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Preface

Workshop Description

The European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases (ECML PKDD) is the premier European machine learning
and data mining conference and builds upon over 21 years of successful events and
conferences held across Europe. This year, ECML PKDD 2023 took place in Turin,
Italy, during September 18–22, 2023. The main conference was complemented by a
workshop program, where each workshop was dedicated to specialized topics, cross-
cutting issues, and upcoming research trends. This standalone LNAI volume includes the
selected papers of the 8th International Workshop on Advanced Analytics and Learning
on Temporal Data (AALTD), held at ECML PKDD 2023.

Motivation – Temporal data are frequently encountered in a wide range of domains
such as bio-informatics, medicine, finance, environment, and engineering, among many
others. They are naturally present in emerging applications such as motion analysis,
energy efficient buildings, smart cities, social media, or sensor networks. Contrary
to static data, temporal data are of complex nature; they are generally noisy, of high
dimensionality, they may be non-stationary (i.e., first-order statistics vary with time)
and irregular (i.e., involving several time granularities), and they may have several
invariant domain-dependent factors such as time delay, translation, scale, or tendency
effects. These temporal peculiarities limit the majority of standard statistical models
and machine learning approaches, which mainly assume i.i.d. data, homoscedasticity,
normality of residuals, etc. To tackle such challenging temporal data we require new
advanced approaches at the intersection of statistics, time series analysis, signal process-
ing, and machine learning. Defining new approaches that transcend boundaries between
several domains to extract valuable information from temporal data is undeniably an
important research topic that has been the subject of active research in the last decade
and will continue to be so for the foreseeable future.

Workshop Topics – The aim of the AALTD workshop series1 is to bring together
researchers and experts in machine learning, data mining, pattern analysis, and statistics
to share their challenges and advances in temporal data analysis. Analysis of and learning
from temporal data covers awide scope of tasks includingmetric learning, representation
learning, unsupervised feature extraction, clustering, and classification.

For this eighth edition, the proposed workshop received papers that cover one or
several of the following topics:

– Temporal data clustering
– Classification and regression of univariate and multivariate time series
– Early classification of temporal data
– Deep learning for temporal data

1 https://ecml-aaltd.github.io/aaltd2023/.

https://ecml-aaltd.github.io/aaltd2023/
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– Learning representation for temporal data
– Metric and kernel learning for temporal data
– Modeling temporal dependencies
– Time series forecasting
– Time series annotation, segmentation, and anomaly detection
– Spacial-temporal statistical analysis
– Functional data analysis methods
– Data streams
– Interpretable/explainable time-series analysis methods
– Dimensionality reduction, sparsity, algorithmic complexity, and big data challenges
– Benchmarking and assessment methods for temporal data
– Applications, including bio-informatics, medical, and energy consumption, on

temporal data

We also welcomed contributions that addressed aspects including, but not limited to,
novel techniques, innovative applications, and techniques for the use of hybrid models.

Outcomes – AALTD 2023 was structured as a full-day workshop. We encouraged
submissions of regular papers that were up to 16 pages of previously unpublished work.
All submitted papers were peer-reviewed (double-blind) by two or three reviewers from
the Program Committee, and selected on the basis of these reviews. AALTD 2023
received 25 submissions, among which 19 papers were accepted for inclusion in the
proceedings. The papers with the highest review rating were selected for oral presenta-
tion (6 papers), and the other papers, with lower scores but still endorsed by reviewers as
work of high quality, were given the opportunity to present a poster through a spotlight
session and a discussion session (10 papers). Three additional papers are also included in
the proceedings. These are related to the Discovery Challenge competition on “Human
Activity Segmentation Challenge”2 hosted by the ECML PKDD 2023 conference, and
jointly organized with the workshop. Two papers describe the winning solutions and one
paper describes and analyzes how the challenge was organized and presents its results.
The workshop had an invited talk on “Convolutional Kernels for Effective and Scalable
Time Series Analytics”3 given by Geoff Webb of the Monash University Data Futures
Institute, Australia4.

We thank all the organizers, reviewers, and authors for the time and effort invested to
make thisworkshop a success.Wewould also like to express our gratitude to themembers
of the Program Committee, the Organizing Committee of ECML PKDD 2023, and the
technical staff who helped us to make AALTD 2023 a successful workshop. Sincere
thanks are due to Springer for their help in publishing the proceedings. Lastly, we thank

2 https://ecml-aaltd.github.io/aaltd2023/challenge.html.
3 https://ecml-aaltd.github.io/aaltd2023/invitedtalk.html.
4 https://research.monash.edu/en/persons/geoff-webb.

https://ecml-aaltd.github.io/aaltd2023/challenge.html
https://ecml-aaltd.github.io/aaltd2023/invitedtalk.html
https://research.monash.edu/en/persons/geoff-webb
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all participants and speakers at AALTD 2023 for their contributions. Their collective
support made the workshop an exciting, interesting, and successful event.

November 2023 Georgiana Ifrim
Romain Tavenard
Anthony Bagnall
Patrick Schaefer

Simon Malinowski
Thomas Guyet

Vincent Lemaire
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Abstract. Time series segmentation (TSS) is a research problem that
focuses on dividing long multivariate sensor data into smaller, homo-
geneous subsequences. This task is critical for various real-world data
analysis applications, such as energy consumption monitoring, climate
change assessment, and human activity recognition (HAR). Despite its
importance, existing methods demonstrate limited efficacy on real-world
multivariate time series data. To advance the field, we organized the
Human Activity Segmentation Challenge at ECML/PKDD and AALTD
2023, featuring 57 participants. Collaborating with 15 bachelor com-
puter science students, we gathered and annotated 10.7 h of real-world
human motion sensor data. The challenge required participants to seg-
ment the resulting 250 multivariate time series into an unknown number
of variable-sized activities. The top-8 approaches outperformed existing
baselines, but show only limited improvements, capped at 1.9% points.
The segmentation of real-world mobile sensing recordings remains chal-
lenging. We release the labelled challenge data for future research.

Keywords: Ubiquitous Sensing · Human Activity Recognition · Data
Mining · Unsupervised Learning · Time Series Segmentation

1 Introduction

The analysis of human behaviour can provide valuable insights into health status,
fitness, or personal security [1]. This is relevant to various domains, including
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 3–13, 2023.
https://doi.org/10.1007/978-3-031-49896-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49896-1_1&domain=pdf
http://orcid.org/0000-0002-8138-3060
https://doi.org/10.1007/978-3-031-49896-1_1
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       Sport Routine (TS No. 1)

    jumping jacks rest  sit upsdown to plankdown to plankjacksjumping
   Train Ride (TS No. 108)

walk wait get on ride  train get off

Fig. 1. Example TS of a sport routine from subject 1 (left, indoor) and a train ride
from subject 1 (right, outdoor). Activity segments are coloured. Missing dimensions
are displayed as empty cells.

the medical sector [2], industrial applications [3], and military operations [4].
Wearable devices, such as smartphones, have low-cost sensors that capture the
dynamics of human activities in the form of long consecutive segments within
temporal data, commonly known as time series (TS) [5]. Such data can be used,
for instance, to detect falls in the elderly [6], or to monitor patients with dementia
or mental illness [7].

To accomplish such applications, the research field of human activity recogni-
tion (HAR) implements workflows that first segment TS motion data, then learn
characteristic features and finally classify individual activities [1]. Most HAR sys-
tems process fixed-length subsequences extracted from sensor measurements, as
opposed to processing the entirety of a single activity [8]. This leads to hetero-
geneity and performance losses in many downstream tasks [7]. The automatic
partitioning of multivariate sensor signals into an unknown amount of variable-
sized activity segments is very challenging, and many open problems still exist,
such as accurately locating activity transitions in multi-dimensional data and
deciding if these are actually substantial or just emergent signal fluctuations.

The overarching task of activity segmentation is called time series segmen-
tation (TSS), which is an unsupervised learning problem that seeks to discover
variable-sized, distinguishable segments separated by change points (CPs) within
TS [9,10]. TSS typically is not the final aim of data analysis, but serves as a pre-
processing step to partition complex TS data for advanced analytics such as clas-
sification [11], anomaly detection [12] or motif discovery [13]. Accurate solutions
need to be robust, segment a wide variety of different TS and handle imperfect
and noisy multi-dimensional sensor recordings from different devices. Recently,
specialized statistical methods [10] and modern data mining algorithms [14,15]
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Table 1. List of motion sequences.

Motion Group Category Activity Subject

ID ID Examples IDs

1 1 sport jumping jacks, sit ups, plank, . . . 1,2,3,4,6,7,8

2 1 household clear dishes, vacuum living room, push
couch back, . . .

1,2,3,4,6,7,8

3 1 shopping stand on escalator 1, change shoes, walk
to Deichmann exit, . . .

1,3,4,5,6,7,8

1 2 commute climb stairs, ride train (standing), wait
for traffic lights, . . .

1,2,3,4,5,6,7

2 2 commute go down stairs, wait, drive, . . . 1,2,3,4,5,6

3 2 sport deep squat with arm reach, reverse plank
hold, side stretch left, . . .

1,2,4,5,6,7

Fig. 2. Number of occurrences for single activities in the challenge data.

have been employed to address this task. However, as highlighted by the survey
of Aminikhanghahi et al. [9], accuracy is still limited.

To bridge this gap, we conducted an ECML/PKDD 2023 discovery challenge
in collaboration with the 8th Workshop on Advanced Analytics and Learning
on Temporal Data (AALTD@ECML)1. The competition aimed to increase the
performance of multi-modal human activity segmentation and featured 57 par-
ticipants. We provided a new mobile sensing data set from a daily setting, as
opposed to the typical laboratory setup with intrusive and specialized sensor
devices [16,17]. We collected and annotated 10.7 hours of multi-dimensional
real-world TS data using heterogenous smartphone sensors capturing 100 typi-
cal human activities performed by 15 bachelor students in 6 motion sequences.
See Fig. 1 for two examples. The challenge task was to predict the amount and

1 https://ecml-aaltd.github.io/aaltd2023.

https://ecml-aaltd.github.io/aaltd2023
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locations of activity transitions in the resulting 250 multivariate TS without
any training or external data. Existing algorithms which served as baselines like
BinSeg [10] or ClaSP [15] score low to medium F1 scores (24,8% to 49,6%) on
these data sets. The winning solutions improve the state of the art by up to
1.9% points (pp) to 51.5%. This progress demonstrates the potential for further
advancements in multivariate TSS research in general and HAR in particular. We
make the labelled challenge data freely available [18] to encourage comparative
evaluations in the field.

2 Challenge Data

In collaboration with 15 bachelor computer science students (see Acknowledg-
ments), we created a multi-modal data set comprising 40 twelve-dimensional
multivariate smartphone sensor recordings. These capture 6 distinct human
motion sequences designed to represent pervasive behaviour in realistic indoor
and outdoor settings. Data were collected using built-in smartphone sensors
placed in the subjects’ front right trouser pockets. We annotated the activities
performed and their transitions in the recordings, resampled the data at a con-
stant rate of 50 Hz, and segmented it to yield 250 multivariate TS. This data set
serves as a benchmark for evaluating machine learning workflows.

The subsequent subsections provide detailed information on the data set’s
design (Subsect. 2.1), collection process (Subsect. 2.2), annotation and prepro-
cessing workflow (Subsect.. 2.3), specifications (Subsect. 2.4), and availability
(Subsect. 2.5).

2.1 Data Set Design

Two independent groups from Humboldt-Universität zu Berlin, each consisting
of either 8 or 7 bachelor computer science students, recorded 3 motion sequences
in 2022. These sequences covered a total of 100 activities, with the first group
focusing on indoor activities and the second group targeting outdoor behaviours.
The primary objective was to capture natural human behaviour. A summary of
the motion sequences is provided in Table 1, and specific activity annotations
are linked to individual TS.

The student cohort included 10 males and 5 females, ranging in age from
21 to 42. Further details are presented in Table 2. Within a group, each stu-
dent performed up to 3 preconceived motion routines, consisting of different and
partly recurring activities, the distribution of which is visualized in Fig. 2. The
data collection yielded 40 multivariate recordings that were subsequently cut to
create a data set of 250 multi-dimensional TS. Recordings were made using 5
different smartphones from 4 brands (Huawei, Motorola, Samsung, and Xperia)
and were placed in the front right trouser pocket of (almost) all participants.
The “Physics Toolbox Sensor Suite” application was employed to capture sen-
sor data from a triaxial accelerometer, gyroscope, and magnetometer, as well as
latitude, longitude, and speed when available. The resulting TS feature 12 dimen-
sions, with 9 filled sensor data dimensions and 3 empty ones, as illustrated in
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Table 2. List and characteristics of participants.

Subject Group Gender Age Size Weight

ID ID (in cm) (in kg)

1 1 M 25 180 74

2 1 F 23 155 50

3 1 M 23 179 83

4 1 M 24 167 68

5 1 F 26 166 67

6 1 F 22 180 65

7 1 F 23 170 58

8 1 F 30 172 57

1 2 M 29 183 96

2 2 M 23 183 65

3 2 M 24 182 130

4 2 M 31 180 100

5 2 M 42 171 62

6 2 M 21 186 66

7 2 M 27 186 75

Fig. 1. The empty dimensions are due to different sensors in the smartphones. To
ensure continuous recording and prevent data loss in standby mode, the “Touch
Protector” application was also used. This smartphone placement and sensor
configuration is consistent with common practices in human activity recognition
(HAR) research [19,20]. Ground truth behaviour was captured through addi-
tional recording using another smartphone or action camera.

2.2 Data Collection

The student groups conducted the data collection over several days in the
fall and winter of 2022, with tasks, roles, and responsibilities delegated among
smaller teams. Prior to recording, instructors briefed the subjects on the motion
sequences and time commitments involved. During data collection, participants
initiated sensor recording, placed the phone in their front right pocket, performed
the specified motions, and then ceased recording upon completion. Additional
students guided subjects through the correct motion sequences and filmed the
activities to be used for annotations. All recordings were subsequently reviewed
for data quality and securely stored.

The data collection process encountered several challenges. Both groups expe-
rienced data loss due to hardware failure, necessitating re-recordings. We only
used uninterrupted TS in the challenge data. Organizational difficulties also arose
due to illnesses among team members. In one case, a phone had to be taped onto
a subject’s pants due to a lack of pockets.
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Sensor
Data

Video 
Data

Annotation
Synchroni-

zation

Time Series, Change 
Points, Activities

Cutting

Time Series, Change 
Points, Activities

Fig. 3. The preprocessing workflow for a single recording.

2.3 Preprocessing

A basic preprocessing pipeline was applied to the challenge data, as illustrated
in Fig. 3. Student groups annotated the recordings with activity labels and tran-
sitions to establish a ground truth, which is used for evaluation (Subsect. 3.3).
They manually analysed the video footage in conjunction with the sensor data
to do so. Subsequently, we synchronized the sensor dimensions using linear inter-
polation, a prerequisite for most TS analysis algorithms. A constant sample rate
of 50 Hz was employed, deemed appropriate for human behaviour detection [21].
Finally, each of the 40 recordings was cut at randomly selected activity transi-
tions to yield a data set of 250 multivariate TS, encompassing diverse problem
settings.

2.4 Data Set Overview

The data set comprises 250 twelve-dimensional TS, capturing 15 participants
performing up to three motion sequences each. The TS range from 7 s to 14 min
in duration (median 100 s) and contain between 1 and 15 segments; 76% of TS
have 5 or fewer segments (see Fig. 4, top right). Activity durations vary from
half a second for waiting to 10 min for running, with generally small variances
between subjects and individual executions (see Fig. 4, bottom).

Figure 1 presents two example TS from the challenge data, displaying all 12
dimensions. Activities are represented as coloured segments, and missing dimen-
sions appear as empty cells. The sports routine (left) reveals abrupt transitions
between activities, while the train ride sequence (right) shows gradual transitions
and significant variations in activity duration.

2.5 Data Availability

We make all the challenge data publicly available, complete with labels, meta-
information, and a Python data loader, on our website [18]. The data is licensed
under CC-BY-NC-SA, allowing users to share and adapt the content, provided
they give appropriate credit, use the same licence, and refrain from commercial
use.
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Fig. 4. Top: TS length and amount of change points. Bottom: Single activities and
their lengths.

3 Challenge Organisation

We organized the contest as a discovery challenge for ECML/PKDD 2023, in
collaboration with the 8th Workshop on Advanced Analytics and Learning on
Temporal Data (AALTD@ECML). The competition ran from April 11 to June
11, 2023, concluding at 23:59 UTC. Registration was open until June 2, 2023.
Following the competition’s end, we requested the top-ranking solutions from
competitors and, after a final review, released the scores on June 16, 2023. In
total, the challenge attracted 57 registrations, with 17 active participants submit-
ting 240 entries. Two winners were awarded free tickets to ECML/PKDD 2023,
oral presentations of their approaches at both the conference and the workshop,
as well as publications in its proceedings.

Subsequent subsections will detail the technical aspects (Subsect. 3.1),
rules (Subsect. 3.2), evaluation measure (Subsect. 3.3), and competition results
(Subsect. 3.4).

3.1 Technical Details

We hosted an invite-only community competition on Kaggle2 to disseminate
challenge information, data, baselines, and to maintain public and private leader-
boards. Interested individuals could access the competition through an invitation
2 https://www.kaggle.com/competitions/human-activity-segmentation-challenge.

https://www.kaggle.com/competitions/human-activity-segmentation-challenge
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link, provided upon request via a questionnaire. We supplied Jupyter notebooks
featuring an exploratory data analysis and six state-of-the-art algorithms for
TSS [18], including BinSeg [10], ClaSP [15], FLUSS [14], GGS [22], IGTS [23],
and STRAY [24]. Participants submitted their predictions as a CSV file, con-
taining predicted activity transitions for each of the 250 TS. These submissions
were automatically scored and ranked by the Kaggle platform.

3.2 Rules

Participants had to adhere to specific rules to join the challenge. Each participant
was allowed up to three daily submissions, using only reproducible and deter-
ministic methods subject to verification on request by the organizers to prevent
cheating. We deemed a solution deceitful if it relied on manually labelled anno-
tations or machine learning algorithms that used such annotations. Only fully
unsupervised solutions were permitted to ensure a fair competition. Additionally,
the use of external data or metadata-based manual tuning of hyperparameters
was prohibited. Parameters had to be either universally set or data-driven.

The top-3 competitors were required to submit their code for a final inspec-
tion and hand-in a report that describes their approach. Failure to fulfil these
obligations resulted in forfeiture of the award and winning status, as was the case
for one participant. The challenge organizers were ineligible to submit entries.

3.3 Evaluation Measure

In this challenge, participants were tasked with predicting the offsets of activity
transitions for all 250 twelve-dimensional TS in our data set. Apart from the
TS, sensor names, and overall sample rate, no further information was provided.
Ground truth annotations, kept confidential, served as the basis for evaluating
the predicted segmentations. To score submissions and generate leaderboards,
the data set was randomly partitioned into public and private sets, each con-
taining 125 TS. No stratified sampling was applied, as TSS had to be performed
for single TS without training or external data. Final performance was assessed
on the private set, yielding the ultimate leaderboard and rankings.

For evaluating segmentation performance, we employed a well-established
benchmarking score from existing literature. Drawing inspiration from an image
segmentation challenge3, we combined classification and clustering metrics to cal-
culate the average F1 score across different thresholds. Specifically, for each TS,
we calculated the intersection over union (IoU) between predicted and ground
truth segments to yield a normalized score (higher is better). A threshold was
then applied to determine sufficient overlaps, generating a confusion matrix from
which the F1 score was computed. This process was iteratively applied for mul-
tiple thresholds (ranging from 0.5 to 0.95 in steps of 0.05), and the results were
averaged to generate the final normalized score. This measure was calculated for
each of the 250 TS and averaged per leaderboard to measure the quality of a
participant and infer the public and private rankings.
3 https://www.kaggle.com/competitions/airbus-ship-detection/overview/evaluation.

https://www.kaggle.com/competitions/airbus-ship-detection/overview/evaluation
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Table 3. The final private leaderboard with top-10 best-ranking competitors and 3
baselines (in bold/italic). The top-8 approaches outperform the best baseline ClaSP.

Rank F1 Score (in %) Participant No. of Entries

1 51.5 gh 46

2 50.7 Koular 12

3 49.8 Panos 14

4 49.8 infoxin 15

5 49.8 kojimar 7

6 49.8 Shayekh Islam 4

7 49.8 fuge 5

8 49.8 laffrent 11

49.6 ClaSP

9 49.6 pjmathematician 16

10 49.1 ALLAccept 11

24.8 BinSeg

23.9 FLUSS

3.4 Competition Results

Table 3 displays the final rankings and F1 scores for the top-10 competitors.
The top-2 winning solutions achieved F1 scores exceeding 50%. Both utilized
the ClaSP algorithm in a multivariate setting, employing strategies for selecting
relevant sensor dimensions, hyper-parameter tuning, and change point merging.
Their detailed methodologies and code are available in the respective publica-
tions [25,26]. The top-8 competitors outperformed the highest-ranking baseline,
ClaSP, which scored 49.6%. However, the performance improvement, capped at
1.9 pp, highlights the inherent challenge of segmenting real-world mobile sensing
data in a fully unsupervised manner.

4 Conclusion

We presented an overview and results of the Human Activity Segmentation Chal-
lenge at ECML/PKDD and AALTD 2023. The contest utilized 10.7 h of mobile
sensing data recorded with 15 bachelor students, which is now publicly avail-
able for future human activity recognition research. In the challenge, 17 active
participants competed, with the top-2 achieving F1 scores over 50% for the
segmentation task. However, the overall performance on this data set remains
limited and requires significant improvement for TSS to be a viable component
in human activity recognition workflows.

Based on this challenge, we identify several avenues for future research: (a)
exploring sensor fusion within multivariate TSS, as opposed to current methods
that segment TS channels independently and merge resulting change points; (b)
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investigating dimension selection for multivariate TSS to potentially improve
accuracy; and (c) advancing domain-specific data denoising, normalization, and
preprocessing, particularly to facilitate the segmentation process.

Acknowledgments. We would like to thank Jonas Albrecht, Alexandria Arnold, Leo
Baur, Malte Borgmann, Simon Bosse, Sinan Genc, Alina Hartwich, Isabel Heise, Jan
Evert Hinrichs, Hoai Ngoc Ho, Malte Hückelkempkes, Wei Jin, Elida Sengül, Gerrit
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Abstract. The detection of change points in multivariate signal with-
out access to annotated data is a challenging task. The fully unsuper-
vised approach requires the development of a robust algorithm that can
effectively identify unknown a priori patterns. In this article we will
present one of the solutions to “Human Activity Segmentation Chal-
lenge” ECML/PKDD’23 [4] where the task was to predict the offsets of
activity transitions for multivariate time series. The described solution
won the first place.

Keywords: multivariate signal segmentation · unsupervised learning ·
change point detection (CPD) · human activity recognition (HAR)

1 Introduction

Detecting change points is a common task when dealing with non-stationary
time series and involves the identification of temporal boundaries that sepa-
rate homogeneous time periods. Its importance was proven in various domains,
including finance, environmental monitoring, industrial monitoring, medical con-
dition monitoring, climate change detection, etc.

One of the popular area of application of such methods are human activity
recognition (HAR) systems [1]. They are designed to automatically identify and
classify human activities based on sensor data. These systems typically involve
the use of wearable sensors, such as accelerometers and gyroscopes, to capture
the motion and movement patterns of the human body. The data collected from
these sensors is then processed and analyzed to recognize and classify different
activities which later can be applied as fitness tracking, healthcare monitoring,
personal security, gesture recognition etc.

Methods for change point detection can be roughly categorized as online
[6] or offline [7]. Offline algorithms analyze the entire dataset as a whole and
retrospectively identify points of change by examining past data. Their objective
is typically to identify all the change points in a sequence in a batch processing
mode. On the other hand, online (real-time algorithms) operate in parallel with
the monitored process. They process each incoming data point as it becomes
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 14–24, 2023.
https://doi.org/10.1007/978-3-031-49896-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49896-1_2&domain=pdf
http://orcid.org/0009-0004-6100-183X
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available, aiming to detect a change point as quickly as possible after it happens,
ideally prior to the arrival of subsequent data points. In this article we will focus
on the offline scenario.

Traditional change point detection methods often rely on predefined assump-
tions or manual thresholds, making them less adaptive to complex and dynamic
data. To address this challenge, unsupervised machine learning (ML) meth-
ods have gained significant attention for their ability to automatically discover
change points without prior knowledge or labeled data.

2 Problem Statement

Human Activity Segmentation Challenge [4] was organized as one of Discovery
Challenges during ECML PKDD 2023 conference. The objective of this challenge
was to create completely unsupervised algorithms that address the time series
segmentation problem. Many HAR systems currently adopt a strategy of pro-
cessing fixed-length subsequences extracted from sensor measurements, rather
than analyzing complete activity instances. Addressing this challenge requires
the automatic partitioning of multi-variate sensor signals into variable-sized seg-
ments of activities, the number of which is unknown. Therefore the primary
objective of this competition was focused on time series segmentation (TSS),
an unsupervised learning problem that aims to identify homogeneous segments
of variable lengths within a given time series. TSS is typically employed as a
preprocessing step to partition complex time series data for advanced analytical
tasks such as classification, anomaly detection, or motif discovery. However, per-
formance in this area remains limited, especially when dealing with real-world
time series data where the number of segments is not predetermined.

In order to achieve an accurate solution for the defined task, it was essential
to develop robust algorithm capable of segmenting a wide range of different
behaviors, while effectively handling multi-dimensional sensor recordings from
different devices.

For the evaluation, the ground truth annotations of the activity transitions
were used to measure the quality of predicted segmentations. Note that it was
not possible to use annotations to build or tune segmentation models. Moreover,
embedding human expertise about the given time series into handcrafted models
was also explicitly prohibited. Parameters were supposed to be set for the entire
data set or learned from the available data. It was also enforced by the validation
schema (a part of the score (private score) was hidden until the end of the
challenge).

2.1 Notation

In this section, we will introduce some notation that will be used later to facilitate
a clearer and more precise description of our solution.
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Definition 1. A multivariate time series T is a sequence of n ∈ N real values,
T = (t1, . . . , tn), where ti ∈ R

d for i = 1, . . . , n that contains the observable
output of d sensors over time. The values are also called observations or data
points.

Definition 2. For a given time series T , we define a subsequence Ts,e of T with
a start offset s and an end offset e which consists of the continuous observations
of T from positions s to position e (i.e., Ts,e = (ts, . . . , te) with 1 ≤ s ≤ e ≤ n).

Definition 3. We define segmentation of time series T as set of time series
subsequences Sis,ie for i ∈ I such that

⋃

i∈I

Si = T (1)

and
Si ∩ Sj = ∅ for i, j ∈ I (2)

Each time series segmentation can be expressed as ordered sequence of obser-
vations of T such that ti1 , . . . , tiS with 1 < i1 < . . . < iS < n. We call these
observations change points.

The set of change points also determines the segmentation of the time series;
hence, in this paper, we will use these terms interchangeably.

Definition 4. We say that coverage Si∈I is finer than Si∈J if each element
of Si∈J can be expressed as a union of elements from Si∈I . We denote it as
Si∈I ≺ Si∈J

Definition 5. For any two time series segmentations we can define their inter-
section i.e.,

Si∈I ∧ Si∈J = {si ∩ sj for (si, sj) ∈ (Si∈I , Sj∈J)} (3)

It is easy to observe that Si∈I ∧ Si∈J ≺ Si∈I is segmentation of time series
T and

Si∈I ∧ Si∈J ≺ Si∈I and Si∈I ∧ Si∈J ≺ Si∈J (4)

In the context of human activity recognition, our objective is to perform
time series segmentation on sensor signals. This segmentation yields consecutive
subsequences that correspond to distinct activities, such as walking or running.

Within the specified task of Human Activity Segmentation Challenge, we are
presented with time series data that already possess predefined segmentation,
representing distinct activities. Our objective is to predict this segmentation
accurately. In this particular setup, the initial segmentation is concealed, thus
prohibiting the use of supervised machine learning methods. List of original
activities is used only for method validation i.e., original segmentation Si∈I will
be compared with predicted Ŝi∈J . Note that we don’t know the cardinality of
the original segmentation #I so it is possible that #I �= #J ;
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2.2 Dataset

A dataset of 250 twelve-dimensional multivariate time series was collected for
Human Activity Segmentation Challenge. The time series were sampled at a
frequency of 50 Hertz (Hz) and contain between seven seconds and fourteen
minutes (median 100 s) of human motion data (with a cumulative duration of
10.7 h). Distribution of signal length was presented in Fig. 1.

The recordings were taken by students from Humboldt-Universitt zu Berlin
and capture few to many potentially recurring activities from a total of one hun-
dred different ones, each lasting for variable time durations. The acquired sensor
data encompasses triaxial acceleration, gyroscope, and magnetometer readings,
as well as latitude, longitude, and speed, depending on the smartphone utilized.
For all time series there were always available measurement of acceleration (x-
acc, y-acc, z-acc) and magnetometer measurements (x-mag, y-mag, z-mag) and
either set of gyroscope measurements (x-gyro, y-gyro, z-gyro) or measurements
of lat, lon and speed. So in our study, each observation in the dataset was rep-
resented by a nine-dimensional signal with sampling of 50 values collected per
second. Example of such multivariate signal was presented in Fig. 2.

Fig. 1. Distribution of signal length and availability of a given measurement in time
series.

Besides these time series, their sensor names, and the overall sample rate, no
other information was provided or permitted for use. Also use of any external
data and pre-trained models (as they have been trained on external data) was
strictly prohibited.

2.3 Validation Procedure

As previously stated, the ground truth segmentation, representing distinct activ-
ities was not available during segmentation, only used for the external validation
step. To assess the performance of a given solution predicting time series seg-
ments, the multi-threshold F1 score was used. It is defined as follows:
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Fig. 2. Example of multivariate signal (ts id = 9).

For a given time series, we calculate the intersection over union (IoU, also
called Jaccard similarity coefficient [5]) of overlapping predicted and ground
truth segments, to obtain a normed score (higher is better).

IoU(S, Ŝ) =
|S ∩ Ŝ|
|S ∪ Ŝ| (5)

Then we set a threshold to assess which overlaps are sufficient, from which a
confusion matrix is inferred, used to calculate the F1 score. A true positive (TP)
is counted when a single predicted segment matches a ground truth segment
with an IoU above the threshold. A false positive (FP) indicates a predicted
segment had no associated ground truth segment. A false negative (FN ) indicates
a ground truth segment had no associated predicted segment.

This computation is repeated for multiple thresholds and the results are
averaged to obtain the final normalized score for a given time series:

1
#ths

∑

t∈ths

2TP (t)
2TP (t) + FP (t) + FN(t)

(6)

where set of thresholds ths = {0.5, 0.55, . . . , 0.9} and where #ths denotes the
cardinality of the set ths.

To get the final score, this measure is calculated for each of the time series
and averaged.

In our analysis, we employed a range of internal metrics, including measures
of internal consistency, to evaluate the performance of our models. However,
given the specific nature of the task, we also endeavored to utilize the competi-
tion scoring system as frequently as possible. After submitting segmentation for
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all time series in the dataset, the value of F1 metric was calculated. It is impor-
tant to note that utilizing the competition scoring system posed some strategic
challenges due to limitations on the number of calls to the scoring API, which
were restricted to three calls per day. Additionally, it is worth mentioning that
the scoring API provided a single value for the entire solution, encompassing
all time series in the public part of validation dataset. The score for another
part of validation dataset (private score) was not available until the end of the
competition.

3 Approach Selection

3.1 Baseline Solutions

In the initial stages, we established a set of simple baseline solutions, which were
subsequently modified to serve as benchmarks for comparing the performance of
our proposed solution. Developing these basic baselines not only facilitated the
identification of key aspects that could potentially have a significant impact on
performance but also assisted in prioritizing their importance.

Specifically, we generated a series of segmentations using a random selection
of change points, as well as a series of segmentations based on equal subsequences
with an increasing number of generated segments (see Fig. 3).

We also conducted a series of experiments that involved segmentations using
both single and multiple dimensions (see Fig. 4). These experiments not only
helped us to reduce the number of components employed in the final model but
also enabled an assessment of the performance implications associated with the
utilization of complex models.

Fig. 3. Performance of simple baseline solutions - equal subsequences with increasing
number of generated segments and random segments.
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3.2 General Idea

In order to maintain control over the final solution while keeping it as simple
as possible, we opted to generate segmentations for one-dimensional compo-
nents of given multivariate signal and subsequently aggregate them to form the
final solution. Instead of utilizing all components of the multivariate signal, we
selected only three components that exhibited the highest performance in one-
dimensional models. Our experimentation involved exploring various methods
of aggregating the results from individual components into the final solution, as
well as devising a technique to reduce the final solution to prevent overfitting.
Hence, the final solution consists of the following three steps (see Algorithm 1):

– generation of ClaSP change points for selected channels;
– consolidation of change points obtained from various channels;
– elimination of irrelevant change points through pruning.

Algorithm 1. Change Point Detection
1: function ChangePointDetection(data)
2: changePoints ← ∅ � Initialize empty set
3: for channel ∈ {x-acc, y-acc, z-acc} do � Loop over channels
4: channelData ← extractChannelData(data, channel) � Extract channel data
5: cps ← ClaspProcedure(channelData) � Apply clasp procedure
6: changePoints ← changePoints ∪ cps � Merge change points
7: end for
8: changePoints ← PruneFunction(changePoints) � Apply prune function
9: return changePoints

10: end function

11: procedure ClaspProcedure(channelData)
12: ... � Implementation details - see [2]
13: end procedure

14: procedure PruneFunction(changePoints)
15: prunedChangePoints ← ∅ � Initialize empty set
16: for point1, point2 ∈ changePoints do � Loop over change points
17: if |point1 − point2| ≤ threshold & point1 < point2 then
18: prunedChangePoints ← point1 � Keep only the first change point
19: end if
20: end for
21: return prunedChangePoints
22: end procedure

3.3 ClaSP (Classification Score Profile) Algorithm

We conducted experiments using several segmentation methods and ultimately
selected the ClaSP (Classification Score Profile) algorithm to generate change
points for the chosen channels. In [2], it was demonstrated that ClaSP out-
performs existing state-of-the-art methods in terms of accuracy. Additionally,
the evaluation of ClaSP’s performance involved rigorous experimental analysis
using a benchmark dataset consisting of 107 distinct data sets. Remarkably,
the results indicated that ClaSP not only achieved improved accuracy but also
demonstrated impressive speed and scalability.
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Fig. 4. Performance of ClaSP algorithm applied to single components of multivariate
signal.

In our pursuit of enhancing performance, we aimed to fine-tune model param-
eters. In order to accomplish this, we followed the methodology outlined in
Sect. 4.7 of [2] and in the article [3]. However, due to limited validation capa-
bilities, we were unable to guarantee robustness and obtain a superior set of
parameters compared to the default configuration.

3.4 Multivariate Aggregation

When combining segmentations obtained from one-dimensional time series, two
primary strategies emerge as the most intuitive. The first strategy involves deem-
ing a change point as valid for the multidimensional time series if it is valid for
any of its individual dimensions. This strategy allows for variations and devi-
ations within individual dimensions while still considering the change point as
valid for the overall multidimensional time series.

The second strategy entails considering a change point as valid for a multi-
dimensional time series only if it is deemed valid for all of its one-dimensional
components. In other words, the change point should exhibit consistency across
all dimensions.

Using notation from Sect. 2.1 we can express it as follows:
Scenario 1: use as a segmentation the intersection of all available one-

dimensional segmentations:
∧

d

Si∈Id = Si∈I1 ∧ . . . ∧ Si∈Id (7)

Note that in our case finally we decided to use only measurements from
accelerometers (x-acc, y-acc, z-acc), so in our case multivariate aggregation will
be an intersection of these components.
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Scenario 2: we define a new segmentation W such that change point c ∈ W
if and only if c ∈ Si∈Ik for each k = 1, . . . , d. It can be also defined with some
precision threshold, i.e., c is close enough to change point in each component
segmentation.

For example, if we would get three one-dimensional segmentations:

{[0, 50], [51, 100]}, {[0, 50], [51, 80], [81, 100]}, and {[0, 50], [51, 90], [91, 100]}
then Scenario 1 would give us the aggregated segmentation as

{[0, 50], [51, 80], [81, 90], [91, 100]}
and Scenario 2 would give us:

{[0, 50], [51, 100]}.
We opted to proceed with Scenario 1, wherein a change of activity in a single

dimension is considered sufficient. We believe that within the context of our use
case, this assumption is valid. Specifically, we posit that it is possible for an
activity to change solely by altering a single component, without necessitating
simultaneous changes across all dimensions.

Upon combining the one-dimensional components, we made an intriguing
observation regarding the presence of numerous closely spaced change points.
This phenomenon could be attributed to time shifts or delays in detecting activ-
ity changes across different components. Given the sampling frequency of 50 Hz,
achieving exact alignment of change point values across all dimensions proved to
be challenging. Unfortunately, the lack of access to annotated data hindered our
ability to empirically validate this hypothesis. Nevertheless, in light of this obser-
vation, we made the decision to eliminate redundant change points. Remarkably,
this post-processing step yielded a positive impact on the performance of our
solution, further reinforcing the significance of addressing the issue of redundant
change points in the context of our study.

3.5 Pruning

As previously stated, the sampling rate for all sensors was set at 50 Hz, resulting
in the collection of 50 samples per second. Hence, if there is an absolute error
of 50 (samples) in predicting a change point, it indicates that a discrepancy
change point and the actual change point in the collected data is equal to only
one second. From the other side we believe that the transition between distinct
activities within the recorded signal may extend for few seconds. To address
this problem, without possibility to test it with annotated data, we applied the
following procedure:

For a given segmentation of time series {cpi}i∈I , in cases where the distance
between two change points, denoted as cp1 and cp2, falls below a predefined
resolution window w (i.e., d(cp1, cp2) < w), we adopt a selection criterion that
favors retaining only cp1. This decision is based on the assumption that cp1
represents the initial indication of a signal change, while cp2 and subsequent



Change Points Detection in Multivariate Signal 23

change points are likely to be observed with a delay. By prioritizing cp1 in such
scenarios, we aim to maintain consistency with the chronological order of change
point occurrences, acknowledging the potential presence of temporal delays in
the observed signal components.

We experimented with different lengths of resolution window, and based on
performance on public validation dataset we selected the optimal value i.e., w =
400. The selected value turned out to be also optimal for private part of validation
dataset, see Fig. 5.

Fig. 5. Impact of pruning with a given resolution window on overall model performance.

4 Summary

We have developed a robust and effective baseline approach for segmenting mul-
tivariate signals in the field of human activity recognition. Our proposed solution
demonstrates substantial superiority over defined baseline models (see Sect. 3.1).
Notably, our solution achieved very good performance in the ’Human Activity
Segmentation Challenge’ at ECML/PKDD’23, securing the 2nd place. Further-
more, our approach demonstrated comparable performance on both the public
and private parts of the validation dataset, providing evidence of its ability to
avoid overfitting.

Given its performance, our baseline approach holds significant value as a
simple yet robust reference point for future investigations related to the identi-
fication of human activities using multivariate signal-based methods.
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The data, Python data loaders and baseline solutions can be downloaded from:
github.com/patrickzib/human activity segmentation challenge and the code of
the described solution is available at github.com/gharanczyk/ecml pkdd2023.
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Abstract. Detecting change points in time series data is a widely
acknowledged challenge with diverse applications, in which the data
obtained from measured values is often characterized by complex com-
positions, and the availability of real data is typically limited. However,
current detection algorithms often depend on domain-specific data to
achieve better performance or are restricted to analyzing single variant
series, limiting their applicability. In this paper, we introduce a novel
approach to change point detection that eliminates the requirement for
collecting supervised data. Initially, we train a discriminant model using
artificially generated synthetic signals comprising a combination of intri-
cate patterns and random noise. This discriminant model is designed to
predict the number of change points, and the synthetic data set encom-
passes a wide range of patterns observed in real data and offers significant
advantages in terms of diversity and data volume. The trained discrim-
inant model is then applied in conjunction with the ClaSP method for
change point detection. To fully exploit multivariate series information,
we propose a simple yet useful weighted-merging method that improves
detection performance by aggregating change point votes within each
time gap. Experimental results demonstrate the superiority of our Detec-
tion Model via Synthetic Signals (DMSS) compared to the original ClaSP
method, demonstrating exceptional performance on the Human Activity
Segmentation dataset.

Keywords: Change Point Detection · Synthetic Signals · Multivariate
Series

1 Introduction

The exploration of time series data plays a crucial role in comprehending and
predicting the intricate dynamics of real-world systems. However, the temporal
nature of such data also introduces the possibility of abrupt changes or shifts
in behavior, known as change points. Detecting change points in time-series
data is a multifaceted and challenging problem [1]. Unlike traditional anomaly
detection, which focuses on identifying outliers or deviations from a predefined
norm, change-point detection aims to identify specific moments in time when the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 25–35, 2023.
https://doi.org/10.1007/978-3-031-49896-1_3
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statistical properties of the data undergo a fundamental shift. These shifts can
manifest as sudden spikes, dips, or changes in trend, indicating a transformation
in the underlying data-generating process.

Over the following decades, numerous change point detection methods have
been developed [2–8]. These methods are based on diverse concepts and have
the ability to recognize various types of changes in time series, such as jumps
in mean and variance, correlations among different components, and more com-
plex dependencies. Comprehensive overviews describing these algorithms can be
found in various literature sources [1,9,10]. To indicate the reliability of the pre-
dicted change points, change point detection methods apply various techniques
to extract relevant characteristics from each segment, such as Arc Curve [4],
CUSUM statistic [3], Gaussian statistics [6], and information gain [5]. ClaSP [8]
trains a binary classifier for each possible split point and utilize the accuracy
to generate characteristics. These characteristics capture the properties of the
segment that are indicative of different semantic classes.

However, most of the existing change point detection methods implicitly
assume that all data is segmentable and the specific number of segments is usu-
ally automatically identified by heuristic algorithms, making it difficult to obtain
reliable predictions. On the other hand, when there are multiple variables in a
time series instead of single time series, there is lack of efficient methods to
combine multiple predictions. To alleviate these two issues, we propose a novel
approach called DMSS (Discriminant Model via Synthetic Signals) for detecting
change points in time series. Based on the observation that real signals often
consist of a certain range of recognizable patterns, our method incorporates a
discriminant model trained on synthetic signals and utilizes a simple merging
technique, in which the synthetic data set encompasses a wide range of patterns
observed in real data and offers significant advantages in terms of diversity and
data volume. We introduce a model-based method to estimate the number of
change points in a series more accurately, which greatly aids subsequent segmen-
tation tasks. We present a straightforward yet effective merging method that
leverages the information from multivariate time series. Experimental results
demonstrate that the proposed DMSS method outperforms the original ClaSP
method on the Human Activity Segmentation data set and finally ranked the
third place in HAS challenge [11].

In this paper, we will begin by describing the quality metrics and the method-
ology we will use to develop our algorithms. We will also present the results of
our experiments and evaluate the effectiveness of our approach. Our code is
available at: https://github.com/Tingji2419/MSS.

2 Related Works

Change Points Detection (CPD) has been extensively studied over the last sev-
eral decades in the fields of data mining, statistics, and computer science, as it
addresses a wide range of real-world problems. There are three main groups of
approaches for time series segmentation: dynamic programming, heuristic, and
probabilistic [12].

https://github.com/Tingji2419/MSS
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Fig. 1. The process of Detection Model via Synthetic Signals (DMSS). We first generate
synthetic signals with complex patterns. The synthetic data gets multiple discrimina-
tion problems after being split by sliding windows. We train a discriminant model
based on synthetic data set, which will be used to predict the number of segments of
each time series in advance. After combining the discriminant model with ClaSP, we
re-weight the segmentation results of each individual variable and get the final merged
result, making full use of the semantic information of multiple variables.

Dynamic programming is utilized as an optimization method in conjunction
with a cost function [13–15]. The fundamental technique for dynamic program-
ming segmentation is called k-segmentation, which focuses on minimizing the
variance within the segments. Heuristic approaches can be categorized into three
groups: sliding window, TopDown, and BottomUp. Sliding window approaches
involve sliding a window over the time series and initiating a new segment when
a specified error criterion is met [16]. TopDown approaches start with a sin-
gle segment and recursively partition the time series until a specific error cri-
terion is satisfied at each step [2,3,17,18]. IGTS [5] proposes both TopDown
and dynamic programming as optimization methods. On the other hand, Bot-
tomUp approaches begin with the maximum number of segments and merge
them iteratively until a predefined error criterion is fulfilled. Probabilistic-based
segmentation algorithms take into account the data distribution and transition
times, employing methods such as Bayesian distribution [19], Hidden Markov
Models [20], Gumbel distribution [7], and multivariate Gaussian distribution [6].

Apart from the aforementioned primary categories, other methods have been
proposed. For example, FLUSS [4] leverages the assumption that a high proba-
bility of semantic change exists when only a few arcs intersect at a given index
point. ClaSP [8] takes a unique approach by enriching a time series with a cus-
tomized classification score profile using the self-supervision concepts [8].

However, many check point detection challenges, such as human activity seg-
mentation, involve time series composed of heterogeneous data from different
types of sensors. Most existing temporal segmentation methods are designed
for single time series analysis. In contrast, our method extends the capabili-
ties of ClaSP by enabling the analysis of multi-series data through a simple yet



28 T.-J. Huang et al.

efficient merge strategy. This extension allows for more comprehensive and accu-
rate segmentation results, taking into account the diverse information from mul-
tiple sensor streams.

Furthermore, traditional approaches for estimating the number of segments
typically rely on comparing evaluation metrics on real data [5,21,22]. However,
our observation is that real signals often exhibit a certain range of recognizable
patterns. To address this, we generate synthetic signals that simulate real data,
encompassing a wide range of patterns observed in real data sets. This synthetic
data set offers significant advantages in terms of diversity and data volume.

Notably, to the best of our knowledge, there is currently no existing method
for estimating the number of segments through an artificial dataset. In this
regard, our proposed method stands out. By constructing a diverse synthetic
dataset and training a dedicated discriminant model, we can predict the number
of segments more accurately and robustly. This capability not only provides
valuable insights into segment estimation but also assists subsequent methods
in achieving improved performance.

In summary, while existing methods such as FLUSS and ClaSP have made
notable contributions, our method expands the scope of ClaSP to analyze multi-
series data and introduces a novel approach for estimating the number of seg-
ments using synthetic data. These advancements enhance the accuracy, flexibil-
ity, and applicability of segment analysis techniques, paving the way for further
improvements in various domains.

3 Background

3.1 Change-Point Detection

Consider a multivariate time series T = {t1, t2, ..., tl} consisting of l observations,
where each observation for a moment t is represented by a d-dimensional value
ti ∈ R

d. The time series changes its behaviour at multiple moments c1, c2, . . . , cN .

t1, t2, ..., tc1−1

Segment g1

, tc1 , ..., tc2−1

Segment g2

, tc2 , ..., tcN , ..., tl
Segment gN

The change-point detection algorithm recognizes m change-points at moments
ĉ1, ĉ2, . . . , ĉM . Let G = {g1, g2, . . . , gN} represent the set of ground truth seg-
ments split by c1, c2, . . . , cN , and P = {p1, p2, . . . , pM} denote the set of pre-
dicted segments split by ĉ1, ĉ2, . . . , ĉM .

3.2 Quality Metrics

To evaluate the change-point detection algorithm, we computes the F1-score by
comparing the predicted and ground truth segments.

We first computes the intersection over union (IoU) between two segments.
Given a predicted segment pi and a ground truth segment gj , when the inter-
section between pi and gj is ∅, the IoU is 0, otherwise it is calculated as:

IoU(pi, gj) =
min(end(pi), end(gj)) − max(start(pi), start(gj))
max(end(pi), end(gj)) − min(start(pi), start(gj))

,
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where start(pi) and end(pi) represent the starting and ending moments of the
predicted segment pi, respectively. Similarly, start(gj) and end(gj) represent the
starting and ending moments of the ground truth segment gj .

All IoU values populate a confusion matrix for each pair of predicted and
ground truth segments. The confusion matrix is a N × M matrix, where N
is the number of predicted segments and M is the number of ground truth
segments. Each element of the matrix represents the IoU between a predicted
segment and a ground truth segment. Next, the maximum IoU value for each
predicted segment is determined by taking the maximum along the rows of the
confusion matrix, resulting in a vector, V of length N . V contains the highest
IoU value among ground truth segment for each predicted segment.

For each predicted segment, we iterate over the thresholds in the range 0.5
to 0.95 with a step size of 0.05. Let t represent a threshold value within this
range. We compare the corresponding intersection over union (IoU) value in V ,
denoted as V j for the j-th predicted segment, to the threshold t. If the IoU
value V j is greater than or equal to the threshold t, the predicted segment is
considered a true positive (TP ). Similarly, if the IoU value V j is less than the
threshold t, the predicted segment is considered a false positive (FP ):

TP =
N∑

j=1

I(V j ≥ t), FP =
N∑

j=1

I(V j < t),

where I(·) represent the indicator function. To calculate the number of false
negatives (FN), we subtract the true positives (TP ) from the total number M
of ground truth segments. We have:

FN = M − TP.

Once the values of TP , FP , and FN are computed for each threshold t, the
F1-score can be calculated as:

F1-score =
2 × precision × recall

precision + recall
,

where precision is the ratio of true positives to the sum of true positives and
false positives, and recall is the ratio of true positives to the sum of true positives
and false negatives.

After calculating the F1-score at each threshold, the normed score is obtained
by averaging the average F1-scores across all thresholds and all time series.
This normed score provides an overall measure of the change point detection
algorithm’s performance, with higher values indicating better performance. In
summary, the metrics provide a robust evaluation of the quality of change point
detection algorithms applied to the time series.

4 Proposed Methods

We first introduce a model-based method using a discriminant model to find the
optimal number of change points C of a TS by training on a synthetic signals
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data set in advance (see Fig. 1). We assume that a TS consists of a variety
of continuous signals. This assumption comes from the fact that many signal
series are easily distinguishable by the human. We furthermore assume that
there is only one source of the signal in the same time period. Under these two
assumptions, the task of change point detection is transformed into a multiple
discriminant task. Therefore, a simple idea is to first train a discriminant model
to determine whether a certain subsegment has a change point.

4.1 Synthetic Signals Generation

Our research is driven by the observation that real signals frequently exhibit
distinct patterns that can be recognized and analyzed. To capture the essence
of these patterns, we generate synthetic signals that closely simulate real data.
This synthetic data set encompasses a wide range of patterns observed in real
data sets, providing significant advantages in terms of diversity and data volume.
Consequently, we employ these artificially generated synthetic signals to train
our discriminant model.

The utilization of synthetic signals in our approach serves two important
purposes. Firstly, it alleviates the need for collecting large-scale supervised data
sets, effectively minimizing the associated overhead and resource requirements.
By leveraging synthetic signals, we can generate an extensive set of training sam-
ples that represent various patterns and scenarios, augmenting the effectiveness
of our discriminant model. This approach contributes to the reduction of manual
data labeling efforts and facilitates more efficient model training.

Furthermore, the availability of a large number of training samples enhances
the classification ability of our discriminant model. The diverse nature of the
synthetic data set allows the model to learn and generalize from a wide spectrum
of patterns and variations, enabling it to accurately classify and distinguish
between different segments in real data.

We consider the following five basic signals to compose our analog signal
training set: square wave signal, sinusoidal signal, sawtooth signal, stair signal
and constant signal, as shown in Fig. 1. At the same time, we also consider a
variety of combination ways to construct complex signals, and add some noise
to make the synthetic data set more realistic.

4.2 Discriminant Model for Change Point Detection

DMSS, the algorithm we propose in this paper, is based on change point dis-
crimination and ClaSP [23] method, i.e., it solves the change point detection
problem by splitting a series into multiple discrimination problems, and then
using a linear discriminant model to detect whether there exists a change point,
as shown in Fig. 1.

Let T = {t1, t2, ..., tl} be a time series consisting of l observations, we first
computes l − w + 1 overlapping windows of width w with each being split into
several sub segments xi = {ti, ti+1, ..., ti+w−1}, where i ∈ [0, �l/w�]. To detect
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Fig. 2. Merging detected change points using three axises in Human Activity Segmen-
tation dataset. Points within a gap will be merged by predefined weights.

change points using a logistic model, we define a binary response variable yi,
which indicates whether a change has occurred at sub segment i or not.

log
(

yi
1 − yi

)
= β0 + β1 · xi, (1)

yi =
exp(β0 + β1 · xi)

1 + exp(β0 + β1 · xi)
. (2)

To obtain the number of change points in the entire time series, we can sum
up the binary classification results mentioned above and take the average across
all windows:

C =
1
L

∑

j∈[0,L]

∑

i∈[0,�l/w�]
yi, (3)

where L = l − w + 1.
The logistic regression model assumes a logistic relationship between the

predictor variables and the log-odds of the binary response variable. And one
important aspect to mention is that in this step, it involves, but is not limited
to, the use of logistic regression. Any other binary classification or discriminant
model can also be utilized. In our experiments, we employed eXtreme gradient
boosting (XGBoost) [24], a boosting algorithm based on logistic regression, as
an alternative approach.

4.3 Merging Multivariate Series

The original ClaSP method was primarily designed to address univariate time
series problems, which limits its ability for multivariate sequences. This con-
straint becomes evident when considering scenarios involving multiple spatial
signals associated with human body postures. For example, if the motion is con-
fined to a single plane, relying solely on information from the y-axis would fail to
capture comprehensive insights. In such cases, the incorporation of signals from
the x-axis and z-axis becomes critical to accurately detect change points. There-
fore, the integration of information from multiple sensors assumes paramount
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Algorithm 1. Merge and Combine Change Points
Require:
1: S: Number of time sequences
2: Seq[1 : S]: Time sequences with change points
3: Weights[1 : S]: Weights corresponding to change points in each sequence
4: g: Time gap threshold for combining points
Ensure:
5: Merged Seq: Merged time sequence
6: procedure Merge and Combine(N,Seq,Weights, g)
7: Merged Seq ← []
8: for i ← 1 to S do
9: combined point ← Seq[i][1]

10: combined weight ← Weights[i][1]
11: for j ← 2 to length(Seq[i]) do
12: if Seq[i][j] − combined point > g then
13: Merged Seq.append(combined point)
14: combined point ← Seq[i][j]
15: combined weight ← Weights[i][j]
16: else
17: combined weight ← combined weight + Weights[i][j]
18: end if
19: end for
20: Merged Seq.append(combined point)
21: end for
22: return Merged Seq
23: end procedure

importance in the context of change point detection, enabling a more compre-
hensive understanding of complex multivariate data.

To tackle this challenge, we propose a straightforward merging method based
on interval weights, akin to a voting approach, as depicted in Fig. 2. Given S
sequences with a time gap, denoted as g, between them, and assuming their
mutual independence, we assign weights, denoted as wi, to each sequence. Ini-
tially, we apply an individual change point detection method to each sequence.
Subsequently, utilizing the assigned weights, we merge the detected change points
within each segment by considering the respective weights within an interval
surrounding the split points. The detailed algorithm for this merging process is
defined in Algorithm 1.

5 Experiments

To evaluate the performance of various methods accurately, we conducted a series
of experiments using our self-labeled Human Activity Segmentation dataset [11].
In this section, we describe the setup of our experiments, including the evalua-
tion metric, the choice of the discriminant model, and the design of weights for
merging points.
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5.1 Dataset

We utilized the Human Activity Segmentation dataset [11], which is a collec-
tion of labeled human activity sequences. The challenge involved collecting and
annotating 10.7 h of real-world multi-dimensional time series (TS) data. The
dataset consists of 250 TS, each comprising twelve dimensions and sampled at
a frequency of 50 Hertz (Hz). These TS were recorded using various smartphone
sensors and captured the performance of 100 different human activities. Sixteen
bachelor students participated in the data collection, showcasing diverse motion
sequences during the activities. The TS data ranges from seven seconds to four-
teen minutes in duration, with a median duration of 100 s. Within each TS, a
varying number of potentially recurring activities are present, and each activity
has its own variable time duration. The main challenge task is to predict the
precise locations of activity changes without availability of ground truth labels.

5.2 Discriminant Model

For the discriminant model, we employed XGBoost [24] as a straightforward
implementation. XGBoost is a popular gradient boosting algorithm known for
its robustness and effectiveness in various machine learning tasks. We used the
default parameters of XGBoost to ensure a fair comparison among different
methods.

5.3 Merging of Points

To merge neighboring points and obtain coherent activity segments, we designed
weights based on a predefined time gap, denoted as g. We set g to be 120 units
of time, representing a reasonable duration for consecutive activities. The weight
vector for merging points was defined as 1, 0, ..., 0, where the first element has
a weight of 1 and the remaining elements have weights of 0. This design choice
ensured that only the first point within the time gap was selected, effectively
merging subsequent points.

5.4 Result

Table 1 illustrates the results of our experiments, comparing the performance
of our proposed method, DMSS, with the original ClaSP method [23]. DMSS
achieved the highest F1-score of 0.411, outperforming the performance of ClaSP
and ranked the third place in HAS challenge. These results highlight the effec-
tiveness of our approach in accurately segmenting human activities.
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Table 1. Performance on Human Activity Segmentation dataset.

Method FLUSS BinSeg GSS IGTS STRAY ClaSP DMSS (ours)

F1-Score 0.214 0.263 0.152 0.141 0.227 0.395 0.411

6 Discussion

In this work, we propose a method for change point detection in time series
based on the ClaSP method. Additionally, we train an additional discriminant
model to accurately determine the number of segmentation points. To ensure
sufficient training of the discriminant model, we create and utilize synthetic
simulated data. Furthermore, in order to fully leverage the information from
multiple sequences, we present a simple yet effective merging method based on
weights and time intervals, which provides a more robust and efficient approach
to segmenting time series from multiple perspectives.

Experimental results on the Human activity segmentation dataset demon-
strate that our proposed DMSS (discriminant Model for Change Point Detection
with Sequence Merging) method outperforms the original ClaSP method, achiev-
ing higher F1-Score. However, it should be noted that the current synthetic data
used in our experiments has a relatively fixed composition of basic signal com-
ponents. Future work will explore the incorporation of statistical characteristics
of target signals into the generation process of the synthetic data set, aiming to
enhance the realism and versatility of the simulated data.
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Abstract. Time Series Clustering (TSCL) involves grouping unlabelled
time series into homogeneous groups. A popular approach to TSCL is to
use the partitional clustering algorithms k-means or k-medoids in con-
junction with an elastic distance function such as Dynamic Time Warp-
ing (DTW). We explore TSCL using nine different elastic distance mea-
sures. Both partitional algorithms characterise clusters with an exemplar
series, but use different techniques to do so: k-means uses an averaging
algorithm to find an exemplar, whereas k-medoids chooses a training
case (medoid). Traditionally, the arithmetic mean of a collection of time
series was used with k-means. However, this ignores any offset. In 2011,
an averaging technique specific to DTW, called DTW Barycentre Aver-
aging (DBA), was proposed. Since, k-means with DBA has been the
algorithm of choice for the majority of partition-based TSCL and much
of the research using medoids-based approaches for TSCL stopped. We
revisit k-medoids based TSCL with a range of elastic distance mea-
sures. Our results show k-medoids approaches are significantly better
than k-means on a standard test suite, independent of the elastic dis-
tance measure used. We also compare the most commonly used alternat-
ing k-medoids approach against the Partition Around Medoids (PAM)
algorithm. PAM significantly outperforms the default k-medoids for all
nine elastic measures used. Additionally, we evaluate six variants of PAM
designed to speed up TSCL. Finally, we show PAM with the best elastic
distance measure is significantly better than popular alternative TSCL
algorithms, including the k-means DBA approach, and competitive with
the best deep learning algorithms.

Keywords: Time series · clustering · k-means · k-medoids · PAM ·
UCR archive

1 Introduction

Time Series Clustering (TSCL) is an unsupervised technique where a set of time
series, are partitioned into “clusters”, which contain time series considered to
be homogeneous. By contrast, time series in different clusters are considered
heterogeneous. However, there is no generally accepted definition of a cluster
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 39–55, 2023.
https://doi.org/10.1007/978-3-031-49896-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49896-1_4&domain=pdf
https://doi.org/10.1007/978-3-031-49896-1_4


40 C. Holder et al.

because “clusters are, in large part, in the eye of the beholder” [8]. This is
because different users may have different enough needs and intentions to want a
different algorithm and notion of cluster [31]. Therefore, due to the nature of the
various users problems and needs, hundreds of clustering algorithms have been
proposed. Many of these have been adapted to deal with time series. For instance,
alternative transformation based approaches [21], deep learning based clustering
algorithms [17] or statistical model based approaches [4], among others, have
been proposed for TSCL. Our focus is on partitional clustering based on distance
functions used to measure dissimilarity between whole time series.

Measuring dissimilarity is critical to clustering techniques in order to fulfil
the objective of any clustering algorithm: it must form internally homogeneous
and externally heterogeneous clusters. Measuring homogeneity usually requires
a measure of dissimilarity (or similarity) between cases, commonly known as a
distance measure.

In traditional clustering, this is normally a correlation based or Minkowski
metric such as Euclidean Distance (ED). However, these traditional distances do
not take advantage of the unique traits and characteristics of time series data.
There has been a popular research topic in designing time series specific dis-
tance measures that can be used in clustering (and classification). For example,
elastic distances compensate for misalignment creating a path through a cost
matrix by either warping or editing time series. The most common and famous
elastic distance is Dynamic Time Warping (DTW) [28]. A comparison of nine
elastic distance measures [22] found there was little difference in terms of accu-
racy of classification accuracy when used with a nearest neighbour classifier. For
TSCL, DTW is the most popular elastic distance measure, as can be observed
in these works [3,10,20,26]. It is most commonly used with k-means clustering
(for example [14]), which iteratively assigns cases to clusters with the nearest
exemplar, or centroid. Then, the centroid is recalculated from the new mem-
bership through averaging. One popular solution for DTW based k-means is to
use Dynamic Barycentre Averaging (DBA) [27] to find centroids. This involves
aligning cluster members to each other with DTW, then averaging along paths.
This improves k-means clustering, but at a high computational cost. An alter-
native to averaging to find centroids is to select instances, known as medoids,
to represent cluster exemplars. The most commonly used k-medoids algorithm
tries all of the current cluster members as the exemplar and chooses the one
that minimises a specific clusters distance to medoid. In common with the lit-
erature, we call this algorithm alternate or alternating k-medoids, although it is
sometimes referred to as Lloyds algorithm [23]. k-medoids algorithms have been
used much less frequently in the TSCL literature, particularly since DBA was
proposed.

Recent research [12] compared the performance of nine elastic distance mea-
sures using both k-means and a k-medoids (only using alternating k-medoids).
The main conclusion of this work was that two distance functions, Move Split
Merge (MSM) [34] and Time Warp Edit (TWE) [24], performed better than
other distances with both clustering algorithms. A secondary conclusion was
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that k-medoids approach generally outperformed k-means. One key feature of
k-medoids algorithms is that they require the calculation of the distance matrix
between instances prior to clustering. The O(n2) space complexity can introduce
an unacceptable overhead for large problems. Nevertheless, k-medoids algorithms
clearly have a role to play in a large majority of TSCL studies.

Our aim is to explore k-medoids based TSCL. We assess whether k-medoids
based TSCL is better than k-means based, regardless of the elastic distance func-
tion used. We then explore some of the large number of variants for k-medoids
clustering that have not been used in the TSCL literature before. Finally, we
compare the performance of the best k-medoids clustering approach to those of
popular alternative TSCL algorithms and show them to be significantly better
on the UCR archive [5]. Thus, our contributions are summarised as follows:

1. We compare the performance of k-means and standard k-medoids on 112 UCR
problems using nine elastic distance measures, focussing on the clustering
algorithm rather than the distance function.

2. We provide a survey of variants of k-medoids, aligned with implementations
in the aeon toolkit1.

3. We show that the Partition Around Medoids (PAM) [19] algorithm is signif-
icantly better than the standard k-medoids approach.

4. We evaluate the impact of a range of PAM refinements.
5. We show that PAM using MSM and TWE is significantly better than popular

alternative approaches, and is not worse than the best deep learning model
out of over 300 evaluated in [17].

The rest of this paper is structured as follows. Section 2 provides background
information into k-medoids based clustering. Section 3 describes the set of elastic
distance functions, standing out MSM and TWE. In Sect. 4, we give an overview
of the experimental settings, performance measures and statistical tests used for
comparing the methodologies. In Sect. 5, experimental results for the aforemen-
tioned comparisons are presented. Finally, Sect. 6 summarises our findings and
highlights future work.

2 k-Medoids Based Clustering Background

k-means and k-medoids are partition based clustering algorithms and share the
same basic components. Firstly, the algorithm selects time series, which we call
exemplars, that are meant to characterise a cluster. This is known as the ini-
tialisation stage. After initialisation, there is a process of assigning member-
ship based on distances to exemplars (the assign method). Then, exemplars are
updated based on new cluster assignments (the update stage). These three steps
are repeated until some convergence condition is met.

1 https://github.com/aeon-toolkit/aeon/.

https://github.com/aeon-toolkit/aeon/
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The iteration aims to minimise an error objective function of within class
deviation, or Total Deviation (TD), given as follows:

TD =
k∑

i=1

∑

xc∈Ci

d(xc, ei) (1)

s = 40 + 2k (2)

where k is the number of clusters, Ci is the set of cases in the ith cluster, d
is the disimilarity measure, xc is a case in cluster Ci and ei is the exemplar
(representative) of cluster Ci. One disadvantage of k-means for clustering is that
because the exemplars are centroids (averaged cluster members), repeated calls
to the distance function are required.

k-medoids clustering algorithms use instances from the train data (known
as medoids) as the cluster exemplars, and hence, they can use precomputed
distances. The assign and update operations can be performed independently of
the time series and distance function. It is worth noting that this need for a
pairwise distance matrix introduces memory overhead quadratic in train set size
n, needing O(n2) distance function calls. The key algorithmic design component
for k-medoids based clustering is how to choose the medoids and what objective
function to use.

2.1 Alternate k-Medoids

Given a crisp cluster label to each instance, the simplest approach to choose the
medoid mi for cluster Ci is to try all current members of the cluster, and choose
the one minimising the within cluster distance. At any iteration, the medoid for
each cluster is chosen independently based on currently assignment, as follows:

mi = arg min
xm∈C

∑

xc∈C

d(xc, xm). (3)

where mi is the ith medoid, C is a set of cases, xm and xc are time series in C,
and d is a dissimilarity measure. This alternate k-medoids is the simplest form
of medoids clustering. It is closely aligned with k-means (Lloyds [23]) and gets
its name because of the alternating stages of the assignment and update. The
main difference between alternate k-medoids and k-means is when calculating
new cluster centres, k-means computes an average whereas alternate k-medoids
finds medoids.

2.2 Partition Around Medoids (PAM)

Alternating k-medoids optimises the medoid within the current cluster assign-
ment. This may miss the opportunity for taking medoids from other clusters and
it may also converge prematurely since exemplars are less likely to change than
with k-means [32]. PAM [19] is an alternative approach designed to overcome
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these problems. PAM follows a similar structure to alternate k-medoids but uses
a different evaluation function to choose new medoids. It allows cases to become
medoids of clusters they did not previously belong to, and when evaluating a
new candidate medoid for any cluster, the total within cluster distance of all
clusters is considered.

The original PAM used a bespoke initialisation function called build, which is
similar to the restart methods used with k-means. However, for our experiments
we use random initialisation with PAM. The reason for this is outlined in Sect. 4.
The swap stage of PAM is described in Algorithm 1.

Algorithm 1. PAM swap: Iterative improvement, where X is a collection of
time series, n is the number of cases in X, medoids is the current set of medoids,
k is the number of medoids and d is a dissimilarity measure
1: init ← findTD(X, medoids)
2: best ← TD
3: cm ← medoids
4: continue ← true
5: while continue do
6: for i ← 1 to k do
7: a ← cmi, b ← best
8: for j ← 1 to n do
9: if xj /∈ cm then

10: cmi ← xj

11: current ← findTD(X, cm)
12: if current < best then
13: best ← current
14: if best = b then
15: cmi = a

16: if best = init then
17: continue ← false

18: return best, cm

Function findTD implements Eq. 2. PAM uses a greedy algorithm that oper-
ates cluster by cluster (line 6). For each cluster, it tries all cases that are not
currently medoids (lines 8–11) keeping the case that gives the lowest TD (lines
12–13). If there is no better candidate, the current medoids is retained (lines
14–15). The process terminates if the medoids have not changed (lines 16–17).

Finding the global optimum of the k-medoids problem is NP-hard [15], which
is why PAM uses a greedy approximation. The algorithm requires a distance
matrix (O(n2) memory) and each iteration has time complexity O(kn2). As this
is both computationally and memory expensive many variations of PAM have
been proposed to reduce memory, time complexity, or both.
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2.3 PAM Variants

A range of refinements of the PAM algorithm have been proposed to improve
PAM efficiency in both computational complexity and memory:

The Clustering LARge Applications (CLARA). [16] algorithm repeat-
edly applies PAM on a random subset of cases (with the recommended num-
ber being s = 40 + 2k). Once PAM is performed on the subset of cases and
medoids obtained, the remaining cases are assigned to their closest medoid. This
is repeated for multiple iterations and the iteration that has the lowest TD is
returned. The time complexity is reduced to O(k3 + s).

CLARA Based on raNdomised Search (CLARANS). [25] adapts the
swap operation of PAM to use a more greedy approach. This is done by only
performing the first swap which results in a reduction in TD before continuing
evaluation. It limits the number of attempts known as max neighbours to ran-
domly select and check if TD is reduced. This random selection gives CLARANS
an advantage when handling large datasets by avoiding local minima.

PAM Silhouette (PAMSIL). [7] adapts the PAM algorithm to minimise the
Silhouette score [29] rather than the TD.

PAM Medoid Silouhette (PAMMEDSIL). [7] is a variation on PAMSIL
where Silhouette score is calculated by using the medoids rather than the arith-
metic mean.

FasterPAM. [32] focuses on optimising the PAM swap stage. It does this by
combining optimisations made by FastPam1 [31] with a local hill-climbing app-
roach that means any swap that reduces TD is immediately performed (eager
swapping). However, while a swap is performed for any candidate that reduces
TD, FasterPAM considers multiple candidates at a time in batches. The main
reason for this is it allows the FasterPAM to be better parallelised. In addition
FasterPAM uses the same technique for speed up that FastPam1 does by consid-
ering a swap across all medoids at once rather than a single medoid. This allows
for expensive conditional logic to be moved outside the inner most loop further
reducing computational time.

Faster Medoid Silhouette Clustering (FasterMSC). [18] is a variation on
PAMMEDSIL that combines FasterPAM with PAMMEDSIL.

3 Elastic Distance Measures

Time series require bespoke distance functions because small offsets between
series can lead to large distances between series that are conceptually similar.
Elastic distances compensate for misalignment by creating a path through a
cost matrix through either warping or editing time series. There have been many
elastic distances proposed that attempt to align time series in different ways. We
evaluate k-medoids with the nine elastic distance measures used in [12,22]. We
provide a very brief overview of one of the nine elastic distances and direct the
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interested reader to these other publications [12,22,33]. The distance functions
we use (with associated parameter setting) are listed in Table 1.

Table 1. Summary of distance functions, their parameters and the default values.

Algorithm Acronym Parameters

Dynamic Time Warping DTW w = 0.2

Derivative DTW DDTW w = 0.2

Weighted DTW WDTW g = 0.05

Weighted derivative DTW WDDTW g = 0.05

Longest Common SubSequence LCSS ε = 0.05

Edit distance with Real Penalty ERP g = 0.05

Edit Distance on Real sequences EDR ε = 0.05

Move Split Merge MSM c = 1

Time Warp Edit TWE ν = 0.05, λ = 1

The best performing distance function according to [12] is MSM, which we
briefly review below.

3.1 Move Split Merge (MSM)

At any step, elastic distances can use one of three costs: diagonal, horizontal or
vertical, in forming an alignment. The alignment path is a series of moves across
the cost matrix. DTW assigns no explicit penalty for moving off the diagonal.
Instead, it uses an implicit penalty (long paths have longer total distance) and
a hard cut off on window size to stop large warpings. An alternative family of
distance functions are based on the concept of edit distance. An edit distance
considers a diagonal move as a match, a vertical move as an insertion and an
horizontal move as a deletion. MSM [34] follows this structure, where move is a
match (diagonal), split is a insertion (vertical) and merge is deletion (horizontal).

The move operation in MSM uses the absolute difference rather than the
squared euclidean distance for matching in DTW. The cost of the split operation
is given by cost function C (Eq. 4) with a call to C(ai, ai−1, bj , c). If the value
being inserted, bj , is between the two values ai and ai−1 being split, the cost
is a constant value c. If not, the cost is c plus the minimum deviation from the
furthest point ai and the previous point ai−1 or bj . The delete/merge is given
by C(bj , bj−1, ai, c), which is simply the same operation as split but applied to
the second series. Thus, the cost of splitting and merging values depends on the
value itself and adjacent values.

C(x, y, z, c) =
{

c if y ≤ x ≤ z or y ≥ x ≥ z
c + min(|x − y|, |x − z|)otherwise. (4)
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Algorithm 2 describes how to calculate the MSM distance between two time
series a and b. MSM satisfies triangular inequality and is a metric. In Algo-
rithm 2, the first return value is the MSM distance between a and b, the second
is the cost matrix used to compute the MSM distance.

4 Methodology

The different TSCL methods are compared using the whole set of 112 univariate,
equal-length time series in the UCR archive [5]. Default train/test splits have
been used, with data normalised to zero mean and unit standard deviation prior
to the clustering stage. The training data is used to train an algorithm and the
performance is assessed on the testing set. The number of clusters, k, is equal
to the number of classes for classification. This choice is in line with the TSCL
literature, such as [12,17].

Algorithm 2. MSM(a (of length m), b (of length m), c (minimum cost))
1: Let CM be an m × m matrix initialised to zero.
2: CM1,1 = |a1 − b1|
3: for i ← 2 to m do
4: CMi,1 = CMi−1,1 + C(ai, ai−1, b1, c)

5: for i ← 2 to m do
6: CM1,i = CM1,i−1 + C(bi, a1, b + i − 1, c)

7: for i ← 2 to m do
8: for j ← 2 to m do
9: move ← CMi−1,j−1 + |ai − bj |

10: split ← CMi−1,j + C(ai, ai−1, bj , c)
11: merge ← CMi,j−1 + C(bj , bj−1, ai, c)
12: CMi,j ← min(move, split, merge)

13: return CMm,m, CM

The performance of the different clusterers is evaluated using the following
measures: CLustering ACCuracy (CL-ACC) is the number of correct pre-
dictions divided by the total number of cases. For this, each cluster is assigned
to its best matching class value by taking the maximum accuracy from every
permutation of cluster and class value. The Rand Index (RI) measures the
similarity between two sets of labels such as the predicted and actual class val-
ues. An improved version known as Adjusted Rand Index (ARI) avoids the
inflation of the RI when dealing with a high number of clusters. For this, ARI
adjusts the RI based on the expected scores on a purely random model. The
Mutual Information (MI) score uses the entropy to measure the agreement
of the two clusterings or a clustering and a true labelling. Finally, Normalised
Mutual Information (NMI) rescales MI onto [0, 1].

Some of the results are expressed using an adaptation of the critical differ-
ence diagram [6], replacing the post-hoc Nemenyi test with a comparison of all
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classifiers using pairwise Wilcoxon signed-rank tests, and cliques formed using
the Holm correction [2,9].

Experiments are run with the open source python software packages aeon,
tslearn [35], and kmedoids [30]. To enhance the reproducibility of this work,
specific code and a guide to reproduce results will be available after blind review,
as well as the results achieved.

The original PAM algorithm specifies a bespoke initialisation algorithm
(build). However, we found random initilisation with ten restarts to be as effec-
tive as build, simpler and computationally less expensive. Given some PAM vari-
ants specify the use of random initialisation (e.g. FasterPAM) for speed, we use
the same initialisation method for all algorithms in order to control factors of
variation: we use random initialisation with ten restarts for all k-medoid and
k-means variants.

The rationale behind using random initialisation is that random selection is
likely to pick points from dense regions. The reason for rerunning the model
multiple times with random initialisation and taking the best clusters (as mea-
sured by the sum of distances to their closest cluster centres) is that it reduces
the chance results are skewed by poor random initial selections. Ten restarts is
the most common number of restarts in the literature, and is the default value
when using Lloyds algorithm in scikit-learn.

5 Results

The issue of which distance function is better overall is covered in depth in [12].
Our concern with these experiments is to detect differences between the two
clustering algorithms over a range of distance functions. We focus first on the
difference between alternate k-medoids and standard k-means in Sect. 5.1. We
then evaluate a range of variants of the k-medoids algorithm in Sects. 5.2 and
5.3. Finally, the best k-medoids variant is compared against several alternative
TSCL approaches in Sect. 5.4.

5.1 Alternate k-Medoids vs k-Means

Table 2 summarises the difference in performance of k-means and k-medoids
clustering algorithms. The mean difference is the average difference in the metric
over 112 datasets on the test data. There is no significant difference in accuracy
when using ED with the two clusterers (p value = 0.233 with a paired T-test
or 0.14 with a binomial test). k-medoids gives a significantly more accurate
clustering for all nine elastic clusterers (test with α = 0.05 with paired t-test,
sign rank test and binomial test on wins/losses).

Figure 1 expands the data from Table 2 to show the distribution of differ-
ences for each distance measure. It shows a violin plot of the differences between
alternate k-medoids and k-means for 10 distance functions in terms of NMI. It
demonstrates that there is little difference when using ED. However, there is



48 C. Holder et al.

Table 2. Differences in CL-ACC, ARI and NMI between alternate k-medoids and k-
means using 10 different distance functions. A positive value indicates that k-medoids
is better. W/D/L figures are for CL-ACC.

Distance CL-ACC ARI NMI k-medoids wins k-means wins Ties

MSM 1.54% 1.22% 1.80% 59 47 6

TWE 2.78% 3.91% 3.65% 63 45 4

ERP 3.94% 4.35% 6.34% 66 33 13

WDTW 1.33% 1.94% 2.29% 66 42 7

DTW 3.88% 4.07% 5.72% 72 31 9

ED -0.38% -0.38% -0.38% 46 58 8

DDTW 7.65% 6.17% 11.68% 75 32 5

DWDTW 2.57% 1.52% 3.56% 64 38 10

LCSS 4.13% 3.55% 7.33% 73 35 4

EDR 4.50% 4.37% 7.04% 74 35 3

Fig. 1. Distributions of the differences between alternate k-medoids and k-means on
the UCR data.

wide variation between k-medoids and k-means for the nine elastic distances,
and the bulk of the distributions are positive.

These results indicate that, on average, the alternate k-medoids produces
better clusters than k-means using the arithmetic mean to compute new cen-
troids.
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Table 3. Differences in CL-ACC, ARI, NMI between alternate k-medoids and PAM
using 10 different distance functions. A positive value indicates that PAM is better.
W/D/L figures are for CL-ACC

Distance CL-ACC ARI NMI PAM wins k-medoids wins Ties

MSM 1.75% 1.57% 1.56% 39 22 51

TWE 2.15% 1.51% 1.69% 59 31 22

ERP –2.34% -3.95% –3.95% 40 66 6

WDTW 1.92% 2.09% 2.15% 47 35 30

DTW 2.02% 1.62% 2.03% 57 36 19

DDTW 3.81% 4.41% 4.70% 67 38 7

DWDTW 3.26% 4.10% 3.58% 60 46 6

LCSS 0.31% –0.60% –0.22% 57 50 5

EDR 5.73% 5.91% 6.15% 76 32 4

5.2 Alternate k-Medoids Vs PAM

The alternate technique used for the experiments in Sect. 5.1 is the simplest
and easiest k-medoids algorithm. However, in standard clustering, PAM is a
popular alternative and has found significantly better results than alternate k-
medoids. As such we repeated the same experiments using the PAM algorithm
described in Sect. 2.2 to see if the findings in standard clustering holds true
for time series data. Table 3 summarises the differences between alternate k-
medoids and PAM for each distance measure. With the exception of ERP, PAM
significantly outperforms alternate k-medoids.

5.3 PAM Variants

PAM significantly outperforms both k-means and alternate k-medoids. However,
it is computationally more expensive. In Sect. 2.3, we describe several variants
of PAM meant to improve the runtime. Runtime complexity is a significant
consideration when working with time series data. As such we compare six PAM
variants to the original version when using MSM as a distance function. We
include the following variants:

1. clara [16] and clarans [25]: subsampling techniques.
2. fasterpam performs eager swaps, improves time to find swaps
3. pamsil [7]: uses silhouette score rather than TD.
4. pammedsil, fastermsc [7]: use medoids silhouette score.

Figure 2 shows the average ranks of these six clusterers in terms of CL-ACC and
NMI. PAM is significantly better than all variants except for fasterpam.

Figure 3 shows the distribution of the differences between PAM-MSM and
the variants. As can be observed, for fasterpam most of the values are exactly 0,
meaning that there is no difference to PAM for most of the datasets. Nevertheless,
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7 6 5 4 3 2 1

3.3905 pam
3.5571 fasterpam
3.9429 clara
4.0619 clarans

4.2476pamsil
4.3762fastermsc
4.4238pammedsil

7 6 5 4 3 2 1

3.3619 pam
3.3905 fasterpam
4.0857 clara
4.1048 clarans

4.2381pamsil
4.3667fastermsc
4.4524pammedsil

(a) CL-ACC (b) NMI

Fig. 2. Average ranks for PAM and six variants, all of which use MSM distance.

for the remaining five variants, boxplots generally are over the 0 value, indicating
that PAM is better in average.

Fig. 3. Distributions of differences between PAM and the six variants. Positive values
indicate PAM is better than the variant.

5.4 Elastic PAM Vs Alternative TSCL Methods

We switch from considering relative performance of variants of the same algo-
rithm to assess the absolute performance of PAM based clustering against pop-
ular TSCL alternatives. We compare performance of the following 10 clustering
algorithms.

1. k-means-DBA: k-means clustering with DTW barycentre averaging and
DTW distance assignment [27].
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10 9 8 7 6 5 4 3 2 1

4.1577 pam-twe
4.482 pam-msm

5.0811 alternate-msm
5.2477 alternate-twe
5.4459 kmeans-msm5.6667ttc

6.0811kmeans-twe
6.1667dba
6.2342k-shapes
6.4369kmeans-ed
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5.2252 alternate-twe
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6.2658kmeans-twe
6.3649kmeans-ed
6.5766k-shapes
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Fig. 4. Average ranks for 10 clustering algorithms using four performance measures.

2. k-means-ED, k-means-MSM and k-means-TWE: k-means clustering
with arithmetic mean for centres, and ED, MSM and TWE distance assign-
ment, respectively.

3. k-shapes clustering [26].
4. Two-step Time series Clustering (TTC) [1].
5. alternate-MSM and alternate-TWE: alternate k-medoids clustering with

MSM and TWE distances (Lloyds algorithm).
6. PAM-MSM and PAM-TWE: PAM k-medoids clustering with MSM and

TWE distances.

Figure 4 shows the average ranks for three performance measures: CL-ACC,
ARI and NMI. Note that PAM-MSM and PAM-TWE form a top clique and
are significantly better than the other eight algorithms. Figure 5 summarises the
relative performance using a heatmap tool described in [13].

Figure 4 shows TWE and MSM outperform the other elastic distances over a
ranger of clustering metrics. [12] conducted a similar experiment over the same
elastic distances for k-means and alternating k-medoids models and found similar
results. The reason TWE and MSM outperform other elastic distances was TWE
and MSM constrain the diagonal warping with a constant cost penalty [12].

In addition from Fig. 4 k-means is outperformed by both PAM and alternat-
ing k-medoids. The reason for this is during the averaging stage of k-means the
average time series computation ignores alignment of the time series and thus a
poor average (centre) is obtained [11].

Finally Fig. 4 shows PAM across all our clustering metrics outperformed every
other approach. The reason for this is as Sect. 2 outlines alternating only opti-
mises the medoid from the current cluster assignment whereas PAM considers
all instances as potential new medoid for a cluster which leads to better medoids
being found.
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Fig. 5. Summary of performance measures for six of the clusterers described in Fig. 4.
Each cell shows the mean difference between algorithms, the W/D/L counts and the
unadjusted p-value for a Wilcoxon sign-rank test.

Time series deep learning results are available the website associated with
[17]. They provide NMI results for over 300 different clustering algorithms on
the same UCR datasets we use. These are not directly comparable, since they
are averaged over five runs and there may be other experimental differences.
However, they can give some indication of relative performance. The best deep
learning approach of the more than 300 assessed, a convolutional neural net-
work with joint pretext loss and without clustering loss (key in their results
is res cnn joint None) achieved an average NMI of 0.3292. Average NMIs for
PAM-TWE and PAM-MSM are 0.3366 and 0.3316, respectively.

In the context of other popular TSCL algorithms shown in Fig. 4, k-medoids
based approaches perform better than other approaches. In addition, Fig. 4 high-
lights the strength of TWE and MSM across multiple approaches. Finally it is
clear that using PAM based approaches with elastic distances yields significantly
better results.

6 Conclusions

Time Series Clustering (TSCL) with k-medoids has fallen out of favour in time
series machine learning research in recent years. We demonstrate that k-medoids
with elastic distance measures is highly effective, particularly PAM with TWE
or MSM distances. We have also demonstrated that PAM is more effective than
alternate k-medoids algorithm for most elastic distances and showed that PAM-
TWE and PAM-MSM are significantly better than popular TSCL alternatives,
and at least as good as the best known deep learning approach. Finally, we have
explored the variants of PAM that hope to address the run time and memory
complexity the traditional PAM algorithm suffered from. We found that the
recent FasterPAM [32] yields very similar results as PAM but achieves an O(k)-
fold speedup in the swap phase, making FasterPAM a much more attractive
alternative for TSCL.
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In the future, we would like to further quantify the run time complexity of
these clusterers. We will then investigate the possibility of creating an ensem-
ble of elastic distances using k-medoids clusterer, similar to the elastic ensem-
ble classifier proposed in [22]. Furthermore, we would like to perform a similar
experiment with other clustering algorithms to if using TWE and MSM yields
significantly better results than traditional euclidean and DTW distances.
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Abstract. Accurate time series forecasting is a fundamental challenge
in data science, as it is often affected by external covariates such as
weather or human intervention, which in many applications, may be
predicted with reasonable accuracy. We refer to them as predicted future
covariates. However, existing methods that attempt to predict time series
in an iterative manner with auto-regressive models end up with expo-
nential error accumulations. Other strategies that consider the past and
future in the encoder and decoder respectively limit themselves by deal-
ing with the past and future data separately. To address these limitations,
a novel feature representation strategy - shifting - is proposed to fuse the
past data and future covariates such that their interactions can be con-
sidered. To extract complex dynamics in time series, we develop a parallel
deep learning framework composed of RNN and CNN, both of which are
used in a hierarchical fashion. We also utilize the skip connection tech-
nique to improve the model’s performance. Extensive experiments on
three datasets reveal the effectiveness of our method. Finally, we demon-
strate the model interpretability using the Grad-CAM algorithm.

1 Introduction

Time series forecasting plays an essential role in many scenarios in real life.
Accurate forecasting allows people to do better resource management [21] and
optimization decisions [5] for critical processes. Applications include demand
forecasting in retail [2], dynamic assignments of beds to patients [35], monthly
inflation forecasting [1], and much more. Because of its popularity and signif-
icance, many time series forecasting methods have been explored. Traditional
statistical forecasting methods, such as autoregression [8], exponential smooth-
ing [13], and ARIMA [3], are widely utilized for univariate time series. These
methods learn the temporal features (e.g., trends and seasonality) from past
data and achieve good performance for univariate time series prediction. But
they are ineffective to learn the complex dynamics among multivariate time
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series, partly because of their inability to take advantage of covariates - inde-
pendent variables that can influence the target variable, although perhaps not
directly.

Good time series forecasting requires substantial amounts of historical data
of the target variable(s) to learn temporal patterns. They also require the exoge-
nous covariates to learn the dependent relationships. More importantly, in many
applications, some of the covariates can be predicted with reasonable accuracy
for the immediate future. We refer to such covariates from the immediate future
as predicted future covariates. For example, in terms of the task predicting water
levels in a river or canal system, a covariate of interest could be precipitation.
And it is possible to use historical data as well as reasonably accurate predictions
for the near future, which may be obtained from the weather services.

Fig. 1. Direct method using Seq2Seq models with encoder and decoder.

Existing methods employing both past and future data for time series fore-
casting problems are mainly divided into two categories: (1) iterative meth-
ods [23,25] that iteratively predict one step at a time, and (2) direct meth-
ods [19,31] that are trained to explicitly forecast the pre-defined horizons
with sequence-to-sequence models (which originated from the speech translation
domain [20]). However, they have several limitations. The iterative methods con-
sider the prediction output from the previous time step as the input for the next
time step during the model training process. Such methods suffer from error
accumulation caused by the multiplication of errors.

In another direct strategy (see Fig. 1), the Seq2Seq framework - encoder and
decoder [22] absorbs the historical data in the encoder and includes the predicted
future covariates in the decoder. Such a strategy considers historical data and the
predicted future covariates separately, probably causing the model to miss the
past-future connections. Some researchers have added an attention layer [7,34]
in the Seq2Seq framework to capture more local or global information, but the
prediction performance improves only slightly and fails to handle the inherent
constraints of the Seq2Seq model.

In this work, we aim to address the existing limitations, and our five-fold
contributions are listed below:
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– To avoid separately considering the past and future data, we propose a novel
feature representation strategy called shifting, which can contextually link
the past with the predicted future covariate as an integrated input. Shifting
also makes it possible to use a single compact model to effectively combine
both past and future data simultaneously.

– To improve the efficiency of the model, we introduce a parallel framework
composed of RNN and CNN (ParaRCNN) to capture complex time series
dynamics. Note that ParaRCNN is a single and compact model compared to
the Seq2Seq architecture.

– Our model can make multi-step predictions in a one-shot manner, which can
avoid error accumulation in contrast to auto-regressive models.

– We adapt the skip connection to facilitate improved learning since such a
technique can maximize the usability of input features.

– We provide the model interpretability with the Grad-CAM algorithm to iden-
tify how each time step and feature contributes to the final predictions.

2 Problem Formulation

Let ZN
1:t = (zn

1 , zn
2 , ..., zn

t )N
n=1 ∈ Rt×N be N univariate time series of target

variables, where zn
t ∈ R denotes the value of the n-th target variable at time t. Let

XM
1:t = (xm

1 , xm
2 , . . . , xm

t )M
m=1 ∈ Rt×M be M the observed time-varying covariates

that are measured until time t and that cannot be predicted for the future.
Finally, let YQ

1:t = (yq
1, y

q
2, . . . , y

q
t )Q

q=1 ∈ Rt×Q be the Q time series for covariates
measured until time t, but which can be reliably estimated for the near future;
we let YQ

t+1:t+k ∈ Rt×Q denote those predicted covariates k time steps into the
future. We refer to these estimable variables as future predictable covariates. The
goal of forecasting models is to compute the predicted trajectories of the target
time series. We will refer to these as ẐN

t+1:t+k (k is the forecasting length) to
distinguish it from the measured target time series. The computation assumes
that the input data is heterogeneous and includes the historical data (target
variables ZN

1:t, observed covariates XM
1:t, historical future predictable covariates

YQ
1:t), and predicted future covariates YQ

t+1:t+k. Note that the term “covariate”
in this paper refers to those exogenous time-varying covariates rather than time
itself.

3 Related Work

Traditional statistical methods learn the temporal patterns only based on his-
torical data [3,28] of target variables themselves (see Eq. (1)). However, many
approaches also aim to learn the dependent relationship between target variables
and covariates, especially for the predicted future covariate [4,9,19,23,25,29,31].
Related research can be mainly categorized into iterative methods using auto-
regressive models and direct strategies that use sequence-to-sequence models.
We have:

ẐN
t+i = Fθ(ZN

1:t, Ẑ
N
t+1:t+i−1), (1)
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where Fθ(·) is a prediction model with a set of learnable parameters θ; ẐN
t+i is

the N target variables i time step into the future for i = 1, 2, . . . , k.

Iterative Methods. The iterative strategy recursively uses a one-step-ahead
forecasting model [6,32] multiple times where the predicted value for the previous
time step is used as the input to forecast the next time step. A typical iterative
framework is the DeepAR model [25] from Amazon Research. During the training
process, to predict target values ẐN

t at time step t, the inputs to the network
are the covariates YQ

t , the target values at the previous time step ZN
t−1, and the

previous network output ht−1. Note that the previous target values are known
during training. During inference, measured target values ZN

t−1 are replaced by
predicted target values ẐN

t−1 and then fed back to predict the next time step of
ẐN

t+1 until the end of the prediction range. A mathematical formulation of such
forecasting methods is given in Eq. (2) using the notation in Sect. 2. Similar
approaches were adopted in [14,16,23] using different backbones. However, an
inherent shortcoming of this method is that errors accumulate multiplicatively
since later predictions depend on earlier predictions.

ẐN
t+i = Fθ(ZN

1:t, Ẑ
N
t+1:t+i−1,X

M
1:t,Y

Q
1:t+i). (2)

Direct Methods. The typical Seq2Seq framework for direct methods is shown
in Fig 1. It deals with past and future data separately in the encoder and decoder
components, respectively. The encoder model learns the feature representation
of past data, which is saved as context vectors in a hidden state. The decoder
model takes as input the encoder output and the additional future covariates to
predict the future target values. Examples of this approach include the MQRNN
model [31] that used an LSTM as the encoder to generate context vectors, which
are then combined with future covariates and fed into a multi-layer perceptron
(MLP) to predict the future horizon. Some efforts [7,9] have utilized a temporal
attention mechanism between the encoder and the decoder. This architecture
can learn the relevance of different parts of the feature representations from
historical data by computing “attentional” weights. The weighted feature repre-
sentations are then passed into the decoder to predict future time steps. Tem-
poral Fusion Transformer [19] combined gated residual networks (GRNs) and
an attention mechanism [30] as an additional decoder on top of the traditional
encoder-decoder model. They used GRNs to filter unnecessary information and
employed the additional decoder with an attention mechanism to capture long-
term dependencies. Generally, the direct methods can be modeled as follows:

Ht = Fencoder(ZN
1:t,X

M
1:t,Y

Q
1:t),

ẐN
t+i = Fdecoder(Ht,Y

Q
t+1:t+i).

(3)

Direct methods that use the Seq2Seq framework with the encoder and decoder in
series might be prone to miss some interactions between the past and future due
to separate processing styles. Moreover, the Seq2Seq framework is complicated
and computationally time-consuming because of the use of two models – the
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encoder and the decoder. This provided the motivation for us to explore a com-
pact model that simultaneously analyzes the measured past and the predictable
future.

4 Methodology

In this section, we first illustrate the shifting strategy that fuses the past and
future data in a structured way for an integrated feature representation. Then
we present the details of the proposed model architecture and discuss how it
learns from the fused data and the skip connection technique. In this paper, we
define a sliding window [11] (also called rolling window [17] or look-back window
[27]) of a certain length, w, as the input from the recent past, and to predict
future time steps of length k.

4.1 Data Fusion with Shifting

To avoid dealing with the past and future data separately, we shift the covariates
for the future period of interest (blue dotted trajectory in Fig. 2) back by s time
steps, such that they are aligned and fused with all historical time series to
produce distinct feature vectors. Then both the past and future data are fed
into a single model together. Now the inputs are composed of all the past time
series (target and covariates) aligned from time steps t − w + 1 to t with future
predictable covariates from time steps t − w + 1 + s to t + s. Specifically, at
each time step, we obtain a 4-tuple (zj , xj , yj , yj+s), which is input to a state
cell in the RNN (Fig. 4) or a filter kernel in the CNN (Fig. 5), thus fusing the
information from the historical data (zj , xj , yj) at time j and future predictable
covariates yj+s at time j + s. The above design allows both the past and future
to be considered in one single component of the model at the same time. The set
of target variables, ZN

t+1:t+k are predicted in the forecasting horizon from t + 1
to t + k. The shifting strategy is illustrated in Fig. 2 and modelled as Eq. (4)
below:

ẐN
t+1:t+k = Gθ(ZN

t−w+1:t,X
M
t−w+1:t,Y

Q
t−w+1:t,Y

Q
t−w+1+s:t+s), (4)

where Gθ(·) is a function with learnable parameters θ; and YQ
t−w+1+s:t+s is

the future predictable covariates along with predictions from s time steps into
the future and then shifted back by s time steps (green trajectories merged
with dotted blue trajectories in Fig. 2). Note that the shifted future predictable
covariates YQ

t−w+1+s:t+s and the single unified model given by Gθ in Eq. (4)
differentiate our method from the previous methods discussed in Sect. 3.

4.2 Network Architectures

With the input data transformed and fused (Fig. 2, right) by the shifting strategy,
we develop a parallel framework composed of RNN and CNN, both of which
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Fig. 2. Input data transformed by the shifting strategy. Left: Trajectories of all vari-
ables before transformation. Right: Original trajectories along with shifted future pre-
dictable covariates. Predicted output is the future k time steps of the target variables.
(Color figure online)

are in a hierarchical structure. As shown in Fig. 3, both the number of filters
for CNN and the number of units for RNN decrease over the layers to extract
high-level time series dynamics. More specifically, since RNN and CNN learn
the temporal dependency and dynamics in different mechanisms, we construct
RNN and CNN in parallel, which benefits the model by capturing heterogeneous
feature representations from input time series. Meanwhile, the skip connection
technique is utilized to enhance learning since it maximizes the usability of the
input features. Lastly, the fused input, the CNN output, and the RNN output
are concatenated together and fed into a fully-connected layer to make the final
predictions.

Fig. 3. Architecture of the proposed ParaRCNN model. There are 256, 128, 64, and
32 filters for CNN modules (Conv1D) and 128, 64, 32, and 16 units for RNN modules
(SimpeRNN), respectively.
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RNN with Shifting. Recurrent Neural Networks (RNNs) learn the temporal
dependency from input features in the recent past to future one or more target
variables by recurrently training and updating the transitions of an internal
(hidden) state from the last time step to the current time step. To predict the
future k time steps, the standard RNNs were further modified to remove the
hidden states ht+1,ht+2, ..,ht+k to enable a one-shot prediction while avoiding
the accumulation of prediction errors. As shown in Fig. 4, we implement the
RNNs with only w hidden states in our paper. The predicted future covariates
are shifted to the past by s time steps and aligned with past data by the shifting
strategy such that the input for each hidden state hj at time t = j is a 4-
tuple (zj ,xj ,yj ,yj+s). Hierarchical RNNs queued in series (Fig. 3) are expected
to distill the high-level features from the input time series. At last, the RNNs
generate the prediction for target variables (zt+1, zt+2, . . . , zt+k) in a one-shot
manner. The hidden states are recursively computed by:

hj = f(hj−1, zj ,xj ,yj ,yj+s),

= tanh(b + UT hj−1 + WT (zj ,xj ,yj ,yj+s)),
(5)

where f is an activation function (hyperbolic tangent function); hj and hj−1

refer to the current and previous hidden states; zj , xj , and yj represent the
target time series, observed covariates, and predictable future covariates from
the past w time steps; yj+s denotes the predicted future covariates from k steps
into the future; U,W are weight matrices and b is the bias vector.

Fig. 4. The RNN architecture with the shifting strategy. Dashed blue ovals represent
predicted future covariates. Solid ovals are historical target variables and covariates.
The last row has the shifted covariates. (Color figure online)

CNN with Shifting. CNN is a popular model in the image processing field
because of the powerful learning ability of convolutional kernels embedded inside.
2D-CNN is widely adopted to deal with images [33] by moving 2-D convolutional
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Fig. 5. CNN with 3 convolutional layers. Input includes all original variables and the
shifted predicted future covariates. Each filter includes past and future information.
Each row represents the convolution results with one filter.

kernels along the height and width dimension of each image. For multivariate
time series, it consisted of multiple univariate time series that fundamentally
are sequential in nature. Therefore, 1-D convolutional kernels (also called filters)
are used in our paper to learn the temporal and cross-feature dependency [15].
We consider the multivariate time series as a matrix with the shape of (rows,
columns) [36] where the rows represent the time steps, and the columns represent
the features that generally equal the number of time series dimensions. We also
tried 2D-CNN, and the performance was not much different from 1D-CNN, but
it needs more computation resources.

As Fig. 5 shows, the shifted future predictable covariates and the original
observed data are simultaneously considered by the sliding 1-D convolutional
kernels. In other words, each 1-D convolutional kernel learns from the historical
data (past) and the predicted data s time steps ahead (future). Such convo-
lutional operations on both the history and predicted future input could be
described by Eq. (6). Formally, a convolution operation between two convolu-
tional layers is given by Eq. (7).

Vj = σ(Kj�(ZN
j:j+Δt,X

M
j:j+Δt,Y

Q
j:j+Δt,Y

Q
j+s:j+Δt+s)), (6)

where � refers to the convolution operator; Kj is a filter at the time j; Δt is the
length of segmented time series for the convolution computations; σ represents
the activation function; Vj is the output value at time j.

al+1
j = σ(bl

j +
F l∑

f=1

Kl
jf � al

f ), (7)

where � represents the convolution operator; l indexes the layer, f indexes the
filter; Kj is a filter at the time j; F l is the number of filters used in the lth layer;
σ denotes the activation function.
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Skip Connection. It is used to train a deep neural network by copying and
bypassing the input from the former layers to the deeper layers by matrix addi-
tion. ResNets add a skip-connection that bypasses the non-linear transforma-
tions with an identity function. For example, given a single image x0 that is
passed through subsequent convolutional layers, each layer implements a non-
linear transformation H(·). The output of lth layer with skip connection looks
as:

xl = Hl(xl−1) + xl−1. (8)

DenseNets [12] achieves skip connections by concatenation. In their work, for
each layer, the feature maps of all preceding layers and their own feature maps
are used as inputs into all subsequent layers by simple concatenation as shown
in Eq. (9). There are L(L+1)/2 skip connections for the networks with L layers.

xl = Hl(x0, x1, . . . , xl−1), (9)

where x0, x1, . . . xl−1 denotes the concatenation of the feature maps produced
in previous layers. It shows how the lth layer considers the feature maps of all
former layers as input.

xl = Hl(xl−1) + x0. (10)

However, challenges persist with both strategies. ResNets hinder the skip con-
nection because of the matrix addition, which needs the same dimension for both
preceding and subsequent matrices. DenseNets have a more complex structure
with L(L+1)/2 connections as it conveys all former outputs to the latter layers.
U-Net models simply pass the original input once to the latter layers. In our
model, we adopt L skip connections by bypassing the original input to every
latter layer with concatenation (see Eq. (10) and Fig. 6d). Such a structure can
facilitate the model by reusing the original input many times and learning it
directly while avoiding the vanishing gradient issue of deeper layers [18].

Fig. 6. Various strategies for skip connection. We adopt the strategy of (d) in our
paper and compare it with (a) Skip once used in U-net [24], (b) Skip L(L+1)/2 times
used in DenseNet [12], and (c) the benchmark strategy skipping L times.
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5 Experiments

5.1 Datasets

Three real-world datasets were used for time series forecasting tasks. Beijing
PM2.5 and Electricity price datasets are publicly available from the Machine
Learning Repository of the University of California, Irvine, and Kaggle reposi-
tories, respectively. The third one is the Water Stage dataset downloaded from
the South Florida Water Management District (SFWMD) website.

Beijing PM2.5. It includes hourly observed data from January 1, 2010, to
December 31, 2014. We consider PM2.5 as the target variable to predict, other
variables such as dew, temperature, pressure, wind speed, wind direction, snow,
and rain are covariates that can be predicted and can influence PM2.5 values.
PM2.5 ∈ [0, 671] μg/m3.

Electricity Price. It has two hourly datasets from January 1, 2015, to Decem-
ber 31, 2018. Energy dataset.csv includes energy demand, generation, and
prices, while weather features.csv gives the weather features temperature,
humidity, etc. Electricity price is the target variable to predict, while the prior
known predictable covariates are energy demand, generation, and weather fea-
tures. Electricity price ∈ [$9.33, $116.8] in this dataset.

Water Stage. This is an hourly dataset from January 1, 2010, to December
31, 2020, and includes information on water levels, the height of gate opening,
water flow values through the gate, water volumes pumped at gates, and rain-
fall measures. The water stage is the target variable while other variables are
covariates. Rainfall, gate position, and pump control are future covariates that
can be predicted. Water stage ∈ [−1.25, 4.05] feet in the dataset.

5.2 Training and Evaluation

Our Models. We predict k = 24 hours in the future with input windows of size
w = 72 hours and predicted future covariates in the same future horizons. We
consider the entire target series ZN

t+1:t+k as the ground-truth labels in supervised
learning, which can allow one-shot forecasting to avoid the error accumulation
of the traditional iterative prediction. For each dataset, we selected the first 80%
as the training set to train the models, and the remaining 20% was chosen as
the test set to evaluate the performance. Max-Min normalization shown as Eq.
(11) was used to squeeze the input data into [0, 1] to avoid possible data bias
due to the different scales. We also used early stopping and L1L2 regularization
to alleviate overfitting. There are several hyperparameters in our model. We
set {16, 32, 64, 128, 256} as the candidate numbers of internal units of RNNs
and filters in CNNs. {1e-3, 5e-4, 1e-4, 5e-5, 1e-5} was tested as the learning rate
and regularization factor. The shifting length s was validated with the range of
[1, w + k] (see Fig. 7). Open-source code can be accessed via the link1.

x′ =
x − xmin

xmax − xmin
(11)

1 https://github.com/JimengShi/ParaRCNN-Time-Series-Forecasting.

https://github.com/JimengShi/ParaRCNN-Time-Series-Forecasting
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Algorithm 1. Model Training
Input: covariate time series: X1,T ,Y1,T ;
Input: target time series: Z1,T , where T is the total length of data set.
Parameter: w: sliding window length, k: forecasting length, s: shifted length.
Output: well-trained model

1: // construct training instance pairs
2: D ← ∅
3: for each available time point w ≤ t ≤ T − s do
4: Spast ← {Xt−w+1,t,Yt−w+1,t,Zt−w+1,t}
5: Sshifted ← {Yt−w+1+s,t+s}
6: Starget ← Zt+1,t+k

7: put a instance pair ({Spast, Sshifted}, Starget) into D
8: end for
9: // train the model

10: initialize all learnable parameters θ for the model
11: repeat
12: randomly selects a batch of instance pairs Db from D
13: model outputs Ẑt+1,t+k for each batch
14: finds θ by minimizing the loss function in Eq. (12)
15: until stopping criteria is satisfied
16: return well-trained model with the best parameters θ

Baseline Models. DeepAR [25] iteratively predicting future time steps was
viewed as one of the baseline models. Seq2Seq approaches include MQRNN [31]
and Temporal Fusion Transformer (TFT) [19], which consider the past data and
future covariates separately in the encoder-decoder framework. To validate the
functionality of shifting, we also adapted baselines as a single branch in Fig. 3
(RNN or CNN) as backbones with the encoder-decoder framework (no shifting).
We refer to them as RNN-RNN and CNN-CNN in Table 1.

All models were trained by minimizing the loss function in Eq. (12), which
describes the mean square error between predicted and ground-truth values.
The training process is given as Algorithm 1. The testing process is achieved
by the trained model with the same data processing as the first 8 rows. Mean
Absolute Errors (MAEs) and Root Mean Square Errors (RMSEs) are the metrics
to evaluate the trained models. Each experiment was repeated 5 times with 5
random seeds. Table 1 reports the average results with an error bound.

L(Z, Ẑ) =
1
Φ

Φ∑

φ=1

[(ZN
t+1,t+k)φ − (ẐN

t+1,t+k)φ]2. (12)

5.3 Hyperparameter Study

Shift Length. Figure 7 shows the MAEs and RMSEs using ParaRCNN with
different shifting lengths on the Water-stage dataset, which can help us to
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delineate the relationship between the shifting lengths and the model perfor-
mance. We observed that k ≤ s ≤ w generates better performance.

Fig. 7. MAE & RMSE for different forecasting lengths (k) and shift lengths (s). The
left red point of each subplot represents the errors when s = k while the right red point
denotes the errors when s = w. (w = 72 hours, k = 6, 12, 24 h.) (Color figure online)

Model Layers. After ensuring the shifting length s = k, we try to analyze the
best number of layers for the ParaRCNN model. We found 3 or 4 layers (see
Fig. 8) perform the best for the datasets in our paper (3 layers for Electricity
dataset, 4 layers for Water-stage and PM2.5 dataset).

5.4 Prediction Results

The first 5 rows in Table 1 show the performance of the baseline models. Our
models are listed in the last 5 rows. We use a single RNN architecture of RNN-
RNN and apply shifting to it as RNN-Shift. To test the effectiveness of skip
connection, we add it to RNN-Shift and call it RNN-Shift-SC. A similar process
is applied to CNN-Shift and CNN-Shift-SC. At last, we propose ParaRCNN (see
Fig. 3) by combining RNN and CNN in parallel with both shifting and skip con-
nection techniques. Compared with baseline models in Table 1, the performance
of models with shifting is comparable or slightly better than some baselines,
while ParaRCNN achieves the best with the help of shifting and skip connec-
tion.
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Table 1. MAEs & RMSEs with k = 24 h on the test sets.

Methods Beijing PM2.5 Electricity Price Water Stage

MAE RMSE MAE RMSE MAE RMSE

MQRNN 33.94 ± 1.14 53.13 ± 1.22 3.48 ± 0.14 4.69 ± 0.19 0.121 ± 1e-2 0.156 ± 4e-2

DeepAR 36.57 ± 0.72 57.75 ± 0.98 5.23 ± 0.12 6.59 ± 0.18 0.196 ± 9e-3 0.231 ± 1e-2

TFT 36.32 ± 0.82 60.13 ± 1.37 3.76 ± 0.16 5.52 ± 0.24 0.119 ± 7e-3 0.158 ± 9e-3

RNN-RNN 33.43 ± 0.79 52.43 ± 1.15 4.27 ± 0.15 5.72 ± 0.26 0.142 ± 4e-3 0.177 ± 8e-3

CNN-CNN 33.90 ± 0.57 53.15 ± 1.22 3.78 ± 0.14 5.08 ± 0.21 0.110 ± 8e-3 0.177 ± 9e-3

RNN-Shift 33.37 ± 0.59 52.96 ± 1.27 3.96 ± 0.13 5.23 ± 0.24 0.109 ± 1e-2 0.151 ± 9e-3

RNN-Shift-SC 31.90 ± 0.55 50.89 ± 1.09 3.49 ± 0.12 4.65 ± 0.18 0.071 ± 7e-3 0.096 ± 7e-3

CNN-Shift 33.55 ± 0.46 52.94 ± 1.11 3.85 ± 0.14 5.09 ± 0.20 0.131 ± 8e-3 0.158 ± 9e-3

CNN-Shift-SC 31.76 ± 0.43 50.61 ± 1.08 3.48 ± 0.12 4.69 ± 0.17 0.059 ± 5e-3 0.081 ± 6e-3

ParaRCNN 31.48 ± 0.36 49.97 ± 0.89 3.39 ± 0.10 4.60 ± 0.13 0.054 ± 4e-3 0.075 ± 9e-3

Fig. 8. Model performance vs. Number of layers (w = 72 h, k = 24 h).

5.5 Skip Connection Study

We apply skip connection with different strategies (see Fig. 6) to the ParaRNN
model. Taking an example of L layers, there are five situations considered: (a)
One skip in U-net [24]; (b) L(L + 1)/2 skips in DenseNet [12]; (c) L skips; (d) L
skips; and (e) No skip connection. Figure 9 shows the performance of (e) without
a skip connection is clearly much poor than others and (a-d) is roughly the same.
The possible reason is that our network is a shallow one with only 4 layers. L
and L(L + 1)/2 skips do not exist a big difference. However, the number of skip
connections is indeed reduced from L(L + 1)/2 to L.

5.6 Model Explainability

After the model was trained, we analyzed how much each time step and fea-
ture contribute to the final outputs. With the Grad-CAM algorithm [26], we
first compute the gradient of the target values with respect to the feature map
activations of the concatenated layer. These gradients flow back over the input
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of shape (time steps × features) to obtain the neuron importance weights (see
Fig. 10 in Appendix A). The water stage at S1, S25A, S25B, and S26 are tar-
get values to predict. The first 19 rows are original past input and the last 9
rows shifted covariates (shifted future covariates are from 48 to 72). It shows our
model pays more attention to these future covariates since target variables in
the future horizon have a dependent relationship with them. This is as described
in Sect. 4.1. The water stages at different stations are more correlated because
these stations are adjacent to the ocean and water stages are changing with the
trend of the tide (WS S4). We visualize each time series in Appendix B (see
Figs. 11 and 12) providing better observations for readers.

Fig. 9. MAE & RMSE for various strategies to implement skip connection. (a) One
skip in U-net [24]; (b) L(L + 1)/2 skips in DenseNet [12]; (c) L skips as one benchmark;
(d) L skips we are using in our paper; and (e) No skip connection.

6 Discussion and Conclusions

We have demonstrated with experiments that the utilization of future covari-
ates can enhance performance. The model explainability shows their importance
from another point of view. To take the advantage of future covariates, the pro-
posed data fusion method, shifting, can generate comparable or slightly better
performance with a single compact model. Besides, our experiments delineate
an appropriate range of the shift length (see Fig. 7). When s < k or s > w,
considerably lower performances occur since the models only get to utilize some
of the predicted covariates from the future k time steps. However, when s > k,
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either the performance is flat or deteriorates as s is increased. We observe that
k ≤ s ≤ w generates better performance since all predicted future covariates in
the forecasting horizon are included. The variations for k ≤ s ≤ w are too small
to be significant.

Skip connection can further improve the model performance. Our imple-
mentation strategy that presents the original input to each subsequent layer
generated roughly the same or better performance when compared with other
strategies. Our ParaRCNN model equipped with shifting and skip connection
techniques consistently outperformed all other models in our paper.

Acknowledgements. This work is part of the I-GUIDE project, which is funded by
the National Science Foundation under award number 2118329.

7 Appendix

7.1 Model Explainability

We provide the explainability of the trained model using the Water Stage
dataset. The following figure shows how important each feature and each time
step is for the final predictions.

Fig. 10. Importance weights (feature vs. time step) with Grad-CAM algorithm.

7.2 Visualization of Time Series

We visualize the time series in Fig. 11 below. The unit of each feature is ignored.
We refer readers to see Fig. 2 for better understanding.
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Fig. 11. Visualization of target variables and covariates from the past.
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Fig. 11. (continued)
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Fig. 12. Visualization of shifted future predictable covariates.
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2. Böse, J., et al.: Probabilistic demand forecasting at scale. In: Proceedings of the
VLDB Endowment 10, pp. 1694–1705 (2017)

3. Chen, P., Pedersen, T., Bak-Jensen, B., Chen, Z.: ARIMA-based time series model
of stochastic wind power generation. IEEE Trans. Power Syst. 25(2), 667–676
(2009)

4. Chen, Y., Kang, Y., Chen, Y., Wang, Z.: Probabilistic forecasting with temporal
convolutional neural network. Neurocomputing 399, 491–501 (2020)

5. Cinar, Y., Hamid, M., Parantapa G., Eric G., Ali A., Vadim S.: Position-based
content attention for time series forecasting with sequence-to-sequence RNNs. In:
NeurIPS, vol. 24, pp. 533–544 (2017)

6. Dong, G., Fataliyev, K., Wang, L.: One-step and multi-step ahead stock predic-
tion using backpropagation neural networks. In: 9th International Conference on
Information, Communications & Signal Processing, pp. 1–5 (2013)

7. Du, S., Li, T., Yang, Y., Horng, S.J.: Multivariate time series forecasting via
attention-based encoder-decoder framework. Neurocomputing 388, 269–279 (2020)

8. Efendi, R., Arbaiy, N., Deris, M.: A new procedure in stock market forecasting
based on fuzzy random auto-regression time series model. Inf. Sci. 441, 113–132
(2018)

9. Fan, C., et al.: Multi-horizon time series forecasting with temporal attention learn-
ing. In: SIGKDD, pp. 2527–2535 (2019)

10. Fauvel, K., Lin, T., Masson, V., Fromont, É., Termier, A.: Xcm: an explainable
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Abstract. Multivariate time series classification is a rapidly growing
research field with practical applications in finance, healthcare, engineer-
ing, and more. The complexity of classifying multivariate time series data
arises from its high dimensionality, temporal dependencies, and varying
lengths. This paper introduces a novel ensemble classifier called RED
CoMETS (Random Enhanced Co-eye for Multivariate Time Series),
which addresses these challenges. RED CoMETS builds upon the success
of Co-eye, an ensemble classifier specifically designed for symbolically
represented univariate time series, and extends its capabilities to han-
dle multivariate data. The performance of RED CoMETS is evaluated
on benchmark datasets from the UCR archive, where it demonstrates
competitive accuracy when compared to state-of-the-art techniques in
multivariate settings. Notably, it achieves the highest reported accuracy
in the literature for the ‘HandMovementDirection’ dataset. Moreover,
the proposed method significantly reduces computation time compared
to Co-eye, making it an efficient and effective choice for multivariate time
series classification.

Keywords: Time series classification · Multivariate time series ·
Co-eye · Symbolic representation · Ensemble classification

1 Introduction

Problems involving the classification of time series data play a crucial role in var-
ious domains, including the sciences, data mining, finance, and signal processing.
Time series and their classifiers can be categorised into two types: univariate and
multivariate. Despite multivariate time series classification problems being more
prevalent in real-world scenarios, the literature has historically focused more on

L.A. Bennett—This author was with the University of Bristol while this research was
undertaken but is currently affiliated with Awerian.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 76–91, 2023.
https://doi.org/10.1007/978-3-031-49896-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49896-1_6&domain=pdf
http://orcid.org/0009-0009-0113-5066
http://orcid.org/0000-0002-1291-2918
https://doi.org/10.1007/978-3-031-49896-1_6


RED CoMETS 77

the univariate case [20]. Although recent studies have proposed promising meth-
ods to address multivariate time series classification [20], there still exists a gap,
emphasising the need for accurate and efficient algorithms in this domain.

Traditional time series classifiers typically seek discriminatory features within
the time series or adopt a holistic view of the entire series [2]. They often concen-
trate on a single representation aspect, such as shape or frequency [9]. However,
time series classification problems can greatly differ in terms of training and test-
ing sizes, dimensions, classes, series length, and class distribution. Consequently,
a single approach cannot effectively handle all types of time series.

In this paper, we extend the techniques introduced by Co-eye for univariate
time series classification [1], which draws inspiration from the compound eyes
of insects. Co-eye utilizes two symbolic representation transformations, namely
Symbolic Aggregate Approximation (SAX) [17] and Symbolic Fourier Approx-
imation (SFA) [21], to extract discriminatory features from the time series.
These transformations generate multiple “lenses” that can detect discriminatory
features at various levels of granularity, capturing both fine details and broad
shapes. By forming an ensemble of these lenses, Co-eye integrates different per-
spectives from the time and frequency domains, allowing for effective feature
extraction in time series classification problems with diverse characteristics.

We propose a novel ensemble classifier for multivariate time series classifica-
tion that builds upon Co-eye in two significant ways. Firstly, we enhance Co-eye’s
success in handling univariate problems and propose an improved approach that
significantly reduces computation time without sacrificing accuracy. Secondly,
we leverage this enhanced univariate approach as a foundation for a novel mul-
tivariate classifier, exploring two distinct techniques. Our proposed multivariate
classifier is named RED CoMETS, which stands for Random Enhanced Co-eye
for Multivariate Time Series. We evaluate RED CoMETS against state-of-the-art
classifiers using datasets from the UCR archive [3], and it achieves state-of-the-
art results.

The remainder of this paper is organised as follows: Sect. 2 discusses relevant
prior research. Section 3 provides details on our optimized univariate foundation
built upon Co-eye. Section 4 outlines the proposed extensions for multivariate
classification. Section 5 presents the experimental results, specifically focusing
on test accuracy. Finally, Sect. 6 concludes the paper.

2 Related Work

Co-eye leverages the Symbolic Aggregate Approximation (SAX) [17] and Sym-
bolic Fourier Approximation (SFA) [21] techniques to construct lenses, each
offering a distinct view of the time series data in both the time and frequency
domains. These lenses, represented by triplets denoted as <s, α,w>, where s
indicates the choice between SAX and SFA, and α and w are the hyperpa-
rameters for alphabet size and word length, respectively, provide Co-eye with a
multi-resolution perspective [1]. Through a careful “pair selection” process, Co-
eye identifies the most effective set of lenses for a given classification problem.
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During the classification phase, Co-eye builds a Random Forest [22] for each
lens using the transformed time series. These Random Forests’ outputs are com-
bined using a dynamic voting method, allowing the most confident lenses to be
matched to specific sequences and effectively extracting discriminatory features
[1]. Co-eye has demonstrated competitive accuracies compared to state-of-the-
art univariate classifiers when evaluated on datasets from the UCR archive [1].

The reviews by Bagnall et al. [2] and Ruiz et al. [20] provide a comprehensive
overview of the strengths and weaknesses of different approaches, highlighting
their performance on a range of datasets. This information is crucial in under-
standing the landscape of existing classifiers and identifying gaps or areas where
further improvements can be made.

Dynamic Time Warping (DTW) [14] is chosen as one of the benchmark clas-
sifiers. DTW utilizes a unique distance metric in combination with the 1-nearest
neighbour classifier and serves as a baseline performance measure for “good”
time series classifiers. It was used as a benchmark by both Bagnall et al. [2] and
Ruiz et al. [20], making it a compelling target to surpass.

Another benchmark classifier is the Multiple Representation Sequence
Learner (MrSEQL) [16], which transforms time series into various symbolic rep-
resentations and forms an ensemble using a SEQL classifier. While MrSEQL
shares similarities with Co-eye in methodology, differences lie in the base classi-
fier, parameterisation of symbolic representations, and voting methods [16].

ROCKET (Random Convolutional Kernel Transform) [9] is a powerful clas-
sifier that has demonstrated exceptional performance in both univariate and
multivariate time series classification. ROCKET leverages random convolutional
kernels to transform time series data and apply a linear classifier to make pre-
dictions. It has achieved leading accuracies across the univariate UCR archive
datasets while maintaining an extremely low computation time. The effective-
ness and efficiency of ROCKET make it a natural choice to benchmark against
for state-of-the-art performance.

HIVE-COTE (Hierarchical Vote Collective of Transformation-based Ensem-
bles) [18] is a heterogeneous ensemble classifier that combines multiple trans-
formation based models. Its latest edition, HIVE-COTE 2.0 [19], is currently
the best-ranked multivariate time series classifier in terms of accuracy. HIVE-
COTE constructs an ensemble of diverse classifiers, including shapelet-based,
interval-based, and dictionary-based classifiers, and employs a hierarchical vot-
ing strategy to make predictions. The hierarchical nature of HIVE-COTE allows
it to capture different levels of temporal patterns and achieve robust performance
on a wide range of time series datasets. As the leading multivariate time series
classifier, HIVE-COTE serves as the “method to beat” for RED CoMETS.

In the realm of deep learning-based approaches for multivariate time series
classification, InceptionTime [12] stands out. It is an ensemble of convolutional
neural networks specifically designed for time series classification. InceptionTime
introduces the concept of inception modules, which consist of parallel convolu-
tional layers with different filter sizes. This design allows the network to cap-
ture diverse temporal patterns at multiple resolutions. InceptionTime has been
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identified by Ruiz et al. [20] as the leading deep learning-based approach for both
univariate and multivariate time series classification. Their review demonstrated
that InceptionTime achieved top-performing accuracy across various datasets
and outperformed many traditional and state-of-the-art classifiers. Therefore, it
serves as a strong baseline for comparing the performance of RED CoMETS
against deep learning-based approaches.

In addition to InceptionTime, deep learning architectures such as Long Short-
Term Memory (LSTM) networks and Convolutional Neural Networks (CNNs)
have gained popularity in time series classification. LSTM networks, a type of
recurrent neural network (RNN), are capable of capturing long-term dependen-
cies in sequential data and have shown promising results for classifying both
univariate and multivariate time series [13].

CNNs, on the other hand, are primarily known for their success in com-
puter vision tasks, but they have also been applied to time series classification
with remarkable outcomes. In the context of time series, 1D CNNs are often
employed to learn hierarchical representations of input sequences by convolving
filters across different time steps. This allows them to automatically extract rel-
evant local patterns and capture higher-level representations of the data [4,24].

Deep learning-based approaches offer the advantage of automatically learning
relevant features from raw time series data, obviating the need for handcrafted
feature engineering. However, they often require large amounts of training data
and significant computational resources for model training and optimization.
Additionally, the interpretability of deep learning models can be challenging due
to their black-box nature.

3 Univariate Foundation

As described in Sect. 1, we first build on the univariate classification techniques
introduced by Co-eye to create a new univariate classifier as a foundation for our
multivariate extensions. We adapt the learning process of Co-eye, but introduce
a new pair selection method and propose three replacement voting mechanisms.

3.1 Pair Selection

Co-eye adopts a meticulous process for selecting lenses, involving two grid
searches over the α−w parameter space for SAX and SFA, respectively. To con-
struct an effective ensemble, each <s, α,w> triplet undergoes cross-validation,
and pairs within a 1% margin of the highest cross-validation accuracy are chosen.
However, performing an exhaustive search and cross-validation for every <α,w>
pair can be computationally demanding, as highlighted by Abdallah and Gaber
[1]. To address this bottleneck, we adopt a different approach inspired by the
work of Bergstra and Bengio [7]. They suggest that random searches can yield
comparable performance to grid searches for hyperparameter selection. There-
fore, we incorporate random selection in our methodology.
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In Co-eye, the number of pairs is not predetermined. When generating pairs
randomly, it is essential to preselect the number of SAX and SFA pairs. To ensure
a balanced perspective of the time series and avoid voting bias, we opt for an
equal number of SAX and SFA pairs. The selection of pairs is proportional to
the length of the time series, with �p∗ l� pairs independently chosen for SAX and
SFA. Here, 0 < p ≤ 1 represents the proportion of pairs, and l denotes the length
of the time series. To determine the parameter space for random selection, we
draw pairs uniformly from the α − w space defined by Abdallah and Gaber [1].
We evaluate four different values of p, namely 0.05, 0.1, 0.15, and 0.2, denoted as
R5%, R10%, R15%, and R20%, respectively. These values enable us to explore
the impact of different proportions of pairs on the ensemble construction process.

By adopting this approach, we aim to strike a balance between computational
efficiency and lens selection effectiveness, ensuring that Co-eye can efficiently
construct an ensemble of lenses while capturing diverse perspectives of the data.

3.2 Voting

To enhance accuracy and robustness, we propose three voting methods to replace
Co-eye’s existing dynamic voting approach. Let’s consider Co-eye applied to a
dataset with n classes c1, . . . , cn and m samples. Each base Random Forest
classifier generates an m × n matrix, denoted as:

Mi =

c1 . . . cn⎛
⎝

⎞
⎠

Sample 1 P (c = c1) . . . P (c = cn)
...

...
. . .

...
Sample m P (c = c1) . . . P (c = cn)

. (1)

Therefore, Co-eye produces a set of matrices, denoted as SM = M1, . . . , Mk,
where k represents the number of classifiers in the ensemble. Voting can be seen
as a function on SM , resulting in a vector of class labels for the m samples. We
introduce three new voting methods based on the sum rule (SR) scheme outlined
in Algorithm 1, employing different weight generation functions.

Algorithm 1. Sum Rule Scheme
1: procedure SumRule(SM )
2: w ← getWeights()
3: weightedMats ← w ∗ SM � Element-wise multiplication.
4: sum ← ∑

k weightedMats � Element-wise addition.
5: for row in sum do
6: label ← max(row)
7: end for
8: return labels
9: end procedure
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The first voting method is the simplest, employing uniform weights of one
across the ensemble. Although efficient, we hypothesize that a more sophisticated
weighting scheme could yield better results. Intuitively, matrices with higher
confidence in their predictions should carry more weight. Thus, matrices with
greater row-wise maximum confidences can be considered to be more confident.
For a matrix Mi ∈ SM with m rows, the set of row-wise maxima can be defined
as Rmax

i = {rowmax(j) | ∀j ∈ [m]}, where rowmax(j) represents the maximum
value of row j in matrix Mi, and [m] = 1, . . . , m. Let Rmax

i denote the mean
of the row-wise maxima. Our second voting scheme then assigns weights as
w = [Rmax

1 , . . . , Rmax
k ].

Instead of using SM directly for weight generation, Large et al. [15] demon-
strated the effectiveness of weights determined through cross-validation. Hence,
our third proposed voting method is as follows: A Random Forest is built for
each < s, α,w > triplet, and accuracy is calculated using 5-fold cross-validation,
a value supported by Burman [8]. The cross-validation accuracies are then used
as weights for their respective matrices. Note that this method is significantly
more computationally expensive than the other two approaches. However, unlike
Co-eye’s pair selection process, cross-validation is applied only to selected triplets
rather than the entire α−w parameter space, making it computationally viable.

We refer to the three voting methods as SR Uniform, SR Mean-Max, and SR
Validation, respectively.

4 Developing RED CoMETS

We anticipate that extending the multi-resolution perspectives of Co-eye, which
is effective for univariate time series classification using the time and frequency
domains, will be equally successful for multivariate datasets. In the literature,
both forests [23] and symbolic representations [5] have achieved favourable
results in this regard. To enable univariate classifiers to handle multivariate time
series, we present two approaches. When combined with the univariate founda-
tion established from Co-eye in Sect. 3, these approaches form RED CoMETS
(Random Enhanced Co-eye for Multivariate Time Series).

4.1 Concatenating Approach

One intuitive approach to address multivariate time series classification is to
reduce it to the more extensively studied univariate case. This can be achieved
by sequentially concatenating the dimensions of a multivariate dataset. For a
multivariate time series with a length of n and d dimensions, this method gener-
ates a univariate time series of length nd. Algorithm 2 demonstrates the appli-
cation of this method to our univariate foundation. When utilizing the random
pair selection technique described in Sect. 3.1, the number of lenses is propor-
tional to the length of the time series. However, for computational efficiency,
it was decided that if random pair selection is used, the number of lenses will
be determined based on the length of the time series before concatenation, i.e.,
proportional to n rather than nd.
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Algorithm 2. Concatenating Approach
1: procedure ConcatenatingApproach(TS) � TS is a multivariate dataset
2: for dimension ∈ TS do
3: append(concatTS, dimension)
4: end for
5: return UnivariateFoundation(concatTS)
6: end procedure

4.2 Ensembling Approach

Another approach to handling multivariate datasets is to construct an ensemble
over the dimensions. This method, recommended by Ruiz et al. [20], involves
building a univariate classifier for each dimension and combining their predic-
tions for the overall classification.

Since our univariate foundation is an ensemble classifier, this leads to an
ensemble of ensembles. Consequently, there are two sub-approaches depending
on how the ensemble results are combined. Algorithms 3 and 4 outline these sub-
approaches. Approach 1 combines the set of matrices, SM , produced by each base
classifier into a single superset Sall = SM1∪SM2∪ . . . SMd, where SMi represents
the set of matrices returned for the ith dimension. Voting is then applied as usual
to Sall. Approach 2 performs voting in two stages. For each dimension, SMi is
fused into a single matrix, Fi, using one of the sum rule methods outlined in
Sect. 3.2. For the ith dimension, Fi =

∑
k wSMi, where w is a vector of weights.

Subsequently, a second round of voting is applied to the set of fused matrices
across all dimensions, denoted as SF = {Fi | ∀i ∈ [d]}, where [d] = 1, . . . , d,
resulting in the final classification. Different voting methods can be employed
for the fusion and final classification stages.

Algorithm 3. Ensembling Approach 1
1: procedure EnsemblingApproach1(TS) � TS is a multivariate dataset
2: for dimension ∈ TS do
3: SM ← UnivariateFoundation(dimension)
4: append(Sall, SM )
5: end for
6: return vote(Sall)
7: end procedure

4.3 RED CoMETS

The univariate foundation described in Sect. 3, which builds upon the innovative
time series classification approach introduced by Co-eye [1], incorporates a new
random pair selection process and three new voting methods. By combining the
two proposed multivariate extensions from Sects. 4.1 and 4.2 with our univariate
foundation, we establish a novel multivariate classifier (RED CoMETS).
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Algorithm 4. Ensembling Approach 2
1: procedure EnsemblingApproach2(TS) � TS is a multivariate dataset
2: for dimension ∈ TS do
3: SM ← UnivariateFoundation(dimension)
4: Fi ← ∑

k w ∗ SM � Element-wise operations
5: append(SF , Fi)
6: end for
7: return vote(SF )
8: end procedure

5 Experiments and Evaluation

We evaluate our univariate foundation and RED CoMETS on univariate and
multivariate datasets respectively from the UCR archive. We demonstrate that
our univariate foundation is more accurate and approximately 40 times faster
than Co-eye. RED CoMETS is shown to achieve accuracies comparable to the
state-of-the-art classifiers outlined in Sect. 2. Our code and full results are avail-
able on GitHub1.

5.1 Experimental Design

All of our experiments were conducted with the 111 datasets from the UCR
archive [3] used by Bagnall et al. [2] and Ruiz et al. [20] in their reviews, consisting
of 85 univariate and 26 multivariate datasets. This allows for comparison to the
results recorded by Bagnall et al. [2] and Ruiz et al. [20] in their reviews of state-
of-the-art classifiers. For consistency and to allow direct comparison, our results
show the average over 30 trials on each data using 30 stratified resamples. Each
resample is seeded by its sample number, such that each classifier is evaluated on
identical samples and results are reproducible. Note that both SAX and SFA z-
normalise the time series as their initial step. For the multivariate datasets, this
means that the concatenating approach normalises the joint time series while
the ensembling approach normalises each dimension independently.

We produce results for Co-eye, our univariate foundation, and RED
CoMETS. Results for DTW and univariate ROCKET were taken from Bagnall
et al. [2] and Dempster et al. [9] respectively. The results for DTWD, MrSEQL,
InceptionTime, and multivariate ROCKET were taken from Ruiz et al. [20]. The
results for HIVE COTE-2.0 were taken from the author’s website [3]. The default
accuracy for predicting the majority class is also included and is taken from Bag-
nall et al. [2] and Ruiz et al. [20] for the univariate and multivariate datasets
respectively. The voting methods proposed in Sect. 3.2 were evaluated using the
R5% pair selection described in Sect. 3.1 to minimise computation time.

To compare multiple classifiers over multiple datasets, critical difference (CD)
diagrams are used [10]. Current literature [6] suggests abandoning the post hoc

1 https://github.com/zy18811/RED-CoMETS.

https://github.com/zy18811/RED-CoMETS
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test originally suggested by Demšar [10], instead forming cliques using pairwise
tests, with the Holm correction being made in the case of multiple testing. The
classifiers are first ranked using the Friedman test, then grouped into cliques
using pairwise Wilcoxon signed rank tests with the Holm adjustment [2,20].
Cliques represent groups of classifiers between which there is no statistically
significant pairwise difference. A Python implementation produced by Fawaz et
al. [11] was used to create the CD diagrams presented in this paper.

5.2 Univariate Foundation

Pair Selection. The four random pair selection methods outlined in Sect. 3.1
were evaluated on the 85 univariate datasets from the UCR archive in order to
evaluate their effectiveness against Co-eye. Default accuracy, DTW, and univari-
ate ROCKET are included as benchmarks. Figure 1 shows the test accuracy crit-
ical difference (CD) diagram for the pair selection methods. It can be seen that
there are two distinct cliques containing R10%, R15%, and R20% and Co-eye and
R5% respectively, with DTW found in both. Both cliques outperformed default
accuracy with statistical significance. ROCKET significantly outperformed all
others. R10%, R15%, and R20% all performed worse in terms of accuracy than
Co-eye, and are removed from contention. There is no statistically significant
pairwise difference in test accuracy between R5% and Co-eye.

Fig. 1. Test accuracy critical difference diagram for random pair selection methods
against Co-eye averaged over 30 resamples for each of the 85 univariate UCR datasets.
Default accuracy, DTW, and ROCKET are included as benchmarks.

Figure 2 shows a pairwise comparison of mean train and test time between
Co-eye and R5% on the 85 univariate UCR datasets. It can be seen that R5%
is significantly faster than Co-eye in all cases, averaging approximately 40 times
faster over the 85 datasets. As such, R5% is a pronounced improvement over
Co-eye: 40 times faster with no statistically significant difference in test accu-
racy. For R5%, Kendall’s τ coefficient was calculated between characteristics of
each dataset and the associated total train and test time, with values of 0.41,
0.42, 0.33, and 0.78 for train size, test size, number of classes, and series length
respectively. As one would expect, there is a positive correlation for all values,
with series length as the most significant determinant of train and test time.
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Fig. 2. Pairwise comparison of total mean train and test time between Co-eye and
R5% averaged over 30 stratified resamples of the 85 univariate UCR datasets.

Voting. Section 3.2 proposed three voting methods, aiming to outperform the
dynamic voting method used by Co-eye in terms of test accuracy. As done
above for pair selection, the voting methods were evaluated on the 85 univari-
ate datasets from the UCR archive with default accuracy, DTW, and univariate
ROCKET as benchmarks. Figure 3 shows the test accuracy CD diagram for the
voting methods. It can be seen that the three proposed voting methods all per-
formed better than Co-eye’s dynamic voting method with statistical significance.
The three voting methods are cliqued, indicating no significant pairwise differ-
ence between them. As such, all three voting methods are taken forward for
evaluation as part of RED CoMETS.

Fig. 3. Test accuracy critical difference diagram for proposed voting methods against
Co-eye averaged over 30 resamples for each of the 85 univariate UCR datasets. Default
accuracy, DTW, and ROCKET are included as benchmarks.

5.3 RED CoMETS

There are nine variants of RED CoMETS, which result from different combi-
nations of a voting method and the multivariate extension. These variants are
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referred to by the names presented in Table 1. It is worth noting that the valida-
tion voting method is not utilised with the ensembling dimensions multivariate
extension due to initial experiments demonstrating computational infeasibility.

Table 1. RED CoMETS variants.

Name Approach Sub-Approach Voting Method 1 Voting Method 2

RED CoMETS-1 Concatenating n/a Uniform n/a

RED CoMETS-2 Concatenating n/a Mean-Max n/a

RED CoMETS-3 Concatenating n/a Validation n/a

RED CoMETS-4 Ensembling 1 Uniform n/a

RED CoMETS-5 Ensembling 1 Mean-Max n/a

RED CoMETS-6 Ensembling 2 Uniform Uniform

RED CoMETS-7 Ensembling 2 Uniform Mean-Max

RED CoMETS-8 Ensembling 2 Mean-Max Mean-Max

RED CoMETS-9 Ensembling 2 Mean-Max Uniform

We evaluate the RED CoMETS variants against each other and the mul-
tivariate benchmarks discussed in Sect. 2 (DTWD, MrSEQL, InceptionTime,
ROCKET, and HIVE-COTE 2.0). When evaluated by Ruiz et al. [20], Incep-
tionTime and MrSEQL were unable to complete all 26 datasets, with Incep-
tionTime failing on ‘EigenWorms’ due to memory errors and MrSEQL failing to
complete ‘FaceDetection’ and ‘PhonemeSpectra’ within the set time constraints.
Likewise, all variants of RED CoMETS were unable to complete ‘Eigenworms’.
As such, results for these datasets will not be used in our comparison, leaving 23
datasets for evaluation. Based on the results shown in Sect. 5.2, all variants of
RED CoMETS are evaluated using the R5% pair selection method. As Sect. 5.2
demonstrated no statistically significant difference between the three proposed
voting methods, all nine RED CoMETS variants shown in Table 1 are evaluated.

We first analyse the nine variants of RED CoMETS. It can be seen in
Fig. 4 that there is no statistically significant pairwise difference in test accu-
racy between the nine RED CoMETS variants, with the default accuracy being
outperformed with statistical significance in all cases. However, looking at the
results shown in Table 2, RED CoMETS-3 has both the highest mean accuracy
and number of wins, indicating that it is both the most accurate and most
reliable of the nine RED CoMETS variants.

Fig. 4. Test accuracy critical difference diagram for RED CoMETS variants averaged
over the 23 UCR datasets.



RED CoMETS 87

Table 2. Summary of RED CoMETS results showing mean accuracy across 30 resam-
ples for each variant and multivariate dataset. The mean and number of wins are also
shown. The greatest values on each row are shown in underlined bold.

Dataset RED CoMETS-<N> (%)

1 2 3 4 5 6 7 8 9

AWR 97.73 97.60 97.73 96.22 96.02 95.20 95.16 94.91 94.18

AF 30.00 29.11 29.78 28.89 28.89 32.00 32.00 31.33 31.33

BM 98.17 98.00 98.17 79.58 79.42 81.67 81.92 81.75 82.08

CR 97.08 97.13 97.13 92.59 92.73 89.31 89.31 89.58 89.68

DDG 59.60 54.47 62.27 20.53 19.13 20.47 20.53 19.60 19.40

EP 85.14 83.60 85.29 60.31 53.26 58.36 57.83 51.79 50.46

ER 93.54 92.38 93.51 91.23 91.19 85.68 85.63 85.88 85.79

EC 27.55 27.60 27.59 33.13 33.36 32.60 32.56 32.69 32.53

FM 51.93 50.30 51.60 52.20 52.53 52.10 52.10 52.40 52.43

HMD 54.20 54.57 55.30 44.36 44.68 42.40 42.40 42.81 42.99

HW 32.73 31.67 32.60 28.97 29.05 27.33 27.32 27.64 27.68

HB 66.44 65.38 66.50 71.02 70.98 71.02 71.12 70.98 71.04

LIB 78.33 75.93 78.33 73.33 72.89 58.85 58.85 57.85 57.85

LSST 15.96 05.76 50.93 08.90 08.07 05.35 05.21 04.03 03.71

MI 51.00 51.20 50.97 51.33 51.50 51.37 51.40 51.57 51.53

NATO 82.04 81.81 82.30 73.54 73.78 72.41 72.83 72.15 72.72

PEMS 78.30 77.59 78.30 90.98 91.89 92.08 92.49 93.14 93.66

PD 88.00 82.16 88.17 76.32 76.24 63.64 63.64 64.21 64.21

RS 83.05 72.74 82.87 78.60 78.82 75.46 75.70 75.61 75.77

SRS1 85.46 85.51 85.46 86.47 86.50 86.35 86.36 86.38 86.41

SRS2 51.89 52.02 52.00 52.39 52.35 52.37 52.37 52.35 52.33

SWJ 38.89 38.44 38.44 43.33 43.33 44.67 44.89 44.22 44.44

UW 88.61 88.53 88.60 84.20 84.14 81.09 80.99 80.95 80.83

Mean 66.77 64.94 68.43 61.67 61.34 59.64 59.68 59.30 59.26

Wins 5.5 0.5 8 1 3 0.5 2.5 1 1

Having identified RED CoMETS-3 as the most effective variant, we now
evaluate it against the state-of-the-art methods identified in Sect. 2. It can be
seen from Fig. 5 that, excluding default accuracy, RED CoMETS-3 has the lowest
ranking in terms of test accuracy. However, the cliques indicate that there is
no statistically significant difference in accuracy between RED CoMETS-3 and
DTWD, MrSEQL, and InceptionTime, demonstrating that RED CoMETS-3 is
competitive with state-of-the-art multivariate classifiers.

We now further analyse the performance of RED CoMETS-3 in relation
to the benchmarks, with Table 3 showing the differences in test accuracy. RED
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Fig. 5. Test accuracy critical difference diagram for RED CoMETS-3 against the state-
of-the-art classifiers averaged over the 23 UCR datasets

CoMETS-3 was able to beat all of the benchmarks on at least four of the datasets.
Both the mean and median difference in accuracy between RED CoMETS-3 and
DTWD, MrSEQL, and InceptionTime is less than 5%, concurring with Fig. 5.
Looking at the maxima and minima, it can be seen that RED CoMETS-3 greatly
outperforms the benchmarks on some datasets and vice versa. In fact, RED
CoMETS-3 consistently outperforms the state-of-the-art benchmarks on a small
number of datasets, beating all of the benchmarks on HMD, four on AF and
DDG, and three on ER, SRS1, and SRS2. In other words, just six datasets
account for 22 out of the 28 wins shown in Table 3. Five of these six datasets are
categorised as EEG, ECG, or spectrographic. Hence, it is apparent that RED
CoMETS attains its best performance on datasets with minimal phase shifting
(this was also found to be the case for Co-eye by Abdallah and Gaber [1]).

Table 3. Summary of the test accuracy differences between RED CoMETS-3 and the
benchmarks for the multivariate UCR datasets. Negative is better for RED CoMETS-3.

Classifier Mean (%) Median (%) Max (%) Min (%) STD (%) Wins Losses

DTWD 0.68 1.69 28.60 −24.98 10.32 9 14

MrSEQL 4.39 3.93 65.60 −33.33 18.31 6 17

InceptionTime 3.64 2.63 64.51 −65.59 21.98 5 18

ROCKET 5.09 5.25 24.06 −16.13 8.66 4 19

HIVE COTE-2.0 7.50 5.33 51.50 −15.52 13.17 4 19

HIVE COTE-2.0 and ROCKET are considered the current best within the
state-of-the-art as discussed in Sect. 2. Figure 5 corroborates this, with them
being ranked first and second respectively. We now compare RED CoMETS-3
against them in more detail, seeking to better understand the disparities shown
in Table 3. It can be seen from Table 4 that HIVE-COTE 2.0 retains its place
as the current best classifier in terms of test accuracy with both the greatest
mean accuracy and number of wins. However, RED CoMETS-3 is still able to
hold its own against ROCKET and HIVE-COTE 2.0, beating both of them on
four of the datasets. Furthermore, the result obtained for the HMD dataset,
55.30%, is greater than any reported in the literature [3], representing a notable
improvement to the state-of-the-art.
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Table 4. Results for ROCKET, HIVE-COTE 2.0, and RED CoMETS-3 showing mean
test accuracy across 30 resamples of each multivariate dataset. The mean and number
of wins are also shown. The greatest values on each row are shown in underlined bold.

Dataset ROCKET (%) HIVE COTE-2.0 (%) RED CoMETS-3 (%)

AWR 99.56 99.58 97.73

AF 24.89 28.22 29.78

BM 99.00 98.92 98.17

CR 100.00 99.95 97.13

DDG 46.13 49.87 62.27

EP 99.08 99.83 85.29

ER 98.05 98.51 93.51

EC 44.68 79.09 27.59

FM 55.27 55.23 51.60

HMD 44.59 39.77 55.30

HW 56.67 56.34 32.60

HB 71.76 72.86 66.50

LIB 90.61 92.69 78.33

LSST 63.15 63.70 50.93

MI 53.13 53.17 50.97

NATO 88.54 89.20 82.30

PEMS 99.56 99.56 88.17

PD 85.63 99.81 78.30

RS 92.79 93.05 82.87

SRS1 86.55 87.87 85.46

SRS2 51.35 50.46 52.00

SWJ 45.56 43.78 38.44

UW 94.43 94.89 88.60

Mean 73.52 75.93 68.43

Wins 5.5 13.5 4

6 Conclusion

RED CoMETS is a novel ensemble classifier for multivariate time series that
builds on the success of Co-eye. In order to build a univariate foundation for our
classifier, we adapted Co-eye’s use of multiple symbolic representations to gain a
multi-resolution perspective of both the time and frequency domains. However,
we introduced a random pair selection process in order to overcome the bottle-
neck in Co-eye [1]. We also proposed and evaluated three new voting methods.
Our adaption of Co-eye was extremely successful, achieving an approximately 40
times increase in speed and small but statistically significant gains in accuracy
in comparison to Co-eye.
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Two multivariate extensions were then applied to our univariate classifier.
The different possible combinations of the multivariate extensions and voting
methods resulted in the nine variants of RED CoMETS shown in Table 1. These
were evaluated against state-of-the-art classifiers on 23 multivariate datasets
from the UCR archive [3], following the methodology of Ruiz et al. [20].

RED CoMETS-3 was identified as the clear best out of the nine variants in
both accuracy and reliability and was demonstrated to have no statistically sig-
nificant pairwise difference in accuracy to several of the state-of-the-art bench-
marks. RED CoMETS-3 was able to outperform both ROCKET and HIVE
COTE-2.0, the current best-in-class, on four of the 23 datasets and achieved an
accuracy greater than reported by any classifier in the literature on the ‘Hand-
MovementDirection’ dataset. It was noted that RED CoMETS attains its best
performance on datasets with no significant phase shifting.

There is room to further improve RED CoMETS-3 in both the R5% pair
selection and SR Validation voting method. For R5%, a subset of the datasets
could be used to learn the optimal bounds for the α − w parameter space,
similar to the methodology used by Dempster et al. [9] when learning the kernel
parameter space for ROCKET. SR Validation could be improved by emulating
the scheme proposed by Large et al. [15] in which the weights are raised to a
power in order to amplify differences between base classifiers.
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Abstract. Temporal prediction is an important function in autonomous
driving (AD) systems as it forecasts how the environment will change
and transform in the next few seconds. Humans have an inherited pre-
diction capability that extrapolates a present scenario to the future. In
this paper, we present a novel approach to look further into the future
using a standard semantic segmentation representation and time series
networks of varying architectures. An important property of our app-
roach is its flexibility to predict an arbitrary time horizon into the
future. We perform prediction in the semantic segmentation domain
where inputs are semantic segmentation masks. We present extensive
results and discussion on different data dimensionalities that can prove
beneficial for prediction on longer time horizons (up to 2 s). We also
show results of our approach on two widely employed datasets in AD
research, i.e., Cityscapes and BDD100K. We report two types of mIoUs
as we have investigated with self generated ground truth labels (mIoUseg)
for both of our dataset and actual ground truth labels (mIoUgt) for a
specific split of the Cityscapes dataset. Our method achieves 57.12%
and 83.95% mIoUseg, respectively, on the validation split of BDD100K
and Cityscapes, for short-term time horizon predictions (up to 0.2 s
and 0.06 s), outperforming the current state of the art on Cityscapes
by 13.71% absolute. For long-term predictions (up to 2 s and 0.6 s), we
achieve 37.96% and 63.65% mIoUseg, respectively, for BDD100K and
Cityscapes. Specifically on the validation split of Cityscapes with perfect
ground truth annotations, we achieve 67.55% and 63.60% mIoUgt, out-
performing current state of the art by 1.45% absolute and 4.2% absolute
with time horizon predictions up to 0.06 s and 0.18 s, respectively.
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1 Introduction

Temporal prediction and forecasting has been an important task in intelligent
systems and robotic decision making [2,5]. Simple tasks like object detection and
tracking have been quite well investigated with deterministic approaches such as
the Kalman filter [9] and dense optical flow techniques [14]. Non-deterministic
learning based approaches [1,19,20,24] have proved to be better and more
adapted to these tasks in the long run.

Recent advancements using image-based prediction [4,10] and reconstruction
have captured attention as an integral part in intelligent autonomous driving
(AD) systems. Image-based prediction means forecasting the RGB pixels of a
frame in a video sequence to their anticipated future positions in a future video
frame in the pixel space. However, there are certain limitations to image-based
prediction as it becomes more of a reconstruction task [4,16] (where positions of
objects are regenerated) than prediction of actual motion when using deep neural
representation models. Also, the predicted RGB pixel domain provides much
irrelevant information for decisions in AD scenarios, whereas, the trajectory
planner in an AD system can benefit from more information than just RGB
pixels for determining possible obstacles and freespace.

Here, semantic segmentation provides a relevant representation as semanti-
cally segmented maps provide concise but relevant information not only about
the possible obstacles and freespace; but also an extensive distribution of seman-
tically discrete objects with respect to their pixel occupancy in a video frame. As
a result, the trajectory planner in an AD system can process more relevant infor-
mation for efficient decision making. Hence, prediction of semantically segmented
frames into the future proves to be much more of a sensible task than temporal
prediction of RGB frames. An interesting investigation in the field of predic-
tion of semantic segmentation masks is estimating the model’s performance for
longer time horizons, because it is essential for AD systems to accommodate the
length that these prediction models can forecast without significant deprecation
in performance.

We can summarize our main contribution as follows. First, we propose an
efficient time series network with an auto regressive gradient accumulation tech-
nique for forecasting of semantic segmentation maps. The time horizon prediction
during inference is independent of the training time horizon range unlike Nabavi
et al. [18] where they input 4 frames as a group concurrently. Secondly, we inves-
tigate using the semantic segmentation masks only as input to our prediction
method while determining which semantic segmentation representation provides
the most promising results. Thirdly, we show that our prediction method outper-
forms the current state of the art on the Cityscapes dataset [3], and additionally
we are the first to report our results on BDD100K [26] which contains scenes from
all types of weather conditions and time of the day. The remainder of this work is
structured as follows: We present related works in Sect. 2, followed by explaining
the approaches in Sect. 3. Section 4 introduces the experimental setup includ-
ing architectural details, dataset, metrics followed by implementation details.
Section 5 reports the experimental results along with detailed discussion before
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concluding the paper in Sect. 6. We also provide a supplementary material (A)
with detailed analysis of qualitative results along with a special investigation of
the proposed method’s behavior.

2 Related Work

Video Prediction: By introducing a 3D optical flow representation across
spatial and temporal dimensions along with trilinear interpolation, Liu et al.
[11] proposed an unsupervised model to predict frames for video predictions.
PredNet [12] employs predictive coding with local predictions to learn future
frames and also propagating the deviations from subsequent layers in an unsu-
pervised fashion. Similarly, Walker et al. [23] propose a PixelCNN approach
in addition to discretizing the hierarchy of spatiotemporal self-attention latent
space in video data using VQ-VAE. Mathieu at al. [17] propose a multi-scale
architecture and an adversarial training strategy along with a novel image gra-
dient divergence loss function to enhance frame predictions over longer time
horizons. Using adversarial training, retrospective cycle GANs [10] have proved
to be useful for predicting video frames while enforcing the consistency of bi-
directional time horizons. Guen at al. [6] propose a method where they leverage
the physical knowledge described by partial differential equations dynamics to
disentangle unknown complementary information in video sequences. Our work
follows along the domain of prediction of frames in a video sequence using a
time series network. However, in this work, we solely focus on prediction in the
semantic segmentation domain for an enriched information processing that can
be useful for planning future scenarios in AD systems.

Prediction in Semantic Segmentation: Luc et al. [13] came up with an
autoregressive multi scale region proposal CNN based on Mathieu et al.’s [17]
backbone architecture using a generative adversarial loss combined with an
image gradient difference loss to predict future scenes that are semantically seg-
mented which proves to be a reconstruction technique rather than an actual
prediction. In this method, they use varying combinations of RGB frames and
semantic segmentation maps together interchangeably as input rendering the
input representation highly complex whereas, we investigate using the semantic
segmentation masks only as input to our prediction method while determin-
ing which semantic segmentation representation provides the most promising
results. Nabavi et al. [18] use a PSPNet backbone [28] and bi-directional convo-
lutional LSTMs [22] to predict latent space embeddings in the residual layers.
With increasing time horizon predictions (i.e., 1 s...2 s) into the future, these
models reveal significant deviations to the ground truth. This can be attributed
to the fact that the time series network used by Nabavi et al. [18] accumulates
information only for a limited time span for highly dense class distributions that
can be safely labeled as background (i.e., road, buildings, sidewalk, vegetation)
and completely overturns the underrepresented classes distributions (i.e., pedes-
trian, bicycle, traffic lights). Exploiting the mutual benefits of predicting pixel
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annotations and dense optical flow estimations, Jin et al. [8] attempt to simul-
taneously model future semantic segmentation masks along with optical flow
representations which proves to be quite useful for different time horizons and
input resolutions. While we build on Nabavi et al.’s work [18], we get rid of
the dependence of input sequence length and introduce an autoregressive frame
prediction technique during inference along with predicting for longer time hori-
zons in the future. Additionally, we report our results on BDD100K [26] dataset
which is more challenging for the task of prediction.

3 Method

3.1 Prediction of Semantic Segmentation Masks

In Fig 1, we can see the details of our training methodology. There are two
separate integral steps. For the first step (left, in blue), we feed in the raw
RGB frames xt ∈ [0, 1]H×W×C where t ∈ T = {1, 2, ..., T}, with T being
the the total number of frames in the input video and t denoting the tem-
poral frame index of the video sequence. This is fed to a standard semantic
segmentation network F semseg, i.e., PSANet [29]. In Fig. 1 (left, in blue), we
can see the semantic segmentation network F semseg(xt;θsemseg) whose output
is yt = (yt,i,s) ∈ [0, 1]H×W×S where θsemseg denotes the semantic segmentation

Fig. 1. The left side (in blue) depicts the step of generating pseudo ground truth
semantic segmentation masks mT

1 = {m1,m2, ...,mT } from raw RGB videos as using
a strong semantic segmentation network, i.e., PSANet. The right side depicts the pre-
diction step, where a time series network receives a ten-frame mask sequence mt

t−9

predicting m̂t+1 from mt directly step by step in the semantic segmentation domain.
The two steps are independent of each other and are performed one after the other
with different loss representations. (Color figure online)
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network’s trainable parameters, s ∈ S represents the class in dataset with a total
of s semantic classes and i ∈ I = {1, 2, ...,H · W} represents the pixel indices
for frames with height H and width W . The semantic segmentation network is
entirely responsible for generating the semantic segmentation masks mt = (mt,i)
where mt,i = argmax

s∈S
yt,i,s. We save these pseudo ground truth semantic seg-

mentation masks mT
1 to train our predictor network. In Fig. 1 (right, in yellow),

we can see that mt
t−9 = {mt−9, ...,mt−1,mt} is the input sequence fed sequen-

tially as mt−9, mt−8, ..., mt to the predictor network, Gpred whose internal
hidden states and cell states are Ht,Ct at current time-step t. The predictor net-
work is represented as Gpred(mt,Ht,Ct;θpred) whose output is m̂t+1 = (m̂t+1,i)
where m̂t+1,i = argmax

s∈S
ŷt+1,i,s where ŷt+1 ∈ [0, 1]H×W×S denotes the normal-

ized probabilistic output of the predictor network at timestep t+ 1. Here, θpred

denotes the predictor’s trainable parameters.
The generated semantic segmentation masks from F semseg are fed as 10-frame

long sequences mt
t−9 = {mt−9, ...,mt−1,mt} to our predictor one by one which

update the intermediate hidden state representations. The loss representation
JCE (categorical cross entropy loss) is always calculated with the 10th frame
prediction i.e., m̂t+1 and corresponding pseudo ground truth mt+1. Note that
both training steps are performed independently of each other with different loss
representations.

Fig. 2. This figure depicts the inference process for Δt = 10 time steps ahead using
our approach. The predictor starts with the present time instant input mt, generates
a prediction m̂t+1, uses this prediction as input to the next time step to produce m̂t+2

and so on. Hence, to predict m̂t+10, the model would use its own predictions m̂t+1,
m̂t+2, ..., m̂t+9 as input sequentially.

3.2 Inference Processing

We can see the inference step of our method in Fig. 2 which is at the core of our
work. Hence, understanding the inference approach would give us a better idea
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of the proposed model’s ability to look efficiently into the future. We incorporate
the auto regressive approach to predict longer time horizons. The input sequence
is 10 frames long represented as mt

t−9 and predicts m̂t+1. To predict for more
than one time step ahead, this prediction m̂t+1 is once again fed as input to
the predictor to produce m̂t+2 that is Δt = 2 time steps ahead. We choose an
arbitrary length of 10 time steps to be predicted in the future and hence, this
process is repeated until Δt = 10 time steps ahead.

Note that, our method only looks at the first 10 pseudo ground truth frames
of a sequence (mt

t−9) and can predict up to an arbitrary number of frames, Δt,
into the future. This is specifically useful in AD applications where we can set
the ego vehicle to warm up for a certain length of sequences and then predict
into the future arbitrarily.

4 Experimental Setup

In this section, we introduce the settings for our experiments including a new
architecture for defining the predictor Gpred in Subsect. 4.1. We investigate dif-
ferent arrangements of temporal blocks along with introducing the datasets used
for our experiments and the most important metrics.

4.1 Predictor Architecture

For our predictor network Gpred, we use convolutional LSTM [22] blocks along
with a normalization layer to keep the training stable. We investigate three
different arrangements of the convolutional LSTM blocks within Gpred, which
are shown in Fig. 3.

The first architecture, defined as PRED can be seen in Fig. 3(a) without the
residual connections. PRED stacks up the convolutional LSTM blocks with a group
normalization layer for normalizing the four intermediate activations: input gate,
forget gate, cell gate and output gate. As described in Shi et al. [22], we fol-
low the standard definition of a convolutional LSTM block which replaces the
matrix-vector multiplications in the input-hidden and hidden-hidden mappings
of a fully-connected LSTM [7] with convolutions, whereas keeping the general
structure of the LSTM cell unchanged. The governing equations can be described
as

It = σ(WI,ih ∗ Xt +WI,hh ∗ Ht−1 +BI)

Ft = σ(WF,ih ∗ Xt +WF,hh ∗ Ht−1 +BF )

Ot = σ(WO,ih ∗ Xt +WO,hh ∗ Ht−1 +BO) (1)

Ct = Ft � Ct−1 + It � tanh(WC,ih ∗ Xt +WC,hh ∗ Ht−1 +BC)
Ht = Ot � tanh(Ct).

where � denotes element-wise multiplication, σ(·) denotes the element-wise
applied sigmoid activation. It,Ft,Ot,Ct,Ht and Xt are tensors for values of
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Fig. 3. (a): This figure depicts the PRED+R architecture for the predictor. By removing
the residual connections (dashed lines), we obtain the PRED architecture. (b): This
figure depicts the PRED+RS architecture for the predictor. Here, the ConvLSTM units
are placed in the residual feature space connecting the encoders and decoders.
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input gate, forget gate, output gate, cell state, hidden state and input respec-
tively, at time step t. The tensors WZ,ih, WZ,hh and BZ where Z ∈ {I, F,O,C}
contain the kernel weights for input-hidden (WZ,ih), hidden-hidden (WZ,hh)
mappings and bias values (BZ) for the input gate (Z = I), forget gate (Z = F ),
output gate (Z = O) and cell state (Z = C) computations respectively. For the
first time step, the hidden states (Ht,Ct) are always set to zero tensors.

Every convolution layer consists of a leaky ReLU activation [15] function
with a slope of −0.2. The architecture consists of an encoder part which extracts
the spatio-temporal fashion with increasing receptive size for each consecutive
layer. As shown in Fig. 3(a), the input and output data resolutions are denoted
as H × W × D where H,W denote the spatial resolution and D represents
the channel depth of the output. Similarly, Conv(K × K,Dout)/M represents
a convolutional layer with kernel size of K × K, output depth of channels
as Dout with a stride of M . The convolutional LSTM layers are denoted as
ConvLSTM(K × K,Dout)/M where the denotions are same as defined before.
For the decoder part in Fig. 3(a), there are corresponding deconvolutional layers
with transpose convolutional LSTMs. Deconv(K ×K,Dout)/M denotes a decon-
volutional layer with kernel size of K × K, input and output depth of channels
as Dout with a stride of M . The convolutional LSTM layers of the decoder are
denoted in the same way.

We investigate a second type of predictor architecture, PRED+R, which also
can be seen in Fig. 3(a). It is similar to PRED but with the residual connections
(dashed lines) after every ConvLSTM block connected in an U-Net [21] fashion
with the respective group of Deconv-ConvLSTM block. This is done to overcome
the generic problem of vanishing gradients as well as facilitate better flow of
gradients during training phase.

Figure 3(b) shows our third proposed predictor architecture, PRED+RS. It is
a more intuitive method with convolutional LSTM blocks present in between
the corresponding convolution - deconvolution latent space. This can be seen in
Fig. 3(b) where the convolutional LSTM units are predicting the hidden state
representations in the residual connections.

4.2 Datasets

Cityscapes: The Cityscapes [3] dataset DCS is specifically tailored for AD
scenes in urban setting. The dataset contains 5000 images for semantic segmen-
tation. The dataset is split into 2975 images for training (DCS

train), 500 images
for validation (DCS

val) and 1525 images for testing (DCS
test). The training split and

the validation split have corresponding perfect ground truths available. For each
image in DCS, there exists a 30 frame long video sequence whose 20th frame
annotations are available. To distinguish, we denote the dataset consisting of
the entire videos as DCS−vid. This dataset accordingly contains 2975 videos for
training (DCS−vid

train ), 500 videos for validation (DCS−vid
val ) and 1525 videos for test-

ing (DCS−vid
test ). Each video sequence contains 30 frames lasting 1.8 s (16.67 fps)

long with a resolution of 1024×2048. Given the 16.67 fps frame rate of Cityscapes
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and our arbitrary choice of predicting Δt = 10 time steps in the future, our setup
predicts 0.6 s into the future. There are S = 19 semantic class categories.

BDD100K: The BDD100K [26] dataset DBDD contains randomly sampled
images from 10,000 video clips with perfect semantic segmentation ground
truths. This subset is split into 7000 images for training (DBDD

train ), 1000 images
for validation (DBDD

val ) and 2000 images for testing (DBDD
test ). For the purpose

of prediction, we use the video dataset from multiple object tracking and seg-
mentation DBDD−MOTS subset containing 223 videos in total with 154 training
DBDD−MOTS

train , 32 validation DBDD−MOTS
val and 37 testing videos DBDD−MOTS

test .
Each video contains about 200 frames (5 fps) lasting 40 s with a resolution of
720 × 1280. Given the 5 fps frame rate of DBDD−MOTS and our arbitrary choice
of predicting Δt = 10 time steps in the future, our setup predicts 2 s into the
future. There are S = 19 semantic class categories.

4.3 Input Representations

Different types of input modalities were exploited by the model to predict future
scenes using hidden state representations. Usually, most works focus only on
the raw semantic segmentation masks mt ∈ SH×W which can be interpreted
as 1-channel input [8,13,18], i.e., mt ∈ [0, 1]H×W×1. This is the most preva-
lent input representation for prediction tasks because it is computationally less
expensive and independent of predefined semantic classes in the dataset. We
also conduct some investigations with 1-channel input mt to prove our model’s
robustness, which are explained in detail in the supplementary material (A).
However, in the process we often ignore the amount of information contained
in the normalized probabilistic outputs of the semantic segmentation network,
i.e., softmax activations just before the argmax function. Hence, we also conduct
extensive experiments on these softmax activations as input data representations
yt ∈ [0, 1]H×W×S , i.e., S-channel input. One advantage of using the S-channel
input yt is that all the semantic classes are equidistant to each other in the
latent space. In the process, we do prove that the S-channel softmax activation
yt as input representation leads to better performance in prediction for both
short-term and long-term time horizons (Δt = 1, 2, 5, 10).

4.4 Metrics

For reporting the quantitative performance of our experiments, we resort to
estimating the mean intersection over union or Jaccard index. This metric is
usually an indispensable estimation technique for most semantic segmentation
and object detection models [25,27]. As indicated by the name, the intersection
over union (IoU) is computed as area of intersection (overlap) divided by the
area of union. For the application of semantic segmentation and prediction, it is
more appropriate to express IoU based on sensitivity and specificity indicators.
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Given the amount of true positives TPs, false positives FPs and false negatives
FNs for class s respectively, the IoU can be defined as

IoUs =
TPs

TPs + FPs + FNs
(2)

The overall mean performance over all the classes S = {1, 2, ..., S}, i.e., mIoU
can be represented as

mIoU =
1
S

∑

s=1

IoUs (3)

From now on, we will report two types of mIoUs: mIoUseg
Δt , which is the

mIoU between the predictions and self generated ground pseudo truth semantic
segmentation masks. And mIoUgt

Δt, which is the mIoU between the predictions
and human annotated (perfect) ground truths of DCS−vid

val for the 20th frame.

4.5 Implementation Details

Generating Ground Truth Annotations: As both DBDD−MOTS and
DCS−vid do not have off-the-shelf semantically annotated masks, we create our
own ground truth labels using a standard semantic segmentation model. The
semantic segmentation network F semseg, i.e., PSANet [29] is trained on DBDD

train

and DCS
train dataset first. The annotations are produced via supervised learning

using human annotated ground truth semantic segmentation masks with a cate-
gorical cross entropy loss representation. For DBDD

train , the original image resolution
is of size 720 × 1280 whereas for DCS

train, it is 1024 × 2048. To arrive at a unified
input resolution for training, we downsample the original images to 513 × 1025
which is a requirement to the choice of our semantic segmentation network due to
affine transformations [29]. The output of this network is again downsampled via
bilinear interpolation to produce semantic segmentation masks of size 128×256.
The semantic segmentation network F semseg is trained for 1000 epochs with a
batch size of 4, learning rate of 1 × 10−2 and an auxiliary weight of 0.4. This
setup uses a SGD optimizer with a weight decay of 5×10−4. Our implementation
of the semantic segmentation network, i.e., PSANet with a ResNet50 backbone
achieves an mIoU of 73.44% on DCS

val and 59.84% on DBDD
val . The trainings were

carried out on a single Tesla V100 GPU for 7 days.

Training the Predictor: The three predictor architectures (PRED, PRED+R,
PRED+RS) have been trained with the same hyperparameters for 100 epochs with
an early stopping for plateau conditions. The input resolution of the semantic
segmentation masks is 128 × 256 as mentioned above as this resolution proves
to be the most optimal for our predictor architecture in terms of training time,
memory consumption and storage constraints. As shown in Fig. 1, the inputs are
10 frame long sequences. The sequences are fed as single mask inputs at each
timestep and the predictor’s hidden state representations are updated sequen-
tially according to Eq. 1. The output is of the same size as input with a prediction
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time horizon of Δt = 1 timestep ahead. The batch size is set to 4 with a base
learning rate of 1×10−3 and a learning rate scheduler with a factor of 0.5. Here,
we use the Adam optimizer with a weight decay of 5× 10−4. The trainings were
carried out on a single Tesla V100 GPU for 3 days. It is to be noted that all the
reported numbers with mean and standard deviation have been averaged over 3
different seeds.

Table 1. mIoUseg
Δt performance for different predictor architectures on DBDD−MOTS

val

showing different input types as well as time horizons into the future. The best archi-
tecture per time horizon is denoted in bold font. Also, the best input type can be seen
underlined. All the experiments have been averaged over 3 seeds except CP and OF as
they are deterministic, n/a - not applicable.

Input Type Time Horizon Δt Methods

CP OF PRED(ours) PRED+R(ours) PRED+RS(ours)

1-channel 1(0.2 s) 49.32 51.75 54.96 ± 0.15 55.20 ± 0.23 51.66 ± 0.39

2(0.4 s) 45.39 47.15 51.62 ± 0.18 51.79 ± 0.16 48.32 ± 0.43

5(1.0 s) 38.93 38.89 41.70 ± 0.14 44.91 ± 0.11 41.82 ± 0.53

10(2.0 s) 33.59 31.33 38.41 ± 0.06 38.11 ± 0.09 35.36 ± 0.45

S-channel 1(0.2 s) 49.19 n/a 57.02 ± 0.17 57.12 ± 0.36 55.33 ± 0.16

2(0.4 s) 45.17 n/a 53.06 ± 0.23 53.15 ± 0.29 51.29 ± 0.09

5(1.0 s) 38.52 n/a 45.32 ± 0.37 45.40 ± 0.07 43.40 ± 0.34

10(2.0 s) 32.98 n/a 38.16 ± 0.54 37.96 ± 0.10 36.13 ± 0.38

5 Experimental Results and Discussion

5.1 Performance on BDD100K

Comparison of the Proposed Architectures: As mentioned above, there
are no semantic segmentation ground truth labels available for DBDD−MOTS.
Hence, we generate our own pseudo ground truth annotations mt using PSANet.
The prediction performance for the DBDD−MOTS

val with the pseudo ground truths
can be seen in Table 1 in terms of mIoUseg

Δt . We compare the three proposed pre-
dictor architectures (PRED, PRED+R and PRED+RS) along with two baseline fore-
casting techniques based on copy-paste (CP) and optical flow (OF). Copy-paste,
(CP) is simply using the last input as prediction, i.e., m̂t+1 = mt. For optical
flow (OF), we use Lucas et al.’s [14] dense optical flow algorithm to estimate
the optical flow motion matrix f for each pixel which is warped to predict next
frame, i.e., m̂t+1 = warp(mt, f). The dense optical flow for S-channel inputs
does not make sense as the values are simply normalized probabilistic outputs
and not pixels in conventional sense. Hence, the values for dense optical flow with
S-channel masks were not calculated. It can be observed that PRED+R performs
consecutively better for all time horizons in both types of input representa-
tions achieving a mean mIoUseg

Δt performance of 57.12%, 53.15% and 45.40% for
t + 1, t + 2 and t + 5 future time steps respectively with S-channel input. This
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can be explained by the fact that this model extracts the semantic informa-
tion from the input semantic segmentation masks at different spatial resolutions
and passes this information to the convolutional LSTM layer ahead which per-
forms a time series probabilistic prediction. This information gets saved in the
respective hidden state representation that can be used when the next frame’s
embeddings come into picture in the further time steps. This process is repeated
until the embeddings are downsampled by 16 times. There are corresponding de-
convolution layers which upsample each encoded latent feature by a factor of 2
and thus, rendering an output whose spatial resolution is exactly the same as its
input. Also, it is worth mentioning that there are convolutional LSTM layers in
between two consecutive de-convolution layers to extract the temporal informa-
tion even while de-convolution. There are skip connections with corresponding
convolutional LSTM layers of equal spatial resolution to facilitate better flow
of gradients between the layer representations. These factors further enhance
the performance of the predictor architecture compared to PRED+RS where the
convolutional LSTM layers are placed in between corresponding convolution and
de-convolution layers. Also, the PRED architecture performs quite similar to the
best architecture PRED+R with slight deprecation because of the absence of resid-
ual gradient flow during backpropagation.

Table 2. mIoUseg
Δt performance of PRED+R on DCS−vid

val showing different input types
as well as time horizons into the future. The most optimal input type with the best
performance can be seen in bold font. The experiments have been averaged over 3
seeds.

Input Type Time Horizon Δt Method
PRED+R

1-channel 1(0.06 s) 83.37± 0.05

2(0.12 s) 80.43± 0.08

5(0.3 s) 72.37± 0.22

10(0.6 s) 62.44± 0.51

S-channel 1(0.06 s) 84.95± 0.03

2(0.12 s) 81.88± 0.07

5(0.3 s) 73.52± 0.12

10(0.6 s) 63.65± 0.09

It can be seen that the model performs well on the DBDD−MOTS
val in Table 1

which is quite a challenging dataset given the unnormalized raw images, absence
of proper lighting conditions, varying weather and diverse scenarios. In Table 1,
we can see the comparison between standard baselines and our architecture
on DBDD−MOTS

val . We can observe that PRED+R outperforms copy-paste (CP) and
optical flow (OF) by 5.88% and 3.45% absolute mIoUseg

Δt respectively for 1-channel
input and 7.93% absolute mIoUseg

Δt for S-channel input with copy-paste (CP) only.
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Input Modalities: In Table 1, we can see that the S-channel input represen-
tation achieves an increase of 1.92%, 1.36%, 0.49% mIoUseg

Δt when compared to
1-channel inputs for PRED and PRED+R with future time horizons for Δt = 1, 2, 5,
respectively. For PRED+RS, the S-channel input outperforms the 1-channel coun-
terpart for Δt = 1, 2, 5, respectively, i.e., on an average of 3.67%, 2.97%, 1.58%
mIoUseg

Δt . Hence, it can be inferred that S-channel input representation performs
better than the 1-channel input representation for all three predictor defini-
tions. This can be attributed to the fact that the softmax activations, yt (S-
channel input), indeed capture better semantic sense of the scene along with
the boundary definitions and probabilistic pixel motion dependencies as these
are the normalized probabilistic outputs of the semantic segmentation network.
The softmax activations not only contain the most likely class per pixel proba-
bility but also the less likely and false semantic-pixel information. This in turn
proves to be a better alternative compared to the raw pixel class annotations
(1-channel input) where the less likely pixel connotations are completely shut off
in a discrete and condensed output representation.

Table 3. mIoUgt
Δt and mIoUseg

Δt performance of PRED+R and other state of the art works
in the field of prediction of semantic segmentation masks on DCS−vid

val . Note that here,
the one time step and three time step ahead (Δt = 1, 3) prediction is being compared
and our performances are highlighted in bold. ∗Taken from Jin et al. [8], ∗∗taken from
Nabavi et al. [18], − are not reported.

Model Δt = 1 Δt = 3

mIoUgt
Δt mIoUseg

Δt mIoUgt
Δt mIoUseg

Δt

S2S, Luc et al. [13] 62.60∗ – 59.40∗ –
Pred. Scene Parsing, Jin et al. [8] 66.10∗ – – –
Future Sem. Seg., Nabavi et al. [18] – 70.24∗∗ – 58.90∗∗

1-channel input (ours) 67.55 83.95 63.60 78.28

5.2 Performance on Cityscapes

In Table 2, we report our proposed method’s performance on DCS−vid
val . We report

performance only on PRED+R to save time and computation cycles, as it was
clear from our experiments with the DBDD−MOTS dataset that PRED+R easily
outperforms other model definitions. We achieve a mean mIoUseg

Δt performance
of 84.95% and 83.37% respectively for S-channel and 1-channel input types. Here,
also the S-channel input representation proves to be a better choice than the
1-channel input type for all time horizons. In Fig. 4, we also show the qualitative
results of our prediction method on a sequence of Cityscapes validation split
DCS−vid

val with pseudo ground truths generated by PSANet.
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Fig. 4. Output predictions for a sequence of the Cityscapes validation split, DCS−vid
val .

The top row depicts the pseudo ground truth mt, mt+1, mt+2, mt+5, mt+10 generated
by PSANet. In the middle row, we show the input semantic segmentation mt along with
the predictions m̂t+1, m̂t+2, m̂t+5, m̂t+10 from the prediction network. The bottom row
portrays the absolute difference d̂t+1, d̂t+2, d̂t+5, d̂t+10, between the ground truth and
prediction frames. We also show additional qualitative results in the supplementary
material (A).

5.3 Comparison with the State of the Art

Most prior work report their performance only on the benchmark Cityscapes
dataset DCS−vid

val . Hence, to make our work comparable with previous approaches,
we adapt their training styles like input resolution, input frame sequence length
and re-perform the experiments to calculate performances. We input 4 frame
long sequences mt

t−3 = {mt−3,mt−2,mt−1,mt} and predict one time step into
the future. The input masks have a spatial resolution of 256×512. This prediction
is compared with the 20th human annotated ground truth frame from DCS−vid

val

and mIoUgt
Δt is calculated.

We can see in Table 3 for Δt = 1, our approach consistently outperforms Luc
et al. [13] by 4.95% absolute and Jin et al. [8] by 1.45% absolute in terms of
mIoUgt

Δt. Also, our model beats Nabavi et al. [18] by 13.71% absolute in terms of
mIoUseg

Δt when pseudo ground truth labels are taken into account. Similarly, for
Δt = 3, our model beats Luc et al. [13] by 4.20% absolute in terms of mIoUgt

Δt

and outperforms Nabavi et al. [18] by 19.38% absolute in terms of mIoUseg
Δt .

6 Conclusion

We present a time series network using LSTM units in the convolution domain
for predicting semantically segmented scenarios in the future. This would help
the ego vehicle to have an excellent understanding of its maneuverability decision
space in good time. Our method of using convolutional LSTMs in between fea-
ture extraction layers with residual connection proves to be a better approach for
predicting dynamic and static object categories on BDD100K [26] and Cityscapes
[3] datasets with the freedom to use arbitrary input sequence length and output
prediction time horizons. Also, we demonstrate the usefulness of employing the
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S-channel input representation over 1-channel input representation for improve-
ment in semantic segmentation forecasting. We show results proving that our
prediction method outperforms the current state of the art on the Cityscapes [3]
dataset by 1.45% and 4.2% absolute mIoUgt

Δt with time horizon predictions up
to 0.06 s and 0.18 s, respectively and also outperforming the current state of the
art on Cityscapes [3] by 13.71% and 19.38% absolute mIoUseg

Δt with time horizon
predictions up to 0.06 s and 0.18 s, and additionally we are the first to report our
results on BDD100K dataset [26].

Disclaimer. The results, opinions and conclusions expressed in this publication are
not necessarily those of Volkswagen Aktiengesellschaft.

A Supplementary Material

Table 4. Re-ordering of semantic classes in BDD100K

class
index (s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

original
order

road sidewalk building wall fence pole traffic
light

traffic
sign

veget
-ation

terrain sky person rider car truck bus train motor
-cycle

bicycle

first
reorder

pole sky wall traffic
sign

road truck train fence sidewalk bicycle person traffic
light

veget
-ation

building bus car rider terrain motor
-cycle

second
reorder

train bicycle bus terrain rider sky sidewalk road wall traffic
sign

motor
-cycle

traffic
light

person fence building truck car pole veget
-ation

A.1 Qualitative Results

In this section, we show the qualitative results of our method on sequences
of BDD100K, DBDD−MOTS

val and Cityscapes, DCS−vid
val . In Fig. 5, we show the

qualitative results of prediction method on a sequence of DBDD−MOTS
val . We can

observe that, for increasing time steps, i.e., Δt = {1, 2, 5, 10}, the prediction
worsens for dynamic objects. This can be inferred from the increase in white
regions in the absolute difference estimation visualizations (bottom row) defined
as d̂t = |m̂t −mt|. Also, majority of the predictions are incorrect in the bound-
ary segregation of different classes, i.e., where car pixel occupancy meets road
occupancy, where sidewalk occupancy meets road occupancy.

Specifically for the Cityscapes dataset, in Fig. 6, the predictions (middle row)
are at par with their corresponding 20th frame ground truth annotations (top
row) for Δt = {1, 2, 5}, obtained from the dataset. The semantic class boundaries
are so well captured with noise supression in predictions (middle row). However,
for Δt = 10, we can see that the prediction focuses more on predicting the static
classes than the finer dynamic classes boundary details, i.e., visible from the
missing sidewalk in the left region of m̂t+10 that is visible in the ground truth
annotation mt+10 (in pink) of Fig. 6.
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Fig. 5. Output predictions for a sequence of the BDD100K validation split,
DBDD−MOTS

val . The top row depicts the pseudo ground truth mt, mt+1, mt+2, mt+5,
mt+10 generated by PSANet. In the middle row, we show the input semantic segmen-
tation mt along with the predictions m̂t+1, m̂t+2, m̂t+5, m̂t+10 from the prediction
network. The bottom row portrays the absolute difference d̂t+1, d̂t+2, d̂t+5, d̂t+10,
between the ground truth and prediction frames.

Fig. 6. Output predictions for a sequence of the Cityscapes validation split, DCS−vid
val .

The top row depicts actual 20th frame ground truth annotations available in the dataset
for mt, mt+1, mt+2, mt+5, mt+10. In the middle row, we show the input semantic
segmentation mt along with the predictions m̂t+1, m̂t+2, m̂t+5, m̂t+10 from the pre-
diction network. The bottom row portrays the absolute difference d̂t+1, d̂t+2, d̂t+5,
d̂t+10, between the ground truth and prediction frames.

A.2 Prediction Invariance on the Ordering of Semantic Classes

We investigate the behavior of our model when 1-channel inputs are fed to
our predictor network, i.e., the generated pseudo ground truth mt ∈ SH×W×1

for the BDD100K dataset DBDD−MOTS. The semantic segmentation mask mt

contains class indices s ∈ S = {1, 2, ..., S}, where S = 19. Here, each semantic
class corresponds to a specific class index s, e.g., s = 0 for class road, s = 12
for class person, etc according to the scene. For instance, if we consider a small
region in a semantic segmentation mask, we usually find a certain semantic class
pixels in close proximity with another semantic class pixels, i.e., class road pixels
(s = 1) almost always occurs adjacent to class car pixels (s = 14) and class
sidewalk pixels (s = 2) almost are always adjacent to class road pixels (s = 1)
as can be seen in Fig. 7. To investigate the proposed method’s performance and
robustness when the original class orientation is re-ordered, we conducted some
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Fig. 7. A semantic segmentation input mask mt from DBDD−MOTS
val showing different

semantic classes. The left white encircled region portrays the proximal occurence of
class sidewalk (s = 2) near to class road (s = 1). Similarly, the right white encircled
region portrays the proximal occurrence of class road (s = 1) near to class car (s = 14).

Table 5. Confusion matrix on BDD100K: scores of all the S = 19 classes in BDD100K
with original ordering. The classes with highest true score are highlighted in red and
the cells with second highest true score are marked in light red.
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road 0.97 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
sidewalk 0.14 0.76 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00
building 0.00 0.00 0.90 0.00 0.01 0.01 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

wall 0.04 0.02 0.12 0.65 0.07 0.00 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
fence 0.02 0.02 0.1 0.04 0.71 0.01 0.00 0.00 0.05 0.01 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
pole 0.03 0.02 0.17 0.01 0.01 0.53 0.00 0.01 0.1 0.01 0.08 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

traffic light 0.01 0.00 0.21 0.00 0.00 0.05 0.57 0.03 0.05 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
traffic sign 0.00 0.00 0.13 0.00 0.01 0.02 0.00 0.75 0.05 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
vegetation 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.9 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
terrain 0.12 0.09 0.02 0.01 0.01 0.01 0.00 0.00 0.08 0.64 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

sky 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
person 0.12 0.04 0.1 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.64 0.01 0.05 0.00 0.00 0.00 0.00 0.00
rider 0.08 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.49 0.14 0.1 0.01 0.01 0.00 0.03 0.02
car 0.04 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00

truck 0.04 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.1 0.75 0.01 0.00 0.00 0.01
bus 0.03 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.05 0.04 0.78 0.00 0.00 0.00

train 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
motorcycle 0.33 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.05 0.13 0.02 0.02 0.00 0.15 0.15
bicycle 0.25 0.02 0.03 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.07 0.00 0.01 0.00 0.01 0.58

Predicted Class

G
ro

un
d

T
ru

th

experiments by shuffling the class indexes in the generated pseudo ground truth
frames mt. For instance, now the same scene would contain class road (s = 5)
adjacent to class car (s = 16) and class sidewalk (s = 9) adjacent to class
road (s = 5). Note that, the semantic classes remain the same, just the class
indices are shuffled randomly. In Table 4, we can see the original class order along
with the re-ordered class indices where semantic classes are marked by their
actual defined colors in DBDD−MOTS . can This is an important investigation
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to prove that our predictor model still learns the proximal relationship between
the semantic classes instead of the numerical class indices occupancy, i.e., our
model perfectly learns that class road pixels are most likely to occur near class
car pixels and vice-versa, irrespective of their class indices value. Hence, we
performed experiments by re-ordering the class indices of DBDD−MOTS in such
a way that the classes that occurred near to each other in terms of class index
distance, e.g., road (s = 1) and sidewalk (s = 2) are now placed further apart,
e.g., road (s = 5) and sidewalk (s = 9) as can be seen in Table 4.

Table 5 shows the confusion matrix for the original class order of
DBDD−MOTS. The confusion matrix represents how each class in the prediction
is confused and interpreted with respect to all the classes present in the ground
truth and vice-versa. It can be observed that, every class is predicted well with
the highest score for itself (see diagonal) except class rider (s = 13) which is
predicted as class person (s = 12) with a score of 0.49 which is obvious as rider
fits into the broader category of person after all. Similarly, class motorcycle
(s = 18) gets confused for class road (s = 1) with a score of 0.33. This could be
simply attributed the fact that the class road heavily overpowers the pixel dis-
tribution in all scenes whereas the class motorcycle has very minimal occupancy
in most of the scenes. Now, in Table 6, we can see the confusion matrix for the
first re-ordering of classes. In Table 6, it can be observed that, the predictor still
confuses class rider (s = 17) for class person(s = 11) with a score of 0.34 and

Table 6. Confusion matrix on BDD100K: scores of all the S = 19 classes in BDD100K
with first re-ordering. The classes with highest true score are highlighted in red and
the cells with second highest true score are marked in light red.
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pole 0.54 0.09 0.01 0.01 0.03 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.08 0.17 0.00 0.01 0.00 0.01 0.00
sky 0.00 0.92 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00
wall 0.01 0.01 0.67 0.00 0.04 0.00 0.00 0.07 0.02 0.00 0.00 0.00 0.04 0.11 0.00 0.02 0.00 0.01 0.00

traffic sign 0.01 0.04 0.00 0.75 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.13 0.00 0.00 0.00 0.00 0.00
road 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
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fence 0.01 0.01 0.05 0.00 0.02 0.00 0.00 0.73 0.02 0.00 0.00 0.00 0.04 0.09 0.00 0.02 0.00 0.01 0.00

sidewalk 0.00 0.00 0.01 0.00 0.15 0.00 0.00 0.01 0.75 0.00 0.01 0.00 0.01 0.02 0.00 0.01 0.00 0.03 0.00
bicycle 0.01 0.00 0.00 0.00 0.28 0.02 0.00 0.01 0.04 0.55 0.02 0.00 0.01 0.02 0.00 0.03 0.00 0.00 0.01
person 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.01 0.04 0.01 0.63 0.00 0.01 0.1 0.00 0.04 0.02 0.00 0.00

traffic light 0.02 0.08 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.06 0.2 0.00 0.00 0.00 0.00 0.00
vegetation 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.05 0.00 0.01 0.00 0.01 0.00
building 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.90 0.00 0.01 0.00 0.00 0.00

bus 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 0.76 0.05 0.00 0.00 0.00
car 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.92 0.00 0.00 0.00

rider 0.00 0.00 0.00 0.00 0.1 0.01 0.00 0.00 0.01 0.01 0.34 0.00 0.02 0.1 0.00 0.11 0.24 0.02 0.02
terrain 0.00 0.00 0.01 0.00 0.13 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.07 0.02 0.00 0.02 0.00 0.66 0.00

motorcycle 0.00 0.00 0.00 0.00 0.38 0.01 0.00 0.00 0.03 0.05 0.12 0.00 0.00 0.01 0.00 0.17 0.11 0.03 0.1
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Table 7. Confusion matrix on BDD100K: scores of all the S = 19 classes in BDD100K
with second re-ordering. The classes with highest true score are highlighted in red and
the cells with second highest true score are marked in light red.
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train 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
bicycle 0.00 0.50 0.04 0.00 0.00 0.00 0.02 0.29 0.00 0.00 0.01 0.00 0.01 0.01 0.03 0.04 0.04 0.00 0.01

bus 0.00 0.01 0.76 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.1 0.03 0.05 0.00 0.01
terrain 0.00 0.00 0.00 0.63 0.00 0.01 0.09 0.14 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.08
rider 0.00 0.03 0.02 0.01 0.13 0.01 0.02 0.12 0.00 0.00 0.05 0.00 0.37 0.00 0.13 0.01 0.07 0.00 0.02
sky 0.00 0.00 0.00 0.00 0.00 0.91 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.03

sidewalk 0.00 0.00 0.00 0.02 0.00 0.01 0.75 0.15 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.00 0.01
road 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
wall 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.04 0.66 0.00 0.00 0.00 0.00 0.07 0.12 0.00 0.02 0.00 0.05

traffic sign 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.01 0.05
motorcycle 0.00 0.08 0.01 0.00 0.04 0.00 0.02 0.38 0.00 0.01 0.17 0.00 0.16 0.00 0.01 0.01 0.11 0.00 0.00

traffic light 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.01 0.00 0.02 0.00 0.63 0.00 0.00 0.2 0.00 0.00 0.02 0.05
person 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.15 0.00 0.00 0.00 0.00 0.63 0.01 0.1 0.00 0.04 0.00 0.01
fence 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.02 0.04 0.00 0.00 0.00 0.00 0.71 0.11 0.00 0.02 0.01 0.04

building 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.91 0.00 0.01 0.01 0.03
truck 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.00 0.08 0.75 0.07 0.00 0.02
car 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.92 0.00 0.01
pole 0.00 0.00 0.00 0.01 0.00 0.08 0.02 0.03 0.01 0.01 0.00 0.00 0.00 0.01 0.17 0.00 0.02 0.5 0.12

vegetation 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.91
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class motorcycle (s = 19) for class road (s = 5) with a score of 0.38. Similarly,
in Table 7, we can see the confusion matrix for the second re-ordering of classes.
We can see that the predictor once again interprets class rider (s = 5) as class
person (s = 13) with a score of 0.37 and class motorcycle (s = 11) as class
road (s = 8) with a score of 0.38. It can be inferred that the predictor regardless
of class index ordering, behaves exactly the same for all the class predictions.
Thus, the predictor can be safely labeled as invariant to the class ordering.
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Abstract. In time series classification (TSC) literature, approaches
which incorporate multiple feature extraction domains such as HIVE-
COTE and TS-CHIEF have generally shown to perform better than
single domain approaches in situations where no expert knowledge is
available for the data. Time series extrinsic regression (TSER) has seen
very little activity compared to TSC, but the provision of benchmark
datasets for regression by researchers at Monash University and the Uni-
versity of East Anglia provide an opportunity to see if this insight gleaned
from TSC literature applies to regression data. We show that extracting
random shapelets and intervals from different series representations and
concatenating the output as part of a feature extraction pipeline signifi-
cantly outperforms the single domain approaches for both classification
and regression. In addition to our main contribution, we provide results
for shapelet based algorithms on the regression archive datasets using
the RDST transform, and show that current interval based approaches
such as DrCIF can find noticeable scalability improvements by adopting
the pipeline format.

1 Introduction

Time series classification (TSC) is the task of predicting a categorical target
variable from time series data. The field of TSC has received rapid develop-
ment in recent years, in part due to the continued maintenance and expansion
of the University of California, Riverside (UCR) dataset archive for TSC [9].
Time series extrinsic regression (TSER), like more traditional regression tasks
for machine learning, has a continuous target variable. Both tasks differ from
standard machine learning in that each data attribute takes the form of a series
of ordered values, with discriminatory features found in the shape and frequency
of patterns within the series.

TSER has not received the same attention in literature as TSC has, and until
recently has not had a collection of datasets comparable to the UCR archive to
benchmark algorithms with. A collection of 19 datasets were introduced by Tan
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 113–126, 2023.
https://doi.org/10.1007/978-3-031-49896-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49896-1_8&domain=pdf
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et al. from Monash University [36], recently further expanded to 63 datasets
by researchers at the University of East Anglia (UEA) [19]. A few algorithms
proposed for TSC have been adapted for TSER with mixed success. These algo-
rithms are mostly simple adaptations, using an unsupervised transformation
in combination with a vector classifier or regressor. On 62 datasets from the
expanded TSER archive, only the Fresh Pipeline with Rotation Forest Classi-
fier (FreshPRINCE) [27] and Diverse Representation Canonical Interval Forest
(DrCIF) [29] were significantly better than a Rotation Forest (RotF) [32] bench-
mark using root-mean-square error (RMSE) as a performance metric [19].

For TSC problems the best approach should consider the discriminatory fea-
tures present in the series, i.e. whether the presence of a pattern or its frequency
is discriminatory, or if patterns are phase-dependent or phase-independent. In
the absence of expert knowledge, hybrid approaches encompassing multiple fea-
ture extraction approaches have shown to perform more accurately than sin-
gle domain algorithms [1,11,29,30,35]. We explore whether this improvement
through incorporating multiple domains translates to TSER using a simple
pipeline of unsupervised transformations from different feature domains. While
hybrid algorithms such as the Hierarchical Vote Collective of Transformation-
based Ensembles (HIVE-COTE) [23,29] and Time Series Combination of Het-
erogeneous and Integrated Embedding Forest (TS-CHIEF) [35] have already
shown to perform accurately on the UCR archive compared to single domain
algorithms, modifying these algorithms to accept continuous values would be
a complex process which would go beyond the simple exploration we wish to
present. By using unsupervised transformations, the only change made to the
hybrid algorithm between tasks is the base estimator used.

Our hybrid pipeline makes use of two transformations, both of which ran-
domly select subseries to extract features from. The algorithm selects features
from the interval feature domain with a transformation based on the DrCIF
ensemble, and from the shapelet feature domain using the Random Dilated
Shapelet Transform (RDST). Both of these algorithms have shown to perform
accurately in their feature group for TSC on the UCR archive [30]. Our pipeline
involves transforming the input series into multiple representations such as first-
order differences and periodograms, then extracting and concatenating features
for a vector classifier using our transformations. We show that the pipeline is
significantly more accurate than DrCIF and RDST on 112 UCR datasets, and
that it also outperforms both algorithms on 55 regression TSER problems.

We structure the rest of this paper as follows. Section 2 discusses the back-
ground and related works. In Sect. 3 we describe our pipeline in greater detail.
Section 4 discussed our experimental methodology and provides details for repro-
ducibility, followed by Sect. 5 which presents our results on the UCR and TSER
archives. In Sect. 6 we summarise our findings and conclude.

2 Background and Related Work

Both TSC and TSER are tasks where the objective is to create a function which
maps input time series data to a target variable using a training set of time
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series and label pairs. Input case pairs (X, y) hold a time series X containing
d channels X = {x1,x2, . . . ,xd} with m real-valued ordered time points x =
{t1, t2, . . . , tm} and a target label y. For TSC y is a discrete class label from c
possible class values, while for TSER y is a scalar value. Case pairs are grouped
into datasets of n pairs T = {(X1,y1), (X2,y2), . . . , (Xn,yn)}. Datasets where
the time series contains only a single channel are univariate time series problems,
while those with more than a single channel are multivariate. It is not always
the case that all time series in a dataset will have the same number of time
points, but we restrict this work with the assumption that all series have the
same length.

A comparison of TSC algorithms in 2017 [1] created a taxonomy of TSC
algorithms based on the types of feature extracted, sorting the algorithms used
into different domains. In 2017 there were six categories, and recent updated
comparison has increased this to eight categories [30]. In the following we outline
these categories, including descriptions of relevant algorithms and those we use
in our Sect. 5 experiments. While we describe all categories in the following for
context of the wider field and different approaches for TSC, our main interest
in this study lies with interval-based approaches, shapelet-based approaches and
hybrid approaches.

Distance-based algorithms make use of distance measures to compare time
series, usually using a nearest-neighbour (NN) algorithm to make predictions.
A popular benchmark is the elastic distance measure Dynamic Time Warping
(DTW) using a 1-NN classifier or regressor. There are many elastic distances for
time series proposed, which have been used individually and as part of ensem-
bles. Proximity Forest (PF) [21,25] is a distance-based ensemble making use of
different distance measures in its ensembled trees.

Dictionary-based look for the frequency of recurring patterns as a dis-
criminatory feature. These are most commonly found through converting time
series into a sequence of discrete symbolic words, forming a bag-of-words to
compare cases. More recent methods run multiple configurations of word extrac-
tion techniques to form an ensemble such as the Temporal Dictionary Ensemble
(TDE) [26] or as part of a pipeline with feature selection like Word Extraction
for Time Series Classification (WEASEL) [33,34].

Feature-based algorithms are techniques which extract a feature vector of
summary statistics to be used as part of a simple pipeline. These pipelines are
mainly made up of two components, the transformation to convert the series
to features, and a base estimator to build a model and make predictions using
said features. An example is FreshPRINCE [27], a pipeline of the TSFresh [8]
features and a rotation forest [32] which has performed as well as more complex
algorithms from other domains for TSC and is a top performer on the TSER
archive [19]. The iFx [17] for TSER extracts many summary statistics from
different series representations and subseries as features for a Bayesian method.

Convolution-based approaches make use of many randomly initialised con-
volution kernels in conjunction with the linear classifier as part of a pipeline.
The Random Convolutional Kernel Transform (ROCKET) [10] and its deriva-
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tives such as MultiROCKET [37] and Hydra [11] fall under this category. Our
approach shares similarities with the MultiROCKET-Hydra pipeline proposed
in [11], which concatenates the features of both transforms for a pipeline.

Deep learning, like other machine learning fields, is a popular topic for time
series tasks. The InceptionTime [14] is currently the best performing deep learner
for TSC. The version of InceptionTime we use is an ensemble of 5 networks
(InceptionE) proposed in the original publication.

Interval-based approaches select phase-dependent subseries from the input
series to derive features from. By selecting many subseries the goal is to derive
features that may be otherwise be obscured by irrelevant activity in the series
should the whole series be used. Most interval base approaches use a random
forest approach [13,15,28]. The DrCIF algorithm follows this, randomly selecting
multiple intervals and subsampling the Catch22 [24] features for each tree. The
Randomised Supervised Time Series Forest (R-STSF) [7] breaks this mould of
ensemble approaches, using a pipeline approach for its extracted intervals.

Shapelet-based algorithm find phase-independent discriminatory subseries,
looking for the presence of a pattern anywhere in the time series rather than
its frequency or at specific time points. Shapelet models compare extracted
shapelets to series using a function sDist(), which finds the shorted distance
from the shapelet to all subseries of the same length. The Shapelet Transform
Classifier (STC) [4,22] algorithm is a pipeline algorithm which creates a feature
vector of sDist() values using a filtered set of shapelets and a rotation forest
classifier. RDST is an algorithm based on the shapelet transform which we cover
in more detail in the following section. The Multiple Representations Sequence
Mine (MrSQM) [31] follows an approach of discretising series into words using
multiple differently parameterised methods and uses the presence of selected
subsequences in any part of the full word as features for a logistic regression
model.

Hybrid algorithms incorporate two or more of the above categories in a sin-
gle algorithm with the aim of leveraging the strengths of each domain included.
At the time of writing the most accurate hybrid algorithm on the UCR archive
is HIVE-COTE v2 [29,30], a weighed ensemble of high performance algorithms
from other domains. The HC2 ensemble includes DrCIF, TDE, STC and an
ensemble of ROCKET classifiers called the Arsenal. The Time Series Combi-
nation of Heterogeneous and Integrated Embedding Forest (TS-CHIEF) [35]
also takes an ensemble approach to combining feature domains, but creates a
homogenous forest of trees which extract hybrid features at each node rather
than a heterogenous ensemble like HC2.

3 A Randomised Shapelet and Interval Transformation
Pipeline

The pipeline classifier and regressor we use in our experiments is a hybrid of
interval and shapelet based approaches. For brevity, we refer to this pipeline
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as the Randomised Interval-Shapelet Transformation (RIST) pipeline going for-
ward. Both of these feature domains extract random subseries from the input
series, but how these subseries are used and the features extracted from them
differ.

For the interval half of RIST we draw from the DrCIF [29] algorithm. Instead
of extracting a small amount of intervals for a single tree as part of an ensemble,
we extract a larger amount of intervals in a singular step to concatenate with the
shapelet transform output. For RIST we extract i intervals of random length and
size. From these subseries, 30 summary statistics are extracted. These are the
Catch22 [24] features used by DrCIF, as well as the mean, standard-deviation,
slope, median, interquartile range, min, max, and proportion of positive values.
Algorithm 1 describes the interval portion of the transformation.

Algorithm 1. Intervals(A list of n series of length m with d channels, X)
Parameters: the number of intervals i
1: X ′ ← initialize matrix of dimensionality n × (i30)
2: for j ← 1 to i do
3: b = rand(1,m − 3) { interval position }
4: l = rand(3,m/2) { interval length }
5: o = rand(1, d) { interval channel }
6: for t ← 1 to n do
7: for f ← 1 to 30 do
8: X ′

t,(j−1)30+f ← summaryStat(f,Xt,o,b:l )
9: X ′ ← pruneIdenticalIntervals(X ′)

10: return X ′

The shapelet half of RIST leverages the RDST [20] transformation with-
out modifications. RDST randomly selects a large number of random shapelets
from the train data. Unlike the original Shapelet Transform (ST) [22] algorithm,
RDST does not evaluate shapelets using information gain or any other metric to
determine the quality of the shapelet to act as a filter. RDST only prunes any
identical shapelets from its initial random selection. The shapelets extracted by
RDST use dilation as the primary method of diversifying extracted shapelets
rather than shapelet length. Using dilation in subseries is a technique which pri-
marily used in convolution based methods such as ROCKET [10,37], but has
been introduced to other algorithm domains recently [20,34]. A shapelet with a
dilation value of d compares time points which are d steps apart, a d value of 1
will have no gaps between values sampled for the shapelet, while a value 2 will
sample every other value.

The standard shapelet distance (sDist) method is applied by RDST. To com-
pare a shapelet to a full time series, a sliding window is run across the series
calculating the distance to all subseries of the same length as the shapelet, but
with the addition of dilation. As well as taking the minimum distance from all
subseries as a feature, RDST also extracts the position of the minimum distance
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subseries and the number of occurrences of the shapelet determined by a similar-
ity threshold. These additional features incorporate spatial information as well
as pattern occurrence information seen in dictionary based approaches into the
extracted features.

When selecting its shapelets, RDST randomly initialises the dilation value
of shapelet; whether the shapelet distance is z-normalised; the train case and
position in the series the shapelet is extracted from; and the similarity threshold
used in the shapelet occurrence feature. For multivariate time series, a two-
dimensional shapelet is extracted and used to compare the distance of all chan-
nels. A simplified version of the shapelet extraction algorithm is displayed in
Algorithm 2. For exact values used when selecting random shapelets, we recom-
mended viewing the original publication or the implementation we direct to in
Sect. 4.

Algorithm 2. Shapelets(A list of n series of length m with d channels, X)
Parameters: the number of shapelets s
1: X ′ ← initialize matrix of dimensionality n × (s3)
2: for j ← 1 to s do
3: dil, thr, norm ← shapeletParams() { randomly select shapelet parameters }
4: o ← randint(1, n)
5: pos ← randint(1,m − dil10) { randomly select position to extract from }
6: A ← dilatedSubseries(Xo , pos, 11, dil) { extract shapelet, always length 11 }
7: for t ← 1 to n do
8: d ← sDist(A,Xt , dil, norm) { distances between A and all subseries }
9: X ′

t ,(j−1)3+1 ← min(d)
10: X ′

t ,(j−1)3+2 ← argmin(d)
11: X ′

t ,(j−1)3+3 ← occurrences(d, thr)
12: return X ′

Extracting intervals from different series representations has shown to
improve accuracy over just extracting intervals from the base series [6,7,29].
For RIST we also extract features from different series representations by apply-
ing the series-to-series transformations used in the R-STSF algorithm, which
have also seen use in many other published TSC algorithms. These are the first
order differences [6,29,37], the periodogram of the series [6,15,29] and the series
autoregression coefficients [7]. We run our shapelet and interval transformations
on each of these series representations as well as the base series, then concate-
nate them for use in a feature vector classification or regression algorithm. The
RIST pipeline is described in Algorithm 3.

4 Experimental Methodology and Reproducibility

We run our experiments using two time series dataset archives. Our classi-
fication experiments are run using 112 datasets from the UCR time series
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Algorithm 3. RIST(A list of n cases of length m with d channels, T = (X,y))
Parameters: the number of intervals i, the number of shapelets s, the feature vector

estimator est
1: Let V be a 4×n×d matrix of series with variable length, containing the base series,

the periodograms, the first order differences and the autoregression coefficients
2: X ′ ← []
3: for j ← 1 to |V | do
4: I ← Intervals(Vj , i)
5: X ′ ← X ′ + I { concatenate feature vectors }
6: S ← Shapelets(Vj , s)
7: X ′ ← X ′ + S { concatenate feature vectors }
8: est.buildEstimator(X ′,y)

archive1 [9]. We exclude all datasets from the archive which contain unequal
length series or series with missing values from our selection. All classification
datasets used are univariate, containing a single channel time series for each
case. For our extrinsic regression experiments, we use 55 datasets out of the
63 total from the TSER repository2 [36] and datasets from a proposed exten-
sion3 [19]. The NewsHeadlineSentiment; PPGDalia-equal-length; VentilatorPres-
sure; AustraliaRainfall; NewsTitleSentiment; BIDMC32SpO2; BIDMC32HR;
and BIDMC32RR datasets are excluded solely due to time constraints. The
TSER archive includes both univariate and multivariate datasets, of which we
use both to supplement the low volume of univariate datasets. With the inclu-
sion of multivariate TSER datasets it is sensible to ask why the UEA archive
of multivariate TSC datasets [2] is not included. We again exclude these due
to time constraints in the running of our experiments, but note that many of
the algorithms including our proposed one are multivariate capable and these
datasets should be explored in future work.

We present the performance of an algorithm on a dataset as an average over 5
resamples. Both UCR and TSER archives provide a default train and test split,
which we use for the first resample. The remaining runs are resampled randomly
from the provided split in a stratified manner for the UCR datasets, and fully
random for the TSER data. Each algorithm and data resample random number
generation is seeded using the resample index to help ensure reproducibility.

For comparison of multiple classifiers over multiple datasets, an adaptation of
the critical difference diagram [12] is used. The post-hoc Nemenyi test is replaced
using pairwise Wilcoxon signed-rank tests using our averaged scores. Cliques
are formed using the Holm correction, following recommendations from [3,16].
We compare our classification algorithms using accuracy, and our regression
algorithms using RMSE following [19,36].

1 https://www.timeseriesclassification.com/dataset.php.
2 http://tseregression.org/.
3 https://tsml-eval.readthedocs.io/en/latest/publications/2023/

tser archive expansion/tser archive expansion.html.

https://www.timeseriesclassification.com/dataset.php
http://tseregression.org/
https://tsml-eval.readthedocs.io/en/latest/publications/2023/tser_archive_expansion/tser_archive_expansion.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/tser_archive_expansion/tser_archive_expansion.html
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Fig. 1. Accuracy critical difference diagram for RIST with different base classifiers.
Displays the average accuracy rank averaged over 5 resamples on 112 UCR datasets.

All the tools to run our experiments are available through the tsml-eval4

package, primarily using implementations from the aeon5 toolkit. More details
on reproducing our experiments and results files can be found on the companion
webpage6.

5 Results

In the following, we present summarised results for RIST and relevant algorithms
for both archives. For RIST we set the number of intervals extracted to i =
(sqrt(m) ∗ sqrt(d) ∗ 15 + 5) and the number of shapelets to s = (sqrt(m) ∗
200 + 5). Both of these are functions of the dataset series length and number
of dimensions, taking into account that the series length may change per series
representation.

Prior to our main results, we show results for different base estimators used
in RIST, showing that this selection can have a large impact on overall results.
The base estimators we compare include a linear Ridge estimator using cross-
validation (RidgeCV) which is a commonly used base classifier for TSC [10,20,
37]. Also compared are a Random Forest (RF) [5] which is a well known and
popular baseline, and the Extra Trees (ExtraT) [18] algorithm, another random
tree base ensemble used by R-STSF [7].

5.1 112 UCR Archive Classification Datasets

Figure 1 compares the RIST transform using different feature vector classifiers.
Both the ridge and extra trees classifiers show no significant difference when
used as a base. As the extra trees classifier was quicker at 7 min on average to
process the UCR datasets against the 10 min of the ridge classifier, we use that
as our base. Figure 2 shows a pairwise diagram comparing the average accuracy
of the extra trees classifier against the ridge classifier for all datasets. Despite
using the same seeded transformation, the difference in accuracy between both
algorithms can be quite large for some datasets.

4 https://github.com/time-series-machine-learning/tsml-eval.
5 https://www.aeon-toolkit.org/.
6 https://tsml-eval.readthedocs.io/en/latest/publications/2023/rist pipeline/

rist pipeline.html.

https://github.com/time-series-machine-learning/tsml-eval
https://www.aeon-toolkit.org/
https://tsml-eval.readthedocs.io/en/latest/publications/2023/rist_pipeline/rist_pipeline.html
https://tsml-eval.readthedocs.io/en/latest/publications/2023/rist_pipeline/rist_pipeline.html
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Fig. 2. Scatter plot of RIST using an extra trees and ridge base classifier. Compares
the average accuracy over 5 resamples for each of the 112 UCR archive datasets. RIST-
RidgeCV Win/Draw/Loss 60/8/44.

We compare RIST against other TSC algorithms in Fig. 3. Similar to the
RDST and R-STSF pipelines, we include a single domain interval pipeline which
just our interval transformer and an extra trees classifier to help gauge the impact
of the pipeline structure vs ensemble structure of DrCIF. The simple RIST
pipeline concatenating transform outputs significantly outperforms both DrCIF
and RDST, the algorithms the transforms are based on. The only algorithm
which it performs significantly worse than in our comparison is HC2, another
hybrid containing more feature domains and more complex algorithms.

A comparison of runtime against accuracy rank is shown in Fig. 4. RIST is
not as fast as RDST, R-STSF or ROCKET, but compares favourably to more
complex algorithms. While HC2 is significantly more accurate than RIST, it is
also close to 40 times slower to build on average. The interval transformation
pipeline we included shows no significant difference in performance to DrCIF
and is an order of magnitude faster than DrCIF. To achieve similar scalability
improvements using the ensemble structure, the amount of DrCIF trees built
and intervals extracted would have to be significantly reduced, which is likely to
impact performance considerably.
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Fig. 3. Accuracy critical difference diagram comparing RIST with seven classification
algorithms. Displays the average accuracy rank averaged over 5 resamples on 112 UCR
datasets.

Fig. 4. A comparison of classifiers accuracy rank and build time averaged over 112
UCR problems. The build time is on a log scale.

5.2 55 TSER Archive Datasets

In our previous experiments we show that a combination of shapelet and interval
features from RIST outperforms the single domain classifiers the features are
derived from on the UCR archive. We now experiment to see if this is the case
for the newly introduced TSER archive as well.

Figure 5 compares different base regressors for RIST as we previously did for
classification. While for the classification task the random forest classifier was
significantly worse, the random forest regressor has seemingly swapped posi-
tion with the ridge regressor. In previous comparisons on the TSER archive,
ROCKET which also uses a ridge regressor performed below expectations con-
sidering its success in classification [19]. It is possible that the selection of base
estimator could play a part in this underperformance. Of the two best perform-
ing base regressors, the extra trees algorithms is faster to build on the TSER
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Fig. 5. RMSE critical difference diagram for RIST with different base regressors. Dis-
plays the average RMSE rank averaged over 5 resamples on 55 TSER datasets.

Fig. 6. RMSE critical difference diagram comparing RIST with five regression algo-
rithms. Displays the average RMSE rank averaged over 5 resamples on 55 TSER
datasets.

archive. For this reason and to keep consistency with the classification version,
we use it as a base for our regression experiments.

A critical difference diagram comparing RIST and competitive TSER algo-
rithms on the 55 datasets is shown in Fig. 6. RDST was not included in previous
publications experimenting with the TSER archive, and places middle of the
pack in a clique with inception time, DrCIF and FreshPRINCE. RIST shows
no significant difference to FreshPRINCE, but once again performs significantly
better than both DrCIF and RDST. While there are other factors at play which
could contribute to this increased performance, we believe it is likely that the
same assumption regarding the performance of hybrid approaches in TSC also
applies to TSER given the similarity of the presented results for both tasks for
RIST, DrCIF and RDST.

6 Conclusions

We have shown that a transformation extracting random interval and shapelet
subseries from different series representation can outperform individual interval
and shapelet feature domain algorithms. While showing that hybrid algorithms
have increased performance on the UCR archive is not new, RIST is much faster
and simpler than other suggested hybrid approaches. The RIST transformation is
fully unsupervised and can be easily applied to both classification and regression
tasks. Our experiments show that the performance of RIST carries over to the
TSER archive, presenting an early hybrid approach for TSER.

Given the performance of RIST for TSER, there is likely scope for further
improvement by developing more sophisticated hybrid approaches for the task.
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HC2 outperforms RIST for classification, and as algorithms continue to be devel-
oped for the task a similar ensemble approach over multiple feature domains may
find success as well.

While only briefly covered in our results, formatting the interval transform as
a pipeline rather than an ensemble for the DrCIF algorithm resulted in significant
scalability improvements. Even with the addition of the shapelet features, RIST
is still much faster than the ensemble. This follows the approach of numerous
recent algorithms, which produce a mass of features and leave a vector estimator
to select the useful ones. While faster, a drawback of this approach is that it could
be costly in terms of memory to perform these large transforms and require all
features to be stored in memory at a single point.
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Abstract. Time series data can be found in almost every domain, rang-
ing from the medical field to manufacturing and wireless communication.
Generating realistic and useful exemplars and prototypes is a fundamen-
tal data analysis task. In this paper, we investigate a novel approach
to generating realistic and useful exemplars and prototypes for time
series data. Our approach uses a new form of time series average, the
ShapeDTW Barycentric Average. We therefore turn our attention to
accurately generating time series prototypes with a novel approach. The
existing time series prototyping approaches rely on the Dynamic Time
Warping (DTW) similarity measure such as DTW Barycentering Aver-
age (DBA) and SoftDBA. These last approaches suffer from a common
problem of generating out-of-distribution artifacts in their prototypes.
This is mostly caused by the DTW variant used and its incapability of
detecting neighborhood similarities, instead it detects absolute similari-
ties. Our proposed method, ShapeDBA, uses the ShapeDTW variant of
DTW, that overcomes this issue. We chose time series clustering, a pop-
ular form of time series analysis to evaluate the outcome of ShapeDBA
compared to the other prototyping approaches. Coupled with the k-
means clustering algorithm, and evaluated on a total of 123 datasets from
the UCR archive, our proposed averaging approach is able to achieve new
state-of-the-art results in terms of Adjusted Rand Index.
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1 Introduction

Time series data can now be seen in many real life problems. This data is starting
to be of interest in many research fields. For instance time series can be found
in medical data such as ECG signals, in human motion data, in satellite images,
etc. Generating exemplars and prototypes for time series data is an essential
problem that could be used in many areas. For example, time series averaging
is being used to generate synthetic data in order to augment the training data
and boost supervised models [5,11] or used to make the classification task more
accurate [16]. Time series prototyping can also be used for explainability [6].

One challenge when prototyping time series data is evaluation, which is
addressed in most of the cases using clustering, a fundamental machine learning
tool in data analysis. Clustering is a machine learning unsupervised problem
that aims to discover a set of clusters in the data that should correspond to
the same distribution and the previously unseen class label. Clustering for time
series data has been very much addressed in the literature [1,13]. Varying from
machine learning tools such as k-means and k-medoids [7] to the usage of deep
learning [12]. Unlike other data types, basic machine learning clustering algo-
rithms need to be adapted to the case of temporal data. For instance, the k-means
algorithm aims to minimize a distance between the samples in a cluster and the
centroid of this cluster. This distance is usually the Euclidean distance, but the
implicit assumption using such metric is that the input samples are made of
independent feature points. However, this is not the case in time series data,
where each feature point, referred to as time stamp, is dependent with all other
time stamps. This is referred to as a temporal correlation, which obligates the
definition of a replacement of the Euclidean distance in the k-means algorithm.
For this reason, time series similarity measures such as DTW and SoftDTW
have been used instead and showed a significant improvement over the usage of
the Euclidean distance.

A further issue with the naive way of using the k-means algorithm, is the
averaging phase to define the clusters’ centroids. The averaging method used in
the k-means algorithm is the arithmetic mean, which presents the same problem
as the Euclidean distance. For this reason, a novel averaging method was pro-
posed that uses the DTW similarity measure in order to produce a meaningful
centroid. This technique, DBA, showed to perform significantly better than other
naive approaches. The problem of finding a meaningful average for time series
data presents much more challenges than defining the similarity metric. This
is due to the challenge in defining what an average time series does represent.
However, finding a meaningful average presents a much higher impact on the
performance of the k-means algorithm than defining the similarity measure. For
these reasons, we address the clustering problem by producing a more respectful
averaging algorithm for time series data.

The defined averaging techniques for time series data until now suffer from
a common problem of generating out-of-distribution artifacts (see Fig. 3). This
problem occurs because these averaging techniques do not look into the neigh-
borhood of each time stamp in the time series data. Instead, the averaging occurs
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after aligning each time stamp of the centroid with the ones in the time series
dataset. In this work, we propose incorporating ShapeDTW [20] into the DBA
algorithm in order to overcome this issue. ShapeDTW is a DTW variant that
manages to avoid aligning two time stamp that have closer values but in a sig-
nificantly different neighborhood. This last case study occurs often in time series
data and is the main reason, to the best of our knowledge, for the existence of
the generated artifacts. The ShapeDTW similarity measure coupled with DBA,
i.e., the proposed ShapeDBA algorithm, is coupled with the k-means algorithm
in order to apply clustering on time series data.

The contributions of this work are:

– Proposing a novel averaging algorithm ShapeDBA based on ShapeDTW;
– Extensive experiments on the UCR archive showing that ShapeDBA achieves

state-of-the-art performance following the Adjusted Rand Index metric;
– Efficient implementation of ShapeDTW resulting in ShapeDBA being faster

than SoftDBA.

2 Related Work

Definitions The following definitions will be used throughout the rest of the
paper:

– Univariate Time Series (UTS) x = {x0, x1, . . . , xL−1} is a sequence of length
L made of correlated data points equally separated in time.

– A TSC dataset D = {(xi, yi)}N−1
i=0 is a collection of N time series with their

corresponding labels y.
– A Time Series Average (TSA) xavg = {x0, x1, . . . , xL−1} is a time series of

length L that represents the average of a part of D.

2.1 Time Series Similarity

Euclidean Distance (ED). The naive solution to define a similarity is by
using the Euclidean Distance (ED). This metric defined in (1) supposes that the
two time series are aligned on the time axis, which is not the case most of the
times.

ED(x1,x2) =

√
√
√
√

L−1∑

t=0

(x1,t − x2,t)2. (1)

Another limitation that this similarity measure presents is that both time series
should have the same length. In case of unequal length samples in the dataset,
the problem should be addressed as dicussed in [18] such as padding, uniform
scaling, etc.
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Dynamic Time Warping (DTW). The following measure [14] is a more
general formulation of the ED that is: (a) independent of the time series length,
and (b) aligns the two time series on the time axis. The formulation of the DTW
is presented in (2).

DTW (x1,x2) = min
π∈M(x1,x2)

(
∑

(i,j)∈π

|x1,i − x2,j |q)1/q, (2)

with M(x1,x2) being the set of all possible alignment paths on the time axis
between x1 and x2. The parameter q is the order of the Minkovski distance used,
if q = 2 then the distance is set to be Euclidean. The hypothesis in this case is
that x1 and x2 have different lengths, L1 and L2, respectively. The goal of DTW
is to find the optimal path π of length Lπ that minimizes the loss in (2). Some
conditions should be applied on the optimal path as listed below:

– π0 = (0, 0);
– πLπ−1 = (L1 − 1, L2 − 1);
– The elements of the path should be a strictly increasing sequence in the indices

i and j of π.

Soft Dynamic Time Warping (SoftDTW). One issue of the DTW measure
is its non-differentiability. For this reason, in [3] the Soft Dynamic Time Warping
(SoftDTW) was proposed, which is differentiable. This differentiability exists
because of the replacement of the hard min function in (2) by the softer version
as seen in (3):

softminγ(x0, . . . , xL−1) = −γ. log(
L−1∑

i=0

e−xi/γ). (3)

where the parameter γ controls the smoothness of the softmin function. The
smaller the value of γ, the closer the softmin function is to the hard min.

Shape Dynamic Time Warping (ShapeDTW). In [20], a different version
of DTW was proposed that, instead of aligning all the time series at the same
time, aligns transformations of sub-sequences of the time series. This is done
in order to preserve the fact that the alignment between two time stamps of
two different time series takes into consideration the structure of their neigh-
borhoods. For the mathematical definition of ShapeDTW, let us assume F is
a descriptor function, x1 and x2 two univariate time series of lengths L1 and
L2, respectively. The first step is to extract the sub-sequences of length l from
x1 and x2 denoted by X1 and X2 represented as two multivariate time series of
shape (L1, l) and (L2, l), respectively. The second step is to extract the descrip-
tors from the sub-sequences using F and produce D1 = F(X1) and D2 = F(X2)
of shapes (L1, d) and (L2, d), respectively, where d is the target dimension. The
ShapeDTW measure comes down to the following optimization problem:

ShapeDTW (x1, x2) = min
π∈M(x1,x2)

(
∑

(i,j)∈π

|D1,i − D2,j |q)1/q (4)
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The above definition can simply be adapted to multivariate time series as men-
tioned in the original work [20] by extracting multivariate sub-sequences and
applying the descriptors on each dimension independently or by finding a suit-
able multivariate descriptor function.

2.2 Time Series Averaging - Clustering

Time Series Clustering. Given a time series dataset, usually an unlabeled one,
the goal of the clustering algorithm is to learn how to group time series samples
that should belong to the same class label together. A well known clustering
algorithm is the k-means one, which learns how to group time series samples
given their distance to a cluster’s centroid. For this reason, a definition of a time
series cluster centroid should be defined.

Dynamic Time Warping Barycenter Averaging (DBA). To define an
average of a collection of time series, in [17] the usage of DTW measure was
proposed in order to find the optimal average that takes into consideration the
misalignment between the samples of this collection. In other words, given two
time series, the DBA algorithm defines for each time stamp its barycenter by
taking the average of all the aligned values. DBA has proven to be very effective
in clustering using the k-means algorithm.

Soft Dynamic Time Warping Barycenter Averaging (SoftDBA). In [3],
authors also proposed the replacement of DTW in the DBA algorithm by using
SoftDTW instead. Our proposed approach, called SoftDBA, is shown to work
better than DBA in clustering and classification.

3 Proposed Approach

3.1 Shape Dynamic Time Warping Barycenter Averaging
(ShapeDBA)

ShapeDBA follows the same methodology of DBA and SoftDBA that is averaging
over the aligned time stamps. The key difference of ShapeDBA is the usage of the
ShapeDTW [20] aligning method of time series data. The ShapeDBA algorithm
can be summarized in the following steps:

– Step 1: Initialize the average time series, for example choose a random selec-
tion of the time series set in question;

– Step 2: Find the aligned points of each time stamp of the average series
with all the samples of the data. We call the time stamps of all the sam-
ples aligned with a given time stamp t of the average series as assoct =
{assoct0 , assoct1 , . . . , assoctA−1 , where A is the number of associated time
stamps with t;
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– Step 3: For each time stamp t of the average series, the resulting average is
the barycenter of assoct.
Where barycenter(assoct0 , assoct1 , . . . , assoctA−1) = 1

A

∑A−1
i=0 assocti

;
– Repeat from Step 2 until convergence.

3.2 Clustering with ShapeDBA

The k-means clustering algorithm in machine learning can be used with any time
series averaging technique, coupled with any time series similarity measure. The
averaging method, i.e., ShapeDBA for instance, is used to find the centroids of
each cluster during the training phase. The similarity measure is then used to
calculate the distance of each series in the data to the centroid of each cluster.

In the rest of this paper, we refer to the following coupling for applying the
k-means clustering algorithm:
– DBA: the DBA as an averaging method coupled with the DTW as a similarity

measure;
– MED: the arithmetic mean as an averaging technique coupled with the

Euclidean Distance (ED) as a similarity measure; MED finds iteratively the
arithmetic average series, as in DBA, without taking into consideration the
temporal alignment between the prototype and the samples;

– SoftDBA: the SoftDBA as an averaging method coupled with the SoftDTW
as a similarity measure;

– ShapeDBA: the ShapeDBA as an averaging method coupled with the Shape-
DTW as a similarity measure.

3.3 Implementation Efficiency

The ShapeDTW algorithm comes down to applying the original DTW similarity
measure on the transformed input time series. In the univariate case coupled with
the ’identity’ descriptor of each neighborhood [20], the transformed time series
is a multivariate version. For each time stamp, its neighborhood is added as a
Euclidean vector to form a multivariate time series. When applying the DTW
similarity measure on this transformed series, the algorithm is simply computing
the Euclidean distance between the channel vectors of a pair of time stamps. This
creates a computational waste when sliding the reach window as illustrated in
Fig. 1. This problem only occurs when the descriptor is set to be the identity
transformation.

To avoid this issue, the Euclidean pairwise distance between the two time
series in question is computed as a first step. This distance matrix is then padded
with its edges values reach/2 times. We then slide a window of height and width
equal to the time series lengths on this Euclidean distance matrix. The direction
of the sliding window is over the second diagonal of the distance matrix. The
results captured on the sliding window are accumulated in a zero-initialized
matrix. After accumulating all the information into the new distance matrix, we
apply the DTW algorithm on the new matrix. This implementation saves time by
avoiding unnecessary computations. A summary of this efficient implementation
of the ShapeDTW can be seen in Fig. 2.
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Fig. 1. Computation of the ShapeDTW measure between two time series. It can be
observed that the common area between the two sliding window is re-computed.

Fig. 2. A more efficient implementation of the ShapeDTW measure when the descriptor
is set to be the identity. Instead of applying the DTW on the multivariate transforma-
tion of the time series, a window slides on the ED matrix between the two time series.
The captured frames are accumulated in another zero-initialized matrix on which the
DTW algorithm is then applied.

3.4 Reach Value Control

The hyperparameter of ShapeDTW, called “reach”, controls the length of the
neighborhood of each time stamp to be used for the alignment. This value makes
the ShapeDTW algorithm a general definition that includes two similarity mea-
sures: the DTW and the Euclidean distance. For instance, on the one hand, if
the reach value is set to 1, the algorithm will behave just as the original DTW
similarity measure. This is due to the fact that the length of the neighborhood
of each time stamp will be set to 1 leading to taking into consideration only
this time stamp. On the other hand, if the reach is large enough, i.e., ∞, the
ShapeDTW algorithm will behave just as the Euclidean distance. This is due to
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the fact that for each time stamp, the neighborhood length will be larger than
the time series itself. In this work, we set the value of the reach to 30 given it
was the value used in the original paper [20].

4 Results

4.1 Experimental Setup

Datasets. All the experiments were conducted on 123 datasets of the UCR
archive [4]. The total number of datasets in the UCR archive since 2018 is 128,
but five datasets were excluded from the experiments given the large length of
the time series. This was crucial given the quadratic time complexity of most of
the executed algorithms with respect to the time series length. All of the datasets
were Z-normalized in order to have a zero mean and unit standard deviation for
each time series. The clustering algorithms are trained on the combination of the
train test splits for all the 123 datasets used in the experiments. It is important
to note that some datasets of the UCR archive are simply another train test
split of an exiting dataset. This does not occur much, which would mean that
the clustering algorithm is done on the same dataset more than one time. The
source code of this work is publicly available for reproducibility1.

Removing Bias. A typical problem in non-deterministic estimators in machine
learning is the biased performance to a given initial setup. This problem occurs
in many problems such as deep learning where the performance can be biased to
an initialization of the weights. In this clustering task, the bias in performance
comes down to the initialization of the clusters before the k-means algorithm
starts its optimization. To avoid this bias, we do the same experiments five
different times, each time with different initial clusters and present the average
performance on each dataset. However, this may raise the issue of fairness among
multiple clustering algorithms experimented with. This is due to the probable
second bias of a method to a specific five initial clusters. To fix this bias as well,
in this work the same initial clusters are used over the five experiments for all
clustering algorithms. Given that for clustering experiments using k-means and
k-shape need the initial clusters, which are usually randomly selected, it would
create an issue if not all algorithms use the same initial clusters. For this reason,
we made sure that for all the experiments done, for the same dataset, all of
the clustering variants used the same initial clusters. This was done with five
different initial clusters and the average performance is presented in order to
remove any variance in the results.

4.2 Qualitative Evaluation of DBA Variants

Given a set of time series example from the GunPointMaleVersusFemale dataset
of the UCR archive, we can generate the average time series to compare and
1 https://github.com/MSD-IRIMAS/ShapeDBA.

https://github.com/MSD-IRIMAS/ShapeDBA
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analyse the limitation of each technique. In Fig. 3, the generated average time
series is presented from a set of samples from the GunPointMaleVersusFemale
dataset. It can be seen that for the naive way of averaging, using the Euclidean
distance, i.e., Arithmetic Mean, differs from all other approaches by the shifting
issue. In other words, the Arithmetic Mean does not take into consideration the
time warping and miss-aligned information between the samples of the example
set.

Comparing other alignment techniques with ShapeDBA, the TSA almost is
placed in the same time interval. The difference between warping methods is
that DBA and SoftDBA present additional artifacts in the shape. This results
in a TSA that includes some small peaks (red circles in Fig. 3) that do not
appear in the original set of time series. ShapeDBA avoids generating this kind
of artifacts given the usage of shapeDTW. ShapeDTW’s advantage is to avoid
aligning a time stamp with an outlier, which is obtained thanks to the ability
of the method of aligning time stamp in specific sub-sequence of the time series.
This advantage leads ShapeDBA to generate a prototype that is more likely to
be randomly selected from the dataset distribution.

Fig. 3. A qualitative evaluation of the proposed average technique compared to other
approaches on a GunPoint dataset. The ShapeDBA algorithm is the only approach to
not generate out-of-distribution artifacts. (Color figure online)

4.3 Quantitative Evaluation

Competitor. In this work, we compare the proposed method to other time
series averaging techniques as detailed in Sect. 3.2. The state-of-the-art model for
time series clustering is k-shape [15]. This algorithm is an improvement over the
k-means algorithm on time series data by using a Shape Based Distance (SBD)



136 A. Ismail-Fawaz et al.

that uses the cross-correlation between two time series instead of an alignment
measure. Until now, to the best of our knowledge, k-shape is the state-of-the-art
and most efficient clustering method on time series data.

Adjusted Rand Index (ARI). The Adjusted Rand Index (ARI) [9] is a new
fixed version of the original Rand Index (RI) defined in (5). Given the true labels
of the time series dataset y and the predicted labels by the clustering algorithm
ŷ, the RI is calculated as follows:

RI(y, ŷ) =
TP + TN

TP + FP + FN + TN
, (5)

where, TP and TN stand, respectively, for True Positive and True Negative,
while FP and FN stand for False Positive and False Negative, respectively.

The RI counts the number of pairs that are present in the intersection of both
sets of true and predicted labels as well as the number of pairs that exist in the
difference of these two sets. This metric, however, presents a limitation: a high
RI should indicate that the two clusters in question are almost identical, which
is not always the case. The RI may favor high identical clusters without taking
into consideration the case where the intersection was randomly generated. This
is due to the fact that the expected value of the RI is not constant between
two random clusters. This random chance can be generated when the number
of clusters becomes high enough that the probability of a pair to be in both
clusters is large. For this reason, the Adjusted Rand Index (ARI) is proposed
with a scaled version that takes into account this randomness by setting the
value 0.0 for the random chance. The ARI presented in (6) is bounded between
−0.5 indicating no similarity and 1.0 for a perfect similarity between the clusters.

ARI(y, ŷ) =
RI(y, ŷ) − E[RI]

1.0 − E[RI]
, (6)

where E[RI] is the expected value of RI.
We present in the following three different ways to compare the performance

of each clustering method on the total of 123 datasets of the UCR archive.

One-vs-One Comparison: In this approach, we present a scatter plot of all the
pairwise comparisons between k-means with ShapeDBA and the approaches in
the literature. Each point visualized in Fig. 4 represents one dataset, the x-axis
presents the ARI value on this dataset using a method from the literature and
the y-axis the ARI value using ShapeDBA. The Win-Tie-Loss count is presented
in the legend of each One-vs-One scatter plot as well as a p-value. This latter
p-value is produced using the Wilcoxon Signed Rank Test [19]. If this p-value is
larger than the threshold 0.05, than the difference in performance between the
comparates in question is not considered statistically significant.

It is clear from Figs. 4a, 4b, and 4c that the usage of ShapeDBA as an aver-
aging method in k-means is significantly better than the baseline, i.e., ED and
DBA with k-means and significantly better than the state-of-the-art k-shape.
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From Fig. 4d it can be seen that even though ShapeDBA presents more wins
compared to SoftDBA, the difference in performance is still not significantly
different. In what follows, we show however that ShapeDBA is way faster than
SoftDBA.

Analysing Outliers. Some unique outliers from the One-vs-One scatter plots are
clear to favor either ShapeDBA or the other approaches. For instance, com-
pared to k-shape, ShapeDBA does not perform well (low ARI) on two datasets:
ShapeletSim and ECGFiveDays. On the one hand, given knowledge on the UCR
archive datasets, we believe that no correct conclusion can be found on Shapelet-
Sim given that this dataset is simply a simulation of random data. On the other
hand, the ECGFiveDays dataset presented in Fig. 5 is a unique example to show
case the disadvantage of ShapeDBA.

Fig. 4. 1v1 Comparison between using k-means with ShapeDBA-ShapeDTW and other
approaches from the literature using the Adjusted Rand Index clustering metric.
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Fig. 5. Two examples from each class taken from the ECGFiveDays dataset of the
UCR archive. Most time stamps of this dataset represent noise and the important
neighborhood of the time stamp is just in the middle of the whole time series.

This dataset is mostly made of noisy time stamps with an information com-
pressed in the important segments placed in the middle of the time series as
seen in Fig. 5. For this reason, ShapeDTW will be adding noise in the optimiza-
tion steps. A clear winner on the SonyAIBORobotSurface1 dataset, however, is
ShapeDBA compared to k-shape with almost a 0.6 difference in the ARI. After
analysing this dataset, still no hard conclusions can be found but this is not a
special case for ShapeDBA given that MED, DBA and SoftDBA perform better
than k-shape on this dataset. Suggesting that it is k-shape underperforming on
this dataset.

Comparing ShapeDBA to DBA, it seems as if ShapeDBA has an advantage
over the DiatomSizeReduction dataset, which suffers from the lack of training
samples with only four samples per class label.

Critical Difference Diagram (CDD): A technique to compare multiple estimators
by reducing the metrics on multiple datasets into a one dimensional view. This
one dimensional view is presented by using the average rank of each method on
the total of the 123 datasets used. The best performing clustering approach is the
one with the lowest rank as for instance ShapeDBA in Fig. 6. The CDD used in
this work utilizes, as proposed in [2], the Wilcoxon Signed-Rank Test [19] coupled
with the Holm multiple test correction [8] in order to generate the cliques. If a
clique links a set of comparates in the CDD, this represents that the differences
in performance between this set of comparates is not statistically significant.

Multi-Comparison Matrix (MCM) : was proposed in [10] arguing that CDD
has some limitations that can miss-lead the interpretation of the results. First,
one important issue with CDD as mentioned in [10] is the instability of the
average rank. For instance the average rank can easily be manipulated by the
addition or removal of some comparates. For this reason, MCM proposes the
usage of a descriptive statistics that does not change with this addition and
removal of comparates. This statistics is the average performance on the total
of the 123 datasets used, in our case it is the average ARI over these datasets
for each clustering approach. Second, a common issue of the CDD is the usage
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Fig. 6. Critical Difference Diagram showing the average rank of the ARI score over
the datasets of the UCR archive.

of the multiple test correction, which is unstable to the addition and removal of
comparates. Finally, a major limitation with only using the CDD is the lack of
pairwise comparison information. The MCM proposed in [10] overcomes these
three problems by using the average performance instead of the average rank to
order the comparates, not applying a multiple test correction for the produced
Wilcoxon p-values and presenting the pairwise comparisons between comparates.
The MCM in Fig. 7 shows that SoftDBA is the winning approach given the
average ARI with not much difference with the average ARI of ShapeDBA that
comes in second place. A full pairwise and multi-comparates comparison between
all clustering techniques discussed in this work on the ARI metric is presented
in Fig. 10.

In what follows, we did a computational runtime comparison between all
approaches. We show that although ShapeDBA does not outperform in signifi-
cant manner SoftDBA, it is however faster.

Fig. 7. A Multi-Comparison Matrix showing the proposed approach’s performance
compared to other approaches using a tool that is stable to the addition/removal of
new classifiers.

Computational Runtime. Given that all experiments were conducted on the
same machine with the same environment, fairness in time computation com-
parison stands here. By keeping track of the total computation time for each
clustering approach, averaged over five initialization, we can apply the same
comparison techniques as for the ARI. In Fig. 8, the CDD of the computational
runtime is presented. Given that in the case of runtime, the lower the time the
better, and to keep the ordering of the average rank as lower is better, we mul-
tiplied the values of the computational time by −1. It is clear from the CDD
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plot that the fastest approach is k-shape and the slowest one is SoftDBA. The
reason behind the fast computation of k-shape is essentially because of the usage
of the Fast Fourier Transform (FFT), while doing the cross-correlation between
the time series. However, with the help of the efficient implementation used in
ShapeDBA, the computation is way faster than SoftDBA.

For ARI, we generated the MCM as well for the computational time com-
parison in Fig. 9. On average of 123 datasets, ShapeDBA is 1.7 times faster than
SoftDBA with 109 wins for ShapeDBA in terms of computational runtime. It is
important to note that in this case of MCM, the Win-Tie-Loss count considers
the lower the better.

Fig. 8. Critical Difference Diagram showing the average rank of the duration (in sec-
onds) of the k-means algorithm over the datasets of the UCR archive.

Fig. 9. A Multi-Comparison Matrix showing the proposed approach’s duration (in sec-
onds) compared to other approaches using a tool that is stable to the addition/removal
of new classifiers.

5 Conclusion

In this work, we addressed the problem of Time Series Averaging (TSA) using
elastic distances. We proposed a novel TSA approach, ShapeDBA, based on the
similarity measure ShapeDTW similarity measure. We showed that ShapeDBA
has the ability to preserve the shape of the true dataset distribution instead of
producing spikes artifacts as other approaches. To quantitatively evaluate the
proposed approached, we provided extensive experiments on the UCR archive
using the k-means clustering algorithm. We show that in terms of the Adjusted
Rand Index metric, our approach achieves state-of-the-art performance, while
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Fig. 10. A Multi-Comparison Matrix showing the full One-vs-One comparison and the
multi-comparates comparison between all the time series clustering approaches used
and proposed in this work.

being much faster than SoftDBA that represents the current elastic state-of-the-
art averaging technique. This last observation is beneficial to help deploy time
series averaging techniques in real life problems. Finally, to avoid computation
waste in our proposed ShapeDBA algorithm, we present a dynamic programming
detailed implementation of the algorithm.
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Abstract. Quantifying predictive uncertainty of deep semantic segmen-
tation networks is essential in safety-critical tasks. In applications like
autonomous driving, where video data is available, convolutional long
short-term memory networks are capable of not only providing seman-
tic segmentations but also predicting the segmentations of the next
timesteps. These models use cell states to broadcast information from
previous data by taking a time series of inputs to predict one or even fur-
ther steps into the future. We present a temporal postprocessing method
which estimates the prediction performance of convolutional long short-
term memory networks by either predicting the intersection over union of
predicted and ground truth segments or classifying between intersection
over union being equal to zero or greater than zero. To this end, we create
temporal cell state-based input metrics per segment and investigate dif-
ferent models for the estimation of the predictive quality based on these
metrics. We further study the influence of the number of considered cell
states for the proposed metrics.

Keywords: Uncertainty quantification · Video frame prediction ·
Semantic segmentation

1 Introduction

Retrieving information from images is an important task for scene understand-
ing. Semantic image segmentation is a common approach to gain knowledge
about image content by assigning each pixel a label from a predefined label space
using neural networks. In safety-critical applications like autonomous driving [11]
or medical diagnostics [28], information about the reliability of a prediction is
indispensable for decision making. While most approaches to uncertainty quan-
tification focus on a single frame only, temporal information is often available as
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Fig. 1. Visualization of the meta regression task. Ground truth semantic segmentation
(bottom left), predicted semantic segmentation via ConvLSTM (bottom right), true
IoUadj of prediction and ground truth per segment, where green colors represent high
values of IoUadj and red colors represent low values (top left), predicted IoUadj via
meta regression (top right). (Color figure online)

in the case of video data. To leverage on this, we build on the meta classifica-
tion and regression approach from [23] and [17]. The method introduced in [23]
provides a postprocessing framework to predict the performance of a segmenta-
tion network based on its softmax output, i.e., to predict the intersection over
union IoU (also known as Jaccard index [13]) per segment from metrics derived
from its aggregated softmax outputs (meta regression) or classifying between
IoU = 0 and IoU > 0 (meta classification). Figure 1 provides a visualization
of the meta regression task. Note that this approach can be equipped with any
pixel-wise uncertainty measure. In [17], the approach of [23] is extended to time
series metrics using a light-weight tracking algorithm. In this work, we inves-
tigate temporal metrics retrieved from convolutional long short-term memory
networks (ConvLSTMs). Long short-term memory networks (LSTMs) [9] take
time series as inputs to make predictions for future timesteps. Thus, the metrics
presented in this work express uncertainties in single frames by taking account
of temporal information from LSTM outputs. Moreover, we use the light-weight
tracking algorithm from [17] to investigate the power of LSTM meta models.
This is the first work that conducts meta classification and regression by consid-
ering LSTM-based temporal metrics and meta models. Note that our procedure
requires a semantic segmentation LSTM network and a video stream of input
data.

In our experiments, we predict the performance of a ConvLSTM network [26]
trained on the VIsual PERception (VIPER) dataset [21]. This network takes a
time series of semantic segmentations as input to predict the segmentation for the
next timestep. We achieve meta classification accuracy of 96.15%(±0.17%) and
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Area Under Receiver Operating Characteristic (AUROC) of 95.04%(±0.22%).
The best meta classification results using time series temporal metrics are
obtained by our proposed LSTM meta model. For meta regression, we obtain
R2 values of 74.31%(±0.33%).

The remainder of this work is organized as follows. An overview over related
work in the field of uncertainty quantification and object tracking is provided in
Sect. 2. In Sect. 3, we introduce the temporal metrics for time-dynamic uncer-
tainty quantification followed by the light-weight tracking algorithm in Sect. 4.
In Sect. 5 we describe the meta classification and regression method for time-
dynamic performance prediction. Finally, we present our numerical results in
Sect. 6.

2 Related Work

2.1 Uncertainty Quantification

Modern neural networks tend to be overconfident in their predictions [8,19]. Tem-
perature scaling [8] and Dirichlet calibration [15] are scaling methods to calibrate
the model’s confidence estimates. Another common approach to quantify model
uncertainty are Bayesian models [18]. Different methods have been established
to conduct Bayesian inference via variational approximations like [4] and [5]. In
[11], the sampling procedure is simulated based on temporal information in video
data. Besides, Monte Carlo dropout [7] is widely used to approximate Bayesian
neural networks. In [16], deep ensembles are proposed to quantify predictive
uncertainty based on the variance of the ensemble prediction. Other approaches
like [22] and [10] propose to model predictive uncertainty based on gradients. In
[23], a meta learning approach for semantic segmentation networks is introduced
for false positive detection (meta classification) and performance prediction in
terms of IoU (meta regression). In [25] and [17], this work is extended by adding
resolution dependent uncertainty and temporal metrics, respectively. In [6], per-
formance metrics for video object segmentation and tracking are introduced.

2.2 Object Tracking

Most works in the field of object tracking refer to the task of multi-object track-
ing, that is, tracking multiple objects in videos by means of bounding boxes
[3,20]. Tracking-by-detection [1] is a common approach for this task, which sep-
arates objects from the background. The approaches in [27] and [2] are based on
segmentation and perform tracking using fully-convolutional Siamese networks
and particle filters, respectively. Video panoptic segmentation [14] combines the
task of semantic segmentation and object tracking at the same time. Recent
works in this field [12,14] propose end-to-end architectures to fulfill both tasks
simultaneously. In [17], a tracking algorithm is introduced which builds up on a
semantic segmentation and matches segments of the same class based on their
overlap in consecutive video frames.



148 L. Fieback et al.

3 Segment-Wise Dispersion and Temporal Metrics

We build input metrics for the meta classification and regression task based
on the output of our ConvLSTM video frame prediction model. The aim of our
model is to predict the semantic segmentation of the next timestep given a video
sequence of previous segmentations. Semantic segmentation can be viewed as a
pixel-wise classification task, where each pixel z of an input image x is classified
as a label y ∈ C = {y1, . . . , yc} with c possible output labels. The network’s
softmax output fz (y|x,w) can be interpreted as a probability distribution over
the output labels y ∈ C = {y1, . . . , yc} given the input image x and the network
weights w. The predicted class for a pixel z is then given by the largest softmax
value, i.e.,

ŷz (x,w) = argmax
y∈C

fz (y|x,w) . (1)

The degree of randomness in a network’s softmax output can be quantified
using dispersion measures. Thus, we build metrics for the meta classification
and regression task based on uncertainty heatmaps representing pixel-wise dis-
persion measure as proposed in [25]. We consider the entropy

Ez (x,w) = − 1
log (c)

∑

y∈C

fz (y|x,w) log fz (y|x,w) , (2)

the variation ratio
Vz (x,w) = 1 − max

y∈C
fz (y|x,w) , (3)

as well as the probability margin

Mz (x,w) = 1 − max
y∈C

fz (y|x,w) + max
y∈C\ŷz

fz (y|x,w) . (4)

Note that, for better comparison, these quantities have been normalized to the
interval [0, 1].

Let Ŝx = {ŷz (x,w) |z ∈ x} denote the predicted semantic segmentation for
an image x and K̂x the set of all predicted segments k in x, i.e., the set of
all connected components of pixels z′ with the same predicted class c′, that
is, ŷz′ = c′ for all pixels z′. The segment-wise dispersion metrics based on the
pixel-wise uncertainty heatmaps introduced above are defined as

D̄ =
1
S

∑

z∈k

Dz (x,w) , (5)

where Dz ∈ {Ez, Vz,Mz} and S = |{z ∈ k}| denotes the segment size, i.e., the
number of pixels contained in k. As proposed in [23], we define segment-wise
inner dispersion metrics and boundary dispersion metrics, since we typically
observe high values of Dz for boundary pixels. To this end, let kin ⊂ k denote
the set of all inner pixels of segment k, where a pixel z ∈ k is called an inner
pixel of k if all eight neighboring pixels are an element of k, and let kbd = k \kin
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Fig. 2. Depiction of a ConvLSTM block with shared hidden states and cell states
between the encoding and forecasting network (from [26]). Here, both networks consist
of two ConvLSTM cells, respectively. ConvLSTM1 and ConvLSTM3 share the same
states as well as ConvLSTM2 and ConvLSTM4.

denote the set of boundary pixels of segment k. We obtain further segment-wise
dispersion metrics by averaging the pixel-wise uncertainty heatmaps over all
inner pixels and boundary pixels by analogy with Eq. (5) yielding the inner and
boundary dispersion metrics D̄in and D̄bd, respectively, as well as Sin and Sbd.
Based on these metrics, we obtain the respective relative metrics S̃ = S/Sbd,
S̃in = Sin/Sbd, D̃ = D̄S̃ and D̃in = D̄inS̃in with D ∈ {E, V,M}. Our set of
metrics further contains the geometric center

k̄ =
(
k̄1, k̄1

)
=

1
S

∑

z∈k

(z1, z1) , (6)

where z1 and z2 are the vertical and horizontal coordinates of pixel z as well as
the mean class probabilities for each class y ∈ C = {y1, . . . , yc},

P (y|k) =
1
S

∑

z∈k

fz (y|x,w) . (7)

This results in the following set of metrics (see [17])

U ={D̄, D̄in, D̄bd, D̃, D̃in | D ∈ {E, V,M}} ∪ {k̄}
∪ {S, Sin, Sbd, S̃, S̃in} ∪ {P (y|k) |y = y1, . . . , yc}.

(8)

We use these metrics as a baseline in our tests and define additional metrics based
on the cell states of our ConvLSTM video frame prediction model. Our model
consists of l = 10 ConvLSTM blocks (see Fig. 2) using ten previous semantic
segmentations xt−i, i = 1, . . . , 10, of a video to predict the semantic segmenta-
tion of the next video frame x̂t. Note that every ConvLSTM block itself consists
of an encoding network and a forecasting network, where both networks consist
of the same number of convolutional LSTM cells with shared hidden states and
cell states (see Fig. 2). The shared hidden states and cell states between both
networks are the same states, which are broadcasted to the next ConvLSTM
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Fig. 3. Prediction error between ground truth and predicted semantic segmentation
mask via ConvLSTM (left), where black areas correspond to correctly predicted pix-
els and white areas to misclassified pixels, and pixel-wise temporal cell state-based
heatmap C9

z (right).

block. In our model, the last convolutional LSTM cell of the forecasting network
of each ConvLSTM block outputs states of the same height and width as the
model’s prediction with 64 features. Thus, for every ConvLSTM block, we focus
on the cell state of the last convolutional LSTM cell and define the mean cell
state C̄i, i = 1, . . . , 10, of block i as the mean over the 64 features. Based on this,
we build temporal heatmaps from the stability of the mean cell state C̄i over i
ConvLSTM blocks. To this end, we define the stability of cell state j for an
image x, a pixel z and network weights w as

Cj
z (x,w) = |C̄1

z (x,w) − C̄j+1
z (x,w) |, j = 1, . . . , 9. (9)

Figure 3(right) shows a temporal heatmap obtained from C9
z , that is, the stability

of cell state j = 9. As for the uncertainty heatmaps introduced above, we define
segment-wise temporal metrics based on the temporal heatmaps as

T̄ =
1
S

∑

z∈k

Tz (x,w) , (10)

with Tz ∈ {Cj
z , j = 1, . . . , 9}. With the notation above, we define our proposed

set of metrics for m = 1, . . . , 9 as

Vm = U ∪ CSm, (11)

where
CSm = {T̄ , T̄in, T̄bd, T̃ , T̃in | T ∈ {Cj , j = 1, . . . , m}}. (12)

Note that all of these metrics can be calculated from our model output without
any knowledge of the ground truth.

4 Tracking Algorithm

For the investigation of LSTM meta models, we apply the tracking algorithm
proposed in [17]. This algorithm builds on a video sequence of semantic seg-
mentations and performs tracking based on the overlap of segments of the same
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class in consecutive frames. It does not require additional training. Within this
procedure, every segment is assigned a tracking id. To this end, let {x1, . . . , xT }
denote a sequence of T consecutive semantic segmentations. The overlap of a
segment k with segment j is defined as

Oj,k =
|{z ∈ k} ∩ {z ∈ j}|

|{z ∈ j}| . (13)

The algorithm is applied sequentially to each segmentation xt, t = 1, . . . , T ,
where for each frame, the segments are prioritized based on their segment size.
In detail, the algorithm consists of five steps starting with the largest segment
kSmax ∈ K̂xt

in each step. Once a segment k ∈ K̂xt
has been matched with

a segment from a previous frame, it is ignored in the following steps. Matched
segments receive the same tracking id. To this end, we denote a matched segment
k in xt as kt.

Step 1 matches segments of the same class in xt which are close to each
other, i.e., with a distance less than a constant cnear, and thus, are regarded as
one segment.

Step 2 matches segments based on their geometric center. If a segment k
exists in two consecutive frames, i.e., k ∈ K̂xt−1 ∩ K̂xt−2 , segment kt−1 is shifted
by

(
k̄t−1 − k̄t−2

)
and segments j ∈ K̂xt

are matched with the shifted segment k̂t,
if the overlap Oj,k̂t

is higher than a constant cover or if the distance between the

geometric centers j̄ and ¯̂
kt is smaller than a constant cdist. If segment k ∈ K̂xt−1

does not exist in two consecutive frames, i.e., k /∈ K̂xt−2 , segments j ∈ K̂xt
are

matched based on the distance of the geometric centers j̄ and k̄t−1.
Step 3 matches segments in consecutive frames based on their overlap, i.e.,

segments k ∈ K̂xt−1 and j ∈ K̂xt
are matched if Oj,k ≥ cover.

Step 4 accounts for flashing predicted segments due to occlusions or false
predictions. It aims at matching segments that are more than one frame apart in
temporal direction. To this end, a linear regression model is used to predict the
geometric center of segment k in xt if k was matched in at least two of the last
lr segmentations xt−lr, . . . , xt−1. Segments j ∈ K̂xt

are matched if the distance
between the predicted geometric center ˆ̄kt and j̄ is less than a constant clin.

Step 5 assigns a new id to all segments j ∈ K̂xt
, that have not yet been

matched.

5 IoU Prediction

For the task of semantic segmentation, a common measure for predictive quality
is the IoU . In our experiments, we use a slight modification proposed in [23],
the IoUadj , which is less prone to fragmented objects. We perform segment-
wise meta classification, i.e., classifying between IoUadj = 0 and IoUadj > 0
as well as segment-wise meta regression, that is, predicting the performance of
our ConvLSTM semantic segmentation for each segment in terms of IoUadj by
means of the metrics defined in Sect. 3. Note that all of these metrics can be
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calculated from the ConvLSTM’s output without any knowledge of the ground
truth. An illustration of the meta regression task is given in Fig. 1. We analyze
the information gain induced by the temporal metrics for both single frame
metrics and time series metrics as proposed in [17]. Those time series metrics
are based on the tracking algorithm introduced in Sect. 4. For each segment
kt ∈ K̂xt

, we obtain single-frame based metrics V k
m = V k

m,t according to Sect. 3
as well as their history V k

m,t−1, . . . , V
k
m,t−T due to tracking of segment k over

T previous frames. In our experiments, we investigate the influence of metric
histories for up to T = 10 timesteps. In [17], different models for the meta tasks
were investigated. We choose the best performing models, i.e., the linear model
(LR), the shallow neural network (NN) as well as the gradient boosting model
(GB) for our experiments (for implementation details, see [17]). In addition, we
investigate the performance of a shallow LSTM neural network (in the following
referred to as LSTM) with 50 neurons only for both meta tasks. The number of
LSTM cells depends on the respective number of considered timesteps T of the
time series metrics.

6 Numerical Results

In this section, we investigate the properties of the temporal metrics defined in
Sect. 3. We further investigate the influence of time series metrics as described
in the previous section and consider different models for meta classification and
regression. To this end, we train a ConvLSTM network with ten ConvLSTM
blocks (see Fig. 2), each of them built by five convolutional LSTM cells. We
train our model on the synthetic VIPER dataset [21]. The dataset consists of
more than 250,000 frames all annotated with ground truth semantic labels with
a resolution of 1920 × 1080 pixels per frame. Since the ground truth annotation
has very fine labels, we apply the smoothing algorithm proposed in [24] to gen-
erate a coarse ground truth by blurring each class using a normalized box filter.
Moreover, we resize the images to 256 × 512 pixels for computational reasons.
The VIPER dataset contains 32 different classes with 23 proposed training ids.
Out of these, we further cluster highly underrepresented classes to a misc class
which results in a total of 17 training classes. We train our ConvLSTM model on
19 training folders which contain 30,168 images in total and 8 validation folders
yielding a total of 7,021 images. In our experiments, we compare two different
models from our training procedure: The “strong model” (S) which was trained
for 18 epochs yielding a mean IoU (mIoU) of 82.82%, as well as the “weak
model” (W) which obtained an mIoU of 79.45% after 4 epochs of training.
We implement the tracking algorithm from Sect. 4 with parameters cnear = 10,
cover = 0.35, cdist = 100 and clin = 50.

For the meta tasks, we use 5 validation folders, not yet used during the train-
ing procedure of the ConvLSTM model, which sum up to 3,464 images. This
results in a total of 46,587,336 segments for the weak model (not yet matched
over time) of which 110,739 have non-empty interior. Out of these, 7,649 seg-
ments have IoUadj = 0. For the strong model, we obtain 42,295,440 segments,
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Table 1. Results for meta classification and regression based on temporal metrics
for different meta models and the entropy baseline for both the weak (W) and the
strong (S) model. The superscript denotes the number of cell state metrics, where the
best performance and in particular the given values are reached. The best results are
highlighted.

Meta Classification IoUadj = 0, > 0

Entropy Baseline (W): ACC = 93.40%(±0.20%) AUROC = 81.63%(±0.78%)

Entropy Baseline (S): ACC = 95.27%(±0.20%) AUROC = 80.45%(±0.71%)

GB LR LSTM NN

ACC W 94.72%(±0.22%)7 94.39%(±0.16%)1 94.01%(±0.16%)6 93.72%(±0.22%)2

S 95.99%(±0.17%)9 95.65%(±0.15%)9 95.54%(±0.22%)2 95.35%(±0.21%)6

AUROC W 94.54%(±0.44%)0 93.69%(±0.47%)2 93.28%(±0.53%)0 92.85%(±0.59%)0

S 93.87%(±0.43%)2 92.57%(±0.42%)9 92.25%(±0.44%)9 91.87%(±0.45%)9

Meta Regression IoUadj

Entropy Baseline (W): σ = 0.227(±0.002) R2 = 42.80%(±0.70%)

Entropy Baseline (S): σ = 0.225(±0.003) R2 = 38.58%(±0.81%)

GB LR LSTM NN

σ W 0.154%(±0.002%)8 0.175%(±0.002%)0 0.162%(±0.001%)0 0.155%(±0.002%)8

S 0.161%(±0.001%)9 0.175%(±0.002%)0 0.165%(±0.001%)0 0.160%(±0.002%)9

R2 W 74.04%(±0.52%)0 66.85%(±0.43%)9 70.96%(±0.47%)9 73.57%(±0.46%)0

S 68.95%(±0.61%)1 63.33%(±0.59%)8 67.61%(±0.43%)9 69.19%(±0.47%)3

113,286 with non-empty interior of which 5,622 segments have IoUadj = 0.
The corresponding naive classification baseline discussed in [23] and [17] yields
an accuracy of 93.09% for the weak model and 95.04% for the strong model.
This baseline is obtained by random guessing, i.e., randomly assigning a proba-
bility to each segment and thresholding on it. The classification accuracy is the
number of correct predictions divided by the total number of predictions made.
The corresponding AUROC value is 50%. This baseline is clearly outperformed.
To this end note that, the stronger the ConvLSTM model, the higher the naive
accuracy. We improve the naive accuracy by further 1.63pp for the weak model
and 0.95pp for the strong model.

In all our experiments, we average our results over ten randomly sampled
train/val/test (70%/10%/20%) splits using a total of 38,000 segments in each
split. In tables, the corresponding standard deviations are given in brackets,
whereas, in figures, they are given by shades. All meta models considered yield
an inference time for all 38,000 segments together of less than one second. We
measure the classification performance of our method in terms of classification
accuracy (ACC) and Area Under Receiver Operating Characteristic (AUROC),
which is obtained by varying the decision threshold between IoUadj = 0 and
IoUadj > 0. For meta regression, we state the results in terms of the regression
standard error σ and the R2 value.

6.1 Evaluation of Temporal Metrics

First, we investigate the influence of single-frame temporal metrics Vm = Vm,t

by considering the stability of cell states over m ∈ {1, . . . , 9} ConvLSTM blocks.
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Fig. 4. A selection of results for meta classification in terms of ACC and meta regres-
sion in terms of R2 as functions of the number of considered cell state metrics. Meta
regression via the weak model (a), meta regression via the strong model (b), meta
classification via the strong model (c).

Table 1 shows the best results for different meta models. The superscript denotes
the number of considered cell state metrics, where the best performance and in
particular the given values are reached. Note that the superscript being equal
to 0 refers to the metric set Ut without any cell state metrics. For the weak
model, we achieve test AUROC values of up to 94.54%(±0.44%) and classifica-
tion accuracies of up to 94.72%(±0.22%). For the strong model, a test accuracy
of 95.99%(±0.17%) is reached and AUROC value up to 93.87%(±0.43%). As in
[17], GB performs best for meta classification. With regard to meta regression, we
obtain R2 values up to 74.04%(±0.52%) for the weak model and 69.19%(±0.47%)
for the strong model. As a baseline, we consider the approach from [23], i.e., the
metric set Ut without any cell state metrics. In almost every experiment, best
results are obtained when considering temporal metrics. In those cases where the
best results are obtained without temporal metrics, we observe vanishing differ-
ences between the respective performance metrics for temporal metrics (e.g., see
R2 values for GB and NN in Fig. 4(a)). In [23], the results are compared with the
entropy as a single-metric baseline and with the naive baseline introduced above.
For the entropy baseline (see Table 1), we use single-frame gradient boosting as
suggested in [17]. Both baselines are clearly outperformed. In contrast to the
results in [17], the GB meta regression model does not outperform the neural
network in all settings, even though it yields the best results in most of the
experiments.

Figure 4 shows the influence of temporal metrics with respect to R2 value and
classification accuracy. For the linear meta regression model based on the weak
ConvLSTM (Fig. 4(a)), we obtain R2 values up to 66.85%(±0.43%) when taking
account of all m = 9 temporal metrics, whereas the baseline metrics Ut (0 con-
sidered cell state metrics) only achieve averaged R2 values of 65.77%(±0.45%).
For the stronger ConvLSTM model (Fig. 4(b)), the best results are obtained for
8 cell state metrics, that is, R2 = 63.33%(±0.59%), whereas the baseline metrics
only obtain R2 values up to 62.76%(±0.58%). These results are in line with the
findings in [23] and [17], that is, stronger segmentation models yield worse meta
performance with respect to R2. Moreover, the analysis of time series metrics in
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Table 2. Results for meta classification and regression based on time series temporal
metrics for different meta models and the GB baseline from [17] for both the weak (W)
and the strong (S) model. The superscript denotes the number of frames, where the
best performance and in particular the given values are reached. The best results are
highlighted.

Meta Classification IoUadj = 0, > 0

Baseline [17] (W): ACC = 94.93%(±0.32%) AUROC = 94.99%(±0.35%)

Baseline [17] (S): ACC = 96.03%(±0.18%) AUROC = 94.12%(±0.43%)

GB LR LSTM NN

ACC W 94.95%(±0.24%)9 94.64%(±0.24%)8 95.25%(±0.22%)1 94.09%(±0.23%)6

S 96.15%(±0.17%)1 95.88%(±0.23%)1 96.15%(±0.17%)9 95.54%(±0.30%)1

AUROC W 95.00%(±0.28%)1 94.24%(±0.34%)1 95.04%(±0.22%)1 93.32%(±0.47%)1

S 94.23%(±0.42%)9 92.85%(±0.39%)1 93.65%(±0.46%)1 91.92%(±0.64%)0

Meta Regression IoUadj

Baseline [17] (W): σ = 0.153(±0.002) R2 = 74.00%(±0.65%)

Baseline [17] (S): σ = 0.161(±0.001) R2 = 68.27%(±0.53%)

GB LR LSTM NN

σ W 0.154%(±0.001%)6 0.168%(±0.001%)6 0.157%(±0.003%)6 0.157%(±0.003%)7

S 0.162%(±0.002%)8 0.173%(±0.002%)8 0.162%(±0.002%)8 0.163%(±0.002%)8

R2 W 74.31%(±0.33%)0 69.15%(±0.46%)3 73.58%(±0.74%)3 73.54%(±0.39%)0

S 68.97%(±0.81%)1 64.44%(±0.51%)1 69.00%(±0.98%)6 68.53%(±1.04%)6

[17] showed a performance gain for linear models, whereas the stronger gradient
boosting models do not benefit as much from time series metrics. We observe
the same effects with regard to temporal metrics. Finally, with regard to meta
classification based on the strong model (Fig. 4(c)), we observe that all models
benefit from the temporal metrics, while the linear model outperforms the shal-
low LSTM and neural network by 0.15pp and 0.26pp, respectively. Note that even
though the linear model is only slightly better than the shallow network, this
result is not in line with the findings of [23] and [17], where the neural networks
outperformed the linear models in all experiments.

6.2 Evaluation of Time Series Temporal Metrics

Next, we investigate time series metrics {Vm,t, Vm,t−1, . . . , Vm,t−T } with
m = 9 and a length of up to T = 10 previous timesteps, yielding 11 different sets
of metrics. The results are summarized in Table 2. Since the gradient boosting
model performs best in [17] as well as in most of our experiments, we consider
the gradient boosting model equipped with the metric set {Ut, Ut−1, . . . , Ut−10}
as the baseline model. This baseline is outperformed for both meta tasks and
both the strong and the weak model. For the weak model, we achieve classifi-
cation accuracy up to 95.25%(±0.22%) with our proposed LSTM meta model
considering 1 cell state metric. For meta regression, we obtain R2 values up
to 74.31%(±0.33%) for the gradient boosting model. For the strong model, we
achieve best results for the classification task by means of the gradient boost-
ing model, while our proposed LSTM meta model outperforms the gradient



156 L. Fieback et al.

boosting model in the regression task yielding R2 values of 69.00%(±0.98%)
with 6 considered cell state metrics.

7 Conclusion and Outlook

In this paper, we extended the approach from [23] and [17] for deep ConvLSTM
networks. We introduced temporal metrics based on the cell states broadcasted
through LSTM cells as additional inputs for meta classification and regression. In
our experiments, we studied the influence of different numbers of considered cell
state metrics for four meta models, i.e., linear models, gradient boosting, shallow
neural networks as well as shallow LSTM models. Moreover, we investigated the
influence of LSTM meta models for time series metrics proposed in [17]. In all
experiments, our approach slightly improved the state of the art results [23]
and [17]. More precisely, we achieve classification accuracy of 96.15%(±0.17%)
and AUROC of 95.04% (±0.22%) using our proposed LSTM meta model with
temporal metrics. For meta regression, we obtain R2 values of 74.31%(±0.33%).
We plan to develop further LSTM-based metrics for uncertainty quantification
applied to the task of predicting several steps into the future.

Disclaimer. The results, opinions and conclusions expressed in this publication are

not necessarily those of Volkswagen Aktiengesellschaft.
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Abstract. Multivariate time series classification is an important com-
putational task arising in applications where data is recorded over time
and over multiple channels. For example, a smartwatch can record the
acceleration and orientation of a person’s motion, and these signals are
recorded as multivariate time series. We can classify this data to under-
stand and predict human movement and various properties such as fitness
levels. In many applications classification alone is not enough, we often
need to classify but also understand what the model learns (e.g., why was
a prediction given, based on what information in the data). The main
focus of this paper is on analysing and evaluating explanation methods
tailored to Multivariate Time Series Classification (MTSC). We focus on
saliency-based explanation methods that can point out the most relevant
channels and time series points for the classification decision. We analyse
two popular and accurate multivariate time series classifiers, ROCKET
and dResNet, as well as two popular explanation methods, SHAP and
dCAM. We study these methods on 3 synthetic datasets and 2 real-world
datasets and provide a quantitative and qualitative analysis of the expla-
nations provided. We find that flattening the multivariate datasets by
concatenating the channels works as well as using multivariate classifiers
directly and adaptations of SHAP for MTSC work quite well. Addition-
ally, we also find that the popular synthetic datasets we used are not
suitable for time series analysis.

Keywords: Time Series Classification · Explanation · Evaluation

1 Introduction

Real-world time series data are often multivariate, i.e., data collected over a
period of time on different channels. An example is human motion data collected
from participants wearing a tri-axial accelerometer on their dominant wrist. The
tri-variate data can be examined to identify epilepsy convulsions in everyday
life [23]. Another example is traffic data where multiple sensors are set up at
different locations to measure the traffic occupancy in a city1.
1 https://pems.dot.ca.gov/.
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While univariate time series have been the main research focus, there is a
steadily growing interest in multivariate time series (MTS), in particular for the
classification task (MTSC). The release of the MTSC benchmark [2], a collabo-
rative effort by researchers from multiple institutions, is an important milestone
that has accelerated studies of MTSC methods.

Explainable AI is another important topic due to the explosion of interest in
complex machine learning models and deep learning methods. Pioneers in this
field have been working mostly on text and image data and, as a result, a number
of explanation frameworks including LIME [18], DeepLift [13], Shapley [14] have
been introduced. The similarity between image and time series data allows such
techniques to be adapted to time series models [24]. Nevertheless, there are
some notable differences between images and time series. Firstly, images are
usually represented using RGB encoding and all the 3 channels contain necessary
information, while for time series it is common to have channels that do not
contribute to, or even hinder, the classification decision. Secondly, in images
there is a lot of homogeneity in the pixel values while moving between pixels
belonging to the same objects and a sharp difference when moving between
pixels belonging to different objects. In time series, it is less common to find
such a strong locality, especially across all the channels. Furthermore, the data
magnitude and pre-processing, such as normalisation, are important factors for
time series, but less so for images.

In this work, we focus on methods for explaining MTSC as this is an impor-
tant open problem that is often as important as the classification itself. In a
scenario in which people wear accelerometers on their body while executing a
physical exercise, other than classifying the exercise as correctly executed or not,
it is also important to provide feedback to users, e.g., an explanation of why the
exercise was incorrectly executed by pointing out the relevant data.

Fig. 1. Sample multivariate time series and explanation heat map. The 3 plots show
the x, y, z channels for a jump sample.

In this paper, a multivariate time series explanation is a 2D saliency map [3]
highlighting the importance of each time series channel and each time point for
the classification decision, as illustrated in Fig. 1. A proper MTSC explanation
should be able to point out for each channel the relevant time points that may
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be located at different parts of the time series. For example, CAM [25] was
designed for explaining univariate time series thus it can not identify important
time points which vary across channels.

In this work we aim to analyse and evaluate a few MTSC explanation meth-
ods we found in the literature. Throughout our literature research, the only
bespoke MTS explanation methods found are all tailored for deep learning meth-
ods (especially CNN), while few others are able to provide a 2D heat map by
adapting univariate time series explanation to work in a multivariate scenario
(most of the time by flattening the dataset and reshaping the 1D heat map into
a matrix).

The lack of bespoke multivariate time series explanations, combined with
the lack of explanation evaluation methods, is an important gap in the scientific
literature. The main aim of this work is to study and evaluate existing MTSC
explanation methods in order to start addressing this gap.

Our main contributions in this paper are:

– We analyse the literature on saliency-based explanation methods for MTSC
and find very few bespoke methods, all of which are designed for deep learning
models. Among these, we select dCAM [3] which extends CAM, a very popular
method for time-series and image explanations.

– We conduct experiments using state-of-the-art multivariate time series classi-
fiers ROCKET [6] and dResNet [3] and explanation methods SHAP [14] and
dCAM [3]. We study ways to adapt SHAP to work with multivariate time
series and compare it to the bespoke MTSC explanation method dCAM.

– We use 3 synthetic datasets and 2 real-world datasets to compare the classi-
fiers and the explanations. We evaluate the explanations both quantitatively,
using the methodology proposed in [16], as well as qualitatively. We find that
for truly multivariate datasets (i.e., where multiple channels are needed for
the correct classification), ROCKET-SHAP works better than dCAM, but is
also more computationally expensive. We also find that flattening the datasets
by concatenating the channels and using univariate classifiers works as well
as using multivariate classifiers directly.

In the rest of the paper, in Sect. 2 we discuss prior work addressing the
MTSC explanation task. In Sect. 3 we formally define the problem addressed,
the classifiers and the explanation methods used in the experiments. In Sect. 4
we describe the datasets used in our study, in Sect. 5 we describe our experiments
and in Sect. 6 we summarise our main findings.

2 Related Work

Explanation Methods Adapted from Univariate to Multivariate TSC.
Some multivariate time series explanation methods are simple adaptations of
methods developed for univariate data. In [1], the authors explain the adapted
classifiers by applying the timeXplain [15] framework on each channel indepen-
dently. The result is a multivariate explanation that highlights the important
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segments in each channel of the multivariate sample. Nonetheless, it is arguable
whether this approach is appropriate since the explained model(s) (univariate)
and the model that needs to be explained (multivariate) are not the same. Addi-
tionally, it is not clear if the accuracy of the channel-wise univariate model is
similar or worse than that of the multivariate model, and this is not discussed
in the paper.

Bespoke Explanation Methods for MTSC. Most of the previous explana-
tion methods designed for MTSC are tailored to deep learning methods, which
are not state-of-the-art with regard to classification accuracy. In [3], the authors
discussed the drawbacks of the CAM explanation method for MTS data. CAM
can only produce a univariate saliency map, thus it is unable to identify the
important channels. Features that depend on more than one channel are also
not detectable. dCAM, proposed in the same paper, addressed these limitations
by rearranging the input time series with all the permutations of the channels.
The paper shows that this technique can be applied to any architecture with a
Global Average Pooling layer (GAP) such as ResNet or InceptionTime. dCAM
limitations are discussed by comparing this method with other deep learning
explanation methods, as for instance it was shown that dCAM is not the best
option when dealing with multivariate datasets that can be classified focusing
on just one channel, but there is no comparison against model agnostic methods
such as SHAP [14] or LIME [18].

Evaluation of Explanation Methods for MTSC. While explanation meth-
ods for MTSC are few, works on evaluating such methods are even fewer. For
univariate time series, several approaches have been proposed to compare expla-
nation methods from different angles. The work in [5,11] benchmarks the meth-
ods with controllable synthetic datasets. The work of [8] attempted to extract
“ground-truth” explanations with a white-box classifier. The “ground-truth”
explanation is then used to evaluate post-hoc explanations. AMEE [16] is a
recent framework to quantitatively compare explanation methods on a dataset
by perturbing input time series and measuring the impact on the classification
accuracy of several classifiers. For multivariate time series, recently [22] designed
an evaluation framework that is also based on the idea of perturbation, but the
work is only limited to evaluating deep learning classifiers and associated expla-
nations. The paper also proposed a synthetic multivariate time series dataset to
benchmark explanation methods.

3 Background

A multivariate time series X can be represented as a d × L matrix, where the
d rows are also called channels and the L columns store the values associated
with each channel at every time point. Hence Xj

i is the value of the time series
at time point i and channel j, with 0 ≤ i < L and 0 ≤ j < d. We also refer
to Xj as the univariate time series at channel j, therefore X can be written as
X = [X0,X1, . . . , Xd−1].



Explaining Multivariate TSC 163

An explanation of a time series X is a saliency map W that provides an
importance weight for each data point (at every time point i and every channel
j) in the time series. Hence the saliency map can also be represented by a d×L
matrix. A common visualisation method for the saliency map is a heat map
where more important data points are highlighted with warmer colours.

An explanation method for MTSC is a method that, given the input MTS,
can produce a saliency map highlighting the relevance of each time point to
the classifier decision. Intrinsically explainable models such as Ridge Classifier
can also be an explanation method while black-box models such as RestNet
(dResNet) and ROCKET need a post-hoc explanation method.

In our experiments we compare three different classifiers and explanation
methods: ROCKET [6] coupled with SHAP [14], dResNet coupled with dCAM
[3] and the Ridge Classifier [10] which is an intrinsically explainable model. We
also use a random explanation (a matrix of random weights) as a sanity check.

3.1 Classification Methods

The first classifier we used is ROCKET [6] which was originally designed for
UTS, but also has an adaptation for MTS: it applies a large set of random con-
volution kernels to the time series in order to transform it into tabular data
with 20, 000 features. It introduced some key concepts such as dilation, propor-
tion of positive values (PPV), etc., starting an algorithm family in which recent
members such as Minirocket [7], MultiRocket [21] are improvements of the orig-
inal idea. All the hyper-parameters for ROCKET were learned from the UCR
archive. The authors selected 40 random datasets from the archive and used
them as the development set to find the best values for the hyper-parameters.
Finally, all the kernel weights are sampled from a distribution N (0, 1). After the
transformation step, the authors use classic linear classifiers Ridge or Logistic
Regression.

The second classifier is dResNet [3] which is a variation of ResNet [9]. This
last one, originally designed for image classification, was used for the first time in
TSC in [24]. It introduced the key concept of shortcut connections to mitigate the
gradient vanishing problem. The main architecture of the network is composed
of three consecutive blocks which in turn contain three different convolutional
layers. These three blocks are followed by a GAP layer and a softmax layer for
classification.

The dResNet version uses the same architecture with two differences specif-
ically designed to work alongside dCAM. Firstly, for a multivariate time series
X with d channels, i.e., a matrix X = [X0,X1, . . . , Xd−1], the input C(X) of
the network will be a 3D tensor:

C(X) =

⎡
⎢⎢⎢⎣

Xd−1 X0 . . . Xd−3 Xd−2

...
...

...
...

...
X1 X2 . . . Xd−1 X0

X0 X1 . . . Xd−2 Xd−1

⎤
⎥⎥⎥⎦
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In other words, the input is turned from a 2D matrix into a 3D one in which
each row contains the d channels in different positions. The second change was
to turn the convolution shapes from 1D to 2D to have the same output shape as
ResNet. These changes were made so that the network is able to capture patterns
depending on multiple channels while still learning on individual channels.

The third model we used is the well-known Ridge Classifier [10], meant to
be a baseline in the experiments: we used the scikit-learn [17] package RidgeCV
using Cross Validation, leaving the other solver parameters as default. This clas-
sifier disregards the time ordering in each time series as it treats each time series
as a tabular vector of features.

3.2 Explanation Methods

The first explanation method considered in this paper is SHAP [14] which
measures feature importance using Shapley values borrowed from game theory.
SHAP quantifies the contribution of each feature by examining the differences
in the model output when a specific feature is masked, i.e., it is replaced with
a specific value and when it is not. SHAP considers every possible masking
configuration, thus is computationally expensive. The timeXplain library [15]
applies SHAP on the UTSC task by dividing the time series into segments, each
is treated as a feature. The segmentation exploits locality in time series and
significantly reduces the number of features before applying SHAP. As SHAP
is a model-agnostic method, it works with any TSC model. We couple it with
ROCKET due to its efficiency and accuracy.

The second explanation method (used along dResNet), is dCAM [3]. It com-
putes CAM [25] for each row of the input (described in Sect. 3.1), resulting in a
2D matrix M where all channels are brought back to their original positions to
evaluate their contribution. Since the network is trained to compute meaningful
predictions regardless of the order in which the channels are provided, dCAM
computes k different matrices M each of them obtained by a different random
permutation of the channel order: all these k matrices are then averaged into
M̂. The final step to retrieve the explanation W consists in filtering out unin-
formative time points and uninformative channels using respectively the average
value of M̂ in each channel and the variance of all positions for a single channel.
dCAM can tell how important a time point was for the classification by taking
the differences in M̂ when the time point is present in different positions.

The third explanation method is Ridge. As mentioned before, this method is
intrinsically explainable because the explanation weights are the weights learned
by the classifier. The model is basically a vector of coefficients for each feature,
i.e., data point in the time series.

The final explanation method Random is a baseline that generates the
saliency map W by sampling values randomly from a continuous uniform distri-
bution. The idea is that any good explanation method should provide a better
explanation than the random one.
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Fig. 2. Sample time series: Fig 2a PesudoPeriodic negative sample. Fig 2b one instance
from CMJ Bend. Fig 2c one instance from MP Normal.

4 Datasets

We work with 3 synthetic multivariate time series classification datasets and 2
real-world ones. In Fig. 2 we present one sample from one synthetic dataset and
one sample each for the real-world datasets.

4.1 Synthetic Datasets

For the synthetic datasets, we use the multivariate time series classification
benchmark by Ismail et al. [11]. We generated three different datasets, using
the Pseudo Periodic, Gaussian and Auto Regressive distributions. Each has 100
samples in both train and test sets, with L = 100 and d = 20. The two classes for
classification are positive and negative. The discriminative data points are sta-
tionary and within a small box, i.e., Xj

i is discriminative if and only if 10 ≤ i < 20
and 0 ≤ j < 10. In other words, 50% of the channels and 10% of the time steps
are relevant. Overall, only 5% of the time series matter for predicting the class.

4.2 Real-World Datasets

The first real-world dataset is Counter Movement Jump (CMJ) [12]. The
data were collected using accelerometer sensors attached on the participants
while performing the counter-movement jump exercise. The three classes are:
jumps with acceptable form (class 1), with their legs bending during the flight
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(class 2), and with a stumble upon landing (class 3). The training set has 419
samples while the test set has 179 samples. Each time series has 3 channels
(d = 3) that record the acceleration in x, y, and z axis. The original data is
variable-length thus we resampled every time series to the same length (L = 596).
From the domain experts, we know that the distinctions between classes are more
observable on channel y, thus it makes this channel the most important one.

The second real-world dataset is Military Press (MP) [20]. To collect the
data, 56 participants were asked to perform the Military Press strength-and-
conditioning exercise. Each of them completed 10 repetitions in the normal form
and another 30 in induced forms, with 10 repetitions each (simulating 3 types of
errors). The time series were extracted from video using the OpenPose library
[4]. The dataset has 1452 samples in the training set and 601 in the test set, each
time series has 161 time points and 50 channels corresponding to the x, y coor-
dinates of 25 body parts. From the original dataset we have selected 8 channels
representing the y coordinates of both left and right Shoulder, Elbow, Wrist and
Hip. This dataset has 4 different classes representing the kind of exercise done,
namely Normal (N), Asymmetrical (A), Reduced Range (R) and Arch (Arch).
We know from domain experts that the importance of channels for this dataset
is in decending order: Elbows, Wrists, Shoulders, Hips. High accuracy can be
obtained only by using the Elbows and Wrists while it is not possible to achieve
a high accuracy by only using one channel. We later show experiments both in
Sect. 5 and in the Appendix to document this behaviour.

5 Experiments

In our experiments we aim to understand the strengths and weaknesses of exist-
ing methods for explaining multivariate time series classification. As summarised
in Table 1, we compared one of the bespoke multivariate method found (dRes-
Net), the popular SHAP, which has the downside of being adapted to provide a
2D heatmap, and Ridge as a sanity check baseline. Some different coupling such
as ROCKET paired with dCAM or dResNet paired with SHAP are not possible
respectively because dCAM can only explain models having a GAP layer and
the timeXplain library (used for ROCKET-SHAP concatenated) is implemented
only for 1D-vector instances (univariate time series).

Table 1. Summary of the explanation methods tested in this paper.

Classifier Explanation Method MTS Approach

dResNet dCAM Bespoke MTSC

ROCKET SHAP Concatenated

ROCKET SHAP Channel by Channel

Ridge Classifier Ridge Classifier Concatenated

n/a Random n/a
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To make the timeXplain library work with MTS, we apply the following two
strategies (Fig. 3): (1) Concatenated: Concatenating all the channels to a single
univariate time series. As a result, the output saliency map is also univariate
and thus needs to be reshaped. (2) Channel by Channel: Train and explain
one model for each channel independently. The MTSC model in this case is an
ensemble of per-channel UTSC models.

For SHAP-channel-by-channel, we assign the number of segments to 10 while,
for SHAP-concatenated, the number of segments is set to d × 10. Since Ridge
can only work using univariate datasets, we only used the dataset concatenation
strategy for this classifier. The output of all explanation methods is a saliency
map in the form of either d × L or d × 10 matrix (reshaped if necessary).

Fig. 3. Strategies to use the timeXplain library in a multivariate scenario, for d = 3.
In Fig 3a, a classifier is trained for each channel: for explaining each classifier, d heat
maps of length 10 are produced: stacking these vectors together results in a matrix of
dimension d× 10 . In Fig 3b the time series are concatenated and one single classifier
is trained. We explain the classifier using a number of segments d×10 and reshape the
resulting vector into a 2D matrix having the same shape as in the previous case.

It is important to note that we have only one bespoke method for multivariate
time series, dCAM, that computes a saliency map of the same shape as the
original time series instance.

All the experiments were done using a machine with 32 GB RAM, Intel i7-
12700H CPU and an Nvidia GeForce RTX 350 Ti GPU (the GPU was used only
for dResNet/dCAM). All the code used to perform the experiments is available
on a Github repository2.

5.1 Classification Accuracy Analysis

Before diving into the explanations, we first take a look at the accuracy of the
classifiers used for producing the explanations. All the classifiers listed in Table 2
were trained 5 different times (for ROCKET we also tried to either normalize the
data or not). In this Table are reported the most accurate ones i.e., the models

2 https://github.com/mlgig/Evaluating-Explanation-Methods-for-MTSC.

https://github.com/mlgig/Evaluating-Explanation-Methods-for-MTSC
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used in the experiments as well as the accuracy for the univariate concatenated
datasets.

Having a look at the table we can notice that all the times both ROCKET and
dResNet have high accuracy (with some exceptions for the synthetic datasets):
this is an important pre-requisite when comparing explanations methods applied
to different classifiers as we did.

We note that RidgeCV does particularly well on the synthetic datasets. On
Military Press, the multivariate models are more accurate than the univariate
ones (on concatednated data). This is expected since it is difficult to achieve
a high accuracy with a single channel for this dataset, so this is a trully mul-
tivariate dataset. Concatenating all the channels for Military Press hurts more
dResNet which loses 9% points accuracy, while ROCKET loses only 4. For CMJ,
the behaviour is reversed, with univariate models being more accurate than the
multivariate ones. dResNet has a noticeable 9% points improvement on the con-
catenated dataset, while ROCKET gains 1% point.

Table 2. Accuracy for the models listed in Table 1 plus dResNet concatenated and
ROCKET multivariate: using this table it is possible to appreciate the differences
when using multivariate vs univariate datasets.

Classifier/Dataset PseudoPeriodic Gaussian AutoRegressive CMJ MilitaryPress

dResNet multivariate 1.0 0.83 0.82 0.82 0.79

dResNet concatenated 1.0 0.89 0.81 0.91 0.68

ROCKET multivariate 1.0 0.93 0.87 0.87 0.87

ROCKET concatenated 1.0 0.72 0.73 0.88 0.83

ROCKET ch-by-ch 0.99 0.72 0.95 0.85 0.65

RidgeCV 1.0 1.0 1.0 0.44 0.61

5.2 Synthetic Data

For the synthetic data, we performed 5-fold cross-validation to train a Logistic
Regression classifier for ROCKET, allowing up to 1000 iterations. For dResNet
we used 64 filters, and we trained using the Cross-Entropy Loss and Adam
optimizer with a learning rate set to 0.0001. Finally for RidgeCV we used the
standard scikit-learn parameters for cross-validation using 5 folds.

Regarding the explanation methods we used 10 segments for ROCKET con-
catenated in the channel-by-channel scenario and 200 segments in the concate-
nated one; for dCAM the number of permutations to evaluate k was set to 200
(this is the maximum recommended in [3]).

The steps done for syntethic data evaluation are illustrated in Fig. 4. The first
step is to reshape all the explanations so that they all have the same dimension.
Specifically, the saliency maps we obtained from dCAM and Ridge have a shape
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Fig. 4. Steps performed in the synthetic data evaluation when comparing dCAM and
SHAP. In Step 1, dCAM is reshaped into (20, 10) averaging 10 consecutive elements in
each channel, while SHAP is untouched. In Step 2, the reshaped matrices are rescaled
in the range [0, 100]. In Step 3, both the explanations achieved so far are compared
against the ground truth matrix G and finally in Step 4 the scores computed in the
previous step are evaluated.

of d × L = 20 × 100 while the ones from SHAP concatenated and channel-
by-channel have a shape of d × n. segments = 20 × 10. We chose to average 10
consecutive elements for dCAM and Ridge explanation as we empirically verified
that all the metrics had slight improvements. The alternative was to repeat 10
times the same item in SHAP explanations.

After this stage, all explanations have the shape of 20 × 10.
The second step rescales the explanation weights as they can have different

magnitudes among different instances and different methods. First of all, we take
the absolute value of each explanation (to also take into consideration variables
that have a negative contribution for the classification) and then we rescale by
min-max normalization in the range [0, 100].

The third step is to instantiate a ground truth matrix G and compare each
explanation against it. For the settings described before, this is a binary matrix
having shape 20 × 10 (same dimension of explanations after Step 2), all the
elements are set to 0 except for the ones in Gj

i with i = 1, 0 ≤ j < 10 that are
set to 1. In other words, this is a binary matrix describing whether or not a
segment is important for the classification.

To be noted that synthetic dataset parameters such as the number and range
of informative time points and channels, and explanation method parameters
such as the number of segments were chosen so that the resulting segments are
made up either by only informative time points or by only uninformative time
points.

The last step is simply to compute the metrics used for the evaluation i.e.,
Precision, Recall, F1-score, PR-AUC and ROC-AUC [3]. For Precision and Recall
we had to fix a threshold dividing the values considered uninformative from the
ones considered informative: we have chosen 50 as the medium value between 0
and 100. On the other hand PR-AUC and ROC-AUC do not fix any threshold
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as they average multiple scores using different thresholds into one single value.
All these metrics computed for the 3 synthetic datasets are reported in Table 3.

Table 3. Scores and runtime of each XAI method for synthetic datasets: h stands for
hours, m stands for minutes and s stand for seconds; ch-by-ch stands for channel by
channel.

Dataset XAI Method Precision Recall F1 PR-AUC ROC-AUC Time

Pseudo-Periodic SHAP ch-by-ch 0.73 0.94 0.82 0.99 0.99 6.2 h

Pseudo-Periodic SHAP concatenated 0.92 0.66 0.77 0.99 0.99 3.5 h

Pseudo-Periodic dCAM 0.50 0.50 0.50 0.63 0.98 50m

Pseudo-Periodic Ridge 1.0 1.0 1.0 1.0 1.0 0 s

Gaussian SHAP ch-by-ch 0.88 0.63 0.73 0.91 0.99 6.2 h

Gaussian SHAP concatenated 0.34 0.18 0.24 0.16 0.71 3.5 hr

Gaussian dCAM 0.36 0.15 0.21 0.35 0.94 50m

Gaussian Ridge 0.83 1.0 0.9 1.0 1.0 0 s

Auto-Regressive SHAP ch-by-ch 0.85 0.60 0.71 0.49 0.77 6.2 h

Auto-Regressive SHAP concatenated 0.27 0.13 0.18 0.29 0.57 3.5 h

Auto-Regressive dCAM 0.34 0.15 0.21 0.06 0.57 50m

Auto-Regressive Ridge 1.0 1.0 1.0 1.0 1.0 0 s

All Random 0.05 0.15 0.08 0.05 0.5 0 s

Looking at the table it is possible to note that all the time Ridge has perfect
metrics but for Recall (and consequently F1 score) with the Gaussian dataset.
These results along with the one provided in Table 2 (perfect accuracies of Ridge
for the 3 synthetic datasets), are very strong evidence that these commonly used
benchmarks are not ideal for time series analyses at least using the parameters
described before. We think this is the case due to the way the benchmarks are
created, by adding or subtracting a single value to consecutive time points. This
means that a simple tabular classifier such as Ridge is enough to perfectly classify
these datasets. In conclusion, we recommend against the use of these synthetic
benchmarks for analysing time series classification or explanation methods.

Comparing the other method, most of the time SHAP channel by channel is
the second best model, while comparing dCAM with SHAP concatenated there
is no clear winner as in some metrics the first one has better results while in
some others is the opposite.

The two last points to be noted are that some methods have metrics close
to random, especially for Recall, and the time required for computing the expla-
nations is high, taking into account that these are small datasets: 50 min for
dCAM, 3.5 h for SHAP concatenated, and more than 6 h for SHAP channel by
channel.



Explaining Multivariate TSC 171

5.3 Real-World Data

In this section we used some different hyper-parameters: for dResNet the number
of filters is now set to 128 as we found better classification results, the number
of dCAM permutations k was set to 6 for dCAM (this dataset has 3 channels so
the number of possible channel permutations is just 6) while it is still 200, i.e.
the maximum recommended, for MP which has 8 channels. We set the number
of timeXplain segments using the concatenated dataset to 30 for CMJ and 80
for MP so that they are still equal to d × 10.

Looking at the classifier accuracy in Table 2 we notice how for the two real-
world datasets, the accuracies achieved by dResNet and ROCKET are compa-
rable or even better when using the concatenated dataset versions. This means
that analysing the explanation methods for MTSC by turning the multivariate
problems into univariate ones could be useful.

The close accuracy between original multivariate and concatenated univariate
datasets can arise some questions whether these datasets are truly multivariate
(i.e., the necessary information for correct classification is spread among different
channels). This seems to be the case for Military Press, but less so for CMJ. We
plan to investigate further this point in future work.

In this work we decided to use the concatenated datasets and the methodol-
ogy developed by [16] to evaluate the explanation methods. For the case of dCAM
which produces a matrix as an explanation, we flatten the matrix to a vector
by concatenating the rows and using it as any other univariate explanation. So
dCAM is obtained in a truly multivariate setting (dResNet is a multivariate
classifier and dCAM a multivariate explanation), but reshaped to look like a
univariate explanation. The explanations obtained from SHAP and Ridge, on
the other hand, are univariate explanations obtained by first concatenating the
channels and then running univariate classifiers.

For the real-world datasets we do not have precise explanation ground truth
as for the synthetic datasets, but we do have domain knowledge about which
channels and parts of the time series are important for the classification.

Finally in this section we didn’t include SHAP channel by channel in the MP
dataset experiment as the accuracy is low (Table 2) therefore it does not make
sense to derive an explanation.

Evaluation of Explanation Methods. We apply AMEE [16], an explana-
tion evaluation method for the univariate time series classification task, on the
CMJ and MP univariate datasets obtained through concatenating all channels.
This method aims to measure the faithfulness of an explanation by estimat-
ing its impact on a set of independent classifiers (the referee classifiers). If an
explanation correctly points out the important areas of a univariate time series,
perturbation of such areas will lead to a drop in accuracies of the referee classi-
fiers. The faithfulness of the explanation is then calculated using the Area Under
the Curve (AUC) of the accuracy drop curves of each of the referee classifiers.
AMEE is designed to be robust by employing various perturbation strategies
(i.e. how an important area is perturbed and replaced with a new value) and
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a diverse set of high-performing referee classifiers. The main idea is that mask-
ing away important parts of the data as pointed out by the explanation, should
affect a set of high performing classifiers leading to a drop in accuracy across
the board.

Table 4. Accuracy of referee classifiers for the AMEE evaluation of explanation meth-
ods for univariate time series classification.

Dataset MrSEQL ROCKET WEASEL 2.0

CMJ-concat 0.76 0.88 0.92

MP-concat 0.82 0.84 0.80

For our task, we use the default perturbation strategies with three classi-
fiers included in the standard referees set: MrSEQL [12] WEASEL 2.0 [19] and
ROCKET (for more information and results about this methodology we invite
the readers to have a look to the original publication [16]). Table 4 shows the
accuracy of these referee classifiers on the evaluated datasets.

The result of the explanation evaluation is presented in Table 5 as well as the
methodology and the evaluation running time. The methodology running time is
dependent on the number of both perturbation strategies and employed referees.
It is specific to our choice of the three mentioned referees and four perturbation
types using Mean and Gaussian sample from both time-point dependent (local)
and time-point independent (global) statistics of the test samples. Looking at
the second one (time for running the explanation methods) we notice the high
SHAP computational complexity: this was the main reason why we used only
2 real-world datasets for the experiments. We focused on human motion data
because in this case we can rely on domain expertise.

From the quantitative evaluation with AMEE, we note that for the CMJ
dataset, SHAP concat is the best method, although it is close to a random
explanation. dCAM ranks third for this dataset. We note that this dataset is
quite noisy due to quiet parts after the jump, and this could explain why SHAP
and Random are so close in ranking.

For the MP dataset, SHAP concatenated is by far the best method, signifi-
cantly better than dCAM, as well as Random and Ridge. This is an interesting
finding considering that dCAM was proposed to deal with datasets where there
are clear dependencies between channels, but for MP this method does not seem
to perform so well.

We supplement the quantitative ranking with a more detailed qualitative
analysis in the Appendix. In short we find that for CMJ, the importance rankings
of channels given by SHAP concat and dCAM are the same, while for MP, SHAP
provides a ranking more in line with domain knowledge, while dCAM places the
least informative channels at the top of the ranking.
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Table 5. Results of AMEE to rank XAI methods on CMJ and MP datasets concate-
nated.

Dataset XAI method Explanation Power Rank Evaluation Time Explanation Time

CMJ-concat SHAP concat 1.00 1 2 h 7.15 h

Random 0.99 2 2 h 0 s

dCAM 0.39 3 2 h 30 s

SHAP ch-by-ch 0.05 4 2 h 7.5 h

Ridge 0.0 5 2 h 0 s

MP-concat SHAP concat 1.00 1 4.8 h 24 h

dCAM 0.33 2 4.8 h 15 m

Random 0.07 3 4.8 h 0 s

Ridge 0.0 4 4.8 h 0 s

6 Conclusion

In this paper we have investigated explanation methods for MTSC. We studied
two very popular explanation methods, dCAM and SHAP, and have provided a
quantitative and qualitative analysis of their behavior on synthetic as well as real-
world datasets. We found that adaptations of SHAP for MTSC work quite well,
and they outperform the recent bespoke MTSC explanation method dCAM. We
have also pointed out that a very popular synthetic MTSC benchmark does not
seem suitable for MTSC evaluation, since a simple Ridge classifier outperforms
all other methods both in classification accuracy and in explanation quality.
Finally, while SHAP seems to work effectively to point out important time series
channels and time points, we highlighted the time required to run SHAP and
pointed out the open problem of excessive time requirements for this method.
In future work we plan to investigate the computation time for SHAP, as well
as other frameworks for evaluating bespoke explanation methods for MTSC.

Acknowledgments. This publication has emanated from research supported in part
by a grant from Science Foundation Ireland under Grant number 18/CRT/6183. For
the purpose of Open Access, the author has applied a CC BY public copyright license
to any Author Accepted Manuscript version arising from this submission.

References

1. Babayev, R., Wiese, L.: Interpreting decision-making process for multivariate time
series classification. In: Bellatreche, L., et al. (eds.) ADBIS 2021. CCIS, vol. 1450,
pp. 146–152. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85082-
1 14

2. Bagnall, A., et al.: The uea multivariate time series classification archive 2018.
arXiv preprint arXiv:1811.00075 (2018)

3. Boniol, P., Meftah, M., Remy, E., Palpanas, T.: DCAM: dimension-wise class acti-
vation map for explaining multivariate data series classification. In: Proceedings of
the 2022 International Conference on Management of Data, pp. 1175–1189 (2022)

https://doi.org/10.1007/978-3-030-85082-1_14
https://doi.org/10.1007/978-3-030-85082-1_14
http://arxiv.org/abs/1811.00075


174 D. I. Serramazza et al.

4. Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: Openpose: real-
time multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pat-
tern Anal. Mach. Intell. (2019)
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Abstract. Segmentation of multivariate time series data is a valuable
technique for identifying meaningful patterns or changes in the time
series that can signal a shift in the system’s behavior. We introduce
a domain agnostic framework ‘tGLAD’ for multivariate time series seg-
mentation using conditional independence (CI) graphs that capture the
partial correlations. It draws a parallel between the CI graph nodes and
the variables of the time series. Consider applying a graph recovery model
uGLAD to a short interval of the time series, it will result in a CI graph that
shows partial correlations among the variables. We extend this idea to the
entire time series by utilizing a sliding window to create a batch of time
intervals and then run a single uGLAD model in multitask learning mode
to recover all the CI graphs simultaneously. As a result, we obtain a cor-
responding temporal CI graphs representation of the multivariate time
series. We then designed a first-order and second-order based trajectory
tracking algorithm to study the evolution of these graphs across distinct
intervals. Finally, an ‘Allocation’ algorithm is designed to determine a
suitable segmentation of the temporal graph sequence which corresponds
to the original multivariate time series. tGLAD provides a competitive time
complexity of O(N) for settings where number of variables D << N . We
demonstrate successful empirical results on a Physical Activity Monitor-
ing data. (Software: https://github.com/Harshs27/tGLAD).

Keywords: Multivariate time series segmentation · Conditional
Independence Graphs · Sparse Graph recovery

1 Introduction

Time series segmentation is the process of dividing a time series into multiple
segments, or sub-series, based on certain characteristics or patterns. Segmen-
tation has many benefits, such as reducing a long time series into manageable
sections to facilitate labeling by a human or machine annotator, and uncovering
unexpected actionable patterns in data through exploration. For example, it can
be used in finance to identify trends and patterns in stock prices, in marketing
to analyze consumer behavior, and in healthcare to monitor patient vital signs.
This helps to understand the underlying dynamics of the data and even make
predictions about future events [2,21,37].
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There are numerous algorithms available for segmenting time series with
majority of them primarily designed to handle the univariate case. If N is the
length of the time series, most algorithms have an expected time complexity of
O(N2), however, some more recent algorithms have achieved an O(N log N) time
complexity with certain limiting approximations. Some time series segmentation
methods are designed for specific domains, limiting their broader application.
Additionally, some methods make assumptions about the semantic segments
being well-defined, but they may not always align with real-world data and
thereby hinder their effectiveness. The extensions suggested for these methods
to handle multivariate data are non-trivial and often do not perform well in
practice. Related works section covers them in detail.

Consider a small slice of a multivariate time series consisting of D variables,
say from T1 to T10 which contains no crucial segmentation points. For this slice,
we can expect the correlation between the D variables to be roughly the same
throughout corrD(T1) ∼ corrD(T10). Now, let’s assume that there is a segmenta-
tion point at T11. For instance, if we are monitoring the sensor data of an athlete,
we can consider that at time T11, the athlete switched activity from jogging to
sprinting. We now expect that the correlations among the variables will change
at the segmentation points, corrD(T10) �∼ corrD(T11). Our proposed framework,
called tGLAD, is designed to efficiently detect this change of correlations which
indicate segmentation points.

To realize this intuition, we identified a novel cross-domain application of
sparse graph recovery for time series analysis. Briefly, given input variables and
their samples, sparse graph recovery methods output a graph whose edges cap-
ture the direct dependencies among the variables. In our work, we focus on recov-
ering special type of graphs, called the conditional independence (CI) graphs [28].
The CI graphs capture the partial correlations between the variables, which can
be either positive or negative. Among the many different algorithms to recover
CI graphs, we choose a recently developed state-of-the-art deep model called
uGLAD [31,32]. Its multitask learning ability enables a single instance of the model
to run on batch input and recover multiple graphs simultaneously, a property
that paves way for the high efficiency of tGLAD. Although, one can theoretically
utilize any algorithm under the larger umbrella of the sparse graph recovery
methods, the methods section will highlight the key reasons which justifies our
choice of using the combination of CI graphs and uGLAD.

The process followed by the tGLAD framework for doing multivariate time
series segmentation is as follows. We divide the time series into sub-sequences or
batches and then run a CI graph recovery model uGLAD that gives a correspond-
ing temporal graphs. The nodes of CI graphs are the variables of the multivariate
time series and the edges capture the partial correlation strength between the
variables. In essence, we have distilled down some relevant information of the
time series in the temporal CI graphs. As per our intuition, the instances where
the consecutive CI graphs differ a lot in their correlations, those points of the
temporal graphs will correspond to the segmentation points in the time series.
We use this insight to develop our multi-step framework tGLAD. Thus, we devel-
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oped efficient algorithms to capture the dynamics or the evolution pattern of the
temporal CI graphs which in turn help us identify the segmentation regions in
the original time series.

Listing the key contributions of our work. Please note that we use the terms,
time series and sequences, interchangeably throughout.

1. A novel cross-domain approach for multivariate time series segmentation
based on using sparse graph recovery algorithms.

2. Efficient method to give linear O(N) time complexity in terms sequence length
for cases where the number of variables follow D3 << N

3. Provide explainability and transparency by giving insights into reasons for
the segmentation.

4. A domain agnostic framework that can be applied for time series from various
domains.

2 Related Works

Our framework is a combination of the literature from time series segmentation
and sparse graph recovery. So, we discuss relevant research from both of them
to provide background knowledge.

Segmentation Methods . There are several time series segmentation methods
available that use different approaches to segment a time series into different
classes based on changes in its temporal shape patterns. We divide the existing
methods into domain specific and domain agnostic ones.

Domain Specific . If one narrows down the scope for analysing time series to
a specific field, specialized methods can be developed by utilizing the domain-
specific insights. Survey in [17] did a collective analysis of various such meth-
ods and also highlighted one key insight that for almost all the methods some
background on the nature of the domain and motion is needed. Although, the
recent observed trend is to develop domain agnostic approaches and we can find
interesting techniques in this category. For example, Automobile trajectories
were studied in [10], electroencephalography data was analysed in [15], electrical
power consumption analysis in [23], music sequence analysis in [26], biologi-
cal time series in [21], human motion segmentation was investigated in [2,3,16]
among others.

Domain Agnostic . In attempt to design domain agnostic techniques for wider
adaptability, FLOSS (Fast Low-cost Online Semantic Segmentation) [8] was
developed. It is a popular method which produces an Arc Curve (AC) that anno-
tates the original time series with information about the likelihood of a regime
change at each point in the series. The AC is used to identify segments with
similar temporal shape patterns that are likely to belong to the same class and
occur within close temporal proximity to each other. Another method called
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ESPRESSO (Entropy and ShaPe awaRe timE-Series SegmentatiOn) [5], is a
hybrid approach that uses both shape pattern and statistical distribution of
time series to segment time series data. ESPRESSO uses a modified version of
FLOSS by incorporating the Weighted Chained Arc Curve to capture the density
of pattern repetition with time. Recently proposed ClaSP (Classification Score
Profile) is a self-supervised time series segmentation method that uses overlap-
ping windows to split time series into hypothetical partitions. For each partition,
a binary classifier is trained and evaluated using cross-validation. The degree of
self-similarity is recorded for each offset and then the classification score profile
is computed, which is ultimately used for segmenting time series data [6]. Other
relevant methods include [4,12,18,19].

Fig. 1. Overview of Sparse Graph Recovery methods. We focus on methods that recover
undirected graphs which capture direct dependence among their nodes or features.
tGLAD framework utilizes a recently developed deep model, uGLAD, that outputs a con-
ditional independence graph between in the features. Our framework can potentially
use other methods and will be interesting topic for future explorations. (partly bor-
rowed from [30])

Sparse Graph Recovery. Given data with D features and M samples as
input, the aim of the sparse graph recovery methods is to obtain a probabilistic
graphical model [14] that potentially shows sparse connections between the D
features. We focus on methods that recover undirected graphical models, refer
Fig. 1. Sparse graph recovery methods have been used for various applications
like gene regulatory network discovery [1,11,20,34–36], understanding Digester
functioning to increase Methane yield [32], extracting insights from an Infant
mortality data [29,30], studying autism by analysing brain sensory signals [22]
among many others.

Conditional Independence Graphs. The edges of a CI graph show the partial
correlation between the nodes or features. The partial correlation can be con-
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sidered as capturing direct dependency between the features as it is the condi-
tional probability of the features under consideration given all the other features.
Refer inner block in orange of Fig. 1. Popular formulations of recovering CI graph
include optimizing the graphical lasso objective [7,25] which include deep mod-
els like [27,31–33] or dynamic programming based approach to directly evaluate
the expression of partial correlations. Survey [28] formalizes the definition of CI
graphs, categorizes various methods that recover such graphs, describe and com-
pares their performance, provide their implementation details and discuss their
applications. It is a good entry point to understanding the umbrella of meth-
ods that recover CI graphs. The method by [9] they utilized temporal graphs
to understand dynamics of systems which is similar idea as ours but was not
developed for time series segmentation settings.

3 Methods

We introduce the necessary definitions and notations to facilitate our discussions
followed by the steps followed by the tGLAD framework.

3.1 Definitions

A multivariate time series T of length N and dimension D is a sequence of
real-valued vectors

T = t1, t2, . . . , tN , where ti ∈ R
D

A Subsequence is defined as a local section of a time series that consists
of a continuous subset of its values. A subsequence Ti,M of a time series T is
a continuous subset of the values from T of length M starting from position i.
Formally, Ti,M = ti, ti+1, . . . , ti+M−1, where 1 ≤ i ≤ N − M + 1.

In order to extract continuous subsequences from time series, we utizlize the
stride length shifting to determine the next subsequence. In time series data,
the stride length is the number of data points by which we shift the starting
position of the current subsequence to extract the position of the next subse-
quence. For example, a stride length s means that if the current subsequence is
located at Ti,M where i where is the starting position of the subsequence from T
with length M , then the next subsequence is Ti+s,M with the starting position
at i + s.

3.2 tGLAD Framework

Figure 2 enumerates the steps followed by tGLAD to do multivariate time-series
segmentation. The details for each of these steps are given below.

(A) Identifying variables and prepare batch input for sparse graph
recovery

For all the variables in the given multivariate time series, basic preprocessing
is done which includes missing value imputation using a forward filling algorithm.
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Fig. 2. tGLAD framework. (A) The time series is divided into multiple intervals by
using a sliding window to create a batch of intervals. (B) Run a single uGLAD model in
multitask learning (or batch) mode setting to recover a CI graph for every input batch.
This gives a corresponding set of temporal CI graphs. The entire input is processed in
a single step as opposed to obtaining a CI graph for each interval individually. (C1)
Get the first order distance, dG sequence, of the temporal CI graphs which captures
the distance between the consecutive graphs. This is supposed to give higher values
at the segmentation points. (C2) Again take a first order distance of the sequence
in the previous step and then its absolute value to get d2G sequence, which further
accentuates the values at the segmentation points. (D) Apply a threshold to zero out
the smaller values of d2G and identify the segmentation blocks using an ‘Allocation’
algorithm.
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The data is now partitioned into small chunks using a fixed window size M and
stride length s and runs over the entire time series. The window size determined
based on the approach suggested in [13]. We now end up with B = (N −M +1)/s
batches, with each having M samples for D variables. The input to the graph
recovery algorithm will be the batch of samples, represented as a tensor of size
X ∈ R

B×M×D.
(B) Obtaining the temporal Conditional Independence graphs

Algorithm 1: Allocating segments
Function get-segments(d2G, Z=5):

B ← len(d2G)
labels ← [1] × B
/* Removing noise */
d2G < 0.5 = 0
/* The window size is M */
For i ← 0 to B do

If d2G[i] ¿ 0 then
start = max(0, i − M · Z)
end = min(B − 1, i + M · Z)
labels[start : end] ← 0

return labels

The aim of the sparse graph
recovery algorithm is to run
on the input from step (A),
denoted by X and output
corresponding set of graphs,
whose adjacency matrix is rep-
resented here by the tensor
P ∈ R

B×D×D. There are
2 key requirements from any
such method, namely (1) The
resultant graph should capture
direct dependencies between
the features (2) The method
should be efficient. We chose a
combination of CI graphs and
uGLAD model keeping in mind the desiderata desired.

Why CI Graphs? CI graphs capture partial correlations between the features
which model direct dependencies between them. The nodes are the features
and the edge weights carry the partial correlation value that lies in the range
[−1, 1]. This additionally provides us with the positive or negative correlation
information, which later help us in determining the relevant features that result
in a segmentation prediction as well as provide explainability and transparency
to our framework.

Why uGLAD ? Introduced in [31], uGLAD is a deep-unfolding (or unrolled algo-
rithm) based model which is an unsupervised extension of the GLAD [33] model.
These models are based on the optimization of the graphical lasso objective
which assumes that the observed data comes from an underlying multivariate
Gaussian distribution. Owing to the deep-unfolding done based on the Ater-
nating Minimization updates and then expressiveness provided by the neural
network based parameterization, these models are shown to better capture the
tail-distribution points and also improve sample complexity results. Apart from
the theoretical advantages and performance improvements over the other CI
graph recovery methods, uGLAD is efficient as well. The tensor based implemen-
tation of uGLAD allows it to do multitask learning. This enables a single model
to recover the entire batch of data simultaneously. We want to point out that
we consider the sample data within a window size follow i.i.d. setting for the
multivariate Gaussian assumption to work.
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We run uGLAD in ‘batch mode’ to obtain all the underlying precision matri-
ces at once, θ ←uGLAD(X), where θ ∈ R

B×M×D. The calculation of the partial
correlation matrix P is straightforward from Θ, refer [28]. The parameter shar-
ing across these different tasks helps maintain robustness against noisy data
and facilitates transfer learning. We thus obtain a series of temporal CI graphs,
represented by the adjacency matrices G = [G1, G2, · · · , GB ] ∈ R

B×D×D using
P. Each entry of the adjacency matrix is equal to the partial correlation value,
Gb[p, q] = ρ(Dp,Dq) for the bth batch and Dk represent the kth time series vari-
able. The temporal graphs can be seen as distilling some relevant information
from the original multivariate time series data in form of graphs.

(C) Towards segmentation of the corresponding temporal CI
graphs

Our formulation is based on the assumption that the key signals needed to
successfully segment the original time series are captured in the corresponding
temporal graphs and that the correlation among the features are informative
enough for the task. So, if we are able to segment the temporal graphs, we can
map the segmentation to the original time series.

(C1) We compute the first-order distance sequence dG ∈ R
B by finding the

distance of the consecutive graphs in the temporal graph series G. For each entry
b ∈ B of dG, we measure the distance between its recovered graph and the next
neighbor as

dG[b] = distance(Gb, Gb+1) =
∑

p,q

(Gb[p, q] − Gb+1[p, q]) ∀p, q ∈ {1, · · · ,D}

where weights are the partial correlation values of the edges of the CI graphs
under consideration.

(C2) Given the sequence dG, next we compute the second-order distance
sequence d2G by applying the following distance operation

d2G[b] = abs (dG[b] − dG[b − 1]) , ∀b ∈ (1, B)

The first-order distance measures the change between each recovered graph and
its next neighbor, while the second-order distance highlights potential segmenta-
tion points. While there are other distance metrics that can potentially be used,
in our experiments, we found that the first-order and second-order distances
described above worked well for detecting segmentation points. The output of
this trajectory tracking step is the d2G sequence.

D. Allocation algorithm for obtaining the final segmentation
We develop an ‘Allocation’ algorithm to obtain the final segmentation points

from the d2G sequence. We first filter out small noises in d2G by applying
a conservative threshold. We then traverse the sequence d2G sequentially and
mark the start of a segmentation a new block if we observe a non-zero value.
We also disregard any changes in behavior or segmentation points that occur in
less than Z times the window size (M), otherwise the segmentation size will be
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significantly smaller than the window size and we will not be able to catch it.
We usually choose Z ∼ 5 in our experiments. The allocation process (Alg. 1)
reads the d2G sequence and predict the tGLAD segmentation scores.

3.3 Time Complexity Analysis of tGLAD

We analyse the time complexity of each of the steps followed by the tGLAD frame-
work below.

– (A) Creation of batches will require a single full scan of the time series, so
complexity is O(N).

– (B) the time complexity of this step will consist of the input covariance matrix
creation O(N ·D2), and then running uGLAD in batch mode. For a single input,
uGLAD runs in O(D3 · E), so for B batches the sequential runtime will be
O(B ·D3 ·E). Since, we can process batches in parallel with uGLAD batch mode,
in practice we observe significantly less runtime. The worst case scenario will
be when B → N , giving time complexity as O(N · D3 · E).

– (C1) The first order distance function goes through the entire length of the
temporal graph sequence and each time enumerate all possible edges between
graphs having D nodes. So, it has a time complexity of O(N · D2) ∼ O(N).

– (C2) Creation of d2G will require a single full scan of the dG, so complexity
is O(N).

– (Allocation algorithm) Scans the d2G array once, so complexity is O(N).

The overall time complexity of the tGLAD framework in cases where the num-
ber of variables are not high, D3 << N , is O(N) + O(N · D3 · E) + O(N · D2) ∼
O(N). The worst case time complexity, where the number of variables are so
large that we cannot leverage the power of the multitask learning in batch mode
of uGLAD, is O(N) + O(N · D3 · E) + O(N · D2) ∼ O(N · D3).

4 Experiments

We evaluate the tGLAD framework on a real world body sensor dataset. Since, it is
a novel framework, we conduct several design choices experiments to understand
their impact on tGLAD’s performance.

4.1 PAMAP2 Dataset

To get a realistic sense about the effectiveness of our approach, we conducted
experiments on the PAMAP2 Physical Activity Monitoring dataset [24]. This
dataset captures sensor data from multiple participants engaging in a variety
of physical activities, making it a valuable resource for activity recognition and
algorithm development. Our analysis was primarily based on multi-dimensional
time series with the following three signals: the hand acceleration signal in the
x-axis and z-axis, and the ankle gyroscope signal in the x-axis, which allowed us
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to examine the movements and rotations of the hand and ankle during physical
activity.

Figure 2 (A & D) shows a three-hour segment of this data collected from one
of the participants, highlighting their physical activities such as ironing (44 min),
vacuum cleaning (42 min), and stair activity (ascending 15 min, descending
10 min), as well as periods of inactivity (transient). Figure 2 additionally shows
all the steps of the tGLAD framework followed in order to segment the data.

4.2 Results

We chose accuracy as the metric to evaluate the segmentation performance. The
accuracy is measured as the penalty for mislabeling the segmentation. For the
ground truth time series, we put label = 1 whenever an activity occurs and at
every segmentation point where there is no activity, we switch the label = 0. For
the prediction labels, we consider the d2G sequence obtained from Fig. 2(D) and
use the Allocation technique describe in Algorithm 1, with parameter Z = 5.

Fig. 3. Design choices for tGLAD . Examining the segmentation accuracy on the
PAMAP2 dataset which records body sensor data. We vary the window size on the
x-axis and for each window size, we evaluate the performance for varying batch sizes
(M). The stride length was fixed at 100 for all the experiments.

We achieved an accuracy of 84.1% for the PAMAP2 dataset using a win-
dow size of 1000, batch size of 64 and stride length of 100, indicating that the
tGLAD framework is effective for physical activity monitoring based time series.
The window size is the chunk of the time series considered at a time for pro-
cessing CI graphs, so it is an important parameter to be chosen while running
our framework. The batch size is the number of graphs that are recovered by a
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single uGLAD model. As we are using multitasking, the parameters of the model
are shared among the graphs within a batch, hence this is also an important
parameter that can affect tGLAD’s performance. Small batch size will lead to
increased runtime as more number of batches to process, less robust to noise
but more accurate graph recovery, while on the other hand, higher batch size
will be efficient in term of runtime and robustness to anomalies, but since it has
to recover graphs that are potentially sampled from different underlying distri-
butions, the accuracy might take a hit. So, it is imperative that we do a study
on effect of these design choices. Thus, in order to gain insights into the perfor-
mance of tGLAD with respect to the batch size and window size, we explored the
impact on the segmentation accuracy by doing a grid plot over a range of size
choices, as illustrated in Fig. 3.

Analysing the results indicate that changes in batch size and window sizes
do not significantly affect the accuracy of the segmentation. If we consider any
fixed window size, we do not see much variance in the performance over different
batch sizes, that suggests a good graph recovery performance of the uGLAD model.
Thus, we can potentially increase the batch size for faster runtimes, without
compromising much on the accuracy. Lots of research has been done on the
choice of window size, with some methods being more sensitive than others.
We do see variance in the performance of tGLAD with change in window size,
still the results suggest that a reasonable window size can be chosen to achieve
a satisfactory segmentation label. The choice of the window size also depends
considerably on the type of data as well.

5 Conclusions

We introduce a domain agnostic multivariate time series framework called tGLAD.
It is a novel cross-domain approach that maps the original time series to a cor-
responding temporal graph representation which makes the problem of finding
segmentation easier and efficient. The choice of a recently developed deep model
uGLAD for recovering conditional independence graphs gives the much needed
efficiency to our framework. We identified a unique use of the multitask learning
ability of uGLAD model which also makes the case of batch learning in sparse
graph recovery models more lucrative. Additionally, from the plethora of graph
choices available, this work also narrowed down the type to conditional inde-
pendence graphs. The CI graphs capture the intuition that correlation among
the multivariate timeseries variables will change significantly at the segmenta-
tion points. We demonstrate successful segmentation results on the challenging
PAMAP2 dataset, with achieving an accuracy of 84.10% along with performing
a parameter exploration study.

5.1 Future Work

We have plans to pursue two directions of research for expanding tGLAD. Firstly,
we will investigate the potential for segmenting univariate time series data using
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the tGLAD framework. our approach consists of ‘smartly’ converting the 1D
sequence to multidimensional time series and then use the tGLAD framework.
This approach seems promising due to its high efficiency in terms of time com-
plexity and hopefully good segmentation accuracy. Secondly, we aim to extend
the tGLAD framework to work in real-time or online settings. This will require
adapting the framework and evaluating the trade-offs between computational
efficiency and segmentation accuracy. The results of this research could have
significant implications for fields such as finance, healthcare, and industrial mon-
itoring.

5.2 Ethical Concerns

Our method does not introduce new ethical issues, but ethical considerations
would be important if it were to be applied to sensitive data.
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Abstract. With the rise of edge computing and the Internet of Things
(IoT), there is an increasing demand for models with low memory foot-
prints. These models must be adaptable to embedded system applica-
tions, while being able to leverage the large quantities of data recorded
in these systems to produce superior performance.

Automatic Neural Architecture Search (NAS) has been an active and
successful area of research for a number of years. However, a significant
proportion of effort has been aimed at finding architectures which are
able to effectively extract and transform the information in image data.
This has lead to search space design which is heavily influenced by the
heuristics of image classifiers.

We review and incorporate the characteristics of successful time-series
methods, while seeking to address traits of conventional NAS search-
space design which may be detrimental to performance on time-series.

This paper provides an in-depth look at the effects of each of our
design choices with an analysis of time-series network design spaces on
two benchmark tasks: Human Activity Recognition (HAR) using the
UniMib-SHAR dataset and Electroencephalography (EEG) data from
the BCI Competition IV 2a dataset.

Guided by these design principles and the results of our experimental
procedure, we produce a search space tailored specifically to time-series
tasks. This achieves excellent performance while producing architectures
with significantly fewer parameters than other deep learning approaches.

We provide results on a collection of datasets from the UEA Multi-
variate time-series Classification Archive and achieve comparable per-
formance to both deep learning and state-of-the-art machine learning
time-series classification methods, using a simple random search.

1 Introduction

Neural Architecture Search (NAS) is a method of automatic architecture dis-
covery and has been an active area of research for a number of years. Through
this process, a large space of possible models is traversed and evaluated in an
attempt to discover the optimal network architecture for a given domain task.
While automated architecture design is well studied with regard to image data,
its application to time-series problems has only recently begun to be investigated.
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NAS search spaces have evolved over time to contain a high density of
strong models. This has been achieved by adopting the principles that guide
manual architecture design and applying them to search space design. These
choices are easily seen when looking at cell-based search spaces such as NasNet
[1] and DARTS (Differentiable Architecture Search) [2], where repeating cells
are stacked often with residual connections between cells. When applying these
methods to a new domain, however, the heuristics which guided search space
design in one application may not be useful in another.

NAS search spaces can be considered restrictive in the diversity of models
contained within them. While these spaces are “large” (DARTS for example is
of order 1018), many design choices are made to remove poor models from the
space, reducing its overall diversity. While this likely improves the convergence
speed and anytime performance of an architecture search, it limits the discovery
of truly novel architectures which do not conform to traditional architecture
design rules [3].

While deep learning approaches have begun to show promising results, partic-
ularly in multivariate time-series classification, the fidelity of these approaches is
still dependent on the quality of manually designed architectures. In the domain
of image classification NAS has achieved great success discovering architectures
which outperform human designed architectures. This is the case despite the fact
that top-performing architectures - and even parameterisations - often exhibit
greater transfer-ability across tasks as evidenced by the relative ease of transfer
learning compared with time-series classification [4]. The wide variety of problem
characteristics in time-series tasks - such as dataset size, signal length, or dis-
criminatory features - makes designing an optimal ‘one-size-fits-all’ architecture
a challenging proposition. This highlights the opportunities for automatic archi-
tecture design methods which can discover architectures tuned to the specific
characteristics of a dataset.

This paper introduces a novel search space for time-series NAS, which
achieves competitive results compared with state-of-the-art (SOTA) time-series
classification methods across a diverse set of multivariate time-series classifica-
tion challenges, with only the most rudimentary search algorithm. We draw on
concepts from successful time-series classification methods, as well as incorporat-
ing the characteristics of modern convolutional vision networks, integrating them
into the design of a deep learning search space which produces highly efficient
architectures with strong performance for time-series classification.

2 Related Work

2.1 Time-Series Classification

Time-series classification tasks are dominated by models which can generate a
multitude of representations. A representation being a transform or encoding
of the raw time-series which may reveal useful patterns or information. Unlike
image classification models which often use deep repeating structures to extract
complex features, successful time-series models - whether they are deep learning
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or more traditional machine learning methods - are frequently characterised by
an emphasis on the ‘breadth’ of representations. The Hierarchical Vote Collective
of Transformation-based Ensembles (HIVE-COTE) [5] is a good example of this,
achieving SOTA performance by ensembling the predictions of a broad range of
classifiers. Rocket [6] and Canonical Interval Forest (CIF) [7] are other examples
of a focus on a diverse set of representations. These feature based methods, apply
a large collection of randomly generated transforms to produce features. These
features can then be used by a relatively simple classifier to achieve impressive
results.

2.2 Deep Learning for Time-Series

The application of deep learning techniques to time-series classification has
gained increasing attention in recent years. One of the earliest works in this
area is the study by Wang et al. [8] who proposed a deep learning framework
for time-series classification and compared convolutional neural networks (CNN)
with Multi-Layer Perceptrons (MLP), specifically looking at a ResNet architec-
ture and Fully Convolutional Networks (FCN). The authors demonstrated the
effectiveness of their proposed method on the set of UCR uni-variate time-series
problems.

In the study by Fawaz, Lucas, Forestier, et al. [9], the authors proposed
the use of InceptionTime, a modification of the Inception architecture designed
specifically for time-series classification. This achieved strong performance in
multivariate time-series classification tasks. The novel feature of InceptionTime
is its use of parallel 1D convolutional filters. The kernels of these convolutions
vary in length from 10 to 40, allowing the model to capture and extract patterns
at various time scales in the signal.

The success of this approach shows again the importance of a broad set of
representations but also the value in extracting information at different time
scales for successful performance across diverse problems. We aim to leverage
these insights in the application of NAS to discover effective architectures tai-
lored to specific problems.

2.3 Neural Architecture Search

NAS can be considered as a subset of the general problem of hyperparameter
optimisation. In a general sense, it frames any machine learning task as a bi-level
optimisation problem, wherein both a set of parameters weights and hyperpa-
rameters settings are optimised w.r.t to the training and validation losses respec-
tively. This is given by Eqs. 1 and 2, where θ is the parameters of a model and
λ is the architecture configuration, with θ∗ and λ∗ being the optimal value of
each respectively.

λ∗ = arg min
λ

Lvalidation(θ∗(λ), λ) (1)

s.t. θ∗(λ) = arg min
θ

Ltrain(θ, λ) (2)
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Initial approaches to architecture search within deep learning typically opti-
mised the number of layers and the operation on each layer using a fixed model
topology. This formulation is easily mapped to general hyperparameter opti-
misation methods with the number of layers, channels or kernels sizes being
individual hyperparameters.

Although some early work in neuro-evolution searched for simple models in
topological spaces such as NEAT [10], a significant innovation in the develop-
ment of NAS was to search for models in a topological space. Many of these
approaches used ‘factorised’ spaces such as hierarchical spaces or more famously
cell-based spaces and achieved significant success [1,11]. In this type of approach
architectures are constructed from repeating blocks which follows the character-
istics of successful human designed architectures. The overall aim of this is to
remove a large quantity of poorly performing architectures from the space while
retaining the majority of strong networks, which conform to these heuristics.

3 Designing a New Search Space

In this section, we introduce a novel search space designed specifically for the
characteristics of time-series data, which aims to effectively handle a wide range
of signal lengths and produce a diverse set of transforms akin to what we see in

Fig. 1. Comparison of down-sampling and network structure in a cell-based search
space and in our graph space.
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other successful time-series methods. Figure 1 shows the traditional cell-based
space compared with our approach.

In conventional cell-based network structure, down-sampling of the input
signal is coupled to the network depth occurring at fixed intervals between cells.
In contrast, our approach incorporates this down-sampling into the architecture
search. The advantages of this are twofold: firstly, it allows for the extraction
of features at multiple signal resolutions in parallel, where computation can be
performed at the most effective granularity for different discriminatory features.
Secondly, it avoids the need for very deep networks when dealing with long signal
lengths or manual tweaks to the down-sampling operations for specific tasks.

We define a model topology where configurations are described in terms of
a Directed Acyclic Graph (DAG) that defines the edges and connectivity of
an architecture, as well as a set of operations with one corresponding to each
of the defined edges. A valid architecture can be constructed from any DAG
where the start and end nodes are connected via all paths. In order to generate
a wide range of topologies, which conform to this specification, we propose an
iterative method. Starting with a simple DAG containing 3 vertices (S,1,T) each
connected by a single edge, we randomly apply one of two operations, “edge
insertion” or “edge split”. Algorithm 1 describes a single iteration of this process
with Fig. 2 showing this process over multiple iterations.

Fig. 2. Three iterations of the graph generation algorithm adding a new node in the
first step, and a new edge in the subsequent iterations. Changes are highlighted in red.
(Color figure online)

3.1 Operation Chain

To further enhance the range of architectures that can be expressed in the search
space, aspects that are often part of the primitive operations or simply built into
a fixed macro architecture are brought into the search space. This work innovates
on the standard DAG representations of neural architectures, with the inclusion
of node attributes.
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Previous implementations like DARTS or NasNet primarily focused on edge
attributes, i.e., the primitive operations. Our approach expands on this by asso-
ciating attributes such as the normalisation, activation function, channel width
(number of channels) and down-sampling (stride) to the node rather than an
edge. An example of this is an edge (1,3) and (2,3), which will have the same
node attributes, due to their common destination at node 3.

Figure 3 provides a visualisation of this operation chain and the assignment
of attributes to edges or nodes.

Fig. 3. Chain of operations in a compiled edge

Adjustments in the number of channels or resolution are implemented
through the use of point-wise and depth-wise convolutions, respectively. Where
the latter has a kernel size equal to its stride. These changes in resolution and
channel width are propagated downstream to all subsequent edges and nodes.
Figure 4 shows an example, if node A contains a down-sample of signal length
L by a factor of two, and there exists an edge (A,B), then the operation of
this edge will act on and produce data of size (C,L/2) assuming no changes to
the channel width. This means that B will be of size (C,L/2). If another node
C connects to B and has a signal length of L, then a down-sample operation
will be added here also to produce two signals of the same length. This feature
increases the flexibility of the generated architecture, allowing it to adapt to
signals of varying lengths.

4 Benchmarking Tasks

In order to draw broadly useful conclusion about NAS search spaces for time-
series problems we look at two time-series classification tasks from disparate
domains.

4.1 Human Activity Recognition (HAR)

Human Activity Recognition is the task of classifying actions such as walking,
running, jumping, as well as falls through the use of gyroscopic data. Among
members of the population who are over 65, falls are a common risk and can
have severe consequences with the frequency only becoming larger with age.
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Fig. 4. Example of down-sampling operations and the propagation of signal length to
subsequent nodes. Dashed lines indicate where a node contains a down-sample opera-
tion, dotted line indicates when a down-sample operation is induced.

Undetected these falls can result in hospitalisation or, in the worst case, be
fatal.

The UniMib-SHAR dataset is a benchmark for human activity recognition
(HAR) collected by the University of Milano-Bicocca [12]. The dataset contains
data from 30 subjects, both male and female aged 18–60, performing activities of
daily living (ADL), such as standing, walking and sitting, as well as a collection of
falls, while wearing a smartphone on their waist. The smartphone’s accelerometer
and gyroscope sensors capture three-axial linear acceleration and three-axial
angular velocity, respectively. This dataset can be used for 4 classification tasks:

– (AF-17) - Distinguishing all 17 fine-grained classes from the ADL and FALL
categories

– (AF-2) - Binary classification of ADLs and FALLs
– (A-9) - Classifying the 9 ADL fine-grained classes
– (F-8) - Classifying the 8 FALL fine-grained classes

In this paper we look specifically at the AF-17 scheme which is considered the
most challenging task, with data being split based on subjects unless specifically
stated otherwise.

4.2 Electroencephalography (EEG)

The BCI Competition IV 2a dataset [13] is a widely used electroencephalog-
raphy (EEG) dataset, collected as part of the Brain-Computer Interface (BCI)
Competition IV. It comprises EEG recordings from 9 subjects, each performing
4 different motor imagery tasks: left hand, right hand, both feet and tongue
movements. The dataset contains 22 EEG channels and 3 electrooculography
(EOG) channels, sampled at 250 Hz, with each trial lasting approximately 8 s.
In this paper we use only the 22 EEG channels.
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Algorithm 1. Generate Graph Iteration
procedure gen iter(edges, rate)

g ← DiGraph(edges)
if random() > rate then � Add an edge

sorted nodes ← TopologicalSort(g)
number valid ← len(sorted nodes) − 1
source index ← RandInt(0, number valid)
new source ← sorted nodes[source index]
existing ← Neighbors(g, new source)
valid ← sorted nodes[source index + 1 :]
valid ← valid.remove([existing, “S”])
new end ← RandomChoice(valid)
edges.append((new source, new end))

else � Add a node (Edge split)
edge ← random.choice(edges)
new id ← len(edges) + 1
idx ← edges.index(edge)
edges[idx] ← (edge[0], new id)
edges.append((new id, edge[1]))

end if
return list(set(edges))

end procedure

Table 1. Summary of the dataset properties

Dataset Samples Dimensions Timesteps

EEG Train Data 2328 22 1750

EEG Test Data 2368 22 1750

SHAR Train Data 10541 3 151

SHAR Test Data 1230 3 151

5 Method

In order to make comparisons of different search spaces we adopt a method
utilised in the analysis of design spaces for image classifiers [14,15]. We perform a
random sampling of architectures (Random Search) in each search space on a set
of tasks, comparing the Cumulative Distribution Function (CDF) - which gives
the probability that a random observation will be less than or equal to a certain
value. This gives us a more robust comparison between two spaces than a single
point estimate, such as the single best performing model. By performing a series
of experiments following this methodology, the goal is to find a search space
of strong performing architectures for time-series classification by iteratively
improving the search space at each step.

This is conducted as a random search evaluating 500 models over our two
datasets. Each model has a fixed stem size of 32 channels, with a Global Aver-
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age Pooling (GAP) and fully connected linear layer as the output. We define
both spaces, the cell-based and graph search-spaces to have 32 edges for which
operations are searched. Each model is trained with a batch size of 256 for 200
epochs, with the learning rate decaying from 0.01 to 1 × 10−5 throughout the
training process, based on the cosine annealing strategy.

5.1 Experiment 1: Understanding the Role of Width Multipliers
During Down Sampling in Graph and Cell-Based Topologies

Fig. 5. Effects of different width multipliers on graph and cell based topologies across
search spaces

As we have seen in Sect. 2.1, in comparison with Image tasks, time-series mod-
els generally make use of shallower networks favoring a wide variety of repre-
sentations. However, time-series tasks can also have a large variety of signal
lengths, adding an additional challenge to architecture design. Cell-based NAS
architectures down samples the resolution or signal length at the end of specific
’reduction cells’, increasing the number of channels to maintain the capacity.
This approach however can lead to challenges in the context of time-series data,
due to the coupling of signal down-sampling and network depth. We compare
the effects on a cell based search space, based on implementation of [2] with our
graph based search space. We use 4 cells, with down-sampling occurring after
each cell, maintaining the same number of operations (32) in both search spaces.

Figure 5 shows the CDF of architecture error of the DARTS search space
compared with our graph based search space over a range of down-sample width
multipliers. We can see that in the case of the cell search space the optimal width
multiplier seems to vary according to dataset, with a constant width performing
consistently poorly. In contrast, this setting seems to have little effect on the
graph search space.

The effect of these settings on the number of model parameters is also sig-
nificant with a difference of around 1 order of magnitude between models of
different width multipliers.
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Moving forward we use the graph based architecture with a wide multiplier
of 1 as the basis for further experiments.

5.2 Experiment 2: Breaking Out of the Separable Convolution
(Depth-Wise and Point-Wise Operations)

Fig. 6. Effects of breaking out the separable convolution operation across datasets

While depth-wise and point-wise convolutions are commonly used in NAS as
constituent parts of the separable convolution to build more efficient architec-
tures, we propose breaking the fundamental convolution operation down to the
depth-wise and point-wise convolution. These operations are significantly less
computationally demanding as each operation now contains a single convolu-
tion operation rather than the 4 convolutions in a separable convolution. In ViT
architectures, we also see a separation of spatial and channel-wise information
mixing, which may be a beneficial trait. Specifically in the context of multi-
variate time-series data, the input features may contain information which is
not temporally aligned across channels, which could make channel mixing to be
counter productive at certain stages in the model.

In order to have this approach be effective we also break out the activation
and normalisation functions from the primitive operations. Taking inspiration
for the ConvNeXt [16] results, we include 2 ’none’ operations for each activation
and normalisation function, to produce networks with roughly 1 activation and
normalisation in every 3 primitive operations.

We can adjust for the reduction in model capacity by increasing the number
of edges in our architecture, allowing for a more diverse set of architectures at
the same or lower computational cost. We also maintain the same distribution
of operations for random sampling by introducing each of the depth-wise and
point-wise convolutions into the operation pool four times for each kernel. The
dropout rate was also reduced by a factor of 4 to maintain the same total dropout
across each network.

Figure 6 shows the effects of these changes on the two datasets. Here we can
see improvements across the board.
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5.3 Experiment 3: Kernel Size and Dilation

Fig. 7. Effects of using large kernel sizes on model performance across datasets

The use of dilation in convolutional networks for time-series is well estab-
lished as an effective method of increasing the receptive field without exploding
the number of parameters. This has shown success in a broad range of tasks and
model types pertaining to time-series, with WaveNet [17] showing its applica-
tion to deep learning and more recently ROCKET showing the effectiveness of
dilated convolution kernels as feature extractors for more traditional machine
learning approaches. We introduce kernels with a set of exponential dilation’s
(2,4,8,16,32) to the search space.

To further expand the search space we also add larger kernel sizes which
has shown success in both image and time-series applications. We again add
kernels of exponential sizes (reduced by one for padding) at 15,31,63. We also
add pooling at these kernel sizes. Again we maintain the proportion of pooling,
skip and convolution operations when adding the new operations to the pool of
primitives.

Figure 7 shows the results of these large kernels on our datasets. Unlike
with the previous change the results here are more mixed with a significant
improvement on one dataset and a slight deterioration in another. These results
are understandable due to the significantly shorter signal length of the SHAR
dataset. This means a significant number of the kernels are larger than the entire
signal even before down-sampling.

6 Results

We now show the performance of our new search space across a number of
datasets. We randomly partition the dataset into a train, validation and test
dataset. We use the simple random search algorithm [18], run for 500 iterations
to select the architecture for each task. Each architecture is evaluated twice
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to improve quality of the evaluation, with the hyperparameters described in
Sect. 5. The results of the final architecture on a holdout test set is reported
as the mean accuracy of 10 training runs. Each search was run across 4 GPUs
with all the architectures trained from scratch. Each search took between 3 and
24 h to complete, depending on the characteristics and size of the dataset. Note
that the search algorithm itself is intentionally rudimentary without any proxy
evaluation methods to produce baseline performance estimates.

6.1 UniMib-SHAR

Table 2 presents the results obtained from two different schema: a ‘subject-based
split’ and a ‘random split’. In the ‘subject-based split’, no subject appears in
more than one of the train, validation, or test sets. The random split is a standard
random division of the data. The search was run for each approach separately.

The results compare the state of the art methods on this task with the
discovered architecture. An improvement in both categories can be seen in terms
of accuracy. A new SOTA is achieved with 95.7% accuracy in the random split,
improving the accuracy by over 3% on the previous best, as well as a more
modest 77.6% accuracy in the subject-based split. This was achieved while also
producing models with a significantly lower number of parameters than reported
by other approaches.

Table 2. UniMib-SHAR: Discovered architecture vs SOTA

Method Subject-Based Split Random Split Parameters

Gao, Zhang, Teng, et al. [19] – 79.03 2.40M

Mukherjee, Mondal, Singh, et al. [20] – 92.60 –

Al-qaness, Dahou, Elaziz, et al. [21] 77.29 84.99 2.40M

Helmi, Al-qaness, Dahou, et al. [22] – 86.08 –

Teng, Wang, Zhang, et al. [23] – 78.07 0.55M

New Search Space 77.63 95.70 0.10M

6.2 EEG

Next, we look at the EEG dataset; here we look at a random split, looking for
general accuracy over the entire dataset. In the literature, it is more common
to use subject-specific models as they tend to provide improved performance on
the particular subject, however, this involves the training of many different spe-
cialised models. We compare our approach with ResNet [8] and InceptionTime
[9], both providing a strong baseline performance for deep learning models on
time-series classification. These are implemented with 32 channels and an addi-
tional 64 channel version for InceptionTime. Table 3 shows the accuracy of our
approach compared with the benchmark models. We see a significant disparity in
performance here, with ResNet in particular struggling to find a good solution.
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Table 3. EEG: Discovered architecture vs Deep Learning Approaches

Method Random Split Parameters

ResNet 35.89 0.95M

InceptionTime (32) 49.08 0.48M

InceptionTime (64) 50.22 1.89M

New Search Space 66.98 0.12M

6.3 UEA Multivariate Time-Series Classification Archive

We compare our search space to the SOTA time-series classification methods on
a subset of the time-series classification archive. Due to the additional compli-
cations involved with performing NAS with small dataset sizes - which is out of
scope for this paper - we look specifically at the 4 largest datasets in terms of
number of samples. These are specifically the four largest multivariate datasets
with equal length in the time-series classification archive to allow for compar-
ison with the baseline experiments [24]. We conduct a search on each dataset
separately. Table 4 shows the results of our new search space compared with
SOTA time-series methods evaluated in Middlehurst, Large, Flynn, et al. [5] as
well as deep learning approaches from Ruiz, Flynn, Large, et al. [24]. Our search
space produces models which perform well compared with current state of the
art, losing in average rank to only InceptionTime.

Table 4. UEA (Resamples) - Multivariate time-series Classification Archive: SOTA
methods compared random sampling of new search space

Method FaceDetection LSST PenDigits PhonemeSpectra Average Rank

HC2 71.35 63.70 99.56 29.43 3

ROCKET 69.38 61.85 99.57 27.03 4.25

HC1 69.17 53.84 97.19 32.87 4.25

ResNet 62.97 42.94 99.64 30.86 5.25

InceptionTime 77.24 33.97 99.68 36.74 2.5

TapNet 52.87 46.33 93.65 – 6.33

New Search Space 75.01 63.68 99.6 29.84 2.75

7 Further Work

This work outlines a new search-space for NAS which is both performant and
adaptable to the diverse set of characteristics presented in time-series classifi-
cation problems. We present results based on a simple random search of archi-
tectures. This gives an indication of baseline performance, which can be build
upon in subsequent research. One main direction for further work is the design
of optimisation algorithms for this space. Another avenue for future research
is the discovery of efficient proxies for evaluation. Common methods such as
super-networks are challenging to apply due to the unbounded nature of the
search-space, as well as the low-data environments common to this domain.
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8 Conclusion

We introduce a search space specifically designed for time-series classification
tasks, which not only achieves competitive results compared with the SOTA
but also produces highly efficient architectures with fewer parameters than
other deep learning approaches. We search a more granular space than previous
approaches, describing a larger diversity of models, which are dynamic to the
task signal length. We introduce the use depth-wise and point-wise convolution
as the primitive convolution operations in NAS and show that very large kernels
with extensive dilation are effective for some problems.

Without the use of an advanced search algorithm or efficient proxy evalu-
ations we achieve strong results on a range of problems. We set a benchmark
for further work showing that with a well designed search-space NAS has strong
potential as a time-series classification approach.

References

1. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architec-
tures for scalable image recognition (2018). https://doi.org/10.48550/ARXIV.
1707.07012. arXiv: 1707

2. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable architecture search.
arXiv: 1806.09055 (2019)

3. Schrodi, S., Stoll, D., Ru, B., Brox, T., Hutter, F.: Towards discovering neural
architectures from scratch, Rhea Sukthanker (2022)

4. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.-A.: Trans-
fer learning for time series classification. In: 2018 IEEE International Conference
on Big Data (Big Data), pp. 1367–1376 (2018). https://doi.org/10.1109/BigData.
2018.8621990

5. Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., Bagnall, A.: Hive-
cote 2.0:aA new meta ensemble for time series classification. Mach. Learn. 110(11-
12), 3211–3243 (2021)

6. Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate
time series classification using random convolutional kernels. Data Mining Knowl.
Dis. 34(5), 1454–1495 (2020)

7. Middlehurst, M., Large, J., Bagnall, A.: The canonical interval forest (cif) classi-
fier for time series classification. In: 2020 IEEE International Conference on Big
Data (Big Data), pp. 188–195 (2020). https://doi.org/10.1109/BigData50022.2020.
9378424

8. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep
neural networks: A strong baseline. In: 2017 International Joint Conference on
Neural Networks (IJCNN), pp. 1578–1585 (2017). https://doi.org/10.1109/IJCNN.
2017.7966039

9. Fawaz, H.I., Lucas, B., Forestier, G., et al.: InceptionTime: finding AlexNet for time
series classification. Data Mining Knowl. Dis. 34(6), 1936–1962 (2020). https://
doi.org/10.1007/s10618-020-00710-y.

10. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augment-
ing topologies. Evol. Comput. 10(2), 99–127 (2002). https://doi.org/10.1162/
106365602320169811

https://doi.org/10.48550/ARXIV.1707.07012
https://doi.org/10.48550/ARXIV.1707.07012
http://arxiv.org/abs/1707
http://arxiv.org/abs/1806.09055
https://doi.org/10.1109/BigData.2018.8621990
https://doi.org/10.1109/BigData.2018.8621990
https://doi.org/10.1109/BigData50022.2020.9378424
https://doi.org/10.1109/BigData50022.2020.9378424
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1109/IJCNN.2017.7966039
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1007/s10618-020-00710-y
https://doi.org/10.1162/106365602320169811
https://doi.org/10.1162/106365602320169811


204 C. MacKinnon and R. Atkinson

11. Miikkulainen, R., Liang, J., Meyerson, E., et al.: Evolving Deep Neural Networks
(2017)

12. Micucci, D., Mobilio, M., Napoletano, P.: Unimib shar: a dataset for human
activity recognition using acceleration data from smartphones. Appli. Sci. 7(10)
(2017). https://doi.org/10.3390/app7101101. https://www.mdpi.com/2076-3417/
7/10/1101, ISSN: 2076–3417

13. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: Bci compe-
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Abstract. The state-of-the-art in time series classification has come a
long way, from the 1NN-DTW algorithm to the ROCKET family of clas-
sifiers. However, in the current fast-paced development of new classifiers,
taking a step back and performing simple baseline checks is essential.
These checks are often overlooked, as researchers are focused on estab-
lishing new state-of-the-art results, developing scalable algorithms, and
making models explainable. Nevertheless, there are many datasets that
look like time series at first glance, but classic algorithms such as tabular
methods with no time ordering may perform better on such problems. For
example, for spectroscopy datasets, tabular methods tend to significantly
outperform recent time series methods. In this study, we compare the
performance of tabular models using classic machine learning approaches
(e.g., Ridge, LDA, RandomForest) with the ROCKET family of classifiers
(e.g., Rocket, MiniRocket, MultiRocket). Tabular models are simple and
very efficient, while the ROCKET family of classifiers are more complex
and have state-of-the-art accuracy and efficiency among recent time series
classifiers. We find that tabular models outperform the ROCKET family
of classifiers on approximately 19% of univariate and 28% of multivariate
datasets in the UCR/UEA benchmark and achieve accuracy within 10%
points on about 50% of datasets. Our results suggest that it is important
to consider simple tabular models as baselines when developing time series
classifiers. These models are very fast, can be as effective as more complex
methods and may be easier to understand and deploy.

Keywords: Time series · Classification · Evaluation · Baselines

1 Introduction

Time series classification is a challenging task that has attracted significant
research interest recently. The ever-evolving computational capabilities and
abundant applications and use cases have led to the development of a wide
range of time series classification methods, from simple distance-based methods
(1-NN-DTW [1]) to complex deep learning models (Inception Time [2]).

Most of the research in time series classification is focused on establish-
ing state-of-the-art results, developing scalable algorithms, and making models
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 205–229, 2023.
https://doi.org/10.1007/978-3-031-49896-1_14
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explainable. However, in this quest, it is often possible to forget the first principle
of research, which is to compare with existing simpler methods.

Historically, there have been many instances where traditional models have
outperformed deep learning methods on some tasks. For example, a recent study
[3] showed that linear models can be more effective than deep learning networks
for forecasting. Similarly, the work of [4] showed that linear models can outper-
form other complex models for classification tasks in spectroscopy data. How-
ever, there is less empirical work investigating the performance of classic tabular
models on time series classification tasks.

In this study, we take a step back from the pursuit of providing yet another
state-of-the-art method and perform some simple sanity checks, which are often
missed. We compare the performance of tabular models with the ROCKET [5–
7] family of classifiers, which are currently considered state-of-the-art for time
series classification. In this paper, the main contributions are:

– We empirically compared tabular and time series methods on the established
UCR/UEA benchmarks for univariate and multivariate time series classifica-
tion.

– We analysed the accuracy-time tradeoffs for all the methods on both bench-
marks and found that on about 50% of datasets in both benchmarks, the
tabular methods perform within 10% points accuracy of state-of-the-art time
series classification methods, while being two orders of magnitude faster.

– We discussed the performance of tabular versus time series methods for dif-
ferent data and problem types and the potential implications for how the very
popular UCR/UEA benchmarks are formed and used by the community. In
particular, if tabular methods significantly outperform time series methods on
some problem types, we raise the question of whether these datasets should
be included in a time series benchmark.

2 Related Work

The UCR and UEA Benchmarks. Univariate Time Series Classifica-
tion (UTSC). State-of-the-art UTS classifiers are classifiers that have been
shown to be the most accurate methods on the UCR/UEA benchmark. The
most notable ones are ROCKET [5] and its variants (MiniROCKET, Multi-
ROCKET and HYDRA [8]), due to their high accuracy and efficiency. These
classifiers follow a two-step approach: transforming the time series into tabular
features and classifying these transformations using linear models such as logis-
tic regression. While deep learning methods (e.g., FCN, ResNet, InceptionTime
[2]) or ensembles (e.g., HIVE-COTE [9], TDE [10]) are also as accurate, they
often demand significantly more computing resources (time, CPU, GPU, etc.).
Other notable classifiers include symbolic-classifiers such as WEASEL [11] and
MrSQM [12] and shapelet-classifiers such as RDST [13]. The UCR/UEA time
series archive is a public collection of time series datasets that has been used
extensively as the unified benchmark by researchers in this area. The archive
is the result of a massive collaborative effort lead by research groups from the



Back to Basics 207

University California Riverside (UCR) and the University of East Anglia (UEA),
hence the name of the benchmark. Starting with 85 univariate datasets in 2015,
the archive was expanded to 128 datasets in 2018. The expansion also intro-
duced a classification benchmark for multivariate time series which includes 30
datasets. The dedicated website1 for the archive contains not only the download-
able datasets but also pointers to code, publications, and other information that
can be useful to any interested party. Without a doubt, the archive is a major
resource that pushes forward research in TSC. However, while extremely useful
for providing an overview and comparing against existing work, it potentially
creates a pitfall where new works only focus on “beating the benchmark” and
neglect what makes a classifier useful in real-life applications.

Multivariate Time Series Classification (MTSC). In general, it can be
said that the MTSC literature is less developed when compared to UTSC. The
benchmark for MTSC was introduced later with fewer datasets. Most state-of-
the-art MTSC methods are UTSC methods that are adapted for MTS data.
The most straightforward approach is to learn from each channel independently
(e.g., HIVE-COTE, WEASEL-MUSE [14]). On the other hand, some classifiers
actually utilize channel dependency, and thus are called bespoke MTS classifiers.
For example, the multivariate variants of ROCKET (and MiniROCKET, Mul-
tiROCKET) replace the 1D kernels with 2D kernels to produce multi-channel
dependent features (see [6,7] for details).

Tabular Methods. Classic machine learning models such as Random Forest,
Logistic Regression, Linear Regression, seem to have been largely ignored in
recent time series literature. Such methods often assume independence between
values at different time points and thus are deemed unsuitable for time series
data. The work in [15] employs tabular models, however, the models are trained
on transformed data after applying techniques such as PCA, Spectral approaches
and auto-correlation. Nonetheless, outside of the time series literature, these
methods are still favourable choices in some communities. In particular, the work
of [4,16] investigated several approaches for modelling milk spectroscopy data
and found that tabular methods significantly outperformed time series methods.
While these datasets are not inherently time series data, spectroscopy data have
been part of the UCR/UEA benchmark since its inception and have been widely
accepted by the community as time series data. This finding suggests that not
all datasets in the benchmark are suitable for time series methods. We further
investigate this issue in the next sections.

3 Background

A time series is a sequence of numbers representing some measurements over
time. For example, a time series could represent a person’s heartbeat variation
on a 30-minute morning run. Each value in a time series usually has significance
with respect to the previous and next values.
1 http://www.timeseriesclassification.com.

http://www.timeseriesclassification.com
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A typical mathematical representation of time series is T : {x0, x1, x2, . . . xn}
where x ∈ � and n is the length of the time series. When we assign a discrete
label to the time series, we can perform time series classification. We discuss
two types of time series tasks in this paper, i.e., univariate time series classifica-
tion (UTSC) and multivariate time series classification (MTSC). In univariate
time series classification, data is recorded from a single source, meaning only one
observed variable exists. On the other hand, multivariate time series classifica-
tion involves recording data from multiple sources, resulting in the presence of
multiple observed variables. A mathematical representation of multivariate time
series can take the form:

T : {< x0
0, x

0
1, . . . x

0
n >< x1

0, x
1
1, . . . x

1
n > . . . < xm−1

0 , xm−1
1 , . . . xm−1

n >}
where m is the number of channels. If the time series is univariate, m = 1. It

is common in some applications to convert multivariate time series to univariate
time series by concatenating all the channels into a single univariate time series.
After this transformation, univariate classifiers can be trained with this data.

Tabular data is the most ubiquitous data type. It is a data structure that
organizes data into rows and columns. Each row represents a single record, and
each column represents a single attribute of that record. It has no concept of
temporality. This means that the previous value has no impact on the current
value. A time series can be considered a tabular vector and used as input to a
tabular method, e.g., linear regression.

4 Experiments

4.1 Datasets

The UEA/UCR [17] benchmark datasets are mostly used in the empirical evalu-
ation and comparison of various algorithms. Since the benchmark contains both
univariate and multivariate datasets, it is popular for testing new algorithms
on. Table 8 and 9 in the appendix provide the data dictionary for both types of
datasets. As it is common in recent time series literature, we run experiments
on 109 univariate datasets and 25 equal-length multivariate datasets. We make
our code available on github2.

4.2 Univariate Time Series Classification

Before comparing tabular versus time-series models, we compared a few popular
methods within each group separately.

Tabular Methods Results. For tabular methods we select three linear meth-
ods known for their efficiency and effectiveness in real-world applications [4], as
well as Random Forest to have an effective non-linear classifier. We run these
methods using the sklearn implementation3 with default parameters. Later in

2 https://github.com/mlgig/TabularModelsforTSC.
3 https://scikit-learn.org/stable/supervised learning.html.

https://github.com/mlgig/TabularModelsforTSC
https://scikit-learn.org/stable/supervised_learning.html
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the paper we also discuss parameter tuning and its impact on accuracy and
runtime. In Fig. 1, we compare the accuracy of four tabular models on univari-
ate datasets: Random Forest, Logistic Regression, Ridge Regression (RidgeCV)
and Linear Discriminant Analysis (LDA). The critical difference diagram [18]
captures the average accuracy rank over all the datasets. The accuracy gain is
evaluated using a Wilcoxon signed-rank test with Holm correction and visualised
with the critical difference (CD) diagram with significance value (α) = 0.05. The
figure illustrates Random Forest significantly outperforms the other three models
and Logistic Regression outperforms the other linear models Table 1 illustrates
the mean accuracy and total training and test computation time in minutes. The
tabular results correspond to the tabular CD diagram, where Random Forest is
the best classifier.

1 2 3 4

RandomForest
LogReg

RidgeCV
LDA

Fig. 1. Accuracy comparison of tabular methods on UTSC datasets.

Table 1. Mean accuracy and total computation time taken by tabular models on UTSC
datasets.

Mean Accuracy Total Time (minutes)

RandomForest 0.74 0.886

LogReg 0.69 0.31

RidgeCV 0.67 0.09

LDA 0.63 0.09

1 2 3

Multirocket
Minirocket

Rocket

Fig. 2. Accuracy comparison of time-series methods on UTSC datasets.

Time Series Methods Results. Similarly, in Fig. 2 and Table 2, we compare
the accuracy of three time series classification models: Multirocket, MiniRocket,
and Rocket. We use the implementation in the aeon-toolkit library4 with default

4 https://www.aeon-toolkit.org/en/latest/api reference/classification.html.

https://www.aeon-toolkit.org/en/latest/api_reference/classification.html
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Table 2. Mean accuracy and total computation time taken by time-series models on
UTSC datasets.

Mean Accuracy Total Time (minutes)

Minirocket 0.86 34.56

Multirocket 0.86 73.46

Rocket 0.85 158.76

Fig. 3. Accuracy comparison of tabular and time series models on UTSC datasets.

parameters. From the critical difference diagram (Fig. 2) we note that Multi-
Rocket is significantly more accurate than MiniRocket and Rocket.

Time Series Methods vs Tabular Methods. In Fig. 3, we compare the
accuracy of time-series and tabular models. We can see that the time-series
models have a higher mean accuracy rank than the tabular models. Multirocket
is significantly more accurate than all other models, and Random Forest is the
closest tabular model to the time-series models.

Detailed Analysis. Figure 3 provides a summary overview of the performance
of classifiers using their average accuracy ranking across the datasets analysed.
Average behaviour with respect to accuracy or rank is a common and useful sum-
mary to get an overview of the performance of multiple classifiers over multiple
datasets. However, it is crucial to examine the performance of models at a finer
level to understand the difference in behaviour between tabular and time-series
models.

In Fig. 4, we illustrate the accuracy of tabular and time series models on
each dataset, focusing on comparing the best-performing tabular with the best-
performing time series model. The plot is divided into three distinct regions:
green, grey, and red.

– The green region illustrates the datasets where the tabular models outperform
the time series models or where both models achieve the same accuracy.

– The grey region represents datasets where the two models have performance
within a fixed threshold. It is crucial to consider the accuracy-time trade-
off in this region when deciding the better model. Datasets in this region
are highlighted when the difference between the best-performing time-series
model and the best-performing tabular model ranges from 1 to 9% points.
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– The red region represents the datasets where time series models outperform
tabular models. The time series models in these datasets are at least 10%
points better than tabular models.

For the UEA benchmark, surprisingly, 19.2% of the datasets performed better
with tabular models (green region), 31.1% performed within 10% points with
both tabular and time series models (grey region), and 49.5% performed better
than 10% points with time series models (red region).

The above numbers imply that on about 19% of the benchmark, there are
only weak temporal patterns, and tabular methods that disregard time ordering
are very competitive when compared with time series methods. As a result,
for many of those datasets in the green and grey region, using a complex time
series model would be like using a sledgehammer to crack a nut. We of course
acknowledge that time series methods work very well for the datasets in the
red region, but these account for slightly less than half of the benchmark. We
also acknowledge that the Rocket algorithms have been tested outside of this
benchmark with good results in many real time series applications [19–22]. The
question remains though: should we include the datasets in the green and grey
areas into a time series benchmark at all, given that tabular methods have similar
accuracy to the best time series methods on those datasets.

Computation Time Analysis. Traditionally, tabular models are known for
their computational speed. This is also evident from Tables 1 and 2, which show
that tabular models are an order of magnitude faster than time series models.
Figure 4 illustrates the various regions for accuracy, but it is worth highlighting
that tabular models in the green and grey regions are faster and almost as
accurate, or even more accurate than time series methods.

Figure 5 shows the tradeoff between the mean accuracy and total computa-
tion time for the various time-series and tabular models in grey region datasets.
Multirocket and Random Forest are the most accurate models among time series
and tabular models, respectively. The difference in accuracy between Multirocket
and Random Forest is approximately 5% points. However, Multirocket takes an
average of 30 min longer to train.

Domain-Wise Analysis. Table 3 shows the mean accuracy of different clas-
sifiers on datasets from various domains (as annotated by the meta-data in
UCR/UEA). The benchmark is highly dominated by three domains: Image, Sen-
sor, and Motion. About 63% of the benchmark comprises these three domains
out of a total of 13 domains in the benchmark.
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Fig. 4. Accuracy comparison of the best time series model with the best tabular model
on univariate time series datasets. Red circles represent the tabular models, and blue
circles represent the time series models. Each marker shows the maximum accuracy
achieved by the tabular models versus the time series models. (Color figure online)
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Fig. 5. Accuracy-Time tradeoff for datasets in the grey region shown in Fig. 4. We
observe a mean accuracy difference of about 5% points, but at least an order of magni-
tude difference in computation time, between tabular and time series methods. (Color
figure online)

Table 3. Mean accuracy of classifiers by problem types on UCR univariate datasets.

Tabular Models Time Series Models

Domain (#datasets) RidgeCV LDA LogReg RandomForest Rocket Minirocket Multirocket

Image(31) 0.66 0.62 0.71 0.75 0.85 0.85 0.85

Sensor(20) 0.73 0.69 0.72 0.76 0.86 0.86 0.87

Motion(17) 0.58 0.46 0.58 0.70 0.84 0.84 0.85

Device(8) 0.48 0.44 0.48 0.62 0.76 0.74 0.77

Simulated(8) 0.78 0.82 0.81 0.88 0.99 0.98 0.99

Spectro(8) 0.86 0.90 0.86 0.82 0.84 0.86 0.86

ECG(4) 0.92 0.84 0.92 0.82 0.97 0.97 0.97

Spectrum(4) 0.75 0.67 0.74 0.67 0.83 0.82 0.88

Hemodynamics(3) 0.05 0.16 0.12 0.13 0.66 0.94 0.81

EOG(2) 0.3 0.28 0.37 0.43 0.59 0.57 0.60

EPG(2) 0.82 1.00 1.00 1.00 0.99 1.00 1.00

Power(1) 0.98 0.73 0.99 1.00 0.92 0.99 0.98

Traffic(1) 0.98 0.95 0.98 0.98 0.98 0.98 0.98

As expected, with regard to average accuracy in a specific domain, as also
shown in Fig. 3, time series models performed better than tabular models in most
of the domains. However, we note that the tabular models performed especially
well in the Spectro domain. This could be because the Spectro domain does not
have strong temporal features. Also, as we have seen in Fig. 4, average behaviour
can be misleading and we need to look at the accuracy on individual datasets
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to get a good idea of accuracy behaviour across the entire benchmark or specific
domains.

4.3 Multivariate Time Series Classification

In addition to our analysis of univariate time series datasets, we also conducted
an analysis on multivariate time series datasets. The UEA/UCR benchmark
dataset we utilized for this analysis consisted of 26 datasets. However, to ensure
consistency and comparability among the models, we narrowed down our focus
to the 25 datasets that all models could run on. We filtered the datasets based
on equal length, and one dataset (Pen Digits) was removed due to Minirocket,
which cannot run on datasets with lengths less than 8.

Data Preprocessing: Unlike univariate time series, which have data from a
single channel, multivariate time series data have multiple channels. To convert
this data into a format that a tabular model can process, we first standardize
each channel’s data and then concatenate the data across all channels.

Tabular Methods Results. After preprocessing the data, we followed a sim-
ilar approach to our univariate analysis. We selected the same tabular models:
Random Forest, LDA, Logistic Regression, and RidgeCV. The critical difference
diagram (Fig. 6) illustrates that Random Forest performed significantly better
than the other three models, and Logistic Regression outperformed the other
two linear models.

Fig. 6. Accuracy comparison of tabular methods on MTSC datasets.

Table 4 shows the total time taken by tabular models and their correspond-
ing mean accuracy. The table corroborates the results of the critical difference
diagram, which showed that Random Forest is the most accurate tabular model,
closely followed by LogisticRegression and RidgeCV. RidgeCV is also the most
time-efficient method.

Time Series Methods Results. Similar to the tabular methods, we ran the
multivariate time series methods, namely Minirocket, Multirocket, and Rocket,
on the MTSC datasets. Since the implemented algorithm works well with mul-
tivariate time series, there was no need to preprocess the data in this case.
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Table 4. Mean accuracy and total computation time taken by tabular models on
MTSC datasets.

Mean Accuracy Total Time (minutes)

RandomForest 0.61 6.40

LogisticRegression 0.59 6.20

RidgeCV 0.56 5.27

LDA 0.52 6.70

Figure 7 and Table 5 illustrate the performance of time series methods on the
benchmark datasets. Both the figure and table show that Minirocket outperforms
the other two classifiers. Additionally, Minirocket is also the fastest method
among the three methods.

Fig. 7. Accuracy comparison of time-series methods on MTSC datasets.

Table 5. Mean accuracy and total computation time taken by time series models on
MTSC datasets.

Mean Accuracy Total Time (minutes)

Minirocket 0.71 49.33

Multirocket 0.70 67.10

Rocket 0.70 129.05

Time Series Methods vs Tabular Methods. Finally, we compared tabular
and time series models, as shown in Fig. 8. As expected, the time series models
outperformed the tabular models in terms of average accuracy. However, we
conducted a more detailed analysis to investigate the reasons for this difference.
We discuss our findings below.
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Fig. 8. Accuracy comparison time-series and tabular methods on MTSC datasets.

Fig. 9. Accuracy comparison of time series models with tabular models on multivariate
time series datasets. Red circles represent tabular models, and blue circles represent
time series models. Each marker shows the maximum accuracy achieved by the tabular
models versus the time series models. Detailed results are provided with the code.
(Color figure online)

Figure 9 shows the difference in performance between the best-performing
tabular model and the best-performing time series model. The performance of
each model is highlighted in a different region, as defined above in Sect. 4.2.
Approximately 28% of the datasets are represented in each green and grey region
(56% total), indicating that the tabular model performs better or within 10%
points in these cases. Another 44% of the datasets fall within the red region,
indicating that the time series models outperform the tabular models in those
instances.

Computation Time Analysis. For the same reasons as for the univariate
time series classification task, we perform the time-accuracy tradeoff analysis
for multivariate time series classification. Figure 10 illustrates the performance
of various time-series and tabular models on the datasets in the grey region
of Fig. 9. Rocket is the most accurate among time-series models, and Random
Forest is the most accurate model among tabular models. The difference between
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Fig. 10. Accuracy-Time tradeoff for datasets in the grey region in Fig. 9. (Color figure
online)

the mean accuracy of Rocket and the mean accuracy of Random Forest is about
5% point, while the difference in total computation time is about 4 min.

In addition to considering the trade-off between time and accuracy, we also
analyzed the domain-wise performance of tabular and time series models in
multivariate datasets in Table 6. The datasets consisted of 6 domains, with 60%
of the data coming from two domains (HAR and EEG). Time series models
generally performed well, but tabular models performed better in the ECG and
EEG/MEG domains.

Table 6. Mean accuracy of classifiers by problem types on UCR multivariate datasets.

Tabular Models Time Series Models

Domain (#datasets) RidgeCV LDA LogReg RandomForest Rocket Minirocket Multirocket

HAR(9) 0.67 0.53 0.74 0.78 0.92 0.94 0.94

EEG/MEG(6) 0.55 0.54 0.58 0.50 0.55 0.55 0.54

Audio Spectra(3) 0.18 0.16 0.18 0.18 0.46 0.70 0.52

Other(3) 0.52 0.58 0.65 0.74 0.84 0.83 0.80

ECG(2) 0.46 0.20 0.46 0.40 0.27 0.26 0.24

Motion(2) 0.59 0.65 0.65 0.72 0.99 1.00 1.00
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4.4 Discussion and Lessons Learned

– Redefining baselines: Most previous research has considered 1NN-DTW
as the baseline for time series classification. This is a reasonable choice, as
1NN-DTW is a simple and effective algorithm that is often competitive with
more complex time series methods. However, our study suggests that simple
tabular models can perform significantly well on some datasets, even when
compared to recent state-of-the-art TSC algorithms. This finding suggests
that there is a need to rethink how we do baseline comparisons for time series
classification.

– Not all that looks time series is a time series: Our study demonstrated
that tabular methods outperformed time series methods on some domains,
specifically Spectro (Table 3), EEG or ECG (Table 6). This could be because
the Spectro datasets did not contain strong temporal information. Either way,
we need to ask whether it makes sense to have these datasets in a time series
classification benchmark.

– Considering trade-offs: In our study we observed that time series models
outperformed tabular models by a few percentage points on the red datasets.
However, tabular models outperformed time series methods in the green
datasets and were significantly faster to train and test. Therefore, especially
for datasets in the grey region, where tabular and time series methods are
close in accuracy, we recommend carefully considering whether tabular mod-
els are preferable to time series methods, especially if time is a constraint.

4.5 Improving Tabular Models

Since the above-mentioned experiments were conducted using the default hyper-
parameters, we wanted to investigate whether we could improve the performance
of tabular models by tuning the hyperparameters. To do this, we performed
hyperparameter tuning on Random Forest and Logistic Regression, since they
were the best performing models in both univariate (Fig. 5) and multivariate
(Fig. 10) experiments.

We performed hyperparameter tuning with a combination of scaling and
regularization. Table 7 shows the results of the hyperparameter tuning and the
improvement for the best tabular model. We found that hyperparameter tuning
can increase accuracy, but it also takes a significant amount of time to find the
best hyperparameters.

Table 7. Improvement on accuracy on univariate and multivariate datasets and mean
computation time in minutes.

Mean Accuracy Mean Computation Time (minutes)

Before After Before After

Univariate 0.86 0.87 0.47 13.41

Multivariate 0.74 0.75 0.91 43.10
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5 Conclusion

In this study, we compared the performance of tabular models with state-of-the-
art time series models on the UCR/UEA univariate and multivariate time series
classification benchmarks. We found that tabular models performed surprisingly
well on many datasets, outperforming the recent Multirocket classifier on a sig-
nificant percentage of the datasets. On many other datasets, the accuracy was
comparable, but tabular models were more efficient in terms of computation
time. Overall, in about half of the datasets in either the univariate or the mul-
tivariate benchmarks, tabular methods were within 10% points accuracy of the
time series methods.

Our findings suggest that tabular models should be considered as baselines
for evaluating improvements in time series classifiers, and even for considering
whether a dataset should be included in the time series classification benchmarks.
Furthermore, tabular methods can be a viable alternative to time series models
for some classification tasks. Tabular models are easier to train and deploy,
and they are more efficient in terms of computation time. The performance of
tabular models does vary depending on the characteristics of the dataset. In
future work, we plan to further investigate the factors that contribute to the
performance of tabular models on time series data, and include more tabular
models and parameter tuning.
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Appendix

(See Tables 10, 11 and 12).

Table 8. Data dictionary for Multivariate time series classification.

Domain Datasets Train Size Test Size #Channels TS-len #Classes

Audio Spectra DuckDuckGeese 50 50 1345 270 5

Other PEMS-SF 267 173 963 144 7

EEG/MEG FaceDetection 5890 3524 144 62 2

EEG/MEG MotorImagery 278 100 64 3000 2

Audio Spectra Heartbeat 204 205 61 405 2

EEG/MEG FingerMovements 316 100 28 50 2

Human Activity Recogntion NATOPS 180 180 24 51 6

Audio Spectra PhonemeSpectra 3315 3353 11 217 39

EEG/MEG HandMovementDirection 160 74 10 400 4

Motion ArticularyWordRecognition 275 300 9 144 25

EEG/MEG SelfRegulationSCP2 200 180 7 1152 2

EEG/MEG SelfRegulationSCP1 268 293 6 896 2

Human Activity Recogntion BasicMotions 40 40 6 100 4

Human Activity Recogntion Cricket 108 72 6 1197 12

Human Activity Recogntion EigenWorms 128 131 6 17984 5

Human Activity Recogntion LSST 2459 2466 6 36 14

Human Activity Recogntion RacketSports 151 152 6 30 4

ECG StandWalkJump 12 15 4 2500 3

Human Activity Recogntion ERing 30 270 4 65 6

Human Activity Recogntion Handwriting 150 850 3 152 26

Human Activity Recogntion UWaveGestureLibrary 120 320 3 315 8

Motion Epilepsy 137 138 3 206 4

Other EthanolConcentration 261 263 3 1751 4

ECG AtrialFibrillation 15 15 2 640 3

Motion PenDigits 7494 3498 2 8 10

Other Libras 180 180 2 45 15

Table 9. Data dictionary for Univariate time series classification.

Data Train Size Test Size TS-Len #Classes Domain

ACSF1 100 100 1460 10 DEVICE

Adiac 390 391 176 37 IMAGE

ArrowHead 36 175 251 3 IMAGE

Beef 30 30 470 5 SPECTRO

BeetleFly 20 20 512 2 IMAGE

BirdChicken 20 20 512 2 IMAGE

BME 30 150 128 3 SIMULATED

Car 60 60 577 4 SENSOR

CBF 30 900 128 3 SIMULATED

Chinatown 20 345 24 2 Traffic

ChlorineConcentration 467 3840 166 3 SIMULATED

CinCECGTorso 40 1380 1639 4 ECG

(continued)
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Table 9. (continued)

Data Train Size Test Size TS-Len #Classes Domain

Coffee 28 28 286 2 SPECTRO

Computers 250 250 720 2 DEVICE

CricketX 390 390 300 12 MOTION

CricketY 390 390 300 12 MOTION

CricketZ 390 390 300 12 MOTION

Crop 7200 16800 46 24 IMAGE

DiatomSizeReduction 16 306 345 4 IMAGE

DistalPhalanxOutlineAgeGroup 400 139 80 3 IMAGE

DistalPhalanxOutlineCorrect 600 276 80 2 IMAGE

DistalPhalanxTW 400 139 80 6 IMAGE

Earthquakes 322 139 512 2 SENSOR

ECG200 100 100 96 2 ECG

ECG5000 500 4500 140 5 ECG

ECGFiveDays 23 861 136 2 ECG

ElectricDevices 8926 7711 96 7 DEVICE

EOGHorizontalSignal 362 362 1250 12 EOG

EOGVerticalSignal 362 362 1250 12 EOG

EthanolLevel 504 500 1751 4 SPECTRO

FaceAll 560 1690 131 14 IMAGE

FaceFour 24 88 350 4 IMAGE

FacesUCR 200 2050 131 14 IMAGE

FiftyWords 450 455 270 50 IMAGE

Fish 175 175 463 7 IMAGE

FordA 3601 1320 500 2 SENSOR

FordB 3636 810 500 2 SENSOR

FreezerRegularTrain 150 2850 301 2 SENSOR

FreezerSmallTrain 28 2850 301 2 SENSOR

GunPoint 50 150 150 2 MOTION

GunPointAgeSpan 135 316 150 2 MOTION

GunPointMaleVersusFemale 135 316 150 2 MOTION

GunPointOldVersusYoung 135 316 150 2 MOTION

Ham 109 105 431 2 SPECTRO

Haptics 155 308 1092 5 MOTION

Herring 64 64 512 2 IMAGE

HouseTwenty 34 101 3000 2 DEVICE

InlineSkate 100 550 1882 7 MOTION

InsectEPGRegularTrain 62 249 601 3 EPG

InsectEPGSmallTrain 17 249 601 3 EPG

ItalyPowerDemand 67 1029 24 2 SENSOR

LargeKitchenAppliances 375 375 720 3 DEVICE

Lightning2 60 61 637 2 SENSOR

Lightning7 70 73 319 7 SENSOR

Mallat 55 2345 1024 8 SIMULATED

Meat 60 60 448 3 SPECTRO

MedicalImages 381 760 99 10 IMAGE

MiddlePhalanxOutlineAgeGroup 400 154 80 3 IMAGE

MiddlePhalanxOutlineCorrect 600 291 80 2 IMAGE

MiddlePhalanxTW 399 154 80 6 IMAGE

MixedShapes 500 2425 1024 5 IMAGE

MixedShapesSmallTrain 100 2425 1024 5 IMAGE

(continued)
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Table 9. (continued)

Data Train Size Test Size TS-Len #Classes Domain

MoteStrain 20 1252 84 2 SENSOR

OliveOil 30 30 570 4 SPECTRO

OSULeaf 200 242 427 6 IMAGE

PhalangesOutlinesCorrect 1800 858 80 2 IMAGE

Phoneme 214 1896 1024 39 SOUND

PigAirwayPressure 104 208 2000 52 HEMODYNAMICS

PigArtPressure 104 208 2000 52 HEMODYNAMICS

PigCVP 104 208 2000 52 HEMODYNAMICS

Plane 105 105 144 7 SENSOR

PowerCons 180 180 144 2 DEVICE

ProximalPhalanxOutlineAgeGroup 400 205 80 3 IMAGE

ProximalPhalanxOutlineCorrect 600 291 80 2 IMAGE

ProximalPhalanxTW 400 205 80 6 IMAGE

RefrigerationDevices 375 375 720 3 DEVICE

Rock 20 50 2844 4 SPECTRO

ScreenType 375 375 720 3 DEVICE

SemgHandGenderCh2 300 600 1500 2 SPECTRO

SemgHandMovementCh2 450 450 1500 6 SPECTRO

SemgHandSubjectCh2 450 450 1500 5 SPECTRO

ShapeletSim 20 180 500 2 SIMULATED

ShapesAll 600 600 512 60 IMAGE

SmallKitchenAppliances 375 375 720 3 DEVICE

SmoothSubspace 150 150 15 3 SIMULATED

SonyAIBORobotSurface1 20 601 70 2 SENSOR

SonyAIBORobotSurface2 27 953 65 2 SENSOR

StarLightCurves 1000 8236 1024 3 SENSOR

Strawberry 613 370 235 2 SPECTRO

SwedishLeaf 500 625 128 15 IMAGE

Symbols 25 995 398 6 IMAGE

SyntheticControl 300 300 60 6 SIMULATED

ToeSegmentation1 40 228 277 2 MOTION

ToeSegmentation2 36 130 343 2 MOTION

Trace 100 100 275 4 SENSOR

TwoLeadECG 23 1139 82 2 ECG

TwoPatterns 1000 4000 128 4 SIMULATED

UMD 36 144 150 3 SIMULATED

UWaveGestureLibraryAll 896 3582 945 8 MOTION

UWaveGestureLibraryX 896 3582 315 8 MOTION

UWaveGestureLibraryY 896 3582 315 8 MOTION

UWaveGestureLibraryZ 896 3582 315 8 MOTION

Wafer 1000 6164 152 2 SENSOR

Wine 57 54 234 2 SPECTRO



Back to Basics 223

Table 10. Accuracy of tabular and time series methods on UTSC datasets.

Name RidgeCV LDA LogRegCV RandomForest Rocket Minirocket Multirocket

ACSF1 0.42 0.41 0.62 0.75 0.90 0.91 0.88

Adiac 0.44 0.53 0.73 0.65 0.79 0.83 0.83

ArrowHead 0.73 0.67 0.73 0.70 0.82 0.84 0.87

Beef 0.87 0.93 0.87 0.77 0.83 0.87 0.77

BeetleFly 0.85 0.75 0.85 0.85 0.90 0.90 0.85

BirdChicken 0.50 0.55 0.70 0.75 0.90 0.90 0.90

BME 0.91 0.95 0.91 0.97 1.00 1.00 1.00

Car 0.80 0.80 0.83 0.67 0.90 0.92 0.92

CBF 0.83 0.84 0.85 0.89 1.00 1.00 1.00

Chinatown 0.98 0.95 0.98 0.98 0.98 0.98 0.98

ChlorineConcentration 0.85 0.88 0.78 0.71 0.82 0.77 0.79

CinCECGTorso 0.39 0.45 0.45 0.72 0.83 0.87 0.95

Coffee 1.00 1.00 1.00 0.96 1.00 1.00 1.00

Computers 0.51 0.49 0.48 0.62 0.75 0.70 0.78

CricketX 0.27 0.13 0.27 0.55 0.82 0.81 0.81

CricketY 0.37 0.15 0.39 0.60 0.86 0.83 0.85

CricketZ 0.31 0.15 0.28 0.57 0.85 0.82 0.84

Crop 0.56 0.63 0.69 0.76 0.75 0.75 0.77

DiatomSizeReduction 0.96 0.96 0.95 0.90 0.98 0.92 0.96

DistalPhalanxOutlineAgeGroup 0.66 0.60 0.69 0.77 0.76 0.75 0.78

DistalPhalanxOutlineCorrect 0.66 0.66 0.65 0.76 0.76 0.79 0.79

DistalPhalanxTW 0.61 0.58 0.60 0.68 0.72 0.70 0.69

Earthquakes 0.75 0.65 0.68 0.75 0.75 0.75 0.75

ECG200 0.80 0.59 0.84 0.83 0.91 0.91 0.92

ECG5000 0.93 0.93 0.94 0.94 0.95 0.95 0.95

ECGFiveDays 0.99 0.94 0.97 0.80 1.00 1.00 1.00

ElectricDevices 0.44 0.46 0.47 0.65 0.73 0.73 0.73

EOGHorizontalSignal 0.34 0.27 0.39 0.44 0.64 0.59 0.65

EOGVerticalSignal 0.25 0.28 0.35 0.42 0.54 0.56 0.54

EthanolLevel 0.66 0.91 0.72 0.48 0.57 0.61 0.62

FaceAll 0.79 0.79 0.77 0.79 0.95 0.81 0.80

FaceFour 0.89 0.85 0.86 0.75 0.97 0.99 0.94

FacesUCR 0.70 0.62 0.73 0.77 0.96 0.96 0.96

FiftyWords 0.43 0.32 0.56 0.63 0.83 0.84 0.86

Fish 0.82 0.73 0.85 0.77 0.98 0.99 0.98

FordA 0.52 0.53 0.49 0.74 0.94 0.95 0.95

FordB 0.50 0.50 0.49 0.63 0.79 0.81 0.83

FreezerRegularTrain 0.99 0.98 0.98 0.95 1.00 1.00 1.00

FreezerSmallTrain 0.86 0.94 0.81 0.75 0.95 0.97 0.99

GunPoint 0.85 0.81 0.85 0.92 1.00 0.99 1.00

GunPointAgeSpan 0.87 0.57 0.89 0.97 1.00 0.99 1.00

GunPointMaleVersusFemale 0.97 0.68 0.99 0.97 1.00 1.00 1.00

GunPointOldVersusYoung 1.00 0.88 1.00 1.00 0.99 1.00 1.00

Ham 0.71 0.66 0.65 0.75 0.71 0.69 0.73

Haptics 0.43 0.35 0.38 0.44 0.52 0.53 0.56

Herring 0.59 0.58 0.63 0.66 0.70 0.66 0.67

HouseTwenty 0.73 0.72 0.72 0.71 0.97 0.97 0.99

InlineSkate 0.19 0.23 0.27 0.34 0.46 0.45 0.47

InsectEPGRegularTrain 0.82 1.00 1.00 1.00 1.00 1.00 1.00

(continued)
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Table 10. (continued)

Name RidgeCV LDA LogRegCV RandomForest Rocket Minirocket Multirocket

InsectEPGSmallTrain 0.83 1.00 1.00 1.00 0.98 1.00 1.00

InsectWingbeatSound 0.62 0.26 0.58 0.63 0.66 0.67 0.68

ItalyPowerDemand 0.97 0.94 0.96 0.97 0.97 0.96 0.97

LargeKitchenAppliances 0.44 0.38 0.39 0.58 0.90 0.87 0.88

Lightning2 0.77 0.66 0.72 0.75 0.75 0.74 0.69

Lightning7 0.64 0.55 0.67 0.71 0.84 0.79 0.82

Mallat 0.76 0.86 0.82 0.91 0.96 0.95 0.92

Meat 0.98 0.98 0.93 0.92 0.95 0.97 0.93

MedicalImages 0.55 0.49 0.63 0.73 0.80 0.80 0.81

MiddlePhalanxOutlineAgeGroup 0.60 0.48 0.60 0.62 0.60 0.60 0.62

MiddlePhalanxOutlineCorrect 0.62 0.58 0.59 0.81 0.83 0.84 0.86

MiddlePhalanxTW 0.61 0.53 0.53 0.56 0.55 0.53 0.54

MixedShapes 0.79 0.71 0.82 0.87 0.97 0.97 0.98

MixedShapesSmallTrain 0.77 0.69 0.78 0.78 0.94 0.95 0.96

MoteStrain 0.86 0.72 0.86 0.88 0.91 0.93 0.95

OliveOil 0.90 0.90 0.90 0.90 0.90 0.93 0.97

OSULeaf 0.40 0.32 0.46 0.49 0.93 0.96 0.96

PhalangesOutlinesCorrect 0.67 0.66 0.67 0.82 0.83 0.84 0.85

Phoneme 0.11 0.08 0.10 0.13 0.28 0.27 0.35

PigAirwayPressure 0.02 0.21 0.08 0.09 0.09 0.88 0.60

PigArtPressure 0.10 0.12 0.17 0.19 0.95 0.99 0.95

PigCVP 0.04 0.14 0.10 0.11 0.93 0.95 0.88

Plane 0.98 0.99 0.98 0.98 1.00 1.00 1.00

PowerCons 0.98 0.73 0.99 1.00 0.92 0.99 0.98

ProximalPhalanxOutlineAgeGroup 0.84 0.83 0.85 0.86 0.85 0.85 0.86

ProximalPhalanxOutlineCorrect 0.84 0.84 0.85 0.86 0.90 0.91 0.91

ProximalPhalanxTW 0.75 0.75 0.76 0.80 0.81 0.82 0.82

RefrigerationDevices 0.35 0.35 0.37 0.53 0.53 0.48 0.50

Rock 0.88 0.94 0.84 0.66 0.90 0.80 0.86

ScreenType 0.44 0.40 0.39 0.42 0.49 0.47 0.57

SemgHandGenderCh2 0.85 0.76 0.82 0.85 0.92 0.90 0.96

SemgHandMovementCh2 0.50 0.39 0.50 0.50 0.62 0.71 0.78

SemgHandSubjectCh2 0.78 0.59 0.81 0.68 0.89 0.87 0.92

ShapeletSim 0.49 0.51 0.48 0.51 1.00 1.00 1.00

ShapesAll 0.50 0.11 0.63 0.73 0.91 0.92 0.93

SmallKitchenAppliances 0.54 0.35 0.41 0.71 0.81 0.82 0.82

SmoothSubspace 0.80 0.83 0.86 0.99 0.98 0.94 0.98

SonyAIBORobotSurface1 0.69 0.70 0.68 0.67 0.92 0.89 0.89

SonyAIBORobotSurface2 0.83 0.81 0.81 0.81 0.91 0.92 0.94

StarLightCurves 0.85 0.81 0.92 0.95 0.98 0.98 0.98

Strawberry 0.93 0.95 0.95 0.96 0.98 0.98 0.98

SwedishLeaf 0.66 0.72 0.83 0.87 0.97 0.97 0.98

Symbols 0.77 0.82 0.82 0.85 0.97 0.98 0.98

SyntheticControl 0.80 0.93 0.91 0.96 1.00 0.98 1.00

ToeSegmentation1 0.57 0.55 0.58 0.62 0.96 0.96 0.95

ToeSegmentation2 0.55 0.54 0.56 0.75 0.92 0.92 0.92

Trace 0.61 0.70 0.76 0.83 1.00 1.00 1.00

TwoLeadECG 0.94 0.89 0.95 0.73 1.00 1.00 1.00

TwoPatterns 0.79 0.84 0.84 0.83 1.00 1.00 1.00

UMD 0.82 0.79 0.84 0.95 0.99 0.99 0.99

(continued)
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Table 10. (continued)

Name RidgeCV LDA LogRegCV RandomForest Rocket Minirocket Multirocket

UWaveGestureLibraryAll 0.85 0.28 0.81 0.93 0.98 0.97 0.98

UWaveGestureLibraryX 0.63 0.51 0.63 0.76 0.86 0.85 0.87

UWaveGestureLibraryY 0.53 0.42 0.58 0.68 0.77 0.78 0.80

UWaveGestureLibraryZ 0.51 0.45 0.55 0.71 0.79 0.80 0.82

Wafer 0.94 0.94 0.94 0.99 1.00 1.00 1.00

Wine 0.83 0.91 0.89 0.78 0.81 0.83 0.89

WordSynonyms 0.38 0.23 0.46 0.55 0.75 0.76 0.78

Worms 0.38 0.42 0.34 0.55 0.74 0.75 0.75

WormsTwoClass 0.55 0.62 0.52 0.62 0.81 0.77 0.78

Yoga 0.65 0.59 0.67 0.81 0.91 0.91 0.92

Table 11. Computation time (in minutes) for univariate datasets.

Name RidgeCV LDA LogReg RandomForest Rocket Minirocket Multirocket

ACSF1 0.03 0.04 0.29 0.19 0.83 0.12 0.26

Adiac 0.03 0.02 0.12 0.40 0.38 0.07 0.17

ArrowHead 0.01 0.01 0.03 0.11 0.14 0.02 0.07

Beef 0.01 0.01 0.05 0.10 0.08 0.02 0.04

BeetleFly 0.01 0.01 0.02 0.09 0.06 0.01 0.04

BirdChicken 0.01 0.01 0.04 0.09 0.06 0.02 0.04

BME 0.01 0.00 0.01 0.09 0.07 0.01 0.04

Car 0.01 0.01 0.06 0.11 0.19 0.04 0.09

CBF 0.01 0.00 0.01 0.09 0.31 0.05 0.18

Chinatown 0.01 0.00 0.01 0.09 0.03 0.01 0.03

ChlorineConcentration 0.02 0.02 0.04 0.40 1.85 0.28 1.08

CinCECGTorso 0.03 0.03 0.15 0.14 5.69 0.90 2.35

Coffee 0.01 0.01 0.02 0.09 0.04 0.02 0.03

Computers 0.03 0.05 0.04 0.28 0.87 0.21 0.37

CricketX 0.04 0.03 0.11 0.36 0.57 0.13 0.31

CricketY 0.03 0.03 0.11 0.34 0.57 0.15 0.31

CricketZ 0.03 0.03 0.13 0.37 0.57 0.13 0.31

Crop 0.08 0.05 0.53 2.98 4.23 1.86 5.57

DiatomSizeReduction 0.01 0.01 0.04 0.09 0.29 0.05 0.12

DistalPhalanxOutlineAgeGroup 0.01 0.01 0.03 0.18 0.13 0.04 0.09

DistalPhalanxOutlineCorrect 0.01 0.01 0.02 0.26 0.20 0.05 0.13

DistalPhalanxTW 0.01 0.01 0.03 0.18 0.12 0.04 0.08

Earthquakes 0.03 0.04 0.02 0.29 0.58 0.13 0.35

ECG200 0.01 0.01 0.01 0.11 0.05 0.02 0.04

ECG5000 0.02 0.02 0.05 0.26 1.66 0.32 0.83

ECGFiveDays 0.01 0.00 0.01 0.09 0.28 0.05 0.14

ElectricDevices 0.24 0.10 0.15 6.60 6.03 2.79 6.49

EOGHorizontalSignal 0.09 0.14 0.47 0.51 2.19 0.44 0.94

EOGVerticalSignal 0.06 0.14 0.44 0.53 2.18 0.42 0.95

EthanolLevel 0.16 0.30 0.41 0.86 4.29 0.81 1.66

FaceAll 0.02 0.02 0.13 0.40 0.69 0.13 0.36

FaceFour 0.02 0.01 0.04 0.11 0.10 0.02 0.06

(continued)
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Table 11. (continued)

Name RidgeCV LDA LogReg RandomForest Rocket Minirocket Multirocket

FacesUCR 0.02 0.01 0.06 0.20 0.67 0.14 0.34

FiftyWords 0.05 0.04 0.46 0.73 0.58 0.13 0.24

Fish 0.02 0.03 0.15 0.21 0.38 0.08 0.16

FordA 0.58 0.45 0.19 5.25 6.03 1.44 2.77

FordB 0.78 0.34 0.23 5.80 5.51 1.34 2.62

FreezerRegularTrain 0.02 0.03 0.02 0.16 2.03 0.34 0.98

FreezerSmallTrain 0.01 0.01 0.03 0.12 1.93 0.31 0.92

GunPoint 0.01 0.01 0.03 0.11 0.08 0.02 0.04

GunPointAgeSpan 0.01 0.01 0.02 0.13 0.16 0.03 0.08

GunPointMaleVersusFemale 0.01 0.01 0.01 0.12 0.16 0.03 0.08

GunPointOldVersusYoung 0.01 0.01 0.01 0.11 0.16 0.03 0.08

Ham 0.02 0.03 0.02 0.14 0.22 0.05 0.10

Haptics 0.03 0.05 0.14 0.24 1.17 0.21 0.44

Herring 0.02 0.02 0.03 0.13 0.16 0.03 0.07

HouseTwenty 0.04 0.06 0.07 0.14 0.74 0.13 0.35

InlineSkate 0.06 0.08 0.40 0.25 2.79 0.45 1.18

InsectEPGRegularTrain 0.02 0.02 0.03 0.11 0.43 0.07 0.21

InsectEPGSmallTrain 0.01 0.02 0.04 0.12 0.36 0.06 0.18

InsectWingbeatSound 0.03 0.02 0.09 0.23 1.26 0.21 0.48

ItalyPowerDemand 0.01 0.01 0.01 0.11 0.07 0.02 0.06

LargeKitchenAppliances 0.08 0.10 0.21 0.44 1.27 0.24 0.45

Lightning2 0.01 0.02 0.03 0.12 0.18 0.04 0.10

Lightning7 0.02 0.01 0.05 0.14 0.11 0.02 0.06

Mallat 0.03 0.04 0.15 0.17 5.47 0.94 1.77

Meat 0.01 0.01 0.04 0.11 0.13 0.03 0.06

MedicalImages 0.02 0.01 0.04 0.25 0.27 0.06 0.14

MiddlePhalanxOutlineAgeGroup 0.01 0.01 0.03 0.20 0.12 0.04 0.08

MiddlePhalanxOutlineCorrect 0.01 0.01 0.02 0.29 0.19 0.05 0.12

MiddlePhalanxTW 0.01 0.01 0.04 0.22 0.11 0.04 0.08

MixedShapes 0.11 0.17 0.24 0.67 6.73 1.20 2.49

MixedShapesSmallTrain 0.04 0.04 0.14 0.20 5.77 1.01 2.06

MoteStrain 0.01 0.00 0.01 0.11 0.24 0.05 0.13

OliveOil 0.03 0.01 0.06 0.11 0.09 0.03 0.04

OSULeaf 0.06 0.03 0.16 0.22 0.44 0.09 0.19

PhalangesOutlinesCorrect 0.04 0.02 0.03 0.97 0.56 0.19 0.37

Phoneme 0.05 0.08 0.93 0.77 4.86 0.93 1.98

PigAirwayPressure 0.08 0.08 1.96 0.63 1.43 0.27 0.61

PigArtPressure 0.07 0.08 2.12 0.60 1.43 0.27 0.54

PigCVP 0.06 0.08 1.98 0.62 1.44 0.30 0.62

Plane 0.01 0.01 0.03 0.13 0.08 0.02 0.04

PowerCons 0.02 0.01 0.01 0.13 0.13 0.03 0.07

ProximalPhalanxOutlineAgeGroup 0.01 0.01 0.03 0.19 0.13 0.05 0.08

ProximalPhalanxOutlineCorrect 0.01 0.01 0.02 0.28 0.18 0.05 0.12

ProximalPhalanxTW 0.01 0.01 0.03 0.20 0.13 0.03 0.08

RefrigerationDevices 0.05 0.09 0.08 0.44 1.26 0.27 0.59

Rock 0.05 0.05 0.35 0.14 0.46 0.10 0.19

ScreenType 0.09 0.08 0.13 0.43 1.25 0.30 0.49

SemgHandGenderCh2 0.06 0.12 0.13 0.42 3.09 0.68 1.57

SemgHandMovementCh2 0.11 0.20 0.33 0.77 3.14 0.78 1.63

SemgHandSubjectCh2 0.14 0.19 0.29 0.72 3.13 0.79 1.62

(continued)
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Table 11. (continued)

Name RidgeCV LDA LogReg RandomForest Rocket Minirocket Multirocket

ShapeletSim 0.01 0.01 0.01 0.11 0.23 0.05 0.13

ShapesAll 0.16 0.13 0.86 1.71 1.42 0.34 0.60

SmallKitchenAppliances 0.05 0.08 0.10 0.40 1.25 0.29 0.46

SmoothSubspace 0.01 0.01 0.01 0.11 0.02 0.01 0.02

SonyAIBORobotSurface1 0.01 0.00 0.01 0.10 0.10 0.03 0.06

SonyAIBORobotSurface2 0.01 0.00 0.01 0.10 0.15 0.04 0.09

StarLightCurves 0.39 0.56 0.35 1.04 21.16 4.04 6.29

Strawberry 0.04 0.03 0.04 0.34 0.55 0.14 0.25

SwedishLeaf 0.02 0.02 0.09 0.34 0.35 0.09 0.18

Symbols 0.01 0.01 0.05 0.11 0.90 0.20 0.34

SyntheticControl 0.01 0.01 0.03 0.17 0.09 0.03 0.07

ToeSegmentation1 0.01 0.01 0.02 0.11 0.17 0.04 0.08

ToeSegmentation2 0.01 0.01 0.02 0.11 0.13 0.03 0.07

Trace 0.01 0.01 0.04 0.13 0.13 0.04 0.08

TwoLeadECG 0.01 0.01 0.01 0.10 0.22 0.05 0.11

TwoPatterns 0.05 0.03 0.05 0.69 1.46 0.33 0.84

UMD 0.01 0.01 0.02 0.11 0.07 0.02 0.04

UWaveGestureLibraryAll 0.38 0.34 0.42 1.13 9.54 1.97 3.71

UWaveGestureLibraryX 0.10 0.08 0.13 0.79 3.17 0.70 1.19

UWaveGestureLibraryY 0.08 0.06 0.17 0.83 3.18 0.69 1.21

UWaveGestureLibraryZ 0.13 0.06 0.13 0.82 3.15 0.63 1.20

Wafer 0.03 0.03 0.03 0.66 2.44 0.48 1.18

Wine 0.01 0.01 0.02 0.11 0.07 0.02 0.04

WordSynonyms 0.02 0.02 0.18 0.33 0.56 0.12 0.22

Worms 0.03 0.05 0.14 0.27 0.55 0.13 0.25

WormsTwoClass 0.03 0.05 0.06 0.24 0.55 0.13 0.25

Yoga 0.03 0.04 0.06 0.31 3.10 0.55 1.18

Sum 5.88 5.75 18.38 53.16 158.77 34.56 73.47
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Table 12. Computation time (in minutes) for multivariate datasets.

Dataset RidgeCV RandomForest LogRegCV LDA

DuckDuckGeese 0.18 0.18 0.18 0.16

PEMS-SF 0.87 0.99 0.84 0.58

FaceDetection 0.57 0.61 0.65 0.57

MotorImagery 0.47 0.50 0.47 0.52

cre Heartbeat 0.65 0.72 0.67 0.72

cre FingerMovements 0.58 0.49 0.59 0.56

NATOPS 0.73 0.78 0.74 0.76

PhonemeSpectra 0.05 0.09 0.05 0.04

HandMovementDirection 0.54 0.47 0.58 0.49

ArticularyWordRecognition 0.87 0.98 0.97 0.97

SelfRegulationSCP2 0.43 0.47 0.44 0.46

BasicMotions 0.63 0.73 0.63 0.35

Cricket 0.82 0.89 0.92 0.93

EigenWorms 0.50 0.52 0.53 0.44

LSST 0.30 0.51 0.25 0.26

RacketSports 0.72 0.85 0.76 0.55

SelfRegulationSCP1 0.73 0.82 0.77 0.73

ERing 0.95 0.95 0.96 0.88

StandWalkJump 0.60 0.47 0.53 0.20

Epilepsy 0.31 0.47 0.33 0.33

EthanolConcentration 0.48 0.43 0.65 0.81

Handwriting 0.17 0.20 0.24 0.15

UWaveGestureLibrary 0.67 0.84 0.78 0.53

AtrialFibrillation 0.33 0.33 0.40 0.20

Libras 0.52 0.74 0.63 0.51
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Abstract. On modern dairy farms technologies that are capable of mea-
suring high frequency indicators (e.g. milk yield, milk flow-rates, and
electrical conductivity) at every milking can play an important role in
helping farmers manage animal health. The most modern dairy farms
use milk meters that provide detailed, high-frequency data about the
flow of milk during every milking (cows are typically milked twice daily).
This forms a time series that we call a milk flow profile. As cows are
milked twice per day, every day this data forms a series of time series
collected in a relatively controlled way that offers detailed insights into
cow milking performance and cow health. In this paper we show that milk
flow profiles act as a finger print for cows in a herd and offer opportuni-
ties for extracting useful insights about cow health that are unexplored.
We demonstrate that unsupervised time series clustering approaches,
particularly those that utilize the shape of time series, can be used to
characterize a herd and that supervised approaches applied to milk flow
profiles can be used for automated mastitis detection. In the latter case
it is interesting that approaches using standard machine learning meth-
ods applied to features extracted from milk flow profiles, out-perform
approaches specifically designed for time series.

Keywords: precision agriculture · dairy farming · mastitis detection ·
time series classification

1 Introduction

Managing animal health protocols to ensure high-quality milk supply to dairies is
a significant challenge facing dairy farms today. Modern precision dairy farming
technology that is capable of measuring high frequency indicators (e.g. milk
yield, milk flow-rates, and electrical conductivity) at every milking can play an
important role in this. Automated detection of mastitis in dairy cows is one
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of the best examples. Mastitis is a health problem afflicting dairy cows that
causes inflamed and painful udders leading to reduced milk yield, and is the
most economically damaging disease on modern dairy farms [34]. Automated
mastitis detection systems based on the milk yield at each milking, data on
the composition of the milk collected at each milking1 [28], genetic data, the
electrical conductivity of milk collected [20,32], and cow medical history data
have all been described in the literature [6,30,38].

On farms that have installed more advanced sensing technology known as
milk meters2, detailed data about the flow of milk during every milking (cows
are typically milked twice per day, once in the morning and once in the after-
noon) has become available. Data relating to milk flow rates have been shown to
be useful for a variety of health indications [15,16,40]. More detailed measure-
ment of milk flow throughout milking allows a milk flow profile that shows the
cumulative amount of milk that flows during milking to be constructed. Exam-
ples of milk flow profiles for the morning and afternoon milking of four different
cows on a single day are shown in Fig. 1. Each curve shows the cumulative milk
yield (measured in kilograms) over time (measured at intervals of 10 s) from each
milking. Milk flow profiles offer a rich and currently unexplored time series data
source for monitoring cow health, and are the subject of this paper.

Fig. 1. Examples of milk flow profiles for the morning and afternoon milking of two
different cows on a single day.

1 This is typically known as milk recording data and includes information such as the
percentage of fat and lactose contained in the milk.

2 A milk meter is a device inserted into the milk pipeline that records the individual
animal milk yield during milking.
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In this paper we introduce milk flow profiles as a rich source of informa-
tion about cow health and explore how they can be used to characterise cows
in a herd—essentially providing a fingerprint for each animal. We also explore
the use of milk flow profiles for the task of mastitis detection—this can be
framed as a time series classification problem. Interestingly we find that distance
based approaches—specifically 1-nearest neighbour classifiers using dynamic
time warping—do not work well for this, while feature-based approaches give
good results. The paper is organised as follows: Sect. 2 describes related work;
Sect. 3 introduces milk flow profiles and illustrates how they can be used to pro-
file a herd; Sect. 4 describes how milk flow profiles can be used for detecting
mastitis (framed as a time series classification problem); and Sect. 5 concludes
the paper and suggests directions for future work.

2 Related Work

Precision agriculture [39], or the application of data science to decision making
on farms, has brought significant changes to how modern farms are managed.
Farms now generate masses of data about crops, animals, inputs, outputs, and
activities that can be stored and analysed to help farmers make better decisions.
One of the most promising uses of data on farms is managing animal health [27].
Data describing animal bio-metrics and behaviours can aid farmers in better
identifying and managing health problems, especially on larger farms. On mod-
ern dairy farms mastitis is the most significant udder health issue on modern
dairy farms, and there are good examples of data-driven approaches to detecting
and managing mastitis in the literature.

The mastitis detection problem can be framed in different ways. Some studies,
for example [7,29], build models that detect both clinical mastitis and sub-
clinical mastitis; while others, for example [9,19], focus only on one of these.
Other studies, like [2,37], do not address mastitis directly but instead attempt
to predict values for cows that are expensive to measure, in particular Somatic
Cell Count (SCC) which requires sending samples to a lab for analysis, for cows
based other more easily available data. Other studies, for instance [10,33], do not
attempt to build prediction models but instead investigate factors that are good
indicators of mastitis and which may be useful in building prediction models.

Analysis of time series in machine learning is a well studied area with appli-
cations in agriculture widely studied [1,12,18,21]. While milk flow profiles them-
selves have not been studied widely before, there are other time series that are
similar—for example undersea valves in oil and gas mining [3]. The remainder
of this paper explores how milk flow profiles can be used to understand cow
behaviours and to predict cow health issues.

3 Milk Flow Profiles

A milk flow profile captures detailed data about the cumulative milk yield har-
vested during milking. A milk meter installed in the milking machine measures
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the yield (kilograms) at regular intervals (typically every 10 s)—the average cow
milking takes between 5 and 7min. Figure 2a shows examples of milk flow pro-
files from the same cow on her morning milkings on multiple days, referred to
as the internal milk flow distance (IMFD). Figure 2b shows flow profiles from
morning milkings for all cows in the herd for a single milking day, referred to as
external milk flow distance (EMFD).

These images clearly show the way that the milk flow profile can act as a
finger print for a cow. All of the milk flow profiles for the single cow in Fig. 2a
show a similar pattern with a very tight distribution—the milk flow profile for
each milking is essentially the same. On the other hand the milk flow profiles in
Fig. 2b have much higher variation with quite different patterns evident.

Fig. 2. A comparison of milk flow profiles for (a) all morning milking for one cow over
the 4 month study period (IMFD) and (b) morning milkings for all cows in the herd
for one single day (EMFD).

To formally measure this difference we calculate the distance, using dynamic
time warping [26], between the milk flow profiles for all cows on a single day,
EMFD, (shown in Fig. 2a) and all milkings of a single cow in the dataset (shown
in Fig. 2b). Figure 3 compares the distributions of these distances. A permutation
test [14] yields a p-value of 0.0007 indicating a statistically significant difference.
It is clear that the distances between milk flow profiles for the single cow are much
smaller than those calculated across the herd. Moreover, the permutation test
provides evidence supporting the notion that the two groups exhibit statistically
distinct distributions.

Although normal milk flow profiles are characterised by a common upward
sloping curve, as milk yield increases with milking time, different cows can have
dramatically different milk flow profiles. One cow may complete the entire milk-
ing process in a short time, resulting in a milk curve with a steep gradient, while
another cow may take a long time to complete its milking and the correspond-
ing milk curve would be relatively flat. It could even be the case that in both
instances the peak flow rates are the same. Not only does milk flow profile data
provide greater detail about individual milking events of each cow, but changes
in a cow’s milk flow profiles could also help in the diagnosis of health problems
such as mastitis.
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Fig. 3. Box plots showing the distribution of distances between all milk flow profiles
from a single cow across the full dataset (IMFD) and distances between milk flow
profiles of all cows in a herd on a single day (EMFD).

To further explore the use of milk flow profiles as a finger print for different
cows we use a dataset collected from milking equipment and laboratory analysis
at Teagasc Dairy Research Centre at Moorepark, Ireland3. The milking parlour
software was modified to record the milk flow-rate from each cow at every milking
at 10 s intervals. Cows were managed in a pasture-based system and were milked
twice per day, once in the morning and once in the afternoon.

The dataset covered 9 months from March 2021 to November 2021 and
included 18,662 milk flow profiles at SCC measurement days from 293 dairy
cows4. The cows were electronically identified on entering the milking parlor
and data from each milking session was linked to a specific cow. Cumulative
milk yield, and conductivity were collected simultaneously as milking began,
and then recorded at 10 s intervals until the end of the milking. A sample of

3 A midi-line 30 unit Dairymaster herringbone, swing-over milking system (Dairymas-
ter, Ireland) was used to milk the cows twice per day. The milking system utilised
simultaneous pulsation and was fitted with automatic cluster removers and weigh-all
milk meters (Dairymaster, Ireland). The standard farm milk flow rate switch-point
of the automatic cluster removers was 0.2 kg/min.

4 The majority of cows were from the Holstein-Friesian breed. 92 of the cows were at
parity of 1 (meaning they had given birth to just one calf, or were primiparous) and
the remaining 201 were at parity of 2 or greater (meaning they had given birth to
just one calf, or were multiparous).
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milk was also taken from each cow on one occasion per week for composition
and somatic cell count (SCC) analysis5.

To explore the different groups that exist within the dataset based on the
milk flow profiles we performed a series of clustering exercises. Figure 4 shows
the clusters found using k-means clustering with k = 8 (we experimented with
different values and found that 8 clusters gave a good mix between achieving a
high silhouette score and usefulness determined by domain experts) compared
to other and dynamic time warping as the distance measure. In each case the
blue lines represent the milk flow profile for a single milking and the red lines
show the average milk flow profile for a cluster.

Examining the different clusters we see interesting sub-groups within the
herd emerge. Clusters 0, 4, and 6 illustrate an almost linear milk profile where
the rate of milking remains largely constant throughout milking indicating a
relatively consistent flow of milk from the udder during the period of milking
unit attachment. Clusters 1 and 3 show a pronounced curve illustrating rapid
let down of milk fallowed by a relatively high and sustained peak milk flow
period. These curves then tail off to an elongated low flow period, this typically
indicates that one quarter of the udder is still producing milk at a low level
until the milking unit is removed. Clusters 2 and 5 sit somewhere between these
two, for example they have an identifiable peak milk flow period followed by an
elongated low flow tail. Cluster 7 is a typical other cluster, and contains a broad
spread of milk flow curve types that did not fit well with clusters 0 to 6.

The value of using milk flow profiles for this clustering, is illustrated by the
scatter plots shown in Fig. 5. Figure 5a shows a scatter plot of the dataset used for
clustering where the vertical axis shows total milk yielded from the milking and
the horizontal axis shows total time taken for milking. The colours of the points
indicate cluster membership for clustering performed using non-standardised
data and Euclidean distance. It is clear from this that clustering using the milk
profile in a non-standardised format and Euclidean distance captures no more
information from the milk flow profiles than clustering simply using total yield
and total milking time. Essentially we can see that cluster membership is deter-
mined by milk yield and milking time by the colour bands showing that each
cluster is clearly separated from the others in this scatter plot.

In Fig. 5b showing the same plot after clustering using standardised data
and DTW distance, however, we see no distinction between cluster memberships
showing that the milk flow profiles provide distinctions between cows and milk-
ings beyond what is evident from simply looking at total yield and milking time.

5 Milk composition analysis, often know as milk recording, is used to analyse the
content of milk. Typically the percentage of fat, protein, and lactose in the milk is
measured as well as the amount of casein and urea (both important in cheese making)
present. The number of somatic cells, usually white blood cells, is also measured and
typically referred to as somatic cell count (SCC). SCC is the most used and studied
indicator in mastitis detection research, especially for sub-clinical mastitis detection
[36]. A Fossomatic machine (Foss, Denmark) was used to measure SCC and other
indicators of milk composition.



236 C. Jin et al.

Fig. 4. The results of clustering the milk flow profiles in the dataset into 8 clusters using
k-means clustering based on DTW distances. The blue lines show milk flow profiles and
the red lines show the average for each cluster. (Color figure online)

This is a compelling illustration of the value of milk flow profiles. In the next
section we explore how these profiles can be used to predict health problems in
cows.

4 Using Milk Flow Profiles for Mastitis Detection

Mastitis is recognised as the most significant health problem on modern dairy
farms [34]. Elevated levels of SCC are recognised as indicating sub-clinical
mastitis—the early stages of mastitis, before symptoms (such as inflamed udders
or clots in milk) are visible [13].

Detecting the onset of sub-clinical mastitis gives farmers the opportunity
to intervene before cows progress to clinical mastitis or an infection spreads
further to other cows in the herd. Although high SCC recordings are considered
a reliable indicator of sub-clinical mastitis [36], recording SCC is a time-intensive
process, typically only performed once per month on dairy farms. For this reason
automated detection of sub-clinical mastitis using machine learning methods
applied to data more routinely available from milking machines are attractive
and have been widely studied (e.g. [2,28]). However, milk flow profiles have not
been widely used for this before. In this section we describe an experiment to
use time series classification techniques to classify milk flow profiles as belonging
to days on which a cow had a high SCC value, and so likely sub-clinical mastitis,
versus days when they did not. This illustrates the value of the milk flow profile
time series as an indicator of cow health.
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Fig. 5. Scatter plots of milk yield versus milking time for the cow dataset with points
coloured based on cluster membership for (a) clusters found using non-standardised
data and Euclidean distance, and (b) standardised data and DTW distance. (Color
figure online)

4.1 Dataset

The dataset described in Sect. 3 was used in this study. This includes milk flow
profiles for morning and afternoon milkings for each cow in the herd, and details
of weekly laboratory testing of each cows’ milk characteristics (including the
percentage of fat, protein, and lactose in the milk, as well as the amount of casein
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and urea present, and the SCC). Milk characteristic sampling was performed
every 7 days, during the morning milking.

The SCC recordings captured every week were used to define the target fea-
ture used in these experiments. Based on the recommendation of [17], for cows
having their first calf (referred to as primiparous) sub-clinical mastitis was indi-
cated when the recorded SCC value exceeded 150,000 cells/mL. For cows having
their second or later calves (referred to as multiparous) sub-clinical mastitis was
indicated when the SCC value exceeded 250,000 cells/mL. The prediction prob-
lem then was to replicate the information in the SCC measurements using the
much cheaper and easier to collect milk flow profile data.

Keeping only the morning milkings for which an SCC recording existed
results in a dataset with 8,703 rows each containing a milk flow profile and
an SCC reading for the corresponding day. To remove outliers, records contain-
ing values exceeding ± three standard deviations from the mean were removed.
Similarly, any records containing values outside the technical parameters of the
data collection devices were removed (e.g. SCC values above 10 million cells/ml).
Also, records with milk flow profiles not starting from 0 and negative values for
milk characteristics were treated as outliers. These steps removed 5.2% of the
original dataset. The dataset contained significant class-imbalance, with many
more instances where the sub-clinical mastitis target feature was negative than
when it was positive (7225 versus 1478). Under-sampling was applied in this
study to reduce the proportion of majority classes by randomly removing obser-
vations from the majority class.

We use two representations of this data: the raw milk flow profiles which are
used as inputs to the best ranked classifiers for univariate time series classification
problems, and representations based on features extracted from the flow profiles
which are used as input to other models. The most common method of extracting
features from time series data of the type of milk flow profiles is to calculate
summary statistics, such as mean, standard deviation, maximum, and minimum
from the values in the time series. The features extracted from the milk flow
profiles in this work can be grouped into three categories6. First, statistical time
domain features such as maximum and minimum values, and lengths. Secondly,
univariate temporal features that provide the dynamics of the milk flow profile,
for example, auto-correlation, entropy, and total energy. Finally, spectral time-
frequency features, representing changes in the frequency domain over time. In
our experiments we also use the Catch-22 feature set [23], a small set of derived
features shown to be effective for time series classification problems.

4.2 Experimental Setup

In this section we describe the setup of experiments to evaluate the effectiveness
of using milk flow profiles to predict the presence of sub-clinical mastitis. First

6 All features were extracted from flow profile data using the tsfresh package in Python
[5].
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we describe the models used, the experimental methodology, and finally the
performance measures employed.

To demonstrate the ability of machine learning methods based on raw time
series representations and representations based on features extracted from time
series data, we use four machine learning algorithms in our experiments: 1-
nearest neighbor using dynamic time warping as a distance measure (1NN-DTW)
[4,26,35,41], random convolutional kernel transform (ROCKET) [8], the hierar-
chical vote collective of transformation-based ensembles (HIVE-COTE 2.0) [24]
and gradient boosting machines (GBMs) [11] that use a combination of many
weak learning models to create a strong predictive model.

To evaluate the performance of each model type for the mastitis detection
problem we perform a 5-fold cross-validation. For each machine learning algo-
rithm we evaluate performance on the original dataset and on an under sampled
version (under-sampling is only applied to the training partition for each experi-
ment). Accuracy fails to effectively represent model performance for imbalanced
data sets. For this reason, the area under the receiver operating characteristic
curve (AUC) [22] is more appropriate.

4.3 Results and Discussion

Table 1 shows the results of experiments completed. The AUC scores show that
it is possible to train effective mastitis prediction models using milk flow profiles
as input. The AUC scores shown are in line with similar results in the literature
based on other data type inputs. It is particularly interesting to note that the
feature based approaches were more effective than the approaches based on raw
time series representations. This is contradictory to other benchmark results
which typically indicate the success of ROCKET and HIVE-COTE 2.0 [25,31].
It is also interesting to note that the models trained using the larger feature set
are more effective than those trained on the set of Catch-22 features.

Table 1. Experimental results for model comparison.

Modelling AUC Score

1NN-DTW 0.513
ROCKET 0.607
HIVE-COTE 2.0 0.622
GBM with Catch-22 0.659
GBM with tsfresh 0.677

5 Conclusions and Future Work

This paper has introduced milk flow profiles. These are enabled by the use of
milk meters in modern dairy parlours and allow the use of time series techniques
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for analysis. We have shown how the milk profiles themselves can be used as a
cow finger-print offering insights into cow milking performance and cow health.
Clustering techniques show how a herd can be partitioned according to these
profiles. We also demonstrate that milk flow profiles can be used for predicting
health problems faced by cows, in this case sub-clinical mastitis (one of the most
significant health issues faced on dairy farms).

This work introduces this new data representation and in the future we intend
developing this work to build better health prediction models by integrating milk
flow profiles with other data sources. We also intend to take advantage of the
interpretable nature of milk flow profiles to build explainable prediction models.
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Abstract. In the current era of Internet of Things, typically data from
multiple sources are captured through various sensors yielding Multi-
variate Time Series (MTS) data. Sensor MTS prediction has several
real-life applications in various domains such as healthcare, manufac-
turing, and agriculture. In this paper, we propose a novel Recurrent
Neural Network (RNN) architecture that leverages contextual informa-
tion and attention mechanism for sensor MTS prediction. We adopt the
notion of primary and contextual features to distinguish between the
features that are independently useful for learning irrespective of other
features, and the features that are not useful in isolation. The contex-
tual information is represented through the contextual features and when
used with primary features can potentially improve the performance of
the model. The proposed architecture uses the contextual features in two
ways. Firstly, to weight the primary input features depending on the con-
text, and secondly to weight the hidden states in the alignment model.
The latter is used to compute the dependencies between hidden states
(representations) to derive the attention vector. Further, integration of
the context and attention allows visualising temporally and spatially the
relevant parts of the input sequence which are influencing the predic-
tion. To evaluate the proposed architecture, we used two benchmark
datasets as they provide contextual information. The first is NASA Tur-
bofan Engine Degradation Simulation dataset for estimating Remaining
Useful Life, and the second is appliances energy prediction dataset. We
compared the proposed approach with the state-of-the-art methods and
observed improved prediction results, particularly with respect to the
first dataset.
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1 Introduction

The Internet of Things (IoT), driven by advanced sensors, computing and com-
munication technologies, has enabled capturing data from various sources and
utilise them to realise various ’smart’ environments such as smart homes, smart
cities, smart factories. The data captured through various sensors can be con-
sidered as Multivariate Time Series (MTS) [25]. Sensor MTS can be used for
learning predictive models, thereby innovating various applications for such envi-
ronments. These data rich environments often provide contextual information
that can be leveraged while learning the predictive models to improve the per-
formance [26]. For example, an automated fault detection and diagnosis agent
for a HVAC system in a smart building can utilise the environmental factors
such as indoor and outdoor temperature and humidity (contextual information)
along with the current and voltage data from the HVAC system [11]. However,
most of the machine learning algorithms do not explicitly take into account the
available contextual information [13].

We adopt the definitions of primary and contextual features to distinguish
between the features that are independently useful for learning irrespective of
other features, and the features that are not useful in isolation [26]. The contex-
tual data available in terms of contextual features may influence the performance
by improving the model but may not be involved directly in learning. We also
emphasize that the contextual data is available from the environment where pri-
mary data is captured and is a MTS itself. Over the past decade, Recurrent Neu-
ral Networks (RNNs) including Long Short-Term Memory (LSTM) and Gated
Recurrent Units (GRU) have been widely used for sequential or time series data
modeling. They are well known for capturing temporal contexts implicitly due to
their internal memory. It is worth mentioning here that in this paper, the focus
is not on the temporal context or the contexts that are generated within the net-
work from input and/or output signals. Here, the focus is on explicit contexts,
which is in the form of additional data available from the problem domains.
The current RNN architectures do not explicitly exploit the contextual data.
Recently, in [8,9], a context integrated RNN (CiRNN) which uses GRU as basic
unit is proposed. CiRNN, takes both primary and contextual features as input.
The contextual features are used to weight the primary features depending on the
context such that the input to hidden layer weights are function of contextual
features. With CiRNN, a significant improvement in performance is observed
when compared to state-of-the-art methods for the task of remaining useful life
prediction in machine prognostics.

On the other hand, recently, attention mechanism has received a great deal
of attention mainly due to the work of Bahdanau et al. [1] in the area of neu-
ral machine translation (NMT). Typically, NMT models are based on encoder-
decoder approach where the encoder is for the source language and the decoder
is for the target language. For the source language encoder, usually RNNs are
used where the necessary information of the source sentence is compressed in
to a fixed length vector. For longer sentences, this conventional approach, gives
poor performance. Attention mechanism allows to capture the information from
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all or few source positions in the encoder thereby alleviating the problem with
conventional encoder-decoder approach.

In this paper, we propose a novel RNN architecture that exploits context
and attention for sensor MTS prediction. The architecture primarily consists of
CiRNN with attention layer and finally a fully connected (FCN) layer. In addi-
tion to CiRNN, attention layer uses the contextual features to weight the hidden
sates of the alignment model [18]. The alignment model is used to compute the
dependencies among the hidden states or representations to derive the attention
vector. Further, adding contextual attention to CiRNN, provides interpretations
at two levels. First, the input features weighted by the context indicates which of
the features are relevant in a given context for prediction. Second, the attention
weights show which parts of the time series, apart from the last time step, the
network is attending to prior to the prediction.

To demonstrate the effectiveness of the proposed approach, it is applied to
two benchmark datasets. The first task is in the domain of engine health prognos-
tics where we considered the widely used NASA Turbofan Engine Degradation
Simulation dataset (C-MAPSS dataset) for estimating RUL [21]. The dataset
contains information from 21 sensors and 3 operational settings. The opera-
tional settings have a substantial effect on engine performance and represent
the contextual information required for the proposed model. The second task
is to predict household appliance energy usage where Appliances energy predic-
tion (AEP) dataset from UCI repository is used [2]. The results of the proposed
model is compared with baseline models and also state-of-the-art methods. The
results show an improvement in performance in prediction results.

The rest of the paper is organised as follows. In the next section, we briefly
present the related work. In Sect. 3, we discuss the architecture and learning
in the proposed architecture. Section 4, first describes the datasets and then
discusses the experiments and results. Finally, Sect. 5 concludes the paper.

2 Related Work

Considering the increase in amount and dimensionality of time series data, par-
ticularly data from ubiquitous sensors, deep learning methods have been applied
to a great extent to extract features and to recognize complex latent patterns
[10]. In this paper, we limit the scope of related work to prediction models that
use RNNs and attention mechanism for MTS prediction. The work related to
context integration to RNN is largely done in the area of natural language pro-
cessing (NLP) domain and it has been discussed in [8,9].

In [5], three extensions of content attention [1] are provided that use the
relative positions in input and output to capture the pseudo-periods in time
series. Several experiments with MTS data showed that for multi-horizon fore-
casting the proposed approach is significantly better than RNN with attention
and baseline methods based on ARIMA and Random Forests (RF). In [20],
a dual-stage attention-based recurrent neural network (DA-RNN) is proposed
which consists of an encoder with an input attention mechanism and a decoder
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with a temporal attention mechanism. It is tested for predicting indoor tem-
perature and for predicting the index value of the NASDAQ 100 using stock
dataset. A temporal pattern attention mechanism for multivariate time series is
presented in [23]. The focus is on extracting relevant input features rather than
time steps through attention. CNN filters are applied to the row vectors of RNN
(encoder) hidden units before deriving the attention vector. They tested the
approach with six MTS datasets that include various domains such as energy,
music, traffic, and finance, and achieved good results. In [7], temporal attention-
based encoder-decoder model is proposed for MTS multi-step forecasting tasks.
It uses a Bidirectional-LSTM (Bi-LSTM) with attention mechanism to encode
the hidden representations of MTS data as the temporal context vector. Another
LSTM is used to decode the hidden representation for prediction. Experiments
on five MTS datasets showed that the proposed model is effective in multi-step
forecasting. Cheng et al. [3] proposed a model that uses dual stage attention
with Bi-LSTM as encoder and LSTM decoder. The experimental results with
MTS data related to energy and finance showed better performance for single
step and multi-step prediction. However, for longer time steps, the prediction
performance of the model reduces.

To summarise, the existing approaches discussed here leverage attention
mechanism to deal with longer time sequences which LSTM or GRU alone is
not able to handle. Also, the attention mechanism is tailored for MTS data
such that relevant input features is taken into consideration while computing
the attention vector. None of the previous studies, to the best of our knowledge,
investigated the possibility of utilizing contextual information to weight the hid-
den states as well as the input features through CiRNN to realise a context
sensitive attention based model for improving sensor MTS prediction.

3 Proposed Approach

In this section, we first present the overall framework and finally the details of
each of the units is provided1

3.1 Proposed Framework

Figure 1 shows the proposed context sensitive attention-based RNN model for
the prediction of sensor MTS. It consists of Context Integrated Gated Recurrent
Units (CiGRU) [8] which have recurrent connections and takes the primary and
contextual input. The learned sequential features (hidden states of CiGRU) are
provided as input to the attention layer. The output of the attention layer is
an attention vector (at) which is computed using the temporal context vector
(TCV). Note that, conventionally the TCV is referred to as context vector. Here,
to make a distinction between temporal context and explicit context we are
using the term TCV. The TCV (ct) is computed using the attention weights

1 The code is available at https://github.com/rduttabaruah/CiRNN.

https://github.com/rduttabaruah/CiRNN
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computed in the attention layer. The target hidden state (ht) is concatenated
with the TCV through a concatenation layer to produce the attention vector.
Finally, the attention vector is passed as input to fully connected layers (FCLs)
in the network to predict the target at time step (t + 1).

Fig. 1. Proposed framework with CiGRU and attention.

3.2 Context Integrated Gated Recurrent Unit

The RNN is composed of CiGRU units [8,9], which are fundamentally GRUs [4]
with an additional context input. In CiGRU, the input to hidden unit connection
weights are dependent on the context variables. Figure 2 shows the architecture of
a single CiGRU. The output (ŷt ∈ �ny×1) at time step t in CiGRU is computed
in similar manner as in GRU. However, the candidate hidden state (h̃t ∈ �nh×1),
update gate (st ∈ �nh×1), and reset gate (rt ∈ �nh×1) values are determined
based on context zt as shown below:

ŷt = f(Vht + by)

ht = st � ht−1 + (1 − st) � h̃t

h̃t = tanh(Wh(zt)xt +Uh(rt � ht−1))
st = σ(Ws(zt)xt +Usht−1)
rt = σ(Wr(zt)xt +Urht−1)

(1)

where nx, ny, nz, nh are the input, output, context, and hidden unit dimensions,
ht ∈ �nh×1 is the hidden unit activation at time step t, U ∈ �nh×nh , V ∈
�ny×nh , W ∈ �nh×nx are the parameter (weight) matrices, and by ∈ �ny×1 is
the bias vector.
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Fig. 2. A Context Integrated Gated Recurrent Unit.

In Eq. 1, the weights associated with the input (xt) are dependent on the vec-
tor of contextual variables (zt). Let us consider one of the parameters, Wh(zt).
The parameters Ws(zt) and Wr(zt) can be expressed in a similar way. The
matrix Wh(zt) is of dimension nh×nx and each of the components can be given
as:

Wh(zt) =

⎡
⎢⎢⎢⎣

wh
11(zt) wh

12(zt) · · · wh
1nx

(zt)
wh

21(zt) wh
22(zt) · · · wh

2nx
(zt)

...
... · · · ...

wh
nh1

(zt) wh
nh2

(zt) · · · wh
nhnx

(zt)

⎤
⎥⎥⎥⎦ (2)

where each element of the matrix can be expressed as:

wh
ki(zt) = Bh

kiG(zt), k = 1, .., nh, i = 1, .., nx

Bh
ki = [bhki1, b

h
ki2, · · · , bhkim]

(3)

where G(zt) = [g1(zt), g2(zt), ..., gm(zt)]T is a vector of basis functions that can
be chosen at the time of design. Bh

ki is a vector of coefficients that specify the
dependence of weights on context variables. We can define a matrix Bh where
each row Bh

k can be formed by concatenating coefficient vectors Bh
ki as shown

below. Therefore, Bh is of dimension (nh × nxm).

Bh
k = [Bh

k1,B
h
k2, · · · ,Bh

knx
], k = 1, 2, ..., nh (4)

Using Bh and similarly Bs and Br, the candidate hidden state h̃t, the update
gate st, and reset gate rt in equation (1) can be expressed as:
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h̃t = tanh[Bh(xt ⊗ G(zt)) +Uh(rt � ht−1)]
st = σ[Bs(xt ⊗ G(zt)) +Usht−1]
rt = σ[Br(xt ⊗ G(zt)) +Urht−1]

(5)

where the symbol ⊗ represents Kronecker product.
Learning of the vector of coefficients Bh

ki with m elements is similar to
RNN. For RUL estimation, L2 loss function and back propagation through time
(BPTT) is used. Finally, the parameters can be optimized using any suitable
optimization algorithm such as stochastic gradient descent (SGD), Adam or
RMSProp. The details are available in [9].

3.3 Attention Mechanism

The attention used here is global attention [18], at each time step t, the hid-
den states of CiGRU is used to compute the TCV (ct) which captures relevant
information about the next target yt. The vector ct is defined as:

ct =
t∑

i=1

αtihi (6)

where αti is the attention weight. So, the context vector considers all the hidden
states of the CiGRU weighted by attention weights. The attention weight is given
as:

αti =
exp(f(ht,hi))∑t
i=1 exp(f(ht,hi))

(7)

The function f is given by, f(ht,hi) = hT
t W

a(zt)hi. Here, the weight matrix
Wa ∈ �nh×nh depends on the context Z. As discussed in Sect. 3.2, f can further
be expressed as,

f(ht,hi) = hT
t [B

a(hi ⊗ G(zt))] (8)

where Ba is of dimension (nh × nhm).
Finally, the TCV and the hidden state ht is combined in the concatenation

layer through a fully connected layer to get the attention vector as given by the
following equation.

at = tanh(Wc[ct,ht]) (9)

4 Experiments and Results

In this section, we first describe the datasets, and then discuss the experiments
and the results achieved with the proposed model. The results from the proposed
model are compared with baseline models and also with the state-of-the-art
methods.
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4.1 Dataset Description

For evaluation of the proposed model, we considered two benchmark datasets
where contextual information is available. The first dataset is the widely used,
NASA Turbofan Engine Degradation Simulation Data Set (TEDS) [21]. The
dataset is generated using Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS) tool. The dataset consists of four distinct datasets that
contain information from 21 sensors (such as Total temperature at fan inlet,
Total temperature at Low Pressure Compressor outlet), 3 operational settings
(flight altitude, Mach number, and throttle resolver angle). In addition to these,
engine identification number, and cycles of each engine is also available. We
considered the dataset (FD002) which has six operating conditions. Due to the
presence of different working conditions, it is suitable for the proposed model.
The operating working conditions can be treated as contextual features while
training the model. The dataset provides separate training and test sets. In the
training set, the sensor data is captured until the system fails. Whereas in the
test set it is captured up to a certain time prior to the failure. The test sets also
provide true Remaining Useful Life (RUL) values. The FD002 dataset has 260
and 259 number of engines, 53759 and 33991 data samples in train and test set,
respectively, and has one fault mode.

The second dataset is Appliance Energy Prediction (AEP) dataset [2]. The
dataset comprises of measurements of house temperature and humidity with a
10min interval for a period of 4.5months. The indoor data was merged with
weather data from the nearest airport weather station (Chievres Airport, Bel-
gium) using date and time column. The weather data was retrieved from a
public data set from Reliable Prognosis (rp5.ru). Two random variables are also
included in the data set for testing the regression models and to filter out non-
predictive attributes (parameters). It consists of 19735 data samples and 29
features including the random variables. The dataset has features like, energy
use of light fixtures in the house, Temperature in kitchen area (T1), Humidity
in kitchen area (RH_1), Appliances energy usage, and weather data such as
outside temperature, humidity, pressure, wind speed etc.

4.2 Data Preprocessing

For TEDS dataset, the data from the 21 sensors are analysed. First, univari-
ate and bivariate analyses are performed and the trend of sensor data is also
analyzed. We selected 6 sensors (s1, s2, s8, s13, s14, s19) considering scatter plot
observations and correlation analysis [8]. As the training data does not have
the true RUL values, piece-wise degradation model [6,16] is used to get the val-
ues. With this degradation model, initially for a specific period, the RUL values
remain constant and after that as the number of time cycles progress, the RUL
values reduces linearly [12]. For our experiments, 125 is selected as the initial
constant RUL based on existing works that have used C-MAPSS dataset. The
data is normalized using min-max normalization and then it is clustered into
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6 clusters based on operational regimes and then normalized again using clus-
ter mean and range. Finally, the data is smoothed using moving average with
window size of 3 while excluding the target. The target variable is RUL.

For AEP dataset, first the two random variables are removed and then the
data is normalized using min-max normalization. The outside temperature, pres-
sure, humidity, wind speed and hour of the day is considered as context variable
and the remaining indoor variables are used as primary features. The target
variable is Appliances energy usage.

4.3 Performance Metrics

The performance of the proposed model is measured using three metrics, RMSE
(Root Mean Squared Error), MAE (Mean Absolute Error), and score from a
asymmetric scoring function.

The scoring function is specific to the problem of RUL estimation and was
proposed by by Saxena et al. [21]. The score metric given in equation (10) is for-
mulated in such a way that late predictions (positive errors) draw more penalty
compared to early predictions (negative errors). In either case, the penalty
increases exponentially with error.

score =

{∑n
i=1 e− di

a1 − 1, if di < 0∑n
i=1 e

di
a2 − 1, if di ≥ 0

(10)

where a1 = 10, a2 = 13, and di = ˆRULi − RULi is the difference between
predicted RUL and actual RUL values, n is the number of samples in the test
data .

4.4 Training and Validation

To train the models, a validation set is created from the available training
dataset of TEDS. From each engine unit the last l samples, where l is multi-
ple of sequence length, are kept for validation. Thus, the validation set consists
of samples from each engine unit as in the test set. For the experiments, l is set
to 2. The AEP dataset is split into 80% training and 20% testing and for another
set of experiments it is divided as 75% training and 25% testing. From the train-
ing set, 10% data is used as validation set. This ratio is selected to compare the
results with existing works. The following hyperparameters are used for tuning
the model, number of hidden units (RNN): 15–30, step 5, number of hidden
units (FCL): 5–30, step 5, sequence (window) length: {10, 15, 20}, learning rate:
loguniform(1e − 5, 1e − 3), oprimizer: SGD, Adam, RMSProp. The number of
CiGRU layers is fixed to 1 and the batch size is set to 128. For the contextual
inputs, polynomial basis functions of degree 2 are used. The proposed model is
implemented using Python 3.10 with PyTorch 1.12 library in a Dell Precision
3650 workstation with Ubuntu 20.04 OS. The hyperparameters are optimized
using Optuna with Tree-Structured Parzen Estimater sampler (TPESampler)
and Median Pruner.
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We considered two models as baseline to compare with the proposed model,
for which we use the acronym as CiGRU + CxA (CiGRU with contextual atten-
tion). The first baseline model is RNN with GRUs, and the second is RNN with
CiGRU and attention (CiGRU + A). All the models are trained with primary
as well as contextual features, however, in the first model (GRU) contextual
features are concatenated with primary features. The latter way of using con-
textual features with primary features is also referred to as contextual expan-
sion [26]. The models and the best hyperparameter values achieved after tun-
ing the models using TEDS (FD002) dataset and AEP dataset is presented in
Table 1. The hyperparameters shown in the Table 1 are: number of hidden units
(GRU/CiGRU), number of hidden units in fully connected layer of CiGRU with
attention, sequence length, batch-size, and learning rate.

Table 1. Model configurations and Hyperparameters

Dataset Model Hyperparameter Optimizer

TEDS
(FD002)

GRU [9] 15, 10, 64, 9× 10−3 RMSProp

CiGRU [9] 20, 15, 64, 5× 10−3 RMSProp
CiGRU + A 30, 5, 15, 128, 3× 10−3 Adam
CiGRU + CxA (Proposed) 20, 20, 10, 128, 6× 10−3 RMSProp

AEP GRU 15, 15, 128, 2× 10−3 RMSProp
CiGRU 10, 15, 128, 5× 10−5 RMSProp
CiGRU + A 25, 10, 20, 128, 2× 10−3 Adam
CiGRU + CxA (Proposed) 15, 15, 20, 128, 1× 10−3 Adam

4.5 Results

Table 2 presents the results obtained from CiGRU + CxA and the baseline mod-
els with the test dataset of TEDS and AEP. For TEDS, the testing is performed
for each engine unit separately and the average RMSE and average score is
reported. It is apparent from Table 2 that CiGRU, CiGRU + A, and CiGRU +
CxA performed similar in terms of RMSE with CiGRU + CxA model’s RMSE
marginally better. On the other hand, the scores of CiGRU + A and CiGRU +
CxA are comparable and significantly better than CiGRU. So, CiGRU + CxA is
able to lower the number of late predictions. Figure 3 shows the predicted RUL
values versus actual RUL values for a selected engine from the test data. It can
be observed from the figure that for the constant part, the error is negative which
is contributing towards low score. Similar trend is observed in other engines as
well.
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Table 2. Comparison of proposed model with baseline models

Dataset TEDS-FD002 AEP
Model RMSE Score RMSE MAE

GRU [9] 25.83 4122.89 75.81 38.42
CiGRU [9] 11.97 363.03 76.40 40.30
CiGRU + A 12.57 299.75 60.11 30.58
CiGRU + CxA (Proposed) 11.80 306.23 59.11 26.55

Fig. 3. Actual and Predicted RUL values.

For AEP dataset, CiGRU + CxA performance is better than all other models
in terms of MAE. Considering RMSE metric, CiGRU + CxA performed slightly
better than CiGRU + A but significantly better than other models. Figure 4
shows the predicted and actual Appliance energy usage for first 300 samples in
the test data which is almost 2 days of data. It can be observed from the figure
that the model can predict appliance energy but underestimates the peaks. One
of the reasons could be that for certain days of the week the energy consumption
is higher compared to the other days which is not captured by the model. Incor-
porating additional features such as day of the week and holidays potentially
can improve the model. It is to be noted here, CiGRU + CxA is CiGRU + A
and context in attention, CiGRU + A is CiGRU with attention, and CiGRU is
GRU with context as separate input. The results show that adding context and
attention to the baseline GRU provides a significant improvement in terms of
given performance metrics.

A comparison of results achieved from CiGRU + CxA and results from state-
of-the-art deep learning models applied to TEDS dataset is presented in Table 3.
The models that are selected for comparison are sequential models based on
LSTM, sequential models with attention, and additionally CNN-based models
are considered. The best values from the existing approaches and the values
from the proposed model is highlighted in bold. It is evident from the table that
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Fig. 4. Actual and Predicted values of Appliance energy usage.

CiGRU + CxA performed better compared to all other models both in terms of
RMSE and score. The percentage decrease is 25.41% and 69.62% in RMSE and
score, respectively.

Table 3. Comparison of proposed model with state-of-the-art -TEDS

Model RMSE Score

LSTM + FNN [32] 24.49 4,450.00
CNN + FNN [15] 22.36 10,412.00
RBM + LSTM [16] 22.73 3,366.00
LSTM + Attention [6] 17.65 2,102.00
MS-DCNN [14] 19.35 3,747.00
DA-CNN [24] 16.95 1,842.38
Attention Bi LSTM [22] 16.59 1,223.00
DA architecture [17] 17.08 1,575.00
Transformer Encoder + Attention [28] 15.82 1,008.08
CiGRU + CxA (this paper) 11.80 306.23

Table 4 shows the comparison of CiGRU + CxA with existing approaches
for AEP dataset. It is to be noted that there are several other approaches [30]
that used the AEP dataset, however, only three approaches are compared here.
The reason is that there is inconsistency in selection of test data in the existing
approaches. The original paper [2] that published the dataset used 25% of the
data as test set and showed that Gradient Boosting Machines (GBM) achieved
the best results. Similarly, [31] used a 25% data as test set with XGBoost. Finally,
[19] considered 20% data for testing with Adaptive Input Selection RNN (AIS-
RNN). As shown in the Table 4, we tested CiGRU + CxA with two test sets
one is 25% of available data and the other is 20% of the data for comparison.
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It is apparent from the results that CiGRU + CxA performed better or at par
with existing approaches in terms of RMSE. However, the MEA is comparatively
little higher than other models.

Table 4. Comparison of proposed model with state-of-the-art-AEP

Model RMSE MAE

GBM [2] 66.21 35.24
XGBoost [31] 59.69 26.67
CiGRU + CxA (this paper) 58.82 29.33
AIS-RNN [19] 59.81 23.42
CiGRU + CxA (this paper) 59.11 26.55

The experimental results show that RNN model with CiGRU and contextual
attention performed significantly better than other models in presence of context,
particularly in case of TEDS dataset where multiple operating conditions are
explicitly present. Also, in comparison to other models, the proposed model
achieved the given performance with relatively simpler model with 1 layer, 20
hidden units in RNN and 20 in FCL for TEDS and 1 layer 15 hidden units in
RNN and 15 in FCL for AEP dataset. For TEDS dataset, the results are also
influenced by selected features and normalization based on clustering. It is also
worth mentioning here that each of the existing approaches had considered the
operating conditions (contextual features) in a different way. For example, Zheng
et al. [32], in their approach, clustered the operating conditions and use one-hot
encoding for their representation and then it is included as a primary feature.
On the other hand, for AEP dataset, the existing approaches consider both the
weather and indoor conditions as primary inputs.

Next, we analyse the attention weights and contextual weights. For RUL
prediction model, Fig. 5 shows the attention weights for the same engine unit as
in Fig. 3. It can be seen that prediction at time steps 25 to 190 mainly relied on
early as well as recent time windows (5–15) whereas during the last time steps
the network focuses at the last time window. In Fig. 6 the contextual weights
(Bs) associated with only one primary feature (demanded corrected fan speed) is
shown which has mostly positive values. Similarly, two other features, for which
heatmaps are not shown here, associated with fan speed have higher weights
compared to other primary features. This indicates that the fan speed has more
impact in prediction of RUL compared to other features. We performed similar
analysis with AEP dataset. However, we are not providing the heatmaps for the
weights due to space constraint. We observed that the heatmaps for the primary
features are not significantly different except two heatmaps, temperature in the
kitchen area and temperature in laundry room. In comparison to these two
features, other features have more positive weights. Thus, the attention and
contextual weights allow understanding the impact of features and time steps
on the predicted output. However, as the size of this weight matrices grow the
interpretation becomes challenging.
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Fig. 5. Attention weights at each time step.

Fig. 6. Contextual input-hidden weights (part of matrix Bs associated with one input,
demanded corrected fan speed, with dimension nh ×m )

5 Conclusion and Future Work

In this paper, we proposed a novel RNN architecture which has CiGRU as basic
units and additionally incorporates the contextual attention mechanism. CiGRU
allows integrating explicit contexts available from the problem domain and atten-
tion mechanism helps in retaining information from long sequences. Further,
attention weights are learnt in a way that they are influenced by the context.
The contextual weights in CiGRU and attention weights can be utilized for
interpreting the model by visualising which feature and time steps are affecting
the predictions. The experimental results with two benchmark datasets showed
that the architecture achieves better performance or at par with the existing
approaches. In future, we intend to perform more experiments and analysis with
other benchmark datasets, and also apply it to the applications for smart envi-
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ronments where context data can be acquired. Recently, the success of transform-
ers [27] in NLP and computer vision has attracted researchers and practitioners
from time series community and there is a surge in transformer-based solutions
for time series forecasting [29]. Investigating the pertinence of transformers to
sensor MTS prediction and also the relevance of external contextual information
for such models will further be considered in future.

Ethical Statement. This research work does not involve any human subjects or per-
sonal information pertaining to them. It neither has potential policing or military use.
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Abstract. The prediction of rail crack length propagation plays a cru-
cial role in the maintenance and safety assessment of materials and struc-
tures. Traditional methods rely on physical models and empirical equa-
tions such as Paris’ law, which often have limitations in capturing the
complex nature of crack growth. In recent years, machine learning tech-
niques, particularly Recurrent Neural Networks (RNNs), have emerged
as promising methods for time series forecasting. They allow to model
time series data, and to incorporate exogenous variables into the model.
The proposed approach involves collecting real data on the French rail
network that includes historical crack length measurements, along with
relevant exogenous factors that may influence crack growth. First, a pre-
processing phase was performed to prepare a consistent data set for learn-
ing. Then, a suitable Bayesian multi-horizons recurrent architecture was
designed to model the crack propagation phenomenon. Obtained results
show that the Multi-horizons model outperforms state-of-the-art models
such as LSTM and GRU.

Keywords: Crack propagation · Machine Learning · Time series

1 Introduction

The French rail network has over 100,000 km of rail, including around 10,000 km
for high-speed lines (LGV). The passage of rolling stock over these rails gener-
ates stresses in the rail, on the wheel-rail contact zone, which eventually leads
to rolling contact fatigue. Defects resulting from this fatigue are monitored, and
crack propagation is periodically checked, as a defect can propagate over several
decades or a few months. When the length or depth of the crack becomes critical,
it is imperative to correct the defect, otherwise there is a risk of rail break and
potential derailment. Rolling contact fatigue is thus separated into two distinct
phases, first the crack initiation, and then the crack propagation. In this paper,
we focus on the latter and propose to build a predictive model that allows to
evaluate the residual life of an already existing crack before reaching the critical
threshold. This phenomenon can be partially explained by physical models and
many studies have been led to understand the impact of various parameters.
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Bonniot et al. showed that the crack propagation in the rail is complex and
follow mixed non proportional propagation modes [1]. Crack propagation speed
depends on Stress Intensity Factor (SIF) identified from laboratory experiment,
plastic deformation, friction between crack lips, its wear and corrosion and many
other geometrical parameters such as initial crack width and direction, as shown
by Fang et al. [2]. Moreover, other parameters in-situ are known to have an
impact, such as track flexibility or acceleration and breaking and others still
not quantified such as material decay over time. To deal with the lack of rep-
resentativity of physical simulation in crack propagation modeling, we need to
consider other parameters and phenomena that can lead to a more and more
computationally expensive simulations, prohibiting thus their use to solve real
world problems. At the same time, the mass of real data collected on various
characteristics such as “infrastructure” and “traffic” makes it possible to inves-
tigate the potential of data-driven models. The problem can be seen as a time
series forecasting of the crack length. In this paper, we propose a multi-horizon
approach to predict the propagation of rail crack based on historical data that
we compare with state of the art time series machine learning methods. The
remainder of this paper is organized as follows. In Sect. 2 we present some recent
related works. Section 3 describes the data processing analysis required to build
the different models that are presented in Sect. 4. The comparative results are
discussed in Sect. 5, and as usual Sect. 6 summarizes the contribution of this
work and suggests directions for future research.

2 Related Work

Time series forecasting is a fundamental task in various domains, encompassing
finance, weather prediction, demand forecasting, and more. Over the years, tra-
ditional and deep learning models have played a pivotal role in advancing the
accuracy and effectiveness of time series forecasting.

Traditional approaches for time series forecasting have been widely used espe-
cially for univariate time series forecasting. Holt et al. introduced a method
commonly employed for time series forecasting, Exponential Smoothing (ES)
[3]. They involve recursively updating the forecasted values by assigning expo-
nentially decreasing weights to past observations. Simple Exponential Smoothing
[4], Holt’s Linear Exponential Smoothing [5], and Holt-Winters’ Seasonal Expo-
nential Smoothing [6] are variations of this approach.

Autoregressive Integrated Moving Average (ARIMA) [7] is also a popular
method for time series forecasting. It models the time series as a combination
of autoregressive (AR), differencing (I), and moving average (MA) components.
ARIMA models are widely used for stationary time series data.

These traditional approaches have been widely used in time series forecast-
ing and have provided valuable insights in various domains. However, they have
certain limitations that can impact their effectiveness and accuracy. In fact,
many traditional time series forecasting methods assume that the underlying
data follows a stationary process, where the statistical properties remain con-
stant over time. However, real-world data often exhibits non-stationarity, such
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as trends, seasonality, and changing statistical properties. Failing to account for
non-stationarity can lead to inaccurate forecasts. Moreover, these methods pri-
marily focus on historical time series data and may not naturally incorporate
external factors. However, many forecasting problems benefit from including
additional variables, such as weather data.

While traditional time series forecasting approaches have their limitations,
recent advancements in machine learning, such as deep learning models aim to
address some of these challenges and provide more accurate and flexible fore-
casting capabilities.

Neural Networks (NN) have been widely used for time series forecasting
and have achieved state-of-the-art performance in many applications. Neural
networks, especially recurrent neural networks (RNNs) and their variants, have
proven to be effective in capturing temporal dependencies and patterns in time
series data. Moreover, there have been efforts to incorporate external factors
or exogenous variables into time series forecasting models. These factors can
include contextual information or additional time series that may influence the
target variable.

One of the most popular RNN architectures for time series forecasting is the
Long Short-Term Memory (LSTM) network [8]. LSTMs are designed to address
the vanishing gradient problem and are capable of learning long-term dependen-
cies in sequential data. They have been successfully applied to various time series
forecasting tasks, including stock market prediction, energy load forecasting, and
weather forecasting.

In recent years, other advanced variants of RNNs, such as Gated Recurrent
Units (GRUs) [9] and Transformers [10], have also shown promising results in
time series forecasting. GRUs are similar to LSTMs but have a simpler architec-
ture, which makes them computationally more efficient.

Transformers, originally introduced for natural language processing tasks,
have been adapted for time series forecasting by leveraging self-attention mech-
anisms. Transformers have the advantage of parallel processing and have shown
competitive performance in several domains.

3 Data Description and Processing

Collected real data can be divided in four different categories. Each time it was
possible, categorical data were converted to numerical data.

– Infrastructure data: These data correspond to the network description.
The interesting features to consider are all parameters that can change the
vehicle dynamic, namely the rail linear mass, to take into account rail profile
and vertical flexibility, sleeper type, rail grade, radius of curvature, cant, slope
and side of the rail (left or right);

– Traffic data: These data correspond to the use of network. The dynamic
impact of rolling stock is considered by maximal velocity allowed and quantity
and number of acceleration and breaking. The rail loading is considered using
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annual tonnage (number of ton of vehicle seen by the rail) and number and
type of vehicle (passenger or goods);

– Environment data: These are data not related to railway environment. The
only environment data used here are temperatures and rain classified by type
(low rain, strong storm, ice, snow, ...)

– Defect: These data correspond to the state of the network. Here, three differ-
ent defects were selected, which represent most of rail defects in french railway,
namely squats (in three different parts of the rail). Each defect is discovered
at a recorded date and regularly visited to check its evolution. Each time,
parameters such as crack length and measurement date are recorded.

One last parameter is considered and called “UIC Group”. It is strongly corre-
lated with speed limit and tonnage and defines maintenance conditions. Through
this parameter are thus included other unavailable data at the time of the study
such as grinding works. These data present a number of anomalies (inconsistent
format, missing values, etc.), which necessitated a data preprocessing phase to
obtain a consistent database to train the Machine Learning models.

Note that crack data was the most challenging to process for several reasons:

– Crack length values also present anomalies linked to database filling errors
(negative values, exceeding certain thresholds, or considerable falls in values);

– Discovery date happened between 2008 and 2018 and crack life before it is
removed can vary from several months to several years;

– Visit dates at which the crack length is measured are manually and empirically
planed, the duration between two visits can thus vary from one week to a
couple of years;

– The perceived high risk cracks are frequently visited and lead to sequence
length (the time series) longer than others;

– Abrupt propagation have been observed for some defects. This behavior may
be physically explained (caused by an extremely cold day), or simply based
on a human judgement to merge two spatially close defects;

– Abrupt reduction of the crack length, which can be due to rail grinding;
– Measurement uncertainty, which is a known issue and led to approximate the

measured length to the closest multiple of 5.

Data Processing
All the above information have been crossed to create a single training dataset
containing all the information. The anomalies mentioned above were also
addressed based on experts knowledge on the data. To overcome the problem of
irregular time steps in the time series, an interpolation was performed. A fre-
quency of 3 months was chosen and a linear average was computed on all series,
resulting in 3-month time-step series with a maximum length of 59 time steps.
After this step, defects with a fall in values greater than 15 mm were removed
from the database, to avoid introducing errors into the learning model. Drops
in values of less than 15 mm are tolerated, as it is possible to have variations
in measurement conditions such as temperature variation that can lead to crack
closure and reduce the size measured as explained in [11]. The measurement is
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also subject to operator interpretation of the observed signal and can thus vary
with operators.

Feature Extraction
In the collected data, defect discovery dates vary widely, with some defects being
more recent than others. To consider this information in the learning process,
we set up an input variable that calculates the elapsed time since the defect was
discovered.

The crack propagation speed was also calculated between time steps, which
can give an indication of how fast the crack length propagates in a given context
for the learning model. This information can only be used in the past horizon
(the notion of horizon will be introduced in Sect. 4.2) and not in the future
horizon, to avoid giving information on the lengths to be predicted. This feature
extraction and selection resulted in 37 exogenous features for each time step in
the time series.

4 Modeling Approaches

4.1 Feature Based Modeling

Initially, crack length values are considered unknown to the model. Only exoge-
nous variables will be taken into account by the model to predict the corre-
sponding crack lengths. As mentioned in the previous section, several variables
are available. The time series are therefore multivariate, with several dynamic
(evolving over time) or static features for the different time steps. For this con-
figuration, sequences were created using a sliding window of size t.

The goal is to model the distribution of the crack length sequence, knowing
its current context X1:t, as

P (Y1:t|X1:t). (1)

Were X1:t represents the exogenous feature (static and dynamic) by time step,
and Y1:t their corresponding crack length values to be predicted.

Static features are encoded using Fully Connected (FC) layers, the dynamical
features are encoded also using Fully Connected (FC) layers and then passed to
one type of recurrent layers (RNN, LSTM or GRU) which can handle the time
dependency between time steps. These models are respectively called RNN-FC,
LSTM-FC and GRU-FC.

4.2 Considering the Historical Crack Length Values

For this new setup, a dataset containing crack length sequences was created using
a sliding window of length t+k over our time series. Each position of the sliding
window contains a sample in our dataset with the first t values of crack lengths
(the history), and their corresponding contextual features being the input of the
past horizon and the last k values (the forecasting horizon) being the output.
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The goal in this case is to model the distribution of the crack length sequence,
knowing its historical features X1:t and measurements Y1:t, as

P (Yt+1:t+k|Y1:t,X1:t). (2)

As mentioned above, interpolation is used to deal with the problem of irregular
time series. The interpolated values are calculated using a linear average. For
some time series, the past horizon may contain interpolated length values after
the last measured value. These values are calculated using crack length values
from the prediction horizon, as explained in Fig. 1. So, introducing them to the
learning model will give information about the future values that are supposed
to be unknown for the model, and thus may introduce a bias for the learning
process.

To avoid this problem, only interpolated values before the last measured
value are included. For time steps interpolated after this step, the last measured
value is used to replace the interpolated steps. As an example in Table 1, we
assume that crack length values of the defect corresponding to the past horizon
are the values in the first row. The “Last measured value” variable indicates the
last measured crack value (not an interpolated value), the “Step is interpolated”
variable indicates whether the time step corresponds to an interpolated or non-
interpolated (measured) crack length value.

The fifth time step is interpolated, and is the last time step before the pre-
diction horizon, so its value can give information about the first value in the
prediction horizon. Consequently, this value is replaced by the last measured
crack length value. The model input for the “historical crack length values”
feature will then be the “model input” variable in the table.

It should be noted that the model will be less accurate with this modification,
but at least it will avoid biasing it with information it is not supposed to know.
Some variables have been added to indicate whether the time step is interpolated
and, if so, the number of time steps since the last measurement. This will reduce
the effect of this replacement on performance.

Fig. 1. Example of interpolation for the last step before the prediction horizon
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Table 1. Example of model input of crack length values in the past horizon with last
crack length value replacement

Crack length 30 32.5 35 35 38.125

Last measured value 30 30 35 35 35

Time step is interpolated No Yes No No Yes

Model input 30 32.5 35 35 35

Simple Recurrent Model
For this model, only historical exogenous characteristics and corresponding crack
length values are considered. These variables are passed on to the recurrent
layer (LSTM/GRU), then their latent representation is passed on to some fully
connected layers in order to infer crack length values in the future. These models
are called LSTM-FC-LH and GRU-FC-LH, where LH refers to the historical
crack lengths.
Multi-horizons Recurrent Model
In a second step, a model was implemented to consider both historical context
X1:t and lengths Y1:t, as well as the current context Xt+1:t+k. The aim is to
model the distribution,

P (Yt+1:t+k|Y1:t,X1:t,Xt+1:t+k). (3)

This model is a recurrent neural network with multiple time horizons. It consists
of a past horizon which takes as input exogenous variables and historical crack
length measurements, and a future prediction horizon which takes as input the
encoded output from the past horizon as well as current contextual variables in
order to infer future crack length values, as described in Fig. 2.

The general architecture of the multi-horizon model is shown in Fig. 3.
For all the described models above, a customized Mean Squared Errors

(MSE) has been used for learning. This loss is an MSE loss that ignores the
padded time steps in order to avoid introducing bias to the model.

Bayesian Multi-horizons Recurrent Model
As mentioned above, crack length measurements are subject to uncertainty. This
uncertainty is related to the data quality that cannot be reduced by adding more
data, but it can be quantified. This type of uncertainty is called Aleatoric uncer-
tainty and captures inherent noise in the observations. The learning model itself
may be also uncertain regarding its predictions, due to a lack of learning data for
example. This is called epistemic uncertainty and can be reduced by observing
more data.

The multi-horizons model described above has been adapted, based on a
Bayesian approach suggested by Kendall et al. [12], to allow uncertainty esti-
mation in parallel with model prediction. This model is called the Bayesian
Multi-horizons model (B-MH).

The B-MH model output, is composed of predictive mean ŷ as well as pre-
dictive variance σ̂2.
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Fig. 2. Scheme of the prediction model

Fig. 3. Architecture of the multi-horizons recurrent model

The general architecture of the model remains unchanged, with only the last
fully connected layers duplicated in order to output both ŷ and σ̂2. ŷ represents
the predictive mean crack length and σ̂2 its predictive variance.

A Gaussian likelihood is used to model the aleatoric uncertainty, as the avail-
able crack length values follow a Gaussian distribution. This induces the mini-
mization loss function for a given sequence xi,

LB MH =
1
Ni

Ni∑

j=1

1
2σ̂(xij)2

||yij − ŷij ||2 +
1
2
log(σ̂(xij)2), (4)

were σ̂(xij)2 is the predictive variance for the time step j of the sequence xi, ŷij
its predictive mean and Ni the number of time steps in the sequence xi.

The variance σ̂2 is implicitly learnt from the loss function. The division of
the residual loss ||yij − ŷij ||2 (which represent the MSE loss) by σ̂(xij)2 makes
the model more robust to noisy data. In fact, data for which the model has
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learned to predict a high uncertainty will have lower effect on loss. The second
regularization term prevents the network from predicting infinite uncertainty.

For numerical stability, and to avoid dividing by zero or either predicting neg-
ative variance, the term σ̂(xij)2 is replaced by the term sij = log(σ̂(xij)2). The
weights of the two terms in the equation have been set to 2

3 and1
3 respectively,

to give more weight to the MSE than to the regularization term, resulting in
the minimization function,

LB MH =
1
Ni

Ni∑

j=1

2
3
exp(−sij)||yij − ŷij ||2 +

1
3
sij . (5)

To quantify the uncertainty, a dropout approach [13] is used as Bayesian approxi-
mation. The model is trained with dropout before every weight layer. Contrary to
what is usually done for a network trained with dropout layers, dropout remains
activated during inference to generate stochastic rather than deterministic out-
puts. T stochastic prediction samples are performed using Dropout, allowing to
approximate the predictive uncertainty for one observation as

Var(y) ≈ (
1
T

T∑

t=1

ŷt − (
1
T

T∑

t=1

ŷt)2) +
1
T

T∑

t=1

σ̂2
t , (6)

with {ŷt, σ̂
2
t }Tt=1 the set of T sampled outputs after each forward pass.

The first term of this total variance corresponds to the epistemic uncertainty
and the second one corresponds to the aleatoric uncertainty.

5 Experiments

5.1 Data Preparation for Learning

Whatever the model used for learning, the generated time series have been pre-
processed to ensure that the learning models function correctly.

By choosing a maximum size for the prediction horizon at a given value,
not all the series generated have the same length. As some are shorter than
the maximum length, these series have been completed by adding zeros at the
end, so that they all have the same length. These completed time steps will be
ignored when calculating the cost functions by implementing custom functions
that ignore these time steps for backpropagation.

After this step, the dataset is divided into three parts: 60% training set for
the learning procedure, 20% validation set for hyperparameter optimization and
convergence control, and 20% test set for performance evaluation. The division
strategy adopted ensures that the subsequences of a given defect series belong
to only one of the three previous sets.

The time series are then normalized using a custom time series standard
scaler, so that their mean is 0 and their standard deviation is 1. This makes
the model much more robust to outliers. Min-max normalization has also been
tested, but gives slightly poorer results.
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5.2 Settings

The work has been implemented in Python using Pytorch. All the experiments
are conducted using an NVIDIA A40 GPU.

Adam optimizer is used to perform the gradient descent minimization of the
loss function. The activation function used is the Tanh function for all hidden
layers.

The convergence of the models is checked on learning rates from 10−1 to
10−4, and on different batch sizes. The models perform best with the learning
rate of 0.001 and batch size of 128. The models are also fitted over a variable
number of epochs, the classical recurrent models converge after about 25 epochs,
and the multi-horizons models converge after 10 epochs.

To benchmark the different models, many ML and physical metrics are used
to compare their performances. MAE and RMSE errors are used as machine
learning metrics. Other physical criteria are considered to avoid some physical
constraints violations such as the drop in the crack length, a phenomenon that
should not occur physically (the crack can either progress or remain constant).
These physical criteria are:

– MSQNS, for Mean SeQuence Negative Slope, is the percentage of sequences
that contains at least one fall in the predicted values;

– MSTNS, for Mean STeps Negative Slope, is the percentage of steps that
contains at least one fall in the predicted values.

– MLNS, for Mean Length Negative Slope, is the mean value of the fall in
predicted length values. As a reminder, the observation time series themselves
contain drops in values of up to 15 mm.

The computation of evaluation criteria for all reported experiments in this paper
is performed using the recently proposed LIPS Framework for benchmarking
learned physical systems [14].

5.3 Experiments with Simple Configuration (Without Historical
Crack Length Values)

For this modeling, there is no notion of horizons in the generation of sequences.
Generated sequences are of size 4 (we need to anticipate crack lengths values
over a period of one year with a time step of 3 months). As previously stated,
only exogenous variables are considered for prediction. Recurrent models were
compared using the various ML and physical criteria defined above. This com-
parison is made in particular for the average score over the 4 time steps to be
predicted (mean MAE and mean RMSE), as well as for the scores linked to the
prediction of the first time step (MAE 1st and RMSE 1st) as shown in Table 2.
The results show that the GRU-FC model outperforms LSTM-FC and RNN-FC
in terms of machine learning criteria. The LSTM-FC and RNN-FC models have
quite similar ML results, but the LSTM-FC model gives the best results in terms
of physical criteria.
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Table 2. ML and Physical results for the recurrent models without using historical
crack length values

Model MAE
1st

Mean
MAE

RMSE
1st

Mean
RMSE

MLNS MSQNS MSTNS

RNN-FC 10.48 10.47 13.67 13.66 1.72 29% 8%

GRU-FC 9.65 9.45 12.60 12.38 2.59 24% 6%

LSTM-FC 10.54 10.53 13.75 13.72 1.18 3% 1%

5.4 Experiments Considering Historical Crack Length Values

Experiments with Recurrent Models
For this modeling, time series were created using a sliding window of size 9: with
a past horizon of size 5 and a prediction horizon of size 4. The size of the past
horizon containing historical crack values was chosen at 5 time steps, inspired
by [15] which suggests that a past horizon of size 1.25 × k (k being the size of
the prediction horizon) gives the best prediction results.

Table 3 shows ML and physical criteria for the recurrent models that consid-
ers historical crack length values. ML scores include the MAE for the different
time steps in the prediction horizon (from t+1 to t+4) and their average value,
and the RMSE score for the first time step in the prediction horizon and the
average score over the entire prediction horizon. The LSTM-FC-LH model gives
slightly better results than the GRU-FC-LH. For the physical criteria, this time
it is the GRU-FC-LH model that gives slightly better results.

Table 3. ML and Physical results for the recurrent models considering historical crack
length values

Model MAE
1

MAE
2

MAE
3

MAE
4

Mean
MAE

RMSE
1st

Mean
RMSE

MLNS MSQNS MSTNS

LSTM-FC-LH 2.37 3.05 3.85 4.51 3.45 4.72 6.01 1.16 mm 1% 0.15%

GRU-FC-LH 2.37 3.11 3.85 4.58 3.49 4.77 6.06 1.07 0.5% 0.13%

Experiments with the Multi-horizons and Bayesian Multi-horizons
Models
For this modelling, a number of past horizon sizes were tested to see their effect
on the various criteria to be minimized.

Tables 4 and 5 show the results of the different ML and physical criteria of the
multi-horizons model and the Bayesian multi-horizons model with different past
horizon sizes. Good results can already be obtained from a single measurement
in the past horizon. The size of the training set decreases as the size of the past
horizon increases, due to the filtering of sequences to respect the minimum size.
The choice of the size of the past horizon is conditioned both by the criteria to
be minimized as far as possible and by industrial use. Indeed, information on
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Table 4. ML and physical criteria results for the multi-horizons model considering
different past horizons lengths for prediction

dim hp nb sequences
train

MAE
1st

Mean
MAE

RMSE
1st

Mean
RMSE

MSQNS
%

MSTNS
%

MLNS
mm

1 294018 1.22 2.41 2.50 4.38 2.95 0.79 1.14

2 265519 1.15 2.29 2.39 4.22 2.85 0.76 1.13

3 238222 1.51 2.58 2.82 4.54 4.58 1.20 1.18

4 216021 1.28 2.26 2.50 4.26 14.09 3.61 1.11

5 193901 1.54 2.64 2.62 4.33 2.87 0.74 1.13

6 173598 1.27 2.29 2.43 4.13 6.58 1.69 1.08

7 158040 1.39 2.31 2.58 4.13 4.80 1.22 1.17

8 141407 1.33 2.17 2.43 4.05 8.61 2.22 1.08

9 126847 1.33 2.10 2.39 3.91 6.78 1.74 1.16

10 113175 1.23 2.15 2.33 3.96 14.91 3.80 1.14

Table 5. ML and physical criteria results for the Bayesian multi-horizons model (B-
MH) considering different past horizons lengths for prediction

dim hp nb sequences
train

MAE
1st

Mean
MAE

RMSE
1st

Mean
RMSE

MSQNS
%

MSTNS
%

MLNS
mm

1 294018 0.86 2.21 2.40 4.28 1.99 0.52 1.09

2 265519 0.94 2.26 2.32 4.22 1.51 0.39 1.14

3 238222 0.90 2.21 2.44 4.30 1.05 0.29 1.13

4 216021 1.20 2.23 2.63 4.29 3.56 0.91 1.05

5 193901 0.94 2.19 2.44 4.19 1.30 0.35 1.09

6 173598 0.98 2.13 2.37 4.06 2.87 0.73 1.04

7 158040 1.28 2.31 2.58 4.13 1.41 0.37 1.07

8 141407 1.13 2.15 2.38 4.00 9.83 2.49 1.04

9 126847 1.13 2.06 2.31 3.87 6.20 1.58 1.02

10 113175 1.02 1.96 2.34 3.93 2.94 0.78 1.09

historical measurements is sometimes available for just 1 or 2 time steps, which
corresponds to three months or less, but we still want to predict crack lengths
in the future because some cracks might have exceeded the security threshold
before 6 months. The model must therefore be able to make predictions even
with a limited past horizon size.

Figures 4 and 5 show ML scores (MAE and RMSE) for both the multi-
horizons and Bayesian multi-horizons models using different past horizons
lengths, these scores are presented in detail over the entire prediction horizon.
Models errors increase with distance from the past horizon. The Bayesian multi-
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Fig. 4. MAE and RMSE scores for the prediction horizon using the multi-horizons
model with different past horizon lengths.

Fig. 5. MAE and RMSE scores for the prediction horizon using the Bayesian multi-
horizons model with different past horizon lengths

horizons model outperforms the multi-horizons model over the entire forecast
horizon.

Figure 6 shows the scatter plots for each time step in the prediction horizon.
The x-axis and the y-axis correspond to the measured and predicted values of
crack length respectively. There is a high density around the y = x line which
explains the good prediction scores. There are, however, some miss-predicted
values, especially when crack lengths become large, where the model tends to
underestimate them. This result is mainly due to the small percentage of large
crack length values in the dataset.

Uncertainty Quantification Using the Bayesian Multi-horizons Model
As described above, uncertainty quantification is performed after the training
of the model using Monte Carlo dropout sampling. Dropout is set after each
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Fig. 6. Actual vs predicted crack length values over the prediction horizon

layer (except the last one) and 50 Monte Carlo samples were generated for each
time series. Then, the sum of the two types of uncertainty is calculated using
Eq. 6. The dropout rate was varied from 10% to 50%. Aleatoric uncertainty
does not vary widely, as it is linked to the inherent noise of the data. Epistemic
uncertainty, on the other hand, increases as the dropout rate is increased, since
it is linked to the learning model. As a result, total uncertainty increases, as
does the size of the confidence interval, resulting in higher coverage. For the rest
of this study, a dropout rate of 10% is set after each layer, and an approximate
95%-level prediction confidence interval is constructed. Results show that only
48% of time steps are covered by this confidence interval. Indeed, as mentioned
above, all the measured length values were approximated to the closest multiple
of 5, which led us to add threshold of 5 to the confidence interval. This time,
about 93% of time steps are covered by the new confidence interval.

Figure 7 shows some example of crack length propagation, the corresponding
predicted values and uncertainty estimated values. Example 1 is a case of a crack
whose final value becomes significant (around 80 mm). The predicted values are
very close to the measurements but the corresponding epistemic uncertainty is
quite high. This can be explained by the fact that the training set contains less
than 3% of measurements ≥80 mm.



274 S. Y. Ouerk et al.

Example 2 is an example of propagation with decreasing values. The model
underestimates crack lengths for the first few predicted values, then converges
to the measured values at the end. However, falling values can be considered as
inherent data noise or measurement errors, resulting in a high aleatoric uncer-
tainty for this example.

Fig. 7. Crack length propagation example with corresponding uncertainty estimation
using the Bayesian Multi-horizons model

6 Conclusion and Future Works

Predicting the propagation of cracks in rails is a critical issue for optimizing the
maintenance operations across the rail network. This task is intrinsically com-
plex, and cannot be handled simply with physical simulations. In this paper,
we proposed a deep learning approach based on real data collected on the rail.
Obtained results show that the multi-horizons model outperforms conventional
recurrent models such as GRU. The Bayesian multi-horizons model performs
even better, and allows to quantify both aleatoric and epistemic uncertainties.
Several avenues of improvement can be investigated in future work, in particular
the calibration of models to predict more accurate uncertainties, as proposed in
[16]. We aim also at combining recurrent layers with attention layers that assign
different weights to the hidden states based on their significance for forecasting
the crack lengths. Finally, the hybridization of ML methods and physical simu-
lations is also part of the work in progress. Indeed, information provided from
physical simulation can contribute in enriching the variables of the learned model
such as the wheel load of the vehicle rolling on the rail, and thus improving the
prediction performance.
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Abstract. We describe our experience in developing a predictive model
that placed a high position in the BigDEAL Challenge 2022, an energy
competition of load and peak forecasting. We present a novel procedure
for feature engineering and feature selection, based on cluster permutation
of temperatures and calendar variables. We adopted gradient boosting of
trees and we enhanced its capabilities with trend modeling and distribu-
tional forecasts. We also included an approach to forecasts combination
known as temporal hierarchies, which further improves the accuracy.

Keywords: Load Forecasting · Feature engineering · Gradient
Boosting · Hierarchical Forecasting · Forecast Reconciliation

1 Introduction

Load forecasting is the problem of predicting the future profile of power demand,
while peak forecasting is the problem of predicting the maximum (e.g. daily) value
of demand and the time of its occurrence. Peak forecasting is important because
often decisions are made based on the forecast of the peak rather than on the
forecast of the entire load profile.

In this work, we present an approach that successfully competed in the
BigDEAL Challenge 2022, which was about energy load and peak forecasting.
The competition was held in October-December 2022; 121 contestants took part,
divided into 78 teams. The forecasts were assessed using different indicators and
the competition was split into a qualifying match and a final match. We achieved
the 3rd position in the qualifying match, gaining access to the final match, where
we ended 6th [16].

For the qualifying match, we used Gradient Boosting (GB) of trees, cou-
pled with an original method for feature engineering and feature selection. For
the final match, we developed a more sophisticated approach. In particular, we
adopted a recent probabilistic version of LightGBM [28] and used temporal hier-
archies [3] in order to improve the forecasts by combining predictions at different
temporal scales. Even though the competition only scored the point forecasts,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Ifrim et al. (Eds.): AALTD 2023, LNAI 14343, pp. 276–292, 2023.
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our approach is probabilistic and thus quantifies the uncertainty of the forecasts.
This is indeed needed to support decision-making.

We present our approach in this paper, which is organized as follows. In Sect.
2.1 an outlook of long-term load forecasting and our motivations are given. We
introduce Gradient Boosting (GB) of trees and probabilistic extensions in Sect.
2.2. We present our approach for feature engineering for load forecasting in Sect.
2.3, and feature selection in Sect. 2.4. Temporal hierarchies are presented in
Sect. 2.5. In Sect. 3 we detailed review our pipeline with technical insights, and
competition results. We end this work with a critical conclusion in Sect. 4.

2 Methodology

2.1 Long-Term Load Forecasting

Load forecasting is the problem of predicting the electricity demand of the next
H time steps, denoted by [yT+1, . . . , yT+H ]. When the order of magnitude of
H is a few hundred or more, we talk about long-term forecasting. For instance,
forecasting a year ahead at an hourly scale implies producing 24 × 365 = 8760
forecasts. Classical forecasting strategies [4] condition the forecast on the last
observations of the time series. However, this is not viable for long-term fore-
casting, since in this case yT+H is independent of yT . Long-term forecasting is
better addressed as a regression problem, adopting a rich set of explanatory vari-
ables (features) regarding calendar effects, temperatures, etc. [7]. This approach
allows adopting regression methods such as Gradient Boosting (GB) of trees
[11], which is indeed successful in long-term energy forecasting [32].

2.2 Gradient Boosting and Distributional Forecasts

In fact, GB achieved top positions in the Global Energy Forecasting Competi-
tions (GEFCom) of 2012, 2014, and 2017 [18–20], in the M5 forecasting compe-
tition [23], and competitions on tabular data [6]. The most popular implemen-
tations are XGBoost, LightGBM, and CatBoost.

GB can be trained with different loss functions besides the traditional
least squares. For instance, GB trained to perform quantile regression won the
GEFCom2014 probabilistic competition [12]. Yet, even quantile regression only
returns point forecasts without a predictive distribution. It is possible to train
different GB models, one for each desired quantile; but if the predicted quan-
tiles cross, the predictive distribution is invalid [29,30]. The recent versions of
probabilistic GB of trees constitute a sounder approach [9,27,28] to probabilistic
forecasting. In this work, we adopt the LightGBM extended model of März et
al. [28], which returns the moments of the predictive distribution.

A successful implementation of GB requires anyway paying attention to some
possible issues. For instance, GB is generally unable to model a long-term trend.
If the time series is trendy, it is recommended to detrend it, fit the GB model,
and then add the predicted trend to the GB forecast [34]. Another pre-processing
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step that is sometimes helpful is a logarithmic transformation which stabilizes the
variance of the target time series [31]. Moreover, GB is subject to overfitting. The
DART algorithm [33] solves the problem by introducing Dropout regularization
analogously to Neural Networks.

2.3 Feature Engineering

The exogenous variables that are frequently used in load forecasting are related
to calendars and temperatures.

Calendar Features. Calendar variables allow to capture the seasonal patterns.
They are commonly modeled by categorical variables. For example, the day of
the week is represented by a categorical variable with seven levels. Holidays are
represented by a binary variable: 1 for holidays and 0 for non-holiday.

Lagged and Rolling Temperatures. Temperature impacts energy consumption,
by driving the use of heating, ventilation, and air conditioning (HVAC) systems.
However, there is generally a delay between the change in temperature and the
change in energy consumption. We thus consider the lagged hourly temperatures:

T (t − h), h = 1, 2, . . . , L (1)

where L is the maximum lag; and the rolling temperature’s statistics:

Tw
f (t) = f(T (t − 1), . . . , T (t − w)) (2)

where f(·) is some statistical function and w indicates the width of the window of
past values of hourly temperatures considered. For example, the moving average
of the last 24 h of temperature values is T 24

avg(t) = 1
24

∑24
h=1 T (t − h).

Aggregated Indicators of Temperature. Aggregated features can capture the long-
term effect of temperature on energy load. They can be expressed as T̃ g

f (t) where
g is the aggregation period and f(·) is the aggregation function. These features
include, for example, the daily maximum and minimum values of the temperature
or the monthly standard deviation of the temperature.

In this paper, we propose additional aggregation functions (Table 1) borrowed
from signal processing [10,36], which to the best of our knowledge have not yet
been used in energy forecasting. They should be computed on the time series
of temperature, and provide insights about the variability and shape within the
aggregation period. For example, the crest factor measures the peak-to-average
ratio of a signal; a high daily crest factor corresponds to large variations of
temperature during the day, which generally increase energy demand; a low daily
crest factor corresponds to stable temperatures during the day, which generally
decreases energy demand.
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Table 1. Signal Processing features for load forecasting.

RMS xRMS =
√

1
N

∑N
i=1 x

2
i

Peak value xp = max(|xi|)
Crest factor xcrest =

xp

xRMS

Impulse factor xif =
xp

1
N

∑N
i=1 |xi|

Margin factor xmf =
xp

(
∑N

i=1|xi|1/2)2

Shape factor xsf = xRMS
1
N

∑N
i=1 |xi|

Peak to peak value xpp = max(xi) − min(xi)

2.4 Feature Selection

Feature engineering generates a large set of features, after which feature selection
is needed [22,25]. We perform feature selection based on hierarchical clustering
and pairwise correlation of the features. The core of our approach is Permutation
Feature Importance (PFI), which measures the drop in performance when a
feature is randomly shuffled [5]. The size of the drop in performance shows how
much the model relies on that feature for prediction. PFI is appealing since it can
be applied to any model; it is easy to implement (Algorithm 1); it can measure
feature importance on the metric of the competition; it can be computed out-
of-sample.

Algorithm 1. Permutation Feature Importance
Require: A trained model and recorded score s on an evaluation dataset.

for feature xj , j = 1, . . . , d do
for each repetition k, k = 1, . . . ,K do

Randomly shuffle column j of the original evaluation set.
Compute the new score sk,j of the model on the perturbed set.

end for
Compute the importance of feature xj as Ij = s− 1

K

∑K
k=1 sk,j

end for

However, shuffling a single feature can produce unrealistic results if features
are dependent. Furthermore, correlated features share importance, therefore
their relevance may be underestimated (substitution effect, [15]).

Clustered Permutation Feature Importance. To solve such issues we propose
a novel approach, which we call Clustered Permutation Feature Importance
(CPFI). The method works as follows.

At first, groups of highly correlated features are identified by applying hier-
archical clustering on the correlation matrix of the features. For that, a measure
of dependence between each feature pair is computed using a correlation index,
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Pearson’s or Spearman’s for instance. Then, all the variables of the same clus-
ter are shuffled, and the subsequent performance drop is computed. The more
orthogonal the information contained in different clusters, the more reliable the
estimate of importance. Finally, non-informative feature clusters are dropped.
Also, only one or few features can be selected from each relevant cluster based on
some measure of explanation with respect to the target, or some expert advice.
We propose a criterion for informativeness in Sect. 3.

2.5 Temporal Hierarchies

As a further tool to improve forecasting accuracy, we consider temporal hierar-
chies [3]. For instance, assume that we want to generate forecasts at the hourly
scale (referred to as the bottom level). A temporal hierarchy creates and com-
bines forecasts also at coarser temporal scales (e.g., 2-hourly and 4-hourly),
referred to as the upper levels. The smoothness of the upper time series enables
enhanced modeling of long-term patterns. This process generally improves fore-
casting accuracy at all levels [3,24].

A temporal hierarchy works as follows. First, forecasts are independently
created at different temporal scales (base forecasts). For instance, Fig. 1 shows
a temporal hierarchy aimed at forecasting 4-hours ahead. It contains 4 forecasts
computed at hourly frequency (ĥ1, ..., ĥ4, bottom level); two forecasts computed
at 2-hour frequency (ĥ12, ..., ĥ34, intermediate level); one forecast computed at
4-hour frequency (ĥ1234, top level). Generally, the base forecasts do not sum up
correctly and they are referred to as incoherent. For instance: ĥ12 �= ĥ1 + ĥ2,
ĥ34 �= ĥ3+ĥ4, etc. Reconciliation [35] is the process of adjusting the base forecast
so that they become coherent, i.e., they sum up correctly. The reconciled forecasts
are denoted with a tilde and thus in the example of Fig. 1 after reconciliation,
we have: h̃12 = h̃1 + h̃2, h̃34 = h̃3 + h̃4, h̃1234 = h̃12 + h̃34.

Fig. 1. Temporal hierarchy for forecasting 4-hours ahead, using hourly forecasts (bot-
tom level), 2-hourly forecasts, and 4-hourly forecasts.

Temporal hierarchies require the mean and the variance of the base forecasts.
The original algorithm [3] provides only the reconciled point forecast, while the
approach of [8] yields also a reconciled predictive distribution.
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3 Experiments

The BigDEAL Challenge 2022 was divided in a qualifying match and a final
match. The qualifying match provided hourly load and hourly temperature
statistics (mean, median, min, max) of four weather stations for the period
2002–2006; see Fig. 2 for an example. It required forecasting the year 2007 given
the actual temperatures. This is referred to as ex-post setting. The final match
provided three years (2015–2017) of hourly load of three U.S. local distribution
companies (LDC), and hourly temperatures from six weather stations. The fore-
casted (ex-ante setting) 1-day ahead temperatures for 2018 were released on a
rolling basis, two months at a time. The forecasts for these periods were to be
delivered, in a total of six consecutive rounds. Both matches required forecasts
at hourly scale for the 24 h, the values of the peak for each day, and its time of
occurrence (i.e. a discrete number between 1 and 24).

The qualifying match served as a support for participants to validate their
forecasting approach. Its ex-post setting is optimistic as actual temperatures for
the forecasting horizon are used. The ex-ante setting of the final match instead
represents a realistic scenario as forecasts are obtained from forecasted temper-
atures. In the literature, the comparison of the two settings is used to measure
the effectiveness of the forecasting models [21], i.e. the influence of the forecast
errors is isolated in the input variables.

Fig. 2. Load (MW) and temperature Tavg (◦F) of the qualifying match of the BigDEAL
challenge. For readability, we show data aggregated over 12 h.
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3.1 Performance Measures

The organizers evaluated the forecasts of each match with three different tracks.
In the qualifying match the hourly forecasts (24 × 365 = 8760) were scored

using the Mean Absolute Percentage Error (MAPE):

MAPE =
1
H

T+H∑

t=T+1

|yt − ŷt|
|yt|

× 100, (3)

where yt and ŷt denote the actual and the forecasted value for time t. The second
metric was the Magnitude (M); it is the MAPE between the actual and forecasted
daily peak values (i.e., it refers to 365 forecasts with a one-year horizon). We
recall that MAPE has been criticized in the forecasting literature: it penalizes
over-estimation errors more than under-estimation ones [2] and it is numerically
unstable when dealing with values close to 0. To score the prediction of peak
hours the organizers used a third metric, called Timing (T), which computes
the Mean Absolute Error. For example, if the actual peak is at 6 pm, and the
forecasted peak time is at 8 pm, the error for that day is |6 − 8| = 2.

The final match scored the forecasts using Magnitude (M) and Timing (T),
plus an additional metric called Shape (S). However, the definition of Timing
was modified introducing a non-uniform cost for the error. Let us denote by Td

and T̂d the actual and the forecasted peak hour for a day d. Timing was then
defined as:

T =
1

|days|
∑

d in days

w(Td, T̂d),with

w(Td, T̂d) =

⎧
⎪⎨

⎪⎩

|Td − T̂d|, if |Td − T̂d| = 1,

2|Td − T̂d|, if 2 ≤ |Td − T̂d| ≤ 4,

10, if |Td − T̂d| ≥ 5

(4)

Shape (S) scored the shape of the forecast around the peak. To compute it, the
24h load forecasts of a day are normalized by the peak forecast of that day, and
the same is done for the actual load. Then the sum of absolute errors during
the 5-hour peak period (actual peak hour ± 2 h) of every day is calculated. We
denote by ȳd and ¯̂yd the normalized actual and forecasted load for a day d;
ȳd = yd

max yd
, ¯̂yd = ŷd

max ŷd
. Shape is defined as:

S =
1

|days|
∑

d in days

∑

t in {Td,Td±1,Td±2}
|ȳd(t) − ¯̂yd(t)| (5)

Scoring the Predictive Distribution. While the competition only assessed the
point forecasts, we also scored the distributional forecasts obtained from our
probabilistic models. In particular, we compared the probabilistic forecast of
our GB model (based on [28]) with those obtained after the application of the
temporal hierarchy. We scored the predictive distributions of the model using
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the Continuous Ranked Probability Score (CRPS) [14]. Let us denote by F̂ the
predictive cumulative distribution function and by y the actual value:

CRPS(F̂, y) =
∫ ∞

−∞
(F̂(x) − 1(x ≥ y))2 dx (6)

With Gaussian F̂, the integral can be computed in closed form [14]. We then
scored the prediction intervals using the Interval Score (IS) [13]. Let us denote
by 1 − α the nominal coverage of the interval (assumed 0.9 in this paper), by l
and u its lower and upper bound. We thus computed with the models, for each
hour, a 90% prediction interval and the score:

IS(l,u, y) = (u − l) +
2
α

(l − y)1(y < l) +
2
α

(y − u)1(y > u) . (7)

We also report the proportion of cases in which the interval (l,u) contains y.

Skill score. Let morigin and mnew be the results obtained by two different mod-
els on a certain metric to be minimized. We denote the positive or negative
percentage improvement by the Skill score defined as:

Skill%(morigin,mnew) =
morigin − mnew

(morigin + mnew)/2
× 100 (8)

3.2 Qualifying Match

Here, we detail the building blocks of our implementation.

Baseline. We started by modeling essential calendar features (Year, Month, Week,
Day, Weekday, Hour) and temperatures at the current time (Tavg, Tmed, Tmin,
Tmax). We applied a logarithmic transformation to the target variable to stabilize
its variance. Moreover, since the target variable has a long-term increasing trend,
we performed detrending. We fitted a Linear Regression (LR) model (yi = β0 +
β1xi, where xi are progressive time indices with i = 1, . . . , T ) to the training
data. We then subtracted the linear trend before fitting the LightGBM model.
At prediction, we added the extrapolated trend to the out-of-sample predictions,
followed by an exponential transformation, to obtain the final forecast. With
detrending: the residuals have a mean of 0, otherwise, they are severely biased;
we reduced the MAPE (H) of the baseline model from 6.18 to 4.81.

Cross-validation. We used time series cross-validation to evaluate the perfor-
mance of each model, hyper-parameter tuning, and feature selection. The size of
the time window is typically chosen equal to the size of the test set on which the
final prediction is to be made. Hence, for the qualifying phase, the years 2004,
2005, and 2006 were used as out-of-sample folds.
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Feature Engineering. Feature engineering was performed incrementally by
adding related feature blocks one step at a time. We found the following features
to be predictive for this competition:

– Additional calendar features: Holiday, Holiday name, Weekend, Week of
month, Season, Day of year, Days since last/until next holiday. We
transform the Holiday name string feature with label encoding.

– Lagged hourly temperatures: for each temperature variable (Tavg, Tmed, Tmin,
Tmax) lagged hourly temperatures were incorporated into the model, ranging
from a minimum lag of 1 h to a maximum lag of 48 h, for a total of 192 new
features.

– Temperature-based rolling statistics: for each temperature variable, and 4
different values of window widths (3 h, 1 day, 1 week, 1 month), 5 statistical
functions (mean, max, min, median, std) were computed, for a total of 80
new features.

– Aggregated temperature statistics: for each temperature variable, for 2 dif-
ferent aggregation periods (Year-Month-Day, Month-Hour), 11 aggregation
functions (mean, max, min, median, and centered RMS, crest factor, peak
value, impulse factor, margin factor, shape factor, peak to peak value) cou-
pled with the differences between the current temperature values and the
aggregated values were computed for a total of 88 × 2 = 176 new features.
For example, we denote by T̃Y ear,Month,Day

max (t) the daily maximum, where
Year-Month-Day is the aggregation period, to be read from left to right.

Feature selection. To evaluate our feature selection strategy, we carried out mul-
tiple experiments. First, we assessed the model performance without any fea-
ture selection (experiment a). Then, we applied the feature selection strategy
described in Sect. 2.4 after completing all feature engineering, on the entire set
of features added to the baseline model (experiment b). Finally, we performed
step-by-step feature selection whenever we added a new block of features to the
model, i.e. after adding lagged variables, after adding rolling variables, and so
on (experiment c).

Cluster permutations were executed 100 times, and mean values and standard
deviations of performance drops were calculated against all the out-of-sample
folds. We consider a cluster of features informative if the importance value fall
within three standard deviations of the mean, above 0. Results are presented in
Table 2. Specifically, the columns for MAPE, Magnitude, and Timing present the
results based on the respective competition metrics, whereas columns a, b, and
c correspond to the 3 experimental strategies employed. It is important to note
that, unlike experiment a, where the results were obtained in a single training
run, the results for experiments b and c were derived from three different training
runs, each one maximizing the metric of interest.
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Table 2. Out-of-fold qualification results with feature selection methods.

MAPE (H) Magnitude Timing

a b c a b c a b c

Baseline 4.81 - - 4.43 - - 1.42 - -

Calendar 4.83 - 4.78 4.48 - 4.46 1.39 - 1.39

Lags 3.33 - 3.24 3.29 - 3.20 0.94 - 0.92

Roll lags 3.28 - 3.16 3.22 - 3.20 1.06 - 0.94

Agg stats 3.24 3.16 3.09 3.21 3.10 3.08 0.91 0.95 0.91

For illustration purposes, in Fig. 3, we present the feature selection results
obtained after incorporating lagged hourly temperatures into the model.
Figure 3a presents the dendrogram obtained from hierarchical clustering com-
puted on the Spearman correlation matrix, which is shown in Fig. 3b. With a
threshold value of 0.1, we identified 36 clusters. The cluster rankings that maxi-
mize, respectively, the performance of MAPE, Magnitude, and Timing are visible
in Fig. 3c. For all the metrics, cluster 8 proved to be the most significant, fol-
lowed by clusters 31, 7, 2, and 12. This suggests that most informative lags are at
t-{1, 2, 3, 4, 5, 6}, t-{11, 12}, and t-{25, 26}. Table 3 shows the clusters associated
feature set.

Table 3. Clustered Permutation Feature Importance: Top-5 clusters of lagged temper-
atures that maximize performance indicators.

Cluster ID Feature Set

8 Tavg,med,min(t− 1), Tavg,med,min(t− 2)

31 Tavg,med,min(t− 11), Tavg,med,min(t− 12)

7 Tavg,med,min(t− 3), Tavg(t− 4)

2 Tavg,med,min(t− 5), Tavg,med(t− 6)

12 Tmax(t− 1), Tmax(t− 2), Tmax(t− 25), Tmax(t− 26)

Hyper-parameter optimization We used the Optuna framework [1] to tune the
learning control parameters of LightGBM, primarily: the max number of leaves
in one tree, the minimal number of data in one leaf, L1 and L2 regularization,
bagging and feature fractions, the number of estimators, and the learning rate.
The parameters are optimized for the best cross-validation performance, also
considering the standard deviation of the different folds. Optuna implements
time-budget optimization which was useful given the short deadlines of the com-
petition.
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Fig. 3. Hierarchical clustering (threshold of 0.1) (a) and Spearman’s correlation matrix
(b). The blue squares highlight the 36 clusters. In (c) Clustered Permutation Feature
Importance (CPFI) values are reported for each track. (Color figure online)

Results. Our team was named “swissknife”; as reported in Tab. 4, we ranked 8th

on the hourly forecast (H), 3rd on the Magnitude (M), 3rd on the Timing (T).

3.3 Final Match

For the final match, we followed the same pipeline tuned in the qualification
phase, with the exception of target transformation, which was not required as
the target variable was already stationary. Additionally, three LDC loads were
required to be forecasted (LDC1, LDC2, LDC3), and the temperature variables
come from six weather stations (T1, T2, T3, T4, T5, T6), without aggregate
statistics and geographical references. To further enhance performance, we incor-
porated several techniques, including DART, probabilistic LightGBM, and tem-
poral hierarchies.
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Table 4. Leaderboard of Qualifying Match [17].

Team Rank H. Team Rank M. Team Rank T.

X-Mines 1 Amperon 1 RandomForecast 1

Amperon 2 Team SGEM KIT 2 Amperon 2

Yike Li 3 swissknife 3 swissknife 3

peaky-finders 4 peaky-finders 4 freshlobster 4

KIT-IAI 5 KIT-IAI 5 peaky-finders 5

Overfitters 6 EnergyHACker 6 Recency Benchmark

BelindaTrotta 7 BelindaTrotta 7 X-Mines 6

swissknife 8 Overfitters 8 BrisDF 7

Recency Benchmark VinayakSharma 9 BelindaTrotta 8

RandomForecast 9 SheenJavan 10 KIT-IAI 9

Team SGEM KIT 10 . . . SheenJavan 10

. . . Recency Benchmark 13 . . .

Tao’s Vanilla Benchmark 27 Tao’s Vanilla Benchmark 25 Tao’s Vanilla Benchmark 30

Feature Selection. The most important lagged temperatures were found at time
t-{1, 2, 3, 4, 5}, and t-{10, 11, 12}, and the most important rolling lag temper-
atures were found with w = {3hours, 1 day}. Figure 4 shows that within the
six weather stations, temperatures {T1, T2, T5} better explain LDC1. Analo-
gously, LDC2 is better explained by {T3, T4}, and LDC3 by {T5, T6, T1}. To
save space, we do not present the Out-of-fold Top-20 features for LDC2 and
LDC3 in this paper, but the results are in line with those of LDC1. Hence, even if
according to the guidelines of the competition it was not necessary to rely on the
location of the data, our method nicely handles datasets with multiple weather
stations.

Regularization. Using Dropout, the DART booster reduced the overfitting that
affects LightGBM with the standard booster. It also reduced the prediction error,
but training became slower since it required more boosting iterations. We tested
DART on the qualification data only when it was over. With 30’000 iterations,
the MAPE (H) went from 3.24 to 2.83, and the Magnitude from 3.21 to 3.09.
Hence, we included DART in the final match models.

Temporal Hierarchies. We built temporal hierarchies by summing the hourly
load and temperatures at the following scales: 2-hours, 4-hours, 6-hours, and
12-hours. We trained an independent probabilistic LightGBM-LSS [28] model
at each time scale. The model minimizes the Negative Log-Likelihood loss func-
tion. Gaussian distributional base forecasts were obtained at each temporal scale
for the same forecasting horizon H. We implemented probabilistic reconciliation
as formulated in [8]. In Table 5 (load profile) and Table 6 (peak), we compare
base and reconciled forecasts, using skill scores (S%); in Fig. 5 we show some fore-
casts. Temporal hierarchy improves only slightly the point forecasts, but more
importantly the predictive distribution, with a skill score of about 5% on CRPS
and 10% on IS. We also tested 1-day aggregation without further improvement
for the bottom time series. As the previous feature importance analyses showed,
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Fig. 4. Out-of-fold Top-20 Features Importance obtained after the last incremental step
of feature engineering (aggregated features) and feature selection, for LDC1 at Round 1.
On the y-axis, we reported SHAP (SHapley Additive exPlanations) [26] values of the
LightGBM model.

Table 5. Reconciliation metrics for the load profiles; base (ŷ) and reconciled (ỹ) fore-
casts, with skill scores (S%). Temporal hierarchy for forecasting using hourly (bottom
level), 2-hourly, 4-hourly, 6-hourly, and 12-hourly aggregations.

MAPE CRPS IS90% IC90% (%)

ŷ ỹ S% ŷ ỹ S% ŷ ỹ S% ŷ ỹ

LDC1 4.87 4.84 0.75 6.35 6.03 5.16 61.62 55.01 11.34 99.24 98.81

LDC2 5.02 4.99 0.52 10.92 10.44 4.49 101.35 90.39 11.43 99.07 98.49

LDC3 4.51 4.5 0.05 45.99 43.84 4.78 446.49 398.37 11.39 98.85 98.14

past values close to the conditioning time are the most important variables for
prediction. We came to the explanation that a high-scale aggregation (empiri-
cally greater than 1 day) makes these variables vanish. Instead, small hierarchies
also improved peaks, as shown in Table 6 and Fig. 5. Given the availability, the
metrics we present for the final match refer to actual competition values of Round
1–5 (Jan-Oct 2018).
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Table 6. Reconciliation metrics for the peaks; base (ŷ) and reconciled (ỹ) forecasts,
with skill scores (S%). Temporal hierarchy for forecasting using hourly (bottom level),
2-hourly, 4-hourly, 6-hourly, and 12-hourly aggregations.

Magnitude Timing Shape CRPSpeak

ŷ ỹ S% ŷ ỹ S% ŷ ỹ S% ŷ ỹ S%

LDC1 4.97 4.90 1.34 1.22 1.13 7.93 0.088 0.086 2.16 8.33 7.89 5.46

LDC2 5.51 5.48 0.52 1.26 1.23 1.87 0.102 0.101 1.11 15.73 15.13 3.85

LDC3 4.83 4.79 0.95 1.19 1.09 8.80 0.079 0.078 1.56 60.83 57.97 4.82

Fig. 5. Comparison of probabilistic forecasts, before and after the application of the
temporal hierarchy. The temporal hierarchy slightly improves the point forecasts. It also
shortens the prediction intervals without compromising their reliability. The sample
refers to three days (15–17 Aug 2018) for LDC1.

Results. We placed 6th (M), 6th (T), and 7th (S) [16], see Table 7.
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Table 7. Leaderboard of Final Match [16].

Team Rank M. Team Rank T. Team Rank S.

Amperon 1 KIT-IAI 1 KIT-IAI 1

Overfitters 2 Amperon 2 Amperon 2

peaky-finders 3 BelindaTrotta 3 Overfitters 3

Team SGEM KIT 4 Overfitters 4 X-mines 4

KIT-IAI 5 X-mines 5 SheenJavan 5

swissknife 6 swissknife 6 Rajnish Deo 6

Recency Benchmark 7 peaky-finders 7 swissknife 7

Energy HACker 8 Rajnish Deo 8 Recency Benchmark 8

Rajnish Deo 9 Team SGEM KIT 9 RandomForecast 8.5

X-mines 10 SheenJavan 10 Yike Li 8.5

. . . . . . peaky-finders 10

Tao’s Vanilla Benchmark 17.5 Recency Benchmark 14 . . .

Tao’s Vanilla Benchmark 18 Tao’s Vanilla Benchmark 16

Team Final Rank

Amperon 1

KIT-IAI 2

Overfitters 3

peaky-finders 4

X-mines 5

swissknife 6

Rajnish Deo 7

Team SGEM KIT 9

Recency Benchmark 10

. . .

Tao’s Vanilla Benchmark 14

4 Conclusion

We described our experience in an international energy forecasting competition.
We introduced features borrowed from the literature of signal processing, a novel
strategy for feature selection, and we pointed out the improvement that the
DART booster allowed us to achieve over the traditional Gradient Boosting (GB)
of trees. Furthermore, we adopted a recent probabilistic extension of LightGBM.
A predictive distribution, instead of the point forecast solely, is of great impact
because the decision-making processes can rely on the uncertainty inherent in
the forecast. To the limits of our knowledge, these models have not yet been
adopted in energy forecasting. Moreover, with distributional forecasts, we applied
temporal hierarchies and further improved the results.

For future work, we intend to evaluate our method on other datasets and
improve the capabilities of other models, specifically Deep learning models for
energy forecasting.

Acknowledgments. Work partially funded by the Swiss National Science Foundation
(grant 212164), and the ERA-NET Smart Energy Systems program (grant 883973,
project Digicities).



Electricity Load and Peak Forecasting 291

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631 (2019)

2. Armstrong, J.S., Collopy, F.: Error measures for generalizing about forecasting
methods: empirical comparisons. Int. J. Forecast. 8(1), 69–80 (1992)

3. Athanasopoulos, G., Hyndman, R.J., Kourentzes, N., Petropoulos, F.: Forecasting
with temporal hierarchies. Eur. J. Oper. Res. 262(1), 60–74 (2017)

4. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time
series forecasting. Business Intelligence: Second European Summer School, eBISS
2012, Brussels, Belgium, July 15–21, 2012, Tutorial Lectures, pp. 62–77 (2013)

5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
6. Carlens, H.: State of competitive machine learning in 2022 (2022).

mlcontests.com/state-of-competitive-machine-learning-2022/. Accessed 01 Apr
2023

7. Charlton, N., Singleton, C.: A refined parametric model for short term load fore-
casting. Int. J. Forecast. 30(2), 364–368 (2014)

8. Corani, G., Azzimonti, D., Augusto, J.P., Zaffalon, M.: Probabilistic reconciliation
of hierarchical forecast via bayes’ rule. In: Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium,
September 14–18, 2020, Proceedings, Part III, pages 211–226. Springer, 2021

9. Duan, T., Anand, A., Ding, D.Y., Thai, K.K., Basu, S., Ng, A., Schuler, A.:
Ngboost: Natural gradient boosting for probabilistic prediction. In International
Conference on Machine Learning, pp. 2690–2700. PMLR (2020)

10. Erişti, H., Uçar, A., Demir, Y.: Wavelet-based feature extraction and selection for
classification of power system disturbances using support vector machines. Electric
Power Syst. Res. 80(7), 743–752 (2010)

11. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4),
367–378 (2002)

12. Gaillard, P., Goude, Y., Nedellec, R.: Additive models and robust aggregation
for gefcom2014 probabilistic electric load and electricity price forecasting. Int. J.
Forecast. 32(3), 1038–1050 (2016)

13. Gneiting, T.: Quantiles as optimal point forecasts. Int. J. Forecast. 27(2), 197–207
(2011)

14. Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T.: Calibrated probabilistic
forecasting using ensemble model output statistics and minimum crps estimation.
Mon. Weather Rev. 133(5), 1098–1118 (2005)

15. Gregorutti, B., Michel, B., Saint-Pierre, P.: Correlation and variable importance
in random forests. Stat. Comput. 27, 659–678 (2017)

16. Hong, T.: BigDeal Challenge 2022, Final Match.
blog.drhongtao.com/2022/12/bigdeal-challenge-2022-final-leaderboard.html.
Accessed 09 Apr 2023

17. Hong, T.: BigDeal Challenge 2022, Qualifying Match.
blog.drhongtao.com/2022/11/bigdeal-challenge-2022-qualifying-match.html.
Accessed 09 Apr 2023

18. Hong, T., Pinson, P., Fan, S.: Global energy forecasting competition 2012 (2014)
19. Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J.: Proba-

bilistic energy forecasting: Global energy forecasting competition 2014 and beyond
(2016)

http://www.mlcontests.com/state-of-competitive-machine-learning-2022/
http://www.blog.drhongtao.com/2022/12/bigdeal-challenge-2022-final-leaderboard.html
http://www.blog.drhongtao.com/2022/11/bigdeal-challenge-2022-qualifying-match.html


292 N. Rubattu et al.

20. Hong, T., Xie, J., Black, J.: Global energy forecasting competition 2017: hierarchi-
cal probabilistic load forecasting. Int. J. Forecast. 35(4), 1389–1399 (2019)

21. Hyndman, R.J., Fan, S.: Density forecasting for long-term peak electricity demand.
IEEE Trans. Power Syst. 25(2), 1142–1153 (2009)

22. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical
learning (2013)

23. Januschowski, T., Wang, Y., Torkkola, K., Erkkilä, T., Hasson, H., Gasthaus, J.:
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Abstract. Capturing changes in an individual’s language is an impor-
tant aspect of personalised mental health monitoring. A key component
is modelling the influence of time, as contextual information both in the
recent or distant past/future carries varying semantic weight. We cap-
ture and contrast this information by identifying neural, time-sensitive,
bi-directional representations of individuals – modelling time-intervals
in their social-media posts inspired by the Hawkes process. We demon-
strate that our approach helps identify whether an individual’s mood is
changing drastically, or smoothly on two social media datasets – yielding
superior performance compared to time-insensitive baselines and outper-
forming the state-of-the-art on the CLPsych 2022 shared task.

Keywords: Social Media · Mental Health · Longitudinal Modelling

1 Introduction

Mental health has rapidly become one of the most prevalent public health
problems worldwide. A recent large-scale longitudinal study [13] on identify-
ing changes in mental health showed that the prevalence of likely mental health
problems in the UK increased from 24.3% between 2017-19 to 37.8% in April
2020 during the COVID-19 pandemic, claiming large health and economic costs
and highlighting the timeliness and need for developing scalable tools for moni-
toring changes in mental health in an automated, real-time manner.

Social media provide a rich resource for addressing this challenge. However,
most related work based on longitudinal social media data typically ignore the
time-varying nature of an individual’s mental state and instead make aggregate
user- [2,4,14,26] or post-level predictions – e.g. identifying posts with suicidal
ideation indicators [9,25,31] or mental health symptoms [8,20,23].

https://github.com/Maria-Liakata-NLP-Group/time-aware-predictions-of-mocs.
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Task Definition. This work focuses on predicting moments of change
in mood (MoCs) in individuals on the basis of textual content shared online.
Following the definitions by [34], we work with user timelines (sequences of
chronologically ordered individual user posts), aiming at classifying each post
as a: (1) switch – sudden, abrupt change in mood, from positive to negative, or
vice versa; (2) escalation – gradual change, where the user’s mood progressively
becomes more positive/negative; or (3) none – user’s baseline mood, no MoC.
The task formed the basis of the latest CLPsych shared task [33], where neural
networks, such as LSTMs, were employed by nearly all teams [1,3,5,6,10,24].
While such approaches help in modelling the sequence dynamics in posts, they
lack the ability to account for the significant changes and heterogeneity in time-
intervals between posts.

Temporal Point Processes (TPPs) [11,12] are designed for modelling
variable-length, asynchronous event sequences spaced irregularly in continuous-
time (e.g. posts on social media). The self-exciting Hawkes process [21] is a
popular TPP that has been frequently applied to social media data [27]. It models
the probability of an event occurring, where recent events spike the probability
of future events occurring, followed by a (typically exponential) decay, making
the probability of future events less likely in the absence of recent ones. Neural
TPPs (NTTPs) [30] leverage neural networks (typically RNNs [16]) to learn a
highly complex, flexible representation of an event history, which is then used
to parameterize the conditional distribution of the probability of a next event
occurring.

In this paper, rather than predicting the probability of post events occurring,
we instead aim to enrich learned dynamics of individuals by taking advantage of
the parameterizations for modelling time in the Hawkes process. We thus model
BiLSTM hidden states over post embeddings of a given user to learn the basic
sequence dynamics of a user’s linguistic posting context, and aggregate these with
a transformation similar to a Hawkes process – to combine the learned dynamics
of the sequence information captured by LSTMs with the time-sensitive infor-
mation in the representations, modelled with exponential decay. Specifically we
make the following contributions:

– We propose a time-aware approach for modelling textual posts of individuals,
by transforming their respective LSTM hidden states over previous/future
posts with self-excitation and exponential decay that varies with time.

– We extend the time-aware approach to the bi-directional setting and work
on two social media datasets, showcasing that this combination outperforms
non-time-aware baselines, and all teams from the CLPsych 2022 shared task.

– We demonstrate the effectiveness of our approach, in an ablation study inves-
tigating (1) time-aware features and (2) bi-directionality.

2 Method

Notation. A user’s u timeline T (u) consists of chronologically ordered posts
p(u,i) = {v(u,i), t(u,i), y(u,i)} (0≤i<|T (u)|), where the ith post is represented by



Time-Aware Predictions of MoCs in Longitudinal Social Media Posts 295

its post-level embeddings v(u,i), associated posting timestamp t(u,i) and ground-
truth label y(u,i)∈{S,E,O} (switch, escalation or none respectively). Our aim is
to predict each label ŷ(u′,i) in a test user’s u′ timeline T (u′), given the sequence
of {v(u′,i), t(u

′,i)}.

2.1 Model

Here we outline our model for incorporating temporally contextual information
for identifying MoCs in a timeline. We model historical, time-sensitive informa-
tion about the user (HEAT) and extend our model to operate over trainable
hidden representations (Modelling sequence dynamics) as well as contextual
future information (Bi-directionality).

Compared to prior work for this task [33,34], we note that we are first to
approach the problem with a sequence-based, bi-directional, and time-sensitive
approach that considers the time-stamps of historical and future posts to predict
moments of change in mood. Most prior approaches fail to model the influence of
time [1,3,5–7,18,19,24], neglect the importance of bi-directionality [1,5–7,10,24]
or fail to model sequence dynamics [7,24] for predicting moments of change.

HEAT. To aggregate historical posts of a user into a temporally-informed
embedding, [29] proposed to model the influence of time on an individual’s
historical post representations v(i) in a timeline via the Historical Emotional
AggregaTion (HEAT), comparing each post at index i, with each historical post
in the timeline at index j:

v
(i)
HEAT =

∑

j:Δτj>0

v(j) + εe−βΔτjmax(v(j), 0), (1)

where Δτj=t(i)−t(j) (measured in days), and ε and β are fixed hyper-parameters
reflecting the amount of self-excitation and exponential time-decay to apply to
each post respectively when building an aggregate representation at each time-
step. As such, HEAT encodes the dynamics of historical post representations in
a time-aware manner.

Modelling Sequence Dynamics. [28] model raw post representations v(i) via
Eq. 1. By contrast we model BiLSTM hidden state representations h(i) of posts,
to better capture sequence dynamics. We thus apply Eq. 1 by substituting v with
h at each timestep to model aggregate representations of u’s historical posts.

Bi-directionality. Motivated by the notion that changes are better identified
by comparing the current post in relation to previous and future posts made by
u, and by the recent work of [32] who explored bi-directional neural ordinary
differential equations for classifying posts on social media, we further extend
the HEAT representations to be bi-directional: we learn a HEAT representation
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over historical posts with timestamps t < t(i), which is then concatenated with
another HEAT representation that is learned over future posts with timestamps
t > t(i).

Fig. 1. Architecture of our proposed BiLSTM-HEAT model. Forward and backward
LSTM hidden states are aggregated using HEAT (Eq. 1), in the past and future direc-
tions respectively. Future and past HEAT representations are then concatenated for
each post index, along with the associated original BiLSTM hidden representation at
each post index. After scaling the concatenated representation, this is passed into the
final linear layer to predict the label of each post in a given timeline.

Final Model. We concatenate the HEAT representations with the original hid-
den representations of the BiLSTM learned at i. This is to preserve the sequence
information captured by the BiLSTM, and linguistic information in the origi-
nal post embeddings, and to contrast these to the temporal information in the
historical and future post representations that are concatenated. We scale all 3
concatenated representations by passing them through a tanh activation func-
tion before feeding them as input to the final linear layer, making one prediction
per time-step (post) for an entire timeline (see Fig. 1).

3 Experimental Setting

Datasets. We work with two datasets containing timelines of longitudinal user
posts in English annotated for MoCs (see Table 1). We note that these are the
only two such datasets available for this task. These datasets include (a) Reddit,
from the CLPsych 2022 shared task [33]; and (b) TalkLife [34], a social net-
work for mental health support. Both datasets were annotated using annotation
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Table 1. Summary of the datasets used in our work.

Reddit TalkLife
Users 186 500
Timelines (posts) 255 (6,195) 500 (18,702)
Label distr. % (O/E/S) 77.6/15.8/6.6 84.5/10.8/4.7
Timeline Length ∼ 2 months ≤ 2 weeks

guidelines introduced in [34], which are also summarized in our appendix A. (a)
was annotated by 4 English (2 native) speakers and (b) by 3 English speaking
(1 native) university educated annotators. We keep the train/test split used by
[33] for (a); for (b) we perform the same 5-fold cross-validation as in [34].

Models, Baselines and Metrics. We represent each post in a timeline as its
[CLS] representation extracted from BERT [15] fine-tuned for identifying MoCs
at the post-level on our training data, using focal loss [22]. On Reddit, we con-
trast our performance against state-of-the-art (SOTA) from the CLPsych 2022
shared task: (a) UoS [3] is an attention-based BiLSTM operating on different
input representations of each post of a timeline; (b) WResearch [5] is a XGBoost
classifier, fed with emotionally-informed and abnormality seq2seq-based vectors
for each post. On TalkLife, we compare against SOTA from [34]: (a) BERT(f)
is a post-level BERT-based classifier, trained using focal loss; (b) BiLSTM-bert
is a timeline-level BiLSTM operating on the posts, which are represented as
the [CLS] token of (a). We report (per-class/macro-averaged) precision, recall
and F1 scores (i) on the test set of Reddit, and (ii) on the 5 folds of TalkLife
(macro-averaged). The grid-searched hyper-parameters and training details are
provided in Appendix B.

4 Results

4.1 Comparison Against SOTA

Results of our model (BiLSTM-HEAT) and baselines in Reddit and TalkLife are
shown in Table 3. BiLSTM-HEAT surpasses all models on Reddit in nearly all
evaluation metrics and classes, offering a 5.7% relative improvement on macro-F1
compared to current SOTA – UoS [3]. Importantly, it achieves a large perfor-
mance gain of 17.6% relative on F1 over UoS – also a BiLSTM-based model – on
the most challenging class (switch), highlighting the importance of time-aware
modelling for capturing rare cases (see Table 1).

On TalkLife, BiLSTM-HEAT fails to outperform the SOTA BiLSTM-bert
in most cases, which could be due to the difference in temporal granularity
between the TalkLife and Reddit datasets – where Reddit consists of much longer
timelines with much larger time-intervals between posts. As a result, modelling
the heterogeneity in the time-differences between posts may be more important
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for identifying MoCs for this dataset – whereas modelling sequence dynamics
alone is sufficient for timelines with shorter time-intervals between posts, which
we investigate further in our ablation study, presented next (Table 2).

Table 2. Per-class and macro-averaged results on each dataset (Reddit, TalkLife).
Best scores are highlighted.

Reddit macro-avg S E O
P R F1 P R F1 P R F1 P R F1

Majority âĂŞ .333 .280 âĂŞ .000 .000 âĂŞ .000 .000 .724 1.000 .840
WResearch .625 .579 .598 .362 .256 .300 .646 .553 .596 .868 .929 .897
UoS .689 .625 .649 .490 .305 .376 .697 .630 .662 .881 .940 .909
BiLSTM-HEAT .706 .670 .686 .475 .415 .442 .741 .654 .694 .902 .942 .921

TalkLife macro-avg S E O
P R F1 P R F1 P R F1 P R F1

Majority âĂŞ .333 .280 âĂŞ .000 .000 âĂŞ .000 .000 .845 1.000 .916
BERT(f) .520 .554 .534 .260 .321 .287 .401 .478 .436 .898 .864 .881
BiLSTM-bert .621 .553 .580 .397 .264 .316 .568 .461 .508 .898 .936 .917
BiLSTM-HEAT .584 .552 .566 .329 .290 .308 .524 .448 .483 .897 .920 .908

4.2 Ablation Analysis

To study the contribution of each component in our model, we ablate each of the
components presented in Sect. 2 and train and evaluate the resulting models on
both datasets: (a) we keep HEAT but remove the bidirectionality component,
so that HEAT operates on the previous hidden states of an LSTM (-BDR);
(b) we remove the ‘modelling sequence dynamics’ component (-MSD), so that
HEAT operates on our raw input embeddings instead of the hidden states –
concatenating past and future HEAT representations of v(u,a,i) only.

Table 3 summarises our results. Removing the LSTM component (-MSD)
has the worst performance by a large margin, highlighting the importance of
sequential modelling for our task. This further illustrates the benefit of applying
HEAT over LSTM hidden states, rather than on raw posts – as we are able to
take advantage of the dynamics learned by these sequence based models.

Bi-directionality (i.e. applying HEAT both on historical and future directions,
compared to only applying HEAT in the historical direction) seems to benefit
our model most for predicting escalations, and less so for switches. We attribute
this due to escalations being more gradual and smoother changes over several
future posts, as opposed to switches which are more abrupt and can be more
immediately seen just by considering a shift from the previous context – and as
such may benefit less from considering the context in a user’s future posts.
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Table 3. Ablation study: Scores when removing/altering parts of our model. Results
are averaged over 3 different random seeds. Best scores are highlighted.

Reddit macro-avg S E O
P R F1 P R F1 P R F1 P R F1

BiLSTM-HEAT .706 .670 .686 .475 .415 .442 .741 .654 .694 .902 .942 .921
-BDR .722 .673 .693 .533 .439 .480 .735 .630 .677 .899 .950 .924
-MSD .571 .565 .566 .182 .228 .201 .655 .591 .621 .877 .875 .876

TalkLife macro-avg S E O
P R F1 P R F1 P R F1 P R F1

BiLSTM-HEAT .584 .552 .566 .329 .290 .308 .524 .448 .483 .897 .920 .908
-BDR .585 .528 .551 .325 .257 .286 .540 .397 .457 .890 .930 .910
-MSD .480 .442 .455 .200 .139 .161 .368 .272 .312 .872 .915 .893

Sequence Length. We analyse the performance of our model and its variants
introduced in our ablation study, investigating the ability of our model to account
for the heterogeneity in time-intervals between posts, as well as being able to
model sequences of varying lengths.

Figure 2 shows our full model BiLSTM-HEAT is able to best capture
sequences of varying lengths, being best suited for capturing moments of change
in timelines with both few and many longitudinal posts. Removing the com-
ponent which models sequence dynamics (-MSD) leads to the largest perfor-
mance drop across all sequence lengths, suggesting that modelling LSTM hid-
den states with exponential time-decay provided by HEAT provides the largest
performance gain compared to modelling the raw posts without considering the
sequential dynamics. Indeed for TalkLife, we see a large 23.9% and 10.1% rela-
tive performance gain when averaging the macro-average F1 scores from using
BiLSTM-HEAT over -MSD for both long (80 ≤ posts ≤ 100) and short (0 ≤
posts ≤ 20) sequences. Modelling posts in a bi-directional manner also leads to
another performance gain of 1.5% and 6.6% when comparing BiLSTM-HEAT
to -BDR by averaging the macro-average F1 scores for the same long and short
sequences. This further suggests that considering the user’s representations of
their future and past together is well suited for identifying changes in a user.

For Reddit a much higher relative performance gain over -BDR occurs
for shorter sequence lengths, and a lower relative gain for longer sequences is
observed – whereas for TalkLife the opposite is true. Furthermore, we also see
that performance decreases with sequence length for all models on Reddit, but
conversely performance increases for all models (except -MSD) on TalkLife. We
attribute these due to differences in the domains of the datasets, where posts on
Reddit are specifically made on mental health related subreddits which might
be more indicative of a MoC, whereas posts on TalkLife are more general – dis-
cussing day-to-day-life. This is also supported by the easier nature of the task
on Reddit based on our results in Table 3.
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Fig. 2. Performance of models when assessing posts in timelines of varying sequence
lengths.

Fig. 3. Effect of time-intervals when assessing posts for MoCs, with the models pre-
sented in our ablation study. We evaluate the performance on posts that have a time-
interval of less than or equal to what is presented on the x-axis.

Time-Intervals. Figure 3 demonstrates BiLSTM-HEAT outperforms all met-
rics for varying time intervals relative to previous posts, for nearly all classes and
metrics on TalkLife – slightly under performing -BDR only in macro-average pre-
cision and precision for escalations. On Reddit, BiLSTM-HEAT achieves the best
macro average F1 score for capturing the rare class “escalation” overall across
varying time-intervals, with a relative performance gain in F1 of 1.4% and 9.0%
on larger timer intervals (≤5 days). On Reddit our model struggles to model
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switches effectively – being outperformed by -BDR, which only considers the
forward direction when modelling sequence dynamics and performing aggrega-
tion with HEAT. -BDR observed a gain in F1 over BiLSTM of 28.9% on smaller
time intervals and a lower relative gain of 14.1% on larger time intervals. This
further suggests that for Reddit, the more abrupt class (switch) is better cap-
tured by only considering the immediate previous context rather than the rest
of the user’s distant future posts with bi-directionality, as discussed earlier from
analysing Table 3. Compared to -MSD, we see a high 81.4% relative perfor-
mance gain in F1-score for BiLSTM-HEAT on Reddit for smaller time-intervals
(≤1 day) and a significantly higher 240.0% relative gain on longer time-intervals
(≤5 days), for assessing “switches” – demonstrating the effectiveness of modelling
BiLSTM hidden states with HEAT in a bi-directional manner.

5 Conclusion

In this paper we have presented a time-sensitive approach for building representa-
tions of users at different points in time, based on linguistic and temporal context
in social media posts in a bi-directional manner. By modelling a user’s timeline of
posts with a BiLSTM parametrized by time-dependent exponential decay with
a Hawkes process, we demonstrate superior performance over prior approaches
which did not consider temporality and bi-directionality together when assessing
changes in mood of individuals – outperforming the best performing systems on
the CLPsych 2022 shared task, which targets the same objective.

6 Limitations

Our model is trained to predict the presence of MoCs on the basis of content
shared online by social media users. As such, it cannot generalise to detect
changes in mood unless these are reflected in an individuals’ posts. This fact has
a further downstream effect in sample bias, since our datasets consist of users
who have (a) certain demographic characteristics as social media users who post
in English and (b) have selected to self-disclose their well-being online, which
has been shown to lack generalisability in related (user-level) mental-health tasks
[17].

The limitation of generalisability is also present in the ability of our models to
effectively predict MoCs in datasets of different characteristics. For example, the
BERT(f) model trained on TalkLife, which achieved the second-best results in
[34] on this dataset, was easily outperformed when applied on Reddit by a simple
post-level logistic regression trained with in-domain tfidf feature vectors [33].
This highlights the importance of the different characteristics of each platform
(e.g., length/content of messages) as well as of the different time intervals used
to define what constitutes a ‘user timeline’ in the pre-annotation stage (e.g. 2
weeks in TalkLife vs 2 months on Reddit).

Finally, the definitions of MoC that we have followed in our work has been
established on the basis of mood changes in social media. A well-established
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model performance on other related types of NLP-based MoC identification
tasks, such as detecting changes during psychotherapy sessions, cannot be safely
hypothesised from the findings of this work.

Ethics Statement. Ethics IRB approval was obtained from the IRB Committee of
the lead University prior to engaging in this research study. Our work involves ethical
considerations around the analysis of user generated content shared on social media
(TalkLife and Reddit). A license was obtained to work with the user data from TalkLife
and a project proposal was submitted to them in order to embark on the project.
Potential risks from the application of our work in being able to identify moments of
change in individuals’ timelines are akin to the identification of those in earlier work on
personal event identification from social media and the detection of suicidal ideation.
Potential mitigation strategies include restricting and regulating access to the code
base and annotation labels used for evaluation.

A Annotation Guidelines

The two datasets of longitudinal user posts annotated for MoCs that we make use
of in this paper were sourced by [33,34] for TalkLife and Reddit respectively. Both
datasets were annotated using the same annotation guidelines and annotation
interface proposed [34].

Annotators were provided with timelines to view, containing chronologically
ordered posts by users, along with their associated comments and timestamps.
They were then asked to label posts for MoCs.

The first type of label, “Switch” was defined in the guidelines as a “drastic
change in mood, in comparison with the recent past”. Annotators were also
tasked to label how long the Switch in mood persists (i.e. label its beginning
and end). The second type of label “Escalation” was defined in their guidelines
as a “gradual change in mood, which should last for a few posts”. Similarly,
annotators were also instructed to label the associated range of posts for how
long this change persists: where a peak of the escalation must be labelled, and
the beginning and end of the gradual mood change also provided. Finally, a label
of “None” was provided by default where no mood change was identified for that
given post.

B Hyper-parameters Searched

We perform a grid-search over the HEAT parameters (Eq. 1): both β (decay
rate) and α (self-excitation) in the range [0.00001, 0.001, 0.1] for both datasets.
All models are searched with learning rates in the range [0.0001, 0.001, 0.01] on
Reddit and [0.001, 0.01] for TalkLife. All models are trained with 100 epochs
with early stopping using a patience of 5 for all models and both datasets.
For the BiLSTM module, we perform a grid-search over all layers using output
dimensions of [128, 256, 512] and [128, 256] for Reddit and Talklife respectively.
All models were implemented with PyTorch, and were trained using K-Fold cross
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validation over 5 folds using training, validation, and testing sizes of 60%, 20%,
20% respectively.
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