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Abstract. We consider the cessation of annular Poiseuille and annular Couette
flows of a Newtonian fluid, under the assumption that wall slip occurs follow-
ing a dynamic slip law, i.e., a law involving a slip-relaxation parameter. The
relaxation time-dependent term forces the eigenvalue parameter to appear in the
boundary conditions and, thus, the resulting spatial problems correspond to Sturm-
Liouville problems different from their static-Navier slip counterparts. The orthog-
onality conditions of the associated eigenfunctions for both flows of interest are
derived and analytical closed-form solutions are then obtained. For comparison
purposes, the analytical solutions corresponding to the static Navier slip condi-
tion, are derived. Comparisons are alsomadewith the plane Poiseuille and Couette
flows when the annular gap becomes small. As expected, flow dynamics becomes
slower in the presence of wall slip and this effect is accentuated by increasing the
slip-relaxation parameter.

Keywords: Annular Poiseuille flow · Annular Couette flow · Newtonian fluid ·
Navier slip · Dynamic slip

1 Introduction

The classical no-slip boundary condition, dictating that fluid particles adjacent to a (fixed
or moving) wall stick to it, is violated in many important macroscopic flows of complex
and also simple fluids [1, 2] . Let us denote by u∗

w the slip velocity, defined as the
relative velocity of the fluid particles with respect to that of the wall. Wall slip reduces
the required pressure drop and finds application in microfluidics [3]. However, it also
has undesired effects, causing, for example, instabilities in certain flows of industrial
importance [4, 5]. It also affects measurements in viscometric experiments and needs to
be taken into account, in order to determine the true rheology of the fluid under study
[6]. The mismatch of viscosity data obtained from different rheometers or from the
same rheometer using different radii or gaps is often attributed to wall slip. Different
techniques are used in order to get correct estimates of the rheological parameters, such
as the Mooney method for capillary rheometers [7] and those suggested by Yoshimura
and Prud’homme [8] for circular Couette and parallel disk rheometers.
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In general, the slip velocity depends not only on the fluid properties and the flow
conditions, such as the shear and normal stresses (which include pressure) and the tem-
perature, but also on the physical properties of the wall/fluid interface [1]. Navier’s law
[9] assumes that the slip velocity varies linearly the wall shear stress, τ ∗

w, and introduces
a single material parameter β∗ that incorporates all other effects:

u∗
w = τ ∗

w

β∗ (1)

The no-slip boundary condition corresponds to the limiting case where β∗ → ∞.
The above equation is static, i.e., the slip velocity is independent of the history of the
fluid particles. More involved static slip equations have been proposed in the literature,
such as the power-law generalization of the Navier law, non-monotonic slip equations,
and equations predicting slip above a stress threshold [1].

Of special interest to the present work are dynamic slip equations that apply to time-
dependent flows and include a relaxation time λ∗. The dynamic extension of Eq. (1)
takes the form

u∗
w + λ∗ ∂u∗

w

∂t∗
= τ ∗

w

β∗ (2)

where t∗ is the time. It should be pointed out that in steady-state flows, Eq. (2) is
equivalent to the Navier-slip Eq. (1).

Kaoullas andGeorgiou [10] used separation of variables to derive analytical solutions
for the start-up and cessation of Newtonian plane and axisymmetric Poiseuille and plane
a circular Couette flows with dynamic wall slip following Eq. (2). They pointed out that
since the eigenvalue parameter also appears in the boundary conditions, the resulting
spatial problem corresponds to a Sturm–Liouville problem different from that found
using the static Navier law (1). The main observation is that dynamic wall slip damps
the flow development even more than static wall slip. The same conclusion was also
made by Abou-Dina et al. [11], who obtained equivalent analytical solutions of the start-
up Newtonian Couette flow with dynamic wall slip along the fixed wall using separation
of variables and also the one-sided Fourier transform methods.

The objective of the present work is to derive analytical solutions of two Newtonian
flows in an annular tube with dynamic wall slip: (a) the start-up of annular Poiseuille
flow, i.e., the flow caused by imposing a constant pressure-gradient; and (b) the start-up
annular Couette flow, i.e., the flow resulting by suddenly moving the inner cylinder in
the axial direction. Both flows find industrial applications, e.g., in the oil industry. To
the best of our knowledge, the effects of dynamic wall slip on these two flows have not
been investigated in the literature.

The analytical solutions of the two flows of interest are derived in Sects. 2 and 3.
In Sect. 2, the cessation of annular Poiseuille flow is analysed. The cessation of annular
Couette flow is studied in Sect. 3. Results for both flows are presented and discussed in
Sect. 4. Concluding remarks are provided in Sect. 5.



Analytical Solutions of Axial Annular Newtonian Flows 387

Fig. 1. Geometry of annular Poiseuille flow; the flow is driven by a pressure gradient G∗ =
(−∂p∗/∂z∗).

2 Annular Poiseuille Flow

We consider the annular Poiseuille flow, i.e., the pressure-driven flow of a Newtonian
fluid in an infinitely long annular tube. Let the radii of the inner and outer cylinders be
κR∗ and R∗, where 0 < κ < 1, as illustrated in Fig. 1. Using cylindrical coordinates
(r∗, θ, z∗) and assuming that the flow is incompressible and axisymmetric and gravity is
negligible, the velocity u∗

z = u∗
z (r

∗, t∗) and the z-component of the momentum equation
becomes [12]:

ρ∗ ∂u∗
z

∂t∗
= G∗ + η∗ 1

r∗
∂

∂r∗

(
r∗ ∂u∗

z

∂r∗

)
(3)

where G∗ = (−∂p∗/∂z∗) is the pressure gradient, and ρ∗ and η∗ are respectively the
fluid density and viscosity, both of which are constant.

In the present work, we assume that dynamicwall slip occurs along the two cylinders,
i.e., at r∗ = κR∗ and r∗ = R∗, and denote the corresponding slip velocities by u∗

w1 and
u∗
w2:

u∗
z (κR

∗, t∗) = u∗
w1(t

∗)
u∗
z (R

∗, t∗) = u∗
w2(t

∗)

}
(4)

Slip obeys the dynamic-slip law in Eq. (2), where

τ ∗
w = ∣∣τ ∗

rz

∣∣
w =

∣∣∣∣η∂u∗
z

∂r∗

∣∣∣∣
w

(5)

Given that the velocity near the two cylinders is smaller than in the core of the
annulus, the velocity derivative is positive near the inner cylinder and negative near
the outer cylinder. Therefore, applying the dynamic-slip law we obtain the following
boundary conditions:

u∗
z (κR

∗, t∗) + λ∗ ∂u∗
z (κR

∗,t∗)
∂t∗ = η∗

β∗
∂u∗

z (κR
∗,t∗)

∂r∗

u∗
z (R

∗, t∗) + λ∗ ∂u∗
z (R

∗,t∗)
∂t∗ = − η∗

β∗
∂u∗

z (R
∗,t∗)

∂r∗

}
(6)
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2.1 Steady-State Solution

Let us denote by u∗
z = u∗

z (r
∗) the steady-state velocity. Combining the simplified Eqs.

(3) and (6), one obtains the following boundary value problem:

d

dr∗

(
r∗ du

∗
z

dr∗

)
= −G∗r∗

η∗

u∗
z (κR

∗, t∗) = η∗

β∗
du∗

z (κR
∗, t∗)

dr∗
u∗
z (R

∗, t∗) = − η∗
β∗

du∗
z (R

∗,t∗)
dr∗

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7)

It is straightforward to integrate and apply the boundary conditions [13]. One then
obtains the following solution:

u∗
z (r

∗) = G∗R∗2

4η∗

[
1 + 2

(
1 − σ 2

)
B − r∗2

R∗2 − 2σ 2 ln
R∗

r∗

]
(8)

where

B ≡ η∗

β∗R∗ (9)

is the dimensionless slip number and

σ 2 = 1 − κ2 + 2(1 + κ)B

2[ln(1/κ) + (1 + 1/κ)B]
(10)

It should be noted that r∗M = σR∗ is the radius at which the steady-state velocity is
maximum. The two slip velocities are also easily calculated:

u∗
w1 = G∗R∗2B

2κη∗
(
σ 2 − κ2

)
(11)

and

u∗
w2 = G∗R∗2B

2η∗
(
1 − σ 2

)
(12)

For the steady-state volumetric flow rate Q
∗ = 2π

∫ R∗
0 u∗

z (r
∗)r∗dr∗, one gets

Q
∗ = πG∗R∗4

8η∗

{
1 − κ4 + 4

(
1 + κ3

)
B −

[
1 − κ2 + 2(1 + κ)B

]2
ln(1/κ) + (1 + 1/κ)B

}
(13)

Scaling the velocity u∗
z (r

∗) by the mean velocity in the annular tube,

V
∗ = G∗R∗2

8η∗(1 − κ2
)
{
1 − κ4 + 4

(
1 + κ3

)
B −

[
1 − κ2 + 2(1 + κ)B

]2
ln(1/κ) + (1 + 1/κ)B

}
(14)
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we obtain the following expression for the dimensionless velocity:

uz(r) ≡ u∗
z (r

∗)
V

∗ = 2
(
1 − κ2

)[
1 + 2

(
1 − σ 2

)
B − r2 − 2σ 2 ln 1

r

]
1 − κ4 + 4

(
1 + κ3

)
B − [1−κ2+2(1+κ)B]2

ln(1/κ)+(1+1/κ)B

(15)

where r = r∗/R∗. The no-slip solution is recovered by setting B = 0. The dimensionless
slip velocities are given by

uw1 = 4
(
1 − κ2

)(
σ 2 − κ2

)
B

κ

{
1 − κ4 + 4

(
1 + κ3

)
B − [1−κ2+2(1+κ)B]2

ln(1/κ)+(1+1/κ)B

} , uw2 = κuw1 (16)

2.2 Cessation Flow

We consider now the cessation flow, assuming that initially (t∗ = 0) the velocity is
the steady-state solution in Eq. (15) and that the pressure gradient suddenly (t∗ > 0)
vanishes. We work with dimensionless equations scaling r∗ by R∗, u∗

z by the mean
steady-state velocity V

∗
, and the time t∗ by ρ∗R∗2/η∗. The resulting initial boundary

value problem can be written as follows:

∂uz
∂t

= 1

r

∂

∂r

(
r
∂uz
∂r

)
, κ ≤ r ≤ 1, t ≥ 0

uz(κ, t) + �
∂uz(κ, t)

∂t
= B

∂uz(κ, t)

∂r
, t ≥ 0

uz(1, t) + �
∂uz(1, t)

∂t
= −B

∂uz(1, t)

∂r
, t ≥ 0

uz(r, 0) = uz(r), κ ≤ r ≤ 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(17)

where

� ≡ λ∗η∗

ρ∗R∗2 (18)

is the dimensionless slip relaxation number. To solve problem (17) we use the method
of separation of variables. The following expression is obtained for the velocity:

uz(r, t) =
∞∑
n=1

AnZ
(n)
0 (αnr)e

−α2
n t (19)

where Z(n)
i (x) ≡ Ji(x)+βnYi(x), i = 0, 1, and Ji(x) and Yi(x) are the ith-otder Bessel

functions of the first and second kind, respectively, and (αn, βn) are the nth solution of
the system:

Z(n)
0 (καn)

(
1 − �α2

n

) = −BαnZ
(n)
1 (καn)

Z(n)
0 (αn)

(
1 − �α2

n

) = BαnZ
(n)
1 (αn)

}
(20)
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The constants An are determined upon application of the initial condition in Eq. (17)
and the proper orthogonality condition:

An =
4
(
1 − κ2

)(
1 − �α2n

)

Bα2n

[
(B + 2�)Z(n)2

1 (αn) + κ(2� − κB)Z(n)2
1 (καn)

]
+

(
1 − �α2n

)2[
Z(n)2
1 (αn) − κ2Z(n)2

1 (καn)
]

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�α4n

[
2B(1 − σ 2)Z(n)

1 (αn) − κ
(
2B(1 − σ 2) + 1 − κ2 − 2σ 2 ln(1/κ)

)
Z(n)
1 (καn)

]

+2
(
1 − �α2n

)[
2 + B(1 − σ 2)α2n

][
Z(n)
1 (αn) − κZ(n)

1 (καn)
]

−2Bα2n

[
(1 − σ 2)Z(n)

1 (αn) − (σ 2 − κ2)Z(n)
1 (καn)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

α3n

{
1 − κ4 + 4

(
1 + κ3

)
B −

[
1−κ2+(1+κ)B

]2
ln(1/κ)+(1+1/κ)B

} (21)

The two slip velocities are simply given by:

uw1(t) = uz(κ, t) =
∞∑
n=1

AnZ
(n)
0 (καn)e

−α2
n t (22)

and

uw2(t) = uz(1, t) =
∞∑
n=1

AnZ
(n)
0 (αn)e

−α2
n t (23)

Also, the volumetric flow rate is

Q(t) =
∞∑
n=1

An

αn

[
Z(n)
1 (αn) − κZ(n)

1 (καn)
]
e−α2

n t (24)

Fig. 2. Geometry of annular Couette flow; the flow is driven by the motion of the inner cylinder.

3 Annular Couette Flow

In this section, the annular Couette flow is considered, i.e., the flow between two coaxial
cylinders of infinite length and radii κR∗ and R∗, which is driven by the axial motion of
the inner cylinder.
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3.1 Steady-State Solution

We first consider the steady-state flow in which the inner cylinder moves at a constant
speed V ∗, as illustrated in Fig. 2. Given that the pressure gradient is zero, integrating the
steady-state version of Eq. (3) gives u∗

z (r
∗) = c∗

1 ln r
∗ + c∗

2, where the constants c
∗
1 and

c∗
2 are determined from the boundary conditions:

u∗
z (κR

∗) = V ∗ − u∗
w1

u∗
z (R

∗) = u∗
w2

}
(25)

Since the velocity is a decreasing function of the radial distance, the shear stress
τ ∗
rz = η∗du∗

z /dr
∗ is negative everywhere in the flow domain, and thus Eq. (25) takes the

form:

u∗
z (κR

∗) = V ∗ + η∗
β∗

du∗
z (κR

∗)
dr∗

u∗
z (R

∗) = − η∗
β∗

du∗
z (R

∗)
dr∗

}
(26)

where the static version of Eq. (2), i.e., Navier slip, has been employed. It is
straightforward to show that the steady-state velocity is given by

u∗
z (r

∗) = B + ln(R∗/r∗)
(1 + 1/k)B + ln(1/κ)

V ∗ (27)

The volumetric flow rate is found to be

Q∗ = π
(
1 − κ2

)
R∗2V ∗[1 + 2B − 2 ln(1/κ)/(1/κ2 − 1)

]
2[(1 + 1/k)B + ln(1/κ)]

(28)

3.2 Cessation Flow

We consider the cessation flow, i.e., we assume that at t∗ = 0 the velocity is given by
Eq. (27), i.e., the steady-state solution, and suddenly the inner cylinder stops moving.
We work with dimensionless equations scaling lengths and time as in Sect. 2 and the
velocity u∗

z by the initial speed V ∗ of the inner cylinder. The resulting initial boundary
value problem is identical to that in Eq. (17). Therefore, the velocity is given by Eq. (25),
where (αn, βn) are the nth positive solution of Eq. (20) and the constants An are found
by applying the initial condition

uz(r, 0) = uz(r) = B + ln(1/r)

(1 + 1/k)B + ln(1/κ)
(29)

Using the proper orthogonality condition, one finds that

An = − 2κ
(
1 − �α2

n

)
Z(n)
1 (καn)/αn⎧⎨

⎩
Bα2

n

[
(B + 2�)Z(n)2

1 (αn) + κ(2� − κB)Z(n)2
1 (καn)

]
+(

1 − �α2
n

)2[
Z(n)2
1 (αn) − κ2Z(n)2

1 (καn)
]
⎫⎬
⎭

(30)

It should be noted that the two slip velocities and the volumetric flow rate are given
by Eqs. (22)–(24).
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Fig. 3. Evolution of the dimensionless velocity in cessation of annular Poiseuille flow with
dynamic wall slip when B = 0.1 (moderate slip) and κ = 0.5: (a)� = 0 (Navier slip; t = 0, 0.01,
0.02, 0.05, 0.1, 0.2); (b) � = 0.02 (t = 0, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2); (c) � = 0.05 (t = 0,
0.01, 0.02, 0.05, 0.1, 0.2, 0.4). The red profile is the initial steady-state solution.
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Fig. 4. Evolution of the dimensionless velocity in cessation of annular Poiseuille flow with
dynamic wall slip when B = 1 (strong slip) and κ = 0.5: (a) � = 0 (Navier slip; t = 0,
0.05, 0.1, 0.2, 0.4, 0.8); (b) � = 0.02 (t = 0, 0.05, 0.1, 0.2, 0.4, 0.8); (c) � = 0.05 (t = 0, 0.05,
0.1, 0.2, 0.4, 0.8). The red profile is the initial steady-state solution.
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Fig. 5. Evolution of the dimensionless volumetric flow rate in cessation of annular Poiseuille flow
with dynamic wall slip when κ = 0.5 and � = 0 (Navier slip), 0.01 and 0.02: (a) B = 0.01 (weak
slip); (b) B = 0.1 (moderate slip); (c) B = 1 (strong slip). The red dashed line corresponds to the
no-slip case.
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4 Results and Discussion

Results have been obtained for various values of the radii ratio κ and wide ranges of
the slip parameters B and �. The Fourier modes, i.e., the solutions of the system in
Eq. (20) are easily determined using standard methods, marching along the positive
x-axis calculating all the roots till the desired number N is reached. Our numerical
experiments revealed that considering N = 1000 terms of the solution in Eq. (19)
was sufficient to ensure series convergence. It should be noted that the series was not
convergent at very small times (of the order of 10−6) resulting in oscillations, that persist
even when much more terms (up to N = 106) are employed. However, at such small
times the time-dependent solution does not differ much from the initial steady-state
solutions in Eqs. (15) and (27) for the Poiseuille and Couette flows, respectively. Next,
results for κ = 0.5 are presented and discussed.

4.1 Annular Poiseuille Flow

The effect of the relaxation parameter � on the evolution of the velocity is illustrated in
Figs. 3 and 4, where results for B = 0.1 (moderate slip) and 1 (strong slip) are shown.
Note that the top plots correspond to � = 0, i.e., to (static) Navier slip. In agreement
with the literature [10, 11], the evolution of the velocity becomes slower as the value
of � is increased. When slip is strong, which is the case in Fig. 4, the velocity profiles
become rather flat and cessation is much slower and the effect of� is not so pronounced.
In other words, dynamic wall slip is not important when slip is very strong.

The combined effects of the slip and relaxation numbers on the evolution of the
flow are also illustrated in Fig. 5, where the calculated volumetric flow rates for different
values of the two parameters are plotted. One observes that the evolution ofQ(t) becomes
slower when B or � are increased and that the effect of � is more pronounced when slip
is weak (Fig. 5a) or moderate (Fig. 5b).

4.2 Annular Couette Flow

The evolution of the velocity in the case of no or static wall slip is illustrated in Fig. 6,
where results for� = 0 and B = 0, 0.1 and 1 are shown. As expected, the initial steady-
state velocity profile tends to become flat and cessation is damped as wall slip becomes
stronger. It is also clear that initially only the flow adjacent the inner cylinder of the
annulus is affected. The inner slip velocity uw1 is initially much bigger than uw2. As the
phenomenon is developed the difference between the two slip velocities diminishes, as
they both tend to zero, and the velocity distribution tends to becomeflatter and symmetric.

The effect of the relaxation parameter is illustrated in Fig. 7,where results forB = 0.1
(moderate slip) and different values of � are shown. Again, cessation is slowed down
and the velocity distribution tends to become flat near the inner cylinder. The evolution
of the two slip velocities in the three cases of Fig. 7 is shown in Fig. 8. The combined
effects of B and � on the volumetric flow rate are shown in Fig. 9. The role of the
relaxation parameter is important only when slip is weak or moderate.
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Fig. 6. Evolution of the dimensionless velocity in cessation of annular Couette flow with Navier
slip when κ = 0.5: (a) B = 0 (no slip; t = 0, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1);
(b) B = 0.1 (moderate slip; same times as in (a)); (c) B = 1 (strong slip; t = 0, 0.001, 0.01, 0.1,
0.2, 0.4, 0.8). The red profile is the initial steady-state solution.
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Fig. 7. Evolution of the dimensionless velocity in cessation of annular Couette flowwith dynamic
wall slip when κ = 0.5 and B = 0.1: (a) � = 0 (Navier slip; t = 0, 0.0005, 0.001, 0.002, 0.005,
0.01, 0.02, 0.05, 0.1); (b) � = 0.02 (t = 0, 0.0001, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,
0.1); (c) B = 1 (same times as in (b)). The red profile is the initial steady-state solution.



398 M. EL Farragui et al.

Fig. 8. Evolution of the two slip velocities uw1 (solid blue) uw2 (dashed red) in cessation of
annular Couette flow when κ = 0.5 and B = 0.1: (a) � = 0 (Navier slip); (b) � = 0.02; (c)
� = 0.05.
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Fig. 9. Evolution of the dimensionless volumetric flow rate in cessation of annular Poiseuille flow
with dynamic wall slip when κ = 0.5 and � = 0 (Navier slip), 0.005 and 0.01: (a) B = 0.01
(weak slip); (b) B = 0.1 (moderate slip); (c) B = 1 (strong slip). The red dashed line corresponds
to the no-slip case.
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5 Conclusions

We used separation of variables to derive analytical solutions for the cessation of annular
Poiseuille and Couette flows of a Newtonian fluid exhibiting dynamic wall slip. It has
been demonstrated that, under the assumption that the same slip law applies along
both cylinders of the annulus, the two solutions share the same Fourier modes, the
only difference being in the initial condition. Representative results for a radii ratio
κ = 0.5 have been presented showing that cessation is damped by the slip and relaxation
parameters, in agreement with previous studies in the literature for other flows [10, 11].
It has also been demonstrated that the effect of the slip relaxation parameter is not
significant when slip is strong.
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