
Jarosław Byrka
Andreas Wiese (Eds.)

LN
CS

 1
42

97

21st International Workshop, WAOA 2023
Amsterdam, The Netherlands, September 7–8, 2023
Proceedings

Approximation and
Online Algorithms

Lecture Notes in Computer Science 14297
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Jarosław Byrka · Andreas Wiese
Editors

Approximation and
Online Algorithms
21st International Workshop, WAOA 2023
Amsterdam, The Netherlands, September 7–8, 2023
Proceedings

Editors
Jarosław Byrka
University of Wrocław
Wrocław, Poland

Andreas Wiese
Technical University of Munich
Munich, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-49814-5 ISBN 978-3-031-49815-2 (eBook)
https://doi.org/10.1007/978-3-031-49815-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-49815-2

Preface

The 21st Workshop on Approximation and Online Algorithms (WAOA 2023) focused
on the design and analysis of algorithms for online and computationally hard problems.
Both kinds of problems have a large number of applications in a variety of fields. The
workshop took place in Amsterdam, the Netherlands, during 7–8 September 2023, and
it was a success: it featured many interesting presentations and provided opportunities
for stimulating interactions. WAOA 2023 was part of ALGO 2023, which also hosted
ESA, ALGOCLOUD, ALGOWIN, ATMOS, and IPEC.

The topics of WAOA 2023 were: algorithmic game theory, algorithmic trading,
coloring and partitioning, competitive analysis, computational advertising, computa-
tional finance, cuts and connectivity, FPT-approximation algorithms, geometric prob-
lems, graph algorithms, inapproximability results, mechanism design, network design,
packing and covering, paradigms for the design and analysis of approximation and online
algorithms, resource augmentation, and scheduling problems.

In response to the call for papers we received 43 submissions. Each of the submis-
sions was reviewed by at least three referees, and some submissions were reviewed by
more than three referees. The submissions were mainly judged on originality, technical
quality, and relevance to the topics of the conference. Based on the reviews, the pro-
gram committee selected 16 papers. This volume contains the final revised versions of
these papers as well as an invited contribution by our plenary speaker Nicole Megow.
The EasyChair conference system was used to manage the electronic submissions, the
reviewing process, and the electronic program committee discussions. It made our task
much easier.

We would like to thank all the authors who submitted papers to WAOA 2023 and
all attendees of WAOA 2023, including the presenters of the accepted papers. A special
thank you goes to the plenary speaker Nicole Megow for accepting our invitation and
giving a very nice talk. We would also like to thank the PC members and the external
reviewers for their diligent work in evaluating the submissions and their contributions
to the electronic discussions. Furthermore, we are grateful to all the local organizers of
ALGO 2023, especially Solon Pissis who served as the local chair of the organizing
committee.

October 2023 Jarosław Byrka
Andreas Wiese

Organization

General Chair

Solon Pissis CWI and Vrije Universiteit Amsterdam,
The Netherlands

Program Committee Chairs

Jarosław Byrka University of Wrocław, Poland
Andreas Wiese Technical University of Munich, Germany

Steering Committee

Evripidis Bampis Sorbonne Université, France
Thomas Erlebach Durham University, UK
Christos Kaklamanis University of Patras, Greece
Nicole Megow University of Bremen, Germany
Laura Sanita Eindhoven University of Technology,

The Netherlands
Martin Skutella Technical University of Berlin, Germany
Roberto Solis-Oba University of Western Ontario, USA

Program Committee

Marek Adamczyk University of Wrocław, Poland
Karl Bringmann Saarland University, Germany
Jarosław Byrka (Co-chair) University of Wrocław, Poland
Sami Davies Northwestern University, USA
Guy Even Tel-Aviv University, Israel
Andreas Emil Feldmann University of Sheffield, UK
Zachary Friggstad University of Alberta, Canada
Arindam Khan Indian Institute of Science, Bangalore, India
Kamyar Khodamoradi University of British Columbia, Canada
Max Klimm Technical University of Berlin, Germany

viii Organization

Alexandra Lassota École Polytechnique Fédérale de Lausanne,
Switzerland

Ben Moseley Carnegie Mellon University, USA
Tim Oosterwijk Vrije Universiteit Amsterdam, The Netherlands
Kirk Pruhs University of Pittsburgh, USA
Erik Jan van Leeuwen Utrecht University, The Netherlands
Laura Vargas Koch ETH Zürich, Switzerland
Andreas Wiese (Co-chair) Technical University of Munich, Germany

Additional Reviewers

Steven Miltenburg
Václav Blažej
Malte Tutas
Atrayee Majumder
Frank Staals
Daniel Vaz
Saladi Rahul
Pieter Kleer
Karnati Venkata Naga Sreenivasulu
Lars Rohwedder
Ramin Mousavi
Malte Tutas
Dylan Hyatt-Denesik
Siddharth Gupta
Ariel Kulik
Svenja M. Griesbach
Hsiang-Hsuan Liu
Syamantak Das
Steven Miltenburg
Daniel Schmand
Leon Sering
Ramin Mousavi
Mahya Jamshidian
Foivos Fioravantes
Alexandros Hollender
Evangelos Kipouridis
Franziska Eberle
Debajyoti Kar
Alejandro Cassis
Alexander Lindermayr

Adrian Vetta
Nikhil Kumar
Sven Jäger
Arash Rafiey
Diptarka Chakraborty
Lennart Kauther
Jesper Nederlof
Jens Schlöter
Rakesh Mohanty
Kunal Dutta
Tung Anh Vu
André Nusser
Georg Anegg
Vasileios Nakos
Thomas Erlebach
Mathieu Mari
Yuri Faenza
Justin Ward
Théophile Thiery
Sebastian Berndt
Saswata Jana
Arka Ray
Christiane Schmidt
Leonidas Palios
Malin Rau
Arturo Merino
Martin Herold
Manolis Vasilakis
K. Subramani
Akbar Rafiey

Optimization Under Explorable Uncertainty: Adversarial
and Stochastic Models (Invited Talk)

Nicole Megow

University of Bremen, Germany

Abstract. In the traditional frameworks for optimization under uncer-
tainty, an algorithm has to accept the incompleteness of input data.
Clearly, more information or even knowing the exact data would allow
for significantly better solutions. How much more information suffices
for obtaining a certain solution quality? Which information shall be
retrieved? Explorable uncertainty is a framework in which parts of the
input data are initially unknown, but can be obtained at a certain cost using
queries. An algorithm can make queries until it has obtained sufficient
information to solve a given problem. The challenge lies in balancing the
cost for querying and the impact on the solution quality.

In this talk, I will give an overview on the field of explorable uncer-
taintywith a focus on combinatorial optimization problems. I will include
problems such as finding aminimum spanning tree in a graph of uncertain
edge cost, finding the minimal elements in intersecting sets, and finding
a set of minimum total value. The latter can be seen as a subproblem of a
more complex problem such as solving a knapsack or matching problem
under explorable uncertainty. I will discuss an adversarial online model
and recent advances on a stochastic variant.

Contents

Approximation Ineffectiveness of a Tour-Untangling Heuristic 1
Bodo Manthey and Jesse van Rhijn

A Frequency-Competitive Query Strategy for Maintaining Low Collision
Potential Among Moving Entities . 14

William Evans and David Kirkpatrick

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 29
Tobias Mömke, Alexandru Popa, Aida Roshany-Tabrizi,
Michael Ruderer, and Roland Vincze

An Improved Deterministic Algorithm for the Online Min-Sum Set Cover
Problem . 45

Mateusz Basiak, Marcin Bienkowski, and Agnieszka Tatarczuk

Greedy Minimum-Energy Scheduling . 59
Gunther Bidlingmaier

Scheduling with Speed Predictions . 74
Eric Balkanski, Tingting Ou, Clifford Stein, and Hao-Ting Wei

The Power of Amortization on Scheduling with Explorable Uncertainty 90
Alison Hsiang-Hsuan Liu, Fu-Hong Liu, Prudence W. H. Wong,
and Xiao-Ou Zhang

Total Completion Time Scheduling Under Scenarios . 104
Thomas Bosman, Martijn van Ee, Ekin Ergen, Csanád Imreh,
Alberto Marchetti-Spaccamela, Martin Skutella, and Leen Stougie

Approximating Fair k-Min-Sum-Radii in Euclidean Space 119
Lukas Drexler, Annika Hennes, Abhiruk Lahiri, Melanie Schmidt,
and Julian Wargalla

Online Hitting Set of d-Dimensional Fat Objects . 134
Shanli Alefkhani, Nima Khodaveisi, and Mathieu Mari

Approximation Schemes Under Resource Augmentation for Knapsack
and Packing Problems of Hyperspheres and Other Shapes 145

Vítor Gomes Chagas, Elisa Dell’Arriva, and Flávio Keidi Miyazawa

xii Contents

Hitting Sets when the Shallow Cell Complexity is Small . 160
Sander Aarts and David B. Shmoys

Any-Order Online Interval Selection . 175
Allan Borodin and Christodoulos Karavasilis

Improved Approximations for Relative Survivable Network Design 190
Michael Dinitz, Ama Koranteng, Guy Kortsarz, and Zeev Nutov

Independent Set in k-Claw-Free Graphs: Conditional χ -Boundedness
and the Power of LP/SDP Relaxations . 205

Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi,
and Joachim Spoerhase

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 219
Philip Cervenjak, Junhao Gan, and Anthony Wirth

Author Index . 235

Approximation Ineffectiveness
of a Tour-Untangling Heuristic

Bodo Manthey and Jesse van Rhijn(B)

University of Twente, Enschede, The Netherlands
{b.manthey,j.vanrhijn}@utwente.nl

Abstract. We analyze a tour-uncrossing heuristic for the Euclidean
Travelling Salesperson Problem, showing that its worst-case approxima-
tion ratio is Ω(n) and its average-case approximation ratio is Ω(

√
n) in

expectation. We furthermore evaluate the approximation performance
of this heuristic numerically on average-case instances, and find that it
performs far better than the average-case lower bound suggests. This
indicates a shortcoming in the approach we use for our analysis, which
is a rather common method in the analysis of local search heuristics.

Keywords: Travelling salesperson problem · Local search ·
Probabilistic analysis

1 Introduction

The Travelling Salesperson Problem (TSP) is a classic example of an NP-hard
combinatorial optimization problem [8]. Different variants of the problem exist,
with one of the most studied variants being the Euclidean TSP. In this version,
the weight of an edge is given by the Euclidean distance between its endpoints.
Even this restricted version is NP-hard [9].

Due to this hardness, practitioners often turn to approximation algorithms
and heuristics for the TSP. One simple heuristic is 2-opt [1]. In each iteration of
this heuristic, one searches for a pair of edges in the tour that can be replaced
by a different pair, such that the total length of the tour decreases. Although
this heuristic performs quite well in practice [1, Chapter 8], it may require an
exponential number of iterations to converge even in the plane [6].

Interestingly, Van Leeuwen & Schoone showed that a restricted variant of 2-
opt in which one only removes intersecting edges terminates in O(n3) iterations
in the worst case [11]. For convenience, we refer to this variant as X-opt. More
recently, da Fonseca et al. [5] analyzed this heuristic once more, extending the
results to matching problems and showing a bound of O(tn2) for instances where
all but t points are in convex position. Their work builds on previous related work
on computing uncrossing matchings [2].

Supported by NWO grant OCENW.KLEIN.176.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 1–13, 2023.
https://doi.org/10.1007/978-3-031-49815-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_1

2 B. Manthey and J. van Rhijn

The insight that removing intersecting edges improves the tour is a key intu-
ition behind 2-opt. However, not all 2-opt iterations remove intersections. Indeed,
2-opt has proved extremely effective also for non-metric TSP instances, where
there is no notion of intersecting edges at all.

This raises the question of approximation performance: can one get away
with using X-opt instead of 2-opt at minimal cost to the approximation guaran-
tee, thereby ensuring an efficient heuristic for TSP instances in the plane? The
approximation ratio of 2-opt has long been known to sit between Ω

(
log n

log log n

)

and O(log n) for d-dimensional Euclidean instances [4], and has recently been
settled to Θ

(
log n

log log n

)
for 2-dimensional instances [3]. However, no previous work

seems to have discussed X-opt.
We analyze this simpler case here, showing an approximation ratio of Ω(n) in

the worst case and Ω(
√

n) in the average case. This answers our previously raised
question in the negative; in order to obtain a good approximation ratio, one
must allow for iterations that improve the tour without removing intersections.
Especially the average-case result stands in stark contrast to the average-case
approximation ratio of 2-opt, which is known to be O(1) [4].

We also perform a numerical experiment, which presents a different picture
from our formal results. To within the precision we are able to achieve, our
experiments indicate an average-case approximation ratio of X-opt of O(1). We
consider this evidence that the techniques we use to obtain the average-case
bound of Ω(

√
n), which are standard techniques used to perform probabilistic

analyses of local search heuristics, fall short of explaining the true practical
performance of X-opt.

1.1 Definitions and Notation

Given two points x, y ∈ R
2, we define d(x, y) as the Euclidean distance between

x and y. We define L(x, y) as the line segment between x and y. By an abuse
of notation, if e = {x, y} with x �= y, we write L(e) = L(x, y). We write �(e) =
d(x, y) for the length of L(e).

Let X ⊆ R
2. For a set E ⊆ {e ∈ 2X | |e| = 2}, we write �(E) =

∑
e∈E �(e).

If L(e) ∩ L(f) �= ∅ for some e, f ∈ E, i.e., some of the line segments represented
by the edges in E intersect, then we say E is crossing. Conversely, if E is not
crossing, then it is noncrossing. In particular, a local optimum for X-opt is exactly
a noncrossing tour.

Given A ⊂ R
2 and x ∈ R

2, we define the distance between A and x as
d(x,A) = miny∈A d(x, y). Note that d(x,A) might not exist, for instance, if A is
an open set. However, we will only consider sets for which d(x,A) is well-defined.

Let A be a rectangular region in R
2. Let X be a set of n points in A. We

call the four line segments that make up the boundary of A the edges of A. For
an edge e of A, let xe = arg minx∈X d(x, e) be the point closest to e. We call X
nice for A if for each pair of edges e, f of A, it holds that xe �= xf .

Approximation Ineffectiveness of a Tour-Untangling Heuristic 3

Fig. 1. The construction used in Theorem 1. Left: a noncrossing tour of length Ω(n).
Right: a tour of length O(1).

2 Worst Case

We construct a worst-case instance in which there exists a noncrossing tour with
length Ω(n), as well as a tour of constant length. The construction we use is
depicted in Fig. 1.

Theorem 1. Let n ∈ N be even. For ε > 0 sufficiently small, there exists an
instance of the Euclidean TSP in the plane where X-opt has approximation ratio
at least n

2 ·(1−ε). In particular, the approximation ratio can be brought arbitrarily
close to n

2 .

Proof. We place one point s at (0, 0). Next, we place k = n/2 points equally
spaced along the line segment extending from (1 − ε/2, 1) to (1, 1 − ε/2). We
label these points {yi}k

i=1, ordering them by increasing x-coordinate.
Consider the cone K with vertex at the origin, defined by all conic combi-

nations of {y1, yk}. Define the height along the axis of K of a point a by the
distance of a from the origin along the axis of K. We place k − 1 points along
the line segment perpendicular to the axis of K at a height ε/

√
8, excluding

its endpoints. We label these points {xi}k−1
i=1 , sorting them again by increasing

x-coordinate. Note that it does not matter where exactly we place these points,
as long as no two points are placed in the same location. Observe that we have
now placed exactly 2k = n points inside [0, 1]2.

To draw a noncrossing tour, we start at s, and draw the edge {s, y1}. We
then draw the edges {yi, xi}k−1

i=1 . Lastly, we add the edges {xk−1, yk} and {yk, s},
which closes up the tour.

By construction, this tour contains no intersecting edges. To bound its length
from below, observe that all edges have a length of at least

√
2− ε/

√
2 =

√
2(1−

ε/2). Thus, this tour has a length of at least
√

2n(1 − ε/2).
We now bound the length of the optimal tour from above, by

d(s, x1)+d(x1, y1)+d(s, xk−1)+d(xk−1, yk)+d(x1, xk)+d(y1, yk) ≤ 2
√

2(1+ε/2).

4 B. Manthey and J. van Rhijn

Putting these bounds together, we find a ratio of
√

2n(1 − ε/2)
2
√

2(1 + ε/2)
=

n

2
· 1 − ε/2
1 + ε/2

≥ n

2
· (1 − ε),

as claimed. ��
Remark. The construction used for Theorem 1 only holds for n even. For odd
n, we can use a similar construction, but the approximation ratio then becomes
(n − 1)/2 · (1 − ε).

A simple argument shows that the approximation ratio given in Theorem 1
is essentially as bad as one can get in the metric TSP. Given any instance, let x
and y be those points separated by the greatest distance. Any tour must travel
from x to y and back to x again, so any tour is of length at least 2 · d(x, y).
Moreover, every tour contains exactly n edges, so any tour has length at most
n · d(x, y). Hence, the approximation ratio of any algorithm for the metric TSP
is at most n/2.

3 Average Case

Although the worst-case construction of Sect. 2 shows that the uncrossing heuris-
tic may yield almost as bad of an approximation as is possible for TSP, it is
possible that the heuristic still shows good behavior on average. To exclude
this possibility, we consider a standard average-case model wherein n points are
placed uniformly and independently in the plane. We then construct a tour of
length Ω(n) in expectation. We present our results in Theorem 9.

To simplify our arguments, it would be convenient if we could consider only
a subset of all points, so that we can look at a linear-size sub-instance with nicer
properties. Constructing a long noncrossing tour through this subset would be
much easier.

Since an optimal tour through a set of points X is always at least as long
as an optimal tour through a subset Y ⊂ X, it is tempting to conjecture that
something similar holds for all noncrossing tours. Perhaps, given a noncrossing
tour through Y ⊆ X, we can extend the tour to all of X without decreasing its
length?

Unfortunately, this turns out to be false. We provide a counterexample in
Fig. 2.

Theorem 2. There exists a set of points in the plane, together with a noncross-
ing tour T through all but one of these points, such that all noncrossing tours
through all points have length strictly less than �(T).

Proof. Consider the instance shown in Fig. 2, along with the tour T = avcubwa.
Note that T passes through all points, except for the central point x. We
construct this instance such that d(b, c) = d(a, b) = d(a, c) = 1, so that

Approximation Ineffectiveness of a Tour-Untangling Heuristic 5

Fig. 2. Top left: instance described in Theorem 2. Bottom: the tour T from Theorem 2.
Top right: the longest possible noncrossing tour through all points in the instance.

a, b and c form the vertices of an equilateral triangle. We also set the dis-
tances d(v, c) = d(b, u) = d(a,w) = L, where L
 1. We set the angle
∠cub = ∠avc = ∠awb small, so that d(c, u) = d(v, a) = d(b, w) = L − 1 + o(1);
here, o(1) means terms decreasing in L. For instance, setting this angle to
1/L would suffice. Then we have d(w, c) = L − 1

2 + o(1). By construction,
d(x, a) = d(x, b) = d(x, c) = 1/

√
3. We can furthermore compute d(u, v) =

d(v, w) = d(u,w) =
√

3L + o(1), d(a, u) = d(b, v) = d(c, w) = L − 1
2 + o(1), and

d(x, u) = d(x, v) = d(x,w) = L− 1
4
√
3
+o(1). Since we will compare sums of these

various distances, all inequalities in the remainder of the proof are understood
to hold for sufficiently large L.

We classify the edges into types:

Type 1 2 3 4 5 6 7

Length (up to o(1) terms) 1√
3

1 L − 1 L − 1
2

L − 1

4
√
3

L
√

3L

We furthermore call the edges of types 1 and 2 the short edges, of types 3
through 6 the long edges, and of type 7 the very long edges. Finally, we classify
the points {a, b, c, u, v, w} into the near points N = {a, b, c} and the far points
F = {u, v, w}.

We start by computing the length of T :

�(T) = 3L + 3(L − 1) + o(1) = 6L − 3 + o(1).

6 B. Manthey and J. van Rhijn

We now show that all noncrossing tours that include x are shorter than 6L −
3 + o(1).

As it is laborious to check all possible noncrossing tours, we begin by exclud-
ing some possibilities. First, suppose the tour contains k very long edges. Then
the tour can contain at most 6 − 2k long edges, since each long edge has exactly
one endpoint in F , and k + 1 of these have been used. Such a tour has a length
of at most k

√
3 + (6 − 2k)L + O(1) < 6L − 3 + o(1). Thus, any sufficiently long

tour cannot contain any very long edges.
Now suppose that a tour contains two short edges. Since very long edges are

excluded, such a tour has length at most 5L+2+o(1) < 6L−3+o(1). Therefore,
the tour must consist of six long edges and one short edge.

Suppose the unique short edge in our tour is of type 2. Without loss of
generality, we assume it is {a, b}. Since all other edges are long, both a and b
must connect to points in F . Suppose a connects to u. Then x must connect to u
and w, since otherwise we would introduce a second short edge. But this makes
it impossible to connect c to v without creating an intersection or a subtour.
Thus, a cannot connect to u.

By identical reasoning, we cannot connect b to u. The only option is thus to
connect a to v and b to w. As very long edges are excluded, v must connect to
c (connecting to x would yield an intersection with L(a, b)) and x must connect
to w. But this makes it impossible to connect u to the tour without creating an
intersection. This shows that the short edge can only be of type 1.

Suppose the tour contains an edge of type 6. Without loss of generality, we
assume this to be {b, u}. Then observe that w can only be connected to the rest of
the instance by connecting it to b or c, since very long edges are excluded. Hence,
connecting w would yield a subtour, and so no edges of type 6 are possible.

We now note that the tour cannot contain all three edges of type 5, since
these all connect to x. Suppose the tour contains two such edges, say, {x, v}
and {x,w}. Then it is not possible to connect b to the rest of the instance
without creating an intersection or a subtour. Hence, at most one edge of type
5 is permissible.

The longest tour now contains one edge of type 5, three edges of type 4, two
edges of type 3 and one edge of type 1, which yields a length of

L− 1
4
√

3
+3

(
L − 1

2

)
+2(L−1)+

1√
3
+o(1) = 6L−3.5+

3
4
√

3
+o(1) < 6L−3+o(1).

Therefore, all noncrossing tours through all points of the instance have length
strictly less than �(T). ��

Theorem 2 shows that in constructing a tour through a random instance, we
must carefully make sure to take all points into account. Any points we leave
behind could reduce the length of the tour if we attempt to add them after
constructing a long subtour.

As the worst-case tour consists of many long almost-parallel edges, we seek
to construct a similar tour in random instances. Our strategy will consist of
dividing part of the unit square into many long parallel strips, and forming

Approximation Ineffectiveness of a Tour-Untangling Heuristic 7

noncrossing Hamiltonian paths within these strips. We then connect paths of
adjacent strips without creating intersections, forming a long Hamiltonian path
through all strips together. The endpoints can then be connected if we leave out
some space for points along which to form a connecting path. See Fig. 3 for a
schematic depiction of our construction.

Before we proceed to the proof of Theorem 9, we need some simple lemmas.
We start with a lemma that bounds the probability that any region in [0, 1]2

contains too few points for our construction to work.

Lemma 3. Let A ⊆ [0, 1]2, and let X be a finite set of n points placed indepen-
dently uniformly at random in [0, 1]2. Let N = |A ∩ X|. Then

P(N ≤ k) ≤ eke− k2
2narea(A) e−n·area(A)/2

for k ≤ n · area(A).

Proof. For x ∈ X, let S(x) be an indicator variable taking a value of 1 iff x ∈ A,
and 0 otherwise. Then N =

∑
x∈X S(x). Let μ = E(N) = n · area(A). By

Chernoff’s bound, for δ ∈ (0, 1),

P(N ≤ (1 − δ)μ) ≤ e−δ2·n·area(A)/2.

The result now follows from setting δ = 1−k/μ, which implies δ2 = 1+k2/μ2 −
2k/μ, and inserting this into the above bound. ��

The following observation and lemma are required to form suitable Hamilto-
nian paths through subsets of our random instance.

Observation 4. Let a, b, c, d be four distinct points in the plane, no three of
which are collinear. Suppose L(a, b) intersects L(c, d). Then L(a, d) cannot inter-
sect L(b, c). Moreover, d(a, b) + d(c, d) > d(a, d) + d(b, c).

Lemma 5. Let X be a set of distinct points in the plane, and assume no three
points in X are collinear. Fix distinct points s, t ∈ X. Then there exists a non-
crossing Hamiltonian path through X with endpoints s and t.

Proof. Fix an arbitrary, possibly crossing Hamiltonian path with endpoints s
and t. Suppose the edges e = {a, b} and f = {c, d} intersect. By Observation 4,
e′ = {a, d} and f ′ = {b, c} do not intersect. We assume that the path remains
connected if we exchange e and f for e′ and f ′ (if this fails, then we swap a for
b).

Observation 4 also shows that the length of the resulting path is strictly
smaller than the length of the original path. We repeat this process, removing
intersections until we obtain a noncrossing path. This process must terminate
in a finite number of steps, since the number of Hamiltonian paths is finite and
each step strictly decreases the path length. Hence, no path is seen twice.

It remains to show that s and t remain the endpoints throughout this process.
Observe that a point is an endpoint of the path if and only if it has degree 1.
Since the exchange operation preserves the degree of all vertices in the path, the
endpoints of the path do not change. ��

8 B. Manthey and J. van Rhijn

The next lemma is useful to connect Hamiltonian paths in neighboring rect-
angular regions.

Lemma 6. Let A, B and C be distinct rectangular regions in the plane. Assume
B shares an edge with A and with C, but A and C are disjoint except possibly
in a single point. Let SA, SB and SC be finite sets of points in A, B and C
respectively. Let xA and xC be the points in B closest to A and C, and assume
xA �= xC . Let P be a noncrossing Hamiltonian path through SB with endpoints
xA and xC . Let P ′ be a path obtained by connecting xA to any point in SA and
xC to any point in SC . Then P ′ is noncrossing.

Proof. Without loss of generality, we assume the regions A, B and C are aligned
at the horizontal axis. Moreover, we assume (again without loss of generality)
that C borders B to the right. This leaves three cases to examine for A: it may
border B to the left, to the bottom, or to the top. The latter two cases are
identical, so we examine only the first two.

Suppose A borders B to the left. Let yA ∈ SA, and suppose we extend P by
connecting yA to xA. Because P is noncrossing, we need only check whether the
edge e = {yA, xA} intersects any edge of P . Suppose such an edge, say e∗, exists.
Then this implies that one endpoint of e∗ must lie to the left of xA, which is a
contradiction.

Now consider the border of B with C, and extend the path by adding the
edge f = {yC , xC} for some yC ∈ SC . By the same reasoning, f cannot intersect
any edge of P . It remains to check whether e can intersect f . Observe that L(e)
lies entirely to the left of xA, which lies to the left of xC , which in turn lies to
the left of the entirety of L(f). Thus, e and f cannot intersect.

Now suppose A borders B to the top. The argument from the previous case
now fails, since we can no longer order the extending edges from left to right.
Suppose that e intersects f in the point q ∈ B. We add a direction to e and
f , taking xA and xC as their origin. Since xC lies below xA, we know that e
must lie below f after passing through q, and stay above f until it reaches its
endpoint. Since the endpoints of e and f lie outside of B, this implies that either
the point where e exits B lies below the point where f exits B, or both edges
exit B in the same border of B. This is a contradiction, and so we are done. ��

The proof of Lemma 6 fails when the points xA and xC are identical, or
equivalently, when the point set contained in B is not nice for B. The following
lemma shows that, provided B contains enough randomly placed points, this is
unlikely to occur.

Lemma 7. Let A be a rectangular region in the plane. Let X be a set of n ≥ 2
points placed uniformly at random in A. The probability that X is not nice for
A is at most 6/n.

Proof. Let ei, i ∈ [4], be any edge of A. Let Eij denote the event that xei
= xej

for i �= j. Then we seek to bound P(∪4
i=1 ∪4

j=i+1 Eij) from above.
Without loss of generality, we assume that ei lies along the x-axis, and that

A \ ei lies above ei, i.e., ei is the bottom edge of A.

Approximation Ineffectiveness of a Tour-Untangling Heuristic 9

Let ej be a different edge of A. If ej is the top edge of A, then the event Eij

occurs with probability 0, since it requires all points to lie on the same horizontal
line.

Suppose now that ej is the right edge of A, and let y ∈ X\{xei
}. Observe that

the horizontal coordinates of all points in X are independent uniform random
variables. Thus, the probability that xei

is the point with the largest horizontal
coordinate is 1/n by symmetry. Therefore, P(Eij) = 1/n.

To conclude, we apply a union bound to obtain

P (∪1≤i<j≤4Eij) ≤
∑

1≤i<j≤4

P (Eij) =
6
n

as claimed. ��
The final lemma we require follows from elementary calculus and probability

theory.

Lemma 8. Let X and Y be uniformly distributed over [a, b]. Then

E(|X − Y |) =
b − a

3
.

Proof. As X and Y are independent, we can compute the required quantity
directly using their joint distribution. Let fX and fY denote their respective
probability density functions. We have

E(|X − Y |) =
∫ b

a

∫ b

a

|x − y|fX(x)fY (y)dxdy

=
1

(b − a)2

∫ b

a

∫ b

a

|x − y|dxdy.

Substituting x = a + (b − a)x̄ and y = a + (b − a)ȳ, the integral reduces to
(b − a)3

∫ 1

0

∫ 1

0
|x̄ − ȳ|dx̄dȳ = (b − a)3/3, completing the proof. ��

We are now in a position to prove Theorem 9. See Fig. 3 for a sketch of the
construction we use in the proof.

Theorem 9. Suppose a TSP instance is formed by placing n points uniformly
at random in the unit square. Then the expected value of the ratio of the worst
local optimum of X-opt and the optimal tour on this instance is Ω(

√
n).

Proof. We begin by partitioning the unit square into six rectangular regions. Let
c ∈ (0, 1) be a constant, to be fixed later. Let C1 denote the square region with
opposite points (0, 0) and (c, c), and let C2 similarly denote the square region
with corner points (1 − c, 0) and (1, c). Next, let C3 be the rectangular region
with opposite corners (c, 0) and (1−c, c). The region C4 denotes the rectangular
region with corner points (0, c) and (c, 1), while C5 denotes the region with

10 B. Manthey and J. van Rhijn

Fig. 3. The construction used in Theorem 9. Wavy lines represent Hamiltonian paths
within the rectangular region they lie in, while straight lines represent edges.

corners (1 − c, c) and (1, 1). Finally, the region C6 denotes the rectangle with
corners (c, c) and (1 − c, 1).

We divide C6 into vertical strips of width α · 1−2c
n for some α > 0 to be fixed

later, so that there are k = �n/α� strips in total. We label the strips from left
to right as {Si}k

i=1.
Let X be a set of n points placed uniformly at random in [0, 1]2. Note that,

by Lemma 3, the probability that any of XCi
:= Ci ∩ X for i ∈ [5] contains

fewer than 31 points is at most 5e−Ω(n). Hence, we assume for the remainder of
the proof that these regions contain at least 31 points. The possibility that this
is not true reduces the expected tour length by a factor of at most 1 − e−Ω(n),
which does not affect the result.

Observe that each x ∈ XCi
is uniformly distributed over Ci. Since we assume

that each XCi
contains at least 31 points, we see by Lemma 7 that the probability

that XCi
is not nice for X is at most 6/31. By a union bound, the probability

that XCi
is not nice for Ci for any i ∈ [5] is at most 5 · 6

31 = 30
31 . Hence, we

assume for the remainder that each XCi
is nice for Ci, i ∈ [5]. The possibility

that this is not true reduces the expected tour length by at most a factor of 1
31 ,

which does not affect the result.
Consider strip Si. Let li be the point in Si∩X with the smallest x-coordinate,

the leftmost point, provided it exists. Similarly, ri denotes the point in Si ∩ X
with the largest x-coordinate, or the rightmost point. Since the probability that
any three points in X are collinear is 0, we can use Lemma 5 to establish the
existence of a noncrossing Hamiltonian path through Si with endpoints li and
ri. Let PSi

be such a path.

Approximation Ineffectiveness of a Tour-Untangling Heuristic 11

After forming the paths PSi
for all i ∈ [k], we connect PSi

to PSi+1 for
i ∈ [k − 1]. To do this, we simply connect ri to li+1. The result is a Hamiltonian
path P6 through C6, which contains the paths Pi as subpaths. By Lemma 6, we
know that P6 is noncrossing.

Next, we form noncrossing Hamiltonian paths through the remaining regions.
For the region C4, we let the endpoints of the path be the rightmost and bottom-
most points in X ∩ C4. For C5, the endpoints are the leftmost and bottom-most
points. For C1, we take the top-most and rightmost points, for C2 the leftmost
and top-most, and for C3 the leftmost and rightmost. We label the path through
region Ci by Pi, i ∈ [6]. Observe that these endpoints are distinct in all cases,
since we assume that XCi

is nice for Ci for each i ∈ [5].
We now connect these paths as follows. Let Ci be any of the regions. If the

region shares a border with Cj , excluding the bottom border of C6, then we
connect the points from Ci and Cj closest to the border. Observe that this is
exactly the process we used to form P6. Again using Lemma 5, the tour T so
formed is noncrossing.

To bound the length of T from below, we consider the length of the paths
PSi

, i ∈ [k]. The sum of these lengths is clearly a lower bound for �(T). We thus
have

E(�(T)) ≥
k∑

i=1

E(�(PSi
)),

by linearity of expectation. Moreover, observe that �(PSi
) = 0 if fewer than 2

points are placed in Si. Thus, we find by the law of total expectation

E(�(PSi
)) = E(�(PSi

) | |Si ∩ X| ≥ 2) · P(|Si ∩ X| ≥ 2).

Assume the event |Si ∩ X| ≥ 2 occurs. Let x, y be any two points in Si ∩ X.
Then by the triangle inequality, �(Pi) ≥ d(x, y) ≥ dv(x, y), where dv denotes
the vertical distance between x and y. Observe that the vertical coordinates of
x and y are independent and uniformly distributed over [c, 1]. This implies by
Lemma 8 that

E(�(Pi) | |Si ∩ X| ≥ 2) ≥ 1 − c

3
.

Using Lemma 3 to bound P(|Si ∩ X| ≥ 2) from below, we have

E(�(T)) ≥
⌊n

α

⌋
· 1 − c

3
·
(
1 − e1− 1

2α(1−2c)(1−c) · e− 1
2α(1−2c)(1−c)

)
,

where we use the fact that area(Si) = α(1 − c)(1 − 2c)/n.
It remains to fix values for c and α such that this expectation is nontrivial; for

instance, α = 10 and c = 0.1 suffice. We then find E(�(T)) = Ω(n). Since there
exists a tour of length O(

√
n) in the Euclidean TSP with high probability [7],

we are done. ��

4 Practical Performance of Uncrossing Tours

In this section, we show that in practical instances there is a large gap with the
results suggested by Theorem 9. We generate instances with n points sampled

12 B. Manthey and J. van Rhijn

from the uniform distribution over [0, 1]2, and run X-opt on these instances. As a
starting tour, we pick a tour from the uniform distribution on all tours. We com-
pute the lengths of the locally optimal tours obtained from our implementation
of X-opt, and average them for each fixed value of n we evaluate. We consider
the simplest possible pivot rule: starting from an arbitrary edge e in the tour, we
check whether e intersects with any other edge, performing an exchange when
we find the first such edge. If we do not find such an intersecting edge, we move
on to the next edge in the tour and repeat the process. By “next”, we mean that
we order the edges of a tour according to the permutation on the vertices by
which we represent the tour.

Since the optimal tour length is Θ(
√

n) with high probability [7], we compare
the length of the tours we obtain with this function. Their ratio then serves as
a proxy for the approximation ratio of X-opt. We perform this procedure for
n ∈ {100, . . . , 1000, 2000, . . . , 10000}. For each value of n, we take N = 16, 000
samples. The results are shown in Fig. 4. To the precision we are able to obtain,
we cannot distinguish the approximation ratio from constant.

Fig. 4. Numerical evaluation of the average-case performance of X-opt.

5 Discussion

Although the results we presented in Theorem 1 and Theorem 9 are rather
negative for X-opt, the numerical experiments of Sect. 4 paint a much more
optimistic picture. The heuristic appears to be much more efficient in practice
than our lower bounds suggest. Indeed, while Theorem 9 suggests an approxi-
mation ratio of Ω(

√
n), the numerical experiments in Sect. 4 suggest a constant

approximation ratio.
One possible explanation for this discrepancy is that we compare the optimal

solution on any instance to local optima specifically constructed to be bad. This
is a rather standard approach, and it is not surprising that it gives pessimistic
results. However, the results in this case are especially pessimistic, considering
that we can show a tight lower bound for the expected tour length in the average
case.

Approximation Ineffectiveness of a Tour-Untangling Heuristic 13

We consider this to be an indication that this approach is incapable of
explaining the practical approximation performance of local search heuristics.
In order to more closely model the true behavior of heuristics, it seems one must
analyze the landscape of local optima, and the probability of reaching differ-
ent local optima. We stress that this discrepancy cannot be resolved by other
standard methods of probabilistic analysis. In particular, smoothed analysis [10]
cannot help, since the smoothed approximation ratio of an algorithm is bounded
from below by the average-case approximation ratio.

References

1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization.
Princeton University Press, Princeton (2003). https://doi.org/10.2307/j.ctv346t9c

2. Biniaz, A., Maheshwari, A., Smid, M.: Flip distance to some plane configurations
(2019). https://doi.org/10.48550/arXiv.1905.00791

3. Brodowsky, U.A., Hougardy, S., Zhong, X.: The approximation ratio of the k-opt
heuristic for the Euclidean traveling salesman problem (2021). https://doi.org/10.
48550/arXiv.2109.00069

4. Chandra, B., Karloff, H., Tovey, C.: New results on the old k-opt algorithm for the
traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999). https://
doi.org/10.1137/S0097539793251244

5. da Fonseca, G.D., Gerard, Y., Rivier, B.: On the longest flip sequence to untangle
segments in the plane (2022). https://doi.org/10.48550/arXiv.2210.12036

6. Englert, M., Röglin, H., Vöcking, B.: Smoothed analysis of the 2-opt algorithm for
the general TSP. ACM Trans. Algorithms 13(1), 10:1–10:15 (2016). https://doi.
org/10.1145/2972953

7. Frieze, A.M., Yukich, J.E.: Probabilistic analysis of the TSP. In: Gutin, G., Punnen,
A.P. (eds.) The Traveling Salesman Problem and Its Variations. Combinatorial
Optimization, vol. 12, pp. 257–307. Springer, Boston (2007). https://doi.org/10.
1007/0-306-48213-4 7

8. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms. Algo-
rithms and Combinatorics. Springer, Heidelberg (2000). https://doi.org/10.1007/
978-3-662-21708-5

9. Papadimitriou, C.H.: The Euclidean travelling salesman problem is NP-complete.
Theoret. Comput. Sci. 4(3), 237–244 (1977). https://doi.org/10.1016/0304-
3975(77)90012-3

10. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004). https://
doi.org/10.1145/990308.990310

11. Van Leeuwen, J., Schoone, A.: Untangling a traveling salesman tour in the plane.
In: Proceedings of the 7th International Workshop Graph-Theoretical Concepts in
Computer Science (1980)

https://doi.org/10.2307/j.ctv346t9c
https://doi.org/10.48550/arXiv.1905.00791
https://doi.org/10.48550/arXiv.2109.00069
https://doi.org/10.48550/arXiv.2109.00069
https://doi.org/10.1137/S0097539793251244
https://doi.org/10.1137/S0097539793251244
https://doi.org/10.48550/arXiv.2210.12036
https://doi.org/10.1145/2972953
https://doi.org/10.1145/2972953
https://doi.org/10.1007/0-306-48213-4_7
https://doi.org/10.1007/0-306-48213-4_7
https://doi.org/10.1007/978-3-662-21708-5
https://doi.org/10.1007/978-3-662-21708-5
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1016/0304-3975(77)90012-3
https://doi.org/10.1145/990308.990310
https://doi.org/10.1145/990308.990310

A Frequency-Competitive Query Strategy
for Maintaining Low Collision Potential

Among Moving Entities

William Evans(B) and David Kirkpatrick(B)

Computer Science, University of British Columbia, Vancouver, Canada
{will,kirk}@cs.ubc.ca

Abstract. Consider a collection of entities moving with bounded speed,
but otherwise unpredictably, in some low-dimensional space. Two such
entities encroach upon one another at a fixed time if their separation is
less than some specified threshold. Encroachment, of concern in many
settings such as collision avoidance, may be unavoidable. However, the
associated difficulties are compounded if there is uncertainty about the
precise location of entities, giving rise to potential encroachment and,
more generally, potential congestion within the full collection.

We adopt a model in which entities can be queried for their current
location (at some cost) and the uncertainty region associated with an
entity grows in proportion to the time since that entity was last queried.
The goal is to maintain low potential congestion, measured in terms of
the (dynamic) intersection graph of uncertainty regions, using the low-
est possible query cost. Previous work, in the same uncertainty model,
described query schemes that minimize several measures of congestion
potential for point entities, using location queries of some fixed frequency.
These schemes were shown to be O(1)-competitive, with other, even clair-
voyant query schemes (that know the trajectories of all entities), subject
to the same bound on query frequency.

In this paper we design a scheme that is competitive in terms of
its query granularity (minimum spacing between queries), over all suffi-
ciently large time intervals, while guaranteeing a fixed bound on collision
potential (defined as the maximum degree of the intersection graph of
uncertainty regions), for entities with positive extent. Our complemen-
tary optimization objective necessitates surprisingly different algorithms
and analyses from that in previous work. Nevertheless, we also show that
the competitive factor of our scheme is best possible, up to a constant
factor, in the worst case.

Keywords: data in motion · uncertain inputs · collision avoidance ·
online algorithms · competitive analysis

This work was funded in part by Discovery Grants from the Natural Sciences and
Engineering Research Council of Canada.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 14–28, 2023.
https://doi.org/10.1007/978-3-031-49815-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_2&domain=pdf
http://orcid.org/0000-0002-7611-507X
http://orcid.org/0000-0002-3276-2734
https://doi.org/10.1007/978-3-031-49815-2_2

Frequency-Competitive Query Strategies for Low Congestion Potential 15

1 Introduction

Imagine a set of entities (robots) moving continuously in Euclidean space with
bounded speed but following unpredictable trajectories. If we do not continu-
ously monitor the positions of the entities, we risk the possibility of their col-
lision. In our model, we can query an entity to obtain its current location but
such queries are expensive. Between queries, the set of possible locations, called
the uncertainty region, of each entity grows. How infrequently can we query in
order to avoid potential collisions, where a potential collision is an intersection
of the uncertainty regions of two entities? We must make the decision of which
entity to query next (and when) knowing only the uncertainty regions of the
entities that we have established from previous queries. This is an online task,
but one in which we can choose the next piece of data (which entity’s location)
we obtain. For some sets of trajectories, there are no good sequences of choices
that prevent potential collisions without incurring high cost; for example, imag-
ine robots converging on a single point. For such trajectories, we cannot expect
our (or any) query scheme to do well. Instead, we would like to design query
schemes that have a cost that is not much worse than the smallest cost for a
given set of trajectories. That is, we compare our scheme’s performance against
a clairvoyant query scheme that knows the trajectories but must also perform
queries to keep uncertainty regions from intersecting.

Our primary goal is to formulate efficient query schemes that, for all possible
collections of moving entities, maintain fixed bounds on the maximum number
of entities that might collide with any one entity. Naturally for many such col-
lections the required query frequency changes over time as entities cluster and
spread, so efficient query schemes need to adapt to changes in the configuration
of entities. While such changes are continuous and bounded in rate, they are
only discernible through queries to individual entities, so entity configurations
are never known precisely; future configurations are of course entirely hidden. In
this latter respect our schemes and the competitive analysis of their efficiency,
using as a benchmark a clairvoyant scheme that bases its queries on full knowl-
edge of all entity trajectories (and hence all future configurations), resemble
familiar scenarios that arise in the design and analysis of on-line algorithms.

1.1 The Query Model

To facilitate comparisons with earlier results, we adopt similar notation to that
used by Evans et al. [9] and Busto et al. [3]. Let E be a set {e1, e2, . . . , en} of
(mobile) entities. Each entity ei is modelled as a d-dimensional closed ball with
fixed extent and bounded speed, whose position (centre location) at any time is
specified by the (unknown) function zi from [0,∞) (time) to R

d. We take the
entity radius to be our unit of distance, and take the time for an entity moving
at maximum speed to move a unit distance to be our unit of time.

The n-tuple Z(t) = (z1(t), z2(t), . . . , zn(t)) is called the E-configuration at
time t. Entities ei and ej are said to encroach upon one another at time t if the
distance between their centres ‖zi(t)−zj(t)‖ is less than some fixed encroachment

16 W. Evans and D. Kirkpatrick

threshold Ξ. For simplicity we assume to start that the distance between entity
centres is always at least 2 (i.e. ‖zi(t)−zj(t)‖−2, the separation between entities
ei and ej at time t, is always at least zero—so entities never properly intersect),
and that the encroachment threshold is exactly 2 (i.e. we are only concerned
with avoiding entity contact). The concluding section considers a relaxation (and
decoupling) of these assumptions in which ‖zi(t)−zj(t)‖, is always at least some
positive constant ρ0 (possibly less than 2), and the encroachment threshold Ξ
is some constant at least ρ0.

Fig. 1. Potential encroachment
graph of four unit-radius entities
(dark grey) with uncertainty regions
(light grey) after queries four, three,
two and one time unit in the past.

We wish to maintain knowledge of the
positions of the entities over time by mak-
ing location queries to individual entities,
each of which returns the exact position1

of the entity at the time of the query. A
(query) scheme S is just an assignment of
location queries to time instances. We mea-
sure the performance of a scheme in terms
of its minimum query granularity (the time
between consecutive queries) over a specified
time interval T .

At any time t ≥ 0, let pSi (t) denote
the time, prior to t, that entity ei was last
queried; we define pSi (0) = −∞. The uncer-
tainty region of ei at time t, denoted uS

i (t),
is defined as the ball with centre zi(pSi (t))
and radius 1+ t−pSi (t) (cf. Fig. 1); note that
uS

i (0) is unbounded. We omit S when it is understood and the dependence on t
when t is fixed.

The set U(t) = {u1(t), . . . , un(t)} is called the (uncertainty) configuration at
time t. Entity ei is said to potentially encroach upon entity ej in configuration
U(t) if ui(t) ∩ uj(t) �= ∅ (that is, there are potential locations for ei and ej at
time t such that ei ∩ ej �= ∅). In this way, any configuration U gives rise to an
associated (symmetric) potential encroachment graph PEU on the set E . Note
that, by our assumptions above, the potential encroachment graph associated
with the initial uncertainty configuration U(0) is complete. As in [3], notions of
congestion potential are expressed as properties of the graph PEU .

In this paper, we focus on the max-degree (hereafter (uncertainty) degree) of
the graph PEU , which is defined as the maximum, over entities ei, of the number
of entities ej , including ei, that potentially encroach upon ei in configuration U .
We also refer to this as the collision potential of U .

The assumption that entities never properly intersect is helpful since it means
that for x larger than some dimension-dependent sphere-packing constant, it is
always possible to maintain uncertainty degree at most x, using sufficiently high
query frequency.

1 The concluding discussion describes how this exactness condition can be relaxed.

Frequency-Competitive Query Strategies for Low Congestion Potential 17

1.2 Related Work

One of the most widely-studied approaches to computing functions of moving
entities uses the kinetic data structure model which assumes precise information
about the future trajectories of the moving entities and relies on elementary geo-
metric relations among their locations along those trajectories to certify that a
combinatorial structure of interest, such as their convex hull, remains essentially
the same. The algorithm can anticipate when a relation will fail, or is informed
if a trajectory changes, and the goal is to update the structure efficiently in
response to these events [2,11,12]. Another less common model assumes that
the precise location of every entity is given to the algorithm periodically. The
goal again is to update the structure efficiently when this occurs [4–6].

More similar to ours is the framework introduced by Kahan [14,15] for study-
ing data in motion problems that require repeated computation of a function
(geometric structure) of data that is moving continuously in space where data
acquisition via queries is costly. There, location queries occur simultaneously in
batches, triggered by requests (Kahan refers to these as “queries”) to compute
the function at the time of the request rather than by a requirement to main-
tain a structure or property at all times. Performance is compared to a “lucky”
algorithm that queries the minimum amount to calculate the function. Kahan’s
model and use of competitive evaluation is common to much of the work on
query algorithms for uncertain inputs (see Erlebach and Hoffmann’s survey [7]).

As mentioned, our model is essentially the same as the one studied by Evans
et al. [9] and by Busto et al. [3], both of which focus on point entities. Paper [9]
contains strategies whose goal is to guarantee competitively low congestion
potential, compared to any other (even clairvoyant) scheme, at one specified
target time. It provides precise descriptions of the impact on this guarantee for
several measures of initial location knowledge and available lead time before the
target. The other paper [3] contains a scheme for guaranteeing competitively
low congestion potential at all times. For this more challenging task the scheme
maintains congestion potential over time that is within a constant factor of that
maintained by any other scheme over modest-sized time intervals. All of these
results deal with the optimization of congestion potential measures subject to
fixed query frequency.

In this paper, we consider a dual problem, for entities of bounded extent:
optimizing query frequency required to guarantee fixed bounds on collision poten-
tial. This complementary optimization is fundamentally different: being able to
minimize collision potential using fixed query frequency provides little insight
into how to minimize query frequency to maintain a fixed bound on collision
potential. In particular, even for stationary entities, a small change in the colli-
sion potential bound can lead to an arbitrarily large change in the required query
frequency. Our schemes optimize query frequency in a strong sense: maximizing
the minimum query granularity over all sufficiently large time intervals.

18 W. Evans and D. Kirkpatrick

1.3 Our Results

At first, we imagine that entities remain stationary, even though they have the
potential to move, since this avoids complications arising from entities chang-
ing location and nearby neighbours. We define a natural stationary frequency
demand that serves to lower bound the number of queries (and hence upper
bound the query granularity) required by any, even clairvoyant, scheme to main-
tain uncertainty degree x over any modest-length time interval T . This is com-
plemented by a scheme that uses a constant times that number of (well-spaced)
queries to achieve uncertainty degree x over all such time intervals.

When the entities are mobile, the stationary frequency demand changes over
time as entities cluster and separate and the analysis becomes significantly more
involved. However, by integrating the stationary measure over any modest-length
time interval T we can again derive an expression that serves to lower bound
the number of queries (and hence upper bound the query granularity) required
by any, even clairvoyant, scheme to maintain uncertainty degree x over T . A
query scheme is described that meets this bound on query granularity to within
a factor Θ(x), over all such time intervals T . The competitive factor Θ(x) drops
to Θ(x

1+Δ) when we relax the degree bound to x + Δ, for some Δ ≤ x (i.e. we
are willing to accept an approximation x + Δ of the degree bound x). We give a
family of examples showing that the competitive factor cannot be improved by
more than a constant factor in the worst case.

In the concluding section we describe how our results can be applied to other
measures of congestion potential. We also discuss several other modifications to
the underlying model that make our query optimization framework even more
broadly applicable.

Returning to the problem concerning collision avoidance mentioned in the
introduction, it follows from our results that, by maintaining uncertainty degree
at most x, we maintain for each entity ei a certificate identifying the, at most
x − 1, other entities that could potentially encroach upon ei (those warranting
more careful local monitoring).

2 Geometric Preliminaries

In any E-configuration Z(t) = (z1(t), z2(t), . . . , zn(t)) and for any positive integer
x, we call the separation between ei and its xth closest neighbour (not including
ei) its x-separation, and denote it by σZ

i (x, t). We call the closed ball with radius
σZ

i (x, t)+1 and centre zi(t), the x-ball of ei, and denote it by BZ
i (x, t) (cf. Fig. 2.)

We will omit Z when the configuration is understood. Note that, for all entities
ei and ej ,

σj(x, t) ≤ ‖zj(t) − zi(t)‖ + σi(x, t), (1)

since the ball with radius ‖zj(t) − zi(t)‖ + σi(x, t) centred at zj(t) contains the
ball with radius σi(x, t) centred at zi(t) (by the triangle inequality).

Frequency-Competitive Query Strategies for Low Congestion Potential 19

Fig. 2. A configuration of five unit-
radius entities at time t. B2(3, t), the
3-ball of entity e2, is shown shaded.

We first observe that, at any time, indi-
vidual entities have bounded overlap with
the x̂-balls of other entities, for any positive
integer x̂. We use “x̂” since Lemma 1 may
be applied in situations where x̂ �= x. See [8,
Lemma 1] for the proof of the following:

Lemma 1. In any E-configuration Z(t),
any entity e∗ intersects the x̂-balls of at most
5dx̂ entities.

We have assumed that entities do not
properly intersect. Define cd,x to be the
smallest constant such that a unit-radius d-
dimensional ball B can have x disjoint unit-
radius d-dimensional balls (not including
itself) with separation from B at most cd,x.
Thus, in any E-configuration Z(t), σi(x, t) ≥
cd,x and hence

1 − λd,x

λd,x
σi(x, t) ≥ 1, where λd,x =

cd,x

1 + cd,x
. (2)

Since x unit-radius balls with separation at most ξ from B must all fit within a
ball of radius 3+ξ concentric with B, a straightforward volume argument shows
that cd,x ≥ ξ provided x ≥ (3 + ξ)d. Thus λd,x ≥ 1/2 if x ≥ 4d.

Let Xd be the largest value of x for which cd,x = 0 (e.g., X2 = 6). Clearly,
if x ≤ Xd there are entity configurations Z(t) with σZ

i (x, t) = 0. Thus, for such
x, maintaining uncertainty degree at most x might be impossible in general, for
any query scheme. On the other hand, if x > Xd, then λd,x > 0. Thus:

Remark 1. Hereafter we will assume that x, our bound on congestion potential,
is greater than Xd. The constants Xd and λd,x will play a role in both the
formulation and analysis of our query schemes in (arbitrary, but fixed) dimension
d. If the reader prefers to focus on dimension 2, then assuming x ≥ 16 ensures
that λ2,x ≥ 1/2.

3 Query Optimization for Mobile Entities

Several factors contribute to the difficulty of maintaining low uncertainty degree
in our model. One is that the increase in uncertainty over time arises from the
entities’ potential movement, whether or not they actually move. Another is
that movement creates the potential for the formation of entity clusters whose
duration, position and constituents change. To help isolate the first of these
factors we first look at the special case of our problem where all entities are
stationary.

20 W. Evans and D. Kirkpatrick

3.1 Query Optimization for Stationary Entities

When entities are stationary, the entity configuration Z(t) at time t, and hence
the x-separation of entity ei at time t, is the same for all t. Accordingly, we
will use the notation σi(x, ∗), to highlight this time invariance. If the radius of
the uncertainty region ui of ei ∈ E exceeds 1 + σi(x, ∗) then ui intersects at
least x + 1 entities in E . Thus, σi(x, ∗) is an upper bound on the amount of
uncertainty whose avoidance guarantees that the uncertainty degree of entity ei

remains at most x. It follows that φx =
∑

ei∈E
1

σi(x,∗) , the stationary frequency
demand, provides a lower bound on the total query frequency (measured as
queries per unit of time) to avoid uncertainty degree greater than x, with entities
in stationary configuration Z.2

Though necessary, it is not sufficient to query each entity ei with frequency
1

σi(x,∗) , in order to avoid uncertainty degree greater than x, simply because the
uncertainty regions of all entities, not just ei, grow with time. Nevertheless, a
constant multiple of the stationary frequency demand does suffice to keep the
uncertainty degree of all entities from exceeding x.

The Frequency-Weighted Round-Robin scheme for maintaining uncertainty
degree at most x, denoted FWRR[x], queries each entity ei once every ti =
2g+�lg[σi(x,∗)λd,x/(λd,x+2)]� time steps of size (granularity) 1/2g, where g =
�lg(λd,x+2

λd,x
φx)� + 1. The schedule repeats after max{ti} steps.

Lemma 2. The query scheme FWRR[x] maintains uncertainty configurations
with uncertainty degree at most x at all times, and has an implementation using
minimum query granularity at least λd,x

4(λd,x+2)
1

φx
.

Proof. Since ti/2g ≤ λd,x

λd,x+2σi(x, ∗), it follows that FWRR[x] will query every

entity ei with at most λd,x

λd,x+2σi(x, ∗) time between queries. Equation (1) implies
that any entity ej whose separation from ei is s ≥ σi(x, ∗) has the property that
σj(x, ∗) ≤ s + 2 + σi(x, ∗) ≤ 2s + 2. Hence, using Eq. (2),

σi(x, ∗) + σj(x, ∗) ≤ 3 s + 2 ≤ (3 + 2
1 − λd,x

λd,x
)s =

λd,x + 2
λd,x

s,

and λd,x

λd,x+2σi(x, ∗) + λd,x

λd,x+2σj(x, ∗) ≤ s. So the uncertainty regions of ei and ej

never properly intersect, and thus the uncertainty degree of ei remains at most
x over time.

Since
∑

ei∈E
1
ti

<
λd,x+2

λd,x2g−1 φx ≤ 1, it follows from a result of Anily et al. [1]
(see Lemma 6.2) that a query schedule exists with at most one query for every
slot of size 1/2g. Hence, the FWRR query scheme can be implemented with
query granularity at least λd,x

4(λd,x+2)
1

φx
.
�

2 This frequency demand appears in work on scheduling jobs according to a vector
v of periods, where job j must be scheduled at least once in every time interval of
length vj [10,13].

Frequency-Competitive Query Strategies for Low Congestion Potential 21

3.2 Query Optimization for General Mobile Entities

While the case of stationary entities exhibits some of the difficulties in maintain-
ing uncertainty regions with low congestion, mobile entities add an additional
level of complexity. As we have seen, when entities are stationary, the expres-
sion |T |φx =

∑
ei∈E

|T |
σi(x,∗) , the stationary query demand over time interval T ,

plays a central role in characterizing the unavoidable number of queries needed
to avoid uncertainty degree greater than x. For mobile entities, the more general
expression φx(T) =

∑
ei∈E

∫
T

dt
σi(x,t) plays a similar role.

It follows from earlier work on the optimization of query degree using fixed
query frequency [3] that a high stationary frequency demand at one instant in
time does not necessarily imply that uncertainty degree at most x is unsus-
tainable at a significantly lower query frequency. Nevertheless, as the following
lemma demonstrates, high stationary query demand, sustained over a sufficiently
large time interval T , does imply a lower bound on the number of queries over
T or some very small shift of T .

Lemma 3. Let 0 ≤ Δ ≤ x and let T be a time interval for which φx+Δ(T) ≥
1010|E|. Define

−→
T to be the interval T shifted by |T |/355 and T+ = T ∪−→

T . Then
any, even clairvoyant, query scheme that ensures maximum uncertainty degree
at most x over T+ must make Ω(1+Δ

x φx+Δ(T)) queries in total over either T

or
−→
T .

Remark 2. Three features of this lower bound are worth highlighting: (i) It
shows that all, even clairvoyant, query schemes that ensure uncertainty degree
at most x over the time interval T+, must have minimum query granularity
O(x

1+Δ
1

φx + Δ(T)) over T+, even if the granularity is arbitrarily smaller out-
side of that interval. (ii) We will describe a non-clairvoyant query scheme that
uses minimum query granularity Ω(1

φx + Δ(T)) to maintain maximum uncertainty
degree x + Δ over all sufficiently large time intervals T . The O(x

1+Δ
1

φx + Δ(T))
granularity bound from Lemma 3 relates the granularity of our query scheme
to that required for maintaining uncertainty degree at most x, highlighting the
impact of allowing an approximation x + Δ of the uncertainty degree objec-
tive x. (iii) It can be shown that the appearance in the query lower bound of
Ω(1+Δ

x), which does not appear in the stationary lower bound, is unavoidable,
even for entity sets whose locations change only by some global translation.

Proof. (Sketch; see [8, Lemma 3 and Corollary 7] for full proof.) It helps to
imagine first that the entities are stationary. For each ei ∈ E partition T into⌊ |T |

σi(x+Δ,∗)
⌋ ≥ |T |

2σi(x+Δ,∗) sub-intervals each of length at least σi(x + Δ, ∗).
Let Ei denote the set of (at least) x + Δ entities in E \ ei that intersect the
(x + Δ)-ball of entity ei. We say that entity ei is satisfied in a sub-interval if
(i) ei is queried in that sub-interval (in which case we say directly satisfied), or
(ii) at least 1 + Δ of the entities in Ei are queried in that sub-interval (in which
case we say indirectly satisfied).

22 W. Evans and D. Kirkpatrick

If ei is not satisfied in a given sub-interval then at the end of the sub-interval
at least x of the x + Δ entities in Ei must have uncertainty regions of radius
at least 1 + σi(x + Δ, ∗), all of which intersect the uncertainty region ui of
ei, which means the uncertainty degree of ei would be at least x + 1. Thus, to
avoid uncertainty degree greater than x throughout T , every entity ei must be
satisfied in each of its sub-intervals. Since there are at least

∑
ei∈E

|T |
2σi(x+Δ,∗)

sub-intervals in total, we can assume that at least half of these are satisfied
indirectly (otherwise, the directly satisfied entity sub-intervals alone account for
at least

∑
ei∈E

|T |
4σi(x+Δ,∗) queries.

By Lemma 1 entity ej can intersect the (x + Δ)-ball of at most 5d(x + Δ)
entities, and so a query to ej can help to indirectly satisfy at most 5d(x + Δ)
other entity sub-intervals. Since there are at least

∑
ei∈E

|T |
4σi(x+Δ,∗) entity sub-

intervals in total that are satisfied indirectly, it must be that there are at least
(1+Δ)

4·5d(x+Δ)

∑
ei∈E

|T |
σi(x+Δ,∗) queries in total over T .

At a high level the proof when entities are not necessarily stationary parallels
that of the stationary case above. However, in the general case the (x + Δ)-
separation, and indeed the (x + Δ)-neighbourhood of each entity, changes over
time. A reasonable hope is that the integral of the entity’s inverse (x + Δ)-
separation over T , summed over all entities, provides a similar basis for a lower
bound.

As in the stationary case, for each entity ei we partition T into sub-intervals;
the length of a sub-interval starting at tj is just σi(x, tj). Certainly, each entity
ei must either be queried, or have all but at most x−1 of its (x + Δ)-neighbours
queried, in each of its sub-intervals. The difficulty is that one mobile entity can be
the (x + Δ)-neighbour of many entities over time so one query to that entity can
partially satisfy the demands of many sub-intervals. (In the stationary case, one
query can help satisfy the demands of at most Θ(x + Δ) entities since this is the
maximum number of stationary (x + Δ)-neighbourhoods a stationary entity can
be in.) However, if we restrict our attention to sub-intervals of an entity during
which the entity’s (x + Δ)-separation remains approximately the same size, we
can apply something similar to the stationary case argument. The challenge is
to show that such sub-intervals, that are not simultaneously partially satisfied
along with a large number of other sub-intervals, cover a substantial fraction of
T for many entities.
�

Perception Versus Reality. For any query scheme, the true location of a
moving entity ei at time t, zi(t), may differ from its perceived location, zi(pi(t)),
its location at the time of its most recent query. Let Ni(x, t) be ei plus the set of
x entities whose perceived locations at time t are closest to the perceived location
of ei at time t. The perceived x-separation of ei at time t, denoted σ̃i(x, t), is
the separation between ei and its perceived xth-nearest-neighbour at time t, i.e.,
σ̃i(x, t) = maxej∈Ni(x,t) ‖zi(pi(t)) − zj(pj(t))‖ − 2.

Since a scheme only knows the perceived locations of the entities, it is
important that each entity ei be probed sufficiently often that its perceived x-

Frequency-Competitive Query Strategies for Low Congestion Potential 23

separation σ̃i(x, t) closely approximates its true x-separation σi(x, t) at all times
t. The following technical lemma asserts that once a close relationship between
perception and reality has been established, it can be sustained by ensuring that
the time between queries to an entity is bounded by some small fraction of its
perceived x-separation. See [8, Lemma 8] for the proof.

Lemma 4. Suppose that for some t0 and for all entities ei,

(i) σi(x, pi(t0))/2 ≤ σ̃i(x, pi(t0)) ≤ 3σi(x, pi(t0))/2, [perception is close to real-
ity for ei at time pi(t0)] and

(ii) for any t ≥ t0, t − pi(t) ≤ λd,xσ̃i(x, pi(t))/12 [all queries are done promptly
based on perception].

Then for all entities ei, σi(x, t)/2 ≤ σ̃i(x, t) ≤ 3σi(x, t)/2, for all t ≥ pi(t0).

To obtain the preconditions of Lemma 4, we could assume that all entities are
queried very quickly using low granularity for a short initialization phase. We
show how to obtain these preconditions using granularity that is competitive
with any scheme that guarantees uncertainty degree at most x from time t0
onward (see [8, Lemma 9] for the proof). This establishes:

Lemma 5. For any Δ, 0 ≤ Δ ≤ x, and any target time t0 ≥ 0, there exists an
initialization scheme that guarantees

(i) σi(x + Δ, t0)/2 ≤ σ̃i(x + Δ, t0) ≤ 3σi(x + Δ, t0)/2, and
(ii) t0 − pi(t0) ≤ λd,xσ̃i(x + Δ, pi(t0))/12.

using minimum query granularity over the interval [0, t0] that is at most Θ(x
1+Δ)

smaller than the minimum query granularity, over the interval [0, (a+1)t0], used
by any other scheme that guarantees uncertainty degree at most x in the interval
[t0, (a + 1)t0], where a = 64/(5λd,x).

A Scheme to Maintain Low Degree for General Mobile Entities. A
bucket is a set of entities and an associated time interval whose length (the
bucket’s length) is a power of two. The ith bucket B of length 2b has time
interval TB = [i2b, (i + 1)2b), for integers i and b. The time intervals of buckets
of the same length partition [0,∞), and a bucket of length 2b spans exactly 2s

sub-buckets of length 2b−s.
Entities are assigned to exactly one bucket at any moment in time. Member-

ship of entity ej in a given bucket B implies a commitment to query ej within
the interval TB . The basic version of the BucketScheme (see Algorithm 1) fulfills
these commitments by scheduling a query to ej at anytime within that time
interval. That is, any version of Schedule(ej , B) that allocates a query for ej

at some time within TB satisfies the basic BucketScheme. After an entity ej is
queried, it is reassigned to a future bucket in a way that preserves (via Lemma 4)
the following invariants: for all t′ ∈ TB , (i) σj(x, t′)/2 ≤ σ̃j(x, t′) ≤ 3σj(x, t′)/2;
and (ii) σj(x, t′) = Θ(2b), so

∫
TB

dt
σi(x,t) = Θ(1).

24 W. Evans and D. Kirkpatrick

Algorithm 1. BucketScheme[x]
1: Assume perception-reality precondition properties hold at time t0. � See Lemma 5
2: for all entities ej do � make initial query-time assignments
3: Assign ej to the first bucket B of length 2b starting after time t0, where b =

�lg[(λd,x/24)σ̃j(x, t0)]�
4: Schedule(ej , B) � Assign ej a query time in interval of bucket B

5: repeat
6: Advance t to the next query time (say to entity ej)
7: Query ej
8: Assign ej to the next bucket B of length 2b starting after time t + 2b, where

b = �lg[(λd,x/24)σ̃j(x, t)]�
9: Schedule(ej , B) � Assign ej a query time in interval of bucket B

Theorem 1. The basic BucketScheme[x] maintains uncertainty degree at most
x indefinitely. Furthermore, over any time interval T in which the basic Bucket-
Scheme[x] makes 3|E| queries, φx(T) = Ω(|E|).
Proof. It is straightforward to confirm that the assignment of entities to buckets
(specified in line 7) ensures that the time between successive queries to any
entity ei satisfies precondition (ii) of Lemma 4. From the proof of Lemma 4 we
see that this in turn implies that t−pi(t) ≤ λd,x

6 σi(x, t), for all entities ei and all
t ≥ t0. But λd,x

6 σi(x, t) ≤ λd,x

λd,x+2σi(x, t), and so following the identical analysis
used in the proof of Lemma 2, we conclude that uncertainty degree at most x is
maintained indefinitely.

Since no entity has a query scheduled in overlapping buckets, it follows that
if the basic BucketScheme[x] makes 3|E| queries over T then, among these, it
must make at least |E| queries to entities in buckets that are fully spanned by
T . Since each entity in each fully spanned bucket contributes Θ(1) to φx(T), it
follows that φx(T) = Ω(|E|).
�

A more fully specified implementation of the BucketScheme is not only com-
petitive in terms of total queries over reasonably small intervals, but also com-
petitive in terms of query granularity. The idea of this refined BucketScheme is
to replace the simple scheduling policy Schedule of the basic BucketScheme with
a recursive policy Schedule* that generates a refined reassignment of entities to
buckets. Whenever a bucket B of length 2b has been assigned two entities, these
entities are immediately reassigned, one to each of the two sub-buckets of B of
length 2b−1. In this way, when all reassignments are finished, all of the entities
are assigned to their own buckets. The entity associated with a bucket B has
a tentative next query time at the midpoint of B. Tentative query times are
updated of course when entities are reassigned (see Algorithm 2). At any point
in time the next query is made to the entity with the earliest associated tentative
next query time. Note that since distinct buckets have distinct midpoints, and
no bucket has more than one associated entity, the current set of tentative next
query times contains no duplicates. In fact, for any two tentative query times

Frequency-Competitive Query Strategies for Low Congestion Potential 25

associated with entities in buckets B and B′, it must be that either B and B′ are
disjoint, or the smaller bucket is a sub-bucket of one half of the larger bucket.

Recall from the invariant properties of bucket assignments in the basic Buck-
etScheme that if ei is assigned to bucket B, then σi(x, t) = Θ(|TB |) (i.e.
1/σi(x, t) = Θ(1/|TB |)), for t ∈ TB . In the refined BucketScheme this prop-
erty is generalized to: (i) if ei is assigned to bucket B, then there is a subset of
entities SB , including ei, such that

∑
ej∈SB

1/σj(x, t) = Θ(1/|TB |), for t ∈ TB,
and (ii) if TB ∩ TB′ �= ∅ then SB ∪ SB′ = ∅. It is straightforward to confirm that
this property is preserved by the reassignment of entities in the bucket structure.

Since the gap between successive queries contains half of the smaller of the
two buckets containing the two entities, it follows that every gap between queries
has an associated integral of

∑
ej∈E 1/σj(x, t) that is Θ(1). It follows from this

that the stationary frequency demand is inversely proportional to the instanta-
neous granularity at the time of every query.

Algorithm 2. Schedule*(ej , B) � used by the refined BucketScheme
1: if bucket B already contains an entity ei then � B contains at most one
2: Unassign ei from B
3: Schedule*(ei, Bfirst) � Bfirst spans the first half-interval of B
4: Schedule*(ej , Bsecond) � Bsecond spans the second half-interval of B
5: else
6: Assign ej to bucket B with query time at the midpoint of B.

We summarize with:

Lemma 6. Over any time interval T in which the refined BucketScheme[x]
makes 3|E| queries, φx(T) = Ω(|E|). Furthermore, at any time the query granu-
larity is inversely proportional to the stationary query demand.

Combining Lemma 6 and Lemma 3, we reach our main result:

Theorem 2. For any Δ, 0 ≤ Δ ≤ x, the refined BucketScheme[x + Δ] main-
tains uncertainty degree at most x + Δ and, over all sufficiently large time
intervals T , is competitive, in terms of total queries over T or some small shift−→
T of T , with any (even clairvoyant) query scheme that maintains uncertainty
degree at most x over T ∪−→

T . The competitive factor is O(x
1+Δ). Furthermore, at

all times it uses query granularity that is inversely proportional to the stationary
frequency demand.

Remark 3. Observe that the competitive bound here is particularly strong:
BucketScheme[x + Δ] maintains uncertainty degree at most x + Δ over all time
and, for all time intervals T of sufficient length, is competitive with any (even
clairvoyant) scheme that is designed to minimize queries on T , using arbitrarily
high query frequency elsewhere.

26 W. Evans and D. Kirkpatrick

It turns out that the competitive factor realized by the refined BucketScheme
cannot be improved by more than a constant factor in general. This is demon-
strated by a example in which two entity clusters, each with (x + 1 + Δ)/2
entities, are situated in the plane, just above the x-axis on opposite sides of
the y-axis, and move horizontally at maximum speed. A special subset (of size
1 + Δ) of each cluster, the special entities, move away from the opposite clus-
ter, while all non-special entities move towards the opposite cluster. The initial
cluster separation is chosen in such a way that (i) in the absence of queries in
a specified time interval T the uncertainty regions will all intersect the origin
at the end of T , but (ii) uniformly spaced queries to the special entities over T
(and thereafter) will guarantee that no entity has uncertainty degree exceeding
x in T (or thereafter). A non-clairvoyant scheme can be forced, by an adversarial
scheduler, to query Θ(x) entities over T in order to ensure that sufficiently many
of the special entities are queried to avoid uncertainty degree exceeding x + Δ
over T .

4 Discussion

4.1 Other Measures of Congestion Potential

We have focused on collision potential but our results have immediate implica-
tions for other notions of congestion potential as well. Note that the maximum
degree of vertices in the potential encroachment graph PEU associated with an
uncertainty configuration U , provides an upper bound on the maximum num-
ber of uncertainty regions in U that intersect in a common point (called the
uncertainty ply of U in [3]), as well as the chromatic number of PEU (called
the uncertainty thickness of U in [3]). Thus our strategy for ensuring a fixed
bound on the uncertainty degree of U also serves to maintain the same bound
on uncertainty ply and thickness of U . It turns out that the query frequency
lower bound of Lemma 3 holds, with only a small change in the constant, for
query schemes that ensure maximum uncertainy ply at most x. So our refined
BucketScheme, without change, is competitive among (even clairvoyant) query
schemes for maintaining low uncertainty ply and thickness as well.

4.2 Generalizations of Our Model and Analysis

We describe below several modifications to our model and analyses that make
our query optimization framework more broadly applicable.

Relaxing the Assumption on the Encroachment Threshold and Entity Disjoint-
ness. Without changing the units of distance and time, we can model a col-
lection of unit-radius entities, any pair of which possibly intersect but whose
centres always maintain distance at least some positive constant ρ0 < 2, by
simply scaling the constant cd,x by ρ0/2 (and the constant λd,x accordingly).

Similarly (and simultaneously), we can model a collection of unit-radius enti-
ties with encroachment threshold Ξ > 2 by (i) changing the basic uncertainty

Frequency-Competitive Query Strategies for Low Congestion Potential 27

radius (the radius of the uncertainty region of an entity immediately after it has
been queried) to Ξ/2 (thereby ensuring that entities with disjoint uncertainty
regions do not encroach one another), and (ii) changing Xd to be the largest
x such that cd,x ≥ Ξ − 2 (since for x exceeding this changed Xd there can be
at most x − 1 entities that are within the encroachment threshold of any fixed
entity). Note that this modification also allows us to relax the assumption that
location queries are answered exactly : if location queries are answered to within
some error ε then it suffices to set the encroachment threshold Ξ to 2(1 + ε).

Relaxing the Assumption of Uniform Entity Extent and Speed. We have assumed
that all entities are d-dimensional balls with the same extent (radius). Com-
pletely relaxing this assumption would invalidate some of our packing arguments.
Nevertheless, if entity extents differ by at most a constant factor, it is straight-
forward to modify the constants λd,x and Xd, so that all of our results continue
to hold. Similarly, the reader will not be surprised by the fact that our results
are essentially unchanged if our assumption that all entities have the same (unit)
bound on their maximum speed is relaxed to allow speed bounds that differ by
at most a constant factor.

4.3 Motivating Applications

We return briefly to the motivating application mentioned in the introduction.
Recall that by maintaining uncertainty degree at most x, we maintain (using
optimal query frequency) for each robot (entity) ei a certificate identifying the,
at most x−1, other robots that could potentially collide with ei (those warranting
more careful local monitoring). This application becomes even more compelling
if we take into consideration the more general notion of encroachment described
in the preceding subsection.

An additional application, considered in [3], concerns entities that are mobile
transmission sources, with associated broadcast ranges, where the goal is to min-
imize the number of broadcast channels so as to eliminate potential transmission
interference. In this case, maintaining the uncertainty thickness to be at most
x, using minimum query frequency, serves to maintain a fixed bound on the
number of broadcast channels, an objective that seems to be at least as well
motivated as optimizing the number of channels for a fixed query frequency (the
objective in [3]). Our query scheme guarantees uncertainty degree x + Δ using
a query frequency that is (up to a constant factor) optimally competitive with
that required of any scheme to maintain uncertainty ply (which bounds from
above the number of broadcast channels used to avoid potential broadcast inter-
ference) at most x. As we described in the previous subsection, our assumption
of disjoint entities (i.e. broadcast ranges) is easily relaxed to permit intersections
as long as the broadcast centres remain separated by at least some fixed positive
distance.

28 W. Evans and D. Kirkpatrick

References

1. Anily, S., Glass, C.A., Hassin, R.: The scheduling of maintenance service. Discret.
Appl. Math. 82, 27–42 (1998)

2. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algo-
rithms 31(1), 1–28 (1999)

3. Busto, D., Evans, W., Kirkpatrick, D.: Minimizing interference potential among
moving entities. In: Proceedings of the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 2400–2418 (2019)

4. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic compressed quadtrees in the
black-box model with applications to collision detection for low-density scenes. In:
Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 383–394. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2 34

5. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic convex hulls, Delaunay trian-
gulations and connectivity structures in the black-box model. J. Comput. Geom.
3(1), 222–249 (2012)

6. de Berg, M., Roeloffzen, M., Speckmann, B.: Kinetic 2-centers in the black-box
model. In: Symposium on Computational Geometry, pp. 145–154 (2013)

7. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with
uncertainty. Bull. Eur. Assoc. Theor. Comput. Sci. 2(116) (2015)

8. Evans, W., Kirkpatrick, D.: Frequency-competitive query strategies to maintain
low congestion potential among moving entities (2023). arXiv:2205.09243

9. Evans, W., Kirkpatrick, D., Löffler, M., Staals, F.: Minimizing co-location potential
of moving entities. SIAM J. Comput. 45(5), 1870–1893 (2016)

10. Fishburn, P.C., Lagarias, J.C.: Pinwheel scheduling: achievable densities. Algorith-
mica 34(1), 14–38 (2002)

11. Guibas, L.J.: Kinetic data structures: a state of the art report. In: Proceedings
of the Third Workshop on the Algorithmic Foundations of Robotics on Robotics:
The Algorithmic Perspective, WAFR 1998, USA, pp. 191–209. A. K. Peters Ltd.
(1998)

12. Guibas, L.J., Roeloffzen, M.: Modeling motion. In: Toth, C.D., O’Rourke, J., Good-
man, J.E. (eds.) Handbook of Discrete and Computational Geometry, chap. 53, pp.
1401–1420. CRC Press (2017)

13. Holte, R., Mok, A., Rosier, L., Tulchinsky, I., Varvel, D.: The pinwheel: a real-
time scheduling problem. In: Proceedings of the Twenty-Second Annual Hawaii
International Conference on System Sciences. Volume II: Software Track, pp. 693–
702 (1989)

14. Kahan, S.: A model for data in motion. In: Twenty-third Annual ACM Symposium
on Theory of Computing, STOC 1991, pp. 265–277 (1991)

15. Kahan, S.: Real-time processing of moving data. Ph.D. thesis, University of Wash-
ington (1991)

https://doi.org/10.1007/978-3-642-33090-2_34
http://arxiv.org/abs/2205.09243

Approximating Maximum Edge
2-Coloring by Normalizing Graphs

Tobias Mömke1 , Alexandru Popa2 , Aida Roshany-Tabrizi1 ,
Michael Ruderer1(B) , and Roland Vincze1

1 University of Augsburg, Augsburg, Germany
moemke@informatik.uni-augsburg.de,

{aida.roshany.tabrizi,michael.ruderer}@uni-a.de
2 University of Bucharest, Bucharest, Romania

alexandru.popa@fmi.unibuc.ro

Abstract. In a simple, undirected graph G, an edge 2-coloring is a
coloring of the edges such that no vertex is incident to edges with more
than 2 distinct colors. The problem maximum edge 2-coloring (ME2C)
is to find an edge 2-coloring in a graph G with the goal to maximize
the number of colors. For a relevant graph class, ME2C models anti-
Ramsey numbers and it was considered in network applications. For the
problem a 2-approximation algorithm is known, and if the input graph
has a perfect matching, the same algorithm has been shown to have a
performance guarantee of 5/3 ≈ 1.667. It is known that ME2C is APX-
hard and that it is UG-hard to obtain an approximation ratio better than
1.5. We show that if the input graph has a perfect matching, there is a
polynomial time 1.625-approximation and if the graph is claw-free or if
the maximum degree of the input graph is at most three (i.e., the graph
is subcubic), there is a polynomial time 1.5-approximation algorithm for
ME2C.

Keywords: Approximation Algorithms · Edge 2-Coloring · Matchings

1 Introduction

In a simple, undirected graph G, an edge 2-coloring is a coloring of the edges
such that no vertex is incident to edges with more than 2 distinct colors. The
problem maximum edge 2-coloring (ME2C) is to find an edge 2-coloring in G
that uses a maximal number of colors. Formally, we aim to compute a coloring
χ : E(G) → N that maximizes |{c ∈ N | χ(e) = c for an e ∈ E(G)}|, such that
for each vertex v ∈ V (G), |{c ∈ N | χ(e) = c for an e incident to v}| ≤ 2 holds.

Partially supported by DFG Grant 439522729 (Heisenberg-Grant) and DFG Grant
439637648 (Sachbeihilfe). Partially supported by a grant of the Ministry of Research,
Innovation and Digitization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-
2021-0253, within PNCDI III.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 29–44, 2023.
https://doi.org/10.1007/978-3-031-49815-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_3&domain=pdf
http://orcid.org/0000-0002-2509-6972
http://orcid.org/0000-0002-7123-1880
http://orcid.org/0009-0003-3607-9611
http://orcid.org/0009-0009-1968-4821
http://orcid.org/0000-0002-5997-6564
https://doi.org/10.1007/978-3-031-49815-2_3

30 T. Mömke et al.

Maximum edge 2-coloring is a particular case of anti-Ramsey numbers and
has been considered in combinatorics. For given graphs G and H, the anti-
Ramsey number ar(G,H) is defined to be the maximum number of colors in an
edge-coloring that does not produce a rainbow copy of H in G, i.e., a copy of H
in G with every edge of H having a unique color. Classically, the graph G is a
large complete graph and H is from a particular graph class. If H is a star with
three leaves and G is an arbitrary graph, the anti-Ramsey number is precisely
the maximum number of colors in an edge 2-coloring.

The study of anti-Ramsey numbers was initiated by Erdős, Simonovits and
Sós in 1975 [8]. Since then, there have been a large number of results on the
topic including the cases where G = Kn and H is a cycle [3,8,19], tree [14,15],
clique [4,8,12], matching [7,13,23] or a member of some other class of graphs [2,
8].

The main application of ME2C comes from wireless mesh networks. Rani-
wala et al. [21,22] proposed a wireless architecture in which each computer uses
two network interface cards (NICs) compared to classical architectures that use
only one NIC. In this model, each computer can communicate with the other
computers in the network using two channels. Raniwala et al. [21,22] showed
that using such an architecture can increase the throughput by a factor of 6.
In order to minimize the interference, it is desirable to maximize the number of
distinct channels used in the network. In ME2C computers correspond to nodes
in the graph, while colors correspond to channels.

1.1 Previous Work

The problem of finding a maximum edge 2-coloring of a given graph has been
first studied by Feng et al. [9–11]. They provided a 2-approximation algorithm for
ME2C and show that ME2C is solvable in polynomial time for trees and complete
graphs, but they left the complexity for general graphs as an open problem. The
authors also studied a generalization of ME2C, the maximum edge q-coloring,
where each vertex is allowed to be incident to at most q edges with distinct colors.
For the maximum edge q-coloring they showed a (1 + 4q−2

3q2−5q+2)-approximation
for q > 2.

Later, Adamaszek and Popa [1] showed that the problem is APX-hard and
proved that the algorithm above provides a 5/3-approximation for graphs which
have a perfect matching. The APX-hardness is achieved via a reduction from the
Maximum Independent Set problem and states that maximum edge 2-coloring
problem is UG-hard to approximate within a factor better than 1.5 − ε, for
some ε > 0. Chandran et al. [6] showed that the matching-based algorithm of
[11] yields a (1 + 2

δ)-approximation for graphs with minimum degree δ and a
perfect matching. If additionally the graph is triangle-free, the ratio improves to
(1 + 1

δ−1). Recently, Chandran et al. [5] improved the analysis of the achieved
approximation ratio for triangle-free graphs with perfect matching to 8/5. They
also showed that the algorithm cannot achieve a factor better than 58/37 on
triangle free graphs that have a perfect matching.

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 31

Larjomaa and Popa [16] introduced and studied the min-max edge 2-coloring
problem a variant of the ME2C problem, where the goal is to find an edge 2-
coloring that minimizes the largest color class. Mincu and Popa [18] introduced
several heuristic algorithms for the min-max edge 2-coloring problem.

1.2 Our Results

Our core algorithm, Algorithm 1, is the 2-approximation algorithm for general
graphs of Feng et al. [11]. The algorithm simply finds a maximum matching,
colors each edge of the matching with a distinct color, removes the edges of the
matching and finally, colors each connected component of the remaining graph
with a distinct color.

Directly applying the algorithm, however, cannot provide an approximation
ratio better than 2 in the general case [11] and not better than 5/3 ≈ 1.667 for
graphs with perfect matchings [1]. To overcome this difficulty, we introduce a
preprocessing phase which considerably simplifies the instance. The simplifica-
tions both improve the quality of the solution provided by the algorithm and
lead to an improved upper bound on the size of an optimal solution. A graph is
called normalized if no more preprocessing steps can be performed on it.

We first show that Algorithm 1 is a 1.5-approximation algorithm if after
the normalization, the graph contains a perfect matching (Lemma 14). We can
ensure this property if we normalize a subcubic graph1, even if before applying
the normalization it did not have a perfect matching.

Theorem 1. ME2C in subcubic graphs has a polynomial-time
1.5-approximation algorithm.

It has been shown that claw-free graphs contain a perfect matching [17,24].
Some preprocessing steps might introduce claws which worsen the quality of the
solution provided by Algorithm 1, therefore we do not immediately obtain a
1.5-approximation. However, we develop a bookkeeping technique to counteract
this effect.

Theorem 2. There is a polynomial-time 1.5-approximation for claw-free
graphs.

In the more general case of graphs with perfect matchings, the effect of
introduced unmatched vertices is more severe. We use a sophisticated accounting
technique to quantify the effects of the appearing unmatched vertices on the
quality of both the optimal solution and the solution given by Algorithm 1. As
a result we obtain a weaker but improved approximation algorithm for graphs
containing a perfect matching:

Theorem 3. There is a 1.625-approximation for graphs that contain a perfect
matching.

1 Recall that a graph is subcubic if no vertex has a degree larger than three.

32 T. Mömke et al.

Let us now elaborate on the key ideas behind our results. After the pre-
processing phase we obtain a normalized graph via a series of modifications.
Intuitively, the modifications achieve the following: 1) Avoid leaves with equal
neighborhoods; 2) Avoid degree-2 vertices; 3) Avoid a specific class of triangular
cacti.

A triangular cactus is a connected graph such that two cycles have at most
one vertex in common and each edge is contained in a 3-cycle. For our purposes,
we additionally require that no vertex of the cactus is incident to more than one
edge not in the cactus.

While the three modifications are relatively simple, proving that they are
approximation-preserving is non-trivial. If none of these modifications can be
applied (anymore), we call the graph normalized. Our key insight is that the
number of colors in an optimal solution of a normalized graph can be bounded
from above, this is stated as Lemma 1 and shown in Sect. 3.

Lemma 1. Let G be a normalized connected graph with n ≥ 3 vertices and �
leaves. Then there is no feasible coloring χ with more than 3n/4 − �/4 colors.

We note that without normalization, an optimal solution can have n colors
(e.g., if G is an n-cycle). In order to prove Lemma 1, we use the notion of
character graphs introduced by Feng et al. [11]. A character graph of an edge 2-
coloring is a graph that contains exactly one edge from each color class. We first
show that for a normalized graph we can ensure the existence of a nice character
graph, which is a character graph with several useful properties. These properties
allow for a counting argument with respect to the number of components in the
character graph, which allows us to prove the bound in Lemma 1.

For general graphs, the best result is still the known 2-approximation. There
is a family of bipartite triangle free 2-connected graphs with minimum degree 3
which certifies this lower bound for our algorithm.

The rest of the paper is organized as follows. In Sect. 2 we describe the
three modifications performed on the input graph before applying the algorithm.
Then, in Sect. 3, we prove the upper bound on the optimal solution on normal-
ized instances. In Sect. 4 we combine the results from Sects. 2 and 3 to prove
Theorems 1 and 2, and finally, in Sect. 5 we prove Theorem 3.

Due to space constraints most of the proofs are moved into the journal ver-
sion.

2 The Algorithm

Let G be a graph and χ a feasible 2-coloring of the edges. Recall that χ(e) marks
the color of the edge e in χ. With a slight abuse of notation, let us denote the
set of all colors of the edges of G by χ(G) and the colors incident to a vertex v
by χ(v) := {c ∈ N | ∃u ∈ V (G) : χ(uv) = c}. If a vertex v is incident to an edge
colored c, we say that vertex v sees c. We also denote the number of colors in a
coloring χ by |χ|.

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 33

For a color c, E(c) denotes the set of edges with color c, that is, E(c) :=
{e ∈ E(G) | χ(e) = c}. We refer to E(c) as the color class of c. Furthermore,
we define by V (c) := {v ∈ V (G) | c ∈ χ(v)} the color class of c, i.e. the vertices
that see the color c. Finally, G(c) := (V (c), E(c)) is the subgraph of G whose
edges have color c. We call a cycle on 3 vertices a 3-cycle or triangle. The term
pendant vertex or leaf is used for degree-1 vertices, while the term pendant edge
marks the edge incident to a pendant vertex.

Algorithm 1. The basic algorithm.
Input: A simple undirected graph G = (V, E).

Output: An edge 2-coloring χ on the edges of G.

1: Calculate a maximum cardinality matching M in G.

2: Assign a distinct color in χ for every edge of M .

3: Assign a distinct color in χ for every nontrivial connected component of E \E(M).

While Algorithm 1 is well studied (cf. [1,5,11]), we apply some preprocessing
steps to each problem instance G, before applying Algorithm 1 to the resulting
graph G′. This preprocessing gives the graph G′ more structure, which will help
us to prove better approximation guarantees.

These preprocessing steps consist of different modifications, which will be
defined throughout the paper. We note that modifications can increase the size
of the maximum matching M , and therefore are not only for the analysis, but
they change the instance in order to obtain stronger results.

Intuitively, a valid modification is a modification such that the number of
colors in an optimal solution does not change and we can transform a solution
for the modified instance to a solution for the original instance. Formally, we
define the following equivalence relation. For a graph G let opt(G) denote the
number of colors in an optimal edge 2-coloring of G.

Definition 1. Two graphs G = (V,E) and G′ = (V ′, E′) form an equivalent
pair with respect to edge 2-coloring, denoted by 〈G,G′〉, if

1. an optimal edge 2-coloring of G′ uses the same number of colors as an optimal
edge 2-coloring of G, i.e., opt(G) = opt(G′).

2. For every edge 2-coloring χ′ of G′ one can in polynomial time compute an edge
2-coloring χ for G that uses the same number of colors as χ′, i.e., |χ| = |χ′|.

To show 〈G,G′〉, it is sufficient to show opt(G) ≤ opt(G′) for Condition 1 and
|χ| ≥ |χ′| for Condition 2: For Condition 1, we use that there is a coloring χ′ for
G′ and a coloring χ for G such that opt(G) ≤ opt(G′) = |χ′| ≤ |χ| ≤ opt(G) and
thus all inequalities have to be satisfied with equality. For Condition 2, we note
that it is always possible to reduce the number of colors.

Definition 2. A valid modification is a sequence of vertex/edge alterations
(additions or deletions), that result in a graph G′ such that 〈G,G′〉 is an equiv-
alent pair.

34 T. Mömke et al.

All modifications that will be introduced in the following are indeed valid
modifications. For proofs of their validity, we refer to the full version of this
article.

Fig. 1. Modifications 1 and 2, and a simple cactus (Modification 3) as a subgraph of
G.

Lemma 2. Let G be a graph and let G′ be the graph obtained from G via a
valid modification from Definition 2. Given a polynomial time α-approximation
algorithm for G′ we can obtain a polynomial time α-approximation algorithm for
G.

Modification 1: Avoid Pendant Vertices with Equal Neighborhoods. The first
modification is to remove a leaf w from G, if there is another leaf v, such that
both are incident to the same vertex u (see Fig. 1). Formally, we require that the
following two conditions are simultaneously satisfied: (i) the degree of v in G is
one; and (ii) there is a vertex w
= v of degree one and a vertex u of degree at
least three adjacent to both v and w.

We note that we require the degree constraint on u to obtain a cleaner proof.
If the degree equals 2, we will see that the following Modification 2 applies.

Modification 2: Avoid Degree-2 Vertices. Given a vertex v of degree 2, we break
it into two vertices v1 and v2 with degree 1 each. More precisely, let u1 and u2

be the two vertices adjacent to v. We replace the edges u1v and u2v by the edges
u1v1 and u2v2, replacing v by two new vertices v1 and v2.

Modification 3: Remove Triangular Cacti. Recall that a triangular cactus is a
connected graph such that two cycles have at most one vertex in common and
each edge is contained in a 3-cycle.2 In other words it is a ‘tree’ of triangles where
triangle pairs are joined by a single common vertex. Let C be a subgraph of G.
For the modification we require that C is a triangular cactus such that for each
vertex v ∈ V (C), the degree of v in G is 3 or 4, and v is incident to at most one
edge from E(G) \ E(C). In the following, we call such a cactus a simple cactus,
and we call an edge e ∈ E(G) \ E(C) a needle of the cactus C. Note that we do
not require C to be an induced subgraph of G. Indeed, two triangles can share
a needle, as illustrated in Fig. 1.

2 Note that our definition of a cactus is stricter than usual: we do not allow cut-edges.

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 35

Modification 3 replaces each 3-cycle by a single edge as follows:
Let T1, T2, . . . , T� be the triangles that comprise the simple cactus C. For each

Ti with vertices {ui, vi, wi}, it removes the edges uivi, viwi, wiui and introduces
two new vertices xi and yi with an edge xiyi. Finally it discards all isolated
vertices (for an illustration, see the the full version of the article). We now show
that the graph obtained this way is equivalent to the original graph.

Normalized Graph. Some of our claims rely on the problem instance G being a
graph, such that none of Modifications 1–3 can be applied on G anymore. We
define such a graph G to be normalized. Below we show that one can efficiently
compute a normalized graph G′ for every problem instance G, and that we can
use the notion of normalized graphs to design approximation algorithms for the
maximum edge 2-coloring problem.

Lemma 3. Given a graph G, in polynomial time we can compute a normalized
graph G′ such that 〈G,G′〉 is an equivalent pair.

Let C be a component of G such that C is an isolated vertex or C has
two vertices connected by an edge. Then we say that C is a trivial component.
Otherwise, the component is called non-trivial.

Lemma 4. Suppose there is an α-approximation algorithm A for each non-
trivial component of a normalized graph G′ such that 〈G,G′〉 is an equivalent
pair. Then there is an α-approximation algorithm for G.

Due to Lemmas 3 and 4, from now on we can assume that the problem
instance is a normalized connected graph G with more than two vertices. We
now have a closer look at leaves.

Lemma 5. Let G be a graph where no two leaves share a neighbor and let χ
be an edge 2-coloring of G. Given G and χ, we can efficiently compute an edge
2-coloring χ̂ of G that uses at least as many colors as χ and assigns each pendant
edge of G a unique color. In particular, in a normalized graph there is an optimal
edge-2-coloring that assigns a unique color to each pendant edge.

3 An Upper Bound on the Optimal Solution

To show Lemma 1, we analyze the character graph of the given instance.

3.1 Preparing the Character Graph

Intuitively, a character graph is an edge-induced subgraph with exactly one
representative edge for each color.

Definition 3 (Character Graph). Given an optimal solution χ for a graph
G, a character graph of (G,χ) is a subgraph H with vertex set V (G) and coloring
χ|E(H) such that (i) for each e, f ∈ E(H) with e
= f , χ(e)
= χ(f) and (ii) for
each edge e ∈ E(G) there is an edge f ∈ E(H) with χ(e) = χ(f).

36 T. Mömke et al.

For ease of notation, in the following we write χ instead of χ|E(H). Observe
that in a character graph H, no vertex can have a degree larger than 2 since oth-
erwise there would be a vertex with three incident colors. Thus H is a collection
of isolated vertices, paths and cycles. We call a vertex in H a free vertex if its
degree is zero, an end vertex if its degree is one and an inner vertex if its degree
is two. We frequently use the following known simple but powerful lemma.

Lemma 6 (Feng et al. [11]). Let χ be a feasible 2-edge coloring of a graph G
and let u
= v be two vertices in V (G). If |χ(u) ∪ χ(v)| ≥ 4, u and v are not
adjacent in G. In particular, if H is a character graph of (G,χ) and u
= v are
two inner vertices that are not neighbors in H then uv /∈ E(G).

Based on Lemma 6, we can avoid cycles within a character graph.

Lemma 7 Let G be a normalized graph, and χ a coloring of G. Then there is
a character graph H of (G,χ) such that H is cycle-free.

To further structure the character graph, we introduce a reachability mea-
sure.

Definition 4. Let v be a vertex of a character graph H of (G,χ). The scope of
v (scope(v)) is the set of vertices defined inductively as follows within G:

(i) v ∈ scope(v).
(ii) If u ∈ scope(v) and there is an edge e = uu′ ∈ E(H) for an inner vertex u′,

then V (χ(e)) ⊆ scope(v) (i.e., we include the color class of χ(e)).

We may choose a total ordering of the vertices and in (ii), we always choose the
smallest vertex that satisfies the properties. Let κ ≥ 0 be an integer which is at
most the number of color classes added and let ci be the color of the i-th color
class added, for 1 ≤ i ≤ κ. The scope graph of v and κ for a given ordering is
the graph (scope(v), F), where F :=

⋃κ
i=1 E(ci). We skip the ordering and say

that subgraph of G is a scope graph of v and κ if there exists an ordering for
which it is a scope graph of v and κ.

Note that the (total) scope of a vertex does not depend on the chosen ordering.
The scope of a vertex captures a natural sequence of dependencies between edge
colors. In the following lemma, we show how to avoid free vertices in the scope
of vertices, a property which is important in the proof of Lemma 1.

Lemma 8. Let v be an inner vertex such that vv′ ∈ E(H) for an inner vertex v′.
Each character graph H of (G,χ) can be transformed into a character graph H ′

of (G,χ) such that there is no free vertex in scope(v).

We further extend the notion of scope to a set of vertices, which is not merely
the union of scopes.

Definition 5. Let S be a set of vertices of a character graph H of (G,χ). If
S = {v}, we define the scope as scope(v) and define the scope graph accordingly.
For |S| > 1, the scope of S (scope(S)) is the set of vertices defined inductively
as follows within G:

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 37

(i) scope(v) ⊆ scope(S) for each v ∈ S.
(ii) Let uu′ ∈ E(H) be the only edge of a path in H. Let κ, κ′ be numbers and

U,U ′ ⊂ S sets with U ∩ U ′ = ∅. If u is in a scope graph of U for κ and u′

is in a scope graph of U ′ for κ′ such that the colors of the two graphs are
disjoint, then V (χ(uu′)) ⊆ scope(U ∪ U ′).

(iii) If u ∈ scope(U) for U ⊆ S and there is an edge e = uu′ ∈ E(H) for an
inner vertex u′, then V (χ(e)) ⊆ scope(U).

If T is a scope graph for U and κ and the color class of c is added, then (V (T)∪
V (χ(c)), E(T) ∪ E(χ(c))) is a scope graph for U and κ + 1. If additionally T ′

is a scope graph of U ′ and (ii) applies with respect to the two scope graphs,
((V (T) ∪ V (T ′) ∪ V (χ(uu′)), E(T) ∪ E(T ′) ∪ E(χ(uu′))) is a scope graph for
U ∪ U ′ and κ + κ′ + 1.

We now strengthen Lemma 8.

Lemma 9. Let S be a set of vertices such that each v ∈ S is an inner vertex
such that vv′ ∈ E(H) for an inner vertex v′. Each character graph H of (G,χ)
can be transformed into a character graph H ′ of (G,χ) such that there is no free
vertex in scope(S).

We say that a character graph is nice if it is (i) cycle-free and (ii) there is
no free vertex in scope(S) for an arbitrary set S ⊆ V (G) such that vv′ ∈ E(H)
for v ∈ S and an inner vertex v′. The following lemma gives some guarantees for
the existence of such a character subgraph.

Lemma 10. Each normalized connected graph G with optimal coloring χ has a
nice character graph H.

The lemma follows directly from Lemma 7 and Lemma 9, noting that in
the proof of Lemma 9 we do not introduce new cycles. Furthermore, given a
normalized graph G and the coloring provided by Lemma 5, we may assume
that H is a nice character graph where all pendant vertices of G are endpoints
of paths in H.

3.2 The Proof of Lemma 1

With the preparation of Sect. 3.1, in this section we prove our main lemma.

Lemma 1. Let G be a normalized connected graph with n ≥ 3 vertices and �
leaves. Then there is no feasible coloring χ with more than 3n/4 − �/4 colors.

Let G be a normalized problem instance and H a nice character graph of
(G,χ). Let F be the set of free vertices, T the set of end vertices and I the set of
inner vertices of H. We define n := |V (H)|, i := |I|, f := |F | and t := |T |, and
clearly n = i + t + f . We show that there is a mapping ι from the set I of inner
vertices to T ∪ F with the property that for each vertex v from T ∪ F there is
at most one inner vertex mapped to v if v ∈ T and at most two inner vertices

38 T. Mömke et al.

are mapped to v if v ∈ F . Intuitively, we can see ι as an injective mapping,
where each vertex in F is split into two vertices. The reason is that we can see
a free vertex as a path of length zero and we count two end vertices for each
path. Furthermore, we maintain that ι never maps an inner vertex to a pendant
vertex of G. We first show that the mapping implies Lemma 1.

Lemma 11. Suppose ι exists. Then no feasible coloring has more than 3n/4 −
�/4 colors.

Proof. The mapping ι implies 2f + t− � ≥ i = n− t−f and thus 3f +2t ≥ n+ �
since � out of t end vertices cannot be used for the assignment. Each free vertex
and each path is a component of the character graph H. Therefore the number
of components is f + t/2, which is minimized if f = 0 and t = (n + �)/2. Thus
there are at least n+�

4 components in H and the number of colors is at most
n − n/4 − �/4 = 3n/4 − �/4, completing the proof.

We now construct the mapping ι. We associate the vertices with distinct
natural numbers {1, 2, . . . , n} and define ι iteratively. An end vertex is saturated
if there is an inner vertex mapped to it and a free vertex is saturated if there are
two inner vertices mapped to it. While there are unassigned inner vertices, we
continue the following process. Let v ∈ I be the unassigned vertex with the small-
est index. We define the set Uv := {u ∈ F | uv ∈ E(G) \ E(H) and |ι−1(u)| ≤
1}∪{u ∈ T | uv ∈ E(G) \E(H) and ι−1(u) = ∅}, that is, the set of unsaturated
free- and end vertices adjacent to v via an edge outside of H. We remark that v
and u are allowed to be in the same path of H, as long as they are not adjacent
in H. If Uv
= ∅, we set ι(v) := minu∈Uv

u. Clearly, if Uv
= ∅, we find a valid
mapping for v and can continue. If Uv = ∅, we add v to a set Q of postponed
vertices and continue with the next vertex.

To finish the construction, we have to map the postponed vertices. Recall
that if v is a vertex in Q, then Uv = ∅ holds. We then find a vertex u to map v
to by growing a plain cactus: a plain cactus is a triangular cactus without needles
that is a degree-4 bounded subgraph C of the problem instance G where each
vertex of C that is connected to G \C can have any number of adjacent vertices
in V (G) \ V (C), as opposed to one in case of a simple cactus. In particular, we
will be growing a plain cactus which is not a simple cactus. As a simple cactus,
a plain cactus can have vertices adjacent in G. We call the edge between these
vertices a cactus chord.

To gain some intuition, we first argue how to grow an initial triangle of the
cactus (see also Fig. 2). There are no degree-two vertices in G, therefore v has a
neighbor u′ in G that is not a neighbor of v in H. Due to Lemma 6, u′ is not
an inner vertex. We note that u′ cannot be a free vertex either: if u′ was a free
vertex and we could not map v to u′, then u′ would be saturated and v would be
the third inner vertex adjacent to u′. By Lemma 9, however, that would mean u′

seeing 3 colors, as each of the three inner vertices would be connected to u′ with
different colors, contradicting the feasibility of χ. Hence u′ is an end vertex.

Since we cannot map v to u′, there must be another vertex v̂ already mapped
to u′. Let P denote the path of u′ and let u′′ be the vertex adjacent to u′ in

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 39

P . Observe that u′′ /∈ {v, v̂} because otherwise the edge u′v or u′v̂ would be
contained in E(H), but both have to be in E(G)\E(H) in order to be considered
to map to v or v̂, respectively. Since v and v̂ are inner vertices, the colors of u′v
and u′v̂ have to be from χ(v) and χ(v̂), respectively.

By Lemma 6, χ(u′v)
= χ(u′u′′) and χ(u′v̂)
= χ(u′u′′). Therefore c :=
χ(u′v) = χ(u′v̂) and, again by Lemma 6, v has an incident edge e and v̂ has an
incident edge ê in H with χ(e) = χ(ê) = c, which implies e = ê. Therefore, v
and v̂ are neighbors in the same path P ′ of H; note that P ′ is not necessarily
distinct from P .

Fig. 2. End vertices are marked by hollow circles, inner vertices are marked by filled
circles. A half-filled vertex can be either an inner- or an end vertex.

We observe that if there are only the edges from H and the edges from the
triangle formed by v, v̂, u′ incident to these three vertices, we have a simple
cactus, i.e., a cactus of the form removed by Modification 3. Therefore there is
another vertex adjacent to v, v̂, or u′. We now argue that no matter which vertex
has another adjacent vertex, we can either extend the plain triangular cactus or
find the aimed-for vertex u.

More precisely, starting from V (K) := {v} we grow a set of vertices V (K);
this process is shown in detail as Algorithm 2. Formally, we also grow an edge
set E(K) such that K is the aimed-for cactus. For a cactus K let N(K) := {ṽ ∈
V (G) \ V (K) | there is a vertex ũ ∈ V (K) with ũṽ ∈ E(G)}.

We will show that the cactus constructed by Algorithm 2 satisfies the follow-
ing invariants.

1. The graph K is a plain cactus.
2. Each inner vertex of K except for v is mapped to an end vertex within V (K).
3. For each end vertex of K, there is an inner vertex in V (K) mapped to it.
4. All triangles of K are monochromatic.
5. For each color c in K, there is a color-c edge e in K that is also in E(H).
6. V (K) ⊆ scope(Q).
7. V (K) does not include free vertices.
8. Each degree-2 vertex of K is incident to an edge from E(H)\E(K).

40 T. Mömke et al.

Algorithm 2. Mapping a vertex v ∈ Q.
1: Let V (K) := {v} and E(K) := ∅;
2: while ι(v) is not yet determined do

3: if N(K) contains a not saturated free vertex or end vertex u then

4: ι(v) := u;

5: else

6: Find w ∈ V (K) and w′, w′′ ∈ V (G)\V (K) with w′ �= w′′, ww′ ∈
E(H), ww′′ ∈ E(G);

7: V (K) := V (K) ∪ {w′, w′′} and E(K) := E(K) ∪ {ww′, w′w′′, w′′w};
8: if w′ ∈ V (K′) for a previously considered cactus K′ then
9: V (K) := V (K) ∪ V (K′) ∪ {w′′} and E(K) := E(K) ∪ E(K′) ∪

{ww′, ww′′, w′w′′};

We first show the invariants assuming that V (K) ∪ N(K) does not contain
vertices from previously constructed cacti. Observe that the initial cactus with
V (K) = {v} satisfies all invariants. From now on we assume that K is a cactus
constructed during the execution of Algorithm 2 and K satisfies all invariants.

Lemma 12. In Algorithm 2, the vertices w,w′, w′′ exist, ι(w′) = w′′, χ(ww′) =
χ(ww′′) = χ(w′w′′), and there is no other vertex w̄ ∈ V \ V (K) adjacent to w.

With Lemma 12 we know that adding the triangle {w,w′, w′′} does not vio-
late the conditions of plain cacti, i.e., adding it still satisfies Invariant 1. Since
ι(w′) = w′′, also Invariants 2 and 3 are satisfied. Invariant 4 follows directly from
Lemma 12. Since ww′ ∈ E(H) by definition (within Algorithm 2), Invariant 5
follows. Invariant 6 follows by noting that w ∈ scope(v), the edge ww′ satisfies
the conditions of the lemma, and thus the color class c is added to the scope.
Invariant 7 is a direct consequence of Invariant 6. Invariant 8 requires additional
arguments. Finally, we argue that all invariants are also preserved when merging
two cacti. For a cactus K ′, let v(K ′) be the vertex from Q mapped using cactus
K ′.

Lemma 13. Let w′, w′′ be the vertices from Algorithm 2 and let V (K ′) be the
vertex set of a cactus constructed in a previous application of Algorithm 2. Then
w′′ /∈ V (K ′). Furthermore, if w′ ∈ V (K ′), v(K ′) is mapped to w′′.

Then composing a new cactus from K,K ′, and the triangle formed by
{w,w′, w′′} satisfies all conditions: Since by induction they are satisfied by K
and K ′, we only have to check the new triangle {w,w′, w′′}. We obtain a plain
cactus since the degrees of w and w′ are four and the degree of w′′ is two. The
inner vertex v(K ′) is mapped to w′′ which implies Invariant 2 and 3. The triangle
{w,w′, w′′} satisfies Invariant 4 by Lemma 12.

Since ww′ ∈ E(H), Invariant 5 is satisfied, both w and w′ are in the scope
of Q and K,K ′ provide disjoint scope graphs, the conditions of Definition 5 and
therefore Invariant 6 are satisfied. Invariant 7 follows from Invariant 6 and that
Q satisfies the conditions of Lemma 9. Finally, Invariant 8 follows since w′′ is an
end vertex and its incident edge from H is not in the constructed cactus.

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 41

4 Subcubic Graphs and Claw-Free Graphs

The upper bound shown in Sect. 3 directly gives the following result.

Fig. 3. Worst-case instance containing a perfect matching from [1]. Without apply-
ing modifications, Algorithm 1 may chose a perfect matching such that removing the
matching leaves a connected graph – resulting in a 5/3 ≈ 1.667 approximation. An
improved approximation ratio of 1.625 is possible due to Modification 3. In particular,
Modification 3 replaces all simple cacti by independent edges, which results in a mod-
ified graph G′ consisting only of independent edges, which means that Algorithm 1
actually computes an optimal solution.

Fig. 4. Modification 4: Bridge removal, when deg(u) = 3 and deg(v) = 1, and Modifi-
cation 5, with c1, c2 and c3 marked with red, blue and black edges, respectively. (Color
figure online)

Lemma 14. There is a polynomial-time 1.5-approximation for normalized
graphs that contain a perfect matching.

In particular, our algorithm solves the tight worst-case instance depicted in
Fig. 3 for the algorithm of Adamaszek and Popa [1] optimally. In order to handle
subcubic graphs, we need to introduce additional modifications. The validity of
these modifications follows from Lemma 5, which says that we can always assume
that pendant edges are colored with a unique color.

Modification 4: Bridge Removal The next modification is only applied to subcu-
bic graphs, after none of Modifications 1–3 can be applied anymore. Note that
between two consecutive applications of Modification 4, we may have to update
the graph by applying Modifications 1–3.

Suppose we have such a normalized, subcubic graph G with a cut of size one
consisting of an edge uv, that is, the removal of uv disconnects G (see Fig. 4).
Due to the definition of G, u and v are either degree-1 or degree-3 vertices: their
degree cannot be more than 3, and if it was 2, Modification 2 could be applied.

42 T. Mömke et al.

Intuitively, Modification 4 disconnects G by removing all edges adjacent to
uv and, if they exist, connects the former neighbors of u and v, respectively.
Formally, let v, u1, u2 be the neighbors of u and u, v1, v2 the remaining neighbors
of v, if they exist. We remove the edges u1u, u2u, v1v, and v2v. Then we add
the edge u1u2 if u1 and u2 exist and v1v2 if v1 and v2 exist.

Theorem 1. ME2C in subcubic graphs has a polynomial-time
1.5-approximation algorithm.

Proofsketch. Let G be a subcubic graph. Apply Modifications 1–4, until they
do not change the graph anymore, and denote the resulting graph by G′. We
prove that all components of G′ are either trivial or they contain only degree-3
vertices.

Observe that Modifications 1–4 cannot increase the degree of any vertex.
Note that G′ does not contain vertices of degree 2, due to Modification 2. Now
consider vertices of degree 1. Since we remove pendant edges via Modification 4,
the only vertices of degree 1 are the end vertices of independent edges, which
are trivial components. Vertices of degree 0 are also trivial components.

After applying Modifications 1–4, each component is therefore either a trivial
component or a bridgeless cubic graph. It is well-known that each bridgeless cubic
graph has a perfect matching [20]. Using the equivalence of modified graphs due
to Lemma 2, the claim follows as a consequence of Lemma 14.

In order to prove our result on claw-free graphs, we need to introduce a new
modification that helps us control the number of claws.

Modification 5: Avoid neighboring pendant edges Suppose there are two adjacent
vertices in G, denoted by u1 and u2, such that both of them have exactly one
adjacent pendant vertex, denoted by v1 and v2, respectively (see Fig. 4). Modifi-
cation 5 contracts the edge u1u2 into a new vertex u12 with exactly one pendant
edge u12v12 incident. Then u ‘inherits’ all other neighbors of u1 and u2, without
multiplicities. Furthermore, we introduce an isolated edge w1w2.

5 1.625-Approximation for Graphs with Perfect Matching

Definition 6. A modification is perfect matching preserving, if for each graph
G that has a perfect matching M , the modification generates a graph G′ ≡ G
such that G′ also has a perfect matching.

Lemma 15. Modification 1 and Modification 3 are perfect matching preserving.

We remark that coming up with a perfect matching preserving modification
that removes degree-2 vertices would yield a 1.5-approximation for graphs that
contain a perfect matching. Indeed, in that case the arguments in the proof of
Lemma 14 would give us the result, as we could apply Modifications 1–3 to a
graph containing a perfect matching until we obtain a normalized graph with

Approximating Maximum Edge 2-Coloring by Normalizing Graphs 43

a perfect matching. As we do not have a perfect matching preserving Modifica-
tion 2, we use another approach, yielding a slightly worse approximation factor.

Suppose G has a perfect matching, then Modification 2 introduces a new ver-
tex, making the number of vertices odd, hence the resulting graph does not have
a perfect matching anymore. This affects the approximation ratio of Algorithm 1:
the number of vertices increases by one, the number of leaves by two, while the
size of the maximum matching stays the same. One can show that although the
approximation ratio can get worse, it does not get worse than 13/8 = 1.625.
Thus, we obtain Theorem 3.

References

1. Adamaszek, A., Popa, A.: Approximation and hardness results for the maximum
edge Q-coloring problem. J. Discrete Algorithms 38–41, 1–8 (2016)

2. Axenovich, M., Jiang, T.: Anti-Ramsey numbers for small complete bipartite
graphs. Ars Comb. 73, 311–318 (2004)

3. Axenovich, M., Jiang, T., Kündgen, A.: Bipartite anti-Ramsey numbers of cycles.
J. Graph Theory 47(1), 9–28 (2004)

4. Blokhuis, A., Faudree, R.J., Gyárfás, A., Ruszinkó, M.: Anti-Ramsey colorings in
several rounds. J. Comb. Theory. Ser. B 82(1), 1–18 (2001)

5. Chandran, L.S., Lahiri, A., Singh, N.: Improved approximation for maximum edge
colouring problem. Discret. Appl. Math. 319, 42–52 (2021)

6. Chandran, L.S., Hashim, T., Jacob, D., Mathew, R., Rajendraprasad, D., Singh,
N.: New bounds on the anti-Ramsey numbers of star graphs (2023)

7. Chen, H., Li, X., Tu, J.: Complete solution for the rainbow numbers of matchings.
Discrete Math. 309(10), 3370–3380 (2009)

8. Erdős, P., Simonovits, M., Sós, V.T.: Anti-Ramsey theorems. Infinite and finite
sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II,
633–643. In: Colloquia Mathematica Societatis János Bolyai, vol. 10 (1975)

9. Feng, W., Chen, P., Zhang, B.: Approximate maximum edge coloring within factor
2: a further analysis. In: ISORA, pp. 182–189 (2008)

10. Feng, W., Zhang, L., Qu, W., Wang, H.: Approximation algorithms for maximum
edge coloring problem. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.
LNCS, vol. 4484, pp. 646–658. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72504-6 59

11. Feng, W., Zhang, L., Wang, H.: Approximation algorithm for maximum edge col-
oring. Theor. Comput. Sci. 410(11), 1022–1029 (2009)

12. Frieze, A., Reed, B.: Polychromatic Hamilton cycles. Discrete Math. 118(1), 69–74
(1993)

13. Haas, R., Young, M.: The anti-Ramsey number of perfect matching. Discrete Math.
312(5), 933–937 (2012)

14. Jiang, T.: Edge-colorings with no large polychromatic stars. Graphs Combin.
18(2), 303–308 (2002)

15. Jiang, T., West, D.B.: Edge-colorings of complete graphs that avoid polychromatic
trees. Discrete Math. 274(1–3), 137–145 (2004)

16. Larjomaa, T., Popa, A.: The min-max edge Q-coloring problem. J. Graph Algo-
rithms Appl. 19(1), 507–528 (2015)

17. Las Vergnas, M.: A note on matchings in graphs. Cah. Cent. Étud. Rech. Opér.
17, 257–260 (1975)

https://doi.org/10.1007/978-3-540-72504-6_59
https://doi.org/10.1007/978-3-540-72504-6_59

44 T. Mömke et al.

18. Mincu, R.S., Popa, A.: Heuristic algorithms for the min-max edge 2-coloring prob-
lem. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 662–674.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1 55

19. Montellano-Ballesteros, J.J., Neumann-Lara, V.: An anti-Ramsey theorem on
cycles. Graphs Combin. 21(3), 343–354 (2005)

20. Petersen, J.: Die theorie der regulären graphs. Acta Math. 15(1), 193–220 (1891)
21. Raniwala, A., Chiueh, T.: Architecture and algorithms for an IEEE 802.11-based

multi-channel wireless mesh network. In: INFOCOM 2005, vol. 3, pp. 2223–2234
(2005)

22. Raniwala, A., Gopalan, K., Chiueh, T.: Centralized channel assignment and routing
algorithms for multi-channel wireless mesh networks. Mob. Comput. Commun.
Rev. 8(2), 50–65 (2004)

23. Schiermeyer, I.: Rainbow numbers for matchings and complete graphs. Discrete
Math. 286(1–2), 157–162 (2004)

24. Sumner, D.P.: Graphs with 1-factors. Proc. Amer. Math. Soc. 42, 8–12 (1974)

https://doi.org/10.1007/978-3-319-94776-1_55

An Improved Deterministic Algorithm
for the Online Min-Sum Set Cover

Problem

Mateusz Basiak , Marcin Bienkowski , and Agnieszka Tatarczuk(B)

University of Wroc�law, Wroc�law, Poland

agnieszka.tatarczuk@uwr.edu.pl

Abstract. We study the online variant of the Min-Sum Set Cover prob-
lem (Mssc), a generalization of the well-known list update problem. In
the Mssc problem, an algorithm has to maintain the time-varying per-
mutation of the list of n elements, and serve a sequence of requests
R1, R2, . . . , Rt, Each Rt is a subset of elements of cardinality at
most r. For a requested set Rt, an online algorithm has to pay the cost
equal to the position of the first element from Rt on its list. Then, it
may arbitrarily permute its list, paying the number of swapped adjacent
element pairs.

We present the first constructive deterministic algorithm, whose com-
petitive ratio does not depend on n. Our algorithm is O(r2)-competitive,
which beats both the existential upper bound of O(r4) by Bienkowski and
Mucha [AAAI ’23] and the previous constructive bound of O(r3/2 · √

n)
by Fotakis et al. [ICALP ’20]. Furthermore, we show that our algorithm
attains an asymptotically optimal competitive ratio of O(r) when com-
pared to the best fixed permutation of elements.

Keywords: Min-sum set cover · Derandomization · Online
algorithms · Competitive analysis

1 Introduction

In the online Min-Sum Set Cover (Mssc) problem [12,13], an algorithm has to
maintain an ordered list of elements. During runtime, an online algorithm is given
a sequence of requests R1, R2, . . . , Rt, . . . , each being a subset of elements. When
a request Rt appears, an algorithm first pays the cost equal to the position of
the first element of Rt in its list. Next, it may arbitrarily reorder the list, paying
the number of swapped adjacent elements.

The online Mssc finds applications in e-commerce, for maintaining an
ordered (ranked) list of all shop items (elements) to be presented to new shop
customers [9]. This so-called cold-start list can be updated to reflect the pref-
erences of already known users (where Rt corresponds to the set of items that

Supported by Polish National Science Centre grant 2022/45/B/ST6/00559. Full version
available at https://arxiv.org/abs/2306.17755.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 45–58, 2023.
https://doi.org/10.1007/978-3-031-49815-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_4&domain=pdf
http://orcid.org/0009-0009-0210-6451
http://orcid.org/0000-0002-2453-7772
http://orcid.org/0009-0008-3849-9165
https://arxiv.org/abs/2306.17755
https://doi.org/10.1007/978-3-031-49815-2_4

46 M. Basiak et al.

are interesting for user t). Each user should be able to find at least one interest-
ing item close to the list beginning, as otherwise, they must scroll down, which
could degrade their overall experience. Similar phenomena occur also in order-
ing results from a web search for a given keyword [1,10], or ordering news and
advertisements.

The problem is also theoretically appealing as the natural generalization of
the well-known list update problem [16], where all Rt are singletons (see [14]
and references therein).

1.1 Model and Notation

For any integer �, let [�] = {1, . . . , �}. We use U to denote the universe of n ele-
ments. By permutation π of U , we understand a mapping U → [n] (from items to
their list positions). Thus, for an element z ∈ U , π(z) is its position on the list.

An input I to the online Mssc problem consists of an initial permutation π0

of U and a sequence of m sets R1, R2, . . . , Rm. In step t, an online algorithm
Alg is presented a request Rt and is charged the access cost minz∈Rt

πt−1(z).
Then, Alg chooses a new permutation πt (possibly πt = πt−1) paying reordering
cost d(πt−1, πt), equal to the minimum number of swaps of adjacent elements
necessary to change permutation πt−1 into πt.1

We emphasize that the choice of πt made by Alg has to be performed without
the knowledge of future sets Rt+1, Rt+2, . . . and also without the knowledge of
the sequence length m. We use r to denote the maximum cardinality of requested
sets Rt.

1.2 Benchmarks

In the following, for an input I and an algorithm A, we use A(I) to denote
the total cost of A on I. To measure the effectiveness of online algorithms, we
use the standard notion of competitive ratio, but we generalize it slightly, for
more streamlined definitions of particular scenarios.

We say that an online algorithm Alg is c-competitive against class C of
offline algorithms if there exists a constant ξ, such that for any input I and any
offline algorithm Off ∈ C, it holds that Alg(I) ≤ c ·Off(I) + ξ. If ξ = 0, then
Alg is called strictly competitive. The competitive ratio of Alg against class C
is the infimum of values of c, for which Alg is c-competitive against this class.
For randomized algorithms, we replace the cost Alg(I) with its expected value
E[Alg(I)]. We consider three scenarios.

Dynamic Scenario. In the dynamic scenario, the considered class C contains
all possible offline algorithms, in particular those that adapt their permutation
dynamically during runtime. This setting is equivalent to the traditional com-
petitive ratio [8], where an online algorithm is compared to the optimal offline
solution Opt. This scenario is the main focus of this paper.
1 The value d(πt−1, πt) is also equal to the number of inversions between πt−1 and πt,

i.e., number of unordered pairs (x, y) such that πt−1(x) < πt−1(y) and πt(x) > πt(y).

An Improved Deterministic Algorithm for the Online MSSC Problem 47

Static Scenario. Previous papers focused also on a simpler static scenario,
where the considered class of algorithms Fixed contains all possible n! fixed
strategies: an algorithm from class Fixed starts with its list ordered according
to a fixed permutation and never changes it [12]. (In this scenario, the start-
ing permutation of an online algorithm and an offline solution are differ-
ent.) Note that such an offline algorithm incurs no reordering cost, and pays
access costs only. It is worth mentioning that there exist inputs I, for which
minA∈Fixed A(I) = Ω(n) · Opt(I) [12].

Learning Scenario. The static scenario can be simplified further, by assuming
that reordering incurs no cost on Alg. We call such a setting learning scenario.
Clearly, the competitive ratios achievable in the learning scenario are not larger
than those for the static scenario, which are in turn not larger than those in
the dynamic scenario.

1.3 Previous Results

Below, we discuss known results for the Mssc problem in the three scenarios
described above (dynamic, static, and learning). Furthermore, we make a dis-
tinction between ratios achievable for polynomial-time algorithms and algo-
rithms whose runtime per request is not restricted. The lower and upper bounds
described below are also summarized in Table 1.

Lower Bounds. Feige et al. [11] studied the offline variant of Mssc (where
all Rt’s are given upfront and an algorithm has to compute a fixed permutation
minimizing the access cost). They show that unless P = NP, no offline algorithm
can achieve an approximation ratio better than 4. This result implies a lower
bound of 4 on the competitive ratio of any polynomial-time online algorithm
(assuming P �= NP) as such a solution can be used to solve the offline variant as
well. We note that 4-approximation algorithms for the offline variant are known
as well [4,11].

The online version of Mssc was first studied by Fotakis et al. [12]. They
show that no deterministic algorithm can achieve a ratio better than Ω(r) even
in the learning scenario. This yields the same lower bound for the remaining
scenarios as well.

Asymptotically Tight Upper Bounds. For the static scenario, the random-
ized (1+ε)-competitive solution (for any ε > 0) follows by combining multiplica-
tive weight updates [2,15] with the techniques of Blum and Burch [7] designed
for the metrical task systems. This approach has been successfully derandomized
by Fotakis et al. [12], who gave a deterministic solution with an asymptotically
optimal ratio of O(r). These algorithms clearly also work in the learning sce-
nario. However, in both scenarios, they require exponential time as they keep
track of access costs for all possible n! permutations.

48 M. Basiak et al.

Table 1. Known lower and upper bounds for the online Mssc problem for three
scenarios (dynamic, static and learning), for polynomial-time and computationally
unrestricted algorithms. Unreferenced results are trivial consequences of other results.
The ratios proved in this paper are in bold.

randomized deterministic

LB UB LB UB

learning unrestr. 1 1 + ε Ω(r) [12] O(r)

poly-time 4 [11] 11.713 [13] Ω(r) O(r) [13]

static unrestr. 1 1 + ε [7] Ω(r) O(r) [12]

poly-time 4 O(r2) Ω(r) exp(O(
√

log n · log r)) [12]

O(r) (Theorem 3) O(r) (Theorem 3)

dynamic unrestr. 1 O(r2) Ω(r) O(r4) [6]

O(r2) (Theorem 4)

poly-time 4 O(r2) [6] Ω(r) O(r3/2 · √
n) [12]

O(r2) (Theorem 4)

Fotakis et al. [13] showed that in the learning scenario, one can maintain
a sparse representation of all permutations and achieve asymptotically optimal
results that work in polynomial time: a randomized O(1)-competitive algorithm
and a deterministic O(r)-competitive one.

Non-tight Upper Bounds. Much of the effort in the previous papers was
devoted to creating algorithms for the dynamic scenario with low competitive
ratios. For r = 1, a simple Move-To-Front policy that moves the requested
element to the first position is O(1)-competitive. Perhaps surprisingly, however,
the competitive ratios of many of its natural generalizations were shown to be
not better than Ω(n) [12].

Fotakis et al. [12] gave an online deterministic O(r3/2 ·√n)-competitive algo-
rithm Move-All-Equally (Mae) and showed that its analysis is almost tight.
They provided a better bound for the performance of Mae in the static scenario:
in such a setting its competitive ratio is exp(O(

√
log n · log r)) [12].

For randomized solutions, this result was improved by Bienkowski and Mu-
cha [6], who gave an O(r2)-competitive randomized algorithm Lma (for the
dynamic scenario). Their analysis holds also against so-called adaptive-online
adversaries, and therefore, by the reduction of [5], it implies the existence of
a deterministic O(r4)-competitive algorithm. While using the techniques of Ben-
David et al. [5], the construction of such an algorithm is possible, it was not done
explicitly, and furthermore, a straightforward application of these techniques
would lead to a huge running time.

1.4 Our Contribution

In Sect. 2, we present the first constructive deterministic algorithm whose com-
petitive ratio in the dynamic scenario is a function of r only (and does not

An Improved Deterministic Algorithm for the Online MSSC Problem 49

depend on n). Our algorithm, dubbed Deterministic-And-Lazy-Move-To-

Front (Dlm), runs in polynomial time, and we analyze its performance both
in static and dynamic scenarios.

In the static scenario, studied in Sect. 4, Dlm attains the optimal competitive
ratio of O(r), improving over the exp(O(

√
log n · log r))-competitive solution by

Fotakis et al. [12] and matching O(r) bound achieved by the exponential-time
algorithm of [12].

In the dynamic scenario, studied in Sect. 5, we show that Dlm is O(r2)-
competitive. As r ≤ n, this bound is always better than the existing non-
constructive upper bound of O(r4) [6] and the polynomial-time upper bound
of O(r3/2 · √

n) [12]. Our analysis is asymptotically tight: in the full version of
the paper, we show that the ratio of O(r2) is best possible for the whole class of
approaches that includes Dlm.

Finally, as the learning scenario is not harder than the static one, Dlm is
O(r)-competitive also there. While an upper bound of O(r) was already known
for the learning scenario [13], our algorithm uses a vastly different, combinatorial
approach and is also much faster.

Our deterministic solution is inspired by the ideas for the randomized algo-
rithm Lma of [6] and can be seen as its derandomization, albeit with several
crucial differences.

– We simplify their approach as we solve the Mssc problem directly, while they
introduced an intermediate exponential caching problem.

– We update item budgets differently, which allows us to obtain an optimal
ratio for the static scenario (Lma is not better in the static scenario than in
the dynamic one).

– Most importantly, [6] uses randomization to argue that Lma makes bad
choices with a small probability. In this context, bad choices mean moving
elements that Opt has near the list front towards the list tail in the solution
of Lma. In the deterministic approach, we obviously cannot prove the same
claim, but we show that it holds on the average. Combining this claim with the
amortized analysis, by “encoding” it in the additional potential function Ψ ,
is the main technical contribution of our paper.

2 Our Algorithm DLM

Dlm maintains a budget b(z) for any element z ∈ U . At the beginning of an input
sequence, all budgets are set to zero.

In the algorithm description, we skip step-related subscripts when it does
not lead to ambiguity, and we simply use π(z) to denote the current position of
element z in the permutation of Dlm.

At certain times, Dlm moves an element z to the list front. It does so using
a straightforward procedure fetch(z) (cf. Routine 1). It uses π(z) − 1 swaps
that move z to the first position, and increment the positions of all elements
that preceded z. Next, it resets the budget of z to zero.

50 M. Basiak et al.

Routine 1: fetch(z), where z is any element
1 for i = π(z), . . . , 3, 2 do
2 swap elements on positions i and i − 1

3 b(z) ← 0

Algorithm 2: A single step of Deterministic-Lazy-Move-All-To-
Front (Dlm)
Input: request R = {x, y1, y2, . . . , ys−1}, where s ≤ r and π(x) ≤ π(yi) for
i ∈ [s − 1], current permutation π of elements
1 � ← π(x)
2 execute fetch(x)
3 for i = 1, 2, . . . , s − 1 do
4 b(yi) ← b(yi) + �/s

5 while exists z such that b(z) ≥ π(z) do
6 execute fetch(z)

Assume now that Dlm needs to serve a request R = {x, y1, y2, . . . , ys−1}
(where s ≤ r and π(x) < π(yi) for all yi). Let � = π(x). Dlm first executes rou-
tine fetch(x). Afterward, it performs a lazy counterpart of moving elements yi

towards the front: it increases their budgets by �/s. Once a budget of any ele-
ment reaches or exceeds its current position, Dlm fetches it to the list front. The
pseudocode of Dlm on request R is given in Algorithm 2.

3 Basic Properties and Analysis Framework

We start with some observations about elements’ budgets; in particular, we show
that Dlm is well defined, i.e., it terminates.

Lemma 1. Dlm terminates after every request.

Proof. Let C = {z ∈ U | b(z) ≥ π(z)}. It suffices to show that the cardinality
of C decreases at each iteration of the while loop in Line 5 of Algorithm 2.
To this end, observe that in each iteration, we execute operation fetch(z) for
some z ∈ C. In effect, the budget of z is set to 0, and thus z is removed from C.
The positions of elements that preceded z are incremented without changing
their budget: they may only be removed from C but not added to it.

Observation 1. Once Dlm finishes list reordering in a given step, b(z) < π(z)
for any element z ∈ U . Moreover, b(z) < (3/2) · π(z) also during list reordering.

Proof. Once the list reordering terminates, by Lemma 1 and the while loop in
Lines 5–6 of Algorithm 2, b(z) < π(z) for any element z.

Within a step, the budgets are increased only for elements yi ∈ R, i.e., only
when s ≥ 2. The budget of such an element yi is increased from at most π(yi) by
π(x)/s ≤ π(x)/2 < π(yi)/2, i.e., its resulting budget is smaller than (3/2) ·π(yi).

An Improved Deterministic Algorithm for the Online MSSC Problem 51

3.1 Amortized Analysis

In our analysis, we compare the cost in a single step of Dlm to the corresponding
cost of an offline solution Off. For a more streamlined analysis that will yield
the result both for the static and dynamic scenarios, we split each step into
two stages. In the first stage, both Dlm and Off pay their access costs, and
then Dlm reorders its list according to its definition. In the second stage, Off

reorders its list. Note that the second stage exists only in the dynamic scenario.
We use π and π∗ to denote the current permutation of Dlm and Off, respec-

tively. We introduce two potential functions Φ and Ψ , whose values depend only
on π and π∗.

In Sect. 4, we show that in the first stage of any step, it holds that

ΔDlm + ΔΦ + ΔΨ ≤ O(r) · ΔOff. (1)

where ΔDlm, ΔOff, ΔΦ, and ΔΨ denote increases of the costs of Dlm and
Off and the increases of values of Φ and Ψ , respectively. Relation (1) summed
over all m steps of the input sequence yields the competitive ratio of O(r) of
Dlm in the static scenario (where only the first stage is present).

In Sect. 5, we analyze the performance of Dlm in the dynamic scenario. We
say that an offline algorithm Off is MTF-based if, for any request, it moves
one of the requested elements to the first position of the list and does not touch
the remaining elements. We define a class Mtfb of all MTF-based offline algo-
rithms. We show that in the second stage of any step, it holds that

ΔDlm + ΔΦ + ΔΨ ≤ O(r2) · ΔOff. (2)

for any Off ∈ Mtfb. Now, summing relations (1) and (2) over all steps in
the input yields that Dlm is O(r2)-competitive against the class Mtfb. We
conclude by arguing that there exists an MTF-based algorithm Off

∗ which is
a 4-approximation of the optimal solution Opt.

3.2 Potential Function

To define potential functions, we first split π(z) into two summands, π(z) =
2p(z) + q(z), such that p(z) is a non-negative integer, and q(z) ∈ {0, . . . , 2p(z)−1}.
We split π∗(z) analogously as π∗(z) = 2p∗(z) + q∗(z).

We use the following parameters: α = 2, γ = 5r, β = 7.5r + 5, and
κ = �log(6β)	. Our analysis does not depend on the specific values of these
parameters, but we require that they satisfy the following relations.

Fact 2. Parameters α, β and γ satisfy the following relations: α ≥ 2, γ ≥
(3+α) · r, β ≥ 3+α+(3/2) ·γ. Furthermore, κ is an integer satisfying 2κ ≥ 6β.

52 M. Basiak et al.

For any element z, we define its potentials

Φz =

{
α · b(z) if p(z) ≤ p∗(z) + κ,

β · π(z) − γ · b(z) if p(z) ≥ p∗(z) + κ + 1.
(3)

Ψz =

{
0 if p(z) ≤ p∗(z) + κ − 1,

2β · q(z) if p(z) ≥ p∗(z) + κ.
(4)

We define the total potentials as Φ =
∑

z∈U Φz and Ψ =
∑

z∈U Ψz.

Lemma 2. At any time and for any element z, Φz ≥ 0 and Ψz ≥ 0.

Proof. The relation Ψz ≥ 0 follows trivially from (4). By Fact 2, β ≥ (3/2) · γ.
This, together with Observation 1, implies that Φz ≥ 0.

3.3 Incrementing Elements Positions

We first argue that increments of elements’ positions induce small changes in
their potentials. Such increments occur for instance when Dlm fetches an ele-
ment z to the list front: all elements that preceded z are shifted by one position
towards the list tail. We show this property for the elements on the list of Dlm

first and then for the list of Off.
We say that an element w is safe if p(w) ≤ p∗(w)+κ−1 and unsafe otherwise.

Note that for a safe element w, it holds that π(w) ≤ 2p(w)+1 ≤ 2κ · 2p∗(w) ≤
2κ · π∗(w) = O(r) · π∗(w), i.e., its position on the list of Dlm is at most O(r)
times greater than on the list of Off.

Lemma 3. Assume that the position of an element w on the list of Dlm

increases by 1. Then, ΔΦw + ΔΨw ≤ 0 if w was safe before the movement and
ΔΦw + ΔΨw ≤ 3β otherwise.

Proof. By π(w) = 2p(w) + q(w) and π′(w) = π(w)+1 = 2p′(w) + q′(w) we denote
the positions of w before and after the movement, respectively.

Assume first that w was safe before the movement. As p′(w) ≤ p(w) + 1 ≤
p∗(w) + κ, ΔΦz = α · b(z) − α · b(z) = 0. Furthermore, either p′(w) = p(w), and
then ΔΨw = 0 trivially, or p′(w) = p(w) + 1, and then q′(w) = 0. In the latter
case ΔΨw = 2β · q′(z) − 0 = 0 as well. This shows the first part of the lemma.

Assume now that w was unsafe (p(w) ≥ p∗(w) + κ) before the movement.
We consider two cases.

– p(w) = p∗(w) + κ and p′(w) = p(w) + 1.
It means that q(w) = 2p(w) − 1 and q′(w) = 0. Then,

ΔΦw = β · π′(z) − γ · β(z) − α · β(z) ≤ β · π′(z) = β · 2p′(w) = 2β · 2p(w),

ΔΨw = 2β · q′(z) − 2β · q(z) = −2β · (2p(w) − 1) = −2β · 2p(w) + 2β.

That is, the large growth of Φw is compensated by the drop of Ψw, i.e, ΔΦw +
Ψw ≤ 2β.

An Improved Deterministic Algorithm for the Online MSSC Problem 53

– p(w) > p∗(w) + κ or p′(w) = p(w).
In such case, there is no case change in the definition of Φw, i.e.,

ΔΦw =

⎧⎪⎨
⎪⎩

α · b(w) − α · b(w) = 0 if p(w) ≤ p∗(w) + κ,

(β · π′(w) − γ · b(w))
− (β · π(w) − γ · b(w)) = β

otherwise.

Furthermore, as q′(w) ≤ q(w) + 1, ΔΨ(z) = 2β · q′(w) − 2β · q(w) ≤ 2β.
Together, ΔΦw + ΔΨw ≤ β + 2β = 3β.
�

Lemma 4. Assume that the position of an element w on the list of Off

increases by 1. Then, ΔΦw ≤ 0 and ΔΨw ≤ 0.

Proof. Note that p∗(w) may be either unchanged (in which case the values of Φw

and Ψw remain intact) or it may be incremented. We analyze the latter case.
By (3), the definition of Φw, the value of Φw may change only if p∗(w) is

incremented from p(w) + κ − 1 to p(w) + κ. In such case,

ΔΨw = α · b(w) − β · π(w) + γ · b(w)
≤ (α + γ − β) · π(w) (by Observation 1)
≤ 0. (by Fact 2)

By (4), the definition of Ψw, the value of Ψw may change only if p∗(w) is
incremented from p(w)+κ to p(w)+κ+1. In such case, ΔΨw = −2β · q(w) ≤ 0.

4 Analysis in the Static Scenario

As described in Sect. 3.1, in this part, we focus on the amortized cost of Dlm

in the first stage of a step, i.e., where Dlm and Off both pay their access costs
and then Dlm reorders its list.

Lemma 5. Whenever Dlm executes operation fetch(z), it holds that ΔDlm+
ΔΨ +

∑
w �=z ΔΦw ≤ 2 · π(z).

Proof. As defined in Routine 1, the cost of operation fetch(z) is ΔDlm =
π(z) − 1 < π(z). We first analyze the potential changes of elements from set K
of π(z) − 1 elements that originally preceded z.

Let K ′ = {w ∈ K | π∗(w) ≤ 2p(z)−κ+1}. Observe that any w ∈ K \ K ′

satisfies π∗(w) > 2p(z)−κ+1, which implies p∗(w) ≥ p(z) − κ + 1 ≥ p(w) − κ + 1,
and thus w is safe. Thus, among elements of K, only elements from K ′ can be
unsafe. By Lemma 3,∑

w∈K

(ΔΦw + ΔΨw) ≤
∑

w∈K′
(ΔΦw + ΔΨw)

≤ 3β · |K ′| = 3β · 2p(z)−κ+1

≤ 2p(z) ≤ π(z) (by Fact 2)

54 M. Basiak et al.

As the only elements that may change their budgets are z and elements
from K, we have ΔDlm + ΔΨ +

∑
w �=z ΔΦw = ΔDlm +

∑
w∈K ΔΨw + ΔΨz +∑

w∈K ΔΦw ≤ 2 · π(z) + ΔΨz ≤ 2 · π(z). The last inequality follows as Ψz drops
to 0 when z is moved to the list front.
�

Now we may split the cost of Dlm in a single step into parts incurred by
Lines 1–4 and Lines 5–6, and bound them separately.

Lemma 6. Whenever Dlm executes Lines 5–6 of Algorithm 2, ΔDlm + ΔΦ +
ΔΨ ≤ 0.

Proof. Let z be the element moved in Line 6. Line 5 guarantees that b(z) ≥ π(z)
and Observation 1 implies b(z) ≤ (3/2) · π(z). The value of Φz before the move-
ment is then

Φz ≥ min{α · b(z), β · π(z) − γ · b(z)}
≥ min {α , β − (3/2) · γ} · π(z)
≥ 2 · π(z). (by Fact 2)

When z is moved to the list front, potential Φz drops to 0, and thus ΔΦz ≤
−2 · π(z). Hence, using Lemma 5, ΔDlm + ΔΦ + ΔΨ ≤ 2 · π(z) + ΔΦz ≤ 0.

Lemma 7. Fix any step and consider its first part, where Dlm pays for its
access and movement costs, whereas Off pays for its access cost. Then, ΔDlm+
ΔΦ + ΔΨ ≤ (3 + α) · 2κ+1 · ΔOff = O(r) · ΔOff.

Proof. Let R = {x, y1, . . . , ys−1} be the requested set, where s ≤ r and π(x) <
π(yi) for any i ∈ [s − 1]. Let Φx denote the value of the potential just before
the request. It suffices to analyze the amortized cost of Dlm in Lines 1–4 as
the cost in the subsequent lines is at most 0 by Lemma 6. In these lines:

– Dlm pays π(x) for the access.
– Dlm performs the operation fetch(x), whose amortized cost is at most 2 ·

π(x) − Φx (by Lemma 5).
– The budget of yi grows by Δb(yi) = π(x)/s for each i ∈ [s − 1]. As these

elements do not move (within Lines 1–4), ΔΨyi
= 0.

Thus, we obtain

ΔDlm + ΔΦ + ΔΨ ≤ 3 · π(x) − Φx +
∑

i∈[s−1]

ΔΦyi
. (5)

As elements yi do not move (within Lines 1–4)), the change in Φyi
can be induced

only by the change in the budget of yi. Let u ∈ R be the element with the smallest
position on the list of Off, i.e., ΔOff = π∗(u). We consider three cases.

– p(x) ≤ p∗(u) + κ.
Then π(x) ≤ 2p(x)+1 ≤ 2κ+1 · 2p∗(u) ≤ 2κ+1 · π∗(u) = 2κ+1 · ΔOff. Note
that

∑
i∈[s−1] ΔΦyi

≤ ∑
i∈[s−1] α · Δb(yi) = (s − 1) · α · π(x)/s < α · π(x). By

Lemma 2, Φx ≥ 0, and thus using (5),

ΔDlm + ΔΦ + ΔΨ < 3 · π(x) + α · π(x) ≤ (3 + α) · 2κ+1 · ΔOff.

An Improved Deterministic Algorithm for the Online MSSC Problem 55

– p(x) ≥ p∗(u) + κ + 1 and u = x.
In this case, Φx ≥ β ·π(x)−γ · b(x) ≥ (β − (3/2) ·γ) ·π(x) (cf. Observation 1).
By plugging this bound to (5), we obtain

ΔDlm + ΔΦ + ΔΨ ≤ 3 · π(x) + (β − (3/2) · γ) · π(x) + α · π(x) ≤ 0,

where the last inequality follows as β ≥ 3 + (3/2) · γ + α by Fact 2.
– p(x) ≥ p∗(u) + κ + 1 and u = yj for some j ∈ [s − 1].

Recall that π(x) < π(yi), and thus p(yj) ≥ p(x). Hence, p(yj) ≥ p∗(yj)+κ+1.
In such a case,∑

i∈[s−1]

ΔΦyi
= ΔΦyj

+
∑

i∈[s−1]\{j}
ΔΦyi

≤ −γ · Δb(yj) +
∑

i∈[s−1]\{j}
α · Δb(yi)

= −γ · π(x)/s + (s − 2) · α · π(x)/s

< (α − γ/r) · π(x). (as s ≤ r)

Plugging the bound above and Φx ≥ 0 to (5) yields

ΔDlm + ΔΦ + ΔΨ ≤ (3 + α − γ/r) · π(x) ≤ 0,

where the last inequality again follows by Fact 2.
�
Theorem 3. Dlm is O(r)-competitive in the static scenario.

Proof. Fix any input I ad any offline solution Off that maintains a fixed per-
mutation. For any step t, let Φt and Ψ t denote the total potentials right after
step t, while Φ0 and Ψ0 be the initial potentials. By Lemma 7,

Dlmt(I) + Φt + Ψ t − Φt−1 − Ψ t−1 = O(r) · Offt(I), (6)

where Dlmt(I) and Offt(I) denote the costs of Dlm and Off in step
t, respectively. By summing (6) over all m steps of the input, we obtain
Dlm(I) + Φm + Ψm − Φ0 − Ψ0 ≤ O(r) · Off(I). As Φm + Ψm ≥ 0,

Dlm(I) ≤ O(r) · Off(I) + Φ0 + Ψ0.

Note that the initial potentials might be non-zero as in the static scenario Off

starts in its permutation which might be different from π0. That said, both initial
potentials can be universally upper-bounded by the amount independent of I,
and thus Dlm is O(r)-competitive.

5 Analysis in the Dynamic Scenario

To analyze Dlm in the dynamic scenario, we first establish an offline approxi-
mation of Opt that could be handled using our potential functions.

We say that an algorithm is move-to-front based (Mtf-based) if, in response
to request R, it chooses exactly one of the elements from R, brings it to the list
front, and does not perform any further actions. We denote the class of all such
(offline) algorithms by Mtfb.

56 M. Basiak et al.

Lemma 8. For any input I, there exists an (offline) algorithm Off
∗ ∈ Mtfb,

such that Off
∗(I) ≤ 4 · Opt(I).

Proof. Based on the actions of Opt on I = (π0, R1, . . . , Rm), we may create
an input J = (π0, R

′
1, . . . , R

′
m) where R′

i is a singleton set containing exactly
the element from Ri that Opt has nearest to the list front.

Clearly, Opt(J) ≤ Opt(I). Note that J is an instance of the list update
problem. Thus, if we take an algorithm Mtf for the list update problem (which
brings the requested element to the list front), then Mtf(J) ≤ 4 ·Opt(J) [16].
(The result of [16] shows the competitive ratio of 2, but the list update model
ignores reordering costs. However, for Mtf the reordering costs are equal to
access costs minus 1 and hence, taking them into account at most doubles the
competitive ratio.)

Let now Off
∗ be an offline algorithm that, on input I, performs the same

list reordering as Mtf(J). Clearly, Off
∗ ∈ Mtfb. While the reordering cost

of Off
∗ on I coincide with that of Mtf on J , its access cost can be only smaller.

Thus, Off
∗(I) ≤ Mtf(J).

Summing up, we obtain Off
∗(I) ≤ Mtf(J) ≤ 4 · Opt(J) ≤ 4 · Opt(I),

which concludes the proof.
�
We now analyze the second stage of a step, where an offline algorithm Off

from the class Mtfb reorders its list.

Lemma 9. Assume Off ∈ Mtfb. Fix any step and consider its second stage,
where Off moves some element z to the list front. Then, ΔΦ + ΔΨ = O(r2) ·
ΔOff.

Proof. We may assume that initially π∗(z) ≥ 2, as otherwise there is no change
in the list of Off and the lemma follows trivially.

Apart from element z, the only elements that change their positions are ele-
ments that originally preceded z: their positions are incremented. By Lemma 4,
the potential change associated with these elements is non-positive.

Thus, ΔΦ + ΔΨ ≤ ΔΦz + ΔΨz. Element z is transported by Off from
position π∗(z) to position 1, i.e., ΔOff = π∗(z) − 1 ≥ π∗(z)/2 as we assumed
π∗(z) ≥ 2. Thus, to show the lemma it suffices to show that ΔΦz = O(r2) ·π∗(z)
and ΔΨz = O(r2) · π∗(z). We bound them separately.

– Note that p∗(z) may only decrease. If initially p∗(z) ≤ p(z) − κ − 1, then
Φz = β ·π(z)−γ ·b(z) before and after the movement of z, and thus ΔΦz = 0.
Otherwise, p∗(z) ≥ p(z) − κ, which implies π(z) < 2p(z)+1 ≤ 2κ+1 · 2p∗(z) ≤
2κ+1 · π∗(z). In such a case,

ΔΦz ≤ β ·π(z)− γ · b(z)−α · b(z) ≤ β ·π(z) ≤ β · 2κ+1 ·π∗(z) = O(r2) ·π∗(z).

– Similarly, if initially p∗(z) ≤ p(z)−κ, then Ψz = 2β ·q(z) before and after the
movement of z, and thus ΔΨz = 0. Otherwise, p∗(z) ≥ p(z) − κ + 1, which
implies π(z) < 2p(z)+1 ≤ 2κ · 2p∗(z) ≤ 2κ · π∗(z). In such a case

ΔΨz ≤ 2β · q(z) − 0 ≤ 2β · π(z) ≤ 2β · 2κ · π∗(z) = O(r2) · π∗(z).

An Improved Deterministic Algorithm for the Online MSSC Problem 57

In either case, the lemma follows.
�
Theorem 4. Dlm is strictly O(r2)-competitive in the dynamic scenario.

Proof. The argument here is the same as for Theorem 3, but this time we sum
the guarantees provided for the first stage of a step (Lemma 7) and for the second
stage of a step (Lemma 9). This shows that for any offline algorithm Off ∈
Mtfb and any input I, it holds that

Dlm(I) ≤ O(r2) · Off(I) + Φ0 + Ψ0. (7)

For the dynamic scenario, the initial permutations of Dlm and Off are equal,
and hence the initial potential Φ0 + Ψ0 is zero. As (7) holds against arbitrary
Off ∈ Mtfb, it holds also against Off

∗ which is the 4-approximation of Opt

(cf. Lemma 8). This implies that

Dlm(I) ≤ O(r2) · Off
∗(I) ≤ O(4 · r2) · Opt(I),

which concludes the proof.
�

6 Final Remarks

In this paper, we studied achievable competitive ratios for the online Mssc prob-
lem. We closed the gaps for deterministic polynomial-time static scenarios and
tighten the gaps for deterministic dynamic scenarios. Still, some intriguing open
questions remain, e.g., the best randomized algorithm for the dynamic scenario
has a competitive ratio of O(r2), while the lower bound is merely a constant.

Another open question concerns a generalization of the MSSC problem where
each set Rt comes with a covering requirement kt and an algorithm is charged for
the positions of the first kt elements from Rt on the list (see, e.g., [3]). The only
online results so far are achieved in the easiest, learning scenario [13].

References

1. Agichtein, E., Brill, E., Dumais, S.T.: Improving web search ranking by incorpo-
rating user behavior information. SIGIR Forum 52(2), 11–18 (2018). https://doi.
org/10.1145/3308774.3308778

2. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-
algorithm and applications. Theory Comput. Syst. 8(1), 121–164 (2012). https://
doi.org/10.4086/toc.2012.v008a006

3. Bansal, N., Batra, J., Farhadi, M., Tetali, P.: Improved approximations for min
sum vertex cover and generalized min sum set cover. In: Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 998–1005. SIAM (2021).
https://doi.org/10.1137/1.9781611976465.62

4. Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chro-
matic sums and distributed resource allocation. Inf. Comput. 140(2), 183–202
(1998). https://doi.org/10.1006/inco.1997.2677

https://doi.org/10.1145/3308774.3308778
https://doi.org/10.1145/3308774.3308778
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1137/1.9781611976465.62
https://doi.org/10.1006/inco.1997.2677

58 M. Basiak et al.

5. Ben-David, S., Borodin, A., Karp, R.M., Tardos, G., Wigderson, A.: On the power
of randomization in online algorithms. Algorithmica 11(1), 2–14 (1994). https://
doi.org/10.1007/BF01294260

6. Bienkowski, M., Mucha, M.: An improved algorithm for online reranking. In: Pro-
ceedings of the 37th AAAI Conference on Artificial Intelligence, pp. 6815–6822
(2023). https://doi.org/10.1609/aaai.v37i6.25835

7. Blum, A., Burch, C.: On-line learning and the metrical task system problem. Mach.
Learn. 39(1), 35–58 (2000). https://doi.org/10.1023/A:1007621832648

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

9. Derakhshan, M., Golrezaei, N., Manshadi, V.H., Mirrokni, V.S.: Product ranking
on online platforms. In: Proceedings of the 21st ACM Conference on Economics
and Computation (EC), p. 459. ACM (2020). https://doi.org/10.1145/3391403.
3399483

10. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for
the web. In: Proceedings of the 10th International World Wide Web Conference
(WWW), pp. 613–622. ACM (2001). https://doi.org/10.1145/371920.372165

11. Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica
40(4), 219–234 (2004). https://doi.org/10.1007/s00453-004-1110-5

12. Fotakis, D., Kavouras, L., Koumoutsos, G., Skoulakis, S., Vardas, M.: The online
min-sum set cover problem. In: Proceedings of the 47th International Colloquium
on Automata, Languages and Programming (ICALP), pp. 51:1–51:16 (2020).
https://doi.org/10.4230/LIPIcs.ICALP.2020.51

13. Fotakis, D., Lianeas, T., Piliouras, G., Skoulakis, S.: Efficient online learning of
optimal rankings: Dimensionality reduction via gradient descent. In: Proceedings of
the 33rd Annual Conference on Neural Information Processing Systems (NeurIPS),
pp. 7816–7827 (2020)

14. Kamali, S.: Online list update. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms,
pp. 1448–1451. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-
2864-4 266

15. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput.
108(2), 212–261 (1994). https://doi.org/10.1006/inco.1994.1009

16. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985). https://doi.org/10.1145/2786.2793

https://doi.org/10.1007/BF01294260
https://doi.org/10.1007/BF01294260
https://doi.org/10.1609/aaai.v37i6.25835
https://doi.org/10.1023/A:1007621832648
https://doi.org/10.1145/3391403.3399483
https://doi.org/10.1145/3391403.3399483
https://doi.org/10.1145/371920.372165
https://doi.org/10.1007/s00453-004-1110-5
https://doi.org/10.4230/LIPIcs.ICALP.2020.51
https://doi.org/10.1007/978-1-4939-2864-4_266
https://doi.org/10.1007/978-1-4939-2864-4_266
https://doi.org/10.1006/inco.1994.1009
https://doi.org/10.1145/2786.2793

Greedy Minimum-Energy Scheduling

Gunther Bidlingmaier(B)

Department of Computer Science, Technical University of Munich, Munich, Germany

g.bidlingmaier@tum.de

Abstract. We consider the problem of energy-efficient scheduling across
multiple processors with a power-down mechanism. In this setting a set of
n jobs with individual release times, deadlines, and processing volumes
must be scheduled across m parallel processors while minimizing the
consumed energy. When idle, each processor can be turned off to save
energy, while turning it on requires a fixed amount of energy. For the
special case of a single processor, the greedy Left-to-Right algorithm [7]
guarantees an approximation factor of 2. We generalize this simple greedy
policy to the case of m ≥ 1 processors running in parallel and show that
the energy costs are still bounded by 2 OPT +P , where OPT is the energy
consumed by an optimal solution and P < OPT is the total processing
volume. Our algorithm has a running time of O(nf log d), where d is the
difference between the last deadline and the earliest release time, and f
is the running time of a maximum flow calculation in a network of O(n)
nodes.

Keywords: Scheduling · Greedy Algorithms · Approximation
Algorithms

1 Introduction

Energy-efficiency has become a major concern in most areas of computing for rea-
sons that go beyond the apparent ecological ones. At the hardware level, excessive
heat generation from power consumption has become one of the bottlenecks. For
the billions of mobile battery-powered devices, power consumption determines
the length of operation and hence their usefulness. On the level of data cen-
ters, electricity is often the largest cost factor and cooling one of the major
design constraints. Algorithmic techniques for saving power in computing envi-
ronments employ two fundamental mechanisms, first the option to power down
idle devices, and second the option to trade performance for energy-efficiency
by speed-scaling processors. In this paper we study the former, namely classical
deadline based scheduling of jobs on parallel machines which can be powered
down with the goal of minimizing the consumed energy.

This work was supported by the Research Training Network of the Deutsche
Forschungsgemeinschaft (DFG) (378803395: ConVeY).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 59–73, 2023.
https://doi.org/10.1007/978-3-031-49815-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_5

60 G. Bidlingmaier

In our setting, a computing device or processor has two possible states, it
can be either on or off. If a processor is on, it can perform computations while
consuming energy at a fixed rate. If a processor is off, the energy consumed
is negligible but it cannot perform computation. Turning on a processor, i.e.
transitioning it from the off-state to on-state consumes additional energy. The
problem we have to solve is to schedule a number of jobs or tasks, each with its
own processing volume and interval during which it has to be executed. The goal
is to complete every job within its execution interval using a limited number of
processors while carefully planning idle times for powering off processors such
that the consumed energy is minimized. Intuitively, one aims for long but few
idle intervals, so that the energy required for transitioning between the states is
low, while avoiding turned on processors being idle for too long.

Previous Work. This fundamental problem in power management was first
considered by [7] for a single processor. In their paper, they devise arguably
the simplest algorithm one can think of which goes beyond mere feasibility.
Their greedy algorithm Left-to-Right (LTR) is a 2-approximation and proceeds
as follows. If the processor is currently busy, i.e. working on a job, then LTR
greedily keeps the processor busy for as long as possible, always working on the
released job with the earliest deadline. Once there are no more released jobs to
be worked on, the processor becomes idle and LTR keeps the processor idle for as
long as possible such that all remaining jobs can still be feasibly completed. At
this point, the processor becomes busy again and LTR proceeds recursively until
all jobs are completed. For a single processor, [3] develop an optimal dynamic
program for unit jobs. [4] generalize this to general job weights with a running
time of O(n5), while [5] generalize it to multiple processors but again only unit
jobs, increasing the complexity to O(n7m5).

Obtaining good solutions for the general case of multiple processors and gen-
eral job weights is difficult because of the additional constraint that every job
can be worked on by at most a single processor at the same time. It is a major
open problem whether the general multi-processor setting is NP-hard. It took
further thirteen years for the first non-trivial result on this general setting to
be developed. In their breakthrough paper, [1] develop the first constant-factor
approximation for the problem. Their algorithm guarantees an approximation
factor of 3 + ε by relaxing an Integer Programming formulation of the problem.
For making the rounded LP-solution feasible, they develop an additional exten-
sion algorithm EXT-ALG. This approximation factor is improved to 2 + ε in [2]
by incorporating into the Linear Program additional constraints for the number
of processors required during every possible time interval. They also develop a
combinatorial 6-approximation for the problem. As presented in the papers, all
three algorithms run in pseudo-polynomial time. By using techniques presented
in [1], the number of time slots which have to be considered can be reduced from
d to O(n log d), allowing the algorithms to run in polynomial time. More specif-
ically, the number of constraints and variables of the Linear Programs reduces
to O(n2 log2 d). The running time of the EXT-ALG used by all three approxi-

Greedy Minimum-Energy Scheduling 61

mation algorithms is reduced to O(Fmn3 log3 d), where F refers to a maximum
flow calculation in a network with O(n log d) nodes.

Contribution. In this paper we develop a greedy algorithm which is simpler
and faster than the previous algorithms. The initially described greedy algorithm
Left-to-Right of [7] is arguably the simplest algorithm one can think of for a sin-
gle processor. We naturally extend LTR to multiple processors and show that
this generalization still guarantees a solution of costs at most 2OPT +P , where
P < OPT is the total processing volume. Our simple greedy algorithm Parallel
Left-to-Right (PLTR) is the combinatorial algorithm with the best approxima-
tion guarantee and does not rely on Linear Programming and the necessary
rounding procedures of [1] and [2]. It also does not require the EXT-ALG, which
all previous algorithms rely on to make their infeasible solutions feasible in an
additional phase.

Indeed, PLTR only relies on the original greedy policy of Left-to-Right: just
keep processors in their current state (busy or idle) for as long as feasibly possi-
ble. For a single processor, LTR ensures feasibility by scheduling jobs according
to the policy Earliest-Deadline-First (EDF). For checking feasibility if multiple
processors are available, a maximum flow calculation is required since EDF is
not sufficient anymore. Correspondingly, our generalization PLTR uses such a
flow calculation for checking feasibility.

While the PLTR algorithm we describe in Sect. 2 is very simple, the structure
exhibited by the resulting schedules is surprisingly rich. This structure consists
of critical sets of time slots during which PLTR only schedules the minimum
amount of volume which is feasibly possible. In Sect. 3 we show that whenever
PLTR requires an additional processor to become busy at some time slot t,
there must exist a critical set of time slots containing t. This in turn gives a
lower bound for the number of busy processors required by any solution.

Devising an approximation guarantee from this structure is however highly
non-trivial and much more involved than the approximation proof of the single-
processor LTR algorithm, because one has to deal with sets of time slots and
not just intervals. Our main contribution in terms of techniques is a complex
procedure which (for the sake of the analysis only) carefully realigns the jobs
scheduled in between critical sets of time slots such that it is sufficient to consider
intervals as in the single processor case, see Sect. 4 for details. Here, we also show
that our greedy policy leads to a much faster algorithm than the previous ones,
namely to a running time O(nf log d), where d is the maximal deadline and f is
the running time for checking feasibility by finding a maximum flow in a network
with O(n) nodes.

Formal Problem Statement. Formally, a problem instance consists of a set
J of jobs with an integer release time rj , deadline dj , and processing volume pj
for every job j ∈ J . Each job j ∈ J has to be scheduled across m ≥ 1 processors
for pj units of time in the execution interval Ej :=[rj , dj] between its release time
and its deadline. Preemption of jobs and migration between processors is allowed

62 G. Bidlingmaier

at discrete times and occurs without delay, but no more than one processor may
process any given job at the same time. Without loss of generality, we assume
the earliest release time to be 0 and denote the last deadline by d. The set of
discrete time slots is denoted by T :={0, . . . , d}. The total amount of processing
volume is P :=

∑
j∈J pj .

Every processor is either completely off or completely on in every discrete
time slot t ∈ T . A processor can only work on some job in the time slot t if it is
in the on-state. A processor can be turned on and off at discrete times without
delay. All processors start in the off-state. The objective now is to find a feasible
schedule which minimizes the expended energy E, which is defined as follows.
Each processor consumes 1 unit of energy for every time slot it is in the on-state
and 0 units of energy if it is in the off-state. Turning a processor on consumes
a constant amount of energy q ≥ 0, which is fixed by the problem instance. In
Graham’s notation [6], this setting can be denoted with m | rj ; dj ; pmtn | E.

Busy and Idle Intervals. We say a processor is busy at time t ∈ T if some
job is scheduled for this processor at time t. Otherwise, the processor is idle.
Clearly a processor cannot be busy and off at the same time. An interval I ⊆ T
is a (full) busy interval for processor k ∈ [m] if I is inclusion maximal on the
condition that processor k is busy in every t ∈ I. Correspondingly, an interval
I ⊆ T is a partial busy interval for processor k if I is not inclusion maximal
on the condition that processor k is busy in very t ∈ I. We define (partial and
full) idle intervals, on intervals, and off intervals of a processor analogously via
inclusion maximality. Observe that if a processor is idle for more than q units of
time, it is worth turning the processor off during the corresponding idle interval.
Our algorithm will specify for each processor when it is busy and when it is
idle. Each processor is then defined to be in the off-state during idle intervals of
length greater than q and otherwise in the on-state. Accordingly, we can express
the costs of a schedule S in terms of busy and idle intervals.

For a multi-processor schedule S, let Sk denote the schedule of processor k.
Furthermore, for fixed k, let N ,F ,B, I be the set of on, off, busy, and idle inter-
vals of Sk. We partition the costs of processor k into the costs on(Sk) for residing
in the on-state and the costs off(Sk) for transitioning between the off-state and
the on-state, hence costs(Sk) = on(Sk)+off(Sk) =

∑
N∈N q + |N |. Equivalently,

we partition the costs of processor k into the costs idle(Sk):=
∑

I∈I min{|I|, q}
for being idle and the costs busy(Sk):=

∑
B∈B |B| for being busy. The total

costs of a schedule S are the total costs across all processors, i.e. costs(S) =∑m
k=1 costs(Sk). Clearly we have

∑m
k=1 busy(k) = P , this means for an approxi-

mation guarantee the critical part is bounding the idle costs.

Lower and Upper Bounds for the Number of Busy Processors. We
specify a generalization of our problem which we call deadline-scheduling-with-
processor-bounds. Where in the original problem, for each time slot t, between
0 and m processors were allowed to be working on jobs, i.e. being busy, we now
specify a lower bound lt ≥ 0 and an upper bound mt ≤ m. For a feasible solution

Greedy Minimum-Energy Scheduling 63

to deadline-scheduling-with-processor-bounds, we require that in every time slot
t, the number of busy processors, which we denote with vol(t), lies within the
lower and upper bounds, i.e. lt ≤ vol(t) ≤ mt. This will allow us to express the
PLTR greedy policy of keeping processors idle or busy, respectively. Note that
this generalizes the problem deadline-scheduling-on-intervals introduced by [1]
by additionally introducing lower bounds.

Properties of an Optimal Schedule

Definition 1. Given some arbitrary but fixed order on the number of processors,
a schedule S fulfills the stair-property if it uses the lower numbered processors
first, i.e. for every t ∈ T , if processor k ∈ [m] is busy at t, then every processor
k′ ≤ k is busy at t. This symmetrically implies that if processor k ∈ [m] is idle
at t, then every processor k′ ≥ k is idle at t.

Lemma 1. For every problem instance we can assume the existence of an opti-
mal schedule Sopt which fulfills the stair-property.

2 Algorithm

The Parallel Left-to-Right (PLTR) algorithm shown in Algorithm 1 iterates
through the processors in some arbitrary but fixed order and keeps the current
processor idle for as long as possible such that the scheduling instance remains
feasible. Once the current processor cannot be kept idle for any longer, it becomes
busy and PLTR keeps it and all lower-numbered processors busy for as long as
possible while again maintaining feasibility. The algorithm enforces these restric-
tions on the busy processors by iteratively making the lower and upper bounds
lt, mt of the corresponding instance of deadline-scheduling-with-processor-bounds
more restrictive. Visually, when considering the time slots on an axis from left to
right and when stacking the schedules of the individual processors on top of each
other, this generalization of the single processor Left-to-Right algorithm hence
proceeds Top-Left-to-Bottom-Right.

Once PLTR returns with the corresponding tight upper and lower bounds
mt, lt, an actual schedule Spltr can easily be constructed by running the flow-
calculation used for the feasibility check depicted in Fig. 1 or just taking the
result of the last flow-calculation performed during PLTR. The mapping from
this flow to an actual assignment of jobs to processors and time slots can then be
defined as described in Lemma 2, which also ensures that the resulting schedule
fulfills the stair-property from Definition 1, i.e. that it always uses the lower-
numbered processors first.

As stated in Lemma 2, the check for feasibility in subroutines keepidle and
keepbusy can be performed by calculating a maximum α-ω flow in the flow
network given in Fig. 1 with a node uj for every job j ∈ J and a node vt for
every time slot t ∈ T including the corresponding incoming and outgoing edges.

Lemma 2. There exists a feasible solution to an instance of deadline-
scheduling-with-processor-bounds lt, mt if and only if the maximum α-ω flow
in the corresponding flow network depicted in Fig. 1 has value P .

64 G. Bidlingmaier

Algorithm 1. Parallel Left-to-Right
mt ← m for all t ∈ T
lt ← 0 for all t ∈ T
for k ← m to 1 do

t ← 0
while t ≤ d do

t ←keepidle(k, t)
t ←keepbusy(k, t)

function keepidle(k, t)
find maximal t′ > t s.t. ∃ feasible schedule with mt′′ = k − 1 for all t′′ ∈ [t, t′)
mt′′ ← k − 1 for all t′′ ∈ [t, t′)
return t′

function keepbusy(k, t)
find maximal t′ > t s.t. ∃ feasible schedule with lt′′ = max{k, lt′′} for all t′′ ∈ [t, t′)
lt′′ ← max{k, lt′′} for all t′′ ∈ [t, t′)
return t′

Fig. 1. The Flow-Network for checking feasibility of an instance of deadline-scheduling-
with-processor-bounds lt and mt for the number of busy processors at t ∈ T . There are
nodes uj , vt with the corresponding edges for every job j ∈ J and for every time slot
t ∈ T , respectively.

Theorem 1. Given a feasible problem instance, algorithm PLTR constructs a
feasible schedule.

Proof. By definition of subroutines keepidle and keepbusy, PLTR only modi-
fies the upper and lower bounds mt, lt for the number of busy processors such
that the resulting instance of deadline-scheduling-with-processor-bounds remains
feasible. The correctness of the algorithm then follows from the correctness of
the flow-calculation for checking feasibility, which is implied by Lemma 2.

3 Structure of the PLTR-Schedule

3.1 Types of Volume

Definition 2. For a schedule S, a job j ∈ J , and a set Q ⊆ T of time slots, we
define

1. the volume volS(j,Q) as the number of time slots of Q for which j is scheduled
by S,

Greedy Minimum-Energy Scheduling 65

2. the forced volume fv(j,Q) as the minimum number of time slots of
Q for which j has to be scheduled in every feasible schedule, i.e.
fv(j,Q):= max{0; pj − |Ej \ Q|},

3. the unnecessary volume uvS(j,Q) as the amount of volume which does not
have to scheduled during Q, i.e. uvS(j,Q):= volS(j,Q) − fv(j,Q),

4. the possible volume pv(j,Q) as the maximum amount of volume which j can
be feasibly scheduled in Q, i.e. pv(j,Q):= min{pj , |Ej ∩ Q|}.

Since the corresponding schedule S will always be clear from context, we omit
the subscript for vol and uv. We extend our volume definitions to sets J ′ ⊆ J
of jobs by summing over all j ∈ J ′, i.e. vol(J ′, Q):=

∑
j∈J ′ vol(j,Q). If the first

parameter is omitted, we refer to the whole set J , i.e. vol(Q):= vol(J,Q). For
single time slots, we omit set notation, i.e. vol(t):= vol(J, {t}). Clearly we have for
every feasible schedule, every Q ⊆ T, j ∈ J that fv(j,Q) ≤ vol(j,Q) ≤ pv(j,Q).
The following definitions are closely related to these types of volume.

Definition 3. Let Q ⊆ T be a set of time slots. We define

1. the density φ(Q):= fv(J,Q)/|Q| as the average amount of processing volume
which has to be completed in every slot of Q,

2. the peak density φ̂(Q):= maxQ′⊆Q φ(Q′),
3. the deficiency def(Q):= fv(Q)−∑

t∈Q mt as the difference between the amount
of volume which has to be completed in Q and the processing capacity available
in Q,

4. the excess exc(Q):=
∑

t∈Q lt − pv(Q) as the difference between the processor
utilization required in Q and the amount of work available in Q.

If φ̂(Q) > k − 1, then clearly at least k processors are required in some time slot
t ∈ Q for every feasible schedule. If def(Q) > 0 or exc(Q) > 0 for some Q ⊆ T ,
then the problem instance is clearly infeasible.

3.2 Critical Sets of Time Slots

The following Lemma 5 provides the crucial structure required for the proof of
the approximation guarantee. Intuitively, it states that whenever PLTR requires
processor k to become busy at some time slot t, there must be some critical set
Q ⊆ T of time slots during which the volume scheduled by PLTR is minimal.
This in turn implies that processor k needs to be busy at some point during Q
in every feasible schedule. The auxiliary Lemmas 3 and 4 provide a necessary
and more importantly also sufficient condition for the feasibility of an instance
of deadline-scheduling-with-processor-bounds based on the excess exc(Q) and the
deficiency def(Q) of sets Q ⊆ T . Lemmas 3 and 4 are again a generalization of
the corresponding feasibility characterization in [1] for their problem deadline-
scheduling-on-intervals, which only defines upper bounds.

Lemma 3. For every α-ω cut (S, S̄) in the network given in Fig. 1 we have
at least one of the following two lower bounds for the capacity c(S) of the cut:
c(S) ≥ P − def(Q(S)) or c(S) ≥ P − exc(Q(S̄)), where Q(S):={t | vt ∈ S}.

66 G. Bidlingmaier

Lemma 4. An instance of deadline-scheduling-with-processor-bounds is feasible
if and only if def(Q) ≤ 0 and exc(Q) ≤ 0 for every Q ⊆ T .

Definition 4. A time slot t ∈ T is called an engagement of processor k if
t = min B for some busy interval B on processor k. We say processor k is
engaged at time t if t is an engagement of processor k. A time slot t ∈ T is just
called an engagement if it is an engagement of processor k for some k ∈ [m].

Lemma 5. Let Q ⊆ T be a set of time slots and t ∈ T an engagement of
processor k ∈ [m]. We call Q a tight set for engagement t of processor k if t ∈ Q
and

fv(Q) = vol(Q),
vol(t′) ≥ k − 1 for all t′ ∈ Q , and
vol(t′) ≥ k for all t′ ∈ Q with t′ ≥ t.

For every engagement t of some processor k ∈ [m] in the schedule Spltr con-
structed by PLTR, there exists a tight set Qt ⊆ T for engagement t of processor
k.

Proof. Suppose for contradiction that there is some engagement t ∈ T of pro-
cessor k ∈ [m] and no such Q exists for t, i.e. every Q ⊆ T containing t violates
at least one of the three conditions in the Lemma. We show that PLTR would
have extended the idle interval on processor k which ends at t. Consider the
step in PLTR when t was the result of keepidle on processor k. Let lt′ , mt′

be the lower and upper bounds for t′ ∈ T right after the calculation of t and
the corresponding update of the bounds by keepidle. We modify the bounds
by decreasing mt by 1. Note that at this point mt′ ≥ k for every t′ > t and
mt′ ≥ k − 1 for every t′.

Consider Q ⊆ T such that t ∈ Q and fv(Q) < vol(Q). Before our decrement
of mt we had mQ:=

∑
t′∈Q mt′ ≥ vol(Q) > fv(Q). The inequality mQ ≥ vol(Q)

here follows since the upper bounds mt′ are monotonically decreasing during
PLTR. Since our modification decreases mQ by at most 1, we hence still have
mQ ≥ fv(Q) after the decrement of mt. Consider Q ⊆ T such that t ∈ Q and
vol(t′) < k − 1 for some t′. At the step in PLTR considered by us, i.e. when
keepidle returned t on processor k, we hence have mt′ ≥ k −1 > vol(t′). Before
our decrement of mt we therefore have mQ > vol(Q) ≥ fv(Q), which implies
mQ ≥ fv(Q) after the decrement. Finally, consider Q ⊆ T such that t ∈ Q and
vol(t′) < k for some t′ > t. At the step in PLTR considered by us, we again
have mt′ ≥ k > vol(t′), which implies mQ ≥ fv(Q) after our decrement of mt. In
summary, if for t no Q exists as characterized in the lemma, the engagement of
processor k at t could not have been the result of keepidle on processor k.

Lemma 6. We call a set Ck ⊆ T critical set for processor k if Ck fulfills that

– Ck ⊇ Ck′ for every critical set for processor k′ > k,
– t ∈ Ck for every engagement t of processor k,

Greedy Minimum-Energy Scheduling 67

– fv(Ck) = vol(Ck),
– vol(t) ≥ k − 1 for every t ∈ Ck, and
– φ(Ck) is maximal.

For every processor k ∈ [m] of Spltr which is not completely idle, there exists a
critical set Ck for processor k.

Proof. We show the existence by induction over the processors m, . . . , 1. For
processor m, consider the union of all tight sets over engagements of processor
m. This set fulfills all conditions necessary except for the maximality in regard to
φ. Suppose that the critical sets Cm, . . . , Ck+1 exist. Take Qk ⊆ T as the union of
Ck+1 and all tight sets over engagements of processor k. By definition of Ck+1,
we have Qk ⊇ Ck′ for all k′ > k. By construction of Qk, every engagement
t of processor k is contained in Qk. Finally, we have fv(Qk) = vol(Qk) and
vol(t) ≥ k − 1 for every t ∈ Qk since all sets in the union fulfill these properties.

3.3 Definitions Based on Critical Sets

Definition 5. For the critical set Ck of some processor k ∈ [m], we define
crit(Ck):=k. Let � be the total order on the set of critical sets C across all
processors which corresponds to crit, i.e. C � C ′ if and only if crit(C) ≥ crit(C ′).
Equality in regard to � is denoted with ∼. We extend the definition of crit to
general time slots t ∈ T with crit(t):= max{crit(C) | C is critical set, t ∈ C} if
t ∈ C for some critical set C and otherwise crit(t):=0. We further extend crit to
intervals D ⊆ T with crit(D):= max{crit(t) | t ∈ D}
Definition 6. A nonempty interval V ⊆ T is a valley if V is inclusion maximal
on the condition that C ∼ V for some fixed critical set C. Let D1, . . . , Dl be the
maximal intervals contained in a critical set C. A nonempty interval V is a
valley of C if V is exactly the valley between Da and Da+1 for some a < l, i.e.
V = [max Da + 1,min Da+1 − 1]. By the choice of C as a critical set (property
1), a valley of C is indeed a valley. We define the jobs J(V) ⊆ J for a valley V
as all jobs which are scheduled by Spltr in every t ∈ V .

Definition 7. For a critical set C, an interval D ⊆ T is a section of C if D∩C
contains only full subintervals of C and at least one subinterval of C. For a
critical set C and a section D of C, the left valley Vl is the valley of C ending
at min(C ∩ D) − 1, if such a valley of C exists. Symmetrically, the right valley
Vr is the valley of C starting at max(C ∩ D) + 1, if such a valley of C exists.

Lemma 7. For every critical set C, every section D ⊆ T of C, we have: if
φ(C ∩ D) ≤ crit(C) − δ for some δ ∈ N, then the left valley Vl or the right valley
Vr of C and D is defined and |J(Vl)| + |J(Vr)| ≥ δ. We take |J(V)|:=0 if V is
not defined.

68 G. Bidlingmaier

Fig. 2. The left and right valley Vl and Vr of the critical set Ck for processor k and a
section D of Ck. Lemma 7 guarantees that δ jobs are scheduled at every slot of Vl or
Vr.

Proof. Refer to Fig. 2 for a visual sketch of the lemma. By the choice of C as
a critical set with c:= crit(C), we have vol(C ∩ D) ≥ (c − 1) · |C ∩ D|. If this
inequality is fulfilled strictly, then with the premise fv(C ∩ D)/|C ∩ D| ≤ c − δ
we directly get uv(C ∩ D)/|C ∩ D| > δ − 1. This implies that there are at least
δ jobs j scheduled in C ∩ D with uv(j, C ∩ D) > 0. Such jobs can be scheduled
in the part of C not contained in D, i.e. we must have Ej ∩ (C \ D)
= ∅ and
hence the left valley Vl or the right valley Vr of C and D must be defined.
Since these jobs j are scheduled in C only for the minimum amount possible,
i.e. vol(j, C) = fv(j, C) > 0, they must be scheduled in every t ∈ Ej \ C and are
therefore contained in J(Vl) or J(Vr).

If on the other hand we have equality, i.e. vol(C∩D) = (c−1)·|C∩D|, then let
t be an engagement of processor c. Since vol(t) > c− 1, we must have t /∈ C ∩D.
By the same argument as before, we have that if fv(C ∩ D)/|C ∩ D| ≤ c − δ,
then uv(C ∩ D)/|C ∩ D| ≥ δ − 1. Let J ′:={j ∈ J | uv(j, C ∩ D) > 0}. Since
uv(j, C ∩ D) ≤ |C ∩ D| for every j ∈ J , we have |J ′| ≥ δ − 1. If this lower
bound is fulfilled with equality, then every j ∈ J ′ must be scheduled in every
time slot of C ∩ D and hence fv(J ′, C \ D) = vol(J ′, C \ D). Now suppose for
contradiction that all jobs j scheduled during C \ D which are not contained in
J ′ have Ej ∩C∩D = ∅. Then fv(C \D) = vol(C \D) and we get φ(C \D) > φ(C)
since by case assumption vol(C∩D)/|C∩D| = (c−1) < φ(C). With vol(t) ≤ c−1
for every t ∈ C ∩ D, we know that crit(C ∩ D) ≤ c and therefore C \ D is still
a critical set for processor c but has higher density than C, contradicting the
choice of C. Therefore, there must exist a job j /∈ J ′ scheduled in C \ D with
an execution interval intersecting C ∩ D. In any case, we have at least δ jobs
scheduled in C with an execution interval intersecting both C \ D and C ∩ D.
This implies that the left valley Vl or the right valley Vr of C and D exists and
that at least δ jobs are contained in J(Vl) or J(Vr).

Greedy Minimum-Energy Scheduling 69

4 Modification of the PLTR-Schedule for Analysis

In this section we modify the schedule Spltr returned by PLTR in two steps. We
stress that this is for the analysis only and not part of PLTR. The first step
augments specific processors with auxiliary busy slots such that in every critical
set C at least the first crit(C) processors are busy all the time. For the single
processor LTR algorithm, the crucial property for the approximation guarantee
is that every idle interval of Sopt can intersect at most 2 distinct idle intervals
of the schedule returned by LTR. The second modification step of Spltr is more
involved and establishes this crucial property on every processor k ∈ [m] by
making use of Lemma 7. More specifically, it will establish the stronger property
that φ̂(B) > k − 1 for every busy interval B on processor k with crit(B) ≥ 2,
i.e. that every feasible schedule requires k busy processors at some point during
B. Idle intervals surrounded by only busy intervals B with crit(B) ≤ 1 are
then handled in Lemma 12 with essentially the same argument as for the single
processor LTR algorithm. By making sure that the modifications cannot decrease
the costs of our schedule, we obtain an upper bound for the costs of Spltr.

4.1 Augmentation and Realignment

We transform Spltr into the augmented schedule Saug by adding for every t with
k:= crit(t) ≥ 2 and vol(t) = k − 1 an auxiliary busy slot on processor k. No job
is scheduled in this auxiliary busy slot on processor k and it does also not count
towards the volume of this slot. It merely forces processor k to be in the on-state
at time k while allowing us to keep thinking in terms of idle and busy intervals
in our analysis of the costs.

Lemma 8. In Saug processors 1, . . . , crit(t) are busy in every slot t ∈ T with
crit(t) ≥ 2.

Proof. The property directly follows from our choice of the critical sets, the
definition of crit(t), and the construction of Saug.

As a next step, we transform Saug into the realigned schedule Sreal using
Algorithm 2. We briefly sketch the ideas behind this realignment. Lemma 8
guarantees us that every busy interval B on processor k is a section of the
critical set C with C ∼ B. It also guarantees that the left and right valley Vl, Vr

of C and B do not end within an idle interval on processor k. Lemma 7 in turn
implies that if the density of B is too small to guarantee that Sopt has to use
processor k during B, i.e. if φ̂(B) ≤ k − 1, then Vl or Vr is defined and there is
some j scheduled in every slot of Vl or Vr. Let V be the corresponding left or
right valley of C and D for which such a job j exists. Instead of scheduling j on
the processors below k, we can schedule j on processor k in idle time slots during
V . This merges the busy interval B with at least one neighbouring busy interval
on processor k. In the definition of the realignment, we will call this process of
filling the idle slots during V on processor k the closing of valley V on processor
k. The corresponding subroutine is called close(k, V).

70 G. Bidlingmaier

The crucial part is ensuring that this merging of busy intervals by clos-
ing a valley continues to be possible throughout the realignment whenever we
encounter a busy interval with a density too small. For this purpose, we go
through the busy intervals on each processor in decreasing order of their crit-
icality, i.e. in the order of �. We also allow every busy slot to be used twice
for the realignment (see variable supV in Algorithm 2) by introducing further
auxiliary busy slots, since for a section D of the critical set C, both the right
and the left valley might be closed on processor k in the worst case. This allows
us to maintain the invariants stated in Lemma 9 during the realignment process,
which correspond to the initial properties of Lemmas 7 and 8 for Saug.

4.2 Invariants for Realignment

Lemma 9. For an arbitrary step during the realignment of Saug and a valley
V ⊆ T , let the critical processor kV for V be the highest processor such that

– processor kV is not fully filled yet, i.e. fill(kV , T) has not yet returned,
– no V ′ ⊇ V has been closed on kV so far, and
– there is a (full) busy interval B ⊆ V on processor kV .

We take kV :=0 if no such processor exists. At every step in the realignment
of Saug the following invariants hold for every valley V , where C denotes the
critical set with C ∼ V .

1. If φ(C ∩ D) ≤ kV − δ for some δ ∈ N, some section D ⊆ V of C, then the
left valley Vl or the right valley Vr of C,D exists and supVl

+ supVr
≥ 2δ.

2. For every t ∈ C ∩ V , processors 1, . . . , kV are busy at t.
3. Every busy interval B ⊆ V on processor kV with B ∼ V is a section of C.

Lemma 10. The resulting schedule Sreal of the realignment of Saug is defined.

Lemma 11. For every processor k ∈ [m] and every busy interval B on processor
k in Sreal with crit(B) ≥ 2, we have φ̂(B) > k − 1.

Proof. We show that fill(k, T) establishes the property on processor k. The
claim then follows since fill(k, T) does not change the schedules of processors
above k. We know that on processor k busy intervals are only extended, since
in fill(k, T) we only close valleys for busy intervals B on k which are a section
of the corresponding critical set C. Let B ⊆ V be a busy interval on processor
k in Sreal with B ∼ V and crit(B) ≥ 2. No valley W ⊇ V can have been closed
on k since otherwise there would be no B ⊆ V in Sreal. Therefore, at some point
fill(k, V) must be called. Consider the point in fill(k, V) when the while-
loop terminates. Clearly at this point all busy intervals B′ ⊆ V with B′ ∼ V on
processor k have φ̂(B′) > k−1. At this point there must also be at least one such
B′ for B to be a busy interval on k in Sreal with B ∼ V and B ⊆ V . In particular,
one such B′ must have B′ ⊆ B, which directly implies φ̂(B) ≥ φ̂(B′) > k − 1.

Greedy Minimum-Energy Scheduling 71

Algorithm 2. Realignment of Saug for analysis only
supV ← 2|J(V)| for every valley V
for k ← m to 1 do

fill(k, T)
supV ← supV −1 for every V s.t. some V ′ with V ′ ∩ V �= ∅ was closed on proc. k

function fill(k, V)
if crit(V) ≤ 1 then

return
let C be the critical set s.t. C ∼ V
while ∃ busy interval B ⊆ V on processor k with B ∼ V and φ̂(B) ≤ k − 1 do

let Vl, Vr be the left, right valley for C and B (given B is a section of C)
if Vl exists and supVl

> 0 then
close(k, Vl)

else if Vr exists and supVr
> 0 then

close(k, Vr)

for every valley V ′ ⊆ V of C which has not been closed on k do
fill(k, V ′)

function close(k, V)
for every t ∈ V which is idle on processor k do

if processors 1, . . . , k − 1 are idle at t then
introduce new auxiliary busy slot on processor k at time t

else
move busy slot t of highest processor ≤ k − 1 to processor k

While with Lemma 11 we have our desired property for busy intervals B of
crit(B) ≥ 2, we still have to handle busy intervals of crit(B) ≤ 1. To be precise,
we have to handle idle intervals which are surrounded only by busy intervals B
of crit(B) ≤ 1. We will show that this constellation can only occur in Sreal on
processor 1 and that the realignment has not done any modifications in these
intervals, i.e. Spltr and Sreal do not differ for these intervals. With the same
argument as for the original single-processor Left-to-Right algorithm, we then
get that at least one processor has to be busy in any schedule during these
intervals.

Lemma 12. Let I be an idle interval in Sreal on some processor k and let Bl, Br

be the busy intervals on k directly to the left and right of I with crit(Bl) ≤ 1 and
crit(Br) ≤ 1. Allow Bl to be empty, i.e. we might have min I = 0, but Br must
be nonempty, i.e. max I < d. Then we must have k = 1 and φ̂(Bl ∪ I ∪ Br) > 0.

Lemma 13. For every processor k, every idle interval on processor k in Sopt

intersects at most two distinct idle intervals of processor k in Sreal.

Proof. Let Iopt be an idle interval in Sopt on processor k intersecting three
distinct idle intervals of processor k in Sreal. Let I be the middle one of these
three idle intervals. Lemma 12 and Lemma 11 imply that k busy processors are
required during I and its neighboring busy intervals. This makes it impossible
for Sopt to be idle on processor k during the whole interval Iopt.

72 G. Bidlingmaier

4.3 Approximation Guarantee and Running Time

Lemma 13 finally allows us to bound the costs of the schedule Sreal with the
same arguments as in the proof for the single-processor LTR algorithm of [7].
We complement this with an argument that the augmentation and realignment
could have only increased the costs of Spltr and that we have hence also bounded
the costs of the schedule returned by our algorithm PLTR.

Theorem 2. Algorithm PLTR constructs a schedule of costs at most
2OPT +P .

Proof. We begin by bounding costs(Sreal) as in the lemma. First, we show that
idle(Sk

real) ≤ 2 off(Sk
opt) + on(Sk

opt) for every processor k ∈ [m]. Let I1 be the
set of idle intervals on Sk

real which intersect some off interval of Sk
opt. Lemma 13

implies that I1 contains as most twice as many intervals as there are off intervals
in Sk

opt. Since the costs of each idle interval are at most q, and the costs of each
off interval are exactly q, the costs of all idle intervals in I1 is bounded by
2 off(Sk

opt). Let I2 be the set of idle intervals on Sk
real which do not intersect any

off interval in Sk
opt. The total length of these intervals is naturally bounded by

on(Sk
opt).

We continue by showing that busy(Sreal) ≤ 2P . By construction of Saug

and the definition of supV and close, we introduce at most as many auxiliary
busy slots at every slot t ∈ T as there are jobs scheduled at t in Spltr. For
Saug, an auxiliary busy slot is only added for t with crit(t) ≥ 2 and hence
vol(t) ≥ 1. Furthermore, initially supV = 2|J(V)| for every valley V and supV

is decremented if some V ′ intersecting V is closed during fill(k, T). During
fill(k, T) at most a single V ′ containing t is closed for every t ∈ T . Finally,
auxiliary busy slots introduced by Saug are used in the subroutine close. This
establishes the lower bound costs(Sreal) = idle(Sreal)+busy(Sreal) ≤ 2 off(Sopt)+
on(Sopt) + 2P ≤ 2OPT +P for our realigned schedule.

We complete the proof by arguing that costs(Spltr) ≤ costs(Sreal) since trans-
forming Sreal back into Spltr does not increase the costs of the schedule. Removing
the auxiliary busy slots clearly cannot increase the costs. Since the realignment
of Saug only moves busy slots between processors, but not between different time
slots, we can easily restore Spltr (up to permutations of the jobs scheduled on
the busy processors at the same time slot) by moving all busy slots back down
to the lower numbered processors. By the same argument as in Lemma 1, this
does not increase the total costs of the schedule.

Theorem 3. Algorithm PLTR has a running time of O(nf log d) where f
denotes the time needed for finding a maximum flow in a network with O(n)
nodes.

Acknowledgement. A comprehensive version of this paper, including all proofs, is
available on arXiv: https://arxiv.org/abs/2307.00949. Thanks to Prof. Dr. Susanne
Albers for her supervision during my studies. The idea of generalizing the Left-to-
Right algorithm emerged in discussions during this supervision.

https://arxiv.org/abs/2307.00949

Greedy Minimum-Energy Scheduling 73

References

1. Antoniadis, A., Garg, N., Kumar, G., Kumar, N.: Parallel machine scheduling to
minimize energy consumption. In: Proceedings of the Thirty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pp. 2758–2769. Society for
Industrial and Applied Mathematics, USA (2020)

2. Antoniadis, A., Kumar, G., Kumar, N.: Skeletons and minimum energy scheduling.
In: Ahn, H.K., Sadakane, K. (eds.) 32nd International Symposium on Algorithms
and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 212, pp. 51:1–51:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ISAAC.2021.51.
https://drops.dagstuhl.de/opus/volltexte/2021/15484

3. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a polyno-
mial time algorithm for offline dynamic power management. In: Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA 2006,
pp. 364–367. Society for Industrial and Applied Mathematics, USA (2006)

4. Baptiste, P., Chrobak, M., Dürr, C.: Polynomial time algorithms for minimum
energy scheduling. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 136–150. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75520-3 14

5. Demaine, E.D., Ghodsi, M., Hajiaghayi, M.T., Sayedi-Roshkhar, A.S., Zadimoghad-
dam, M.: Scheduling to minimize gaps and power consumption. In: Proceedings of
the Nineteenth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA 2007, pp. 46–54. Association for Computing Machinery, New York (2007).
https://doi.org/10.1145/1248377.1248385

6. Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approx-
imation in deterministic sequencing and scheduling: a survey. Ann. Discret. Math.
5, 287–326 (1979). https://doi.org/10.1016/S0167-5060(08)70356-X

7. Irani, S., Shukla, S.K., Gupta, R.K.: Algorithms for power savings. In: Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 12–14
January 2003, Baltimore, Maryland, USA, pp. 37–46. ACM/SIAM (2003). http://
dl.acm.org/citation.cfm?id=644108.644115

https://doi.org/10.4230/LIPIcs.ISAAC.2021.51
https://drops.dagstuhl.de/opus/volltexte/2021/15484
https://doi.org/10.1007/978-3-540-75520-3_14
https://doi.org/10.1007/978-3-540-75520-3_14
https://doi.org/10.1145/1248377.1248385
https://doi.org/10.1016/S0167-5060(08)70356-X
http://dl.acm.org/citation.cfm?id=644108.644115
http://dl.acm.org/citation.cfm?id=644108.644115

Scheduling with Speed Predictions

Eric Balkanski(B), Tingting Ou(B), Clifford Stein(B), and Hao-Ting Wei(B)

Department of Industrial Engineering and Operations Research,
Columbia University, New York, USA

{eb3224,to2372,hw2738}@columbia.edu, cliff@ieor.columbia.edu

Abstract. Algorithms with predictions is a recent framework that has
been used to overcome pessimistic worst-case bounds in incomplete infor-
mation settings. In the context of scheduling, very recent work has
leveraged machine-learned predictions to design algorithms that achieve
improved approximation ratios in settings where the processing times of
the jobs are initially unknown. In this paper, we study the speed-robust
scheduling problem where the speeds of the machines, instead of the pro-
cessing times of the jobs, are unknown and augment this problem with
predictions.

Our main result is an algorithm that achieves a min{η2(1 + α), (2 +
2/α)} approximation, for any α ∈ (0, 1), where η ≥ 1 is the prediction
error. When the predictions are accurate, this approximation outper-
forms the best known approximation for speed-robust scheduling without
predictions of 2−1/m, where m is the number of machines, while simul-
taneously maintaining a worst-case approximation of 2+2/α even when
the predictions are arbitrarily wrong. In addition, we obtain improved
approximations for three special cases: equal job sizes, infinitesimal job
sizes, and binary machine speeds. We also complement our algorithmic
results with lower bounds. Finally, we empirically evaluate our algorithm
against existing algorithms for speed-robust scheduling. The full version
of the paper can be referred to the following link https://arxiv.org/abs/
2205.01247.

Keywords: Algorithms with prediction · Scheduling · Approximation
algorithm

1 Introduction

In many optimization problems, the decision maker faces crucial information
limitations due to the input not being completely known in advance. A natural
goal in such settings is to find solutions that have a good worst-case performance
over all potential input instances. However, even though worst-case analysis
provides a useful measure for the robustness of an algorithm, it is also known to
be a measure that often leads to needlessly pessimistic results.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 74–89, 2023.
https://doi.org/10.1007/978-3-031-49815-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_6&domain=pdf
https://arxiv.org/abs/2205.01247
https://arxiv.org/abs/2205.01247
https://doi.org/10.1007/978-3-031-49815-2_6

Scheduling with Speed Predictions 75

A recent, yet extensive, line of work on algorithms with predictions models
the partial information that is often available to the decision maker and over-
comes worst-case bounds by leveraging machine-learned predictions about the
inputs (see [22] for a survey of the early work in this area). In this line of work,
the algorithm is given some type of prediction about the input, but the predic-
tions are not necessarily accurate. The goal is to design algorithms that achieve
stronger bounds when the provided predictions are accurate, which are called
consistency bounds, but also maintain worst-case robustness bounds that hold
even when the predictions are inaccurate. Optimization problems that have been
studied under this framework include online paging [20], scheduling [23], secre-
tary [10], covering [6], matching [8,9,17], knapsack [16], facility location [13],
Nash social welfare [7], and graph [4] problems. Most of the work on schedul-
ing in this model has considered predictions about the processing times of the
jobs [2,3,5,15,18,21,23].

There is a large body of work considering uncertainty in the input to schedul-
ing problems, including whole fields like stochastic scheduling. Most of it stud-
ies uncertainty in the jobs. A recent line of work considers scheduling problems
where there is uncertainty surrounding the available machines (e.g. [1,11,12,24]).
In particular, we emphasize scheduling with an unknown number of parallel
machines, introduced in [24] where, given a set of jobs, there is a first parti-
tioning stage where they must be partitioned into bags without knowing the
number of machines available and then, in a second scheduling stage, the algo-
rithm learns the number of machines and the bags must be scheduled on the
machines without being split up. This problem was generalized to speed-robust
scheduling [11] where there are m machines, but speeds of the machines are
unknown in the partitioning stage and are revealed in the scheduling stage1. We
will use the speed robust scheduling model in the rest of this paper, as it captures
applications where partial packing decisions have to be made with only partial
information about the machines. As discussed in [24], such applications include
MapReduce computations in shared data centers where data is partitioned into
groups by a mapping function that is designed without full information about
the machines that will be available in the data center, or in a warehouse where
items are grouped into boxes without full information about the trucks that will
be available to ship the items.

In this paper, we introduce and study the problem of scheduling with
machine-learned predictions about the speeds of the machines. In the two appli-
cations mentioned above, MapReduce computations and package shipping, it is
natural to have some relevant historical data about the computing resources or
the trucks that will be available, which can be used to obtain machine-learned
predictions about these quantities. In the scheduling with speed predictions prob-
lem, we are given jobs and predictions about the speeds of the m machines. In
the first, partitioning stage, jobs are partitioned into m bags, using only the pre-
dictions about the speeds of the machines. Then, in the second, scheduling stage,

1 This problem strictly generalizes the first problem by setting speed to 1 for actual
machines, and speed to 0 for the other (non)machines.

76 E. Balkanski et al.

Table 1. Robustness of deterministic 1 + α consistent algorithms, where α ∈ (0, 1)
except for the (4 − 2α)/3 lower bound, for which α ∈ (0, 1/2).

Job sizes Speeds Upper bound Lower bound

General General 2 + 2/α (Theorem 3) 1 + (1 − α)/2α − O(1/m) (Theorem 1)

Equal-size General 2 + 1/α (Theorem 4) 1 + (1 − α)/2α − O(1/m) (Theorem 1)

Infinitesimal General 1 + 1/α (Theorem 5) 1 + (1 − α)2/4α − O(1/m) (Theorem 1)

General {0,1} 2 (Theorem 6) (4 − 2α)/3 (Theorem 7)

the true speeds of the machines are revealed, and the bags must be scheduled on
the machines without being split up. The goal is to use the predictions to design
algorithms that achieve improved guarantees for speed-robust scheduling. The
fundamental question we ask is:

Can speed predictions be used to obtain both improved guarantees when the
predictions are accurate and bounded guarantees when the prediction errors are

arbitrarily large?

We focus on the classical makespan (completion time of the last completed
job) minimization objective. Two main evaluation metrics for our problem, or
for any algorithms with predictions problem, are robustness and consistency.
The consistency of an algorithm is the approximation ratio it achieves when the
speed predictions are equal to the true speeds of the machines, and its robustness
is its worst-case approximation ratio over all possible machine speeds, i.e., when
the predictions are arbitrarily wrong. The main focus of this paper is on general
job processing times and machine speeds, but we also consider multiple special
cases.

Without predictions, [11] achieves a (2−1/m)-approximation. Thus, if we do
not trust the predictions, we can ignore them and use this algorithm to achieve a
2−1/m consistent and 2−1/m robust algorithm. On the other hand, if we fully
trust the predictions, we can pretend that the predictions are correct and use a
polynomial time approximation scheme (PTAS) for makespan minimization on
related machines to obtain a 1 + ε consistent algorithm, for any constant ε > 0.
However, as we show in Sect. 3, this approach would have unbounded robustness.
Thus, the main challenge is to develop an algorithm that leverages predictions
to improve over the best known 2 − 1/m approximation when the predictions
are accurate, while maintaining bounded robustness guarantees even when the
predictions are arbitrarily wrong.

1.1 Our Results

Our main result is a deterministic algorithm for minimizing makespan in the
scheduling with speed predictions (SSP) model that is 1+α consistent and 2+2/α
robust, for any α ∈ (0, 1) (Theorem 2). When the predictions are accurate, the
1 + α consistency outperforms the best-known approximation for speed-robust

Scheduling with Speed Predictions 77

scheduling without predictions of 2 − 1/m [11], while maintaining a 2 + 2/α
robustness guarantee that holds even when the predictions are arbitrarily wrong.
To obtain a polynomial time algorithm, the consistency and robustness both
increase by a 1 + ε factor, for any constant ε ∈ (0, 1), due to the PTAS for
makespan minimization on related machines that we use as a subroutine [14].

We extend this result to obtain an approximation ratio that interpolates
between 1 + α and 2 + 2/α as a function of the prediction error. More precisely,
for any α ∈ (0, 1), our algorithm achieves an approximation of min{η2(1 +
α), (2 + 2/α)} (Theorem 3), where the prediction error η := maxi∈[m]

max{ŝi,si}
min{ŝi,si}

is the maximum ratio between the predicted speed ŝi and the true speed si

of the m machines. The following hardness result motivates this choice for the
prediction error: for any α ∈ (0, 1), any deterministic 1 + α consistent algorithm
has robustness at least 1 + 1−α

2α − O(1
m), even when a single machine speed is

incorrectly predicted (Theorem 1). Thus, a single incorrectly predicted machine
speed can cause a strong lower bound on the approximation ratio. We also note
that the maximum ratio over all the predictions is a common definition for the
prediction error in scheduling with predictions (see, e.g., [18,19]). Additionally,
we obtain the following results (summarized in Table 1):

– When the job processing times are equal or infinitesimal, the best-known
approximations without predictions are 1.8 and e/(e − 1) ≈ 1.58 [11], respec-
tively. For these cases, our 1 + α consistent algorithm achieves a robustness
of 2 + 1/α (Theorem 4) and 1 + 1/α (Theorem 5), respectively.

– When the machine speeds are either 0 or 1, which corresponds to the scenario
where the number of machines is unknown, the best-known approximation
without predictions is 5/3 [24]. We develop an algorithm that is 1 consistent
and 2 robust (Theorem 6). We also show that, for any α ∈ [0, 1/2), any deter-
ministic 1 + α consistent algorithm has robustness at least (4 − 2α)/3 (The-
orem 7).

– Even when the prediction error is relatively large, our algorithm often empir-
ically outperforms existing speed-robust algorithms that do not use predic-
tions.

We note that, subsequent to our work, a scheduling with predictions prob-
lem where the machine speeds are unknown was also studied in [19], but in an
incomparable online setting where the speeds can be job-dependent.

1.2 Technical Overview

We give an overview of the main technical ideas used to obtain our main result
(Theorem 3). The second stage of the SSP problem corresponds to a standard
makespan minimization problem in the full information setting, so the main
problem is the first stage where jobs must be partitioned into bags given pre-
dictions about the speeds of the machines. At a high level, our partitioning
algorithm initially creates a partition of the jobs in bags, and a tentative assign-
ment of the bags to machines, assuming that the predictions are the true speeds

78 E. Balkanski et al.

of the machines. This tentative solution is optimal if the predictions are perfect,
but as we discuss in Sect. 3, if the predictions are wrong, its makespan may be
far from optimal. To address this concern, the algorithm iteratively moves away
from the initial partition in order to obtain a more robust partitioning, while
also maintaining that the bags can be scheduled to give a (1+α)-approximation
of the makespan if the predictions are correct. The parameter α ∈ (0, 1) is an
input to the algorithm that controls the consistency-robustness trade-off, i.e., it
controls how much the predictions should be trusted. Starting from a consistent
solution and then robustifying has been used in some other algorithms with pre-
dictions. Our main technical contribution is in designing such a robustification
algorithm for the SSP problem.

More concretely, let the total processing time of a bag be the sum of the pro-
cessing time of the jobs in that bag. The partitioning algorithm always maintains
a tentative assignment of bags to the machines. To robustify this assignment,
the algorithm iteratively reassigns the bag with minimum total processing time
to the machine that is assigned the bag with maximum total processing time. If
there are now � bags assigned to this machine, we break open these � bags, and
reassign the jobs to � new bags using the Longest Processing Time first algo-
rithm, which will roughly balance the size of the � bags assigned to this machine.
Thus, at every iteration, the bags that had the maximum and minimum total
processing times at the beginning of that iteration end up with approximately
equal total processing times, which improves the robustness of the partition.
The algorithm terminates when the updated partition would not achieve a 1+α
consistency anymore.

The analysis of the 2 + 2/α robustness consists of three main lemmas. The
algorithm and analysis use a parameter β, which is the ratio of the maximum
total processing time of a bag that contains at least two jobs to the minimum
total processing time of a bag. We use this particular parameter partly to handle
the case of very large jobs. Informally, both the algorithm and the adversary
will need to put that one job in its own bag and on its own machine, so we
can just “ignore” such jobs. We first show that if we can solve the second-stage
scheduling problem optimally, then the robustness achieved by any partition is
at most max{2, β}. Then, we show that at each iteration, the minimum total
processing time of a bag is non-decreasing. Finally, we use this monotonicity
property to show that, for the partition returned by the algorithm, β ≤ 2 +
2/α. Together with the first lemma, this implies that the algorithm achieves a
2 + 2/α robustness. The last lemma requires a careful argument to show that,
if β > 2 + 2/α, then an additional iteration of the algorithm does not break the
1+α consistency achieved by the current partition. To obtain a polynomial-time
algorithm, we pay an extra factor of 1 + ε in the scheduling stage by using the
PTAS of [14].

Finally, we provide an empirical evaluation of our algorithm that shows that,
even when the prediction error is relatively large, it often outperforms existing
speed-robust algorithms that do not use predictions.

Scheduling with Speed Predictions 79

2 Preliminaries

We first describe the speed-robust scheduling problem, which was introduced
by [11] and builds on the scheduling with an unknown number of machines
problem from [24]. There are n jobs with processing times p = (p1, . . . , pn) ≥ 0
and m machines with speeds s = (s1, . . . , sm) > 0 such that the time needed to
process job j on machine i is pj/si.2 The problem consists of the following two
stages. In the first stage, called the partitioning stage, the speeds of the machines
are unknown and the jobs must be partitioned into m (possibly empty) bags
B1, . . . , Bm such that ∪i∈[m]Bi = [n] (where [n] = {1, . . . , n}) and Bi1 ∩ Bi2 = ∅
for all i1, i2 ∈ [m], i1 	= i2. In the second stage, called the scheduling stage, the
speeds s are revealed to the algorithm and each bag Bi created in the partitioning
stage must be assigned, i.e., scheduled, on a machine without being split up.

The paper on speed-robust scheduling, [11], considers the classical makespan
minimization objective. Let Mi be the bags assigned to machine i; the
goal is to minimize maxi∈[m](

∑
B∈Mi

∑
j∈B pj)/si. An algorithm for speed-

robust scheduling is β-robust if it achieves an approximation ratio of β
compared to the optimal schedule that knows the speeds in advance, i.e.,
maxp,s alg(p, s)/opt(p, s) ≤ β where alg(p, s) and opt(p, s) are the makespans
of the schedule returned by the algorithm (that learns s in the second stage) and
the optimal schedule (that knows s in the first stage).

We augment the speed-robust scheduling problem with predictions about
the speeds of the machines and call this problem Scheduling with Speed Predic-
tions (SSP). The difference between SSP and speed-robust scheduling is that,
during the partitioning stage, the algorithm is now given access to, potentially
incorrect, predictions ŝ = (ŝ1, . . . , ŝm) ≥ 0 about the speeds of the machines (see
Appendix A.1 of the full version of the paper for additional discussion about how
we learn the machine speeds and obtain ŝ). The true speeds of the machines s are
revealed during the scheduling stage, as in the speed-robust scheduling problem.
We also want to minimize the makespan.

Consistency and robustness are two standard measures in algorithms with
predictions [20]. An algorithm is c-consistent if it achieves a c approximation
ratio when the predictions are correct, i.e., if maxp,s alg(p, s, s)/opt(p, s) ≤ c
where alg(p, ŝ, s) is the makespan of the schedule returned by the algorithm
when it is given predictions ŝ in the first stage and speeds s in the second
stage. An algorithm is β-robust if it achieves a β approximation ratio when the
predictions can be arbitrarily wrong, i.e., if maxp,ŝ,s alg(p, ŝ, s)/opt(p, s) ≤ β.
We note that a β-robust algorithm for speed-robust scheduling is also a β-robust
(and β-consistent) algorithm for SSP which ignores the speed predictions.

The main challenge in algorithms with predictions problems is to simul-
taneously achieve “good” consistency and robustness, which requires partially
trusting the predictions (for consistency), but not trusting them too much (for

2 The non-zero speed assumption is for ease of notation. Having a machine with speed
si = 0 is equivalent to si = ε for ε arbitrarily small since in both cases no schedule
can assign a job to i without the completion time of this job being arbitrarily large.

80 E. Balkanski et al.

robustness). In particular, the goal is to obtain an algorithm that achieves a con-
sistency that improves over the best known approximation without predictions
(2 − 1/m for speed-robust scheduling), ideally close to the best known approxi-
mation in the full information setting (1+ε, for any constant ε > 0, for makespan
minimization on related machines), while also achieving bounded robustness.

Even though consistency and robustness capture the main trade-off in SSP,
we are also interested in giving approximation ratios as a function of the pre-
diction error. It is important, in any algorithms with predictions problem, to
define the prediction error appropriately, so that it actually captures the proper
notion of error in the objective. It might seem that, for example, L1 distance
between the predictions and data is natural, but for many problems, including
this one, such a definition would mainly give vacuous results. We define the
prediction error η ≥ 1 to be the maximum ratio3 between the true speeds s
and the predicted speeds ŝ, or vice versa, i.e., η(ŝ, s) = maxi∈[m]

max{ŝi,si}
min{ŝi,si} (see

Appendix A.2 of the full version for further discussion on the choice of error
measure). Given a bound η on the prediction error, an algorithm achieves a γ(η)
approximation if maxp,ŝ,s:η(ŝ,s)≤η alg(p, ŝ, s)/opt(p, s) ≤ γ(η).

Given arbitrary bags B1, . . . , Bm, the scheduling stage corresponds to a stan-
dard makespan minimization problem in the full information setting, for which
polynomial-time approximation schemes (PTAS) are known [14]. Thus, the main
challenge is the partitioning stage. We define the consistency and robustness of
a partitioning algorithm AP to be the consistency and robustness achieved by
the two-stage algorithm that first runs AP and then solves the scheduling stage
optimally. If we want to require that algorithms be polynomial time, we may
simply run the PTAS for makespan minimization in the scheduling stage, and
the bounds increase by a (1 + ε) factor. We will not explicitly mention this in
the remainder of the paper.

3 Consistent Algorithms are not Robust

A natural first question is whether there is an algorithm with optimal consistency
that also achieves a good robustness. We answer this question negatively and
show that there exists an instance for which any 1-consistent algorithm cannot be
o(n)-robust. This impossibility result is information-theoretic and is not due to
computational constraints. The proofs in this section can be found in Appendix B
of the full version.

Proposition 1. For any n > m, there is no algorithm that is 1-consistent and
n−m+1
�n/m� -robust, even in the case of equal-size jobs. In particular, for m = n/2,
there is no algorithm that is 1-consistent and o(n)-robust.

More generally, we show that there is a necessary non-trivial trade-off
between consistency and robustness for the SSP problem. In particular, the
3 We scale s, ŝ such that maxi si = maxi ŝi before computing η, to make sure the

speeds are on the same scale.

Scheduling with Speed Predictions 81

robustness of any deterministic algorithm for SSP must grow inversely propor-
tional as a function of the consistency.

Theorem 1. For any α ∈ (0, 1), if a deterministic algorithm for SSP is (1+α)-
consistent, then its robustness is at least 1+ 1−α

2α −O(1
m), even in the case where

the jobs have equal processing times. In the special case where the processing
times are infinitesimal, the robustness of a deterministic (1+α)-consistent algo-
rithm is at least 1 + (1−α)2

4α − O(1
m).

Recall that in the setting without predictions, the best known algorithm is
(2−1/m)-robust (and thus also (2−1/m)-consistent) [11]. Since we have shown
that algorithms with near-optimal consistency must have unbounded robustness,
a main question is thus whether it is even possible to achieve a consistency that
improves over (2− 1/m) while also obtaining bounded robustness. We note that
the natural idea of randomly choosing to run the (2 − 1/m)-robust algorithm
or an algorithm with near-optimal consistency (with unbounded robustness),
aiming to hedge between robustness and consistency, does not work since the
resulting algorithm would still have unbounded robustness due to SSP being a
minimization problem.

4 The Algorithm

In this section, we give an algorithm for scheduling with speed predictions with
arbitrary-sized jobs that achieves a min{η2(1+ε)(1+α), (1+ε)(2+2/α)} approx-
imation for any constant ε ∈ (0, 1) and any α ∈ (0, 1). The proofs in this section
can be found in Appendix C of the full version.

4.1 Description of the Algorithm

Our algorithm, called IPR and formally described in Algorithm 1, takes as input
the processing times of the jobs p, the predicted speeds of the machines ŝ, an
accuracy parameter ε, a consistency goal 1+α, and a parameter ρ that influences
the ratio between the size of the smallest and largest bags. For general job
processing times and machine speeds, we use ρ = 4. For some special cases in
Sect. 5, we use ρ = 2. IPR first uses the PTAS for makespan minimization [14]
to construct a partition of the jobs into bags B1, . . . , Bm such that scheduling
the jobs in Bi on machine i achieves a 1+ ε approximation when the predictions
are correct. In other words, it initially assumes that the predictions are correct
and creates a (1 + ε)-consistent partition of the jobs into bags. In addition, it
also creates a tentative assignment M1 = {B1}, . . . ,Mm = {Bm} of the bags
B1, . . . , Bm on the machines.

Even though this tentative assignment achieves a good consistency, its robust-
ness is arbitrarily poor. To improve the robustness, IPR iteratively rebalances
this partition while maintaining a (1 + ε)(1 + α) bound on its consistency.
The design and analysis of such an iterative rebalancing procedure is the main
challenge.

82 E. Balkanski et al.

At each iteration, the subroutine LPT-Rebalance rebalances the bags and
modifies M1, . . . ,Mm. We define the processing time p(B) of a bag to the total
processing time of the jobs in that bag, i.e., p(B) =

∑
j∈B pj . The algorithm

terminates either when scheduling the bags in each Mi on machine i violates
the desired (1 + ε)(1 + α) consistency bound or when the ratio of the largest
processing time of a bag containing at least two jobs to the smallest processing
time of a bag is at most ρ. To verify the consistency bound, the algorithm
compares the makespan of the new tentative assignment to the makespan OPTC

of the initial assignment, assuming that the speed predictions are correct.

Algorithm 1. Iterative-Partial-Rebalancing (IPR)
Input: predicted machine speeds ŝ1 ≥ · · · ≥ ŝm, job processing times p1, . . . , pn,

consistency 1 + α, accuracy ε ∈ (0, 1), maximum bag size ratio ρ ≥ 1.
1: {B1, . . . , Bm} ← a (1 + ε)-consistent partition such that p(B1) ≥ . . . ≥ p(Bm)
2: OPTC ← maxi∈[m] p(Bi)/ŝi

3: M1, . . . , Mm ← {B1}, . . . , {Bm}
4: while maxB∈∪iMi,|B|≥2 p(B)>ρ minB∈∪iMi p(B):
5: M′

1, ..., M′
m ← LPT-Rebalance(M1, . . . , Mm)

6: if maxi∈[m]

∑
B∈M′

i
p(B)/ŝi > (1 + α)OPTC :

7: {B1, . . . , Bm} ← ∪i∈[m]Mi

8: return {B1, . . . , Bm}
9: M1, . . . , Mm ← M′

1, . . . , M′
m

10: {B1, . . . , Bm} ← ∪i∈[m]Mi

11: return {B1, . . . , Bm}

The LPT-Rebalance Subroutine. This subroutine first moves the bag Bmin

with the smallest processing time to the collection of bags Mmax that contains
the bag with the largest processing time among the bags that contain at least
two jobs. Let � be the number of bags in Mmax, including Bmin. The subrou-
tine then balances the processing time of the bags in Mmax by running the
Longest Processing Time first (LPT) algorithm over all jobs in bags in Mmax,
i.e. jobs in ∪B∈MmaxB, to create � new, balanced, bags that are placed in Mmax.
LPT-Rebalance finally returns the updated assignment of bags to machines
M1, . . . ,Mm. We note that among these m collections of bags, only two, Mmin

and Mmax, are modified. We use Fig. 1 to illustrate this rebalancing procedure.

Scheduling with Speed Predictions 83

Fig. 1. Illustration of one iteration of the IPR algorithm on an example with m = 3
bags and machines and n = 5 jobs.

Algorithm 2. LPT-Rebalance

Input: assignments of bags M1, . . . , Mm

1: Bmin ← argminB∈∪iMi
p(B)

2: Mmin ← the collection of bags M such that Bmin ∈ M
3: Mmax ← argmaxMi:i∈[m] maxB∈Mi:|B|≥2 p(B)
4: Mmax ← Mmax ∪ {Bmin}, Mmin ← Mmin \ {Bmin}
5: Jmax ← ∪B∈MmaxB, � ← |Mmax|
6: B′

1, . . . , B
′
� ← {}, . . . , {}

7: while |Jmax| > 0 do
8: j′ ← argmaxj∈Jmax

pj

9: B′ ← argminB∈{B′
1,...,B′

�
} p(B)

10: B′ ← B′ ∪ {j′}, Jmax ← Jmax \ {j′}
11: Mmax ← {B′

1, . . . , B
′
�}

12: return M1, . . . , Mm

4.2 Analysis of the Algorithm

We first show that IPR with parameter ρ = 4 in the general case is a (1 +
ε)(1 + α)-consistent and (2 + 2/α)-robust partitioning algorithm (Lemma 1 and
Theorem 2). Then, we use these consistency and robustness guarantees to obtain
the min{η2(1 + ε)(1 + α), (1 + ε)(2 + 2/α)} approximation as a function of the
prediction error η (Theorem 3). Finally, we analyze the running time (Lemma 5).
The main challenge is to analyze IPR’s robustness.

The Consistency. The consistency almost comes from the definition of IPR.

Lemma 1. For any constants α, ε ∈ (0, 1), IPR is a (1 + ε)(1 + α)-consistent
partitioning algorithm.

Proof. To prove the consistency, we consider the final tentative assignment of
the bags on the machines M1, . . . ,Mm when IPR terminates. With true speeds

84 E. Balkanski et al.

s, the makespan of this schedule is maxi∈[m]

∑
B∈Mi

p(B)/si. When the speed
predictions are correct, i.e., s = ŝ, we have

max
i∈[m]

∑
B∈Mi

p(B)
si

= max
i∈[m]

∑
B∈Mi

p(B)
ŝi

≤ (1 + α)OPTC

≤ (1 + α)(1 + ε)opt(p, s).

Line 6 of IPR enforces the first inequality. For the second inequality, observe
that when s = ŝ, OPTC is the makespan of the initial assignment, which is a 1+ ε
approximation to the optimal makespan opt(p, s). Since there exists an assign-
ment of the bags returned by IPR that achieves a (1 + ε)(1 + α) approximation
when s = ŝ, IPR is a (1 + ε)(1 + α)-consistent partitioning algorithm.

The Robustness. The main part of the analysis is to bound the algorithm’s
robustness. First, we show that the ratio β(B) = maxB∈B,|B|≥2 p(B)

minB∈B p(B) of the maxi-
mum total processing time of a bag containing at least two jobs to the minimum
total processing time of a bag can be used to bound the robustness of any par-
tition B.

Lemma 2. Let B = {B1, · · · , Bm} be a partition of n jobs with processing times
p1, . . . pn into m bags. Then B is a max{2, β(B)}-robust partition, where β(B) =
maxB∈B,|B|≥2 p(B)

minB∈B p(B) .

By Lemma 2, it remains to bound the ratio β of the bags B returned by
IPR. Let B(i) denote the collection of all bags B at iteration i of the algorithm
and define b

(i)
min = minB∈B(i) p(B) to be the minimum processing time of a bag

at each iteration i. To bound the ratio β, we first show in Lemma 3 that b
(i)
min is

non-decreasing in i.

Lemma 3. At each iteration i of IPR with ρ = 4, b
(i+1)
min ≥ b

(i)
min.

Using Lemma 3, we bound the size ratio β needed for Lemma 2.

Lemma 4. Let BIPR = {B1, . . . , Bm} be the partition of the n jobs returned by
IPR with ρ = 4. Then, we have that β(BIPR) ≤ 2 + 2/α.

We are now ready to show the algorithm’s robustness.

Theorem 2. For any constants α, ε ∈ (0, 1), IPR with ρ = 4 is a (2 + 2/α)-
robust partitioning algorithm.

Proof. Let BIPR = {B1, . . . , Bm} be the partition of the n jobs returned by IPR
with ρ = 4. By Lemma 4, we have that β(BIPR) ≤ 2 + 2/α. Thus, by Lemma 2,
the robustness of IPR with ρ = 4 is 2 + 2/α.

Scheduling with Speed Predictions 85

The Approximation as a Function of the Prediction Error. We extend
the consistency and robustness results for IPR to obtain our main result. We
show that for the SSP problem, the algorithm that runs IPR in the partitioning
stage and then a PTAS in the scheduling stage achieves an approximation ratio
that gracefully degrades as a function of the prediction error η from (1+ε)(1+α)
to (1 + ε)(2 + 2/α).

Theorem 3. Consider the algorithm that runs IPR with ρ = 4 in partitioning
stage and a PTAS for makespan minimization in scheduling stage. For any con-
stant ε ∈ (0, 1) and any α ∈ (0, 1), this algorithm achieves a min{η2(1 + ε)(1 +
α), (1+ ε)(2+2/α)} approximation for SSP where η = maxi∈[m]

max{ŝi,si}
min{ŝi,si} is the

prediction error.

If we do not care about the computation runtime; that is, we can solve each
scheduling problem optimally including the initial step of IPR in the partition
stage and the scheduling stage, then our result improves to a min{η2(1+α), (2+
2/α)} approximation.

The Running Time of IPR. We show that the main algorithm performs
O(m2) iterations, which implies that its running time is polynomial in n and m.

Lemma 5. At most O(m2) iterations are needed for IPR with ρ = 4 to termi-
nate.

5 Improved Trade-Offs for Special Cases

When all job processing times are either equal or infinitesimal, t the IPR algo-
rithm with ρ = 2 achieves an improved robustness. The proofs of this section
can be found in Sect. 5 of the full version.

Theorem 4. If pj = 1 for all j ∈ [n], then, for any constant ε ∈ (0, 1) and any
α ∈ (0, 1), IPR with ρ = 2 is (1 + ε)(1 + α)-consistent and (2 + 1/α)-robust.

Theorem 5. If all jobs are infinitesimal, then, for any constant ε ∈ (0, 1) and
any α ∈ (0, 1), IPR with ρ = 2 is (1+ ε)(1+α)-consistent and (1+1/α)-robust.

When the machine speeds are in {0, 1}, we propose a different partitioning
algorithm that is (1 + ε)-consistent and 2(1 + ε)-robust for this special case.

Theorem 6. For any constant ε > 0, there is a (1 + ε)-consistent and 2(1 + ε)-
robust partitioning algorithm for the {0, 1}-speed SSP problem.

We also provide a robustness lower bound for {0, 1} speeds.

Theorem 7. For any α ∈ [0, 1/2), if a deterministic algorithm for the {0, 1}-
speed SSP problem is (1+α)-consistent, then its robustness is at least (4−2α)/3.

86 E. Balkanski et al.

6 Experiments

We empirically evaluate the performance of IPR on synthetic data against
benchmarks that achieve either the best-known consistency or the best-known
robustness for SSP.

6.1 Experiment Settings

Benchmarks. We compare three algorithms. IPR is Algorithm 1 with ρ = 4
and α = 0.5. The Largest Processing Time first partitioning algorithm, which
we call LPT-Partition, creates m bags by adding each job, in decreasing order
of their processing time, to the bag with minimum total processing time. LPT-
Partition is 2-robust (and 2-consistent since it ignores the predictions) [11].
The 1-consistent algorithm completely trusts the prediction and generates a
partition that is 1-consistent (but has arbitrarily poor robustness due to our
lower bound in Proposition 1). In practice, PTAS algorithms for scheduling are
extremely slow. Instead of using a PTAS for the scheduling stage, we give an
advantage to the two benchmarks by solving their scheduling stage via integer
programming (IP). However, since we want to ensure that our algorithm has
a polynomial running time, we use the LPT algorithm to compute a schedule
during both the partitioning and scheduling stage of IPR, instead of a PTAS or
an IP and we use IP to compute the optimal solution.

Data Sets. In the first set of experiments, we generate synthetic datasets with
n = 50 jobs and m = 10 machines and evaluate the performance of the different
algorithms as a function of the standard deviation of the prediction error dis-
tribution. The job processing times pj are generated i.i.d. either from U(0, 100),
the uniform distribution in the interval (0, 100), or N (50, 5), the normal dis-
tribution with mean μp = 50 and standard deviation σp = 5. The machine
speeds si are also generated i.i.d., either from U(0, 40) or N (20, 4). We evalu-
ate the performance of the algorithms over each of the 4 possible combinations
of job processing time and machine speed distributions. The prediction error
err(i) = ŝi − si of each machine is sampled i.i.d. from N (0, x) and we vary x
from x = 0 to x = μs (the mean of machine speeds).

In the second set of experiments, we fix the distributions of the processing
times, machine speeds, and prediction errors to be N (50, σp), N (20, σs), and
N (0, 4) respectively, with default values of σp = 5 and σs = 4. We evaluate the
algorithms’ performance as a function of (1) the number n of jobs, (2) the number
m of machines, (3) σp, and (4) σs. For each figure, the approximation ratio
achieved by the different algorithms are averaged over 100 instances generated
i.i.d. as described above. Additional details of the experiment setup are provided
in Appendix D of the full version.

Scheduling with Speed Predictions 87

6.2 Experiment Results

Experiment Set 1. From the first row of Fig. 2, we observe that, in all four
settings, when we vary the magnitude of the prediction error, IPR outper-
forms LPT-Partition when the error is small and outperforms 1-consistent
when the error is large. Since LPT-Partition does not use the predictions,
its performance remains constant as a function of the prediction errors. Since 1-
consistent completely trusts the predictions, it is optimal when the predictions
are exactly correct but its performance deteriorates quickly as the prediction
errors increase.

IPR combines the advantages of LPT-Partition and 1-consistent: when
the predictions are relatively accurate, it is able to take advantage of the predic-
tions and outperform LPT-Partition. When the predictions are increasingly
inaccurate, IPR has a slower deterioration rate compared to 1-consistent.
It is noteworthy that, in some settings, IPR simultaneously outperforms both
benchmarks for a wide range of values of the standard deviation σerr of the pre-
diction error distribution. When the distributions of job processing times and
machine speeds are N (50, 5) and N (20, 4) respectively, IPR achieves the best
performance when σerr/μs ≥ 0.2. When they are N (50, 5) and U(0, 40), IPR
outperforms both benchmarks when σerr/μs ≥ 0.4.

Experiment Set 2. The number of jobs has almost no impact on the perfor-
mance of any of the algorithms. However, the approximations achieved by the
algorithms do improve as the number of machines m increases, especially for
LPT-Partition. The reason is that m is also the number of bags, so when
the number of bags increases, there is more flexibility in the scheduling stage,
especially when the total processing times of the bags are balanced.

Fig. 2. The approximation ratio achieved by our algorithm, IPR, and the two bench-
marks as a function of the standard deviation of the prediction error σerr for different
job processing time and true speed distributions (row 1) and as a function of the number
of jobs n, the number of machines m, the standard deviation σp of the job processing
time distribution, and the standard deviation σs of the true speed distribution (row 2).

88 E. Balkanski et al.

IPR is the algorithm most sensitive to the standard deviation σp of the job
processing times. It has performance close to that of 1-consistent when σp

is small, and similar to LPT-Partition when σp is large. The approximation
ratio of LPT-Partition increases as σs increases, while our algorithm and the
1-consistent partitioning algorithm are relatively insensitive to the change in
σs. Since the LPT-Partition algorithm generates balanced bags of similar total
processing times, it performs well when the machine speeds are all almost equal,
but its performance then quickly degrades as σs increases. An additional set of
experiments that studies the impact of the α parameter in the performance of
the IPR algorithm can be found in Sect. 6 of the full version.

References

1. Albers, S., Schmidt, G.: Scheduling with unexpected machine breakdowns. Discret.
Appl. Math. 110(2–3), 85–99 (2001)

2. Azar, Y., Leonardi, S., Touitou, N.: Flow time scheduling with uncertain processing
time. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pp. 1070–1080 (2021)

3. Azar, Y., Leonardi, S., Touitou, N.: Distortion-oblivious algorithms for minimizing
flow time. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 252–274. SIAM (2022)

4. Azar, Y., Panigrahi, D., Touitou, N.: Online graph algorithms with predictions.
In: Proceedings of the Thirty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms (2022)

5. Bamas, E., Maggiori, A., Rohwedder, L., Svensson, O.: Learning augmented energy
minimization via speed scaling. In: Larochelle, H., Ranzato, M., Hadsell, R., Bal-
can, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol.
33, pp. 15350–15359. Curran Associates, Inc. (2020)

6. Bamas, E., Maggiori, A., Svensson, O.: The primal-dual method for learning aug-
mented algorithms. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin,
H. (eds.) Advances in Neural Information Processing Systems, pp. 20083–20094
(2020)

7. Banerjee, S., Gkatzelis, V., Gorokh, A., Jin, B.: Online nash social welfare maxi-
mization with predictions. In: Proceedings of the 2022 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022. SIAM (2022)

8. Dinitz, M., Im, S., Lavastida, T., Moseley, B., Vassilvitskii, S.: Faster matchings
via learned duals. Adv. Neural. Inf. Process. Syst. 34, 10393–10406 (2021)

9. Dinitz, M., Im, S., Lavastida, T., Moseley, B., Vassilvitskii, S.: Algorithms with
prediction portfolios. arXiv preprint arXiv:2210.12438 (2022)

10. Dütting, P., Lattanzi, S., Paes Leme, R., Vassilvitskii, S.: Secretaries with advice.
In: Proceedings of the 22nd ACM Conference on Economics and Computation, pp.
409–429 (2021)

11. Eberle, F., Hoeksma, R., Megow, N., Nölke, L., Schewior, K., Simon, B.: Speed-
robust scheduling - sand, bricks, and rocks. In: Integer Programming and Combi-
natorial Optimization - 22nd International Conference, IPCO 2021, Atlanta, GA,
USA, 19–21 May 2021, Proceedings, pp. 283–296 (2021)

12. Epstein, L., et al.: Universal sequencing on an unreliable machine. SIAM J. Com-
put. 41(3), 565–586 (2012)

http://arxiv.org/abs/2210.12438

Scheduling with Speed Predictions 89

13. Fotakis, D., Gergatsouli, E., Gouleakis, T., Patris, N.: Learning augmented online
facility location. CoRR abs/2107.08277 (2021). https://arxiv.org/abs/2107.08277

14. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: using the dual approximation approach. SIAM J. Com-
put. 17(3), 539–551 (1988)

15. Im, S., Kumar, R., Montazer Qaem, M., Purohit, M.: Non-clairvoyant scheduling
with predictions. In: Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures, pp. 285–294 (2021)

16. Im, S., Kumar, R., Montazer Qaem, M., Purohit, M.: Online knapsack with fre-
quency predictions. In: Advances in Neural Information Processing Systems, vol.
34 (2021)

17. Jin, B., Ma, W.: Online bipartite matching with advice: Tight robustness-
consistency tradeoffs for the two-stage model. arXiv preprint arXiv:2206.11397
(2022)

18. Lattanzi, S., Lavastida, T., Moseley, B., Vassilvitskii, S.: Online scheduling via
learned weights. In: Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1859–1877 (2020)

19. Lindermayr, A., Megow, N., Rapp, M.: Speed-oblivious online scheduling: knowing
(precise) speeds is not necessary. arXiv preprint arXiv:2302.00985 (2023)

20. Lykouris, T., Vassilvtiskii, S.: Competitive caching with machine learned advice.
In: International Conference on Machine Learning, pp. 3296–3305. PMLR (2018)

21. Mitzenmacher, M.: Scheduling with Predictions and the Price of Misprediction.
In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 151, pp. 14:1–14:18
(2020)

22. Mitzenmacher, M., Vassilvitskii, S.: Algorithms with predictions. arXiv preprint
arXiv:2006.09123 (2020)

23. Purohit, M., Svitkina, Z., Kumar, R.: Improving online algorithms via ml predic-
tions. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems. Curran
Associates, Inc. (2018)

24. Stein, C., Zhong, M.: Scheduling when you do not know the number of machines.
ACM Trans. Algorithms (2019)

https://arxiv.org/abs/2107.08277
http://arxiv.org/abs/2206.11397
http://arxiv.org/abs/2302.00985
http://arxiv.org/abs/2006.09123

The Power of Amortization on Scheduling
with Explorable Uncertainty

Alison Hsiang-Hsuan Liu1(B) , Fu-Hong Liu1,2 , Prudence W. H. Wong2 ,
and Xiao-Ou Zhang1

1 Utrecht University, Utrecht, The Netherlands
alison.hhliu@gmail.com

2 University of Liverpool, Liverpool, UK

Abstract. In this work, we study a scheduling problem with explorable
uncertainty. Each job comes with an upper limit of its processing time,
which could be potentially reduced by testing the job, which also takes
time. The objective is to schedule all jobs on a single machine with a
minimum total completion time. The challenge lies in deciding which
jobs to test and the order of testing/processing jobs.

The online problem was first introduced with unit testing time [5,6]
and later generalized to variable testing times [1]. For this general set-
ting, the upper bounds of the competitive ratio are shown to be 4 and
3.3794 for deterministic and randomized online algorithms [1]; while the
lower bounds for unit testing time stands [5,6], which are 1.8546 (deter-
ministic) and 1.6257 (randomized).

We continue the study on variable testing times setting. We first
enhance the analysis framework in [1] and improve the competitive ratio
of the deterministic algorithm in [1] from 4 to 1 +

√
2 ≈ 2.4143. Using

the new analysis framework, we propose a new deterministic algorithm
that further improves the competitive ratio to 2.316513. The new frame-
work also enables us to develop a randomized algorithm improving the
expected competitive ratio from 3.3794 to 2.152271.

Keywords: Explorable uncertainty · Online scheduling algorithms ·
Total completion time · Competitive analysis · Amortized analysis

1 Introduction

In this work, we study the single-machine Scheduling with Uncertain Processing
time (SUP) problem with the minimized total completion time objective. We
are given n jobs, where each job has a testing time tj and an upper limit uj of
its real processing time pj ∈ [0, uj]. A job j can be executed (without testing),
taking uj time units. A job j can also be tested using tj time units, and after
it is tested, it takes pj time to execute. Note that any algorithm needs to test a

P. W. H. Wong—The work is partially supported by University of Liverpool Covid
Recovery Fund.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 90–103, 2023.
https://doi.org/10.1007/978-3-031-49815-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_7&domain=pdf
http://orcid.org/0000-0002-0194-9360
http://orcid.org/0000-0001-6073-8179
http://orcid.org/0000-0001-7935-7245
https://doi.org/10.1007/978-3-031-49815-2_7

The Power of Amortization on Scheduling with Explorable Uncertainty 91

job j beforehand to run it in time pj . The online algorithm does not know the
exact value of pj unless it tests the job. On the other hand, the optimal offline
algorithm knows in advance each pj even before testing. Therefore, the optimal
strategy is to test job j if and only if tj + pj ≤ uj and execute the shortest job
first, where the processing time of a job j is min{tj + pj , uj} [1,5,6]. However,
since the online algorithm only learns about pj after testing j, the challenge to
the online algorithm is to decide which jobs to test and the order of tasks that
could be testing, execution, or execution-untested.

It is typical to study uncertainty in scheduling problems, for example, in
the worst case scenario for online or stochastic optimization. Kahan [15] has
introduced a novel notion of explorable uncertainty where queries can be used
to obtain additional information with a cost. The model of scheduling with
explorable uncertainty studied in this paper was introduced by Dürr et al.
recently [5,6]. In this model, job processing times are uncertain in the sense
that only an upper limit of the processing time is known, and can be reduced
potentially by testing the job, which takes a testing time that may vary accord-
ing to the job. An online algorithm does not know the real processing time before
testing the job, whereas an optimal offline algorithm has the full knowledge of
the uncertain data.

One of the motivations to study scheduling with uncertain processing time
is clinic scheduling [3,16]. Without a pre-diagnosis, it is safer to assign each
treatment the maximum time it may need. With pre-diagnosis, the precise time
a patient needs can be identified, which can improve the performance of the
scheduling. Other applications are, as mentioned in [5,6], code optimization [2],
compression for file transmission over network [20], fault diagnosis in mainte-
nance environments [17]. Application in distributed databases with centralized
master server [18] is also discussed in [1].

In addition to its practical motivations, the model of explorable uncertainty
also blurs the line between offline and online problems by allowing a restricted
uncertain input. It enables us to investigate how uncertainty influences online
decision quality in a more quantitative way. The concept of exploring uncertainty
has raised a lot of attention and has been studied on different problems, such
as sorting [13], finding the median [11], identifying a set with the minimum-
weight among a given collection of feasible sets [8], finding shortest paths [10],
computing minimum spanning trees [14], etc. More recent work and a survey can
be found in [7,10,12]. Note that in many of the works, the aim of the algorithm
is to find the optimal solution with the minimum number of testings for the
uncertain input, comparing against the optimal number of testings.

Another closely related model is Pandora’s box problem [4,9,19], which was
based on the secretary problem, that was first proposed by Weitzman [19]. In
this problem, each candidate (that is, the box) has an independent probability
distribution for the reward value. To know the exact reward a candidate can
provide, one can open the box and learn its realized reward. More specifically,
at any time, an algorithm can either open a box, or select a candidate and
terminate the game. However, opening a box costs a price. The goal of the

92 A. H.-H. Liu et al.

algorithm is to maximize the reward from the selected candidate minus the total
cost of opening boxes. The Pandora’s box problem is a foundational framework
for studying how the cost of revealing uncertainty affects the decision quality.
More importantly, it suggests what information to acquire next after gaining
some pieces of information.

Previous Works. For the SUP problem, Dürr et al. studied the case where
all jobs have the same testing time [5,6]. In the paper, the authors proposed a
Threshold algorithm for the special instances. For the competitive analysis,
the authors proposed a delicate instance-reduction framework. Using this frame-
work, the authors showed that the worst case instance of Threshold has a
special format. An upper bound of the competitive ratio of 2 of Threshold is
obtained by the ratio of the special format instance. Using the instance-reduction
framework, the authors also showed that when all jobs have the same testing time
and the same upper limit, there exists a 1.9338-competitive Beat algorithm. The
authors provided a lower bound of 1.8546 for any deterministic online algorithm.
For randomized algorithms, the authors showed that the expected competitive
ratio is between 1.6257 and 1.7453.

Later, Albers and Eckl studied a more general case where jobs have variable
testing time [1]. In the paper, the authors proposed a classic and elegant frame-
work where the completion time of an algorithm is divided into contribution
segments by the jobs executed prior to it. For the jobs with “correct” execu-
tion order as they are in the optimal solution, their total contribution to the
total completion time is charged to twice the optimal cost by the fact that the
algorithm does not pay too much for wrong decisions of testing a job or not.
For the jobs with “wrong” execution order, their total contribution to the total
completion time is charged to another twice the optimal cost using a compari-
son tree method, which is bound with the proposed (α, β)-SORT algorithm. The
authors also provide a preemptive 3.2361-competitive algorithm and an expected
3.3794-competitive randomized algorithm.

In the works [1,5,6], the objective of minimizing the maximum completion
time on a single machine was also studied. For the uniform-testing-time setting,
Dürr et al. [5,6] proposed a φ-competitive deterministic algorithm and a 4

3 -
competitive randomized algorithm, where both algorithms are optimal. For a
more general setting, Albers and Eckl [1] showed that variable testing time does
not increase the competitive ratios of online algorithms.

Our Contribution. We first analyze the (α, β)-SORT algorithm proposed in
the work [1] in a more amortized sense. Instead of charging the jobs in the
correct order and in the wrong order to the optimal cost separately, we manage
to partition the tasks into groups and charge the total cost in each of the groups
to the optimal cost regarding the group. The introduction of amortization to
the analysis creates room for improving the competitive ratio by adjusting the
values of α and β. The possibility of picking α > 1 helps balance the penalty
incurred by making a wrong guess on testing a job or not. On the other hand,
the room for different β values allows one to differently prioritize the tasks that
provide extra information and the tasks that immediately decide a completion

The Power of Amortization on Scheduling with Explorable Uncertainty 93

Table 1. Summary of the results. The results from this work are bold and in red.

Testing time Upper limit Upper Bound Lower bound

Deterministic 1 Uniform 1.9338 [5,6] 1.8546 [5,6]

Variable 2 [5,6]

Variable Variable 4 [1] → 2.414 (Theorem 1)

2.316513 (Theorem 2)

(Prmp.) 3.2361 [1]

2.316513 (Theorem 2)

Randomized 1 Variable 1.7453 [5,6] 1.6257 [5,6]

Variable Variable 3.3794 [1]

2.152271 (Theorem 3)

time for a job. By this new analysis and the room of choosing different values of
α and β, we improve the upper bound of the competitive ratio of (α, β)-SORT
from 4 to 1+

√
2. With the power of amortization, we improve the algorithm by

further prioritizing different tasks using different parameters. The new algorithm,
PCPα,β , is 2.316513-competitive. This algorithm is extended to a randomized
version with an expected competitive ratio of 2.152271. Finally, we show that
under the current problem setting, preempting the execution of jobs does not
help in gaining a better algorithm. A summary of the results can be found in
Table 1.

Paper Organization. In Sect. 2, we introduce the notation used in this paper.
We also review the algorithm and analysis of the (α, β)-SORT algorithm pro-
posed in the work [1]. In Sect. 3, we elaborate on how amortized analysis helps
to improve the competitive analysis of (α, β)-SORT (Subsect. 3.1). Upon the
new framework, we propose a better algorithm, PCPα,β , in Subsect. 3.2. In Sub-
sect. 3.3, we argue that the power of preemption is limited in the current model.
Finally, we show how amortization helps to improve the performance of random-
ized algorithms. For the sake of the page limit, we leave the proofs in the full
version.

2 Preliminary

Given n jobs 1, 2, · · · , n, each job j has a testing time tj and an upper limit uj

of its real processing time pj ∈ [0, uj]. A job j can be executed-untested in uj

time units or be tested using tj time units and then executed in pj time units.
Note that if a job is tested, it does not need to be executed immediately. That
is, for a tested job, there can be tasks regarding other jobs between its testing
and its execution.

We denote by pA
j the time spent by an algorithm A on job j, i.e., pA

j = tj +pj

if A tests j, and pA
j = uj otherwise. Similarly, we denote by p∗

j the time spent
by OPT, the optimal algorithm. Since OPT knows pj in advance, it can decide
optimally whether to test a job, i.e., p∗

j = min{uj , tj + pj}, and execute the jobs

94 A. H.-H. Liu et al.

in the ascending order of p∗
j . We denote by cost(A) the total completion time of

any algorithm A.
The tasks regarding a job j are the testing, execution, or execution-untested

of j (taking tj , pj , or uj , respectively). We follow the notation in the work
of Albers and Eckl [1] and denote c(k, j) as the contribution of job k in the
completion time of job j in the online schedule A. That is, c(k, j) is the total
time of the tasks regarding job k before the completion time of job j. The
completion time of job j in the schedule A is then

∑n
k=1 c(k, j). Similarly, we

define c∗(k, j) as the contribution of job k in the completion time of job j in the
optimal schedule. As observed, OPT schedules in the order of p∗, c∗(k, j) = 0 if
k is executed after j in the optimal schedule, and c∗(k, j) = p∗

k otherwise.
We denote by i <o j if the optimal schedule executes job i before job j. We

also define i >o j and i =o j similarly (in the latter case, job i and job j are
the same job). The completion time of job j in the optimal schedule is denoted
by c∗

j =
∑

i≤oj p∗
i . The total completion time of the optimal schedule is then

∑n
j=1 c∗

j . Note that there is an optimal strategy where p∗
i ≤ p∗

j if i ≤o j.

2.1 Review (α, β)-SORT Algorithm [1]

For completeness, we summarise the (α, β)-SORT algorithm and its analysis
proposed in the work of Albers and Eckl [1].

Intuitively, the algorithm tests a job j if and only if uj ≥ α · tj . Depending on
whether a job is tested or not, the job is transformed into one task (execution-
untested task) or two tasks (testing task and execution task). These tasks are
then maintained in a priority queue for the algorithm to decide their processing
order. More specifically, a testing task has a weight of β · tj , an execution task
has a weight of pj , and an execution-untested task has a weight of uj . (See
Algorithm 1.) After the tasks regarding the jobs are inserted into the queue, the
algorithm executes the tasks in the queue and deletes the executed tasks, starting
from the task with the shortest (weighted) time. If the task is a testing of a job
j, the resulting pj is inserted into the queue after testing. (See Algorithm 2.)
Intuitively, both α and β are at least 1. The precise values of α and β will be
decided later based on the analysis.

Analysis [1]. Recall that c(k, j) is the contribution of job k of the completion
time of job j, and the completion time of job j is cA

j =
∑n

k=1 c(k, j). The key

Algorithm 1. (α, β)-SORT algorithm [1]
Initialize a priority queue Q
for j = 1, 2, 3, · · · , n do

if uj ≥ α · tj then
Insert a testing task with weight β · tj into Q

else
Insert an execution-untested task with weight uj into Q

Queue-Execution(Q) � See Algorithm 2

The Power of Amortization on Scheduling with Explorable Uncertainty 95

Algorithm 2. Procedure Queue-Execution (Q)
procedure Queue-Execution(Q)

while Q is not empty do
x ← Extract the smallest-weight task in Q
if x is a testing task for a job j then

Test job j � It takes tj time
Insert an execution task with weight pj into Q

else if x is an execution task for a job j then
Execute (tested) job j � It takes pj time

else � x is an execution-untested task for a job j
Execute job j untested � It takes uj time

idea of the analysis is that given job j, partitioning the jobs (say, k) that are
executed before j into two groups, k ≤o j or k >o j. Since the algorithm only
tests a job j when uj ≥ αtj , pA

k ≤ max{α, 1 + 1
α} · p∗

k. Therefore, the total cost
incurred by the first group of jobs is at most max{α, 1 + 1

α} · cost(OPT). Note
that the ratio, in this case, reflects the penalty to the algorithm that makes a
wrong guess on testing a job or not.

For the second group of jobs, the authors proposed a classic and elegant
comparison tree framework to charge each c(k, j) with k >o j to the time that
the optimal schedule spends on job j. More specifically, c(k, j) ≤ max{(1 +
1
β)α, 1 + 1

α , 1 + β} · p∗
j for any k and j. Hence, the total cost incurred by the

second group of jobs can be charged to max{(1+ 1
β)α, 1+ 1

α , 1+β} · cost(OPT).
By summing up the c(k, j) values for all pairs of k and j, the total completion

time of the algorithm is at most

max{α, 1 +
1
α

} + max{(1 +
1
β

) · α, 1 +
1
α

, 1 + β}.

When α = β = 1 (which is the optimal selection), the competitive ratio is 4.

2.2 Our Observation

As stated by Albers and Eckl [1], α = β = 1 is the optimal choice in their analysis
framework. Therefore, it is not possible to find a better α and β to tighten the
competitive ratio under the current framework. However, the framework can be
improved via observations.

For example, given that α = β = 1, consider two jobs k and j, where
(tk, uk, pk) = (1 + ε, 1 + 3ε, 1 + 3ε) and (tj , uj , pj) = (1, 1 + 4ε, 1 + 2ε). By the
(α, β)-SORT algorithm, both k and j are tested. The order of the tasks regard-
ing these two jobs is tj , tk, pj , and finally pk. On the other hand, in the optimal
schedule, p∗

k = uk = 1 + 3ε and p∗
j = uj = 1 + 4ε. Since k ≤o j, as shown in

Fig. 1, both c(k, j) and c(j, k) are charged to 2p∗
k, separately. Note that although

c(k, j) = tk in this example, the worst-case nature of the analysis framework
fails to capture the fact that the contribution from the tasks regarding k to the

96 A. H.-H. Liu et al.

completion time of j is even smaller than p∗
k. This observation motivates us to

establish a new analysis framework.

Fig. 1. An example where p∗
k is charged four times. The light blue and dark blue

segments represent c(k, j) and c(j, k), respectively. The red segment represents p∗
k.

(Color figure online)

3 Deterministic Algorithms

In this section, we first enhance the framework by equipping it with amortized
analysis in Subsect. 3.1. Using amortized arguments, for any two jobs k ≤o j,
we manage to charge the sum of c(k, j) + c(j, k) to p∗

k. The new framework not
only improves the competitive ratio but also creates room for adjusting α and
β.

Finally, in Subsect. 3.2, we improve the (α, β)-SORT algorithm based on our
enhanced framework.

3.1 Amortization

We first bound c(k, j) + c(j, k) for all pairs of jobs k and j with k ≤o j by a
function r(α, β) · c∗(k, j). Then, we can conclude that the algorithm is r(α, β)-
competitive by the following argument:

cost((α, β)-SORT) =
n∑

j=1

n∑

k=1

c(k, j) =
n∑

j=1

(
∑

k<oj

(c(k, j) + c(j, k)) + c(j, j))

≤
n∑

j=1

r(α, β) · (
∑

k<oj

c∗(k, j) + c∗(j, j)) = r(α, β) · cost(OPT)

To bound c(k, j) + c(j, k) by the cost of tasks k, we first observe that it is
impossible that c(k, j) = pA

k and c(j, k) = pA
j at the same time. More specifically,

depending on whether the jobs k and j are tested or not, the last task regarding
these two jobs does not contribute to c(k, j) + c(j, k). Furthermore, the order of
these jobs’ tasks in the priority queue provides a scheme to charge the cost of
the tasks regarding j to the cost of tasks regarding k.

Figure 2 shows how the charging is done. Each row in the subfigures is a
permutation of how the tasks regarding job j and k are executed. The gray

The Power of Amortization on Scheduling with Explorable Uncertainty 97

objects are tasks regarding k, and the white objects are tasks regarding j. The
circles, rectangles, and rectangles with the wavy top are testing tasks, execution
tasks, and execution-untested tasks, respectively. The horizontal lines present the
values of c(k, j) (light blue) and c(j, k) (dark blue). The red arrows indicate how
the cost of a task regarding j is charged to that of a task regarding k according
to the order of the tasks in the priority queue. The charging c(k, j) + c(j, k) to
the cost of tasks regarding k results in Lemmas 1 and 2. For the sake of space,
the proof is provided in the full paper.

Fig. 2. The red arrows illustrate how to charge c(k, j) + c(j, k) to the cost of tasks
regarding k. Each row in the sub-figures is a permutation of how the tasks are exe-
cuted. The circles and rectangles are testing tasks and execution tasks after testing,
respectively. The rectangles with curly tops are execution tasks without testing. The
tasks in gray are from the job k, and the tasks in white are from the job j. The light
blue and dark blue line segments under the tasks represent the contribution c(k, j) and
c(j, k), respectively. (Color figure online)

Lemma 1. If (α, β)-SORT does not test job k,

c(k, j) + c(j, k) ≤ (1 +
1
β

)uk.

98 A. H.-H. Liu et al.

Lemma 2. If (α, β)-SORT tests job k,

c(k, j) + c(j, k) ≤ max{2tk + pk, (1 + β)tk, tk + (1 +
1
β

)pk}.

Now, we can bound the competitive ratio of the (α, β)-SORT (Theorem 1).
The idea is, depending on whether job k is tested or not by the optimal schedule,
the expressions in Lemmas 1 and 2 can be written as a function of α, β, and p∗

k.
By selecting the values of α and β carefully, we can balance the worst case ratio
in the scenario where k is executed-untested by the algorithm (Lemma 1) and
that in the scenario where k is tested by the algorithm (Lemma 2).

Theorem 1. The competitive ratio of (α, β)-SORT is at most

max{α(1 +
1
β

), 1 +
1
α

+
1
β

, 1 + β, 2, 1 +
2
α

} (1)

By choosing α = β =
√

2, (α, β)-SORT algorithm is (1 +
√

2)-competitive. The
choice is optimal for expression (1).

Note that by Theorem 1, the (α, β)-SORT algorithm is 3-competitive when
α = β = 1, which matches the observation in Fig. 1.

Our analysis framework provides room for adjusting the values of α and β.
By selecting the values of α and β, we can tune the cost of tasks regarding k that
is charged. By selecting a value of α other than 1, we can balance the penalty
of making a wrong decision on testing a job or not. The capability of selecting a
value of β other than 1 allows us to prioritize the testing tasks (which are scaled
by β) and the execution tasks (which immediately decide a completion time of
a job). Finally, the performance of the algorithm is tuned by finding the best
values of α and β.

However, recall that the parameter α encodes the penalty for making a wrong
guess on testing a job or not. When α =

√
2, the penalty for testing a job we

should not test is more expensive than that for executing-untested a job that we
should test. It inspires us to improve the algorithm further.

3.2 An Improved Algorithm

Surprisingly, the introduction of amortization even sheds light on further
improvement of the algorithm. We propose a new algorithm, Prioritizing-
Certain-Processing-time (PCPα,β). The main difference between PCPα,β and
(α, β)-SORT is that in the PCPα,β algorithm after a job j is tested, an item
with weight tj + pj is inserted into the queue instead of pj (see Algorithm 3).
Intuitively, we prioritize a job by its certain (total) processing time pA

j , which
can be tj + pj or uj . Then, we can charge the total cost of tasks regarding a
wrong-ordered j to βtk or pA

k all at once.
The new algorithm PCPα,β (Algorithm 1 combined with Algorithm 3) has

an improved estimation of c(k, j) + c(j, k) when c(j, k) = tj + pj . However,
when there is only one task regarding j contributing to c(j, k), the estimation of
c(k, j) + c(j, k) may increase. Formally, we have the following two lemas.

The Power of Amortization on Scheduling with Explorable Uncertainty 99

Algorithm 3. Procedure Updated Queue-Execution (Q)
procedure Updated Queue-Execution(Q)

while Q is not empty do
x ← Extract the smallest-weight task in Q
if x is a testing task for a job j then

Test job j � It takes tj time
Insert an execution task with weight tj + pj into Q

else if x is an execution task for a job j then
Execute (tested) job j � It takes pj time

else � x is an execution-untested task for a job j
Execute job j untested � It takes uj time

Lemma 3. Given two jobs k ≤o j, if PCPα,β does not test job k,

c(k, j) + c(j, k) ≤ (1 +
1
β

)uk.

Lemma 4. Given two jobs k ≤o j, if PCPα,β tests job k,

c(k, j) + c(j, k) ≤ max{2tk + pk, βtk, (1 +
1
β

)(tk + pk)}.

Similar to the proof of Theorem 1, we have the following competitiveness
results of the PCPα,β algorithm.

Theorem 2. The competitive ratio of PCPα,β is at most

max{α(1 +
1
β

), 1 +
1
α

+
1
β

+
1

αβ
, β, 2, 1 +

2
α

} . (2)

By choosing α = 1+
√
5

2 and β = 1+
√
5+

√
2(7+5

√
5)

4 , the competitive ratio of

PCPα,β is 1+
√
5+

√
2(7+5

√
5)

4 ≤ 2.316513. The choice is optimal for expression (2).

The selection of golden ratio α balances the penalty of making a wrong guess
for testing a job or not.

Note that using the analysis proposed in the work of Albers and Eckl [1] on
the new algorithm that put tj + pj back to the priority list after testing job j,
the competitive ratio is max{α, 1 + 1

α} + max{α, 1 + 1
α , β}. The best choice of

the values is α = φ and β ∈ [1, φ], and the competitive ratio is at most 2φ.

3.3 Preemption

We show that preempting the tasks does not improve the competitive ratio.
Intuitively, we show that given an algorithm A that generates a preemptive
schedule, we can find another algorithm B that is capable of simulating A and
performs the necessary merging of preempted parts. The simulation may make

100 A. H.-H. Liu et al.

Algorithm 4. Rand-PCPβ algorithm
Initialize a priority queue Q
for j = 1, 2, 3, · · · , n do

Let rj ← uj

tj

if rj < 1 then
Pj ← 0

else if rj > 3 then
Pj ← 1

else

Pj =
3r2j −3rj

3r2j −4rj+3

Choose one of βtj and uj randomly with probability Pj for βtj and 1−Pj for uj

Insert a testing task with weight βtj into Q if βtj is chosen, and insert an
execution-untested task with weight uj into Q otherwise

Updated Queue-Execution(Q) � See Algorithm 3

the timing of A’s schedule gain extra information about the real processing times
earlier due to the advance of a testing task. However, a non-trivial A can only
perform better by receiving the information earlier. Thus, B’s non-preemptive
schedule has a total completion time at most that of A’s schedule.

Lemma 5. In the SUP problem, if there is an algorithm that generates a pre-
emptive schedule, then we can always find another algorithm that generates a
non-preemptive schedule and performs as well as the previous algorithm in terms
of competitive ratios.

4 Randomized Algorithm

The amortization also helps improve the performance of randomized algorithms.
We combine the PCPα,β algorithm with the framework in the work of Albers
and Eckl [1], where instead of using a fixed threshold α, a job j is tested with
probability Pj , which is a function of uj , tj , and β.

Our Randomized Algorithm. For any job j with uj

tj
< 1 or uj

tj
> 3, we

insert uj or βtj into the queue, respectively. For any job j with 1 ≤ uj

tj
≤ 3,

we insert βtj into the queue with probability Pj and insert uj with probability
1 −Pj . Once a testing task tj is executed, we insert tj + pj into the queue. (See
Algorithms 4 and 3.)

Analysis. The following lema can be proven using Lemma 3 and Lemma 4.

Lemma 6. The expected total completion time of the n jobs is at most

∑

j

∑

k≤oj

(1 +
1
β

)uk(1 − Pk) + max{2tk + pk, βtk, (1 +
1
β

)(tk + pk)}Pk,

where Pk is the probability that job k is tested.

The Power of Amortization on Scheduling with Explorable Uncertainty 101

Depending on whether the jobs are tested or not in the optimal schedule, the
expected total completion time can be expressed by functions with the variables:
the probability, the parameters of the jobs, and β. We design the probability Pk

by balancing the costs between the worst cases where p∗
k = uk or p∗

k = tk + pk.
Note that there are cases where the “ideal” value of Pk is outside the range [0, 1].
We take care of these special cases by setting Pk as 0 or 1 if the ideal value is
smaller than 0 or larger than 1, respectively.

Theorem 3. Let rk denote uk

tk
. The expected competitive ratio of Rand-PCPβ

is at most

max
k

(1 + 1
β)uk(1 − Pk) + max{2tk + pk, βtk, (1 + 1

β)(tk + pk)}Pk

p∗
k

, where

Pk =
(β + 1)(rk − 1)

β(max{ 2
rk

+ 1, β
rk

, (1 + 1
β)(1 + 1

rk
)} − max{2, β, 1 + 1

β } + rk − 1) + rk − 1

if rk ∈ [1, 3], Pk = 0 if rk < 1, and Pk = 1 if rk > 3. By choosing β = 2, the
ratio is 3(7+3

√
6)

20 ≤ 2.152271. The choice of β is optimal.

5 Conclusion

In this work, we study a scheduling problem with explorable uncertainty. We
enhance the analysis framework proposed in the work [1] by introducing amor-
tized perspectives. Using the enhanced analysis framework, we are able to bal-
ance the penalty incurred by different wrong decisions of the online algorithm.
In the end, we improve the competitive ratio significantly from 4 to 2.316513
(deterministic) and from 3.3794 to 2.152271 (randomized). An immediate open
problem is if one can further improve the competitive ratio by a deeper level of
amortization.

Additionally, we show that preemption does not improve the competitive
ratio in the current problem setting, where all jobs are available at first. It may
not be true in the fully online setting, where jobs can arrive at any time. Thus,
another open problem is to study the problem in the fully online model.

References

1. Albers, S., Eckl, A.: Explorable uncertainty in scheduling with non-uniform testing
times. In: Kaklamanis, C., Levin, A. (eds.) WAOA 2020. LNCS, vol. 12806, pp.
127–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80879-2 9

2. Cardoso, J.M.P., Diniz, P.C., Coutinho, J.G.F.: Embedded Computing for High
Performance: Efficient Mapping of Computations Using Customization, Code
Transformations and Compilation. Morgan Kaufmann Publishers, Burlington
(2017)

https://doi.org/10.1007/978-3-030-80879-2_9

102 A. H.-H. Liu et al.

3. Caruso, S., Galatà, G., Maratea, M., Mochi, M., Porro, I.: Scheduling pre-operative
assessment clinic via answer set programming. In: Benedictis, R.D., et al. (eds.)
Proceedings of the 9th Italian workshop on Planning and Scheduling (IPS’21)
and the 28th International Workshop on “Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion” (RCRA 2021) with CEUR-
WS co-located with 20th International Conference of the Italian Association for
Artificial Intelligence (AIxIA 2021), Milan, Italy (virtual), 29th–30th November
2021. CEUR Workshop Proceedings, vol. 3065. CEUR-WS.org (2021). https://
ceur-ws.org/Vol-3065/paper3 196.pdf

4. Ding, B., Feng, Y., Ho, C., Tang, W., Xu, H.: Competitive information design for
pandora’s box. In: Bansal, N., Nagarajan, V. (eds.) Proceedings of the 2023 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, 22–25 Jan-
uary 2023, pp. 353–381. SIAM (2023). https://doi.org/10.1137/1.9781611977554.
ch15

5. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: Scheduling with explorable uncer-
tainty. In: Karlin, A.R. (ed.) 9th Innovations in Theoretical Computer Science Con-
ference, ITCS 2018, 11–14 January 2018, Cambridge, MA, USA. LIPIcs, vol. 94,
pp. 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018). https://
doi.org/10.4230/LIPIcs.ITCS.2018.30

6. Dürr, C., Erlebach, T., Megow, N., Meißner, J.: An adversarial model for schedul-
ing with testing. Algorithmica 82(12), 3630–3675 (2020). https://doi.org/10.1007/
s00453-020-00742-2

7. Erlebach, T., Hoffmann, M.: Query-competitive algorithms for computing with
uncertainty. Bull. EATCS 116 (2015). http://eatcs.org/beatcs/index.php/beatcs/
article/view/335

8. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheap-
est set problems under uncertainty. Theor. Comput. Sci. 613, 51–64 (2016).
https://doi.org/10.1016/j.tcs.2015.11.025

9. Esfandiari, H., Hajiaghayi, M.T., Lucier, B., Mitzenmacher, M.: Online pan-
dora’s boxes and bandits. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, 27
January–1 February 2019, pp. 1885–1892. AAAI Press (2019). https://doi.org/10.
1609/aaai.v33i01.33011885

10. Feder, T., Motwani, R., O’Callaghan, L., Olston, C., Panigrahy, R.: Computing
shortest paths with uncertainty. J. Algorithms 62(1), 1–18 (2007). https://doi.
org/10.1016/j.jalgor.2004.07.005

11. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. In: Yao, F.F., Luks, E.M. (eds.) Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, 21–23 May
2000, Portland, OR, USA, pp. 602–607. ACM (2000). https://doi.org/10.1145/
335305.335386

12. Gupta, M., Sabharwal, Y., Sen, S.: The update complexity of selection and related
problems. Theory Comput. Syst. 59(1), 112–132 (2016). https://doi.org/10.1007/
s00224-015-9664-y

13. Halldórsson, M.M., de Lima, M.S.: Query-competitive sorting with uncertainty.
Theor. Comput. Sci. 867, 50–67 (2021). https://doi.org/10.1016/j.tcs.2021.03.021

14. Hoffmann, M., Erlebach, T., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: Albers, S., Weil, P. (eds.) STACS

https://ceur-ws.org/Vol-3065/paper3_196.pdf
https://ceur-ws.org/Vol-3065/paper3_196.pdf
https://doi.org/10.1137/1.9781611977554.ch15
https://doi.org/10.1137/1.9781611977554.ch15
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.4230/LIPIcs.ITCS.2018.30
https://doi.org/10.1007/s00453-020-00742-2
https://doi.org/10.1007/s00453-020-00742-2
http://eatcs.org/beatcs/index.php/beatcs/article/view/335
http://eatcs.org/beatcs/index.php/beatcs/article/view/335
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.1609/aaai.v33i01.33011885
https://doi.org/10.1609/aaai.v33i01.33011885
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1016/j.jalgor.2004.07.005
https://doi.org/10.1145/335305.335386
https://doi.org/10.1145/335305.335386
https://doi.org/10.1007/s00224-015-9664-y
https://doi.org/10.1007/s00224-015-9664-y
https://doi.org/10.1016/j.tcs.2021.03.021

The Power of Amortization on Scheduling with Explorable Uncertainty 103

2008, 25th Annual Symposium on Theoretical Aspects of Computer Science, Bor-
deaux, France, 21–23 February 2008, Proceedings. LIPIcs, vol. 1, pp. 277–288.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2008). https://doi.
org/10.4230/LIPIcs.STACS.2008.1358

15. Kahan, S.: A model for data in motion. In: Koutsougeras, C., Vitter, J.S. (eds.)
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, 5–8
May 1991, New Orleans, Louisiana, USA, pp. 267–277. ACM (1991). https://doi.
org/10.1145/103418.103449

16. Lopes, J., Vieira, G., Veloso, R., Ferreira, S., Salazar, M., Santos, M.F.: Optimiza-
tion of surgery scheduling problems based on prescriptive analytics. In: Gusikhin,
O., Hammoudi, S., Cuzzocrea, A. (eds.) Proceedings of the 12th International
Conference on Data Science, Technology and Applications, DATA 2023, Rome,
Italy, 11–13 July 2023, pp. 474–479. SCITEPRESS (2023). https://doi.org/10.
5220/0012131700003541

17. Nicolai, R.P., Dekker, R.: Optimal Maintenance of Multi-component Systems: A
Review, pp. 263–286 (2008)

18. Olston, C., Widom, J.: Offering a precision-performance tradeoff for aggregation
queries over replicated data. In: Abbadi, A.E., et al. (eds.) VLDB 2000, Proceedings
of 26th International Conference on Very Large Data Bases, 10–14 September 2000,
Cairo, Egypt, pp. 144–155. Morgan Kaufmann (2000). http://www.vldb.org/conf/
2000/P144.pdf

19. Weitzman, M.L.: Optimal search for the best alternative. Econometrica 47(3),
641–654 (1979). http://www.jstor.org/stable/1910412

20. Wiseman, Y., Schwan, K., Widener, P.M.: Efficient end to end data exchange using
configurable compression. ACM SIGOPS Oper. Syst. Rev. 39(3), 4–23 (2005).
https://doi.org/10.1145/1075395.1075396

https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.4230/LIPIcs.STACS.2008.1358
https://doi.org/10.1145/103418.103449
https://doi.org/10.1145/103418.103449
https://doi.org/10.5220/0012131700003541
https://doi.org/10.5220/0012131700003541
http://www.vldb.org/conf/2000/P144.pdf
http://www.vldb.org/conf/2000/P144.pdf
http://www.jstor.org/stable/1910412
https://doi.org/10.1145/1075395.1075396

Total Completion Time Scheduling Under
Scenarios

Thomas Bosman1, Martijn van Ee2, Ekin Ergen3(B), Csanád Imreh4,
Alberto Marchetti-Spaccamela5,6, Martin Skutella3, and Leen Stougie6,7,8

1 Amsterdam, The Netherlands
2 Netherlands Defence Academy, Den Helder, The Netherlands

M.v.Ee.01@mindef.nl
3 Technische Universität Berlin, Berlin, Germany

ergen@math.tu-berlin.de, martin.skutella@tu-berlin.de
4 Szeged, Hungary

5 Universitá di Roma “La Sapienza”, Rome, Italy
alberto@diag.uniroma.it

6 Erable, INRIA, Paris, France
7 Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands

leen.stougie@cwi.nl
8 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract. Scheduling jobs with given processing times on identical par-
allel machines so as to minimize their total completion time is one of the
most basic scheduling problems. We study interesting generalizations of
this classical problem involving scenarios. In our model, a scenario is
defined as a subset of a predefined and fully specified set of jobs. The
aim is to find an assignment of the whole set of jobs to identical paral-
lel machines such that the schedule, obtained for the given scenarios by
simply skipping the jobs not in the scenario, optimizes a function of the
total completion times over all scenarios.

While the underlying scheduling problem without scenarios can be
solved efficiently by a simple greedy procedure (SPT rule), scenarios,
in general, make the problem NP-hard. We paint an almost complete
picture of the evolving complexity landscape, drawing the line between
easy and hard. One of our main algorithmic contributions relies on a
deep structural result on the maximum imbalance of an optimal sched-
ule, based on a subtle connection to Hilbert bases of a related convex
cone.

Keywords: machine scheduling · total completion time · scenarios ·
complexity

1 Introduction

For a set J of n jobs with given processing times pj , j ∈ J , one of the oldest
results in scheduling theory states that scheduling the jobs in order of non-

C. Imreh—Our co-author Csanád Imreh tragically passed away on January 5th, 2017.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 104–118, 2023.
https://doi.org/10.1007/978-3-031-49815-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_8

Total Completion Time Scheduling Under Scenarios 105

decreasing processing times on identical parallel machines in a round robin pro-
cedure minimizes the total completion time, that is, the sum of completion times
of all jobs [11].

We study an interesting generalization of this classical scheduling problem
where the input in addition specifies a set of K scenarios S = {S1, . . . , SK},
with Sk ⊆ J , k = 1, . . . ,K. The task is then to find, for the entire set of jobs J ,
a parallel machine schedule, which is an assignment of all jobs to machines and
on each machine an order of the jobs assigned to it. This naturally induces a
schedule for each scenario by simply skipping the jobs not in the scenario. In
particular, jobs not contained in a particular scenario do not contribute to the
total completion time of that scenario and, in particular, do not delay later jobs
assigned to the same machine.

We aim to find a schedule for the entire set of jobs that optimizes a function
of the total completion times of the jobs over all scenarios. More specifically,
we focus on two functions on the scheduling objectives: in the MinMax version,
we minimize the maximum total completion time over all scenarios, and in the
MinAvg version we minimize the average of the total completion times over all
scenarios. In the remainder of the paper we refer to the MinMax version as Min-
MaxSTC (MinMax Scenario scheduling with Total Completion time objective)
and to the MinAvg version as MinAvgSTC.

Optimization Under Scenarios. Scenarios are commonly used in optimiza-
tion to model uncertainty in the input or different situations that need to be
taken into account. A variety of approaches has been proposed that appear in
the literature under different names. In fact, scenarios have been introduced
to model discrete distributions over parameter values in Stochastic Program-
ming [8], or as samples in Sampling Average Approximation algorithms for
stochastic problems with continuous distributions over parameter values [20].
In Robust Optimization [6], scenarios describe different situations that should
be taken into account and are often specified as ranges for parameter values that
may occur. Moreover, in data-driven optimization, scenarios are often obtained
as observations. The problems we consider also fit in the general framework of
A Priori Optimization [7]: the schedule for the entire set of jobs can be seen
as an a priori solution which is updated in a simple way to a solution for each
scenario. In the scheduling literature, different approaches to modeling scenarios
have been introduced, for which we refer to a very recent overview by Shabtay
and Gilenson [25]. Another related and popular framework is that of Min-Max
Regret, aiming at obtaining a solution minimizing the maximum deviation, over
all possible scenarios, between the value of the solution and the optimal value
of the corresponding scenario [21].

Not surprisingly, for many problems, multiple scenario versions are funda-
mentally harder than their single scenario counterparts. Examples are the short-
est path problem with a scenario specified by the destination [16,21], and the
metric minimum spanning tree problem with a scenario defining the subset of
vertices to be in the tree [7]. Scenario versions of NP-hard combinatorial opti-

106 T. Bosman et al.

mization problems were also considered in the literature such as, for example,
set cover [1] and the traveling salesperson problem [27].

Related Work. As we have already discussed above, a variety of approaches
to optimization under scenarios appear in the literature under different names.
Here we mention work in the field of scheduling that is more closely related to
the model considered in this paper. We refer to the survey [25] and references
therein for an overview of scheduling under scenarios.

Closest to the problems considered in this paper is the work of Feuerstein et
al. [13] who also consider scenarios given by subsets of jobs and develop approx-
imation algorithms as well as non-approximability results for minimizing the
makespan on identical parallel machines, both for the MinMax and the MinAvg
version. In fact, the hardness results for our problem given in Proposition 1 below
follow directly from their work.

In multi-scenario models, a discrete set of scenarios is given, and certain
parameters (e.g., processing times) of jobs can have different values in different
scenarios. Several papers follow this model, mainly focusing on single machine
scheduling problems. Various functions of scheduling objectives over the scenar-
ios are considered, that have the MinMax and the MinAvg versions as special
cases. Yang and Yu [28], for example, study a multi-scenario model and show
that the MinMax version of minimizing total completion time is NP-hard even
on a single machine and with only 2 scenarios, whereas in our model 2-scenario
versions are generally easy. (Notice that our model is different from simply assign-
ing a processing time of 0 to a job in a scenario if the job is not present in that
scenario.) Aloulou and Della Croce [3] present algorithmic and computational
complexity results for several single machine scheduling problems. Mastrolilli,
Mutsanas, and Svensson [22] consider the MinMax version of minimizing the
weighted total completion time on a single machine and prove interesting approx-
imability and inapproximability results. Kasperski and Zieliński [18] consider a
more general single machine scheduling problem in which precedence constraints
between jobs are present and propose a general framework for solving such prob-
lems with various objectives.

Kasperski, Kurpisz, and Zieliński [17] study multi-scenario scheduling with
parallel machines and the makespan objective function, where the processing
time of each job depends on the scenario; they give approximability results for
an unbounded number of machines and a constant number of scenarios. Albers
and Janke [2] as well as Bougeret, Jansen, Poss, and Rohwedder [9] study a
budgetary model with uncertain job processing times; in this model, each job
has a regular processing time while in each scenario up to Γ jobs fail and require
additional processing time. The considered objective function is to minimize
the makespan: [9] proposes approximate algorithms for identical and unrelated
parallel machines while [2] analyses online algorithms in this setting.

Total Completion Time Scheduling Under Scenarios 107

time

weight

1

2

3

4

p1 p1 + p2
∑

i pi time

weight

1 2 3 4

w1

w1 + w2

∑
i wi

Fig. 1. Left: original schedule. Right: equivalent “weight-schedule”. In both cases the
objective value is equal to the total area of the rectangles

2 Preliminaries

We start by defining the problem formally, denoting the set of integers {1, . . . , �}
simply by [�]. We are given a set of jobs J = [n], machines M = [m], non-negative
job processing times pj , j ∈ [n], and scenarios S = {S1, . . . , SK}, where Sk ⊆ J ,
k ∈ [K]. We assume that the jobs are ordered by non-increasing processing
times p1 ≥ p2 ≥ · · · ≥ pn.1 The task is to find a machine assignment, that is, a
map ϕ : [n] → [m], or equivalently, a partitioning of the jobs J1, . . . , Jm with the
understanding that jobs in Ji shall be optimally scheduled on machine i ∈ [M],
that is, according to the Shortest Processing Time first (SPT) rule (i.e., in reverse
order of their indices). Thus, the completion time of a particular job j′ ∈ Ji in
scenario k is the sum over all processing times of jobs j ∈ Ji ∩ Sk with j ≥ j′,
and the contribution of jobs in Ji to the total completion in scenario k ∈ [K] is
thus:

∑

j′∈Ji∩Sk

∑

j∈Ji∩Sk:j′≤j

pj =
∑

j∈Ji∩Sk

pj · |{j′ ∈ Ji ∩ Sk : j′ ≤ j}| (1)

Observation 1 ([12]). The above total unweighted completion time problem
is equivalent to the total weighted completion time with jobs of unit length of
weight wj :=pj that are processed in reverse order, i.e., in order of non-increasing
weights.

Indeed, this equivalence between total completion time for unweighted jobs
scheduled in SPT order and total weighted completion time for unit length jobs

1 In view of the SPT rule, this ordering might seem counterintuitive. But it turns out
to be convenient as we argue below in Observation 1.

108 T. Bosman et al.

Table 1. The complexity landscape of MinMaxSTC on m machines with K scenarios

m = 2 m ∈ O(1) m part of input

K = 2 poly poly poly

3 ≤ K ∈ O(1) weakly NP-hard,
pseudo-poly,
FPTAS

weakly NP-hard,
pseudo-poly,
FPTAS

weakly NP-hard,
poly if wj ∈ O(1)

K part of input strongly NP-hard [13],
no (2 − ε)-approx [13],
2-approx

strongly NP-hard [13] strongly NP-hard [13]

scheduled in order of non-decreasing weight was first observed by Eastman,
Even, and Issacs [12]. The idea behind the equivalence (1) is best seen from
a so-called 2-dimensional Gantt-chart; see Fig. 1 and the work of Goemans and
Williamson [14], Megow and Verschae [23], or Cho, Shmoys, and Henderson [10].

In the introduction of this paper we prefer to present our results in terms
of the more commonly known unweighted version, but for the remainder of this
paper it is somewhat easier to argue about the weighted unit-processing time
version; hence the ordering of jobs introduced above. The objective of (Min-
MaxSTC) is then to minimize

max
k∈[K]

m∑

i=1

∑

j∈Ji∩Sk

wj · |{j′ ∈ Ji ∩ Sk : j′ ≤ j}|,

whereas MinAvgSTC aims to minimize

1
K

K∑

k=1

m∑

i=1

∑

j∈Ji∩Sk

wj · |{j′ ∈ Ji ∩ Sk : j′ ≤ j}|.

In the sequel in the MinAvgSTC we neglect the constant 1/K-term and
minimize the sum over all scenarios.

3 Our Contribution

We give a nearly complete overview of the complexity landscape of total com-
pletion time scheduling under scenarios. Tables 1 and 2 summarize our observa-
tions for MinMaxSTC and MinAvgSTC, respectively. The rows of both tables
correspond to different assumptions on the number of scenarios K, whereas the
columns specify assumptions on the given number of machines m.

First of all, it is not difficult to observe that both MinMaxSTC and
MinAvgSTC are strongly NP-hard if K can be arbitrarily large; see last row of
Tables 1 and 2. This even holds for the special case of unit length jobs and only
two jobs per scenario. Moreover, for the case of MinMaxSTC on two machines,
we get a tight non-approximability result and corresponding approximation algo-
rithm, while for MinAvgSTC we can prove that the problem is APX-hard, i.e.,

Total Completion Time Scheduling Under Scenarios 109

Table 2. The complexity landscape of MinAvgSTC on m machines with K scenarios.

m = 2 m ∈ O(1) m part of input

K = 2 poly poly poly

3 ≤ K ∈ O(1) poly poly poly if wj ∈ O(1)

K part of input strongly NP-hard [13],

no PTAS [15,19],

5/4-approx [24,26]

strongly NP-hard [13],

no PTAS [15,19],

(3/2-1/2m)-approx [24,26]

strongly NP-hard [13],

no PTAS [15,19],

(3/2-1/2m)-approx [24,26]

there is no PTAS, unless P = NP; see Sect. 4. For only K = 2 scenarios, how-
ever, both problems can be solved to optimality in polynomial time; see first
row of Tables 1 and 2. Even better, in Sect. 4 we present a simple algorithm that
constructs an ‘ideal’ schedule for the entire set of jobs simultaneously minimiz-
ing the total completion time in both scenarios. These results develop a clear
complexity gap between the case of two and arbitrarily many scenarios.

A finer distinction between easy and hard can thus be achieved by considering
the case of constantly many scenarios K ≥ 3; see middle row in Tables 1 and 2.
These results constitute the main contribution of this paper.

Our results on MinMaxSTC for constantly many scenarios K ≥ 3 are pre-
sented in Sect. 5. Here it turns out that MinMaxSTC is weakly NP-hard already
for K = 3 scenarios and m = 2 machines, but can be solved in pseudo-polynomial
time for any constant number of scenarios and machines via dynamic program-
ming. Moreover, the dynamic program together with standard rounding tech-
niques immediately implies the existence of an FPTAS for this case. If the
number of machines m is part of the input, however, our previous dynamic
programming approach fails. But then again, we present a more sophisticated
dynamic program that solves the problem efficiently if all job processing times
are bounded by a constant.

MinAvgSTC with constantly many scenarios K ≥ 3 is studied in Sect. 6.
Somewhat surprisingly, and in contrast to MinMaxSTC, it turns out that
MinAvgSTC remains easy as long as the number of machines m is bounded
by a constant. This observation is again based on a dynamic programming algo-
rithm. Moreover, we conjecture that the problem even remains easy if m is part
of the input. More precisely, we conjecture that there always exists an optimal
solution such that the imbalance between machine loads always remains bounded
by g(K) for some (exponential) function g that only depends on the number of
scenarios K, but not on m or n. Using a subtle connection to the cardinality
of Hilbert bases for convex cones, we prove that our conjecture is true for unit
job processing times. In this case we obtain an efficient algorithm with running
time mh(K) · poly(n) for some function h.

Several of our results, in particular for MinMaxSTC, can be generalized to
the Min-Max Regret framework; see the full version of the paper for details.
Moreover, due to space restrictions, most proofs are omitted in this version of
the paper and can be found in its full version.

110 T. Bosman et al.

4 Scheduling Under Arbitrary K is Hard, but K = 2 is
Easy

4.1 NP-Hardness for Unbounded Number of Scenarios

For an unbounded number of scenarios, there is a straightforward proof that both
MinMaxSTC and MinAvgSTC are NP-hard on m ≥ 3 machines which relies on
a simple reduction of the graph coloring problem: Given a graph, we interpret its
nodes as unweighted unit length jobs and every edge as one scenario consisting
of the two jobs that correspond to the end nodes of the edge. Obviously, the
graph has an m-coloring without monochromatic edges if and only if there is a
schedule such that the total completion time of each scenario is 2 (i.e., both jobs
complete at time 1 on a machine of their own).

Since it is easy to decide whether the nodes of a given graph can be colored
with two colors, the above reduction does not imply NP-hardness for m = 2
machines. For this case, however, the inapproximability results for the multi
scenario makespan problem in [13] can be adapted to similar inapproximability
results for our problems. Also these results already hold for unweighted unit
length jobs. The proof is deferred to the full version of the paper.

Proposition 1. For two machines and all jobs having unit lengths and weights,
it is NP-hard to approximate MinMaxSTC within a factor 2−ε and MinAvgSTC
within ratio 1.011. The latter even holds if all scenarios contain only two jobs.

Proof. (Sketches). We refrain from rigorous details of the proof because of sim-
ilarly proven inapproximability results in [13].

For MinMaxSTC we can use essentially the same reduction as in the proof
of Theorem 1 in [13]. Consider a set of scenarios with 2� + 1 jobs each, where
in each scenario the jobs can be partitioned in a perfectly balanced way. By the
hardness of hypergraph balancing [5], it is NP-hard to find a solution where none
of the scenarios puts all jobs to one of the machines. In a balanced solution the
cost is

∑�
i=1 i +

∑�+1
i=1 i = (� + 1)2. If we put all jobs on the same machine then

the cost is
∑2�+1

i=1 i = (2� + 1)(� + 1).
For the MinAvg version we adapt the reduction in the proof of Theorem 6 in

[13] to the total completion time objective. Consider a Max Cut instance and
assign to each vertex a job with weight 1 and for each edge a scenario. Then a
cut gives a partition of the jobs. If the scenario is in the cut then the cost is 2,
if it is not in the cut then the jobs are on the same machine and the cost is 3.
Thus the objective value is 3 times the number of edges minus the size of the
cut. By this observation it follows that a (1+α)-approximation for MinAvgSTC
yields a (1−5α)-approximation for Max Cut and our results follow from known
inapproximability of Max Cut [15,19]. �	

We notice that, for m = 2 machines, any algorithm for MinMaxSTC that
assigns all jobs to the same machine (in SPT order) gives a 2-approximation.
The approximability of MinMaxSTC for more than two machines is left as an
interesting open question. The following approximation result for MinAvgSTC

Total Completion Time Scheduling Under Scenarios 111

follows from a corresponding result for classical machine scheduling without
scenarios.

Proposition 2. For MinAvgSTC there is a (3/2 − 1/2m)-approximation algo-
rithm for arbitrarily many machines, even if m is part of the input.

Proof. The result is an immediate consequence of the following well known
approximation result for the classical machine scheduling problem without sce-
narios: If all jobs are assigned to machines independently and uniformly at ran-
dom, the expected total weighted completion time of the resulting schedule is
at most a factor 3/2 − 1/2m away from the optimum; see, e.g., [24,26]. In our
scenario scheduling model, this upper bound holds, in particular, for each single
scenario which yields a randomized (3/2 − 1/2m)-approximation algorithm by
linearity of expectation. Furthermore, this algorithm can be derandomized using
standard techniques. �	

4.2 Computing an Ideal Schedule for Two Scenarios

For K = 2 scenarios, both MinMaxSTC and MinAvgSTC are polynomial time
solvable on any number of machines. Actually, we prove an even stronger result:
one can find, in polynomial time, a schedule that has optimal objective function
value in each of the two scenarios simultaneously.

Theorem 2. For the MinMaxSTC and the MinAvgSTC problem with two sce-
narios, after sorting the jobs in order of non-increasing weight, one can find in
time linear in n a schedule that is simultaneously optimal for both scenarios.

Proof. We show how to assign the jobs in non-increasing order of their weights in
order to be optimal for both scenarios. As mentioned above, we want to assign
the next job to a machine that, in each scenario, belongs to the least loaded
machines in terms of the number of jobs already assigned to it. For this purpose
we define two m-dimensional vectors s1 and s2 for scenarios 1 and 2, respectively,
containing the relative loads on the machines. The relative load of a machine
in a scenario is 0 if this machine belongs to the least loaded machines in this
scenario; it is 1 if it has one job more than a least loaded machine, etc. In our
assignment process, jobs will always be assigned to machines with relative load 0
in each of the scenarios they belong to. This ensures that we will end up with a
schedule that is optimal for both scenarios simultaneously.

Initially, both vectors s1 and s2 are zero vectors, since no jobs have been
assigned yet. When assigning job j, let μk be the lowest entry (lowest numbered
machine) equal to zero in vector sk. Moreover, let νk be the highest entry equal
to zero in sk. So initially, μ1 = μ2 = 1 and ν1 = ν2 = m. We apply the following
assignment procedure, where we use 1 to denote the all-1 vector. For j = 1 to
n, we apply the following case distinction:

– If j ∈ S1 \ S2 → assign j to machine μ1 and increase μ1 by 1.
– If j ∈ S2 \ S1 → assign j to machine μ2 and increase μ2 by 1.

112 T. Bosman et al.

– If j ∈ S1 ∩ S2 → assign j to machine ν1 = ν2 and decrease both ν1 and ν2
by 1.

– If s1 = 1 → reset s1 to become the all-0 vector. Reindex the machines such
that s2 becomes of the form (1, . . . , 1, 0, . . . , 0). Reset μ1 = 1, ν1 = m, μ2 =
μ2 + m − ν2, and ν2 = m. Do analogously if s2 = 1.

We prove that for each job there is always a machine with relative load 0 in each
scenario in which the job appears, thus implying the theorem. This is obviously
true if job j appears in only one scenario, since after assigning j −1 jobs, sk
= 1,
k = 1, 2. Hence there is always a machine with relative load 0. For job j appearing
in both scenarios, we have to show that we maintain ν1 = ν2, in which case the
same machine has relative load 0 to accommodate job j. The only way it can
happen that ν1
= ν2 is if ever machine ν1 was used for a job j′ that only
appeared in scenario 1. But that can only have happened if μ1 = ν1, in which
case s1 becomes an all-1 vector, and by resetting it to 0 and the renumbering of
the machines, the relation ν1 = ν2 had been restored. �	

5 The MinMax Version

5.1 Constant Number of Machines

In view of Theorem 2, the next theorem establishes a complexity gap for Min-
MaxSTC when going from two to three scenarios.

Theorem 3. On any fixed number m ≥ 2 of machines and with K = 3 scenar-
ios, MinMaxSTC is (weakly) NP-hard.

The proof can be found in the full version of the paper. It reduces a variant
of Partition, in which one is to partition a set of numbers into three sets of equal
sum instead of two. This reduction establishes that MinMaxSTC is weakly NP-
hard. For the case m ∈ O(1), the weak NP-hardness cannot be strengthened
to strong NP-hardness (unless P = NP) since on a fixed number of machines
and scenarios an optimal solution can be found in pseudopolynomial time by
dynamic programming. Moreover, via standard rounding techniques, one can
obtain an FPTAS for MinMaxSTC. Details are given in the full version.

Theorem 4. There exists a pseudopolynomial algorithm as well as a fully poly-
nomial time approximation scheme for MinMaxSTC on a constant number of
machines with a constant number of scenarios.

The dynamic program runs in time O(m(m2n3W)mK), where W denotes the
largest (integer) job weight. The rounding for FPTAS redefines this weight to
be 1 + mn2/ε, i.e., the runtime of the FPTAS is in O

(
m

(
m2n3(mn2/ε)

)mK)
,

indeed polynomial in n and 1/ε assuming that m and K are constant.
An immediate consequence of the reduction that yields Theorem 3 is the NP-

hardness of the robust version of scheduling with regret, as mentioned in [25],
even when it is restricted to the parallel machine case. Similarly, the FPTAS
given in Theorem 4 can easily be adapted to this model. A more elaborate
discussion on the relations between our model and the scheduling with regret
model can be found in the full version of the paper.

Total Completion Time Scheduling Under Scenarios 113

5.2 Any Number of Machines

If job weights are bounded by a constant, MinMaxSTC (and also MinAvgSTC)
can be solved efficiently on any number of machines by dynamic programming.
For simplicity, we only discuss the case of unit job weights here, but our approach
can be easily generalized to the case of weights bounded by some constant.
The DP leading to the following theorem is based on enumeration of machine
configurations.

Theorem 5. If the number of scenarios K is constant, and all jobs have unit
weights, then MinMaxSTC and MinAvgSTC can be solved to optimality in poly-
nomial time on any number of machines.

The proof, which is omitted here, suggests an algorithm with runtime
O(mn2(2K+K)).

6 The MinAvg Version

By Theorem 2, MinAvgSTC is solvable in polynomial time in the case of two
scenarios and by Theorem 5 in case of a constant number of scenarios and
bounded job weights. For general job weights, however, we need to design a
different dynamic program (DP) that solves MinAvgSTC in polynomial time for
any constant number of scenarios if there is also a constant number of machines;
see Sect. 6.1.

In Sect. 6.2, we present a conjecture that, if true, leads to a polynomial time
dynamic programming algorithm for any number of machines. We prove the
conjecture for the special case of unit job weights which results in an efficient
algorithm for MinAvgSTC in this case that is faster than the one given in the
previous section as a function of the number of jobs, but slower as a function
of the number of machines. Moreover, it is not clear yet if the techniques carry
over to the more general case of job weights bounded by a constant.

6.1 Constant Number of Machines

We first describe the case of a constant number of machines. Recall that the
objective function for MinAvgSTC is defined as

K∑

k=1

m∑

i=1

∑

j∈Ji∩Sk

wj · |{j′ ∈ Ji ∩ Sk : j′ ≤ j}|,

with Ji the set of jobs assigned to machine i.
It is clear from the objective function that the contribution of some job j to

the cost of a solution depends only on the assignment of that job and any jobs
with higher weight, i.e., jobs 1, . . . , j − 1, to the various machines. In particular,

114 T. Bosman et al.

if we want to compute the contribution of job j to the cost of a solution in some
schedule, it is sufficient to know the following quantities for each i ∈ [m], k ∈ [K]

xik(j − 1):=|{j′ ∈ Ji ∩ Sk : j′ < j}|,
which together form a state of the scheduling process. If job j gets assigned to
machine i in that schedule, its contribution to the overall cost would then be

∑

k∈[K]:j∈Sk

wj(1 + xik(j − 1)).

In light of these observations, one can derive a dynamic program, leading to the
following theorem.

Theorem 6. The MinAvgSTC problem with constant number of machines and
constant number of scenarios can be solved in polynomial time.

Proof. We define a state in a dynamic programming decision process as a partial
schedule at the moment the first j jobs have been assigned and encode this by
a m × K matrix X(j), with xik(j) = |{j′ ∈ Ji ∩ Sk : j′ ≤ j}|.

This leads to a simple DP, using the following recursion, where we use
fj(X(j)) to denote the minimum cost associated with the first j jobs in any
schedule that can be represented by X(j):

fj(X(j)) = min
�∈[m]

⎧
⎨

⎩fj−1(X(j − 1, �)) +
∑

k∈[K]:j∈Sk

wj(1 + x�k(j − 1))

⎫
⎬

⎭ ,

where X(j−1, �) is the matrix X(j−1) from which X(j) is obtained by assigning
job j to machine �. Equivalently, X(j−1, �) is the matrix obtained from X(j) by
diminishing all positive entries in row � of X(j) by 1. It follows that X(j − 1, �)
has entries xik(j − 1) that satisfy x�k(j − 1) = x�k(j) − 1j∈Sk

for all k, and
xik(j − 1) = xik(j) for all i
= �, and all k. Therefore, the computation of each
state can be done in time O(mK).

We initialize f0(0) = 0 (where 0 denotes the all-zero matrix) and set
f0(X) = ∞ for any other possible X. Thus in each of the n phases (partial job
assignments) the number of possible states is bounded by (n + 1)m×K , which,
because m and K are constants, implies that the DP runs in polynomial time.

�	
The proof implies that the problem can be solved in time O(mKnmK+1),

which is polynomial given that m and K are constants in this particular case.

6.2 Any Number of Machines

In this section we develop another efficient algorithm for MinAvgSTC on an
arbitrary number of machines with a constant number of scenarios and unit job
weights. In contrast to the dynamic program presented in the proof of Theorem 5,

Total Completion Time Scheduling Under Scenarios 115

the running time is linear in n, the number of jobs, but polynomial in m with
the power a function of K, that is, the running time is of the form mh(K) · n for
some function h.

More importantly, the technique that we use here is new and we believe it
can be generalised to arbitrary job weights. For the time being it remains a
fascinating open question whether MinAvgSTC can even be solved efficiently
for arbitrary job weights. As we will explain, this is true under the assumption
that the following conjecture holds, which we do believe but can only prove for
the special case of unit job weights.

Conjecture 1. MinAvgSTC has an optimal solution such that for every scenario
k ∈ [K] and each j ∈ [n], the j largest jobs are assigned to the machines in such
a way that the difference in number of jobs assigned to each pair of machines is
bounded by a function g(K) of K only, or more formally

max
j∈[n],k∈[K]

{
max
i∈[m]

|{j′ ∈ Ji ∩ Sk : j′ ≤ j}| − min
i∈[m]

|{j′ ∈ Ji ∩ Sk : j′ ≤ j}|
}

≤ g(K).

We call the term on the left-hand side full disbalance of the schedule. To
adjust the DP to run in polynomial time for any number of machines under the
conjecture, we first observe that to compute a DP recursion step, the order of
the rows in each matrix X representing a partial schedule is irrelevant: we only
need to know how many machines have a certain number of jobs assigned to
them under each scenario, not exactly which machines.

A first step to encode partial schedules is using vectors � ∈ C ⊆ {0, . . . , n}K ,
where we call C the set of machine configurations. If a machine has configura-
tion �, it means that in the partial schedule �k jobs have been scheduled on this
machine in scenario k. We then simply represent a partial schedule by storing
the number of machines that have configuration �. We consider the space of
states that say how many machines have a certain configuration. We can further
compress this space by storing the smallest number of jobs on any machine in a
given scenario separately. That is

zk = min
i∈[m]

xik, k ∈ [K]

The crucial observation now is that under Conjecture 1, there is an optimal
solution such that for any partial schedule corresponding to that solution, 0 ≤
xik − zk ≤ g(K). We may therefore take C to be {0, . . . , g(K)}K , i.e., the excess
over zk, so that C has constant size for constant K. Furthermore, we define

y� =
∑

i|xik−zk=�k, k∈[K]

1, � ∈ C.

Since the entries of y are bounded by m and the entries of z are bounded
by n, the possible number of values for a pair (y, z) in the encoding above is
(m + 1)(g(K)+1)K (n + 1)K , yielding a polynomial time algorithm. Since the DP-
computation for each state in each phase (job assignment) is O(m) and there are

116 T. Bosman et al.

n consecutive job assignments in SPT-order in the DP, this yields a polynomial
time algorithm.

It is still open whether there exists an upper bound on the full disbalance of
the schedule depending only on K. In the following, we affirm this statement for
the case where all jobs have unit weights. Note that, in this case, the j largest
jobs are not well-defined. We therefore prove the stronger statement that for
any ordering of the jobs, the conjecture holds. To do so, we utilize the power of
integer programming, combining the theory of Hilbert bases with techniques of
an algorithmic nature.

Theorem 7. Conjecture 1 holds for unit weights and unit processing times,
where the jobs are given by an arbitrary (but fixed) order and the number m
of machines is part of the input.

The proof can be found in the full version.
One may wonder whether g(K) can be strengthened to be polynomial in K.

In the case of arbitrary weights, one can establish exponential lower bounds, for
which we refer to the full version of the paper as well.

7 Conclusion and Open Problems

We hope that our results inspire interest in the intriguing field of scenario
optimization problems. There are some obvious open questions that we left
unanswered. For example, is it true that MinMax versions are always harder
than MinAvg versions? For researchers interested in exact algorithms and fixed
parameter tractability (FPT) results we have the following question. For the
scheduling problems that we have studied so far within the scenario model, we
have seen various exact polynomial time dynamic programming algorithms for
a constant number of scenarios K, but always with K in the exponent of a
function of the number of jobs or the number of machines. Can these results be
strengthened to algorithms that are FPT in K? Or are these problems W[1]-
hard? Similarly, researchers interested in approximation algorithms may wonder
how approximability is affected by introducing scenarios into a problem. We
have given some first results here, but it clearly is a research area that has so
far remained virtually unexplored.

Another interesting variation of the MinAvg version is obtained by assigning
probabilities to scenarios (i.e., a discrete distribution over scenarios) with the
objective to minimize the expected total (weighted) completion time. The DPs
underlying the results of Theorems 5 and 6 easily generalize to this version.
However, Theorem 7 does not.

We see as a main challenge to derive structural insights why multiple (con-
stant number of) scenario versions are sometimes as easy as their single scenario
versions, like the MinAvg versions of linear programming or of the min-cut prob-
lem [4] or of the scheduling problem that we have studied here, and for other
problems, such as MinMaxSTC, become harder or even NP-hard.

Total Completion Time Scheduling Under Scenarios 117

Acknowledgements. We would like to thank Bart Litjens, Sven Polak, Llúıs Vena
and Bart Sevenster for providing a counterexample for a preliminary version of Con-
jecture 1, in which g(K) was a linear function. Moreover, we would like to thank the
anonymous referees for their valuable feedback and suggestions. Alberto Marchetti-
Spaccamela was supported by the ERC Advanced Grant 788893 AMDROMA “Algo-
rithmic and Mechanism Design Research in Online Markets”, and the MIUR PRIN
project ALGADIMAR “Algorithms, Games, and Digital Markets”. Ekin Ergen and
Martin Skutella were supported by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy—The Berlin Mathe-
matics Research Center MATH+ (EXC-2046/1, project ID: 390685689). Leen Stougie
was supported by NWO Gravitation Programme Networks 024.002.003, and by the
OPTIMAL project NWO OCENW.GROOT.2019.015.

References

1. Adamczyk, M., Grandoni, F., Leonardi, S., Wlodarczyk, M.: When the optimum
is also blind: a new perspective on universal optimization. In: 44th International
Colloquium on Automata, Languages and Programming, ICALP, volume 80 of
LIPIcs, pp. 35:1–35:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

2. Albers, S., Janke, M.: Online makespan minimization with budgeted uncertainty.
In: Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol. 12808, pp. 43–56.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83508-8 4

3. Mohamed Ali Aloulou and Federico Della Croce: Complexity of single machine
scheduling problems under scenario-based uncertainty. Oper. Res. Lett. 36(3), 338–
342 (2008)

4. Armon, A., Zwick, U.: Multicriteria global minimum cuts. Algorithmica 46(1),
15–26 (2006)

5. Austrin, P., Hastad, J., Guruswami, V.: (2 + ε)-SAT is NP-hard. In: Proceedings
of 55th Annual Symposium on Foundations of Computer Science, pp. 1–10. IEEE
(2014)

6. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization, vol. 28. Prince-
ton University Press, Princeton (2009)

7. Bertsimas, D., Jaillet, P., Odoni, A.R.: A priori optimization. Oper. Res. 38(6),
1019–1033 (1990)

8. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer,
Cham (2011). https://doi.org/10.1007/978-1-4614-0237-4

9. Bougeret, M., Jansen, K., Poss, M., Rohwedder, L.: Approximation results for
makespan minimization with budgeted uncertainty. Theory Comput. Syst. 65(6),
903–915 (2021)

10. Cho, W.-H., Shmoys, D.B., Henderson, S.G.: SPT optimality (mostly) via linear
programming. Oper. Res. Lett. 51(1), 99–104 (2023)

11. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-
Wesley Publishing Company, Boston (1967)

12. Eastman, W.L., Even, S., Isaacs, I.M.: Bounds for the optimal scheduling of n jobs
on m processors. Manage. Sci. 11(2), 268–279 (1964)

13. Feuerstein, E., et al.: Minimizing worst-case and average-case makespan over sce-
narios. J. Sched. 20, 1–11 (2016)

14. Goemans, M.X., Williamson, D.P.: Two-dimensional Gantt charts and a scheduling
algorithm of Lawler. SIAM J. Discret. Math. 13(3), 281–294 (2000)

https://doi.org/10.1007/978-3-030-83508-8_4
https://doi.org/10.1007/978-1-4614-0237-4

118 T. Bosman et al.

15. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
16. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.S.: On the costs and benefits of

procrastination: approximation algorithms for stochastic combinatorial optimiza-
tion problems. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 691–700. Society for Industrial and Applied Mathematics
(2004)

17. Kasperski, A., Kurpisz, A., Zieliński, P.: Parallel machine scheduling under uncer-
tainty. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo,
B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 300, pp. 74–83. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31724-8 9

18. Kasperski, A., Zieliński, P.: Single machine scheduling problems with uncertain
parameters and the OWA criterion. J. Sched. 19, 177–190 (2016)

19. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357
(2007)

20. Kleywegt, A.J., Shapiro, A., Homem-de-Mello, T.: The sample average approxima-
tion method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502
(2002)

21. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, Boston (1997)

22. Mastrolilli, M., Mutsanas, N., Svensson, O.: Single machine scheduling with sce-
narios. Theoret. Comput. Sci. 477, 57–66 (2013)

23. Megow, N., Verschae, J.: Dual techniques for scheduling on a machine with varying
speed. SIAM J. Discret. Math. 32(3), 1541–1571 (2018)

24. Schulz, A.S., Skutella, M.: Scheduling unrelated machines by randomized rounding.
SIAM J. Discret. Math. 15(4), 450–469 (2002)

25. Shabtay, D., Gilenson, M.: A state-of-the-art survey on multi-scenario scheduling.
Eur. J. Oper. Res. 310, 3–23 (2022)

26. Skutella, M.: Approximation and Randomization in Scheduling. PhD thesis, Tech-
nische Universität Berlin (1998)

27. van Ee, M., van Iersel, L., Janssen, T., Sitters, R.: A priori tsp in the scenario
model. Discret. Appl. Math. 250, 331–341 (2018)

28. Yang, J., Gang, Yu.: On the robust single machine scheduling problem. J. Comb.
Optim. 6(1), 17–33 (2002)

https://doi.org/10.1007/978-3-642-31724-8_9

Approximating Fair k-Min-Sum-Radii
in Euclidean Space

Lukas Drexler(B) , Annika Hennes , Abhiruk Lahiri , Melanie Schmidt ,
and Julian Wargalla

Heinrich-Heine-Universität, Düsseldorf, Germany
{lukas.drexler,annika.hennes,abhiruk.lahiri,mschmidt,

julian.wargalla}@hhu.de

Abstract. The k-center problem is a classical clustering problem in
which one is asked to find a partitioning of a point set P into k clusters
such that the maximum radius of any cluster is minimized. It is well-
studied. But what if we add up the radii of the clusters instead of only
considering the cluster with maximum radius? This natural variant is
called the k-min-sum-radii problem. It has become the subject of more
and more interest in recent years, inspiring the development of approx-
imation algorithms for the k-min-sum-radii problem in its plain version
as well as in constrained settings.

We study the problem for Euclidean spaces Rd of arbitrary dimension
but assume the number k of clusters to be constant. In this case, a PTAS
for the problem is known (see Bandyapadhyay, Lochet and Saurabh [4]).
Our aim is to extend the knowledge base for k-min-sum-radii to the
domain of fair clustering. We study several group fairness constraints,
such as the one introduced by Chierichetti et al. [15]. In this model, input
points have an additional attribute (e.g., colors such as red and blue),
and clusters have to preserve the ratio between different attribute values
(e.g., have the same fraction of red and blue points as the ground set).
Different variants of this general idea have been studied in the literature.
To the best of our knowledge, no approximative results for the fair k-
min-sum-radii problem are known, despite the immense amount of work
on the related fair k-center problem.

We propose a PTAS for the fair k-min-sum-radii problem in R
d of

arbitrary dimension d for the case of constant k. To the best of our
knowledge, this is the first PTAS for the problem. It works for differ-
ent notions of group fairness and for a more broad class of mergeable
constraints.

1 Introduction

The k-min-sum-radii problem (k-MSR for short) is a clustering problem that
resembles two well-known problems, namely the k-center problem and the k-
median problem. Given a set of points P and a number k, these problems ask for

Funded by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -
Project 456558332.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 119–133, 2023.
https://doi.org/10.1007/978-3-031-49815-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_9&domain=pdf
http://orcid.org/0000-0001-9395-6711
http://orcid.org/0000-0001-9109-3107
http://orcid.org/0009-0008-7556-3445
http://orcid.org/0000-0003-4856-3905
http://orcid.org/0000-0003-4583-7288
https://doi.org/10.1007/978-3-031-49815-2_9

120 L. Drexler et al.

a set C of k cluster centers and evaluate it according to the distances dmin(x) =
min{d(c, x) | c ∈ C} between points x and their closest center in C. The k-center
objective max{dmin(x) | x ∈ P} focuses on the radii of the resulting clusters,
while the k-median objective

∑
x∈P dmin(x) sums up all individual point’s costs.

In the latter case, large individual costs can average out and so in scenarios where
we really want to restrict the maximum cost an individual point can induce, k-
center is the better choice. However, looking only for a single maximum distance
completely ignores the fine-tuning of up to k − 1 smaller clusters.

The k-min-sum-radii problem goes an intermediate way: It looks for k cen-
ters c1, . . . , ck and corresponding clusters C1, . . . , Ck and sums up the radii, i.e.,
the objective is to minimize

∑k
i=1 maxx∈Ci

d(x, ci) (or in other words: to mini-
mize the average radius). This objective allows for the fine-tuning of all clusters
while still maintaining that the maximum cost of individual points is reason-
ably bounded (although it may be higher than for k-center by a factor of k).
Another variation, known as the k-min-sum-diameter problem, aims to mini-
mize the sum of the diameters of the clusters. The k-min-sum-radii problem has
a close connection with the base station placement problem arising in wireless
network design [22], where the objective is to minimize the energy required for
wireless transmission which is proportional to the sum of the radii of coverage
of the base stations. The mathematical model of this problem translates to the
minimum sum radii cover problem where we have a set of client locations and a
set of server locations. The objective is to cover the set of clients with a set of
balls whose centers are located at a subset of server locations such that the sum
of the radii of the balls is minimized.

There has been great interest in designing good approximation algorithms
for the k-min-sum-radii problem. Charikar and Panigrahy [13] give an O(1)-
approximation for the metric k-min-sum-radii problem (and the k-min-sum-
diameter problem) based on the primal-dual framework by Jain and Vazi-
rani for k-median. It was recently refined by Friggstad and Jamshidian [16] to
obtain a 3.389-approximation for k-min-sum-radii which is currently the best-
known approximation factor for the general case. For constrained k-min-sum-
radii, lower bounds, outliers and capacities have been studied. Ahmadian and
Swamy [1] built upon [13] to obtain a 3.83-approximation for the non-uniformly
lower bounded k-min-sum-radii problem. They also give a (12.365 + O(ε))-
approximation for k-MSR with outliers that runs in time nO(1/ε). Inamdar and
Varadarajan [21] derive a 28-approximation for the uniformly capacitated k-min-
sum-radii problem, but this algorithm is an FPT approximation algorithm with
running time O(2O(k2) · nO(1)). Bandyapadhyay, Lochet, and Saurabh [4] also
give an FPT-approximation: They develop a (4 + ε)-approximation algorithm
with 2O(k log(k/ε)) · n3 running time for k-MSR with uniform capacities and a
(15 + ε)-approximation algorithm for k-MSR with non-uniform capacities that
runs in time 2O(k2 log k) · n3.

In the Euclidean case, it is possible to obtain better results. In the plane,
every cluster in the optimal min-sum radii clustering lies inside some convex
polygon drawn from the solution centers that partition the plane into k disjoint

Approximating Fair k-Min-Sum-Radii in Euclidean Space 121

convex regions. The dual of that partition is an internally triangulated planar
graph. Capolyleas et al. [11] use this fact to enumerate over O(n6k) possible
solutions to solve the problem exactly for d = 2. Gibson et al. [18] also give an
exact algorithm for the Euclidean k-min-sum-radii problem in the plane. Their
algorithm is based on an involved dynamic programming approach and has a
running time of O(n881) for d = 2. Bandyapadhyay, Lochet and Saurabh [4] give a
randomized algorithm with running time 2O((k/ε2) log k) ·dn3 which outputs a (1+
ε)-approximation with high probability. Their algorithm can handle capacitated
k-min-sum-radii but allows the capacities to be violated by at most an ε-fraction.
They also present a PTAS for k-MSR with strict capacities for both constant k
and constant d with running time 2O(kd log(k

ε))n3.
In this paper, we advance the active research on fairness in clustering (see

[12,14] for surveys on the topic) and tackle the problem of k-min-sum-radii under
a variety of different group fairness notions. These notions assume that the data
points belong to different protected groups, represented by different colors. We
will denote the set of colors by H. For X ⊆ P and h ∈ H, let colh(X) ⊆ X
denote the subset of points within X that carry color h. Now the notion of exact
fairness requires that in every cluster the proportion of points of a certain color
is the same as their proportion within the complete point set, i.e., a clustering
C fulfills exact fairness if |colh(C)|

|C| = |colh(P)|
|P | for every color h ∈ H and cluster

C ∈ C . This notion is for example defined in [24]. Our method can handle exact
fairness but also other notions as it is indeed capable to handle the more general
class of mergeable constraints. A clustering constraint is mergeable if the union
C ∪ C ′ of any possible pair of clusters C,C ′ satisfying the constraint does itself
satisfy the constraint (cf. [2]). In other words, merging clusters does not destroy
the property of satisfying the constraint.

Important examples of mergeable constraints are (a) several fairness con-
straints (see the long version for a list), (b) lower bound constraints that require
every cluster to contain at least a certain fixed number of points, and (c) out-
liers (see the end of the paper) in which a fixed number z of points can be
ignored by any clustering (one can model this as a kind-of-mergeable constraint
by viewing it as a (k + z)-clustering with the constraint that at most k clusters
contain more than one point and the rest is singleton clusters). On the other
hand, upper bounds on the cardinality of clusters (capacities) are not mergeable
because merging clusters may violate the capacity constraint.

To the best of our knowledge, no results for k-min-sum-radii with fairness
constraints are known, neither in the Euclidean setting (PTAS) nor in the metric
setting (constant factor approximation) despite the huge amount of work on fair
k-center and fair k-median (cf. [6,7,9,10,15,19,24])1. The reason for this may be
that the k-min-sum-radii problem can behave quite counter-intuitively and has
properties unlike both the k-center and k-median problem. One such property is
that a k-min-sum-radii solution may actually cost more if we open more centers

1 The result by [11] might be extendable to the setting of fair k-min-sum-radii to
obtain an exact algorithm for constant k and d = 2, but an in-depth analysis would
be required to verify this idea.

122 L. Drexler et al.

Fig. 1. Left side: An example where k-min-sum-radii rather opens one cluster than
eleven. Right side: An example where the cheapest k = 2-clustering keeps c1 as a
singleton rather than combining it with x, despite the fact that c1 is closer to x than
the center c2 of the big cluster. It is cheaper to not assign the blue point to the orange
point even though that would be a closer center.

(see Fig. 1, left side) which cannot happen for (plain) k-center or k-median.
This is a problem for the design of fair clustering algorithms because for k-
center and k-median, these are built by computing fair micro-clusters (also called
fairlets) first and then assembling the final fair clustering from the micro-clusters
(cf. [15]). Another uncommon property of k-min-sum-radii is that even without
any constraints, assigning points to centers does not have the locality property:
It may be beneficial to assign to a further away center (see Fig. 1, right side). This
has been observed for other clustering objectives when side constraints enter the
picture, but for k-min-sum-radii, it already happens without any constraints.

Our Result. We present a simple PTAS for the Euclidean k-MSR problem with
mergeable constraints that works for constant k and arbitrary dimension d. In
particular, to the best of our knowledge, we provide the first approximate results
for fair k-MSR.

Theorem 1. For every ε ∈ (0, 1
2), there exists an algorithm that computes a

(1 + ε)-approximation for k-min-sum-radii with mergeable constraints in time
d · poly(n) · f(k, ε), if the corresponding constrained k-center problem has a
constant-factor polynomial time approximation algorithm. If no such k-center
approximation exists, the running time increases to d · npoly(k,1/ε) · f(k, ε) (The-
orem 2).

How We Obtain the PTAS. Our algorithm is based on an idea by Bădoiu,
Har-Peled, and Indyk [3] who obtain a PTAS for k-center. Contrary to other
k-center algorithms, the main idea of this algorithm – to iteratively construct
minimum enclosing balls around subsets of optimum clusters until all points are
covered – does carry over to k-MSR. However, we need to resolve significant
obstacles that are due to the more complex structure of k-MSR, as illustrated
in Fig. 1. In an optimal clustering, points do not necessarily get assigned to
their closest center, so we cannot derive a lower bound for the initial size of the

Approximating Fair k-Min-Sum-Radii in Euclidean Space 123

growing balls in the same manner as Bădoiu et al. This, however, is necessary
to upper bound the running time of the algorithm.

Our approach to repair the analysis is mainly based on proving that there
always exists a close-to-optimum k-MSR solution with a nice structure, as
described in Sect. 2.3: (1) The Minimum Enclosing Balls (MEBs) around all clus-
ters do not intersect, even if we enlarge all MEBs by some factor γ that depends
on ε. We call such a solution γ-separated. (2) The ratio between the smallest
and the largest radius in the solution is bounded by ε/k. We call a solution with
this property ε-balanced. Achieving (2) is straightforward, but establishing (1)
and (2) simultaneously requires a bit more work. Since we establish (1) mainly
by merging close clusters, this technique still works under mergeable constraints.

After proving the existence of an approximately optimal solution that is
sufficiently separated and balanced, we reconstruct this solution by adjusting the
approach of Bădoiu et al. [3] appropriately. To ensure an upper bound on the
running time, we have to extend their guessing oracle (that answers membership
queries) to also provide approximate radii for all clusters. How this is done is
outlined in Sect. 2.2. With the oracle in place, the structure of our algorithm is
as follows:

– Initialize Si = ∅ for i = 1, . . . , k and P ′ = P
– Ask the oracle for radii r̃1, r̃2, . . . , r̃k

– Repeat until P ′ = ∅:
1. Select an arbitrary point pi from P ′

2. Query the oracle for an index j and add pi to Sj

3. If |Sj | = 1: Remove all points from P ′ that are within distance ≈ εr̃j of
pi

4. If |Sj | > 1: Compute the minimum enclosing ball of Sj , enlarge it by an
appropriate factor and remove all points in the resulting ball from P ′

We show that the algorithm will stop after f(k, ε) iterations, resulting in a
PTAS for constant k. Figure 2 shows an example run of the algorithm and also
gives some details on what ‘≈ εr̃j ’ and ‘by an appropriate factor’ mean. The
respective constants are a result of the analysis and are discussed later.

Further Related Work. When k is part of the input, the metric k-min-sum-
radii problem is known to be NP-hard, as shown in [23]. The same paper gives
an exact algorithm with running time O(n2k/k!). Gibson et al. [17] provide a
randomized algorithm for the metric k-min-sum-radii problem that runs in time
nO(log n log Δ) where Δ is the ratio between the largest and the smallest pairwise
distance in the input and returns an optimal solution with high probability. They
also show NP-hardness even for shortest path metrics in weighted planar graphs
and for metrics of (large enough) constant doubling dimension. Bilò et al. [8] give
a polynomial time algorithm for the problem when the input points are on a line.
Behsaz and Salavatipour [5] show a polynomial time exact algorithm for the k-
min-sum-radii problem when the metric is induced by an unweighted graph and
no cluster contains only one point. Based on the constant-factor approximation

124 L. Drexler et al.

Fig. 2. Example run of the algorithm for ε = 0.2. In every iteration, the purple points
depict the points that were already chosen by the algorithm. For reference, the black
circles represent the true minimum enclosing balls of the subsets Si. These are not
computed in the algorithm, but only the (1 + ε)-approximations of these, depicted in
orange. The blue circles enclose the areas which we ignore when sampling new points.
That is, for singleton clusters, it is B(sj ,

ε
1+ε

r̃j), and once the algorithm found two
points from a cluster, it computes an approximate MEB and enlarges it by a factor of
γ = 1 + ε + 2

√
ε to obtain the new blue ball. (Color figure online)

for k-min-sum-radii by Charikar and Panigrahy [13] mentioned in the introduc-
tion, Henzinger et al. [20] develop a data structure to efficiently maintain an
O(1)-approximate solution under changes in the input.

For the k-center problem with exact fairness constraints as described ear-
lier, Bercea et al. [7] give a 5-approximation. Further, several balance notions
have been proposed. The simplest case with only two colors was proposed by
Chierichetti et al. [15]. It requires that the minimum ratio between different
colors within any cluster meets a given lower bound. For its most general for-
mulation, there exists a 14-approximation for the k-center variant [24]. The def-
inition by Böhm et al. [10] allows more colors but is stricter in that it demands
the portions of colors in a cluster to be of equal size. The authors show how the
k-center problem under this fairness notion can be reduced to the unconstrained
case while increasing the approximation factor by 2, leading to a polynomial-time
O(1)-approximation. They also give an O(npoly(k/ε))-time (1+ε)-approximation.
A more general notion by Bera et al. [6] allows the number of cluster members
of a certain color to lie in some color-dependent range. Harb and Shan [19] give
a 5-approximation for the k-center problem under this constraint.

Preliminaries. For a given center c ∈ R
d and radius r ∈ R≥0, define the

ball of radius r around c to be B
(
c, r

)
= {x ∈ R

d | ‖x − c‖ ≤ r}. We set
cost

(
B

(
c, r

))
= r. Let X ⊂ R

d be a set of points. We say that a ball B encloses
X if X ⊂ B. The ball with the smallest radius that encloses X is called the
minimum enclosing ball (MEB) of X and we denote it as MB(X). The cost of
X is defined as the cost of its minimum enclosing ball, cost(X) = cost(MB(X)).
A k-clustering C = {C1, . . . , Ck} of a given finite set of points P is a partitioning

Approximating Fair k-Min-Sum-Radii in Euclidean Space 125

of P into k disjoint (possibly empty) sets. Its cost is the sum of the costs of all its
individual clusters, i.e. cost(C) =

∑
i cost(Ci). Now we can define the Euclidean

k-min-sum-radii problem: Given a finite set of points P in the d-dimensional
Euclidean space R

d and a number k ∈ N, find a k-clustering of P with minimal
cost. We can also formulate the problem in the following form: Find at most
k centers c1, . . . , ck ∈ R

d and radii r1, . . . , rk ≥ 0 such that the union of balls
B(c1, r1)∪ . . .∪B(ck, rk) covers P and the sum of the radii

∑k
i=1 ri is minimized.

2 k-Min-Sum-Radii with Mergeable Constraints

Algorithm 1 gives a detailed description of our method. Instead of an oracle,
this pseudo code assumes that it is given a string u ∈ {1, . . . , k}∗ as answers
to membership queries and it is also given estimates for the radii r̃1, . . . , r̃k.
Despite looking a bit more technical, the algorithm follows the plan outlined
above: Iteratively construct balls to cover the point set. A ball shall always
cover exactly one optimum cluster (or approximately optimal cluster). It starts
out when the first point from that cluster is discovered. This point will be the
center of a small starting ball. The starting radius is related to the true radius of
the cluster (for which a good estimate has been provided). Whenever a point from
a cluster is discovered, the MEB around all its discovered points is computed
and the ball is increased to an enlarged version of that MEB. We are done when
all points are covered by the balls.

To set up the analysis, we introduce a few more definitions. In the prelimi-
naries, we have defined a clustering to be a partitioning of the underlying space.
In the following section, however, it will be helpful to occasionally conceive clus-
terings as collections of balls that cover P . To avoid confusion, we term the latter
coverings.

Definition 1. We say that a set of balls {B(
c1, r1

)
, . . .B

(
ck, rk

)} forms a cov-
ering of P , if P ⊆ ⋃

i B
(
ci, ri

)
. It is a disjoint covering, if B

(
ci, ri

)∩B
(
cj , rj

)
=

∅ for all i �= j.

The relation between coverings and clusterings, as it concerns this paper, is
straightforward. Every disjoint covering B1, . . . , Bk of P yields a unique corre-
sponding clustering C = {B1∩P, . . . , Bk∩P} of P . Conversely, every k-clustering
C = {C1, . . . , Ck} yields a corresponding covering {MB(C1), . . . ,MB(Ck)}.

We increase the size of the balls computed during Algorithm 1 by some
multiplicative factor to ensure that they grow reasonably fast, so we want them
to be not only disjoint but actually separated by some positive amount.

Definition 2. Let γ ≥ 1. Two balls B
(
c1, r1

)
and B

(
c2, r2

)
are said to be γ-

separated if B
(
c1, γr1

) ∩ B
(
c2, γr2

)
= ∅. A covering is γ-separated if all its

balls are pairwise γ-separated.

126 L. Drexler et al.

Algorithm 1: Selection

Input : An ordered set P ⊆ R
d, a number k ∈ N, a string

u ∈ {1, . . . , k}∗, a set {r̃1, . . . , r̃k} of k radii, a value 0 < ε < 1
Output: Balls B1, . . . , Bk ⊆ R

d, such that P ⊆ ⋃
j Bj

1 Si ← ∅ for i = 1, . . . , k;
2 γ ← 1 + ε + 2

√
ε;

3 X ← ∅; /* points that have been covered so far */

4 for i = 1, . . . , |u| do
5 I = {j | Sj = {sj} is a singleton};
6 R ← ⋃

j∈I B
(
sj ,

ε
1+ε r̃j

)
; /* put small balls around singletons

*/

7 Let pi be the point from P \ (X ∪ R) that is first in the order induced
by P ;

8 Sui
← Sui

∪ {pi};
9 if |Sui

| ≥ 2 then
10 B

(
c, r

) ← (1 + ε)-approximation of MB(Sui
);

11 Bui
← B

(
c, γr

)
;

12 X ← X ∪ (Bui
∩ P);

13 end

14 end
15 forall Si = {si} do
16 Bi ← B

(
si, 0

)
;

17 end
18 return B1, . . . , Bk;

2.1 The Main Algorithm and the Main Lemma

The following constitutes the main technical lemma. Claim 1(a) is mainly an
observation: For some sequence of oracle guesses (i.e., for some u ∈ {1, . . . , k}∗),
we always guess the cluster correctly and thus Si is always a subset of some
optimum cluster. In fact, in the end each Si can be viewed as a compact approx-
imation in the following sense: it is a small set whose MEB covers almost all
of its corresponding optimum cluster. Claims 1(b) and 1(c) state that during
the algorithm, the balls that are placed around the sampled points are always
disjoint. This is important for the rest of the analysis. Then Claim (2) and (3)
are the core part of the original analysis by [3]: Whenever we add a point, the
ball for the cluster grows by an appropriate factor, and once a certain threshold
of points has been reached, the ball covers the true cluster we are looking for.

Approximating Fair k-Min-Sum-Radii in Euclidean Space 127

Lemma 1. Let B = {B(
c∗
1, r∗

1

)
, . . . ,B

(
c∗
k, r∗

k

)} be an arbitrary covering of P
and r̃1, . . . , r̃k a set of radii such that r∗

i ≤ r̃i ≤ (1 + ε)r∗
i for all i ∈ {1, . . . , k}.

If B is (1 + ε)γ-separated, with γ ≥ 1 + ε + 2
√

ε, then there is an element
u ∈ {1, . . . , k}∗, such that

1. At each stage of Selection(P, k, u, {r̃1, . . . , r̃k}, ε), the following holds for all
i:
(a) Si ⊆ B

(
c∗
i , r∗

i

)
,

(b) B
(
c∗
j , (1 + ε)γr∗

j

) ∩ B
(
si,

ε
1+ε r̃i

)
= ∅ for all j �= i whenever Si = {si} is

a singleton,
(c) B

(
c∗
j , (1 + ε)γr∗

j

) ∩ Bi = ∅ for all j �= i.
2. With every addition of a new point, MB(Si) grows by a factor of at least

1 + ε2

16 .
3. For any index i it holds that B

(
c∗
i , r∗

i

) ⊂ Bi, at the latest when |Si| ≥ 32(1+ε)
ε3 .

Proof. 1. We construct u by recording the proper assignments in Selection.
This is possible because the algorithm is deterministic and because assign-
ments do not have to be specified before points have been selected. Dur-
ing the first iteration, if p1 ∈ B

(
c∗
i1

, r∗
i1

)
, set u1 = i1, and so on. Note

that the covering is disjoint, so this assignment is unambiguous. Obviously,
Si ⊆ B

(
c∗
i , r∗

i

)
has to hold for all i necessarily and (a) follows. To prove

(b), assume that there exists a singleton Si = {si} in the current iteration.
From the previous point, we know that si ∈ B

(
c∗
i , r∗

i

)
and so B

(
si,

ε
1+ε r̃i

) ⊂
B

(
si, εr∗

i

) ⊆ B
(
c∗
i , (1 + ε)r∗

i

)
. Since B is at least (1 + ε)-separated, this

proves the second point. To prove (c), we have to look at how each Bi is
constructed. We start with a (1 + ε)-approximation B

(
ci, ri

)
of MB(Si). By

definition, B
(
ci, ri

) ⊆ B
(
c∗
i , (1 + ε)r∗

i

)
and setting Bi = B

(
ci, γri

)
ensures

that Bi ⊆ B
(
c∗
i , (1 + ε)γr∗

i

)
. The claim thus again follows from the assump-

tion that B is (1 + ε)γ-separated.
2. This part of the proof does not deviate significantly from Bădoiu et al. [3].

The main difference is that we are working with (1 + ε)-approximations of
radii, which adds another layer of complexity. It can be found in the full
version of the paper.

3. Each ball Bi is a (1 + ε)γ-approximation of MB(Si). Since Si ⊂ B
(
c∗
i , r∗

i

)
in

each iteration, it follows that Bi ⊂ B
(
c∗
i , (1 + ε)γr∗

i

)
also holds throughout.

No other ball (neither from (b) nor (c)) can intersect B
(
c∗
i , r∗

i

)
and so, by

continually selecting new points, at some point B
(
c∗
i , r∗

i

) ⊂ Bi must hold.
We now want to show that this happens relatively quickly and that it is
necessary to add at most 32(1+ε)

ε3 points to Si until this state is reached. Of
course, it may happen that B

(
c∗
i , r∗

i

)
is covered at an earlier point in time

and that fewer points have to be added to Si. Assume that we get at least to
an iteration, where Si contains two points. Since we ignored all points that
were at a distance of at most ε

(1+ε) r̃i ≤ εr∗
i from the first selected point,

MB(Si) has to have an initial radius of at least ε
2(1+ε) r̃i ≥ εr∗

i

2(1+ε) . As we saw
in point (2), any subsequent additions of new points to Si further increase the

128 L. Drexler et al.

radius by a multiplicative factor of at least (1+ ε2

16). Combining both of these
observations gives us an upper bound on the number of iterations. First, note
that the initial radius of εr∗

i

2(1+ε) grows by at least ε2

16 · εr∗
i

2(1+ε) = ε3r∗
i

32(1+ε) when
the next point is added. Since the radii only grow larger, each subsequent
update also increases the radius by at least this amount. At the same time,
r∗
i is clearly an upper bound for the radius of MB(Si), so we can add at most
32(1+ε)

ε3 many points to Si. ��
This lemma shows that we can reconstruct well-separated coverings (or

rather, the corresponding clusterings) using a reasonably small oracle for the
assignments, given that we know the radii up to an ε-factor.

2.2 Guessing the Radii

Let us now consider how we can compute such approximate radii. We split this
problem into two parts. First, we guess the largest radius of the covering and in
the next step, we guess the remaining radii, assuming that they cannot be too
small compared to this largest radius.

There are two different approaches to guessing the largest radius. The first
one makes use of a relation between the largest radius in an optimal k-MSR
solution and the value of an optimal k-center solution. If we have access to a
constant-factor approximation algorithm for k-center under the given constraint,
we can use it to compute a candidate set of small size for the largest radius. The
second approach uses results from the theory of ε-coresets and works for arbitrary
mergeable constraints with the trade-off that the set of candidates is larger and,
in the end, depends exponentially on k. We focus on the first approach but refer
to the long version for the details and for the second approach. The following
lemma establishes a useful connection between k-center and k-MSR.

Lemma 2. Let rα denote the value of an α-approximate k-center solution and
r∗
1 the largest radius of a β-approximative k-MSR solution for the same instance.
Then it holds that r∗

1 ∈ [
rα

α , β · k2 · rα

]
, even if we impose the same clustering

constraints on both problems.

This means that, by running a (polynomial time) constant-factor approx-
imation algorithm for k-center, we can obtain an interval I which necessarily
contains the radius r∗

1 of the largest cluster in an optimal min-sum-radii solu-
tion. By utilizing standard discretization techniques, we are then able to obtain
a finite candidate set such that (a) its size only depends on ε, k, α and β, and
(b) it contains a (1 + ε)-approximation for each value in I. The details can be
found in the long version.

Once we have a guess for r∗
1 , we can apply a similar technique to obtain a

candidate set for the remaining radii. However, this requires that the other radii
are not too small in comparison. More precisely, we assume that the covering we
are interested in is ε-balanced. Later on, we will show that this requirement can
easily be met.

Approximating Fair k-Min-Sum-Radii in Euclidean Space 129

Definition 3. Let ε > 0. A covering {B(
c1, r1

)
, . . . ,B

(
ck, rk

)} of P is ε-
balanced, if ri ≥ ε

k max
j

rj for all i ∈ {1, . . . , k}.

Given such an ε-balanced covering, we can conclude this part with the fol-
lowing statement, whose proof can also be found in the long version.

Lemma 3. Let ε > 0 and let B∗ be an ε-balanced covering with radii r∗
1 , . . . , r

∗
k.

Then we can compute a set of size O(log(1+ε) k) that contains a number r1 with
r∗
1 ≤ r1 ≤ (1 + ε)r∗

1, and a set of size O(log(1+ε)
k
ε) that contains for each r∗

i ,
i ≥ 2, a number ri with r∗

i ≤ ri ≤ (1 + ε)r∗
i .

2.3 Cheap, Separable and Balanced Coverings

In the main technical lemma (Lemma 1), we have proven that Selection is
able to reconstruct well-separated coverings (clusterings), given approximate
values for the radii. How those latter approximations could be computed was
then outlined in Sect. 2.2. What now remains to be shown is that there actually
exist cheap, well-separated and balanced coverings, so that these results can be
applied.

Lemma 4. Let C = {C1, . . . , Ck} be a min-sum-radii solution for P . Then
for all ε > 0 and γ ≥ 1, there exists an ε-balanced and γ-separated covering
B = {B1, . . . , Bk′} of P with k′ ≤ k and cost(B) ≤ (1 + ε)kγk−1 cost(C).
Additionally, if C satisfies a given mergeable constraint, then so does the corre-
sponding clustering {B1 ∩ P, . . . , Bk′ ∩ P}.
Proof. Starting with {MB(C1), . . . ,MB(Ck)}, we construct B from C in phases
consisting of two steps: (1) merge balls that are currently too close to each other
and thus not γ-separated, (2) ensure that the current covering is ε-balanced
by increasing the radii of balls that are too small. The first step increases the
cost by a multiplicative factor of at most γ and the second by a multiplicative
factor of at most (1 + ε). Both steps are alternatively applied in phases until
the resulting clustering is both ε-balanced and γ-separated. Now, even though
step (1) might yield a covering that is neither ε-balanced nor γ-separated and
step (2) might yield a clustering that is not γ-separated, since the number of
balls reduces with every phase, except maybe the first, there can only be k
phases altogether. At that point, only one ball would remain and the clustering
necessarily has to satisfy both properties. The resulting covering will cost at
most (1 + ε)kγk−1 cost(C).

Let B1 = B
(
c1, r1

)
, . . . , Bk′ = B

(
ck′ , rk′

)
denote the covering that has been

constructed up to this point. For step (1), construct a graph G on top of B, where
two balls Bi and Bj are connected, iff ‖ci − cj‖ ≤ γ(ri + rj). In other words,
two balls are connected by an edge, if and only if they are not γ-separated.
We try to construct a γ-separated covering by merging all balls that belong
to the same connected component. This just means that we replace all balls
of the connected component with the minimal-enclosing-ball of the connected

130 L. Drexler et al.

component. Take any connected component Z of G and consider two arbitrary
points x, y ∈ ⋃

Bλ∈Z Bλ, say x ∈ Bi and y ∈ Bj . We can upper-bound the
distance between them as follows: For any path, Bi = Bi0 , . . . Bi�

= Bj in G
that connects Bi and Bj we have

‖x − y‖ ≤ ‖x − ci‖ +
�−1∑

λ=0

‖ciλ
− ciλ+1‖ + ‖y − cj‖

≤ ri + rj +
�−1∑

λ=0

γ(riλ
+ riλ+1) ≤ γ

∑

Bλ∈Z

2rλ

In other words, the radius of the resulting ball is larger than the sum of the
previous radii by a factor of at most γ. At this point, we might end up in a
situation similar to the one with which we started; there might again be balls
that are too close together and thus not γ-separate. However, we have reduced
the number of balls by at least one and so this step can be performed at most
k − 1 times.

For step (2) let ri1 , . . . , ri�
denote all radii with rij

< ε
k maxi ri. If we just set

rij
= ε

k maxi ri for all j ∈ {1, . . . , �}, this increases the cost of the covering by at
most � ε

k maxi ri ≤ ε maxi ri ≤ ε cost(C ′). The resulting covering is necessarily
ε-balanced. If it is not γ-separated we add another phase, starting with step (1).

��

Algorithm 2: Clustering

Input : An ordered set P ⊆ R
d, a number k ∈ N, a value 0 < ε < 1, a

(1 + ε)-approximation rmax for largest radius
Output: A (1 + ε)-approximative k-clustering C of P

1 C ← {P, ∅, . . . , ∅}; /* A feasible clustering to start with */

2 forall (r2, . . . , rk) ∈ {(1 + ε)i ε
k rmax | i ∈ {0, . . . , �log1+ε(

k
ε)�}}k−1 do

3 forall u ∈ {1, . . . , k} 32k(1+ε)
ε3 do

4 B1, . . . , Bk ← Selection(P, k, u, {rmax, r2, . . . , rk}, ε);
5 C ′ ← C1, . . . , Ck, where Ci = Bi ∩ P ;
6 if C ′ is a valid clustering and cost(C ′) < cost(C) then
7 C ← C ′;
8 end

9 end

10 end
11 return C ;

Approximating Fair k-Min-Sum-Radii in Euclidean Space 131

2.4 The Main Result

Now we are ready to prove the main theorem of this paper.

Theorem 1. For every ε ∈ (0, 1
2), there exists an algorithm that computes a

(1 + ε)-approximation for k-min-sum-radii with mergeable constraints in time
d · poly(n) · f(k, ε), if the corresponding constrained k-center problem has a
constant-factor polynomial time approximation algorithm. If no such k-center
approximation exists, the running time increases to d · npoly(k,1/ε) · f(k, ε) (The-
orem 2).

Proof. Set ε′ =
(

ε
12k

)2, γ = (1+ε′ +2
√

ε′) and let C opt be an optimal min-sum-
radii solution that satisfies the mergeable constraint. Lemma 4 shows that there
is a (1+ε′)γ-separated and ε′-balanced covering B∗ = {B

(
c∗
1, r∗

1

)
, . . . B

(
c∗
k, r∗

k

)}
with cost(B∗) ≤ (1 + ε′)kγk−1 cost(C opt). Denote the corresponding cluster-
ing by C ∗ = {B

(
c∗
1, r∗

1

) ∩ P, . . . ,B
(
c∗
1, r∗

1

) ∩ P} and assume that the balls
are ordered such that r∗

1 is the largest radius. Using Lemma 3, we can com-
pute approximate radii r̃1, . . . , r̃k, such that cost(C∗

i) ≤ r̃i ≤ (1 + ε′) cost(C∗
i)

for all i. Consider now, for u∗ as in Lemma 1, the variables at the end of
Selection(P, k, u∗, {r̃1, . . . , r̃k}, ε′). Since none of the Bi overlap and C∗

i ⊆ Bi

for all i, Algorithm 1 is able to fully reconstruct C ∗. Additionally, since the
length of u∗ does not exceed k 32(1+ε′)

ε′3 , this necessarily happens in one of the
iterations of Clustering(P, k, ε′, r̃1). As such, running Algorithm 2 for all possi-
ble guesses of maximal radii provided by Lemma 3 guarantees an approximation
ratio of (1 + ε′)kγk−1 ≤ (1 + 3

√
ε′)2k. Substituting ε′ =

(
ε

12k

)2, we get an
approximation ratio of (1 + 3

√
ε′)2k ≤ (1 + ε

4k)2k ≤ eε/2 ≤ 1 + ε for ε ≤ 1/2.
For the running time, we start by analyzing the time needed for one call

to Selection. Initializing the Si takes O(k) and so does the final loop in line
14. The main for-loop iterates over u, which has length 32k(1 + ε′)/ε′3. The
computation of the (1 + ε′)-approximation of the minimum enclosing balls in
line 9 can be done in O (|Sui

| · d/ε′) = O (d · poly(k, 1/ε′)) with the algorithm
from [25]. Thus, a single call to Selection takes O (d · poly(k, 1/ε′)).

In Clustering, we have two nested for-loops, that go through k
32k(1+ε′)

ε′3

and O
(
(log1+ε′(k/ε′))k−1

)
iterations respectively, in each of which Selection

is invoked. Line 6, which checks whether the clustering covers the whole set
and satisfies the constraint, takes at most O(poly(n)) time (depending on the
constraint, this time might even be linear in n). Thus, one call to Clustering
takes d · poly(n) · kO(poly(k,1/ε)) · (log1+ε′ poly(k, 1/ε))k−1 time.

Finally, Clustering has to be called for every candidate for rmax. There are
at most O(k + log1+ε γk−1k) such candidates and so the overall running time is
d · poly(n) · f(k, ε). ��

Using the other method of guessing the largest radius extends the result to
all mergeable clustering constraints. The trade-off is a worse running time.

Theorem 2. For every 0 < ε < 1/2, there exists an algorithm that computes
a (1 + ε)-approximation for min-sum-radii with mergeable constraints in time
d · npoly(k,1/ε) · f(k, ε).

132 L. Drexler et al.

Proof. We follow the arguments in Theorem 1, with the only difference being
the computation of the candidate set R for the largest radius. We show in the
long version how to compute a candidate set of size nO(1/ε′) that contains a
(1 + ε′)-approximation for the largest radius in time d

ε′2 nO(1/ε′). Substituting
ε′ =

(
ε

12k

)2, we get the purported runtime. ��

A Word on Outliers. We have stated the allowance of outliers as a mergeable
constraint in the introduction. Note, however, that there is one issue: When we
want to achieve ε-separation, we may not start to merge outliers into clusters
with more than one point. So clustering with outliers is not strictly mergeable.
However, the algorithm can be suitably adapted: Only make sure that the non-
outlier clusters are separated, and during the oracle calls, only let the oracle
decide whether a point is an outlier or not, and if not, to which cluster it belongs.
We do not derive the details of such an algorithm in this paper.

References

1. Ahmadian, S., Swamy, C.: Approximation algorithms for clustering problems with
lower bounds and outliers. In: Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming (ICALP), vol. 55, pp. 69:1–69:15
(2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.69

2. Arutyunova, A., Schmidt, M.: Achieving anonymity via weak lower bound con-
straints for k-median and k-means. In: Proceedings of the 38th International Sym-
posium on Theoretical Aspects of Computer Science (STACS), vol. 187, pp. 7:1–
7:17 (2021). https://doi.org/10.4230/LIPIcs.STACS.2021.7

3. Badoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
Proceedings on 34th Annual ACM Symposium on Theory of Computing (STOC),
pp. 250–257. ACM (2002). https://doi.org/10.1145/509907.509947

4. Bandyapadhyay, S., Lochet, W., Saurabh, S.: FPT constant-approximations for
capacitated clustering to minimize the sum of cluster radii. In: 39th International
Symposium on Computational Geometry (SoCG) (2023, to appear). https://doi.
org/10.48550/arXiv.2303.07923

5. Behsaz, B., Salavatipour, M.R.: On minimum sum of radii and diameters clus-
tering. Algorithmica 73(1), 143–165 (2015). https://doi.org/10.1007/s00453-014-
9907-3

6. Bera, S.K., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for cluster-
ing. In: Proceedings of the Annual Conference on Neural Information Processing
Systems (NeurIPS 2019), pp. 4955–4966 (2019). https://proceedings.neurips.cc/
paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html

7. Bercea, I.O., et al.: On the cost of essentially fair clusterings. In: Proceedings of
APPROX/RANDOM 2019, vol. 145, pp. 18:1–18:22 (2019). https://doi.org/10.
4230/LIPIcs.APPROX-RANDOM.2019.18

8. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering
to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA
2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005). https://doi.org/
10.1007/11561071 42

https://doi.org/10.4230/LIPIcs.ICALP.2016.69
https://doi.org/10.4230/LIPIcs.STACS.2021.7
https://doi.org/10.1145/509907.509947
https://doi.org/10.48550/arXiv.2303.07923
https://doi.org/10.48550/arXiv.2303.07923
https://doi.org/10.1007/s00453-014-9907-3
https://doi.org/10.1007/s00453-014-9907-3
https://proceedings.neurips.cc/paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fc192b0c0d270dbf41870a63a8c76c2f-Abstract.html
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://doi.org/10.1007/11561071_42
https://doi.org/10.1007/11561071_42

Approximating Fair k-Min-Sum-Radii in Euclidean Space 133

9. Böhm, M., Fazzone, A., Leonardi, S., Menghini, C., Schwiegelshohn, C.: Algo-
rithms for fair k-clustering with multiple protected attributes. Oper. Res. Lett.
49(5), 787–789 (2021)

10. Böhm, M., Fazzone, A., Leonardi, S., Schwiegelshohn, C.: Fair clustering with
multiple colors. arXiv preprint arXiv:2002.07892 (2020)

11. Capoyleas, V., Rote, G., Woeginger, G.: Geometric clusterings. J. Algo-
rithms 12(2), 341–356 (1991). https://www.sciencedirect.com/science/article/pii/
019667749190007L

12. Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv preprint
arXiv:2010.04053 (2020)

13. Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters.
J. Comput. Syst. Sci. 68(2), 417–441 (2004). https://doi.org/10.1016/j.jcss.2003.
07.014

14. Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in cluster-
ing. IEEE Access 9, 130698–130720 (2021)

15. Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through
fairlets. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

16. Friggstad, Z., Jamshidian, M.: Improved polynomial-time approximations for clus-
tering with minimum sum of radii or diameters. In: 30th Annual European Sym-
posium on Algorithms (ESA), vol. 244, pp. 56:1–56:14 (2022). https://doi.org/10.
4230/LIPIcs.ESA.2022.56

17. Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.R.: On met-
ric clustering to minimize the sum of radii. Algorithmica 57(3), 484–498 (2010).
https://doi.org/10.1007/s00453-009-9282-7

18. Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.R.: On cluster-
ing to minimize the sum of radii. SIAM J. Comput. 41(1), 47–60 (2012). https://
doi.org/10.1137/100798144

19. Harb, E., Lam, H.S.: KFC: a scalable approximation algorithm for k-center fair
clustering. Adv. Neural. Inf. Process. Syst. 33, 14509–14519 (2020)

20. Henzinger, M., Leniowski, D., Mathieu, C.: Dynamic clustering to minimize the
sum of radii. In: Proceedings of the 25th Annual European Symposium on Algo-
rithms (ESA), vol. 87, pp. 48:1–48:10 (2017). https://doi.org/10.4230/LIPIcs.
ESA.2017.48

21. Inamdar, T., Varadarajan, K.R.: Capacitated sum-of-radii clustering: an FPT
approximation. In: Proceedings of the 28th Annual European Symposium on Algo-
rithms (ESA), vol. 173, pp. 62:1–62:17 (2020). https://doi.org/10.4230/LIPIcs.
ESA.2020.62

22. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base sta-
tion coverage with minimum total radii. Comput. Netw. 47(4), 489–501 (2005).
https://doi.org/10.1016/j.comnet.2004.08.012

23. Proietti, G., Widmayer, P.: Partitioning the nodes of a graph to minimize the sum
of subgraph radii. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 578–587.
Springer, Heidelberg (2006). https://doi.org/10.1007/11940128 58

24. Rösner, C., Schmidt, M.: Privacy preserving clustering with constraints. In: 45th
International Colloquium on Automata, Languages, and Programming, (ICALP)
2018, vol. 107, pp. 96:1–96:14 (2018). https://doi.org/10.4230/LIPIcs.ICALP.
2018.96. arXiv:1802.02497

25. Yildirim, E.A.: Two algorithms for the minimum enclosing ball problem. SIAM J.
Optim. 19(3), 1368–1391 (2008). https://doi.org/10.1137/070690419

http://arxiv.org/abs/2002.07892
https://www.sciencedirect.com/science/article/pii/019667749190007L
https://www.sciencedirect.com/science/article/pii/019667749190007L
http://arxiv.org/abs/2010.04053
https://doi.org/10.1016/j.jcss.2003.07.014
https://doi.org/10.1016/j.jcss.2003.07.014
https://doi.org/10.4230/LIPIcs.ESA.2022.56
https://doi.org/10.4230/LIPIcs.ESA.2022.56
https://doi.org/10.1007/s00453-009-9282-7
https://doi.org/10.1137/100798144
https://doi.org/10.1137/100798144
https://doi.org/10.4230/LIPIcs.ESA.2017.48
https://doi.org/10.4230/LIPIcs.ESA.2017.48
https://doi.org/10.4230/LIPIcs.ESA.2020.62
https://doi.org/10.4230/LIPIcs.ESA.2020.62
https://doi.org/10.1016/j.comnet.2004.08.012
https://doi.org/10.1007/11940128_58
https://doi.org/10.4230/LIPIcs.ICALP.2018.96
https://doi.org/10.4230/LIPIcs.ICALP.2018.96
http://arxiv.org/abs/1802.02497
https://doi.org/10.1137/070690419

Online Hitting Set of d-Dimensional Fat
Objects

Shanli Alefkhani1, Nima Khodaveisi1, and Mathieu Mari1,2(B)

1 IDEAS-NCBR, Warsaw, Poland
2 University of Warsaw, Warsaw, Poland

mathieu.mari@lirmm.fr

Abstract. We consider an online version of the geometric minimum
hitting set problem that can be described as a game between an adversary
and an algorithm. For some integers d and N , let P be the set of points
in (0, N)d with integral coordinates, and let O be a family of subsets of
P , called objects. Both P and O are known in advance by the algorithm
and by the adversary. Then, the adversary gives some objects one by one,
and the algorithm has to maintain a valid hitting set for these objects
using points from P , with an immediate and irrevocable decision. We
measure the performance of the algorithm by its competitive ratio, that
is the ratio between the number of points used by the algorithm and the
offline minimum hitting set for the sub-sequence of objects chosen by the
adversary.

We present a simple deterministic online algorithm with competitive
ratio ((4α + 1)2d log N) when objects correspond to a family of α-fat
objects. Informally, α-fatness measures how cube-like is an object. We
show that no algorithm can achieve a better ratio when α and d are fixed
constants. In particular, our algorithm works for two-dimensional disks
and d-cubes which answers two open questions from related previous
papers in the special case where the set of points corresponds to all the
points of integral coordinates with a fixed d-cube.

Keywords: Online algorithms · Minimum hitting set · Euclidean
Plane

1 Introduction

The hitting set problem is one of the fundamental problems in combinatorial
optimization. Let (X,R) be a range space where X is a set of elements and R
is a family of subsets of X, |X| = n, |R| = m. A subset H ⊆ X is a hitting
set for R if and only if, for every range R ∈ R the intersection of H and R is
non-empty. In the offline setting, the goal is to find a hitting set of minimum
size. Note that by interchanging the roles of subsets and elements, the hitting
set problems is equivalent to the set cover problem. The hitting set problem is
a classic NP-hard problem [10], and the best approximation factor achievable in
polynomial time (assuming P �= NP) is Θ(log n) [3,7,9,12].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 134–144, 2023.
https://doi.org/10.1007/978-3-031-49815-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_10

Online Hitting Set of d-Dimensional Fat Objects 135

There is a line of work that considered the hitting set problem in a geometrical
setting. The set of elements X is a subset of points of the d-dimensional plane
R

d and R corresponds to a family of geometrical objects1, e.g., disks, squares,
rectangles, etc., for d = 2. The hitting set problem remains NP-hard even for
simple geometric objects like unit disks or unit squares in R

2 [8]. For some
families of geometric objects, there are better approximation ratios than for the
general case, e.g., a PTAS for axis-parallel squares and disks [13], and more
generally for fat objects in a fixed dimension [2].

In this paper, we consider an online version of the problem. It is convenient to
define this problem as a game between an adversary and an algorithm. Initially, a
range space (X,R) is known in advance by both the algorithm and the adversary.
The game consists of a series of turns until the adversary decides to stop the
game. In each turn, the adversary gives a subset R ∈ R, and the algorithm has
to choose a point p ∈ X, such that p ∈ R, if none of the points previously chosen
by the algorithm are contained in R. The algorithm is allowed to select several
points during the same turn and may decide to select new points even though
the current subset S is already hit by one of its previous points. The goal of the
algorithm is to minimize the total number of points selected at the end of the
game. See Fig. 1 for an illustration of this game. We measure the performance of
an algorithm by its competitive ratio, which corresponds to the ratio between the
number of points selected by the algorithm and the minimum size of a hitting
set of the sub-family of R given by the adversary during the game.

In the online setting, Alon et al. [1] introduced an (essentially) tight
O(log n log m)-competitive algorithm for the general case. There are also a few
works that considered the special case of geometrical objects. Even et al. [5]
presented an O(log n)-competitive algorithm for intervals (d = 1), for unit-
disks (d = 2), and later for half-planes in dimension two [6]. Khan et al. [11]
presented O(log N)-competitive algorithm for axis-parallel squares of arbitrary
sizes, assuming that all points have integral coordinates in [0, N)2. De et al. [4]
looked at the problem in dimension d, when the algorithm is allowed to use any
point of integral coordinates. They showed an O(d2)-competitive algorithm for
unit hypercubes and an O(d4)-competitive algorithm for unit balls in dimension
d. They also showed that any deterministic online algorithm for hypercubes has
a competitive ratio of at least d+1. Even and Smorodinsky also showed a lower
bound of Ω(log n) for intervals and arbitrary points [5].

In this paper, we are interested in two open questions mentioned in these
papers:

1. Can one obtain an o(log2 n)-competitive algorithm for disks (dimension
two)? [6]

2. Can one obtain an o(log n log m)-competitive algorithm for cubes (dimension
three)? [11]

1 to simplify, we consider that a subset of points D ⊆ X ⊆ R
2 is a disk (or a square, or

another type of geometric object) if there exists a disk D′ ⊂ R
2 such that D′∩X = D.

This allows us to consider a subset of X as a geometrical object.

136 S. Alefkhani et al.

Fig. 1. Here, the set of points X corresponds to the points of integral coordinates of
the Euclidean plane (small black dots). During the game, the adversary has given 5
subsets. In each turn, the algorithm has chosen one point (green) that is contained in
the object given by the adversary. In total, the algorithm has used 5 points while the
offline minimum hitting set consists of only two points (purple). (Color figure online)

1.1 Our Contribution

In this paper, we are interested in d-dimensional fat objects, that generalize
disks, squares, hypercubes, etc. An object O ∈ R

d is α-fat, for some α ≥ 1 if
the ratio of the sizes of the smallest hypercube containing O and the biggest
hypercube contained in O is at most α.

We answer the two open questions mentioned above in the case where X
corresponds to the set of points with integral coordinates that are contained
in a fixed hypercube. More precisely, let d and N be some integers. Let P =
(0, N)d ∩ Z

d be the set of points of integral coordinates that are contained in
(0, N)d. In particular n = |P | = (N − 1)d. Let O be a family of subsets of P .

Theorem 1. There is an ((4α+1)2d log N)-competitive algorithm for minimum
hitting set on (P,O) when O corresponds to a family of d-dimensional α-fat
objects in (0, N)d.

Notice that disks are
√

2-fat and cubes are 1-fat. Thus, Theorem 1 settles
both questions from the introduction in the affirmative.

This algorithm is O(log n)-competitive ratio for disks of arbitrary sizes in the
2-dimensional plane, and 3-dimensional cubes.

Our algorithm works as follows. It associates to each point in P a color in
{0, . . . , �log N	 − 1}. Then, when an object arrives, if it is already hit we do
nothing, otherwise we pick all the points with the maximum color inside the
object. Our coloring guarantees that we add at most (4α + 1)d points in each
step. We show that for each color l, and each point p in the offline solution, the

Online Hitting Set of d-Dimensional Fat Objects 137

adversary cannot give more than (4α + 1)d objects that are not already hit at
their arrival time, that contain p and are of level2 l. This will help us to prove
our competitive ratio.

We also show a lower bound of Ω(log N
1+log α) on the competitiveness of any

algorithm for the problem. This implies that no algorithm can achieve a better
ratio when α and d are fixed constants.

2 The Algorithm

In this section, we present our online algorithm for hitting set of d-dimensional
α-fat objects. We start with some useful definitions. Let d and N be two integers
and P be the set of points with integral coordinates in (0, N)d. A d-cube is an
axis-parallel d-dimensional hypercube. The width of a d-cube is the length of
any of its sides. For simplicity, we assume that all geometrical objects O ⊂ R

d

considered in this paper are open sets.

Definition 1 (α-fat). Let O ⊂ R
d. The in-width of O is the length of the

largest d-cube contained in O. The out-width of O is the length of the smallest
d-cube containing O. We say that O is α-fat, for some α ≥ 1 if the ratio of its
out-width over its in-width is at most α.

For instance d-disks are O(
√

d)-fat. Also, notice that d-cubes are 1-fat.

Definition 2 (level of a point). Let i ∈ N, we denote �(i) the maximum
number k such that i is a multiple of 2k. For a point x = (x1, . . . , xd) ∈ P , we
define the level of a point to be �(x) = mind

i=1 �(xi).

See Fig. 2 for an illustration of the levels of the points of P . We denote
L = {0, . . . , �log N	−1}. It is clear that for each point x ∈ P , we have �(x) ∈ L.

Definition 3 (level of an object). For a geometric object O ⊆ (0, N)d, we
define its level �(O) as the maximum level over all the points in O ∩P . For each
l ∈ L, we denote nl(O) as the number of points of level l in O ∩ P and n≥l(O)
the number of points of level at least l in O ∩ P .

We now describe the algorithm. We maintain a hitting set P ′ that is initially
empty. In each round, we are given an α-fat object O ⊆ (0, N)d.

– If O is already hit by a point in P ′, then we do nothing.
– Otherwise, we add all the points in P ∩ O that are of level �(O) to P ′.

It is clear that at the end of each turn, P ′ is a hitting set of the objects
given so far. Notice that in each step, the action made by the algorithm only
depends on P ′ and the current object, but not on the previous objects given by
the adversary.

Now we prove that the competitive ratio of this algorithm is ((4α +
1)2d log N).

138 S. Alefkhani et al.

Fig. 2. Levels of points in P for N = 16.

Lemma 1. The in-width of an object O ⊆ (0, N)d is less than 2�(O)+1.

See Fig. 3 for an example.

Proof (Proof of Lemma 1.) Let l = �(O). We define SO as the largest d-cube
contained in O. We assume for the sake of a contradiction that the width of SO is
at least 2l+1 and we show that there exists a point q ∈ SO such that �(q) ≥ l+1.
Since the width of SO is at least 2l+1, for each i, 1 ≤ i ≤ d, there exists an integer
ki, such that the hyperplane with i-th coordinate ki2l+1 intersects SO. Then,
the q = (k12l+1, . . . , kd2l+1) is contained in SO, and its level is �(q) ≥ l+1. This
proves the lemma.

Corollary 1. Let O ⊆ (0, N)d be an α-fat object, for some α ≥ 1. Then, the
out-width of O is at most 2�(O)+1α.

Lemma 2. Let l ∈ L and α ≥ 1. A d-cube of width at most α2l+2 contains at
most (4α + 1)d points of level l.

See Fig. 4 for an example.

Proof (Proof of Lemma 2). Let C ⊆ (0, N)d be a d-cube of width w ≤ α2l+2.
For each i, 1 ≤ i ≤ d, let Λi be the set of integers λ such that (i) λ is a multiple
of 2l and, (ii) the hyperplane whose i-th coordinate is λ intersects C. For each
i, 1 ≤ i ≤ d, we have |Λi| ≤ w

2l
+ 1 ≤ 4α + 1.

It is easy to see that
∏d

i=1 Λi is the set of points of C that are of level at
least l. Thus,

nl(C) ≤ n≥l(C) ≤ |
d∏

i=1

Λi| =
d∏

i=1

|Λi| ≤ (4α + 1)d.

This finishes the proof.

2 The level of an object is the maximum color of the points contained inside it.

Online Hitting Set of d-Dimensional Fat Objects 139

Fig. 3. This figure shows an object O of level l = 2 in dimension two. N = 16 and the
in-width of O is 7 ≤ 2l+1.

Corollary 2. Let O ⊆ (0, N)d be an α-fat object for some α ≥ 1. Then,
n�(O)(O) ≤ (4α + 1)d.

We now analyze the competitive ratio of our algorithm and show the following
bound.

Lemma 3. Our algorithm is ((4α + 1)2d log N)-competitive.

Proof. Let S ⊆ O denote the sequence of objects given by the adversary and
S ′ ⊆ S denotes the sub-sequence of objects that are not already hit at their
arrival. For each O ∈ S, our algorithm picks the points of level �(O) inside O if
O is not already hit, i.e., if O ∈ S ′. By Corollary 2, we know that O contains at
most (4α + 1)d points of level l, and thus, our algorithm returns a hitting set of
size

|P ′| ≤ |S ′|(4α + 1)d (1)

We now establish an upper bound on the size of the minimum hitting set OPT ⊆
P of S.

For each l ∈ L and each p ∈ P , we denote S ′
l,p ⊆ S ′ the set of objects of level

l in S ′ that contain p.

Claim. |S ′
l,p| ≤ (4α + 1)d.

Assume for the sake of a contradiction, that |S ′
l,p| > (4α + 1)d. We denote Bp

as the d-cube of width 2l+2α centered in p. By Lemma 2, we know that there
are at most (4α + 1)d points of level l in Bp. Also, it is clear by Corollary 1
that any object of level l containing p is inside Bp. Then, by the pigeonhole
principle, there are two objects O,O′ ∈ S ′

l,p such that they both contain the
same point q of level l. See Fig. 5. Without loss of generality, let us assume that
O arrived before O′ in the sequence of objects given by the adversary. Then, our
algorithm picks q when O arrives since both O and q have level l. On the other
side, we know that q ∈ O′, meaning that O′ is already hit when it is given by

140 S. Alefkhani et al.

Fig. 4. In this figure, O is a two-dimensional disk. In particular, O is α-fat for α =
√

2.
Let l = 1. The smallest 2-cube containing O is C, which has width less than 11 ≤
α2l+2 ≈ 11.31. The number of points of level l contained in C is 27 ≤ (4

√
2 + 1)2 ≈

44.31.

the adversary, which is a contradiction with the fact that O′ is in S ′. Therefore,
for each l ∈ L and each p ∈ P , we have |S ′

l,p| ≤ (4α + 1)d.
Since OPT is a hitting set for S, it is also an hitting set for S ′, which implies

that
S ′ ⊆

⋃

p∈OPT

⋃

l∈L
S ′

l,p.

With the previous upper bound on the size of S ′
l,p, we obtain that

|S ′| ≤ |OPT| · |L| · (4α + 1)d ≤ |OPT| · (�log N) · (4α + 1)d,

which together with the bound of Eq. (1) implies that our algorithm is ((4α +
1)2d log N)-competitive.

3 Lower Bound

In this section, we prove the lower bound for the problem (Theorem 2). For any
object O ⊂ R

d, we say that object O′ ⊂ R
d is a dilation of O if it is the result

of a translation and a homothety of O with positive scale factor. More formally,
O′ is a dilation of O if there exists β > 0 and translation vector v such that
O′ = βO+v. Let D(O) denote the set of dilations of O. Notice that if O is α-fat,
for some α ≥ 1, then a dilation of O is also α-fat.

Recall that the online hitting set problem can be formalized as a game
between an adversary and an algorithm.

Theorem 2. Consider the range space (P,D(O)), for any α-fat object O ⊂ R
d.

The adversary has a strategy that forces the algorithm to place at least log N
1+log α

points, whereas the optimum offline solution only requires one point.

Online Hitting Set of d-Dimensional Fat Objects 141

Fig. 5. Here, l = 2. We show in the proof of Lemma 3 that the adversary gave two
objects O and O′ of level l = 2, containing a common point p, that share a common
point q of level two. This cannot happen if O and O′ are both not already hit at their
arrival time.

Proof. The adversary produces a sequence O1, O2, . . . , Os ∈ D(O) as follows. In
the first step, the adversary chooses O1 ∈ D(O) such that the smallest d-cube
enclosing O1 is (0, N)d. Then, for each j ≥ 1, the adversary does the following.
At step j, with j ≥ 2, let Oj be the largest dilation of O that is contained in
Oj−1 and that does not contain any point from the algorithm. If Oj does not
contain any point in P , the game ends. Otherwise, the adversary gives Oj to the
algorithm; See Fig. 6.

Let O1, O2, . . . , Os be the sequence of objects obtained at the end of the
game. Since O1 ⊇ O2 ⊇ · · · ⊇ Os, and there exists a point p ∈ P ∩ Os, the set
{p} is a hitting a hitting set of {O1, O2, . . . , Os}.

Now we give a lower bound on the number of points used by the algorithm.
For each j, 1 ≤ j ≤ s, let kj be the number of points added by the algorithm
during step j. It is clear that the algorithm uses in total

∑s
j=1 kj points. We

show that
∑s

j=1 kj ≥ log N
1+log α .

For each j, 1 ≤ j ≤ s, let Cj (C ′
j) be the smallest (largest, resp.) d-cube

containing (contained in, resp.) Oj and let wj (w′
j , resp.) denote its width. Notice

that wj (w′
j) is the out-width (in-width, resp.) of Oj . See Fig. 7. We claim that

wj+1 ≥ wj

α(kj+1) .
Let Pj be the set of points from the algorithm that are contained in C ′

j at
the end of step j. We have |Pj | ≤ kj since Oj is not already hit at the beginning
of step j, and the algorithm adds kj new points during that step. We prove that

there exists a d-cube of width at least � w′
j

kj+1	 inside C ′
j which does not contain

any points of Pj . Let p = (x1, . . . , xd) be a corner of C ′
j such that for any other

point p′ = (x′
1, . . . , x

′
d) ∈ C ′

j and any 1 ≤ i ≤ d, we have xi ≤ x′
i. For each i,

1 ≤ i ≤ d, consider the set of kj +1 intervals {[xi +h
w′

j

kj+1 , xi +(h+1) w′
j

kj+1] | 0 ≤
h ≤ kj , h ∈ Z}. Since |Pj | ≤ kj , there exists an integer 0 ≤ hi ≤ kj such that

the i-th coordinate of every point in Pj is not in (xi +hi
w′

j

kj+1 , xi +(hi +1) w′
j

kj+1).

142 S. Alefkhani et al.

Fig. 6. This figure illustrates the strategy of the adversary. In each turn, the adversary
finds the biggest dilation of O that is not hit by any point inside the previous object.
The points with the same number are the set of points chosen by the algorithms in
each step.

Therefore, if we consider the d-cube Sj =
∏d

i=1[xi + hi
w′

j

kj+1 , xi + (hi + 1) w′
j

kj+1],

Sj does not contain any points of Pj , and the width of Sj is w′
j

kj+1 which implies

that wj+1 would be at least w′
j

kj+1 (See Fig. 7). Also, note that Sj is inside C ′
j .

Moreover, since Oi is α-fat, we have wj+1 ≥ w′
j

kj+1 ≥ wj

α(kj+1) .
We conclude that ws+1 ≥ w1

αs
∏s

j=1(kj+1) = N
αs

∏s
j=1(kj+1) . Also, it is obvious

that the adversary stops when ws+1 ≤ 1. Hence N
αs

∏s
j=1(kj+1) ≤ ws+1 ≤ 1 and

since (1 + x) ≤ ex for all x ∈ R, it holds that

N ≤ αs
s∏

j=1

ekj = es log α+
∑s

j=1 kj .

Now, we apply log to this equation, and we obtain log N ≤ s log α +
∑s

j=1 kj .
Also, recall that for each j, 1 ≤ j ≤ s, Oj is not hit at the time of its arrival so we
have kj ≥ 1, which implies s ≤ ∑s

j=1 kj . Therefore, we obtain log N
1+log α ≤ ∑s

j=1 kj

which finishes the proof.

Online Hitting Set of d-Dimensional Fat Objects 143

Fig. 7. This figure shows the existence of a d-cube of width at least
wj

α(kj+1)
at the end

of j-th step of the game that does not contain any point of the algorithm. Red points
are the points chosen by the algorithm in the j-th step.

4 Conclusion

We have presented a tight O(log n)-competitive algorithm for the online hitting
set problem of fat objects of fixed dimension and fixed aspect ratio, when the
set of points corresponds to all the points of integral coordinates contained in a
fixed hypercube of width N = n1/d. We finish with some open questions.

– For any d, when the algorithm is allowed to use any point in Z
d ∩ (0, N)d,

can one either design an online algorithm for α-fat objects with a better
competitive ratio than ((4α+1)2d log N) or improve the lower bound of log N

1+log α
to tighten the gap?

– When d = 2, and the algorithm is allowed to use any point in a fixed square of
width N , can one design an online algorithm for rectangles with competitive
ratio O(log N)?

– When d = 2, and the set of points is a fixed subset (known in advance) P ⊆
Z
2 ∩ (0, N)2, can one design an online algorithm for disks with competitive

ratio O(log N)?
– When d = 3, and the set of points is a fixed subset (known in advance) P ⊆
Z
3 ∩ (0, N)3, can one design an online algorithm for 3-cubes with competitive

ratio O(log N)?
– When d = 2, and the set of points is a fixed subset (known in advance) P ⊆ R

2

of size n, can one design an online algorithm for squares with competitive ratio
O(log n)?

144 S. Alefkhani et al.

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set
cover problem. SIAM J. Comput. 39(2), 361–370 (2009). https://doi.org/10.1137/
060661946

2. Chan, T.M.: Polynomial-time approximation schemes for packing and pierc-
ing fat objects. J. Algorithms 46(2), 178–189 (2003). https://doi.org/10.
1016/S0196-6774(02)00294-8, https://www.sciencedirect.com/science/article/pii/
S0196677402002948

3. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979). https://doi.org/10.1287/moor.4.3.233

4. De, M., Singh, S.: Hitting geometric objects online via points in Z
d. In: Zhang, Y.,

Miao, D., Möhring, R.H. (eds.) COCOON 2022. LNCS, vol. 13595, pp. 537–548.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22105-7 48

5. Even, G., Smorodinsky, S.: Hitting sets online and vertex ranking. In: Demetrescu,
C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 347–357. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5 30

6. Even, G., Smorodinsky, S.: Hitting sets online and unique-max coloring. Discret.
Appl. Math. 178, 71–82 (2014). https://doi.org/10.1016/j.dam.2014.06.019

7. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998). https://doi.org/10.1145/285055.285059

8. Fowler, R.J., Paterson, M., Tanimoto, S.L.: Optimal packing and covering in the
plane are np-complete. Inf. Process. Lett. 12(3), 133–137 (1981). https://doi.org/
10.1016/0020-0190(81)90111-3

9. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974). https://doi.org/10.1016/S0022-0000(74)80044-9

10. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer
Computations, held 20–22 March 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA, pp. 85–103. The IBM Research Sym-
posia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9

11. Khan, A., Lonkar, A., Rahul, S., Subramanian, A., Wiese, A.: Online and dynamic
algorithms for geometric set cover and hitting set. CoRR abs/2303.09524 (2023).
https://doi.org/10.48550/arXiv.2303.09524

12. Lovász, L.: On the ratio of optimal integral and fractional covers. Discret. Math.
13(4), 383–390 (1975). https://doi.org/10.1016/0012-365X(75)90058-8

13. Mustafa, N.H., Ray, S.: PTAS for geometric hitting set problems via local search.
In: Hershberger, J., Fogel, E. (eds.) Proceedings of the 25th ACM Symposium on
Computational Geometry, Aarhus, Denmark, 8–10 June 2009, pp. 17–22. ACM
(2009). https://doi.org/10.1145/1542362.1542367

https://doi.org/10.1137/060661946
https://doi.org/10.1137/060661946
https://doi.org/10.1016/S0196-6774(02)00294-8
https://doi.org/10.1016/S0196-6774(02)00294-8
https://www.sciencedirect.com/science/article/pii/S0196677402002948
https://www.sciencedirect.com/science/article/pii/S0196677402002948
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1007/978-3-031-22105-7_48
https://doi.org/10.1007/978-3-642-23719-5_30
https://doi.org/10.1016/j.dam.2014.06.019
https://doi.org/10.1145/285055.285059
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/S0022-0000(74)80044-9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.48550/arXiv.2303.09524
https://doi.org/10.1016/0012-365X(75)90058-8
https://doi.org/10.1145/1542362.1542367

Approximation Schemes Under Resource
Augmentation for Knapsack and Packing

Problems of Hyperspheres
and Other Shapes

Vı́tor Gomes Chagas , Elisa Dell’Arriva(B) , and Flávio Keidi Miyazawa

Institute of Computing, Universidade Estadual de Campinas, Campinas, Brazil
{vitor.chagas,elisa.arriva,fkm}@ic.unicamp.br

Abstract. The problems we investigate consist in packing hyperspheres
in bins optimizing some resource, such as minimizing the number or the
size of the bins, or maximizing the total profit associated with the packed
items. We present an approximation scheme under resource augmenta-
tion for the circle knapsack problem, i.e., a polynomial-time algorithm
that, for any constant ε > 0, obtains a solution whose value is within
a factor of 1 − ε of the optimal value, using augmented bins of height
increased by a factor of ε. To the best of our knowledge, this is the first
approximation scheme for this problem. Additionally, our technique can
be extended to accomplish PTASs for other packing problems, like the
multiple strip packing problem and the problem of minimizing the size
of the bins. Our technique is not restricted to circles and hyperspheres,
working for items, bins and strip bases of different convex shapes, such as
squares, regular polygons with bounded number of sides, ellipses, among
others, and for their generalizations to the d-dimensional case, for con-
stant d.

Keywords: Multiple knapsack · Hypersphere packing · Resource
augmentation · PTAS

1 Introduction

Hypersphere packing problems consist in packing hyperspheres in bins optimiz-
ing some resource, such as minimizing the number or the size of the bins and
maximizing the profit associated with the packed items. From the mathemati-
cal viewpoint, the problem of packing spheres in the Euclidean space has been
investigated for centuries and poses a great challenge. For instance, in the 17th
century, Kepler [23] conjectured a bound on the average density of any pack-
ing of spheres in the three-dimensional Euclidean space. This remained an open
question for centuries until, only in 2006, Hales [16] presented a formal proof
in the affirmative. More recently, Viazovska [31] gave an optimal packing of
equal spheres in the 8-dimensional space, which was extended to 24 dimensions
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 145–159, 2023.
https://doi.org/10.1007/978-3-031-49815-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_11&domain=pdf
http://orcid.org/0000-0002-6506-4174
http://orcid.org/0000-0002-7505-5386
http://orcid.org/0000-0002-1067-6421
https://doi.org/10.1007/978-3-031-49815-2_11

146 V. G. Chagas et al.

by Cohn et al. [12]. From the computational angle, it is known that several
geometric packing problems are NP-hard [5,13,14,24,25]. Nevertheless, there
are many heuristics and exact algorithms for the problem of maximizing the
packing density [2,7,15,19,30], as well as for the problem of minimizing the
size of the container [1,6,8,9,32]. We refer the reader to the survey of Hifi and
M’Hallah [18].

In the context of approximation algorithms, however, the literature is not
so vast and most of the results regard rectangular shapes and d-dimensional
boxes. For packing rectangles into rectangular bins, the best-known result is
an asymptotic 1.405-approximation due to Bansal and Khan [4], while in the
d-dimensional context, there is an APTAS for the hypercube bin packing prob-
lem, given by Bansal et al. [3]. For the rectangle strip packing, Keynon and
Rémila [22] gave an APTAS. We refer the reader to the works of Christensen et
al. [10] and Coffman et al. [11] for an extensive review. Regarding the knapsack
variant, Jansen et al. [20] gave a PTAS for the problem of packing hypercubes
in a multidimensional knapsack. Merino and Wiese [27] studied the packing of
convex polygons and gave a quasi-polynomial-time constant approximation algo-
rithm, as well as a quasi-polynomial-time algorithm that computes a solution of
optimal value under resource augmentation in all dimensions. For the hyper-
sphere bin and strip packing problems, Miyazawa et al. [28] gave an APTAS
under resource augmentation in only one dimension. Their technique extends to
items and containers of varied convex forms, such as spheres under the Lp-norm,
hypercubes, and other regular polytopes. Lintzmayer et al. [26] derived a PTAS
under resource augmentation for the particular case of the circle knapsack prob-
lem where the profits of the circles are their respective area (note that, in this
case, the objective becomes to maximize the packing density). For a review of
techniques for circle and hypersphere packing, we recommend the survey due to
Miyazawa and Wakabayashi [29].

In this paper, we present a technique that leads to approximation schemes
for several packing problems, comprising objective functions that range from
maximization of profits to minimization of occupied volume. We now describe
the problems covered by our technique. In the hypersphere knapsack problem, we
have a collection of hyperspheres associated with profits and a hyperrectangular
knapsack, and the objective is to pack a subset of the hyperspheres maximizing
the sum of the profits of the packed items. For this problem, we give an approx-
imation scheme under resource augmentation in only one dimension, i.e., given
a constant ε > 0, our algorithm finds a packing of profit at least 1 − O(ε) of the
optimal value in a knapsack whose height is increased by a factor of ε of the origi-
nal height. With some increments, our technique can be applied to other versions
of packing problems. Namely, we derive an approximation scheme under resource
augmentation for the hypersphere multiple knapsack problem, in which we have
m hyperrectangular knapsacks, rather than just one; we also achieve PTASs for
the hypersphere multiple strip packing problem, in which all the hyperspheres
must be packed in at most m strips with a hyperrectangular base and minimum
height, and the hypersphere multiple minimum-sized bin problem, in which we

Approximation Schemes for Hypersphere Knapsack and Packing Problems 147

want to pack all the hyperspheres into at most m hypercubes of minimum side
length. We make use of an algebraic system to check the feasibility of a packing
of a set of items into one bin. This allows generalizations to items and bins of
other shapes, such as regular polygons with bounded number of sides, ellipses,
among others, as well as for their correspondents in the d-dimensional case, for
constant d.

In the following, we summarize the main ideas behind our technique. We
first show that there is an almost optimal packing that respects some convenient
structural properties. In short, the process is as follows: The spheres are par-
titioned into groups according to their radii, then a low-profit subset of these
groups is discarded (by guessing) so that the remaining spheres can be organized
in sets S0, S1, S2..., where the spheres of Sj are much smaller than the spheres
of Sj−1, for j ≥ 1. Then, we strategically consider bins of appropriate size for
each Sj to guarantee that bins used to pack Sj are small compared to the cir-
cles of Sj−1. Finally, we show how to modify an optimal solution to obey such
properties, obtaining what we call a structured packing, while losing little profit
and using resource augmentation. We then proceed to give an algorithm that
obtains a good structured packing.

In a structured packing, we can look at the spheres as if they were in levels,
each Sj defining one level. If we needed to pack all the spheres minimizing the
occupied volume, such as in the bin packing problem, a good strategy would
be to independently pack each Sj in their corresponding bins, filling each bin
as much as possible, and then distribute bins of further levels (with smaller
items) in the space left free in bins of previous levels (with bigger items). For
the knapsack problem, however, such greedy approach is not sufficient. Since the
available volume is limited by the capacity of the knapsack and we need to select
a subset of items in respect to their profits, the best local choices for each level
may not be the best choices for the overall packing. If we have small items that
are much more profitable than some big items, for instance, it may be a better
choice to pack fewer of the bigger items, leaving extra free space to pack more of
the smaller but more profitable items. This aspect makes the knapsack problem
more complex, forcing us to design a more sophisticated strategy. Our technique
makes use of a combination of configuration-based integer programs. A first IP
is used to obtain an optimal global solution that gives us two crucial bounds:
the amount of volume used for each level, and the amount of volume left free
to subsequent levels. Then, once fixed a level, a second IP is used to obtain an
optimal solution that respect the bounds obtained previously. This guarantee
that, despite packing levels independently, each one uses the same amount of
volume as in a globally optimal solution, while the objective function of the IP
certifies that the most profitable items are chosen. The need for this approach
in two phases arises from the fact that the fractional solution given by the linear
relaxation of the first IP may have many non-null variables concentrated in just
one level. This becomes a problem due to the rounding strategy we adopt. We
simply round the value of each fractional variable up to the next integer, which
results in extra bins that need to be accommodated in the knapsack (thus the

148 V. G. Chagas et al.

resource augmentation). If the non-null variables are concentrated in just one
level, specially if in a level of big items, then the accommodation of the extra
bins may require a too large of an increase in the size of the knapsack. To the
best of our knowledge, our approach with integer linear programs in two phases
is new in the context of the packing problems investigated in this work.

The text is organized as follows. In Sect. 2, we introduce preliminaries con-
cepts and definitions. In Sect. 3, we present our main results. Finally, in Sect. 4
we offer some thoughts on the problems addressed in this work.

2 Preliminaries

Given an integer n, we write [n] = {1, . . . , n}, and given an n-dimensional vector
x = (x1, . . . , xn), we define the ceil of x as �x� = (�x1�, . . . , �xn�). We assume
that all objects lie in the Euclidean space. If p and q are two points in the plane,
their Euclidean distance is denoted by dist(p, q). Given a set S = {s1, . . . , sn} of
n circles, we denote the radius and the diameter of each circle si ∈ S by ri and
di, respectively. For a rectangle B of rational width w and height h, we write
Bw×h and we call w × h the size of B. When the context is clear, we may omit
the size from the notation. If D is a circle or a rectangle, we denote its area by
Area(D). If D is a set of circles or rectangles, then Area(D) =

∑
A∈D Area(A).

A packing of a set of circles into bins consists in an attribution of the center
position of each circle to rational coordinates such that no two circles over-
lap and each circle is entirely contained in some bin. Circle packing problems
raise an intrinsic issue: It is not known if, for every instance of the problem,
there always exists an optimal solution where the center of every circle is given
by rational coordinates. For the circle bin packing problem (CBP), Miyazawa
et al. [28] handle this issue with an algorithm that produces rational solutions,
but in augmented bins. Briefly, the idea is to render a packing into a system of
polynomial equations where the variables correspond to the center position of
the circles. When a packing is possible, the center positions are given by roots
of polynomials, which may be irrational numbers. Adjusting them to rational
coordinates may cause overlaps with the borders of the bin or among circles.
Their algorithm then applies a shifting strategy to rearrange the circles within
the bin until there is no overlap, resulting in an increase in the height of the bin
by a small constant. We state this result in the next lemma. In the following, we
denote an instance of the CBP by a tuple (I, w, h), where I is the set of circles
and w, h are the dimensions of the bins, and we denote the optimal value of the
instance by OPTBP

w×h(I).

Lemma 1 (Miyazawa et al. [28]). Let (I, w, h) be an instance of the circle bin
packing problem, where w, h ∈ O(1) and |I| = n, and such that min1≤i≤n ri ≥ δ
and |{r1, . . . , rn}| ≤ K, for constants δ and K. Given a number γ > 0, there
exists an algorithm that produces a packing of I into at most OPTBP

w×h(I) bins
of size w × (1 + γ)h, in polynomial time on n.

Approximation Schemes for Hypersphere Knapsack and Packing Problems 149

3 The Circle Knapsack Problem Under Resource
Augmentation

Formally, an instance of the circle multiple knapsack problem (CMKP) is defined
as a tuple (I, w, h, p,m) where w, h ∈ Q+ are the dimensions of the knapsacks,
with w ≤ h, I = {s1, , . . . , sn} is a set of n circles, each circle si ∈ I with diameter
di ∈ Q+ and di ≤ w, p : I → Q+ is a function of profit on the circles, and m ∈ Z+

is the number of available knapsacks. We denote the profit of a circle si as pi.
If A is a set of circles, we say its profit is p(A) =

∑
si∈A pi. The objective of the

CMKP is to find a packing of a subset I ⊆ I of circles in at most m knapsacks of
size w×h, maximizing p(I). We denote the optimal value of CMKP for instance
(I, w, h, p,m) by OPTMKP

w×h (I,m). The circle knapsack problem (CKP) is the
particular case of CMKP where m = 1. We denote an instance of the CKP by
the tuple (I, w, h, p) and its optimal value by OPTKP

w×h(I).
In this section, we first describe an approximation scheme under resource

augmentation for the CKP, i.e., given an instance (I, w, h, p) and a constant
ε > 0, we give a polynomial-time algorithm that finds a packing of a subset I ⊆ I
into a knapsack of size w × (1+O(ε))h such that p(I) ≥ (1−O(ε))OPTKP

w×h(I).
Moreover, we first assume that w and h are bounded by constants, and later, we
extend the result for the CMKP and for knapsacks of unconstrained size.

3.1 Transforming an Optimal Solution

Let (I, w, h, p) be an instance of the CKP and let ε > 0 be a constant. We define
r = 1/ε and, without loss of generality, we assume ε ≤ 1/3 and that r and hr/w
are integers. Let I∗ ⊆ I be the set of circles of an optimal solution. We partition I
into groups Gi = {sj ∈ I : ε2iw ≥ dj > ε2(i+1)w}, for i ≥ 0. Then we partition
these groups into sets H� = {Gi : i ≡ � (mod r)}, for 0 ≤ � < r. For some
1 ≤ t < r, there must be a set Ht such that p(Ht ∩ I∗) ≤ 1

(r−1)p(I∗) ≤ 2εp(I∗).
Now we remove the set Ht from the instance, causing only a small loss of the
profit of an optimal solution, and then arrange the remaining groups into sets
of groups such that there is a significant gap on the radii of circles of any two
consecutive sets. For that purpose, we define sets Sj =

⋃t+jr−1
i=t+(j−1)r+1 Gi, for

j ≥ 0. See Fig. 1 for an illustrative sketch. We denote S(I) =
⋃

j≥0 Sj and
say that Ht, S0, S1, . . . is a gap-structured partition of I. The minimum and
maximum radii of Sj are denoted by rj

min and rj
max, respectively. The strategy

is to pack each Sj in bins of appropriate dimensions according to the size of the
circles. We set w0 = w, h0 = h, representing the knapsack itself, and for j ≥ 1,
we set wj = hj = ε2(t+(j−1)r)+1w. We say that the bins of size wj × hj for j ≥ 1
respect w × h. Additionally, we say a grid of size wj × hj over a bin B divides
B into a set Gj(B) of square cells of size wj × hj . To avoid verbosity, hereafter
we refer to each j as level j. Many times throughout the text we refer to circles
of Sj and bins of size wj × hj simply as circles and bins of level j.

150 V. G. Chagas et al.

Fig. 1. Sketch to illustrate the partition of the original instance.

We highlight two important properties regarding the sets Sj : i) within the
same level, circles are small compared to bins; and ii) between two consecutive
levels j and j + 1, j ≥ 0, circles and bins of level j + 1 are much smaller than
circles and bins of level j. This indicates that after packing circles of a level only
in bins of that same level, the area left unoccupied can accommodate a great
number of circles (and bins) of the subsequent level. The idea is to recursively
use grids to build a packing respecting a certain structure: For each level j,
circles are packed in bins of their respective levels, over which it is drawn a grid
of size wj+1 × hj+1; the cells of this grid are then used to pack circles of Sj+1.
For the sake of clarity, from level 1 onward, we say subbins instead of just bins.
In the following, we present a formal definition.

Definition 1. Consider a set I of circles. We say that a packing of S(I) in a
bin Bw×h is a structured packing if the following holds:

– S0 is packed in B;
– for every j ≥ 1, Sj is packed in a subset Dj ⊆ Gj(B) of subbins of size wj ×hj;

and
– for every subbin D′ ∈ Dj, D′ does not intersect any circle from S�, for � < j.

Miyazawa et al. [28] showed that, given an optimal packing of the circle bin
packing problem for instance (I, w, h), they can derive a structured packing of
S(I), using a small amount of extra area.

Lemma 2 (Miyazawa et al. [28]). Let (I, w, h) be an instance of the circle bin
packing problem and let H,S0, S1, . . . be a gap-structured partition of I. There
exists a structured packing of I \ H into a set of bins D that respect w × h such
that Area(D) ≤ (1 + 44ε)OPTBP

w×h(I)wh.

Using this result, given an optimal packing for the CKP, it is possible to
obtain a structured packing in an augmented knapsack with only a small loss of
the total profit.

Approximation Schemes for Hypersphere Knapsack and Packing Problems 151

Corollary 1. Let (I, w, h, p) be an instance of the CKP. There exists a struc-
tured packing of a subset I ⊆ I into a knapsack of size w × (1 + 44ε)h such that
p(I) ≥ (1 − ε)OPTKP

w×h(I).

In the following subsection, we present an algorithm that gives an almost opti-
mal structured packing into an augmented knapsack. We define ĥ = (1 + 44ε)h
to acknowledge the increase in the knapsack.

3.2 A Structured Packing of the Original Instance

From Corollary 1, there is an almost optimal structured packing for the instance
(I, w, h, p), if we allow some increase in the size of the knapsack. Thus, we can
now focus on obtaining structured packings. We remove Ht from I and design
an algorithm to find an optimal structured packing only of S(I). Thus, in this
subsection, we are dealing with the instance (S(I), w, ĥ, p).

Now we need some more notation. For j ≥ 0, let T̂j = {t1, . . . , t̂Tj
} be the set

of different radii among circles of Sj , where T̂j = |T̂j |. Each set T̂j is associated

with a tuple (n̂1
j , . . . , n̂

̂Tj

j) of demands, where n̂k
j is the number of circles of

radius tkj contained in Sj , for k = 1, . . . , T̂j . A configuration of Sj is a tuple
C = (c1, . . . , ĉTj

) where each ck is the number of circles of radius tkj in C, for

k = 1, . . . , T̂j . We define |C| =
∑̂Tj

k=1 ck and we say C has |C| circles. The area
of a configuration C, denoted by Area(C), is the sum of the area of every circle
in C. We say a configuration C of Sj is feasible if its circles can be packed in
exactly one bin of level j. We denote the set of all feasible configurations of Sj

by Ĉj . The next lemma states bounds on the number of circles that fit in a bin
and the number of feasible configurations.

Lemma 3. For any level j ≥ 0 and configuration C ∈ Ĉj, if h/w ∈ O(1) then
|C| is bounded by a constant and |Ĉj | is bounded by a polynomial in n.

Hereafter, we refer to a feasible configuration simply as a configuration. We
want to determine a subset of configurations (of all levels) that together lead to
an optimal structured packing of S(I). For a configuration C ∈ Ĉj , let f̂j(C) be
the number of empty subbins of size wj+1 × ĥj+1 available for circles of level
j + 1 onward. Consider the following decision variables:

– xC
j : the number of times configuration C ∈ Ĉj is used in level j;

– bj : the number of empty bins of size wj × ĥj available for circles of level j;
– zi: binary variable that indicates if circle si ∈ S(I) is packed or not.

152 V. G. Chagas et al.

We present an integer program, named Fexact, to find an optimal structured
packing of S(I) into a knapsack of size w × ĥ.

(Fexact) max
∑

si∈S(I)

zipi (1a)

s.t.
∑

C∈̂Cj

xC
j ck ≤ n̂k

j ∀ j ≥ 0, k ∈ [T̂j], (1b)

∑

si∈Sj :ri=tkj

zi =
∑

C∈̂Cj

xC
j ck ∀ j ≥ 0, k ∈ [T̂j], (1c)

∑

C∈̂Cj

xC
j = bj ∀ j ≥ 0, (1d)

bj ≤
∑

C∈̂Cj−1

f̂j−1(C)xC
j−1 ∀ j ≥ 1, (1e)

b0 = 1, (1f)
zi ∈ {0, 1} ∀ si ∈ S(I), (1g)

xC
j , bj ∈ Z+ ∀ j ≥ 1, C ∈ Ĉj . (1h)

Constraints (1b) assure that the demand of each size is not surpassed. Con-
straints (1c) determine which circles are packed, based on the chosen configura-
tions. Note that the objective function enforces that among circles of the same
radius, the ones of highest profit are selected. Constraints (1d) define the number
of bins used in each level, while constraints (1e) limit the number of empty bins
available for the subsequent levels, based on the chosen configurations. Finally,
constraint (1f) guarantees that only one knapsack is used and constraints (1g)
and (1h) define the scope of the variables.

Note that the number of variables and constraints of Fexact is bounded by a
polynomial in n, therefore it is possible to solve its linear relaxation in polynomial
time. However, a fractional solution of Fexact may have too many fractional
variables, which could prevent our rounding strategy to yield a solution that
causes only a small increase in the knapsack. For this reason, we modify the
instance and consider a similar integer program, as described in the following
subsection.

3.3 A Structured Packing of a Modified Instance

We modify the original instance by rounding the radii of the circles so that we
have a constant number of different radii in each level. For this purpose, let
Rj = {rj

min(1 + ε)k : k ≥ 0, rj
min(1 + ε)k < rj

max} ∪ {rj
max}. The circles of S0

remain the same. For j ≥ 1, we round up the radius of the circles of Sj to the
closest value in Rj . We denote the rounded radius of a circle si by ri. We define
Tj = {t1j , . . . , t

Tj

j } and (n1
j , . . . , n

Tj

j) for the rounded circles analogously as in

Approximation Schemes for Hypersphere Knapsack and Packing Problems 153

Sect. 3.2. The following lemma shows that the number of different radii in each
level is now constant.

Lemma 4. For any level j ≥ 1, the number Tj of different rounded radii is at
most 2r2 ln(r).

Since the number of different radii is now constant, we have a better bound
on the number of configurations from level 1 onward.

Lemma 5. For any level j ≥ 1, the number of different configurations of
rounded circles of Sj is bounded by a constant.

With these new bounds and Lemma 1, we can check the feasibility of a
configuration and find its corresponding packing in constant time.

Lemma 6. For a level j, given a configuration C of rounded circles of Sj, we
can decide if C is feasible, and in the affirmative case, for any constant γ > 0,
we obtain a packing of C in a bin of size wj × (1 + γ)hj, in constant time.

For j ≥ 1, we use Lemma 6 to determine the sets Cj of all feasible configu-
rations of rounded circles of Sj . Since the circles of S0 are not modified, we set
C0 = Ĉ0. To compensate the possible increase in the radius of the circles after
the rounding, we use augmented bins of size w′

j × h′
j , where w′

j = (1 + ε)wj and
h′

j = (1+ε)(1+16ε)ĥj . We now use another IP, similar to Fexact, to find an opti-
mal structured packing of S(I) after the rounding. We make two adjustments for
the new IP: We fix a configuration for level 0, and instead of computing f̂j(C),
we estimate its value using the following result given by Miyazawa et al. [28].

Lemma 7 (Miyazawa et al. [28]). Let A ⊆ Sj be a set of circles packed
in a bin Bwj×hj

and D ⊆ Gj+1(B) be the subset of grid cells of size wj+1 ×
hj+1 intersecting but not entirely contained in circles of A. Then Area(D) ≤
16εArea(A).

Based on this lemma, we define fj(C) =
w′

j−1h
′
j−1 − (1 + 16ε)Area(C)

w′
jh

′
j

,

which is a lower bound on the number of empty subbins of size w′
j+1 × h′

j+1

after packing a configuration C ∈ Cj in a bin of size w′
j × h′

j . Given a configu-
ration C0 ∈ C0, the IP Frounded(C0) finds an optimal structured packing of the
rounded circles assuming that C0 is used in level 0. Decision variables x, z and
b have the same meaning as in Fexact.

154 V. G. Chagas et al.

(Frounded(C0))

max
∑

si∈S(I)

zipi (2a)

s.t. (1b)–(1d) with regard to rounded circles,

bj ≤
∑

C∈Cj−1

fj−1(C)xC
j−1 ∀ j ≥ 1, (2b)

xC0
0 = 1, xC′

0 = 0 ∀C ′ ∈ C0 \ C0, (2c)

zi ∈ {0, 1}, xC
j ∈ Z+, bj ∈ Z+ ∀ si ∈ S(I), j ≥ 1, C ∈ Cj . (2d)

Despite the increase of the circles and the error caused by the function fj(C),
Frounded still gives a good solution if we increase the size of the knapsack by a
small factor. The next lemma states that if we use a knapsack of size w′ × h′,
the optimum value of Frounded, when given an optimal configuration for level 0,
is at least the optimum value given by Fexact.

Lemma 8. Let (I, w, h, p) be an instance of CKP and C∗
0 ∈ C0 be the configu-

ration of S0 used in an optimal structured solution. Then OPT(Frounded(C∗
0)) ≥

OPT(Fexact) if Frounded(C∗
0) considers an augmented knapsack of size w′ × h′.

We use Frounded to obtain an optimal fractional solution. However, we seek
a solution where the number of non-null x variables in each level is bounded by
a constant. We say that such a solution is balanced. This property is crucial to
assure that the total increase in the height of the knapsack due to the rounding
of the fractional solution is small. To obtain a balanced fractional solution, we
define another integer program: Fj

level(A,B) finds an optimal solution for level
j using A bins, and leaving B empty subbins available to level j + 1. Again, the
variables x, b and z have the same meaning as in Fexact.

(Fj
level(A,B)) max

∑

si∈Sj

zipi (3a)

s.t.
∑

C∈Cj

xC
j ck ≤ nk

j ∀ k ∈ [Tj], (3b)

∑

si∈Sj :r̄i=tkj

zi =
∑

C∈Cj

xC
j ck ∀ k ∈ [Tj], (3c)

∑

C∈Cj

xC
j = A, (3d)

B =
∑

C∈Cj

fj(C)xC
j , (3e)

xC
j ∈ Z+, zi ∈ {0, 1} ∀C ∈ Cj , si ∈ Sj . (3f)

Given a feasible solution (x, b, z) to Frounded, we use F j
level(A,B) indepen-

dently for each level j ≥ 1, with parameters A =
∑

C∈Cj
xC

j and B = bj+1.

Approximation Schemes for Hypersphere Knapsack and Packing Problems 155

We call such procedure Balanced-Fractional-Solution. This way we can
exploit the fact that, despite the number of levels being at most n, the number
of constraints in each level is constant. Lemma 9 comes from the fact that Flevel

has a constant number of constraints.

Lemma 9. Given an instance (I, w, h, p) of CKP, let H,S0, S1, . . . be a gap-
structured partition of I, and C0 be a configuration of rounded circles of S0.
There is an optimal solution (x̃, b̃, z̃) to the linear relaxation of Frounded(C0)
such that for each level j ≥ 1, there are at most 2Tj + 2 non-null variables x̃j.

Let (x∗, b∗, z∗) be an optimal balanced fractional solution of Frounded(C0)
given by the Balanced-Fractional-Solution procedure. We round the vari-
ables x∗ up to the next integer, yielding a collection of configurations represented
by the vector �x∗�. The total extra area necessary to contemplate the extra bins
created by the rounding is small.

Lemma 10. Let (x∗, b∗, z∗) be an optimal balanced fractional solution of model
Frounded(C∗

0). The extra bins created after rounding the variables x∗ to �x∗� fit
into a strip of size w′ × εh′.

Observe that a solution of the linear program Frounded gives a set of config-
urations used in each level, where each configuration represents a bin. To build
a packing, for each configuration, we obtain a packing in a bin of its respective
level. Then we distribute these packings (bins) into the knapsack.

Lemma 11. For each level j, let Xj be a collection (allowing duplication) of
configurations of the rounded circles of Sj, considering bins of size w′

j × h′
j.

Given a constant γ > 0, there is an algorithm that finds a packing of maximum
profit of the original circles, corresponding to the configurations of Xj, in bins
of size w′

j × (1 + γ)h′
j, in polynomial time.

Finally, we give an algorithm that, for an instance (I, w, h, p) of CKP where
h/w ∈ O(1), and a positive constant ε ≤ 1/3, it produces an almost optimal
solution under resource augmentation. See Algorithm 1.

Theorem 1. Given an instance (I, w, h, p) of CKP with h/w ∈ O(1) and a
constant ε ≤ 1/3, Algorithm1 obtains a packing of a subset I ⊆ I of circles in
a knapsack of size w × (1 + 703ε)h such that p(I) ≥ (1 − 3ε)OPTKP

w×h(I), in
polynomial time on the size of the instance.

With few modifications, Algorithm1 works for CMKP as well.

Lemma 12. Let (I, w, h, p,m) be an instance of CMKP. If h/w ∈ O(1), then
for any constant ε > 0 we can obtain, in polynomial time, a packing of I ⊆ I in
up to m bins of size w× (1+O(ε))h such that p(I) ≥ (1−O(ε))OPTMKP

w×h (I,m).

Our algorithm runs in polynomial time only if h/w ∈ O(1). However, by
splitting the knapsack into strips of bounded ratio and using Lemma 12, we
show a PTAS for CKP even with unbounded ratio between w and h.

156 V. G. Chagas et al.

Algorithm 1: Approximation-Scheme

Input: Instance (I, p, w, h) of CKP; and constant ε ≤ 1/3.
Output: An almost optimal packing in an augmented knapsack.

1 Let r = 1/ε.

2 Define Gi = {sj ∈ I : ε2iw ≥ dj > ε2(i+1)w}, for i ≥ 0.
3 Define H� = {Gi : i ≡ � (mod r)}, for 0 ≤ � < r.
4 for each t from 1 to r − 1 such that p(Ht) ≤ 2εp(I) do

5 Define Sj =
⋃t+jr−1

i=t+(j−1)r+1 Gi, for every integer j ≥ 0.

6 Define w0 = w, h0 = h, and wj = hj = ε2(t+(j−1)r)+1w, for j ≥ 1.
7 For j ≥ 1, round up the radii of the circles of Sj .
8 for each C0 ∈ C0 do
9 (x, b, z) ← Balanced-Fractional-Solution(Frounded(C0)).

10 Let (x∗, b∗, z∗) be a balanced fractional solution of highest profit.
11 Given �x∗�, build a packing Pt into a knapsack of size w × (1 + O(ε))h.

12 return packing Pt of maximum profit.

Theorem 2. Let (I, w, h, p) be an instance of CKP and ε > 0 be a constant.
There is a polynomial-time algorithm that finds a packing of a subset I ⊆ I in
a knapsack of size w × (1 + O(ε))h such that p(I) ≥ (1 − O(ε))OPTKP

w×h(I).

Finally, by applying the ideas behind Theorem 2 and Lemma 12, we conclude
that there is a PTAS also for CMKP with unbounded ratio between w and h.

Theorem 3. Let (I, w, h, p,m) be an instance of CMKP and ε > 0 be a con-
stant. There is a polynomial-time algorithm that finds a packing of a subset
I ⊆ I in at most m knapsacks of size w × (1 + O(ε))h such that p(I) ≥
(1 − O(ε))OPTMKP

w×h (I,m).

4 Final Remarks

Although packing of circles and hyperspheres has a long research history, there
are few approximation algorithms for such problems. One difficulty of packing
spheres comes from the representation of optimal packings, since it is an open
question if it is always possible to represent optimal packings with rational posi-
tions, even when the radii and bin size are given by rational numbers [28]. For this
reason, the use of resource augmentation is justified. Another concern is to make
a good use of the space of the bin. Ideally, we want to fill the bin completely. For
hypercubes there are known algorithms that guarantee a good packing density
of small items, such as NFDH [3,17]. That is not the case for hyperspheres, since
the packing density becomes very small as the dimension increases. Kabatianskii
and Levenshtein [21] presented an upper bound of 2−(0.5990...+o(1))d on the pack-
ing density of congruent hyperspheres. This makes the packing of hyperspheres
more challenging compared to the packing of hypercubes, for instance. To handle
this difficulty, it was necessary to use a more particular and refined approach for
classifying the items and partitioning the space.

Approximation Schemes for Hypersphere Knapsack and Packing Problems 157

In this work, we presented an approximation scheme under resource aug-
mentation for the hypersphere multiple knapsack problem. To the best of our
knowledge, this is the first approximation scheme for the problem. We point
to the fact that although the resource augmentation factor in our algorithm is
dependent on ε, this is not in detriment of the approximation ratio, i.e., both the
approximation ratio and the resource augmentation can be arbitrarily small. In
addition, our technique can be used to yield a PTAS for the multiple minimum-
sized bin problem and the multiple strip packing problem. The strength of our
technique lies on the ease of adapting integer programs. For instance, it can
easily handle problems with demand on the items, such as in the cutting stock
problem. Moreover, the flexibility on the shape of the items and bins allows us
to extend our results to several variants of the same problems.

Acknowledgements. We thank the anonymous reviewers for the valuable com-
ments and suggestions. This research was financially supported by CNPq (grants
161030/2021-1, 163645/2021-3, 313146/2022-5) and FAPESP (grant 2022/05803-3).

References

1. Akeb, H., Hifi, M., M’Hallah, R.: A beam search algorithm for the circular packing
problem. Comput. Oper. Res. 36(5), 1513–1528 (2009). https://doi.org/10.1016/
j.cor.2008.02.003

2. Amore, P.: Circle packing in regular polygons. Phys. Fluids (2023). https://doi.
org/10.1063/5.0140644

3. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple
dimensions: inapproximability results and approximation schemes. Math. Oper.
Res. 31(1), 31–49 (2006). https://doi.org/10.1287/moor.1050.0168

4. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin
packing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), SODA 2014, pp. 13–25. Society for Industrial and
Applied Mathematics (2014). https://doi.org/10.1137/1.9781611973402.2

5. Berman, F., Leighton, F.T., Snyder, L.: Optimal tile salvage (1981)
6. Birgin, E.G., Bustamante, L.H., Callisaya, H.F., Mart́ınez, J.M.: Packing circles

within ellipses. Int. Trans. Oper. Res. 20(3), 365–389 (2013). https://doi.org/10.
1111/itor.12006

7. Birgin, E.G., Lobato, R.D.: A matheuristic approach with nonlinear subproblems
for large-scale packing of ellipsoids. Eur. J. Oper. Res. 272(2), 447–464 (2019).
https://doi.org/10.1016/j.ejor.2018.07.006

8. Birgin, E.G., Lobato, R.D., Mart́ınez, J.M.: Packing ellipsoids by nonlinear opti-
mization. J. Glob. Optim. 65(4), 709–743 (2015). https://doi.org/10.1007/s10898-
015-0395-z

9. Birgin, E.G., Sobral, F.N.C.: Minimizing the object dimensions in circle and sphere
packing problems. Comput. Oper. Res. 35(7), 2357–2375 (2008). https://doi.org/
10.1016/j.cor.2006.11.002

https://doi.org/10.1016/j.cor.2008.02.003
https://doi.org/10.1016/j.cor.2008.02.003
https://doi.org/10.1063/5.0140644
https://doi.org/10.1063/5.0140644
https://doi.org/10.1287/moor.1050.0168
https://doi.org/10.1137/1.9781611973402.2
https://doi.org/10.1111/itor.12006
https://doi.org/10.1111/itor.12006
https://doi.org/10.1016/j.ejor.2018.07.006
https://doi.org/10.1007/s10898-015-0395-z
https://doi.org/10.1007/s10898-015-0395-z
https://doi.org/10.1016/j.cor.2006.11.002
https://doi.org/10.1016/j.cor.2006.11.002

158 V. G. Chagas et al.

10. Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online
algorithms for multidimensional bin packing: a survey. Comput. Sci. Rev. 24, 63–
79 (2017). https://doi.org/10.1016/j.cosrev.2016.12.001

11. Coffman, E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin packing
approximation algorithms: survey and classification. In: Pardalos, P.M., Du, D.-
Z., Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 455–531.
Springer, New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 35

12. Cohn, H., Kumar, A., Miller, S., Radchenko, D., Viazovska, M.: The sphere packing
problem in dimension 24. Ann. Math. 185(3) (2017). https://doi.org/10.4007/
annals.2017.185.3.8

13. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard.
In: Origami5: Proceedings of the 5th International Conference on Origami in Sci-
ence, Mathematics and Education (OSME 2010), pp. 609–626. A K Peters, Singa-
pore (2010). https://doi.org/10.48550/arXiv.1008.1224

14. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981). https://doi.org/
10.1016/0020-0190(81)90111-3

15. Fu, L., Steinhardt, W., Zhao, H., Socolar, J.E.S., Charbonneau, P.: Hard sphere
packings within cylinders. Soft Matter 12(9), 2505–2514 (2016). https://doi.org/
10.1039/c5sm02875b

16. Hales, T., Ferguson, S.: A formulation of the Kepler conjecture. Discret. Comput.
Geom. 36, 21–69 (2006). https://doi.org/10.1007/s00454-005-1211-1

17. Harren, R.: Approximation algorithms for orthogonal packing problems for hyper-
cubes. Theor. Comput. Sci. 410(44), 4504–4532 (2009). https://doi.org/10.1016/
j.tcs.2009.07.030

18. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems:
models and methodologies. Adv. Oper. Res. (2009). https://doi.org/10.1155/2009/
150624

19. Hifi, M., Yousef, L.: A local search-based method for sphere packing problems.
Eur. J. Oper. Res. 274(2), 482–500 (2019). https://doi.org/10.1016/j.ejor.2018.10.
016

20. Jansen, K., Khan, A., Lira, M., Sreenivas, K.V.N.: A PTAS for packing hypercubes
into a knapsack. In: 49th International Colloquium on Automata, Languages, and
Programming, ICALP 2022, Paris, France, 4–8 July 2022. LIPIcs, vol. 229, pp.
78:1–78:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://
doi.org/10.4230/LIPIcs.ICALP.2022.78

21. Kabatyanskii, G.A., Levenshtein, V.I.: Bounds for packings on a sphere and in
space (Russian). Problemy Peredači Informacii 14, 3–25 (1978). English translation
in Probl. Inf. Transm. 14, 1–17 (1978)

22. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock
problem. Math. Oper. Res. 25(4), 645–656 (2000). https://doi.org/10.1287/moor.
25.4.645.12118

23. Kepler, J.: Strena seu de nive sexangula (the six-cornered snowflake) (1611)
24. Kim, H., Miltzow, T.: Packing segments in a simple polygon is APX-hard. In: Euro-

pean Conference on Computational Geometry (EuroCG 2015), pp. 24–27 (2015)
25. Leung, J.Y.T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing

squares into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990). https://
doi.org/10.1016/0743-7315(90)90019-L

26. Lintzmayer, C.N., Miyazawa, F.K., Xavier, E.C.: Two-dimensional Knapsack for
circles. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018.

https://doi.org/10.1016/j.cosrev.2016.12.001
https://doi.org/10.1007/978-1-4419-7997-1_35
https://doi.org/10.4007/annals.2017.185.3.8
https://doi.org/10.4007/annals.2017.185.3.8
https://doi.org/10.48550/arXiv.1008.1224
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1016/0020-0190(81)90111-3
https://doi.org/10.1039/c5sm02875b
https://doi.org/10.1039/c5sm02875b
https://doi.org/10.1007/s00454-005-1211-1
https://doi.org/10.1016/j.tcs.2009.07.030
https://doi.org/10.1016/j.tcs.2009.07.030
https://doi.org/10.1155/2009/150624
https://doi.org/10.1155/2009/150624
https://doi.org/10.1016/j.ejor.2018.10.016
https://doi.org/10.1016/j.ejor.2018.10.016
https://doi.org/10.4230/LIPIcs.ICALP.2022.78
https://doi.org/10.4230/LIPIcs.ICALP.2022.78
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1287/moor.25.4.645.12118
https://doi.org/10.1016/0743-7315(90)90019-L
https://doi.org/10.1016/0743-7315(90)90019-L

Approximation Schemes for Hypersphere Knapsack and Packing Problems 159

LNCS, vol. 10807, pp. 741–754. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-77404-6 54

27. Merino, A., Wiese, A.: On the two-dimensional knapsack problem for convex poly-
gons. In: Czumaj, A., Dawar, A., Merelli, E. (eds.) 47th International Colloquium
on Automata, Languages, and Programming (ICALP 2020). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 168, pp. 84:1–84:16. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020). https://doi.org/10.
4230/LIPIcs.ICALP.2020.84

28. Miyazawa, F.K., Pedrosa, L.L.C., Schouery, R.C.S., Sviridenko, M., Wakabayashi,
Y.: Polynomial-time approximation schemes for circle and other packing problems.
Algorithmica 76, 536–568 (2015). https://doi.org/10.1007/978-3-662-44777-2 59

29. Miyazawa, F.K., Wakabayashi, Y.: Techniques and results on approximation algo-
rithms for packing circles. São Paulo J. Math. Sci. 16(1), 585–615 (2022). https://
doi.org/10.1007/s40863-022-00301-3

30. Romanova, T.E., Stetsyuk, P.I., Fischer, A., Yaskov, G.M.: Proportional packing
of circles in a circular container. Cybern. Syst. Anal. 59(1), 82–89 (2023). https://
doi.org/10.1007/s10559-023-00544-8

31. Viazovska, M.: The sphere packing problem in dimension 8. Ann. Math. 185(3)
(2017). https://doi.org/10.4007/annals.2017.185.3.7

32. Zeng, Z., Yu, X., He, K., Huang, W., Fu, Z.: Iterated tabu search and variable
neighborhood descent for packing unequal circles into a circular container. Eur. J.
Oper. Res. 250(2), 615–627 (2016). https://doi.org/10.1016/j.ejor.2015.09.001

https://doi.org/10.1007/978-3-319-77404-6_54
https://doi.org/10.1007/978-3-319-77404-6_54
https://doi.org/10.4230/LIPIcs.ICALP.2020.84
https://doi.org/10.4230/LIPIcs.ICALP.2020.84
https://doi.org/10.1007/978-3-662-44777-2_59
https://doi.org/10.1007/s40863-022-00301-3
https://doi.org/10.1007/s40863-022-00301-3
https://doi.org/10.1007/s10559-023-00544-8
https://doi.org/10.1007/s10559-023-00544-8
https://doi.org/10.4007/annals.2017.185.3.7
https://doi.org/10.1016/j.ejor.2015.09.001

Hitting Sets when the Shallow Cell
Complexity is Small

Sander Aarts(B) and David B. Shmoys

Cornell University, Ithaca, NY 14580, USA
{sea78,david.shmoys}@cornell.edu

Abstract. The hitting set problem is a well-known NP-hard optimiza-
tion problem in which, given a set of elements and a collection of subsets,
the goal is to find the smallest selection of elements, such that each sub-
set contains at least one element in the selection. Many geometric set
systems enjoy improved approximation ratios, which have recently been
shown to be tight with respect to the shallow cell complexity of the set
system. The algorithms that exploit the cell complexity, however, tend
to be involved and computationally intensive. This paper shows that
a slightly improved asymptotic approximation ratio for the hitting set
problem can be attained using a much simpler algorithm: solve the linear
programming relaxation, take one initial random sample from the set of
elements with probabilities proportional to the LP-solution, and, while
there is an unhit set, take an additional sample from it proportional
to the LP-solution. Our algorithm is a simple generalization of the ele-
gant net-finder algorithm by Nabil Mustafa. To analyze this algorithm
for the hitting set problem, we generalize the classic Packing Lemma,
and the more recent Shallow Packing Lemma, to the setting of weighted
epsilon-nets.

Keywords: Hitting set · Set cover · Approximation algorithms ·
Computational geometry · Shallow cell complexity · Wireless coverage

1 Introduction

The input to the hitting set problem is a finite set system – a ground set X of
m elements, or points, and a collection R of n subsets, or ranges, of X. This
can also be understood as a hypergraph, with vertices X and hyper-edges R. A
hitting set is a subset of elements H ⊆ X such that every set R ∈ R is hit by H,
i.e. R ∩ H �= ∅, for all R ∈ R. This is a vertex cover under the hypergraph view.
The set system can be encoded as a set-element incidence matrix A ∈ {0, 1}n×m,
in which the (i, j)th entry aij is 1 if range Ri contains point xj , and 0 otherwise.

This material is based on work supported by the NSF under Grant CNS-1952063.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 160–174, 2023.
https://doi.org/10.1007/978-3-031-49815-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_12&domain=pdf
http://orcid.org/0000-0003-1852-9116
http://orcid.org/0000-0003-3882-901X
https://doi.org/10.1007/978-3-031-49815-2_12

Hitting Sets when the Shallow Cell Complexity is Small 161

The IP of the minimum hitting set problem is

min
y

∑

j:xj∈X

yj

s.t.
∑

j:xj∈X

aijyj ≥ 1, ∀i : Ri ∈ R; (1)

yj ∈ {0, 1}, ∀j : xj ∈ X,

where variable yj ∈ {0, 1} indicates whether element xj is in the solution H.
Hitting sets and set covers are intimately connected; a hitting set for A is

a set cover of AT . Both problems’ decision versions are NP-complete [9]. There
exists an O (log m)-approximation algorithm, and this bound is tight unless P
= NP [8,12]. However, there are algorithms that exploit additional structure
in A to attain improved approximation ratios1. Indeed, our work is motivated
by the problem of exploiting structure when covering large numbers of wireless
LoRaWAN transmitters with wireless receivers. Transmitters can be viewed as
points, which are considered to be covered if they are in the line of sight of a
wireless receiver, which in turn drives transmission quality in LoRaWAN [20].
The area in the line of sight of a receiver roughly resembles a simple shape.

Many geometric set systems enjoy better approximation ratios via epsilon-
nets, or ε-nets. A set system is said to be geometric whenever its elements can
be encoded as points in Euclidean space, and sets are derived from containment
of the points in geometric shapes, such as half-spaces, balls or rectangles2. The
seminal work of Brönnimann and Goodrich [3], and Even et al. [7], connects the
approximability of a hitting set instance to the size of weighted ε-nets. Given
non-negative weights on the points, μ : X → R≥0, a weighted ε-net with respect
to weights μ is a subset H ⊆ X that hits all ε-heavy sets:

∀R ∈ R with μ(R) ≥ ε · μ(X) : R ∩ H �= ∅, (2)

where the weight of any subset S ⊆ X is defined as μ(S) =
∑

x∈S μ(x). Even
et al. [7] reduce the problem of finding a small hitting set to finding a small
ε-net via a reformulation of the linear programming relaxation of the hitting set
problem (1). The reformulated LP (3) is a program for finding the largest ε, and
corresponding weights μ, subject to the constraint that an ε-net with respect to

1 For example when A has bounded row or column sums [2,5].
2 Some definition allow for uncountably many geometric shapes in R, e.g. all squares.
However, because the number of points X is finite, there are nevertheless a finite
number of unique sets induced by these shapes.

162 S. Aarts and D. B. Shmoys

weights μ is a hitting set.

max
ε,μ

ε

s.t.
∑

j:xj∈X

aijμj ≥ ε, ∀i : Ri ∈ R;

∑

j:xj∈X

μj = 1; (3)

μj ≥ 0, ∀j : xj ∈ X.

The first constraint requires that each set R is ε-heavy; the second constraint
normalizes the weights. Let (ε∗, μ∗) denote an optimal solution to LP (3), with
μ∗ = (μ∗

1, . . . , μ
∗
n). Let z∗ be the optimal value to the LP relaxation of the

original program (1). The first constraint ensures that an ε∗-net with respect to
weights μ∗ is a hitting set. Moreover, the reciprocal optimal value 1/ε∗ is equal
to the optimal LP value z∗ [7]. In particular, an ε∗-net of size g(1/ε∗) for some
function g(·) is a hitting set of size of g(z∗). Hence, to find a small hitting set it
suffices to solve LP (3) and find a small ε∗-net with respect to weights μ∗.

Haussler and Welzl [11] show that set systems with bounded VC-dimension
admit small ε-nets, and develop a simple algorithm to find them. The VC-
dimension is a measure of the set system’s complexity. Given a subset S ⊆ X,
the projection of R to S is the set system formed by elements S and sets
R|S = {R ∩ S : R ∈ R}. The VC-dimension of R is the size of the largest
subset S ⊆ X such that R|S shatters S, i.e. the largest set S such that R|S
contains all subsets of S. In particular, Clarkson [6], and Haussler and Welzl
[11], show that any set system with VC-dimension d has a weighted ε-net of size
O
(

d
ε log 1

ε

)
. This is remarkable, as the size is independent of both the size of

X and R. Moreover, the algorithm for finding such an ε-net is simple: Select a
subset H ⊆ X by sampling each element x in X independently.

Theorem 1 (ε-net Theorem [11,13]). Let (X,R) be a set system with VC-
dimension d, and let μ : X → R≥0 be element weights with μ(X) = 1. Then for
any ε, γ ∈ (0, 1):

H ← pick each x ∈ X with probability min
{

1,
2μ(x)

ε
· max

{
log 1

γ , d log 1
ε

}}

is a weighted ε-net with respect to weights μ with probability at least 1 − γ.

Throughout, we define μ(S) =
∑

x∈S μ(x) for all subsets S ⊆ X. For general
set systems of VC-dimension d, this bound is tight in expectation [13]. However,
there are alternative ways to parameterize the complexity of set systems.

1.1 Shallow Cell Complexity

The shallow cell complexity (SCC) is a finer parameterization of the complexity
of set systems. [1,4,19]. Readers are referred to Mustafa and Varadarajan [18]

Hitting Sets when the Shallow Cell Complexity is Small 163

for more background. A cell in a binary matrix A is a collection of identical
rows. A cell has depth k if the number of 1’s in any of its rows is exactly k, i.e.,
if each set in the cell contains k elements. For a non-decreasing function ϕ (·, ·)
we say binary matrix A has shallow cell complexity (SCC) ϕ (·, ·) if, for all
1 ≤ k ≤ l ≤ m, the number of cells of depth at most k in any submatrix A∗ of A
of at most l columns, is at most ϕ (l, k). A set system (X,R) is said to have SCC
ϕ (l, k) if its set-element incidence matrix A does. Often ϕ (l, k) = O (ϕ (l) kc)
for some constant c > 0 and single-variable function ϕ (·), in which case the
dependence on k is can be dropped and the SCC denoted by ϕ (l). Examples of
geometric set systems with small shallow cell complexity are discs in the plane
with ϕ (l, k) = O (k), and axis-parallel rectangles with ϕ (l, k) = O

(
lk2
)

[16].
As is true for VC-dimension, there are algorithms that find hitting sets or

ε-nets with sizes bounded in terms of the shallow cell complexity. A prominent
example is the quasi-uniform sampling algorithm of Chan et al. [4]. Given non-
negative weights μ : X → R≥0, and a value ε > 0, the algorithm finds a hitting
set while maintaining an upper bound on the probability of selecting any given
element.

Theorem 2 (Quasi-uniform sampling [4]). Suppose a set system defined by
A has SCC ϕ (l, k) = ϕ (l) kc for some c > 0. Then there is a randomized poly-
time algorithm that returns a hitting set of expected size O (max{1, log(ϕ (m))})
times the LP optimum.

The algorithm attains the optimal approximation ratio with respect to the SCC3.
However, the sampling procedure is involved, and may require enumeration over
all sets R, of which there can be n = Ω(mc) for some constant c > 0 [15].

Taking a different approach, Mustafa and colleagues [14,15,17] develop a
net-finder for asymptotically optimal-sized unweighted ε-nets with respect to
the SCC. The algorithm is remarkably simple: Take an initial sample from X,
and while there are unhit sets, choose an unhit set arbitrarily, and add O (1)
randomly chosen elements from this set to the original sample. The algorithm
assumes access to an oracle that returns an unhit set. This oracle is called at most
O (1/ε) times in expectation. While the size of the returned ε-net is asymptoti-
cally on par with the quasi-uniform sampling algorithm, there are large constants
in the upper bound [15].

This algorithm is not directly applicable to the hitting set problem via the
LP-reduction above, although it can be used via a standard reduction. The anal-
ysis of the algorithm applies to only uniform weights, and the optimal weights μ∗

of the LP-formulation (3) are not generally uniform. Nevertheless, it is possible
to reduce the problem of finding a weighted ε-net to that of finding a uniform ε′-
net following a standard reduction, in which an expanded instance is generated
by copying each element xj ∈ X a number of times roughly proportional to its
weight μ∗(xj) [3,4]. This can generate Ω(m) copies of each element, which can

3 In addition, it is worth noting that this algorithm can solve the more general weighted
hitting set problem, in which each element has a given weight, and the goal is to
find the minimum weight hitting set.

164 S. Aarts and D. B. Shmoys

have notable consequences. First, to achieve a weighted ε∗-net in the original
instance, one must use a smaller value ε′ for the expanded instance, on the order
of O (ε∗/m). This results in an approximation ratio of O (log ϕ (O (m))). Sec-
ondly, generating copies can increase the number of elements from m to Ω(m2).
This can increase the runtime considerably. In particular, repeatedly sampling
from sets of size Θ(m2) can become prohibitive on large instances such as the
wireless coverage problem motivating our work.

1.2 Our Contributions

This paper generalizes the elegant net-finder algorithm of Mustafa [15] to the
setting of weighted ε-nets, in order to produce a fast and simple algorithm for
the hitting set problem, which attains asymptotically optimal approximation
ratios with respect to the shallow cell complexity. The algorithm enjoys a faster
runtime that makes solving larger instances, such as LoRaWAN receiver place-
ment at scale, feasible. This is achieved by combining the weighted ε-net finder
with the reduction of Even et al. [7]. In doing so, we also improve on the asymp-
totic approximation ratio from max{1, log ϕ (m)} to max{1,O (log ϕ (O (z∗)))}
where z∗ is the optimal value to the linear relaxation of the hitting set program
(1). While in the worst case z∗ = m, it is often the case that z∗
 m. How-
ever, the multiplicative constants in our analysis are relatively large, matching
those of Mustafa [15]. In addition to the algorithm, our analysis generalizes the
classic Packing Lemma of Haussler [10], as well as the Shallow Packing Lemma
of Mustafa et al.. [17], to the weighted setting, which may be of independent
interest.

Key to our approach are adaptations of Mustafa’s [17] Shallow Packing
Lemma and Haussler’s [10] classic Packing Lemma that accommodate non-
uniform weights. Our main technical contribution is to allow a notion of weighted
packings. Consider any non-negative weights μ : X → R≥0 with

∑
x∈X μ(X) = 1,

and extend it to element subsets via μ(S) =
∑

x∈S μ(S).4 A (k, δ)-packing with
respect to weights μ is a collection of sets P ⊆ R in which (i) all sets R in P are
at most k-heavy, i.e., have bounded weight μ(R) ≤ k; and (ii) all pairs of sets
have symmetric differences of weight at least δ. (See Definition 1). Our weighted
shallow packing lemma upper bounds the number of sets in P as a function of
the SCC. Our approach accommodates weights μ by sampling elements from a
distribution with probability mass proportional to the weights, rather than from
a uniform distribution as in the original proofs. Moreover, our proof uses sam-
pling with replacement rather than without replacement to simplify the analysis.
While more generally applicable, our result yields the same bound on the size
of P as in the unweighted setting. An analogous sampling approach is used in
proving Theorem 1 [13]. Equipped with our generalized lemma, it is straightfor-
ward to adapt Mustafa’s [15] analysis to a weighted net-finder. A proof of our
Weighted Packing Lemma is included in the extended online version.

4 Any non-negative weights w : X → R≥0 with w(X) > 0 can be normalized as
μ(x) = w(x)/w(X).

Hitting Sets when the Shallow Cell Complexity is Small 165

2 Algorithm and Main Result

Our algorithm combines the LP-relaxation of Even et al. [7] with the generalized
sampling approach of Mustafa [15]. Our procedure is summarized in Algorithm1.
The algorithm makes use of two global constants, β and γ. These are assumed
to be positive, and to satisfy γ ≤ 1/4 and β + γ ≤ 1.

Algorithm 1: A simple hitting set algorithm with details
Data: A matrix A with VC-dim(A) ≤ d and SCC ϕ (·, ·), constants γ, β > 0
ε∗, (μ∗

1, . . . , μ
∗
n) ← solve LP {max ε : Aμ ≥ ε, μT1 = 1, μ ≥ 0};

H ← ∅;
for xj ∈ X do

H ← H ∪ {xj} with probability

min

{
1,

2μ∗
j(

3
4

− β
2

)
ε∗ · max

{
log

(
d2ϕ

(
8d

βε∗ , 48d
β

)2
)

, d log

(
1(

3
4

− β
2

)
ε∗

)}}

end
while there is a set R ∈ R not hit by H do

Independently add each xj ∈ R to H with probability

min
{
1,

2μ∗
j

γμ∗(R)
max{log 2, d log 1

γ
}
}

end
return H

In the while loop, the weights μ∗(R) =
∑

j:xj∈R μ∗
j denote the weight of set

R under the LP optimal weights μ∗ = (μ∗
1, . . . , μ

∗
n).

Conceptually, the algorithm is simple; it randomly selects an initial set of
elements H from X, and proceeds to add additional random subsets of elements
to H until this is a hitting set. The algorithm relies on an oracle that returns
an arbitrary unhit set. This oracle is treated as a black box. Our main result is
twofold: we bound the expected size of the solution hitting set H as a function
of the cell complexity, and bound the expected number of oracle calls.

Theorem 3. Let A be a binary matrix encoding a hitting set instance with shal-
low cell complexity ϕ (·, ·) and VC-dim(R) ≤ d. Let z∗ be LP optimal value. Then
the algorithm returns a hitting set of expected size

O (z∗ · max {1, log ϕ (O (z∗) ,O (d))}) .

Furthermore it makes at most O (z∗) oracle calls in expectation.

Note that the algorithm always returns a hitting set; the randomness is in the
size of the solution and the runtime. This is in contrast with the net-finder in
Theorem 1. Both algorithms require knowing the VC dimension d; ours must
additionally know the shallow cell complexity ϕ (·, ·). If unknown, these can be
searched for using a standard doubling trick [15].

166 S. Aarts and D. B. Shmoys

3 The Weighted Shallow Packing Lemma

The Weighted Shallow Packing Lemma is key to proving Theorem 3. This section
formally defines weighted shallow packings, states the lemma, and proves it. To
this end, fix non-negative weights μ over X, and define the weight of a subset
of elements S ⊆ X as μ(S) =

∑
j∈S μj . Assume that μ(X) = 1. To contrast, let

card(S) denote the cardinality of any set S. Note that the weights μ induce a
probability distribution over the elements X. Throughout, whenever an element
u of X is randomly sampled, it is assumed to follow a distribution proportional to
μ(·), in which case we say u is sampled from μ(·), and denote this by u ∼ μ(·).
Note that an element u ∼ μ(·) sampled this way lies in subset S ⊆ X with
probability μ(S).

The main purpose of the weighted shallow packing lemma is to bound the
number of sets in a set system in terms of its shallow cell complexity. Clearly, an
arbitrary set systems can contain large numbers of sets. Instead, we focus on a
particular kind of set system called a weighted packing. A set system is a packing
if all its sets are “light”, and each pair of sets are sufficiently different from each
other. Critically, we define “light” and “different” in reference to the weights.

Definition 1. Let (X,P) be a set system with weights μ, and let k, δ ∈ (0, 1) be
constants. If all sets S in P satisfy μ(S) ≤ k, and all pairs of distinct sets S,R
in P have symmetric difference of weight at least δ, i.e.

μ (Δ(S,R)) = μ ((S\R) ∪ (R\S)) ≥ δ, (4)

then we say (X,P) is a weighted (k, δ)-packing with respect to μ.

We omit the “with respect to μ”-statement whenever this is clear from context.
The shallow packing lemma bounds the number of sets in a packing as a func-

tion of the constants (k, δ), the VC-dimension, and the shallow cell complexity.

Lemma 1 (Weighted shallow packing lemma). Let (X,P) be a set system
on m elements, equipped with weights μ, and let (X,P) be a (k, δ)-packing with
respect to μ for constants k, δ > 0. Assume the set system has VC-dim(P) ≤ d,
and shallow cell complexity ϕ (·, ·). Then

card(P) ≤ 24d

δ
· ϕ

(
8d

δ
,
48dk

δ

)
.

The proof to this lemma makes use of our weighted Packing Lemma. The
unweighted Packing Lemma is a classic result by Haussler [10] that bounds the
number of sets in a packing. We generalize this to nonuniform weights.

Lemma 2 (Weighted packing lemma). Let (X,P) be a set system with
n sets and m elements, equipped with weights μ. Let VC-dim(P) ≤ d for some
integer d ≥ 1 and assume there is a constant δ ∈ (0, 1) such that μ(Δ(Si, Sk)) ≥ δ
for all 1 ≤ i < k ≤ n. Then

card(P) ≤ 2E [card(P|Y)] ,

Hitting Sets when the Shallow Cell Complexity is Small 167

where Y is the set of unique elements in a random sample U = (u1, u2, . . . , us)
of size s = � 8d

δ � − 1, in which each element uk is sampled iid uk ∼ μ(·) with
replacement.

The proof of the latter lemma is in the appendix to the extended online version
of the paper; Lemma 1 is proved next.

3.1 Proof of the Weighted Shallow Packing Lemma

Proof. Fix a (k, δ)-packing P and let U = (u1, u2, . . . , us) be a random sample of
length s, in which each element is sampled uk ∼ μ(·), k = 1, . . . , s, independently
and with replacement. The number of elements sampled is s = � 8d

δ � − 1. Let
Y ⊆ X be the set of unique elements in U . For every set R ∈ P, let M(R,U) :=∑s

i=k 1[uk ∈ R] denote number of (copies of) elements in U that are in R. Define
PL ⊆ P as the sub-collection of “large” sets in packing P that contain at least
6
(
8dk
δ

)
(copies of) elements in the random sample U :

PL =
{

R ∈ P : M(R,U) ≥ 6 · 8dk

δ

}
.

It follows that the probability of a given range R in P being a member of PL is

P[R ∈ PL] = P

[
M(R,U) ≥ 6 · 8dk

δ

]
.

Our goal is to show that the collection of large sets PL has few members in
expectation. To do so, it suffices to bound the probability that a fixed set R is
a member of PL. This is achieved using Markov’s inequality. Recalling that all
sets R ∈ P have bounded weight μ(R) ≤ k gives

E[M(R,U)] =
s∑

k=1

P[uk ∈ R] =
s∑

k=1

μ(R) ≤ s · k ≤ 8dk

δ
,

where we used the fact that we sample from μ(·), which implies that P[uk ∈
R] = μ(R). Now, Markov’s inequality bounds the probability of R being in PL:

P[R ∈ PL] = P

[
M(R,U) ≥ 6 · 8dk

δ

]

≤ P

[
M(R,U) ≥ 6 · E[M(R,U)]

]
≤ 1/6.

Finally, because PL ⊆ P, we conclude that

E[card(P|Y)] ≤ E[card(PL)] + E[card((P\PL)|Y)]

≤
∑

R∈P
P[R ∈ PL] + card(Y) · ϕ

(
card(Y) , 6 · 8dk

δ

)

≤ 1
6card(P) + 8d

δ · ϕ
(
8d
δ , 48dk

δ

)
,

168 S. Aarts and D. B. Shmoys

where the second-to-last inequality uses the shallow cell complexity of P; the
system (Y, (P\PL)|Y) has at most card(Y) ≤ s elements, and sets have depth at
most

(
6 · 8dk

δ

)
, as the system consists only of cells that are not “large”. The final

inequality holds because P[R ∈ PL] ≤ 1/6. Finally, applying Lemma 2 completes
the proof. �

4 Proof of the Main Theorem

Equipped with the Weighted Shallow Packing Lemma, we follow a similar strat-
egy as Mustafa [15]. We state and prove three key lemmas, and finally prove
Theorem 3.

4.1 Key Lemmas

The proof of our main theorem relies on all sets having similar weight. Let ε
and μ = (μ1, . . . , μn) be a feasible solution to the LP relaxation (3). By the
constraints of the LP, each set R ∈ R has weight μ(R) =

∑
j:xj∈R μj ≥ ε.

Partition the collection of sets R into groups
 = 0, 1, . . . , �log ε� of sets of similar
weight; set R belongs to group
 if and only if 2−�−1ε ≤ μ(R) < 2−�ε. Because
the algorithm exclusively takes independent samples, we can view one run of
the algorithm as multiple parallel, independent runs on each group of sets. All
our bounds scale on the order O

(
1/(2−�ε)

)
, so summing over the groups gives

a final bound on the order of O (1/ε). Hence, we assume henceforth that all sets
R ∈ R have weight ε ≤ μ (R) ≤ 2ε.

The key idea of the proof is to amortize the elements added from each pro-
cessed unhit set throughout the run of the algorithm. We say a set is processed
each time it is flagged as unhit by the oracle, and a sample is taken from it. We
bound the total number of elements sampled using weighted (k, δ)-packings on
two levels. The first-level packing is an arbitrary maximal packing P of sets in R.
There are a bounded number of sets in P. Next, each processed set Ri is assigned
to a set in the first-level packing P. For a fixed set P j in the first-level packing,
given that it has been assigned processed sets, we show that the collection of sets
Ri assigned to P j forms a second-level packing. Each second-level packing also
has a bounded number of sets. Finally, by bounding the probability that a set in
the first-level packing has any sets assigned to it, the total expected number of
times the algorithm processes a set is bounded. Note that the assignments are
only a tool for analysis; they need not be computed by the algorithm.

We begin by defining the first-level packing. Fix a maximal (2ε, βε)-packing
P = {P 1, . . . , P p}, where p denotes the number of sets in the packing. The
Shallow Packing Lemma 1 upper bounds the number of sets in the packing by

p ≤ 24d

βε
· ϕ

(
8d

βε
,
96d

β

)
. (5)

Now, suppose the algorithm runs for T steps, processing sets (R1, . . . , RT) in
sequence. One given set may be processed multiple times. Denote the sets of

Hitting Sets when the Shallow Cell Complexity is Small 169

sampled elements HR1 , . . . , HRT
. The processed sets Ri are assigned to sets P j

in the first-level packing P as follows. Arbitrarily assign each set Ri to any index
j ∈ {1, 2, . . . , p} satisfying μ

(
Δ(Ri, P

j)
)

< βε. Such an index j exists because P
is a maximal (2ε, βε)-packing. It may be the case that Ri = P j . The next task is
to bound the number of sets Ri assigned to any set P j in the first-level packing.

Let nj denote the number of processed sets in (R1, . . . , RT) assigned to P j ∈
P. For now, condition on first-level packing set P j having at least one set assigned
to it, i.e. nj ≥ 1. We study the probability of this event later. Relabel the sets
and consider them in the order in which they were processed by the algorithm,

Sj = (Rj
1, . . . , R

j
nj

).

Claim. For all j ∈ {1, 2, . . . , p}, i ∈ {1, 2, . . . , nj} we have

μ
(
P j ∩ Rj

i

)
>

μ
(
P j
)

+ μ
(
Rj

i

)
− βε

2
. (6)

Proof. Fix j ∈ {1, 2, . . . , p}. For all i ∈ {1, 2, . . . , nj} we have

μ
(
P j
)

+ μ
(
Rj

i

)
= μ

(
P j\Rj

i

)
+ μ
(
Rj

i \P j
)

+ 2μ
(
P j ∩ Rj

i

)

= μ
(
Δ(P j , Rj

i)
)

+ 2μ
(
P j ∩ Rj

i

)
< βε + 2μ

(
P j ∩ Rj

i

)
.

The first equality follows from straightforward accounting, and the second from
the definition of symmetric difference. The inequality follows from the manner in
which set Rj

i is matched to the packing set P j . Finally, a simple rearrangement
of terms yields the result. �

This proves that the intersection of each set Rj
i with its corresponding first-

level packing set P j is heavy. This lets us define a second-level packing using the
intersections Rj

i ∩ P j .
Rather than directly bounding the number of processed sets assigned to a

first-level packing set, it is easier to first bound the length of a random subse-
quence of the assigned sets Sj . For any j ∈ {1, . . . , p}, define the subsequence
S ′j as the subsequence of processed sets R in Sj whose corresponding samples
HR form γ-nets for the system (R,R|R):

S ′j =
(
R ∈ Sj : HR is a γ-net for (R,R|R)

)
.

We proceed by bounding the length of the subsequence S ′j , and by choosing γ
so as to make it likely for a set R in Sj to be in S ′j , using the ε-net Theorem
1. We use this to upper bound the expected number of sets in Sj . Let len(S)
denote the length of a sequence S.

The following claim bounds the length of the subsequence above.

Claim. For any j ∈ {1, 2, . . . , p}:

len
(
S ′j) ≤

{
24d

3/2−β−γ · ϕ
(

8d
3/2−β−γ , 48d

3/2−β−γ

)
, if β + γ ≥ 1/2;

O (1) , otherwise.
(7)

170 S. Aarts and D. B. Shmoys

Proof. Let n′
j = len

(
S ′j) and relabel the sets so that S ′j =

(
Rj

1, . . . , R
j
n′
j

)
. Now

consider an auxiliary sequence of sets based on intersecting the entries Rj
i in S ′j

with P j :

T ′j =
(
Sj
1, . . . , S

j
n′
j

)
with Sj

i = Rj
i ∩ P j for each i ∈ {1, . . . , n′

i}.

This sequence of sets is used to generate a second-level packing. To do this,
consider two distinct set-indices 1 ≤ k < l ≤ n′

j . The points HRj
k

are added

before set Rj
l is considered, so HRj

k
is a γ-net for

(
Rj

k,R|Rj
k

)
, whereas the set

Rj
l – because it is subsequently considered by the algorithm – is not hit by this

net. This implies that the intersection of Rj
k and Rj

l is of bounded weight, as it
would be hit by the γ-net otherwise:

μ
(
Rj

k ∩ Rj
l

)
< γ · μ

(
Rj

k

)
.

This implies that the weight of the intersection of Sj
k and Sj

l is bounded above:

μ
(
Sj

k ∩ Sj
l

)
= μ

(
Rj

k ∩ Rj
l ∩ P j

)
≤ μ

(
Rj

k ∩ Rj
l

)
< γ · μ

(
Rj

k

)
. (8)

The fact that sets in T ′j have pairwise intersections of small weight implies
that their symmetric differences are heavy:

μ
(
Δ(Sj

k, Sj
l)

)
= μ

(
Sj

k

)
+ μ

(
Sj

l

)
− 2μ

(
Sj

k ∩ Sj
l

)
= μ

(
Rj

k ∩ P j
)
+ μ

(
Rj

l ∩ P j
)

− 2 · μ
(
Sj

k ∩ Sj
l

)

>
μ

(
P j

)
+ μ

(
Rj

k

) − βε

2
+

μ
(
P j

)
+ μ

(
Rj

l

) − βε

2
− 2 · μ

(
Sj

k ∩ Sj
l

)

>
μ

(
P j

)
+ μ

(
Rj

k

) − βε

2
+

μ
(
P j

)
+ μ

(
Rj

l

) − βε

2
− 2γ · μ

(
Rj

k

)
= μ

(
P j

)
− βε +

1

2
μ

(
Rj

l

)
+ (1/2 − 2γ)μ

(
Rj

k

)
≥ (3/2 − β − γ) · μ

(
P j

)
,

where the first inequality uses Eq. (6), the second Eq. (8), and the last exploits
the fact that sets Rj

k, Rj
l , and P j are each of measure at least ε and at most

2ε, and that γ ≤ 1/4. Thus, depending on the constants, the sequence T ′j may
form a weighted packing.

Finally, reviewing two cases for the constants β and γ makes the above more
precise. First, if β + γ < 1/2, the inequality above implies that the symmetric
difference of Sj

k and Sj
l is strictly larger than μ

(
P j
)
. This cannot be the case as

both sets are subsets of P j . Thus, the only sequence S ′j for which β + γ can be
less than a half is if there are no two unique indices, implying that len

(
S ′j) ≤ 1.

Secondly, if β + γ ≥ 1/2, the sets in T ′j form a
(
μ
(
P j
)
, (3/2 − β − γ)μ

(
P j
))

-
packing over P j ; all sets have measure at most μ

(
P j
)
, and every symmetric

Hitting Sets when the Shallow Cell Complexity is Small 171

difference is at least (3/2 − β − γ)μ
(
P j
)
. This is our second-level packing. Now,

the Shallow Packing Lemma 1 implies:

len
(
S ′j) = len

(
T ′j) ≤ 24d

3/2 − β − γ
· ϕ

(
8d

3/2 − β − γ
,

48d

3/2 − β − γ

)
,

where we have used the fact that ϕ (·, ·) is non-decreasing and that μ(P j) ≤ 1.
�

We can now bound the length of the full sequence of sets assigned to the
packing set P j . Taking expectations sidesteps any dependencies in the sequences.
For instance, a set R can only be in Sj if previous samples failed to hit it.
However, for each fixed set R ∈ R, the probability of the sampled points HS

forming a γ-net for (R,R|R) is independent of previous sampling. Indeed, by
Theorem 1, the probability that HR is a γ-net is at least 1 − γ ≥ 1/2.

Lemma 3 (Mustafa, Lemma 5 [15])

E
[
len
(
Sj
) ∣∣nj ≥ 1

]
≤ 48

3/2 − β − γ
· ϕ

(
8d

3/2 − β − γ
,

48d

3/2 − β − γ

)

Proof. We use a simple application of linearity of expectation, and Theorem 1:

E[len
(
S ′j) ∣∣nj ≥ 1] =

∑

R∈Sj

P[HR is a γ-net for (R,R|R)] ≥ 1
2 · len

(
Sj
)
,

where we drop the conditioning on nj ≥ 1 because the event that a particular
sample HR is a γ-net is independent of the number of previous samples. On the
other hand, Eq. (7) upper bounds the size of len

(
S ′j). Piecing these together

yields the inequality:

1
2
len

(Sj
) ≤ E

[
len

(S′j) ∣
∣nj ≥ 1

] ≤ len
(
S′j) ≤ 24d

3/2 − β − γ
ϕ

(
8d

3/2 − β − γ
,

48d

3/2 − β − γ

)
.

�
Thus far we have conditioned on a set in the first-level packing being assigned

at least one processed set. We now bound the probability of this being the case.
Later, this probability is used to compute the expected number of processed sets
assigned to a first-level packing set.

Lemma 4. Let H0 be the initial sample taken by the algorithm. Then for any
j ∈ {1, . . . , p}:

P[nj ≥ 1] = O

⎛

⎜⎝
1

d2ϕ
(

8d
βε ,

48d
β

)2

⎞

⎟⎠ .

172 S. Aarts and D. B. Shmoys

Proof. Fix an index j ∈ {1, . . . , p}. Suppose that nj ≥ 1. By Eq. (6), for any
i ∈ {1, . . . , nj}:

μ
(
P j ∩ Rj

i

)
>

μ
(
P j
)

+ μ
(
Rj

i

)
− βε

2

≥
μ
(
P j
)

+ μ
(
P j
)
/2 − βμ

(
P j
)

2
=
(

3
4

− β

2

)
· μ
(
P j
)

The second inequality above follows from the assumption that all sets have
weights within a factor 2 of each other. The above implies that, if H0 is a(

3
4 − β

2

)
-net for

(
P j ,R|P j

)
, then any R ∈ Sj would be hit by H0. In other

words, nj ≥ 1 only if H0 is not a
(

3
4 − β

2

)
-net for

(
P j ,R|P j

)
:

P[nj ≥ 1] ≤ P

[
H0 is not a

(
3
4

− β

2

)
-net for

(
P j ,R|P j

)]
.

Because μj

ε ≥ μj

μ(R) , the initial sample includes each element with sufficient
probability to apply Theorem 1 to the RHS above, completing the proof. �

4.2 Proof of Theorem 3

Proof of Theorem 3. At this stage, the analysis closely follows Mustafa’s [15].
Clearly, the algorithm proceeds until H is an ε∗-net with respect to measure μ∗,
i.e., a hitting set. It suffices to bound the expected size of the hitting set H, as
well as the expected number of oracle calls. These quantities are related, since
the number of points added depends on the number of times a set is processed.

First, consider the expected size of the hitting set. There are two contribu-
tions to the set: the initial sample H0, and the samples from the processed sets
HR1 , . . . , HRT

. We bound the expected size of the initial sample first.

Claim. The expected size of the initial sample, E[card(H0)] is bounded by

O

⎛

⎝ 1(
3
2 − β

2

)
ε

max

⎧
⎨

⎩log
(

dϕ

(
8d

βε
,
48d

β

))
,

d(
3
2 − β

2

) log
1(

3
2 − β

2

)
ε

⎫
⎬

⎭

⎞

⎠ . (9)

This follows by summing the probability of sampling x for each x ∈ X. An
analogous result is used for the number of points added during the processing
of a set R ∈ R, provided it is processed:

Claim. For any fixed set R ∈ R, conditional on being processed, the expected
number of points added each time it is processed is

E [card(HR)] ≤ 2
(

log 2
γ

+
d

γ
log

1
γ

)
= O (1) . (10)

Hitting Sets when the Shallow Cell Complexity is Small 173

This bound applies irrespective of whether or not a set was processed previously.
The number of points added during processing, and the number of oracle

calls, can be bounded together. Recalling that R1, . . . , RT are the processed
sets, and using the claim above, the number of added elements is at most

E

[
T∑

i=1

card(HRi
)

]
≤ E

[
T∑

i=1

2
(

log 2
γ

+
d

γ
log

1
γ

)]
= E[T]·2

(
log 2

γ
+

d

γ
log

1
γ

)
.

(11)
Thus, it suffices to bound the expected number of oracle calls E[T]. This is where
we employ both the first-, and second-level packings. In particular

E[T] = E

⎡

⎣
p∑

j=1

len
(
Sj
)
⎤

⎦ =
p∑

j=1︸︷︷︸
(i)

· E[len
(
Sj
) ∣∣nj ≥ 1]

︸ ︷︷ ︸
(ii)

· P[nj ≥ 1]
︸ ︷︷ ︸

(iii)

. (12)

The terms (i), (ii) and (iii) are bounded using Eq. (5), Lemma 3, and Lemma 4,
respectively. In addition, using 3

2 − β − γ ≥ 1
2 ≥ max{βε, β/2}:

(i) p ≤ 24d
βε ϕ

(
8d
βε ,

24d
β

)

(ii) E
[
len
(
Sj
) ∣∣nj ≥ 1

]
≤ 48d

3/2−β−γ ϕ
(

8d
3/2−β−γ , 24d

3/2−β−γ

)
≤ 48d

3/2−β−γ ϕ
(

8d
βε ,

24d
β

)
;

(iii) P[nj ≥ 1] ≤
(

d2ϕ
(

8d
βε ,

24d
β

)2)−1

.

Combining the right-hand-side terms, we obtain the bound

E[T] ≤ 24 · 48
β · (3/2 − β − γ)

1
ε

= O
(

1
ε

)
. (13)

This is minimized by choosing a small γ, e.g. γ = 1/100, and setting β = 3/4.
Finally, summing over the
 groups of sets, and adding the expected number

of initial samples to the expected number added points completes the proof.
Note that Eq. (13) also bounds the expected number of oracle calls made during
the run of the algorithm. �

References

1. Aronov, B., Ezra, E., Sharir, M.: Small-size ε-nets for axis-parallel rectangles and
boxes. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, pp. 639–648 (2009)

2. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

3. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-
dimension. Discret. Comput. Geom. 14, 263–279 (1995)

174 S. Aarts and D. B. Shmoys

4. Chan, T.M., Grant, E., Könemann, J., Sharpe, M.: Weighted capacitated, priority,
and geometric set cover via improved quasi-uniform sampling. In: Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, pp. 1576–1585. Society for Industrial and Applied Mathematics (2012)

5. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

6. Clarkson, K.L.: A randomized algorithm for closest-point queries. SIAM J. Com-
put. 17(4), 830–847 (1988)

7. Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the VC-dimension is small.
Inf. Process. Lett. 95(2), 358–362 (2005)

8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 174. Freeman San
Francisco (1979)

10. Haussler, D.: Sphere packing numbers for subsets of the Boolean n-cube with
bounded Vapnik-Chervonenkis dimension. J. Comb. Theory Ser. A 69(2), 217–
232 (1995)

11. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. In: Proceedings of
the Second Annual Symposium on Computational Geometry, pp. 61–71 (1986)

12. Johnson, D.S.: Approximation algorithms for combinatorial problems. In: Proceed-
ings of the Fifth Annual ACM Symposium on Theory of Computing, pp. 38–49
(1973)

13. Komlós, J., Pach, J., Woeginger, G.J.: Almost tight bounds for epsilon-nets. Dis-
cret. Comput. Geom. 7, 163–173 (1992)

14. Mustafa, N.H.: A simple proof of the shallow packing lemma. Discret. Comput.
Geom. 55(3), 739–743 (2016)

15. Mustafa, N.H.: Computing optimal epsilon-nets is as easy as finding an unhit set.
In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2019,
Patras, Greece, 9–12 July 2019. LIPIcs, vol. 132, pp. 87:1–87:12. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2019)

16. Mustafa, N.H.: Sampling in Combinatorial and Geometric Set Systems, vol. 265.
American Mathematical Society (2022)

17. Mustafa, N.H., Dutta, K., Ghosh, A.: A simple proof of optimal epsilon nets.
Combinatorica 38(5), 1269–1277 (2018)

18. Mustafa, N.H., Varadarajan, K.: Epsilon-approximations & epsilon-nets. In: Hand-
book of Discrete and Computational Geometry, pp. 1241–1267. Chapman and
Hall/CRC (2017)

19. Varadarajan, K.: Epsilon nets and union complexity. In: Proceedings of the
Twenty-Fifth Annual Symposium on Computational Geometry, pp. 11–16 (2009)

20. Yousuf, A.M., Rochester, E.M., Ghaderi, M.: A low-cost LoRaWAN testbed for
IoT: implementation and measurements. In: 2018 IEEE 4th World Forum on Inter-
net of Things (WF-IoT), pp. 361–366 (2018)

Any-Order Online Interval Selection

Allan Borodin and Christodoulos Karavasilis(B)

University of Toronto, Toronto, Canada
{bor,ckar}@cs.toronto.edu

Abstract. We consider the problem of online interval scheduling on
a single machine, where intervals arrive online in an order chosen by
an adversary, and the algorithm must output a set of non-conflicting
intervals. Traditionally in scheduling theory, it is assumed that intervals
arrive in order of increasing start times. We drop that assumption and
allow for intervals to arrive in any possible order. We call this variant
any-order interval selection (AOIS). We assume that some online accep-
tances can be revoked, but a feasible solution must always be maintained.
For unweighted intervals and deterministic algorithms, this problem is
unbounded. Under the assumption that there are at most k different
interval lengths, we give a simple algorithm that achieves a competitive
ratio of 2k and show that it is optimal amongst deterministic algorithms,
and a restricted class of randomized algorithms we call memoryless, con-
tributing to an open question by Adler and Azar [1]; namely whether a
randomized algorithm without memory or with only “bounded” access to
history can achieve a constant competitive ratio. We connect our model
to the problem of call control on the line, and show how the algorithms
of Garay et al. [22] can be applied to our setting, resulting in an optimal
algorithm for the case of proportional weights. We also discuss the case
of intervals with arbitrary weights, and show how to convert the single-
length algorithm of Fung et al. [20] into a classify and randomly select
algorithm that achieves a competitive ratio of 2k. Finally, we consider
the case of intervals arriving in a random order, and show that for single-
lengthed instances, a one-directional algorithm (i.e. replacing intervals
in one direction), is the only deterministic memoryless algorithm that
can possibly achieve a strict competitive ratio less than 2.

Keywords: interval selection · scheduling · online algorithms · call
control

1 Introduction

We consider the problem of scheduling intervals online with revoking1. Intervals
arrive with a fixed start time and fixed end time, and have to be taken right
away, or be discarded upon arrival, while no intervals in the solution conflict.

1 Displacing one or more previously scheduled intervals with a conflicting new interval.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 175–189, 2023.
https://doi.org/10.1007/978-3-031-49815-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_13&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_13

176 A. Borodin and C. Karavasilis

The algorithm has to decide which intervals to include in the final schedule, so
as to optimize some objective.

In the unweighted case, the goal is to maximize the number of intervals in the
final solution. In the weighted case, we want an interval-set of maximum weight.
Following previous work, we allow some revoking of online decisions, which is
often considered even in the conventional start-time-ordered scheduling model.
More precisely, if a newly arrived interval conflicts with other intervals already
taken by the algorithm, we are able to take the new interval and discard the
conflicting intervals. We are able to displace multiple existing intervals at once,
although this won’t be needed in the unweighted case. To avoid confusion, we
should note that preemption2 is often used in the interval selection literature to
mean precisely this revoking of previous decisions we just described. Under this
definition, preemption is allowed in our model. When we discard an interval it
is final and it cannot be taken again.

We focus mainly on the unweighted case, where all intervals have the same
weight. We discuss the competitive ratio of the problem in terms of k, the num-
ber of distinct interval lengths. However our algorithm does not need a priori
knowledge of k. We show that a simple, deterministic, “memoryless” algorithm
that only replaces when the new interval is entirely subsumed by an existing
one, achieves the optimal competitive ratio in terms of the parameter k. We
also show that “memoryless” randomized algorithms can not do any better. The
main difference between our model and most of the interval selection literature,
is allowing intervals to arrive in any order, a strict generalization of the ordered
case. Bachmann et al. [5] have studied the any-order input model in the con-
text of “t-intervals” (we are concerned with t = 1). They consider randomized
algorithms, and don’t allow revoking. In that model, they get a lower bound of
Ω(N), with N being the number of intervals in a given input instance. The next
most closely related problem is that of call admission [21] on the line graph,
with online intervals corresponding to paths of a given line graph. The connec-
tion between call control on the line graph and interval selection has been noted
before, but has not been carefully defined. We wish to clarify this connection by
explaining the similarities as well as the differences, and how results correspond.
We note that the parameter k ≤ N (respectively, k ≤ n − 1) is an obvious
refinement of the number of intervals (respectively, the number of vertices for
call admission on a line graph with n vertices).

The applications of interval selection problems are plentiful. Some examples
are resource allocation, network routing, transportation, and computer wiring.
We refer the reader to the surveys by Kolen et al. [27], and Kovalyov et al. [30]
for an overview of results and applications in the area of interval scheduling.

Related Work. Lipton and Tomkins [31] introduced the online interval schedul-
ing problem. In our terminology, they consider the arrival of intervals with
increasing start times (ordered), and interval weights that are proportional to

2 In contrast to revoking, preemption in much of the scheduling literature means the
pausing of a scheduled job, and resuming it later.

Any-Order Online Interval Selection 177

the lengths. They don’t allow displacement of existing intervals, and give a ran-
domized algorithm with competitive ratio O((logΔ)1+ε), where Δ is the ratio of
the longest to shortest interval.

In the unweighted case with increasing starting times, Faigle and Nawijn
[17] give an optimal 1-competitive algorithm that is allowed to revoke previous
decisions (replace intervals). In the weighted case with increasing starting times,
Woeginger [37] shows that for general weights, no deterministic algorithm can
achieve a constant competitive ratio. Canetti and Irani [11] extend this and
show that even randomized algorithms with revocable decisions cannot achieve
a constant ratio for the general weighted case. For special classes of weight
functions based on the length (including proportional weights), Woeginger [37]
gives an optimal deterministic algorithm with competitive ratio 4. Seiden [34]
gives a randomized (2+

√
3)-competitive algorithm when the weight of an interval

is given by a continuous convex function of the length. Epstein and Levin [16]
give a 2.45-competitive randomized algorithm for weights given by functions of
the length that are monotonically decreasing, and they also give an improved
1 + ln(2) ≈ 1.693 upper bound for the weight functions studied by Woeginger
[37]. Fung et al. [20] provide the best known upper bounds, giving barely random
algorithms that achieve a competitive ratio of 2 for all the Woeginger weight
functions. These algorithms randomly choose one of two deterministic algorithms
at the beginning. More generally, barely random algorithms have access to a
small number of deterministic algorithms, and randomly choose one.

Restricting interval lengths has previously been considered in the literature,
e.g. Lipton and Tomkins [31] study the case of two possible lengths, and Bach-
mann et al. [5] consider single and two-length instances. For the related offline
problem of throughput maximization, Hyatt-Denesik et al. [25] consider c dis-
tinct processing times. The special case of single-length jobs has been studied in
the job scheduling [6,13,35], sum coloring [9], and the interval selection literature
[19,32]. Woeginger [37] also points out how his results can be extended to the
case of equal lengths and arbitrary weights. Miyazawa and Erlebach [32] point
out the equivalency between fixed length (w.l.o.g. unit) instances, and proper
interval instances, i.e. instances where no interval is contained within another.
This is because of a result by Bogart and West [8], showing the equivalency of
the corresponding interval graphs in the offline setting.

There has also been some work on multiple identical machines. For the case
of equal-length, arbitrary-weight intervals, Fung et al. [19] give an algorithm that
is 2-competitive when m, the number of machines, is even, and (2+ 2

2m−1) when
m is odd. Yu & Jacobson [38] consider C-benevolent (weight function is convex
increasing) jobs and get an algorithm that is 2-competitive when m is even, and
(2 + 2

m)-competitive when m is odd.
In the problem of call control, a graph is given, and requests that correspond

to pairs of nodes of the graph arrive online. The goal is to accept as many requests
as possible, with the final set consisting of disjoint paths. When the underlying
graph is a line, this problem is closely related to ours. For call control on the line,
Garay et al. [22] give optimal deterministic algorithms. In the unweighted case,

178 A. Borodin and C. Karavasilis

they achieve a O(log(n)) competitive ratio, where n is the number of the vertices
of the graph. In the case of proportional weights (weight is equal to the length
of the path), they give an optimal algorithm that is (

√
5+2) ≈ 4.23-competitive

(its optimality was shown by Furst and Tomkins [36]). Adler and Azar [1] use
randomization to overcome the log(n) lower bound, and give a 16-competitive
algorithm. Emek et al. [15] study interval selection in the streaming model,
and show how to modify their streaming algorithm to work online, achieving a
competitive ratio of 6, improving upon the 16-competitive algorithm of Adler
and Azar. It is noteworthy that the Adler and Azar algorithm uses memory
proportional to the entire input sequence. In contrast, the Emek et al. algorithm
only uses memory that is within a constant factor of a current OPT solution. It
is still an open question if a randomized algorithm using only constant bounded
memory can get a constant ratio in the unweighted case. We show that for a
strict, but natural definition of memoryless randomized algorithms, a constant
ratio cannot be obtained. The algorithms presented in this paper, along with
the optimal algorithms by Garay et al. [22] and Woeginger [37], fall under our
definition of memoryless. It is worth noting that similar notions of memoryless
algorithms, and comparison between randomized memoryless and deterministic,
have appeared in the k-server, caching, and facility location literature [12,14,
18,26,28,29,33]. We would note that barely random algorithms as described
earlier (i.e. algorithms that initially generate some random bits, which are used
in every online step), are not memoryless but usually satisfy bounded memory.
The algorithms by Fung et al. [20] are an example of this. More generally, this
use of initial random bits are the classify and randomly select algorithms (e.g.
Lipton and Tomkins [31] and Awerbuch et al. [3]). It’s important to note that
such algorithms may require prior knowledge of bounds on lengths of intervals.
In the full version of the paper [10] we discuss our meaning of memoryless and
bounded memory online algorithms, and the relation to randomness, advice, and
the Adler and Azar question.

The problem of admission control has also been studied under the model
of minimizing rejections [2,7] instead of maximizing acceptances. An alternative
input model for interval selection is that of arriving conflicts [23] instead of single
intervals, with the algorithm being able to choose at most one item from each
conflict. We also note that an instance of interval selection can be represented as
an interval graph, with intervals corresponding to vertices, and edges denoting a
conflict between two intervals. Generally, interval graphs reveal much less about
the instance compared to receiving the actual intervals. In the interval graph
representation, arriving vertices may have an adjacency list only in relation to
already arrived vertices, or they may show adjacency to future vertices as well.

Our Results. For the unweighted adversarial case, we know that no determin-
istic algorithm is bounded (follows from [22]). Assuming there are at most k
different lengths, we show how a simple greedy algorithm achieves a competitive
ratio of 2k. We also give a matching lower bound that holds for all deterministic
algorithms, as well as “memoryless” randomized algorithms. We note that an
instance with k different lengths can have a nesting depth of at most k−1. Alter-

Any-Order Online Interval Selection 179

natively, we can state our results in terms of d, the nesting depth (see Fig. 1),
noting that d ≤ (k − 1). This implies that our 2k bounds can be restated as
2(d+1). We also show how to extend the classify and randomly select paradigm
used by Fung et al. [20] to obtain a randomized algorithm that is 2k-competitive
for the case of arbitrary weights and k different interval lengths. It’s worth not-
ing that the analysis by Canetti and Irani [11] implies an Ω(

√
k) lower bound

for randomized algorithms with arbitrary weights.
We show how the problem of call control on the line [22] relates to inter-

val selection, and in particular how their log n-competitive algorithm for the
unweighted case and their (2 +

√
5)-competitive algorithm for proportional

weights carries over to interval selection. In doing so, we explain why there
is no contradiction between our optimal 2k bound, and their optimal log n
bound. Lastly, we consider deterministic memoryless algorithms for the prob-
lem of any-order, unweighted, single-lengthed (i.e. unit) intervals with random
order arrivals. We show that the only deterministic memoryless algorithm that
can possibly perform better than the adversarial bound is one-directional, only
replacing intervals if they overlap in that particular direction.

Organization of the Paper. Section 2 has some definitions to clarify the model.
Section 3 has our upper and lower bounds in the adversarial case. Section 4 dis-
cusses arbitrary weights. Section 5 is about interval selection in the random order
model. We end with some conclusions and open problems. The connection to call
control, and the application of the proportional weights algorithm to our model
can be found in the full version of the paper.

2 Preliminaries

Our model consists of intervals arriving on the real line. An interval Ii is specified
by a starting point si, and an end point fi, with si < fi. It occupies space
[si, fi) on the line, and the conventional notions of intersection, disjointness, and
containment apply. This allows two adjacent intervals [s1, f) and [f, f2) to not
conflict, although our results would apply even if we considered closed intervals
[si, fi] with [s1, f] and [f, f2] conflicting. There are two main ways two intervals
can conflict, and they are shown in Fig. 1. In the case of containment, we say
that the smaller intervals are subsumed by the larger one.

We use the notion of competitive ratio to measure the performance of our
online algorithms. Given an algorithm A, let ALG denote the objective value of
the solution achieved by the algorithm, and let OPT denote the optimal value
achieved by an offline algorithm. The competitive ratio of A is defined as follows:
CR(A) = OPT

ALG ≥ 1. We should note that we can repeat disjoint copies of our
nemesis sequences, and get the corresponding tight lower bounds. As a result,
we can omit the standard additive term in our definition of competitive ratio.
We will sometimes abuse notation and use ALG and OPT to denote the sets of
intervals maintained by the algorithm at some given point, and the set of inter-
vals of an optimal solution respectively. In the case of deterministic algorithms
and random arrival of intervals, the performance of an algorithm is a random

180 A. Borodin and C. Karavasilis

variable, and the competitive ratios hold w.h.p. (definition of competitive ratio
remains unchanged). The algorithm we present in the case of arbitrary weights
is randomized, and its expected competitive ratio is defined as CR(A) = OPT

E[ALG] .

Fig. 1. Types of conflicts.

We sometimes refer to a chain of intervals (Fig. 2). This is a set of intervals
where each interval partially conflicts with exactly two other intervals, except
for the two end intervals that partially conflict with only one.

Fig. 2. Interval chain.

3 Adversarial Order

3.1 Unweighted

In this section, we assume an adversary chooses the instance configuration, along
with the arrival order of all intervals. Lemma 1 shows that revocable decisions
are necessary even in the case of two different lengths. Algorithm 1 is the greedy
algorithm that achieves the optimal competitive ratio of 2k in the unweighted
case, and it works as follows: On the arrival of a new interval, take it if there’s no
conflict. If there’s a conflict, take the new interval only if it is properly contained
inside an existing interval.

Lemma 1. The problem of any-order unweighted interval scheduling with two
different lengths and irrevocable decisions is unbounded.

Any-Order Online Interval Selection 181

Fig. 3. Unweighted instance with two different lengths.

Algorithm 1.
On the arrival of I:
Is ← Set of intervals currently in the solution conflicting with I
for I ′ ∈ Is do

if I ⊂ I ′ then
Take I and discard I ′

return
end if

end for
Discard I

Proof. Consider two possible interval lengths of 1 and K (Fig. 3). Let an interval
of length K arrive first. W.l.o.g. the algorithm takes it (otherwise no smaller
intervals arrive). Then K 1-length non-overlapping intervals arrive next, all of
them overlapping with the first K-length interval. The algorithm cannot take any
of the 1-length intervals, achieving a competitive ratio of 1

K . This construction
can be repeated multiple times.

Theorem 1. Algorithm1 achieves a competitive ratio of 2k for the problem of
any-order unweighted interval scheduling with k different lengths.

Proof. We define a mapping of intervals f : OPT −→ ALG, where every interval
in ALG has at most 2k intervals in OPT mapped to it. Because intervals taken
by the algorithm might be replaced during the execution, the mapping f might
be redefined multiple times. What follows is the way optimal intervals I ∈ OPT
are charged, as soon as they arrive, to intervals I ′ ∈ ALG. There are four cases
of interest:

Case 1 : The newly arrived optimal interval is taken by the algorithm.
This can happen either because this interval did not conflict with any other
intervals taken by the algorithm, or because it was entirely subsumed by a larger
interval in ALG, in which case the algorithm would have replaced the large
interval with the new small one. In this case, this optimal interval is mapped
onto itself.

Case 2 : The newly arrived optimal interval partially conflicts with one interval
currently in ALG. In this case, this optimal interval is charged to the interval it
conflicts with.

Case 3 : The newly arrived optimal interval partially conflicts with two intervals
currently in ALG. In this case, this optimal interval can be charged to either

182 A. Borodin and C. Karavasilis

of these two intervals arbitrarily. We may assume it is always charged to the
interval it conflicts with on the right. Notice also, that a newly arrived interval,
cannot partially conflict with more than two intervals in ALG.

Case 4 : The newly arrived optimal interval subsumes an interval currently in
ALG. W.l.o.g. we can assume this never happens. Any such optimal solution
OPT can be turned into an optimal solution OPT ′, with the smaller interval in
place of the larger one. We can restrict ourselves to only look at optimal solutions
where no such transformation can take place. This case also encapsulates the
case of an optimal interval perfectly coinciding with an interval taken by the
algorithm.

An interval (Il) taken by the algorithm can later be replaced, if a smaller
one (Is) comes along and is subsumed by it. When this happens, all intervals in
OPT charged to Il up to that point, will be transferred and charged to Is. As a
result, there are two ways an interval taken by the algorithm can be charged by
intervals in OPT . The first way is when an interval I ∈ OPT is directly charged
to an interval I ′ ∈ ALG when I arrives (Cases 1–4). This will be referred to as
direct charging. The second way is when a new interval, In, arrives, and replaces
an existing interval Ie, in which case all optimal intervals previously charged to
Ie, will now be charged to In. This will be referred to as transfer charging.

Proposition 1. An interval taken by the algorithm (even temporarily), can be
charged by at most two optimal intervals through direct charging.

To see why this proposition is true, we consider the three main cases of direct
charging explained earlier. In Case 1, the optimal interval is taken by the algo-
rithm and is charged to itself. Because no other optimal interval can conflict
with it, we know this interval will never be directly charged again.

In Cases 2 and 3, direct charging happens because of the optimal interval
partially conflicting with one or two intervals currently taken by the algorithm.
Because an interval taken by the algorithm can partially conflict with at most
two optimal intervals (one on each side), it can be charged twice at most.

Proposition 2. An interval taken by the algorithm can be charged by at most
2k − 2 optimal intervals through transfer charging.

Consider a sequence of interval replacements by the algorithm, where all opti-
mal intervals charged to an interval in the sequence are passed down to the next
interval in the sequence. The last interval in that sequence will have accumu-
lated all the optimal intervals charged to the previous intervals in that sequence.
Because we consider k different lengths, such a sequence can have up to k inter-
vals, participating in k − 1 transfer charging events. We also know that every
interval in that sequence can be charged at most two optimal intervals through
direct charging (Proposition 1) before being replaced. Consequently, assuming
two additional charges are added to each interval in that sequence, the last
(smallest) interval will be charged 2(k − 1) optimal intervals through transfer
charging.

Any-Order Online Interval Selection 183

We have described a process during which every optimal interval is charged
to an interval in ALG. By Propositions 1 & 2, we know that an interval in ALG,
can be charged by 2k intervals in OPT at most. Therefore, our algorithm has
a competitive ratio of 2k for the problem of unweighted interval selection with
revocable decisions and k different possible interval lengths.

We now provide a matching lower bound, showing that no deterministic
algorithm can do better.

Theorem 2. No deterministic algorithm can achieve a competitive ratio better
than 2k for the problem of unweighted interval selection with revocable decisions
and k different lengths.

Proof. At any point during the execution, the algorithm will have exactly one
interval in its solution, while the size of the optimal solution will keep growing.
We begin by describing how the main component of the instance is constructed,
using intervals of the same length. First, the adversary must decide on an overlap
amount v, which can be arbitrarily small. All partially conflicting intervals will
overlap by exactly this amount. Consider now the instance of Fig. 4. Intervals
I1 and I2 arrive first in that order. If I1 is taken by the algorithm and is then
replaced by I2, then I4 arrives. If I1 was taken by the algorithm but was not
replaced by I2, then I3 would arrive. Because this case is symmetrical, we only
consider the former case of I2 replacing I1. What happens is that this chain
keeps growing in the same direction, until the algorithm decides to stop replacing.
When that happens, we look at the last three intervals of the chain. For example,
when I4 arrived, if the algorithm chose to not select I4 and instead maintain I2,
we stop growing the chain and consider the intervals (I1, I2, I4). If the algorithm
never stops replacing, it will end up with I5 in its solution. Notice that if the
algorithms keeps replacing a growing chain, this will hurt the competitive ratio.
In all cases, there exists an optimal solution of at least two intervals, with neither
of them being the one taken by the algorithm. Note also that this construction
requires at most four intervals of length L, occupying space at most (4L − 3v)
in total.

Fig. 4. Base adversarial construction

A small detail is that w.l.o.g. we can assume I1 is always taken by the algo-
rithm when it first arrives. Because this construction will take place a number
of times during the execution, when the algorithm will already have an interval
in its solution, it is useful to consider the case when I1 is not taken by the algo-
rithm. In this case, we start growing the chain regardless. If I2 or I4 are taken by

184 A. Borodin and C. Karavasilis

the algorithm, we treat it similarly to when I1 was taken and the algorithm kept
replacing. If the algorithm hasn’t taken any interval even after I4 has arrived,
the chain stops growing and we consider the intervals (I1, I2, I4).

Let Ialg be the interval taken by the algorithm (or I2 if no intervals were
taken). All remaining intervals to arrive will be subsumed by Ialg, and thus
will not conflict with the two neighboring intervals taken by OPT . Assuming
Ialg conflicts with one interval on the left and one on the right, that leaves
space of length (L − 2v) for all remaining intervals. Inside that space, the exact
same construction described will take place, only when the algorithm takes a
new interval, it implies Ialg is replaced. This can be thought of as going a level
deeper, and using a sufficiently smaller interval length. More precisely, if L′ is
the new (smaller) length that will be used, it must hold that L′ ≤ L+v

4 .
After each such construction is completed, the size of the optimal solution

grows by at least 2. Because there are at most k different lengths, this can be
repeated at most k times. Finally, because the algorithm only ever keeps a single
interval in its solution, it will achieve a competitive ratio of 2k.

We now extend Theorem 2 and show that the 2k lower bound also holds for
a class of randomized algorithms we call memoryless. Intuitively, memoryless
algorithms decide on taking or discarding the newly arrived interval, only by
looking at the new interval, and all the intervals currently in the solution, using
no information from previous online rounds. Although not randomized, it is
worth noting that Algorithm1, along with the optimal deterministic algorithms
for call control [22], are memoryless.

Definition 1 (Memoryless randomized algorithm). We call a randomized
algorithm memoryless, if a newly arrived interval Inew is taken with probability
F (Inew, S), where S = {I1, I2, ...} is the set of intervals currently in the solution,
and each interval is a tuple of the form (si, fi).

Notice that Definition 1 only allows us to make use of random bits of this current
step, and it does not allow access to random bits from previous rounds. In partic-
ular, this definition does not capture barely random algorithms (as mentioned in
the introduction), or algorithms that fall under the classify and randomly select
paradigm.

Theorem 3. No memoryless randomized algorithm can achieve a competitive
ratio better than 2k for the problem of unweighted interval selection with revocable
decisions and k different lengths. More specifically, for all p ∈ (0, 1], there exists
an εp > 0, such that the competitive ratio is greater than 2k − εp with probability
p.

Proof. The proof is very similar to the proof of Theorem 2. The instance has
the same structure as the one described in the proof of Theorem 2, with the
difference that whenever a new interval is taken with probability p > 0, the
adversary will have to add as many copies of that interval as necessary, so that
it is taken w.h.p. Fig. 5 shows an example of multiple copies of a new interval,
ensuring that a replacement happens w.h.p.

Any-Order Online Interval Selection 185

Fig. 5. Replacing I1 w.h.p when F (I2, {I1}) > 0.

It is worth mentioning that similar to how we extend our lower bound to hold
for memoryless randomized algorithms, one can extend the log(n) lower bound
for call control [22] to also hold for memoryless randomized algorithms.

4 Arbitrary Weights

The case of intervals having an arbitrary weights has previously been consid-
ered for the case of single-length instances and ordered arrivals. Woeginger [37]
gives an optimal deterministic algorithm that is 4-competitive. Fung et al. [20]
give a barely random algorithm that is 2-competitive, and show that it is opti-
mal amongst barely random algorithms that choose between two deterministic
algorithms. Woeginger [37] shows that in the case of two different lengths, there
does not exist a deterministic algorithm with finite competitive ratio. We show
how to combine the barely random algorithm of Fung et al., with a classify and
randomly select algorithm, to obtain a randomized algorithm for the any-order
case, that achieves a competitive ratio of 2k, when there are k different lengths.

First, one can observe that the 2-competitive single-length algorithm by Fung
et al. [20] (Theorem 3.1), works even in the case of any-order arrivals. Our
algorithm (denoted as ARB) works as follows: Choose one of k lengths, uniformly
at random. Then execute the algorithm of Fung et al., looking only at intervals
of the chosen length.

Theorem 4. Algorithm ARB achieves a competitive ratio of 2k for the problem
of any-order interval selection with k different lengths and arbitrary weights.

Proof. Let L1, L2, ..., Lk be all the different lengths of an instance. Associated
with length Li, is a sub-instance Ci, comprised only of the intervals of length
Li. Let OPTi denote the weight of an optimal solution on sub-instance Ci. The
expected performance of the algorithm can be bounded as follows:

E[ALG] ≥ 1
k

OPT1

2
+

1
k

OPT2

2
+ ... +

1
k

OPTk

2
≥ OPT

2k

The first inequality holds because applying Fung et al. [20] on Ci gives a solution
of weight at least OPTi

2 . The second inequality holds because for every length
Lj , the total weight of the intervals of length Lj in the final solution, is at most
OPTj .

186 A. Borodin and C. Karavasilis

We note that the algorithm does not need to know the actual lengths beforehand,
or even k. The algorithm can start working with the first length that appears.
When a second length arrives, the algorithm discards its current solution and
chooses the new length with probability 1

2 . More generally, when the ith length
arrives, the algorithm starts over using the new length with probability 1

i . One
can see that the probability that any length is chosen is 1

k . This procedure
can be viewed as a form of reservoir sampling. Moreover, by replacing the 2-
competitive arbitrary weights algorithm with a simple greedy algorithm, we get
a randomized algorithm for the unweighted case that is 2k-competitive and does
not use revoking.

5 Random Order

In this section, we assume the adversary chooses the instance configuration, but
the intervals arrive in a random order. We consider unweighted, single-lengthed
instances, and deterministic memoryless algorithms with revocable acceptances.
We consider various cases and show that the only type of algorithm that can
beat the adversarial bound is a one-directional algorithm, namely an algorithm
that only replaces intervals on the left side, or only on the right side, regardless of
the amount of overlap. For any other algorithm, we show how the adversary can
enforce a competitive ratio of 2, resulting in no benefit over adversarial arrivals
for single-lengthed instances.

The argument works as follows. We first consider two simple algorithms, an
algorithm that always replaces, and an algorithm that never replaces, and give a
class of instances where these algorithms are no better than 2-competitive. We
then show that for any algorithm that isn’t one-directional, we can construct
an instance on which the algorithm’s behavior is the same as that of an always-
replace, or never-replace algorithm on that class of instances. As a result, we get
the following, arguably surprising, theorem. The proof of Theorem 5 is presented
in the full version of the paper.

Theorem 5. Every deterministic memoryless algorithm that isn’t one-
directional, can be forced to a strict competitive ratio of at least 2 for the prob-
lem of online unweighted single-lengthed interval selection under random order
arrivals.

We note that in ongoing work with additional authors, we have shown that
for chain instances, the one-directional algorithm is substantially better than
2-competitive.

6 Conclusions and Open Problems

There are a number of possible directions for future work. A very natural direc-
tion is looking at specific weighted cases. Deterministically, Garay et al. [22] have
settled the case of proportional weights with an optimal, constant-competitive

Any-Order Online Interval Selection 187

algorithm. It’s interesting to see if a similar constant can be achieved for the
more general weight functions studied by Woeginger [37], with or without ran-
domness. We considered the case of arbitrary weights in Sect. 4.

It is fair to say that we have a limited understanding of randomized algo-
rithms for interval selection. In the unweighted adversarial setting, we have
shown that no memoryless randomized algorithm can be constant-competitive.
With memory, the best known algorithm is 6-competitive, and we know of no
better lower bound than 4

3 (using a chain of 3 intervals). For some weighted
cases (including proportional weights), Fung et al. show that with one random
bit, their 2-competitive algorithm is optimal. However, these upper bounds don’t
necessarily hold in the any-order model. We also note that for arbitrary weights,
there is a gap between our 2k upper bound, and the Ω(

√
k) lower bound by

Canetti and Irani [11]. We would like to extend the memoryless model to algo-
rithms with constant memory beyond the current solution. In particular, we
would want to allow access to a few initial random bits which would also cap-
ture algorithms that fall under the classify and randomly select paradigm.

A natural extension of revocable decisions is assigning a cost to the removal
and replacement of previously accepted items, a model arguably more relevant
in practice. This has been applied to problems such as online knapsack [24], and
online advertising [4]. We find it interesting to consider interval selection with
costs, and devise algorithms that aim to optimize the solution while limiting the
total cost of revoking.

Finally, to the best of our knowledge, we have initiated the study of this
model under random order arrivals, where there are many open questions for
future work. We have only looked at single-lengthed instances, a special case
that, in the adversarial setting, doesn’t even require revoking. Looking at mul-
tiple lengths under random arrivals is a natural next step. Lastly, we have
shown that one-directional algorithms for single-lengthed instances, are the
only type of deterministic memoryless algorithms that can achieve better than
2−competitiveness. We don’t have any provable upper bounds on the perfor-
mance of a one-directional algorithm, but we have conducted experiments that
suggest it may achieve much better than 2-competitiveness. This is an interest-
ing contrast with the adversarial model, where a one-directional algorithm would
perform arbitrarily bad.

Acknowledgements. We would like to thank Denis Pankratov, Adi Rosén and Omer
Lev for many helpful comments.

References

1. Adler, R., Azar, Y.: Beating the logarithmic lower bound: randomized preemptive
disjoint paths and call control algorithms. J. Scheduling 6(2), 113–129 (2003)

2. Alon, N., Azar, Y., Gutner, S.: Admission control to minimize rejections and
online set cover with repetitions. In: Proceedings of the Seventeenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, pp. 238–244 (2005)

188 A. Borodin and C. Karavasilis

3. Awerbuch, B., Bartal, Y., Fiat, A., Rosén, A.: Competitive non-preemptive call
control. In: SODA, vol. 94, pp. 312–320. Citeseer (1994)

4. Babaioff, M., Hartline, J.D., Kleinberg, R.D.: Selling ad campaigns: online algo-
rithms with cancellations. In: Proceedings of the 10th ACM Conference on Elec-
tronic Commerce, pp. 61–70 (2009)

5. Bachmann, U.T., Halldórsson, M.M., Shachnai, H.: Online selection of intervals
and t-intervals. Inf. Comput. 233, 1–11 (2013)

6. Baptiste, P.: Scheduling equal-length jobs on identical parallel machines. Discret.
Appl. Math. 103(1–3), 21–32 (2000)

7. Blum, A., Kalai, A., Kleinberg, J.: Admission control to minimize rejections. In:
Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp.
155–164. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6 15

8. Bogart, K.P., West, D.B.: A short proof that “proper= unit.” Discret. Math.
201(1–3), 21–23 (1999)

9. Borodin, A., Ivan, I., Ye, Y., Zimny, B.: On sum coloring and sum multi-coloring
for restricted families of graphs. Theor. Comput. Sci. 418, 1–13 (2012)

10. Borodin, A., Karavasilis, C.: Any-order online interval selection. arXiv preprint
arXiv:2303.06127 (2023)

11. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
In: Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, pp. 606–615 (1995)

12. Christou, D., Fotakis, D., Koumoutsos, G.: Memoryless algorithms for the gener-
alized k-server problem on uniform metrics. In: Kaklamanis, C., Levin, A. (eds.)
WAOA 2020. LNCS, vol. 12806, pp. 143–158. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-80879-2 10

13. Chrobak, M., Dürr, C., Jawor, W., Kowalik, �L, Kurowski, M.: A note on scheduling
equal-length jobs to maximize throughput. J. Scheduling 9(1), 71–73 (2006)

14. Coester, C., Koutsoupias, E.: The online k-taxi problem. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing (2019)

15. Emek, Y., Halldórsson, M.M., Rosén, A.: Space-constrained interval selection.
ACM Trans. Algorithms (TALG) 12(4), 1–32 (2016)

16. Epstein, L., Levin, A.: Improved randomized results for that interval selection
problem. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp.
381–392. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87744-
8 32

17. Faigle, U., Nawijn, W.M.: Note on scheduling intervals on-line. Discret. Appl.
Math. 58(1), 13–17 (1995)

18. Fotakis, D.: On the competitive ratio for online facility location. Algorithmica
50(1), 1–57 (2008)

19. Fung, S.P., Poon, C.K., Yung, D.K.: On-line scheduling of equal-length intervals
on parallel machines. Inf. Process. Lett. 112(10), 376–379 (2012)

20. Fung, S.P., Poon, C.K., Zheng, F.: Improved randomized online scheduling of
intervals and jobs. Theory Comput. Syst. 55(1), 202–228 (2014)

21. Garay, J.A., Gopal, I.S.: Call preemption in communication networks. In: Proceed-
ings IEEE INFOCOM 1992: Conference on Computer Communications (1992)

22. Garay, J.A., Gopal, I.S., Kutten, S., Mansour, Y., Yung, M.: Efficient on-line call
control algorithms. J. Algorithms 23(1), 180–194 (1997)

23. Halldórsson, M.M., Patt-Shamir, B., Rawitz, D.: Online scheduling with interval
conflicts. Theory Comput. Syst. 53(2), 300–317 (2013)

https://doi.org/10.1007/3-540-44634-6_15
http://arxiv.org/abs/2303.06127
https://doi.org/10.1007/978-3-030-80879-2_10
https://doi.org/10.1007/978-3-030-80879-2_10
https://doi.org/10.1007/978-3-540-87744-8_32
https://doi.org/10.1007/978-3-540-87744-8_32

Any-Order Online Interval Selection 189

24. Han, X., Kawase, Y., Makino, K.: Online Knapsack problem with removal cost.
In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol.
7434, pp. 61–73. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32241-9 6

25. Hyatt-Denesik, D., Rahgoshay, M., Salavatipour, M.R.: Approximations for
throughput maximization. arXiv preprint arXiv:2001.10037 (2020)

26. Kleinberg, J.M.: A lower bound for two-server balancing algorithms. Inf. Process.
Lett. 52(1), 39–43 (1994)

27. Kolen, A.W., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.: Interval
scheduling: a survey. Nav. Res. Logist. (NRL) 54(5), 530–543 (2007)

28. Koutsoupias, E.: The k-server problem. CS Rev. 3(2), 105–118 (2009)
29. Koutsoupias, E., Taylor, D.S.: The CNN problem and other k-server variants.

Theor. Comput. Sci. 324(2–3), 347–359 (2004)
30. Kovalyov, M.Y., Ng, C.T., Cheng, T.E.: Fixed interval scheduling: models, appli-

cations, computational complexity and algorithms. Eur. J. OR (2007)
31. Lipton, R.J., Tomkins, A.: Online interval scheduling. In: SODA, vol. 94 (1994)
32. Miyazawa, H., Erlebach, T.: An improved randomized on-line algorithm for a

weighted interval selection problem. J. Sched. 7(4), 293–311 (2004)
33. Raghavan, P., Snir, M.: Memory versus randomization in on-line algorithms.

In: Ausiello, G., Dezani-Ciancaglini, M., Della Rocca, S.R. (eds.) ICALP 1989.
LNCS, vol. 372, pp. 687–703. Springer, Heidelberg (1989). https://doi.org/10.
1007/BFb0035792

34. Seiden, S.S.: Randomized online interval scheduling. Oper. Res. Lett. 22(4–5),
171–177 (1998)

35. Sgall, J.: On-line scheduling. Online Algorithms, pp. 196–231 (1998)
36. Tomkins, A.: Lower bounds for two call control problems. Inf. Process. Lett. 56(3),

173–178 (1995)
37. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor.

Comput. Sci. 130(1), 5–16 (1994)
38. Yu, G., Jacobson, S.H.: Online c-benevolent job scheduling on multiple machines.

Optim. Lett. 12(2), 251–263 (2018)

https://doi.org/10.1007/978-3-642-32241-9_6
https://doi.org/10.1007/978-3-642-32241-9_6
http://arxiv.org/abs/2001.10037
https://doi.org/10.1007/BFb0035792
https://doi.org/10.1007/BFb0035792

Improved Approximations for Relative
Survivable Network Design

Michael Dinitz1, Ama Koranteng1(B), Guy Kortsarz2, and Zeev Nutov3

1 Johns Hopkins University, Baltimore, USA
mdinitz@cs.jhu.edu, akorant1@jhu.edu

2 Rutgers University, Camden, USA
guyk@camden.rutgers.edu

3 The Open University, Ra’anana, Israel
nutov@openu.ac.il

Abstract. One of the most important and well-studied settings for net-
work design is edge-connectivity requirements. This encompasses uni-
form demands (e.g. the Minimum k-Edge-Connected Spanning Subgraph
problem), as well as nonuniform demands (e.g. the Survivable Network
Design problem (SND)). In a recent paper [Dinitz, Koranteng, Kortsarz
APPROX ’22], the authors observed that a weakness of these formula-
tions is that we cannot consider fault-tolerance in graphs that have small
cuts but where some large fault sets can still be accommodated. To rem-
edy this, they introduced new variants of these problems under the notion
relative fault-tolerance. Informally, this requires not that two nodes are
connected if there are a bounded number of faults (as in the classical
setting), but that they are connected if there are a bounded number of
faults and the nodes are connected in the underlying graph post-faults.

Due to difficulties introduced by this new notion of fault-tolerance,
the results in [Dinitz, Koranteng, Kortsarz APPROX ’22] are quite lim-
ited. For the Relative Survivable Network Design problem (RSND) with
non-uniform demands, they are only able to give a nontrivial result
when there is a single demand with connectivity requirement 3—a non-
optimal 27/4-approximation. We strengthen this result in two significant
ways: We give a 2-approximation for RSND when all requirements are

at most 3, and a 2O(k2)-approximation for RSND with a single demand
of arbitrary value k. To achieve these results, we first use the “cactus
representation” of minimum cuts to give a lossless reduction to normal
SND. Second, we extend the techniques of [Dinitz, Koranteng, Kortsarz
APPROX’22] to prove a generalized and more complex version of their
structure theorem, which we then use to design a recursive approxima-
tion algorithm.

Keywords: Fault tolerance · Network design

See [17] for the full version.
M. Dinitz—Supported in part by NSF awards CCF-1909111 and CCF-2228995.
A. Koranteng—Supported in part by an NSF Graduate Research Fellowship and NSF
award CCF-1909111.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 190–204, 2023.
https://doi.org/10.1007/978-3-031-49815-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_14&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_14

Improved Approximations for Relative Survivable Network Design 191

1 Introduction

Fault-tolerance has been a central object of study in approximation algorithms,
particularly for network design problems where the graphs we study represent
physical objects which might fail (communication links, transportation links,
etc.). In these settings it is natural to ask for whatever object we build to be fault-
tolerant. The precise definition of “fault-tolerance” varies in different settings,
but a common formulation is edge fault-tolerance, which typically takes the form
of edge connectivity. Informally, these look like guarantees of the form “if up to
k edges fail, then the nodes I want to be connected are still connected.” For
example, consider the following classical fault-tolerance problem.

Definition 1. In the Survivable Network Design problem (SND, sometimes
referred to as Generalized Steiner Network) we are given an edge-weighted graph
G and demands {(si, ti, ki)}i∈[�], and we are supposed to find the minimum-
weight subgraph H of G so that there are at least ki edge-disjoint paths between
si and ti for every i ∈ [�]. In other words, for every i ∈ [�], if fewer than ki edges
fail then si and ti will still be connected in H even after failures.

The Survivable Network Design problem is well-studied (see [15,23,25,30] for
a sample); notably, Jain [25] gives a 2-approximation algorithm for the problem
in a seminal paper. Beyond SND, edge fault-tolerance has been studied in many
related network design contexts, with the k-Edge Connected Spanning Subgraph,
Fault-Tolerant Group Steiner Tree, Fault-Tolerant Spanner, and Fault-Tolerant
Shortest Paths problems being just a few examples (see [4,15,19,26]). These
and other classical fault-tolerance problems, including the Survivable Network
Design problem, are absolute fault-tolerance problems—if up to k objects fail, the
remaining graph should function as desired. This differs from the stronger notion
of fault-tolerance introduced in [16], called relative fault-tolerance. Relative fault-
tolerance makes guarantees that rather than being absolute (“if at most k edges
fail the network still functions”) are relative to an underlying graph or system
(“if at most k edges fail, the subgraph functions just as well as the original graph
post-failures”).

Relative fault-tolerance is therefore a natural generalization of absolute fault-
tolerance: If the input graph has the desired connectivity, then the relative
fault-tolerance and absolute fault-tolerance definitions are equivalent. However,
if the input graph does not have the requested connectivity, then relative fault-
tolerance allows us to return a solution with interesting and nontrivial guarantees
while absolute fault-tolerance forces us to return nothing. In this way, relative
fault-tolerance overcomes a significant weakness of absolute fault-tolerance.

This relative fault-tolerance definition was inspired by a recent line of work
on relative notions of fault-tolerance for graph spanners and emulators [5–
9,11,18,19]. In these settings, the goal is generally to find existential bounds
and algorithms to achieve them, rather than to do optimization. In [16], by con-
trast, their approach takes the point of view of optimization and approximation
algorithms. With this notion of fault-tolerance in network design, the authors of
[16] define the relative version of the Survivable Network Design problem.

192 M. Dinitz et al.

Definition 2. In the Relative Survivable Network Design problem (RSND), we
are given a graph G = (V,E) with edge weights w : E → R≥0 and demands
{(si, ti, ki)}i∈[�]. A feasible solution is a subgraph H of G where for all i ∈ [�]
and F ⊆ E with |F | < ki, if there is a path in G \ F from si to ti then there
is also a path in H \ F from si to ti. Our goal is to find the minimum weight
feasible solution.

Note that if si and ti are ki-connected in G for every i ∈ [�], then RSND
is exactly the same as SND. If in G there exists some i ∈ [�] such that si and
ti are not ki-connected, then although there is no solution for SND, there is a
meaningful RSND solution.

There has been recent work on a related network design model introduced by
Adjiashvili [1–3,10,13]. In this model, E is partitioned into “safe” and “unsafe”
edges. Informally, in the Flex-SNDP problem we are given a graph G = (V,E)
with edge costs and with functions p, q : V × V → Z

+. We must return a min
cost subgraph such that for each vertex pair u, v, they are p(u, v)-connected
after deleting any subset of up to q(u, v) unsafe edges. Like RSND, Flex-SNDP
is a natural generalization of SND. However, it is an absolute fault-tolerance
problem since it does not consider the underlying connectivity of the input. No
polynomial-time approximation algorithms are known for general Flex-SNDP,
though there has been recent work on several special cases [3,10,12,13].

The Results of [16]. Although relative fault-tolerance is a natural and promis-
ing generalization of fault-tolerance, the results given in [16] for the RSND prob-
lem are quite limited. Outside of a 2-approximation algorithm for the special
case in which all demands are identical, [16] is only able to give algorithms for
some of the simplest RSND special cases. First, they give an extremely simple
2-approximation for the RSND special case where all demands are in {0, 1, 2}
(also known as the 2-RSND problem). The algorithm falls out of the observation
that there is only a difference between a relative demand of 2 and an absolute
demand of 2 when there is a cut of size one separating the vertex demand pair.
Cuts of size one are very easy to handle, allowing for a simple and straightforward
reduction to SND.

Cuts of size two or larger are significantly more difficult to reason about, and
so the 2-RSND algorithm does not extend to larger demands. As a result of this
more complex cut structure, [16] is only able to handle demands of value 3 (and
reason about the size two cuts between them) when there is only a single demand,
with value 3 (also known as the SD-3-RSND problem). Despite this being an
extremely restricted special case of RSND, the algorithm and analysis given
by [16] are quite complex, depending on a careful graph decomposition involv-
ing “important separators” (a concept from fixed-parameter tractability [28]).
Moreover, this algorithm only achieved a 27/4-approximation for the problem,
far from the 2-approximation (or even exact algorithm) that one might hope for.

The limited results of [16] show that while relative fault-tolerance is an attrac-
tive notion, applying it to the Survivable Network Design problem significantly
changes the structure of the problem and makes it difficult to reason about and
develop algorithms for. For example, while [16] only gives a 27/4-approximation

Improved Approximations for Relative Survivable Network Design 193

for SD-3-RSND, there is an exact polynomial-time algorithm for the SND equiv-
alent (by a simple reduction to the Min-Cost Flow problem). So one might worry
that relative fault-tolerance is simply too difficult of a definition, and the results
of [16] are limited precisely because nothing is possible for even slightly more
general settings.

1.1 Our Results and Techniques

In this paper, we seek to alleviate this worry by providing improved bounds for
generalizations of the settings considered in [16]. In particular, we study two
natural generalizations of the SD-3-RSND problem (which [16] provided a 27/4-
approximation for). First, rather than only a single demand with value at most
3, can we handle an arbitrary number of demands that are at most 3? Secondly,
in the single demand setting, instead of only handling a demand of at most 3,
can we generalize to arbitrary values?

3-RSND. We begin with the setting where all demands are at most 3, but
there can be an arbitrary number of such demands. We call this the 3-RSND
problem. Note that, as discussed, there are no previous results for this setting,
and the most related result is a 27/4-approximation if there is only a single such
demand [16]. We prove the following theorem.

Theorem 1. There is a polynomial-time 2-approximation for the 3-RSND prob-
lem.

To obtain this theorem, we use entirely different techniques from those used
in [16]. Most notably, we use the cactus representation of the global minimum
cuts (which in this case are 2-cuts) of the input graph. The cactus representation
of global minimum cuts is well studied and has been leveraged in a number
of settings (see [20,21,24,27,29] for a sample). While it can be defined and
constructed for more general connectivity values, for our setting we can construct
the cactus representation by contracting components with certain connectivity
properties. This results in a so-called cactus graph, which at a high level is a
“tree of cycles”: every pair of cycles intersects on at most one component in the
construction. This cactus graph now has a simple enough structure that it allows
us to reduce the original problem to a simpler problem in each of the contracted
components. That is, we are able to show that certain parts of the cactus are
essentially “forced”, while other parts are not necessary, so the only question
that remains is what to do “inside” of each cactus vertex, i.e., each component.
This reduction makes the connectivity demands inside each component more
complicated, but fortunately we are guaranteed 3-connectivity between special
vertices inside the component. Hence we can use Jain’s 2-approximation for
SND [25] without worrying about the relative nature of the demands.

SD-k-RSND. Our second improvement is orthogonal: rather than allowing for
more demands of at most 3, we still restrict ourselves to a single demand but

194 M. Dinitz et al.

allow it to be a general constant k rather than 3. We call this the SD-k-RSND
problem. As with the 3-RSND problem discussed earlier, there are no known
results for this problem. We prove the following theorem:

Theorem 2. There is a polynomial-time 2O(k2)-approximation for the SD-k-
RSND problem.

To prove this, we extend the technique used by [16] for the k = 3 case. They
construct a “chain” of 2-separators (cuts of size 2 that are also important sep-
arators) so that in each component in the chain, there are no 2-cuts between
the incoming separator and the outgoing separator. They are then able to use
this structure to characterize the connectivity requirement of any feasible solu-
tion restricted to that component. To extend this technique, we use important
separators of size up to k − 1 to carefully construct a hierarchy of chains. The
hierarchy has k − 1 levels of nested components, so that for each component
in the ith level of the hierarchy, there are no cuts of size at most i between
the incoming and outgoing separators. There are multiple ways of constructing
such a hierarchy, but we prove that a particular construction yields a hierarchy
with a number of useful but delicate properties within a single level and between
different levels of the hierarchy. With these properties, we can characterize the
complex connectivity requirement of any feasible solution when restricted to a
component in the hierarchy. Once we have this structure theorem, we approx-
imate the optimal solution in each component of the hierarchy via a recursive
algorithm.

Simplification of k-EFTS. The k-Edge Fault Tolerant Subgraph problem
(k-EFTS) is the special case of RSND where all demands are identical: every
two nodes have a demand of exactly k. A 2-approximation for k-EFTS was
recently given in [16] via a somewhat complex proof; in particular, they defined
a new property called local weak supermodularity and used it to show that Jain’s
iterative rounding still gave the same bounds in the relative setting. In the
full version [17], we give a simplification of this proof. It turns out that local
weak supermodularity is not actually needed, and a more classical notion of F-
supermodularity suffices. This allows us to reduce to previous work in a more
black-box manner.

2 Preliminaries

We will consider the following special cases of RSND (Definition 2):

– The k-Relative Survivable Network Design problem (k-RSND) is the
special case of RSND where r(s, t) ≤ k for all s, t ∈ V . In this paper we
consider the case k = 3, namely, the 3-RSND problem.

– The Single Demand k-Relative Survivable Network Design problem
(SD-k-RSND) is the special case of RSND where r(s, t) = k for exactly
one vertex pair s, t ∈ V and there is no demand for any other vertex pairs
(equivalently, all other demands are 0). We consider the full SD-k-RSND
problem for arbitrary k.

Improved Approximations for Relative Survivable Network Design 195

– The k-Edge-Fault-Tolerant-Subgraph problem (k-EFTS) is the special
case of RSND where r(s, t) = k for all s, t ∈ V .

For each of the listed RSND problem variants, we will use the following
notation and definitions throughout. Let G = (V,E) be a (multi-)graph and H
a spanning subgraph (or an edge subset) of G. For A ⊆ V , let δH(A) denote the
set of edges in H with exactly one endpoint in A, and let dH(A) = |δH(A)| be
their number. Additionally, let G[A] denote the subgraph of G induced by the
vertex set A. Let s, t ∈ V . We say that A is an st-set if s ∈ A and t /∈ A, and
that δG(A) (or δE(A)) is an st-cut of G (induced by A). An st-cut δG(A) (or an
st-set A) is G-minimal if δG(A) contains no other st-cut of G. Assuming G is
connected, it is easy to see that δG(A) is G-minimal if and only if both G[A] and
G[V \ A] are connected. One can also see that if an st-cut X ⊆ E is G-minimal,
then X = δG(A) for some A ⊆ V . Finally, let λG(s, t) denote the size of a min
st-cut in G.

By Theorem 17 of [16], we may assume without loss of generality that the
input graph G of any RSND instance is 2-edge-connected (or “2-connected”).

3 2-Approximation for 3-RSND (and SD-3-RSND)

Given an RSND instance, we say that a vertex pair s, t is a k-demand if r(s, t) =
k. We call a k-demand relative if the minimum st-cut has size less than k; that
is, if λG(s, t) < k. A k-demand is then ordinary if λG(s, t) ≥ k. Recall that
SD-3-RSND has only one demand st, and that it is a 3-demand. The edges of
any size 2 st-cut, or 2-st-cut, belong to any feasible solution so we call them
forced edges. As a result, we can assume without loss of generality that they
have cost 0.

3.1 Overview

We first give an overview of the theorems and proofs in this section. In order to
prove Theorem 1, we will show that we can replace a single relative 3-demand
by an equivalent set of ordinary 3-demands. More formally, we will prove the
following.

Theorem 3. Given an SD-3-RSND instance, there exists a polynomially com-
putable set of ordinary 3-demands, D, such that for any H ⊆ E that contains
all forced edges, H is a feasible SD-3-RSND solution if and only if H satisfies
all demands in D.

This theorem reduces SD-3-RSND to the ordinary 3-SND problem (that
is, the special case of SND where all demands are at most 3). In fact, this
also gives us a lossless reduction from 3-RSND to 3-SND: Given a 3-RSND

instance, we include the forced edges of all 3-demands into our solution, replace
each relative 3-demand by an equivalent set of ordinary demands, and obtain an

196 M. Dinitz et al.

equivalent ordinary 3-SND instance. Since SND admits approximation ratio 2,
this reduction from 3-RSND to 3-SND implies Theorem 1.

We will also show that SD-3-RSND is approximation equivalent to certain
instances of a special case of 3-SND. Before we define this special case, we
must give a definition. A vertex subset R is a k-edge-connected subset in
a graph H if λH(u, v) ≥ k for all vertex pairs u, v ∈ R. Since the relation
{(u, v) ∈ V × V : no (k − 1)-cut separates u, v} is transitive, this is equivalent
to requiring that λH(u, v) ≥ k for pairs u, v that form a tree on R. We will
prove that SD-3-RSND is approximation equivalent to special instances of the
following problem:

4-Subset 3-EC

Input: A graph J = (V ′, E′) with edge costs, and a set R ⊆ V ′ of at most 4
terminals.
Output: A min-cost subgraph H of J , such that R is 3-edge-connected in H.

More specifically, we will prove the following.

Theorem 4. Let s and t be vertices in J = (V ′, E′), where J is the input
graph to an instance of 4-Subset 3-EC. SD-3-RSND admits approximation
ratio ρ if and only if 4-Subset 3-EC with the following properties (A,B) admits
approximation ratio ρ:

(A) dJ (s) = dJ (t) = 2 and R is the set of neighbors of s, t.
(B) If dJ(A) = 2 for some st-set A, then A = {s} or A = V ′ \ {t}. Namely, if

F is a set of 2 edges of J such that J \ F has no st-path, then F = δJ(s) or
F = δJ(t).

The general 4-Subset 3-EC problem admits approximation ratio 2, since it
is a special case of SND. However, it is not actually known whether 4-Subset

3-EC is in P or is NP-hard (see [14,22] for results on a closely related problem).
This 2-approximation is the best known for the 4-Subset 3-EC problem, so
our 2-approximation for 3-RSND is the best we can hope for. In the rest of this
section, we prove Theorems 4, 3, and 1. All missing proofs can be found in the
full version [17].

3.2 Cactus Representation and Definitions

We first give some definitions and describe the cactus representation. The rela-
tion {(u, v) ∈ V × V : no (k − 1)-cut separates u, v} is an equivalence, and we
will call its equivalence classes k-classes. We construct a cactus G by shrinking
every nontrivial 3-class (that is, every 3-class with at least 2 nodes) of the input
graph G. Note that since G is 2-connected, G is a connected graph in which every
two cycles have at most one node in common. Going forward, we will identify
every 3-class with the corresponding node of G. The edge pairs that belong to
the same cycle of G are the 2-cuts of G.

Improved Approximations for Relative Survivable Network Design 197

We can assume that vertex pair st is a relative 3-demand. We say that the
st-chain of cycles of G consists of all the cycles (and their nodes) in G that
contain a 2-st-cut. We refer to the nodes, 3-classes, on these cycles as st-relevant
nodes. Note that the set of edges in G that are in the st-chain of cycles are the
forced edges. We also say that an st-relevant 3-class is central if it contains
s or t, or belongs to two cycles of the st-chain. Additionally, the attachment
nodes of an st-relevant 3-class are nodes in the 3-class that are either s or t, or
are the ends of the edges (the attachment edges) that belong to some cycle in
the st-chain of cycles. Since G is 2-connected, the number of attachment nodes
in a non-central 3-class is exactly 2, while the number of attachment nodes in a
central 3-class is between 2 and 4.

3.3 Proof of Theorems 4, 3, and 1

For the proof of Theorems 4 and 3, we associate with each st-relevant 3-class,
C, a certain graph GC which we call the component of C, obtained as follows:

– If C is a non-central 3-class then, in the graph obtained from G by removing
the two attachment edges of C, GC is the connected component that contains
C.

– If C is a central 3-class, then removing the attachment edges of C results
in at least one and at most two connected components that do not contain
C – one contains s and the other contains t, if any. We obtain GC from G
by contracting the connected component that contains s into node s, and
contracting the connected component that contains t into node t.

We now modify the central components GC to satisfy properties (A,B) from
Theorem 4. Consider some central 3-class C, and consider its component J =
GC . If J does not contain one of the original nodes s or t, then it has properties
(A,B) and no modification is needed. If J contains the original node s, then we
rename s to s′, add a new node s, and connect new s by two zero cost edges to
s′. The obtained J now has properties (A,B). A similar transformation applies
if J contains the original node t.

The following lemma is about both the non-central components and these
modified central components; in the lemma, we show that for H to be a feasible
SD-3-RSND solution, it is necessary and sufficient to satisfy certain connectivity
properties within each component.

Lemma 1. Let H be a subgraph of G, and suppose that H contains all forced
edges. Subgraph H is a feasible SD-3-RSND solution if and only if for every
component J , the following holds.

(i) If J is a non-central component, then H[J] contains two edge-disjoint uv-
paths, where u and v are the two attachment nodes of J .

(ii) If J is a central component, then H[J] is a feasible solution to the SD-3-

RSND instance in J (with demand r(s, t) = 3).

198 M. Dinitz et al.

Suppose that for the special SD-3-RSND instances that arise in the central
components we can achieve approximation ratio α. Then, we can achieve ratio
α for general SD-3-RSND by picking into our solution H three types of edge
sets.

1. The forced edges.
2. A min-cost set of 2 edge-disjoint paths between the attachment nodes of each

st-relevant non-central component.
3. An α-approximate solution in each st-relevant central component.

Note that edges picked in steps 1,2 do not invoke any cost in the approxima-
tion ratio, since by Lemma 1 we actually pick parts of an optimal solution. Thus
we get that the approximability of SD-3-RSND is equivalent to the approx-
imability of the very special instances that arise in the central components. We
will now show that these special instances from the central components are in
fact instances of 4-Subset 3-EC with properties (A,B) from Theorem 4, thus
proving Theorem 4. We will consider only central components with 4 attachment
nodes; other cases with 3 or 2 attachment nodes are similar.

In what follows, let I be an SD-3-RSND instance on input graph J with
properties (A,B) (just as in our central components). Let R = {x, y, z, w} where
x, y are the neighbors of s and z, w are the neighbors of t and let H be a subgraph
of J that includes the four forced edges sx, sy, zt, and wt. We have the following.

Lemma 2. Subgraph H is a feasible solution for instance I if and only if R =
{x, y, z, w} is a 3-edge-connected subset in H.

By Lemma 2, H is a feasible solution for I if and only if H includes all
forced edges and R is a 3-edge-connected subset—that is, R forms a feasible
solution to 4-Subset 3-EC—in H. This, along with Lemma 1, implies that the
approximability of SD-3-RSND is equivalent to that of 4-Subset 3-EC with
properties (A,B), concluding the proof of Theorem 4.

Proof of Theorem 3. We will prove that a single relative 3-demand st can be
replaced by an equivalent forest of ordinary 3-demands in polynomial time, where
the trees in this forest span the sets of attachment nodes of the st-relevant 3-
classes.

Recall that by Lemmas 1 and 2, subgraph H is a feasible SD-3-RSND solu-
tion for 3-demand st if and only if the following holds for every st-relevant 3-class
C:

(i) If C is central, then the set RC of attachment nodes of C is a 3-connected
subset in H.

(ii) If C is non-central, then H[C] contains 2 edge-disjoint uv-paths, where u
and v are the attachment nodes of C.

The first condition is equivalent to satisfying a clique of 3-demands on RC .1 For
the second condition, consider a non-central st-relevant 3-class C with attach-
ment nodes u, v. One can see that if H contains all forced edges and satisfies
1 Recall that since the relation {(u, v) ∈ V ×V : no 2-cut separates u, v} is transitive,

this is equivalent to having a tree of 3-demands on RC .

Improved Approximations for Relative Survivable Network Design 199

(i,ii) then the number of edge-disjoint uv-paths in H is larger by exactly 1 than
their number in H[C]—the additional path (that exists in H but not in H[C])
goes along the cycle of the cactus that contains C, and there is exactly one such
path. Thus, the demand r(u, v) = 3 is equivalent to requiring two edge-disjoint
paths from u to v in RC (in addition to including all forced edges).

We therefore obtain an equivalent 3-SND instance by replacing the single
relative 3-demand st by a set D of 3-demands that form a clique (or, which
is equivalent, a tree) on the set RC of attachment nodes of every st-relevant
3-class C. These new demands can be computed in polynomial time, and they
are ordinary 3-demands, since each RC is a 3-edge-connected subset in G. This
concludes the proof of Theorem 3.

Proof of Theorem 1. We can now describe a 2-approximation for 3-RSND. We
treat each demand in the 3-RSND instance as its own instance of SD-3-RSND,
solve each SD-3-RSND instance, and include the edges of each solution in our
output.

4 SD-k-RSND

We give a recursive 2O(k2)-approximation algorithm for SD-k-RSND for arbitrary
constant k (Theorem 2). The algorithm is a generalization of the SD-3-RSND
algorithm from [16]. At a high level, the main idea is to partition the input
graph using a hierarchy of important separators, prove a structure theorem that
characterizes the required connectivity guarantees within each component of the
hierarchy, and then achieve these guarantees using a variety of subroutines.

4.1 Hierarchical Chain Decomposition

We first define important separators and describe how to use them to construct
a hierarchical k-chain decomposition of G.

Definition 3. Let X and Y be vertex sets of a graph G. An (X,Y)-separator
of G is a set of edges S such that there is no path between any vertex x ∈ X
and any vertex y ∈ Y in G \ S. An (X,Y)-separator S is minimal if no subset
S′ ⊂ S is also an (X,Y)-separator. If X = {x} and Y = {y}, we say that S is
an (x, y)-separator.

Definition 4 (Definition 20 of [16]). Let S be an (X,Y)-separator of graph
G, and let R be the vertices reachable from X in G \ S. Then S is an important
(X,Y)-separator if S is minimal and there is no (X,Y)-separator S′ such that
|S′| ≤ |S| and R′ ⊂ R, where R′ is the set of vertices reachable from X in G\S′.

In Sect. 4.1 of [16], the authors describe how to construct the “s − t 2-chain”
of a graph G.2 Here, we define the (X,Y) h-chain of G similarly, where X and
Y are vertex sets and h > 0 is an integer.
2 Note that all separator-based chain definitions given in this section are unrelated to

the cactus-based chain definitions in Sect. 3.

200 M. Dinitz et al.

First, if there are no important (X,Y)-separators of size h in G, then the
(X,Y) h-chain of G is simply G and we’re done (the chain is a single component,
G, with no separators). If such an important separator exists, then we first find
an important (X,Y)-separator Sh

0 of size h in G, and we let Rh
0 be the set of

vertices reachable from any vertex x ∈ X in G\Sh
0 . We let V h

(0,r) be the vertices in
Rh

0 incident on Sh
0 , and let V h

(1,�) be the nodes in V \Rh
0 incident on Sh

0 . We then
proceed inductively. Given V h

(i,�), if there is no important (V h
(i,�), Y)-separator

of size h in G \ (∪i−1
j=0R

h
j) then the chain is finished. Otherwise, let Sh

i be such
a separator, let Rh

i be the nodes reachable from V h
(i,�) in (G \ (∪i−1

j=0R
h
j)) \ Sh

i ,
let V h

(i,r) be the nodes in Rh
i incident on Sh

i , and let V h
(i+1,�) be the nodes in

V \ (∪i
j=0R

h
j) incident on Sh

i . After this process completes we have our (X,Y)
h-chain, consisting of components Rh

0 , . . . , Rh
p along with important separators

Sh
0 , . . . , Sh

p−1 between the components.
Next we note that by Lemma 21 of [16], we can find an important (X,Y)-

separator of size h in polynomial time as long as h is a constant.

Lemma 3 Lemma 21 of [16]). Let d ≥ 0. An important (X,Y)-separator of
size d can be found in time 4d · nO(1) (if one exists), where n = |V |.

Constructing the Hierarchical k-chain Decomposition. Now we describe how to
construct the hierarchical k-chain decomposition of G. We start by creating the
(s, t) 2-chain of G. We say that each component of the (s, t) 2-chain is a 2-
component of G in the hierarchical chain decomposition.

We then proceed inductively. Let Rh
i be an h-component of the hierarchical k-

chain decomposition. If h = k−1, then the decomposition is finished. Otherwise,
build the (V h

(i,�), V
h
(i,r)) (h+1)-chain of Rh

i . The (h+1)-chain consists of (h+1)-
components. Component Rh

i is the parent of these (h + 1)-components. After
this process completes we have our hierarchical k-chain decomposition of G.

The set of all h-components can be ordered as follows: The h-component
that contains s is the first component while the h-component that contains t is
last. All other h-components are adjacent via a left important separator and a
right important separator to a left neighbor h-component and a right neighbor
h-component, respectively.

4.2 Structure Theorem

Preliminaries. We say a subgraph H satisfies the RSND demand (X,Y, d) on
input graph G if the following is true: If there is a path from at least one vertex
in X to at least one vertex in Y in G \ F , where F is a set of at most d − 1
edges, then there is a path from at least one vertex in X to at least one vertex
in Y in H \ F . Going forward, if V h

(i,�) = {s}, then we consider Sh
i−1 to be the

empty set. Similarly, if V h
(i,r) = {t}, then Sh

i is the empty set.
Fix an h-component Rh

i and let X be a vertex set such that X ⊆ V h
(i,�). We

say that SX is the set of edges in Sh
i−1 incident on vertices in X. Similarly, if

Improved Approximations for Relative Survivable Network Design 201

Y is a vertex set such that Y ⊆ V h
(i,r), we say that SY is the set of edges in Sh

i

incident on vertices in Y . We will also use S to denote the set of all edges in an
important separator in the decomposition. Let H be a subgraph of G. We will
also say that Gh

i = G[Rh
i] is the subgraph of G induced by the vertex set Rh

i ,
and that Hh

i = H[Rh
i] is the subgraph of H induced by Rh

i .
We can now use the hierarchical chain construction to give a structure lemma

that characterizes feasible solutions. The lemma states that a subgraph H of G
is a feasible solution to SD-k-RSND if and only if in the hierarchical k-chain
decomposition of G, all edges in S are in H, and certain connectivity require-
ments between groups of vertices in V h

(i,�) and in V h
(i,r) are met in Hh

i for each
component Rh

i in the decomposition.

Theorem 5 (Structure Theorem). Subgraph H is a feasible solution to SD-
k-RSND if and only if all edges in S are included in H, and for each h-component
Rh

i in the hierarchical k-chain decomposition of G, subgraph Hh
i satisfies the

following:

1 Hh
i is a feasible solution to RSND on subgraph Gh

i with demands
{

(X,Y, d) : X ⊆ V h
(i,�), Y ⊆ V h

(i,r), (X,Y) 	= (
V h
(i,�), V

h
(i,r)

)
,

d = max(0, k + |SX | + |SY | − |Sh
i−1| − |Sh

i |)
}

.

2 Hh
i is a feasible solution to RSND on subgraph Gh

i with demand
(
V h
(i,�), V

h
(i,r), h + 1

)
.

3 Hh
i is a feasible solution to RSND on subgraph Gh

i with demand
(
V h
(i,�), V

h
(i,r), k − 1

)
.

The proof of this structure theorem is long and involved; due to space con-
straints it can be found in the full version [17].

4.3 Algorithm and Analysis

Algorithm. We can now use this Structure Theorem to give a 2O(k2)-
approximation for SD-k-RSND. We first create the hierarchical k-chain decompo-
sition of G in polynomial time, as described in Sect. 4.1. Within each component
we run a set of algorithms to satisfy the RSND demands stated in Theorem 5.
Our solution, H, includes the outputs of each of these algorithms along with S,
the set of all edges in the separators of the hierarchical k-chain decomposition.
We now describe the set of algorithms run on each component in the hierarchi-
cal k-chain decomposition. Fix a component Rh

i of the decomposition and let
X ⊆ V h

(i,�), Y ⊆ V h
(i,r), and d = max(0, k + |SX | + |SY | − |Si−1| − |Si|):

202 M. Dinitz et al.

– Base Case (Shortest st Path). For each X,Y pair such that d = 1, contract
the vertices in X and contract the vertices in Y to create super nodes x and
y, respectively. We first check in polynomial time if x and y are connected in
Gh

i = G[Rh
i]. If they are connected, then we create an instance of the Weighted

st Shortest-Path problem on Gh
i (in polynomial time), using x and y as our

source and destination nodes. For each edge e ∈ E(Rh
i), set the weight of e

to w(e). Run a polynomial-time Weighted st Shortest-Path algorithm on this
instance (e.g. Dijkstra’s algorithm), and add to H all edges in the output of
the algorithm.

– Recursive Step. For each X,Y pair such that 1 < d < k, we create an
instance of SD-d-RSND on Gh

i . Contract the vertices in X, and in Y , to
create super nodes x and y, respectively. For each e ∈ E(Rh

i), set the cost
of e to w(e). The set of RSND demands is just {(x, y, d)}. Run the recursive
polynomial-time SD-d-RSND algorithm on this instance, where d < k. Add
to H all edges in the output of the algorithm.

– Final Recursive Step. We create an SD-(k − 1)-RSND instance on Gh
i .

Contract the vertices in V h
(i,�), and in V h

(i,r), to create super nodes v� and
vr, respectively. For each e ∈ E(Rh

i), set the cost of e to w(e). The set of
RSND demands is just {(v�, vr, k − 1)}. Run the recursive SD-(k − 1)-RSND
algorithm on this instance. Add to H all edges in the output of the algorithm.

– Min-Cost Flow. We create an instance of the Min-Cost Flow problem on
Gh

i . Contract the vertices in V h
(i,�), and in V h

(i,r), to create super nodes v� and
vr, respectively. Let v� be the source and vr the sink. For each e ∈ E(Rh

i), set
the capacity of e to 1 and the cost of e to w(e). Require a minimum flow of
h + 1, and run a poly-time Min-Cost Flow algorithm on this instance. Since
all capacities are integer the algorithm will return an integral flow, so we add
to H all edges with non-zero flow.

Analysis. All missing proofs from this section can be found in the full ver-
sion [17]. The following lemma is essentially directly from Theorem 5 and the
description of the algorithm.

Lemma 4. Let H be the output of the algorithm given in Sect. 4.3. Subgraph H
is a feasible solution to the SD-k-RSND problem.

Let H∗ denote the optimal solution, and for any set of edges A ⊆ E, let
w(A) =

∑
e∈A w(e). The next lemma follows from combining the approximation

ratios of each of the subroutines used in the algorithm and solving the recurrence.

Lemma 5. w(H) ≤ 2O(k2) ∗ w(H∗).

Theorem 2 is directly implied by Lemmas 4 and 5 together with the obser-
vation that the algorithm runs in polynomial time.

Improved Approximations for Relative Survivable Network Design 203

References

1. Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M.: Flexible graph connectivity:
approximating network design problems between 1- and 2-connectivity (2020)

2. Adjiashvili, D., Hommelsheim, F., Mühlenthaler, M., Schaudt, O.: Fault-tolerant
edge-disjoint paths - beyond uniform faults (2020)

3. Bansal, I., Cheriyan, J., Grout, L., Ibrahimpur, S.: Improved approximation algo-
rithms by generalizing the primal-dual method beyond uncrossable functions
(2022)

4. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Multiple-edge-fault-tolerant approxi-
mate shortest-path trees (2016). https://doi.org/10.48550/ARXIV.1601.04169

5. Bodwin, G., Dinitz, M., Nazari, Y.: Vertex fault-tolerant emulators. In: Braverman,
M. (ed.) 13th Innovations in Theoretical Computer Science Conference, ITCS 2022.
LIPIcs, vol. 215, pp. 25:1–25:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2022). https://doi.org/10.4230/LIPIcs.ITCS.2022.25

6. Bodwin, G., Dinitz, M., Nazari, Y.: Epic fail: emulators can tolerate polynomially
many edge faults for free. In: 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023 (2023)

7. Bodwin, G., Dinitz, M., Parter, M., Williams, V.V.: Optimal vertex fault toler-
ant spanners (for fixed stretch). In: Czumaj, A. (ed.) Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, 7–10 January 2018, pp. 1884–1900. SIAM (2018)

8. Bodwin, G., Dinitz, M., Robelle, C.: Optimal vertex fault-tolerant spanners in poly-
nomial time. In: Naor, J.S., Buchbinder, N. (eds.) Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, pp. 2924–2938. SIAM
(2022). https://doi.org/10.1137/1.9781611976465.174

9. Bodwin, G., Patel, S.: A trivial yet optimal solution to vertex fault tolerant span-
ners. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, pp. 541–543. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3293611.3331588

10. Boyd, S., Cheriyan, J., Haddadan, A., Ibrahimpur, S.: Approximation algorithms
for flexible graph connectivity (2022)

11. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault tolerant spanners for gen-
eral graphs. SIAM J. Comput. 39(7), 3403–3423 (2010)

12. Chekuri, C., Jain, R.: Approximating flexible graph connectivity via räcke tree
based rounding (2022)

13. Chekuri, C., Jain, R.: Augmentation based approximation algorithms for flexible
network design (2022)

14. Cheriyan, J., Laekhanukit, B., Naves, G., Vetta, A.: Approximating rooted Steiner
networks. ACM Trans. Algorithms 11(2), 8:1–8:22 (2014)

15. Cheriyan, J., Thurimella, R.: Approximating minimum-size k-connected spanning
subgraphs via matching. SIAM J. Comput. 30(2), 528–560 (2000). https://doi.
org/10.1137/S009753979833920X

16. Dinitz, M., Koranteng, A., Kortsarz, G.: Relative survivable network design. In:
APPROX-RANDOM, vol. 245, pp. 41:1–41:19 (2022)

17. Dinitz, M., Koranteng, A., Kortsarz, G., Nutov, Z.: Improved approximations for
relative survivable network design (2023). https://doi.org/10.48550/arXiv.2304.
06656

18. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: Pro-
ceedings of the 30th Annual ACM Symposium on Principles of Distributed Com-
puting, PODC 2011, San Jose, CA, USA, 6–8 June 2011, pp. 169–178 (2011)

https://doi.org/10.48550/ARXIV.1601.04169
https://doi.org/10.4230/LIPIcs.ITCS.2022.25
https://doi.org/10.1137/1.9781611976465.174
https://doi.org/10.1145/3293611.3331588
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.48550/arXiv.2304.06656
https://doi.org/10.48550/arXiv.2304.06656

204 M. Dinitz et al.

19. Dinitz, M., Robelle, C.: Efficient and simple algorithms for fault-tolerant spanners.
In: Emek, Y., Cachin, C. (eds.) ACM Symposium on Principles of Distributed Com-
puting, PODC 2020, pp. 493–500. ACM (2020). https://doi.org/10.1145/3382734.
3405735

20. Dinitz, Y., Westbrook, J.: Maintaining the classes of 4-edge-connectivity in a graph
on-line. Algorithmica 20, 242–276 (1998)

21. Dinitz, Y., Nutov, Z.: A 2-level cactus model for the system of minimum and
minimum+ 1 edge-cuts in a graph and its incremental maintenance. In: Proceedings
of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pp.
509–518 (1995)

22. Feldmann, A.E., Mukherjee, A., van Leeuwen, E.J.: The parameterized complexity
of the survivable network design problem. In: SOSA, pp. 37–56 (2022)

23. Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the
smallest k-edge connected spanning subgraph by LP-rounding. Networks 53(4),
345–357 (2009)

24. Henzinger, M.R.: A static 2-approximation algorithm for vertex connectivity and
incremental approximation algorithms for edge and vertex connectivity. J. Algo-
rithms 24(1), 194–220 (1997)

25. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner net-
work problem. Combinatorica 21(1), 39–60 (2001). https://doi.org/10.1007/
s004930170004

26. Khandekar, R., Kortsarz, G., Nutov, Z.: Approximating fault-tolerant Group-
Steiner problems. Theor. Comput. Sci. 416, 55–64 (2012)

27. Lo, O.S., Schmidt, J.M., Thorup, M.: Compact cactus representations of all non-
trivial min-cuts. Discret. Appl. Math. 303, 296–304 (2021)

28. Marx, D.: Important separators and parameterized algorithms. In: Kolman, P.,
Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 5–10. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25870-1 2

29. Poutre, J.A.L.: Maintenance of 2- and 3-edge-connected components of graphs II.
SIAM J. Comput. 29(5), 1521–1549 (2000)

30. Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual
approximation algorithm for generalized Steiner network problems. Combinatorica
15(3), 435–454 (1995). https://doi.org/10.1007/BF01299747

https://doi.org/10.1145/3382734.3405735
https://doi.org/10.1145/3382734.3405735
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/s004930170004
https://doi.org/10.1007/978-3-642-25870-1_2
https://doi.org/10.1007/BF01299747

Independent Set in k-Claw-Free Graphs:
Conditional χ-Boundedness

and the Power of LP/SDP Relaxations

Parinya Chalermsook1, Ameet Gadekar1(B), Kamyar Khodamoradi2,
and Joachim Spoerhase3

1 Aalto University, Espoo, Finland
{parinya.chalermsook,ameet.gadekar}@aalto.fi

2 University of Regina, Regina, Canada
kamyar.khodamoradi@uregina.ca

3 University of Sheffield, Sheffield, UK
j.spoerhase@sheffield.ac.uk

Abstract. This paper studies k-claw-free graphs, exploring the connec-
tion between an extremal combinatorics question and the power of a
convex program in approximating the maximum-weight independent set
in this graph class. For the extremal question, we consider the notion,
that we call conditional χ-boundedness of a graph: Given a graph G that
is assumed to contain an independent set of a certain (constant) size,
we are interested in upper bounding the chromatic number in terms of
the clique number of G. This question, besides being interesting on its
own, has algorithmic implications (which have been relatively neglected
in the literature) on the performance of SDP relaxations in estimating
the value of maximum-weight independent set.

For k = 3, Chudnovsky and Seymour (JCTB 2010) prove that any
3-claw-free graph G with an independent set of size three must satisfy
χ(G) ≤ 2ω(G). Their result implies a factor 2-estimation algorithm for
the maximum weight independent set via an SDP relaxation (providing
the first non-trivial result for maximum-weight independent set in such
graphs via a convex relaxation). An obvious open question is whether
a similar conditional χ-boundedness phenomenon holds for any k-claw-
free graph. Our main result answers this question negatively. We further
present some evidence that our construction could be useful in studying
more broadly the power of convex relaxations in the context of approxi-
mating maximum weight independent set in k-claw free graphs. In par-
ticular, we prove a lower bound on families of convex programs that
are stronger than known convex relaxations used algorithmically in this
context.

This research was partially done during the trimester on Discrete Optimization at
Hausdorff Research Institute for Mathematics (HIM) in Bonn, Germany. The research
has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 759557)
and from Academy of Finland (grant number 310415). Kamyar Khodamoradi was
supported by Deutsche Forschungsgemeinschaft (project number 399223600).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 205–218, 2023.
https://doi.org/10.1007/978-3-031-49815-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_15&domain=pdf
https://doi.org/10.1007/978-3-031-49815-2_15

206 P. Chalermsook et al.

Keywords: χ-boundedness · Convex relaxation · Ramsey theory

1 Introduction

For k ≥ 3, a graph is said to be k-claw-free if the neighborhood of each ver-
tex does not contain an independent set of size k. This paper focuses on an
extremal question in k-claw-free graphs and its connection to the power of convex
programs in estimating the maximum weight independent set (MWIS) in such
graphs. The study of such relation originated already around 50 years ago when
Lovász defined the notion of perfect graphs based on graph extremal properties
and showed connections to (exact) semi-definite programming formulations for
optimization problems [16,24]. Such connections are known to be “approxima-
tion preserving” so they imply a connection between standard Ramsey-type the-
orems (and χ-boundedness) in approximating the cardinality (resp. the weight)
of the maximum independent set. Several approximation algorithms in geometric
intersection graphs have been successfully derived in this framework [6,9,10,23].

Most prior works that extend perfect graphs rely on the notion of the clique
constrained stable set polytope (QSTAB)—a convex relaxation that can be opti-
mized via semi-definite programs1. The power of QSTAB is captured precisely
by standard extremal bounds. For example, the χ-boundedness χ(G) ≤ γω(G) in
a “natural” graph class is (roughly) equivalent to QSTAB providing γ-estimate
on the weight of maximum independent set in the same graph class [8]. Despite
successful cases of the extremal approach, QSTAB fails unexpectedly in graph
classes such as k-claw-free graphs: For any k ≥ 3, a simple greedy algorithm
immediately gives a factor (k −1) approximation for MWIS, while QSTAB (and
other known convex relaxations) is unable to give f(k) approximation for any
function f (see our full version [7]).

This work is an attempt to better understand the power of convex relax-
ations for approximating MWIS in k-claw-free graphs. MWIS on k-claw-free
graphs contains many well-known (open) problems as special cases, such as
set packing [12,14,17,18] and independent set in sparse graphs [1,2], for which
QSTAB has been shown to perform relatively well in terms of approximating
the problems. Somewhat surprisingly, the study of convex relaxations for MWIS
on k-claw-free graphs has been absent from the literature.

This paper is inspired by the following theorem of Chudnovsky and Seymour.

Theorem 1 (Chudnovsky–Seymour [13]). For every connected claw-free
(k = 3) graph G with α(G) ≥ 3, it holds that χ(G) ≤ 2ω(G).

Remark that, the condition α(G) ≥ 3 is necessary, for otherwise, we can have
χ(G) = ˜Ω(ω(G)2) for claw-free graphs, contradicting the above theorem2. Their

1 Recall that the polytope is defined as QSTAB(G) = {x ∈ [0, 1]|V (G)| :
∑

i∈Q xi ≤
1(∀clique Q)}. Optimizing this itself is NP-hard, but we can optimize an SDP whose
solution is feasible for QSTAB.

2 The notation Ω̃ hides asymptotically smaller terms.

Independent Set in k-Claw-Free Graphs 207

theorem, in particular, implies that the sum-of-squares (SoS) hierarchy—a family
of increasingly tight convex relaxations—gives an efficient 2-estimation algorithm
for MWIS in claw-free graphs. An obvious open question is whether the above
theorem can be generalized to k-claw-free graphs.

1.1 Our Contributions

Our results are stated via our new notion of conditional χ-boundedness. We say
that G is (t, γ)-conditionally χ-bounded if χ(G) ≤ γω(G) whenever α(G) ≥ t.
Moreover, a graph class is (t, γ)-conditionally χ-bounded if every graph in that
class is. The following theorem (which is a simple combination of known facts)
connects SoS to an extremal question of Chudnovsky and Seymour.

Theorem 2. Consider a graph class that is closed under clique replacement3.
If the graph class is (t, γ)-conditionally χ-bounded, then t rounds of SoS gives a
factor γ-estimation for MWIS.

In particular, if t = O(1), then SoS gives a γ-estimation algorithm in polynomial
time. Our first main contribution is to rule out this approach, i.e., refuting the
possibility to generalize Theorem 1. We show the following result (please refer
Theorem 5 for a precise statement).

Theorem 3 (Simplified). For every k ≥ 4, there exists an infinite family of
graphs {Gn} such that Gn is a connected k-claw-free graph on n vertices with

α(Gn) = Ω
(

n
log n

)

and χ(G) ≥ f(k)
(

ω(G)
log ω(G)

)k/2

, for some function f .

This lower bound almost matches the upper bound provided by [32]. We remark
that both upper and lower bounds are tight w.r.t. the state-of-the-art bounds on
Ramsey number, that is, improving in either direction requires asymptotically
improving the bound on the Ramsey number of a graph.

Given this theorem, the next obvious open question is whether there is a
lower bound on the performance of SoS that “separates” SoS from the simple
greedy factor-k approximation algorithm. While we do not manage to settle this
question, we instead show in the theorem below that our construction for Theo-
rem 3 can be used to construct a bad example for a Sherali–Adams strengthening
of QSTAB(G) = {x ∈ [0, 1]|V (G)| :

∑

i∈Q xi ≤ 1(∀ cliqueQ)}.

Theorem 4 (Integrality gap of Sherali–Adams on QSTAB). Let k ≥ 4.
For 0 < ε ≤ 1/3, there exists an infinite family of graphs {Gn} such that Gn

is a connected k-claw-free graph on n vertices with4 α(Gn) = Ω(nε) and the
integrality gap of Sherali–Adams hierarchy on QSTAB(Gn) is Ωk(nε), even after
Ωk(n1−2ε) rounds.

3 A clique replacement operation on graph G replaces any vertex v with a clique Kv

of arbitrary size and connects each vertex in a clique to every neighbor of v. It is
easy to see that k-claw-free graphs are closed under clique replacement.

4 The notations Ok, Θk, Ωk hide multiplicative functions in k.

208 P. Chalermsook et al.

We remark that this theorem can be contrasted with special cases of k-claw-
free graphs, e.g., in the bounded degree setting [2], where the (poly-logarithmic
rounds of) Sherali–Adams strengthening of QSTAB provides an optimal approx-
imation factor under the unique games conjecture (UGC) [1].

Discussion of Previous Work on Convex Programs. Let us compare our result of
Theorem 4 with the bounds of Chan and Lau [11]. In particular, [11] considers k-
SetPacking, a special case of maximum independent set in (k+1)-claw-free graph,
where we are given a k-uniform hypergraph H on n vertices and we are asked
to find a maximum matching in H. In their work, [11] show that Sherali–Adams
on the standard LP for k-SetPacking has integrality gap of at least k − 2, even
after Ωk(n) rounds. Additionally, they show that, for constant k, QSTAB for k-
SetPacking can be captured by a polynomial size LP and has integrality gap of at
most (k +1)/2. In contrast, our result of Theorem 4 is for more general problem
of maximum independent set in k-claw-free graphs, and yields integrality gap
of Ωk(nε), which is a function of n, for Sherali–Adams on QSTAB with rounds
Ωk(n1−2ε), which is a stronger program than that of [11]. However, we remark
that, the parameters of Theorem 4 can be adjusted to yield an integrality gap
of g(k), for any function g, for Sherali–Adams on QSTAB with Ωk(n) number
of rounds, which is linear in n (refer our full version [7] for more details). Thus,
our results yield a larger integrality gap for a stronger program for maximum
independent set in k-claw-free graphs compared to that of [11].

Overview of Techniques: We give a high-level overview for the proof of Theo-
rem 3. For simplicity, let us focus on the case of k = 5 and a slightly weaker
bound. The first component of our construction is a Ramsey graph. It is known
that there exists an n-vertex graph H such that α(H) = 2 and there is no clique
of size c

√
n log n for some constant c [19]. Therefore this graph is 3-claw-free

(since there is no independent set of size 3) and χ(G) ≥ n/α(G) = n/2 ≥
˜Ω(ω(G)2). So, this graph has almost all our desired properties except that α(H)
is very small while we need large independent sets. We will “compose” several
copies of H together to obtain a final graph G, ensuring that (i) α(G) can be
made arbitrarily large, (ii) ω(G) is roughly the same as ω(H), and (iii) the graph
remains 5-claw-free.

The key component of our composition step is a special graph operation that
we call bi-conflict composition. In particular, given any two graphs H1,H2 having
n vertices each, the graph D = bcc(H1,H2) is obtained as follows. First, construct
a graph D′ by connecting H1 and H2 by an arbitrary matching M : |M | = n.
Next, define D where V (D) = M and for each e, e′ ∈ M , we have (e, e′) ∈ E(D)
if and only if they are not induced matching edges in D′. There are two simple
properties of graph D that are crucial to our analysis.

– (P1) the maximum claw in D is at most min{α(H1), α(H2)}.
– (P2) the maximum clique in D is ω(D) ≤ ω(H1) + ω(H2) + 1.

The bi-conflict composition will be used as an analytical tool in our construction.
Take q copies of Ramsey graphs H1,H2, . . . , Hq on n vertices. For each i =

Independent Set in k-Claw-Free Graphs 209

1, . . . , q−1, connect Hi to Hi+1 by a matching Mi : |Mi| = n. Call this graph G′.
Our final graph G has vertices V (G) =

⋃

i V (Mi) and the edges are defined
such that (e, e′) ∈ E(G) if e and e′ form an induced matching. Notice that the
structure of graph G for vertices that correspond to Mi-edges is roughly the
same as bcc(Hi,Hi+1), which allows us to invoke properties (P1) and (P2).

Notice that α(G) = Ω(q) (Pick one matching edge from each Mi when i is
odd). Property (P1) guarantees that the maximum claw is at most 4 (therefore
G is 5-claw-free) and property (P2) guarantees that the value of maximum clique
is at most O(

√
n log n). By choosing q to be sufficiently large, we would be done.

We remark that this construction gives a non-trivial lower bound (albeit weaker
than Theorem 3) for k ≥ 5. To make the result work for k = 4, we need to
compose the copies of the Ramsey graph more carefully.

1.2 Conclusion and Open Problems

Our main contribution is to initiate the study of convex relaxation aspects of
independent set in k-claw-free graphs. The main open question is whether there
is any convex relaxation approach that gives a reasonable approximation guaran-
tee for MWIS in k-claw-free graphs (for k ≥ 4). Conceptually, we made explicit
the implication of Chudnovsky and Seymour’s theorem (which can be seen as
conditional χ-boundedness), that SoS gives a reasonable approximation guaran-
tee for claw-free graphs. We refute the possibility of generalizing such a result
to k-claw-free graphs for all k ≥ 4 and present evidence that this graph family
might be a bad instance for SoS.

1.3 Further Related Work

A graph class is said to be χ-bounded if χ(G) can be upper bounded by f(ω(G))
where f is some function. The concept of χ-boundedness has been studied exten-
sively in graph theory (see, e.g., the survey [29] and references therein). In algo-
rithms and optimization, we are mostly concerned with χ-boundedness where f
is a linear or close to linear function. Roughly, the ratio χ(G)/ω(G) captures the
integrality gap of a convex programming relaxation QSTAB in estimating the
value of maximum independent set of a graph [8].

As for approximating the maximum weight of the independent set of k-claw-
free graphs, a local search algorithm due to Berman [3] had remained the best
known approximation algorithm for the past two decades. Berman’s algorithm
achieved a factor of k

2 + ε in polynomial time. In 2021, Neuwohner [25] broke
the barrier of k

2 by improving the factor to k
2 − 1

63,700,992 . In a very recent work,
Thiery and Ward [31] improved the factor to k

2 − δk for a constant δk ≥ 0.214.
On the other hand, the problem is NP-hard to approximate better than a factor
of Ω (k/ log k) [17]5.

5 In fact, the hardness even holds for a special case of the problem, namely the
unweighted k-set packing problem.

210 P. Chalermsook et al.

With respect to convex programs, Chan and Lau [11] study the power of
standard LP and Sherali–Adams on k-SetPacking, which is a special case of max-
imum independent set in (k + 1)-claw-free graph. In k-SetPacking, we are given
a k-uniform hypergraph H on n vertices and we are asked to find a maximum
matching in H. In their work, [11] show that Sherali–Adams on the standard LP
for k-SetPacking has integrality gap of at least k −2, even after Ω(n/k3) rounds.
Additionally, they show that, for constant k, QSTAB for k-SetPacking can be
captured by a polynomial size LP and has integrality gap of at most (k + 1)/2.

Organization. Section 2 explains the basic graph-theoretic terminologies. Our
graph theoretic result is proved in Sect. 3. All convex relaxation results, as well
as the connection with the notion of conditional χ-boundedness, are proved in
Sect. 4.

2 Preliminaries

We follow standard graph theoretic notation. Given a graph G = (V (G), E(G)),
M ⊆ E(G) is a matching if no pair of edges in M share a vertex. Further,
a matching M ⊆ E(G) is said to be an induced matching if it is an induced
subgraph of G. Finally, for a matching M , ei �= ej ∈ M is said to be an inter-
secting matching pair if ei and ej do not form an induced matching; and M is
an intersecting matching if every pair in M is an intersecting matching pair.

For k ≥ 3, a k-claw is the graph K1,k. For a k-claw T , the vertex with degree
k is called the central vertex of T , and the remaining vertices of degree one are
called leaves of T . A graph G is said to be k-claw-free if there exists no k-claw as
an induced subgraph. For a graph G, α(G) is the size of maximum independent
set in G, ω(G) is the size of maximum clique in G, and χ(G) is the chromatic
number of G. For weighted case, α(G) and ω(G) represent the maximum weight
independent set and maximum weight clique in G respectively.

The notations Ok, Θk, Ωk hide multiplicative functions in k.
In the maximum-weight independent set problem (MWIS), we are given a

graph G together with weights {wv}v∈V (G) on the vertices, and our goal is to
find an independent set S ⊆ V (G) with maximum total weights.

3 Graph Theoretic Result

In this section we prove the following theorem.

Theorem 5. For k ≥ 4, there exists n0 depending on k such that for infinitely
many n ≥ n0, there exists a connected k-claw-free graph G on n vertices with

α(G) = Ω
(

n
log n

)

and χ(G) ≥ f(k)
(

ω(G)
log ω(G)

)k/2

, for some f(k).

To this end, we will use known results about Ramsey graphs, which we introduce
in Sect. 3.1. We explain our construction and analysis in Sects. 3.2.

Independent Set in k-Claw-Free Graphs 211

3.1 Ramsey Graphs

Let R(s, t), for s ≥ 3 denote the Ramsey number, i.e., R(s, t) is the minimum
number such that any graph on R(s, t) vertices has either an independent set of
size s or a clique of size t.

Theorem 6 ([4,5,19]). For any s ≥ 3 and for sufficiently large t, R(s, t) ≥
c′
s · t

s+1
2 (log t)

1
s−2− s+1

2 , for some constant c′
s depending only on s.

Thus, the above theorem implies that for s ≥ 3 and sufficiently large t, there is
a graph on 	R(s, t) − 1
 vertices that has neither an independent set of size s
nor a clique of size t. We call such a graph an (s, t)-Ramsey graph.

Corollary 1. For s ≥ 3 and sufficiently large t, there is an (s, t)-Ramsey graph
on cs · t

s+1
2 (log t)

1
s−2− s+1

2 vertices, for some positive constant cs depending only
on s.

3.2 Graph Construction

Lemma 1. Let k ≥ 4, p ≥ 1, τ ≥ 3, and let H = (V (H), E(H)) be a (k − 1, τ)-
Ramsey graph. Then, there exists a connected k-claw-free graph G on Θ(p|V (H)|)
vertices such that p ≤ α(G) ≤ 3pk and ω(G) ≤ 3τ .

Proof. We construct the graph G in two steps. In the first step, we construct an
auxiliary graph G′ = (V (G′), E(G′)) using (k − 1, τ)-Ramsey graph H. Finally,
in the second step, using this auxiliary graph G′, we construct our graph G.

Construction of Auxiliary Graph G′. Let Q = Kτ−1 be the complete graph on
τ − 1 vertices. We construct the graph G′ in two steps: In the first step, we use
H and Q to create a graph B, which we call a block. In the second step, we
construct the graph G′ using p copies of B. For i ∈ [p], we construct block Bi

using Q and two copies of H as follows (see Fig. 1). Let H1
i and H2

i be copies of
H, and let Qi be a copy of Q. We connect each vertex in H1

i with its respective
copy in H2

i by an edge. Then, we pick an arbitrary set of τ − 1 vertices from H2
i

and add an (arbitrary) matching between this set and the vertices of Qi. Finally,
we connect each Bi to B(i+1) mod p as follows (see Fig. 2). We pick an arbitrary
set of τ − 1 vertices from H1

(i+1) mod p and add a matching between this set and
the vertices of Qi. This completes the construction of G′. Notice that G′ forms
a ring structure consisting of Bis. We call the new edges that we added in our
construction matching edges.

Construction of G. For every matching-edge ei in G′, we create a vertex vi in
G. Then, (vi, vj) ∈ E(G) if ei and ej is an intersecting matching pair (i.e., they
do not form an induced matching).

Analysis. Let n = |V (G)|, then note n = p(qk(τ) + 2(τ − 1)). Hence, 3pqk(τ) >
n ≥ pqk(τ). Since the Ramsey graph H and Q = Kτ−1 used in construction of B
are connected, we have that G′ is connected. This implies that G is connected.

212 P. Chalermsook et al.

Fig. 1. One block Bi of the graph G′

Fig. 2. Connecting block Bi and Bi+1 in G′

Next we bound α(G). First note that α(G) ≥ pα(H) since from each block Bi

we can pick matching edges between H1
i and H2

i that have endpoints on the
vertices of α(H). The vertices in G corresponding to these matching edges form
an independent set. For the upper bound, we will show that α(G) < 3pα(H).
Suppose for contradiction α(G) ≥ 3pα(H). Let I be an independent set in G
with |I| ≥ 3pα(H). Let M be the matching-edges of G′ corresponding to the
vertices in I. Let Mi ⊆ M be the edges of M with both endpoints in Bi. Since Bi

and B(i+1) mod p are connected by Qi (which is a complete graph), the number
of edges of M that are between Bis is at most p. Hence, the number of edges of
M that lie completely within some Bi is at least M − p. Since |M | ≥ 3pα(H),
it must be that there is a block Bi such that |Mi| ≥ (3pα(H) − p)/p ≥ 2α(H).
Since the edges of Mi should have an endpoint in H2

i , it implies that α(H2
i) ≥

|Mi| ≥ 2α(H), which is a contradiction since H2
i is a copy of H. Thus, we have

that pα(H) ≤ α(G) < 3pα(H).
For bounding ω(G), let C be a clique of maximum size in G. We claim that

|C| ≤ 3τ , which implies that ω(G) ≤ 3τ . Let EC be the matching-edges of G′

corresponding to C. Let E′
C ⊆ EC be the edges which have one endpoint in

some copy of Q, and let E′′
C = EC \ E′

C . Suppose E′
C �= ∅, then consider an

edge e′ ∈ E′
C and suppose e′ is incident on Qi some for i ∈ [p]. Then, observe

that every edge in E′
C must also be incident on Qi since E′

C is an intersecting
matching and edges incident on Qi can not intersect with edges incident on
Qj , j �= i ∈ [p] by construction. Thus, |E′

C | ≤ 2|Q| < 2τ . Hence, when E′′
C = ∅,

we have that |EC | < 2τ implying |C| < 2τ , as desired. For the other case when
E′′

C �= ∅ then consider e′′ ∈ E′′
C . We will bound the number of neighbors in G of e′′

corresponding to the edges of E′
C and E′′

C . First, note that e′′ has at most |Q| < τ
neighbors in E′

C since e′′ can intersect with at most |Q| = τ −1 many edges whose
one end point is in Qi. Next, we will show that e′′ has at most 2(τ −1) neighbors
in E′′

C , which implies that |E′′
C | < 2τ , and hence |C| = |EC | = |E′

C | + |E′′
C | < 3τ ,

as desired. To see this, note that e′′ is incident on two adjacent copies of H, and

Independent Set in k-Claw-Free Graphs 213

hence the number of (matching) edges between these copies of H that form an
intersecting matching together with e′′ is at 2ω(H) = 2(τ − 1).

Finally, we show that G is k-claw-free. Suppose for contradiction, there is
a k-claw T in G with central vertex v ∈ T and leaves v1, · · · , vk ∈ T . Let
MT = {e, e1, · · · , ek} be the matching-edges in G′ corresponding to T with
e corresponding to v and ei corresponding to vi, for i ∈ [k]. Also, let LT =
{e1, · · · , ek}. First consider the case when e is incident between a copy H ′ of H
and a copy Q′ of Q. Let I ⊆ V (H ′) be the endpoints of edges of LT in H ′. We
claim that |I| ≥ k − 1. To see this, note that for every edge ej ∈ LT that is not
incident on Q′ must have one endpoint in H ′ since ej and e form an intersecting
matching pair. On the other hand, since Q′ is a clique, there can be at most
one edge in LT with endpoint in Q′ implying |I| ≥ k − 1. As edges in LT form
an induced matching in G′, we have that I is an independent set in H ′. But
then |I| ≥ k − 1 which is a contradiction since α(H ′) < k − 1. Now, consider
the other case when e is between two copies H ′ and H ′′ of H. Let L′

T ⊆ LT

be the edges that are between H ′ and H ′′, and let L′′
T = LT \ L′

T . Then, note
that |L′

T | < |LT | = k, since otherwise the endpoints of L′
T in H ′ (or H ′′) form

an independent set of size k in H ′ (or H ′′ resp.), leading to the contradiction to
the fact that α(H) < k − 1. Suppose (k − 2) ≤ |L′

T | ≤ (k − 1), and let ej ∈ L′′
T .

Then, since ej and e form an intersecting matching pair, assume, without loss
of generality, ej has an endpoint in H ′. But then, since every edge of L′

T ∪ {ej}
has one endpoint in H ′, the endpoints of L′

T ∪ {ej} in H ′ form an independent
set of size k − 1 in H ′, leading to a contradiction. Finally, if |L′

T | < k − 2, then
there must be at least two edges ei, ej ∈ L′′

T incident on one of the two copies of
Q adjacent to H ′ and H ′′. But since Q is a clique, this means (vi, vj) ∈ E(G)
contradicting the fact that T is a k-claw.
�

3.3 Proof of Theorem 5

For k ≥ 4, let H be a (k − 1, t)-Ramsey graph obtained from Corollary 1, for
every sufficiently large t. Let qk(t) = |V (H)| = ckt

k
2 (log t)

1
k−3− k

2 . Then, using
p = 2qk(t) and τ = t along with graph H, Lemma 1 produces a graph G on
n := Θ(2qk(t)qk(t)) vertices such that α ≥ 2qk(t) = Ω(n/ log n), and α(G) ≤
3k2qk(t) = O(nk/ log n), and ω(G) ≤ 3t. Hence, we have

χ(G) ≥ n

α(G)
= Ω

(

qk(t)
k

)

= Ω

(

ck

3k

(

t

log t

)k/2
)

= f(k)
(

ω(G)
log ω(G)

)k/2

,

for some f(k).

4 Convex Relaxation Results

4.1 Convex Relaxation Prelims

We explain only necessary terminologies to prove our results. For a com-
plete exposition on sum-of-squares and related convex relaxations, we refer

214 P. Chalermsook et al.

the readers to excellent survey papers [15,22,28]. Let KG be the polytope
{x ∈ [0, 1]V (G) : xi + xj ≤ 1,∀(i, j) ∈ E(G)}. The standard LP relaxation
for MWIS max{∑

v wvxv : x ∈ KG} is known to have integrality gap of at least
Ω(n) on n-vertex graphs6.

Sum-of-Squares. The sum-of-square hierarchies (or Lasserre hierarchies) [20,21,
26,27] can be applied to (increasingly) tighten any linear program (captured by
the level in the hierarchy). For any t ≥ 1, the t-th level of SoS can be computed
in time nO(t).

Now we formally define SoS, following the treatment of Rothvoss [28].

Definition 1. Define the t-th level of SoS hierarchy SoSt(KG) as the set of
vectors z ∈ R

2V (G)
that satisfy:

Mt(z) := (zI∪J)|I|,|J|≤t � 0 and

M ij
t (z) := (zI∪J − zI∪J∪{i} − zI∪J∪{j})|I|,|J|≤t � 0 (∀(i, j) ∈ E(G))

Let SoSproj
t (KG) = {(zi)i∈V (G) : z ∈ SoSt(KG)} be the projection on the original

variables.

It is standard to view 1 as z∅ = 1 (so that we have variables zI for all subsets).

Proposition 1 Lemma 8 in [28]). If any solution x ∈ KG contains at most t
ones, then any z ∈ SoSproj

t (KG) is a convex combination of integer solutions in
KG ∩ {0, 1}V (G).

Corollary 2. Let z∗ = arg max{∑

i∈V (G) wizi : z ∈ SoSt(KG)}. If α(G) ≤ t,
then the objective value of z∗ is exactly the value of maximum weight independent
set in G.

Our next proposition states that any feasible solution of SoS (at level at least
two) can be projected into a feasible solution for QSTAB. The proof is somewhat
of a folklore nature. Since it has never been written anywhere in the form we
need, we provide a proof in our full version [7] for completeness.

Proposition 2. Let z ∈ SoSproj
t (G) for t ≥ 2. Then z ∈ QSTAB(G).

Sherali–Adams. Another standard way to increasingly tighten a convex relax-
ation (such as KG) is via Sherali–Adams hierarchies [30]. Let G = (V,E) be a
graph with V = [n] of (unweighted) maximum independent set problem. The
QSTAB LP for G is as follows.

(QSTAB(G)) max
∑

i∈[n]

xi

s.t. 1 −
∑

i∈Q

xi ≥ 0 ∀ clique Q

xi ≥ 0 ∀i ∈ [n]
6 Consider the clique Kn on n vertices and LP assignment xi = 1/2 for vertex i ∈ Kn.

Independent Set in k-Claw-Free Graphs 215

For � ≥ 1, the Sherali Adams hierarchy applied on QSTAB(G) is as follows.

(SA+
� (G)) max

∑

i∈[n]

y{i}

s.t. ∀S, T ⊆ [n], S ∩ T = ∅, |S ∪ T | ≤ � following holds.
∑

T ′⊆T (−1)|T ′|yS∪T ′ −
∑

i∈Q

∑

T ′⊆T

(−1)|T ′|yS∪T ′∪{i} ≥ 0 ∀ clique Q (1)

∑
T ′⊆T (−1)|T ′|yS∪T ′ ≥ 0 (2)

∑
T ′⊆T (−1)|T ′|yS∪T ′∪{i} ≥ 0 ∀i ∈ [n] (3)

y∅ = 1 (4)

It can be shown that SoS�+2 is at least as strong as SA+
� (G). The formal statement

is encapsulated in the following proposition.

Proposition 3. Let z ∈ SoS�+2(KG). Then the solution {zI}|I|≤� is feasible for
SA+

� (G).

4.2 Conditional χ-Boundedness and SoS

In this section, we prove Theorem 2. Let H be a graph. A clique replacement on graph
H replaces a vertex v ∈ V (H) by a clique Kv of arbitrary size and connects any vertex
u ∈ Kv to all neighbors of v. It is an easy exercise to check that k-claw-free graphs are
closed under clique replacements.

Now we proceed to prove Theorem 2. Let G be a graph class that is closed
under clique replacement. Consider an instance G ∈ G and an optimal solution
z∗ = arg max{∑

i∈V (G) wizi : z ∈ SoSt(KG)}. If α(G) ≤ t, we would be done, due to

Corollary 2. Otherwise, we consider the projection z of z∗ on V (G), so z ∈ QSTAB(G)
(due to Proposition 2). By Theorem 1 in [8], there is an independent set in G whose
weight is at least 1

γ
· (

∑
i∈V (G) wizi), which implies that the integrality gap of this

convex relaxation is at most γ.

4.3 Integrality Gap of Sherali–Adams on QSTAB

In this section, we will show large integrality gap even for the unweighted version of
the problem. We first show the following theorem.

Theorem 7. For any graph G on n vertices and � ≥ 1, the integrality gap of SA+
� (G)

is at least n
α(G)(ω(G)+�)

.

Proof. To this end, we show the following lemma.

Lemma 2. Define ŷ as follows. For A ⊆ [n], define ŷA =

⎧
⎪⎨

⎪⎩

1 if A = ∅
1

ω(G)+�
if |A| = 1

0 otherwise

.

Then, ŷ is a feasible solution to SA+
� (G).

216 P. Chalermsook et al.

Proof. For S, T ⊆ [n], |S ∪ T | ≤ �, S ∩ T = ∅, let JS,T (y) =
∑

T ′⊆T (−1)|T ′|yS∪T ′ .

We will first show that ŷ satisfies constraint (1)of SA+
� (G). Fix some clique Q,

then we will show that the left hand side of constraint (1):
∑

T ′⊆T (−1)|T ′|yS∪T ′ −
∑

i∈Q

∑
T ′⊆T (−1)|T ′|yS∪T ′∪{i} is at least 0. For S, consider the two cases: when S
= ∅

and when S = ∅. For the first case, we have |S| ≥ 1 and hence JS,T (ŷ) = ŷS . Since
ŷS = 0 for |S| ≥ 2, this means JS,T (ŷ) = 0 for |S| ≥ 2, as required. For S = {a}, a ∈ [n],
this means JS,T (ŷ) = ŷa. Hence, we have

∑

T ′⊆T

(−1)|T ′|yS∪T ′ −
∑

i∈Q

∑

T ′⊆T

(−1)|T ′|yS∪T ′∪{i} = ŷ{a} −
∑

i∈Q

ŷ{a}∪{i}

Now if a ∈ Q, this term is ŷ{a} − ŷ{a} = 0, and if a /∈ Q, this term is ŷ{a} ≥ 0, due to
our construction of ŷ.

For the second case when S = ∅, we have that JS,T (ŷ) = ŷ{∅} − ∑
j∈T ŷ{j}. Hence,

∑

T ′⊆T

(−1)|T ′|yS∪T ′ −
∑

i∈Q

∑

T ′⊆T

(−1)|T ′|yS∪T ′∪{i}

= ŷ{∅} −
∑

j∈T

ŷ{j} −
∑

i∈Q

ŷ{i} +
∑

i∈Q

∑

j∈T

ŷ{i}∪{j}

= ŷ{∅} −
∑

j∈T

ŷ{j} −
∑

i∈Q

ŷ{i} +
∑

i∈Q\T

∑

j∈T

ŷ{i,j} +
∑

i∈Q∩T

∑

j∈T

ŷ{i}∪{j}

= ŷ{∅} − (
∑

j∈T

ŷ{j} +
∑

i∈Q

ŷ{i} −
∑

i∈Q∩T

ŷ{i})

= ŷ{∅} −
∑

i∈Q∪T

ŷ{i} = 1 − |Q ∪ T | 1

ω(G) + �
≥ 0,

since |Q ∪ T | ≤ ω(G) + �.
Next consider constraint (2). From the above observation, we have

JS,T (ŷ) =

⎧
⎪⎨

⎪⎩

0 if |S| ≥ 2

ŷa if S = {a}
1 − ∑

t∈T ŷt if S = ∅
Noting the fact that |T | ≤ � and ŷt = 1/(ω(G)+�), we have that JS,T (ŷ) ≥ 0. Finally

consider constraint (3), and let JS,T,i(y) =
∑

T ′⊆T (−1)|T ′|yS∪T ′∪{i}, for i ∈ [n]. Now
note that JS,T,i(ŷ) = 0 for |S| ≥ 2 as before. Hence, first consider the case when
|S| = 1. When S = {i} then JS,T,i(ŷ) = ŷ{i} ≥ 0, otherwise for S = {j}, j
= i, we

have JS,T,i(ŷ) = 0. Finally, when S = ∅ then JS,T,i(ŷ) =
∑

T ′⊆T (−1)|T ′|ŷT ′∪{i} = ŷi if
i /∈ T otherwise JS,T,i(ŷ) = ŷi − ŷi = 0, if i ∈ T . ��
Proof of Theorem 4. For given constant k ≥ 4, 0 < ε ≤ 1/3, and sufficiently
large n, we will show a connected k-claw-free graph Gn on Θ(n) vertices such that
α(Gn) = Ω(nε) and the integrality gap of SA+

� (Gn), for � = Θk(n1−2ε), is at least
Ωk(nε). To this end, let t be such that Corollary 1 yields a (k −1, t)-Ramsey graph Hn

on Θ(n1−ε) vertices. Note that t = Ok(n
1−ε
k/2 log n) = Ok(n

1−ε
2 log n), since k ≥ 4. Let

Gn be the graph obtained from Lemma 1 with given value of k, p = Θ(nε), τ = t, and
Hn. Note that Gn has Θ(n) vertices. Then, we have that Ω(nε) ≤ α(Gn) ≤ Ok(nε) and
ω(Gn) = Ok(n(1−ε)/2 log n). Now using � = Θk(n1−2ε) in Theorem 7, the integrality gap
of SA+

� (Gn)≥ n
α(G)(ω(G)+�)

= Ωk(nε), since ω(Gn) = O(�). ��

Independent Set in k-Claw-Free Graphs 217

References

1. Austrin, P., Khot, S., Safra, M.: Inapproximability of vertex cover and independent
set in bounded degree graphs. Theory Comput. 7(1), 27–43 (2011)

2. Bansal, N., Gupta, A., Guruganesh, G.: On the Lovász theta function for inde-
pendent sets in sparse graphs. In: Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, pp. 193–200 (2015)

3. Berman, P.: A d/2 approximation for maximum weight independent set in d-claw
free graphs. In: SWAT 2000. LNCS, vol. 1851, pp. 214–219. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44985-X 19

4. Bohman, T.: The triangle-free process. Adv. Math. 221(5), 1653–1677 (2009).
https://doi.org/10.1016/j.aim.2009.02.018. https://www.sciencedirect.com/
science/article/pii/S0001870809000620

5. Bohman, T., Keevash, P.: The early evolution of the h-free process. Invent. Math.
181(2), 291–336 (2010)

6. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Pro-
ceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 892–901. SIAM (2009)

7. Chalermsook, P., Gadekar, A., Khodamoradi, K., Spoerhase, J.: Independent set
in k-claw-free graphs: conditional χ-boundedness and the power of LP/SDP relax-
ations (2023)

8. Chalermsook, P., Vaz, D.: A note on fractional coloring and the integrality gap
of LP for maximum weight independent set. Electron. Notes Discret. Math. 55,
113–116 (2016)

9. Chalermsook, P., Walczak, B.: Coloring and maximum weight independent set
of rectangles. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 860–868. SIAM (2021)

10. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. In: Proceedings of the Twenty-Fifth Annual Symposium on
Computational Geometry, pp. 333–340 (2009)

11. Chan, Y.H., Lau, L.C.: On Linear and Semidefinite Programming Relaxations for
Hypergraph Matching, pp. 1500–1511. https://doi.org/10.1137/1.9781611973075.
122. https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.122

12. Chandra, B., Halldórsson, M.M.: Greedy local improvement and weighted set pack-
ing approximation. J. Algorithms 39(2), 223–240 (2001)

13. Chudnovsky, M., Seymour, P.: Claw-free graphs VI. colouring. J. Comb. The-
ory Ser. B 100(6), 560–572 (2010). https://doi.org/10.1016/j.jctb.2010.04.005.
https://www.sciencedirect.com/science/article/pii/S009589561000064X

14. Cygan, M.: Improved approximation for 3-dimensional matching via bounded path-
width local search. In: 2013 IEEE 54th Annual Symposium on Foundations of
Computer Science, pp. 509–518. IEEE (2013)

15. Fleming, N., Kothari, P., Pitassi, T., et al.: Semialgebraic proofs and efficient
algorithm design. Found. Trends R© Theor. Comput. Sci. 14(1–2), 1–221 (2019)

16. Grötschel, M., Lovász, L., Schrijver, A.: Polynomial algorithms for perfect graphs.
In: North-Holland Mathematics Studies, vol. 88, pp. 325–356. Elsevier (1984)

17. Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set pack-
ing. Comput. Complex. 15(1), 20–39 (2006)

18. Hochbaum, D.S.: Efficient bounds for the stable set, vertex cover and set packing
problems. Discret. Appl. Math. 6(3), 243–254 (1983)

https://doi.org/10.1007/3-540-44985-X_19
https://doi.org/10.1016/j.aim.2009.02.018
https://www.sciencedirect.com/science/article/pii/S0001870809000620
https://www.sciencedirect.com/science/article/pii/S0001870809000620
https://doi.org/10.1137/1.9781611973075.122
https://doi.org/10.1137/1.9781611973075.122
https://epubs.siam.org/doi/abs/10.1137/1.9781611973075.122
https://doi.org/10.1016/j.jctb.2010.04.005
https://www.sciencedirect.com/science/article/pii/S009589561000064X

218 P. Chalermsook et al.

19. Kim, J.H.: The Ramsey number R(3, t) has order of magnitude t2/ log t. Random
Struct. Algorithms 7(3), 173–207 (1995)

20. Lasserre, J.B.: An explicit exact SDP relaxation for nonlinear 0-1 programs. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 293–303. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3 23

21. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

22. Laurent, M.: A comparison of the sherali-adams, lovász-schrijver, and lasserre
relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

23. Lewin-Eytan, L., Naor, J.S., Orda, A.: Routing and admission control in net-
works with advance reservations. In: Jansen, K., Leonardi, S., Vazirani, V. (eds.)
APPROX 2002. LNCS, vol. 2462, pp. 215–228. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45753-4 19

24. Lovász, L.: A characterization of perfect graphs. J. Comb. Theory Ser. B 13(2),
95–98 (1972)

25. Neuwohner, M.: An improved approximation algorithm for the maximum weight
independent set problem in d-claw free graphs. In: Bläser, M., Monmege, B.
(eds.) 38th International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2021, Saarbrücken, Germany, 16–19 March 2021 (Virtual Confer-
ence). LIPIcs, vol. 187, pp. 53:1–53:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2021). https://doi.org/10.4230/LIPIcs.STACS.2021.53

26. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. California Institute of Technology (2000)

27. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Math. Program. 96, 293–320 (2003)

28. Rothvoß, T.: The Lasserre hierarchy in approximation algorithms. Lecture Notes
for the MAPSP, pp. 1–25 (2013)

29. Scott, A., Seymour, P.: A survey of χ-boundedness. J. Graph Theory 95(3), 473–
504 (2020)

30. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discret.
Math. 3(3), 411–430 (1990)

31. Thiery, T., Ward, J.: An improved approximation for maximum weighted k-set
packing. In: Bansal, N., Nagarajan, V. (eds.) Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, 22–25 January
2023, pp. 1138–1162. SIAM (2023). https://doi.org/10.1137/1.9781611977554.ch42

32. Yang, J.: On coloring claw-free graphs (2007). https://www.mathcs.bethel.edu/
yang/papers/clawfree.pdf

https://doi.org/10.1007/3-540-45535-3_23
https://doi.org/10.1007/3-540-45753-4_19
https://doi.org/10.4230/LIPIcs.STACS.2021.53
https://doi.org/10.1137/1.9781611977554.ch42
https://www.mathcs.bethel.edu/yang/papers/clawfree.pdf
https://www.mathcs.bethel.edu/yang/papers/clawfree.pdf

Fast Parallel Algorithms for Submodular
p-Superseparable Maximization

Philip Cervenjak(B) , Junhao Gan , and Anthony Wirth

School of Computing and Information Systems, The University of Melbourne,
Parkville, VIC, Australia

pcervenjak@student.unimelb.edu.au, {junhao.gan,awirth}@unimelb.edu.au

Abstract. Maximizing a non-negative, monontone, submodular func-
tion f over n elements under a cardinality constraint k (SMCC) is a
well-studied NP-hard problem. It has important applications in, e.g.,
machine learning and influence maximization. Though the theoretical
problem admits polynomial-time approximation algorithms, solving it in
practice often involves frequently querying submodular functions that
are expensive to compute. This has motivated significant research into
designing parallel approximation algorithms in the adaptive complexity
model ; adaptive complexity (adaptivity) measures the number of sequen-
tial rounds of poly(n) function queries an algorithm requires. The state-
of-the-art algorithms can achieve (1− 1

e
− ε)-approximate solutions with

O(1
ε2

log n) adaptivity, which approaches the known adaptivity lower-
bounds. However, the O(1

ε2
logn) adaptivity only applies to maximizing

worst-case functions that are unlikely to appear in practice. Thus, in
this paper, we consider the special class of p-superseparable submodu-
lar functions, which places a reasonable constraint on f , based on the
parameter p, and is more amenable to maximization, while also having
real-world applicability. Our main contribution is the algorithm LS+GS,
a finer-grained version of the existing LS+PGB algorithm, designed for
instances of SMCC when f is p-superseparable; it achieves an expected
(1− 1

e
− ε)-approximate solution with O(1

ε2
log(pk)) adaptivity indepen-

dent of n. Additionally, unrelated to p-superseparability, our LS+GS
algorithm uses only O(ε−1n + ε−2 logn) oracle queries, which has an
improved dependence on ε−1 over the state-of-the-art LS+PGB; this is
achieved through the design of a novel thresholding subroutine.

Keywords: parallel algorithms · approximation algorithms ·
submodular maximization

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 219–233, 2023.
https://doi.org/10.1007/978-3-031-49815-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49815-2_16&domain=pdf
http://orcid.org/0000-0002-8349-619X
http://orcid.org/0000-0001-9101-1503
http://orcid.org/0000-0003-3746-6704
https://doi.org/10.1007/978-3-031-49815-2_16

220 P. Cervenjak et al.

1 Introduction

Submodular functions are an important class of set functions that capture a
wide range of real-world applications that, informally, exhibit the property of
“diminishing marginal gains” or “diminishing returns”. In this paper, we con-
sider maximizing non-negative, monotone, submodular functions f : 2N → R≥0,
defined on a ground set N of n elements, under a cardinality constraint (SMCC).
The goal of SMCC is to select a subset S ⊆ N of size |S| ≤ k that maximizes
f(S). As a convention in the literature, we assume that, for any S ⊆ N , the
value of f(S) can only be accessed via queries to a value oracle.

Solving SMCC is important for a wide range of applications, including
machine learning (e.g., active learning [24], clustering [8], data summarization
[20], and feature selection [14]), information gathering [15], network monitoring
[18], sensor placement [16], and influence maximization [13].

The Greedy Algorithm. As is true for most interesting variants of submodu-
lar maximization, SMCC is unfortunately an NP-hard problem. Even worse, the
best approximation that can be achieved with a polynomial number of oracle
queries is 1 − 1/e, unless P = NP [21]. Interestingly, the “best” such approxi-
mation ratio can be achieved by a simple greedy algorithm [22]. Specifically, the
greedy algorithm starts with a solution S = ∅ and performs k iterations, in
each of which the element with the largest marginal gain with respect to S is
added to S. In its raw form, the greedy algorithm queries f O(kn) times, and it
is strongly sequential: it has to perform k iterations one by one.

The Adaptive Complexity Model. In practice, querying the oracle for a
set’s value, i.e., evaluating f(S), can be time consuming and it is often the
main bottleneck of the overall running time of an algorithm. This has motivated
significant research into designing parallelizable algorithms for SMCC under the
adaptive complexity model [2–7,9,10,12], where the efficiency of an algorithm is
measured by the number of queries and in each round, an algorithm is allowed to
perform a polynomial number, poly(n), of independent oracle queries in parallel.
Each such round is called an adaptive round and the total number of adaptive
rounds required is called the adaptive complexity (or adaptivity) of the algorithm.
The smaller an algorithm’s adaptivity is, the more parallelizable the algorithm
is. Clearly, the adaptivity of the greedy algorithm is O(k).

The State-of-the-Art Adaptive Algorithm. The goal of all existing adap-
tive algorithms [2–7,9,10,12] for SMCC is to beat the O(k) adaptivity bound of
the standard greedy algorithm, and ideally, to beat the query complexity O(kn)
at the same time. The state-of-the-art algorithm, due to Chen et al. [7], called
LS+PGB, achieves a (1 − 1

e − ε)-approximation with an adaptive complexity
of O(1

ε2 log(n
ε)) and a query complexity of O(n

ε2). Assuming k ∈ ω(1
ε2 log n),

LS+PGB achieves o(k) adaptivity and o(kn) query complexity simultaneously,
improving the naive greedy algorithm.

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 221

Known Lower Bounds. For SMCC, Balkanski and Singer [3] initially proved
that Ω(log n

log log n) adaptive rounds are required to achieve a 1
log n -approximation.

Li et al. [19] later proved lower bounds for achieving a (1− 1
e −ε)-approximation

in two cases of ε > 0: when ε > c′
log n , Ω(1ε) rounds are required; when ε < c′

log n ,

Ω(log
2/3 n

ε1/3) rounds are required, where c′ is an absolute constant. Kuhnle [17]
proved that Ω(n

k) queries are required to achieve a constant-factor approxima-
tion, even when queries can be made to infeasible sets.

Our Research Question. In spite of the aforementioned progress, SMCC is a
general problem formulation and, thus, captures difficult problem instances that
are not likely to appear in practice. Analogously, although the greedy algorithm
for Set Cover achieves only an O(log n) approximation factor on n elements, the
well known tight example is bespoke, and in practice greedy performs well [11].
It would be of theoretical and practical interest if there were a useful class of
submodular functions that can be maximised in fewer adaptive rounds than what
is needed for the worst-case functions, especially since real-world submodular
functions can be computationally expensive to query. This motivates our main
research question:

Is there an interesting class of SMCC instances that admits
algorithms with o(log n) adaptive complexity,
while achieving reasonable approximation?

We address our research question by considering the class of p-superseparable
submodular functions (p ∈ [1, n] is a class parameter); in particular, we design
highly parallel approximation algorithms for SMCC when f is assumed to be p-
superseparable. This class of functions belongs in the super-class of p-separable
submodular functions1, introduced by Skowron [23] for the purpose of showing
fixed-parameter tractable (FPT) algorithms for SMCC. As Skowron shows, p-
superseparable submodular functions capture several useful real-world functions,
such as those found in election and recommendation systems. They also cap-
ture the Max-k (Weighted) Coverage problem with element frequencies upper-
bounded by p. We now outline our contributions one by one.

1.1 Our Contributions

Parallel Algorithm for p-Superseparable SMCC. Our first contribution
is the algorithm LinearSeq+GreedySampling (LS+GS) and its subroutine
GreedySampling (GS) for p-superseparable SMCC, with theoretical guaran-
tees stated in Theorems 1 and 2 respectively.

LS+GS is essentially a finer-grained version, parameterised by p, of LS+PGB
[7] that exploits the p-superseparability of f to achieve an adaptive complex-
ity of O(1

ε2 log(pk
ε)). For example, assuming p, k ∈ O(polylog n) as well as

1 Our work does not focus on the other two classes of p-separable functions, which are
p-subseparable and rev-p-subseparable functions.

222 P. Cervenjak et al.

k ∈ ω(1
ε2 log n) (since otherwise the greedy algorithm would have adaptivity as

good as the existing algorithms), the adaptivity of our algorithm is bounded by
O(1

ε2 log log n). Under this setting, our algorithm’s adaptive complexity beats the
O(1

ε2 log n) adaptive complexity of the existing algorithms for general SMCC, as
well as the O(k) = O(polylog n) adaptive complexity of the greedy algorithm. We
summarize the performance guarantees of LS+GS, compared with LS+PGB, in
the Table 1 below. For simplicity and fair comparisons, we assume k ∈ ω(1

ε2 log n)
in Table 1.

Table 1. Key performance indicators for SMCC algorithms.

Algorithm Approx. Adaptivity Expected queries
LS+PGB [7] 1 − 1

e − ε O
(

1
ε2 log n

)
O

(
n
ε2

)

general LS+GS
(full paper, ours)

1 − 1
e − ε O

(
1
ε2 log n

)
O

(
n
ε

)

p-supersep. LS+GS
(Theorem 1, ours)

expected 1 − 1
e − ε O

(
1
ε2 log (pk)

)
O

(
n + pk

ε2

)

Additionally, for general SMCC, LS+GS has an expected query complexity
of O(n

ε + log n
ε2). This improves the dependence on ε−1 in the O(n

ε2) expected
query complexity of LS+PGB [7]. The improved query complexity is due to GS
using a novel thresholding procedure, which we outline next. We formally state
the theoretical guarantees of LS+GS for general SMCC in the full paper.

Parallel Thresholding Procedure for SMCC. Our second contribution is
the procedure ThresholdBlockSeq (TBS), with theoretical guarantees stated
in Theorem 3. TBS is used by GS for the task of selecting a set of elements whose
average marginal gain approximately satisfies a given threshold τ .

The significance of TBS is that, given n′ input elements and an error term
ε′, it achieves an expected query complexity of O(n′ + log n′

ε′). This improves
the dependence on ε′−1 in the query complexity: existing procedures for the
same task [1,7,10,12] perform O(n′

ε′) queries. Note that TBS does not rely on p-
superseparability for its improved query complexity; indeed, the improved query
complexity of TBS is what leads to the O(n

ε + log n
ε2) expected query complexity

of LS+GS for general SMCC. This also means that TBS can replace the existing
procedures that are used as subroutines for solving general SMCC. We summa-
rize the guarantees of TBS in Table 2 below (m is an input parameter satisfying
n′ ≤ m ≤ n, and δ is a failure probability term).

Simple Parallel Algorithm for p-Superseparable SMCC. Finally, we
introduce LowAdapTop (LAT) for p-superseparable SMCC, with theoretical
guarantees stated in the full paper. LAT works by simply running the existing
procedure LowAdapLinearSeq [7] on the set of top-� pk

1−α + k� elements by

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 223

value. LAT achieves an α(5 + O(ε))−1-approximation, an adaptive complexity
of O(1

ε3 log(p
1−α)), and a query complexity of O(1

1−α (pk
ε3 + p

ε4)).

Table 2. Key performance indicators for parallel thresholding procedures.

Procedure Adaptivity Expected queries

ThresholdSeq

(Theorem 2 of [7])
O

(
1
ε′ log

(
m
δ

))
O

(
n′
ε′

)

ThresholdBlockSeq

(Theorem 3, ours)
O

(
1
ε′ log

(
m
δ

))
O

(
n′ + log n′

ε′

)

1.2 Our Techniques

Our algorithms are based on the state-of-the art framework of Chen et al. [7],
particularly the LS+PGB algorithm. Importantly, our two key techniques exploit
p-superseparability to achieve adaptive complexities independent of n, rather
depending on parameters p and k.

The first key technique is to run an existing algorithm on a limited number of
“top-valued” elements so as to bound the adaptive complexity of the algorithm.
It follows from the p-superseparability of f that the set of top-� pk

1−α + k� valued
elements contains a k-size α-approximation of the optimal solution, leading to a
good approximation overall. This result is stated in Lemma 1 and follows from
Theorem 1 of Skowron [23]. We use this technique in our main algorithm LS+GS
and our algorithm LAT.

The second key technique is to uniformly-at-random sample elements from a
sufficiently large set G of valuable elements. The p-superseparability of f ensures
that newly sampled elements, on average, remain valuable even after previously
sampled elements are added to a solution, bypassing the need to make sequential
oracle queries; this is formally stated in Lemma 4. We use this technique in GS,
a subroutine of LS+GS.

Furthermore, independent of p-superseparability, we develop a new “element
filtering” technique, used by TBS to achieve its improved expected query com-
plexity of O(n′ + log n′

ε′). The key insight in TBS is to avoid repeated filter-
ing queries on all remaining elements, and instead mainly perform the filtering
queries on small random samples or “blocks” of the remaining elements.

1.3 Paper Structure

We give additional related work in the full paper. We present preliminaries
in Sect. 2, including the definition and intuition of p-superseparability, and an
overview of the state-of-the-art algorithm LS+PGB. We then give the descrip-
tions of LS+GS and GS in Sect. 3, TBS in Sect. 4, and LAT in the full paper,
while also deferring all formal analyses to the full paper. Finally, we give some
conclusions in Sect. 5.

224 P. Cervenjak et al.

2 Preliminaries

Denote by N the ground set of elements. For every set S ⊆ N and a set function
f , f(S) is called the value of S. Given two sets S, T ⊆ N , we define f(S | T)
to be the marginal gain of S to T , i.e., f(S | T) := f(S ∪ T) − f(T). When
expressing the value, or marginal gain, of a singleton set, {x}, we abuse notation
and use f(x) and f(x | S), rather than f({x}) and f({x} | S). We denote by O
the optimal solution to the SMCC problem, and OPT := f(O).

Definition 1 (Submodular; monotone; non-negative). Set function f is
submodular iff ∀S, T ⊆ N such that S ⊆ T , and ∀x ∈ N \T : f(x | S) ≥ f(x | T);
monotone iff ∀S, T ⊆ N : f(S | T) ≥ 0; non-negative iff ∀S ⊆ N : f(S) ≥ 0.

2.1 p-Superseparable Functions

Our interest is in the class of p-superseparable functions, Definition 2, introduced
by Skowron [23]. A larger p represents a more general class, so a smaller p yields
stronger results. When f is non-negative and submodular, the smallest sensible
value for p is 1; on the other hand, every monotone f is n-superseparable. We give
some background and applications for p-separable functions in the full version
of the paper.

Definition 2 (p-superseparable set function [23]). A set function, f , is p-
superseparable iff ∀S ⊆ N :

∑

x∈N
f(x | S) ≥

∑

x∈N
f(x) − pf(S). (2.1)

Intuition of p-Superseparable Functions. Intuitively, dividing both sides of
Eq. (2.1) by n, the left-hand side becomes the average marginal gain of an ele-
ment x to S, while the right-hand side becomes the average individual value of an
element minus the average “loss” or “overlap” due to S. Hence, p-superseparability
ensures that, on average, a single element x loses at most p

nf(S) from its indi-
vidual value to give f(x | S).

2.2 An Overview of the State-of-the-Art Algorithm

We now give an overview of LS+PGB by Chen et al. [7], which is the starting
point for our algorithm LS+GS as proposed in Sect. 3 (see Table 1). LS+PGB
comprises two procedures performed in sequence, where PGB invokes Thresh-

oldSeq as a subroutine. Our outline includes our notation rather than that of
Chen et al. [7].

LinearSeq (LS). This is a pre-processing procedure whose purpose, given
an approximation error ε̂, is to obtain a value Γ satisfying Γ ≤ OPT ≤ Γ

β

for β = (4 + O(ε̂))−1. It uses O(1
ε̂3 log n) adaptive rounds and O((1

ε̂k + 1) n
ε̂3)

expected queries. The quantity ε̂ can be set constant without affecting the
main approximation error, ε.

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 225

ParallelGreedyBoost (PGB). With the previously obtained Γ and β,
PGB initializes a threshold τ to upper-bound the average value of an opti-
mal solution element, i.e., τ = Γ

βk ≥ OPT
k . It then uses a diminishing-

threshold strategy to achieve the final (1− 1
e − ε)-approximation, while using

O(1
ε2 log(n

ε)) adaptive rounds and O(n
ε2) expected queries. It is crucial that

β is a constant, as this helps to bound the number of threshold diminutions
over a while-loop.

ThresholdSeq (TS). For each threshold τ considered and a current solution
S, PGB calls TS to select a set of elements T whose marginal gain to S approx-
imately satisfies τ |T |; PGB then appends T to S. Given a failure probability
term δ, TS uses O(1

ε′ log(n
δ)) adaptive rounds and O(n

ε′) expected queries.
TS performs a loop, in which each iteration appends elements to T using an
improved version of the adaptive sequencing technique. Adaptive sequencing
was introduced by Balkanski et al. for monotone submodular maximization
under a matroid constraint [1], and refined in the FAST algorithm by Breuer
et al. for SMCC [5]. We describe TS in more detail in Sect. 4 so as to directly
compare it with our improved procedure TBS.

3 Parallel Algorithm for p-Superseparable SMCC

In this section, we introduce our main parallel approximation algorithm and its
components, and formalize the performance guarantees.

3.1 LINEARSEQ+GREEDYSAMPLING

We begin with LS+GS, pseudocode in Algorithm 1, for p-superseparable SMCC,
with theoretical guarantees in Theorem 1 below. The performance guarantees of
LS+GS for the general SMCC problem are given in the full paper.

Theorem 1. Let (f, k) be an instance of SMCC where f is p-superseparable.
Suppose LS+GS (Algorithm1) is run such that 0 < ε < 1 − 1

e , 0 < ε̂ < 1
2 , and

0 < α < 1, where ε̂ and α are constants. Then, with probability 1−O(ε
pk), LS+GS

achieves: (i) a solution S satisfying |S| ≤ k and E[f(S)] ≥ (1 − 1
e − ε)OPT, (ii)

an adaptive complexity of O(1
ε2 log(pk

ε)), and (iii) an expected query complexity
of O(n + pk

ε2 + 1
ε2 log(pk

ε)).

Description of LS+GS. Based on LS+PGB [7], our two key modifications
achieve an adaptive complexity dependent on p and k rather than n.

226 P. Cervenjak et al.

1. To obtain an initial value, Γ , satisfying Γ ≤ OPT ≤ Γ
β for a constant β,

instead of running LinearSeq on N , LinearSeq is run only on the set A of
top-� pk

1−α + k� elements by individual value, thus using only O(1
ε̂3 log(pk

1−α))
adaptive rounds; ε̂ and α can be constant.

2. Instead of running PGB, our procedure GS is run on N (taking Γ and β
in its input). GS uses only O(1

ε2 log(pk
ε)) adaptive rounds at the expense of

returning an expected (1 − 1
e − ε)-approximation.

Algorithm 1
1: procedure LinearSeq+GreedySampling(f,N , p, k, α, ε̂, ε)
2: Input: value oracle f : 2N → R≥0, ground set N , parameter p such that

f is p-superseparable, cardinality constraint k, initial approximation
error ε̂, initial approximation term α, approximation error ε

3: Output: set S satisfying E[f(S)] ≥ (
1 − 1

e − ε
)
OPT

4: A ← set of top-
⌈

pk
1−α + k

⌉
elements x ∈ N by value f(x)

5: Q ← LinearSeq(f,A, k, ε̂)
6: Γ ← f(Q)
7: if |A| < |N | then
8: β ← α

(
4 + 4(2−ε̂)ε̂

(1−ε̂)(1−2ε̂)

)−1

9: else
10: β ←

(
4 + 4(2−ε̂)ε̂

(1−ε̂)(1−2ε̂)

)−1

11: S ← GreedySampling(f,N , p, k, β, Γ, ε)
12: return S

Deriving Theorem 1. At a high-level, we obtain the guarantees in Theorem
1 by combining the guarantees of running LinearSeq on the set A of top-
valued elements and the guarantees of GreedySampling when β is constant
(see Theorem 2 below), as they are run one at a time.

We can ensure β is constant by setting ε̂ and α constant and by Lemma 1
below, which follows from Theorem 1 of Skowron [23]. This lemma guarantees
that, for p-superseparable SMCC, running an approximation algorithm such as
LinearSeq on a sufficiently large set of “top-valued” elements A only worsens
its approximation by a factor of α, since the optimal solution within the top-
valued elements is an α-approximation of the optimal solution in N . Note also
that if A = N , then β defaults to (4 + O(ε̂))−1.

Lemma 1 (Best k-size subset in top-valued elements [23]). Let (f, k) be
an instance of SMCC where f is p-superseparable. Further, let α be a parameter
such that 0 < α < 1, let A be the set of top-� pk

1−α + k� elements x ∈ N by value
f(x), and let A∗ ⊆ A be a k-size subset that maximizes f . Then f(A∗) ≥ αOPT.

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 227

3.2 GREEDYSAMPLING

GreedySampling (GS), pseudocode in Algorithm 2, is the greedy-thresholding
procedure called by LS+GS to find an expected (1− 1

e −ε)-approximate solution
in O(1

ε2 log(pk
ε)) adaptive rounds and O(n + pk

ε2 + 1
ε2 log(pk

ε)) expected queries
for constant β. Theoretical guarantees are given in Theorem 2.

Theorem 2. Let (f, k) be an instance of SMCC where f is p-superseparable.
Suppose GS (Algorithm2) is run such that Γ ≤ OPT ≤ Γ

β and 0 < ε <

1 − 1
e . Then, with probability 1 − βε

6pk , GS achieves: (i) a solution S satisfy-
ing |S| ≤ k and E[f(S)] ≥ (1 − 1

e − ε)OPT, (ii) an adaptive complexity of
O(log(β

−1)
ε2 log(pk log(β−1)

βε)), and (iii) a query complexity of O(n + (1−β)pk
ε2 +

log(β−1)
ε2 log(pk

ε)).

We give the description of GS and then explain how it achieves its adaptive
complexity bounds with reference to Lemma 4. This is the key lemma show-
ing that, for p-superseparable SMCC, sampling uniformly-at-random from suffi-
ciently many high-value elements does not decrease the expected marginal gain
of the remaining elements too much, giving a final sample with good expected
marginal gain.

Description of GreedySampling. GS takes in its input the values Γ and
β such that Γ ≤ OPT ≤ Γ

β . In Line 4, GS initializes the solution S0 ← ∅, the
threshold τ0 ← Γ

βk ≥ OPT
k , and mmax ← 3pk

βε/2 + k − 1, which is the maximum
number of elements that can be passed to TBS over the entire run of GS. For
each element x ∈ N , Line 6 assigns wx ← f(x); these are used to build Gi in
Line 10.

After the initialisation steps, GS performs the steps below in each iteration, i,
of the Line 7 loop. GS differs from PGB [7] in steps 2 and 3.

1. Assigns the threshold τi by geometrically diminishing the previous threshold
τi−1 (Line 9).

2. Constructs the set Gi of elements x ∈ N \ Si−1 with f(x) = wx ≥ τi (Line
10).

3. If |Gi| ≥ mi, GS uniformly-at-random samples a set Ti of size k − |Si−1| from
Gi (Line 13). Otherwise, if |Gi| < mi, GS runs TBS on Gi to obtain Ti (Line
15). Either way, the expected marginal gain f(Ti | Si−1) is approximately
|Ti|τi. This step is crucial to bounding the adaptive complexity as explained
below.

4. Produces Si by adding the set of new elements Ti to Si−1 (Line 16).

The Line 7 loop breaks if Si satisfies the cardinality constraint or if the
threshold is too small to add elements with significant marginal gain.

Bounding the Adaptive Complexity via p-Superseparability. The key
idea behind the O(1

ε2 log(pk
ε)) adaptive complexity of GS is to bound the adap-

tive complexity of each iteration i in two cases for |Gi|.

228 P. Cervenjak et al.

When |Gi| ≥ mi, no adaptive rounds are needed to sample Ti ⊆ Gi in Line 13.
This is because Lemma 4 ensures that, when f is p-superseparable and |Gi| ≥ mi,
Ti has good expected marginal gain f(Ti | Si−1).

Otherwise, when |Gi| < mi (where mi ≤ mmax = O(pk
ε)), running TBS on

Gi has a bounded adaptive complexity of O(1ε log(pk
ε)).

The overall adaptive complexity of GS follows since the case |Gi| < mi (in
which TBS is called) may occur in every Line 7 iteration, and the number of
such iterations is bounded by O(log1−ε(β)), which is O(1ε) for constant β.

Lemma 4. Suppose GS (Algorithm2) is run such that Γ ≤ OPT ≤ Γ
β . Further,

suppose that in some iteration u, Line 13 is executed so that Tu is assigned
an ordered, uniform-at-random sample of k − |Su−1| elements from Gu (without
replacement). Then Tu satisfies

E[f(Tu | Su−1)] ≥ |Tu|
(
1 − ε

2

)
τu .

Algorithm 2
1: procedure GreedySampling(f,N , p, k, β, Γ, ε)
2: Input: value oracle f : 2N → R≥0, ground set N , value p such that

f is p-superseparable, cardinality constraint k, initial approximation
factor β, value Γ such that Γ ≤ OPT ≤ Γ

β , approximation error ε

3: Output: set S ⊆ N satisfying E[f(S)] ≥ (
1 − 1

e − ε
)
OPT

4: i ← 0, S0 ← ∅, τ0 ← Γ
βk , mmax ← 3pk

βε/2 + k − 1,

δ ←
(

log1−ε

(
β
3

))−1

5: for x ∈ N do
6: wx ← f(x)
7: while |Si| < k and τi ≥ Γ

(1−ε)3k do
8: i ← i + 1
9: τi ← (1 − ε)i Γ

βk

10: Gi ← {x ∈ N \ Si−1 : wx ≥ τi}
11: mi ← pk

(1−ε)iε/2 + k − |Si−1| − 1
12: if |Gi| ≥ mi then
13: Ti ← unif.-at-rand. sample of k − |Si−1| elements from Gi

14: else
15: Ti ← TBS(f(Si−1 ∪ ·),Gi,min{mmax, n}, k − |Si−1|, ε

3 , δ, τi)

16: Si ← Si−1 ∪ Ti

17: return Si

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 229

4 Parallel Thresholding Procedure for SMCC

In this section, we propose ThresholdBlockSeq (TBS), with pseudocode
given in Algorithm3. This is the subroutine used by GreedySampling in Line
15. We formally state the performance guarantees of TBS in Theorem 3 below.

Theorem 3. Suppose TBS (Algorithm3) is run such that g is monotone sub-
modular, n′ = |G| ≤ m, 0 < ε′ < 1, and 0 < δ < 1. Then, with probability
1− δ

m , TBS achieves: (i) an adaptive complexity of O(1
ε′ log(m

δ)), (ii) an expected
query complexity of O(n′ + log n′

ε′), (iii) an output set T satisfying |T | ≤ k′ and
g(T | ∅) ≥ 1−ε′

1+ε′ τ |T |, and (iv) in case |T | < k′, for all x ∈ G : g(x | T) < τ .

Given a value oracle g, an input set G, a value m ≥ |G|, an error term ε′,
and a probability term δ, the purpose of TBS is to return a set T ⊆ G satisfying
g(T | ∅) ≥ 1−ε′

1+ε′ τ |T | in O(1
ε′ log(m

δ)) adaptive rounds. The task of finding a
set whose average marginal gain is above some threshold is common in many
algorithms for submodular maximisation; in fact, TBS is an improved version of
the ThresholdSeq (TS) procedure by Chen et al. [7] for performing this task
and can serve to replace it. The main feature of TBS is its query complexity of
O(n′ + log n′

ε′), which has an improved dependence on ε′−1 over that of TS.
For the purpose of comparison, we briefly describe TS and point out its main

inefficiency, which leads to its O(n′
ε′) query complexity. After this, we describe

the steps in TS, and finally explain how these steps work to achieve its improved
query complexity of O(n′ + log n′

ε′).

Description of ThresholdSeq. TS works by updating a solution T over
a loop. Each loop iteration uses an improved adaptive sequencing technique
to update T . Specifically, each loop iteration (1) queries g over all previously
remaining elements x to filter out those x with g(x | T) < τ , (2) uniformly-
at-random permutes the remaining elements, and then (3) adds an appropriate
prefix of the remaining elements to T . By adding this prefix, at least ε′

2 propor-
tion of the remaining elements now have g(x | T) < τ (with probability ≥ 1

2)
and are, thus, filtered out in the next iteration.

Query Complexity of ThresholdSeq. The main inefficiency in TS is due
to performing filtering queries over all remaining elements when only ε′

2 of these
elements are likely to be filtered out; in other words, 1− ε′

2 proportion of elements
that TS queries will not be filtered out and, thus, will appear in the next iteration
to be queried again. So over all iterations, the expected query complexity due

to filtering steps is essentially O

(
∑∞

j=0 n′
(
1 − ε′

2

)j
)

= O
(

n′
ε′

)
.

Description of ThresholdBlockSeq. TBS works by updating a solution
Ti,j over an outer loop (Line 5) that contains a nested inner loop (Line 12).
Each outer iteration i updates the set of remaining elements Ei by filtering out
those x ∈ Ei−1 with g(x | Ti−1,j) < τ (Line 7). Each inner iteration j uniformly-
at-random samples a “block” B of size O(�ε′|Ei|�) from Ei (Line 14), and filters

230 P. Cervenjak et al.

out those x ∈ B with g(x | Ti,j−1) < τ to give B∗ (Line 15); that is, B∗ is
obtained by rejection sampling. Then the inner iteration adds an appropriate
prefix Pλbest ⊆ B∗ to Ti,j−1, giving Ti,j (Lines 18 to 28).

Achieving the Query Complexity of ThresholdBlockSeq. At a high
level, TBS uses the same adaptive sequencing technique as TS, but improves the
query complexity’s dependence on ε′−1 essentially because each outer iteration
(which performs “filtering” queries over all remaining x) is only executed when a
constant φ proportion of x are likely to be filtered out, i.e., satisfy g(x | Ti−1,j) <
τ . The fact that φ proportion of x are likely to satisfy this is achieved by the
inner loop.

Below, we give a simplified explanation of why TBS has an expected query
complexity of only O(n′ + log n′

ε′), with details in the full paper. Note that TBS
performs numOut ∈ O(log(m

δ)) outer iterations and numIn ∈ O(1
ε′) inner itera-

tions (Line 4), the latter being important to our explanation.

• In each inner iteration j, adding the prefix Pλbest causes ≥ ε′
4 proportion of

x ∈ Ei with g(x | Ti,j−1) ≥ τ to have g(x | Ti,j) < τ (with probability ≥ 1
2).

Further, each inner iteration uses O(|B|) = O(�ε′|Ei|�) queries since queries
are only made on x ∈ B or on prefixes of B∗, the filtered subset of B.

• In each outer iteration i, with probability ≥ 1
2 , O(1

ε′) inner iterations will
successfully cause ≥ ε′

4 proportion of x ∈ Ei with g(x | Ti,j−1) ≥ τ to have
g(x | Ti,j) < τ . Thus, by the start of the next outer iteration i + 1, at least
1 − (1 − ε′

4)O(1
ε′) proportion of x ∈ Ei has g(x | Ti,j) < τ (with probability

≥ 1
2). This proportion is at least a constant φ for all ε′ > 0, so this next outer

iteration will filter out a constant φ proportion of x ∈ Ei.
• Furthermore, over a single outer iteration i, only O(numIn |B|) queries are

made, which evaluates to O(1
ε′ �ε′|Ei|�) = O(|Ei| + 1

ε′) queries.
• Initially |E0| = n′. So due to the reduction of constant φ proportion of |Ei|

in each outer iteration, the overall expected query complexity of TBS is
essentially O

(∑∞
j=0 n′ (1 − φ)j + 1

ε′ log 1
1−φ

(n′)
)

= O
(
n′ + log n′

ε′

)
.

5 Conclusions

In this paper, we propose highly parallel algorithms for p-superseparable SMCC
that achieve adaptive complexities independent of n, but dependent on parame-
ters p and k, with the main algorithm being LS+GS. We also propose a new pro-
cedure ThresholdBlockSeq, a subroutine of GreedySampling, which is the
key to improving the existing state-of-the-art query complexity of our LS+GS,
not only for the p-superseparable SMCC, but also for the general case. An inter-
esting research direction is to design an algorithm whose adaptivity depends on p
and k without the need of prior knowledge on the value of p, as our LS+GS needs
to know this value to set parameters appropriately. Also, our simple algorithm for
p-superseparable SMCC hints at the possibility of a (5+O(ε))−1-approximation
algorithm that only requires O(1

ε3 log p) rounds, removing the α term in the

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 231

Algorithm 3
1: procedure ThresholdBlockSeq(g,G,m, k′, ε′, δ, τ)
2: Input: value oracle g : 2G → R≥0, set of elements G, quantity m such that

|G| ≤ m, cardinality constraint k′, error term ε′, failure probability
term δ, marginal gain threshold τ

3: Output: set T ⊆ G satisfying g(T | ∅) ≥ 1−ε′
1+ε′ τ |T |

4: i ← 0, j ← 0, T0,0 ← ∅, E0 ← G, φ ← 0.11879, numOut ←⌈
4
(
1 + 1

φ

)
log

(
m
δ

)⌉
, numIn ←

⌈
4
(
1 + 4

ε′
)
log

(
2

1−φ

)⌉

5: for numOut iterations do
6: i ← i + 1
7: Ei ← {x ∈ Ei−1 : g(x | Ti−1,j) ≥ τ}
8: if |Ei| = 0 then
9: return Ti−1,j

10: Ti,0 = Ti−1,j

11: j ← 0
12: for numIn iterations do
13: j ← j + 1
14: B ← unif.-at-rand. sample of

⌈
ε′

4(1−4φ) |Ei|
⌉

elements from Ei

15: B∗ ← {x ∈ B : g(x | Ti,j−1) ≥ τ}
16: if |B∗| = 0 then
17: continue to next iteration
18: {b1, . . . , b|B∗|} ← unif.-at-rand. permutation of B∗

19: maxSize ← min{k′ − |Ti,j−1|, |B∗|}
20: Λ ← {�(1 + ε′)h
 : 1 ≤ �(1 + ε′)h
 ≤ maxSize, h ∈ N}∪

{maxSize}
21: for λ in Λ do
22: Pλ ← {b1, . . . , bλ}
23: Λ∗ ← {λ ∈ Λ : g(Pλ | Ti,j−1) ≥ (1 − ε′)τ |Pλ|}
24: if max Λ∗ < maxSize then
25: λbest ← min{λ ∈ Λ : ∀λ∗ ∈ Λ∗, λ > λ∗}
26: else
27: λbest ← maxSize
28: Ti,j ← Ti,j−1 ∪ Pλbest

29: if |Ti,j | = k′ then
30: return Ti,j

31: return failure

current approximation factor. Finally, it is also worth conducting experiments
to compare our algorithms against the existing parallel algorithms for general
SMCC, especially on those submodular p-superseparable functions with small
values of p.

232 P. Cervenjak et al.

Acknowledgements. This work was in part supported by ARC Discovery Early
Career Researcher Award (DECRA) DE190101118 and the University of Melbourne
Faculty of Engineering and Information Technology, and School of Computing and
Information Systems.

References

1. Balkanski, E., Rubinstein, A., Singer, Y.: An optimal approximation for submod-
ular maximization under a matroid constraint in the adaptive complexity model.
In: 51st STOC, pp. 66–77. ACM (2019)

2. Balkanski, E., Rubinstein, A., Singer, Y.: An exponential speedup in parallel run-
ning time for submodular maximization without loss in approximation. In: 30th
SODA, pp. 283–302. ACM-SIAM (2019)

3. Balkanski, E., Singer, Y.: The adaptive complexity of maximizing a submodular
function. In: 50th STOC, pp. 1138–1151. ACM (2018)

4. Balkanski, E., Singer, Y.: Approximation guarantees for adaptive sampling. In:
35th ICML, pp. 384–393. PMLR (2018)

5. Breuer, A., Balkanski, E., Singer, Y.: The FAST algorithm for submodular maxi-
mization. In: 37th ICML, pp. 1134–1143. PMLR (2020)

6. Chekuri, C., Quanrud, K.: Submodular function maximization in parallel via the
multilinear relaxation. In: 30th SODA, pp. 303–322. ACM-SIAM (2019)

7. Chen, Y., Dey, T., Kuhnle, A.: Best of both worlds: practical and theoretically
optimal submodular maximization in parallel. In: Advances in Neural Information
Processing Systems, vol. 34, pp. 25528–25539 (2021)

8. Dueck, D., Frey, B.J.: Non-metric affinity propagation for unsupervised image cat-
egorization. In: 11th CCV, pp. 1–8. IEEE (2007)

9. Ene, A., Nguyen, H.L.: Submodular maximization with nearly-optimal approxima-
tion and adaptivity in nearly-linear time. In: 30th SODA, pp. 274–282. ACM-SIAM
(2019)

10. Fahrbach, M., Mirrokni, V., Zadimoghaddam, M.: Submodular maximization with
nearly optimal approximation, adaptivity and query complexity. In: 30th SODA,
pp. 255–273. ACM-SIAM (2019)

11. Grossman, T., Wool, A.: Computational experience with approximation algorithms
for the set covering problem. Eur. J. Oper. Res. 101(1), 81–92 (1997)

12. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Sub-
modular streaming in all its glory: tight approximation, minimum memory and
low adaptive complexity. In: 36th ICML, pp. 3311–3320. PMLR (2019)

13. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: 9th KDD, pp. 137–146. ACM (2003)

14. Khanna, R., Elenberg, E., Dimakis, A., Negahban, S., Ghosh, J.: Scalable greedy
feature selection via weak submodularity. In: 20th AISTATS, pp. 1560–1568.
PMLR (2017)

15. Krause, A., Guestrin, C.: Submodularity and its applications in optimized infor-
mation gathering. ACM Trans. Intell. Syst. Technol. (TIST) 2(4), 1–20 (2011)

16. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian
processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res.
9(2) (2008)

17. Kuhnle, A.: Quick streaming algorithms for maximization of monotone submodular
functions in linear time. In: 24th AISTATS, pp. 1360–1368. PMLR (2021)

Fast Parallel Algorithms for Submodular p-Superseparable Maximization 233

18. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: 13th KDD, pp. 420–429. ACM
(2007)

19. Li, W., Liu, P., Vondrák, J.: A polynomial lower bound on adaptive complexity of
submodular maximization. In: 52nd STOC, pp. 140–152. ACM (2020)

20. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular
maximization: personalized data summarization. In: 33rd ICML, pp. 1358–1367.
PMLR (2016)

21. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978)

22. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

23. Skowron, P.: FPT approximation schemes for maximizing submodular functions.
Inf. Comput. 257, 65–78 (2017)

24. Wei, K., Iyer, R., Bilmes, J.: Submodularity in data subset selection and active
learning. In: 32nd ICML, pp. 1954–1963. PMLR (2015)

Author Index

A
Aarts, Sander 160
Alefkhani, Shanli 134

B
Balkanski, Eric 74
Basiak, Mateusz 45
Bidlingmaier, Gunther 59
Bienkowski, Marcin 45
Borodin, Allan 175
Bosman, Thomas 104

C
Cervenjak, Philip 219
Chagas, Vítor Gomes 145
Chalermsook, Parinya 205

D
Dell’Arriva, Elisa 145
Dinitz, Michael 190
Drexler, Lukas 119

E
Ergen, Ekin 104
Evans, William 14

G
Gadekar, Ameet 205
Gan, Junhao 219

H
Hennes, Annika 119

I
Imreh, Csanád 104

K
Karavasilis, Christodoulos 175
Khodamoradi, Kamyar 205

Khodaveisi, Nima 134
Kirkpatrick, David 14
Koranteng, Ama 190
Kortsarz, Guy 190

L
Lahiri, Abhiruk 119
Liu, Alison Hsiang-Hsuan 90
Liu, Fu-Hong 90

M
Manthey, Bodo 1
Marchetti-Spaccamela, Alberto 104
Mari, Mathieu 134
Miyazawa, Flávio Keidi 145
Mömke, Tobias 29

N
Nutov, Zeev 190

O
Ou, Tingting 74

P
Popa, Alexandru 29

R
Roshany-Tabrizi, Aida 29
Ruderer, Michael 29

S
Schmidt, Melanie 119
Shmoys, David B. 160
Skutella, Martin 104
Spoerhase, Joachim 205
Stein, Clifford 74
Stougie, Leen 104

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
J. Byrka and A. Wiese (Eds.): WAOA 2023, LNCS 14297, pp. 235–236, 2023.
https://doi.org/10.1007/978-3-031-49815-2

https://doi.org/10.1007/978-3-031-49815-2

236 Author Index

T
Tatarczuk, Agnieszka 45

V
van Ee, Martijn 104
van Rhijn, Jesse 1
Vincze, Roland 29

W
Wargalla, Julian 119
Wei, Hao-Ting 74
Wirth, Anthony 219
Wong, Prudence W. H. 90

Z
Zhang, Xiao-Ou 90

	 Preface
	 Organization
	 Optimization Under Explorable Uncertainty: Adversarial and Stochastic Models (Invited Talk)
	 Contents
	Approximation Ineffectiveness of a Tour-Untangling Heuristic
	1 Introduction
	1.1 Definitions and Notation

	2 Worst Case
	3 Average Case
	4 Practical Performance of Uncrossing Tours
	5 Discussion
	References

	A Frequency-Competitive Query Strategy for Maintaining Low Collision Potential Among Moving Entities
	1 Introduction
	1.1 The Query Model
	1.2 Related Work
	1.3 Our Results

	2 Geometric Preliminaries
	3 Query Optimization for Mobile Entities
	3.1 Query Optimization for Stationary Entities
	3.2 Query Optimization for General Mobile Entities

	4 Discussion
	4.1 Other Measures of Congestion Potential
	4.2 Generalizations of Our Model and Analysis
	4.3 Motivating Applications

	References

	Approximating Maximum Edge 2-Coloring by Normalizing Graphs
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 The Algorithm
	3 An Upper Bound on the Optimal Solution
	3.1 Preparing the Character Graph
	3.2 The Proof of Lemma 1

	4 Subcubic Graphs and Claw-Free Graphs
	5 1.625-Approximation for Graphs with Perfect Matching
	References

	An Improved Deterministic Algorithm for the Online Min-Sum Set Cover Problem
	1 Introduction
	1.1 Model and Notation
	1.2 Benchmarks
	1.3 Previous Results
	1.4 Our Contribution

	2 Our Algorithm DLM
	3 Basic Properties and Analysis Framework
	3.1 Amortized Analysis
	3.2 Potential Function
	3.3 Incrementing Elements Positions

	4 Analysis in the Static Scenario
	5 Analysis in the Dynamic Scenario
	6 Final Remarks
	References

	Greedy Minimum-Energy Scheduling
	1 Introduction
	2 Algorithm
	3 Structure of the PLTR-Schedule
	3.1 Types of Volume
	3.2 Critical Sets of Time Slots
	3.3 Definitions Based on Critical Sets

	4 Modification of the PLTR-Schedule for Analysis
	4.1 Augmentation and Realignment
	4.2 Invariants for Realignment
	4.3 Approximation Guarantee and Running Time

	References

	Scheduling with Speed Predictions
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Preliminaries
	3 Consistent Algorithms are not Robust
	4 The Algorithm
	4.1 Description of the Algorithm
	4.2 Analysis of the Algorithm

	5 Improved Trade-Offs for Special Cases
	6 Experiments
	6.1 Experiment Settings
	6.2 Experiment Results

	References

	The Power of Amortization on Scheduling with Explorable Uncertainty
	1 Introduction
	2 Preliminary
	2.1 Review (,)-SORT Algorithm ch7DBLP:confspswaoaspsAlbersE20
	2.2 Our Observation

	3 Deterministic Algorithms
	3.1 Amortization
	3.2 An Improved Algorithm
	3.3 Preemption

	4 Randomized Algorithm
	5 Conclusion
	References

	Total Completion Time Scheduling Under Scenarios
	1 Introduction
	2 Preliminaries
	3 Our Contribution
	4 Scheduling Under Arbitrary K is Hard, but K=2 is Easy
	4.1 NP-Hardness for Unbounded Number of Scenarios
	4.2 Computing an Ideal Schedule for Two Scenarios

	5 The MinMax Version
	5.1 Constant Number of Machines
	5.2 Any Number of Machines

	6 The MinAvg Version
	6.1 Constant Number of Machines
	6.2 Any Number of Machines

	7 Conclusion and Open Problems
	References

	Approximating Fair k-Min-Sum-Radii in Euclidean Space
	1 Introduction
	2 k-Min-Sum-Radii with Mergeable Constraints
	2.1 The Main Algorithm and the Main Lemma
	2.2 Guessing the Radii
	2.3 Cheap, Separable and Balanced Coverings
	2.4 The Main Result

	References

	Online Hitting Set of d-Dimensional Fat Objects
	1 Introduction
	1.1 Our Contribution

	2 The Algorithm
	3 Lower Bound
	4 Conclusion
	References

	Approximation Schemes Under Resource Augmentation for Knapsack and Packing Problems of Hyperspheres and Other Shapes
	1 Introduction
	2 Preliminaries
	3 The Circle Knapsack Problem Under Resource Augmentation
	3.1 Transforming an Optimal Solution
	3.2 A Structured Packing of the Original Instance
	3.3 A Structured Packing of a Modified Instance

	4 Final Remarks
	References

	Hitting Sets when the Shallow Cell Complexity is Small
	1 Introduction
	1.1 Shallow Cell Complexity
	1.2 Our Contributions

	2 Algorithm and Main Result
	3 The Weighted Shallow Packing Lemma
	3.1 Proof of the Weighted Shallow Packing Lemma

	4 Proof of the Main Theorem
	4.1 Key Lemmas
	4.2 Proof of Theorem 3

	References

	Any-Order Online Interval Selection
	1 Introduction
	2 Preliminaries
	3 Adversarial Order
	3.1 Unweighted

	4 Arbitrary Weights
	5 Random Order
	6 Conclusions and Open Problems
	References

	Improved Approximations for Relative Survivable Network Design
	1 Introduction
	1.1 Our Results and Techniques

	2 Preliminaries
	3 2-Approximation for 3-RSND (and SD-3-RSND)
	3.1 Overview
	3.2 Cactus Representation and Definitions
	3.3 Proof of Theorems 4, 3, and 1

	4 SD-k-RSND
	4.1 Hierarchical Chain Decomposition
	4.2 Structure Theorem
	4.3 Algorithm and Analysis

	References

	Independent Set in k-Claw-Free Graphs: Conditional -Boundedness and the Power of LP/SDP Relaxations
	1 Introduction
	1.1 Our Contributions
	1.2 Conclusion and Open Problems
	1.3 Further Related Work

	2 Preliminaries
	3 Graph Theoretic Result
	3.1 Ramsey Graphs
	3.2 Graph Construction
	3.3 Proof of Theorem 5

	4 Convex Relaxation Results
	4.1 Convex Relaxation Prelims
	4.2 Conditional -Boundedness and SoS
	4.3 Integrality Gap of Sherali–Adams on QSTAB

	References

	Fast Parallel Algorithms for Submodular p-Superseparable Maximization
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Paper Structure

	2 Preliminaries
	2.1 p-Superseparable Functions
	2.2 An Overview of the State-of-the-Art Algorithm

	3 Parallel Algorithm for p-Superseparable SMCC
	3.1 LinearSeq+GreedySampling
	3.2 GreedySampling

	4 Parallel Thresholding Procedure for SMCC
	5 Conclusions
	References

	Author Index

