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Abstract. Machine tools are among the most important components in modern
production engineering where cost-effective manufacturing of parts with high
geometric accuracy is required. The mechanical components of the machine
together with feed drives and digital control loops form a complex mechatronic
system which must be designed and optimized simultaneously. A mechatronic
system simulation is developed, suitable for mutual optimization of mechanical
structure, feed drives and control loops including multi-axis configurations like
gantry and main-sub. Simulation results are compared to measurements on real
machine tools and show excellent agreement. Furthermore, flatness-based exact
feed forward control is used to significantly improve machine tool performance
in simulation studies.

1 Introduction

The demand for high accuracy of finished workpieces within short cycle times requires
a high static and dynamic structural stiffness of machine tools to ensure low path deflec-
tion during chip removal and high feed drive dynamics to realize fast positioning oper-
ations [1]. Consequently, moving components should have small mass with sufficient
static and dynamic structural stiffness. To allow manufacturers to mill complex parts,
five axis milling, where the tool can be set in any direction in space, is state of the art.
In a typical axis configuration, a machine tool rotates on the A and B axis and moves
across X, Y and Z in a linear direction. Depending on the machining task, various
designs and kinematic structures exist to link those five axes. Also, various parallel and
hybrid kinematics exist [3].

Among various available drive concepts for machine tool axes, ball screw spindle,
rack and pinion, and linear motor drives are typically used in single- or multi-drive
arrangements [2]. Depending on different requirements, such as machining process,
operating range, machine tool kinematics and desired trajectory dynamics, a best fitting
drive concept for each application may be found [7]. The resulting dynamical system is
of multiple input - multiple output (MIMO) type, nonlinear and thus pose-dependent.

In industrial applications, the use of cascaded feedback control loops with some
extensions such as feedforward controls, filters and reference models is well established
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[9]. These independently controlled drives can be tuned without extensive modelling in
advance [16]. Automatic tuning algorithms determine control parameters quickly. How-
ever, in case of strong pose-dependent axis characteristics, commissioning can become
a very challenging task, requiring a lot of expert knowledge. The resulting control loops
often suffer from low bandwidth and high trajectory error [2]. Finding robust controller
parameters is amongst the most important tasks in machine tool engineering. Although
other linear and nonlinear control methods are hard to implement in industrial numeri-
cal controllers, they are still of great interest for machine tool manufacturers. Nonlinear
position control methods such as flatness-based design [11] have already been used
experimentally for parallel kinematic machine tools and show the potential to signifi-
cantly increase the machine tool performance by reduced tracking error [4].

Mechatronic system simulation offers the possibility to virtually examine machine
tool structures, drive concepts, control strategies and machining processes regarding
the impact on the overall system behavior. Machine tool dynamics can be assessed and
improved in advance, reducing the need for physical test benches [1].

In this paper, the mechatronic system simulation introduced in [7,13,14] is extended
to multi-drive arrangements like gantry and main-sub, and applied to the coupled
machine axis configuration of a linear Y- and rotating A- axis of a recently designed
high performance machine tool. To reduce the trajectory error, the standard controllers
are extended by a flatness-based feedforward control. Experimental measurements in
frequency and time domain of the machine tool with standard controllers show excellent
agreement with the mechatronic system simulation. Simulation results demonstrate that
nonlinear feed forward control in combination with well-known standard controllers
improve positioning performance, e.g. reduced tracking error, overshoot and ringing,
significantly.

2 Mechatronic System Simulation

The most comprehensive mechatronic simulation can be reached using flexible multi-
body systems where large nonlinear feed drive movements can be considered and elas-
tic deformations are included [1]. However, this type of simulation is usually limited
to computationally expensive time domain analysis. If movements are assumed to be
small, also the finite element method is suitable for a coupled simulation. In this case,
the behavior of a linearized system can be even examined in frequency domain. In the
present work, a finite element model of an entire machine tool is used to define the
mechanical properties of structure and drive trains. Controllers and electrical character-
istics are modeled in a graphical block diagramming tool. The approach is similar to
an application in references [7,13,14] but as novelty also incorporates rotary axes and
multi-drive arrangements. Furthermore, a nonlinear rigid multibody model is used to
design advanced feed forward control.

2.1 Finite Element Model

Using the finite element method (FEM), the structure of a machine tool including all
mechanical parts of the drive trains is approximated by a finite number of regular ele-
ments. The remaining unknowns are the displacements of the nodes which are the f
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degrees of freedom (DOF) of the system. The equations of motion can be written
in matrix form as system of f coupled, second-order, ordinary differential equations
(ODEs)

MMMẍxx(t)+DDDẋxx(t)+KKKxxx(t) = PPP(t) , (1)

where MMM ∈ R
f× f , DDD ∈ R

f× f , KKK ∈ R
f× f are the global mass, viscous damping, and

stiffness matrix, respectively. PPP ∈ R
f is the time dependent load vector and xxx ∈ R

f is
the displacement vector of the degrees of freedom.

For efficiency reasons a normal modes model order reduction of Eq. (1) is per-
formed before rearranging into state-space a representation
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with system matrix AAA ∈ R
2m×2m, input matrix BBB ∈ R

2m×i, output matrix CCC ∈ R
3 j×2m,

feed-through matrix DDD ∈ R
3 j×i and modal displacement vector γγγ ∈ R

m. System matrix
AAA holds the modes of the undamped system which are obtained as solution of the gen-
eralized eigenvalue problem

MMMΦΦΦΩΩΩ = KKKΦΦΦ , (3)

where ΦΦΦ ∈ R
f×m is the matrix of mass normalized mode shapes, with m represent-

ing the number of desired modes, ΩΩΩ = diag
(
ω2

1 , . . . ,ω2
m

)
is a diagonal matrix of the

eigenvalues ωk, k= 1, . . . ,m and mmm= ΦΦΦTMMMΦΦΦ and kkk= ΦΦΦTKKKΦΦΦ are the modal mass and
stiffness matrix, respectively. A modal damping matrix ddd = 2mmmdiag(ξ1ω1, . . . ,ξmωm)
is generated by assigning modal damping values ξk individually to each mode. Parti-
tion matrix SSS ∈ R

j× f reduces the output to j DOFs of interest of displacement vector
xxx in Eq. (1), i.e. the actual nodal displacement xxxa, velocity ẋxxa and acceleration ẍxxa of
the measurement systems and some prominent points like tool and workpiece center
point (TCP, WCP). Similarly, partition matrix RRR ∈ R

i× f reduces the load vector PPP of
Eq. (1) and limits the possible input vector uuu ∈ R

i to forces and moments acting on i
outstanding DOFs. To enable a subsequent coupled simulation of a controlled moving
mechanical structure, the rigid body modes (ωk = 0) of the statically underdetermined
FEM system have to represent the kinematic permissions of the real machine tool.

2.2 Control Loop Model

In modern machine tools, cascaded control loop structures with innermost PI current
control loop, PI velocity control loop and outermost P position control loop are state of
the art [9]. Extensions, such as adaptive control parameters, reference models and fil-
ters can influence the control loops behavior significantly. The tracking error is reduced
using additional feed forward actions. For large scale machine tool axes or carriages
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with low structural stiffness, drive torque is frequently provided by multiple, mutually
independent drives, which improves the overall dynamical properties [16]. In numer-
ical controls, e.g. Siemens Sinumerik NC, typical representatives of these multi-axis
couplings are gantry and main-sub [12].

Gantry In a gantry axis grouping a guide axis is traversed in conjunction with at least
one synchronized axis. Each drive constitutes a complete axis system and thus has
its own measuring system. Setpoint values are provided by the guide axis. To prevent
any damage to the machine, all involved gantry drives must be operated in absolute
synchronism.

Main-Sub Main-sub coupling is a speed setpoint coupling between a main axis and
some sub axes, involving a torque equalization controller for even torque distribu-
tion. The sub axis is traversed only speed-controlled, not position-controlled, with
the setpoint speed of the main axis. An additional torque can be applied to achieve
a mutual tension in the individual drives allowing for the compensation of backlash
effects, e.g. gear backlash.

Figure 1 depicts schematically the principal implementation of the control loop
of two main-sub coupled axes in the simulation model. Each drive system provides
mechanical torque in the motor (M1, M2). The actual current ia is controlled in the
innermost PI current control loop by use of proportional gain Kpi and integrator reset
time Tni. The actual rotational velocity na of the motor encoder (E1, E2) is regulated
towards the setpoint velocity ns by the velocity PI controller (Kpn, Tnn). The P position
control gain Kv amplifies the tracking error, i.e. the difference of position setpoint xs
and actual virtually measured position xa. Velocity and current feedforward (nffw, iffw)
reduce the tracking error considerably but can not affect the disturbance characteristics.
Main axis position control provides the velocity setpoint for both, main and sub axis. A
PI torque equalization controller (Kpp, Tnp) is involved to distribute the torque evenly
to both drives by generating an extra velocity setpoint for each motor. The optional
tensioning torque Mp can be applied smoothly by a prefilter with equivalent time Tep.

All feedback loops in the proposed mechatronic system simulation are modelled in
discrete-time representation with real-world sampling rates considering delay times for
digital measurement acquisition, data transmission and computing times. In addition to
the approach presented in previous works [7,13,14], this paper also accounts for rotary
drives and multi-axis coupling.
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Fig. 1. Schematic representation of the cascaded control loop structure of two main-sub coupled
drive axes including torque equalization control and tensioning torque.

2.3 Exact Feedforward and Trajectory Planning

Differential flatness is a nonlinear modelling approach, first introduced by Fliess et al.
in 1992 [8]. It extends the notion of controllability from linear systems to nonlinear
dynamical systems. In a differential flat system an output exists, with which all states
and inputs can be expressed explicitly in terms of this flat output and a finite number of
its derivatives.

In the MIMO case, a system of n nonlinear first order differential equations with m
affine inputs uuu=

[
u1 . . . um

]T ∈ R
m and m outputs yyy=

[
y1 . . . ym

]T ∈ R
m reads,

ẋxx= fff (xxx)+
m

∑
j=1

ggg j(xxx)u j (4a)

yyy= hhh(xxx) (4b)

where xxx ∈ R
n are the states, fff (xxx) and ggg j(xxx), j = 1, . . . ,m are smooth vector fields and

hl(xxx), l = 1, . . . ,m are smooth functions.
Derivatives of all hl(xxx) outputs can be noted elegantly using Lie-derivatives [15]

and yield the transformation
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⎤
⎥⎦ . (6)

If DDD(xxx) is regular in a vicinity x̄xx ∈ U , the vector relative degree r = r1 + . . .+ rm = n
and the desired trajectory matches the systems initial conditions xxx0 = xxx(0) = xxxd(0), the
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system can be exactly linearized and feed forward u∗
j can be planned using

⎡
⎢⎣
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1
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m

⎤
⎥⎦ = DDD−1(xxxd)

⎛
⎜⎜⎝

⎡
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y(r1)

1,d
...

y(rm)m,d

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
L(r1)
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L(rm)fff hm(xxxd)

⎤
⎥⎥⎦
⎞
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where xxxd = ΦΦΦ−1
([

y1,d ẏ1,d . . . y(r1−1)
1,d y2,d . . . y(rm−1)

m,d

]T)
is computed from the

desired trajectory of the outputs and their derivatives. Consequently, the planned trajec-
tories yl,d , l = 1, . . . ,m must be at least rl-times continuously differentiable to result in a
continuous system input. However, if the chosen outputs result in r = r1 + . . .+ rm < n,
an internal zero dynamics remains in the system.

Among many existing approaches for trajectory planning, polynomial functions
[10], Gevrey functions [5] and classical s-curve trajectories whose differentiability is
increased through filters [6] are common. In this work polynomial functions for rest-to-
rest trajectories of form

yl,d(t) = yl,d,S+
(
yl,d,E − yl,d,S

)(
2rl+1

∑
i=rl+1

γ̃i
(

t− tS
tE − tS

)i
)

(8)

are used, where yl,d,S = yl,d(tS) is the start position and yl,d,E = yl,d(tE) is the end posi-
tion, respectively. The requirement that all derivatives must be zero at the start and end
point yields the coefficients γ̃i of the polynomial [10]. The transition time tT = tE − tS
of the rest-to-rest movement can be optimized offline in a way, that all requirements
regarding maximum acceleration, velocity and drive torque of the involved axes are
met.

3 Application, Results and Discussion

In this work, the recently designed standard machine center syncromill c21-63/1500 of
machine tool manufacturer Fill GmbH is considered. In particular its Y- and A- axis are
of interest. Figure 2 depicts an overview of the machine tools axes configuration with
the associated drives. Workpieces are mounted to a carriage (bridge) which traverses
in the vertical Y- direction and rotates around the A- axis. The two axes form an open
kinematic chain whose system dynamics can be formulated as nonlinear MIMO system.
A mechatronic system simulation as proposed in Sect. 2 has been set up to investigate
the individual axis dynamics. Simulations revealed that for the vertical movement two
drives (Y1 and Y2) with gantry grouping are necessary to avoid unacceptable canting
of the bridge. For the A-axis rotation, both sides of the bridge are driven in a gantry
group. Each individual side consists of two motors in main-sub coupling engaging into
a common gear wheel with mutual tensioning torque.

The machine tool is equipped with a Siemens Sinumeric One CNC system, which
offers a built-in data logger to acquire measurement data in time and frequency domain.
Figure 3 (a) depicts the measured xmeas and simulated xsim, x = (A,Y ) open loop fre-
quency response function (FRF) of the velocity controlled axes. These FRFs describe
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Fig. 2. Schematic representation of the nonlinear MIMO feed forward control in simulation stud-
ies. Frames offset in the background represent identical accompanying gantry group control
loops.

in frequency domain the actual motor velocity output at given actual torque input and
are considered as plant in control theory. Furthermore, in (b) and (c) measured and
simulated data of closed loop velocity and position control is given. Note that simu-
lated FRF data results from the comprehensive mechatronic system model, linearized
at the specified machine tool pose. Considering the enormous complexity of the appli-
cation, all measured and simulated FRFs agree excellently. Figures 5 (a) and (b) show
that joint movement of Y and A by standard jerk limited s-curve trajectories, e.g. the
acceleration characteristic is trapezoidal, excites the individual position control reso-
nance frequency significantly. This results in oscillations approaching the end position.
Furthermore, individual single axis operation (c) and (d) leads to strong disturbance of
the respective non-moving axis.

Fig. 3. Measured and simulated FRFs at position Y = 0, A= 90◦: Velocity controlled system (a);
Closed loop velocity control (b); Closed loop position control (c)



Control Design of Machine Tool Feed Drives Using Mechatronic System Simulation 127

To improve the positioning performance, exact feed forward control based on tra-
jectory planning of differential flat outputs has been developed. For exact feed forward
planning a model covering the main nonlinearities of the Y- and A- axis combination
is necessary. Figure 4 provides a sketch of the lumped model of this nonlinear system.
Inertia JMY accounts for the motors, couplings and spindles of the Y- axis. The motor
rotation φY is transformed into a vertical movement y via pitch p by a ball screw spin-
dle, modelled as spring cN and damper dN . No posture dependency of cN is considered,
since the associated natural frequency occurs in the middle frequency range, which is of
little interest for the position accuracy. A rigid guiding system connects the Y- carriage
(mY ) to the substructure. Load and bridge (mL, JL) are pivoted in the Y- carriage and
rotate with φL. The bridge is connected to a gearbox iG and subsequently via spring
cG and damper dG to the motors of the A- axis (JMA). Input torque MA and MY is pro-
vided by motors of A and Y which rotate with φA and φY , respectively. Although the
overall machine tool installation condition and the guiding system influence the oscil-
lations during positioning operations significantly, it is neglected as its consideration
by additional degrees of freedom would detract the flatness property from the selected
system outputs φL and y. The four generalized variables ( f = 4) of the lumped system
are qqq=

[
φY y φA φL

]T
. Lagrange’s equation yield equations of motion

Fig. 4. Nonlinear, lumped, rigid multibody model of machine tool A- and Y- axis.

d
dt

[
∂ (Ekin −Epot)

∂ q̇k

]
− ∂ (Ekin −Epot)

∂qk
+

∂R
∂ q̇k

= Qk , k = 1, . . . , f (9)

where Ekin holds all the systems kinetic energy and Epot the potential energy, respec-
tively. Rayleigh dissipation function R handles the effects of the velocity-proportional
frictional forces of the outputs and on the right hand side Qk considers all non-
conservative forces and moments like MA and MY . Introduction of state vector xxx =[
φY φ̇Y y ẏ φA φ̇A φL φ̇L

]T
, yields a system of nonlinear, first order differential equa-

tions with two affine inputs,
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ẋxx= fff (xxx)+gggY (xxx)MY +gggA(xxx)MA , (10a)

y= hY (xxx) , (10b)

φL = hA(xxx) . (10c)

Due to the lengthy expressions, this system (10) is not given explicitly. For the
described model the selected outputs φL and y are flat, inputs MA and MY enters explic-
itly in derivatives rY = rA = 4. Figure 2 gives an overview of the feed forward control
in simulation studies. The individual cascaded control loops including main-sub and
gantry groupings remain unaltered due to partly inaccessible interfaces and capsuled
Siemens Sinamics S120 drive units. The drives receive setpoint and feedforward values
for position x∗

s = yx,d , velocity ẋ∗
s = ẏx,d and motor current i∗x , x= (A,Y ) generated from

exact feedforward decoupling (7) of desired polynomial trajectories (8).
For fair comparison purpose in Fig. 5, the transition time tT of the proposed poly-

nomial setpoint trajectories x∗
s and standard jerk-limited s-curve setpoint trajectories xs

is equal. Due to the higher smoothness of the polynomial trajectory and the almost per-
fectly feed forwarded drive torque, less oscillations are excited in simulated actual posi-
tion signals x∗

a,sim compared to measured and simulated actual position signals xa,meas
and xa,sim. The disturbance caused by the respective other moving axis is also reduced
considerably. However, non-equal time constants of the velocity and current controllers
as well as transmission delays prevent even better disturbance characteristics.

Fig. 5. Measured and simulated rest-to-test movements of standard s-curve trajectories with stan-
dard feed forward, compared to simulated polynomial trajectories with proposed exact feed for-
ward: Joint positioning operation of Y axis (a) and A axis (b); Y axis response during A axis
moving (c); A axis response during Y axis moving (d)



Control Design of Machine Tool Feed Drives Using Mechatronic System Simulation 129

4 Conclusion

The developed mechatronic system simulation can implement all common machine
tool drive systems including multidrive applications such as main-sub or gantry. It is an
excellent analysis tool to evaluate the mechanical structure, axis kinematics, drive sys-
tems and control. The authors are confident that for Siemens Sinumeric One a nonlinear
MIMO exact feed forward control can be implemented using so called compile cycles.
Simulation studies promise a significant improvement of positioning performance using
this exact feed forward control.
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