Network (LNN) is limited by physical
constraints and hence is expected to predict the (inverse) multibody sys-
tem behaviour more robustly. We propose to generate the feedforward
control by first training a LNN that captures already most features in
experimental data and next add a FFN to account for a relatively small
residual. Experimental results from a fully actuated 2-DOF manipulator
with flexure joints show that the accuracy of the controlled motion using
this approach is comparable to using an identified inverse plant model
built from the system’s equations of motion.

1 Introduction

Feedforward control can greatly improve the accuracy of a manipulator. In a typ-
ical implementation an inverse dynamic model of the multibody system at hand
is used to compute the required actuator input to follow the reference trajec-
tory. The achievable performance gained from this feedforward control depends
heavily on the correctness and completeness of the model. In a model-based app-
roach a white-box model with the equations of motion of the multibody system
is derived and its parameters are estimated [6,10]. Assuming these parameters
have a clear physical meaning, it is expected that the model can be used for a
wide variety of trajectories. However, the “richness” of the model is obviously
restricted to the features included in the model structure.

Alternatively, in a data-driven approach a black-box model is identified purely
from data e.g. using machine learning techniques. Abdul-hadi [1] presents a Feed-
forward Neural Network (FNN) to learn the dynamic behaviour of a robotic sys-
tem without any knowledge about the system dynamics and its parameters. It
proved to be feasible to solve this problem with reasonable accuracy. However,
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care has to be taken to avoid overfitting and likely the model outputs are incor-
rect for operating conditions that were not sufficiently excited in the training
data.

To mitigate this risk physics informed neural networks (PINN) are being
researched, where the training is constrained to a predefined physical law. Lut-
ter et al. [8,9] propose a Lagrangian Neural Network (LNN), or Deep Lagrangian
Networks (DeLaN), to incorporate the Lagrangian dynamics into a neural net-
work. The authors could obtain an inverse dynamic model of a robotic system
of which the accuracy is similar to the performance of an analytical model.
Furthermore, the trained model can handle extrapolations to new trajectories,
e.g. with increased velocities. One drawback of this LNN is the exclusion of
non-conservative forces like damping and friction in the Lagrangian formula-
tion which can result in significant errors when applied to real physical sys-
tems. Liu et al. [7] extend an LNN with a parallel FNN to approximate non-
conservative physics. Both neural networks are trained simultaneously, where
the unconstrained FNN is penalised to discourage it from learning conserva-
tive dynamics. However, it was found that the results strongly depend on the
penalisation factor.

In this paper we research the use of combining a LNN and FNN to learn an
inverse dynamic model of a manipulator with flexure joints [3]. For such manip-
ulator it is expected that the conservative contribution dominates. Hence it is
proposed to train the neural networks sequentially: First the LNN should cap-
ture the dominant conservative dynamic behaviour and next the FNN is trained
with the relatively small residue. The outputs of both networks are added to
estimate the actuator forces needed to perform a specified motion. This esti-
mation is applied as feedforward control and the improvement of the motion
accuracy is compared to results obtained with feedforward control computed
with a white-box manipulator model.

2 Method

2.1 2-DOF Manipulator with Flexure Joints

We consider the fully actuated manipulator with two degrees of freedom
(DOF) shown in Fig. 1(a) [3]. The schematic drawing of Fig. 1(b) illustrates that
two actuators drive the rotation of two arms (“A” and “C”) resulting in a trans-
lational end-effector (“eff”) motion in a horizontal plane. All joints are flexure
joints allowing rather smooth operation with low friction and hysteresis. Con-
sequently, contributions from the link mass and joint stiffness dominate in the
non-linear equation of motion written in independent generalised coordinates q
as

F = Fc + Fnc = M(q)q̈ +
1
2
q̇T ∂M(q)

∂q
q̇ +

∂V (q)
∂q

+ Fnc, (1)

where Fc represents the conservative part in the total actuator force vector F . It
is expressed in the symmetric and positive definite mass matrix M and poten-
tial energy V , the latter due to the stiffness in all joints. The non-conservative
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Fig. 1. The 2 DOF manipulator with flexure joints [3]. The view of the manipulator
in the photo is rotated relative to the other views.

forces Fnc describe all remaining, possibly non-linear effects like cogging or fric-
tion caused by the cables connected to the moving parts of the actuators and
sensors. Both rotation angles of the actuated arms are chosen as independent
coordinates q. These are computed from the displacements Yx and Yy measured
with “Encoder X” and “Encoder Y” in Fig. 1(c). Both actuator forces Fx and
Fy shown in this figure are calculated from the applied motor currents assuming
a constant and known ratio between force and current for each motor.

2.2 White-Box Model

For the white-box model the kinematic relations must be derived that express the
motion of all links and the joint rotations in the independent coordinates q. The
kinematic expressions are simplified by ignoring pivot shifts that are inherently
introduced by the cross flexure joints used for the joints in this setup.

In the dynamic parameters 5 independent mass and inertia contributions
from the links and end-effector can be defined. To represent the joint stiffnesses
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6 independent stiffness parameters are needed. The damping and friction contri-
bution Fnc is assumed to be dominated by 2 damping parameters that capture
the (viscous) damping arising from the cables of which the deformations are
directly linked to the joint rotations and hence the independent coordinates q.
Finally it was observed in experimental data that the measured forces can exhibit
a constant offset which results in 2 more parameters.

The equation of motion (1) can be written in a parameter linear expression
as

Φ(q, q̇, q̈) θ = F , (2)

where parameter vector θ stores the 15 parameters and regression matrix Φ
depends only on q, q̇ and q̈. From a mathematical point of view it is expected
that the regression matrix is non-singular for the proposed parameter set and all
parameters can be found with the Moore–Penrose pseudoinverse Φ†. However,
using experimental data it may appear that with a feasible excitation not all
parameters can be identified accurately. Common linear regression techniques
can be used to determine a base parameter vector, e.g. from a singular value
decomposition of Φ [6,10].

2.3 Lagrangian Neural Network (LNN)

To obtain the black-box model it would be possible to learn the total forces F
from trajectory data q, q̇ and q̈ with a FNN, but then the physical structure
of Fc is not taken into account. Hence a LNN [8,9] is used for this part of the
feedforward control that can be written as

Fc = L(q)LT (q) q̈ +
1
2
q̇T ∂(L(q)LT (q))

∂q
q̇ +

∂V (q)
∂q

, (3)

where the lower triangular matrix L is the Cholesky decomposition of the mass
matrix M . For a 2-DOF system it has only one non-zero off-diagonal term lo1

L =
[

ld1 0
lo1 ld2

]
, (4)

and both diagonal terms ld1 and ld2 are positive to ensure a positive definite mass
matrix M = LLT . The rightmost term in Eq. (3) includes the non-negative
potential energy V .

Figure 2 shows the structure of the LNN implementation in which a “Physics
layer” is added to a FNN. This combination and the implementation of the FNN
assure that the LNN represents Eq. (3). The outputs of the FNN are estimates of
the potential energy V̂ and matrix L̂ where the latter is split into the off-diagonal
l̂o and positive diagonal l̂d terms. All estimates are functions of the positions
q only. The blue neuron (l̂o) in the output layer represents a linear activation
function and the orange neurons (l̂d, V̂ ) have a ReLu or rectifier activation, which
means that their output equals the neuron’s input for non-negative values and
zero otherwise. Automatic differentiation [2] is used to compute the derivatives
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Fig. 2. Structure of the LNN, including the physics transformations (adapted from [5]).

of V̂ and L̂ with respect to q that appear in Eq. (3). The network is trained to
minimise the mean squared error between the estimated forces denoted Fpred in
Fig. 2 and measured forces.

The remaining forces Fnc are estimated with a general FNN, where it is
assumed the forces only depend on positions q and velocities q̇. In the training
procedure of both networks we prefer to avoid the dependency on a penalisation
factor that is used in simultaneous training [7]. We concluded from simulations
that training the LNN first on the full F results in a sufficiently accurate estimate
of Fc. Apparently the relatively small contribution of Fnc does not result in a
significantly biased estimate of the Fc part. Hence the LNN is trained first and
next the FNN is trained on the residue F −Fc. Tensorflow is used for the training
of both LNN and FNN.

3 Results

3.1 Training Data

To identify the parameters in the white-box model and to train the neural net-
works, 9 datasets have been used from as many controlled motion experiments.
For each experiment a two-dimensional trajectory has been generated which
specifies the desired end-effector x and y positions as functions of time. Each of
these desired positions is described with a non-periodic smooth random func-
tion [4] defined by Fourier series with random coefficients. For a given wavelength
parameter λ > 0 and interval [0, L], the function is given by

f(t) =
√

2
m∑
j=1

[
aj cos

(
2πjt

L

)
+ bj sin

(
2πjt

L

)]
, (5)

where m = L/λ and coefficients aj , bj are independent samples from a normal
distribution with zero mean and variance 1

2m+1 . The datasets are generated
with λ ∈ [10, 8.0, 6.0, 4.0, 0.9, 0.8, 0.6, 0.5, 0.4], a total duration of L = 120 s
and sample time ts = 0.0001 s. All paths are scaled to a maximum amplitude



Feedforward Control for a Manipulator with Flexure Joints 135

of ±30 mm and converted to actuator displacements using inverse kinematic
relations assuming rigid links and ideal rotational joints. These paths are the
reference positions for controlled actuator motion where a PD feedback controller
is used that should result in reasonably accurate tracking. The actual encoder
reading and applied motor currents are recorded. The independent coordinates
q and actuator forces F are computed as described in Sect. 2.1. Velocities q̇ and
accelerations q̈ are derived off-line with numerical differentiation of the position
data and low-pass filtering.

The collected data in each dataset originally represents 1,200,000 time sam-
ples. The first 200,000 samples are discarded to eliminate any initial transient
response. The last 200,000 samples are discarded as well, such that 800,000 sam-
ples remain in each dataset. Datasets with larger values of λ have more low
frequent content and excite in particular the stiffness properties, i.e. the poten-
tial energy V (q), whereas datasets with smaller λ reveal more mass dominated
dynamics. Contributions from the non-conservative forces can appear at various
frequencies, depending on the cause of these forces. E.g. viscous damping reduces
the significance of the resonance peaks which appear near 1 Hz and 2 Hz. Hence
this contribution can be identified from data sets with smaller λ that include
these resonance frequencies.

3.2 White-Box Identification

To identify the 13 physical parameters in the white-box model it is not needed
to use the large amount of 7,200,000 samples from all 9 datasets. Only 1/1000
of these time steps are used in the following identification. Regarding the offsets
mentioned in Sect. 2.2 it was found that datasets 8 and 9 showed a slightly differ-
ent offset compared to datasets 1–7. Hence 2×2 offset parameters are included in
the parameter vector giving rise to 17 parameters in total. However, it was found
from a singular value decomposition of the regression matrix Φ that no more
than 12 independent parameters can be identified. This is confirmed from an
analysis of the residual error which hardly decreases when more than 12 (linear
combinations of) parameters are identified.

Figure 3 shows the measured forces F and the misfit of the forces ΔF for
all 9 datasets. The datasets are concatenated in the plot, but as explained in
Sect. 3.1 these datasets are collected independently and hence discontinuities
can be seen in the plot. The force misfit is less than about 10% compared to
the actual force. This error is somewhat larger than expected beforehand, which
could be caused by experimental imperfections e.g. from the cables (see Fig. 1(c))
or by (white-box) model errors e.g. due to an incorrect kinematic model in which
pivot shift is neglected.

3.3 LNN Training

Initially only the LNN is trained for which also only a relatively small subset
of all data is used with 20,000 samples, i.e. every 400th sample. These samples
are shuffled after which 70% is used for training and 30% for validation. The
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Fig. 3. Manipulator positions, velocities, accelerations, forces F and force misfit ΔF
from an identification with 12 independent parameters. The different colours represent
x and y data respectively.

Adam solver is used and the batch size is 32. The training is run for 40 epochs
with a learning rate lr = 0.001, next 10 epochs with lr = 0.0001 and finally
10 epochs with lr = 0.00001. Furthermore training is initialised 10 times with
random seeds. The performance is measured with the Mean Absolute Error
(MAE) between target and approximation. The MAE is evaluated for the best
training result from all random seeds, as well as for its standard deviation to
measure the robustness of the training.

To select the activation function, a network with 6 hidden layers with 32 neu-
rons each is used. The activation function of the output layer is fixed as outlined
in Sect. 2.3. Softplus, sigmoid, ReLu and tanh activation functions are evalu-
ated [5]. The latter two give similar results in terms of best MAE, where tanh
shows the smallest standard deviation and therefore is the preferred activation
function.

For this activation function the effect of varying network size is evaluated
next for different numbers of hidden layers and neurons per layer [5]. A network
with 32 neurons per layer gives better result where a minimal MAE is found for
8 hidden layers. Hence 8 hidden layers with 32 neurons will be used for the LNN.

For this network two additional check have been done. The number of time
samples has been varied. It appeared that the MAE increases when less than
14,000 samples were used, but hardly changes when using 14,000 or 35,000 sam-
ples. The trainings presented in this section are well within the latter range.
Finally, the batch size and optimizer have been evaluated. It was found that
training with a batch sizes of 16, 32 and 64 does not yield a significant change in
outcome. Similarly, using Adagrad or SGD instead of the Adam optimiser didn’t
give significantly different results either.
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3.4 FNN Training

Once the LNN is trained as outlined in the previous section, it is fixed and
the FNN is trained on the residue. A similar procedure is followed to evaluate
the FNN performance and optimise its hyperparameters. Once more the Adam
solver is used with a batch size of 32. As no physical structure constrains the
FNN, it is expected more training data is needed and more epochs are required
before the solution is converged. Therefore the FNN is trained for 100 epochs
with lr = 0.001 and next for 50 epochs with lr = 0.0001, initially on a dataset
with 50,000 time samples. The input data is scaled to values between −1 and
+1 using the MinMaxScaler. It appeared that the probability of converging to
a local minimum is less likely and hence the training is initialised with only
3 random seeds.

Different activation functions are evaluated for a FNN with 3 hidden layers
and 16 neurons in each layer [5]. The tanh activation function is preferred as it
results in a small MAE with a small standard deviation.

Next different numbers of hidden layers and neurons per layer are evalu-
ated [5]. It was found that relatively large networks offer a better MAE for the
training and validation data. However, when applying the results to an new test
dataset it appeared that the larger networks clearly suffer from overfitting. A
smaller MAE was obtained with a smaller network. The most suitable FNN
structure has only 2 hidden layers with 8 neurons each.

This FNN has been trained with varying numbers of time samples. The MAE is
shown in Fig. 4. Clearly a large number of samples is advantageous. Extrapolating
the trend in the plots, the number of samples could even be increased beyond the
maximum presented in the figure. However, this will also result in an increase of
computational costs, so 200, 000 samples will be used to train the FNN.

Table 1 summarises the MAE obtained for training and validation using only
the preferred LNN and combining it with the FNN as proposed above. The
validation MAE is split to show the errors for both actuator forces Fx and Fy

separately. The table illustrates the improvement that can be obtained by adding
the FNN to the LNN. It also shows that the errors in both forces are comparable

Fig. 4. Mean Absolute Error (MAE) for different numbers of time samples used for
the FNN training (2 hidden layers with 8 neurons each) [5].
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Table 1. MAE on the training and validation data using the selected LNN and FNN.
The MAE of the white-box model, Sect. 3.2, is included for comparison.

Training MAE [N] Validation MAE [N] Valid. MAE Fx [N] Valid. MAE Fy [N]

LNN 0.1022 0.1022 0.0836 0.1208

LNN + FNN 0.0517 0.0514 0.0562 0.0466

white-box model 0.0864

and are below 2%. Furthermore it appears that the MAE of the force estimates
from the combined neural networks is smaller than is obtained with the white-
box model of Sect. 3.2.

3.5 Offline Force Estimates

The performance of the white-box model and the trained LNN+FNN combi-
nation is evaluated using 10 test trajectories that are generated similarly to
the datasets defined in Eq. (5) in Sect. 3.1 except for a shorter duration with
L = 40 s. The first and last 10 s of the data are removed and for the remaining
time samples the forces are estimated with both methods and compared to mea-
sured values. Data processing is similar to the procedure outlined in Sect. 3.1 for
the training data, i.e. the trajectories are the reference positions for controlled
actuator motion. The forces are estimated “offline” which means that the motion
data have been captured to be processed afterwards.

Fig. 5. Forces estimated by the LNN+FNN combination and measured forces for two
of the test trajectories [5].

Fig. 5 illustrates the performance of the LNN+FNN combination. The force
estimates for the low-frequent reference (λ = 7.0) show a clear offset. Mostly the
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forces are estimated much better like e.g. the example with the high-frequent
reference (λ = 0.5). The offset may be caused by small differences in the initial
configuration of the manipulator which can arise from the cables as mentioned
before. To evaluate the force estimates, the MAE is computed after accounting
for these offset. Then the average MAE for all 10 test datasets is 0.0505 N for
the estimate from the neural networks and 0.0794 N for the white-box estimate.

3.6 Online Feedforward Control

The ultimate goal is to improve the tracking accuracy of the manipulator by
implementing the estimated forces as feedforward control inputs, i.e. “online”.
This performance is evaluated from a real-time experiment in which the esti-
mated forces are added as feedforward control inputs (FF) to a standard closed-
loop PD feedback controller (FB). In case of a perfect feedforward control, the
estimated forces (FF) would result in perfect tracking of the reference path and
the output of the feedback controller (FB) is zero due the absence of a tracking
error.

Figure 6 presents the feedforward signals (FF) and the feedback signals (FB)
recorded simultaneously during two of the experiments in which the feedforward
control is estimated with the trained LNN+FNN combination. It can be seen
that the contribution to the actuator force from the feedback controller (FB)
is not zero, but it is significantly smaller than the estimated feedforward signal
(FF) which apparently accounts for by far the largest part of the total forces
required for the specified motion. This proves the effectiveness of the feedforward
control estimated with the combined neural networks.

In this way the tracking accuracy is also improved considerably compared to
using only feedback as shown in Fig. 7. In this figure also the results are included
with the feedforward control from the white-box model. At first sight the latter
approach tracks the reference even better, but a large part of the tracking error
is the offset that has been discussed before in Sect. 3.5. Such offset can easily be

Fig. 6. Feedback (FB) and feedforward (FF from LNN+FNN) control inputs in closed-
loop experiment with two different reference trajectories.
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Fig. 7. Actuator motion during closed-loop experiment where the reference is generated
with λ = 4.0, amplitude = 30 mm: Without FF as well as with FF from white-box
model or LNN+FNN.

eliminated by using PID feedback control instead of PD control. From a more
quantitative analysis it appeared that both feedforward control implementations
reduce the tracking error with more than 90% compared to using only feedback
control [5].

4 Conclusions

In this paper we demonstrate that the feedforward control generated by the
successively trained LNN and FNN can be applied successfully for the considered
2-DOF manipulator with flexure joints. The LNN is trained first to ensure it
accounts for the larger contribution of the conservative forces to the estimated
actuator forces. In this way the advantages of constraining the network to a
physical feasible solution are exploited. Only a rather small number of time
samples is needed to train the LNN. The trained network can also handle new
test trajectories which illustrates the robustness of the feedforward control. This
robustness and a more general applicability of this approach will be investigated
in the future.
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