
Greedy Minimum-Energy Scheduling

Gunther Bidlingmaier(B)

Department of Computer Science, Technical University of Munich, Munich, Germany

g.bidlingmaier@tum.de

Abstract. We consider the problem of energy-efficient scheduling across
multiple processors with a power-down mechanism. In this setting a set of
n jobs with individual release times, deadlines, and processing volumes
must be scheduled across m parallel processors while minimizing the
consumed energy. When idle, each processor can be turned off to save
energy, while turning it on requires a fixed amount of energy. For the
special case of a single processor, the greedy Left-to-Right algorithm [7]
guarantees an approximation factor of 2. We generalize this simple greedy
policy to the case of m ≥ 1 processors running in parallel and show that
the energy costs are still bounded by 2 OPT +P , where OPT is the energy
consumed by an optimal solution and P < OPT is the total processing
volume. Our algorithm has a running time of O(nf log d), where d is the
difference between the last deadline and the earliest release time, and f
is the running time of a maximum flow calculation in a network of O(n)
nodes.

Keywords: Scheduling · Greedy Algorithms · Approximation
Algorithms

1 Introduction

Energy-efficiency has become a major concern in most areas of computing for rea-
sons that go beyond the apparent ecological ones. At the hardware level, excessive
heat generation from power consumption has become one of the bottlenecks. For
the billions of mobile battery-powered devices, power consumption determines
the length of operation and hence their usefulness. On the level of data cen-
ters, electricity is often the largest cost factor and cooling one of the major
design constraints. Algorithmic techniques for saving power in computing envi-
ronments employ two fundamental mechanisms, first the option to power down
idle devices, and second the option to trade performance for energy-efficiency
by speed-scaling processors. In this paper we study the former, namely classical
deadline based scheduling of jobs on parallel machines which can be powered
down with the goal of minimizing the consumed energy.

This work was supported by the Research Training Network of the Deutsche
Forschungsgemeinschaft (DFG) (378803395: ConVeY).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 59–73, 2023.
https://doi.org/10.1007/978-3-031-49815-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_5

60 G. Bidlingmaier

In our setting, a computing device or processor has two possible states, it
can be either on or off. If a processor is on, it can perform computations while
consuming energy at a fixed rate. If a processor is off, the energy consumed
is negligible but it cannot perform computation. Turning on a processor, i.e.
transitioning it from the off-state to on-state consumes additional energy. The
problem we have to solve is to schedule a number of jobs or tasks, each with its
own processing volume and interval during which it has to be executed. The goal
is to complete every job within its execution interval using a limited number of
processors while carefully planning idle times for powering off processors such
that the consumed energy is minimized. Intuitively, one aims for long but few
idle intervals, so that the energy required for transitioning between the states is
low, while avoiding turned on processors being idle for too long.

Previous Work. This fundamental problem in power management was first
considered by [7] for a single processor. In their paper, they devise arguably
the simplest algorithm one can think of which goes beyond mere feasibility.
Their greedy algorithm Left-to-Right (LTR) is a 2-approximation and proceeds
as follows. If the processor is currently busy, i.e. working on a job, then LTR
greedily keeps the processor busy for as long as possible, always working on the
released job with the earliest deadline. Once there are no more released jobs to
be worked on, the processor becomes idle and LTR keeps the processor idle for as
long as possible such that all remaining jobs can still be feasibly completed. At
this point, the processor becomes busy again and LTR proceeds recursively until
all jobs are completed. For a single processor, [3] develop an optimal dynamic
program for unit jobs. [4] generalize this to general job weights with a running
time of O(n5), while [5] generalize it to multiple processors but again only unit
jobs, increasing the complexity to O(n7m5).

Obtaining good solutions for the general case of multiple processors and gen-
eral job weights is difficult because of the additional constraint that every job
can be worked on by at most a single processor at the same time. It is a major
open problem whether the general multi-processor setting is NP-hard. It took
further thirteen years for the first non-trivial result on this general setting to
be developed. In their breakthrough paper, [1] develop the first constant-factor
approximation for the problem. Their algorithm guarantees an approximation
factor of 3 + ε by relaxing an Integer Programming formulation of the problem.
For making the rounded LP-solution feasible, they develop an additional exten-
sion algorithm EXT-ALG. This approximation factor is improved to 2 + ε in [2]
by incorporating into the Linear Program additional constraints for the number
of processors required during every possible time interval. They also develop a
combinatorial 6-approximation for the problem. As presented in the papers, all
three algorithms run in pseudo-polynomial time. By using techniques presented
in [1], the number of time slots which have to be considered can be reduced from
d to O(n log d), allowing the algorithms to run in polynomial time. More specif-
ically, the number of constraints and variables of the Linear Programs reduces
to O(n2 log2 d). The running time of the EXT-ALG used by all three approxi-

Greedy Minimum-Energy Scheduling 61

mation algorithms is reduced to O(Fmn3 log3 d), where F refers to a maximum
flow calculation in a network with O(n log d) nodes.

Contribution. In this paper we develop a greedy algorithm which is simpler
and faster than the previous algorithms. The initially described greedy algorithm
Left-to-Right of [7] is arguably the simplest algorithm one can think of for a sin-
gle processor. We naturally extend LTR to multiple processors and show that
this generalization still guarantees a solution of costs at most 2OPT +P , where
P < OPT is the total processing volume. Our simple greedy algorithm Parallel
Left-to-Right (PLTR) is the combinatorial algorithm with the best approxima-
tion guarantee and does not rely on Linear Programming and the necessary
rounding procedures of [1] and [2]. It also does not require the EXT-ALG, which
all previous algorithms rely on to make their infeasible solutions feasible in an
additional phase.

Indeed, PLTR only relies on the original greedy policy of Left-to-Right: just
keep processors in their current state (busy or idle) for as long as feasibly possi-
ble. For a single processor, LTR ensures feasibility by scheduling jobs according
to the policy Earliest-Deadline-First (EDF). For checking feasibility if multiple
processors are available, a maximum flow calculation is required since EDF is
not sufficient anymore. Correspondingly, our generalization PLTR uses such a
flow calculation for checking feasibility.

While the PLTR algorithm we describe in Sect. 2 is very simple, the structure
exhibited by the resulting schedules is surprisingly rich. This structure consists
of critical sets of time slots during which PLTR only schedules the minimum
amount of volume which is feasibly possible. In Sect. 3 we show that whenever
PLTR requires an additional processor to become busy at some time slot t,
there must exist a critical set of time slots containing t. This in turn gives a
lower bound for the number of busy processors required by any solution.

Devising an approximation guarantee from this structure is however highly
non-trivial and much more involved than the approximation proof of the single-
processor LTR algorithm, because one has to deal with sets of time slots and
not just intervals. Our main contribution in terms of techniques is a complex
procedure which (for the sake of the analysis only) carefully realigns the jobs
scheduled in between critical sets of time slots such that it is sufficient to consider
intervals as in the single processor case, see Sect. 4 for details. Here, we also show
that our greedy policy leads to a much faster algorithm than the previous ones,
namely to a running time O(nf log d), where d is the maximal deadline and f is
the running time for checking feasibility by finding a maximum flow in a network
with O(n) nodes.

Formal Problem Statement. Formally, a problem instance consists of a set
J of jobs with an integer release time rj , deadline dj , and processing volume pj
for every job j ∈ J . Each job j ∈ J has to be scheduled across m ≥ 1 processors
for pj units of time in the execution interval Ej :=[rj , dj] between its release time
and its deadline. Preemption of jobs and migration between processors is allowed

62 G. Bidlingmaier

at discrete times and occurs without delay, but no more than one processor may
process any given job at the same time. Without loss of generality, we assume
the earliest release time to be 0 and denote the last deadline by d. The set of
discrete time slots is denoted by T :={0, . . . , d}. The total amount of processing
volume is P :=

∑
j∈J pj .

Every processor is either completely off or completely on in every discrete
time slot t ∈ T . A processor can only work on some job in the time slot t if it is
in the on-state. A processor can be turned on and off at discrete times without
delay. All processors start in the off-state. The objective now is to find a feasible
schedule which minimizes the expended energy E, which is defined as follows.
Each processor consumes 1 unit of energy for every time slot it is in the on-state
and 0 units of energy if it is in the off-state. Turning a processor on consumes
a constant amount of energy q ≥ 0, which is fixed by the problem instance. In
Graham’s notation [6], this setting can be denoted with m | rj ; dj ; pmtn | E.

Busy and Idle Intervals. We say a processor is busy at time t ∈ T if some
job is scheduled for this processor at time t. Otherwise, the processor is idle.
Clearly a processor cannot be busy and off at the same time. An interval I ⊆ T
is a (full) busy interval for processor k ∈ [m] if I is inclusion maximal on the
condition that processor k is busy in every t ∈ I. Correspondingly, an interval
I ⊆ T is a partial busy interval for processor k if I is not inclusion maximal
on the condition that processor k is busy in very t ∈ I. We define (partial and
full) idle intervals, on intervals, and off intervals of a processor analogously via
inclusion maximality. Observe that if a processor is idle for more than q units of
time, it is worth turning the processor off during the corresponding idle interval.
Our algorithm will specify for each processor when it is busy and when it is
idle. Each processor is then defined to be in the off-state during idle intervals of
length greater than q and otherwise in the on-state. Accordingly, we can express
the costs of a schedule S in terms of busy and idle intervals.

For a multi-processor schedule S, let Sk denote the schedule of processor k.
Furthermore, for fixed k, let N ,F ,B, I be the set of on, off, busy, and idle inter-
vals of Sk. We partition the costs of processor k into the costs on(Sk) for residing
in the on-state and the costs off(Sk) for transitioning between the off-state and
the on-state, hence costs(Sk) = on(Sk)+off(Sk) =

∑
N∈N q + |N |. Equivalently,

we partition the costs of processor k into the costs idle(Sk):=
∑

I∈I min{|I|, q}
for being idle and the costs busy(Sk):=

∑
B∈B |B| for being busy. The total

costs of a schedule S are the total costs across all processors, i.e. costs(S) =∑m
k=1 costs(Sk). Clearly we have

∑m
k=1 busy(k) = P , this means for an approxi-

mation guarantee the critical part is bounding the idle costs.

Lower and Upper Bounds for the Number of Busy Processors. We
specify a generalization of our problem which we call deadline-scheduling-with-
processor-bounds. Where in the original problem, for each time slot t, between
0 and m processors were allowed to be working on jobs, i.e. being busy, we now
specify a lower bound lt ≥ 0 and an upper bound mt ≤ m. For a feasible solution

Greedy Minimum-Energy Scheduling 63

to deadline-scheduling-with-processor-bounds, we require that in every time slot
t, the number of busy processors, which we denote with vol(t), lies within the
lower and upper bounds, i.e. lt ≤ vol(t) ≤ mt. This will allow us to express the
PLTR greedy policy of keeping processors idle or busy, respectively. Note that
this generalizes the problem deadline-scheduling-on-intervals introduced by [1]
by additionally introducing lower bounds.

Properties of an Optimal Schedule

Definition 1. Given some arbitrary but fixed order on the number of processors,
a schedule S fulfills the stair-property if it uses the lower numbered processors
first, i.e. for every t ∈ T , if processor k ∈ [m] is busy at t, then every processor
k′ ≤ k is busy at t. This symmetrically implies that if processor k ∈ [m] is idle
at t, then every processor k′ ≥ k is idle at t.

Lemma 1. For every problem instance we can assume the existence of an opti-
mal schedule Sopt which fulfills the stair-property.

2 Algorithm

The Parallel Left-to-Right (PLTR) algorithm shown in Algorithm 1 iterates
through the processors in some arbitrary but fixed order and keeps the current
processor idle for as long as possible such that the scheduling instance remains
feasible. Once the current processor cannot be kept idle for any longer, it becomes
busy and PLTR keeps it and all lower-numbered processors busy for as long as
possible while again maintaining feasibility. The algorithm enforces these restric-
tions on the busy processors by iteratively making the lower and upper bounds
lt, mt of the corresponding instance of deadline-scheduling-with-processor-bounds
more restrictive. Visually, when considering the time slots on an axis from left to
right and when stacking the schedules of the individual processors on top of each
other, this generalization of the single processor Left-to-Right algorithm hence
proceeds Top-Left-to-Bottom-Right.

Once PLTR returns with the corresponding tight upper and lower bounds
mt, lt, an actual schedule Spltr can easily be constructed by running the flow-
calculation used for the feasibility check depicted in Fig. 1 or just taking the
result of the last flow-calculation performed during PLTR. The mapping from
this flow to an actual assignment of jobs to processors and time slots can then be
defined as described in Lemma 2, which also ensures that the resulting schedule
fulfills the stair-property from Definition 1, i.e. that it always uses the lower-
numbered processors first.

As stated in Lemma 2, the check for feasibility in subroutines keepidle and
keepbusy can be performed by calculating a maximum α-ω flow in the flow
network given in Fig. 1 with a node uj for every job j ∈ J and a node vt for
every time slot t ∈ T including the corresponding incoming and outgoing edges.

Lemma 2. There exists a feasible solution to an instance of deadline-
scheduling-with-processor-bounds lt, mt if and only if the maximum α-ω flow
in the corresponding flow network depicted in Fig. 1 has value P .

64 G. Bidlingmaier

Algorithm 1. Parallel Left-to-Right
mt ← m for all t ∈ T
lt ← 0 for all t ∈ T
for k ← m to 1 do

t ← 0
while t ≤ d do

t ←keepidle(k, t)
t ←keepbusy(k, t)

function keepidle(k, t)
find maximal t′ > t s.t. ∃ feasible schedule with mt′′ = k − 1 for all t′′ ∈ [t, t′)
mt′′ ← k − 1 for all t′′ ∈ [t, t′)
return t′

function keepbusy(k, t)
find maximal t′ > t s.t. ∃ feasible schedule with lt′′ = max{k, lt′′} for all t′′ ∈ [t, t′)
lt′′ ← max{k, lt′′} for all t′′ ∈ [t, t′)
return t′

Fig. 1. The Flow-Network for checking feasibility of an instance of deadline-scheduling-
with-processor-bounds lt and mt for the number of busy processors at t ∈ T . There are
nodes uj , vt with the corresponding edges for every job j ∈ J and for every time slot
t ∈ T , respectively.

Theorem 1. Given a feasible problem instance, algorithm PLTR constructs a
feasible schedule.

Proof. By definition of subroutines keepidle and keepbusy, PLTR only modi-
fies the upper and lower bounds mt, lt for the number of busy processors such
that the resulting instance of deadline-scheduling-with-processor-bounds remains
feasible. The correctness of the algorithm then follows from the correctness of
the flow-calculation for checking feasibility, which is implied by Lemma 2.

3 Structure of the PLTR-Schedule

3.1 Types of Volume

Definition 2. For a schedule S, a job j ∈ J , and a set Q ⊆ T of time slots, we
define

1. the volume volS(j,Q) as the number of time slots of Q for which j is scheduled
by S,

Greedy Minimum-Energy Scheduling 65

2. the forced volume fv(j,Q) as the minimum number of time slots of
Q for which j has to be scheduled in every feasible schedule, i.e.
fv(j,Q):= max{0; pj − |Ej \ Q|},

3. the unnecessary volume uvS(j,Q) as the amount of volume which does not
have to scheduled during Q, i.e. uvS(j,Q):= volS(j,Q) − fv(j,Q),

4. the possible volume pv(j,Q) as the maximum amount of volume which j can
be feasibly scheduled in Q, i.e. pv(j,Q):= min{pj , |Ej ∩ Q|}.

Since the corresponding schedule S will always be clear from context, we omit
the subscript for vol and uv. We extend our volume definitions to sets J ′ ⊆ J
of jobs by summing over all j ∈ J ′, i.e. vol(J ′, Q):=

∑
j∈J ′ vol(j,Q). If the first

parameter is omitted, we refer to the whole set J , i.e. vol(Q):= vol(J,Q). For
single time slots, we omit set notation, i.e. vol(t):= vol(J, {t}). Clearly we have for
every feasible schedule, every Q ⊆ T, j ∈ J that fv(j,Q) ≤ vol(j,Q) ≤ pv(j,Q).
The following definitions are closely related to these types of volume.

Definition 3. Let Q ⊆ T be a set of time slots. We define

1. the density φ(Q):= fv(J,Q)/|Q| as the average amount of processing volume
which has to be completed in every slot of Q,

2. the peak density φ̂(Q):= maxQ′⊆Q φ(Q′),
3. the deficiency def(Q):= fv(Q)−∑

t∈Q mt as the difference between the amount
of volume which has to be completed in Q and the processing capacity available
in Q,

4. the excess exc(Q):=
∑

t∈Q lt − pv(Q) as the difference between the processor
utilization required in Q and the amount of work available in Q.

If φ̂(Q) > k − 1, then clearly at least k processors are required in some time slot
t ∈ Q for every feasible schedule. If def(Q) > 0 or exc(Q) > 0 for some Q ⊆ T ,
then the problem instance is clearly infeasible.

3.2 Critical Sets of Time Slots

The following Lemma 5 provides the crucial structure required for the proof of
the approximation guarantee. Intuitively, it states that whenever PLTR requires
processor k to become busy at some time slot t, there must be some critical set
Q ⊆ T of time slots during which the volume scheduled by PLTR is minimal.
This in turn implies that processor k needs to be busy at some point during Q
in every feasible schedule. The auxiliary Lemmas 3 and 4 provide a necessary
and more importantly also sufficient condition for the feasibility of an instance
of deadline-scheduling-with-processor-bounds based on the excess exc(Q) and the
deficiency def(Q) of sets Q ⊆ T . Lemmas 3 and 4 are again a generalization of
the corresponding feasibility characterization in [1] for their problem deadline-
scheduling-on-intervals, which only defines upper bounds.

Lemma 3. For every α-ω cut (S, S̄) in the network given in Fig. 1 we have
at least one of the following two lower bounds for the capacity c(S) of the cut:
c(S) ≥ P − def(Q(S)) or c(S) ≥ P − exc(Q(S̄)), where Q(S):={t | vt ∈ S}.

66 G. Bidlingmaier

Lemma 4. An instance of deadline-scheduling-with-processor-bounds is feasible
if and only if def(Q) ≤ 0 and exc(Q) ≤ 0 for every Q ⊆ T .

Definition 4. A time slot t ∈ T is called an engagement of processor k if
t = min B for some busy interval B on processor k. We say processor k is
engaged at time t if t is an engagement of processor k. A time slot t ∈ T is just
called an engagement if it is an engagement of processor k for some k ∈ [m].

Lemma 5. Let Q ⊆ T be a set of time slots and t ∈ T an engagement of
processor k ∈ [m]. We call Q a tight set for engagement t of processor k if t ∈ Q
and

fv(Q) = vol(Q),
vol(t′) ≥ k − 1 for all t′ ∈ Q , and
vol(t′) ≥ k for all t′ ∈ Q with t′ ≥ t.

For every engagement t of some processor k ∈ [m] in the schedule Spltr con-
structed by PLTR, there exists a tight set Qt ⊆ T for engagement t of processor
k.

Proof. Suppose for contradiction that there is some engagement t ∈ T of pro-
cessor k ∈ [m] and no such Q exists for t, i.e. every Q ⊆ T containing t violates
at least one of the three conditions in the Lemma. We show that PLTR would
have extended the idle interval on processor k which ends at t. Consider the
step in PLTR when t was the result of keepidle on processor k. Let lt′ , mt′

be the lower and upper bounds for t′ ∈ T right after the calculation of t and
the corresponding update of the bounds by keepidle. We modify the bounds
by decreasing mt by 1. Note that at this point mt′ ≥ k for every t′ > t and
mt′ ≥ k − 1 for every t′.

Consider Q ⊆ T such that t ∈ Q and fv(Q) < vol(Q). Before our decrement
of mt we had mQ:=

∑
t′∈Q mt′ ≥ vol(Q) > fv(Q). The inequality mQ ≥ vol(Q)

here follows since the upper bounds mt′ are monotonically decreasing during
PLTR. Since our modification decreases mQ by at most 1, we hence still have
mQ ≥ fv(Q) after the decrement of mt. Consider Q ⊆ T such that t ∈ Q and
vol(t′) < k − 1 for some t′. At the step in PLTR considered by us, i.e. when
keepidle returned t on processor k, we hence have mt′ ≥ k −1 > vol(t′). Before
our decrement of mt we therefore have mQ > vol(Q) ≥ fv(Q), which implies
mQ ≥ fv(Q) after the decrement. Finally, consider Q ⊆ T such that t ∈ Q and
vol(t′) < k for some t′ > t. At the step in PLTR considered by us, we again
have mt′ ≥ k > vol(t′), which implies mQ ≥ fv(Q) after our decrement of mt. In
summary, if for t no Q exists as characterized in the lemma, the engagement of
processor k at t could not have been the result of keepidle on processor k.

Lemma 6. We call a set Ck ⊆ T critical set for processor k if Ck fulfills that

– Ck ⊇ Ck′ for every critical set for processor k′ > k,
– t ∈ Ck for every engagement t of processor k,

Greedy Minimum-Energy Scheduling 67

– fv(Ck) = vol(Ck),
– vol(t) ≥ k − 1 for every t ∈ Ck, and
– φ(Ck) is maximal.

For every processor k ∈ [m] of Spltr which is not completely idle, there exists a
critical set Ck for processor k.

Proof. We show the existence by induction over the processors m, . . . , 1. For
processor m, consider the union of all tight sets over engagements of processor
m. This set fulfills all conditions necessary except for the maximality in regard to
φ. Suppose that the critical sets Cm, . . . , Ck+1 exist. Take Qk ⊆ T as the union of
Ck+1 and all tight sets over engagements of processor k. By definition of Ck+1,
we have Qk ⊇ Ck′ for all k′ > k. By construction of Qk, every engagement
t of processor k is contained in Qk. Finally, we have fv(Qk) = vol(Qk) and
vol(t) ≥ k − 1 for every t ∈ Qk since all sets in the union fulfill these properties.

3.3 Definitions Based on Critical Sets

Definition 5. For the critical set Ck of some processor k ∈ [m], we define
crit(Ck):=k. Let � be the total order on the set of critical sets C across all
processors which corresponds to crit, i.e. C � C ′ if and only if crit(C) ≥ crit(C ′).
Equality in regard to � is denoted with ∼. We extend the definition of crit to
general time slots t ∈ T with crit(t):= max{crit(C) | C is critical set, t ∈ C} if
t ∈ C for some critical set C and otherwise crit(t):=0. We further extend crit to
intervals D ⊆ T with crit(D):= max{crit(t) | t ∈ D}
Definition 6. A nonempty interval V ⊆ T is a valley if V is inclusion maximal
on the condition that C ∼ V for some fixed critical set C. Let D1, . . . , Dl be the
maximal intervals contained in a critical set C. A nonempty interval V is a
valley of C if V is exactly the valley between Da and Da+1 for some a < l, i.e.
V = [max Da + 1,min Da+1 − 1]. By the choice of C as a critical set (property
1), a valley of C is indeed a valley. We define the jobs J(V) ⊆ J for a valley V
as all jobs which are scheduled by Spltr in every t ∈ V .

Definition 7. For a critical set C, an interval D ⊆ T is a section of C if D∩C
contains only full subintervals of C and at least one subinterval of C. For a
critical set C and a section D of C, the left valley Vl is the valley of C ending
at min(C ∩ D) − 1, if such a valley of C exists. Symmetrically, the right valley
Vr is the valley of C starting at max(C ∩ D) + 1, if such a valley of C exists.

Lemma 7. For every critical set C, every section D ⊆ T of C, we have: if
φ(C ∩ D) ≤ crit(C) − δ for some δ ∈ N, then the left valley Vl or the right valley
Vr of C and D is defined and |J(Vl)| + |J(Vr)| ≥ δ. We take |J(V)|:=0 if V is
not defined.

68 G. Bidlingmaier

Fig. 2. The left and right valley Vl and Vr of the critical set Ck for processor k and a
section D of Ck. Lemma 7 guarantees that δ jobs are scheduled at every slot of Vl or
Vr.

Proof. Refer to Fig. 2 for a visual sketch of the lemma. By the choice of C as
a critical set with c:= crit(C), we have vol(C ∩ D) ≥ (c − 1) · |C ∩ D|. If this
inequality is fulfilled strictly, then with the premise fv(C ∩ D)/|C ∩ D| ≤ c − δ
we directly get uv(C ∩ D)/|C ∩ D| > δ − 1. This implies that there are at least
δ jobs j scheduled in C ∩ D with uv(j, C ∩ D) > 0. Such jobs can be scheduled
in the part of C not contained in D, i.e. we must have Ej ∩ (C \ D)
= ∅ and
hence the left valley Vl or the right valley Vr of C and D must be defined.
Since these jobs j are scheduled in C only for the minimum amount possible,
i.e. vol(j, C) = fv(j, C) > 0, they must be scheduled in every t ∈ Ej \ C and are
therefore contained in J(Vl) or J(Vr).

If on the other hand we have equality, i.e. vol(C∩D) = (c−1)·|C∩D|, then let
t be an engagement of processor c. Since vol(t) > c− 1, we must have t /∈ C ∩D.
By the same argument as before, we have that if fv(C ∩ D)/|C ∩ D| ≤ c − δ,
then uv(C ∩ D)/|C ∩ D| ≥ δ − 1. Let J ′:={j ∈ J | uv(j, C ∩ D) > 0}. Since
uv(j, C ∩ D) ≤ |C ∩ D| for every j ∈ J , we have |J ′| ≥ δ − 1. If this lower
bound is fulfilled with equality, then every j ∈ J ′ must be scheduled in every
time slot of C ∩ D and hence fv(J ′, C \ D) = vol(J ′, C \ D). Now suppose for
contradiction that all jobs j scheduled during C \ D which are not contained in
J ′ have Ej ∩C∩D = ∅. Then fv(C \D) = vol(C \D) and we get φ(C \D) > φ(C)
since by case assumption vol(C∩D)/|C∩D| = (c−1) < φ(C). With vol(t) ≤ c−1
for every t ∈ C ∩ D, we know that crit(C ∩ D) ≤ c and therefore C \ D is still
a critical set for processor c but has higher density than C, contradicting the
choice of C. Therefore, there must exist a job j /∈ J ′ scheduled in C \ D with
an execution interval intersecting C ∩ D. In any case, we have at least δ jobs
scheduled in C with an execution interval intersecting both C \ D and C ∩ D.
This implies that the left valley Vl or the right valley Vr of C and D exists and
that at least δ jobs are contained in J(Vl) or J(Vr).

Greedy Minimum-Energy Scheduling 69

4 Modification of the PLTR-Schedule for Analysis

In this section we modify the schedule Spltr returned by PLTR in two steps. We
stress that this is for the analysis only and not part of PLTR. The first step
augments specific processors with auxiliary busy slots such that in every critical
set C at least the first crit(C) processors are busy all the time. For the single
processor LTR algorithm, the crucial property for the approximation guarantee
is that every idle interval of Sopt can intersect at most 2 distinct idle intervals
of the schedule returned by LTR. The second modification step of Spltr is more
involved and establishes this crucial property on every processor k ∈ [m] by
making use of Lemma 7. More specifically, it will establish the stronger property
that φ̂(B) > k − 1 for every busy interval B on processor k with crit(B) ≥ 2,
i.e. that every feasible schedule requires k busy processors at some point during
B. Idle intervals surrounded by only busy intervals B with crit(B) ≤ 1 are
then handled in Lemma 12 with essentially the same argument as for the single
processor LTR algorithm. By making sure that the modifications cannot decrease
the costs of our schedule, we obtain an upper bound for the costs of Spltr.

4.1 Augmentation and Realignment

We transform Spltr into the augmented schedule Saug by adding for every t with
k:= crit(t) ≥ 2 and vol(t) = k − 1 an auxiliary busy slot on processor k. No job
is scheduled in this auxiliary busy slot on processor k and it does also not count
towards the volume of this slot. It merely forces processor k to be in the on-state
at time k while allowing us to keep thinking in terms of idle and busy intervals
in our analysis of the costs.

Lemma 8. In Saug processors 1, . . . , crit(t) are busy in every slot t ∈ T with
crit(t) ≥ 2.

Proof. The property directly follows from our choice of the critical sets, the
definition of crit(t), and the construction of Saug.

As a next step, we transform Saug into the realigned schedule Sreal using
Algorithm 2. We briefly sketch the ideas behind this realignment. Lemma 8
guarantees us that every busy interval B on processor k is a section of the
critical set C with C ∼ B. It also guarantees that the left and right valley Vl, Vr

of C and B do not end within an idle interval on processor k. Lemma 7 in turn
implies that if the density of B is too small to guarantee that Sopt has to use
processor k during B, i.e. if φ̂(B) ≤ k − 1, then Vl or Vr is defined and there is
some j scheduled in every slot of Vl or Vr. Let V be the corresponding left or
right valley of C and D for which such a job j exists. Instead of scheduling j on
the processors below k, we can schedule j on processor k in idle time slots during
V . This merges the busy interval B with at least one neighbouring busy interval
on processor k. In the definition of the realignment, we will call this process of
filling the idle slots during V on processor k the closing of valley V on processor
k. The corresponding subroutine is called close(k, V).

70 G. Bidlingmaier

The crucial part is ensuring that this merging of busy intervals by clos-
ing a valley continues to be possible throughout the realignment whenever we
encounter a busy interval with a density too small. For this purpose, we go
through the busy intervals on each processor in decreasing order of their crit-
icality, i.e. in the order of �. We also allow every busy slot to be used twice
for the realignment (see variable supV in Algorithm 2) by introducing further
auxiliary busy slots, since for a section D of the critical set C, both the right
and the left valley might be closed on processor k in the worst case. This allows
us to maintain the invariants stated in Lemma 9 during the realignment process,
which correspond to the initial properties of Lemmas 7 and 8 for Saug.

4.2 Invariants for Realignment

Lemma 9. For an arbitrary step during the realignment of Saug and a valley
V ⊆ T , let the critical processor kV for V be the highest processor such that

– processor kV is not fully filled yet, i.e. fill(kV , T) has not yet returned,
– no V ′ ⊇ V has been closed on kV so far, and
– there is a (full) busy interval B ⊆ V on processor kV .

We take kV :=0 if no such processor exists. At every step in the realignment
of Saug the following invariants hold for every valley V , where C denotes the
critical set with C ∼ V .

1. If φ(C ∩ D) ≤ kV − δ for some δ ∈ N, some section D ⊆ V of C, then the
left valley Vl or the right valley Vr of C,D exists and supVl

+ supVr
≥ 2δ.

2. For every t ∈ C ∩ V , processors 1, . . . , kV are busy at t.
3. Every busy interval B ⊆ V on processor kV with B ∼ V is a section of C.

Lemma 10. The resulting schedule Sreal of the realignment of Saug is defined.

Lemma 11. For every processor k ∈ [m] and every busy interval B on processor
k in Sreal with crit(B) ≥ 2, we have φ̂(B) > k − 1.

Proof. We show that fill(k, T) establishes the property on processor k. The
claim then follows since fill(k, T) does not change the schedules of processors
above k. We know that on processor k busy intervals are only extended, since
in fill(k, T) we only close valleys for busy intervals B on k which are a section
of the corresponding critical set C. Let B ⊆ V be a busy interval on processor
k in Sreal with B ∼ V and crit(B) ≥ 2. No valley W ⊇ V can have been closed
on k since otherwise there would be no B ⊆ V in Sreal. Therefore, at some point
fill(k, V) must be called. Consider the point in fill(k, V) when the while-
loop terminates. Clearly at this point all busy intervals B′ ⊆ V with B′ ∼ V on
processor k have φ̂(B′) > k−1. At this point there must also be at least one such
B′ for B to be a busy interval on k in Sreal with B ∼ V and B ⊆ V . In particular,
one such B′ must have B′ ⊆ B, which directly implies φ̂(B) ≥ φ̂(B′) > k − 1.

Greedy Minimum-Energy Scheduling 71

Algorithm 2. Realignment of Saug for analysis only
supV ← 2|J(V)| for every valley V
for k ← m to 1 do

fill(k, T)
supV ← supV −1 for every V s.t. some V ′ with V ′ ∩ V �= ∅ was closed on proc. k

function fill(k, V)
if crit(V) ≤ 1 then

return
let C be the critical set s.t. C ∼ V
while ∃ busy interval B ⊆ V on processor k with B ∼ V and φ̂(B) ≤ k − 1 do

let Vl, Vr be the left, right valley for C and B (given B is a section of C)
if Vl exists and supVl

> 0 then
close(k, Vl)

else if Vr exists and supVr
> 0 then

close(k, Vr)

for every valley V ′ ⊆ V of C which has not been closed on k do
fill(k, V ′)

function close(k, V)
for every t ∈ V which is idle on processor k do

if processors 1, . . . , k − 1 are idle at t then
introduce new auxiliary busy slot on processor k at time t

else
move busy slot t of highest processor ≤ k − 1 to processor k

While with Lemma 11 we have our desired property for busy intervals B of
crit(B) ≥ 2, we still have to handle busy intervals of crit(B) ≤ 1. To be precise,
we have to handle idle intervals which are surrounded only by busy intervals B
of crit(B) ≤ 1. We will show that this constellation can only occur in Sreal on
processor 1 and that the realignment has not done any modifications in these
intervals, i.e. Spltr and Sreal do not differ for these intervals. With the same
argument as for the original single-processor Left-to-Right algorithm, we then
get that at least one processor has to be busy in any schedule during these
intervals.

Lemma 12. Let I be an idle interval in Sreal on some processor k and let Bl, Br

be the busy intervals on k directly to the left and right of I with crit(Bl) ≤ 1 and
crit(Br) ≤ 1. Allow Bl to be empty, i.e. we might have min I = 0, but Br must
be nonempty, i.e. max I < d. Then we must have k = 1 and φ̂(Bl ∪ I ∪ Br) > 0.

Lemma 13. For every processor k, every idle interval on processor k in Sopt

intersects at most two distinct idle intervals of processor k in Sreal.

Proof. Let Iopt be an idle interval in Sopt on processor k intersecting three
distinct idle intervals of processor k in Sreal. Let I be the middle one of these
three idle intervals. Lemma 12 and Lemma 11 imply that k busy processors are
required during I and its neighboring busy intervals. This makes it impossible
for Sopt to be idle on processor k during the whole interval Iopt.

72 G. Bidlingmaier

4.3 Approximation Guarantee and Running Time

Lemma 13 finally allows us to bound the costs of the schedule Sreal with the
same arguments as in the proof for the single-processor LTR algorithm of [7].
We complement this with an argument that the augmentation and realignment
could have only increased the costs of Spltr and that we have hence also bounded
the costs of the schedule returned by our algorithm PLTR.

Theorem 2. Algorithm PLTR constructs a schedule of costs at most
2OPT +P .

Proof. We begin by bounding costs(Sreal) as in the lemma. First, we show that
idle(Sk

real) ≤ 2 off(Sk
opt) + on(Sk

opt) for every processor k ∈ [m]. Let I1 be the
set of idle intervals on Sk

real which intersect some off interval of Sk
opt. Lemma 13

implies that I1 contains as most twice as many intervals as there are off intervals
in Sk

opt. Since the costs of each idle interval are at most q, and the costs of each
off interval are exactly q, the costs of all idle intervals in I1 is bounded by
2 off(Sk

opt). Let I2 be the set of idle intervals on Sk
real which do not intersect any

off interval in Sk
opt. The total length of these intervals is naturally bounded by

on(Sk
opt).

We continue by showing that busy(Sreal) ≤ 2P . By construction of Saug

and the definition of supV and close, we introduce at most as many auxiliary
busy slots at every slot t ∈ T as there are jobs scheduled at t in Spltr. For
Saug, an auxiliary busy slot is only added for t with crit(t) ≥ 2 and hence
vol(t) ≥ 1. Furthermore, initially supV = 2|J(V)| for every valley V and supV

is decremented if some V ′ intersecting V is closed during fill(k, T). During
fill(k, T) at most a single V ′ containing t is closed for every t ∈ T . Finally,
auxiliary busy slots introduced by Saug are used in the subroutine close. This
establishes the lower bound costs(Sreal) = idle(Sreal)+busy(Sreal) ≤ 2 off(Sopt)+
on(Sopt) + 2P ≤ 2OPT +P for our realigned schedule.

We complete the proof by arguing that costs(Spltr) ≤ costs(Sreal) since trans-
forming Sreal back into Spltr does not increase the costs of the schedule. Removing
the auxiliary busy slots clearly cannot increase the costs. Since the realignment
of Saug only moves busy slots between processors, but not between different time
slots, we can easily restore Spltr (up to permutations of the jobs scheduled on
the busy processors at the same time slot) by moving all busy slots back down
to the lower numbered processors. By the same argument as in Lemma 1, this
does not increase the total costs of the schedule.

Theorem 3. Algorithm PLTR has a running time of O(nf log d) where f
denotes the time needed for finding a maximum flow in a network with O(n)
nodes.

Acknowledgement. A comprehensive version of this paper, including all proofs, is
available on arXiv: https://arxiv.org/abs/2307.00949. Thanks to Prof. Dr. Susanne
Albers for her supervision during my studies. The idea of generalizing the Left-to-
Right algorithm emerged in discussions during this supervision.

https://arxiv.org/abs/2307.00949

Greedy Minimum-Energy Scheduling 73

References

1. Antoniadis, A., Garg, N., Kumar, G., Kumar, N.: Parallel machine scheduling to
minimize energy consumption. In: Proceedings of the Thirty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pp. 2758–2769. Society for
Industrial and Applied Mathematics, USA (2020)

2. Antoniadis, A., Kumar, G., Kumar, N.: Skeletons and minimum energy scheduling.
In: Ahn, H.K., Sadakane, K. (eds.) 32nd International Symposium on Algorithms
and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 212, pp. 51:1–51:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ISAAC.2021.51.
https://drops.dagstuhl.de/opus/volltexte/2021/15484

3. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a polyno-
mial time algorithm for offline dynamic power management. In: Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006,
pp. 364–367. Society for Industrial and Applied Mathematics, USA (2006)

4. Baptiste, P., Chrobak, M., Dürr, C.: Polynomial time algorithms for minimum
energy scheduling. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 136–150. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75520-3 14

5. Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadimoghad-
dam, M.: Scheduling to minimize gaps and power consumption. In: Proceedings of
the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA 2007, pp. 46–54. Association for Computing Machinery, New York (2007).
https://doi.org/10.1145/1248377.1248385

6. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math.
5, 287–326 (1979). https://doi.org/10.1016/S0167-5060(08)70356-X

7. Irani, S., Shukla, S.K., Gupta, R.K.: Algorithms for power savings. In: Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 12–14
January 2003, Baltimore, Maryland, USA, pp. 37–46. ACM/SIAM (2003). http://
dl.acm.org/citation.cfm?id=644108.644115

https://doi.org/10.4230/LIPIcs.ISAAC.2021.51
https://drops.dagstuhl.de/opus/volltexte/2021/15484
https://doi.org/10.1007/978-3-540-75520-3_14
https://doi.org/10.1007/978-3-540-75520-3_14
https://doi.org/10.1145/1248377.1248385
https://doi.org/10.1016/S0167-5060(08)70356-X
http://dl.acm.org/citation.cfm?id=644108.644115
http://dl.acm.org/citation.cfm?id=644108.644115

	Greedy Minimum-Energy Scheduling
	1 Introduction
	2 Algorithm
	3 Structure of the PLTR-Schedule
	3.1 Types of Volume
	3.2 Critical Sets of Time Slots
	3.3 Definitions Based on Critical Sets

	4 Modification of the PLTR-Schedule for Analysis
	4.1 Augmentation and Realignment
	4.2 Invariants for Realignment
	4.3 Approximation Guarantee and Running Time

	References

