
Verified High Performance Computing:
The SyDPaCC Approach

Frédéric Loulergue(B) and Ali Ed-Dbali

Univ. Orléans, INSA CVL, LIFO EA 4022, Orléans, France
{frederic.loulergue,ali.eddbali}@univ-orleans.fr

Abstract. The SyDPaCC framework for the Coq proof assistant is
based on a transformational approach to develop verified efficient scalable
parallel functional programs from specifications. These specifications are
written as inefficient (potentially with a high computational complexity)
sequential programs. We obtain efficient parallel programs implemented
using algorithmic skeletons that are higher-order functions implemented
in parallel on distributed data structures. The output programs are con-
structed step-by-step by applying transformation theorems. Leveraging
Coq type classes, the application of transformation theorems is partly
automated. The current version of the framework is presented and exem-
plified on the development of a parallel program for the maximum seg-
ment sum problem. This program is experimented on a parallel machine.

Keywords: program transformation · scalable parallel computing ·
functional programming · interactive theorem proving

1 Introduction

Our everyday activities generate extremely large volume of data. Big data ana-
lytics offer opportunities in a variety of domains [4,13].

While there are many challenges in the design and implementation of big
data analytics applications, we focus on the programming aspects. Due to the
large scale, scalable parallel computing is a necessity. Most approaches either
cite Bulk Synchronous Parallelism (BSP) [44] as an inspiration, that is the case
of Pregel [32] and related frameworks such as Apache Giraph, or are related to,
even if it is not often acknowledged, algorithmic skeletons [6]. This is the case of
Hadoop MapReduce [9] and Spark [1].

Both BSP and algorithmic skeletons are structured and high-level approaches
to parallelism which free the developers from tedious details of the implementa-
tion of parallel algorithms found for example in MPI programming, a de facto
standard for writing HPC programs. While BSP is a general purpose parallel
programming model, algorithmic skeletons approaches as well as the mentioned
big data frameworks are limited to what is expressible by the building blocks
they provide. This lack of generality is both a strength making them easier to
use in the classes of applications they naturally cover, but also a weakness in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ben Hedia et al. (Eds.): VECoS 2023, LNCS 14368, pp. 15–29, 2024.
https://doi.org/10.1007/978-3-031-49737-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49737-7_2&domain=pdf
http://orcid.org/0000-0001-9301-7829
http://orcid.org/0009-0000-3200-6683
https://doi.org/10.1007/978-3-031-49737-7_2

16 F. Loulergue and A. Ed-Dbali

that expressing one’s algorithm with these building blocks may become very
convoluted or even impossible.

SyDPaCC [27,28] is a framework for the Coq proof assistant to systemat-
ically develop correct and efficient parallel programs from specifications. Cur-
rently, SyDPaCC provides sequential program optimizations via transforma-
tions based on list homomorphism theorems [17] and the diffusion theorem [21].
It also provides automated parallelization via verified correspondences between
sequential higher-order functions and algorithmic skeletons implemented using
the parallel primitives of BSML [26] a library for scalable parallel program-
ming with the multi-paradigm (including functional) programming language
OCaml [24]. In this paper, we develop a new verified parallel algorithm for the
maximum segment sum problem, which is for example a component of computer
vision applications to detect the brightest area of an image.

The remaining of the paper is organized as follows. Functional bulk syn-
chronous parallel programming with the BSML library is introduced in Sect. 2.
Section 3 is devoted to an overview of the SyDPaCC framework. In Sect. 4, we
develop a verified scalable Bulk Synchronous Parallel algorithm of the maxi-
mum segment sum problem and experiment (Sect. 5) on a parallel machine the
extracted code from the Coq proof assistant. We compare our approach to
related work in Sect. 6 and conclude in Sect. 7. The code presented in the paper
is available in the SyDPaCC distribution version 0.5 at https://sydpacc.github.
io.

2 Functional Bulk Synchronous Parallelism

In the Bulk Synchronous Parallel model, the BSP computer is seen as a homo-
geneous distributed memory machine with a point-to-point communication net-
work and a global synchronization unit. It runs BSP programs which are
sequences of so-called super-steps. A super-step is composed of three phases.
The computation phase is concerned with each processor-memory pair com-
puting using only the data available locally. In the communication phase, each
processor may request data from other processors and send requested data to
other processors. Finally, during the synchronization phase, the communication
exchanges are finalized and the super-step ends with a global synchronization of
all the processors.

BSML offers a set of constants (giving access to the parameters of the BSP
machine as they are discussed in [40] but omitted here) including bsp_p the
number of processors in the BSP machine and a set of four functions which
are expressive enough to express any BSP algorithm. BSML is implemented as
a library for the multi-paradigm and functional language OCaml [24] ([34] is
a short introduction to OCaml and its qualities). BSML is purely functional
but using on each processor the imperative features of OCaml, it is possible to
implement an imperative programming library [26] in the style of the BSPlib for
C [19]. In this paper we are interested in the pure functional aspects of BSML
as it is only possible to write pure functions within Coq.

https://sydpacc.github.io
https://sydpacc.github.io

Verified High Performance Computing: The SyDPaCC Approach 17

Given any type α and a function f from int to α (which is written f: int→α
in OCaml), the BSML primitive mkpar f (mkpar applied to f, application in
OCaml and many other functional languages is simply denoted by a space)
creates a parallel vector of type α par. Parallel vectors are therefore a poly-
morphic data-structure. In such a parallel vector, processor number i with
0 ≤ i <bsp_p, holds the value of f i. For example, mkpar(fun i→i) is the
parallel vector 〈0, . . . , bsp p−1〉 of type int par. In the following, this parallel
vector is denoted by this. The function replicate has type α → α par and
can be defined as: let replicate = fun x → mkpar(fun i→x). In expres-
sion replicate x, all the processors will contain the value of x.

(+)1 is the partial application of addition seen in prefix notation, it is
equivalent to fun x→1+x. Therefore replicate ((+)1) is a parallel vector of
functions and its type is (int→int)par. A parallel vector of functions is not
a function and cannot be applied directly. That is why BSML provides the
primitive apply that can apply a parallel vector of functions to a parallel vector
of values. For example, apply (replicate ((+)1)) this is the parallel vector
〈1, . . . , bsp p〉. Using apply and replicate in such a way is common. The
function parfun is also part of the BSML standard library and is defined as:
let parfun f = apply(replicate f).

The primitive proj can be seen as a partial inverse of mkpar, its type is
α par →(int → α). However, proj(mkpar f) is in general different from f.
Indeed f may be defined on all the values of type int, but proj(mkpar f) is
defined only on {0, . . . , bsp p − 1}.

To transform a parallel vector into a list, one can define to_list as follows:
let to_list v = List.map (proj v) processors where processors has
type int list and contains the integers from 0 (included) to bsp_p (excluded).

Fig. 1. A Signature for Algorithmic Skeletons on Distributed Lists

While mkpar and apply do not require any communication or synchronization
to run, proj needs communications and a global synchronization. The value of
each processor is sent to all the other processors (it is a total exchange). For a
finer control over communications the primitive put should be used. It is the most
complex operation of BSML and its type is (int→α)par → (int→α)par. The
functions in the input vector contain the messages to be sent to other processors.
The functions in the output vector contain the messages received from other

18 F. Loulergue and A. Ed-Dbali

processors. For example if the input vector contains function ini at processor
i, then the value v = ini i′ will be sent to processor i′. After executing the
put, processor i′ contains a function outi′ such that outi′ i = v. Some OCaml
values are considered to be empty messages so an application of put does mean
that each processor communicates with every other processors. For the sake of
conciseness we do not detail put further but we refer to [29].

Fig. 2. A BSML Example

As an example, we implement in Fig. 2 the set of algorithmic skeletons on a
data-structure of distributed lists whose module type is shown in Fig. 1.

We implement the distributed list type as a record type: its content is a
parallel vector of lists and it also possesses a field for the global size of the
distributed list. init is similar to mkpar, however for distributed lists the size is
given by the user while it is always bsp_p for parallel vectors. We want the list

Verified High Performance Computing: The SyDPaCC Approach 19

to be distributed evenly: each processor contains size/bsp_p elements, or one
more element than that.

map is similar to the List.map function on sequential lists: it applies a
function f to all the elements of the lists. Here each processor takes care of the
sub-list it holds locally. List.filter p l uses a predicate p to keep only the
elements of l that satisfy this predicate. Our filter skeleton does the same: the
part about the content is easy to write. But we also need to update the global
size of the distributed list and communications are required to do so. Note that
after a filter, the distributed list may no longer be evenly distributed.

3 An Overview of SyDPaCC

We present the use of SyDPaCC through a very simple example. In this case the
specification is already quite efficient, but often the specification has a higher
complexity than the optimized program. This is for example the case of the
maximum prefix sum problem presented in [28] and the maximum segment sum
problem presented in the next section. For a short introduction to Coq, see [2].

Our goal is to obtain a parallel algorithm for computing the average of a list
of natural numbers. To do so, we use SyDPaCC to parallelize a function that
sums the elements of a list and counts the number of elements of this list. This
specification can be written as:

Fixpoint sum (l: list nat) : nat :=
match l with
| [] ⇒ 0
| n:: ns ⇒ n + sum ns
end.

Definition count : list nat → nat := length (A:=nat).

Definition spec : list nat → nat ∗ nat := (sum � count).

sum is a recursive function defined by pattern matching on its list argument while
count is just an alias for the pre-defined length function. The specification spec
is defined as the tupling of these two functions.

We then try to show that this function has some simple properties: it is
leftwards, meaning it can be written as an application of List.fold_right,
rightwards, meaning it can be written as an application of List.fold_left,
and finally it has a right inverse, which is a weak form of inverse.

For a list l = [x1;. . .;xn], binary operations ⊕ ⊗, and values el er, we have:

List.fold_left ⊕ el l = (. . .((el ⊕ x1) ⊕ x2) . . .)⊕ xn
List.fold_right ⊗ er l = x1 ⊗ (x2 (. . .(xn ⊗ er). . .))

20 F. Loulergue and A. Ed-Dbali

spec is indeed leftwards, rightwards and has a right inverse:

Definition opr := fun n acc ⇒ (n + fst acc, 1 + snd acc).

Instance spec_leftwards: Leftwards spec opr (0,0).
Proof. (* omitted *) Defined.

Definition opl := fun acc n ⇒ (n + fst acc, 1 + snd acc).

Instance spec_rightwards: Rightwards spec opl (0,0).
Proof. (* omitted *) Defined.

Definition spec_inv (p: nat∗nat) : list nat :=
let (s, c):= p in match c with 0 ⇒ [] | S c ⇒ s::(repeatv c 0) end.

Instance spec_inverse: Right_inverse spec spec_inv.

Each of these properties are expressed as instances of type-classes defined in
SyDPaCC. Basically type-classes are just record types (in these cases with only
one field that holds a proof of the property of interest) and the values of these
types are called instances. The difference with record types is that instances are
recorded in a database. Coq functions can have implicit arguments: when such
arguments have a type that is a type-class, each time the function is applied,
Coq searches for an instance that fits the implicit argument. Instances may have
other instances as parameters. In this situation to build an instance the system
first needs to build instances for the parameters. Such parametrized instances can
be seen as Prolog rules while non-parametrized instances can be seen as Prolog
facts. Coq searches for an instance with a Prolog-like resolution algorithm.

For the inverse, we need to build a list l such that for a sum s and a num-
ber of elements c, we have spec l = (s, c). One possible solution is to have
l = [s; 0; . . .; 0]. An application of function repeatv builds the list of zeros. If
c = 0 then the list should be empty. The omitted proofs are short: from 3 to 9
lines with calls to a couple one-liner lemmas.

These instances are enough for the system to automatically parallelize the
specification, as follows:

Definition par_average : par(list nat) → nat :=
Eval sydpacc in

(uncurry Nat.div) ◦ (parallel spec).

In this example, parallel spec will produce a composition of a parallel
reduce and a parallel map. The automated sequential optimization of spec,
then the automated parallelization, are triggered by the call to parallel that
has several implicit arguments whose types are type-classes.

Two of them are notions of correspondence:

– A type Tsource corresponds to a type Ttarget if there exists a surjective function
join: Ttarget → Tsource. We note Tsource � Ttarget such a type correspondence.

Verified High Performance Computing: The SyDPaCC Approach 21

Intuitively, the join function is surjective because we want the target type
to have at least the same expressive power than the source type. If the source
type is list A and target type is a distributed type such as par(list A), there
are many ways a sequential list could be distributed into a parallel vector of
lists.

– A function f: T1source → T2source corresponds to ftarget: T1target → T2target if
T1source� T1target and T2source� T2target and the following property holds:

∀(x : T1target), join
2(ftarget x) = fsource(join1 x).

SyDPaCC provides type correspondences such as list A � par(list A)
as well as several function correspondences including List.map corresponds to
par_map. It also offers parametrized instances for the composition of functions
with ◦, � and × (pairing). Finally while looking for such instances, SyDPaCC
also checks if there are optimized versions of functions, captured by instances of
type Opt f f’ meaning f’ is an optimized version of f.

These optimizations are based on transformation theorems expressed as
instances. SyDPaCC provides a variant of the third homomorphism theo-
rem [17] that states that a function is a list homomorphism when it is leftwards,
rightwards and has a right inverse. The first homomorphism theorem states that
a list homomorphism can be implemented as a composition of map and reduce.
The other transformation theorem available for lists is the diffusion theorem [21].

In the example, parallel looks for a correspondence of spec that triggers the
optimization of spec which is done thanks to the two homomorphism theorems
mentioned above. At the end of the Prolog-like search, it is established (and
verified) than spec corresponds to a composition of a parallel reduce and a
parallel map.

To obtain a very efficient program, the user can try to simplify the binary
operation and the function given respectively as arguments of the parallel reduce
and the parallel map. Indeed, by default the former is:

fun args⇒ let (p1,p2) in spec(spec_inv p1 ++ spec_inv p2)

and the latter is fun a ⇒ spec[a]. To obtain optimized versions, one can use
the type-classes Optimised_op and Optimised_f that only take as argument the
specification. The optimized versions do not need to be known beforehand: they
can be discovered while proving the instances. In our example, the operation is
mostly the addition of the first components of the argument pairs (replaced by
0 if the second component is 0), and the function is fun a ⇒ (a, 1).

Finally, the extracted1 OCaml code (with calls to BSML functions in a mod-
ule MapReduce similar to the functions of Fig. 2) is given Fig. 3. Such a program
can be compiled and run on (possibly massively) parallel machines. The SyD-
PaCC framework provided a guide towards the development of such a parallel
program, but also the proof that this program is correct with respect to the
initial specification.
1 The type annotations have been added manually and the argument renamed to

increase readability.

22 F. Loulergue and A. Ed-Dbali

Fig. 3. OCaml Code Extracted from Coq

4 Verified Parallel Maximum Segment Sum

The goal of maximum segment sum problem is to obtain the maximum value
among the sums of all segments (i.e. sub-structures) of a structure. We consider
here lists, but algorithms are equivalent for 1D arrays.

Basically, the specification for this problem can be written as follows:

Definition mss_spec := maximum ◦ (map sum) ◦ segs.

There are several derivations of parallel algorithms for the maximum segment
sum problem. The first, informal one, was proposed by Cole [7]. Takeichi et
al. [20] gave a formal account of this construction using a theory of tupling
and fusion. Their theory may be expressed in Coq, but it is not simple as
theorems are stated for an arbitrary number of mutually recursive functions
which are tupled, hence it is necessary to deal with tuples of an arbitrary size.
The algorithm they obtain (from a similar specification than the one above) is
a list homomorphism and therefore SyDPaCC could automatically parallelized
it. The GTA (generate-test-aggregate) approach [11] — which was implemented
in Coq [12], but this implementation is not compatible with the current version
of SyDPaCC — is also applicable. Both solutions are not well suited as we
want to consider in the future the variant problem of maximum segment sum
with a bound on the segment lengths. Thus, we based our contribution on the
calculation proposed by Morihata [36].

Morihata only considered non-empty lists. There is support in SyDPaCC to
deal with non-empty lists [28], but it requires for example to use different func-
tion compositions that transport facts about the non-emptyness of lists across
function composition. For example, segs is the function that generates all the
segments of a list, and it returns a non-empty list even if its argument is an
empty list. The map function preserves non-emptiness. Finally, if maximum returns
a number then it is defined only on non-empty lists.

Here, we choose to deal with empty lists. Therefore, the function maximum
used in the specification has type list N.t → option N.t where N.t is an
abstract type of numbers that possess the required algebraic properties, and
option is the Coq type:

Inductive option (A: Type) : Type := | Some: A→ option A | None: option A.

Verified High Performance Computing: The SyDPaCC Approach 23

which basically adds a value None to the type given as argument to option. In
the case of maximum we interpret None as −∞. The definition of sum and maximum
follow:

Definition sum : list t → t := reduce add.
Definition optionize ‘(f:A→ A→ A) (a b: option A) : option A :=
match (a,b) with

| (None, None) ⇒ None

| (None, _) ⇒ b

| (_, None) ⇒ a

| (Some a, Some b) ⇒ Some(f a b)
end.

Definition max_option := optionize max.
Definition maximum := reduce max_option ◦ (map Some).

reduce is a higher-order function that “sums” all the elements of a list using
the binary operation given as first argument. We proved that is f is associative
then optionize f forms a monoid with the neutral element being None.

During the transformations of mss_spec, a version of add that deals with
option N.t values instead of N.t values is needed. The add_option function is:

Definition optionize_none ‘(f:A→ A→ A)(a b: option A) : option A :=
match (a,b) with

| (Some a, Some b) ⇒ Some(f a b)
| _ ⇒ None

end.
Definition add_option := optionize_none N.add.

If the original operation f forms a monoid with neutral element e, then the
optionzed version forms a monoid with Some e. None is an absorbing element of
optionize_none f.

The function generating all the segments is defined in terms of prefix and
tails which are two functions already defined in SyDPaCC that respectively
return the prefixes of a list and its suffixes (List.app is part of Coq’s standard
library and is list concatenation):

Definition segs {A}:= reduce (@List.app (list A)) ◦ (map prefix) ◦ tails.

We then prove the following instance of Opt to give an equivalent but opti-
mized version of mss_spec:

Instance opt_mss :
Opt mss_spec

((reduce max_option) ◦ (map fst) ◦
(scanr (oslash add_option max_option) (None, Some 0)) ◦
(map (fun x : t ⇒ (Some x, Some x)))).

The proof of this instance follows roughly the calculation of Morihata but for
the treatment of empty lists. This proof is simple in term of structure: just a
sequence of applications of rewriting steps, each step being the application of a
transformation lemma. Most of the lemmas were already in Coq or SyDPaCC

24 F. Loulergue and A. Ed-Dbali

libraries but the definition of oslash and related lemma (and instances omitted
here):

Definition oslash [A] otimes oplus

‘{Monoid A otimes e_t} ‘{Monoid A oplus e_p}: (A∗A)→ (A∗A)→ (A∗A) :=
fun a_b c_d ⇒
(oplus (fst a_b)(otimes (snd a_b)(fst c_d)),
otimes (snd a_b) (snd c_d)).

Lemma distributivity_reduce_scanl A

‘{Ht: Monoid (A:=A) otimes e_t} ‘{Hp: Monoid (A:=A) oplus e_p}
{Ha: RightAbsorbing otimes e_p} {Hd: LeftDistributive otimes oplus}:
∀ l,

(reduce oplus) (scanl otimes e_t l) =
fst(reduce (oslash otimes oplus) (map dup l)).

Morihata used this operator and a lemma based on a method first proposed by
Smith [41].

The optimized version also uses scanr which is linear on the length of its list
argument. We implemented a tail recursive version of scanr (as we do for all
the function on lists that are supposed to be part of the final optimized code)
and satisfies the following expected property for a scanr:

Lemma scanr_spec_monoid:
∀ A op e {Hm: @Monoid A op e} l,
scanr op e l = map (reduce op) (tails l).

The optimized version has a linear complexity in the length of its argument while
the specification has a cubic one. The goal of the transformations was to remove
the calls to prefix and tails. These transformations are not automatic, but the
support provided by SyDPaCC is a collection of already proved transformations.

Fig. 4. Automatic parallelization of MSS

The last step is fully automatic and very simple as shown in Fig. 4. With the
call to parallel, SyDPaCC uses the instance opt_mss as well as instances of
types and functions correspondences that are part of the framework to generate
a parallel version of mss_spec by replacing the list functions by their algorithmic
skeletons counter-parts: par_reduce, par_map and par_scanr.

Verified High Performance Computing: The SyDPaCC Approach 25

5 Experiments

Fig. 5. Time and relative speed-up (64 · 106 elements, median of 30 measures)

The Coq proof assistant offers an extraction mechanism [25] able to generate
compilable code from Coq definitions and proofs. In particular, it can generate
OCaml code. Extracting the parametric module of Fig. 4 generates an OCaml
functor (which is basically a parametric module). To be able to execute the
function par_mss, we first need to apply this functor. For the number part, we
just wrote a module using OCaml native integers of type int for N.t. For the
parameter, Bsml we simply apply the actual parallel implementation of BSML
primitives as provided by the BSML library for OCaml. This library is imple-
mented on top of an API for parallel processing library in C named MPI [42]
(several implementations of this API exist). For the moment, the Bsml module
of the BSML library cannot directly be given as argument to the Make functor.
Indeed, processor identifiers are represented by mathematical natural numbers
in Coq while they are encoded as OCaml bounded int values. SyDPaCC fea-
tures a wrapper module BsmlWrapperN that performs number conversions when
needed.

The application of the verified extracted function and aspects such as
input/output operations and command line argument management are not veri-
fied and written in plain OCaml. The final program was run on a shared memory
parallel machine, but it could run on large scale distributed memory machines.

We ran the program on a machine having an Intel Xeon Gold 5218 processor
with 32 cores. The operating system was Ubuntu 22.04. To compile we used
OCaml 4.14.1. The MPI implementation was OpenMPI 4.1.2. We ran par_mss
on a list of length 64 · 106 and measured the time required for this computation

26 F. Loulergue and A. Ed-Dbali

30 times. The results for the relative speed-up are presented in Fig. 5 for an
increasing number of cores. The speedup is fine but of course as the number of
cores increases the relative impact of communication and synchronization time
becomes bigger. The variance increases to reach a maximum for 4 cores then
decreases again.

6 Related Work

The literature on constructive algorithmics, introduced by Bird [3], is extensive
and includes studies on parallel programming [7,10,18,22,35]. While most of the
work in this field has been done on paper, recent advancements have seen the
use of interactive theorem proving, as demonstrated in works like [37]. However,
interactive theorem proving has not been extensively explored in the context of
parallel programming.

From a functional programming perspective, the study of frameworks such
as Hadoop MapReduce [23,33] and Apache Spark [1,5] is relevant to our SyD-
PaCC framework, as we can adopt a similar approach to extract MapReduce or
Spark programs from Coq. Ono et al. [39] employed Coq to verify MapReduce
programs and extract Haskell code for Hadoop Streaming or directly write Java
programs annotated with JML, utilizing Krakatoa [14] to generate Coq lemmas.
However, their work is less systematic and automated than SyDPaCC.

There have been contributions that formalize certain aspects of parallel pro-
gramming, but as far as we know, these approaches do not directly yield exe-
cutable code like our SyDPaCC framework. Swierstra [43] formalized mutable
arrays with explicit distributions in Agda, while BSP-Why [15] allows for deduc-
tive verification of imperative BSP programs, although they represent models of
C BSPlib [19] programs rather than executable code. Another example is the for-
malization of the Data Parallel C programming language using Isabelle/HOL [8],
where Isabelle/HOL expressions representing parallel programs were generated.

7 Conclusion

We developed a verified parallel implementation of a functional scalable parallel
program for solving the maximum segment sum problem and studied its parallel
performances. Experiments on a larger number of processors are planned.

Often in applications, the domain is 2D rather than 1D, and it may be inter-
esting to consider segments of a given bounded size, for example in genomics. We
therefore plan to systematically develop parallel algorithms for these problems
starting from the work of Morihata [36].

The development of SyDPaCC started in 2015 while preparing a graduate
course for a summer school, on the predecessor of SyDPaCC named SDPP.
There are SDPP theories, namely BSP homomorphisms [16,31] and generate,
test, aggregate [11,12] that have not been ported to SyDPaCC yet. We also plan
to work on additional data-structures such as trees. For the moment, SyDPaCC
only targets BSML+OCaml, but there is ongoing work to extend it to generate
Scala [38] code with Apache Spark for parallel processing [30].

Verified High Performance Computing: The SyDPaCC Approach 27

Acknowledgments. We wish to thank the reviewers for their suggestions and high-
lighting some typos.

References

1. Armbrust, M., et al.: Scaling spark in the real world: performance and usabil-
ity. PVLDB 8(12), 1840–1851 (2015). http://www.vldb.org/pvldb/vol8/p1840-
armbrust.pdf

2. Bertot, Y.: Coq in a hurry (2006). http://hal.inria.fr/inria-00001173
3. Bird, R.: An introduction to the theory of lists. In: Broy, M. (ed.) Logic of Pro-

gramming and Calculi of Discrete Design. NATO ASI Series, vol. 36, pp. 5–42.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-642-87374-4 1

4. Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. 50(3), 1–42
(2017). https://doi.org/10.1145/3076253

5. Chen, Y.-F., Hong, C.-D., Lengál, O., Mu, S.-C., Sinha, N., Wang, B.-Y.: An exe-
cutable sequential specification for spark aggregation. In: El Abbadi, A., Garbinato,
B. (eds.) NETYS 2017. LNCS, vol. 10299, pp. 421–438. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59647-1 31

6. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge (1989)

7. Cole, M.: Parallel programming, list homomorphisms and the maximum segment
sum problem. In: Joubert, G.R., Trystram, D., Peters, F.J., Evans, D.J. (eds.)
Parallel Computing: Trends and Applications, PARCO 1993, pp. 489–492. Elsevier
(1994)

8. Daum, M.: Reasoning on Data-Parallel Programs in Isabelle/Hol. In: C/C++ Ver-
ification Workshop (2007). http://www.cse.unsw.edu.au/rhuuck/CV07/program.
html

9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI, pp. 137–150. USENIX Association (2004)

10. Dosch, W., Wiedemann, B.: List homomorphisms with accumulation and indexing.
In: Michaelson, G., Trinder, P., Loidl, H.W. (eds.) Trends in Functional Program-
ming, pp. 134–142. Intellect (2000)

11. Emoto, K., Fischer, S., Hu, Z.: Filter-embedding semiring fusion for programming
with MapReduce. Formal Aspects Comput. 24(4–6), 623–645 (2012). https://doi.
org/10.1007/s00165-012-0241-8

12. Emoto, K., Loulergue, F., Tesson, J.: A verified generate-test-aggregate Coq library
for parallel programs extraction. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS,
vol. 8558, pp. 258–274. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08970-6 17

13. Fang, R., Pouyanfar, S., Yang, Y., Chen, S.C., Iyengar, S.S.: Computational health
informatics in the big data age: a survey. ACM Comput. Surv. 49(1), 1–36 (2016).
https://doi.org/10.1145/2932707

14. Filliâtre, J.-C., Marché, C.: The why/Krakatoa/Caduceus platform for deductive
program verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol.
4590, pp. 173–177. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73368-3 21

15. Gava, F., Fortin, J., Guedj, M.: Deductive verification of state-space algorithms. In:
Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 124–138. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38613-8 9

http://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
http://www.vldb.org/pvldb/vol8/p1840-armbrust.pdf
http://hal.inria.fr/inria-00001173
https://doi.org/10.1007/978-3-642-87374-4_1
https://doi.org/10.1145/3076253
https://doi.org/10.1007/978-3-319-59647-1_31
http://www.cse.unsw.edu.au/rhuuck/CV07/program.html
http://www.cse.unsw.edu.au/rhuuck/CV07/program.html
https://doi.org/10.1007/s00165-012-0241-8
https://doi.org/10.1007/s00165-012-0241-8
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1007/978-3-319-08970-6_17
https://doi.org/10.1145/2932707
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-540-73368-3_21
https://doi.org/10.1007/978-3-642-38613-8_9

28 F. Loulergue and A. Ed-Dbali

16. Gesbert, L., Hu, Z., Loulergue, F., Matsuzaki, K., Tesson, J.: Systematic develop-
ment of correct bulk synchronous parallel programs. In: Parallel and Distributed
Computing, Applications and Technologies (PDCAT), pp. 334–340. IEEE (2010).
https://doi.org/10.1109/PDCAT.2010.86

17. Gibbons, J.: The third homomorphism theorem. J. Funct. Program. 6(4), 657–665
(1996). https://doi.org/10.1017/S0956796800001908

18. Gorlatch, S., Bischof, H.: Formal derivation of divide-and-conquer programs: a
case study in the multidimensional FFT’s. In: Mery, D. (ed.) Formal Methods for
Parallel Programming: Theory and Applications, pp. 80–94 (1997)

19. Hill, J.M.D., et al.: BSPlib: the BSP programming library. Parallel Comput. 24,
1947–1980 (1998)

20. Hu, Z., Iwasaki, H., Takeichi, M.: Construction of list homomorphisms by tupling
and fusion. In: Penczek, W., Sza�las, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp.
407–418. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61550-4 166

21. Hu, Z., Takeichi, M., Iwasaki, H.: Diffusion: calculating efficient parallel programs.
In: ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation (PEPM 1999), pp. 85–94. ACM (1999)

22. Hu, Z., Iwasaki, H., Takeichi, M.: Formal derivation of efficient parallel programs
by construction of list homomorphisms. ACM Trans. Program. Lang. Syst. 19(3),
444–461 (1997). https://doi.org/10.1145/256167.256201

23. Lämmel, R.: Google’s MapReduce programming model - revisited. Sci. Comput.
Program. 70(1), 1–30 (2008). https://doi.org/10.1016/j.scico.2007.07.001

24. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system release 5.00 (2022). https://v2.ocaml.org/manual/

25. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 39

26. Loulergue, F.: A BSPlib-style API for bulk synchronous parallel ML. Scalable
Comput. Pract. Experience 18, 261–274 (2017). https://doi.org/10.12694/scpe.
v18i3.1306

27. Loulergue, F.: A verified accumulate algorithmic skeleton. In: Fifth International
Symposium on Computing and Networking (CANDAR), pp. 420–426. IEEE,
Aomori, Japan (2017). https://doi.org/10.1109/CANDAR.2017.108

28. Loulergue, F., Bousdira, W., Tesson, J.: Calculating parallel programs in Coq using
list homomorphisms. Int. J. Parallel Prog. 45(2), 300–319 (2016). https://doi.org/
10.1007/s10766-016-0415-8

29. Loulergue, F., Gava, F., Billiet, D.: Bulk synchronous parallel ML: modular imple-
mentation and performance prediction. In: Sunderam, V.S., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 1046–1054.
Springer, Heidelberg (2005). https://doi.org/10.1007/11428848 132

30. Loulergue, F., Philippe, J.: Towards verified scalable parallel computing with Coq
and Spark. In: Proceedings of the 25th ACM International Workshop on Formal
Techniques for Java-like Programs (FTfJP), pp. 11–17. ACM, New York, NY, USA
(2023). https://doi.org/10.1145/3605156.3606450

31. Loulergue, F., Robillard, S., Tesson, J., Légaux, J., Hu, Z.: Formal derivation and
extraction of a parallel program for the all nearest smaller values problem. In:
ACM Symposium on Applied Computing (SAC), pp. 1577–1584. ACM, Gyeongju,
Korea (2014). https://doi.org/10.1145/2554850.2554912

32. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD,
pp. 135–146. ACM (2010). https://doi.org/10.1145/1807167.1807184

https://doi.org/10.1109/PDCAT.2010.86
https://doi.org/10.1017/S0956796800001908
https://doi.org/10.1007/3-540-61550-4_166
https://doi.org/10.1145/256167.256201
https://doi.org/10.1016/j.scico.2007.07.001
https://v2.ocaml.org/manual/
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.12694/scpe.v18i3.1306
https://doi.org/10.12694/scpe.v18i3.1306
https://doi.org/10.1109/CANDAR.2017.108
https://doi.org/10.1007/s10766-016-0415-8
https://doi.org/10.1007/s10766-016-0415-8
https://doi.org/10.1007/11428848_132
https://doi.org/10.1145/3605156.3606450
https://doi.org/10.1145/2554850.2554912
https://doi.org/10.1145/1807167.1807184

Verified High Performance Computing: The SyDPaCC Approach 29

33. Matsuzaki, K.: Functional models of hadoop mapreduce with application to scan.
Int. J. Parallel Prog. 45(2), 362–381 (2016). https://doi.org/10.1007/s10766-016-
0414-9

34. Minsky, Y.: OCaml for the masses. Commun. ACM 54(11), 53–58 (2011). https://
doi.org/10.1145/2018396.2018413

35. Morihata, A., Matsuzaki, K., Hu, Z., Takeichi, M.: The third homomorphism the-
orem on trees: downward & upward lead to divide-and-conquer. In: Shao, Z.,
Pierce, B.C. (eds.) POPL 2009, pp. 177–185. ACM (2009). https://doi.org/10.
1145/1480881.1480905

36. Morihata, A.: Calculational developments of new parallel algorithms for size-
constrained maximum-sum segment problems. In: Schrijvers, T., Thiemann, P.
(eds.) FLOPS 2012. LNCS, vol. 7294, pp. 213–227. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29822-6 18

37. Mu, S., Ko, H., Jansson, P.: Algebra of programming in Agda: dependent types for
relational program derivation. J. Funct. Program. 19(5), 545–579 (2009). https://
doi.org/10.1017/S0956796809007345

38. Odersky, M., Spoon, L., Venners, B.: Programming in Scala, 2nd edn. Artima,
Walnut Creek (2010)

39. Ono, K., Hirai, Y., Tanabe, Y., Noda, N., Hagiya, M.: Using Coq in specification
and program extraction of hadoop mapreduce applications. In: Barthe, G., Pardo,
A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 350–365. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24690-6 24

40. Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and answers about BSP.
Sci. Program. 6(3), 249–274 (1997)

41. Smith, D.R.: Applications of a strategy for designing divide-and-conquer algo-
rithms. Sci. Comput. Program. 8(3), 213–229 (1987). https://doi.org/10.1016/
0167-6423(87)90034-7

42. Snir, M., Gropp, W.: MPI the Complete Reference. MIT Press, Cambridge (1998)
43. Swierstra, W.: More dependent types for distributed arrays. Higher-Order Sym-

bolic Comput. 23(4), 489–506 (2010). https://doi.org/10.1007/s10990-011-9075-
y

44. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103 (1990). https://doi.org/10.1145/79173.79181

https://doi.org/10.1007/s10766-016-0414-9
https://doi.org/10.1007/s10766-016-0414-9
https://doi.org/10.1145/2018396.2018413
https://doi.org/10.1145/2018396.2018413
https://doi.org/10.1145/1480881.1480905
https://doi.org/10.1145/1480881.1480905
https://doi.org/10.1007/978-3-642-29822-6_18
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1017/S0956796809007345
https://doi.org/10.1007/978-3-642-24690-6_24
https://doi.org/10.1016/0167-6423(87)90034-7
https://doi.org/10.1016/0167-6423(87)90034-7
https://doi.org/10.1007/s10990-011-9075-y
https://doi.org/10.1007/s10990-011-9075-y
https://doi.org/10.1145/79173.79181

	Verified High Performance Computing: The SyDPaCC Approach
	1 Introduction
	2 Functional Bulk Synchronous Parallelism
	3 An Overview of SyDPaCC
	4 Verified Parallel Maximum Segment Sum
	5 Experiments
	6 Related Work
	7 Conclusion
	References

