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Preface

In recent years, many researchers have addressed the optimal structural design and
control design of rigid and flexible multibody systems. Using the adjoint approach it
is, for instance, possible to perform large-scale topology optimizations to find body
designs that are optimal with respect to the time- and design-dependent loads. However,
there remain many open questions and challenges for the efficient modeling, analysis,
optimization, and control, also with the focus for real-time applications or artificial
intelligence aspects.

The aim of the IUTAM Symposium on Optimal Design and Control of Multibody
Systems 2022 was to bring together researchers working on various aspects of the sen-
sitivity analysis, optimization, and optimal control of multibody systems. This interdis-
ciplinary nature of the symposium allowed for the exchange of valuable information
and led to fruitful discussions about optimal structural design and control design. The
symposium provided a forum for discussions on relevant research issues and served
as a meeting point for international researchers, scientists, and experts from academia
and research institutions. The hospitality of the city of Hamburg has contributed to the
success of the symposium by providing a culturally interesting, modern, innovative, yet
relaxing urban environment.

We have cordially invited researchers to the IUTAM Symposium 2022 to present
their work related to recent developments and novel approaches in

• (adjoint) sensitivity analysis,
• structural optimization,
• optimal control,
• robust optimization,
• artificial intelligence and machine learning,
• computational methods and software development,

for the analysis and optimization of problems from structural dynamics, rigid/flexible
multibody systems, and general nonlinear dynamics.

We had 44 participants in total with 35 presentations divided into the two main areas
Optimal Control and Optimal Design in the program.

We invited for contributions to a full paper version for the present IUTAM book,
resulting in 14 peer-reviewed proceeding papers, 7 each from the Optimal Design and
Optimal Control panels.
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Optimal Design



Optimization Processes for Automated Design
of Industrial Systems

Dieter Bestle(B)

Engineering Mechanics and Vehicle Dynamics, Brandenburg University of Technology,
03046 Cottbus, Germany
bestle@b-tu.de

Abstract. Mechanics was one of the earliest application fields demonstrating
the power of rule-based deduction of general formalisms from rather few basic
axioms. The usual transformation of design problems into classical optimization
problems and their solution by nonlinear programming algorithms follows the
same principle, and is thus mainly used by the mechanics and control commu-
nity. System design on an industrial scale, however, is a much more challenging
creative task, which cannot be formalized so easily, which is why it is mostly
still human-driven. In order to break up this game stopper, algorithms for multi-
criterion optimization, function approximation and statistical sensitivity analysis
may be integrated in a common design process. Especially the emerging field of
data-driven artificial intelligence (AI) methods may become the pushing game
changer. The paper will demonstrate major challenges of industrial design and
some solution strategies to bridge the gap between engineering design intuition
and formalized problem solution.

1 Conventional System Design

System design is generally searching for best problem solutions. On an industrial scale,
this is often achieved based on human intelligence, experience and intensive parameter
studies. However, such a practise is not only rather ineffective, but unsuitable to exploit
the full optimization potential. On the one hand, humans can imagine effects of design
changes only in one- or low-dimensional design spaces, where it is proven that subse-
quent optimization in subspaces doesn’t lead to the overall optimum. On the other hand,
engineers can be real experts only in a few disciplines, whereas system design is multi-
disciplinary involving multiple departments, where subsequent involvement in design
decisions leads to the same difficulties of not exploiting the full optimization potential.

Numerical optimization has a much higher potential to find best solutions in high-
dimensional design spaces. The classical formulation of an optimization problem is

min
p∈P

f (p) where P=
{
p ∈ R

D
∣∣∣g(p) = 0,h(p) ≤ 0,pl ≤ p ≤ pu

}
. (1)

The D-dimensional design space P is typically spanned by variable model parameters
acting as design variables, such as geometric dimensions, mass geometry, stiffness and
damping of multibody systems (e.g. [1]), control parameters of mechatronic systems
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
K. Nachbagauer and A. Held (Eds.): IUTAM 2022, IUTAM Bookseries 42, pp. 3–15, 2024.
https://doi.org/10.1007/978-3-031-50000-8_1
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4 D. Bestle

(e.g. [2]), or structural properties of elastic systems (e.g. [3]). This design space may be
limited by equality or inequality constraints as well as bounds resulting from physical
limits or design restrictions. Design objectives f̃ (p) to be maximized can be easily
transformed into their negative counterparts f (p) = − f̃ (p) to be minimized.

Especially the 1960s have been a golden age of developing powerful solution algo-
rithms [4] for solving problem (1), mostly based on gradients which may be provided
purely numerically by divided differences, semi-analytically by direct differentiation or
as adjoints utilizing computer algebra (e.g. [1]), or fully automatically by differentiat-
ing computer code either generating new code or using operation overloading (e.g. [5]).
Only in few disciplines, especially structural design, these algorithms have become an
inherent part of finite element codes for natural use on an industrial scale [6]. For gen-
eral engineering design problems, however, the expectation that from then all design
problems may be solved rather easily by optimization was mostly disappointed by the
fact that the solutions enforced by scalar optimization are often totally impractical.

2 Why Classical Optimization Cannot Solve Industrial Design
Problems

One of the main reasons for failure is that in most cases there doesn’t exist any single
optimal solution, but practical design decisions are always tradeoffs between conflicting
demands and desires. Further, industrial design tasks are characterized by the following
features:

i. design intentions are often intuitive, which can hardly be formalized;
ii. design parametrization is often analysis-oriented being less qualified for optimiza-

tion;
iii. the design space is often high-dimensional and heterogenous including continuous

and discrete parameters as well as shape functions;
iv. design demands are typically multi-disciplinary enforcing various analysis soft-

ware including CAD, CFD, MBS, FEM, control, as well as design rules based on
expertise from different departments;

v. often design analysis is performed with commercial-of-the-shelf (COTS) software
resulting in costly, noisy black-box results with limited robustness;

vi. sometimes software runs on heterogenous hardware with different operation sys-
tems;

vii. typically multi-modal, multi-fidelity design criteria with unclear correlation are to
be expected;

viii. deterministic optimization of nominal designs is often not sufficient due to manu-
facturing uncertainties or uncertain operation conditions.

This property list is concluded from observations within several decades of indus-
trial cooperation and may be motivated by some examples. The first example regards
the design of a new steering concept solely based on differences in the drive forces Fl ,
Fr exerted by electric in-wheel motors, which is called differential steering [7], Fig. 1a.
The basic control concept uses a virtual reference car to generate reference values for
sideslip angle β and yaw rate ω . A LQR-controller (linear-quadratic regulator) then
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tries to follow these reference values with appropriate wheel torques turning the wheel
direction by differences between left and right drive forces as part of feedback control
vector u. The point here is that, although LQR design minimizing the state error x and
control effort is already a formalized optimization problem with a clearly defined objec-
tive J =

∫
(xTRx+uTQu)dt to be minimized and a well-known solution, the selection

of Q- and R-matrices is totally artificial and may generate any result far from desired
vehicle behavior. Automotive design engineers, therefore, use a totally different con-
cept, where assessment is based on visible results from specific road tests like driving
on a circle with increasing speed v to obtain over- or under-steering characteristics and
stability limits, or step-changes on steering wheel to assess agility, or a double-lane
change maneuver for the same reasons. This conflict may be resolved by a two-step
approach where matrices Q and R are considered as part of the design vector p and
optimized together with mechanical model parameters based on time-consuming simu-
lations of exactly the same road test maneuvers [7].

A rather similar example is the design of a rear wheel steering device based on a lin-
ear vehicle model [8]. The design intention here is based on frequency response curves
for lateral acceleration ÿ and yaw rate ψ̇ expressing stability and agility with some intu-
itive desire. One point here is the speed dependence enforcing functional relations for
the control gains as design quantities, the second one is the multiplicity of amplitude
response curves aÿ and aψ̇ shown in Fig. 1b due to uncertainties of car loading and tire
stiffness. Optimization here has to account first for smooth, low-dimensional design
parametrization and second for the high effort of statistically assessing probabilistic
driving criteria to make the final design being robust.

Fig. 1. Design examples: a) differential steering; b) frequency response for lateral vehicle dynam-
ics; c) automatic gear control; d) multi-fidelity compressor design; e) blade design.



6 D. Bestle

The next example regards the calibration of automatic gears which in industrial
practice is done on public roads by experienced calibration engineers directly changing
some parameters of the gear control unit and assessing launch or gear shift quality by
subjective driving impressions. Typical launch criteria, which can also be measured in
real tests, are, e.g., sportiness expressed by the required time for speeding up within a
pre-defined distance and the corresponding end velocity, alternatively the synchroniza-
tion time between car and motor speed, further comfort expressed by minimal jerk, or
clutch wear regarded by friction dissipation energy. They all have been developed over
many years of experience, but in the formal approach of [9] it turned out that they are
highly correlated which disturbs optimization due to the unnecessarily high dimension
of the criterion space. Also the design space dimension is unnecessarily high because
in practice control characteristics are described by point clouds instead of functional
relations [10], Fig. 1c. Finally robustness against changing friction coefficients, oil tem-
perature or clutch stiffness due to plate wear is an issue increasing the simulation effort
dramatically [11].

As an example for multi-disciplinary design with heterogeneous design variables,
the design of automotive shock absorbers may be mentioned [12]. In practice, the
internal valve design determining the frequency- and amplitude-dependent stroke-force
characteristic of an hydraulic damper is performed by experienced engineers combin-
ing various shims from an assortment box, building up the test damper, applying it
to a specific car to be designed, and then assessing the resulting driving behavior in
time-consuming field tests. In order to find proper shim stacks automatically, compu-
tational fluid dynamics (CFD) is required to obtain the pressure distribution within the
valve channels and thus onto the shim stacks, and the finite element method (FEM)
is required to obtain the corresponding shim pressure-deflection behavior which then
effects the oil flow determining the stroke velocity. Both black-box programs have to be
integrated into a common design loop to solve the combinatorial problem of stacking
shims with partly continuous, but mostly discrete values for thicknesses and diameters.
Additionally uncertainties due to friction between shims and manufacturing imperfec-
tions of thickness and diameter have to be taken into account.

As last, most challenging example, aero engine design may be considered. Due to
its complexity it is typically split into several design subtasks for fan, compressor, com-
bustor and turbine. However, even the compressor design is already so challenging that
several models of various fidelity have to be combined reaching from 1D-flow compu-
tations via 2D-CFD in axial-radial and axial-circumferential directions till full 3D-CFD
to make various design decisions [13], Fig. 1d. After fixing major flow characteristics,
the next step is to design proper blade shapes which account for both aerodynamic
aspects as well as structural aspects requiring a combination of computer-aided design
(CAD) for geometry definition, CFD, FEM and design rules regarding resonance and
flutter [14]. Especially CFD requires smooth blade parametrization to allow flow calcu-
lations (Fig. 1e). Since even minor manufacturing deviations have tremendous impact
on engine efficiency, robust design is inevitable [15]. In order to exploit the full opti-
mization potential, todays industrial design strategy, which typically fixes component
requirements based on simple thermomechanical models and then provides these spec-
ifications to the different component departments as design challenges, is no longer
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sufficient. Instead, holistic engine design based on process integration of the best avail-
able analysis models and cooperative optimization is required.

3 Strategies for Meeting Industrial Design Challenges

The above collection of examples should have clearly enough shown that industrial
design challenges are so manifold that the academic optimization approach (1) cannot
master them, but has to be accomplished by some additional design strategies to be
proposed in the following.

3.1 Gradient Avoidance Through Population-Based Optimization

Although gradient-based algorithms like sequential quadratic programming (SQP) are
rather efficient for solving optimization problem (1), they are not the first choice for
industrial design problems for many reasons. Analytical computation of gradients with
computer algebra is reserved for academic toy problems. Providing semi-analytical
equations for computing gradients takes too much preparation time and requires rather
specific formulations of the underlying analysis model, see e.g. [1] for multibody
dynamics. Automatic differentiation is also no option when using COTS programs
offering adjoint codes only in very rare cases. If automatic meshing in CFD and FEM
is used, numerical differentiation with divided differences is also no alternative since
mesh perturbations yield noisy analysis results prohibiting use of small design pertur-
bations required for obtaining precise results. In some cases, gradients may even not
exist due to non-smooth criterion functions. Finally, the downhill property of gradient-
based optimization algorithms prohibits the finding of the desired global optimum in
case of multi-modal functions with several local optima, which has to be expected in
industrial design applications at any time.

Thus, global optimization algorithms like genetic algorithms (GA [16]), particle
swarm optimization (PSO [17]) and differential evolution (DE [18]) are often the better
choice. They are directly applicable to any problem allowing to provide analysis results,
do not need any preparation time for gradient computation and find very good or even
multiple good solutions with high probability. The reason is that they gain a bigger
picture of the design space by iteratively developing complete sets of multiple, widely
spread designs, so called design populations, instead of improving just a single design
point. This, however, requires already a good first overview on the design space by
properly initializing the first population of design individuals, e.g. by Latin hypercube
sampling [19].

Major drawbacks of all global optimization algorithms are the extremely high num-
ber of required design evaluations and that constraints can be handled by penalty strate-
gies only. The first aspect will be addressed in Sect. 3.3, the latter is less challenging
with gradient-free algorithms than with effective nonlinear programming algorithms
requiring smooth penalty functions. For example, in case of a single inequality con-
straint h(p)≤ 0, adding a constant term to a quadratic penalty results in the non-smooth
penalty function

σ(p) =
{

σ0+h2(p) i f h(p)> 0,
0 else.

(2)
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By choosing σ0 > 0 big enough, minimization of the penalized objective f (p)+σ(p)
will finally fulfill the constraint almost exactly. Above optimization procedures may
even be applied to non-robust function evaluation, if analysis failure, e.g. due to mesh-
ing problems in CFD or FEM, is treated properly by returning a penalized function
value, because in evolutionary optimization algorithms penalized designs will be elim-
inated by the subsequent selection step anyway. Since these kinds of population-based
optimization algorithms are able to learn from actual design data, they are considered
as AI-strategies.

3.2 More Practicability Through Multi-objective Optimization

Industrial system design typically involves several departments from several disciplines,
each with its own design desires and demands which hardly can be summarized in a
single objective. Thus, the scalar optimization problem (1) has to be reformulated as

min
p∈P

f(p) where P=
{
p ∈ R

D
∣∣∣g(p) = 0,h(p) ≤ 0,pl ≤ p ≤ pu

}
(3)

where now several objectives fi(p), which shall be minimized simultaneously, are sum-
marized in the vector criterion f(p) = [ f1, f2, ..., fn]T . The ideal solution, however,
where all objectives take their minimum value, exists only in the rare case of highly
correlated criteria. Usually the objectives are conflicting in the sense that improvement
of one objective will worsen at least another one. In this case, multi-objective optimiza-
tion delivers a strict mathematical concept of defining and finding tradeoffs, so called
Pareto optima [20], from which the designer may choose anyone according to additional
preferences.

Moreover, multi-objective extensions of GA and PSO, named MOGA (e.g. [20])
andMOPSO (e.g. [21]), provide easy-to-use algorithms to find non-dominated solutions
as a representative set of Pareto optima in a single run without any user-interaction
or a priori knowledge. These codes follow the same evolutionary principles as their
single-objective counterparts, only the selection step has to be modified. Typically a
rank-sorting selection criterion enforces convergence towards the Pareto front, whereas
some distance criterion enforces spreading of designs over the whole front to provide
a representative full picture of possible tradeoffs to the design engineer. Thus, multi-
objective optimization releases the design engineer from the search of optimal tradeoffs
without depriving him of the last design decision.

3.3 More Efficiency Through Metamodeling

Population-based multi-objective optimization algorithms have the same drawbacks as
their scalar counterparts mentioned in Sect. 3.1; especially the very high number of
required design evaluations conflicts with the high time-consumption of industrial anal-
ysis tools. This seems to disqualify such algorithms for industrial application where
each single design assessment may take minutes to hours of computation time, espe-
cially if structural or flow analysis is involved. However, this contradiction can be
resolved in various ways. First, multi-objective optimization allows fully parallel evalu-
ation of the involved objectives and constraint functions on high-performance computer
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clusters; second, population-based optimization allows fully parallel evaluation of the
individuals of the traced population. Both, however, require multiple licenses, typically
one for each cluster node, if COTS software is used.

A better concept is to insert a metamodel layer partly decoupling optimization from
analysis. Metamodels, also called surrogates or response functions, are analytical func-
tions approximating the input-output relations fi(p) of objectives or constraint func-
tions. They can be evaluated within fractions of seconds and thus serve as computa-
tionally cheap assessment source interacting with population-based optimization algo-
rithms. Well-established surrogate examples are Kriging [22] and radial-basis functions
[23], less qualified are e.g. polynomials due to their strict correlation between function
complexity and the required number of support points. High potential have supervised-
learning AI-strategies like regression trees of artificial neural networks (e.g. [7]) as
universal function generators. In contrast to numerical regression, where interpolation
of a given data set would be considered best, AI focuses not so much on the quality of
representing the given data set, but on good generalization properties of the resulting
metamodel w.r.t. any future data not seen during training. Thus, interpolation would be
considered as overfitting, whereas model training in AI is stopped if the generalization
error on new data is lowest.

Typically metamodels are trained only once and then used as basis of optimization.
This however, is not recommended since it requires equal approximation quality in the
whole design space which wastes a lot of costly function evaluations in non-interesting
design regions and is hard to get in higher-dimensional design spaces. A better concept
is to train an initial metamodel with only a small data set of analyzed support points
and then perform a first optimization for getting inside where potential optima may
be located. In such regions additional designs may be selected and analyzed with the
original time-consuming analysis codes to re-train and improve the metamodel in the
interesting areas. Subsequent optimization and iterative refinement of the metamodel
may be integrated into a common algorithm [24]. The criteria for selecting new support
points can be similar to the selection step of evolutionary algorithms, but support point
concentration should be avoided, first because of waste of computing resources and sec-
ond because some surrogates may suffer from singularity problems. Additionally the
approximation uncertainty being e.g. available from Kriging models may be included.
For scalar optimization problems, expected improvement is an advanced algorithm bal-
ancing the exploration of design regions with uncertain approximation and exploiting
regions with already found very good designs [25].

The master-slave approach in Fig. 2 allows a fully decoupled, totally parallel multi-
objective optimization involving models of different fidelity and analysis time [26]. An
initial data set generated with design-of-experiments (e.g. Latin hypercube sampling)
is written to a working space where various slave processes may pick up designs to
be evaluated according to specific functions and disciplines. A second group of slave-
processes is awaiting the results to train or re-train response surface models (RSM).
The master optimization process is only working on these metamodels and proposes
new designs as support points which enhance the design set in the working space. Due
to decoupled analysis and training, fast and simple analyses are able to generate high-
quality surrogates based on many original design evaluations and drive the optimization
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process, whereas slow high-fidelity analyses are only able to provide rough metamodels
from few costly design evaluations, but prohibit optimization from getting lost in poor
design regions.

3.4 Constraint Avoidance Through Optimization-oriented Parametrization

Most optimization algorithms presume real-valued design variables like in optimiza-
tion problems (1) or (3). This is the case in many applications, where any specific
model parameter may serve as design variable. However, model parametrization is often
analysis-oriented resulting in many restrictions and dependences to be considered to
guarantee a feasible design. Human designers would account for informal geometric
restrictions automatically during search, whereas probabilistic search algorithms like
GA require strict formalized constraint equations which may be hard to be fulfilled as
discussed in Sect. 3.1. Therefore, proper optimization-oriented design parametrization
is a key-driver for receiving satisfying optimization results.

This is especially the case when smoothness in shape optimization problems like
blade design in Fig. 1e has to be enforced to allow for flow analysis and avoid unrealistic
stresses at artificial kinks of segmented parts in structural analysis. This can be achieved
easily by using e.g. B-spline curves and surfaces [27] superposing basis function with
freely movable control points which may partly be selected as design variables [28].
Alternatively, e.g. Hermite splines may be used where the selectable control points in
Fig. 1c lie on the curve or surface, respectively, and monotonicity demands may be
considered by slope restrictions [10].

In such cases, there is a free choice of the number of design parameters to be varied
requiring a tradeoff between allowed shape complexity, and thus design freedom, on

Fig. 2.Master-slave architecture for efficient global optimization.
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the one hand and complexity of the optimization problem in case of too many design
variables on the other hand, where especially the probabilistic search of population-
based strategies suffers from the curse of dimensionality. This requires a restriction of
the set of design variables on the most influential parameters in a first attempt and then
sequential search in extended or changed design spaces later on.

The selection of the best design variables can only partly be made by physical rea-
soning; often they are too abstract for predicting their influence on objectives and con-
straints like in the case of shape optimization. In such cases sensitivity analysis has
to be performed, where a local sensitivity analysis as used for gradient computation
is not sufficient, but sensitivities have to be representative for the whole design space.
The latter can be achieved e.g. with AI-methods building up different surrogates for
objectives and constraints from a representative DoE, one with all possible design vari-
ables involved and one with leaving out one or more design variables, respectively. The
leave-out surrogate with least mean difference to the full surrogate then tells which
parameters may be neglected without losing input-output information on that specific
function. By leaving out design parameters successively one-at-a-time in a systematic
way and using Pearson’s correlation coefficient as difference criterion, parameters can
be sorted according to their influence, see [28] or [7].

3.5 Robust Design

Theoretically optimization assumes that the found optimal design can be realized as
computed and drives designs to the limits at the border of the feasible design space.
Practically, however, probabilistic manufacturing deviations are unavoidable and the
real operation conditions of the optimized part may differ from the supposed nominal
conditions, which results in degradations of design objectives or even violations of con-
straints resulting in failure of the product. Classical engineering practice accounts for
such effects by introducing safety factors where, however, their correlation with the real
uncertainties and safety margins is often rather unclear. The better strategy is to assign
probability distributions to uncertain quantities, choose respective samples and evalu-
ate objectives and constraints for these samples statistically. This results in information
about product quality variation and failure probabilities [29]. Such a reliability analy-
sis may then reveal that it would have been a better choice to select a nominal design
with worse nominal objective values but less objective variation, i.e., the design is more
robust, or lower failure probability, i.e., the design is more reliable.

Instead of performing reliability analysis only a posteriori for the final determinis-
tically optimized design, the better strategy is to include it into the design loop already
and change the problem formulation (2) accordingly. Instead of assessing the nominal
design for nominal operating conditions directly, a sample of uncertain designs about
the nominal design should be generated with the prescribed probability distributions
and assessed w.r.t. the uncertain operating conditions. This can be achieved e.g. by
assessing the 95-percentile to be of best possible quality and fulfill design constraints
or to minimize the objectives’ mean and variance of the whole sample simultaneously
or to prescribe failure probabilities for the sample, see [15] or [30].

It is well known that statistical estimates improve with higher sample sizes, where it
should be kept in mind that already design search with global optimization algorithms
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requires many thousands of evaluations of nominal design points. Thus, the computa-
tional analysis effort, when adding statistical assessments, is even higher than already
discussed in Sect. 3.3 for deterministic optimization. However, by using similar meta-
models as discussed in Sect. 3.3 also for locally approximating the impact of design
variations onto design behavior dramatically cuts down the estimation effort and allows
almost arbitrarily high sample sizes. In [8] it could be demonstrated that statistical esti-
mates based on metamodels are of several orders of magnitude better than using their
support points directly.

3.6 Integration of Expert Knowledge via Supervised Learning

Rule-based formalization of design problems has its limits where human experts intu-
itively deduce design quality from graphical representations without traceable rules.
A good example is the classification of characteristic blade vibration modes which is
necessary to protect turbine blades from flutter by appropriate optimization constraints.
For simple symmetric geometries like aero engine compressor blisks (blade integrated
discs), such a distinction of modes may be achieved by counting radial and circumfer-
ential nodal lines [31], for general geometries like turbine blades, however, nodal lines
in Fig. 3 may crisscross so complicated that this is impossible.

In such a case, human experts may label some hundred, graphically provided exam-
ples by assigning one of up to 15 different mode labels rather easily. These labeled
data may then be used to train an artificial neural network (ANN) by supervised learn-
ing, which later during optimization will provide the correct classification automati-
cally and thousandfold without further human interaction [32]. In order to close the gap
between finite-element calculations of eigenmodes with varying, automatically gener-
ated meshes and the classification-ANN with prescribed structure, i.e., fixed number
of input nodes, layers and output nodes, a self-organizing or Kohonen map is used to
transform the changing mesh information into structured mesh information.

The new potential of AI-methods to support design is that such a learning from
data may release the human designer from artificial, rule-based formalization of design
criteria. Learning from data can be much easier than causal conclusive formalization of
rules from physics, and especially deep learning based on convolutional neural networks
(CNN [33]) has high potential to learn any kind of correlations and abstract features
even if humans do not understand the rules. So supervised learning is an elegant way
of querying experts for labeling data based on their non-formal knowledge and then
learning rules from these labeled data automatically which may finally be integrated in
automatic design processes.
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Fig. 3. Identification of vibration modes with AI [32].

4 Conclusions and Outlook

The above presentation and discussion of examples should have made clear that opti-
mization is not restricted to academic toy problems, but mature for becoming a valuable
toolset for industrial design tasks when accomplished by time-saving procedures, where
beside computational time-saving the saving of preparation time for properly formal-
izing the optimization problem is often more important. Especially the fast-emerging
AI-technologies have high potential to support and speed up system design on an indus-
trial scale. This was the reason for establishing the priority programm SPP 2353 by the
German Research Council [34] in 2022 to better link AI to design and to develop proper
modules for setting up general design assistance systems.

However, AI not only changes the way systems are designed, but also the design
features as it becomes part of the system to be designed. Releasing systems from strict
rule-based behavior and introducing AI-components trained with data correlations is an
actual paradigm change increasing system potentials dramatically by audio and vision
capabilities, which so far have been reserved to the living world, but at the same time
causes safety issues which have to be accounted for in the design process. Examples in
[35] show how easily vision systems, which e.g. are established for autonomous driving,
may be fooled by obviously insignificant changes or noise.
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Italy

Abstract. This paper provides an introduction to structural design
optimization of dynamic systems. Cast as an enabler of lightweight engi-
neering design via its virtuous circle, design optimization is shown in col-
laboration with the mechanical modeling. A general form of the mechan-
ical model is shown via a differential–algebraic equation categorized into
three elementary building blocks: governing equations, nonlinear solver
and time integration. The three-block solving scheme enables a modu-
lar and implementation-near view to complicated analysis. This gives a
clear view to the nontrivial task of analytical sensitivity analysis, espe-
cially when using direct differentiation. This introduced methodology is
applied to the gradient-based design optimization of a morphing wing
using flexible multibody dynamics. The approach using analytical sensi-
tivity analysis is compared with numerical finite differencing.

1 Design Optimization as Enabler of Virtuous Circle
of Lightweight Engineering Design

Design optimization automates the “traditional” trial-and-error iterative process
of engineering design (Fig. 1). The optimization-based approach relies on math-
ematical algorithms to choose the designs, which are represented by parametric
models that are simulated. This decreases time needed for each development
cycle, leading to less expense and time for development, more exploration of the
design domain and, therefore, better designs.

The use of design optimization requires the engineering design problem to
be formulated as a mathematical optimization problem. This step is problem-
dependent and includes choice of design variables as well as formulation of objec-
tive and constraint functions. The standard mathematical optimization problem
minimizes a value so that other requirements formulated as constraints are not
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Fig. 1. Engineering development and design approaches

violated,

min
x∈X

f (x) , (1)

such that g (x) ≤ 0,

h (x) = 0,

X =
[
xL xU

]
,

governed by R (x) = 0,

in which f is the objective function, x is the vector of design variables, X is
the design domain defined by the upper xU and lower bounds xL of the design
variables, g is the vector of inequality constraint functions, h the vector equal-
ity constraint functions and R is the residual of a general governing equilib-
rium equation, which represents the simulation. Engineering simulation possibil-
ities are finite-element analysis, multibody simulation and computational fluid
dynamics, for example. Typical design variables include geometrical, material
and operational parameters. Constraints are requirements on the material, struc-
tural mechanics, dynamics and manufacturing. Objective functions can include
mass, cost, or other performance measures.

Lightweight engineering design is an engineering design paradigm in which by
reducing mass, structural and drive requirements can be decreased and, there-
fore, the structural mass can in turn be further reduced. This virtuous circle of
lightweight design [36] (Fig. 2) is magnified with dynamic systems in which self-
weight is reduced and with it, the resulting inertial forces. Structural design opti-
mization assists engineering design to enter this virtuous circle, pushing designs
to their theoretical optimum.

Despite the lineage of design optimization reaching back to [29] and multi-
body optimization to [2,15], there remain a number of open research questions.
These include efficient sensitivity analysis, inclusion of highly nonlinear systems,
mixed topology, shape and size problems, multidisciplinary and multiphysical
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Fig. 2. Virtuous circle of lightweight engineering design

problems as well as ever-growing model size and number of design variables.
Optimization of flexible multibody dynamics is reviewed in [13].

Especially analytical sensitivities can play a role to reduce computation effort,
thus allowing for larger problems. Design sensitivity analysis with structural and
mechanical simulation is outlined in [16,19,23,34].

The analytical sensitivities for nonlinear, time dependent problems is a non-
trivial task and the three-block solver scheme put forth aims to ease this process
by reusing each block for both primary and sensitivity analysis. The three-block
scheme for primal analysis is introduced for the general case of differential–
algebraic equations in Sect. 2. Building upon this, design sensitivity analysis
using direct differentiation of the three-block scheme is shown in Sect. 3. This is
followed in Sect. 4 by the application of this approach to the design optimization
of a morphing wing, culminating in conclusion (Sect. 5).

2 Modeling Mechanical Systems with Differential–
Algebraic Equations

Mechanical analysis includes multibody dynamics, nonlinear dynamics, crash
explicit dynamics, linear dynamics, nonlinear (quasi-) statics, eigenvalue vibra-
tion, eigenvalue buckling and linear (quasi-) statics. These mechanical analyses
can be generally categorized by being carried out with three elementary build-
ing blocks [36]: governing equations, nonlinear solver and time integration (see
Fig. 3). The three blocks can therefore be reused for a range of analysis types.
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This reduces the complexity and the effort in the nontrival task of deriving and
implementing the analytical design sensitivities (Sect. 3). Although automatic
differentiation methods exist [22], the manual differentiation is preferred by the
author. Coming at the cost of high computational effort and being prone to
human error, manual differentiation provides transparency and plausibility owing
to its physics-based nature, in addition to being highly reusable and efficient.
This general framework for governing equations is applied to flexible multibody
dynamics.

Flexible multibody dynamics can be modeled with a system of differential–
algebraic equations, comprised of a set of differential equations for the equation
of motion and a set of algebraic equations for the kinematic constraints. The
internal forces are calculated via the material response in the form of the con-
stitutive equation via stresses and strains. In its simplest form the material law
is isotropic, linear elastic.

Nonlinearity of the system model may come in form of large rotations, mate-
rial, geometric or contact. This is accounted for using iterative methods such as
Netwon–Raphson or modified Newton.

For time-dependent numerical solutions, a time integration routine is needed.
For an acceleration-based solving routine, the system acceleration is solved for
at each time step and integrated to velocity and positions. The generalized-
α method [5] is a generalization of several common integration methods and
utilizes a predictor–corrector scheme [26].

The solving of the governing equations is referred to as primal analysis to
distinguish it from sensitivity analysis. This three-module solving approach for
the primal analysis can then be assembled for flexible multibody dynamics as
the following (color scheme used throughout):

Fig. 3. Embedding of three-block solver scheme
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Governing equations:

force equilibrium: m q̈ + F int + JΦ λ = F ext (2)

kinematic constraints: Φ = 0 (3)
material, e.g. linear elasticity: σi = E

i
εi, ∀i integrations points (4)

Nonlinear solver:

e.g. Newton–Raphson: J̈R Δq̈ + R = 0 (5)

Time integration

e.g. Generalized-α: q̈ → q̇ → q (6)

where q is position and its time derivatives velocities and accelerations denoted
by an overdot, m is the mass matrix, F int is the internal force vector, F ext is
external force vector, Φ is the vector of kinematic constraints, JΦ is its Jacobian
matrix (or positional derivatives) of the kinematic constraints.

This formulation allows the development of a single approach for kine-
matically constrained and unconstrained, linear and nonlinear models as well
as dynamics, quasi-statics and statics of various mechanical analysis types
(Table 1). This is essential for structural design optimization including the para-
metric nature of models and sensitivity analysis, this is especially the case in
direct differentiation. This framework is implemented in the in-house mechani-
cal solver SiMuLi (Simulation and sensitivity analysis for structural dynamics
and Multibody dynamics in Lightweight engineering design, Italian: you simu-
late), which has been developed in [10–12,14,36].

Table 1. Application of three-block solver scheme to diverse mechanical simulations
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3 Design Sensitivity Analysis as Motor of Structural
Design Optimization

Design sensitivity analysis is the centerpiece of gradient-based structural design
optimization. The calculation results in the gradients of the system responses
with respect to the vector design variables x and is denoted by the nabla symbol
∇,

∇ (·) =
d (·)
dx

. (7)

Several options exist for the calculation of design sensitivities, including numeri-
cal, analytical, complex step and automatic differentiation [18,23]. The architec-
tures of the primary analysis, numerical sensitivity analysis, direct differentiation
and the adjoint variable method are illustrated in Fig. 4b. For reasons of preci-
sion and computational effort, the emphasis is on analytical sensitivity analysis
(i.e. direct differentiation and adjoint variable method), using numerical finite
differencing for comparison. It should be noted that numerical sensitivity anal-
ysis, which is typically carried out via forward differencing, has the advantage
of using the simulation as a black box, while direct differentiation and adjoint
variable methods need access to the solver. The adjoint variable method needs
a specially derived solver, see e.g. [3,4,7,17,24,25].

Adjoint variable method shows higher efficiency when the number of design
variables is larger than the sensitivity responses needed, i.e. the number of opti-
mization objectives and constraints, nx > nf+ng. Its use requires the implemen-
tation of an adjoint solver and, specifically in dynamics, backward time inte-
gration after the forward time integration of the primal analysis. On the other
hand, direct differentiation utilizes the same equation structure and therefore
solving routines for both primal and sensitivity analyses. The three-block solver
scheme illustrates this procedure and breaks the solving routine into modules
for the direct differentiation.

A semi-analytical approach is often preferred, which further reduces the
implementation effort by numerical differentiating the components (partial
derivatives) of the analytically total differentiated governing equations. The
decoupling of the finite-element analysis from the multibody dynamic simu-
lation is achieved via so-called multibody formulation specific invariants and
their sensitivities [14,27,30]. Special attention must be paid to the sensitivity of
time integration with flexible multibody dynamics, which is carried out in the
example below using the generalized-α method [5,37] with a predictor–corrector
scheme [26,35].

The direct differentiation of the three-block solving scheme of the primal
analysis for flexible multibody dynamics (2)–(6) is the following:
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Fig. 4. Comparison of sensitivity analysis approaches with a basis generalized nonlinear
dynamic simulation

Governing equations sensitivities:

force equilibrium: m∇q̈ + ∇F
int

+ JΦ ∇λ = F
pseudo

(8)

where F
pseudo

= f
(
∇F

ext
,∇m,∇JΦ

)
(9)

kinematic constraints: ∇Φ = 0 (10)

material, e.g. linear elasticity: ∇σ
i
= ∇E

i
εi + E

i
∇ε

i
, ∀i integration points

(11)

Nonlinear solver sensitivities:

e.g. Newton–Raphson: ∇J̈R Δ∇q̈ + ∇R = 0 (12)

→J̈R Δ∇q̈ + ∇R = 0 (13)

Time integration sensitivities:

e.g. Generalized-α: ∇q̈ → ∇q̇ → ∇q (14)
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It can be clearly seen that this mirrors that of the primary analysis and,
therefore, the same routines can be used after extending these to solve for matrix-
valued parameters, e.g. matrices ∇q of the sensitivity analysis in addition to
vectors q of the primary analysis.

4 Morphing Wing Demonstrator

A morphing wing demonstrator for design optimization with flexible multibody
simulation is developed in [9,10] based on the concept developed in [1,31–33]
(Fig. 5). The previously developed model for sensitivity analysis is modified and
extended here for the design formulation and used as basis for design optimiza-
tion.

The forward section of the wing morphs from the undeformed, high-speed
configuration to the deformed, low-speed configuration driven by a mechanism. A
flexible multibody model is implemented with two-dimensional Euler–Bernoulli
beam elements using the open-source software EasyBeam [8] in concert with
rigid bodies for the driving mechanism. The rigid mechanism is loaded with a
moment being applied to point A using a S-shaped load curve from 0 to 4000 N ·
mm [10]. The upper right node is fixed, while the lower right node is constrained
vertically and in rotation. The rigid mechanism is connected with the flexible
wing skin with revolute joints (hinges).

The lightweight engineering design formulation is applied in which the skin
thickness of the wing h as well as the applied moment MA and its position
(xA, yA) are to be designed. The minimum mass design is to be found in which
the wing is deformed to meet the high-speed configuration within a geometrical
deviation limit and able to withstand repeated mechanical loading. Therefore,
the limits are set for a global deviation measure, root mean square deviation
at εrms = 1.5mm, maximum local deviation of εlocal = 1.5mm and the lim-
iting the stress at σallow = 75MPa. The maximum values of both local devia-
tion and stress is ascertained by modified Kreisselmeier–Steinhauser functional
aggregation [20,21] to avoid the noncontinuous max operator. The mathematical
formulation of the optimization problem is

min
x∈X

f (x) , (15)

where f (x) = m (x) ,

and x =
[
h M xA yA

]T
,

such that gσ (x) = σmax (x) − σallow,

gε1 (x) = εrms (x) − εrms,allow,

gε2 (x) = εmax (x) − εlocal,allow,

X =
[
xL xU

]
,

governed by DAE (2) − (4).

The second-order algorithm NLPQLP [6,28] is applied to this problem. As such
the analytical gradients are provided and the design sensitivity analysis is carried
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Fig. 5. Morphing wing demonstration example.

out using the direct differentiation of the three-block solving scheme introduced
above. Benchmarked at the initial value as the computational time may vary
within the design space, a time overview is given in Table 2. In addition to more
precise sensitivities, analytical sensitivities overs a computation speedup with
respect to numerical sensitivity analysis by forward finite differences.

The problem converges in 42 iterations, requiring a total of 73 primary anal-
yses and 42 sensitivity analyses in 3 h and 13 min on a quad-core laptop with an
eleventh generation Intel Core i5 at 2.40 GHz. After starting in stress-violated

https://www.asg.ed.tum.de/lls/forschung/milan/
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Table 2. Overview of computational effort for sensitivity analysis

analysis time [s] speedup [×]

primary 126 –

primary and numerical sensitivity 630 –

primary with analytical sensitivity 160 3.9

Fig. 6. Convergence plots for design optimization of morphing wing demonstration
example.

infeasible space (approx. 80% violated), the algorithm reduces the skin thickness
and applied moment resulting in deviation-violated design (approx. 10×). The
algorithm then reduces the deviation violations to zero (see Fig. 6), resulting in
the found optimum design in which all constraints are fulfilled.
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Table 3. The design variables of the morphing wing demonstration example with
initial values, upper and lower bounds as well as optimal values in MPa unit system.

design variable symbol x0 xL xU x∗ unit

skin thickness h 1.5 1.0 5.0 1.0 mm

applied moment MA 4200.0 1000.0 10 000.0 1601.95 N·mm

horizontal application point xA 0.0 -50.0 50.0 17.2432 mm

vertical application point yA 0.0 -25.0 25.0 -0.139269 mm

With the assumption that the nearly 4× speedup with analytical sensitivities
holds throughout the design domain, one may postulate that this optimization
with numerical sensitivities would take over 12 h. The reduced precision of the
numerical sensitivities could further prolongate or impede the convergence. Ana-
lytical sensitivities can therefore be seen as an enabler of the design optimization
of this example and further examples of this class of design problem.

5 Conclusion

The three-block solver scheme is introduced above as a general methodology for
the sensitivity analysis of mechanical analysis via direct differentiation. Sensi-
tivity analysis via direct differentiation exhibits the same equation pattern for
all steps allowing the reuse of implemented routines for each block. Gradient-
based design optimization with analytical sensitivities exploits this to reduce
computational effort and, therefore, allow for larger problem sizes. On the con-
trary, numerical sensitivity analysis via forward finite differences requires nx + 1
evaluations and the choice of perturbation can prove challenging or even impos-
sible to achieve proper precision. The morphing wing demonstration example
is a relatively small problem, though it already shows a drastic reduction in
computational effort, which will be further emphasized with growing problem
size.

Acknowledgements. This developments of this work is supported by the project
CRC 2017 TN2091 doloMULTI Design of Lightweight Optimized structures and
systems under MULTIdisciplinary considerations through integration of MULTIbody
dynamics in a MULTIphysics framework funded by the Free University of Bozen-
Bolzano.

References

1. Achleitner, J., Rohde-Brandenburger, K., Rogalla von Bieberstein, P., Sturm, F.,
Hornung, M.: Aerodynamic design of a morphing wing sailplane. In: AIAA Aviation
2019 Forum. American Institute of Aeronautics and Astronautics, Reston, Virginia
(2019). https://doi.org/10.2514/6.2019-2816

2. Bestle, D., Eberhard, P.: Analyzing and optimizing multibody systems. Mech.
Struct. Mach. 20(1), 67–92 (1992). https://doi.org/10.1080/08905459208905161

https://doi.org/10.2514/6.2019-2816
https://doi.org/10.1080/08905459208905161


Optimal Lightweight Design via a Three-Block Solver Scheme 27

3. Boopathy, K., Kennedy, G.J.: Parallel finite element framework for rotorcraft multi-
body dynamics and discrete adjoint sensitivities. AIAA J. 57, 1–14 (2019). https://
doi.org/10.2514/1.j056585

4. Callejo, A., Sonneville, V., Bauchau, O.: Discrete adjoint method for the sensitivity
analysis of flexible multibody systems. J. Comput. Nonlinear Dyn. (2018). https://
doi.org/10.1115/1.4041237

5. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics
with improved numerical dissipation: the generalized-α method. J. Appl. Mech.
60(2), 371–375 (1993). https://doi.org/10.1115/1.2900803

6. Dai, Y.H., Schittkowski, K.: A sequential quadratic programming algorithm with
non-monotone line search. Pac. J. Optim. 4, 335–351 (2008)

7. Ebrahimi, M., Butscher, A., Cheong, H., Iorio, F.: Design optimization of dynamic
flexible multibody systems using the discrete adjoint variable method. Comput.
Struct. 213, 82–99 (2019). https://doi.org/10.1016/j.compstruc.2018.12.007

8. Gufler, V., Wehrle, E.: EasyBeam: easy application for structural analysis with
beams (2021). https://doi.org/10.5281/ZENODO.5674482

9. Gufler, V., Wehrle, E., Achleitner, J., Vidoni, R.: Flexible multibody dynam-
ics and sensitivity analysis in the design of a morphing leading edge for high-
performance sailplanes. In: ECCOMAS Multibody Dynamics Conference 2021.
Budapest University of Technology and Economics (2021). https://doi.org/10.
3311/eccomasmbd2021-203

10. Gufler, V., Wehrle, E., Achleitner, J., Vidoni, R.: A semi-analytical approach to
sensitivity analysis with flexible multibody dynamics of a morphing forward wing
section. Multibody Syst. Dyn. (2023). https://doi.org/10.1007/s11044-023-09886-
9

11. Gufler, V., Wehrle, E., Vidoni, R.: Multiphysical design optimization of multibody
systems: application to a Tyrolean weir cleaning mechanism. In: Niola, V., Gas-
paretto, A. (eds.) IFToMM ITALY 2020. MMS, vol. 91, pp. 459–467. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-55807-9 52

12. Gufler, V., Wehrle, E., Vidoni, R.: Analytical sensitivity analysis of flexible multi-
body dynamics with index-1 differential-algebraic equations and Baumgarte stabi-
lization. Int. J. Mech. Control 24(1), 3–14 (2023)

13. Gufler, V., Wehrle, E., Zwölfer, A.: A review of flexible multibody dynamics for
gradient-based design optimization. Multibody Syst. Dyn. 53(4), 379–409 (2021).
https://doi.org/10.1007/s11044-021-09802-z

14. Gufler, V., Zwölfer, A., Wehrle, E.: Analytical derivatives of flexible multibody
dynamics with the floating frame of reference formulation. Multibody Syst. Dyn.
(2022). https://doi.org/10.1007/s11044-022-09858-5

15. Haug, E.J., Arora, J.S.: Applied Optimal Design: Mechanical and Structural Sys-
tems. Wiley, New York (1979)

16. Held, A.: On design sensitivities in the structural analysis and optimization of
flexible multibody systems. Multibody Syst. Dyn. 54, 53–74 (2022). https://doi.
org/10.15480/882.3908
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Abstract. This paper deals with a level set-based topology optimization of flex-
ible bodies within flexible multibody systems. The required gradient is provided
by an adjoint sensitivity analysis. In this work, a modified Solid Isotropic Mate-
rial with Penalization (SIMP) method is applied, which helps to avoid numeri-
cal issues connected to spurious modes in dynamic problems. Nevertheless, the
included parametrization factors lead to a weighted gradient. To test the valid-
ity of corresponding optimization results, differently weighted gradients are then
used within the topology optimization of a flexible piston rod in a slider-crank
mechanism. The obtained results show, among others, the range of appropriate
weightings in the studied example.

1 Introduction

In the context of virtual prototyping, the method of multibody systems is often used in
the modeling of dynamic systems undergoing large nonlinear working motions, such
as in machine dynamics, robotics, or vehicle dynamics. In modern lightweight designs
or fast-moving machines, the elastic deformation of the bodies may not be neglected
anymore and requires the use of the method of flexible multibody systems, see [14,20].
As long as these elastic deformations remain small, the floating frame of reference
method is, in many cases, the most efficient approach, see [11,13].

In the design process of lightweight machines and structures, topology optimiza-
tion is becoming increasingly popular. However, especially in the design of members
of flexible multibody systems, topology optimization is a challenging task. This results
from the nonlinearity of the governing equations of motion and the dependency of the
objective function on time, state, and design variables. Hereby most challenging in the
optimization is the computation of the gradient of the parametrized flexible multibody
system; see also [6,17]. In this work, a time-continuous adjoint sensitivity analysis is
used, [4,7]. The basis of the topology optimization used in this work is a level set
method taken from [3,21]. Hereby, the underlying finite element (FE) model of the flex-
ible body is parametrized by a modified Solid Isotropic Material (SIMP) as suggested
in [5]. Thus, numerical difficulties linked to spurious modes can be avoided.

The material parametrization factors lead to a weighted gradient. As the main con-
tribution of this work, different factors are tested to calculate the weighted gradient
within a level set-based topology optimization of a flexible piston rod in a slider-crank
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mechanism. A comparison of the optimization results reveals the appropriate range of
weighting factors for the studied mechanism.

The remainder of this work is organized as follows: In Sect. 2, the floating frame
of reference method is briefly described. The considered objective function and time-
continuous adjoint sensitivity analysis for an exact gradient calculation are addressed
in Sect. 3. The application example is given in Sect. 4. Moreover, in Sect. 5, the chosen
parametrization law is introduced. In Sect. 6, the corresponding optimization results are
discussed. Lastly, Sect. 7 concludes with a summary of this work.

2 Floating Frame of Reference Formulation

The floating frame of reference formulation is used to model flexible bodies. In this
approach, the reference frame of the flexible body is performing a large motion, while
the small elastic deformation is described within this reference frame. Then the elastic
deformation uuuP of a point P of the body is approximated by

uuuP ≈ ΦΦΦPqqqe. (1)

In Eq. (1), matrix ΦΦΦP contains global shape functions and qqqe is the vector of elastic
coordinates. The global shape functions are here obtained by modal reduction of the
underlying FE-model of the flexible body, see [12]. It is noted that the underlying FE
model of the flexible body is also used within the topology optimization process.

3 Objective Function and Gradient Calculation

In the current topology optimization, the global strain energy of the considered flexi-
ble body is minimized. To formulate a scalar ψ from the time-dependent global strain
energy, which is often referred to as compliance, it is firstly integrated over the simula-
tion period as

ψ =
t1∫

t0

qqq�
e KKKe qqqe dt. (2)

from the initial time t0 to the final time t1. In Eq. (2), KKKe is the reduced stiffness matrix
of the underlying FE-model of the flexible body.

For an efficient topology optimization, the gradient of the objective function ψ

∇ψ :=
dψ
dxxx

, (3)

containing the derivatives of the objective function ψ with respect to the design vari-
ables xxx ∈ R

n is needed. In the considered SIMP approach, the design variables are
density-like parameters, which correspond to the material filling of n finite elements.

The applied adjoint sensitivity analysis for the gradient calculation consists of two
steps: first, a set of adjoint differential equations have to be derived from the system
equations of the flexible multibody model and solved for so-called adjoint variables.
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Then, the gradient can be computed from the adjoint variables and the derivatives of the
system equations with respect to the design variables. For a detailed description of the
adjoint method in rigid and flexible multibody dynamics, interested readers are referred
to [4,7].

It should be noted that in the established level set-based topology optimization,
which follows the procedure described in [3,21], the negative gradient

∇̃ψ := −∇ψ (4)

is generally employed.

4 Application Example

The planar flexible slider-crank mechanism shown in Fig. 1 is used as an application
example. Similar testing models are applied in [7–9,16,18]. Here, the crank is assumed
to be rigid and has length 100mm. The piston rod is flexible and has length 400mm,
width 40mm, and thickness 10mm. Its material properties are given by density ρ0 =
8750kg/m3, Young’s modulus E0 = 50GPa and Poisson’s ratio ν = 0.3.

In the underlying FE-model, the piston rod is discretized by 200×20 planar bilinear
elements. The interface elements of the flexible rod are assumed to be rigid, and, thus,
the design domain consists of 198 × 20 elements. The slider-crank mechanism moves
in the horizontal plane.

For the optimization, a transient analysis within a time period of T = 2s is per-
formed. In this time span, the crank angle is prescribed by a rheonomic constraint,
whose definition can be found in [2] and which is shown in Fig. 2.

Fig. 1. Flexible slider-crank mechanism Fig. 2. Crank motion

5 Modified SIMP Method

In topology optimization, the design domain D is typically discretized by a finite ele-
ment model. Thereby, the parametrization of the material properties of the finite ele-
ments is a crucial task, since it has a significant influence on the model order reduction,
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and thus, on the calculated gradient and corresponding optimization results. Different
parametrization laws have been developed and used for structural and topology opti-
mization of eigenvalue, vibration and transient problems, see for instance [1,5,8,10].
The applied parametrization law in the current work is described in the following.

In SIMP methods, the density ρi and Young’s modulus Ei of a design element i
are penalized by the corresponding design variable xi and an artificial power law. The
influence of different SIMP laws on the eigenmodes of a test structure is studied in [8].
The analyses unveil that the modified SIMP law by Du and Olhoff [5], defined as

ρi =

{
xiρ0 for 0.1 ≤ xi ≤ 1,

cxqi ρ0 for xmin ≤ xi < 0.1,
(5a)

Ei = xi
pE0, (5b)

is suited to avoid the occurrence of spurious modes in the model order reduction, see
[10] for more details about spurious modes in eigenfrequency problems.

In this formulation, ρ0 is the density and E0 the Young’s modulus of the chosen
reference material. To avoid ill-conditioned finite element system matrices, a lower limit
xmin = 0.01 is introduced for all design variables xi. In this method, the density of
elements with a design variable xi between 0.1 and 1 is penalized linearly, whereas
the density of poorly filled elements with a material amount between xmin=0.01 and
0.1 is penalized by a factor c and the power-law xqi . The power q is typically set to
6, and the factor c is selected such that the density interpolation around xi = 0.1 is
continuous, here c=105 is chosen. Besides, the Young’s modulus Ei is penalized by
the power-law xpi , where the power p is typically set to 3, see also [5] for the set of
chosen parameters. Here, the exponentiated penalization of the Young’s modulus helps
to develop thin connections and struts with a higher stability. Moreover, choosing q=6
and p=3, in the poorly filled regions with xi = xmin, the penalization of the density ρi

compared to the Young’s modulus Ei is clearly stronger. In this way, the spurious modes
can be avoided.

Based on [8], the SIMP approach (5) is a successful parametrization method for
dynamic problems, which is preferred in this work. Nevertheless, other parametrization
laws, such asC1 continuous modified SIMP law from [5] and the rational approximation
of material properties (RAMP) proposed in [15] are also available, and can be utilized
and tested within the optimization process as well.

In the utilized adjoint sensitivity analysis, the partial derivatives of the density ρi

and Young’s modulus Ei with respect to the design variables are included. Based on the
selected SIMP parametrization (5), these partial derivatives can be formulated as

∂ρi

∂xi
=

{
ρ0 for 0.1 ≤ xi ≤ 1,

cqx(q−1)
i ρ0 for xmin ≤ xi < 0.1,

(6a)

∂Ei

∂xi
= pxi

(p−1)E0. (6b)

It is worth mentioning that using the SIMP approach (5) with the partial derivatives from
Eq. (6), the obtained gradient includes some irregularities, which are due to the insignif-
icantly small value of ∂ρi

∂xi
in the poorly filled areas with xi = xmin and alsoC0 continuity
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of the interpolation of ρi at xi = 0.1. To circumvent these issues, it is decided to use
the adjoint sensitivity analysis only for calculation of the gradient over elements with a
design variable xi ≥ 0.1. For low density areas with xi < 0.1, radial basis functions such
as multiquadratic (MQ) splines can be used to approximate the gradient value, see [19]
for a description and an application of radial basis functions in level set-based optimiza-
tions. Since in this strategy, the gradient of poorly filled elements with xmin ≤ xi < 0.1
are not obtained by the adjoint sensitivity analysis, numerical artifacts are less likely to
occur. Besides a higher efficiency can be expected than in the case, where the gradient
of all elements should be obtained.

The SIMP law (5) and similar ones are originally developed to continuously mod-
ify the material properties within the design domain. Nevertheless, the exponents in
the power laws change also the ratio of the partial derivatives ∂ρi

∂xi
and ∂Ei

∂xi
. In other

words, the exponents can also be seen as weighting factors, which, among others, set
the influence of structural inertia and elasticity on the gradient obtained by the adjoint
sensitivity analysis. However, other weighting factors can also be used to set the influ-
ences independently of the chosen exponents. For instance, using the SIMP approach
(5) and introducing the parameters sρ and sE, the weighted partial derivatives ∂ρi

∂xi
and

∂Ei
∂xi

for elements with 0.1 ≤ xi ≤ 1 can be written as

∂ρi

∂xi
= sρ ρ0, (7a)

∂Ei

∂xi
= sExi

(p−1)E0. (7b)

Setting sρ =1 and sE=3, the partial derivatives for elements with 0.1≤xi ≤ 1 are
weighted similar to Eq. (6). Nevertheless, to show the influence of these weighting
factors, in the following section also further combinations are tested within the opti-
mization process of the application example.

6 Optimization Results

It is obvious that unequal values for sρ and sE change the influence of structural inertia
and stiffness in the adjoint sensitivity analysis. To indicate the influence of the intro-
duced parameters on the optimization results, different combinations {sρ =1,sE=1}
(example A), {sρ =1,sE=2} (example B), {sρ =1,sE=3} (example C), {sρ =1,sE=4}
(example D), as well as {sρ =0,sE=1} (example E) are used within the level set-based
topology optimization of the flexible piston rod. Since in the studied example the inertial
loads are dominant, see also [7,9], gradients obtained with sρ > sE are not appropriate
for the studied optimization problem and lead to the loss of structural cohesion in the
optimization process. Hence, such combinations are not considered here.

In all optimization examples, a completely filled initial design is chosen. The vol-
ume limit vmax is set to 0.4, and the design is developed within a chosen number nI=100
of optimization iterations. It should be noticed that the completely filled initial design
considered for different examples in this work is the most general case without any
preconditions. Though, there are no limitations on the choice of the initial design with
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a volume fraction v0<1. Moreover, the number nI of optimization iterations, and the
chosen volume limit vmax can be freely changed if desired.

The problem definitions and optimization results of the mentioned examples are
summarized in Table 1. The corresponding final designs are shown in Fig. 3. These
designs are zero-level contour plots of the corresponding final level set functions, which
are created by the function contourf in MATLAB. Furthermore, the optimization his-
tories of these five examples are shown in Fig. 4.

Table 1. Problem definitions and optimization results of demonstration examples in Sect. 6

Example A B C D E

Width/length ratio

(FE-discretization)

1/10

(20×200)

1/10

(20×200)

1/10

(20×200)

1/10

(20×200)

1/10

(20×200)

Volume limit vmax 0.4 0.4 0.4 0.4 0.4

Successful iterations nI 100 100 100 100 100

Final compliance ψend [Nmm] 0.062 0.048 0.048 0.051 0.055

Final volume fraction vend 0.398 0.399 0.400 0.399 0.400

Selected sρ 1 1 1 1 0

Selected sE 1 2 3 4 1

Among the presented results, the final design of example A, see Fig. 3a, has the
lowest complexity and the highest final compliance, namely ψend=0.062Nmm. This
is due to the fact that the loading on the studied flexible piston rod is dominated by its
inertia, see also [7,9]. Therefore, the equal parameters {sρ =1,sE=1} lead to a high

influence of partial derivatives ∂ρi
∂xi

on the gradient, and consequently imperfect opti-
mization results.

To decrease the influence of structural inertia on the gradient, the parameter sE is
increased to 2 in example B and to 3 in example C. In this way, meaningful optimization
results are reached, see Fig. 3b and 3c. Compared to example A, the final designs of
examples B and C are of higher complexity, which is due to the higher influence of
structural elasticity on the negative gradient ∇̃ψ . The topologies of these two designs
are though not similar. It can be argued that a change of sρ and sE can also change the
topology of the optimization results. The examples B and C provide the lowest final
compliance among the five considered examples, namely ψend=0.048Nmm. Hence,
the corresponding combinations {sρ =1,sE=2} and {sρ =1,sE=3} are for the selected
application example more suitable than the other mentioned cases.

Keeping sρ =1 and increasing sE stepwise from 2 to 4, it can be seen that in the
corresponding final designs, the material amount is shifted from the left end to the
middle area of the structure, which is connected to a slight increase of the final compli-
ance from ψend=0.048Nmm in examples B and C to ψend=0.051Nmm in example D.
Moreover, setting sρ =0 and sE=1, example E describes the case, where the influence

of structural inertia in the negative gradient ∇̃ψ is neglected, and only the influence
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Fig. 3. Final designs of demonstration examples in Sect. 6

Fig. 4. Optimization histories of demonstration examples in Sect. 6

of structural elasticity is considered. Compared to the examples B, C and D, the final
design of example E has a higher compliance, ψend=0.055Nmm. This is mainly due
to the shift of material amount from the left to the middle area rather than the lack
of symmetry on the right end. The conclusion is that the influence of both the struc-
tural inertia and elasticity are in the adjoint sensitivity analysis significant. Though an
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appropriate weighting of them should be chosen, which depends, among others, on the
studied dynamic problem.

For the five mentioned examples, the compliance ψ and volume fraction v over the
iteration number k are shown in Fig. 4. Since the deformation of the flexible piston rod
is mainly due to its own inertia, a decrease of the volume fraction v from 1 to 0.4 reduces
in all examples the compliance ψ . Though the final compliances ψend are as mentioned
before not similar.

The compliance histories in Fig. 4a include some peaks. These peaks arise, for
instance, when the material removal from one iteration to the next is large, some struts
are slightly interrupted or become too thin. Despite these minor irregularities in the
compliance histories, the optimization process remains stable and converges for dif-
ferent examples to mentioned final compliances ψend. Thereby, only the compliance
history in example A includes some small but frequent jags in the convergence area,
which are due to the oscillation of material amount around the very thin longitudinal
edges in the middle area. Such oscillations shall be handled, for instance, by amending
the process parameters or choosing a finer FE-discretization.

Moreover, in all examples a convergence of the volume fraction v to the selected
volume limit vmax can be observed. Nevertheless, the convergence speeds in different
examples are not similar. This can, among others, be traced back to the different neg-
ative gradients ∇̃ψ utilized in the optimization processes. If required, it is possible to
change the convergence behavior by varying the process parameters.

7 Summary and Conclusion

In the current work, a level set-based topology optimization of flexible bodies in
multibody systems modeled with floating frame of reference formulation is addressed.
Thereby, a time-continuous adjoint sensitivity analysis is utilized for an exact gradient
calculation, and the optimization is performed using a modified level set method. The
presented approach is studied for the compliance minimization of a flexible piston rod
within a slider-crank mechanism.

Using a modified SIMP parametrization method, the so-called spurious modes are
avoided. Besides, the gradient in low density areas is approximated by radial basis func-
tions to avoid numerical artifacts and inaccuracies in these regions and to reduce the
computational effort of the adjoint sensitivity analysis. The SIMP parameters lead to
weighted partial derivatives of the density and stiffness with respect to the design vari-
ables, which are included in the gradient calculation. To show the influence of weighted
gradients on the optimization results, different weighting factors are tested within the
gradient calculation. The corresponding optimization results for the considered applica-
tion example reveal the fact that weighting the gradient is not a trivial task. Especially,
in the studied dynamic example with a dominant inertial loading, the weighted gradients
are useful to obtain more suited optimization results.
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Abstract. This paper applies the analytical differentiation of the equations of
motion of flexible multibody systems modeled with the floating frame of refer-
ence formulation based on invariants. This leads to an efficient sensitivity analysis
with the direct differentiation method and enables efficient design optimization
of flexible multibody systems. The main results are the analytical derivatives of
the equation terms of the floating frame of reference formulation in terms of iner-
tia shape integrals or invariants. The introduced sensitivity analysis is applied
and verified with a slider–crank mechanism modeled with beam elements. After
numerical studies to assess the speedup, design optimization is carried out using
the lightweight design formulation.

1 Introduction

Design optimization is a valuable tool for supporting engineers to achieve the best possi-
ble designs. Despite earlier publications in the field of design optimization of multibody
systems [2,3,8,9,17] and more contemporaneously in [4,7,18,29], the optimization
with flexible multibody dynamics remains a relevant topic of research.

The lightweight engineering design formulation is chosen to enable the Virtual
Circle of Lightweight Engineering Design [27] in which mass is reduced, leading to
saving in loads, drives as well as energy and cost, which in turn allows for further
reduction in mass. To utilize lightweight engineering design with mechanical systems,
gradient-based design optimization is used in concert with flexible multibody dynam-
ics. Gradient-based optimization algorithms and analytical design sensitivities enable
efficient optimization with flexible multibody dynamics and is reviewed in [15].

In this paper, analytical derivatives of the floating frame of reference formulation
(FFRF) are used for both Jacobians as well as design sensitivities, which results in
reduced computational effort as well as increased accuracy of the computed sensitivi-
ties. Faster computational times allow for larger models and higher number of design
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variables. The increased accuracy typically leads to faster convergence of gradient-
based optimization algorithms.

The methodology introduced below decouples the multibody simulation from the
finite-element model for both primal analysis and sensitivity analysis. This is accom-
plished via use of the inertia shape integrals, referred to as invariants, and their sensi-
tivities as introduced in [16]. It should be noted that this method will be shown with
Euler–Bernoulli beams but the method is general in regard to finite-element type.

2 Flexible Multibody Dynamics Governing Equations
with Invariants

The governing equations for flexible multibody dynamics is given by differential–
algebraic equations and in this work expressed in index-1 form by

mq̈+dq̇+kq+JΦTλ = Qe +Qv, (1)

JΦq̈ = Qc, (2)

with the generalized positions q, velocities q̇ and accelerations q̈, the Lagrange multi-
pliers λ, the mass matrix m, the damping matrix d, the stiffness matrix k, the Jacobian
matrix of constraints JΦ, the generalized external forces Qe, the quadratic velocity
forces Qv and the right hand side of acceleration constraints Qc. The system matrices
of m, d and k as well as the force vectors Qe, Qv and Qc are generally referred to
as system parameters. Overdots represent the first �̇ and second �̈ time derivatives,
single underlined symbols � represent vectors, double underlined symbols � repre-
sent matrices, triple underlined symbols � represent three-dimensional expressions and

overlined symbols � represent local coordinates. The governing equations (1) and (2)
are assembled in matrix form as

[
m JΦT

JΦ 0

][
q̈

λ

]
=

[
Qe +Qv −dq̇−kq

Qc

]
. (3)

The solving routine for flexible multibody dynamics and its design sensitivities
used here is introduced in [10,11,26–28]. The time integration is carried out with
the generalized-a method [5,13,28]. To avoid drift problems associated with index-1
differential–algebraic equations, Baumgarte stabilization is used [1,13,14]. The solv-
ing is referred to as the primal analysis to differentiate from the sensitivity analysis,
introduced below.

In the present work, flexible multibody dynamics is modeled with FFRF [22,23]
and the generalized coordinates are given by

q =
[
rT βT qT

f

]T
, (4)

where r is the position vector from the inertial frame to the position of the floating
frame, β is the orientation vector of the floating frame which dimension depend on the
used orientation parametrization and q

f
is the vector of flexible deformations, which
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Fig. 1. Floating frame of reference coordinates

is comprised of flexible translations uf and flexible rotations θf for beam elements
(Fig. 1). FFRF is characterized by a nonlinear mass matrix and a constant stiffness
matrix.

The nonlinear FFRF mass matrix is given by

m =

⎡
⎣ mtt mtr mtf

mrr mrf

sym. mff

⎤
⎦ , (5)

and is dependent on invariants (inertia shape integrals), which in turn depend on the
linear-elastic structural finite-element model [23]. The individual terms of the FFRF
mass matrix are [16,19],

mtt = I1e, (6)

mrr = G
T
(
I7+ I8q̂f + q̂T

fI9q̂f

)
G, (7)

mff = I6, (8)

mrf = G
T
(
I4+ q̂T

fI5

)
, (9)

mtf = AI3, (10)

mtr =−A
(
I2+I3qf
�)

G, (11)

where A is the rotation matrix, G is the angular velocity matrix, Ii are the inertia shape
integrals, qf are the flexible coordinates and q̂f is defined by

q̂f =

⎡
⎣qf 0 0

0 qf 0
0 0 qf

⎤
⎦ . (12)

The inertia shape integrals are invariant in time and therefore are referred to as FFRF
invariants, or simply invariants. For the full definition of the invariants, refer to [16,19].
The sensitivity analysis is based on the invariant-based formulation and shown in the
next section.
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3 Invariant-Based Sensitivity Analysis

The direct differentiation of the governing equations (1) and (2) leads to

∇mq̈+m∇q̈+∇dq̇+d∇q̇+∇kq+k∇q+

+∇JΦTλ+JΦT∇λ = ∇Qe +∇Qv, (13)

∇JΦq̈+JΦ∇q̈ = ∇Qc, (14)

where the nabla operator ∇ represents the total derivative w.r.t. the design variables x

∇� =
d�
dx

. (15)

The differentiated governing equations (13) and (14) are assembled into matrix form,

[
m JΦT

JΦ 0

][
∇q̈

∇λ

]
=

[
∇Qe +∇Qv −∇mq̈−∇dq̇−d∇q̇−∇kq−k∇q−∇JΦTλ

∇Qc −∇JΦq̈

]

︸ ︷︷ ︸

pseudo load

. (16)

The structure of the sensitivity analysis equations (16) mirrors that of the primal analy-
sis (3) allowing for the use of the same solving routine.

The system equations are generally dependent on time, position, velocity and the
design variables. The nonlinear FFRF mass matrix additionally has a dependency on
the invariants Ii,

m = F (Ii (x) ,q(x,t)
)

(17)

and, therefore,
∇m = F

(
Ii (x) ,q(x,t) ,∇Ii,∇q(t)

)
. (18)

The design sensitivities can be written via the chain rule for each time step as

∇m =

∂m

∂Ii

dIi

dx
︸ ︷︷ ︸

∂m +Jm∇q, (19)

where the operator ∂ represents the partial derivative w.r.t. the design variables,

∂� =
∂�
∂x

, (20)

and the operator J represents the partial derivative w.r.t. the generalized positions

J� =
∂�
∂q

. (21)
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In previous studies [10–12,28], a semi-analytical approach is introduced in which
the partial derivatives of the system parameters, e.g. ∂m, Jm are approximated via
finite differencing. This is extended by [11,16] in which an invariant-based approach is
followed and applied here. The partial derivatives are directly differentiated and imple-
mented to decrease computational effort and increase precision.

The invariant-based approach is applied analogously for all position- and velocity-
dependent terms [16]. The partial derivative of the mass matrix is given by

∂m =

⎡
⎢⎣

∂mtt ∂mtr ∂mtf

∂mrr ∂mrf

sym. ∂mff

⎤
⎥⎦ , (22)

with its individual terms

∂mtt = ∂I1e, (23)

∂mrr = G
T
(

∂I7+∂I8q̂f +I8∂q̂T
f + q̂T

f∂I9q̂f +2q̂T
fI9∂q̂T

f

)
G, (24)

∂mff = ∂I6, (25)

∂mrf = G
T
(

∂I4+∂q̂T
fI5+ q̂T

f∂I5

)
, (26)

∂mtf = A∂I3, (27)

∂mtr =−A
(
∂I2+∂I3qf +I3∂qf
� )

G, (28)

where the partial derivatives corresponding to the total derivatives of the invariants are
calculated numerically for a semi-analytical approach. This procedure is followed for
the differentiation of all system parameters, leading to a sensitivity method with high
computational efficiency, while maintaining generality w.r.t. the design variables con-
sidered and outlined in detail in [16].

4 Numerical Results

The above described methodology is applied to a flexible slider–crank mechanism
(Fig. 2) as introduced in [13,14]. The mechanism is modeled with Bernoulli–Euler
beams, namely 10 elements for the crank shaft and 15 elements for the rod. A linear-
elastic material model is assumed for a generic steel with a Young’s modulus of

E = 210000MPa, (29)

a Poisson’s ratio of
ν = 0.3, (30)

a density of

ρ = 7.85×10−9 t
mm3 , (31)
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and allowable stress including safety factors of

σallow = 100MPa, (32)

where the consistent MPa system of units is used throughout.
The mechanism is fully extended in the initial position and the crank shaft rotates

with high velocity of 5 000 rpm. The motion of the mechanism continues without exter-
nal loads for a total duration of 0.025 s. The design variables are the height and width
of each beam element (Fig. 4) while the system responses of interest are the stresses
and system mass. First the speedups are shown with the invariant-based derivatives
w.r.t. positions and velocities, i.e. Jacobians, and those w.r.t. design variables, i.e. design
sensitivities. This is followed by a design optimization of the slider–crank mechanism
using the invariant-based sensitivity analysis.

Fig. 2. Schematic of the slider–crank mechanism showing structure and FFRF coordinate system

4.1 Comparison of Numerical and Analytical Differentiation

In order to assess the computational effort advantages of the invariant-based derivatives,
numerical and various levels of analytical derivatives are compared. The five different
derivative methods are

• numerical total design derivatives, numerical Jacobians, i.e. ∇ numerical, J numer-
ical;

• numerical total design derivatives, analytical Jacobians, i.e. ∇ numerical, J analyti-
cal;

• analytical total design derivatives, numerical design partial derivatives and Jaco-
bians, i.e. ∇ analytical, ∂ numerical, J numerical;
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• analytical total design derivatives, semi-analytical design partial derivatives via
invariants and numerical Jacobians, i.e. ∇ analytical, ∂ numerical, J analytical;

• analytical design sensitivities, semi-analytical design partial derivatives via invari-
ants and analytical Jacobians, i.e. ∇ analytical, ∂ semi-analytical, J analytical;

Numerical derivatives are calculated by forward finite differencing.
The analytical methods show significant reduction in computational effort as shown

in Fig. 3. The full analytical method shows a nearly 50× speedup with respect to the
full numerical method. The analytical Jacobians are also of great importance to compu-
tational effort, though more so in the numerical sensitivity analysis in which it needs to
be numerically computed for each of the nx+1 primal analyses.

4.2 Design Optimization

The introduced sensitivity analysis is verified and applied to the design optimization
of a slider–crank mechanism with the lightweight design formulation. The lightweight
engineering design formulation is chosen for which the mass is to be minimized while
maintaining all requirements and constraints. The cross-sectional geometries of the
crank and rod are to be designed, namely via the height h and width w, i.e. design
variables x (see Fig. 4) for a minimum mass m while remaining within upper and lower
bounds (xU and xL, respectively) and having a mechanical stress σ not exceeding the
stress limit σallow. The standard formation of the optimal design problem is as follows:

min
xεχ

{

f(x) |g(x)
!
� 0

}

,

where f(x) = mc +mr,

and x=
[
hc,i wc,i hr,i wr,i

]T ∀ielements,

such that g(x) =

{
σc,max,i
σallow

−1
σr,max,i
σallow

−1
,

and χ =
{

xi ∈ R
nx |xL

i � xi � xU
i

}

∀i = 1, . . . ,nx,

governed by DAE-1 (1–2).

(33)
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Fig. 3. Comparison of approaches for sensitivity analysis, where ∇ stands for the total design
derivatives of the governing equation, ∂ stands for the design partial derivatives with respect to
the design variables and J stands for the Jacobians, i.e. derivatives with respect to the position
and velocity

Fig. 4. Designable cross sections for the crank and rod of the slider–crank mechanism of Fig. 2

To solve this design problem the second-order algorithm NLPQLP [6,21] in the
DesOptPy framework [24,25] via the pyOpt library [20] is used. The above described
direct differentiation of FFRF is then applied.

The optimization converges rapidly starting from the upper bound to the optimal
design (see Fig. 5),

x0 = xU.



48 V. Gufler et al.

Fig. 5. Convergence of optimization for slider–crank with initial design at upper bound

Fig. 6. Visualization of optimal design illustrated with slices of the cross-sectional geometries

The optimum is reached after approximately nine iterations and fulfilling the stop
criteria after thirteen iterations to a final mass of approximately 0.002 t (2 kg). The
appropriate area moment of inertia is found for the beam so that the most efficient use
of material in which the widths are chosen to be at the lower bound and the heights are
properly dosed. The numerical values of the optimal design are found in Table 1 and
illustrated with slices of the cross-sectional geometry in Fig. 6.
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Table 1. Design variable values for starting value, lower and upper bounds and optimal value (all
values given in mm)

crank shaft design variables

x x0 xL xU x∗

wc,i 50 20 50 20.000

hc,1 50 20 50 30.572

hc,2 50 20 50 30.863

hc,3 50 20 50 31.403

hc,4 50 20 50 31.757

hc,5 50 20 50 31.815

hc,6 50 20 50 31.535

hc,7 50 20 50 31.138

hc,8 50 20 50 30.410

hc,9 50 20 50 29.224

hc,10 50 20 50 27.521

rod design variables

x x0 xL xU x∗

wr,i 50 20 50 20.000

hr,1 50 20 50 30.384

hr,2 50 20 50 34.251

hr,3 50 20 50 37.161

hr,4 50 20 50 38.910

hr,5 50 20 50 39.763

hr,6 50 20 50 39.925

hr,7 50 20 50 39.492

hr,8 50 20 50 39.017

hr,9 50 20 50 37.955

hr,10 50 20 50 36.313

hr,11 50 20 50 34.105

hr,12 50 20 50 31.315

hr,13 50 20 50 27.872

hr,14 50 20 50 23.595

hr,15 50 20 50 20.000

5 Conclusion

In this work, an invariant-based formulation for analytical sensitivity analysis enables
efficient design optimization. This framework is applied to a slider–crank mechanism
with lightweight optimization formulation. The speedup in regards to the different sen-
sitivity analysis types is compared showing a significant speedup using this invariant-
based approach.

The outlook of this work includes further development and application towards
large-scale design optimization. This includes increasing the number of elements and
design variables, which includes shape and topology optimization. Although we have
limited the scope here to include Euler–Bernoulli beams, the method is general in nature
and as such further investigation is needed for other element types and formulations.
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Abstract. Semi-analytic adjoint methods can be seen as breakthrough for deter-
ministic topology optimization in structural dynamics since such methods have
reduced the computational costs. Nevertheless, the costs are still very high, so
that further improvements are crucial. In this work, the concept of the continuous
and the discrete adjoint method are applied in structural dynamics. Additionally,
a modified discrete method, which is independent of the time discretization of the
primal problem, is proposed. This approach results in further numerical savings,
while the quality of the gradient does not suffer.

1 Introduction

The latest improvements in 3D-printing processes and today’s need of lightweight
designs have amplified the interest in topology optimization significantly. Topology
optimization has been successfully applied in statics, however, the big breakthrough
in dynamics is yet to come. This is mostly due to the computational costs that occur,
if dynamics are considered. In contrast to statics, the sensitivity analysis of the objec-
tive results in a second differential equation that must be solved. These equations are
derived with either the continuous (CAM) or discrete adjoint method (DAM). The DAM
is based on the same discretization as the solution of the primal problem, so that the
complete solution to the primal problem must be stored or recomputed. Applying this
approach to real-world applications leads to high numerical costs and tremendous stor-
age requirements, which make the optimization of dynamically loaded components very
costly. In this work, the CAM and DAM are compared and an approximation of the dis-
crete adjoint approach is proposed to reduce the storage requirements and the number
of adjoint equations that must be solved.

All approaches are implemented in the topology optimization toolbox TOPTIMUM,
which uses the SIMP approach for parametrization [1], Sigmund’s filter [6] and the
Method of Moving Asymptotes [7] as optimizer.

2 Structural Dynamics

In structural dynamics, the balance of linear momentum for a single body is

div(σσσ)+bbb= ϕ̃ żzz, (1)
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where σσσ is the Cauchy stress tensor, bbb are the volume forces, ϕ̃ is the local density
and żzz is the acceleration. Assuming linear elasticity and using the finite element method
leads to a discrete equation of motion

OOODDDEEE :=MMM(ϕϕϕ)żzz(t)+KKK(ϕϕϕ)yyy(t)− fff ext(yyy, t)
︸ ︷︷ ︸

qqq(yyy,t)

= 000, (2)

where MMM(ϕϕϕ) is the mass matrix and KKK(ϕϕϕ) is the stiffness matrix of the linear elastic
body. Both, the mass and stiffness matrix are obtained from a finite element analysis.
For topology optimization, the elements density ϕ̃e and the elements Young’s Modulus
Ee are manipulated with a modified Solid Isotropic Material with Penalization (SIMP)
approach [1,6]. They are

ϕ̃e = ϕ̃min +ϕe(ϕ̃max − ϕ̃min) and Ee = Emin +ϕ p
e (Emax −Emin), (3)

where the physical density ϕ̃e and Young’s modulus Ee are functions of the normalized
densities ϕϕϕ ∈ [000,111], which are the design variables of the later defined optimization
problem. The penalization factor is usually chosen as p= 3. Further, the time-dependent
nodal displacement field yyy(t), nodal velocity field zzz(t) and the external forces fff ext(yyy, t)
are introduced. Equation (2) is solved for a given time interval that starts at t0 and
terminates at t1.

2.1 Time Integration

The Newmark-β integration scheme [5] is used to solve Eq. (2). The scheme is

yyy(t+Δ t) = yyy(t)+Δ tzzz(t)+
(

1
2

−β
)

Δ t2żzz(t)+βΔ t2żzz(t+Δ t), (4)

zzz(t+Δ t) = zzz(t)+(1− γ)Δ tżzz(t)+ γΔ tżzz(t+Δ t), (5)

with the timestep Δ t. The method ranges from fully explicit schemes (β = γ = 0) to
fully implicit schemes (β = 0.5,γ = 1). Here, the parameters are set to β = 0.25 and
γ = 0.5. which leads to an unconditionally stable implicit method with second-order
accuracy. In order to decrease the computational costs of the integration, the adaptive
stepsize control of Zohdi [8] is implemented.

3 Topology Optimization

In topology optimization, a domain is discretized into finite elements and the densi-
ties of all elements ϕϕϕ are continuously varied between void (ϕe = 0) and full material
(ϕe = 1). By updating the densities, the mechanical behavior of the total domain is
changed, so that the performance of the domain or component can be determined using
a cost function ψ . In this work, an integral cost function is considered. The optimization
problem reads
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⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

min
ϕϕϕ

ψ =
t1
∫

t0
F(t,yyy(t),zzz(t), żzz(t),ϕϕϕ)dt

s.t.

⎧

⎨

⎩

OOODDDEEE = 000 with qqq(yyy0,0) = qqq0 = 000 and
d
dt
(qqq(yyy0,0)) = q̇qq0 = zzz0 = 000,

V (ϕϕϕ)−V0 ≤ 0,000 ≤ ϕϕϕ ≤ 111.
(6)

In doing so, the time-dependent objective ψ is minimized and the considered motion of
the domain is described by the OOODDDEEE of Eq. (2), where the feasible initial state is defined

by qqq(yyy0,0) = 000 and
d
dt
(qqq(yyy0,0)). Additionally, the volume constraintV0 is imposed and

the design variables are constrained.

4 Sensitivity Analysis

A sensitivity analysis is necessary, because a deterministic topology optimization app-
roach is used. A deterministic approach is chosen since solving the primal problem is
very costly and can easily take up to several hours. In consequence, an adjoint method
is used, to compute the gradient of the objective.

4.1 Continuous Adjoint Method

The main idea of the CAM is to start from the continuous optimization problem of
Eq. (6). Next, using variational calculus, adjoint equations are derived such that all
variations besides of the variation with respect to the design variables ϕϕϕ vanish. A
detailed derivation can be found in [2].

The resulting gradient of the objective reads

∇ψ = −
(

∂qqq0

∂ϕϕϕ

)T

ζζζ 0 −
(

∂ q̇qq0

∂ϕϕϕ

)T

ηηη0 +
t1

∫

t0

[

∂F
∂ϕϕϕ

−
(

∂OOODDDEEE
∂ϕϕϕ

)T

(ννν +ξξξ )

]

dt, (7)

where the adjoint vectors ζζζ 0, ηηη0, ννν(t) and ξξξ (t) must be computed. The adjoints must
satisfy

MMMν̇νν = μμμ − ṀMMννν +
(

∂OOODDDEEE
∂ zzz

)T

(ννν +ξξξ )− ∂F
∂ zzz

, (8)

μ̇μμ =
(

∂OOODDDEEE
∂yyy

)T

(ννν +ξξξ )− ∂F
∂yyy

, (9)

MMMξξξ =
∂F
∂ żzz

,

(

∂ q̇qq0

∂ zzz0

)T

ηηη0 =MMM0ννν0,

(

∂qqq0

∂yyy0

)T

ζζζ 0 = μ0 −
(

∂ q̇qq0

∂yyy0

)T

ηηη0, (10)
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where μμμ(t) is an internal adjoint variable. Thus, Eq. (8) and Eq. (9) are first-order differ-
ential equations that must be solved backward in time. In doing so, the time-dependent
adjoints at the termination time t1 are given by

μμμ1 = 000 and MMM1ννν1 = 000. (11)

Here, Eq. (8) and Eq. (9) are solved with the implicit Heun integration scheme and
the adaptive time-stepping is used. Hence, the primal and the continuous adjoint time-
discretization are not the same and linear interpolation might be used to update state
dependent parts during the backward integration.

In summary, the workflow of an optimization iteration consists of two independent
steps. First, the primal problem defined in Eq. (2) is solved forward in time and the
computed states yyy(t), zzz(t) and żzz(t) are stored. Next, the adjoint Eqs. (8) and (9) are
solved backward in time and the gradient of the objective with respect to the design
variables is computed by Eq. (7).

4.2 Discrete Adjoint Method

In contrast to the CAM, the DAM couples solving the equation of motion and the sen-
sitivity analysis. Therefore, the integral cost function is discretized into a fixed number
of integration timesteps n forming the time-discretization for both, the primal problem
and the discrete adjoint equations. The discrete objective reads

ψ ≈ ψD =
n−1

∑
i=0

F(ti,yyy(ti),zzz(ti), żzz(ti),ϕϕϕ)Δ ti, where Δ ti = (ti+1 − ti), (12)

and the Newmark-β integration scheme of the forward integration is included. Hence,
instead of the equation of motion (2), the following set of equations must be satisfied

fff 1 = yyy(ti)− yyy(ti−1)−Δ ti−1zzz(ti−1)− Δ t2i−1

2
[(1−2β )żzz(ti−1)+2β żzz(ti)] = 000, (13)

fff 2 = zzz(ti)− zzz(ti−1)−Δ ti−1[(1− γ)żzz(ti−1)+ γ żzz(ti)] = 000, (14)

fff 3 = (MMMżzz)ti −qqq(ti,yyy(ti),zzz(ti)) = 000. (15)

Thus, the discrete optimization problem reads
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

min
ϕϕϕ

ψD =
n−1
∑
i=0

F(ti,yyy(ti),zzz(ti), żzz(ti),ϕϕϕ)Δ ti

s.t.

{

fff i(xxxi,xxxi−1,Δ ti−1) = 000 with q̃qq0 = [qqq0, q̇qq0, q̈qq0]T = 000,

V (ϕϕϕ)−V0 ≤ 0, 000 ≤ ϕϕϕ ≤ 111,

(16)

where the state vector is xxxi = [yyy(ti),zzz(ti), żzz(ti)]T and the system equations are fff i =
fff (xxxi,xxxi−1,Δ ti−1) = [ fff 1, fff 2, fff 3]T. A detailed derivation of the DAM is provided in [4].
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Here, a brief sketch is given. The adjoint sensitivity analysis starts from extending the
objective with the adjoint vectors ζ̃ζζ 0 and pppi+1 such that both adjoint vectors can be
arbitrary chosen. The extended objective reads

ψD = ζ̃ζζ
T
0 q̃qq0

︸︷︷︸

000

+
n−1

∑
i=0

⎡

⎣F(ti,xxxi,ϕϕϕ)Δ ti+ pppT
i+1 fff i+1

︸︷︷︸

000

⎤

⎦ . (17)

The gradient of the objective with respect to the design variables follows as

∇ψD =
(

∂ q̃qq0

∂ϕϕϕ

)T

ζ̃ζζ 0 +
n−1

∑
i=0

[

Δ ti
∂Fi
∂ϕϕϕ

+
(

∂ fff i+1

∂ϕϕϕ

)T

pppi+1

]

, (18)

where the adjoint vectors pppi are computed backwards. They must satisfy
(

∂ fff n
∂xxxn

)T

pppn = 000 and

(

∂ fff i
∂xxxi

)T

pppi = −Δ ti

(

∂Fi
∂xxxi

)

−
(

∂ fff i+1

∂xxxi

)T

pppi+1, (19)

and the discrete adjoint vector of the initial state ζ̃ζζ 0 must satisfy

(

∂ q̃qq0

∂xxx0

)T

ζ̃ζζ 0 = −Δ t0

(

∂F0

∂xxx0

)

−
(

∂ fff 1

∂xxx0

)T

ppp1. (20)

The main difference to the CAM is that the used time discretization of the primal prob-
lem forms the basis of the sensitivity analysis. Consequentially, all computed states of
the solution of the primal problem must be stored in order to compute the exact gra-
dient. At the cost of extra computation, checkpoint methods [3] can be used to reduce
storage requirements.

4.3 Modified Discrete Adjoint Method

The proposed modified discrete adjoint method (mDAM) is an approximation of the
DAM. It is motivated by simulation results, where not all n states xxxi of the solution of
the primal problem had been stored or recomputed. These simulations have shown that
both the objective ψD and the computed gradient ∇ψD are not very sensitive to the time
discretization, while the primal problem must be solved with the fine discretization of
n states. Therefore, an equidistant adjoint time discretization of nred states is created
and only these states are stored and used to approximate the gradient of the objective
∇ψ . The time discretization in the adjoint space is given by tk = t0 + kΔ tnred , where the
number of stored states nred is magnitudes smaller than the number of computed states
n of the differential Eq. (2). Consequentially, the optimization problem is modified to

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

min
ϕϕϕ

ψD ≈ ψD,mod =
nred−1

∑
k=0

F(tk,xxxk,ϕϕϕ)Δ tnred , where nred << n

s.t.

⎧

⎪
⎨

⎪
⎩

fff (xxxi,xxxi−1,Δ ti−1) = 000 ∀i ∈ [0,n] with qqq(yyy0,0) = 000 and zzz0 = 000,

V (ϕϕϕ)−V0 ≤ 0,

000 ≤ ϕϕϕ ≤ 111.
(21)
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In doing so, the state equation of the time discretization of the primal problem
fff (xxxi,xxxi−1,Δ ti−1) are equal to zero, but the state equations of the adjoint time discretiza-
tion fff (xxxk,xxxk−1,Δ tnred) are not. The state equations fff are based on two consecutive time
instances ti−1 and ti of the primal time discretization, which are not accessible anymore.
However, since numerical solvers are used, the actual values of the state equations fff will
either way be close to zero but most likely not zero, so that the modified algorithm will
work, if the state equations of the adjoint discretization are small enough

fff k = fff (xxxk,xxxk−1,Δ tnred) ≤ ε, with ε << 1. (22)

Hence, only the states of the solution of the primal problem xxxi, which just fulfill Eq. (22)
must be stored. It turns out, that this approach does not result in a faster algorithm,
because few entries of fff k become relatively large, even if just one timestep is neglected,
so that almost all states will be stored again nred ≈ n.

Looking more closely into the values of fff k and the corresponding adjoint vectors
pppk reveals that relatively large values of fff k correspond to relatively small values in the
adjoint vector pppk. This observation is considered by the following error estimator, which
is based on the sum of the adjoint approach of the discrete objective of Eq. (17). Each
addend of the sum is zero, if the time discretization of the primal is chosen, meaning
that the standard DAM is applied. However, if the mDAM is used, the addends are not
zero and must be sufficiently small for accurate results. The extended objective with the
adjoint sum is

ψ ≈ ψD,mod = ζ̃ζζ
T
0 q̃qq0

︸︷︷︸

000

+
nred−1

∑
k=0

F(tk,xxxk,ϕϕϕ)Δ tnred +
nred−1

∑
k=0

pppT
k+1 fff k+1

︸︷︷︸

�=000
︸ ︷︷ ︸

adjoint sum

. (23)

In doing so, simulations have revealed that the reduced discretization is sufficient, if the
adjoint sum is bounded by the error estimator

nred−1
∑
k=0

fff T
k pppk

ψD,mod
≤ ε, with ε << 1. (24)

The drawback of this approach is, that the adjoint time discretization must be set before
solving the differential equation and a good initial guess is needed. In structural dynam-
ics, a good initial guess seems to be one or two orders of magnitude higher, than the
time discretization of the primal problem. With the stored states xxxk, the adjoint Eq. (19)
is computed to approximate the gradient of the adjoint. If the error estimator of Eq. (24)
is satisfied, the gradient is excepted. Otherwise, the resolution of the adjoint time dis-
cretization must be increased and the state vectors of the new adjoint time discretization
must be computed either by solving the primal problem again or by taking advantage
of checkpoint approaches.

Summarizing, the modified discrete adjoint approach decouples the time discretiza-
tion of the primal problem and the time discretization of the discrete adjoint computa-
tion. In doing so, only the states of the reduced time discretization xxxk must be stored and
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Fig. 1. Optimization domain of the cantilever beam.

are used to approximate the gradient of the objective. Thus, only nred adjoint systems
of equation must be solved instead of n for the standard discrete adjoint method. Con-
sequentially, less storage is required and less systems of equations are solved, which
leads to a better numerical performance.

5 Numerical Example

The performance of all three adjoint methods is demonstrated using the simple can-
tilever beam example shown in Fig. 1a and the compliance is minimized

ψc =
t1

∫

t0

yyy(t)TKKK(ϕϕϕ)yyy(t)dt ≈ ψD,c =
n−1

∑
i=0

yyyT
i KKK(ϕϕϕ)yyyiΔ ti ≈ ψD,c,red. (25)

The Dirichlet boundary conditions are imposed on the left-hand side, while a spring is
attached on the right-hand side. The spring is connected to a vertical oscillating sliding
bearing, which oscillates with a frequency of 1Hz and an amplitude of 50mm. One
period is considered, meaning that the starting time is t0 = 0s and the termination time
is t1 = 1s. The absolute values of the spring force vary between approx. 250N and
550N. Note that, a non-linear problem must be solved to compute the initial state xxx0,
since the spring force fff ext(yyy0, t0) depends on the displacement yyy0.

It is noticed, that the timestep control has no impact on the optimization, which
is shown in Fig. 2a. Here, the optimizations using the CAM and DAM are compared
to a reference optimization with a constant timestep of 10−5s (cDAM). The DAM is
approx. 10 % faster than the CAM, even though both used the same time discretiza-
tion for the primal problem. The reference optimization took ten times longer, than the
CAM. Additionally, the optimized designs after 200 iterations using the CAM, DAM
and mDAM are shown in Fig. 2 and they are identical.
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Fig. 2. Optimizations computed with the continuous (CAM) and discrete (DAM) adjoint method
using the timestep control and a reference discrete adjoint method (cDAM) with a constant time
step.

5.1 Optimization with the Modified Adjoint Method

In order to analyze the impact of the mDAM on the optimization process, the design
domain is discretized into 2260 finite elements and three different discrete adjoint meth-
ods are used.

1. DAM - The previously validated discrete adjoint method.
2. naive mDAM - The modified DAM with a fixed adjoint time discretization.
3. mDAM - The proposed modified adjoint approach, where the error estimator of

Eq. (24) is used with ε = 0.01. If the current adjoint time discretization is not suf-
ficient, a finer adjoint time discretization is chosen and the differential equation is

Fig. 3. Comparison of the Discrete Adjoint Method (DAM), the naive modified DAM (naive
mDAM) and the modified DAM (mDAM).
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resolved. Otherwise, the computed derivative is accepted, the design update is com-
puted and the time adjoint discretization is enlarged for the next iteration of the
optimization.

The impact of the three methods is visualized in Fig. 3, where the convergence and
the error estimator are shown. Looking at the convergence, the slope of the DAM and
the mDAM are very similar, while the naive mDAM terminates at 150 iterations. This
means that the maximum change of the design variables is less than 0.1 percent and
a local minimum is assumed. At the same time, its objective value is larger than the
objective values of the exact DAM or the mDAM. Thus, the naive approach can lead
to convergence but the approximation of the gradient is inaccurate. The observed inac-
curacy is also documented in the error estimator, since the error is significantly above
ε = 0.01 at many iterations. However, the error of the mDAM is several time above the
defined threshold as well, but if this happens, the adjoint time discretization is refined
until the error criteria is met.

Coming to the storage requirements of the methods, the adjoint computation of the
standard DAM is based on the time discretization of the primal problem. Therefore,
all computed states of the forward integration must be stored and in consequence, for
each state one adjoint equation must be solved. The actual number of states varies from
iteration to iteration due to the adaptive time-stepping. Furthermore, the heterogeneous
design vector leads to ill-conditioned mass and stiffness matrices, which has a signif-
icant impact on the needed number of states n. In this example, all optimizations start
from a uniform density distribution and about n = 50000 states were computed during
the forward integrations. Note that, the mDAM approaches solve the primal problem
using the same forward time-discretization, while only fewer states are stored and less
adjoint equations are solved. The naive mDAM is based on the adjoint discretization of
nred = 1001, whereas the average adjoint discretization of the mDAM is in the range
of nred = [300,5000] states. Hence, the mDAM approaches reduce the storage require-
ments tremendously.

Last, the average computational times per optimization iteration on a standard work-
station have been 8236s for the DAM, 1214s for the naive mDAM and 2550s for the
mDAM. Hence, the optimization with the less accurate naive mDAM is 6.8x faster and
the proposed mDAM is still 3.2x faster, while having a very similar convergence in
comparison to the actual DAM.

6 Summary

In summary, the continuous and discrete adjoint method compute the gradient of an
objective accurately. The backward integration of the continuous adjoint differential
equations is numerically more expensive. Next, a modified discrete adjoint method has
been proposed and compared to the standard discrete adjoint method. By applying this
method, the storage requirements and the number of adjoint equations is reduced to
a minimum. In doing so, the computation time was reduced by 69%, while the error
estimator guaranteed accurate gradient information during the optimization process.
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Abstract. The goal of this contribution is to extend an existing workflow for
shape optimization with geometrically parameterized finite elements by imple-
menting a parameterized shell element. The challenge is to find an element tech-
nology that is free of locking and hourglass-modes on the one hand, but its imple-
mentation must be simple enough so that it can contain the geometric parameters
on the other hand. The derived element is used in a numerical optimization exam-
ple. Therefore, a ribbed plate is used to show the whole workflow including the
preparation of the system matrices depending on global design parameters, para-
metric model order reduction and shape optimization. A final validation is done
using a commercial finite element software to compare the results.

1 Introduction

During the development cycle in mechanical or civil engineering the goal is to find a
product that fulfills multiple requirements on deformations, stresses, or design. Since it
is not clear from the beginning, which geometry fulfills all these specifications, several
iterations with different shapes have to be made. The finite element method is a state of
the art tool for modeling and analysis of such elastic structures. Typically, each mod-
ification requires some pre-processing, e.g., creation of the finite element mesh and,
at least for complex systems, model order reduction. To avoid these time-consuming
steps, a method combining geometrically parameterized finite elements and parametric
model order reduction was developed in [11]. Since the existing method includes only
hexahedron elements, the goal of this contribution is the extension of this approach to a
geometrically parameterized four-node linear shell element.

The paper is structured as follows. Firstly, the necessary theoretical basics in the
finite element method, model order reduction, and parametric model order reduction
are revised. Secondly, different element technologies for a geometrically parameterized
finite shell element are compared. Finally, the derived element is used in a shape opti-
mization example and validated with results from a commercial finite element software.
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2 Theoretical Background

This section summarizes the necessary information on the finite element method, model
order reduction and its extension to parametric model order reduction.

2.1 Finite Element Method

The finite element method uses spatial discretization of structures to overcome the issue
that for many problems in structural mechanics it is not possible to find an analytical
solution. Details on the derivation of the finite element method can, e.g., be seen in [4]
or [19]. This section focuses on a four node plane shell element with bilinear shape
functions and three translational and three rotational degrees of freedom at each node.
The formulation is based on the Reissner-Mindlin shell theory. The element mass matrix
of the e-th element is

mmme =
1∫

−1

1∫

−1

NNNT

⎛
⎜⎝

ρtIII[3×3] 000 000

000 ρt3
12 III

[2×2] 000

000 000 f ρt3
12

⎞
⎟⎠NNNdet(JJJ)dξdη (1)

with the density ρ , the thickness of the element t, the identity matrices III and a drill
factor f . The matrix NNN ∈ R

24×6 contains the shape functions that map the 24 node
displacements to the rotational and translational element displacements, and ξ , η are
the local curvilinear element coordinates. The Jacobian matrix JJJ ∈ R

2×2 maps these
local element coordinates to the Cartesian coordinates x and y. The element stiffness
matrix for a pure displacement based element formulation can be calculated as

kkke =
1∫

−1

1∫

−1

B̃BB
T
EEEB̃BBdet(JJJ)dξdη =

⎛
⎜⎝

kkkep 000 000

000 kkkeb+ kkkes 000

000 000 kkkedrill

⎞
⎟⎠ , (2)

where B̃BB ∈ R
24×8 is the strain-displacement matrix and EEE ∈ R

8×8 denotes the mate-
rial matrix for linear isotropic plane stress. It can be seen that the in plane part of the
stiffness matrix kkkep ∈ R

8×8 is decoupled from the bending and shear part of the stiff-
ness matrix kkkeb ∈R

12×12 and kkkes ∈R
12×12, which holds for plane elements. The stiffness

matrix often includes an artificial drill stiffness kkkedrill ∈ R
4×4 to avoid singular matri-

ces. In this contribution, the drill stiffness is implemented as in [13]. The numerical
integration of Eqs. (1) and (2) is typically done with Gauss-Legendre quadrature. For
four node shell elements, it is common to either use so-called full numerical integration
with two sampling points per direction or reduced integration with only one sampling
point per direction as described in [4]. However, both integration methods have some
drawbacks for a pure displacement based element formulation. Different forms of lock-
ing resulting in a too stiff element behavior occur in elements with full integration
whereas reduced integration possibly leads to zero energy modes, also called hour-
glass modes, which produces singular stiffness matrices. There exist numerous meth-
ods trying to avoid locking and zero energy modes. An overview on this topic is given
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in [8]. In this contribution for the element implementation with full integration, the
Enhanced Assumed Strain (EAS) Method developed in [18] with four extra parameters
is used for the membrane part kkkep to avoid membrane locking and the Assumed Natural
Strain (ANS) Method introduced in [5] is used to avoid transverse shear locking in kkkes .
According to [8], this combination is very popular and implemented in many finite ele-
ment software tools. This element formulation is compared to an implementation with
reduced integration using the hourglass stabilization method proposed in [14].

The assembly of the global mass MMM ∈ R
N×N and stiffness matrix KKK ∈ R

N×N of the
whole structure results in the equation of motion

MMMq̈qq(t)+DDDq̇qq(t)+KKKqqq(t) = BBBuuu(t),
yyy(t) =CCCqqq(t).

(3)

Here, qqq(((ttt)))∈R
N describes the displacements of all nodes. In system dynamics the exter-

nal forces are often described as a product of the input matrix BBB ∈ R
N×l and the system

inputs uuu ∈ R
l . Furthermore, a damping matrix DDD ∈ R

N×N is often added to model the
dissipation of energy. Later in this publication Rayleigh damping DDD = αMMM+βKKK with
damping parameters α,β ∈ R, see [20], is used, but the used methods are not limited
to this kind of damping. The system outputs yyy(t) ∈ R

k are obtained with the output
matrixCCC ∈ R

k×N that maps the displacement vector to the system outputs. The transfer
function of the system

HHH(s) =CCC
(
s2MMM+ sDDD+KKK

)−1
BBB ∈ R

k×l (4)

characterizes the system behavior from the inputs uuu to the outputs yyy in the Laplace
domain with the Laplace variable s ∈ C. In the case of s = iω , HHH(iω) is also called
frequency response function.

2.2 Model Order Reduction

A fine spatial finite element discretization is often used to get a good approximation of
the continuous system. This causes many degrees of freedom N and high computational
cost to solve the equation of motion. To overcome this issue, model order reduction can
be applied by approximating the displacement vector with

qqq(t) ≈VVVqqqred(t), (5)

whereVVV ∈R
N×n is the projection matrix and qqqred(t)∈R

n are the reduced elastic coordi-
nates. Applying an orthogonal Galerkin projection to the equation of motion (3) results
in the reduced order equation of motion

VVVTMMMVVV︸ ︷︷ ︸
MMMred

q̈qqred(t)+VVVTDDDVVV︸ ︷︷ ︸
DDDred

q̇qqred(t)+VVVTKKKVVV︸ ︷︷ ︸
KKKred

qqqred(t) =VVVTBBB︸︷︷︸
BBBred

uuu(t),

yyyred(t) = CCCVVV︸︷︷︸
CCCred

qqqred(t)
(6)
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with the reduced systemmatricesMMMred,DDDred, KKKred ∈R
n×n, BBBred ∈R

n×l andCCCred ∈R
k×n.

Here, yyyred(t) ∈ R
k is the output of the reduced order system. Model order reduction

seeks to find an n�N dimensional subspace V and its corresponding projection matrix
VVV with colspan(VVV ) = V such that the dimension of the reduced subspace is as small as
possible on the one hand and the error in time domain |yyy(t)− yyyred(t)| and frequency
domain ‖HHH(s)−HHHred(s)‖ is as small as possible on the other hand. Many methods have
been developed to find a suitable projection matrix VVV . These methods can be mainly
categorized into methods based on modal truncation, methods using singular value
decomposition, and methods based on Krylov-subspaces. An overview over different
projection-based model order reduction techniques can be found in [3,6].

The method used in this contribution is moment-matching with Krylov-subspaces.
It matches the transfer function of the full order and the reduced order model and its
derivatives up to the desired i-th order at specific expansion points ŝ j in the Laplace-
domain. Therefore, the coefficients, also called moments, of the series expansion of the
transfer function have to be calculated. Since the explicit calculation of these moments
is numerically unstable, the Arnoldi-algorithm and the Lanczos-algorithm provide a
stable and iterative way to match the moments, see e.g. [10,16,17].

In this contribution, systems that depend on a parameter vector ppp ∈ R
d play an

important role. The parameter dependency in the system matrices MMM(ppp), DDD(ppp) and
KKK(ppp) should also be preserved in the reduced order model. Therefore, it is important
that the whole parameter space of interest is also covered in the subspace V . As stated
in [7], the global reduction matrix can be obtained by concatenating multiple local
projection matrices ṼVV (p̂ppk)∈R

N×nk , which are received by moment-matching at specific
parameter points p̂ppk, to a global reduction matrix VVV ∈ R

N×n with n = ∑nk. A singular
value decomposition of VVV is often applied to get only linear independent columns.

3 Geometrically Parameterized Shell Element Formulation

In [11] a new shape optimization procedure has been derived. This procedure is based
on a geometrically parameterized solid finite element that analytically contains the
geometry of the element as a parameter. The benefit of this method is, that model order
reduction and finite element pre-processing are only done in the offline phase and not

Fig. 1. Node position parameterization with seven local element parameters pppe = [a b c d e f t]T.
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repeated in every iteration step in the online phase. A successful application in combi-
nation with optimal control can be seen in [12]. Since the procedure is limited to eight
node hexahedron elements, this contribution aims to extend the method by a geomet-
rically parameterized finite shell element with four nodes. Figure 1 shows the element
parameterization in two-dimensional x-y space. The x-y coordinate system is located in
the bottom left node of the element. Hence, there are six parameters left to fully describe
the shape of the element, where each parameter represents either the x position or the y
position of a node. A seventh parameter is used to model the thickness of the element.
The resulting element parameter vector is pppe = [a b c d e f t]T. Under consideration
of the element parameter vector, Eq. (2) also becomes parameter dependent and can be
rewritten in an affine form resulting in

kkke(pppe) =
1∫

−1

1∫

−1

B̃BB
T
(pppe)HHHB̃BB(pppe)det(JJJ(pppe))dξdη =

J

∑
j=1

w̄e
j(ppp

e)kkkej (7)

with weighting functions w̄e
j(ppp

e) ∈ R depending on the element parameter vector and

constant matrices kkkej ∈ R
24×24. The exact derivation of the parameter dependency is

omitted here, but an example derivation for a solid element can be found in [11]. As
already mentioned in Sect. 2.1, the results of pure displacement based four node shell
elements are not necessarily reliable because of locking or hourglass modes. The meth-
ods to overcome these issues yield additional terms in the element stiffness matrix and
consequently a higher upper limit of summation J in the affine representation. This
results in higher storage cost and higher computational cost for the evaluation of the
element stiffness matrix at specific parameter points. It is consequently of great interest
that J becomes as small as possible. Therefore, the number of summation terms J is
compared for an implementation of an element with full integration and the Enhanced
Assumed Strain Method [18] and the Assumed Natural Strain Method proposed in [5]

Fig. 2. Mode shape parameterization, where the shape of the element is modeled by a superposi-
tion of modes. The parameterization in y direction is similar but tilted by 90◦.

Table 1. Number of summation terms J in the element stiffness matrix kkke(pppe) for
pppe = [a b c d e f t]T.

reduced integration full integration

node position parameterization 3 203 −
mode shape parameterization 2 814 −
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and for an implementation with reduced integration and hourglass-control [14]. The ele-
ment stiffness matrix does not only depend on the order of Gaussian integration but also
on the choice of the parameter vector pppe. Another parameterization is shown in Fig. 2.
The figure shows three modes, a rectangle mode, a parallelogram mode, and a trapezoid
mode. Each of these modes is described by one of the parameters a,b,c. Equivalently,
three other parameters d,e, f describe the parameterization in y direction. The shape
of the element is a superposition of these six modes. The thickness of the element t
completes the list of parameters.

The comparison of these different implementations and parameterizations is done
only for the parametric stiffness matrix because the mass matrix is not influenced by
anti-locking or anti-hourglassing methods and can easily be calculated by including
the parameter vector pppe into Eq. (1) without considering any additional terms. Table 1
shows J for the element stiffness matrix for all combinations. There are no results for
full integration, because the computer used for this calculations was not able to calcu-
late the complex matrix inversions symbolically that were necessary for the Enhanced
Assumed Strain Method. The upper limit of summation J for both, the parameteriza-
tion with mode shapes and the parameterization with node positions, for the element
with reduced integration are in the same order of magnitude, though J is slightly lower
for the mode shape parameterization. To get an idea how complex full integration is
compared to reduced integration, the number of summation terms for the parameter
vector pppe = [d e f t]T is shown in Table 2. The element is thus only parameterized in
y-direction and it is not possible to yield that many element geometries as with seven
element parameters. Obviously, J is 1.5−2.2 times higher for the element with full inte-
gration than for the element with reduced integration. This has two reasons. Firstly, the
pure displacement based stiffness matrix with reduced integration has a lower number of
summation terms than with full integration because of the lower number of integration
points. Secondly, the implemented methods to avoid locking induce more additional
summation terms than the methods to avoid hourglassing. It can also be stated, that
the number of parameters seems to have a major impact on J, since J is a whole order
of magnitude lower for pppe = [d e f t]T than for pppe = [a b c d e f t]T. Nevertheless, the
parameterization with seven element parameters is still necessary, because otherwise it
would not be possible to represent all possible element geometries.

4 Numerical Example

The previously derived implementation of the parameterized finite element is used in
combination with the workflow developed in [11] for a shape optimization example.
In this workflow, the geometry of the structure is parameterized by some global design
parameters. In the offline phase, a parametric model reduction is performed to reduce
the complexity of the system. In the online phase, it is thus only necessary to evaluate
the reduced system matrices at specific parameter points and to calculate the cost func-
tion. It is therefore not necessary to perform pre-processing steps such as meshing and
linear model order reduction in each iteration of the optimization procedure. Addition-
ally, no calculations need to be made with the full order model during the online phase.
Depending on the problem definition, these points can be a huge time saver.
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4.1 Modeling

The structure used is a plate with two supporting ribs underneath the plate as shown in
Fig. 3. For a better visualization, the figure is shown upside down. The size of the base
area is 5m × 5m and the structure is mounted at the edges of the slab such that the
translational degrees of freedom are locked. As introduced in Sect. 2.1, Rayleigh damp-
ing DDD(ppp) = αMMM(ppp)+βKKK(ppp) is added with α = 3.5 and β = 2 ·10−5. The material of
the structure is concrete, the corresponding material properties are chosen from [9] and
result in the Young’s modulus E = 30 ·109 N/m2, a Poisson’s ratio of ν = 0.2 and a den-
sity of ρ = 2400kg/m3. The meshing is done in the commercial finite element software
Ansys [2] resulting in N = 22212 degrees of freedom. All the other calculations are
done in Matlab [15]. The structure is parameterized by four design parameters ppp ∈ R

4.
The height of the ribs is modelled by a second order Bézier curve. The control points are
shown as red dots in Fig. 3. Since the structure is symmetric, all four boundary points
are parameterized with the same parameter. This results in two parameters to model
the rib height. The third parameter describes the thickness of the plate and the fourth
parameter specifies the thickness of the ribs. The global parametric stiffness matrix is
constructed by mapping the local element degrees of freedom to the global degrees of
freedom using the transformation matrix TTTe ∈ R

N×24 and yields

KKK(ppp) =
nEle

∑
e=1

TTTekkke(pppe)TTTeT =
nEle

∑
e=1

TTTe

(
J

∑
j=1

w̄e
j(ppp

e)kkkej

)
TTTeT

=
nEle

∑
e=1

TTTe

(
I

∑
i=1

w̃e
i (ppp)k̃kk

e
i

)
TTTeT =

nEle

∑
e=1

I

∑
i=1

w̃e
i (ppp)TTT

ek̃kk
e
i TTT

eT =
L

∑
l=1

wl(ppp)KKKl .

(8)

The global stiffness matrix is again in an affine form with weighting functions
wl(ppp) ∈ R depending on the global design vector ppp and constant matrices KKKl ∈ R

N×N .
One important step is after the third equal sign of Eq. (8). The element stiffness matrix
is reformulated with pppe = f e(ppp), such that it no longer depends on the element param-
eter vector pppe but on the global design parameter vector ppp. The global parametric mass
matrix is obtained in the same manner. The number of summation terms L in the global
parametric stiffness matrix is bounded by L ≤ nEleJ. Due to the fact that often not all
local element parameters are used in the global parameterization and some terms can
be summarized, L is typically much smaller. Table 3 shows L for all element imple-
mentations mentioned in the previous section. This can of course not be generalized
on all structures but is valid for this structure with this specific parameterization. One
remarkable thing is that mode shape parameterization and the node position parame-
terization have exactly the same upper limit of summation L although pppe is different

Table 2.Number of summation terms J in the element stiffness matrix kkke(pppe) for pppe = [d e f t]T.

reduced integration full integration

node position parameterization 209 471

mode shape parameterization 99 156
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Table 3. Number of summation terms L for the global stiffness matrix KKK(ppp).

reduced integration full integration

node position parameterization 2 058 7 621

mode shape parameterization 2 058 7 621

Fig. 3. Initial geometry before the optimization with ppp= [0.30 0.30 0.03 0.03]T.

for both parameterizations. This is not a coincidence but due to the fact that the same
global design parameters ppp were chosen. In general, the resulting stiffness matrix is
only influenced by the global design parameters and the chosen element formulation
but not by the element parameterization pppe. Thus not only the upper limit of summation
is identical for both parameterizations but also the whole stiffness matrix. As expected,
the number of summation terms is much higher when elements with full integration are
used compared to when reduced integration is used.

To reduce the numerical complexity during the optimization procedure, model order
reduction as explained in Eqs. (5) and (6) is applied to the system matrices. Therefore,
six linearly distributed expansion points are chosen in the frequency domain between
0Hz and 100Hz and 15 randomly selected parameter shifts are selected in the param-
eter space P . The parameter domain is defined such that the thickness of the ribs and
the plate is within 0.01m and 0.05m and the rib height is in the range between 0m
and 0.5m at the control points of the Bézier curve. The resulting reduced order model
has n = 300 degrees of freedom. Figure 4 shows the Frobenius norm of the frequency
response function for the full order model and the reduced order model for a randomly
selected point in the parameter domain that was not a part of the 15 points used for
reduction. The figure also shows the absolute reduction error ‖HHH−HHHred‖F. The reduced
system approximates the full model very well, because the reduction error is about two
orders of magnitude lower than the frequency response of the original system.

4.2 Optimization

The obtained reduced order model is able to approximate the full order model in the fre-
quency range from 0Hz to 100Hz and in the given parameter domain. For the optimiza-
tion task examined in this paper a surface load of 1.8 ·103 N/m2 is applied perpendicular
to the plate surface. The cost function and the suitable parameter space is formulated as
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Fig. 4. Frequency response function and reduction error for a randomly selected parameter point
p̂pptest = [0.48 0.23 0.04 0.02]T in the parameter space P .

ppp∗ = argmin
ppp∈P

J(ppp) = m(ppp) = ρ
(
25p3+

20
3
p1p4+

10
3
p2p4

)

s.t. P :=
{
ppp ∈ R

4 |hhh(ppp) ≤ 000 | ppplow ≤ ppp ≤ pppup
}

h1(ppp) = p1+ p2 −1 ≤ 0, h2(ppp) = −p1 − p2 ≤ 0, h3(ppp) =max
(
KKK−1BBBuuu

)−0.01 ≤ 0

ppplow =[0 −0.5 0.01 0.01]T , pppup = [0.5 1 0.05 0.05]T .

(9)

The objective is to minimize the mass of the structure. Additionally to the parame-
ter space defined before, the maximum deflection perpendicular to the plate surface is
limited to 0.01m by h3(ppp) during the optimization. This allows to find a structure that
is as light as possible while the deformations are bounded within the given tolerance.
The search for potential savings in material use is an important research question in the
Collaborative Research Centre 1244 (CRC 1244) “Adaptive Skins and Structures for
the Built Environment of Tomorrow” at the University of Stuttgart, where this project is
based. The optimization problem does not include the mass matrix, i.e. it only considers
the steady state deflection after a static load case. As can be seen in Fig. 4, the reduced
order model is also able to approximate static loads, i.e. loads at f = 0Hz.

The optimization is done with the Matlab algorithm fmincon. The resulting geome-
try is depicted in Fig. 5. The thickness of the ribs is at the lower bound since its contri-
bution to the stiffness of the system perpendicular to the plate surface is very low. The
ribs are of parabolic shape with the height at the middle control point at the upper limit
of 0.5m. Without the ribs, the largest deflection would be in the middle of the slab,
therefore the support by the ribs is highest there.

4.3 Validation

In this section, the parameterization of the finite element is validated using the results
from the optimization. Therefore, the node positions of the optimized geometry are
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exported to Ansys, where the system matrices are calculated. After transferring them
back to Matlab, the behavior of the system obtained with the parameterized reduced
oder model can be compared to the behavior of the Ansys model. Since the validation
of the reduction process has already been done in Fig. 4, this section uses the full order
parametric model to compare it with the results from Ansys. The Frobenius norm of
the frequency response function for both models and the corresponding absolute error
is shown in Fig. 6. Only at the eigenfrequencies, the frequency response error becomes
larger. This could be caused by different correction factors for the hourglass stabilization
in Ansys in contrast to theMatlab implementation or further technologies in Ansys, e.g.,
for distorted meshes, which are not taken into account in the Matlab implementation.

To further validate the implementation, mode shapes of both systems are compared
with the Modal Assurance Criterion, see [1], that compares the i-th eigenvector of the
Ansys model with the j-th eigenvector of the reduced order Matlab model. It evaluates
the similarity on a scale from 0 to 1, where 1 means that the modes are completely iden-
tical. The result is given in Fig. 7. The diagonal entries are close to one, which means
a good agreement of the eigenmodes. Only the second and the third eigenmodes do
not correspond that well. Due to the symmetry of the structure, the second and third
eigenmode have the same eigenfrequency. With double eigenfrequencies, all possible

Fig. 5. Optimized geometry with ppp∗ = [0.30 0.70 0.02 0.01]T.

Fig. 6. Frequency response function for the optimized geometry ppp= ppp∗.
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Fig. 7. Modal Assurance Criterion and eigenfrequencies for the optimized geometry ppp = ppp∗ to
compare the results with results from Ansys.

linear combinations of the two eigenvectors are also potential eigenvectors. The sec-
ond and third eigenmode of the Matlab model are only another linear combination and
are thus valid. The axis labels of the figure als shows the eigenfrequencies of both
models. Generally, the relative error of the eigenfrequencies is far below 1%, only the
fifth eigenfrequency is around 2%. Summarizing the results from Fig. 6 and 7, with the
parameterized model it is possible to obtain good results also for a distorted mesh of the
structure in terms of the frequency response, the mode shapes and the eigenfrequencies.

5 Conclusion and Outlook

In this contribution, the workflow for shape optimization with geometrically parameter-
ized finite elements developed in [11] was extended by a parameterized shell element.
To get an optimal implementation regarding the number of summation terms, differ-
ent element technologies were compared. The most efficient implementation was an
element with reduced integration and hourglass control. Afterwards, the implemented
shell element was used for a shape optimization example in combination with paramet-
ric model order reduction. A validation with the system matrices obtained from Ansys
is done using the frequency response function and the Modal Assurance Criterion. A
good agreement between the two models was found.

Since the number of summation terms is very high for the element implementa-
tion and this also influences the number of summation terms in the global system, an
interesting research topic for the future is to further reduce the number of summation
terms by implementing series expansions or low rank approximations. Furthermore, it
is not clear that two supporting ribs in the middle of the plate, as examined in this
contribution, are the best topology for this optimization problem. A future work could
also include coupled parameterized systems, where the number and position of the ribs,
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or more generally the coupling of two or more bodies is included in the optimization
problem.
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11. Fröhlich, B., Gade, J., Geiger, F., Bischoff, M., Eberhard, P.: Geometric element parame-
terization and parametric model order reduction in finite element based shape optimization.
Comput. Mech. 63(5), 853–868 (2019)
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1 Introduction

Design optimization has become an important field in engineering science since it
allows a significant reduction in mass, cost and environmental impact. It can be divided
in several fields such as parameter optimization, shape optimization and topology opti-
mization. A typical objective in optimization of dynamic systems is the lowest eigen-
frequency of a component. There are several challenges like repeated eigenfrequencies,
localized modes in low density areas and high computational effort which have been
solved by several scientists (see e.g. [1,5,14]). Deterministic optimization however
sometimes leads to designs that are sensitive to deviations from the ideal configuration
(eg. load direction or shape).

Various classes of methods have been developed in order to get optimized designs
that are not sensitive to imperfections, such as robust design optimization (RDO) and
reliability-based design optimization (RBDO). An overview is given in [19]. RBDO
usually reduces the risk of failure by dividing the random space into a fail region and a
safe region. For calculating the probability of failure, an internal optimization problem
has to be solved. This usually results in high computational cost. RDO instead mini-
mizes the variability of the objective function. In the current paper we focus on proba-
bilistic methods and the minimization of mean and standard deviation of the objective
function.

Popular probabilistic methods are the Monte-Carlo method (see e.g. [8]) and Taylor-
series-based methods. The Monte-Carlo method is very accurate, but it requires a large
amount of function evaluations. For this reason, the objective is often approximated
by surrogate models such as neural networks [4]. However, the costly training of the
surrogate models must be done in each optimization step again.

In contrast to the Monte-Carlo method, Taylor-series-based methods approximate
functions by a Taylor-series. Using this approximation, analytic formulas for calculat-
ing mean and standard deviation are obtained. One example is the perturbation approach
[10], which is based on a Taylor expansion of the static equilibrium. The computational
cost here scales with the number of random parameters. In difference to that, the first-
order second-moment method (FOSM) is based on an expansion of the objective func-
tion itself. Embedding it into robust design optimization for minimizing compliance
yields an approach, which requires only the solution of one additional adjoint system
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per iteration [9]. Hence, the computational cost is only increased by factor 2 (or less)
compared to a deterministic optimization. Because both methods are based on a Tay-
lor series, the accuracy is comparable (given the same approximation order) and much
lower than the accuracy of the Monte-Carlo method. For this reason the current paper
uses FOSM during the optimization and Monte-Carlo as a benchmark in the analysis of
the results.

Due to the large amount of design parameters in topology optimization only
gradient-based optimization can be used [16]. For this reason, the gradients of the robust
objective have to be computed. In the current paper, a new approach for calculating the
gradient of a robust objective using the first-order second-moment method is provided.
It only doubles the computational cost compared to a deterministic optimization and
can be used independently of the problem-type. This paper is organized as follows:
First, the general probabilistic framework is presented, afterwards, the special problem
of optimizing eigenfrequencies is described. This is followed by different ways to cal-
culate the gradients of the robust objective. The theoretical concepts are shown for a
numerical example.

2 Robust Topology Optimization of Eigenfrequencies

The general procedure for a robust design optimization is similar to a deterministic
optimization. However mean value μ f and standard deviation σ f are minimized at the
same time, which yields a multi-objective optimization problem. This is reduced to a
single objective by

fp(yyy,xxx) = μ f (yyy,xxx)+κσ f (yyy,xxx) (1)

with xxx as random parameters, yyy as design parameters and κ as a chosen weighting factor.

2.1 Computation of Eigenfrequencies and Its Gradients

The current paper addresses a robust optimization of the lowest eigenfrequency. Eigen-
frequencies of an undamped FE-model are calculated by the solution of an eigenvalue
problem given by [

KKK−ω2MMM
]

ϕϕϕ = 000 (2)

with the eigenvalue ω2, eigenvector ϕϕϕ , stiffness matrix KKK and mass matrix MMM. The
eigenfrequency ω is computed as a square root of the eigenvalue ω2. In the follow-
ing optimizations, the squared eigenfrequency ω2 is considered as objective function.
According to [6], first-order sensitivities of ω2 are computed by

dω2

dxi
= ϕϕϕT

[
dKKK
dxi

−ω2 dMMM
dxi

]
ϕϕϕ . (3)

In order to comply with the convention to minimize an objective function, the determin-
istic objective equals the negative eigenfrequency f = −ω2. Realistic problems have
repeated and nearby eigenvalues. When only the lowest eigenvalue is considered, mode
switches might occur during the optimization. In order to avoid this problem, the m
smallest eigenfrequencies are aggregated using the p-norm (see for example [5]).
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2.2 Robust Topology Optimization Framework

The optimization is parametrized using the SIMP-based topology optimization scheme
[2]. In order to overcome numerical instabilities, a variable filter [18] with filter padding
[3] is used. Without further measures, this would end up in “grey” designs. To overcome
this problem, the filtered parameters are projected using a heavyside-like function in the
form given in [18] as

ρi =
tanh(βiηi)+ tanh(β [ŷi −ηi])
tanh(βηi)+ tanh(β [1−ηi])

(4)

with the projection parameter β , threshold parameter ηi and filtered variable ŷi for ele-
ment i. In order to model geometric imperfections the threshold parameter is scattered
like first time seen in [15]. In that paper, the projection uses a global parameter η . If this
value increases, the whole model is eroded, if η decreases, the whole model is dilated
like shown in Fig. 1. In the current paper, the threshold parameter is defined individu-
ally for each element like done in [13]. With this definition, local erosion and dilation
can be modelled. In order to model correlation between neighbour elements, isotropic
Gauß random fields are used.

Fig. 1. Influence of changed threshold parameter η : higher η causes erosion, lower η causes
dilation.

As shown in Eq. (1), the robust objective consists of stochastic moments of the
deterministic objective. The general framework is taken from [9]. Using the first-order
second-moment method, mean and variance of an objective f are computed by

μ f = f (μx) (5)

σ2
f =

d f
dxxx

T

(μx) ·CCCooovvv · d f
dxxx

(μx) . (6)

The standard deviation is computed by σ f =
√

σ2
f . These formulas contain the objective

gradient d f
dxxx with respect to random variables xxx and the covariance matrix CCCooovvv. First-

order sensitivities of mean and variance with respect to design variables yyy are given
by

dμ f

dyyy
=

d f
dyyy

(μx) , (7)

dσ2
f

dyyy
= 2 · d2 f

dyyydxxx
(μx) ·CCCooovvv · d f

dxxx
(μx) . (8)
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Here d2 f
dyyydxxx describes the second-order sensitivity of the objective function with respect

to random variables xxx and design variables yyy. The standard deviation gradient is com-

puted from the variance gradient. In the overall framework, only f , d f
dyyy , d f

dxxx and d2 f
dyyydxxx

have to be computed. The first two terms are known from a deterministic optimization.
d f
dxxx is computed the same way as d f

dyyy . Therefore the computational cost is identical to a
deterministic optimization. However, the gradient evaluation of the variance is compu-

tational costly due to the second-order derivative d2 f
dyyydxxx . In order to avoid this problem,

there are different approaches to compute the gradient of the variance directly.

3 Computation of the Gradient of the Variance Using
the First-Order Second-Moment Method

Previously the first-order second-moment method has been shown for an arbitrary
objective. However the gradient of the variance is very hard to compute. Therefore
different methods are presented and compared for the eigenfrequency example.

3.1 Direct Differentiation

In the direct differentiation one computes the mixed partial derivative d2ω2

dyyydxxx directly and
afterwards uses Eq. (8) to compute the variance gradient. Direct differentiation of Eq.
(3) leads to

d2ω2

dy jdxi
= 2ϕϕϕT

[
dKKK
dxi

−ω2 dMMM
dxi

]
dϕϕϕ
dy j

+ϕϕϕT
[

d2KKK
dy jdxi

−ω2 d2MMM
dy jdxi

− dω2

dy j

dMMM
dxi

]
ϕϕϕ . (9)

The eigenvector derivative dϕϕϕ
dyk

is computed by solution of

[
KKK−ω2MMM

] dϕϕϕ
dyi

= −
[

dKKK
dyi

−ω2 dMMM
dyi

− dω2

dyi
MMM

]
ϕϕϕ . (10)

This equation is a singular system of equations. The solution is found using Nelsons
method [11]. An overall formula of variance gradient is given by

dσ2
ω2

dyk
= ∑

i
∑
j

{[
2ϕϕϕT

(
dKKK
dxi

−ω2 dMMM
dxi

)
dϕϕϕ
dyk

+ ϕϕϕT
(

d2KKK
dykdxi

−ω2 d2MMM
dykdxi

− dω2

dyk

dMMM
dxi

)
ϕϕϕ

]

·Cov(xi,x j) · dω2

dx j

}
.

(11)

This method has several drawbacks. For every design variable yi, one has to determine
the eigenvector derivative. This ends up in high computational effort for an increas-
ing number of design variables. In order to reduce computational cost, one can use
a matrix decomposition for

[
KKK−ω2MMM

]
. This however increases the storage demands

significantly. Another issue of this method is the highly intrusive behaviour. In order to
compute the requested values source-code access is required. Therefore direct differen-
tiation can only be used in in-house or open source tools.
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3.2 Adjoint Method

As an alternative to direct differentiation, the adjoint method is typically used for cal-
culating a gradient. The variance from Eq. (6) is expanded to

σ2
ω2 =

dω2

dxxx

T

CCCooovvv
dω2

dxxx
−λλλT [

KKK−ω2MMM
]

ϕϕϕ (12)

Differentiation and reordering leads to

dσ2
ω2

dyk
= λλλT

[
dKKK
dyi

−ω2 dMMM
dyi

− dω2

dyi
MMM

]
ϕϕϕ

+2∑
i

∑
j

ϕϕϕT
[

d2KKK
dxidyk

−ω2 d2MMM
dxidyk

− dω2

dyk

dMMM
dxi

]
ϕϕϕ ·Cov(xi,x j)dω2

dx j

(13)

with the adjoint system

000 = λλλT [
KKK−ω2MMM

]
+ϕϕϕT ·4∑

i
∑
j

[
dKKK
dxi

−ω2 dMMM
dxi

]
Cov(xi,x j)

dω2

dx j
. (14)

The adjoint system Eq. (14) again is singular. In difference to the eigenvector derivative
for direct differentiation this problem can not be solved using Nelsons approach. The
image of

[
KKK−ω2MMM

]
does not include the corresponding eigenvector. However the right

hand side is not orthogonal to the considered eigenvector. Therefore this system of
equations has no solution.

3.3 Finite Differences

Different to the adjoint method and direct differentiation, finite differences do not need
any internal model information. Only objective function and gradient with respect to
design variables are required. The FOSM terms dω2

dxxx and d2ω2

dxxxdyyy are approximated using
finite differences. This method is used in [17] for a robust sizing optimization with
FOSM in Abaqus. However finite differences require one function (and gradient) eval-
uation per random variable. This ends up in a huge computational cost for large numbers
of design variables.

3.4 Principal Sensitivity FOSM

As a different method, a new approach called “principal sensitivity FOSM” (PSF) is
presented for an arbitrary objective function f . Consider a Taylor series of the objective
gradient d f

dyyy as a function of random parameters xxx given by

d f
dyyy

(μx+Δxxx) =
d f
dyyy

(μx)+
d2 f
dyyydxxx

(μx) ·Δxxx+HOT (15)
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with the higher order terms HOT . We now define the “principal sensitivity” direction
CCCooovvv · d f

dxxx (μx) and choose Δxxx as

Δxxx= ε ·CCCooovvv · d f
dxxx

(μx) . (16)

The principal sensitivity direction is similar to the projection direction in [7]. After
some reordering, the Taylor series has the form

ε · d2 f
dyyydxxx

(μx) ·CCCooovvv · d f
dxxx

(μx) =
d f
dyyy

(μx+ ε ·CCCooovvv · d f
dxxx

(μx))− d f
dyyy

(μx)+HOT . (17)

which is similar to Eq. (8). The only difference is a scaling factor ε
2 and HOT . Neglect-

ing higher order terms, one gets the approximation

dσ2

dyyy
≈ 2

ε

[
d f
dyyy

(μx+ ε ·CCCooovvv · d f
dxxx

(μx))− d f
dyyy

(μx)
]

. (18)

The scaling factor ε should be chosen small in order to reduce influence of higher
order terms. Using this method, one does not need any modifications in the source code
of some FE-software as long as the first-order sensitivities with respect to the design
variables and random variables are given. In that case only two objective gradient eval-
uations are required. Therefore, the computational effort is only doubled compared to
a deterministic optimization. Storage requirements are not extended significantly since
only one gradient has to be stored additionally.

3.5 Comparison of Methods

Different methods for computing variance gradient with FOSM have been derived. The
methods are separated into two groups. Direct differentiation and the adjoint method are
analytic methods and require access to the FE-Software source code in order to get the
required (second-order) matrix derivatives. In difference finite differences and principal
sensitivity FOSM only require gradients of the objective function. In commercial soft-
ware, the gradients for many combinations of objective functions and design parameters
are given. Hence, this class of approaches can be implemented as a plugn to existing
codes.

A big difference between the methods is the computation time. Finite differences
and direct differentiations need to solve one equation system for each random variable.
In difference to that, adjoint method and principal sensitivity FOSM only require one
extra solution of a problem. However, it turned out that adjoint method does not work
for frequency-response problems. The computation time for the cantilever example con-
sidered in Sect. 4 is shown for different methods in Fig. 2. In the current implementa-
tion, finite differences and direct differentiation have a complexity order of about 2.1
while PSF only increases linearly. At a number of 250 elements, PSF becomes the most
efficient method. At 10.000 elements there is a difference between direct differentiation
and PSF of factor 80.

Since PSF is a numeric approximation of the variance gradient, one has to inves-
tigate the accuracy. In general the derivation of PSF is analogue to finite differences.
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Fig. 2. Required time for FOSM-gradient determination of later example using direct differenti-
ation and principal sensitivity FOSM at different discretization. There is one random and design
variable per element.

For this reason, it is expected that the accuracy will be the same. In Fig. 3, one can see
the relative error of PSF compared to the analytic direct differentiation solution at a

step size ε ·
∥
∥
∥CCCooovvv d f

dxxx

∥
∥
∥ of 10−5. Relative means that the error of every entry is divided

by the corresponding correct value. The plot shows that the mean error is less than 1%
and the median even below 10−5. However, the error of some entries is quite high at
about 100%. Further investigation shows that the high relative errors occur at entries
which are near to zero and hence, the gradient direction is not significantly influenced.
Numerical studies for the example considered in the next section showed that the best
accuracy is obtained with a step size of 10−5.

Fig. 3. Relative accuracy of principal sensitivity FOSM for the optimized design of a cantilever
beam. Relative means each entry of error vector compared to correct entry.

4 Cantilever Beam Example

The previously derived PSF method is used for eigenfrequency optimization of a can-
tilever beam like presented in [5] with a design space Ω of 130 × 390 elements. The
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model and its properties are shown in Fig. 4. Random geometry is modelled by a Gauß
random field with scattering η-values. The optimization is done using a projected gradi-
ent descent algorithm ([12]) and a minimal step-size of 10−5 as convergence criterium.
In order to end up in a better local minimum, the projection parameter β is increased
from one to ten like in [9,13]. The optimization starts from a grey design with a uniform
density ρρρ of 0.3.

Fig. 4. Model and properties of the cantilever example.

It turns out that a robust design optimization ends up in a very bad local minimum
since an increasing β changes the robust objective significantly. Performing a robust
design optimization without increasing β leads to bad designs too, because the robust
objective has lots of local minima near to the starting design. In order to get good robust
designs, the robust optimization is started from a deterministic optimized design. The
optimized designs are tested using a Monte-Carlo simulation with a sample size of
12000.

The results are summarized in Fig. 5. The designs significantly differ from the
design given in [5]. This is due to a different optimization algorithm and differently
chosen filter parameters. The robust and the non-robust design are similar. However
one can see that the thin bars are slightly dilated while thick bars are little eroded for
the robust design. The small differences result in a 30% reduced standard deviation at
the cost of a 0.9% decreased mean value. One can observe that FOSM underestimates
the variance by 35%. This is due to nonlinear effects. The comparison of the Monte-
Carlo results for both designs reveal that despite this inaccuracy the RDO using FOSM
provided a more robust design.



Efficient Robust Topology Optimization of Eigenfrequencies 83

Fig. 5. Optimized designs after different optimizations and corresponding function values evalu-
ated with FOSM and Monte Carlo at a sample size of 12000.

5 Conclusions

Different approaches for robust design optimization using the first-order second-
moment method are presented. The key problem is the determination of the variance
gradient. The adjoint method does not work for eigenfrequencies while direct differen-
tiation and finite differences are computational costly. As an alternative, a new method
called principal sensitivity FOSM for gradient computation is presented. It only requires
one additional objective gradient evaluation independent of the number of design vari-
ables or random variables. In the consequence, it is one complexity order faster than
direct differentiation and finite differences. At the same time, it only requires as much
storage as a deterministic optimization and can be implemented without access to the
source code of FE-software. As a drawback, it is hard to find an appropriate step size for
high accuracy results without significant rounding errors. Using the provided method,
a robust design optimization of a cantilever is done. Compared to a deterministic opti-
mized design, the standard deviation is reduced by 30% at the cost of less then 1%
mean. Future work addresses the problem of rounding errors at small step-sizes and big
models.
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Abstract. The flight of a flapping wing robot has advantages of low
noise and flexibility. A flapping wing robot in a formation can achieve
more lift through the upwash effect generated by other robots to realize
energy saving. In this paper, the wing tip vortex model is established
and the flight formation of the flapping wing robots is analyzed in the
simulation. The flapping frequency, transverse distance, vertical distance,
and the phase difference are simulated to study the influence on the lift
and drag of a trailing robot, which helps to estimate the consumption of
the energy. According to the simulation, the overall energy consumption
can be reduced under the flight formation which takes aerodynamic forces
into account.

1 Introduction

In recent years, flapping wing robot systems became an interesting direction in
the robotics field. Flapping wing robots have advantages of high aerodynamic
efficiency, low flight noise, high maneuverability, and robustness to disturbances.
Researchers have done a lot of work on the stability of the control system and the
reduction of the energy consumption. In [1], an approach is proposed to analyze
the dynamic stability and develop trajectory-tracking controllers for flapping-
wing micro robots. They used a multibody dynamics simulation framework to
accomplish various flight objectives and energy-saving. In [2], control actions are
designed aiming at increasing the flight performances. In [3], the formation of
some groups of birds are investigated and results are presented that aerodynamic
performance of the formation flight would improve when introducing active mor-
phing. In [4], mechanism design and lift force calculation of an underactuated
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flapping wing robot is investigated and an approach for quantitatively calculat-
ing lift and thrust forces of the underactuated flapping wing system is proposed.
In [5], the advantages of wing twist and fold for flapping wing robots is explored
and a new dynamic model is developed which could reduce the overall power
consumption. In [6], a multiple modes flight control method is proposed and
a fuzzy control strategy is presented to realize flight performance with higher
accuracy and higher flexibility.

Nowadays, it is hard to disentangle the complexity of the emerging fluid
dynamics by current analytical understanding alone. In order to achieve energy-
saving flight control, an optimized flight formation and control framework is
proposed to drive a flapping wing robot flock.

2 Proposed Method

The model of the flapping wing robot is show in Fig. 1. The wingspan is 1.6 m,
the body length of the robot is 0.931 m.

Fig. 1. The model of the flapping wing robot.

The shape of the robot wing has a great influence on the lift. According to the
birds in nature, the wing of birds is usually thick in the leading edge and thin in
the trailing edge. Also the upward curved and arched shape of the leading edge
can effectively provide lift. For flapping wing robots with a wingspan greater than
0.3 m, the use of a bird wing can effectively increase lift, so the surface is usually
designed as a curved surface. Therefore, the shape of the wing is improved as
shown in Fig. 2.

The two robots formation flight model is shown in Fig. 3. According to the
wing-tip vortex model, the velocity induced by the wing-tip vortex is given by

U =
ΦΓ

4π|rc| (cos β1 − cos β2) , (1)
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Fig. 2. Model of the improved wing.

where rc is a distance from the vortex line to a point O on the wing, Γ is
the strength of bound vortex, Φ is the unit vector orthogonal to rc. When the
longitudinal distance between the leading robot and the trailing robot is more
than twice longer than the wingspan, it can be considered that β1 ≈ 0, β2 ≈ π,
so Eq. (1) can be simplified as

U =
ΦΓ

2πrc
. (2)

The strength of bound vortex is given according to the Kutta-Joukowski law
[7].

Γ =
L

ρUb′ =
1/2ρU2SCL

ρU (π/4) b
=

2S

πb2
UCLb =

2
πAR

UCLb, (3)

where U is the fluid velocity, b is the wing span, ρ is the fluid density, CL is the
lift coefficient, S is the wing area, AR = b2/S is the aspect ratio, b′ = πb/4, ȳ is
the transverse distance, and z̄ is used to express the altitude difference between
two robots. So the velocity induced by the y-direction upwash flow on the trailing
robot is given by

Uy =
Γ

2π

⎡
⎢⎣

(
y − b′

2 − y
)2

√(
y − b′

2 − y
)

+ z2
−

(
y + b′

2 − y
)2

√(
y + b′

2 − y
)

+ z2

⎤
⎥⎦ . (4)
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The average velocity induced by the y-direction upwash flow can be calculated
as

Uy =
Γ

4πb

[
ln

y′2 + z′2
(
y′ − π

4

)2 − z′2
− ln

(
y′ + π

4

)2 + z′2

y′2 + z′2

]
, (5)

where y′ = ȳ/b, z′ = z̄/b.

Fig. 3. Top view of vortex model for two robot formation flight.

In order to further analyze the influence of the trailing robot affected by the
wingtip vortex of the leading robot, Fig. 4 presents a side view of the trailing
robot wing.

The total lift LF and the total drag DF of the trailing robot lead to

LF = L′ cos (Δζ) + ΔL = L′ cos (Δζ) + D′ sin (Δζ) , (6)
DF = D′ cos (Δζ) − ΔD = D′ cos (Δζ) − L′ sin (Δζ) , (7)

where L′ and D′ are the additional lift and drag produced by the upwash flow,
Δζ is the change of the attack angle influenced by the upwash flow, ΔD is the
change of the drag, and ΔL is the change of the lift. Because lift is far bigger
than drag when flying, Δζ is a very small angle, and one can get

Δζ = arctan
( |Ūy|

U

)
≈ |Ūy|

U
. (8)
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Fig. 4. The side view of the trailing robot wing.

In this time, the lift increment equals to

ΔL = qSΔCL, (9)

where q is the dynamic pressure, ΔCL represents the lift increment coefficient,
and the lift increment coefficient is

ΔCL = ΔζaW

≈ 2CLaW

πARπ2

[
ln

y′2 + z′2 + μ2

(
y′ − π

4

)2 + z′2 + μ2
− ln

(
y′ + π

4

)2 + z′2 + μ2

y′2 + z′2 + μ2

]
,

(10)

where aW is the change rate of the lift curve, μ is a constant related to vortex.
The drag increment equals to

ΔD ≈ LF

( |Ūy|
U

)
. (11)

Finally, the drag increment coefficient can be found, which is

ΔCD =
ΔD

qS
≈ 2CL

πARπ2

[
ln

y′2 + z′2 + μ2

(
y′ − π

4

)2 + z′2 + μ2
− ln

(
y′ + π

4

)2 + z′2 + μ2

y′2 + z′2 + μ2

]
.

(12)
According to Eqs. (10) and (12), the relationship between lift, drag, trans-

verse distance y, and altitude difference z can be completed. After calculating,
when y′ = π/4, namely y = πb/4, and z′ = 0, namely altitude difference z = 0,
ΔL is biggest and ΔD is smallest. Considering Eqs. (6) and (7), the lift LF

is the biggest and the drag DF is the smallest, so it is in the best formation
position for the trailing robot according to these considerations. The formation
shape will be tested in the simulation in the next section.
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The proposed framework consists of a PI (Proportional-Integral) velocity
controller and a formation controller, which takes into account the aerodynamic
force generated by multiple flapping and twisting motions under the condition
of formation flight. The formation controller utilizes the Markov Decision Pro-
cess model [8] to provide formation policy. A flapping wing robot flock achieves
energy-saving flight using the aerodynamic analysis of rolling moment, Lwake,
and average upwash, Wwake. Generally, the inflow velocity is the reference vari-
able. A block diagram of the framework is illustrated in Fig. 5.

Fig. 5. Block diagram of the proposed optimized control framework.

3 Simulations

3.1 A Single Flapping Wing Robot

In this section, the aerodynamic simulation of a single flapping wing robot is
done to obtain the lift and drag under different flapping wing frequencies, so the
effective flapping frequency for energy saving can be found.

The flapping frequency of the flapping wing robot is directly related to the
lift and drag, and has a certain positive correlation. This section will study and
simulate the relationship between the wing flapping frequency and lift-drag ratio.
Therefore, the whole simulation process should focus on the change of lift and
drag on the wing of flapping wing robot.

As shown in Fig. 6, to make the simflow to reality, a cuboid wind tunnel is
built in simulation and it is 4 m long, 3 m wide and 2.4 m high. The incoming
flow velocity at the entrance of the wind tunnel is set to 6 m/s in z-axis direction
which represents the robot flight speed. The flapping wing robot is in the center
of the wind tunnel.

Considering the flapping frequency of pelican birds in nature, the range is
about 2–5 Hz. The wingspan of the flapping wing robot b is 1.6 m and the inflow
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Fig. 6. The simulation environment.

Fig. 7. The vortex intensity around the single flapping wing robot.

velocity is 6 m/s in the wind tunnel. The simulations with different flapping
frequencies are conducted in XFlow, which is shown in Fig. 7, and the simulation
results of lift and drag are shown in Fig. 8.

According to Fig. 8, the lift and drag are influenced by the flapping frequency.
The average lift and drag of a single flapping wing robot at 1.5 Hz, 3 Hz, and
4.5 Hz are obtained, as shown in Table 1. Since the lift and drag increase with
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the increase of flapping frequency, the concept of lift drag-ratio is introduced to
get an idea about the energy consumption of a flapping wing robot.

Table 1. Relationship between flapping frequency and lift-drag ratio.

1.5 Hz 3 Hz 4.5 Hz

lift (N) 0.9627 1.4726 1.9787

drag (N) 0.8353 1.1891 1.4667

lift-drag ratio 1.1525 1.2385 1.3491

Table 1 shows that when the flapping frequency is 4.5 Hz, the lift-drag ratio
of flapping wing robot is the largest, and the effect of energy saving is the most
obvious. Also, considering the large birds in nature like pelicans, their flapping
frequency is often smaller than 5 Hz. Therefore, the formation flight simulation
in the following section will be carried out for this flapping frequency 4.5 Hz.

3.2 Double Flapping Wing Robots

In formation flight simulation, the flapping frequency is set to 4.5 Hz to explore
a energy-saving formation flight formation. The additional lift and drag caused
by the vortex effect of the leading robot on the trailing robot are influenced by
the transverse distance and the vertical distance.

In order to find which transverse distance is most influential on the energy
saving, the wind tunnel is the same as the one in the single flapping wing robot
simulation, and the inflow velocity is 6 m/s. The two robots are in the wind
tunnel with different transverse distances. The lift and drag of the leading robot
and the trailing robot are measured and the calculated average is shown in
Table 2. The simulation time is set to 2 s.

Table 2. The effect of the different transverse distances on the lift and drag.

0 πb/8 πb/4 3πb/8

liftleader (N) 0.7955 0.7230 1.6760 1.7411

liftfollower (N) 1.1861 1.8096 1.7732 1.7884

dragleader (N) 0.6780 0.6299 0.6694 0.7020

dragfollower (N) 0.5997 0.5993 0.6270 0.6222

lift-drag ratioleader 1.1733 1.1478 2.5038 2.4803

lift-drag ratiofollower 1.9779 3.0195 2.8279 2.8745

Table 2 shows that the lift of the trailing robot is bigger than the one of
the leading robot while the drag of the trailing robot is smaller than the one
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Fig. 8. Lift and drag of a flapping wing robot under different flapping frequencies.
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of the leading robot in the simulation, which means that the trailing robot can
obtain additional lift and reduce the drag by the vortex of the leading robot.
It can also be seen from the table that the lift-drag ratio of the trailing robot
increases quickly from 0 to πb/8 and the lift-drag ratio of the leading robot
increases quickly from 0 to πb/4. Considering the consumption of the energy
and the formation flight, choose πb/4 as the transverse distance between the
leading robot and the trailing robot.

In order to study the influence of the phase difference between leading robot
and the trailing robot, the phase difference is set at 0, π/2, π, 3π/2 and the
transverse distance is set at πb/4. The lift and drag of the leading robot and the
trailing robot are measured and the calculated average is shown in Table 3.

Table 3. The effect of the different phase difference on the lift and drag.

0 π/2 π 3π/2

liftleader (N) 1.6760 1.4062 2.0084 1.7611

liftfollower (N) 1.7732 2.0786 0.7926 1.4939

dragleader (N) 0.6694 0.6571 0.6983 0.6805

dragfollower (N) 0.6270 0.6111 0.6074 0.6485

lift-drag ratioleader 2.5038 2.1400 3.3065 2.5878

lift-drag ratiofollower 2.8279 3.4014 1.3049 2.3036

Table 3 shows that when the phase difference is π/2, the lift of the leading
robot is much smaller than the one of the trailing robot and the drag of the
leading robot is bigger than the one of the trailing robot. The lift-drag ratio
increases much when the phase difference achieves π/2. So when the transverse
distance is πb/4 and phase difference is π/2, the lift-drag ratio of the trailing
robot is much bigger than others, which means here that the consumption of the
energy is much smaller.

Finally, the transverse distance between the leading robot and the trailing
robot is set at πb/4, and the phase difference is set at π/2. The vertical distance
between the leading robot and the trailing robot is set at 0 m, 0.15 m and 0.3 m
to study the influence of the vertical distance between two robots on energy
saving. Also the wind tunnel is using the same inflow velocity at 6 m/s. The
two robots are in the wind tunnel with different vertical distances. The lift and
drag of the leading robot and the trailing robot are measured and the calculated
average is shown in Table 4.

According to Table 4, the lift of the trailing robot decreases with the increase
of the vertical distance between leading robot and the trailing robot. Also, the
drag increases and the lift-drag ratio decreases. So when the vertical distance is
0 m, the trailing robot has the biggest lift and the smallest drag which means
the consumption of energy is the smallest.
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Table 4. The effect of the different vertical distance on the lift and drag.

0 m 0.15 m 0.3 m

lift (N) 1.7730 1.2392 1.0630

drag (N) 0.6270 0.6760 0.6952

lift-drag ratio 2.8279 1.2392 1.0630

4 Discussion

In the present study, flapping wing robots are simulated to study the consump-
tion of energy. We can find that the distances, frequency or phase difference
can have an impact on energy saving. In two flapping wing robots, the leading
robot can have the lift with 1.4062 N and the trailing robot will have the lift
with 2.0786 N, so the average lift is 1.7424 N, which means each flapping wing
robot can increase the lift by 23% comparing to a single flapping wing robot,
and it can also save up to 23% of energy consumption. In further research, the
flight formation will contain more flapping wing robots as proposed in Fig. 9, and
a further study of the flight formation will analyzed which takes aerodynamic
forces into account.

Fig. 9. Formation of the flapping wing robots.

5 Conclusions

In nature, the formation flight of a pelican flock can effectively reduce the energy
consumption of individuals. In this study, the transverse distance, vertical dis-
tance, phase difference and flapping frequency are analyzed with two flapping
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wing robots for measuring the lift and drag. Through the simulation, it is feasi-
ble to reduce the energy consumption of swarm flight of flapping wing robots by
a formation controller. This idea provides a feasible solution for the formation
control of flapping wing robots with optimal energy consumption in formation
flight, and also provides an expanding direction for research in this field.
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Abstract. In this paper, we consider data–driven models of open–loop multi–
rigid–body systems. Such models may possess uncertain coefficients or addi-
tional state–dependent terms, which are not present in the nominal system. This
may cause performance issues when the adjoint–based optimal control is applied.
A sample test case illustrates the robustness of the optimal control with respect to
modeling errors. This paper’s paramount goal is to discuss results obtained from
applying optimal control adjoint-based scheme to an open–loop multi–rigid–body
system, the model of which was identified from data.

1 Introduction

Identification of unknown multibody system (MBS) dynamics from given experimen-
tal or numerical data is of paramount importance for accurate future state predictions or
the application of advanced model-based control strategies. A traditional way to identify
an MBS’s dynamics is to find its linear model parameters [6]. On the other hand, new
approaches emerge from the recent development of identification with the use of tech-
niques inspired by machine learning [1,7]. One of these techniques is the least-squares
regression with L1 regularization, which determines parameters and, more importantly,
the sparse structure of the model. Sparsity means that the identified model tends to con-
sist of a minimal number of governing equations. Such approaches have not yet been
widely used in multibody dynamics.

Solution of optimal control problem for MBS might be approached using gradient-
based optimization methods. In order to apply these techniques, one needs to know
the gradient of the cost function, whose analytical derivation renders difficulties in the
field of MBS. Moreover, numerical approaches for finding the gradient pose a simple
task neither and are constantly developed. Among these methods, the finite difference
method and the direct differentiation method are often proposed. Nonetheless, in the
case of multivariate optimization (a significant number of decisive variables might be
called in control of MBS) and large-scale models, the two mentioned methods tend to
perform worse than the adjoint method [3], which recently raised scientists’ interest in
its use with different approaches to dynamics description [10,11].

Many advancements have been done in the field of data–driven identification.
Sparse regression is used to discover equations of motion and create parsimonious mod-
els with the fewest terms out of the candidates. Unfortunately, the adjoint–based optimal
control may not be robust with respect to induced modeling errors.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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The primary importance of this paper is to discuss the results of optimal control of
fully actuated, open–loop multi–rigid–body systems, when a model is identified from
data. We compare the results of optimal control of open-chain structure MBS in two
scenarios, which differ in the model of MBS used in the optimization.

A nominal model is assumed to be perfectly aligned with a hypothetic real MBS.
In the first scenario, the nominal model is known and used to design control signals
to control the MBS. The other scenario must first acquire the model by identifying it
from data recorded during the nominal model’s simulations. Then, the identified model
is used in the optimization process, and eventually, the control signals are applied to
simulation with the nominal model. In the end, it is discussed how the inaccuracy of the
model obtained from the identification affects overall control results.

The paper is outlined as follows. In Sect. 2, we briefly recall MBS dynamics
described with joint coordinates. Then, we introduce the concept of identification based
on regularized regression in Sect. 3. Further, the application of the adjoint method for
optimal control of MBS follows in Sect. 4, and, in the end, we describe compared sce-
narios and discuss the results in Sect. 5. Section 6 concisely sums up the presented work
and outlines further research directions.

2 Multibody Dynamics in Joint Coordinates

Many methods exist to model a constrained system of bodies, describe the bodies’ spa-
tial relations, and compute their coordinates in the global inertial frame. Each method
might be better or worse for particular tasks and has different pros and cons depending
on the application. From all these approaches, we focus on the automatic generation of
equations of motion (EOM) using joint coordinates (independent coordinates), which
lead to a minimal set of coordinates. In the case of open-chain MBS, the number of
coordinates is equal to the degrees of freedom of the MBS. Furthermore, the literature
reveals sequential as well as parallel algorithms for recursive and, at the same time,
efficient generation of EOMs for such an approach [4,5,9].

In this work, without loss of generality, we consider planar and open kinematic
chains consisting of n elements and the same number of degrees of freedom (n). We
define the vector of absolute coordinates

p =
[

pT
1 pT

2 . . . pT
n

]T ∈ R
3n, (1)

which describes the center of mass of individual bodies and the rotation of the local sys-
tem associated with each body relative to the global frame, e.g., the following absolute
coordinates vector describes the i-th body pi =

[
xi yi ϕi

]T
. Additionally, we define a

corresponding vector of velocities as follows

V = ṗ =
[

VT
1 VT

2 . . . VT
n

]T ∈ R
3n. (2)

Constraints, the kinematic pairs in our understanding, are formulated by m independent
constraints equations and aggregated as

ΦΦΦ(p) = 0 ∈ R
m. (3)
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Then, having the environment defined, we can express Newton-Euler equations of
motions for MBS with an open kinematic chain structure and absolute coordinates as
follows {

MV̇+DTλλλ = Q+Q(u)

ΦΦΦ(p) = 0 → Φ̈ΦΦ ≡ DV̇+ ḊV = 0,
(4)

where M(p) ∈ R
3n×3n is a mass matrix of the whole system, V ∈ R

3n is the previously
defined vector of linear and angular velocity, D(p) ∈ R

m×3n is the Jacobi matrix indi-
cating unavailable directions of motions, λλλ ∈ R

m is the Lagrange coefficients vector,
Q(p, ṗ) ∈R

3n are external forces and torques vector, and Q(u) ∈R
3n represents driving

forces and torques. It is worth pointing out that (4) poses a differential-algebraic equa-
tion (DAE), which in general needs to be solved with special techniques tailored for the
structure of the equation.

Now, let us transform the first equation to be compatible with joint coordinates
q ∈ R

n, which, e.g., could be easily defined as angles of rotations for each kinematic
pair (assumed we have only revolute joints). There is a linear mapping between q̇ and
V [5].

V = Hq̇ → V̇ = Hq̈+ Ḣq̇, (5)

where H(q) ∈ R
3n×n is the joint motion subspace dependent (typically) on the MBS

kinematic configuration. An important fact is that the motion subspace H is orthogonal
to the Jacobi matrix D, i.e., D ·H= 0. By inserting (5) into (4) and multiplying the result
by HT , we obtain the equation of motion formulated for joint coordinates

(
HTMH

)
q̈−HT (Q−MḢq̇) = u → M (q)q̈−F (q, q̇) = u, (6)

where M (q) = HTMH is the mass matrix, F (q, q̇) = HT (Q−MḢq̇) is the vector of
forces and torques, and u = HTQ(u) is the vector of joint driving forces and torques.
Compared to the absolute coordinates, the benefit of the joint coordinates approach is
easily seen as (6) is an ordinary differential equation, whereas (4) is a DAE.

Fig. 1. Identification workflow
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3 Identification Based on Regularized Regression

In this work, we implement the least-squares regression with regularization to iden-
tify an MBS’s structure and parameters from previous simulation data (generally –
recorded measurements). In Fig. 1 a scheme of the identification workflow can be seen.
This scheme corresponds to further subsections that describe consecutive steps in the
process.

3.1 Collect Data (Simulation, Measurements)

The process begins with gathering measurements, including control signals ui =
[ui(t1) . . . ui(tk)]

T and joint rotations, which, in our case, are equal to the set of joint
coordinates qi = [qi(t1) . . . qi(tk)]

T , i = 1, . . . ,n. The data is collected with a constant
sampling time from t1 to tk such that k � n. If raw velocity data is unavailable, it, along
with accelerations and higher-order derivatives, can be found with numerical differen-
tiation techniques. Ultimately, all the measurements can be organized as the following
matrices

U =

⎡

⎣
| |

u1 · · · un

| |

⎤

⎦ ∈ R
k×n, Y =

⎡

⎣
| | | | | | | | |

q1 · · · qn q̇1 · · · q̇n q̈1 · · · q̈n
| | | | | | | | |

⎤

⎦ ∈ R
k×3n. (7)

3.2 General Dynamics Model of MBS

It is assumed that in each time step, the dynamics of MBS can be approximated by a
linear combination of p columns from a library of base functions θ = θ(q, q̇, q̈) (1 ×
p vector) and an unknown coefficient vector ξξξ i ∈ R

p, i = 1, . . . ,n (a column vector)
determining a share of each base function in resulting equations of motions

u =M (q)q̈−F (q, q̇) ≈ (θ ·ξξξ )T → (θ ·ξξξ )T −u = 0, (8)

where ξξξ = [ξξξ 1 . . . ξξξ n] ∈ R
p×n is a matrix of stacked unknown coefficient vectors ξξξ i

which are subject to optimization (regression with regularization). Proper formulation
and choice of the base functions library θ = θ(q, q̇, q̈) is a cumbersome task as there
are multiple approaches to fill it with functions, e.g., harmonic functions from Fourier
series or polynomial functions and their non-linear combinations. Nonetheless, it is
worth pointing out that familiarity with motion equations of MBS might help with the
selection.

3.3 Computing ξξξ Coefficient with Regularized Regression

Let us think of (8) as a dynamics model of MBS valid for just a single time step. We can
expand this idea with the previously collected measurement data into a set of dynamics
models interrelated to individual steps from t1 to tk. In other words, we generate linear
dynamics models (8) with respect to ξξξ for each recorded time step ti. The generated
batch of models can be written succinctly in the following linear form

U =ΘΘΘ(Y)ξξξ . (9)
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Matrix ΘΘΘ(q, q̇, q̈) =
[
θT

1 . . . θT
k

]T ∈ R
k×p consists of library function θ values taken at

discussed time steps, from t1 to tk.
A standard approach to solve for the coefficients matrix would be the least square

regression. However, it would generally generate ξξξ coefficient such that each element is
nonzero, and therefore each function from the library θ would play a role in the EOM.
The solution would result in a dense ξξξ matrix. Although minimizing the mean squared
index, such a model might still predict the motion of the MBS inaccurately.

Another approach that raised recent interest in the field is to add an L1 regularization
term to the standard least square regression task

ξξξ ∗ = argmin
ξξξ

1
2
||U−ΘΘΘ(Y)ξξξ ||22 +α||ξξξ ||1, (10)

where α is a weight coefficient chosen to let the regression fit the linear coefficients
acceptably but at the same time guarantee only a few elements of ξξξ matrix to be
nonzero. Then, the resulting model has a limited number of functions from the func-
tion library activated, and consequently, it is possible to find a physical interpretation
of identified equations of motion. Moreover, the obtained model is more general, less
prone to overfitting, and tends to reproduce the nominal model more accurately.

The optimization task expressed in Eq. (10) can be solved with various numeri-
cal methods, one of which is the LASSO method (least absolute shrinkage and selec-
tion operator). In this work, we use a similar approach that originates from recently
developed methods (sequentially thresholded least squares) [7], which were designed
to eliminate near-zero elements of the coefficient matrix recursively and systematically.

4 The Adjoint Method in Optimal Control

Another matter that we investigated in this work is the optimal control of the MBS
using the model obtained by the identification procedure described in Sect. 3. Once we
have a system model, it is possible to implement a feedforward regulator to unburden
the feedback loop and reduce its corrections to the control signal.

The proposed approach of solving the optimal control task with optimization meth-
ods lets one find the optimal control signals. What is more, it can also be considered a
trajectory planner that accomplishes more abstract objectives, e.g., minimizing energy
consumption, avoiding obstacles, or planning discontinuous events.

Let us express the task of finding the optimal control signal u∗ (t) as minimization
of the following cost function

{
u∗ (t) = argminu∈U J (u) , where

J (u) =
∫ T

0 h(q, q̇,u, t)dt+ S (q, q̇)|t=T ,
(11)

where integrand h(·) models cost in the whole time horizon and S (·) is the end time
cost function.

The optimization task (11) is often solved with gradient methods, which in order to
work effectively, need a method to compute the value of the gradient at a given point.
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We can derive the analytical form of the discussed gradient as follows

dJ
du

=
∫ T

0

(
∂h
∂q

∂q
∂u

+
∂h
∂ q̇

∂ q̇
∂u

+
∂h
∂u

)
dt +

(
∂S
∂q

∂q
∂u

)

t=T
+

(
∂S
∂ q̇

∂ q̇
∂u

)

t=T
. (12)

Derivatives ∂q
∂u and ∂ q̇

∂u appear in gradient formulation (12). In general, computing these
derivatives might become a difficult matter in the field of MBS due to the complex and
nonlinear interrelations of variables enclosed in dynamics models. Nevertheless, the
adjoint method [2,11] helps and allows one to omit these complicated computations.

As the assumed linear model of MBS, apriori knowledge of functions library ξξξ and
model (6) being an ordinary differential equation significantly simplify the derivatives
problem, other methods, e.g., direct differentiation method [8], cannot be left without
consideration. However, it must also be reminded that despite these particular features
of the proposed formulation indicating a lack of necessity to implement the adjoint
method, it can still become more efficient for large-scale systems.

Let us adjust the adjoint method to gradient computations of (11). First, we lower
the order of (6) by introducing auxiliary variable v as

(θ (q,v, v̇)ξξξ )T −u = 0, where v = q̇. (13)

Then, we extend cost function J (u) by adding equations from (13)

Ĵ =
∫ T

0

[
h−dT

(
(θξξξ )T −u

)
−wT (v− q̇)

]
dt + S (q,v)|t=T , (14)

where d,w ∈ R
n are Lagrange multipliers. Gradient of such an extended functional

follows

dĴ
du

=
∫ T

0

[
∂h
∂q

∂q
∂u

+
∂h
∂v

∂v
∂u

+
∂h
∂u

−dT ∂
∂q

(θξξξ )T
∂q
∂u

−dT ∂
∂v

(θξξξ )T
∂v
∂u

+

− dT ∂
∂ v̇

(θξξξ )T
∂ v̇
∂u

+dT − wT ∂v
∂u

+wT ∂ q̇
∂u

]
dt+

∂S
∂q

∂q
∂u

∣
∣
∣
∣
t=T

+
∂S
∂v

∂v
∂u

∣
∣
∣
∣
t=T

.

(15)

By applying integration by parts, we eliminate elements that include derivatives
∂ v̇
∂u and ∂ q̇

∂u . Further, following the derivation shown in [11], we finally arrive at the
following final condition problem

⎧
⎪⎪⎨

⎪⎪⎩

d
dt w = ∂h

∂q
T − ∂

∂q (θξξξ )d,
d
dt

(
∂

∂ v̇ (θξξξ )d
)
= − ∂h

∂v
T
+w+ ∂

∂v (θξξξ )d,

w = − ∂S
∂q

T
∣
∣
∣
t=T

, ∂
∂ v̇ (θξξξ )d = ∂S

∂v
T
∣
∣
∣
t=T

.

(16)

If Lagrange multipliers are chosen in compliance with (16), the asked gradient of cost
function J (u) can be found by solving a simple integral

dJ
du

=
dĴ
du

=
∫ T

0

(
∂h
∂u

+dT
)

dt. (17)
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Fig. 2. (a) Test case scheme, (b) A cart on a pendulum

Summing up the adjoint method approach, it should be noted that a system of ordi-
nary differential equations with final conditions (16) must be solved first before one
can compute gradient (17). Moreover, in order to solve the final condition problem,
complete knowledge of the system’s state q, q̇, q̈ in the whole time horizon [0,T ] must
be known. It means that the optimization algorithm will sequentially solve, first, the
forward dynamic problem (6) and then the adjoint equations in each iteration (16).

The need for multiple integrations along the time domain in consecutive iterations
might affect computations time negatively. To help with this issue, one can reuse in (16)
matrices from (6), which are already built and probably were also factorized. However,
such an operation would require significant amounts of data to be written and read from
memory, and the IO operations could become a time bottleneck. Nevertheless, a check-
pointing approach can be implemented here [12]. This method is based on saving only a
fraction of data parsimoniously scattered across the time domain and reintegrating only
a chunk of the domain between checkpoints when needed. Ultimately, these methods
can be accelerated by parallel computing on multicore and GPU-based machines.

5 Optimal Control of Planar Open-Chain MBS

The primary motivation for combining tools described in Sect. 3 and Sect. 4 was to
investigate how inaccuracies in the model used for solving optimal control task affects
the overall control results when the sought signals are applied to the real system. The
real system in our setting is represented by a nominal model, so it is possible to conduct
all the experiments in a virtual environment. A general overview of actions taken can
be seen in the scheme presented in Fig. 2a.

For the purposes of this example, we choose a simple mechanism for simulations
– a pendulum on a cart. Thanks to the choice, the nominal model of the MBS can be
explicitly written in an elegant form. We record simulation data, i.e., measurements of
position, velocity, and acceleration, as well as the control signals by feeding the sys-
tem with sinusoidal controls. Then, we add noise to the saved measurements to imitate
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real sensor readings. Identification, represented by an arrow pointing from the nominal
model to identified model in Fig. 2a, ends the first part of the experiment.

Next, we set a particular optimal control goal and design a proper cost function
to be minimized. As shown in the scheme, two independent optimizations (with the
adjoint method from Sect. 4 implemented) seeking the control signal are done. One has
complete knowledge of the nominal mother, and the other uses the identified model
only. It means that the optimizer works in ideal circumstances in the former setting, and
the latter is more similar to a real-world case.

The final comparison is made by applying results from these two distinct optimiza-
tions to the nominal model. Such an approach lets one see differences in the control
results and investigate how inaccuracies gained by the identification process affect the
control quality.

Further discussion is divided into two parts. In Sect. 5.1, identification and its results
are portrayed. Then, we solve optimization problems in two previously described sce-
narios and compare the results in Sect. 5.2.

The MBS of interest in this example is a pendulum on a cart placed in the gravita-
tional field. The mechanism can be seen in Fig. 2b. We introduce joint coordinates q1

and q2. Both available degrees of freedom are controlled with signals u1 and u2, respec-
tively, as indicated in the figure. In compliance with EOM form (6), the dynamics of
such a system can be modeled by writing matrices M (q, q̇) and F (q, q̇) explicitly as
follows

[
m1 +m2 −m2Lcosq2

−m2Lcosq2 J2 +m2L2

][
q̈1

q̈2

]
−

[−m2Lq̇2
2 sinq2

m2gLsinq2

]
=

[
u1

u2

]
, (18)

where m1, m2 are masses of individual elements, and J1, J2 are their moments of inertia.
For this test case, the physical parameters of the mechanism and environment are set as
L= 0.25 m, m1 = 0.5 kg, m2 = 0.2 kg, J1 = J2 = 0.005 kgm2, g= 9.81 m

s2 .
We collect the data for identification from a simulation, which begins with ini-

tial conditions q1(0) = 0 m, q2(0) = 3π
4 rad and feeds the control signals with u1 (t) =

sin(0.01t), u2 (t) = −0.01sin(2t). Simulation time was set to 8 s. Collected measure-
ments were distorted by the addition of noise with 10−6 amplitude and standard distri-
bution.

5.1 Identification

Before starting the identification procedure described in Sect. 3, one must prepare func-
tion library θθθ . As we have the EOM of the model available explicitly (18), it is relatively
easy to choose functions to insert into the library. The structure of Eq. (18) gives an idea
that besides joint coordinates q1, q2 and their derivatives (velocity and acceleration),
we should also include their nonlinear mappings, i.e., sin(q1), cos(q1), ..., cos(q2).
Ultimately, the library is a set generated by two-element combinations made from the
following subset

{1, q1, q̇1, q̈1, sin(q1) , cos(q1) , q2, ..., cos(q2)} . (19)

Moreover, we add squared velocities q̇2
1, q̇2

2 sin(q1), ..., q̇2
2 cos(q2) to the library.
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Fig. 3. Identification: (a) Position, (b) Error

For this case, we set regularization parameter α = 0.01 from (10) and used data from
the first 4 s of simulation to leave the other half for validation. In Fig. 3a, we present
the joint coordinates time history taken from the simulation of the identified model
overlaid on the data training and validation sets. The results diverge after time t = 6 s,
2 s after passing the training set domain. Therefore, we conclude that for this model, the
prediction is more or less accurate for the 2 s time horizon. The identification error for
both joint coordinates is shown in Fig. 3b. It can be seen that after 2 s of predicting, the
error grows by 103 starting from approximately 10−6 at t = 4 s. Also, we can carefully
conclude that prediction for bodies farther from the ground in the kinematic chain is
worse than for the closer bodies.

Differences are also present in the structure of the identified mass matrix M ident

M ident =
[

0.10q1 −0.10sin(q1)+0.70 0.01q1 −0.05cos(q2)−0.09sin(q1)
0.02q1 −0.05cos(q2)−0.02sin(q1) 0.18

]
(20)

compared to the nominal mass matrix M nom from (18), which has the following form
after inserting the parameters

M nom =
[

0.70 −0.05cos(q2)
−0.05cos(q2) 0.18

]
. (21)

Also, we can see a relationship between the weights of the functions that are common
for both structures M ident and M nom - they are the same. Similar observations can be
made for identified vector F .

5.2 Optimal Control

The optimal control task for this MBS is to move the cart 1 m to the right in 1 s and
simultaneously minimize the velocity. It can be translated into a mathematical form as
a cost function.

J (u) =
∫ 1

0

[
10(q1 −1)2 +100q̇2

2

]
dt +

[
100(q1 −1)2 +100q̇2

2

]

t=1
, (22)
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where the exact weights in the integrand and the end-time cost function were chosen
arbitrarily, keeping in mind their reasonable ratio. The initial condition for the simu-
lations was stable equilibrium (q1(0) = 0 m, q2(0) = π rad). According to the scheme
shown in Fig. 2a, two optimizations were run - one with the nominal model and one with
the identified model. The optimizer used was a BFGS-based tool available in the MAT-
LAB optimization package. All the differential equations were solved with the explicit
Runge-Kutta method implemented in MATLAB’s solver ode45 with absolute and rela-
tive tolerances set to AbsTol = RelTol = 10−6.

Fig. 4. (a) Comparison of control signals, (b) Comparison of coordinates

In both cases, the optimization method was stopped after 60 steps. In the scenario
with the nominal model, the method decreased the cost from 109.97 to 4.86, and in
the second scenario, the one with the nominal model, the cost decreased to 4.85. The
resulting control signals are shown in Fig. 4a. Control signals u1 related to the cart’s
horizontal movement overlap considerably for the whole time horizon, whereas the u2

diverges significantly from time t = 0.6 s. It must be said that the extra functions present
in the identified model have a substantial impact on the generated signals.

In Fig. 4b, results from simulations with different combinations of control signals
and models are shown. Solid and dashed lines, which are results of feeding the control
signals found with the nominal model to the nominal model (solid lines) and feeding the
control signals found with the identified model to the identified model (dashed lines),
are overlapped to a great extent. It means that in an ideal setting, the optimizer found
signals that cause the same mechanism motion, an optimal one. The dotted line, which
in the case of the second coordinate differs massively from the other paths, results from
feeding the nominal model with the control signals found with the identified model.

The last case approximates the real-world scenario the best out of all three settings
plotted. In that case, the cost computed from (22) is 22.40. Therefore, considerable
sensitivity of the results to identified model’s inaccuracies can be observed.

6 Summary and Conclusions

This work presents a set of methods that can be used for optimal control of MBS with
models identified from data. Although these derivations are limited to planar and open-
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chain mechanisms, it does not affect the generality of the approach, which combine
methods being an active field of research recently - methods of regression with regular-
ization and identification and optimal control methods based on the adjoint method for
computing gradients. The investigated MBS with two degrees of freedom indicates that
the control quality found based on an identified model is notably sensitive to the quality
of the identification results. The authors focus now on attenuating this inconvenience by
including sensitivity to the identification’s imperfections in the optimized cost function.

Acknowledgements. This work has been supported by National Science Center under grant No.
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Abstract. This paper proposes a concept for the design and control of an energy
saving manipulator utilizing passive elastic elements for energy storage. Firstly,
we review our previously proposed method and the practical design of an energy
saving manipulator briefly. This method reduces the energy consumption by using
natural frequencies and eigenmodes of the system. Therefore, when the weights
of the system are changed by transferring some objects or when the boundary
conditions are changed, we should adjust stiffnesses of the system. Hence, in this
paper, we propose a very simple variable stiffness mechanism that can change
rotational stiffnesses around the manipulator joint axes. This mechanism makes
it possible to adjust the natural frequencies and eigenmodes of the manipulator.
A prototype 2DOF manipulator with the variable stiffness mechanism is devel-
oped by using the linear springs and the reaction wheels to verify the proposed
method. Experimental results show the effectiveness of the proposed energy sav-
ing manipulator concept.

1 Introduction

Toward the realization of carbon neutrality, thorough energy conservation measures are
being considered in various fields. Since many robots used in factories also consume
a huge amount of energy every day, their energy saving is an important issue. There-
fore, research on energy saving of robots has been actively conducted so far [1,2]. The
authors have studied an energy-saving control method for robots using passive stor-
age elements such as springs [3]. In the proposed method, the energy consumption is
reduced by adding springs to the joints of the manipulator and using the eigenfrequency
and eigenmode of the link system. However, when the mass of the system changes due
to the grasping of the object, or when the boundary conditions at the start and end points
are changed, it is necessary to readjust the eigenfrequency and eigenmode of the sys-
tem. Therefore, in this paper, we propose a simple variable stiffness mechanism that can
be installed at the joint of the manipulator. Using the method of multibody dynamics,
we derive the spring constant conversion formula and formulate the stiffness adjustment
rule based on it. In addition, a planar 2DOF manipulator equipped with the proposed
variable stiffness mechanism is actually manufactured, and the validity of the derived
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
K. Nachbagauer and A. Held (Eds.): IUTAM 2022, IUTAM Bookseries 42, pp. 110–119, 2024.
https://doi.org/10.1007/978-3-031-50000-8_10
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theoretical formula is verified. Finally, we confirm that it becomes possible to flexibly
change the boundary conditions by using the proposed variable stiffness mechanism.

2 Design and Control of Energy-Saving Manipulator

Figure 1 shows the configuration of the proposed energy-saving manipulator. In the pro-
posed method, the joints must be able to rotate freely in order to use the natural vibration
of the system, and motors cannot be installed in the joints like a normal manipulator.
Therefore, the joints are free joints, and the torque is applied from the reaction wheels
installed at the appropriate positions of the links. In addition, a mechanism consisting
of two tension springs and a special spring holder (see Chap. 3 for details) is installed
in the joint to give rotational stiffness. The equations of motion for the link and the
reaction wheel can be expressed as follows.

MMMθθ θ̈θθ +MMMT
φθ φ̈φφ +hhh= −KKK(θθθ −θθθ n) (1)

MMMφθ θ̈θθ +MMMφφ φ̈φφ = τττ (2)

where θθθ = [θ1,θ2 · · · ,θN ]T is the vector of joint variables, φφφ = [φ1,φ2 · · · ,φN ]T is the
vector of rotation angles of reaction wheels, MMMθθ , MMMφθ , MMMφφ are the inertia matrices,
hhh is the vector of centrifugal and Coriolis forces, τττ = [τ1,τ2 · · · ,τN ]T is the vector of
driving torques of reaction wheels, KKK = diag[k1,k2, . . . ,kN ] is the stiffness matrix (ki is
the equivalent spring constant obtained by converting the stiffness of the two tension
springs into the rotational stiffness around the joint axis), θθθ n is the vector representing
the mounting angle at which the spring has a natural length.

Eliminating φφφ from Eqs. (1) and (2) yields the following equations of motion

MMM(θθθ)θ̈θθ +hhh(θθθ , θ̇θθ) = −KKK(θθθ −θθθ n)+uuu (3)

where MMM ≡ MMMθθ −MMMT
φθMMM

−1
φφMMMφθ , uuu ≡ −MMMT

φθMMM
−1
φφ τττ .

Here, we consider a motion that stops at θθθ(0) = θθθ 0 and stops again at θθθ(t f ) = θθθ f .
Energy consumption is evaluated using the following cost function.

J =
∫ t f

0
f0(xxx,uuu)dt, f0(xxx,uuu) =

1
2
uuuTWWWuuu (4)

where WWW ∈ RN×N is a positive definite symmetric matrix. An energy-saving effect
can be obtained by appropriately selecting the spring parameters and motion trajec-
tory. In the following, the control input uuu(t), trajectory θθθ(t), spring constant kkk =
[k1,k2, · · · ,kN ]T , and spring mounting angle θθθ n that minimize the cost function (4) will
be explained.

Since Eq. (3) is nonlinear and it is difficult to obtain an analytical solution, here
we linearize the equations of motion to obtain an approximate solution and analyze
the basic characteristics of the optimal solution. First, the coordinate reference point
is shifted to the middle point between the initial state and the final state in order to
make the boundary conditions symmetrical. That is, define θθθm = 1

2 (θθθ f + θθθ 0), θθθ e =
1
2 (θθθ f − θθθ 0) and transform the coordinates as θ̃θθ(t) = θθθ(t)− θθθm, θ̃θθ n = θθθ n − θθθm. Then,
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Fig. 1. Structure of proposed energy saving manipulator

approximate the inertia matrix at the midpoint θ̃θθ = 000 (θθθ = θθθm) as MMM(θθθm) = M̂MM, and
neglect the centrifugal and Coriolis forces hhh, the equations of motion are linearized as
follows.

M̂MM ¨̃θθθ +KKKθ̃θθ = uuu+KKKθ̃θθ n (5)

Let us consider the free vibration system and calculate the modal matrix ΦΦΦ ∈ RN×N that
satisfies ΦΦΦT M̂MMΦΦΦ = III, ΦΦΦTKKKΦΦΦ = ΩΩΩ 2, ΩΩΩ = diag[ω1,ω2, · · · , ωN ], where III is the identity
matrix and ωi is the i-th natural frequency. We make the coordinate transformation
qqq= ΦΦΦ−1θ̃θθ (qqqn = ΦΦΦ−1θ̃θθ n) and define the state vectors xxx= [xxxT1 ,xxx

T
2 ]

T = [qqqT , q̇qqT ]T . Then,
the following state equations are found.

ẋxx1 = xxx2 (≡ fff 1(xxx,uuu)) (6)

ẋxx2 = −ΩΩΩ 2xxx1+ΦΦΦT uuu+ΩΩΩ 2qqqn (≡ fff 2(xxx,uuu)) (7)

Next, let us introduce an adjoint vector ψψψ = [ψψψT
1 ,ψψψT

2 ]
T and define the Hamiltonian

as H = f0 +ψψψT
1 fff 1 +ψψψT

2 fff 2. Then, the optimal control is derived from the condition
∂H/∂uuu = 000 as uuu = −WWW−1ΦΦΦψψψ2. Substituting this into H, the Hamiltonian along the
optimal trajectory is given by

H = ψψψT
1 xxx2 −ψψψT

2 ΩΩΩ 2xxx1 − 1
2

ψψψT
2 ΦΦΦTWWW−1ΦΦΦψψψ2+ψψψT

2 ΩΩΩ 2qqqn (8)

From Eq. (8), the canonical equations of Hamilton can be derived as follows.

ẋxx = ∂H/∂ψψψ = AAAxxx+BBBψψψ + cccn (9)

ψ̇ψψ = −∂H/∂xxx= −AAATψψψ (10)

AAA=
[

000 III
−ΩΩΩ 2 000

]
,BBB=

[
000 000
000 −ΦΦΦTWWW−1ΦΦΦ

]
,cccn =

[
000

ΩΩΩ 2qqqn

]

By solving the differential Eqs. (9) and (10) under the boundary conditions xxx(0) =
[−qqqTe ,000

T ]T and xxx(t f ) = [qqqTe ,000
T ]T (qqqe = ΦΦΦ−1θθθ e), we obtain the optimal solution that

minimizes the energy consumption. Choosing the weighting matrix asWWW = M̂MM
−1

allows
to decouple the equations by the property ΦΦΦTWWW−1ΦΦΦ = ΦΦΦT M̂MMΦΦΦ = III. In this case, we
can solve the problem analytically and the main results can be summarized as follows.
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The optimal spring mounting angle that minimizes J is always qqqn = 000 (θθθ n = θθθm).
The optimal control uuu(t) can be computed by

uuu(t) = −M̂MMΦΦΦψψψ2(t), ψψψ2(t) = [ψ21(t),ψ22(t), · · · ,ψ2N(t)]T

ψ2i(t) =
2ω2

i {sinωi(t f − t)− sinωit}
sinωit f −ωit f

qei (11)

The optimal trajectory can be expressed as

θθθ(t) = θθθm+ΦΦΦqqq(t), qqq(t) = xxx1(t) = [q1(t),q2(t), · · · ,qN(t)]T

qi(t) =−qei

{
cosωit+

ωit sinωit sinωit f
sinωit f −ωit f

+
(ωit cosωit− sinωit)(1+ cosωit f )

sinωit f −ωit f

}
(12)

The relationship between the minimum value of the energy consumption J and the robot
cycle time t f can be summarized as follows

J(t f ) =
N

∑
i=1

Ji(t f ), Ji(t f ) =

⎧⎪⎪⎨
⎪⎪⎩

2ω3
i (1+ cosωit f )

ωit f − sinωit f
q2ei ( if ωi �= 0)

24

t3f
q2ei ( if ωi = 0)

(13)

These theoretical solutions were derived based on the linearized equations of
motion. However, using a special numerical calculation method for optimal control
[4], we have confirmed that these approximate solutions closely approximate the basic
properties of the exact solutions.

If we consider t f as the quantity that may take any value, H(t f ) = 0 should be
satisfied from the transversality condition. Moreover, since Eq. (8) does not contain t
explicitly, ∂H/∂ t = 0, it holdsH=const. along optimal trajectories. Hence the condition
H(0) = 0 should be satisfied. By substituting xxx(0) = [xxx1(0)T ,xxx2(0)T ]T = [−qqqTe ,000

T ]T

and ψψψ2 into Eq. (8), one can get

H(0) =
N

∑
i=1

−2ω5
i t f sinωit f

(ωit f − sinωit f )2
q2ei (14)

From Eq. (14), it follows that H(0) = 0 is satisfied if sinωit f = 0 (i = 1,2, · · · ,N) or
equivalently ωit f = riπ (i = 1,2, · · · ,N), where ri is an integer. When the condition
ωit f = riπ is satisfied, the cost function (13) can be expressed as

J =
N

∑
i=1

Ji =
N

∑
i=1

2ω3
i (1+ cosriπ)

riπ
q2ei (15)

From Eq. (15), it is understood that Ji takes the maximum 4ω3
i q

2
ei/riπ if ri is an even

number and vanishes if ri is an odd numbers. Hence, J takes the global minimum if all
ri are odd number resulting in the minimum value of zero.

Next, we consider the problem to design the spring stiffnesses kkk = [k1,k2, · · · ,kN ]T
that make the consumed energy minimum for a specified time t∗f . Firstly, from the opti-
mal conditions ωit f = riπ , the natural frequencies read as ωi = riπ/t∗f (i= 1,2, · · · ,N),
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where all ri should be selected to be odd numbers so that all Ji takes the minimum.
The spring stiffnesses kkk = [k1,k2, · · · ,kN ]T should be determined as they satisfy the
characteristic equations det[KKK−ω2

i M̂MM] = 0 (i= 1,2, · · · ,N). Let us define the error vec-
tor eee= [e1,e2, · · · ,eN ]T where ei = det[KKK−ω2

i MMM]. Then, the problem here becomes to
find kkk that satisfies eee(kkk) = 000. Solving this nonlinear equation, e.g., by Newton-Raphson
method, we can obtain the optimal spring stiffnesses kkk that minimizes the energy con-
sumption. Finally, we can achieve the minimum energy control of planar robot manipu-
lators by adding the springs with optimal stiffnesses to the joint at the optimal mounting
angles θθθm.

3 Variable Stiffness Mechanism

As explained in the previous chapter, the optimum spring constant kkk = [k1,k2, · · · ,kN ]T
is calculated from the characteristic equations det[KKK−ω2

i M̂MM] = 0 (i= 1,2, · · · ,N). Since
M̂MM =MMM(θθθm), θθθm = 1

2 (θθθ f +θθθ 0), the optimum spring constant changes if the boundary
conditions θθθ 0,θθθ f are changed or if the mass included in MMM changes when the manip-
ulator grips and transports the object. Since it is not practical to replace springs every
time the boundary conditions or mass change, a mechanism that can adjust the spring
constant is required. Therefore, in this chapter, we propose a simple variable stiffness
mechanism that can be added to the joints of the manipulator.

Figure 2 shows the proposed variable stiffness mechanism for one axis. For simplic-
ity of notation, the subscript i that was added to indicate the joint axis number in the
previous chapter is omitted. The rod-shaped part A© is rigidly connected to the child
link on the tip side, and the T-shaped part B© is fixed to the parent link on the root side
at the optimum mounting angle θn. Here, we consider changing the stiffness by sliding
the mounting positions S1,S2 of the tension springs by the amount b. In the following,
we denote the distance from the rotation axis to the spring mounting points P1,P2 as a,
the spring constant of the tension spring attached between PjS j as kt , and the natural
length as l0. Σ is a coordinate system in which the origin is set on the rotation axis and
the y-axis is aligned with the longitudinal direction of the parent link. ΣA and ΣB are
coordinate systems fixed to parts A and B, respectively, as shown in the Fig. 2.

Firstly, we calculate the torque that this mechanism produces around the point O
when the child link rotates θ with respect to the parent link. The vector ddd j, which
represents the vector from the point S j to the point Pj in the Σ coordinate system, can
be calculated as follows.

ddd j = rrrPj − rrrSj = AAAuuuPj −BBB(uuuSj −uuuO) (16)

where, uuuPj is the vector from the point O to the point Pj expressed in the ΣA, uuuSj and

uuuO are the vectors from the origin of ΣB to the points S j and O expressed in the ΣB.
Moreover, AAA is the rotation matrix from ΣA to Σ , BBB is the rotation matrix from ΣB to Σ ,
and they can be expressed as follows.

AAA=
[
cosθ −sinθ
sinθ cosθ

]
,BBB=

[
cosθn −sinθn
sinθn cosθn

]
(17)
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Fig. 2. Simple Variable Stiffness Mechanism

Since the total length of the tension spring can be calculated by ‖ddd j‖, the torque Qj

produced by one tension spring around the point O can be calculated as follows.

Qj(θ) = −kt(‖ddd j‖− l0)(AAAVVVuuuPj )
T ddd j

‖ddd j‖ (18)

where VVV is a rotation matrix that rotates the vector counterclockwise by 90◦. Then, the
torque T induced around the point O by two tension springs can be calculated as

T (θ) = Q1(θ)+Q2(θ) (19)

Next, we derive an equation for calculating the equivalent rotational spring constant
k around the joint axis from the spring constant kt of the tension spring. As explained
in Chap. 2, the optimal spring mounting angle is θθθ n = θθθm = 1

2 (θθθ 0 + θθθ f ). Therefore,
without loss of generality, we can assume θθθ n = 000, since the spring will expand and
contract symmetrically about the equilibrium point. Hence, we can derive the spring
constant conversion formula by considering the motion around θθθ = 000. When θθθ n = 000,
Eq. (19) can be calculated as follows.

T (θ) = −kt(1− l0
‖ddd1(θ)‖ ){a(a−b)sinθ +ahcosθ}

− kt(1− l0
‖ddd2(θ)‖ ){a(a−b)sinθ −ahcosθ} (20)

Equation 20) is Taylor-expanded around θ = 0, and after first-order approximation, it
is considered to be balanced with the torque −kθ around the point O, that is

T (θ) ∼= T (0)+
∂T (0)

∂θ
θ ≡ −kθ (21)

When θ = 0, ‖ddd1(0)‖ = ‖ddd2(0)‖ =
√
h2+b2, so the first term in the middle side of

Eq. (21) becomes 0. Calculate the derivative ∂T (0)/∂θ of the second term of the mid-
dle side of Eq. (21), and compare the middle side with the right side. Then, the follow-
ing conversion formula for equivalent rotational spring constant k and tension spring
constant kt is obtained.
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k = 2kt

{
l0a2 h2

(
√
h2+b2)3

+
(
1− l0√

h2+b2

)
a(a−b)

}
(22)

Finally, we consider how to obtain the sliding amount b of the spring mounting
point, when the desired rotational spring constant k∗ is specified. From Eq. (22), k can
be considered as a function of b, so it is expressed as k(b). Then, the problem is to
find b that satisfies the nonlinear equation f (b) = k(b)− k∗ = 0. To solve this problem
numerically using Newton-Raphson method, the iteration formula is

b(α+1) = b(α) − f (b(α))
f ′(b(α))

(23)

where α is the iteration number. When using Newton-Raphson method, it is important
to select the initial value b(0) appropriately. If k(b) is Taylor-expanded around b = 0
and first-order approximation is used, the following equation is obtained.

k(b) ∼= k(0)+
∂k(0)

∂b
b= 2kta

2
{
1−

(
1− l0

h

)(
b
a

)}
(24)

Solving the above equation for b gives the following equation.

b=
(2kta2 − k)h
2kta(h− l0)

(25)

By substituting the desired optimum spring constant k∗ into k on the right hand side of
Eq. (25), the appropriate initial value b(0) when applying the Newton-Raphson method
can be calculated.

Fig. 3. Picture of energy saving manipulator Fig. 4. Enlarged view of the joint mecha-
nism

4 Experimental Verification

A variable stiffness mechanism proposed in Chap. 3 and an energy-saving manipulator
equipped with it were prototyped. Figures 3 and 4 show the appearance of the experi-
mental setup. A DC motor is used to drive the reaction wheel, and a rotary encoder is
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installed at the joint to measure the rotation angle of the link. In addition, an electro-
magnetic brake is installed in the joint so that the link can be stopped at any angle.

Firstly, the validity and accuracy of the spring constant conversion formula (22)
derived in Chap. 3 are verified using the second link of the experimental device. Push
a point on the 2nd link at a distance l away from the 2nd joint with a force gauge
perpendicular to the link, and measure the force F required to tilt the 2nd link by θ .
Here, this is repeated 5 times and the average value Fave is obtained, and the torque T
acting on the rotating axis is calculated by T = Favel. As an example, when b = 0[m],
θ is changed by 1[deg] from 2[deg] to 15[deg]. Figure 5 shows the result of calculating
the torque T with circles. The solid line in the figure is the approximate straight line
that passes through the origin using the method of least squares from the obtained data.
If the equivalent rotational spring constant is k, there is a relationship of T = kθ , so
k = 0.0016[Nm/rad] can be obtained from the slope of the approximated straight line.
Similar measurements and calculations are performed for b from 0[m] to 0.07[m] by
0.01[m]. Plotting the obtained k against b results in the circles in Fig. 6. The solid line
in the figure is the result of calculation using the theoretical formula (22). Both results
are in good agreement, which confirms the validity of Eq. (22).

Next, we investigate the adjustable range of k by the proposed variable stiffness
mechanism. Figure 7 shows the result of calculating how much the rotational spring
constant k can be changed by changing the movement amount b of the spring mounting
point based on Eq. (22). For example, when using a tension spring with a spring constant
of kt = 10.0[N/m], by changing b from 0[m] to 0.1[m], spring constant k can be changed
by about 8 times. Also, it can be seen that the larger the value of kt , the wider the range
of k that can be changed.

Fig. 5. Relationship between θ and T . Fig. 6. Relationship between b and k.

Finally, it is verified whether it is possible to move between specified points by
adjusting the mounting points of the springs even when the boundary conditions are
changed by using the proposed variable stiffness mechanism. Here, adaptive control
is used for trajectory tracking control. The motion time is set to t∗f = 2[s], and we
first consider the case where the robot stops at θθθ 0 = [0,0]T [deg] and then stops again
at θθθ f = [40,40]T [deg]. Obtaining the desired spring constant by the optimal spring
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design method explained in Chap. 2, and calculating the spring mounting point move-
ment amount to achieve that spring constant by the method proposed in Chap. 3, result
in bbb= [b1,b2]T = [0.000,0.079]T [m]. Figure 8 shows the experimental result when the
spring mounting points were adjusted to this position. In the figure, the desired trajec-
tory of the end effector’s attitude angle φ is indicated by a dotted line, and the actual
trajectory is indicated by a solid line. From this, it can be confirmed that the target
of 80[deg] is reached at the final time. Next, Fig. 9 shows the experimental results
when the target point is changed to θθθ f = [50,50]T [deg] without changing the spring
constant. From the figure, it can be confirmed that there is an error of about 10[deg]
at the final time. Therefore, based on the changed boundary conditions, the optimal
spring constant is calculated again by the method in Chap. 2, and the appropriate spring
mounting point movement is calculated by the method proposed in Chap. 3, result in
bbb = [b1,b2]T = [0.006,0.069]T [m]. Figure 10 shows the experimental results when the
spring mounting point was adjusted to this position. From the figure, it can be con-
firmed that the target of 100[deg] is reached at the final time. From the above, it was
confirmed that the proposed variable stiffness mechanism can flexibly cope with dif-
ferent boundary conditions. We have confirmed that the proposed method can reduce
energy consumption by about 95% compared to conventional manipulators.

Fig. 7. Variable range of k Fig. 8. Tip angle (θθθ f = [40,40]T deg)

Fig. 9. Tip angle (θθθ f = [50,50]T deg, before
adjust stiffnesses)

Fig. 10. Tip angle (θθθ f = [50,50]T deg, after
adjust stiffnesses)
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5 Conclusions

In this study, we investigated a method of driving the manipulator with significantly less
energy consumption than usual by adding springs to the joints and effectively using the
elastic potential energy. We developed a simple variable stiffness mechanism that can
be attached to a joint, and demonstrated that it can flexibly respond to changes in the
manipulator’s mass and boundary conditions.
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Abstract. Machine tools are among the most important components in modern
production engineering where cost-effective manufacturing of parts with high
geometric accuracy is required. The mechanical components of the machine
together with feed drives and digital control loops form a complex mechatronic
system which must be designed and optimized simultaneously. A mechatronic
system simulation is developed, suitable for mutual optimization of mechanical
structure, feed drives and control loops including multi-axis configurations like
gantry and main-sub. Simulation results are compared to measurements on real
machine tools and show excellent agreement. Furthermore, flatness-based exact
feed forward control is used to significantly improve machine tool performance
in simulation studies.

1 Introduction

The demand for high accuracy of finished workpieces within short cycle times requires
a high static and dynamic structural stiffness of machine tools to ensure low path deflec-
tion during chip removal and high feed drive dynamics to realize fast positioning oper-
ations [1]. Consequently, moving components should have small mass with sufficient
static and dynamic structural stiffness. To allow manufacturers to mill complex parts,
five axis milling, where the tool can be set in any direction in space, is state of the art.
In a typical axis configuration, a machine tool rotates on the A and B axis and moves
across X, Y and Z in a linear direction. Depending on the machining task, various
designs and kinematic structures exist to link those five axes. Also, various parallel and
hybrid kinematics exist [3].

Among various available drive concepts for machine tool axes, ball screw spindle,
rack and pinion, and linear motor drives are typically used in single- or multi-drive
arrangements [2]. Depending on different requirements, such as machining process,
operating range, machine tool kinematics and desired trajectory dynamics, a best fitting
drive concept for each application may be found [7]. The resulting dynamical system is
of multiple input - multiple output (MIMO) type, nonlinear and thus pose-dependent.

In industrial applications, the use of cascaded feedback control loops with some
extensions such as feedforward controls, filters and reference models is well established
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[9]. These independently controlled drives can be tuned without extensive modelling in
advance [16]. Automatic tuning algorithms determine control parameters quickly. How-
ever, in case of strong pose-dependent axis characteristics, commissioning can become
a very challenging task, requiring a lot of expert knowledge. The resulting control loops
often suffer from low bandwidth and high trajectory error [2]. Finding robust controller
parameters is amongst the most important tasks in machine tool engineering. Although
other linear and nonlinear control methods are hard to implement in industrial numeri-
cal controllers, they are still of great interest for machine tool manufacturers. Nonlinear
position control methods such as flatness-based design [11] have already been used
experimentally for parallel kinematic machine tools and show the potential to signifi-
cantly increase the machine tool performance by reduced tracking error [4].

Mechatronic system simulation offers the possibility to virtually examine machine
tool structures, drive concepts, control strategies and machining processes regarding
the impact on the overall system behavior. Machine tool dynamics can be assessed and
improved in advance, reducing the need for physical test benches [1].

In this paper, the mechatronic system simulation introduced in [7,13,14] is extended
to multi-drive arrangements like gantry and main-sub, and applied to the coupled
machine axis configuration of a linear Y- and rotating A- axis of a recently designed
high performance machine tool. To reduce the trajectory error, the standard controllers
are extended by a flatness-based feedforward control. Experimental measurements in
frequency and time domain of the machine tool with standard controllers show excellent
agreement with the mechatronic system simulation. Simulation results demonstrate that
nonlinear feed forward control in combination with well-known standard controllers
improve positioning performance, e.g. reduced tracking error, overshoot and ringing,
significantly.

2 Mechatronic System Simulation

The most comprehensive mechatronic simulation can be reached using flexible multi-
body systems where large nonlinear feed drive movements can be considered and elas-
tic deformations are included [1]. However, this type of simulation is usually limited
to computationally expensive time domain analysis. If movements are assumed to be
small, also the finite element method is suitable for a coupled simulation. In this case,
the behavior of a linearized system can be even examined in frequency domain. In the
present work, a finite element model of an entire machine tool is used to define the
mechanical properties of structure and drive trains. Controllers and electrical character-
istics are modeled in a graphical block diagramming tool. The approach is similar to
an application in references [7,13,14] but as novelty also incorporates rotary axes and
multi-drive arrangements. Furthermore, a nonlinear rigid multibody model is used to
design advanced feed forward control.

2.1 Finite Element Model

Using the finite element method (FEM), the structure of a machine tool including all
mechanical parts of the drive trains is approximated by a finite number of regular ele-
ments. The remaining unknowns are the displacements of the nodes which are the f
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degrees of freedom (DOF) of the system. The equations of motion can be written
in matrix form as system of f coupled, second-order, ordinary differential equations
(ODEs)

MMMẍxx(t)+DDDẋxx(t)+KKKxxx(t) = PPP(t) , (1)

where MMM ∈ R
f× f , DDD ∈ R

f× f , KKK ∈ R
f× f are the global mass, viscous damping, and

stiffness matrix, respectively. PPP ∈ R
f is the time dependent load vector and xxx ∈ R

f is
the displacement vector of the degrees of freedom.

For efficiency reasons a normal modes model order reduction of Eq. (1) is per-
formed before rearranging into state-space a representation

[
γ̈γγ
γ̇γγ

]
=

[−mmm−1ddd −mmm−1kkk
III 000

]
︸ ︷︷ ︸

AAA

[
γ̇γγ
γγγ

]
+

[
mmm−1ΦΦΦTRRRT

000

]
︸ ︷︷ ︸

BBB

uuu , (2a)

⎡
⎣ẍxxaẋxxa
xxxa

⎤
⎦ =

⎡
⎣−SSSΦΦΦmmm−1ddd −SSSΦΦΦmmm−1kkk

SSSΦΦΦ 000
000 SSSΦΦΦ

⎤
⎦

︸ ︷︷ ︸
CCC

[
γ̇γγ
γγγ

]
+

⎡
⎣SSSΦΦΦmmm−1ΦΦΦTRRRT

000
000

⎤
⎦

︸ ︷︷ ︸
DDD

uuu , (2b)

with system matrix AAA ∈ R
2m×2m, input matrix BBB ∈ R

2m×i, output matrix CCC ∈ R
3 j×2m,

feed-through matrix DDD ∈ R
3 j×i and modal displacement vector γγγ ∈ R

m. System matrix
AAA holds the modes of the undamped system which are obtained as solution of the gen-
eralized eigenvalue problem

MMMΦΦΦΩΩΩ = KKKΦΦΦ , (3)

where ΦΦΦ ∈ R
f×m is the matrix of mass normalized mode shapes, with m represent-

ing the number of desired modes, ΩΩΩ = diag
(
ω2

1 , . . . ,ω2
m

)
is a diagonal matrix of the

eigenvalues ωk, k= 1, . . . ,m and mmm= ΦΦΦTMMMΦΦΦ and kkk= ΦΦΦTKKKΦΦΦ are the modal mass and
stiffness matrix, respectively. A modal damping matrix ddd = 2mmmdiag(ξ1ω1, . . . ,ξmωm)
is generated by assigning modal damping values ξk individually to each mode. Parti-
tion matrix SSS ∈ R

j× f reduces the output to j DOFs of interest of displacement vector
xxx in Eq. (1), i.e. the actual nodal displacement xxxa, velocity ẋxxa and acceleration ẍxxa of
the measurement systems and some prominent points like tool and workpiece center
point (TCP, WCP). Similarly, partition matrix RRR ∈ R

i× f reduces the load vector PPP of
Eq. (1) and limits the possible input vector uuu ∈ R

i to forces and moments acting on i
outstanding DOFs. To enable a subsequent coupled simulation of a controlled moving
mechanical structure, the rigid body modes (ωk = 0) of the statically underdetermined
FEM system have to represent the kinematic permissions of the real machine tool.

2.2 Control Loop Model

In modern machine tools, cascaded control loop structures with innermost PI current
control loop, PI velocity control loop and outermost P position control loop are state of
the art [9]. Extensions, such as adaptive control parameters, reference models and fil-
ters can influence the control loops behavior significantly. The tracking error is reduced
using additional feed forward actions. For large scale machine tool axes or carriages
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with low structural stiffness, drive torque is frequently provided by multiple, mutually
independent drives, which improves the overall dynamical properties [16]. In numer-
ical controls, e.g. Siemens Sinumerik NC, typical representatives of these multi-axis
couplings are gantry and main-sub [12].

Gantry In a gantry axis grouping a guide axis is traversed in conjunction with at least
one synchronized axis. Each drive constitutes a complete axis system and thus has
its own measuring system. Setpoint values are provided by the guide axis. To prevent
any damage to the machine, all involved gantry drives must be operated in absolute
synchronism.

Main-Sub Main-sub coupling is a speed setpoint coupling between a main axis and
some sub axes, involving a torque equalization controller for even torque distribu-
tion. The sub axis is traversed only speed-controlled, not position-controlled, with
the setpoint speed of the main axis. An additional torque can be applied to achieve
a mutual tension in the individual drives allowing for the compensation of backlash
effects, e.g. gear backlash.

Figure 1 depicts schematically the principal implementation of the control loop
of two main-sub coupled axes in the simulation model. Each drive system provides
mechanical torque in the motor (M1, M2). The actual current ia is controlled in the
innermost PI current control loop by use of proportional gain Kpi and integrator reset
time Tni. The actual rotational velocity na of the motor encoder (E1, E2) is regulated
towards the setpoint velocity ns by the velocity PI controller (Kpn, Tnn). The P position
control gain Kv amplifies the tracking error, i.e. the difference of position setpoint xs
and actual virtually measured position xa. Velocity and current feedforward (nffw, iffw)
reduce the tracking error considerably but can not affect the disturbance characteristics.
Main axis position control provides the velocity setpoint for both, main and sub axis. A
PI torque equalization controller (Kpp, Tnp) is involved to distribute the torque evenly
to both drives by generating an extra velocity setpoint for each motor. The optional
tensioning torque Mp can be applied smoothly by a prefilter with equivalent time Tep.

All feedback loops in the proposed mechatronic system simulation are modelled in
discrete-time representation with real-world sampling rates considering delay times for
digital measurement acquisition, data transmission and computing times. In addition to
the approach presented in previous works [7,13,14], this paper also accounts for rotary
drives and multi-axis coupling.



124 R. Binder et al.

Fig. 1. Schematic representation of the cascaded control loop structure of two main-sub coupled
drive axes including torque equalization control and tensioning torque.

2.3 Exact Feedforward and Trajectory Planning

Differential flatness is a nonlinear modelling approach, first introduced by Fliess et al.
in 1992 [8]. It extends the notion of controllability from linear systems to nonlinear
dynamical systems. In a differential flat system an output exists, with which all states
and inputs can be expressed explicitly in terms of this flat output and a finite number of
its derivatives.

In the MIMO case, a system of n nonlinear first order differential equations with m
affine inputs uuu=

[
u1 . . . um

]T ∈ R
m and m outputs yyy=

[
y1 . . . ym

]T ∈ R
m reads,

ẋxx= fff (xxx)+
m

∑
j=1

ggg j(xxx)u j (4a)

yyy= hhh(xxx) (4b)

where xxx ∈ R
n are the states, fff (xxx) and ggg j(xxx), j = 1, . . . ,m are smooth vector fields and

hl(xxx), l = 1, . . . ,m are smooth functions.
Derivatives of all hl(xxx) outputs can be noted elegantly using Lie-derivatives [15]

and yield the transformation

zzz= ΦΦΦ(xxx) =
[
h1(xxx), Lfff h1(xxx), . . . , L

(r1−1)
fff h1(xxx), h2(xxx), . . . , L

(rm−1)
fff hm(xxx)

]T
, (5)

and consequently
⎡
⎢⎢⎣
y(r1)

1
...

y(rm)m

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
L(r1)
fff h1(xxx)

...

L(rm)fff hm(xxx)

⎤
⎥⎥⎦

︸ ︷︷ ︸
bbb(xxx)

+

⎡
⎢⎢⎣
Lggg1L

(r1−1)
fff h1(xxx) . . . LgggmL

(r1−1)
fff h1(xxx)

...
. . .

...

Lggg1L
(rm−1)
fff hm(xxx) . . . LgggmL

(rm−1)
fff hm(xxx)

⎤
⎥⎥⎦

︸ ︷︷ ︸
DDD(xxx)

⎡
⎢⎣
u1
...
um

⎤
⎥⎦ . (6)

If DDD(xxx) is regular in a vicinity x̄xx ∈ U , the vector relative degree r = r1 + . . .+ rm = n
and the desired trajectory matches the systems initial conditions xxx0 = xxx(0) = xxxd(0), the
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system can be exactly linearized and feed forward u∗
j can be planned using

⎡
⎢⎣
u∗

1
...
u∗
m

⎤
⎥⎦ = DDD−1(xxxd)

⎛
⎜⎜⎝

⎡
⎢⎢⎣
y(r1)

1,d
...

y(rm)m,d

⎤
⎥⎥⎦−

⎡
⎢⎢⎣
L(r1)
fff h1(xxxd)

...

L(rm)fff hm(xxxd)

⎤
⎥⎥⎦
⎞
⎟⎟⎠ , (7)

where xxxd = ΦΦΦ−1
([

y1,d ẏ1,d . . . y(r1−1)
1,d y2,d . . . y(rm−1)

m,d

]T)
is computed from the

desired trajectory of the outputs and their derivatives. Consequently, the planned trajec-
tories yl,d , l = 1, . . . ,m must be at least rl-times continuously differentiable to result in a
continuous system input. However, if the chosen outputs result in r = r1 + . . .+ rm < n,
an internal zero dynamics remains in the system.

Among many existing approaches for trajectory planning, polynomial functions
[10], Gevrey functions [5] and classical s-curve trajectories whose differentiability is
increased through filters [6] are common. In this work polynomial functions for rest-to-
rest trajectories of form

yl,d(t) = yl,d,S+
(
yl,d,E − yl,d,S

)(
2rl+1

∑
i=rl+1

γ̃i
(

t− tS
tE − tS

)i
)

(8)

are used, where yl,d,S = yl,d(tS) is the start position and yl,d,E = yl,d(tE) is the end posi-
tion, respectively. The requirement that all derivatives must be zero at the start and end
point yields the coefficients γ̃i of the polynomial [10]. The transition time tT = tE − tS
of the rest-to-rest movement can be optimized offline in a way, that all requirements
regarding maximum acceleration, velocity and drive torque of the involved axes are
met.

3 Application, Results and Discussion

In this work, the recently designed standard machine center syncromill c21-63/1500 of
machine tool manufacturer Fill GmbH is considered. In particular its Y- and A- axis are
of interest. Figure 2 depicts an overview of the machine tools axes configuration with
the associated drives. Workpieces are mounted to a carriage (bridge) which traverses
in the vertical Y- direction and rotates around the A- axis. The two axes form an open
kinematic chain whose system dynamics can be formulated as nonlinear MIMO system.
A mechatronic system simulation as proposed in Sect. 2 has been set up to investigate
the individual axis dynamics. Simulations revealed that for the vertical movement two
drives (Y1 and Y2) with gantry grouping are necessary to avoid unacceptable canting
of the bridge. For the A-axis rotation, both sides of the bridge are driven in a gantry
group. Each individual side consists of two motors in main-sub coupling engaging into
a common gear wheel with mutual tensioning torque.

The machine tool is equipped with a Siemens Sinumeric One CNC system, which
offers a built-in data logger to acquire measurement data in time and frequency domain.
Figure 3 (a) depicts the measured xmeas and simulated xsim, x = (A,Y ) open loop fre-
quency response function (FRF) of the velocity controlled axes. These FRFs describe
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Fig. 2. Schematic representation of the nonlinear MIMO feed forward control in simulation stud-
ies. Frames offset in the background represent identical accompanying gantry group control
loops.

in frequency domain the actual motor velocity output at given actual torque input and
are considered as plant in control theory. Furthermore, in (b) and (c) measured and
simulated data of closed loop velocity and position control is given. Note that simu-
lated FRF data results from the comprehensive mechatronic system model, linearized
at the specified machine tool pose. Considering the enormous complexity of the appli-
cation, all measured and simulated FRFs agree excellently. Figures 5 (a) and (b) show
that joint movement of Y and A by standard jerk limited s-curve trajectories, e.g. the
acceleration characteristic is trapezoidal, excites the individual position control reso-
nance frequency significantly. This results in oscillations approaching the end position.
Furthermore, individual single axis operation (c) and (d) leads to strong disturbance of
the respective non-moving axis.

Fig. 3. Measured and simulated FRFs at position Y = 0, A= 90◦: Velocity controlled system (a);
Closed loop velocity control (b); Closed loop position control (c)
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To improve the positioning performance, exact feed forward control based on tra-
jectory planning of differential flat outputs has been developed. For exact feed forward
planning a model covering the main nonlinearities of the Y- and A- axis combination
is necessary. Figure 4 provides a sketch of the lumped model of this nonlinear system.
Inertia JMY accounts for the motors, couplings and spindles of the Y- axis. The motor
rotation φY is transformed into a vertical movement y via pitch p by a ball screw spin-
dle, modelled as spring cN and damper dN . No posture dependency of cN is considered,
since the associated natural frequency occurs in the middle frequency range, which is of
little interest for the position accuracy. A rigid guiding system connects the Y- carriage
(mY ) to the substructure. Load and bridge (mL, JL) are pivoted in the Y- carriage and
rotate with φL. The bridge is connected to a gearbox iG and subsequently via spring
cG and damper dG to the motors of the A- axis (JMA). Input torque MA and MY is pro-
vided by motors of A and Y which rotate with φA and φY , respectively. Although the
overall machine tool installation condition and the guiding system influence the oscil-
lations during positioning operations significantly, it is neglected as its consideration
by additional degrees of freedom would detract the flatness property from the selected
system outputs φL and y. The four generalized variables ( f = 4) of the lumped system
are qqq=

[
φY y φA φL

]T
. Lagrange’s equation yield equations of motion

Fig. 4. Nonlinear, lumped, rigid multibody model of machine tool A- and Y- axis.

d
dt

[
∂ (Ekin −Epot)

∂ q̇k

]
− ∂ (Ekin −Epot)

∂qk
+

∂R
∂ q̇k

= Qk , k = 1, . . . , f (9)

where Ekin holds all the systems kinetic energy and Epot the potential energy, respec-
tively. Rayleigh dissipation function R handles the effects of the velocity-proportional
frictional forces of the outputs and on the right hand side Qk considers all non-
conservative forces and moments like MA and MY . Introduction of state vector xxx =[
φY φ̇Y y ẏ φA φ̇A φL φ̇L

]T
, yields a system of nonlinear, first order differential equa-

tions with two affine inputs,



128 R. Binder et al.

ẋxx= fff (xxx)+gggY (xxx)MY +gggA(xxx)MA , (10a)

y= hY (xxx) , (10b)

φL = hA(xxx) . (10c)

Due to the lengthy expressions, this system (10) is not given explicitly. For the
described model the selected outputs φL and y are flat, inputs MA and MY enters explic-
itly in derivatives rY = rA = 4. Figure 2 gives an overview of the feed forward control
in simulation studies. The individual cascaded control loops including main-sub and
gantry groupings remain unaltered due to partly inaccessible interfaces and capsuled
Siemens Sinamics S120 drive units. The drives receive setpoint and feedforward values
for position x∗

s = yx,d , velocity ẋ∗
s = ẏx,d and motor current i∗x , x= (A,Y ) generated from

exact feedforward decoupling (7) of desired polynomial trajectories (8).
For fair comparison purpose in Fig. 5, the transition time tT of the proposed poly-

nomial setpoint trajectories x∗
s and standard jerk-limited s-curve setpoint trajectories xs

is equal. Due to the higher smoothness of the polynomial trajectory and the almost per-
fectly feed forwarded drive torque, less oscillations are excited in simulated actual posi-
tion signals x∗

a,sim compared to measured and simulated actual position signals xa,meas
and xa,sim. The disturbance caused by the respective other moving axis is also reduced
considerably. However, non-equal time constants of the velocity and current controllers
as well as transmission delays prevent even better disturbance characteristics.

Fig. 5. Measured and simulated rest-to-test movements of standard s-curve trajectories with stan-
dard feed forward, compared to simulated polynomial trajectories with proposed exact feed for-
ward: Joint positioning operation of Y axis (a) and A axis (b); Y axis response during A axis
moving (c); A axis response during Y axis moving (d)
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4 Conclusion

The developed mechatronic system simulation can implement all common machine
tool drive systems including multidrive applications such as main-sub or gantry. It is an
excellent analysis tool to evaluate the mechanical structure, axis kinematics, drive sys-
tems and control. The authors are confident that for Siemens Sinumeric One a nonlinear
MIMO exact feed forward control can be implemented using so called compile cycles.
Simulation studies promise a significant improvement of positioning performance using
this exact feed forward control.
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9. Groß, H., Hamann, J., Wiegärtner, G.: Elektrische Vorschubantriebe in der Automatisierung-
stechnik. Publicis Corporate Publishing (2006)
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Abstract. Feedforward control of a manipulator can be generated with
a sufficiently accurate stable inverse model of the manipulator. A Feed-
forward Neural Network (FNN) can be trained with experimental data
to generate feedforward control without knowledge about the system at
hand. However, the FNN output can show unphysical behaviour espe-
cially in operational regimes where the training data is sparse. Instead,
the output of a Lagrangian Neural Network (LNN) is limited by physical
constraints and hence is expected to predict the (inverse) multibody sys-
tem behaviour more robustly. We propose to generate the feedforward
control by first training a LNN that captures already most features in
experimental data and next add a FFN to account for a relatively small
residual. Experimental results from a fully actuated 2-DOF manipulator
with flexure joints show that the accuracy of the controlled motion using
this approach is comparable to using an identified inverse plant model
built from the system’s equations of motion.

1 Introduction

Feedforward control can greatly improve the accuracy of a manipulator. In a typ-
ical implementation an inverse dynamic model of the multibody system at hand
is used to compute the required actuator input to follow the reference trajec-
tory. The achievable performance gained from this feedforward control depends
heavily on the correctness and completeness of the model. In a model-based app-
roach a white-box model with the equations of motion of the multibody system
is derived and its parameters are estimated [6,10]. Assuming these parameters
have a clear physical meaning, it is expected that the model can be used for a
wide variety of trajectories. However, the “richness” of the model is obviously
restricted to the features included in the model structure.

Alternatively, in a data-driven approach a black-box model is identified purely
from data e.g. using machine learning techniques. Abdul-hadi [1] presents a Feed-
forward Neural Network (FNN) to learn the dynamic behaviour of a robotic sys-
tem without any knowledge about the system dynamics and its parameters. It
proved to be feasible to solve this problem with reasonable accuracy. However,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
K. Nachbagauer and A. Held (Eds.): IUTAM 2022, IUTAM Bookseries 42, pp. 130–141, 2024.
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care has to be taken to avoid overfitting and likely the model outputs are incor-
rect for operating conditions that were not sufficiently excited in the training
data.

To mitigate this risk physics informed neural networks (PINN) are being
researched, where the training is constrained to a predefined physical law. Lut-
ter et al. [8,9] propose a Lagrangian Neural Network (LNN), or Deep Lagrangian
Networks (DeLaN), to incorporate the Lagrangian dynamics into a neural net-
work. The authors could obtain an inverse dynamic model of a robotic system
of which the accuracy is similar to the performance of an analytical model.
Furthermore, the trained model can handle extrapolations to new trajectories,
e.g. with increased velocities. One drawback of this LNN is the exclusion of
non-conservative forces like damping and friction in the Lagrangian formula-
tion which can result in significant errors when applied to real physical sys-
tems. Liu et al. [7] extend an LNN with a parallel FNN to approximate non-
conservative physics. Both neural networks are trained simultaneously, where
the unconstrained FNN is penalised to discourage it from learning conserva-
tive dynamics. However, it was found that the results strongly depend on the
penalisation factor.

In this paper we research the use of combining a LNN and FNN to learn an
inverse dynamic model of a manipulator with flexure joints [3]. For such manip-
ulator it is expected that the conservative contribution dominates. Hence it is
proposed to train the neural networks sequentially: First the LNN should cap-
ture the dominant conservative dynamic behaviour and next the FNN is trained
with the relatively small residue. The outputs of both networks are added to
estimate the actuator forces needed to perform a specified motion. This esti-
mation is applied as feedforward control and the improvement of the motion
accuracy is compared to results obtained with feedforward control computed
with a white-box manipulator model.

2 Method

2.1 2-DOF Manipulator with Flexure Joints

We consider the fully actuated manipulator with two degrees of freedom
(DOF) shown in Fig. 1(a) [3]. The schematic drawing of Fig. 1(b) illustrates that
two actuators drive the rotation of two arms (“A” and “C”) resulting in a trans-
lational end-effector (“eff”) motion in a horizontal plane. All joints are flexure
joints allowing rather smooth operation with low friction and hysteresis. Con-
sequently, contributions from the link mass and joint stiffness dominate in the
non-linear equation of motion written in independent generalised coordinates q
as

F = Fc + Fnc = M(q)q̈ +
1
2
q̇T ∂M(q)

∂q
q̇ +

∂V (q)
∂q

+ Fnc, (1)

where Fc represents the conservative part in the total actuator force vector F . It
is expressed in the symmetric and positive definite mass matrix M and poten-
tial energy V , the latter due to the stiffness in all joints. The non-conservative
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Fig. 1. The 2 DOF manipulator with flexure joints [3]. The view of the manipulator
in the photo is rotated relative to the other views.

forces Fnc describe all remaining, possibly non-linear effects like cogging or fric-
tion caused by the cables connected to the moving parts of the actuators and
sensors. Both rotation angles of the actuated arms are chosen as independent
coordinates q. These are computed from the displacements Yx and Yy measured
with “Encoder X” and “Encoder Y” in Fig. 1(c). Both actuator forces Fx and
Fy shown in this figure are calculated from the applied motor currents assuming
a constant and known ratio between force and current for each motor.

2.2 White-Box Model

For the white-box model the kinematic relations must be derived that express the
motion of all links and the joint rotations in the independent coordinates q. The
kinematic expressions are simplified by ignoring pivot shifts that are inherently
introduced by the cross flexure joints used for the joints in this setup.

In the dynamic parameters 5 independent mass and inertia contributions
from the links and end-effector can be defined. To represent the joint stiffnesses
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6 independent stiffness parameters are needed. The damping and friction contri-
bution Fnc is assumed to be dominated by 2 damping parameters that capture
the (viscous) damping arising from the cables of which the deformations are
directly linked to the joint rotations and hence the independent coordinates q.
Finally it was observed in experimental data that the measured forces can exhibit
a constant offset which results in 2 more parameters.

The equation of motion (1) can be written in a parameter linear expression
as

Φ(q, q̇, q̈) θ = F , (2)

where parameter vector θ stores the 15 parameters and regression matrix Φ
depends only on q, q̇ and q̈. From a mathematical point of view it is expected
that the regression matrix is non-singular for the proposed parameter set and all
parameters can be found with the Moore–Penrose pseudoinverse Φ†. However,
using experimental data it may appear that with a feasible excitation not all
parameters can be identified accurately. Common linear regression techniques
can be used to determine a base parameter vector, e.g. from a singular value
decomposition of Φ [6,10].

2.3 Lagrangian Neural Network (LNN)

To obtain the black-box model it would be possible to learn the total forces F
from trajectory data q, q̇ and q̈ with a FNN, but then the physical structure
of Fc is not taken into account. Hence a LNN [8,9] is used for this part of the
feedforward control that can be written as

Fc = L(q)LT (q) q̈ +
1
2
q̇T ∂(L(q)LT (q))

∂q
q̇ +

∂V (q)
∂q

, (3)

where the lower triangular matrix L is the Cholesky decomposition of the mass
matrix M . For a 2-DOF system it has only one non-zero off-diagonal term lo1

L =
[

ld1 0
lo1 ld2

]
, (4)

and both diagonal terms ld1 and ld2 are positive to ensure a positive definite mass
matrix M = LLT . The rightmost term in Eq. (3) includes the non-negative
potential energy V .

Figure 2 shows the structure of the LNN implementation in which a “Physics
layer” is added to a FNN. This combination and the implementation of the FNN
assure that the LNN represents Eq. (3). The outputs of the FNN are estimates of
the potential energy V̂ and matrix L̂ where the latter is split into the off-diagonal
l̂o and positive diagonal l̂d terms. All estimates are functions of the positions
q only. The blue neuron (l̂o) in the output layer represents a linear activation
function and the orange neurons (l̂d, V̂ ) have a ReLu or rectifier activation, which
means that their output equals the neuron’s input for non-negative values and
zero otherwise. Automatic differentiation [2] is used to compute the derivatives
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Fig. 2. Structure of the LNN, including the physics transformations (adapted from [5]).

of V̂ and L̂ with respect to q that appear in Eq. (3). The network is trained to
minimise the mean squared error between the estimated forces denoted Fpred in
Fig. 2 and measured forces.

The remaining forces Fnc are estimated with a general FNN, where it is
assumed the forces only depend on positions q and velocities q̇. In the training
procedure of both networks we prefer to avoid the dependency on a penalisation
factor that is used in simultaneous training [7]. We concluded from simulations
that training the LNN first on the full F results in a sufficiently accurate estimate
of Fc. Apparently the relatively small contribution of Fnc does not result in a
significantly biased estimate of the Fc part. Hence the LNN is trained first and
next the FNN is trained on the residue F −Fc. Tensorflow is used for the training
of both LNN and FNN.

3 Results

3.1 Training Data

To identify the parameters in the white-box model and to train the neural net-
works, 9 datasets have been used from as many controlled motion experiments.
For each experiment a two-dimensional trajectory has been generated which
specifies the desired end-effector x and y positions as functions of time. Each of
these desired positions is described with a non-periodic smooth random func-
tion [4] defined by Fourier series with random coefficients. For a given wavelength
parameter λ > 0 and interval [0, L], the function is given by

f(t) =
√

2
m∑
j=1

[
aj cos

(
2πjt

L

)
+ bj sin

(
2πjt

L

)]
, (5)

where m = L/λ and coefficients aj , bj are independent samples from a normal
distribution with zero mean and variance 1

2m+1 . The datasets are generated
with λ ∈ [10, 8.0, 6.0, 4.0, 0.9, 0.8, 0.6, 0.5, 0.4], a total duration of L = 120 s
and sample time ts = 0.0001 s. All paths are scaled to a maximum amplitude
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of ±30 mm and converted to actuator displacements using inverse kinematic
relations assuming rigid links and ideal rotational joints. These paths are the
reference positions for controlled actuator motion where a PD feedback controller
is used that should result in reasonably accurate tracking. The actual encoder
reading and applied motor currents are recorded. The independent coordinates
q and actuator forces F are computed as described in Sect. 2.1. Velocities q̇ and
accelerations q̈ are derived off-line with numerical differentiation of the position
data and low-pass filtering.

The collected data in each dataset originally represents 1,200,000 time sam-
ples. The first 200,000 samples are discarded to eliminate any initial transient
response. The last 200,000 samples are discarded as well, such that 800,000 sam-
ples remain in each dataset. Datasets with larger values of λ have more low
frequent content and excite in particular the stiffness properties, i.e. the poten-
tial energy V (q), whereas datasets with smaller λ reveal more mass dominated
dynamics. Contributions from the non-conservative forces can appear at various
frequencies, depending on the cause of these forces. E.g. viscous damping reduces
the significance of the resonance peaks which appear near 1 Hz and 2 Hz. Hence
this contribution can be identified from data sets with smaller λ that include
these resonance frequencies.

3.2 White-Box Identification

To identify the 13 physical parameters in the white-box model it is not needed
to use the large amount of 7,200,000 samples from all 9 datasets. Only 1/1000
of these time steps are used in the following identification. Regarding the offsets
mentioned in Sect. 2.2 it was found that datasets 8 and 9 showed a slightly differ-
ent offset compared to datasets 1–7. Hence 2×2 offset parameters are included in
the parameter vector giving rise to 17 parameters in total. However, it was found
from a singular value decomposition of the regression matrix Φ that no more
than 12 independent parameters can be identified. This is confirmed from an
analysis of the residual error which hardly decreases when more than 12 (linear
combinations of) parameters are identified.

Figure 3 shows the measured forces F and the misfit of the forces ΔF for
all 9 datasets. The datasets are concatenated in the plot, but as explained in
Sect. 3.1 these datasets are collected independently and hence discontinuities
can be seen in the plot. The force misfit is less than about 10% compared to
the actual force. This error is somewhat larger than expected beforehand, which
could be caused by experimental imperfections e.g. from the cables (see Fig. 1(c))
or by (white-box) model errors e.g. due to an incorrect kinematic model in which
pivot shift is neglected.

3.3 LNN Training

Initially only the LNN is trained for which also only a relatively small subset
of all data is used with 20,000 samples, i.e. every 400th sample. These samples
are shuffled after which 70% is used for training and 30% for validation. The
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Fig. 3. Manipulator positions, velocities, accelerations, forces F and force misfit ΔF
from an identification with 12 independent parameters. The different colours represent
x and y data respectively.

Adam solver is used and the batch size is 32. The training is run for 40 epochs
with a learning rate lr = 0.001, next 10 epochs with lr = 0.0001 and finally
10 epochs with lr = 0.00001. Furthermore training is initialised 10 times with
random seeds. The performance is measured with the Mean Absolute Error
(MAE) between target and approximation. The MAE is evaluated for the best
training result from all random seeds, as well as for its standard deviation to
measure the robustness of the training.

To select the activation function, a network with 6 hidden layers with 32 neu-
rons each is used. The activation function of the output layer is fixed as outlined
in Sect. 2.3. Softplus, sigmoid, ReLu and tanh activation functions are evalu-
ated [5]. The latter two give similar results in terms of best MAE, where tanh
shows the smallest standard deviation and therefore is the preferred activation
function.

For this activation function the effect of varying network size is evaluated
next for different numbers of hidden layers and neurons per layer [5]. A network
with 32 neurons per layer gives better result where a minimal MAE is found for
8 hidden layers. Hence 8 hidden layers with 32 neurons will be used for the LNN.

For this network two additional check have been done. The number of time
samples has been varied. It appeared that the MAE increases when less than
14,000 samples were used, but hardly changes when using 14,000 or 35,000 sam-
ples. The trainings presented in this section are well within the latter range.
Finally, the batch size and optimizer have been evaluated. It was found that
training with a batch sizes of 16, 32 and 64 does not yield a significant change in
outcome. Similarly, using Adagrad or SGD instead of the Adam optimiser didn’t
give significantly different results either.
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3.4 FNN Training

Once the LNN is trained as outlined in the previous section, it is fixed and
the FNN is trained on the residue. A similar procedure is followed to evaluate
the FNN performance and optimise its hyperparameters. Once more the Adam
solver is used with a batch size of 32. As no physical structure constrains the
FNN, it is expected more training data is needed and more epochs are required
before the solution is converged. Therefore the FNN is trained for 100 epochs
with lr = 0.001 and next for 50 epochs with lr = 0.0001, initially on a dataset
with 50,000 time samples. The input data is scaled to values between −1 and
+1 using the MinMaxScaler. It appeared that the probability of converging to
a local minimum is less likely and hence the training is initialised with only
3 random seeds.

Different activation functions are evaluated for a FNN with 3 hidden layers
and 16 neurons in each layer [5]. The tanh activation function is preferred as it
results in a small MAE with a small standard deviation.

Next different numbers of hidden layers and neurons per layer are evalu-
ated [5]. It was found that relatively large networks offer a better MAE for the
training and validation data. However, when applying the results to an new test
dataset it appeared that the larger networks clearly suffer from overfitting. A
smaller MAE was obtained with a smaller network. The most suitable FNN
structure has only 2 hidden layers with 8 neurons each.

This FNN has been trained with varying numbers of time samples. The MAE is
shown in Fig. 4. Clearly a large number of samples is advantageous. Extrapolating
the trend in the plots, the number of samples could even be increased beyond the
maximum presented in the figure. However, this will also result in an increase of
computational costs, so 200, 000 samples will be used to train the FNN.

Table 1 summarises the MAE obtained for training and validation using only
the preferred LNN and combining it with the FNN as proposed above. The
validation MAE is split to show the errors for both actuator forces Fx and Fy

separately. The table illustrates the improvement that can be obtained by adding
the FNN to the LNN. It also shows that the errors in both forces are comparable

Fig. 4. Mean Absolute Error (MAE) for different numbers of time samples used for
the FNN training (2 hidden layers with 8 neurons each) [5].
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Table 1. MAE on the training and validation data using the selected LNN and FNN.
The MAE of the white-box model, Sect. 3.2, is included for comparison.

Training MAE [N] Validation MAE [N] Valid. MAE Fx [N] Valid. MAE Fy [N]

LNN 0.1022 0.1022 0.0836 0.1208

LNN + FNN 0.0517 0.0514 0.0562 0.0466

white-box model 0.0864

and are below 2%. Furthermore it appears that the MAE of the force estimates
from the combined neural networks is smaller than is obtained with the white-
box model of Sect. 3.2.

3.5 Offline Force Estimates

The performance of the white-box model and the trained LNN+FNN combi-
nation is evaluated using 10 test trajectories that are generated similarly to
the datasets defined in Eq. (5) in Sect. 3.1 except for a shorter duration with
L = 40 s. The first and last 10 s of the data are removed and for the remaining
time samples the forces are estimated with both methods and compared to mea-
sured values. Data processing is similar to the procedure outlined in Sect. 3.1 for
the training data, i.e. the trajectories are the reference positions for controlled
actuator motion. The forces are estimated “offline” which means that the motion
data have been captured to be processed afterwards.

Fig. 5. Forces estimated by the LNN+FNN combination and measured forces for two
of the test trajectories [5].

Fig. 5 illustrates the performance of the LNN+FNN combination. The force
estimates for the low-frequent reference (λ = 7.0) show a clear offset. Mostly the
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forces are estimated much better like e.g. the example with the high-frequent
reference (λ = 0.5). The offset may be caused by small differences in the initial
configuration of the manipulator which can arise from the cables as mentioned
before. To evaluate the force estimates, the MAE is computed after accounting
for these offset. Then the average MAE for all 10 test datasets is 0.0505 N for
the estimate from the neural networks and 0.0794 N for the white-box estimate.

3.6 Online Feedforward Control

The ultimate goal is to improve the tracking accuracy of the manipulator by
implementing the estimated forces as feedforward control inputs, i.e. “online”.
This performance is evaluated from a real-time experiment in which the esti-
mated forces are added as feedforward control inputs (FF) to a standard closed-
loop PD feedback controller (FB). In case of a perfect feedforward control, the
estimated forces (FF) would result in perfect tracking of the reference path and
the output of the feedback controller (FB) is zero due the absence of a tracking
error.

Figure 6 presents the feedforward signals (FF) and the feedback signals (FB)
recorded simultaneously during two of the experiments in which the feedforward
control is estimated with the trained LNN+FNN combination. It can be seen
that the contribution to the actuator force from the feedback controller (FB)
is not zero, but it is significantly smaller than the estimated feedforward signal
(FF) which apparently accounts for by far the largest part of the total forces
required for the specified motion. This proves the effectiveness of the feedforward
control estimated with the combined neural networks.

In this way the tracking accuracy is also improved considerably compared to
using only feedback as shown in Fig. 7. In this figure also the results are included
with the feedforward control from the white-box model. At first sight the latter
approach tracks the reference even better, but a large part of the tracking error
is the offset that has been discussed before in Sect. 3.5. Such offset can easily be

Fig. 6. Feedback (FB) and feedforward (FF from LNN+FNN) control inputs in closed-
loop experiment with two different reference trajectories.
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Fig. 7. Actuator motion during closed-loop experiment where the reference is generated
with λ = 4.0, amplitude = 30 mm: Without FF as well as with FF from white-box
model or LNN+FNN.

eliminated by using PID feedback control instead of PD control. From a more
quantitative analysis it appeared that both feedforward control implementations
reduce the tracking error with more than 90% compared to using only feedback
control [5].

4 Conclusions

In this paper we demonstrate that the feedforward control generated by the
successively trained LNN and FNN can be applied successfully for the considered
2-DOF manipulator with flexure joints. The LNN is trained first to ensure it
accounts for the larger contribution of the conservative forces to the estimated
actuator forces. In this way the advantages of constraining the network to a
physical feasible solution are exploited. Only a rather small number of time
samples is needed to train the LNN. The trained network can also handle new
test trajectories which illustrates the robustness of the feedforward control. This
robustness and a more general applicability of this approach will be investigated
in the future.
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Abstract. Optimal Control Problems (OCP) consist in optimising an objective
functional subjected to a set of Ordinary Differential Equations. In this work, we
consider the effects on the stability of the numerical solution when this optimisa-
tion is discretised in time. In particular, we analyse a OCP with a quadratic func-
tional and linear ODE, discretised with Mid-point and implicit Euler. We show
that the numerical stability and the presence of numerical oscillations depends
not only on the time-step size, but also on the parameters of the objective func-
tional, which measures the amount of control input. Finally, we also show with an
illustrative example that these results also carry over non-linear optimal control
problems.

1 Introduction

Optimal control is a class of mathematical optimisation problems where the desired sys-
tem state is determined by minimising/maximising a cost functional subjected to path
constraints, written as ordinary differential equations (ODEs) and initial conditions. In
real-world applications, close-form solutions of these problems are difficult to obtain
and they are often solved numerically with non-linear programming techniques [4,5].
Based on the sequence of optimisation and time-discretisation, solution procedures for
Optimal Control Problems (OCPs) can be classified as indirect and direct approaches.
The indirect method first derives the necessary optimality conditions and forms the
Differential-Algebraic Equations with the two-point boundary conditions, also known
as the Two-Point Boundary Value Problem or Hamiltonian Boundary-Value Problem
(HBVP), which are then discretised in time [11,12]. Conversely, the direct method first
introduces the time-discretisation of the continuous system and then the necessary opti-
mality conditions, derived from the resulting discrete system [2]. Both approaches have
their unique properties and limitations, which have been described elsewhere, e.g. [5].

The stability of numerical integrators for Initial Value Problem (IVP) has been
extensively studied. For instance, explicit Euler (eE) integrator is only conditionally
stable whereas symplectic integrator viz. implicit Euler (iE) or Mid-Point (MP) are
unconditionally stable schemes, which preserve first-integrals of motion [7,8]. Due to
these promising properties of symplectic integrators, HBVP are frequently discretised
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with MP or iE schemes [3,6,10]. However, due to the presence of two-point boundary
conditions, implicit (symplectic) integration, which is unconditionally stable along the
time-marching direction (forward direction), becomes explicit (conditionally stable) in
the reverse direction, which the natural direction of the adjoint ODEs in OCP. Indeed
symplectic partitioned Runge-Kutta methods (e.g. symplectic Euler (sE)) exploit this
fact and discretise the state-adjoint system with implicit-explicit schemes, which leads
to the cancellation of numerical error. This fact motivates the study in this work, where
we show that originally stable schemes for ODEs, may become unstable in discretised
OCP. Furthermore, we show that the stability and the presence of oscillations in the
numerical solution depends on the magnitude of the control input. For simplicity and
clarity on the exposition of our ideas, we have chosen to restrict our discussion to the
numerical stability of MP, iE, and sE schemes applied to OCPs.

The chapter is structured as follows. In Sect. 1, we begin with a brief review of
the available numerical methods for the OCP. In Sect. 2, we formally introduce the
general framework of continuous OCP and describe the associated symplectic structure.
Additionally, we present the time-discrete form of the HBVP. In Sect. 3, we employ the
common MP, iE and sE schemes in an illustrative linear OCP, and provide a detailed
analysis of the source of numerical oscillations and associated stability criteria. Finally,
in Sect. 4, we generalise these ideas to prevent numerical oscillations in the non-linear
OCPs. Conclusions are drawn in Sect. 5.

2 Optimal Control Problem: Indirect Method

Let us consider a continuous optimal control problem which seeks control uuu(t) and state
xxx(t) trajectories that minimise an objective functional J (xxx,uuu) subjected to first-order
IVP and equality constraints [2], i.e. are solution of the following optimisation problem

min
xxx(t), uuu(t)

J (xxx,uuu) (1)

s.t., fff (xxx,uuu)− ẋxx= 000 (State ODE)

xxx(0)− xxx0 = 000 (Initial conditions)

where for clarity, we suppress time-dependence. A common choice for the functional
J (xxx,uuu) in trajectory optimisation problems is to provide a measure of deviation of the
state variable xxx(t) from a target state xxxt , and also add an associated input/control cost to
achieve the desired state. Mathematically, the following form is usually employed,

J (xxx,uuu) :=
∫ T

0

(
1
2
(xxx− xxxt)TR(xxx− xxxt)+

α
2
uuuTQuuu

)
dt, (2)

where Q and R are the input and output matrices. Parameter α > 0 regulates the amount
of input control uuu, and T is a fixed final time.

In order to deduce the optimality conditions of the constrained optimisation problem
in Eq. (1), we introduce the Lagrange multipliers λλλ (t) and ξξξ and define the Lagrangian
functional associated with problem (1) as
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L (xxx,uuu;λλλ ,ξξξ ) =J (xxx,uuu)+
∫ T

0
λλλT ( fff (xxx,uuu)− ẋxx)dt+ξξξT(xxx(0)− xxx0). (3)

After integrating by parts and rearranging the integrands, the Lagrangian becomes
[4]

L (xxx,uuu;λλλ ,ξξξ ) =
∫ T

0

(
H + λ̇λλ

T
xxx
)
dt−λλλ (T )Txxx(T )+λλλ (0)Txxx(0)+ξξξT(xxx(0)− xxx0)

where H (xxx,uuu;λλλ ) := 1
2 (xxx− xxxt)TR(xxx− xxxt)+ α

2 uuu
TQuuu+λλλT fff (xxx,uuu) is the so-called Con-

trol Hamiltonian, which is conserved along optimal trajectories, provided ∂H
∂ t = 0.

First-order optimality conditions can be then derived from the derivatives of L with
respect to xxx,λλλ ,uuu and ξξξ , which yields the following system of differential-algebraic
equations with the two-point boundary conditions [3,6],

λ̇λλ = −∇xxxH (4a)

ẋxx =∇λλλH (4b)

000 =∇uuuH (4c)

xxx(0) =xxxo, λλλ (T ) = 000 (4d)

The first three equations above are commonly named adjoint, state, and control-
algebraic equations, respectively, and the system is known as the set of Euler-Lagrange
equations (E-L), which together with the end conditions in (4d) constitutes the so-called
Hamiltonian boundary-value problem (HBVP), with inherent symplectic structure [4].

We resort now to the numerical time integration of the HBVP by introducing a time-
discretisation scheme of the continuous system in Eq. (4) with a uniform time-step size
Δ t > 0 (n= 1,2, . . . ,N), which we write in the following general form:

λλλ n−1 −λλλ n

Δ t
= R(xxxn−τ − xxxt)+∇xxx fff (xxxn−τ ,uuun−τ)Tλλλ n−τ (5a)

xxxn − xxxn−1

Δ t
= fff (xxxn−τ ,uuun−τ) (5b)

000 = αQuuun−τ +∇uuu fff (xxxn−τ ,uuun−τ)Tλλλ n−τ (5c)

xxx0 = xxxo, λλλN = 000 (5d)

with xxxn−τ := τxxxn−1 +(1−τ)xxxn, and similarly for uuun−τ and λλλ n−τ . The values τ = 0 and
τ = 1

2 correspond to the well known implicit Euler (iE) and Mid-Point (MP) schemes,
respectively.

3 Motivating Example: Linear OCP

Let us consider a propelled body (e.g. jellyfish) with mass m moving along +y direction
starting with an initial velocity vo. There is a gravitational force with acceleration a
acting along the −y direction, in addition to a drag force with the form fd := bv, with
b > 0 a frictional coefficient. Furthermore, we assume that the jellyfish controls the
propulsion velocity by regulating the fluid ejection along the −y direction resulting in a
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thrust force u along +y direction. Linear momentum balance along +y direction results
in the following state IVP,

f (v,u)− v̇ = 0

v(0)− vo = 0 (6)

where f (v,u) := − b
mv+

u
m − a. We are interested in obtaining a control function u(t),

which drives the jellyfish from initial velocity vo to a target velocity vt in a given time
T . Essentially, we want to minimise the following cost functional

J (v,u) :=
∫ T

0

(
1
2
(v− vt)2 +

α
2
u2

)
dt (7)

subject to the IVP in Eq. (6). A closed-form solution of the posed problem is given by

v(t) =C1

(
b
m

− γ
)
eγt +C2

(
b
m
+ γ

)
e−γt + vp (8a)

λ (t) =C1e
γt +C2e

−γt +λp (8b)

u(t) =
λ (t)
αm

(8c)

where

γ =

√
b2

m2 +
1

αm2 , vp =
vt −αbma

αm2γ2 , λp = −bvt +ma
mγ2 ,

C1 =
m(vo − vp)e−γT +(b+mγ)λp

(b−mγ)e−γT − (b+mγ)eγT , C2 =
m(vo − vp)− (b−mγ)C1

b+mγ

Irrespective of the value of α > 0, we have that γ > 0, and one would expect a non-
oscillatory state, adjoint and control functions. We will show in the next sections that
the numerical solution of the OCP with the MP and iE time-discretisation schemes is
not necessarily non-oscillatory.

3.1 Mid-Point Scheme

By using the value τ = 1/2 in Eq. (5), a mid-point (MP) time-discretisation of the ODE
system is obtained,

λn −λn−1

Δ t
− b

m
λn− 1

2
+ vn− 1

2
− vt = 0, (9a)

vn − vn−1

Δ t
+

b
m
vn− 1

2
− 1

m
un− 1

2
+a= 0, (9b)

un− 1
2
+

1
αm

λn− 1
2
= 0. (9c)

After substituting the boundary conditions v0 = vo and λN = 0, the resulting linear
system of equations can be solved with conventional linear solvers.
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In order to study the stability of the MP scheme, it will be helpful to express the
system with the independent variables (v and λ ). Notice that the control equation in Eq.
(9c) is linear, so that replacing Eq. (9c) into Eq. (9b), with the definitions

p :=
b
m
+

2
Δ t

; q :=
b
m

− 2
Δ t

; s :=
1

αm2 (10)

results in the following reduced discrete system

qλn+ pλn−1 − vn−1 − vn+2vt = 0 (11a)

pvn+qvn−1 + sλn−1 + sλn+2a= 0 (11b)

By defining the vector zzzn := {vn,λn}T , the MP scheme can be expressed as

zzzn = Azzzn−1 +aaa (12)

where A is the amplification matrix [1,9] and aaa a constant vector. In the present case
they have the form

A :=
−1

s+ pq

[
s+q2 −s(p−q)

−(p−q) s+ p2

]
; aaa :=

−2
s+ pq

{
qa− svt
a+ pvt

}
.

The eigenvalues e1 and e2 of matrix A are real and distinct, and are given by

e1,2 =
{

2+ γΔ t
2− γΔ t

,
2− γΔ t
2+ γΔ t

}
. (13)

and the spectral radius of A is

ρ(A) =
2+ γΔ t
|2− γΔ t| . (14)

Consequently, the time-discretisation scheme is stable if ρ(A) ≤ 1. It seems that
there exist no admissible pair (γ , Δ t)∈R

+ for which ρ(A)≤ 1. However, if we impose

Fig. 1. Mid-point (MP) and implicit Euler (iE) scheme: (a) spectral radius, and (b) eigenvalues.
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restrictions on γΔ t such that log10(γΔ t/2) ∈ (−∞,−ε)∪ (ε,∞) with ε ≈ 2, numerical
evidence shows that the solution remains bounded.

In order to analyse the presence of numerical oscillations, we examine the value of
α for which the eigenvalues change their sign. The eigenvalues in Eq. (13) switch sign
from negative to positive if γ2 − 4

Δ t2
< 0 and for the threshold value γ = 2

Δ t , the system
blows up. In summary,

ei =

{
< 0, α < αth,MP (Oscillatory response)

> 0, α > αth,MP (No oscillations)
(15)

with

αth,MP :=
Δ t2

4m2 −b2Δ t2
. (16)

3.2 Implicit Euler Scheme

By using the value τ = 0 in Eq. (5), Implicit Euler (iE) time-discretisation results in the
following discrete system

λn −λn−1

Δ t
− b

m
λn+ vn − vt = 0, (17a)

vn − vn−1

Δ t
+

b
m
vn − 1

m
un+a= 0, (17b)

un+
1

αm
λn = 0. (17c)

After substituting the boundary conditions v0 = vo and λN = 0, the solution of the
resulting linear system can be obtained.

In order to study the stability of the iE scheme, we express our system in terms of
the independent variables v and λ . Substituting Eq. (17c) into Eq. (17b), and with the
new definitions

p∗ :=
b
m
+

1
Δ t

; q∗ :=
b
m

− 1
Δ t

; r :=
1

Δ t
; s :=

1
αm2 (18)

the system in (17) is equivalent to

q∗λn+ rλn−1 − vn+ vt = 0 (19)

p∗vn − rvn−1 + sλn+a= 0. (20)

or in terms of the vector zzzn := {vn,λn}T , it can be expressed as

zzzn = Bzzzn−1 +bbb (21)

with

B :=
−r

s+ p∗q∗

[−q∗ −s
−1 p∗

]
, bbb :=

−1
s+ p∗q∗

{
q∗a− svt
a+ p∗vt

}
.



148 A. Bijalwan and J. J. Muñoz

The eigenvalues of matrix B and its spectral radius ρ(B) are given by

e1,2 =
{

1
1+ γΔ t

,
1

1− γΔ t

}
, ρ(B) =

1
|1− γΔ t| (22)

The time-discretisation scheme will be thus stable if |γΔ t−1| ≥ 1. Since γΔ t ∈R
+,

we are left with the restriction γ ≥ 2
Δ t .

Fig. 2. State optimal velocity: (a) MP scheme and (b) iE scheme, (c) sE scheme (dots: Analytical
solution), and (d) phase diagram (α ,Δ t) for MP and iE schemes.

A similar analysis to the MP scheme indicates that the change of sign in e2 in the
iE scheme occurs when 1− γΔ t changes sign, and for the threshold value of γ = 1

Δ t the
system blows out. Summarising,

1
1− γΔ t

=

{
< 0, α < αth,iE (Oscillatory response)

> 0, α > αth,iE (No oscillations)
(23)

with

αth,iE :=
Δ t2

m2 −b2Δ t2
. (24)

We note that from the expressions in (16) and (24), it follows that as friction is
reduced (i.e. b decreases), the oscillations may appear for small mass m or large time-
step Δ t. Instead, large friction values will prevent the presence of numerical oscillations.
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3.3 Symplectic Euler Scheme

By using the value τ = 0 for adjoint and τ = 1 for state in Eq. (5), symplectic Euler (sE)
time-discretisation results in the following discrete system

λn −λn−1

Δ t
− b

m
λn+ vn−1 − vt = 0, (25a)

vn − vn−1

Δ t
+

b
m
vn−1 − 1

m
un+a= 0, (25b)

un+
1

αm
λn = 0. (25c)

After substituting the boundary conditions v0 = vo and λN = 0, the solution of the
resulting linear system can be obtained.

In order to study the stability of the sE scheme, we express our system in terms
of the independent variables v and λ . Substituting Eq. (25c) into Eq. (25b), and with
previous definitions the system in (25) is equivalent to

q∗λn+ rλn−1 − vn−1 + vt = 0 (26)

rvn+q∗vn−1 + sλn+a= 0. (27)

or in terms of the vector zzzn := {vn,λn}T , it can be expressed as

zzzn = Czzzn−1 + ccc (28)

with

C :=
−1
rq∗

[
s+q∗2 −rs

−r r2

]
, ccc :=

−1
rq∗

{
q∗a− svt

rvt

}
.

The eigenvalues of matrix C are given by

e1,2 =
1
ϕ

{
γ2 +ϕ ± γ

√
γ2 +2ϕ

}
(29)

with ϕ := 2
Δ t (

1
Δ t − b

m ).
If Δ t < 1, and b

m ≤ 1, which is generally true, eigenvalues are always positive and
the sE scheme result in non-oscillatory optimal trajectories.

We have numerically verified the theoretical results and thresholds in (16) and (24)
by using the values (m,b,a,vo,vt ,T,Δ t) = (1,1,1,0,20,10,0.1), which imply the val-
ues αth,MP = 2.5 × 10−3 and αth,iE = 1.01 × 10−2. Reducing α below these values,
numerical oscillations are obtained, in agreement with conditions in (15) and (23), as
shown in Fig. 2. Theoretical results for the spectral radius and eigenvalues are shown in
Fig. 1. We point out that there is a region where both schemes become unstable and that
stable results are obtained if we are sufficiently far from this region. As expected, for the
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sE scheme, eigenvalues remain strictly positive and result in non-oscillatory trajectories
irrespective of α .

For verifying the thresholds of αth, we generate the stability envelope from numer-
ical experiments in Fig. 2. We found close matches with Eq. (16) and Eq. (24). We
remark that the phase boundary of the MP scheme lies above the iE scheme and shows
numerical oscillations much later than the iE scheme.

4 Nonlinear OCP: Inverted Elastic Pendulum

In the second application, we consider a planar elastic inverted pendulum consisting of
two point masses m1 and m2 and linked by an elastic spring. The system is subjected
to a gravitational force field along −y direction with intensity a. Position xxx1 of m1 is
constrained to move along the x-axis, while m2 is free to move in x-y plane. The initial
positions of m1 and m2 are respectively (0,0) and (0.3,1) (see Fig. 3). We assume that
the spring potential energy varies quadratically with the length increment from a rest-
length lo, i.e. U(xxx) := k

2 (l(xxx)− lo)2. Linear momentum balance can be expressed as

fff (xxx,uuu)− v̇vv= 000 (30)

vvv− ẋxx= 000

xxx(0)− xxxo = 000

vvv(0)− vvvo = 000

where l = ‖xxx2 −xxx1‖2, xxx= {xxx1, xxx2}T, vvv= {vvv1,vvv2}T, fff (xxx,uuu) :=−M−1 (∇xxxU+aaa), M :=
diag(m1,m1,m2,m2), and aaa := {0,a,0,a}T. We are interested in finding the control
velocity u = v1 which stabilises the system in upright configuration. Equivalently, we
aim at minimising the cost functional

J (xxx,uuu) :=
∫ T

0

(
1
2
(xxx− xxxt)TR(xxx− xxxt)+

α
2
uuuTQuuu

)
dt (31)

subjected to Eq. (30), where uuu = vvv, Q = diag(1,0,0,0), R = diag(0,0,0,1), and xxxt =
{0,0,0,xt}T.

For the numerical test, we assign system parameters (m1,m2,k,a,xt ,T,Δ t) =
(1,1,10,0.1,2,4,0.2), and we use α ∈ (10−4,10−2). Next, we discretise our system
with MP scheme, i.e. Eq. (5) with τ = 1

2 ). The resulting system of non-linear equations
is numerically solved. Based on the linear analysis, we observed that for the MP scheme
with small Δ t, we have that αth ∼O(Δ t2), hereby coined as a conservative stability cri-
teria, and reducing α below this value should trigger numerical oscillations. Figure 3
shows the horizontal position of mass 1 with three α values. It can be seen that for
α = 10−2 we have a smooth trajectory, with α = 10−3 we incubate a small kink, and
α = 10−4 results in an oscillating optimal trajectory. For comparison, we have solved
the above system with the sE scheme and numerical results shows the stable state tra-
jectory (see Fig. 3) and is consistent with the theoretical findings of the linear OCP.
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Fig. 3. Inverted pendulum: mass m1 horizontal displacement with α (a) MP scheme, and (b) sE
scheme.

5 Summary

We have shown that the stability criteria in OCP depends not only on the parameters of
the ODEs and time-step of the discretisation, but also on the parameters of the objective
function. Furthermore, small values of the parameters in the control cost function may
also induce numerical oscillations. We have demonstrated the origin of these instabil-
ities and oscillations for a linear problem, and also illustrated numerically how these
ideas also carry over problems with non-linear ODEs. Our numerical experiments sug-
gest that as α diminishes, we must reduce the time-step size to circumvent numerical
oscillations in optimal trajectories, i.e., α ∼ O(Δ t2).
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Abstract. This paper discusses time-optimal control problems and
describes a workflow for the use of analytically computed adjoint gra-
dients considering a discrete control parameterization. The adjoint gra-
dients are used here to support a direct optimization method, such as
Sequential Quadratic Programming (SQP), by providing analytically
computed gradients and avoiding the elaborate numerical differentiation.
In addition, the adjoint variables can be used to evaluate the necessary
first-order optimality conditions regarding the Hamiltonian function and
gives an opportunity to discuss the sensitivity of a solution with respect
to the refinement of the discretization of the control. To further empha-
size the advantages of adjoint gradients, there is also a discussion of
the structure of analytical gradients computed by a direct differentiation
method, and the difference in the dimensions compared to the adjoint
approach is addressed. An example of trajectory planning for a robot
shows application scenarios for the adjoint variables in a cubic spline
parameterized control.

1 Introduction

Optimal control theory is based on the calculus of variations and deals with
finding optimal trajectories for nonlinear dynamical systems, e.g. spacecrafts or
multibody systems like robots. The works by Kelley [4] and Bryson and Ho [1]
have to be mentioned as groundbreaking in the field of optimal control theory
and serve as basis for extensive subsequent research, also in the field of time-
optimal control.
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As a special class of time-optimal control problems considering final con-
straints, one can cite the control of a robot arm designed in such a way that the
operation time for a rest-to-rest maneuver becomes minimal. Following an indi-
rect optimization approach, such problems can be transformed into a two-point
boundary value problem, which can usually be solved by shooting or full colloca-
tion methods. Alternatively, a direct optimization approach can be pursued, in
which the boundary value problem is posed as a nonlinear programming prob-
lem method, see e.g. [12] for the time-optimal trajectory planning considering
the continuity required to respect technological limits of real robots.

An alternative to the mentioned methods is offered by indirect gradient meth-
ods, which are considered to be particularly robust with respect to initial con-
trols. The work by Bryson and Ho [1] shows how the gradient can be computed
straightforward using adjoint variables. With this gradient information optimal
control problems can be solved iteratively by the use of nonlinear optimization
routines, as described in the sense of optimal control or parameter identifica-
tion in multibody systems e.g. in [8]. The work by Eichmeir et al. [2] extends
the theory for time-optimal control problems to dynamic systems under final
constraints. Such problems arise e.g. in space vehicle dynamics during minimum
time moon ascending/descending maneuvers or in robotics in the case that the
time for a rest-to-rest maneuver should become a minimum. Such problems can
be considered as two-point boundary value problems, with the major drawback
of requiring an initial guess close to the optimal solution. Otherwise, the opti-
mal control problem could be solved via the adjoint method which is an effi-
cient way to compute the direction of the steepest descent of a cost functional.
However, when using such indirect methods to solve optimal control problems, a
major drawback appears in the computation of the Hamiltonian and the required
derivatives: they may be complex and furthermore need to be recomputed often
during the simulation. Moreover, depending on the variables or parameters to
be identified in the optimal control strategy, it is difficult to assign a physical
meaning to the adjoint variables.

This paper focuses on solving time-optimal control problems with a classical
direct optimization method and then evaluating the respective optimality con-
ditions based on an indirect optimization approach. The adjoint variables can
be investigated to efficiently compute the gradients of the cost functional and
the constraints. Moreover, the adjoint variables can be investigated to exploit
the optimality conditions regarding the Hamiltonian function. To demonstrate
the use of analytically computed adjoint gradients, the time-optimal trajectory
planning of a Selective Compliance Assembly Robot Arm (SCARA) is solved
by an SQP method and the optimality conditions regarding the Hamiltonian
function are evaluated by the adjoints. The application shows the easy access
to the adjoint gradients and discusses the latter mentioned role of the adjoint
variables in the optimality conditions.
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2 Use of Adjoint Variables in Direct Optimization
Approaches

The aim of this paper is to determine a control u(t) = u∗ and a final time tf = t∗f
of a dynamical system

ẋ(t) = f(x(t),u(t)) with x(0) = x0, (1)

such that the scalar performance measure

J(x(t),u(t), tf ) =
∫ tf

t0

[
1 + P (x(t),u(t))

]
dt (2)

becomes a minimum with respect to a final constraint

φ(x(tf ), tf ) = 0 ∈ R
q. (3)

Inequality constraints on the state x ∈ R
n and the control u ∈ R

m are consid-
ered by the scalar penalty function P . To be specific, violations of inequality
constraints within the time interval t ∈ [t0, tf ] are taken into account as an
additional term in the cost functional in Eq. (2). The above optimal control
problem can generally be solved by a direct or indirect optimization approach.
In this paper, the original infinite dimensional optimization problem is trans-
formed into a finite dimensional one by parameterizing the control with a finite
set of optimization variables z ∈ R

z including the final time and the control
parameterization. Thus, the resulting nonlinear programming (NLP) problem
can be solved with classical direct optimization approaches such as the SQP
method [9].

How to Interpret the Results from a Direct Optimization Algorithm
An optimal point z = z∗ fulfills the well-known Karush-Kuhn-Tucker (KKT)
conditions [3,5], but these conditions do not provide any information about the
quality of the control parameterization with respect to the infinite dimensional
optimization problem. The basic idea to interpret an optimal point z∗ is to
relate the direct optimization approach to Pontryagin’s minimum principle [11].
The optimality conditions based on an indirect optimization approach [2] can
be used for this idea. Figure 1 illustrates a rough flowchart for the interpretation
of results obtained by a direct optimization approach. This approach requires
the Hamiltonian of the system to evaluate Pontryagin’s minimum principle. The
Hamiltonian for time-optimal control problems related to the cost functional in
Eq. (2) can be formulated as

H(x(t),u(t),λ(t)) := 1 + P (x(t),u(t)) + λ(t)Tf(x(t),u(t)), (4)

in which the multiplier λ(t) = p(t)+R(t)ν is computed by a linear combination
of the adjoint variables p ∈ R

n and R ∈ R
n×q. The vector ν ∈ R

q is a multiplier
to combine both adjoint variables. A deep insight into the combination of both
adjoint variables is presented in [2]. The Hamiltonian in Eq. (4) is used in Sect. 4
to interpret the results of a time-optimal control problem obtained by a direct
optimization approach as depicted in Fig. 1.
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Fig. 1. Flowchart to interpret the results from a direct optimization algorithm with
Pontryagin’s minimum principle

3 Computation of First-Order Derivatives

Classical gradient-based optimization algorithms rely on the derivatives of the
cost functional and the constraints with respect to the optimization variables z.
The computation of these gradients takes a key role in such optimization algo-
rithms and the convergence of the optimization depends on the accuracy of the
gradients. In addition to accuracy, efficient computation of gradients is especially
important for large numbers of optimization variables. Thus, the computational
effort to solve the optimization problem depends significantly on the efficient
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computation of gradients. Figure 2 summarizes the most common approaches for
the computation of first-order gradients. The finite differences method is the eas-
iest approach to code, but suffers in terms of computational effort especially for
a large number of optimization variables. In case of using (forward or backward)
finite differences, the state equations have to be solved (1 + z) times in order to
evaluate the numerical gradients with respect to z optimization variables. Thus,
the number of forward simulations grows linearly with the number of optimiza-
tion variables. In contrast to this numerical approach, the direct differentiation
and the adjoint method are referred as analytical approaches to compute gradi-
ents. Both approaches lead to exact gradient information and using them in an
optimization scheme leads to an increase in efficiency. The characteristics of the
analytical approaches are discussed in the following sections.

3.1 Direct Differentiation Approach for Discrete Control
Parameterization

The direct differentiation approach is based on the sensitivity of the state
equations and is briefly discussed in this section. In this paper, the control is
described by u(t) = Cū, in which the vector ūT =

(
ûT
1 , . . . , ûT

m

) ∈ R
m·k col-

lects k grid nodes of the m equidistant time-discretized controls and the matrix
C(t) ∈ R

m×m·k maps the grid nodes to a time dependent function. The interpo-
lation matrix C has to be determined once a priori and depends on the chosen
interpolation order [6].

By using this control parameterization, the gradient of the cost functional is
directly obtained by differentiating it with respect to the grid nodes as

∇ū JT =
∫ tf

t0

[∂P

∂x
∂x
∂ū

+
∂P

∂u
∂u
∂ū

]
dt (5)

=
∫ tf

t0

[
Pxxū + PuC

]
dt, (6)

Fig. 2. Overview of approaches to compute first-order derivatives
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in which the partial derivative of the parameterized control with respect to the
grid nodes

∂u
∂ū

= C (7)

has been utilized. Partial derivatives of an arbitrary function f with respect
to x are denoted with subscripts, i.e. fx. Similar to the gradient of the cost
functional, the gradient of the final constraints in Eq. (3) can be calculated by
direct differentiation as

∇ū φT = φxxū. (8)

The resulting gradients in Eq. (6) and Eq. (8) involve the system sensitivity xū ∈
R

n×m·k which is obtained by differentiating the state equations with respect to
the grid nodes as

ẋū = fxxū + fuuū (9)
= fxxū + fuC. (10)

Initial conditions of the system sensitivity are defined as

xū(0) = 0, (11)

since the initial conditions of the state equations do not depend on the grid
nodes, i.e. x(0) = x0. The system Jacobian fx ∈ R

n×n and fu ∈ R
n×m have

to be calculated a priori, e.g., by analytical differentiation, in order to solve
the matrix differential system in Eq. (10). Remark that the differential system
depends on the number of grid nodes. Thus, the computational effort increases
with the number of grid nodes.

3.2 Adjoint Gradient Approach for Discrete Control
Parameterization

A large number of grid nodes leads to a large solution space and, therefore, the
gradient computation leads to a high computational effort resulting from finite
differences or direct differentiation. An efficient alternative to compute gradients
analytically is the adjoint variable method which is based on the calculus of
variations. Following the basic idea presented in the seventies by Bryson and
Ho [1], an adjoint gradient approach for discrete control parameterizations is
utilized. Lichtenecker et al. [6] derived the adjoint gradients for time-optimal
control problems defined in Eqs. (1)–(3) for spline control parameterizations in
the following form:

∇ū JT =
∫ tf

t0

(
pTfu + Pu

)
Cdt, (12)

∇ū φT =
∫ tf

t0

RTfuCdt, (13)
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in which the adjoint variables fulfill the (adjoint) system of differential equations

ṗ = −PT
x − fTx p with p(tf ) = 0, (14)

Ṙ = −fTx R with R(tf ) = φT
x(x(tf ), tf ). (15)

Due to the final conditions, they have to be solved backward in time to compute
the adjoint gradients. Moreover, it has to be emphasized that the size of the
adjoint system does not grow with the number of grid nodes which is not the
case for direct differentiation, see Sect. 3.3. The adjoint gradients in Eqs. (12)
and (13) prove to be preferable regarding computational effort and accuracy in
gradient based optimization strategies. For further details on adjoint gradients,
the reader is referred to [2,6].

How to Compute the Adjoint Gradients
The adjoint gradients in Eqs. (12) and (13) can be used for direct and indirect
optimization algorithms. Both approaches are iterative methods and, therefore,
the gradients have to be recomputed in each iteration. In this paper, we use a
direct optimization method in order to compute the optimal control. Similar as
shown in [10], Fig. 3 illustrates the application of adjoint gradients provided to
a direct optimization method and is summarized with the following steps:

1. Select a direct optimization method which is able to use user-defined gradi-
ents, e.g. a classical SQP method or an Interior Point (IP) method.

2. The optimization algorithm proposes values zi for the optimization variables
associated to the current i-th iteration. Starting from this view, the gradients
have to be computed for the (i + 1)-th iteration.

3. Solve the state equations related to the actual optimization variables and
initial conditions using an ODE solver.

4. The cost functional and the final constraints can be evaluated.
5. Compute the adjoint variables p and R backward in time using Eqs. (14) and

(15).
6. Finally, the adjoint gradients of the cost functional and the final constraints

are computed by a time integration and provided to the optimization algo-
rithm for the next iteration.

7. Steps (2) through (6) are repeated until the KKT conditions are fulfilled with
respect to the optimal solution z∗.

3.3 Discussion on Duality of Gradients

McNamara et al. [7] pointed out that the adjoint approach can be interpreted
as a special case of linear duality and that the core of this method is based on
a substitution of variables. This can be seen by considering the first term of the
gradients of the cost functional in Eqs. (6) and (13), i.e.,∫ tf

t0

Pxxū dt with ẋū = fxxū + fuC and xū(0) = 0, (a)

∫ tf

t0

pTfuCdt with ṗ = −PT
x − fTx p and p(tf ) = 0. (b)
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Fig. 3. Procedure for the use of adjoint gradients in direct optimization approaches

Both terms require the solution of a linear differential system, but it has to
be emphasized that the size of the systems is different. The size of the system
sensitivity depends on the number of states n, the number of controls m and
on the number of grid nodes k, while the size of the adjoint system depends
only on n. To compute the gradients, one can solve either the primal system (a)
with dimension (n×m · k) or the dual system (b) with dimension (n× 1). Thus,
the adjoint approach is an efficient technique to incorporate especially a large
number of grid nodes. A graphical interpretation of the dimensions occurring in
the gradients of the cost functional is shown in Fig. 4, with a special focus on
increasing the number of grid nodes.

4 Numerical Example

4.1 Task Description and Optimization Problem

The analytically derived adjoint gradients in [6] are used for a direct optimization
method in a time-optimal control problem of a SCARA with two rigid bodies.
The goal is to manipulate the tool center point (TCP) of the robot depicted
in Fig. 5 from an initial state to a final state in minimal operation time t∗f
with a discrete control parameterization. To meet industrial requirements, the
control is forced to be C2 continuous. Hence, the matrix C is chosen such that the
interpolation of each discretized control subinterval is performed by a cubic spline
function. The state equations are obtained by introducing the state variables

x = (ϕ1, ϕ2, ω1, ω2)T, (16)
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Fig. 4. Graphical interpretation of the dimensions occurring in the gradient of the cost
functional with respect to the direct differentiation approach in Eq. (6) and the adjoint
approach in Eq. (13)

in which ϕ̇i = ωi. The model parameters for the simulation are set as follows:
m1 = m3 = 1kg, m2 = 0.5 kg, li = 1m and Ji = mil

2
i /12, in which i ∈ {1, 2}.

The mass m3 is considered as a point mass attached to the TCP.
The cost functional of the optimization problem is given in Eq. (2), in which

the penalty term P (u) = 10(P1(u1) + P2(u2)) is used with

Pi(ui) :=
{

0 for |ui| < ui,max,
1
2 (|ui| − ui,max)2 otherwise. (17)

The final constraints of the system are defined as

φ(ϕ1, ϕ2, ω1, ω2) :=

⎛
⎜⎜⎝

l1 cos(ϕ1) + l2 cos(ϕ2) − xf

l1 sin(ϕ1) + l2 sin(ϕ2) − yf
ω1

ω2

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
t=tf

, (18)

in which xf = 1m and yf = 1m denote the desired final configuration of the
TCP. Physical bounds of the controls are given by u1,max = 4Nm and u2,max =
2Nm.

The NLP contains the optimization variables zT = (tf , ūT) and is solved
with an SQP method. As an initial guess, the assumption for the final time is
tf = 2 s and the grid nodes are set to ū = 0. Initial conditions of the state
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Fig. 5. SCARA with two rigid bodies in a general configuration

variables are set to x0 = (−π/4, 0, 0, 0)T. In order to analyze the sensitivity of
the solution to the refinement of the discretization of the control, both controls
are equidistantly discretized in the time interval t ∈ [0, tf ] with a set of grid
nodes with various number k ∈ {5, 10, 20, 30, 40, 50}.

4.2 Results

Figure 6 shows the optimal control history u∗
k and the resulting trajectory of the

TCP with respect to the defined number of grid nodes k. One can observe that
the control becomes a bang-bang type control by increasing the number of grid
nodes. It can also be seen that the TCP trajectory with k = 5 grid nodes is
noticeably different compared to controls in which the number of grid nodes is
higher. This is due to the fact that in this case the optimal control cannot be
represent a bang-bang structure. Theoretically, an infinite number of grid nodes
will lead to the shortest possible final time. The final times for the six inde-
pendent optimizations are (k = 5, t∗f = 1.9439 s), (10, 1.8633 s), (20, 1.8391 s),
(30, 1.8325 s), (40, 1.8303 s) and (50, 1.8294 s).

The optimal control with k = 50 grid nodes and the corresponding switching
functions, as defined in [2] for bang-bang controls, are shown in Fig. 7. The zero
values of the control agree well with those of the switching functions hi and the
Hamiltonian of the system is sufficiently small. Thus, the termination criteria
shown in Fig. 1 is satisfied and a bang-bang control can be approximated with
a sufficient number of grid nodes.
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Fig. 6. Optimal control history and TCP trajectory for various number of grid nodes
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Fig. 7. Initial controls, optimal controls and switching functions considering a cubic
spline parameterization of the control

5 Conclusions

This paper presents a procedure for using adjoint variables in a direct opti-
mization approach. The adjoint variables are examined in the context of two
scenarios: The adjoint variables are used to compute the gradients during the
optimization. In addition, the adjoint variables are used to evaluate Pontryagin’s
minimum principle in order to discuss the optimization results obtained by an
SQP method. A time-optimal control problem of a SCARA shows the versatile
application of adjoint variables. Moreover, the computational effort for the com-
putation of gradients can be reduced by considering adjoint gradients, especially
when the number of grid nodes is large or the mechanical system is difficult to
solve forward in time.
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