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Abstract. A square law of celestial mechanics is investigated as a driving virtual
force law toward the development of swarms with distributes, i.e. not centralized,
control and intelligence. It has been argued that decentralization of the control
structure and task can enhance the robustness of the controllers involved and
improve scalability. The approach in this work tackles the problem by adopting
the concept of virtual forces which in this case follow the square law of attrac-
tion e.g. a nonlinear spring. The concept is adapted to the time and space, i.e.
distance scales relevant to small, low-cost watercraft to be applicable. Various
scenarios are investigated. All watercraft are assumed to have identical physical
characteristics and dynamic responses but with small fluctuations and perturba-
tions superimposed. Watercraft dynamics are simplified to model forward motion
and rotation about the yaw axis; more detailed and precise models can also be used
if desired or required. The local-loop controllers, which conventionally are called
autopilots, ensure that the acceleration of the craft is adhering to the one dictated
by the virtual, square law force field. Synthesis of the square law for the virtual
force field involves amongst other feasibility of the derived governing dynamics
as well as energy consumption, time to terminal conditions, etc.

1 Introduction

Unmanned Surface Vehicles (USVs) are self-contained unmanned untethered vessels
that can transit on the surface of the water autonomously or through remote control.
Unlike conventional manned surface vessels that are usually large and costly to build
and operate, USVs are typically smaller in size and lower cost resulting from the re-
duced payload requirement due to being unmanned. In manned vessels, much of the
volume and weight is necessary to support the activities (such as control, navigation,
maintenance, and mission-related tasks), and sustainment (such as berthing, feeding,
and entertainment) of the human occupants that recursively increases the size, vol-ume,
and power requirements. USVs have no such requirements and therefore are typically
many times smaller and more efficient than manned surface vessels.
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In the last two decades, significant effort has been invested in the development of
Unmanned Underwater Vehicles (UUVs), while only a small effort has focused on
Unmanned Surface Vessels/Autonomous Surface Vessels (USVs/ASVs). The major
efforts in the design of USVs have focused on two areas: platforms for hydro-
graphic data acquisition [1–3], and signal relay platforms that provide positioning and
communications capabilities through the air-sea interface for UUVs [3–5].

The work presented here is part of a larger project that aims to develop a new concept
for guidance and control of swarms ofmarine, or more general, vehicles based on a novel
concept termed as robust probabilistic control. In particular, a low-cost solution to tackle
the problem is currently under development that addresses the problem of navigation
with minimal information exchange requirements.

Fig. 1. (a) The surface vehicle without most of her outfit (left) (b) unmanned underwater vehicle
(middle) & (c) rotorcraft (right)

In this sense, a multi-purpose Autonomous Surface Vehicle (ASV) that is a low-
cost mobile surface platform (Fig. 1a) has been designed and developed. The system is
integrated with a motion measurement package to aid in navigation, and control, and
to enhance dynamic performance. This single ASV can also be outfitted with acoustic
communication systems to provide position updates and allow underwater vehicles,
like in Fig. 1b, or agents to communicate while in transit and surveying. It is also
possible to interactwith the underwater vehicle to change themission through an operator
communicating with the USV via an RF uplink from shore or a distant vessel [6] or even
a hovering aircraft like e.g. the extremely low-cost rotorcraft shown in Fig. 1c.

1.1 Potential Application Framework Formulation

The majority of tactical scenarios envisioned for performing autonomous underwater
cueing for targets or objects (like proud mine-like objects, especially in large littoral
areas), involve swarms (flotillas) of unmanned marine vehicles, underwater and possibly
surface or even aerial. In specific, the proposed strategy for countermine operations relies
on heterogeneous swarms in the sense that they consist of at least two types (tiers) of
vehicles as shown in Fig. 2(a) A Tier-1 surface vehicle which can be a greater-scale
version of the boat in Fig. 1a. This type of vehicle will carry radar, hull-mounted sonar,
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compass, magnetometer(s) and proximity sensors, cameras (infrared or optical), GPS
receiver(s), AIS and ECDIS as well as have the capacity to carry and deploy the platform
of various sonar types which are unmanned underwater vehicles similar to the one in
Fig. 1b or towed non-self-propelled platforms (“fish”). Further, the Tier-1 vehicles will
carry considerable computing and communication assets necessary for the mission. (b)
Tier-2 vehicles may be low-cost aerial units like the one shown in Fig. 1c outfitted with
low-cost sensors like camera, GPS and compass as well as appropriate actuation for
steering and throttle control.

Fig. 2. An approach to mine detection and marking (a) 2-tier swarm structure, up and (b) 2D field
of operations, down.

Various strategies have been proposed concerning the level of cooperation between
the various vehicles as well as diversification of the flotilla in the sense of the number and
types of vehicles used. However, up to now there is no general framework to compara-
tively assess these strategies and schemes. In this end, a unified performance index (or
metric) is needed encompassing various quantities, reflecting mission accomplishment
as well as the associated economic costs of system acquisition and operation.

Although, economic costs are more or less straightforward to define, mission accom-
plishment assessment needs in most cases some additional work. On the other hand, a
generic performance index that comes to mind when military operations, financial or
strategic decisions are of interest is probabilities associated with various events. Return-
ing to the object cueing scenario and limiting our investigation here to a 2D rectangular
area (or field) as shown in Fig. 2b, without significant loss of generality, the following
spatial function (map) is introduced for any point (x,y) in our 2D area.

f(x,y) = 0 if target is not present at (x,y); 1 if target is present at (x,y).

Furthermore, we assume that f is time-invariant. Therefore, as time goes on any
object cueing system covers an increasingly larger portion of the field and assigns 0
or 1 to each one of the points ‘visited’; however, for each decision made there is an
associated probability of error pe(x,y; t). It is noted here that the probability of error is
time dependent because each point in the field may be ‘revisited’ as many times needed
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and by any type of vehicles. Therefore, a reasonable setup of the object cueing problem
is minimize t0 for which it holds pe(x,y; t) < pe0 for t > t0 and all (x,y) in the field.

If the economic costs of system acquisition and operation are included in the mini-
mization problem above, then the overall problem can be approached by multi-objective
optimization methods.

Solving the problem stated above requires the determination of various system
parameters including but not limited to number of vehicles and vehicle types, vehicle
speed, number of sensors and sensor types, level of cooperation, field coverage scheme
etc. Evidently, additional constraints will be introduced to the problem due to the physics
and engineering involved as e.g. vehicle speed ceiling, coverage scheme limitations due
to maneuverability limitations etc.

A simple model for taking into account the main features of a possible configuration
is shown in Fig. 2b. In this simplified version, there are two types of vehicles regardless of
their implementation: Search vehicles (SV, shown in yellow) and Classification vehicles
(CV, shown in green). Also, search sensors relying on the echoing principle (e.g. sonar)
are considered.

SVs are equipped with non-classifying, long-range, side-scanning sensors. They
provide with field scans of resolution decreasing with respect to the distance from the
vehicle. As shown in Fig. 2b, the area marked as a result of an echo signal is increasing
with the round trip time of the signal. Furthermore, this area is in any case larger than the
area covered by the target itself as there are a number of uncertainties involved, including
the positioning uncertainty of the SV. By assuming a ‘line-of-sight’ (LOS) mode of
operation for the sensors, any target detected causes obstruction of view; therefore, the
area ‘behind’ a detected target cannot be scannedunless theSVapproaches the obstructed
area from another angle or during another pass.

The probability of error for any point inside the region scanned by a specific SV, v,
up to time t is given by the following relationship.

pe(x, y; v@t) = f (x, y) x pmiss(d < (x, y), trajv@t>)

+ [1 − f(x, y)] x
∑

{[1 − pmiss(d < (xk , yk), traj{v;t}>)]
x p1|0(x, y; xk , yk; traj{v@t})}

In the above, d < (x,y),traj{v@t}> stands for the Euclidean distance of a point (x,y)
from the trajectory, traj{v@t}, of the specific SV, v, up to time t; if not defined is set to
infinity.

Distribution pmiss(d < (x,y),traj{v@t} >) refers to the probability density function
to miss a target in the manner indicated by the red arrow in Fig. 2, provided that point
(x,y) lies in the area encompassed by a target; pmiss( d < (x,y),traj{v@t} >) is expected
to be an increasing function of d < (x,y),traj{v@t} > and actually to saturate to unity if
this distance lies above a threshold. Also, pmiss depends on the capabilities of the sensors
mounted on the SV.

Distribution p1|0 stands for the probability density function that a point (x,y) belongs
to the marking area assigned to the k-th target, if detected by SV v until time t. It is
reasonable to assume that p1|0 is a decreasing function of the distance of point (x,y) from
the center location of the k-th target (the larger the distance between the two points the
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less probable to be included in the same ‘patch’) and an increasing function of d <

(xk ,yk),traj{v;t}> because of the ‘spreading’ caused by reduced sensor resolution in the
far field.

p1|0(x, y; xk , yk; traj v@t) =
p1|0(d < (x, y), (xk , yk) >, d < (xk , yk), traj v;t >)

In the above, d < (x1,y1),(x2,y2) > stands for the Euclidean distance between two
points on the plane.

It would be the summation in the relationship for pe(x,y; v@t) spans all the targets
in the field of interest. If (x,y) does not lie in the region already scanned by the specific
SV, v, until time t, it is easy to verify that pe(x,y; v@t) = 1 if f(x,y) = 1 and pe(x,y; v@t)
= 0 if f(x,y) = 0 and no target in some vicinity of (x,y) has been scanned yet. Although,
it could have been defined differently, these facts make intuitive sense.

The relationship for pe(x,y; v@t) is valid provided some underlying assumptions
hold. The targets must be distributed reasonably sparse so that the patches marked for
two or more neighboring objects by the SVs do not overlap. Furthermore, the probability
of ‘spontaneous triggering’ of the sensors, in the sense that they detect a target at a
point where none is present in the vicinity, is considered negligible. Although these
assumptions simplify the expression for pe(x,y; v@t), they can be dropped, if needed,
by appropriate extensions.

A way to tackle such requirements expressed in a probabilistic framework is to
consider techniques Robust Stochastic Control. Indeed, stochastic control deals with
systems where the objective is to minimize or maximize the probability of an event
related to a dynamic system or random signal by manipulating one or more of a driving
signal. In conventional stochastic control, e.g. [7–9], the full dynamics of the process or
system under control is considered. Given recent advances in self-organization, however,
an alternative path could be followed. Specifically, the swarm’s vehicles will be driven
by local, decentralized and in effect distributed deterministic control laws that require
the knowledge by each vehicle of its own motion or other variables as well as those
of the immediately neighboring units, but in no case the state variables of the entire
formation. This scheme is usually implemented as a set of “virtual forces” exerted
between neighboring vehicles, resembling the forces arising between the molecules or
particles of a solid, liquid or gaseous substance; thereof the term physicomimetics or
artificial physics. A critical step needed towards the direction of applying this technique,
which is referred to as Robust Probabilistic Control is the migration from the concept
of trajectories employed to describe the time evolution of the phase (state) space of
a dynamical system to that of the phase space probability distribution function (or
measure), ρ(q,p;t) of the dynamical system. Consider a dynamical systemwith canonical
coordinates qi and conjugate momenta pi, where i = 1,…,n. Then the phase space
distribution ρ(q,p) determines the probability ρ(q,p)dnqdnp that the systemwill be found
in the infinitesimal phase space volume dnqdnp. The concept and its applications will
be investigated in full detail in a follow-up work.
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Probabilistic measures of mission success like the ones introduced earlier can in turn
be linked to individual vehicle dynamics through Liouville’s Theorem. This theoretical
tool depicts the dynamics of the collective behavior of an autonomous swarm on the
basis of the phase-space probability distribution measure concept, instead of some more
conventional approach based on individual vehicle trajectories. Specifically, Liouville’s
theorem governs the evolution of the distribution function ρ(q,p;t) in time according to
the following partial differential equation:

dρ

dt
= ∂ρ

∂t
+

n∑

i=1

(
∂ρ

∂qi
q̇i + ∂ρ

∂pi
ṗi

)
= 0 (1)

As a direct consequence of Liouville’s theorem, the following equation can be
obtained for the distribution function of a swarm’s phase space.

∂ρ

∂t
= [H , ρ] (2)

where H is the Hamiltonian and the Poisson bracket between two functions of the
canonical coordinates is defined by the following.

[
f , g

] =
n∑

i=1

(
∂f

∂qi
· ∂g

∂pi
− ∂f

∂pi
· ∂g

∂qi

)
(3)

The Newtonian equation of motion for each swarm vehicle will, in effect, assume
the following form.

�ai = 1

mi,virtual
·

∑

j
i �= j

�Fij,virtual (4)

In the above, ai is the acceleration of the i-th vehicle, mi,virtual the virtual mass
assigned to the vehicle by the artificial physics, and Fij,virtual the virtual force exerted on
the i-th vehicle by the j-th neighbor per the physicomimetic interaction law governing
the swarm dynamics.

The challenges related with swarm vehicle navigation and guidance are complex and
can only be tackled using a comprehensive and non-trivial framework for the design of
the local-loop controller that can guarantee compliance of the vehicle to artificial physics
dynamics. The actual equation of motion of an arbitrary vehicle, assuming a material
point model, is as follows.

�ai = 1

mi
·
[∑ �Fexogenous +

∑ �Fcontrol

]
(5)

In the above, mi is the actual mass of the i-th vehicle, �Fexogenous the resultant
exogenous force exerted on the i-th vehicle by the environment and�Fcontrol the resultant
control force exerted on the i-th vehicle by thrusters, control surfaces etc. Tomake vehicle
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dynamics comply to artificial physics, as defined in the previous task, the resultant control
force has to be as follows.

∑ �Fcontrol = mi

mi,virtual
·

∑

j
i �= j

�Fij,virtual −
∑ �Fexogenous (6)

The above clearly shows the issues that may arise if the physicomimetic control
law generates excessively high forces or the virtual mass value is small compared to the
actualmass value of the vehicle. This can lead to excessive control force requirements that
can make the artificial physics scheme infeasible. This is why the local-loop controller
design is a non-trivial aspect and needs to be investigated at least for one type or class
of practical vehicles.

As in other similar cases, two or more subsystems either linear or nonlinear and
either lumped or distributed, are coupled through processes that commonly are highly
nonlinear. In our case, an appropriate identification method is employed, as explained
later on, which comes as a generalization of the identification methodology for linear
systems in phase-plane. Since the physicomimetic governing control laws may need to
be continuously reconfigured, the option to adapt accordingly the gains of the local-loop
controllers will be investigated in order to implement them in a follow-up effort. Such an
approach will further increase system responsiveness and adaptability. Such adaptabil-
ity enables for broad real-time reconfiguration of an autonomous swarm which in turn
could convert routinelymulti-sortiemissions, due to the need for off-line reconfiguration,
to single-sortie ones not needing real-time oversight. The above work clearly demon-
strates the need for vehicle dynamics identification for local-loop controller tuning and
adaptation which will be addressed in future work.

2 Methodology

Themethodology is now investigated in the case of a single vehicle. The physicomimetic
control law is that of a nonlinear spring with a quadratic force law. One end of the virtual
spring is attached to the origin which is the homing point the vehicle needs to reach. The
free end of the spring is attached to the center of mass of the vehicle. A second rotational
nonlinear spring-like mechanism applies to adjusting the heading of the vehicle, so that
the centerline (longitudinal stern-bow) axis of the vehicle boat gets aligned with that of
the onboard radius vector pointing from the vehicle’s center to the origin (target).

Figure 3 shows the supervisory controller with a discrete-time model. We use this
model to implement the control law with the feedback information. As can be seen, the
supervisory controller generates forward speed and yaw rate setpoints. The feedback
controller then, if designed properly, makes sure that the setpoints issued by the supervi-
sory controller are implemented and followed. This is achieved by using the thrusters and
maneuvering assets of the boat. We now focus on the algorithm generating the setpoints,
while in a future work the feedback controller synthesis will be addressed too.

In particular, consider the setup shown in Fig. 4, the vehicle (boat) is shown on a
plane map at a certain location determined by the x-and y-coordinate (North-South and
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East-West axis respectively). The vehicle is assumed to have (significant) speed along
its centerline axis only pointing forward. The heading of the vehicle i.e. the angle of
its forward velocity with respect to the North semiaxis is the third and final degree of
freedom considered. As a result, the feedback information to implement the control law
is the x-and y-coordinate as well as the compass reading for heading angle ψ. Using
these, the onboard radius r and its angle with respect to the semiaxis pointing to the
North can be calculated as the angle φ in the range −π ≤ ϕ < π , calculated as follows.

r =
√
x2 + y2, cosϕ = x

r
, sin ϕ = y

r
(7)

Also, in this plane setup, the coordinates of the vehicle’s velocity vector can be
calculated as follows, where υ is the velocity (magnitude) of the vehicle.

vx = v cosψ, vy = v sinψ (8)

In effect, the following approximate numerical integration equations over time can
be used to simulate the vehicle kinematics:

x(t + �t) = x(t) + vx(t)�t (9)

y(t + �t) = y(t) + vy(t)�t (10)

ψ(t + �t) = ψ(t) + ω(t)�t (11)

In the above, t is time and�t an appropriately small integration time step; omega (ω)
stands for the rotational speed of the vehicle about an axis perpendicular to the xy-plane
and with origin at the center of the vehicle.

Based on this framework, angle θ between the onboard radius vector pointing from
the vehicle to the origin (target) and the vehicle’s velocity vector can be calculated as
follows (see Fig. 4).

θ =
(π

2
− ϕ

)
+ π

2
+ ψ = ψ − ϕ + π (12)

Then a control law for a Supervisory Vehicle Controller, issuing forward speed and
heading velocity setpoints, υset and ωset correspondingly can be introduced as follows.

vset =
{
g(θ)

( r
R

)2
vmax, 0 ≤ r < R

g(θ)vmax, r ≥ R > 0
, ωset = ωmax

2
f (θ) (13)

g(θ) = 1 − |θ |
π

, f (θ) = sgn(θ)(cos θ − 1), sgn(θ) =
⎧
⎨

⎩

+1, θ > 0
0, θ = 0

−1, θ < 0
(14)
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Fig. 3. Supervisory controller with discrete-time model

It is easy to see that 0 < vset ≤ vmax and −ωmax ≤ ωset ≤ ωmax; values υmax and
ωmax represent the maximum forward and rotational speed values that the vehicle can
attain. Distance value R is a user-defined range; this can be defined as e.g. twenty times
the vehicle’s length and in any case, it is sufficiently large so the vehicle can attain its
maximum forward speed without the risk of overshooting the target.

Fig. 4. Geometry of vehicle kinematics with the target point at the origin.
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Since the control law is nonlinear, its performance can only be assessed through
simulation, asymptotic analysis and qualitative arguments. Simulation results will be
presented in the next section. For asymptotic analysis the following facts are noted.

If θ ≈ ±π , then

vset ≈ 0, ωset ≈ −ωmaxsgn(θ) (15)

If θ ≈ ±π/2, then

vset ≈
{( r

R

)2 vmax
2 , 0 ≤ r < R

vmax
2 , r ≥ R

, ωset ≈ −ωmax

2
sgn(θ) (16)

If θ ≈ ±0, then

vset ≈
{( r

R

)2
vmax, 0 ≤ r < R
vmax, r ≥ R

, ωset ≈
(
−ωmax

4

)
|θ |θ (17)

Given these observations, and assuming vehicle is initially at some arbitrary point
and with arbitrary heading, it is first attempted to align the centerline axis with the
onboard radius. Only then the vehicle is allowed to attain forward speed depending
upon its distance from the target and relative to range R. As the vehicle gets closer to the
target, forward speed decreases quadratically with distance, and corrections are applied
so that the centerline remains aligned to the onboard radius.

3 Results and Discussion

The simulations based on physicomimetic control law were conducted in an attempt
to model the behavior of a swarm of boats, using a methodology that had previously
only been discussed with a single boat. To conduct the simulations, a total of 60 boats
were selected, and the simulations themselves ran for a duration of 10 min. To begin
the simulations, a set of initial conditions were established. These included the distance
of each boat from its starting point, as well as the initial angles of both the ϕ and the
heading angles of each boat. In addition, all boats were initially at rest, meaning that
they had no forward speed at the beginning of the simulation. Throughout the course
of the 10-min simulation, the movements and interactions of the boats with one another
were tracked and analyzed. This allowed researchers to gain insights into how a swarm
of boats might behave in a real-world scenario, and to identify any patterns or trends that
could be useful in developing new strategies for navigating and controlling large groups
of vessels.
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Fig. 5. Distance from origin with time for the boats’ swarm

In Fig. 5, we can observe the distance that each of the 60 boats covered from their
starting positions to their intended target. The initial conditions for the boats were chosen
randomly. As evident from the figure, all 60 boats were able to reach the same target
within a simulation period of 10 min.

Figure 6 displays the phase portraits of a group of boats acting as a swarm, with the
θ angle as the primary axis. The figure shows the starting positions of the boats, which
are determined by their distance from each other and the angle formed by that distance
and their heading. The plot reveals that the phase portraits are spread out across a wide
area, indicating a significant amount of dispersion among the boats.

Figure 7 is a visual representation of selected samples from the simulations, show-
casing individual plots of six out of the total 60 samples. These individual plots provide
a detailed depiction of the boat’s movement during the simulation, including its forward
speed and yaw rate, as well as important angles and trajectory. The plot effectively illus-
trates how each boat moves through the simulation, making it a valuable tool for analysis
and understanding of the simulation results.

The results of our analysis indicate that when multiple boats are present, their trajec-
tories do not intersect. This means that even though the boats may approach each other,
they never cross paths and collide with one another. For example, when we examine
a particular trajectory of a boat in the diagram, we can see that it converges smoothly
with the trajectories of other boats without any collision occurring. To provide more
information about the movement of boats, we can consider how a boat moves toward
its destination. Initially, the boat starts from an arbitrary location and follows a curvy
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Fig. 6. Phase portraits of boats’ swarm

path to reach its target. Our simulations reveal that the boat can move faster if it is fully
aligned with and pointing toward the origin. This alignment ensures that the boat moves
directly toward its intended target and does not waste energy moving away from it. On
the other hand, if the boat is pointing away from the origin, it cannot move forward as
efficiently because it has to use energy to move away from its intended target before it
can start making progress toward it. As a result, the boat’s progress is slower, and it may
take longer to reach its destination.
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Fig. 7. 6 samples cases among all 60 cases

4 Conclusion

Thepresentworkpresents research related to homingof an autonomouswatercraft swarm
using a distributed control law. A swarm of 60 boats is investigated in a simulation. Each
vehicle is outfitted with a physicomimetic control law. The boats are assumed to have
the same physical characteristics and responses, and their tracks are simplified to only
consider motion and rotation around the yaw axis. The simulation investigates how the
swarm of boats can be more energy-efficient through autonomous control. In future
studies, the focus may shift to tuning local controllers and identifying boat dynamics in
greater detail.
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