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Abstract. Currently, structural health diagnosis has been extensively investigated
following a data-driven paradigm with advanced deep learning and computer
vision techniques. However, the identification accuracy and generalization ability
of data-driven models highly rely on the quality and diversity of the collected data.
In contrast, data with specific patterns and concerned characteristics are always
in small quality and diversity under real-world scenarios, causing the problem
of data incompleteness. This paper established a framework for structural health
diagnosis under limited supervision following data, model, and algorithm per-
spectives to fix the above issue. Firstly, a data augmentation process of random
elastic deformation was designed to enrich the feature space using a few struc-
tural damage images. Secondly, a novel neural network model was constructed to
enhance the nonlinear expression power, feature extraction ability, and recognition
accuracy by introducing the subnet inside a single neuron and self-attention mod-
ule. Thirdly, a task-significance-aware meta-learning optimization algorithm was
proposed to learn across various tasks and enhance the generalization ability for
structural damage identification. Finally, an unsupervised deep learning method
for structural condition assessment was proposed to mine the shared latent space
between the source and target domains based on intra- and inter-class proba-
bilistic correlations of quasi-static responses. Real-world applications, including
tiny fatigue crack segmentation in steel box girders, multitype structural damage
identification for bridge inspection, and condition assessment for long-span cable-
stayed bridges, were successively performed to demonstrate the effectiveness of
the proposed framework for structural health diagnosis under limited supervision.
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1 Introduction

For past decades, one of the most commonly used ways for structural health diagnosis
was manual inspection, which had the shortcomings of high dependence on subjective
judgment and engineering experience, severe unreliability, and low efficiency. Follow-
ing the paradigm of damage prognosis established by Farrar and Lieven (2007) [1],
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structural damage recognition, condition assessment, and reliability evaluation were the
most significant issues towards structural health diagnosis. Since the 1990s, structural
health monitoring techniques have been widely adopted in large-scale infrastructure
using non-destructive testing and vibration-based methods. The measured signals were
directly compared with peak values or statistical indices with thresholds regulated by
design codes. However, the following challenges remained to be addressed: these tech-
niques required the dense deployment of sensors on bridges and faced the ill-posedness
of the reverse problem; the modal parameters were insensitive to minor damage in a
local position; the accuracy was influenced by temperature and noise.

With the successful development of artificial intelligence, data-driven methods have
been developed for damage detection and condition assessment based on machine learn-
ing, deep learning, and computer vision algorithms [2–4]. Recently, vision-based dam-
age detection has been elaborately investigated using image processing techniques [5,
6]. Generally, these methods mainly utilized close-up imaging of structures and only
focused on a small area of local damage regions. Moreover, model performances heav-
ily relied on the optimal selection of handcrafted features and critical parameters, thus
lacking accuracy and robustness facing large-scale images with complex backgrounds
under real-world scenarios [7]. For deep learning-based methods, they were always per-
formed by directly migrating the well-trained model to newly-collected onsite images,
thus requiring a massive dataset for training and a large volume of model parameters to
ensure the recognition accuracy and robustness under various scenarios. Additionally,
the recognition stability on multiscale damages with different morphologies remained
challenging.

To address these issues mentioned above, this study established a framework for
structural health diagnosis under limited supervision from vision-based damage recog-
nition and deep learning-based condition assessment in Sects. 2 and 4, respectively.
Section 5 concluded this paper.

2 Vision-Based Damage Recognition Using Few Images

Althoughmany investigations have beenperformed for damage recognition from images,
the following issues remain to be addressed: (1) the accuracy heavily relies on sufficient
images and large network parameters; (2) the sensitivity to minor damage in local posi-
tions is limited; (3) the robustness is inadequate on complex coupled damagewith various
morphological features and disturbances. In this section, a series of recent advances are
reported to solve the above issues.

A random elastic deformation (RED) algorithm was proposed to enrich the diversity
of damage morphology with only a handful of original images [8], as shown in Fig. 1.
Firstly, control nodes (red dots) were equidistantly set on mesh grids of the original
image. Random offsets of (�x,�y) were assigned to these control nodes following a
uniform distribution (blue arrows). Secondly, offsets of other pixels were calculated
using two-dimensional cubic spline interpolation. Thirdly, the pixel value of the sub-
pixel was determined by bilinear interpolation. The results indicated that RED could
increase the geometric shapes and local microstructures of cracks and add high-order
components into the original crack shapes. Therefore, new crack images generated by
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RED have significant differences from the original ones, demonstrating that RED could
enrich the feature space of structural damage images.

Fig. 1. Random elastic deformation for image augmentation of structural damage

A novel Self-Attention-Self-Adaption (SASA) neuron computing model [8] was
proposed to enhance the capability of feature extraction and nonlinear expression power
for neural networks:
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Xl denotes the neurons in the lth layer, αl denotes the significance vector in the Self-
Attention module, and ml+1

j denotes the subnet of multilayer perceptron in the Self-
Adaption module associated with the jth neuron in the (l + 1) layer and parameterized
with θ l+1

j . ∗ denotes the multiplication operator of corresponding elements for two

vectors. The gate functionG reserves top β elements and assigns the others to zero. θ l+1
j

denotes subnet parameters.
Figure 2 shows the schematic of the SASA neuron computing model. The Self-

Attention module applied softmax and gate operations to obtain the significance vector.
It enabled the neuron to focus on the most significant receptive fields when processing
large-scale feature maps, emphasized the saliency of interior neurons inside one layer,
and did not introduce additional trainable parameters. The Self-Adaption module was
designed as a subnet of multilayer perceptron ml+1

j and implemented by a standard
neural network with k equal hidden layers. The interior subnet structure was controlled
by the number of hidden layers k and the number of neurons h in each hidden layer. For
consistency with the exterior neuron network, the number of neurons h in the hidden
layer of the subnet was set proportionate to the number of neurons Nl+1 in the current
layer with a default coefficient γ . It could achieve powerful feature extraction using only
a small number of images. The SASA neuron model allowed for the “plug and play” of
arbitrary conventional neural networks.
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Fig. 2. Schematic of SASA neuron computing model

A case study was performed on the semantic segmentation of distributed tiny fatigue
cracks in steel box girders using U-net as the baseline model. Figure 3 shows several
comparative results of tiny crack segmentation with and without integrating the SASA
neuron in U-net. The results indicated that using the modified U-net integrating with
SASA neuron could achieve accurate pixel-level recognition of tiny cracks with complex
background interferences. False alarms and crack gaps were effectually suppressed,
implying that the SASA neuron could enable the model to focus on the local regions of
interest. Based on the image recognition results of tiny fatigue cracks in steel box girder,
a hierarchical dynamic Bayesian network was established for fatigue crack propagation
modeling considering initial defects [9].

Input image U-net with 
SASA neuron Original U-net Input image U-net with 

SASA neuron Original U-net 

Fig. 3. Comparisons of tiny crack segmentation with/without SASA neuron in U-net

A dual-stage attribute-based few-shot meta learning paradigm was proposed for
multitype structural damage identification [10], as shown in Fig. 4. An exterior few-shot
meta learning framework was established based on randomly-selected tasks as meta-
batches to produce robust classifiers for new damage classes. Support and query subsets
comprising only partial damage categories and a few examples were randomly generated
from the original image dataset. An interior attribute-based transfer learning model was
trained by minimizing the l2-norm and angular differences of predicted and ground-
truth attribute vectors. Damage attribute acts as the common inter-class knowledge and
is transferred among various damage categories instead of using one-hot vector labels
for the standard supervised classification. The latter only considered that the class labels
were orthogonal and had no connections, and therefore only one class was assigned on
the position of maximum softmax probability, causing the misrecognition of coupled
damage.

For pixel-wise recognition for various structural damage, a lightweight modified
DeepLabv3 + model was established as the interior model [11]. Figure 5 shows the
schematic of the modified DeepLabv3 + model for semantic segmentation of multi-
type structural damage. The backbone network of the original ResNet101 was replaced
with the lightweight MobileNetV2. Depthwise separable and dilated convolutions were
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used instead of standard convolution to reduce parameter volume. A refined atrous spa-
tial pyramid pooling module was designed following the backbone network to expand
the receptive fields of multilevel feature maps using dilated convolutions with various
dilation rates. Furthermore, a piecewise loss function based on Focal and Dice losses
was designed for different training stages. Several representative results for semantic
segmentation of concrete crack, concrete spalling, rebar exposure, and cable corrosion
indicated that the established model performed well and was stable facing various struc-
tural damage. It could be inferred that the morphological feature and shape contexture
for various categories of structural damage were automatically captured.

Fig. 4. Dual-stage attribute-based few-shot meta learning for multitype damage classification

Input Annotation Prediction 

Fig. 5. Lightweight modified DeepLabv3 + model for structural damage segmentation

3 Correlation Pattern Recognition Based Condition Assessment

Considering that the correlation between quasi-static responses subjected to identical
external loads is only a function of structural parameters and independent from the
external loads, the correlation can therefore be employed as an indicator of the structural
condition.

A bi-directional long short-termmemory (BiLSTM)model was established tomodel
the temporal correlation between the vertical deflection of girders (GVD) and tension of
cables (CT) [12], as shown in Fig. 6. Test results showed that the bridgewas under normal
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Fig. 6. Schematic of BiLSTM for temporal correlation modeling under normal conditions

conditions and that the average root mean square error (RMSE) and relative RMSE
between the predicted and ground-truth CTs were 1.83 kN and 3.19%, respectively.

Fig. 7. Probabilistic correlation modeling and Wasserstein distance variation

A deep learning network comprising two variational autoencoders (VAEs) and two
generative adversarial networks (GANs) was established to model the probabilistic
correlations of quasi-static responses of bridges [13], as shown in Fig. 7. VAEs were
designed to model intra-class correlations among either GVDs or CTs, and GANs were
designed to model inter-class correlations between GVDs and CTs. The input and out-
put were marginal probability density functions (PDFs) of the quasi-static responses,
and they were obtained in the same time window under identical vehicle loads and
structural parameters. The Wasserstein distance between the predicted and ground-truth
PDFs of tension in the cables was used as an indicator of the structural condition. The
results showed that theWasserstein distance was very sensitive to damage and presented
noticeable variations when the damage of the stay cable occurred.

4 Vision-Based Structural Seismic Assessment for Buildings

Recently, remote sensing satellites [14], unmanned aerial vehicles (UAVs) [15], and
smartphones have been extensively utilized in non-contact post-earthquake inspection
at different scales with cutting-edge computer vision and machine learning techniques.
In this section, a computer-vision-based coarse-to-fine seismic assessment framework
was established to localize dense buildings in urban areas, classify collapsed and non-
collapsed states, recognize multi-type surface damage on structural components, and
evaluate seismic performances.
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A Transformer-CNN deep learning architecture was designed for semantic segmen-
tation of dense buildings and binary classification of collapsed states using large-scale
remote sensing satellite images [16]. It consisted of a Swin Transformer encoder, multi-
stage feature fusion module, and UPerNet decoder to extract global correlations and
local features of dense buildings synchronously, as shown in Fig. 8.
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Fig. 8. Improved Swin Transformer for dense building segmentation and state classification

A multi-task learning strategy was proposed to simultaneously recognize multi-type
structural components (column, beam, wall), seismic damage (concrete crack, spalling,
and rebar exposure), and multi-level damage states (minor, moderate, major) using
medium-scale UAV images [17]. It contained a CNN-based encoder-decoder backbone
with skip-connection modules and multi-head segmentation subnetworks for different
tasks, as shown in Fig. 9.

Fig. 9. Multi-task learning semantic segmentation of structural component, damage, and state
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An earthquake engineering knowledge-enhanced machine learning method was
established for seismic damage assessment of structural components [18], as shown
in Fig. 10. A machine learning neural network was established to quantify the seis-
mic damage index of structural components using damage-related parameters (lengths,
areas, and numbers of concrete crack, spalling, and rebar exposure) and design-related
parameters (axial compression ratio, shear span ratio, and volumetric stirrup ratio) as
inputs. A seismic damage indicator with an explicit bound of [0,1] could be obtained to
reflect the nonlinear accumulation of seismic damage.

(a) Region-based object detection for multi-type seismic damage from images

(b) Deep neural network for seismic damage index regression 
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Fig. 10. Seismic damage quantification using quasi-static experimental data and images

5 Conclusions

This study established a limited-data-driven machine learning framework for structural
health diagnosis. The main conclusions were summarized as follows.

(1) Adata augmentation algorithmof randomelastic deformationwas designed to enrich
the feature space using a few structural damage images. A novel neural network
model was designed to enhance the nonlinear expression power, feature extraction
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ability, and recognition accuracy by introducing the self-attention and subnet mod-
ules inside a standard neuron. A task-significance-aware meta-learning optimization
algorithm was proposed to learn across various tasks and enhance the generalization
ability for multitype structural damage identification.

(2) Two deep learning networks were established to mine the shared latent space be-
tween the source and target domains based on intra-class and inter-class temporal and
probabilistic correlations between two kinds of quasi-static responses for structural
condition assessment.

(3) A computer-vision-based coarse-to-fine seismic assessment framework was estab-
lished to localize dense buildings in urban areas, classify collapsed andnon-collapsed
states, recognize multi-type surface damage on structural components, and evaluate
seismic performances. A series of deep learning models were designed for the local-
ization, classification, and quantification of dense buildings, deterioration states, and
damage index using large-scale remote sensing satellite images, medium-scale UAV
images, near-field surface images, and quasi-static experimental data.

(4) Real-world applications, including distributed tiny fatigue crack segmentation in
steel box girders, multitype structural damage classification and segmentation
for bridge inspection, condition assessment for long-span cable-stayed bridges,
and vision-based structural seismic assessment for buildings were performed to
demonstrate the effectiveness of the proposed limited-data-driven machine learning
methods for structural health diagnosis.
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