®

Check for
updates

White-Box Mutation Testing of Smart
Contracts: A Quick Review

Afef Jmal Maalej™ and Mariam Lahami

ReDCAD Laboratory, National School of Engineers of Sfax, University of Sfax,
BP 1173, 3038 Sfax, Tunisia
{afef.jmal,mariam.lahami}@redcad.org

Abstract. Once being deployed on the blockchain, smart contracts can-
not be altered, requiring more testing. A fault-based testing technique
called mutation testing (MT) can significantly increase the utility of a
test for smart contracts. MT is a type of white-box testing which is
mainly used for unit testing. In fact, certain statements of the source
code are changed to check if the test cases are able to find errors in
source code. The main objective of MT is ensuring the quality of test
cases in terms of robustness in the way that it should fail the mutated
source code. In this paper, our goal is to identify and classify the main
applications of mutation testing of smart contracts by providing a quick
review on the application perspective of mutation testing based on a
collection of several papers. In particular, we analysed in which quality
assurance processes mutation testing of smart contracts is used, which
mutation tools and which mutation operators are employed.

Keywords: White-Box testing - Mutation Testing - Blockchain -
Smart Contract

1 Introduction

Blockchain is a modern technology that has revolutionized the way society inter-
acts and trades [18]. It might be described as a network of distributed, decen-
tralized blocks that store data with digital signatures. This approach was ini-
tially used to develop digital currencies like Bitcoin and Ethereum. However,
recent research and commercial studies have concentrated on the chances that
blockchain offers in a variety of other application fields to benefit from this
technology’s key qualities, such as decentralization, persistency, and anonymity.
Healthcare [13], internet of things [15,17] and vehicles [12,14] are just a few of
the industries that employ blockchain.

In this context, smart contracts are computer programs implementing busi-
ness logic that manage the data or assets on a blockchain environment. Although
they have been introduced several years ago, the development of smart con-
tracts is still challenging for developers. The latter usually produce vulnerable
code which can lead to huge monetary losses. Therefore, it is essential to ensure

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ben Hedia et al. (Eds.): VECoS 2023, LNCS 14368, pp. 135-148, 2024.
https://doi.org/10.1007/978-3-031-49737-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49737-7_10&domain=pdf
https://doi.org/10.1007/978-3-031-49737-7_10

136 A. Jmal Maalej and M. Lahami

that smart contracts do not contain such vulnerabilities. The most important
verification and validation technique for detecting both semantic errors and vul-
nerabilities is software testing. Testing smart contracts is even more crucial than
testing regular programs, since their source code once deployed on the blockchain
cannot be altered or changed due to their immutable nature. Furthermore, it is
highly demanded to evaluate the quality of the tests and improve their adequacy.
A powerful approach that can perform such assessments is Mutation Testing
(MT). Indeed, this test technique consists on injecting faults into a given pro-
gram to check the fault-detection capabilities of test suites [16].

A wide range of papers make use of this mature fault-based software test-
ing technique to detect functional bugs and vulnerabilities in smart contracts
because it is widely studied for over four decades. Thus, several approaches and
tools are introduced in order to increase confidence on smart contracts [8,19,21].
However, we noticed the absence of surveys that include work done on mutation
testing of smart contracts and give researchers new trends and challenges in this
emerging research line.

Therefore, this paper presents a quick review that surveyed the most relevant
studies related to MT of smart contracts dated from 2019. Particularly, we tackle
the following main research questions:

— RQ1: What are the methodologies, approaches and tools based on mutation
testing to verify smart contracts 7
— RQ2: Which mutation operators are mostly used by the studied approaches?

The answers to these questions help researchers to understand the studied
topic, to identify the challenges in this research area and their solutions and
also to discuss future directions. To do so, we first chose four well-known scien-
tific and electronic databases (ScienceDirect Elsevier!, ACM Digital Library?,
SpringerLink® and IEEE Xplore*) with the aim of extracting the most relevant
papers related to our research topic. Second, we used the following search key-
words which were the same in all databases: “Mutation Testing AND Smart
contract” OR “Mutation Testing AND Blockchain”. Then, the selection of arti-
cles was performed by removing irrelevant articles after checking their titles and
their abstracts and after being fully read we selected 14 as primary studies.

The remainder of this paper is organized as follows. Section 2 provides key
concepts related to mutation testing and smart contracts. Related reviews and
surveys are discussed in Sect. 3. Next, we investigate in Sect. 4 the most relevant
researches on mutation testing applied in the context of smart contract verifi-
cation. Finally, in Sect.5, we conclude with a summary of paper contributions,
and we identify possible areas of future research.

! https://www.elsevier.com.

2 https://portal.acm.org.

3 https://www.springerlink.com.

4 https://www.ieee.org/web/publications/xplore/.

https://www.elsevier.com
https://portal.acm.org
https://www.springerlink.com
https://www.ieee.org/web/publications/xplore/

White-Box Mutation Testing of Smart Contracts: A Quick Review 137

2 Background Materials

2.1 Mutation Testing

The use of mutation testing in software testing has the potential to improve
software quality. Indeed, it is defined as a testing technique that injects faults
into a program by creating several versions, each one contains one semantic
fault. These faulty programs are named mutants. The generation of mutants is
called mutation and that semantic fault is called mutation operator (MO). There
are several traditional mutation operators that depend usually on programming
languages such as deleting a statement, replacing boolean expressions, replacing
arithmetic, and replacing a variable [24].

As highlighted in Fig. 1, the mutation testing process can be explained simply
in following steps:

. Given a program P and a set of test cases T'.
. Produce the mutant P1 from P by inserting only one semantic fault into P.
. Execute T on both P and P1 and save results as R and R1.
. Compare the output of mutant program R1 to the expected output R:
(a) If R1 is not equal to R (i.e., R1 # R), the test cases detect the faults and
the mutant is killed.
(b) If R1 is equal to R (i.e., R1 = R), this can be due to the inefficiency of
the test cases or the equivalence® of the mutant to the original program.
5. Calculate the mutation score (MS) which is the number of killed mutants
divided by the total number of mutants, multiplied by 100. A mutation score
of 100% means the test was efficient.

W N

The process of adding test cases, examining expected output, and executing
mutants continues until the threshold proposed by the tester is satisfied.

Program Under
test
I Add test if MS< threshold
_ A set of test l« est cases [T M« thresho ’ > Quit

cases

v

1-Generate mutants =) 2-Run test cases = 3- Compare outputs =) 4- Calculate MT score (MS)

Iy

v

v ‘
I — I —
II B Live B Killed
mutants mutants

Fig. 1. Mutation Testing process.

5 An equivalent mutant is a mutant, which is functionally equivalent to the original
program.

138 A. Jmal Maalej and M. Lahami

2.2 Smart Contracts

Smart Contracts (SCs) are one of the most interesting features that have been
introduced by several blockchain platforms with the purpose of managing digi-
tal assets and attaching business logic code to transactions. A SC is seen as a
special program that was designed to be deployed on the distributed ledger, the
blockchain. Without the need of third parties, SC is executed when some events
occur allowing for making irreversible transactions. In the case of Ethereum5,
blockchain developers make use of a Turing complete language called Solidity”
to implement Ethereum smart contracts. Similarly to JavaScript, the solidity
language supports features like user-defined types, libraries and inheritance.
By using the solc, the solidity compiler, smart contracts are compiled to the
Ethereum Virtual Machine (EVM) bytecode.

As highlighted in Listing 1.1, a code snippet of a smart contract is given.
A solidity smart contract is a collection of code (i.e., its functions) and data
(i.e., its state variables) which is stored in a particular address on the Ethereum
blockchain. In the first line, we specify the compiler version, then the keyword
contract declares the contract with its name. In line 3, a state variable called
“numbers” is declared as mapping(address => uint). Mapping data structure in
solidity acts like a hash table in which data are stored in the form of key-value
pairs. Mappings are used here to associate each Ethereum address with its lucky
number. Next, several functions are defined either to modify the state variable
“numbers” by adding a new address with is associated lucky number or to read
the lucky number of a given address.

1 pragma solidity ~0.8.17;

2 contract LuckyNumber {

3 mapping (address => uint) numbers;

4 function setNum(uint _num) public {

5 numbers [msg.sender] = _num;

6 }

7 function getNum(address _myAddress) public view returns (uint)
{

8 return numbers[_myAddress];

9 }

10 function addNumbers (address _myaddress, uint _num) public {

11 numbers [_myaddress]=_num;

12 }

13 3}
Listing 1.1. Code snippet of the LuckyNumber smart contract.

It is highly demanded to ensure the correctness and the security of smart
contracts before deploying them since executing transactions from boggy smarts
contracts can lead to significant financial loss. Meanwhile, testing is one of the
most important verification and validation techniques for ensuring software qual-

5 https://ethereum.org/en/.
7 https://solidity.readthedocs.io/.

https://ethereum.org/en/
https://solidity.readthedocs.io/

White-Box Mutation Testing of Smart Contracts: A Quick Review 139

ity. Especially, mutation testing was widely applied in the context of smart con-
tract to check test suite adequacy and their ability to detect defects as more as
possible.

3 Related Reviews

Many researchers are now interested in applying mutation testing technique to
enhance software quality especially in the context of Blockchain oriented appli-
cations. Indeed, we have found recent surveys and methodical literature reviews
that concentrate on dressing a literature review either on static testing [20] or
dynamic testing of smart contracts [21].

A systematic review was introduced in [20] and it presented static analysis
tools for Ethereum blockchain smart contracts. In this review, authors surveyed
86 papers that are published between 2016 to 2021. Among them only one paper
dealt with mutation testing, that introduced the Musc tool [23].

A comprehensive survey on blockchain testing was presented in [22]. The
authors mentioned academic articles on the subject of testing blockchains. Since
it concentrated on static testing, dynamic testing, and formal verification, it had
more scope than our work. It included only 6 papers that dealt with mutation
testing.

Similarly, authors in [21] published a survey in which they provided a clas-
sification of 20 studies according to the accessibility of smart contract code.
Among these papers (written from 2017 to 2021), only 6 of them focused on
mutation testing and showed that this testing technique has a good effect on
smart contract quality.

To the best of our knowledge, there are no current surveys that give thorough
investigations connected to the issue of mutation testing of smart contracts and
fully list the quantity and quality of relevant research results. Except the survey
in [25] which investigated efforts on mutation testing tools while giving the pros
and cons of them. The studied tools are only five: MuSC [23], SuMo [4], Deviant
[5], Vertigo [10] and RegularMutator [11].

Compared to all these cited surveys, our review focuses on recent research
effort by identifying methodologies and tools in this emerging field, assessing
them, and highlighting both their difficulties and the unexplored areas that need
more study.

4 Mutation Testing of Smart Contracts

In this section, we describe the different 14 selected papers dealing with white-
box mutation testing of smart contracts. Figure 2 illustrates the year-wise anal-
ysis of the studied papers. It is clear that the increasing interest of academic
research on mutation testing is rising over the years. The trend of using this
technique to check the quality of test suites has a constant evolution from 2019
until 2022. Also, Fig. 3 highlights the classification of the selected primary studies

by types.

140 A. Jmal Maalej and M. Lahami

6 10

;
2 3
:
;
: |

2019 2020 2021 2022 Conference paper Book chapter Journal article

Fig.2. Year-wise analysis of the Fig. 3. Analysis of the selected primary
selected studies. studies by type.

First of all, the authors provide in [4] a mutation testing approach and an
associated fully working tool for Solidity smart contracts. For simulating a vari-
ety of conventional and Solidity-specific vulnerabilities, SuMo includes a com-
plete set of mutation operators. Seven of the eleven innovative mutation opera-
tors were created with a focus on Solidity’s distinctive features by means of the
research of the Solidity documentation and the available tools. SuMo introduces
mutation operators in particular that focus on the overloading mechanism. The
SafeMath library, global blockchain variables, function modifiers, cryptographic
global functions, enums, return values, and explicit conversions are other areas
where SuMo adds additional operators.

ReSuMo [3] provides a regression testing and mutant selection technique to
the SuMo tool [4] to accelerate mutation testing on evolving projects without
affecting the accuracy of testing results. During a regression mutation testing
initiative, ReSuMo chooses a selection of smart contracts to mutate and a subset
of test files to run again using a static, file-level technique. ReSuMo continually
updates the results of mutation testing while taking into account the results
of the previous program version; this allows it to accelerate mutation testing
on evolving projects without reducing the mutation score. The authors should
concentrate on examining additional fine-grained regression mutation testing
methodologies in order to increase ReSuMo’s efficacy, particularly for small and
tightly-coupled smart contract projects. The tester would then be able to define
a preferred level of computation granularity.

The authors specifically address in [27] the EtherFuzz mutation fuzzy test-
ing technique to find TOD (Transaction-Ordering Dependent) vulnerabilities in
smart contracts. They create test cases for the intelligent contract using the ABI
(Application Binary Interface), test the byte code of the contract using TOD to
find vulnerabilities, then they change the tested data to create new test cases.
After recording the execution of the smart contract, the fuzzy test process is
regulated until the vulnerability is identified.

The study in [26] proposes five mutation operators specifically for integer
overflow vulnerability and applies mutation testing to the integer overflow vul-
nerability test in Ethereum smart contracts. According to the empirical research,

White-Box Mutation Testing of Smart Contracts: A Quick Review 141

mutation operators are able to produce these vulnerability mutants and assess
the appropriate testing tools. The experiment choice of ERC20 token smart con-
tracts, however, could skew the findings in one direction.

Besides, the authors of [6] present AGSOLT (Automated Generator of Solid-
ity Test Suites). They use two search algorithms to automatically construct test
suites for standalone Solidity smart contracts, taking into account some of the
specific challenges of the blockchain. However, the used data set is not typical of
Solidity smart contracts in general, although showing each of the characteristics
that are indicative of the identified blockchain specific issues.

In [7], the authors provide a tool called TestSmart that can create a set of
efficient test cases for Ethereum smart contracts automatically. It is made up
of a module to generate test suites, a module for generating mutants, and a
module to select test cases based on the mutants. The generation of the test
suite was performed using the Manticore tool. An expansion of the Universal
Mutator was used for mutant generation; it comprises the mutation operators
previously introduced for Solidity smart contracts. The test cases against the
mutants were examined using the Manticore API. The inability to generate test
cases with transactions generated neither by the contract owner nor the attacker
is a significant weakness of Manticore.

The authors suggest in [11] applying mutational analysis to enhance Solidity
smart contracts reliability. They developed a RegularMutator tool for mutation
analysis after finding widespread errors in the source code of existing contracts.
However, it took around 50h of machine time to complete the experiments.
Actually, mutation analysis is computationally challenging, which prevents it
from being useful in some contexts. Additionally, a large number of mutants
that survived the experiment need to be manually checked and analysed.

In addition, the authors of [9] evaluate the efficiency of large-scale smart
contract mutation testing. They select among the available specific mutation
operators for smart contracts, assess their effectiveness in regards to killability,
and identify critical vulnerabilities that can be exploited by the mutations. The
authors only take into account a replay test suite, which is less efficient than
other testing methods and can yield a higher mutation score. The objective of
this work was to develop a mutation-based test quality assurance approach that
can also act as a starting point for other testing techniques, even though there
are better testing methods.

In [2], the authors provide a mutation-based testing system for smart con-
tracts written in the Solidity programming language. They reviewed a compre-
hensive list of known Solidity smart contract faults and developed 10 classes of
mutation operators that were designed based on the actual errors. Furthermore,
they added mutation operators to the Universal Mutator tool, enabling it to
automatically produce mutants for Solidity-written smart contracts.

The development of a mutation testing framework and its application to the
field of smart contracts were both studied by the authors in [10]. They demon-
strated how developers may use mutation testing to evaluate the effectiveness of
their test suite and make improvements to it in order to make it more efficient.

142 A. Jmal Maélej and M. Lahami

They also produced a tool called Vertigo, which should identify the precise tests
that cover the line on which the mutant causes a syntactic change rather than
executing the complete test suite for each mutant. The final result of tests that
do not include this line should not be impacted by the modification.

The authors describe in [1] a fully automated method, called SolAnalyser, for
Solidity smart contract vulnerability detection that combines static and dynamic
analysis. The proposed SolAnalyser tool can be expanded to handle different
vulnerability types and allows the automatic detection of 8 different vulnerability
classes that are currently underrepresented in existing technologies. In addition,
the authors included a fault seeding tool that introduces various vulnerabilities
into smart contracts. However, by enhancing the quality of the generated inputs,
SolAnalyser precision can further be improved.

The challenge of Ethereum smart contracts test generation was described
by the authors of [28] as a Pareto minimization problem. Minimizing uncovered
branch coverage, time costs, and gas costs are three objectives that are taken
into consideration. Then, in order to identify test suites, the authors suggest a
multi-objective strategy based on randomness and NSGA-IT (a representative
multi-objective genetic algorithm).

The authors of [23] introduce MuSC, an Ethereum Smart Contract (ESC)
mutation testing tool. It facilitates autonomous processes including building test
nets, deploying them, and running tests, besides it has the capacity to quickly
produce large numbers of mutants. With regard to the Solidity ESC program-
ming language, MuSC implements a number of unique mutation operators in
particular. As a consequence, it can expose the defects of smart contracts to a
certain degree. However, there are several issues that need to be enhanced, like
handling errors.

Deviant, a mutation testing tool for Solidity smart contracts, is presented
in [5]. It generates mutants of a particular Solidity project automatically and
analyses each mutation against the specified tests to determine its efficiency.
Deviant offers mutation operators for all of Solidity’s special features in accor-
dance with the Solidity fault model, in addition to conventional programming
constructs, that simulate various problems in Solidity smart contracts. Using
Deviant, the authors evaluated the effectiveness of the tests for three Solidity
projects. The findings show that these tests have not yet attained high mutation
scores and that a test suite that meets the requirements of Solidity smart con-
tracts for statement and branch coverage does not always guarantee the highest
level of code quality.

We highlight that all the previously introduced papers are depicted in Table 1
such as:

— Column Paper: refers to the surveyed paper.

— Column Tool: refers to the name of the proposed testing tool (if it exists).

— Column Testing objective: refers to the aim behind performing mutation
testing.

White-Box Mutation Testing of Smart Contracts: A Quick Review

143

Column Number of MO: refers to the number of adopted mutation opera-

tors in each paper (if mentioned), considering the known real bugs made by
smart contract developers.

each paper.

that malicious actors can exploit in smart contracts (if mentioned).

Column Year: refers to the publication year of each paper.

Column MS calculation: refers to the mutation score calculation or not for

Column Number of vulnerabilities: refers to the number of weaknesses

Table 1. Surveyed approaches on white-box mutation testing of smart contracts.

Paper | Tool Testing objective Number of MO | MS calculation | Number of Year
vulnerabilities

[3] ReSuMO Regression testing |44 Yes Not 2022
mentioned

[27] | EtherFuzz Security testing 14 No 1 2022

[26] | No proposed tool Security testing 5 Yes 1 2022

(4] SuMo Functional testing |44 Yes 6 2021

[6] AGSolT Functional testing | Not mentioned | No Not 2021
mentioned

[7] TestSmart Security testing 57 Yes Not 2021
mentioned

[11] |RegularMutator Security testing 6 Yes 3 2020

[9] ContractMut Scalability testing |14 Yes 7 2020

[2] Extension of the Universal Mutator tool | Security testing 57 No 8 2020

[10] | Vertigo Functional testing |6 Yes Not, 2019
mentioned

[1] | SolAnalyser Security testing Not mentioned | No 8 2019

[28] | No proposed tool Performance testing | 3 No Not 2019
mentioned

[23] | MuSC Security testing 15 Yes Not 2019
mentioned

[5] Deviant Functional testing |61 Yes Not 2019

mentioned

To respond the first research question RQ1 and as presented in Table 1,
both [26] and [28] did not propose testing tools as an automation of their solu-
tions, while the other approaches implemented their frameworks in form of dif-
ferent mutation tools, even for the majority source codes are open on GitHub.

Besides, each surveyed approach focuses on a specific testing objective using
mutation testing. It could be about:

— Regression testing [3]: concerns testing existing software applications to make
sure that a change has not broken any existing functionality.
— Security testing [1,2,7,11,23,26,27]: concerns a cybersecurity technique that
organizations use to identify, test and highlight vulnerabilities in their security
posture.
— Functional testing [4-6,10]: concerns a type of testing that seeks to establish
whether each application feature works as the software requirements.

144 A. Jmal Maélej and M. Lahami

— Scalability testing [9]: concerns a testing of a software application to measure
its capability to scale up or scale out in terms of any of its non-functional
capability.

— Performance testing [28]: concerns evaluating how a system performs in terms
of responsiveness and stability under a particular workload.

Besides, the authors of [6] and [1] did not mention explicitly the number of
introduced mutation operators, whereas this latter criterion varies widely from
3 to 61 mutation operators among the other publications. In fact, it is up to the
tester to choose the scope or specificity of the operators. Some authors prefer to
introduce a specific operator for every singular change, others choose to group
together similar changes into one operator. Note that the power of mutation
testing is very much dependent on its mutation operators, and the operators
that can mimic the real bugs can select more effective test cases.

As a response to RQ2, and based on a collection of most repeated bugs that
may happen in the implementation of a smart contract in Solidity programming
language, the majority of researchers categorize them to two groups:

1) Classic Bugs: these bugs occur in almost any programming language,
from which we can mention arithmetic issues or logical bugs (inside condi-
tions).

2) Solidity Bugs: these faults are mostly related to the Solidity program-
ming languages, and the distributed nature of blockchain and smart contracts.
Hence, it is noticed that classical mutation operators designed for general-
purpose programming languages, e.g. JavaScript, are not sufficient for the
Ethereum platform, and other mutation operators need to be designed to
simulate the Solidity specific bugs. So, mutation operators are divided as well
into two groups: (i) Classic mutation operators, and (ii) Solidity mutation
operators.

In addition, 9 out of 14 papers calculate the mutation score for a set of test
cases, which corresponds to the percentage of mutants killed by these scenarios,
and is a metric for evaluating the effectiveness of test cases.

50% of studied works mentioned the number of treated vulnerabilities, among
basically eight well-known vulnerabilities that are reported frequently in the
smart contract weakness classification (SWC) registry®. It is about: integer over-
flow/underflow, division by zero, timestamp dependency, authorisation through
tx.orgin, unchecked send, repetitive call function and finally out of gas.

The assessment of the selected studies is based on several criteria highlighted
in Table 2. Then, the obtained results are introduced in Table 3. Only four studies
achieved 100% on quality evaluation [6,9,10,27]. A wide range of papers are
greater than 80%.

8 https:/ /sweregistry.io/.

https://swcregistry.io/

White-Box Mutation Testing of Smart Contracts: A Quick Review 145

Table 2. Quality criteria

ID | Criteria

QC1 | Are the study context and objectives appropriately
described?

QC2 | Is the proposed approach described in detail?
QC3 | Are the study findings discussed?

QC4 | Is the effectiveness of the proposed approach evaluated on
at least an example of case study?

QC5 | Are the proposed approach limitations outlined and
discussed?

QC6 | Does the study include a positioning among existing
related works?

Table 3. Quality assessment scores of the selected and analysed studies

Paper | QC1 | QC2|QC3|QC4 | QC5 | QC6 | Quality %
B |1 1 |1 1 0 |1 | 83.34%
27 |1 1 1t 1 |1 1 100%
[26] |1 1 1 1 0 1 83.34%
4 (1 1 1 1 o |1 |83.34%
6 |1 1t 1t 1 |1 |1 100%
m |1 1 1 1 o |1 83.34%
M |1 o 1 1 0 |1 | 6667%
o |1 1t 1 1 |1 |1 100%
2] 1 1 1 1 0 1 83.34%
o] |1 't |t 1 |1 |1 100%
1] 1 1 1 1 0 1 83.34%
28 |1 1 |1 1 0 |0 |66.67%
[23] |1 1 1 1 0 0 66.67%
5] |1 1 |1 1 o |1 8334%

5 Conclusion

In this quick review, we investigated the state of art related to mutation testing
of smart contracts. We included 14 studies published from 2019 to 2022 and
we analysed them to provide researchers relevant information about the used
mutation operators and the calculation of mutation score. Moreover, a deep
classification of these studies were discussed while giving their strengths and
weaknesses.

Up to our best knowledge, existing surveys focused on static analysis and
dynamic testing. Our survey has a significant contribution in the literature since

146 A. Jmal Maalej and M. Lahami

it was the first one that dealt specifically with mutation testing of smart con-
tracts. Definitely, more refinement should be accorded in the future to review
the latest studies on mutation testing of smart contracts and more meaningful
research questions should be proposed.

In conclusion, the study’s findings showed that most research publications
come from conference proceedings and all of them focused on Ethereum smart
contracts written in Solidity language. We think that further research and devel-
opment are needed in order to advance the state of the art in this research line.
For instance, we can investigate the application of mutation testing techniques
on others programming languages used for smart contracts (e.g., Serpent, Vyper,
Go, etc.) and also other blockchain platforms like HyperLedger Fabric.

References

1. Akca, S., Rajan, A., Peng, C.: SolAnalyser: a framework for analysing and testing
smart contracts. In: Proceedings of the 26th Asia-Pacific Software Engineering
Conference (APSEC), pp. 482-489 (2019)

2. Andesta, E., Faghih, F., Fooladgar, M.: Testing smart contracts gets smarter. In:
Proceedings of the 10th International Conference on Computer and Knowledge
Engineering (ICCKE), pp. 405-412. The Organization (2020)

3. Barboni, M., Casoni, F., Morichetta, A., Polini, A.: ReSuMo: regression mutation
testing for solidity smart contracts. In: Vallecillo, A., Visser, J., Pérez-Castillo, R.
(eds.) QUATIC 2022. CCIS, vol. 1621, pp. 61-76. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-14179-9_5

4. Barboni, M., Morichetta, A., Polini, A.: SuMo: a mutation testing strategy for
solidity smart contracts. In: Proceedings of the IEEE/ACM International Confer-
ence on Automation of Software Test (AST), pp. 50-59 (2021). https://doi.org/
10.1109/AST52587.2021.00014

5. Chapman, P., Xu, D., Deng, L., Xiong, Y.: Deviant: a mutation testing tool for
solidity smart contracts. In: Proceedings of the IEEE International Conference on
Blockchain (Blockchain), pp. 319-324 (2019). https://doi.org/10.1109/Blockchain.
2019.00050

6. Driessen, S., Nucci, D.D., Monsieur, G., van den Heuvel, W.. AGSoLT: a
tool for automated test-case generation for solidity smart contracts. CoRR
abs/2102.08864 (2021). https://arxiv.org/abs/2102.08864

7. Fooladgar, M., Arefzadeh, A., Faghih, F.: TestSmart: a tool for automated genera-
tion of effective test cases for smart contracts. In: Proceedings of the 11th Interna-
tional Conference on Computer Engineering and Knowledge (ICCKE), pp. 476-481
(2021). https://doi.org/10.1109/ICCKE54056.2021.9721448

8. Hammami, M.A., Lahami, M., Maalej, A.J.: Towards a dynamic testing approach
for checking the correctness of ethereum smart contracts. In: Kallel, S., Jmaiel, M.,
Zulkernine, M., Hadj Kacem, A., Cuppens, F., Cuppens, N. (eds.) CRIiSIS 2022.
LNCS, vol. 13857, pp. 85-100. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-31108-6_7

9. Hartel, P., Schumi, R.: Mutation testing of smart contracts at scale. In: Ahrendt,
W., Wehrheim, H. (eds.) TAP 2020. LNCS, vol. 12165, pp. 23-42. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-50995-8_2

https://doi.org/10.1007/978-3-031-14179-9_5
https://doi.org/10.1007/978-3-031-14179-9_5
https://doi.org/10.1109/AST52587.2021.00014
https://doi.org/10.1109/AST52587.2021.00014
https://doi.org/10.1109/Blockchain.2019.00050
https://doi.org/10.1109/Blockchain.2019.00050
https://arxiv.org/abs/2102.08864
https://doi.org/10.1109/ICCKE54056.2021.9721448
https://doi.org/10.1007/978-3-031-31108-6_7
https://doi.org/10.1007/978-3-031-31108-6_7
https://doi.org/10.1007/978-3-030-50995-8_2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

White-Box Mutation Testing of Smart Contracts: A Quick Review 147

Honig, J.J., Everts, M.H., Huisman, M.: Practical mutation testing for smart con-
tracts. In: Pérez-Sola, C., Navarro-Arribas, G., Biryukov, A., Garcia-Alfaro, J.
(eds.) DPM/CBT -2019. LNCS, vol. 11737, pp. 289-303. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-31500-9_19

Ivanova, Y., Khritankov, A.: RegularMutator: a mutation testing tool for solidity
smart contracts. Procedia Comput. Sci. 178, 75-83 (2020)

Jabbar, R., Fetais, N., Kharbeche, M., Krichen, M., Barkaoui, K., Shinoy, M.:
Blockchain for the internet of vehicles: how to use blockchain to secure vehicle-
to-everything (V2X) communication and payment? IEEE Sens. J. 21(14), 15807—
15823 (2021)

Jabbar, R., Fetais, N., Krichen, M., Barkaoui, K.: Blockchain technology for health-
care: enhancing shared electronic health record interoperability and integrity. In:
2020 IEEE International Conference on Informatics, IoT, and Enabling Technolo-
gies (ICIoT), pp. 310-317. IEEE (2020)

Jabbar, R., Kharbeche, M., Al-Khalifa, K., Krichen, M., Barkaoui, K.: Blockchain
for the internet of vehicles: a decentralized IoT solution for vehicles communication
using ethereum. Sensors 20(14), 3928 (2020)

Jabbar, R., Krichen, M., Kharbeche, M., Fetais, N., Barkaoui, K.: A formal model-
based testing framework for validating an IoT solution for blockchain-based vehi-
cles communication. In: 15th International Conference on Evaluation of Novel
Approaches to Software Engineering, pp. 595-602. SCITEPRESS-Science and
Technology Publications (2020)

Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Software Eng. 37(5), 649678 (2011). https://doi.org/10.
1109/TSE.2010.62

Krichen, M.: Strengthening the security of smart contracts through the power of
artificial intelligence. Computers 12(5), 107 (2023)

Krichen, M., Ammi, M., Mihoub, A., Almutiq, M.: Blockchain for modern appli-
cations: a survey. Sensors 22(14), 5274 (2022)

Krichen, M., Lahami, M., Al-Haija, Q.A.: Formal methods for the verification of
smart contracts: a review. In: 15th International Conference on Security of Infor-
mation and Networks, SIN 2022, Sousse, Tunisia, 11-13 November 2022, pp. 1-8.
IEEE (2022). https://doi.org/10.1109/SIN56466.2022.9970534

Kushwaha, S.S., Joshi, S., Singh, D., Kaur, M., Lee, H.N.: Ethereum smart contract
analysis tools: a systematic review. IEEE Access 10, 57037-57062 (2022). https://
doi.org/10.1109/ACCESS.2022.3169902

Lahami, M., Maalej, A.J., Krichen, M., Hammami, M.A.: A comprehensive review
of testing blockchain oriented software. In: Proceedings of the 17th International
Conference on Evaluation of Novel Approaches to Software Engineering, ENASE
2022, Online Streaming, 25-26 April 2022, pp. 355-362. SCITEPRESS (2022)
Lal, C., Marijan, D.: Blockchain testing: challenges, techniques, and research direc-
tions. CoRR abs/2103.10074 (2021). https://arxiv.org/abs/2103.10074

Li, Z., Wu, H., Xu, J., Wang, X., Zhang, L., Chen, Z.: MuSC: a tool for muta-
tion testing of ethereum smart contract. In: Proceeding of 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), pp. 1198-1201
(2019)

Nguyen, Q.V., Madeyski, L.: Problems of mutation testing and higher order muta-
tion testing. In: van Do, T., Thi, H.A.L., Nguyen, N.T. (eds.) Advanced Computa-
tional Methods for Knowledge Engineering. AISC, vol. 282, pp. 157-172. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06569-4_12

https://doi.org/10.1007/978-3-030-31500-9_19
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/TSE.2010.62
https://doi.org/10.1109/SIN56466.2022.9970534
https://doi.org/10.1109/ACCESS.2022.3169902
https://doi.org/10.1109/ACCESS.2022.3169902
https://arxiv.org/abs/2103.10074
https://doi.org/10.1007/978-3-319-06569-4_12

148

25.

26.

27.

28.

A. Jmal Maalej and M. Lahami

Sujeetha, R., Preetha, C.A.S.D.: Analysis on mutation testing tools for smart con-
tracts. IJETT J. 70, 280-289 (2022)

Sun, J., Huang, S., Zheng, C., Wang, T., Zong, C., Hui, Z.: Mutation testing for
integer overflow in ethereum smart contracts. Tsinghua Sci. Technol. 27(1), 27—
40 (2022). https://doi.org/10.26599/TST.2020.9010036 https://doi.org/10.26599/
TST.2020.9010036

Wang, X., Sun, J., Hu, C., Yu, P., Zhang, B., Hou, D.: Etherfuzz: mutation fuzzing
smart contracts for TOD vulnerability detection. Wireless Commun. Mob. Com-
put. 2022 (2022). https://doi.org/10.1155/2022/1565007

Wang, X., Wu, H., Sun, W., Zhao, Y.: Towards generating cost-effective test-suite
for ethereum smart contract. In: Proceedings of the IEEE 26th International Con-
ference on Software Analysis, Evolution and Reengineering (SANER), pp. 549-553
(2019)

https://doi.org/10.26599/TST.2020.9010036
https://doi.org/10.26599/TST.2020.9010036
https://doi.org/10.26599/TST.2020.9010036
https://doi.org/10.1155/2022/1565007

	White-Box Mutation Testing of Smart Contracts: A Quick Review
	1 Introduction
	2 Background Materials
	2.1 Mutation Testing
	2.2 Smart Contracts

	3 Related Reviews
	4 Mutation Testing of Smart Contracts
	5 Conclusion
	References

