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Abstract. This paper proposes a concept for the design and control of an energy
saving manipulator utilizing passive elastic elements for energy storage. Firstly,
we review our previously proposed method and the practical design of an energy
saving manipulator briefly. This method reduces the energy consumption by using
natural frequencies and eigenmodes of the system. Therefore, when the weights
of the system are changed by transferring some objects or when the boundary
conditions are changed, we should adjust stiffnesses of the system. Hence, in this
paper, we propose a very simple variable stiffness mechanism that can change
rotational stiffnesses around the manipulator joint axes. This mechanism makes
it possible to adjust the natural frequencies and eigenmodes of the manipulator.
A prototype 2DOF manipulator with the variable stiffness mechanism is devel-
oped by using the linear springs and the reaction wheels to verify the proposed
method. Experimental results show the effectiveness of the proposed energy sav-
ing manipulator concept.

1 Introduction

Toward the realization of carbon neutrality, thorough energy conservation measures are
being considered in various fields. Since many robots used in factories also consume
a huge amount of energy every day, their energy saving is an important issue. There-
fore, research on energy saving of robots has been actively conducted so far [1,2]. The
authors have studied an energy-saving control method for robots using passive stor-
age elements such as springs [3]. In the proposed method, the energy consumption is
reduced by adding springs to the joints of the manipulator and using the eigenfrequency
and eigenmode of the link system. However, when the mass of the system changes due
to the grasping of the object, or when the boundary conditions at the start and end points
are changed, it is necessary to readjust the eigenfrequency and eigenmode of the sys-
tem. Therefore, in this paper, we propose a simple variable stiffness mechanism that can
be installed at the joint of the manipulator. Using the method of multibody dynamics,
we derive the spring constant conversion formula and formulate the stiffness adjustment
rule based on it. In addition, a planar 2DOF manipulator equipped with the proposed
variable stiffness mechanism is actually manufactured, and the validity of the derived
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theoretical formula is verified. Finally, we confirm that it becomes possible to flexibly
change the boundary conditions by using the proposed variable stiffness mechanism.

2 Design and Control of Energy-Saving Manipulator

Figure 1 shows the configuration of the proposed energy-saving manipulator. In the pro-
posed method, the joints must be able to rotate freely in order to use the natural vibration
of the system, and motors cannot be installed in the joints like a normal manipulator.
Therefore, the joints are free joints, and the torque is applied from the reaction wheels
installed at the appropriate positions of the links. In addition, a mechanism consisting
of two tension springs and a special spring holder (see Chap. 3 for details) is installed
in the joint to give rotational stiffness. The equations of motion for the link and the
reaction wheel can be expressed as follows.

MMMθθ θ̈θθ +MMMT
φθ φ̈φφ +hhh= −KKK(θθθ −θθθ n) (1)

MMMφθ θ̈θθ +MMMφφ φ̈φφ = τττ (2)

where θθθ = [θ1,θ2 · · · ,θN ]T is the vector of joint variables, φφφ = [φ1,φ2 · · · ,φN ]T is the
vector of rotation angles of reaction wheels, MMMθθ , MMMφθ , MMMφφ are the inertia matrices,
hhh is the vector of centrifugal and Coriolis forces, τττ = [τ1,τ2 · · · ,τN ]T is the vector of
driving torques of reaction wheels, KKK = diag[k1,k2, . . . ,kN ] is the stiffness matrix (ki is
the equivalent spring constant obtained by converting the stiffness of the two tension
springs into the rotational stiffness around the joint axis), θθθ n is the vector representing
the mounting angle at which the spring has a natural length.

Eliminating φφφ from Eqs. (1) and (2) yields the following equations of motion

MMM(θθθ)θ̈θθ +hhh(θθθ , θ̇θθ) = −KKK(θθθ −θθθ n)+uuu (3)

where MMM ≡ MMMθθ −MMMT
φθMMM

−1
φφMMMφθ , uuu ≡ −MMMT

φθMMM
−1
φφ τττ .

Here, we consider a motion that stops at θθθ(0) = θθθ 0 and stops again at θθθ(t f ) = θθθ f .
Energy consumption is evaluated using the following cost function.

J =
∫ t f

0
f0(xxx,uuu)dt, f0(xxx,uuu) =

1
2
uuuTWWWuuu (4)

where WWW ∈ RN×N is a positive definite symmetric matrix. An energy-saving effect
can be obtained by appropriately selecting the spring parameters and motion trajec-
tory. In the following, the control input uuu(t), trajectory θθθ(t), spring constant kkk =
[k1,k2, · · · ,kN ]T , and spring mounting angle θθθ n that minimize the cost function (4) will
be explained.

Since Eq. (3) is nonlinear and it is difficult to obtain an analytical solution, here
we linearize the equations of motion to obtain an approximate solution and analyze
the basic characteristics of the optimal solution. First, the coordinate reference point
is shifted to the middle point between the initial state and the final state in order to
make the boundary conditions symmetrical. That is, define θθθm = 1

2 (θθθ f + θθθ 0), θθθ e =
1
2 (θθθ f − θθθ 0) and transform the coordinates as θ̃θθ(t) = θθθ(t)− θθθm, θ̃θθ n = θθθ n − θθθm. Then,
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Fig. 1. Structure of proposed energy saving manipulator

approximate the inertia matrix at the midpoint θ̃θθ = 000 (θθθ = θθθm) as MMM(θθθm) = M̂MM, and
neglect the centrifugal and Coriolis forces hhh, the equations of motion are linearized as
follows.

M̂MM ¨̃θθθ +KKKθ̃θθ = uuu+KKKθ̃θθ n (5)

Let us consider the free vibration system and calculate the modal matrix ΦΦΦ ∈ RN×N that
satisfies ΦΦΦT M̂MMΦΦΦ = III, ΦΦΦTKKKΦΦΦ = ΩΩΩ 2, ΩΩΩ = diag[ω1,ω2, · · · , ωN ], where III is the identity
matrix and ωi is the i-th natural frequency. We make the coordinate transformation
qqq= ΦΦΦ−1θ̃θθ (qqqn = ΦΦΦ−1θ̃θθ n) and define the state vectors xxx= [xxxT1 ,xxx

T
2 ]

T = [qqqT , q̇qqT ]T . Then,
the following state equations are found.

ẋxx1 = xxx2 (≡ fff 1(xxx,uuu)) (6)

ẋxx2 = −ΩΩΩ 2xxx1+ΦΦΦT uuu+ΩΩΩ 2qqqn (≡ fff 2(xxx,uuu)) (7)

Next, let us introduce an adjoint vector ψψψ = [ψψψT
1 ,ψψψT

2 ]
T and define the Hamiltonian

as H = f0 +ψψψT
1 fff 1 +ψψψT

2 fff 2. Then, the optimal control is derived from the condition
∂H/∂uuu = 000 as uuu = −WWW−1ΦΦΦψψψ2. Substituting this into H, the Hamiltonian along the
optimal trajectory is given by

H = ψψψT
1 xxx2 −ψψψT

2 ΩΩΩ 2xxx1 − 1
2

ψψψT
2 ΦΦΦTWWW−1ΦΦΦψψψ2+ψψψT

2 ΩΩΩ 2qqqn (8)

From Eq. (8), the canonical equations of Hamilton can be derived as follows.

ẋxx = ∂H/∂ψψψ = AAAxxx+BBBψψψ + cccn (9)

ψ̇ψψ = −∂H/∂xxx= −AAATψψψ (10)

AAA=
[

000 III
−ΩΩΩ 2 000

]
,BBB=

[
000 000
000 −ΦΦΦTWWW−1ΦΦΦ

]
,cccn =

[
000

ΩΩΩ 2qqqn

]

By solving the differential Eqs. (9) and (10) under the boundary conditions xxx(0) =
[−qqqTe ,000

T ]T and xxx(t f ) = [qqqTe ,000
T ]T (qqqe = ΦΦΦ−1θθθ e), we obtain the optimal solution that

minimizes the energy consumption. Choosing the weighting matrix asWWW = M̂MM
−1

allows
to decouple the equations by the property ΦΦΦTWWW−1ΦΦΦ = ΦΦΦT M̂MMΦΦΦ = III. In this case, we
can solve the problem analytically and the main results can be summarized as follows.
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The optimal spring mounting angle that minimizes J is always qqqn = 000 (θθθ n = θθθm).
The optimal control uuu(t) can be computed by

uuu(t) = −M̂MMΦΦΦψψψ2(t), ψψψ2(t) = [ψ21(t),ψ22(t), · · · ,ψ2N(t)]T

ψ2i(t) =
2ω2

i {sinωi(t f − t)− sinωit}
sinωit f −ωit f

qei (11)

The optimal trajectory can be expressed as

θθθ(t) = θθθm+ΦΦΦqqq(t), qqq(t) = xxx1(t) = [q1(t),q2(t), · · · ,qN(t)]T

qi(t) =−qei

{
cosωit+

ωit sinωit sinωit f
sinωit f −ωit f

+
(ωit cosωit− sinωit)(1+ cosωit f )

sinωit f −ωit f

}
(12)

The relationship between the minimum value of the energy consumption J and the robot
cycle time t f can be summarized as follows

J(t f ) =
N

∑
i=1

Ji(t f ), Ji(t f ) =

⎧⎪⎪⎨
⎪⎪⎩

2ω3
i (1+ cosωit f )

ωit f − sinωit f
q2ei ( if ωi �= 0)

24

t3f
q2ei ( if ωi = 0)

(13)

These theoretical solutions were derived based on the linearized equations of
motion. However, using a special numerical calculation method for optimal control
[4], we have confirmed that these approximate solutions closely approximate the basic
properties of the exact solutions.

If we consider t f as the quantity that may take any value, H(t f ) = 0 should be
satisfied from the transversality condition. Moreover, since Eq. (8) does not contain t
explicitly, ∂H/∂ t = 0, it holdsH=const. along optimal trajectories. Hence the condition
H(0) = 0 should be satisfied. By substituting xxx(0) = [xxx1(0)T ,xxx2(0)T ]T = [−qqqTe ,000

T ]T

and ψψψ2 into Eq. (8), one can get

H(0) =
N

∑
i=1

−2ω5
i t f sinωit f

(ωit f − sinωit f )2
q2ei (14)

From Eq. (14), it follows that H(0) = 0 is satisfied if sinωit f = 0 (i = 1,2, · · · ,N) or
equivalently ωit f = riπ (i = 1,2, · · · ,N), where ri is an integer. When the condition
ωit f = riπ is satisfied, the cost function (13) can be expressed as

J =
N

∑
i=1

Ji =
N

∑
i=1

2ω3
i (1+ cosriπ)

riπ
q2ei (15)

From Eq. (15), it is understood that Ji takes the maximum 4ω3
i q

2
ei/riπ if ri is an even

number and vanishes if ri is an odd numbers. Hence, J takes the global minimum if all
ri are odd number resulting in the minimum value of zero.

Next, we consider the problem to design the spring stiffnesses kkk = [k1,k2, · · · ,kN ]T
that make the consumed energy minimum for a specified time t∗f . Firstly, from the opti-
mal conditions ωit f = riπ , the natural frequencies read as ωi = riπ/t∗f (i= 1,2, · · · ,N),
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where all ri should be selected to be odd numbers so that all Ji takes the minimum.
The spring stiffnesses kkk = [k1,k2, · · · ,kN ]T should be determined as they satisfy the
characteristic equations det[KKK−ω2

i M̂MM] = 0 (i= 1,2, · · · ,N). Let us define the error vec-
tor eee= [e1,e2, · · · ,eN ]T where ei = det[KKK−ω2

i MMM]. Then, the problem here becomes to
find kkk that satisfies eee(kkk) = 000. Solving this nonlinear equation, e.g., by Newton-Raphson
method, we can obtain the optimal spring stiffnesses kkk that minimizes the energy con-
sumption. Finally, we can achieve the minimum energy control of planar robot manipu-
lators by adding the springs with optimal stiffnesses to the joint at the optimal mounting
angles θθθm.

3 Variable Stiffness Mechanism

As explained in the previous chapter, the optimum spring constant kkk = [k1,k2, · · · ,kN ]T
is calculated from the characteristic equations det[KKK−ω2

i M̂MM] = 0 (i= 1,2, · · · ,N). Since
M̂MM =MMM(θθθm), θθθm = 1

2 (θθθ f +θθθ 0), the optimum spring constant changes if the boundary
conditions θθθ 0,θθθ f are changed or if the mass included in MMM changes when the manip-
ulator grips and transports the object. Since it is not practical to replace springs every
time the boundary conditions or mass change, a mechanism that can adjust the spring
constant is required. Therefore, in this chapter, we propose a simple variable stiffness
mechanism that can be added to the joints of the manipulator.

Figure 2 shows the proposed variable stiffness mechanism for one axis. For simplic-
ity of notation, the subscript i that was added to indicate the joint axis number in the
previous chapter is omitted. The rod-shaped part A© is rigidly connected to the child
link on the tip side, and the T-shaped part B© is fixed to the parent link on the root side
at the optimum mounting angle θn. Here, we consider changing the stiffness by sliding
the mounting positions S1,S2 of the tension springs by the amount b. In the following,
we denote the distance from the rotation axis to the spring mounting points P1,P2 as a,
the spring constant of the tension spring attached between PjS j as kt , and the natural
length as l0. Σ is a coordinate system in which the origin is set on the rotation axis and
the y-axis is aligned with the longitudinal direction of the parent link. ΣA and ΣB are
coordinate systems fixed to parts A and B, respectively, as shown in the Fig. 2.

Firstly, we calculate the torque that this mechanism produces around the point O
when the child link rotates θ with respect to the parent link. The vector ddd j, which
represents the vector from the point S j to the point Pj in the Σ coordinate system, can
be calculated as follows.

ddd j = rrrPj − rrrSj = AAAuuuPj −BBB(uuuSj −uuuO) (16)

where, uuuPj is the vector from the point O to the point Pj expressed in the ΣA, uuuSj and

uuuO are the vectors from the origin of ΣB to the points S j and O expressed in the ΣB.
Moreover, AAA is the rotation matrix from ΣA to Σ , BBB is the rotation matrix from ΣB to Σ ,
and they can be expressed as follows.

AAA=
[
cosθ −sinθ
sinθ cosθ

]
,BBB=

[
cosθn −sinθn
sinθn cosθn

]
(17)
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Fig. 2. Simple Variable Stiffness Mechanism

Since the total length of the tension spring can be calculated by ‖ddd j‖, the torque Qj

produced by one tension spring around the point O can be calculated as follows.

Qj(θ) = −kt(‖ddd j‖− l0)(AAAVVVuuuPj )
T ddd j

‖ddd j‖ (18)

where VVV is a rotation matrix that rotates the vector counterclockwise by 90◦. Then, the
torque T induced around the point O by two tension springs can be calculated as

T (θ) = Q1(θ)+Q2(θ) (19)

Next, we derive an equation for calculating the equivalent rotational spring constant
k around the joint axis from the spring constant kt of the tension spring. As explained
in Chap. 2, the optimal spring mounting angle is θθθ n = θθθm = 1

2 (θθθ 0 + θθθ f ). Therefore,
without loss of generality, we can assume θθθ n = 000, since the spring will expand and
contract symmetrically about the equilibrium point. Hence, we can derive the spring
constant conversion formula by considering the motion around θθθ = 000. When θθθ n = 000,
Eq. (19) can be calculated as follows.

T (θ) = −kt(1− l0
‖ddd1(θ)‖ ){a(a−b)sinθ +ahcosθ}

− kt(1− l0
‖ddd2(θ)‖ ){a(a−b)sinθ −ahcosθ} (20)

Equation 20) is Taylor-expanded around θ = 0, and after first-order approximation, it
is considered to be balanced with the torque −kθ around the point O, that is

T (θ) ∼= T (0)+
∂T (0)

∂θ
θ ≡ −kθ (21)

When θ = 0, ‖ddd1(0)‖ = ‖ddd2(0)‖ =
√
h2+b2, so the first term in the middle side of

Eq. (21) becomes 0. Calculate the derivative ∂T (0)/∂θ of the second term of the mid-
dle side of Eq. (21), and compare the middle side with the right side. Then, the follow-
ing conversion formula for equivalent rotational spring constant k and tension spring
constant kt is obtained.
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k = 2kt

{
l0a2 h2

(
√
h2+b2)3

+
(
1− l0√

h2+b2

)
a(a−b)

}
(22)

Finally, we consider how to obtain the sliding amount b of the spring mounting
point, when the desired rotational spring constant k∗ is specified. From Eq. (22), k can
be considered as a function of b, so it is expressed as k(b). Then, the problem is to
find b that satisfies the nonlinear equation f (b) = k(b)− k∗ = 0. To solve this problem
numerically using Newton-Raphson method, the iteration formula is

b(α+1) = b(α) − f (b(α))
f ′(b(α))

(23)

where α is the iteration number. When using Newton-Raphson method, it is important
to select the initial value b(0) appropriately. If k(b) is Taylor-expanded around b = 0
and first-order approximation is used, the following equation is obtained.

k(b) ∼= k(0)+
∂k(0)

∂b
b= 2kta

2
{
1−

(
1− l0

h

)(
b
a

)}
(24)

Solving the above equation for b gives the following equation.

b=
(2kta2 − k)h
2kta(h− l0)

(25)

By substituting the desired optimum spring constant k∗ into k on the right hand side of
Eq. (25), the appropriate initial value b(0) when applying the Newton-Raphson method
can be calculated.

Fig. 3. Picture of energy saving manipulator Fig. 4. Enlarged view of the joint mecha-
nism

4 Experimental Verification

A variable stiffness mechanism proposed in Chap. 3 and an energy-saving manipulator
equipped with it were prototyped. Figures 3 and 4 show the appearance of the experi-
mental setup. A DC motor is used to drive the reaction wheel, and a rotary encoder is
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installed at the joint to measure the rotation angle of the link. In addition, an electro-
magnetic brake is installed in the joint so that the link can be stopped at any angle.

Firstly, the validity and accuracy of the spring constant conversion formula (22)
derived in Chap. 3 are verified using the second link of the experimental device. Push
a point on the 2nd link at a distance l away from the 2nd joint with a force gauge
perpendicular to the link, and measure the force F required to tilt the 2nd link by θ .
Here, this is repeated 5 times and the average value Fave is obtained, and the torque T
acting on the rotating axis is calculated by T = Favel. As an example, when b = 0[m],
θ is changed by 1[deg] from 2[deg] to 15[deg]. Figure 5 shows the result of calculating
the torque T with circles. The solid line in the figure is the approximate straight line
that passes through the origin using the method of least squares from the obtained data.
If the equivalent rotational spring constant is k, there is a relationship of T = kθ , so
k = 0.0016[Nm/rad] can be obtained from the slope of the approximated straight line.
Similar measurements and calculations are performed for b from 0[m] to 0.07[m] by
0.01[m]. Plotting the obtained k against b results in the circles in Fig. 6. The solid line
in the figure is the result of calculation using the theoretical formula (22). Both results
are in good agreement, which confirms the validity of Eq. (22).

Next, we investigate the adjustable range of k by the proposed variable stiffness
mechanism. Figure 7 shows the result of calculating how much the rotational spring
constant k can be changed by changing the movement amount b of the spring mounting
point based on Eq. (22). For example, when using a tension spring with a spring constant
of kt = 10.0[N/m], by changing b from 0[m] to 0.1[m], spring constant k can be changed
by about 8 times. Also, it can be seen that the larger the value of kt , the wider the range
of k that can be changed.

Fig. 5. Relationship between θ and T . Fig. 6. Relationship between b and k.

Finally, it is verified whether it is possible to move between specified points by
adjusting the mounting points of the springs even when the boundary conditions are
changed by using the proposed variable stiffness mechanism. Here, adaptive control
is used for trajectory tracking control. The motion time is set to t∗f = 2[s], and we
first consider the case where the robot stops at θθθ 0 = [0,0]T [deg] and then stops again
at θθθ f = [40,40]T [deg]. Obtaining the desired spring constant by the optimal spring
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design method explained in Chap. 2, and calculating the spring mounting point move-
ment amount to achieve that spring constant by the method proposed in Chap. 3, result
in bbb= [b1,b2]T = [0.000,0.079]T [m]. Figure 8 shows the experimental result when the
spring mounting points were adjusted to this position. In the figure, the desired trajec-
tory of the end effector’s attitude angle φ is indicated by a dotted line, and the actual
trajectory is indicated by a solid line. From this, it can be confirmed that the target
of 80[deg] is reached at the final time. Next, Fig. 9 shows the experimental results
when the target point is changed to θθθ f = [50,50]T [deg] without changing the spring
constant. From the figure, it can be confirmed that there is an error of about 10[deg]
at the final time. Therefore, based on the changed boundary conditions, the optimal
spring constant is calculated again by the method in Chap. 2, and the appropriate spring
mounting point movement is calculated by the method proposed in Chap. 3, result in
bbb = [b1,b2]T = [0.006,0.069]T [m]. Figure 10 shows the experimental results when the
spring mounting point was adjusted to this position. From the figure, it can be con-
firmed that the target of 100[deg] is reached at the final time. From the above, it was
confirmed that the proposed variable stiffness mechanism can flexibly cope with dif-
ferent boundary conditions. We have confirmed that the proposed method can reduce
energy consumption by about 95% compared to conventional manipulators.

Fig. 7. Variable range of k Fig. 8. Tip angle (θθθ f = [40,40]T deg)

Fig. 9. Tip angle (θθθ f = [50,50]T deg, before
adjust stiffnesses)

Fig. 10. Tip angle (θθθ f = [50,50]T deg, after
adjust stiffnesses)
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5 Conclusions

In this study, we investigated a method of driving the manipulator with significantly less
energy consumption than usual by adding springs to the joints and effectively using the
elastic potential energy. We developed a simple variable stiffness mechanism that can
be attached to a joint, and demonstrated that it can flexibly respond to changes in the
manipulator’s mass and boundary conditions.
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