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Abstract. Topology optimization aims to search for the optimal material distri-
bution with a prescribed volume fraction. Recently, to reduce the computational
cost of finite element analysis, multi-resolution topology optimization (MTOP)
has been proposed to decouple the finite elements and density elements. How-
ever, MTOP introduces new problems with checkerboard patterns and numerous
design variables, which hinder its popularity. To overcome these problems of
MTOP and significantly improve the computational efficiency, an efficient multi-
resolution topology optimization method based on the Kriging-Interpolation net-
work (MTOP-KIN) is proposed in this paper. In the proposed MTOP-KIN, a cus-
tomized single-layer neural network (Kriging-Interpolation network) is designed
to express the topology description function of the design domain, avoiding the
checkerboard patterns without filtering techniques or higher-order elements and
reducing the design space. Several two-dimensional and three-dimensional numer-
ical examples of topology optimization problems with compliance minimization
are studied to demonstrate the effectiveness of the proposed method. The results
show that the proposed MTOP-KIN can obtain better optimization results than
MTOP. Meanwhile, compared with MTOP, an acceleration of about 11 to 18
times can be achieved.

Keywords: Multi-resolution topology optimization · Kriging-Interpolation
network · Knot mesh · Topology description function

1 Introduction

To obtain the optimum structural performance, researchers have shown an increased
interest in topology optimization since the pioneering work [1]. The goal of topology
optimization is to find the optimal material distribution with the prescribed volume
fraction to minimize the objective [2–4]. However, topology optimization is still not
popular in the engineering field, especially for large-scale problems, due to the need for
high computational resources.
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To overcome this computational burden, a series of works have been done to reduce
computational cost or improve computational efficiency by saving the computational
costs of updating the design variables or calculating the governing equations. In terms
of design variables, Guest et al. [5] proposed a decoupling strategy to separate the
design variable and the analysis mesh by the Heaviside projection method. Kim et al.
proposed the reducible design variable method (RDVM) to save the computational costs
of updating design variables by not considering the design variables that have converged
[6]. In termsof solving the governing equations, iterative solvers, for example, amultigrid
preconditioned conjugate gradients (MGCG) solver, are adopted to fast solve large-
scale 3-D structural topology optimization problems on a standard PC [7, 8]. Another
approach is to use a multiresolution topology optimization (MTOP) scheme to obtain
high resolution designs by using a coarser discretization for finite elements and finer
discretization for both density elements and design variables [9], which is a universal
topology optimization method. According to this approach, finite element analysis will
be performed in a relatively coarse mesh, which will significantly save time in solving
the governing equations. However, MTOP has two disadvantages: the QR-patterns and
numerous design variables. The QR-patterns means that the optimization results by this
method consisted of artificially stiff regions named the QR-patterns as shown in Fig. 1,
which seriously hurts the application of MTOP. The QR-patterns arise mainly due to the
discontinuity of the density distribution in the element leading to the inability of the low-
order shape functions to accurately model its displacement. To conquer this problem,
several methods have been proposed, including the use of filtering (density projection)
and the use of higher polynomial shape functions.When using the filtering inMTOP, the
density field will be smoothed equivalent to imposing a restriction on minimum feature
size. However, the filter radius is not easy to determine an appropriate value, where the
large filter radius will restrict the design field from expressing a high order material
distribution [10]. Meanwhile, the additional computational costs of computing filter
weights and performing convolution operations are also an obstacle, especially on large
scale problems. When using the higher polynomial elements in MTOP, the QR-patterns
can be avoided in the simplest way by accurately modeling the displacement field [10–
12]. But, the use of high order elements will increase the degrees of freedom so as to take
more time to solve the governing equation, which contradicts the original purpose of
MTOP. Another drawback, i.e. numerous design variables, arises from the introduction
of the density mesh inMTOP. To overcome this problem, an adaptive isosurface variable
grouping (aIVG) is proposed to group design variables of similar grouping criteria into
a single grouped design variable [13], which will significantly reduce computation time
in optimization.

In recent years, deep learning has made successive breakthroughs in several fields
due to its powerful non-linear representation and efficient optimization algorithm [14–
16]. Therefore, for the sake of completeness, it is also necessary to mention that sev-
eral machine learning-based studies for topology optimization have been proposed. For
example, a deep learning-based method is proposed to predict an optimized structure
by designing convolutional neural networks to model the relationship between the opti-
mization results and some parameters of the optimal topologies [17]. A novel two-phase
methodology based on deep learning also is proposed to find the relationship between
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the final density values of each finite element and the results of the first few iterations of
the SIMP method [18]. Some reparameterization methods based on deep learning also
be studied, where the design variables are the parameters of the network [19–21].

Since the above studies based deep learning either face generalizability problems, or
interpretability problems, or computational efficiency problems, a general and efficient
topology optimization method is worth investigating. As mentioned above, MTOP is
a universal topology optimization method, and significantly save time in solving the
governing equations. However, the QR-patterns and numerous design variables will
lose the computational advantage of MTOP, preventing the further popularity of MTOP.
So, once these problems can be overcome, MTOP will be the most promising approach
to help topology optimization become popular in the engineering field.

Motivated by the aforementionedproblems, this study aims to provide a novelmethod
to avoid the QR-patterns and reduce the number of design variables without losing the
computational advantage of MTOP. As is well-known, level set methods can avoid the
checkerboard pattern, similar to the QR-patterns, without the filter technology. Topology
description functions (TDF) based on the Kriging interpolation model [22, 23] are a
class of explicit level-set methods to solve topology optimization, which can not only
avoid the checkerboard phenomenon but also significantly reduce the number of design
variables compared with element-wise density-based topology optimization. However,
the methods based on the Kriging interpolation model are non-gradient methods and
thus require high computational resources, since the gradient calculation is very difficult
due to the fact that the material distribution is obtained by cutting the TDF with a certain
threshold [23, 24]. Therefore, when the gradients can be easily calculated, the Kriging
interpolation model will be a potential way to avoid the QR-patterns while reducing the
number of design variables.

The remainder of this article is organized as follows. Section 2 describes the pro-
posed multi-resolution topology optimization based on the Kriging-Interpolation net-
work (MTOP-KIN) in detail. Section 3 conducts a series of 2D and 3D experiments to
validate the proposed method and discusses the results. Section 4 presents a discussion
about the effect of the Multiresolution Model on MTOP-KIN and the influence of the
Knot mesh and Density mesh on MTOP-KIN. Section 5 summarizes and concludes the
paper.

Fig. 1. The QR-patterns in optimization design obtained by MTOP
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2 Method

A novel multi-resolution topology optimization using the Kriging-Interpolation network
is proposed in this study, which is referred to as MTOP-KIN. The proposed MTOP-
KIN can avoid QR patterns without filtering techniques or high-order elements and
reduce the design space, thereby improving the computational efficiency for the topology
optimization problems. It can divide into three parts: Multiresolution model, Physical
model solver, andModel optimization, as shown in Fig. 2. The three parts of the proposed
MTOP-KIN are described in detail in Sects. 2.1, 2.2, and 2.3 below, respectively.

Fig. 2. The framework for the proposed multi-resolution topology optimization

2.1 Multiresolution Model

The goal of the Multiresolution model is to establish the relationship between the Knot
mesh, Densitymesh, andDisplacement mesh, as shown in Fig. 3. By using thesemeshes,
theKnotmesh to establish a topologydescription function, theDensitymesh to determine
density variables in the Displacement mesh, and Displacement mesh to perform finite
element analysis can be decoupled from each other.

Fig. 3. The three different meshes for the multiresolution model: (a) Knot mesh, (b) Density
mesh, (c) Displacement mesh

In the conventional MTOP, the design variable is equal to the number of density
elements in Density mesh. But, in the MTOP-KIN, the number of design variables
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is equal to the number of elements in the Knot mesh. Since the number of elements
in the Knot mesh is usually smaller than the number of density variables in Density
mesh, e.g. 9%, the Knot mesh can reduce the number of design variables than directly
using the Density mesh. Also, as in conventional MTOP, the Displacement mesh can
significantly reduce the time of solving the governing equation as the finite element
analysis is performed in a relatively coarse mesh. For example, in Fig. 3, the number of
elements in the Displacement mesh is only 6.25% of those in the Density mesh.

To avoid QR-patterns without losing the computational advantage of MTOP and
reduce the design space, the Knot mesh adopts a Kriging-Interpolation method based a
single-layer neural network to obtain density variables. Using this Kriging-Interpolation
network, the topology description function (TDF) f (x) is a combination of nonlinear
activation function Ai(x) in the hidden layer weighted by weights wij in the hidden layer.
Then the f (x) is acquired by the forward propagation of the network as follows

f (x) =
∑

i
w2iAi(wi0x) =

∑
i
w2ie

−α2‖wi0x−xi‖2 (1)

Here,Ai(wi0x) = e−α2‖wi0x−xi‖2 is the customized nonlinear activation function,wi0 = 1
and w2i denote the corresponding weights of the single-layer neural network, xi and
α denote the center coordinates of elements in the Knot mesh and tuning constant,
respectively. The α denotes the sharing degree between knots by

α = 1

r̃

√
(ln(1/c) (2)

where r̃ is the minimum Euclidean distance between knots and c is a constant setting
as 0.5 in this study. The learnable weights w2i, i.e. design variables, will be updated by
a backpropagation algorithm, where the number is equal to the numbers of elements in
the Knot mesh. So, the number of design variables can be greatly reduced, which will
improve the computational efficiency of MTOP. Meanwhile, since the only learnable
weights w2i represents the weights of different basis functions, this network is inter-
pretable. The architecture of the proposed Kriging-Interpolation network is presented in
Fig. 4, where the input is the center coordinates in the Density mesh and the output are
the corresponding density values.

Here, the sigmoid activation function is adopted to convert the value f (x) to a
continuous density value ρ(x) ∈ [0, 1] as:

ρ(x) = 1

1 + e−f (x)
(3)

This activation functionwill overcome the difficulty of calculating the gradient of the
objective function with respect to the TDF by the cutting operation in the classical level-
set method, where the aim of this cutting operation is to determine thematerial properties
in the design domain by the relationship between the value f (x) and the threshold value
Ts as follows.

f (x) ≥ TS , ρ(x) = 1

f (x) < TS , ρ(x) = 0
(4)
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Fig. 4. The architecture of the proposed Kriging-Interpolation network

By using the proposed Kriging-Interpolation network, the density distribution in
the density mesh will change smoothly, which can be observed in Fig. 5. The smaller
the number of knots in the knot mesh, the smoother the change of density distribution
in the Density mesh. Meanwhile, the values of density function ρ(x) is a continuous
function within the range of [0, 1] with convenience in the calculation of gradient, which
also improves computational efficiency of MTOP by using gradient-based optimization
methods, such as stochastic gradient descent (SGD), AdaGrad [25], and Adam [26].

Fig. 5. The topology description function by the proposed Kriging-Interpolation network

2.2 Physical Model Solver

The goal of the Physical model solver is to solve the state field, involving the integration
of the element stiffness matrix in the displacement mesh, material penalization model,
and finite element analysis.

The integration of the element stiffness matrix is to compute the stiffness by con-
sidering the corresponding contribution of the density element over the displacement
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element domain. Figure 6 presents the superposed meshes of the Density mesh and Dis-
placement mesh, where aei is the area or volume of the ith density element in the eth
displacement element and ρe

i is the density value of the ith density element in the eth
displacement element. Using the Gauss-Legendre quadrature, a modified displacement
element stiffness can be expressed as

ke =
∫

�e
BeTCeBe ∼=

∑Ne
n

i=1

(
BeTCeBe

)
|
i
aei (5)

where ke, �e, Be, Ce, and Ne
n is the element stiffness matrix, design domain, strain-

displacement matrix, constitutive matrix, and number of density element of the eth
displacement element, respectively.

Fig. 6. The superposed meshes of the density mesh and displacement mesh

The material penalization model is to convert the integer optimization problem to a
continuous optimization problem. In this study, the popular model named solid isotropic
material with penalization (SIMP) is adopted [2]. And its formulation is Ei(ρi) = ρi

pE0,
where E0 denotes the Young’s modulus and p is the penalization factor, set to 3 in this
study. Because the constitutive matrix depends on the modified Young’s modulus of
the material, the modified displacement element can be reexpressed by one value ρe

i as
follows:

ke ∼=
∑Nn

i=1

(
ρe
i

)p(BeTCeBe
)
|
i
aei (6)

The finite element analysis is to solve the state field, where the governing equation
of the state field can be expressed by the energy bilinear form and the load linear form,
and its formulation as

∫

D
Cijklεij(u)εij(v)d� =

∫

D
pvd� +

∫

∂Dτ

τvdS (7)

whereCijkl is the fourth-order constitutive tensor, εij is the linearized strains, p is the body
forces, and τ is the traction forces. By discretizing the design domain with displacement
elements, i.e. the Displacement mesh, the governing equation can be formulated by the
following discrete equations:

KU = F (8)

where U, K and F are the global displacement, stiffness matrix and force vectors,
respectively. The K is obtained by assembling the element stiffness matrix ke, i.e.
K = ∑

ek
e.
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2.3 Model Optimization

The goal of the Model optimization is to search the optimal parameters of MTOP-KIN
by optimizing the loss function, which aims at converting the constrained optimization
problemof topology optimization into a network optimization by theLagrangemultiplier
method. For the specific compliance minimization problems, the loss function can be
written as follows:

L = UTKU + λ

(
V (ρe)

V0
− Vc

f

)2

(9)

whereλ,Vc
f ,V (ρe) andV0 areLagrangian penalty factor, the prescribed volume fraction,

the material volume and volume of design domain, respectively. To control the order
of magnitude of the different terms, the normalization is operated in Eq. (9), which is
similar to that TOuNN in [19].

L = UTKU
J0

+ λ

(
V (ρe)

V0 × Vc
f

− 1

)2

(10)

where J0 is the objective function value of the randomly initialized MTOP-KIN before
network training. In order to update the network parameters w2i, the gradient can be
calculated using the chain derivative rule as follows:

∂L

∂θ2i
=

∑
e

∂L

∂ρe

∂ρe

∂f

∂f

∂θ2i
(11)

∂L

∂ρe
= − 1

J0

(
ρe
j

)p−1
ue

T
(
BeTCeBe

)
|jaej ue + 2λ

Vc
f

(
V (ρe)

V0 × Vc
f

− 1

)
(12)

∂ρe

∂f
= e−f (x)

(
1 + e−f (x)

)2 (13)

∂f

∂w2i
= e−α2‖x−xi‖2 (14)

where Eqs. (13) and (14) can be obtained directly by the backpropagation algorithm.
Adam [26] is one of the most popular optimization algorithms in deep learning due to its
good performance. So, Adam is adopted to optimize the MTOP-KIN. In optimization,
checking the convergence is also important,which can affect the computational efficiency
of topology optimization. The change of the loss function in deep learning is often used
to determine the convergence, so a natural idea is to use the change of the loss function
as the convergence criterion for the proposed MTOP-KIN.

Here, the standard deviation of objective function values of successive iterations is
adopted to determine the convergence status of MTOP-KIN as follows:

Li = Li−(NC−1) + Li−(NC−2) + · · · + Li−1 + Li
NC

(15)
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σi =
√

1

NC − 1

∑i

j=i−(NC−1)

(
Lj − Li

)2
(16)

where NC denotes the number of successive iterations for checking the convergence
status and i ≥ NC. When the standard deviation σi is less than a convergence tolerance

value
∼
σ , the convergence is considered to be reached.

3 Numerical Experiments

To investigate the performance of the proposedMTOP-KIN four structures are employed
as examples, including three 2D structures and one 3D structure. In all examples, the
volume fraction, the density penalization power, Young’s modulus, and Poisson’s ratio
are set as 0.5, 3, 1.0, and 0.3. For the convenience of the subsequent discussion, the ratio
of the number of theKnotmesh elements to the number of theDensitymesh elements and
the ratio of the number of the Density mesh elements to the number of the Displacement
mesh elements are defined as follows

R1 = Nknot/Ndesity (17)

R2 = Ndesity/Ndisplacement (18)

where Nknot , Ndesity, and Ndisplacement denote the number of elements in the Knot mesh,
Densitymesh, andDisplacementmesh, respectively. In all four different examples below,
the R1 and R2 are set as 0.3 and 5, respectively. The learning rate of Adam is set as 0.3
and coefficients used for computing running averages of gradient and its square are
set as β1 = 0.5 and β2 = 0.999, respectively. The number of successive iterations
and convergence tolerance value for convergence condition is set as 15 and 0.0005,
respectively.

3.1 2D Examples

The design domains of all 2D examples are assumed to be discretized by using a mesh of
80× 30 square finite elements (Q4 elements) in the Displacement mesh of MTOP-KIN
and MTOP, where the Density mesh is 400 × 150 and the Knot mesh is 120 × 45. The
design domains and boundary conditions are shown in Fig. 7. To verify the performance
of the proposed MTOP-KIN method, MTOP is selected as a baseline [9] and the filter
radius is 5. Figure 8 gives the convergence curves of MTOP-KIN, from which it can be
seen that the convergence is achieved in about 80 iterations.

These curves also illustrate that MTOP-KIN can achieve convergence performance
under the same parameters for different examples. The optimization results generated
by the proposed MTOP-KIN and MTOP are shown in Fig. 9. As presented, MTOP-KIN
allows for clearer results without the use of filter techniques, i.e. gray regions are much
fewer to compare with MTOP. This phenomenon indicates the feasibility of MTOP-
KIN. Meanwhile, the QR-patterns also did not appear in the optimization results, which
illustrates that the proposed method can avoid this problem without filtering techniques
or high-order elements.



Highly Efficient Multi-resolution Topology Optimization 133

Fig. 7. The design domains and boundary conditions of the cantilever beam, Michell beam and
SS beam

Fig. 8. The convergence curves of loss function in the training process on the cantilever beam,
Michell beam and SS beam

Table 1 presents a summary of the proposed MTOP-KIN and MTOP, including the
number of design variables, objective function values, and calculation time, on all test
examples. These results show that the number of design variables of MTOP-KIN is
much smaller than those of MTOP because the Knot mesh and nonlinear activation
function Ai(x) are adopted in MTOP-KIN. From these results, it can also be found that
the compliance of the proposed method is smaller than that of MTOP, and a speedup of
approximately 15 to 18 times is achieved compared with the MTOPmethod. The reason
for the faster speed is mainly due to the reduction of design variables and the absence
of filtering techniques.

3.2 3D Cantilever Beam

In this subsection, a 3D compliance minimization problem is also performed to verify
that the proposed method can be applied not only to 2D but also to 3D. Figure 10 gives
the 3D Cantilever Beam subjected to the unit loads. The design domain is discretized
by using a mesh of 42 × 12 × 4 cube finite elements in the Displacement mesh of
MTOP-KIN and MTOP. Here, the Density mesh is 210× 60× 20 and the Knot mesh is
63× 18× 6. Using the MTOP-KIN, the convergence is achieved in about 70 iterations,
as shown in Fig. 11. Figure 12 presents the optimization results by the MTOP-KIN
and MTOP, indicating the proposed method is also suitable for 3D structures. From the
optimization results, more thin members exist in the optimization result obtained by
MTOP-KIN which means that better structures may be found by the proposed method.
This can be verified by the compliance value, as listed in Table 2. The difference in
the compliance value indicates that the stiffness of structure obtained by MTOP-KIN
is much greater than the stiffness of that obtained by MTOP. Table 2 also shows that
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Fig. 9. Optimization results of the cantilever beam, Michell beam and simply supported (SS)
beam

Table 1. Summary of the tested examples on the cantilever beam, Michell beam and simply
supported (SS) beam

Case Methods No. of design variables Obj. func. value Time (s)

Cantilever beam MTOP-KIN 5400 134.88 5.08

MTOP 60000 140.51 80.99

Michell beam MTOP-KIN 5400 142.10 5.18

MTOP 60000 150.60 81.34

SS beam MTOP-KIN 5400 22605.42 4.20

MTOP 60000 23155.92 78.28

the proposed MTOP-KIN has a speedup of approximately 11 times compared with the
MTOP method.

4 Discussions

The results of numerical experiments had illustrated the proposedMTOP-KIN can obtain
better optimization results with less optimization time comparedwithMTOP, as outlined
in Sect. 3. However, the keymodel and parameters still need to be investigated to explore
their effect, for example, the effect of the multiresolution model and the influence of the
number of knot elements and density elements onMTOP-KIN. So, first, theMTOP-KIN
without the Multiresolution Model, named TOP-KIN, is investigated on the Cantilever
Beam, Michell beam, and SS Beam. Then, the influence of the Knot mesh and Density



Highly Efficient Multi-resolution Topology Optimization 135

Fig. 10. The design domains and boundary conditions of the 3D cantilever beam

Fig. 11. The convergence curves of loss function in the training process on the 3D cantilever
beam

Table 2. Summary of the tested examples on the 3D cantilever beam

Case Methods No. of design variables Obj. func. value Time (s)

3D cantilever beam MTOP-KIN 6804 2703.69 35.59

MTOP 252000 3742.08 396.75

mesh on MTOP-KIN is investigated on the SS Beam. Because the optimization result
of the SS Beam has more members, the change of the optimized structure can be easily
observed.

4.1 Effect of the Multiresolution Model on MTOP-KIN

The proposedMTOP-KINcomprises three parts:MultiresolutionModel, Physicalmodel
solver, and Model optimization, as shown in Fig. 1. The most important part is Mul-
tiresolution Model to model the relationship between the Knot mesh, Density mesh, and
Displacement mesh, where the Density mesh is the bridge that connects Knot mesh and
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Fig. 12. Optimization results of the cantilever beam, Michell beam and simply supported (SS)
beam

Displacement mesh. So, only using the Knot mesh and Displacement mesh in MTOP-
KINwill be able to explain the role of theMultiresolutionModel, this modified topology
optimization method is called TOP-KIN.

Here, the number of elements in the Knot mesh and Displacement mesh of TOP-KIN
is 120× 45 and 80× 30, which equal to those of MTOP-KIN, as described in Sect. 3.1.
Figure 13 and Table 3 give the optimization results and the performance comparisons,
respectively. From the results of Fig. 13, it can be found that MTOP-KIN can obtain
a clearer optimization result with a higher resolution which means more thin members
appear in the result. Table 3 shows that the optimization results have a much lower
compliance value and the training time is only about twice that of the TOP-KIN.
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Fig. 13. Optimization results of the cantilever beam, Michell beam, and SS beam byMTOP-KIN
and TOP-KIN

Table 3. Summary of the tested examples with MTOP-KIN and TOP-KIN

Case Methods No. of design variables Obj. func. value Time (s)

Cantilever beam MTOP-KIN 5400 134.88 5.08

TOP-KIN 5400 142.37 2.39

Michell beam MTOP-KIN 5400 142.10 5.18

TOP-KIN 5400 148.98 2.51

SS beam MTOP-KIN 5400 22605.42 4.20

TOP-KIN 5400 23122.41 2.20

Although the training time of MTOP-KIN increases compared with TOP-KIN, the
TOP-KIN will consume more time to achieve the same resolution compared with the
proposed MTOP-KIN. To illustrate this phenomenon, the Knot mesh and Displacement
mesh in TOP-KIN are adjusted to 120×45 and 400×150, where the aim here is to make
the number of elements in the Displacement mesh of TOP-KIN equal to the number of
elements in the Density mesh of MTOP-KIN for obtaining the same resolution. For ease
of description, the TOP-KIN of this configuration is noted as TOP-KIN-5. Figure 14
illustrates the MTOP-KIN can get almost the same optimization results with less Dis-
placement mesh, meaning the optimization time can be significantly reduced. Mean-
while, Fig. 14(e) and (f) also clearly illustrate that MTOP-KIN gives better optimization
results. These conclusions can be verified by the results in Table 4, which shows that
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MTOP-KIN can not only get a much lower compliance value but also achieve a speedup
of approximately 11 times.

Fig. 14. Optimization results of the cantilever beam, Michell beam and SS beam by MTOP-KIN
and TOP-KIN-5

Table 4. Summary of the tested examples with MTOP-KIN and TOP-KIN-5

Case Methods No. of design variables Obj. func. value Time (s)

Cantilever beam MTOP-KIN 5400 134.88 5.08

TOP-KIN-5 5400 138.93 60.72

Michell beam MTOP-KIN 5400 142.10 5.18

TOP-KIN-5 5400 148.41 59.05

SS beam MTOP-KIN 5400 22605.42 4.20

TOP-KIN-5 5400 22788.34 51.90

4.2 Effect of the Knot Mesh and Density Mesh on MTOP-KIN

The Knot mesh can control the degree of smoothing of the change of density distribution
in the Density mesh, and the Density mesh controls the stiffness of the element in the
Displacement mesh. Therefore, it is necessary to investigate the effect of the Knot mesh
and Density mesh on MTOP-KIN.

The influence of the Knot mesh is first investigated. In order to exclude the effect of
the Displacement and Density meshes, the number of elements remains the same, and
only the number of the Knot mesh is changed. Eight different Knot mesh configurations
were investigated with the ratio of the number of elements of the Knot mesh and Density
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mesh are 0.20, 0.25, 0.30, 0.35, 0.37, 0.39, 0.40, and 0.41, respectively. Figure 15 and
Table 5 give the optimization results and performance comparisons. These results show
that the resolution of the structure becomes higher and objective function values come
to be smaller, as the number of elements in the Knot mesh increases. But, the degree
of smoothing of the optimization results obtained by MTOP-KIN with R1 = 0.40 and
R1 = 0.41 are worse than the results of the other configurations.

Then the influence of the Density mesh is investigated. Similarly, only the ratio of the
number of the density mesh elements to the number of the displacement mesh elements
is changed with the same Displacement mesh and R1 = 0.30. Six different ratios R2
were investigated are 2, 3, 4, 5, 6 and 7. From the results of Fig. 16 and Table 5, it can be
observed that structures with isolated islands will occur when unsuitable R2 is adopted.
Because the more the number of knots in the Knot mesh means that α = 1

r̃

√
(ln(1/c)

is smaller, the smoothing effect on the Density mesh will decrease, leading to drastic
changes or even discontinuity of density in the Density mesh. Fortunately, through
the extensive experiments, including 2D and 3D experiments, it can be found that a
suitable ratio of elements of the Knot mesh and Displacement mesh should satisfy
R1 × R2 ∈ [1.3, 1.8], which can help the proposed MTOP-KIN generate clear and
smooth optimization results (Table 6).

Table 5. Summary of the SS beam by MTOP-KIN with different knot meshes

R1 Obj. func. value R1 Obj. func. value

0.20 23004.08 0.37 22436.90

0.25 22787.96 0.39 22396.11

0.30 22605.42 0.40 22391.78

0.35 22502.78 0.41 22338.00

Table 6. Summary of the SS beam by MTOP-KIN with different density meshes

R2 Obj. func. value R2 Obj. func. value

2 23588.38 5 22605.42

3 23113.61 6 22449.35

4 22812.90 7 22324.90
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Fig. 15. Optimization results of the SS beam by MTOP-KIN with different knot meshes

Fig. 16. Optimization results of the SS beam by MTOP-KIN with different density meshes
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5 Conclusion

This paper proposes a novel multi-resolution topology optimization based on the
Kriging-Interpolation network using a customized single-layer neural network to express
the topology description function of a design domain. The proposed can obtain better
optimization results using less time compared with MTOP.

The main conclusions are summarized as follows:

• The MTOP-KIN can avoid QR patterns without filtering techniques or high-order
elements by the proposed Kriging-Interpolation network to model the relationship
between the Knot elements andDensity elements, whichmaintains the computational
advantage of multi-resolution topology optimization.

• The proposed Kriging-Interpolation network in MTOP-KIN is interpretable since all
parameters in this network are straightforward linked with those in topology descrip-
tion function andhave a clear physical sense.Meanwhile,with this network, the design
variables of MTOP-KIN can be updated by gradient-based optimization algorithms
and GPU.

• The proposed MTOP-KIN can reduce the design space by a novel topology descrip-
tion function and obtain a better optimization result with a speedup of approximately
11 to 18 times compared with the MTOP method for 2D and 3D examples.
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