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Preface

This volume contains the papers presented at the 16th International Conference on Ver-
ification and Evaluation of Computer and Communication Systems (VECoS 2023),
held during October 18–20, 2023 in Marrakech, Morocco, and hosted by Cadi Ayyad
University.

The event of this year continues the tradition of previous editions held 2007 in
Algiers, 2008 in Leeds, 2009 in Rabat, 2010 in Paris, 2011 in Tunis, 2012 in Paris, 2013
in Florence, 2014 in Bejaïa, 2015 in Bucharest, 2016 in Tunis, 2017 in Montreal, 2018
in Grenoble, 2019 in Porto, 2020 in Xi’an (virtual), and 2021 in Beijing (virtual).

As in previous editions, VECoS provided a forum for researchers and practitioners
in the areas of verification, control, performance, and dependability evaluation in order
to discuss the state of the art and challenges in modern computer and communication
systems inwhich functional and extra-functional properties are strongly interrelated. The
mainmotivationwas to encourage cross-fertilization between various formal verification
and evaluation approaches, methods, and techniques, and especially those developed for
concurrent and distributed hardware/software systems.

The Program Committee of VECoS 2023 was composed of 71 researchers from
21 countries. We received 36 full submissions from 17 countries. After a thorough and
lively discussion phase, the committee decided to accept 12 regular papers. The topics
presented covered a range of subjects, including approaches to improving the scalability
and efficiency of formal verification and their applications to blockchain, smart contracts,
and neural networks. The conference also included two invited talks, one on analysis of
Petri nets and the other on verification of concurrent programs.

We are grateful to the Program andOrganizing Committeemembers, to the reviewers
for their cooperation, and to Springer for their professional support during the production
phase of the proceedings. We are also thankful to all authors of submitted papers, to the
invited speakers, and to all participants of the conference. Their interest in this conference
and their contributions are greatly appreciated.

October 2023 Belgacem Ben Hedia
Yassine Maleh
Moez Krichen
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On Verifying Concurrent Programs under Weakly
Consistent Memory Models

Ahmed Bouajjani

Paris Cité University, France
abou@irif.fr

Abstract

Developing correct and performant concurrent systems is a major challenge. When
programming an application over a memory/storage system, a natural expectation would
be that eachmemory update is immediately visible to all concurrent threads,whichmeans
that the views of the different threads are (strongly) consistent. However, for performance
reasons, only weaker guarantees can be ensured by memory systems, defined by what
sets of updates can be made visible to each thread at any moment, and by the order in
which these updates are made visible. The conditions on the visibility order guaranteed
by a memory system corresponds to its consistency memory model. Weak consistency
models admit complex and unintuitive behaviorswherememory access operations (reads
and writes) may be reordered in various ways w.r.t. the order in which they appear in
programs. Thismakes the task of application programmers extremely hard. It is therefore
important to determine an adequate level of consistency for each given application, i.e.,
a level that is weak enough to ensure high performance, but also strong enough to ensure
correctness of the application w.r.t its specification. This leads to the consideration of
several important verification problems:

– the correctness of an application program running over a weak consistency model;
– the robustness of an application program w.r.t. consistency weakening;
– the fact that an implementation of a system (memory, storage system) guarantees a

given (weak) consistency model.

The talk gives a broad presentation of these issues and some results in this research
area. The talk is based on several joint works with students and colleagues during the
last few year.



How to Use Polyhedral Reduction for the Verification
of Petri Nets

Silvano Dal Zilio

LAAS - CNRS, France
ali.mili@njit.edua

Abstract

I will describe a new concept, called polyhedral reduction, that takes advantage of struc-
tural reductions to accelerate the verification of reachability properties on Petri nets.
This approach relies on a state space abstraction which involves sets of linear arithmetic
constraints between the marking of places. We have been using polyhedral reductions to
solve several problems. I will consider three of them. First, how to use reductions to effi-
ciently compute the number of reachable markings of a net. Then how to use polyhedral
reduction in combination with a SMT-based model checker. Finally, I will define a new
data-structure, called Token Flow Graph (TFG), that captures the particular structure of
constraints that we generate with our approach. I will show how we can leverage TFGs
to efficiently compute the concurrency relation of a net, that is all pairs of places that
can be marked together in some reachable marking.
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Factorization of the State Space
Construction for Cyclic Systems

with Data

Johan Arcile1(B), Raymond Devillers2, and Hanna Klaudel1

1 IBISC, Univ Evry, Université Paris-Saclay, 91025 Evry, France
{johan.arcile,hanna.klaudel}@univ-evry.fr

2 ULB, Bruxelles, Belgium
rdevil@ulb.ac.be

Abstract. In the context of formal modeling and verification of com-
plex systems composed of cycling entities, we propose a method allowing
to speed up the construction of state spaces exploiting symmetries. The
method is suitable for systems continuously updating large data but
whose transitions do not depend on the particular data values. Using a
judicious ordering of operations, the method avoids non-necessary multi-
ple treatments thus allowing to factorize a part of the computations. We
prove that the method is correct and complete, and illustrate its appli-
cation on a case study composed of a network of cycling timed automata
extended with data.

1 Introduction

The formal verification of real time systems is a topic of importance, with a
lot of theoretical and practical works in various contexts (multi-core systems
[21], security protocols [4], embedded systems [12], internet of things [2], etc.),
and several tools that have proved their usefulness (Uppaal [18], Kronos [10],
Imitator [3], Prism [17], Tina [9], Romeo [20], etc.). However, and despite all the
efforts to make them as efficient and user-friendly as possible, these tools and
techniques are still rarely used by system designers [7,23], partly due to a lack
of support for complex data structures and the ability to cope with really big
state spaces.

Our motivation is to verify temporal logic properties of systems with data,
in particular multi-agent real time systems comprising agents having a cyclic
behaviour and whose states are described by a large number of variables. The
applications we have in mind are for example autonomous vehicles, flying drone
squadrons, mobile robots completing tasks according to their own objectives, etc.
The formal description of such systems often leads to huge state spaces, due to
large value domains, compromising any verification using traditional techniques
and tools. However, in some cases, these state spaces have symmetries which
may be exploited. In this paper, we propose some improvements in the state
space construction.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ben Hedia et al. (Eds.): VECoS 2023, LNCS 14368, pp. 1–14, 2024.
https://doi.org/10.1007/978-3-031-49737-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49737-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-49737-7_1
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The idea of our approach is to start with a specification M of a system which
may be expressed in terms of a labelled transition system. We do not need to
specify the syntax at this stage (for example, it could be a network of timed
automata). We consider an extension of M with data, denoted M+ satisfying
that transition enabling does not depend on data values, and data updates are
only possible through update functions associated to transitions. A state in M+

is then composed of a control part (for timed automata, that would be clocks
and locations) and a data part. The usual way to compute the state space of
M+ is to compute successor states with the semantics of M extended with data
(for example, extended timed automata).

Since data does not impact the availability of transitions, the evolution of the
control part of states does not depend on the evolution of data. If M contains
cycles, these cycles generally disappear in M+ because of data, but the control
part is still the same (cyclic) and may be factorized. Our idea is to compute the
state space of M, i.e. ignoring data, which is a labelled transition system and
use it as a specification to be extended with data, leading to a state space that
is equivalent to the one of M+ while being computed faster. For example, with
timed automata, this factorization avoids to compute several times the same
clock zones in successor states. In general, this method is all the more effective
as the difference of the number of states between M and M+ is large. This is
particularly interesting in the context of on-the-fly exploration methods, where
the state space is built while verifying properties.

Contribution. In this paper, we define first a general way to extend a specification
with data, then propose a method of factorization and prove its soundness and
completeness. For finite systems, we propose a method allowing to reduce the
size of the state space while preserving temporal logic properties of interest.
Finally, we apply the method to examples of networks of timed automata of
realistic size applications of systems of autonomous vehicles.

Outline. The paper is structured as follows. The next section introduces some
related work. Then, Sect. 2 fixes the context, recalls main notions and defines
our new approach, called factorization. First we define the data extension and its
semantics; then, we introduce the factorization method for a faster computation
of the state spaces and prove the equivalence of the state spaces obtained by
traditional algorithms and using the factorization method. We end this section
by discussing the theoretical gain of computation time of this approach. Based
on factorizations, Sect. 3 proposes an abstraction for finite state spaces, leading
to a construction of a reduced state space having interesting properties in terms
of language equivalence and temporal logic properties. Section 4 illustrates the
method on networks of timed automata and provides some experimental results.
Section 5 concludes the paper.

1.1 Related Works

The formal verification of applications involving a large number of variables
is challenging right from the modeling stage [24]. Most of the model checking
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tools do not allow to extend their formalism with data. Therefore, implementing
such a specification would require some automated assistance, and would be
impractical to use at best, and might even be impossible to handle for the tool.
This issue has been addressed by the community, since the state of the art tool
Uppaal supports timed automata extended with data structures. Yet, even while
modeling is facilitated, such models give way to the usual state space explosion
problem.

Model Checking with Large Data Structure. Statistical model checking [19] sim-
ulates runs of the system in order to provide a statistical estimation of the
satisfaction of some property. This method can easily express complex cyber-
physical systems with a large number of data variables. However, they do not
allow to express non-determinism, and they do not provide formal guarantees of
their results.

Real-Time Abstractions. Several abstractions, like the clock extrapolation [8,14]
or the calendar model [15,22] have been devised over the years to deal with state
space representation in the context of real time systems. Those methods focus
on state space explosion due to the real time aspects of the system and ensure
a finite state space even when dealing with dense time. As our work aims at
facilitating the construction of state spaces in the context of real time systems
extended with data structures, it is complementary to those abstractions.

In [13], the authors propose a timeless variant of the calendar model for
quasi-periodic distributed systems ([11], cyber-physical systems where each pro-
cess owns a local clock). Although this work has analogies with ours by the
way it abstracts real-time aspects based on cyclic behavior of components, it
is syntactically restrictive with respect to real-time constraints and provides an
over-approximation of the original calendar model.

2 Specifications, Data Extension and Factorization

In this section, we present the main concepts and ideas of our approach. We try
to stay as general as possible and do not restrict ourselves to any specific for-
malism. Thus, we accept any specification whose semantics may be expressed in
terms of a labelled transition system (LTS) and whose data extension does not
impact transition enabling. Indeed, most formalisms used in the formal verifica-
tion community, such as Petri nets or timed automata, can meet these criteria,
with the syntactic constraint that data variables should not be used in guards,
invariants or anything that could prevent transitions to be enabled.

Definition 1 (LTS). A labelled transition system (LTS) is defined as a tuple
(S, Σ,→, s0), where S is a set of states, Σ is a set of actions (transition labels),
s0 ∈ S is the initial state and →⊆ S × Σ × S is the transition relation. A
sequence of actions of the LTS is a word w ∈ Σ∗ such that there is a sequence
of transitions starting in s0 and ending at some state s whose labels form w.
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From now on, we will only consider specifications M whose semantics can
be expressed as an LTS, and denote by μ(M) their semantics. We will of course
assume that each state s may be reached from s0 while following the arcs of →.

Definition 2 (Data extension). Given a specification M, we define an exten-
sion of it with data and update functions by M+ = (M,V,D,F , v0), where

– V is a set of variables with domain D;
– F = {fa | a ∈ Σ} is a set of computable functions fa : DV → DV ;
– v0 ∈ DV is an initial valuation of variables.

The semantics of such an extended specification is also an LTS. The states
are pairs (s, v), where s ∈ S and v ∈ DV .

Definition 3 (Semantics of an extended specification). From a specifi-
cation M+, we obtain the LTS (S × DV , Σ,

F−→, (s0, v0)), where
F−→ is the set of

transitions {((s, v), a, (s′, fa(v))) | (s, a, s′) ∈→}. The semantics μ(M+) of M+

is defined as the part of this LTS that is reachable from its initial state (s0, v0).

In order to simplify the presentation, we assumed that all the variables have
the same domain. It is not a true restriction. Indeed, we may take D = ∪ν∈VDν ,
where each variable ν ∈ V has its own domain Dν , such that ∀a ∈ Σ,
fa(

⊗
ν∈V Dν) ⊆ ⊗

ν∈V Dν and that v0 ∈ ⊗
ν∈V Dν . Then, for each reachable

state (s, v), v ∈ ⊗
ν∈V Dν .

An important property arising from this definition is that data does not
impact the availability of transitions: the evolution of the control part of states
does not depend on the evolution of data. This may be expressed in terms of the
following lemma.

Lemma 1. The sequences of actions of μ(M) and μ(M+) are identical.

Proof. This Lemma is a direct consequence of Definition 3. The only difference
is that, in the extension, the transitions have an impact on the data part of the
states. � 1

Let M+ = (M,V,D,F , v0)) be a specification extended with data. The usual
way to compute the state space of M+ is to start at the initial state and compute
successor states with the extended semantics of M. An alternative to compute
μ(M+) is to first ignore the extension with data, consider its semantics μ(M)
(i.e. a LTS) as a specification and then extend it with data. Formally, we note
it as [μ(M)]+ = (μ(M),V,D,F , v0)).

Proposition 1. μ([μ(M)]+) = μ(M+) up to renaming of states.

Proof. Given a state (s, v) of an extended specification, we refer to s as the
control part of the state, and v as the data part. First, by Definition 3, extending
a specification with data does not impact sequences of transitions with regard to
the control part of states. Second, by Lemma 1, μ(M) and μ(M+) have the same
sequences of actions. As the evolution of data part of states only depends on such
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sequences (by Definition 3), extending the LTS μ(M) with data results in the
same sequences of transitions with regard to the data part of states than directly
extending specification M. Since the sequences of transitions in μ([μ(M)]+) and
μ(M+) are identical both with regard to the control and data parts of states,
those models are in fact identical. � 1

Intuitively, we shall consider that our specifications, as well as their seman-
tics, result from some kind of “factorization” since we separated the control
part from the data part. Indeed, whenever there are cycles in μ(M), computing
μ([μ(M)]+) instead of μ(M+) allows to exhibit the cyclic control independently
from the (non-necessarily cyclic) evolution of the data. The main observation is
that a cycle in M does not necessarily correspond to a cycle in μ(M+) since
data extension has a “multiplicative” effect on states. For example, a cyclic path

s0
a0−→ . . .

am−−→ s
a′
1−→ . . .

a′
n−−→ s

a′
1−→ . . .

a′
n−−→ s . . .

in μ(M), i.e., a path where a state s is reached infinitely often while following
always the same path from this state, becomes

(s0, v0)
a0−→ . . .

am−−→ (s, v′)
a′
1−→ . . .

a′
n−−→ (s, v′′)

a′
1−→ . . .

a′
n−−→ (s, v′′′) . . .

in μ(M)+, which is unlikely to be cyclic around a′
1 . . . a′

n (unless
fa′

n
(...(fa′

1
(v′)...) = v′). In such a case, the computation of μ([μ(M)]+) avoids

to compute more than once the transitions and the control part (s) of the states
from (s, .) to (s, .):

s
a′
1−→ . . .

a′
n−−→ s.

2.1 Gain Estimation

We can provide a theoretical estimation of the gain of computation time of
building a state space with μ([μ(M)]+) instead of μ(M+). In the following, we
will denote by

– time(ω) the computation time of the state space ω;
– |ω| the number of transitions in ω;
– tLTS the average time needed to compute one successor state in the semantics

of an LTS;
– tM the average time needed to compute one successor state in the semantics

of M;

We then have

time(μ(M)) = |μ(M)| · tM,
time(μ(M+)) = |μ(M+)| · tM and
time(μ([μ(M)]+)) = time(μ(M)) + |μ(M+)| · tLTS

since once μ(M) is computed, the semantics of M is no longer needed to extend
with data.
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Therefore, the gain of computation time can be expressed as

time(μ(M+)) − time(μ([μ(M)]+)) = |μ(M+)| · (tM − tLTS) − |μ(M)| · tM

To summarize, the gain of computation time of building a state space with
μ([μ(M)]+) depends on two factors: the difference in size (i.e., number of states)
between μ(M) and μ(M+), which directly depends on cyclicity; and the differ-
ence in time between tLTS and tM, which directly depends on the complexity
of the semantics of M.

3 Reduced State Space

An interesting feature of our factorization is that we may apply classical reduc-
tion procedures to the control part of the system while preserving most of the
temporal properties.

By definition, μ(M) is an LTS. If it is finite, it can be seen as a finite state
machine (FSM) whose states are all accepting and that we will denote by A.
Thus, A can be determinized and then minimized using classical algorithms
[16]. Below, we recall shortly these two notions.

Let A = (S, Σ,→, s0) then det(A) = (S ′, Σ,→′, s0) is its determinised ver-
sion, where s0 ∈ S ′ ⊆ 2S and →′ are defined as smallest sets such that if
X ∈ S ′, a ∈ Σ, and if Y ⊆ S is the set of all states s′ reachable from a state
s ∈ X by a transition labelled a, i.e., ∀s ∈ X, (s, a, s′) ∈→, then (X, a, Y ) ∈→′

and Y ∈ S ′.
Let A = (S, Σ,→, s0) be a deterministic FSM and ≡⊆ S × S be the

equivalence relation on states such that ∀q, q′ ∈ S : q ≡ q′ iff ∀w ∈ Σ∗

q
w−→ p ⇔ q′ w−→ p′, where p, p′ ∈ S. Then min(A) = ([S], Σ, [→], [s0]) denotes its

minimised version, where [S] = S/≡ is the set of equivalence classes of S for ≡,
[→] is the set of transitions on those classes and [s0] the equivalence class of s0.

This is illustrated on Fig. 1.

Fig. 1. Example of determinisation and minimisation.

By definition, there is a language equivalence (i.e., the sequences of actions
are identical) between μ(M) and min(det(μ(M))). As a consequence all the
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properties based on sequences of actions stay valid. Since data is only impacted
by such sequences, both systems are equivalent when ignoring the part of states
that does not involve data. Extending min(det(μ(M))) with data results in
[min(det(μ(M)))]+ = (min(det(μ(M))),V,D,F , v0)).

Definition 4 (bisimulation). Let A = (S, Σ,→, s0) and A′ = (S ′, Σ,=⇒, s′
0)

be two LTS. A bisimulation is a binary relation ≈⊆ S × S ′ such that s0 ≈ s′
0

and for all p ≈ q:

– if ∃p′ ∈ S s.t. p
a−→ p′, then ∃q′ ∈ S ′ s.t. q

a=⇒ q′ and p′ ≈ q′, and
– if ∃q′ ∈ S ′ s.t. q

a=⇒ q′, then ∃p′ ∈ S s.t. p
a−→ p′ and p′ ≈ q′.

Given μ(M+) = (S, Σ,→, s0), we define its data projection (denoted
μ(M+)) as the LTS (S ′, Σ,⇒, s0) where S ′ and ⇒ are the smallest sets such
that, ∀ p ∈ S,∃ p ∈ S ′ and ∀ p

a−→ q,∃ p
a=⇒ q, where for any state p = (s, v), p

denotes its data part, i.e., p = v.

Proposition 2. μ([min(det(μ(M)))]+) ≈ μ([μ(M)]+)

Proof. By definition, min(det(A)) preserves the sequences of actions of A. As the
value of the set of data variables v only depends on such sequences (see Definition
3), extending min(det(μ(M))) with data results in an LTS whose data projection
is bisimilar to the data projection of the LTS obtained by directly extending
μ(M) with data. � 2

As a consequence of Proposition 2, for any logic property φ (typically in a
temporal logic for timed systems) built from the variable set V (typically from
atomic formulas of the kind variable = value), we have

[μ(M)+, s0) |= φ] ⇔ [μ([min(det(μ(M)))]+), [s0] |= φ].

This means that the semantics of the original specification extended with data
satisfies φ, if and only if this is also the case for the semantics of its minimized and
determinized state space extended with data. φ cannot rely on the control part
of states (hence on clocks and locations in the context of timed automata) since
some states may be merged in the determinization and minimization process
(and hopefully will be, as this allows for shorter computation times).

4 Application to a Network of Timed Automata

In this section, we first illustrate our method on a toy example of a network of
timed automata (TA). We then provide some experimental results based on an
extended network of TA that models actual cyber-physical systems.
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4.1 Timed Automata

First we shortly recall the definition of TA and their semantics. Syntactically, a
TA is a finite state machine extended with clocks, real-valued variables that all
evolve at the same rate. The domain of a clock x is R≥0. Given a set of clocks
X, we denote by clock constraint a Boolean formula over a set of inequalities of
the form x �� c, with x ∈ X, ��∈ {<,≤,=,≥, >} and c ∈ N.

Definition 5 (Syntax of a network of TA). A network A is a set of n timed
automata Ai = (Σi,Li, �

0
i ,Xi, Ii, Ei), where:

1. Σi is a finite set of actions,
2. Li is a finite set of locations,
3. �0i ∈ L is the initial location,
4. Xi is a finite set of clocks,
5. for every � ∈ Li, Ii(�) is a clock constraint,
6. Ei is a finite set of transitions e = (�, g, a,R, �′) where �, �′ ∈ Li are the source

and target locations, a ∈ Σi, R ⊆ Xi is a set of clocks to be reset, and g is a
clock constraint.

Definition 6 (Semantics of a network of TA). A state of a network of TA is
a pair (	�, v(X)) where 	� = �1 . . . �n where �i ∈ Li, and v(X) is a valuation of each
clock in X = ∪n

i=1Xi. To simplify the notations, we write I(	�) =
∧n

i=1 Ii(�i).
The initial state is (	�0, v0(X)), where 	�0 = �01 . . . �0n and v0(X) is such that each
clock in X is valuated to 0 and I(	�0) is true on v0(X). The successors of a state
(	�, v(X)) are:

– (	�, v(X) + δ) where δ ∈ R≥0 and I(	�) is true on v(X) + δ; or
– (	�′, v(X)) where there exists a transition (�i, g, a,R, �′) ∈ Ei such that

• g is true on v(X),
• for any x ∈ X, if x ∈ R its valuation in v′(X) is 0, otherwise its valuation

remains unchanged, and
• I(	�′) is true on v′(X).
• 	�′ = �′

1 . . . �′
n where ∀j ∈ [1, n] if j = i then �′

j = �′, otherwise �′
j = �j.

In order to obtain the semantics of a TA extended with data we apply to
TA Definitions 2 and 3. A state of an extended TA is a triple (�, v(X), v). The
successors of state (�, v(X), v) are:

– (�, v(X) + δ, v) where δ ∈ R≥0 and I(	�) is true on v(X) + δ; or
– (�′, v′(X), v′) where there exists an edge (�, g, a,R, �′) ∈ E such that

• g is true on v(X),
• for any x ∈ X, if x ∈ R its valuation in v′(X) is 0, otherwise its valuation

remains unchanged, and
• I(	�′) is true on v′(X).
• 	�′ = �′

1 . . . �′
n where ∀j ∈ [1, n] if j = i then �′

j = �′, otherwise �′
j = �j .

• v′ = fa(v);
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4.2 A Toy Example

Let us illustrate the method on a simple network of TA extended with data M+

composed of two components with two clocks x and y and three actions a, b
and c, represented in Fig. 2a. The data extension is very simple, it consists in a
unique integer variable v, and three update functions fa(v) = v+2, fb(v) = v−1
and fc(v) = 2 ·v. We assume that initially v = 0. Figure 2b depicts a small initial
fragment of the state space of M+.

Fig. 2. M+ and the initial fragment of its state space.

Figure 3 presents the consecutive stages of factorization and reduction meth-
ods applied to M+ defined above. First, Fig. 3a depicts the state space of M+

when ignoring data. One can observe that the obtained FSM is neither deter-
ministic nor minimal. Next, if we want to obtain a reduced state space, we have
to determinize and minimise this FSM. The resulting minimal FSM, where loca-
tions and clock values are removed, is depicted in Fig. 3b; it has 8 states and 13
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transitions instead of 11 states and 20 transitions. Finally, this minimal FSM is
used as a specification to be extended with data. The initial part of the obtained
reduced state space of M+ is depicted in Fig. 3c, where the value of variable v
is indicated inside the states.

Fig. 3. The stages of construction of the reduced state space of M+.

4.3 Experiments on a Cyber-Physical System

The method has been experimented on models of communicating autonomous
vehicles (CAVs) taken from [5]. The systems are modeled with networks of timed
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automata. They describe the behaviors of a few communicating autonomous
vehicles on a portion of road. The knowledge and physical characteristics of each
vehicle is stored in a data structure. Each vehicles alternatively computes some
decision based on its knowledge, and communicates its intentions to surrounding
vehicles.

We have taken three variants of a same scenario that differ with respect to the
communication protocol between vehicles, denoted respectively as Base, Infras-
tructure and Negotiation, and whose models come from [1] and are implemented
in the input format for UPPAAL.

Using UPPAAL, we measured the computation time of the state space of
those models, then replaced the network of timed automata by the FSM obtained
when ignoring data, and measured the computation time again. Table 1 presents
those experimental results, showing the decrease in computation time for those
models when using the factorization. Minimization was not applied since the
obtained FSM where already minimized. The FSM obtained when ignoring data
was composed of 10 states for models Base and Negotiation, and 62 states for
model Infrastructure, and their computation time was negligible (< 0.1 s).

We also measured the computation time for the original state space, FSM
and minimized FSM for our toy example of Fig. 2. In order to obtain a finite
state space, we added an arbitrary minimum and maximum value for the data
variable (respectively of −500000 and 500000), which is equivalent to introduce
a finite horizon. The results are given in the column Toy of Table 1.

Table 1. Comparison of computation times on various models of CAVs taken from
[5].

Base Infrastructure Negotiation Toy

Comp. time (s): µ(M+) 8.2 24.2 261.7 56.4

Comp. time (s): µ([µ(M)]+) 6.5 21.7 219.8 15.8

Comp. time (s): µ([min(det(µ(M)))]+) 6.5 21.7 219.8 11.7

Ratio min/max 0.79 0.89 0.83 0.20

All in all, a significant gain is obtained with our method, although it is of
a higher magnitude for our toy example. This can be explained mainly by the
difference in complexity between the toy example, where a single operation is
performed on each transition, and the CAV model, where hundreds of operations
are performed on each transition. In this context, the gain of factorizing the
control part of the states (i.e. locations and clock zones) has more impact in the
toy example than in the CAV model.

5 Conclusion

Driven by the need for an efficient construction of the state spaces of multi-agent
real-time systems with large data, we proposed a method which takes advantage
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of symmetries which are often present in such systems. The systems we focus on
are transition systems extended with data variables, with the requirement that
variable updates are only allowed on transitions but the enabling of transitions
is independent from these variables. We then proposed a method to construct
the state space of such models, by factorizing some computations.

In case of finite state spaces, we proposed a method to construct reduced state
spaces that preserve some temporal logic properties focusing on the observation
of data variables. This limitation has little impact since for cyber-physical sys-
tems, data variables correspond to the physical aspects of the system, on which
the verification generally focuses.

As an illustration, we presented an application of the method on a network of
timed automata extended with data. We also applied our method on specifica-
tions of complex cyber-physical systems of communicating autonomous vehicles.
The results are promising and show a significant gain in state space construction
times compared to classical approaches.

The method does not interfere with orthogonal approaches, such as abstrac-
tions designed to compute the state space of the specification with its original
semantics, prior to the data extension (for instance, in the context of timed
automata, the well known clock extrapolation guarantees a finite state space).
The method can speed up the state space construction in general, but will be
particularly useful when combined with exploration methods exploiting symme-
tries.

In the future, we plan to use the factorization described in this paper in
conjunction with the layer-based exploration methods developed in [6] for a class
of cyclic timed automata. The advantage of these methods is that they allow to
generate the state space and check on-the-fly safety properties of cyber-physical
systems having cyclic behaviors.

Acknowledgements. The authors appreciated the remarks and encouragements of
the anonymous reviewers.
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Abstract. The SyDPaCC framework for the Coq proof assistant is
based on a transformational approach to develop verified efficient scalable
parallel functional programs from specifications. These specifications are
written as inefficient (potentially with a high computational complexity)
sequential programs. We obtain efficient parallel programs implemented
using algorithmic skeletons that are higher-order functions implemented
in parallel on distributed data structures. The output programs are con-
structed step-by-step by applying transformation theorems. Leveraging
Coq type classes, the application of transformation theorems is partly
automated. The current version of the framework is presented and exem-
plified on the development of a parallel program for the maximum seg-
ment sum problem. This program is experimented on a parallel machine.

Keywords: program transformation · scalable parallel computing ·
functional programming · interactive theorem proving

1 Introduction

Our everyday activities generate extremely large volume of data. Big data ana-
lytics offer opportunities in a variety of domains [4,13].

While there are many challenges in the design and implementation of big
data analytics applications, we focus on the programming aspects. Due to the
large scale, scalable parallel computing is a necessity. Most approaches either
cite Bulk Synchronous Parallelism (BSP) [44] as an inspiration, that is the case
of Pregel [32] and related frameworks such as Apache Giraph, or are related to,
even if it is not often acknowledged, algorithmic skeletons [6]. This is the case of
Hadoop MapReduce [9] and Spark [1].

Both BSP and algorithmic skeletons are structured and high-level approaches
to parallelism which free the developers from tedious details of the implementa-
tion of parallel algorithms found for example in MPI programming, a de facto
standard for writing HPC programs. While BSP is a general purpose parallel
programming model, algorithmic skeletons approaches as well as the mentioned
big data frameworks are limited to what is expressible by the building blocks
they provide. This lack of generality is both a strength making them easier to
use in the classes of applications they naturally cover, but also a weakness in
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ben Hedia et al. (Eds.): VECoS 2023, LNCS 14368, pp. 15–29, 2024.
https://doi.org/10.1007/978-3-031-49737-7_2
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that expressing one’s algorithm with these building blocks may become very
convoluted or even impossible.

SyDPaCC [27,28] is a framework for the Coq proof assistant to systemat-
ically develop correct and efficient parallel programs from specifications. Cur-
rently, SyDPaCC provides sequential program optimizations via transforma-
tions based on list homomorphism theorems [17] and the diffusion theorem [21].
It also provides automated parallelization via verified correspondences between
sequential higher-order functions and algorithmic skeletons implemented using
the parallel primitives of BSML [26] a library for scalable parallel program-
ming with the multi-paradigm (including functional) programming language
OCaml [24]. In this paper, we develop a new verified parallel algorithm for the
maximum segment sum problem, which is for example a component of computer
vision applications to detect the brightest area of an image.

The remaining of the paper is organized as follows. Functional bulk syn-
chronous parallel programming with the BSML library is introduced in Sect. 2.
Section 3 is devoted to an overview of the SyDPaCC framework. In Sect. 4, we
develop a verified scalable Bulk Synchronous Parallel algorithm of the maxi-
mum segment sum problem and experiment (Sect. 5) on a parallel machine the
extracted code from the Coq proof assistant. We compare our approach to
related work in Sect. 6 and conclude in Sect. 7. The code presented in the paper
is available in the SyDPaCC distribution version 0.5 at https://sydpacc.github.
io.

2 Functional Bulk Synchronous Parallelism

In the Bulk Synchronous Parallel model, the BSP computer is seen as a homo-
geneous distributed memory machine with a point-to-point communication net-
work and a global synchronization unit. It runs BSP programs which are
sequences of so-called super-steps. A super-step is composed of three phases.
The computation phase is concerned with each processor-memory pair com-
puting using only the data available locally. In the communication phase, each
processor may request data from other processors and send requested data to
other processors. Finally, during the synchronization phase, the communication
exchanges are finalized and the super-step ends with a global synchronization of
all the processors.

BSML offers a set of constants (giving access to the parameters of the BSP
machine as they are discussed in [40] but omitted here) including bsp_p the
number of processors in the BSP machine and a set of four functions which
are expressive enough to express any BSP algorithm. BSML is implemented as
a library for the multi-paradigm and functional language OCaml [24] ( [34] is
a short introduction to OCaml and its qualities). BSML is purely functional
but using on each processor the imperative features of OCaml, it is possible to
implement an imperative programming library [26] in the style of the BSPlib for
C [19]. In this paper we are interested in the pure functional aspects of BSML
as it is only possible to write pure functions within Coq.

https://sydpacc.github.io
https://sydpacc.github.io
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Given any type α and a function f from int to α (which is written f: int→α
in OCaml), the BSML primitive mkpar f (mkpar applied to f, application in
OCaml and many other functional languages is simply denoted by a space)
creates a parallel vector of type α par. Parallel vectors are therefore a poly-
morphic data-structure. In such a parallel vector, processor number i with
0 ≤ i <bsp_p, holds the value of f i. For example, mkpar(fun i→i) is the
parallel vector 〈0, . . . , bsp p−1〉 of type int par. In the following, this parallel
vector is denoted by this. The function replicate has type α → α par and
can be defined as: let replicate = fun x → mkpar(fun i→x). In expres-
sion replicate x, all the processors will contain the value of x.

(+)1 is the partial application of addition seen in prefix notation, it is
equivalent to fun x→1+x. Therefore replicate ((+)1) is a parallel vector of
functions and its type is (int→int)par. A parallel vector of functions is not
a function and cannot be applied directly. That is why BSML provides the
primitive apply that can apply a parallel vector of functions to a parallel vector
of values. For example, apply (replicate ((+)1)) this is the parallel vector
〈1, . . . , bsp p〉. Using apply and replicate in such a way is common. The
function parfun is also part of the BSML standard library and is defined as:
let parfun f = apply(replicate f).

The primitive proj can be seen as a partial inverse of mkpar, its type is
α par →(int → α). However, proj(mkpar f) is in general different from f.
Indeed f may be defined on all the values of type int, but proj(mkpar f) is
defined only on {0, . . . , bsp p − 1}.

To transform a parallel vector into a list, one can define to_list as follows:
let to_list v = List.map (proj v) processors where processors has
type int list and contains the integers from 0 (included) to bsp_p (excluded).

Fig. 1. A Signature for Algorithmic Skeletons on Distributed Lists

While mkpar and apply do not require any communication or synchronization
to run, proj needs communications and a global synchronization. The value of
each processor is sent to all the other processors (it is a total exchange). For a
finer control over communications the primitive put should be used. It is the most
complex operation of BSML and its type is (int→α)par → (int→α)par. The
functions in the input vector contain the messages to be sent to other processors.
The functions in the output vector contain the messages received from other
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processors. For example if the input vector contains function ini at processor
i, then the value v = ini i′ will be sent to processor i′. After executing the
put, processor i′ contains a function outi′ such that outi′ i = v. Some OCaml
values are considered to be empty messages so an application of put does mean
that each processor communicates with every other processors. For the sake of
conciseness we do not detail put further but we refer to [29].

Fig. 2. A BSML Example

As an example, we implement in Fig. 2 the set of algorithmic skeletons on a
data-structure of distributed lists whose module type is shown in Fig. 1.

We implement the distributed list type as a record type: its content is a
parallel vector of lists and it also possesses a field for the global size of the
distributed list. init is similar to mkpar, however for distributed lists the size is
given by the user while it is always bsp_p for parallel vectors. We want the list
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to be distributed evenly: each processor contains size/bsp_p elements, or one
more element than that.

map is similar to the List.map function on sequential lists: it applies a
function f to all the elements of the lists. Here each processor takes care of the
sub-list it holds locally. List.filter p l uses a predicate p to keep only the
elements of l that satisfy this predicate. Our filter skeleton does the same: the
part about the content is easy to write. But we also need to update the global
size of the distributed list and communications are required to do so. Note that
after a filter, the distributed list may no longer be evenly distributed.

3 An Overview of SyDPaCC

We present the use of SyDPaCC through a very simple example. In this case the
specification is already quite efficient, but often the specification has a higher
complexity than the optimized program. This is for example the case of the
maximum prefix sum problem presented in [28] and the maximum segment sum
problem presented in the next section. For a short introduction to Coq, see [2].

Our goal is to obtain a parallel algorithm for computing the average of a list
of natural numbers. To do so, we use SyDPaCC to parallelize a function that
sums the elements of a list and counts the number of elements of this list. This
specification can be written as:

Fixpoint sum (l: list nat) : nat :=
match l with
| [] ⇒ 0
| n:: ns ⇒ n + sum ns
end.

Definition count : list nat → nat := length (A:=nat).

Definition spec : list nat → nat ∗ nat := (sum � count).

sum is a recursive function defined by pattern matching on its list argument while
count is just an alias for the pre-defined length function. The specification spec
is defined as the tupling of these two functions.

We then try to show that this function has some simple properties: it is
leftwards, meaning it can be written as an application of List.fold_right,
rightwards, meaning it can be written as an application of List.fold_left,
and finally it has a right inverse, which is a weak form of inverse.

For a list l = [x1;. . .;xn], binary operations ⊕ ⊗, and values el er, we have:

List.fold_left ⊕ el l = (. . .((el ⊕ x1) ⊕ x2) . . .)⊕ xn
List.fold_right ⊗ er l = x1 ⊗ (x2 (. . .(xn ⊗ er). . .))
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spec is indeed leftwards, rightwards and has a right inverse:

Definition opr := fun n acc ⇒ (n + fst acc, 1 + snd acc).

Instance spec_leftwards: Leftwards spec opr (0,0).
Proof. (* omitted *) Defined.

Definition opl := fun acc n ⇒ (n + fst acc, 1 + snd acc).

Instance spec_rightwards: Rightwards spec opl (0,0).
Proof. (* omitted *) Defined.

Definition spec_inv (p: nat∗nat) : list nat :=
let (s, c):= p in match c with 0 ⇒ [] | S c ⇒ s::(repeatv c 0) end.

Instance spec_inverse: Right_inverse spec spec_inv.

Each of these properties are expressed as instances of type-classes defined in
SyDPaCC. Basically type-classes are just record types (in these cases with only
one field that holds a proof of the property of interest) and the values of these
types are called instances. The difference with record types is that instances are
recorded in a database. Coq functions can have implicit arguments: when such
arguments have a type that is a type-class, each time the function is applied,
Coq searches for an instance that fits the implicit argument. Instances may have
other instances as parameters. In this situation to build an instance the system
first needs to build instances for the parameters. Such parametrized instances can
be seen as Prolog rules while non-parametrized instances can be seen as Prolog
facts. Coq searches for an instance with a Prolog-like resolution algorithm.

For the inverse, we need to build a list l such that for a sum s and a num-
ber of elements c, we have spec l = (s, c). One possible solution is to have
l = [s; 0; . . .; 0]. An application of function repeatv builds the list of zeros. If
c = 0 then the list should be empty. The omitted proofs are short: from 3 to 9
lines with calls to a couple one-liner lemmas.

These instances are enough for the system to automatically parallelize the
specification, as follows:

Definition par_average : par(list nat) → nat :=
Eval sydpacc in

(uncurry Nat.div) ◦ (parallel spec).

In this example, parallel spec will produce a composition of a parallel
reduce and a parallel map. The automated sequential optimization of spec,
then the automated parallelization, are triggered by the call to parallel that
has several implicit arguments whose types are type-classes.

Two of them are notions of correspondence:

– A type Tsource corresponds to a type Ttarget if there exists a surjective function
join: Ttarget → Tsource. We note Tsource � Ttarget such a type correspondence.
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Intuitively, the join function is surjective because we want the target type
to have at least the same expressive power than the source type. If the source
type is list A and target type is a distributed type such as par(list A), there
are many ways a sequential list could be distributed into a parallel vector of
lists.

– A function f: T1source → T2source corresponds to ftarget: T1target → T2target if
T1source� T1target and T2source� T2target and the following property holds:

∀(x : T1target), join
2(ftarget x) = fsource(join1 x).

SyDPaCC provides type correspondences such as list A � par(list A)
as well as several function correspondences including List.map corresponds to
par_map. It also offers parametrized instances for the composition of functions
with ◦, � and × (pairing). Finally while looking for such instances, SyDPaCC
also checks if there are optimized versions of functions, captured by instances of
type Opt f f’ meaning f’ is an optimized version of f.

These optimizations are based on transformation theorems expressed as
instances. SyDPaCC provides a variant of the third homomorphism theo-
rem [17] that states that a function is a list homomorphism when it is leftwards,
rightwards and has a right inverse. The first homomorphism theorem states that
a list homomorphism can be implemented as a composition of map and reduce.
The other transformation theorem available for lists is the diffusion theorem [21].

In the example, parallel looks for a correspondence of spec that triggers the
optimization of spec which is done thanks to the two homomorphism theorems
mentioned above. At the end of the Prolog-like search, it is established (and
verified) than spec corresponds to a composition of a parallel reduce and a
parallel map.

To obtain a very efficient program, the user can try to simplify the binary
operation and the function given respectively as arguments of the parallel reduce
and the parallel map. Indeed, by default the former is:

fun args⇒ let (p1,p2) in spec(spec_inv p1 ++ spec_inv p2)

and the latter is fun a ⇒ spec[a]. To obtain optimized versions, one can use
the type-classes Optimised_op and Optimised_f that only take as argument the
specification. The optimized versions do not need to be known beforehand: they
can be discovered while proving the instances. In our example, the operation is
mostly the addition of the first components of the argument pairs (replaced by
0 if the second component is 0), and the function is fun a ⇒ (a, 1).

Finally, the extracted1 OCaml code (with calls to BSML functions in a mod-
ule MapReduce similar to the functions of Fig. 2) is given Fig. 3. Such a program
can be compiled and run on (possibly massively) parallel machines. The SyD-
PaCC framework provided a guide towards the development of such a parallel
program, but also the proof that this program is correct with respect to the
initial specification.
1 The type annotations have been added manually and the argument renamed to

increase readability.
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Fig. 3. OCaml Code Extracted from Coq

4 Verified Parallel Maximum Segment Sum

The goal of maximum segment sum problem is to obtain the maximum value
among the sums of all segments (i.e. sub-structures) of a structure. We consider
here lists, but algorithms are equivalent for 1D arrays.

Basically, the specification for this problem can be written as follows:

Definition mss_spec := maximum ◦ (map sum) ◦ segs.

There are several derivations of parallel algorithms for the maximum segment
sum problem. The first, informal one, was proposed by Cole [7]. Takeichi et
al. [20] gave a formal account of this construction using a theory of tupling
and fusion. Their theory may be expressed in Coq, but it is not simple as
theorems are stated for an arbitrary number of mutually recursive functions
which are tupled, hence it is necessary to deal with tuples of an arbitrary size.
The algorithm they obtain (from a similar specification than the one above) is
a list homomorphism and therefore SyDPaCC could automatically parallelized
it. The GTA (generate-test-aggregate) approach [11] — which was implemented
in Coq [12], but this implementation is not compatible with the current version
of SyDPaCC — is also applicable. Both solutions are not well suited as we
want to consider in the future the variant problem of maximum segment sum
with a bound on the segment lengths. Thus, we based our contribution on the
calculation proposed by Morihata [36].

Morihata only considered non-empty lists. There is support in SyDPaCC to
deal with non-empty lists [28], but it requires for example to use different func-
tion compositions that transport facts about the non-emptyness of lists across
function composition. For example, segs is the function that generates all the
segments of a list, and it returns a non-empty list even if its argument is an
empty list. The map function preserves non-emptiness. Finally, if maximum returns
a number then it is defined only on non-empty lists.

Here, we choose to deal with empty lists. Therefore, the function maximum
used in the specification has type list N.t → option N.t where N.t is an
abstract type of numbers that possess the required algebraic properties, and
option is the Coq type:

Inductive option (A: Type) : Type := | Some: A→ option A | None: option A.
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which basically adds a value None to the type given as argument to option. In
the case of maximum we interpret None as −∞. The definition of sum and maximum
follow:

Definition sum : list t → t := reduce add.
Definition optionize ‘(f:A→ A→ A) (a b: option A) : option A :=
match (a,b) with

| (None, None) ⇒ None

| (None, _ ) ⇒ b

| (_, None) ⇒ a

| (Some a, Some b) ⇒ Some(f a b)
end.

Definition max_option := optionize max.
Definition maximum := reduce max_option ◦ (map Some).

reduce is a higher-order function that “sums” all the elements of a list using
the binary operation given as first argument. We proved that is f is associative
then optionize f forms a monoid with the neutral element being None.

During the transformations of mss_spec, a version of add that deals with
option N.t values instead of N.t values is needed. The add_option function is:

Definition optionize_none ‘(f:A→ A→ A)(a b: option A) : option A :=
match (a,b) with

| (Some a, Some b) ⇒ Some(f a b)
| _ ⇒ None

end.
Definition add_option := optionize_none N.add.

If the original operation f forms a monoid with neutral element e, then the
optionzed version forms a monoid with Some e. None is an absorbing element of
optionize_none f.

The function generating all the segments is defined in terms of prefix and
tails which are two functions already defined in SyDPaCC that respectively
return the prefixes of a list and its suffixes (List.app is part of Coq’s standard
library and is list concatenation):

Definition segs {A}:= reduce (@List.app (list A)) ◦ (map prefix) ◦ tails.

We then prove the following instance of Opt to give an equivalent but opti-
mized version of mss_spec:

Instance opt_mss :
Opt mss_spec

( (reduce max_option) ◦ (map fst) ◦
(scanr (oslash add_option max_option) (None, Some 0)) ◦
(map (fun x : t ⇒ (Some x, Some x))) ).

The proof of this instance follows roughly the calculation of Morihata but for
the treatment of empty lists. This proof is simple in term of structure: just a
sequence of applications of rewriting steps, each step being the application of a
transformation lemma. Most of the lemmas were already in Coq or SyDPaCC
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libraries but the definition of oslash and related lemma (and instances omitted
here):

Definition oslash [A] otimes oplus

‘{Monoid A otimes e_t} ‘{Monoid A oplus e_p}: (A∗A)→ (A∗A)→ (A∗A) :=
fun a_b c_d ⇒
( oplus (fst a_b)(otimes (snd a_b)(fst c_d)),
otimes (snd a_b) (snd c_d) ).

Lemma distributivity_reduce_scanl A

‘{Ht: Monoid (A:=A) otimes e_t} ‘{Hp: Monoid (A:=A) oplus e_p}
{Ha: RightAbsorbing otimes e_p} {Hd: LeftDistributive otimes oplus}:
∀ l,

(reduce oplus) (scanl otimes e_t l) =
fst(reduce (oslash otimes oplus) (map dup l)).

Morihata used this operator and a lemma based on a method first proposed by
Smith [41].

The optimized version also uses scanr which is linear on the length of its list
argument. We implemented a tail recursive version of scanr (as we do for all
the function on lists that are supposed to be part of the final optimized code)
and satisfies the following expected property for a scanr:

Lemma scanr_spec_monoid:
∀ A op e {Hm: @Monoid A op e} l,
scanr op e l = map (reduce op) (tails l).

The optimized version has a linear complexity in the length of its argument while
the specification has a cubic one. The goal of the transformations was to remove
the calls to prefix and tails. These transformations are not automatic, but the
support provided by SyDPaCC is a collection of already proved transformations.

Fig. 4. Automatic parallelization of MSS

The last step is fully automatic and very simple as shown in Fig. 4. With the
call to parallel, SyDPaCC uses the instance opt_mss as well as instances of
types and functions correspondences that are part of the framework to generate
a parallel version of mss_spec by replacing the list functions by their algorithmic
skeletons counter-parts: par_reduce, par_map and par_scanr.
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5 Experiments

Fig. 5. Time and relative speed-up (64 · 106 elements, median of 30 measures)

The Coq proof assistant offers an extraction mechanism [25] able to generate
compilable code from Coq definitions and proofs. In particular, it can generate
OCaml code. Extracting the parametric module of Fig. 4 generates an OCaml
functor (which is basically a parametric module). To be able to execute the
function par_mss, we first need to apply this functor. For the number part, we
just wrote a module using OCaml native integers of type int for N.t. For the
parameter, Bsml we simply apply the actual parallel implementation of BSML
primitives as provided by the BSML library for OCaml. This library is imple-
mented on top of an API for parallel processing library in C named MPI [42]
(several implementations of this API exist). For the moment, the Bsml module
of the BSML library cannot directly be given as argument to the Make functor.
Indeed, processor identifiers are represented by mathematical natural numbers
in Coq while they are encoded as OCaml bounded int values. SyDPaCC fea-
tures a wrapper module BsmlWrapperN that performs number conversions when
needed.

The application of the verified extracted function and aspects such as
input/output operations and command line argument management are not veri-
fied and written in plain OCaml. The final program was run on a shared memory
parallel machine, but it could run on large scale distributed memory machines.

We ran the program on a machine having an Intel Xeon Gold 5218 processor
with 32 cores. The operating system was Ubuntu 22.04. To compile we used
OCaml 4.14.1. The MPI implementation was OpenMPI 4.1.2. We ran par_mss
on a list of length 64 · 106 and measured the time required for this computation
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30 times. The results for the relative speed-up are presented in Fig. 5 for an
increasing number of cores. The speedup is fine but of course as the number of
cores increases the relative impact of communication and synchronization time
becomes bigger. The variance increases to reach a maximum for 4 cores then
decreases again.

6 Related Work

The literature on constructive algorithmics, introduced by Bird [3], is extensive
and includes studies on parallel programming [7,10,18,22,35]. While most of the
work in this field has been done on paper, recent advancements have seen the
use of interactive theorem proving, as demonstrated in works like [37]. However,
interactive theorem proving has not been extensively explored in the context of
parallel programming.

From a functional programming perspective, the study of frameworks such
as Hadoop MapReduce [23,33] and Apache Spark [1,5] is relevant to our SyD-
PaCC framework, as we can adopt a similar approach to extract MapReduce or
Spark programs from Coq. Ono et al. [39] employed Coq to verify MapReduce
programs and extract Haskell code for Hadoop Streaming or directly write Java
programs annotated with JML, utilizing Krakatoa [14] to generate Coq lemmas.
However, their work is less systematic and automated than SyDPaCC.

There have been contributions that formalize certain aspects of parallel pro-
gramming, but as far as we know, these approaches do not directly yield exe-
cutable code like our SyDPaCC framework. Swierstra [43] formalized mutable
arrays with explicit distributions in Agda, while BSP-Why [15] allows for deduc-
tive verification of imperative BSP programs, although they represent models of
C BSPlib [19] programs rather than executable code. Another example is the for-
malization of the Data Parallel C programming language using Isabelle/HOL [8],
where Isabelle/HOL expressions representing parallel programs were generated.

7 Conclusion

We developed a verified parallel implementation of a functional scalable parallel
program for solving the maximum segment sum problem and studied its parallel
performances. Experiments on a larger number of processors are planned.

Often in applications, the domain is 2D rather than 1D, and it may be inter-
esting to consider segments of a given bounded size, for example in genomics. We
therefore plan to systematically develop parallel algorithms for these problems
starting from the work of Morihata [36].

The development of SyDPaCC started in 2015 while preparing a graduate
course for a summer school, on the predecessor of SyDPaCC named SDPP.
There are SDPP theories, namely BSP homomorphisms [16,31] and generate,
test, aggregate [11,12] that have not been ported to SyDPaCC yet. We also plan
to work on additional data-structures such as trees. For the moment, SyDPaCC
only targets BSML+OCaml, but there is ongoing work to extend it to generate
Scala [38] code with Apache Spark for parallel processing [30].
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Abstract. In this paper, we provide a comparative performance evalu-
ation study of Deep-Q-Network (DQN) and Dueling DQN in the context
where we address network slicing in 5G networks and beyond through
solving SFC orchestration problem leveraging Software Defined Network-
ing (SDN) and Network Function Virtualization (NFV) capabilities and
using Deep Reinforcement Learning (DRL) approach aiming to maximize
Quality of Experience (QoE) while meeting Quality of Service (QoS)
requirements. We intend through such investigation to highlight how the
DRL agent behaves along the training phase while orchestrating each
network slice (or Service Function Chain (SFC)) on a Physical Substrate
Network (PSN) in terms of reaching a suitable compromise between per-
formance and convergence. The network slice orchestration is achieved
by deploying the corresponding SFC request composed of a set of ordered
Virtualized Network Functions (VNFs) linked through virtual links that
packets need to traverse within a network slice to achieve specific service
requirements. We show throughout numerical experiments how Dueling
DQN outperforms DQN in this scenario and how we can compare its per-
formances with those of reference algorithms referred to as violent and
random. The investigated performance evaluation study is based on two
performance metrics concerning the QoE score and the rejection ratio
(RR). Furthermore we assess the quality of learning for the two metrics
by testing the ability of the DRL agent to reach a near-optimal solution,
along the last 100 runs of the learning phase, quantified by a pre-defined
QoE threshold score.

Keywords: Orchestration · DRL · Dueling DQN · SDN/NFV ·
Network Slicing · SFC · 5G networks and beyond

1 Introduction

SDN and NFV are two key technologies that have revolutionized network archi-
tectures, and they play nowadays a significant role in the evolution of 5G and
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beyond networks [2]. These technologies are considerd as essential enablers in
achieving the vision of highly flexible, efficient, and intelligent networks of the
future. SDN/NFV enabled networks promise to shape the future of telecommu-
nications through bringing several benefits including network programmability,
service orchestration, network automation and enhanced scalability and flexi-
bility. 5G introduces the concept of network slicing, which allows operators to
partition a single PSN into multiple virtual networks. The combination of SDN
and NFV is instrumental in realizing network slicing by dynamically allocating
resources and deploying specific network functions for each slice [8]. Network slic-
ing can indeed be considered as Network Slice as a Service (NSaaS), an emerging
business model, that leverages network slicing capabilities to offer customized,
differentiated, and flexible network services to various tenants or customers such
as enhanced Mobile Broadband (eMBB), massive Machine-Type Communica-
tions (mMTC), or Ultra-Reliable Low-Latency Communications (URLLC) [15].
It enables operators rapid service deployment reducing time-to-market for new
services and fostering innovation. Furthermore it allows to monetize their net-
work infrastructure effectively and meet the diverse needs of different industries
and applications. With NSaaS, each slice is tailored and optimized. However, net-
work slicing introduces several technical challenges that need to be addressed to
ensure better-performing and cost-efficient services. In order to raise these chal-
lenges an efficient resource management and particularly service network slic-
ing Management and Orchestration (MANO) is needed to handle the complexi-
ties of network slicing [10]. This complexity concerns scalability issues, dynamic
resource management, slice life-cycle management, and successful deployment
and operation. Notice that network slicing may be achieved through SFC orches-
tration. By combining network slicing and SFC orchestration, operators can pro-
vide customized end-to-end network services, with specific service paths tailored
to the needs of different tenants usually imposing stringent requirements on QoE
perceived by users. This approach allows efficient resource utilization, isolation,
and management of the network slices. [4]. Resource management for network
slicing is a perpetual topic during the evolution of wireless communication where
efficient matching of the allocated resource to each network slice while accounting
for the users’ activity requirements especially in terms of QoE is the most critical
challenge. In this regard, DRL seems nowadays one of the most promising solu-
tions to raise this challenge [1,5]. Comparing different implementations of DRL in
this context is essential for performance evaluation, benchmarking, optimization
and generalization. It facilitates the development of more efficient and effective
DRL algorithms and helps better understanding the strengths and weaknesses of
different approaches. It enables also to identify areas of improvement and opti-
mization and promotes the selection of the most effective implementation for a
specific wireless network scenario.

In this paper, we investigate a comparative study between DQN and Dueling
DQN in the context where network slicing is addressed as SFC orchestration
problem based on DRL approach and aiming to maximize QoE while meet-
ing QoS requirements. We intend through such investigation to highlight how
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DQN and Dueling DQN algorithms behave in ever changing environments while
learning to successfully to determine both the optimal placement of VNFs and
the mapping of virtual links involved in a chain of Service Functions (SF)s and
efficient routing paths within each network slice.

The rest of this paper is organized as follows. Section 2 describes the role
of SDN and NFV for network slicing in 5G and beyond. Section 3 highlights
how SFC may be leveraged to achieve network slicing. Section 4 examines DRL
Implementation via DQN and Dueling DQN. Section 5 addresses performance
evaluation and numerical results before concluding this paper in Sect. 6.

2 SDN and NFV for Network Slicing in 5G and Beyond

The combined use of SDN, NFV, and SFC in 5G and beyond offers several
benefits for network slicing. Among the key advantages of this combination:

– Flexible and customized network slicing: SDN provides centralized control and
programmability, allowing dynamic creation, management, and orchestration
of network slices. On the other hand, NFV allows the deployment of VNFs on
commodity hardware, facilitating the customization of network slices based
on specific requirements. Furthermore, SFC provides the ability to chain and
sequence these VNFs to create end-to-end service paths.

– Efficient resource utilization and scalability: Thanks to SDN’s centralized
control, efficient allocation and sharing of network resources based on the
requirements of individual slices is enabled. Also leveraging NFV capabilities
allows dynamic scaling of VNFs, and resource allocation based on demand,
reducing the need for dedicated hardware. In this context, SFC ensures that
traffic flows through the necessary sequence of VNFs, enabling efficient use of
resources and optimizing performance within the slice.

– Faster service deployment and innovation: SDN’s programmability and
automation capabilities enable rapid provisioning, configuration, and recon-
figuration of network slices. NFV’s software-based approach allows for quicker
deployment and scaling of VNFs without relying on PSN changes. SFC
ensures efficient service chaining and sequencing, enabling the deployment
of new services with reduced time-to-market. This agility empowers service
providers to respond quickly to evolving customer demands, deploy innovative
services, and support emerging use cases in 5G and beyond.

– Isolation and security: Each network slice operates as a separate virtual net-
work with its dedicated resources, control plane, and service paths. SDN’s
centralized control enables the enforcement of slice-specific policies and secu-
rity mechanisms. On the other hand NFV allows for the isolation of VNFs
within their respective slices. Furthermore, SFC ensures that traffic flows
through the defined sequence of VNFs, enhancing security and ensuring that
each slice’s traffic remains isolated.

– Network efficiency and optimization: SDN’s centralized control and visibil-
ity allow for efficient allocation and optimization of network resources. Also,
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NFV’s dynamic scaling and load balancing capabilities optimize resource uti-
lization for VNFs. In addition, SFC ensures that traffic flows through the
required SFs, minimizing latency and maximizing performance within the
slice.

– End-to-end service orchestration: SDN controllers can manage network slices
across access networks, transport networks, and core networks, ensuring seam-
less service delivery. NFV enables the virtualization and chaining of network
functions across these domains, allowing SFs to be dynamically instantiated
and chained based on service requirements. Moreover, SFC ensures that traffic
flows through the specified sequence of VNFs across domains.

– Enhanced service functionality: NFV enables the deployment of a wide range
of VNFs, including firewalls, load balancers, intrusion detection systems, and
more, providing advanced services and capabilities within slices. SFC ensures
correct SFCs ordering and chaining to create service paths.

– Flexible network slicing: SDN and NFV enable the dynamic creation, manage-
ment, and orchestration of network slices. Network slicing allows the partition-
ing of a PSN into multiple virtual networks, each tailored to specific require-
ments. Furthermore, SDN provides centralized control and programmability,
while NFV allows the deployment of VNFs on commodity hardware.

3 SFC for Network Slicing in 5G and Beyond

In 5G and beyond, SFC promise to play a pivotal role in addressing varied verti-
cal applications and enabling network slicing through delivering a wide range of
services with specific requirements [3]. When it comes to network slicing in 5G
and beyond, SFC can be incorporated by network operators within individual
slices to define the sequence of SFs (such as traffic classification, security func-
tions (firewall, intrusion detection), Network Address Translation (NAT), traffic
optimization, or content filtering) that network packets or flows need to traverse.
This allows for the creation, within the limits imposed by the underlying PSN, of
customized slices with their own logical topology, security rules and performance
characteristics (in terms of latency requirements, bandwidth allocation, QoS and
QoE guarantees) (see Fig. 1). It empowers providing fine-grained control over the
traffic flow and the application of specific services through customizing the order
and composition of SFs for each network slice, based on the specific requirements
of the services or applications hosted in that slice.

3.1 SFC Orchestration Based on QoE

Ensuring efficient SFC orchestration and satisfactory QoE for different network
slices can significantly strengthen the overall performance and user satisfac-
tion. Network slice orchestration involves the management and coordination of
resources, functions, and policies across the network to instantiate, configure,
and manage network slices according to dynamic consumer needs. SFC orches-
tration, on the other hand, focuses on SFC instantiation and management within
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Fig. 1. Network Slice Management and Orchestration

each network slice. The orchestration process uses automation platform to ensure
several services such as efficient resources allocation, appropriate placement of
SFs, and dynamic scaling based on demand. As different services and applica-
tions have varying requirements and performance expectations, a crucial aspect
of network slicing is QoE. QoE may involve several metrics such such as latency,
throughput, reliability, availability, and overall user satisfaction.

3.2 Formulating QoE with Respect to QoS

The goal of formulating QoE with respect to QoS is to quantify the user’s qual-
ity perception based on objective measurements of QoS and contextual factors.
However, there is no universally applicable formula, and it often requires contin-
uous monitoring, user feedback, and iterative refinement to accurately capture
the relationship between QoE and QoS. Indeed, the relationship between QoE
and QoS is complex and subjective, as QoE represents the end-user’s perception
of the service quality, while QoS refers to the measurable performance param-
eters of the underlying network. However, it is possible to establish a general
formula and fundamental laws to express and governs the relationship between
QoE and QoS. One widely used approach to establish this relationship is the
Mean Opinion Score (MOS) model, which quantifies QoE based on subjective
ratings provided by users. The actual form of this relationship should represent
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the mapping or transformation of QoS and contextual factors into the QoE score
and may vary depending on the application, service, or industry domain. Differ-
ent QoE models may be considered according to the application nature (video
streaming services, voice communications, online gaming). Additionally, in order
to capture the complex relationships between QoE and QoS, Machine Learning
(ML) and Artificial Intelligence (AI) techniques may be leveraged for developing
more sophisticated models. In literature the investigation of multi-dimensional
QoE models establishing fundamental laws and principles that govern the rela-
tionship between user experience and various QoS dimensions is usually embod-
ied through Web Quality and Functionality (WFL) (Eq. (1)) and Interaction
Quality eXperience (IQX) (Eq. (2)) models [12]. Such models attempt to pro-
vide a deeper understanding of QoE and establish frameworks for measuring and
improving user satisfaction. The WFL model specifically focuses on web-based
applications and services. It considers the dimensions of web quality and func-
tionality that impact user experience. These dimensions can include factors such
as content quality, ease of navigation, page loading speed, visual appeal, accessi-
bility, and privacy. The investigation of WFL involves studying the relationships
between these web quality and functionality dimensions and user satisfaction [7].
On the other hand, the IQX model aims to capture the overall user perception
of the quality of interactions, taking into account both subjective and objective
measures. It focuses on the quality of interactive systems, such as web applica-
tions, mobile apps, or multimedia platforms and considers various factors that
impact the user experience during interactions, including usability, responsive-
ness, aesthetics, efficiency, and reliability.

QoEt = γp × log(αp × qost + βp) + θp, t ∈ {1, 2, .., k} (1)

QoEt = γn × e(αn×qost+βn) + θn, t ∈ {k + 1, k + 2, .., L} (2)

Both in Eq. (1) and Eq. (2), QoEt denotes the QoE gain related to the tth QoS
metric of the SFC instance. The SFC instance is defined as the set of distributed
resources to be allocated in the PSN to successfully handle (embed/map) the
set of ordered VNFs and the corresponding virtual links belonging to the same
SFC request. These resources are dynamically chosen along the SFC request
deployment process among available resources in the PSN nodes and PSN links.
Notice also that, the constant parameters αp, βp, γp, θp, αn, βn, γn and θn in
Eq. (1) and Eq. (2) may be leveraged to achieve fine tuning of the quantitative
inter-dependency between QoE and QoS.

In this paper, we formulate a reward function similar to that provided in [6]
and assigning a reward quantified by a QoE gain (Eq. (3)) combining WFL and
IQX models when a SFC request is successfully deployed and a penalty P = 10
otherwise. Along the training phase, the DRL agent attempts to maximize the
expected accumulated reward while meeting QoS requirements and considering
PSN’s resources limitations.

QoE =
K∑

t=1

wt × QoEt −
L∑

t=K+1

wt × QoEt (3)
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4 DRL Implementation via DQN and Dueling DQN

In this paper, we implement DRL by considering two algorithms DQN (Algo-
rithm 1) and Dueling DQN (Algorithm 2), a variant of DQN. This implementa-
tion aims to maximize QoE while meeting QoS constraints. Among these con-
straints we consider several assumptions related to VNF license as well as limi-
tations in terms PSN link capacity (in terms of bandwidth) and PSN link delay.
In the rest of this section, we describe first DQN principle and we detail next
Dueling DQN concept and related improvements.

4.1 DQN

Q-learning is a model free Reinforcement Learning (RL) algorithm based on a
tabular method that requires explicitly maintaining a table (Q-table) to store
the action-value function for each state-action pair. It works well for problems
with discrete small state and action spaces. On the other hand, DQN [11] as
a DRL algorithm generalizes Q-learning and leverages deep neural networks
DNN [13] to approximate the action-value function, enabling it to handle large
and and high-dimensional continuous state space, making it scalable and more
suitable for complex real-world problems. DQN uses a parameterized Q-function
Q(s, a; θ) ≈ Q(s, a) where, θ represents the DNN parameters. By training DNN
with gradient descent instead of the Q-Learning iterative update process, DQN
aims to minimize a loss function at iteration i:

Li(θi) = Es,a,r,s′ [(yDQN
i − Q(s, a; θi))2] (4)

In order to address instability caused by using function approximation, DQN
uses two innovative techniques referred to as experience replay and target Q-
networks. Experience replay stores and reuses past experiences (history) with a
replay buffer for the update of current policy. and randomly samples from the
buffer during training [9], in order to break the correlation between consecutive
experience tuples and to stabilize the training process. On the other hand, target
Q-network is used to make training more stable. It is a copy of the action-value
function (or Q-function, main network) that is held constant to serve as a stable
and frozen target. DQN leverages this frozen target network to generate the
target Q-values, used for updating the main network. By freezing the target
network, DQN tries enhancing the training targets stability by decoupling them
from the parameters being updated and avoid over-fitting [11]. Freezing covers
the target network parameters Q(s′, a′; θ−) for some fixed number of iterations
while updating the online network Q(s, a; θi) by gradient descent in order to
minimize the loss function. The specific gradient update is given as follows:

∇θi
Li(θi) = Es,a,r,s′ [(yDQN

i − Q(s, a; θi))∇θi
Q(s, a; θi)] (5)
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Given the state s′, reward r, discount factor γ, DQN computes the target Q-value
yDQN

i as follows:
yDQN

i = r + γmaxa′Q(s′, a′; θ−) (6)

where θ− corresponds to the parameters (weights) of a fixed and separate tar-
get network. While DQN has achieved remarkable success in various domains,
it presents some common limitations and challenges. Indeed training DQN may
be unstable. and can lead to oscillations or divergence. Also DQN suffers from
sample inefficiency since it can require a substantial amount of data to con-
verge to an optimal policy. Also, insufficient exploration of DQN can result in
sub-optimal policies or the agent getting stuck in local optima. Furthermore,
although DQN can handle continuous state spaces, its generalization capabili-
ties through neural network approximation are still limited compared to more
advanced algorithms. Finally, the DQN training process may require substantial
computational resources to handle the network training, experience replay, and
exploration-exploitation balance efficiently. In this regard, the major challenge
is to find suitable performance-convergence compromise while computing NNs.

4.2 Dueling DQN

Dueling DQN [14] proposes a new variant of the DQN algorithm, using a model-
based RL method to learn a control policy for the decision maker (an agent
interacting with an environment in discrete time steps). In standard DQN algo-
rithm, the estimation of the Q-function is achieved by a NN taking as input the
current state of the environment and action and as outputs the expected return
for each possible action. In order to enhance the DQN algorithm learning effi-
ciency, Dueling DQN architecture separates the estimator (Q-function) into two
estimators using two new streams, the value function V (s) and the advantage
function A(s, a). This is achieved through splitting the last layer of the same
NN in two parts. Whereas V (s) gives information about how much reward will
be collected from state s, A(s, a) provides information about how much better
one action when compared to the other actions. Accordingly, the Q-values is
obtained as the sum of V (s) and A(s, a) for each action. The aggregation of
the two streams (Eq. (7)) into a single Q-function (the Q-value stream) is only
achieved via a special aggregating layer. This will be useful to quantify the Q-
values and to estimate how good it is to take a certain action given a certain
state.

Q(s, a; θ, α, β) = V (s; θ, β) + A(s, a; θ, α) (7)

Here, θ denotes the parameters of the convolutional layers, while α and β are the
parameters of the two streams of fully-connected layers. This change is helpful,
because sometimes it is unnecessary to know the exact value of each action, so
just learning V (s) can be enough is some cases. Unfortunately, knowing the Q-
value (Eq. (7)) (that simply sums V (s) and A(s, a)) through training the NN
cannot provide explicitly V (s) and A(s, a). In other terms knowing the sum of
two terms (Q = A + V ) does not allow to know V (s) and A(s, a) separately
(since there is an infinite possible solutions). In order to solve this problem
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Algorithm 1. DQN_QoS/QoE_SFC
initialize replay memory D to capacity RS and initialize QoESc−Th = 2500, Sum = 0
initialize action value function Qθ, with random weights θ
initialize target action value function Qθ− with weights θ−

for episode = 1..E do //E = 5000
reset environment, Sumr = 0
for sfc_req = 1..Req do //Req = 100

initialize chain c and observe initial observation state s
for i = 1..N do

select action a and observe reward r and s by QoS
store transition (s,a,r,s′) in D and s=s′

end for
Sumr+ = r
if enough experiences in D then

sample mini-batch of BS transitions from D
compute target Q value by Eq. (6)
perform a gradient descent step on by Eq. (4)
every C iterations, reset Qθ− = Qθ

end if
end for
calculate Sum the sum of last 100 mean rewards ((Sumr/Req))
if (Sum/100) ≥ QoESc−Th then break
end if

end for

Dueling DQN suggests to force the highest Q-value to be equal to V (s), making
the highest value in the advantage function be at most zero (Eq. (8)). In this
way V (s) is exactly known, and we can deduce all the advantages from there,
solving the problem. Hence the training is described by the following equation:

Q(s, a; θ, α, β) = V (s; θ, β) + (A(s, a; θ, α) − maxa′∈|A|A(s, a′; θ, α)) (8)

In order to increase optimization stability, in [14], authors suggest to replace the
max of A (Eq. (8)) by the mean of A (Eq. (9)) to train the network.

Q(s, a; θ, α, β) = V (s; θ, β) + (A(s, a; θ, α) − 1
|A|

∑

a′
A(s, a′; θ, α)) (9)

This enables a quicker identification of the correct action during the policy eval-
uation as the network can learn the effectiveness of the states without having
to learn the value of each action for each state. With this separation, defined in
Eq. (10) (in a similar way as in Eq. (6)), the target Q-value given in (Eq. (10))
is now expressed as follows (Eq. (11)):

yDuelDQN
i = r + γmaxa′Q(s′, a′; θ−, α−, β−) (10)
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where the β− and α− denote the weights of the fully connected layers for value
function stream and advantage function stream respectively.

yDuelDQN
i = r + γmaxa′ [V (s′; θ−, β−) + (A(s′, a′; θ−, α−) − 1

|A|
∑

a

A(s′, a; θ−, α−))]

(11)
Dueling DQN offers a more structured and refined approach to estimating
Q-values, allowing for better learning efficiency, improved action selection,
enhanced generalization, and increased stability during training. These advan-
tages make it a suitable choice in various RL tasks where value estimation and
action selection are crucial.

Algorithm 2. Dueling DQN_QoS/QoE_SFC
initialize replay memory D to capacity RS and initialize QoESc−Th = 2500, Sum = 0
initialize action value function Qθ, with random weights θ, α and β
initialize target action value function Qθ− with weights θ−, β− and α−

for episode = 1..E do //E = 5000
reset environment, Sumr = 0
for sfc_req = 1..Req do //Req = 100

initialize chain c and observe initial observation state s
for i = 1..N do

select action a and observe reward r and s by QoS
store transition (s,a,r,s′) in D and s=s′

end for
Sumr+ = r
if enough experiences in D then

sample mini-batch of BS transitions from D
compute target Q value by Eq. (11)
perform a gradient descent step on by Eq. (4)
every C iterations, reset Qθ− = Qθ

end if
end for
calculate Sum the sum of last 100 mean rewards ((Sumr/Req))
if (Sum/100) ≥ QoESc−Th then break
end if

end for

5 Performance Evaluation and Simulation Results

Performance evaluation of DRL algorithms requires defining the simulation envi-
ronment and related parameters as well as the considered assumptions related
to the used PSN topology (Fig. 1), the workload (SFC requests (SR)), and the
investigated performance metrics.
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5.1 Key Assumptions

– PSN nodes: Each PSN node is assumed hosting one or more VNF(s).
– PSN links: Each PSN link is assumed with limited bandwidth capacity

(Bwlink) and non zero transmission delay (Dlink). It may handle one or more
Vlink(s). Bwlink is randomly chosen in the range of [768–1280]Mbps, and
Dlink is randomly selected in [10–20]ms.

– PSN attributes:
• M : is the number of nodes in PSN (M = 5).
• Mlink: The number of PSN links (Mlink = M ∗ (M − 1)/2 = 10), (PSN

is assumed fully interconnected).
– SR attributes:

• NV NF : The number of VNF instances (NV NF = 5) involved in deploy-
ing the SR. The embedding of each VNF instance on each PSN node
is assumed requiring no CPU capacity and no processing delay. Such
assumption may be easily relaxed by affecting a non null processing capac-
ity and non null time delay in the PSN node. This is out of the scope of
this paper.

• NV link: The number of Vlinks (NV link = 4) involved in deploying the SR.
• Bwr: The SR End-to-End Bandwidth is assumed varying according to a

random law in the range of [16–256]Mbps.
• Dr: The SR End-to-End Delay is assumed varying randomly in the range

of [50–90]ms.
– Performance evaluation metrics;

• The average QoE score (QoE) quantifying the expected cumulative
reward.

• The standard deviation (Std) quantifying the amount of variability or
dispersion of the expected cumulative reward.

• The Rejection Ratio (RR) quantifying the rejection rate of SR.

In the conducted experiments every cycle of state-action-reward corresponds
to one step. Each SFC request involves 5 steps or actions and each action corre-
sponds to embedding one VNF on a PSN node. Notice also that during one run
we assume processing 100 SFC requests and the expected accumulated reward
along this time period is used to plot one point in the training curve. The learn-
ing phase is observed along a set of runs referred to as one episode. The episode
is considered ended whenever a maximum number of runs expired (20000 runs).
The training phase is considered finished whenever a training goal (or a final
state corresponding to QoETh_Sc reached on average during the last 100 runs of
the training phase) is fulfilled by the DRL agent. The training goal is achieved
whenever the quality of the agent’s learning performance is considered enough
satisfactory (whenever reaching a near-optimal solution as close as possible to
optimal solution). The target quality of learning is assessed through a QoETh_Sc.
Along the simulation process and whenever an episode ends the environment is
reset to its initial state and the agent begins a new episode. Such configuration
allows the agent to learn from its experience in every episode and leverages such
information (knowledge) to improve its performance in the following episodes.
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5.2 Simulation Results

In order to establish performance comparison along training phase of DQN and
Dueling DQN algorithms with two other standard algorithms referred to as vio-
lent and random a set of simulation experiments (Fig. 2) are conducted. Notice
that all these algorithms (violent, random, DQN and Dueling DQN) use the
same reward function. Along each experience each algorithm seeks to solve net-
work slicing orchestration problem through dynamically deploying an incoming
SFC request (with both variable end-to-end delay and end-to-end bandwidth) on
PSN with limited resources. This task is fulfilled by each algorithm in a different
way taking into account specific hypotheses.

Fig. 2. QoE vs runs (QoESc−Th = 2500)

Before investigating simulation results, we provide in what follows detailed
description of two reference algorithms (violent and random) as well as DQN
and Dueling DQN from knowledge and observability perspective.

Violent Algorithm: This algorithm possesses full network observability. This
knowledge is fully leveraged to find a optimal solution to the network slicing
orchestration problem. This is fulfilled by decision making based on selecting,
among all the SFC instances enabling to successfully deploy the SFC request,
the one that produces the highest expected accumulated reward. Obviously the
adopted approach of violent algorithm is expected to bring the best QoE with
the sacrifice of costly simulation time.

Random Algorithm: This algorithm has no network observability that may
be leveraged to help achieving optimal decisions or actions, instead, it randomly
selects a SFC instance enabling successfully deployment of the SFC request
(without worrying about selecting the optimal SFC instance yielding the highest
reward (QoE score)). Random algorithm is obviously expected to be the fastest
one, however since it does not use any learning to arrive at the final solution of
the problem to be solved and does not seek to maximize any reward along the
training episode, It is also expected to produce the worst QoE.



42 W. Taktak et al.

DQN and Dueling DQN: These algorithms are classified as DRL algorithms
and as a consequence there is no need for them to any prior knowledge on the
environment and its dynamic to initiate the training phase. Instead, they attempt
through RL via trials and errors, exploration and exploitation to train DRL
agent to perform near-optimal solution in terms of QoE score. The objective is
to get as close as possible to the optimal policy provided by the violent algorithm
by maximizing the expected cumulative reward formulated by considering both
QoE requirements and QoS constraints.

Simulation experiments conducted in this paper are provided through the
evaluation of a set of performance metrics defined above in this same section.
Along the training phase, Fig. 2a (resp. Figure 2b) shows the evolution of the
QoE score with respect to the number of runs for respectively DQN and Dueling
DQN algorithms. Notice that, for Dueling DQN algorithm, the desired learning
level (QoETh−Sc = 2500) is quickly reached in a number of runs no more than
1861 (Fig. 2b) whereas DQN algorithm reaches the same QoETh−Sc in 17500
runs (Fig. 2a). Indeed, we observe that the DQN agent needs a learning period
about 10 times longer than Dueling DQN to attain the desired QoE threshold
score. This confirms that Dueling DQN manifestly outperforms DQN. Of course
the learning process is stochastic and learning may evolve differently from one
experience to anotherğ. However the significant enhancements provided in con-
ceiving Dueling DQN when compared to DQN algorithm enables clearly faster
learning and allows to attain better performance-convergence trade-off. This is
confirmed for this scenario for the QoE metric where we tackle network slicing
through SFC orchestration.

Fig. 3. Standard Deviation (QoESc−Th = 2500)

One of the major improvements considered by Dueling to remedy the short-
comings of DQN is stability. To highlight this advantage we have considered
experiments where we propose to compare the performance of Dueling DQN with
DQN in terms of standard deviation in Fig. 3. The curves plot every 100 runs
the standard deviation of each algorithm. We notice that fluctuations and oscil-
lations of DQN (Fig. 3a) are more pronounced than those generated by Dueling
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DQN (Fig. 3b). Also DRL algorithms (DQN and Dueling DQN) give rise to more
severe oscillations than violent and random. This may be explained by the fol-
lowing arguments. During exploitation DRL algorithms select the action yielding
the best reward (QoE) whereas during exploration the agent may obtain better
reward but also risks to obtain severe penalties. Also, since along the training
phase the agent alternates between exploration and exploitation it is very likely
to show large oscillations when compared to random and violent algorithms until
converging at the end of the training phase.

Fig. 4. RR vs runs (QoESc−Th = 2500)

It is also confirmed again for another performance metric (RR) where we
investigate in Fig. 4 along the training phase of the agent the rejection ratio
evolution with respect to the number of runs for DQN (Fig. 4a) and Dueling
DQN (Fig. 4b). Obviously the random and violent algorithms are used in the
same plot as reference algorithms as detailed above in this same section.

Evidently, further numerical explorations may be investigated in future works
to better understand the enhancements provided by Dueling DQN and also other
variants of DQN through the performance metrics provided in this paper or other
metrics to be defined.

6 Conclusion

Comparing DRL algorithms is essential for evaluating performance, driving
algorithmic advancements, understanding their behaviors, aiding in algorithm
selection, and establishing benchmarks for future research. It contributes to
the growth and development of the field of DRL, enabling to make informed
decisions and advancements in the application of RL. In this paper, we investi-
gated a comparative study between DQN and Dueling DQN in a scenario where
we tackle network slicing orchestration problem aiming to maximize QoE while
meeting QoS requirements. The network slicing orchestration is considered based
on deploying each incoming SFC request on 5G networks and beyond leverag-
ing flexibility and agility of SDN and NFV and their capacities to abstract
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networks through virtualization. Numerical investigation confirms that Dueling
DQN manifestly outperforms DQN and highlights related enhancements leading
to better convergence-performance trade-off in terms of reaching a predefined
QoETh_Sc and in minimizing RR. In future researches, we intend to investigate
further performance metrics and to establish performance comparison between
DQN and other DQN variants for the same scenario addressed in this paper.
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Abstract. Opacity is an important information flow property that is
concerned with the secret leakage of a system to a malicious observer
called an “intruder”. Usually, opacity analyses are made under static
or dynamic observation, i.e., the observability of events in a system is
fixed or changeable over time by a mask. In this paper, we address the
verification of language-based opacity in the context of discrete-event
systems under Orwellian observation. We consider an Orwellian partial
observability model, where some unobservable events, not visible when
occurring, may become noticeable in the future. Specifically, we propose a
set of unobservable events that are no longer unobservable once an event
in another particular disjoint event subset is triggered. First, we define
and solve an integer linear programming problem to verify language-
based opacity in discrete event systems using labeled Petri nets. We
then propose a new Orwellian projection function that is event-based,
i.e., the system is allowed to re-interpret the observation of the already
triggered events when a particular observable event occurs. Finally, the
verification of language-based opacity in discrete event systems under
Orwellian projection is addressed.

Keywords: Language-based opacity · labeled Petri net ·
Discrete-event system · Orwellian projection · Integer linear
programming

1 Introduction

With more and more information exchanges in cyber-systems, serious security
issues have been raised. Ensuring the safety and reliability of such systems
becomes challenging. Security analysis and control in cyber-systems has received
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a great deal of attention in the past decade. Some security notions are related to
information flows. Information flows should be governed in a safe manner to pre-
vent secret information from being leaked to an outside observer with malicious
intention called an “intruder”. Opacity is one of the most important information
flow properties studied in the literature. Opacity reflects the ability of a system
to hide a given secret from an intruder during the system’s evolution. For the
opacity issue in a DES, it usually assumes that the intruder has full knowledge of
the system’s structure but has only a partial observation ability of its evolution.

In recent years, opacity-related problems have been extensively studied in
the context of discrete event systems. In a DES, opacity is first addressed in [1]
for transition systems, further developed in [2], and extended in [3] using Petri
nets (PNs) as a modeling formalism. The opacity notion is then framed in the
context of finite state automata in [4]. A system is said to be opaque if, during
its evolution, an intruder is unable to determine the system’s secret based on
its observations. Different opacity notions have been proposed such as language-
based opacity, current-state opacity, initial-state opacity, K-step opacity, and
infinite-step opacity [5]. The opacity verification problem in discrete event sys-
tems has received a great deal of attention from researchers over the last few
years. Verification methods have been proposed in various ways to deal with
different categories of opacity [6].

The observation model of a system is the key to its opacity analysis. In
the DES literature, the observation mechanisms can be classified mainly into
three types: static, dynamic, and Orwellian, depending on the computational
power of an observer that it reflects. Broadly speaking, in the setup of the static
observation, the set of observable events and the observer interpretation are
fixed off-line. For dynamic observability, the set of observable events changes
over time depending on the history of the trace. However, in the setting of
Orwellian observation, a system is allowed to re-interpret the observation of an
internal string, in which the observability of an event depends on the prefix up
to the current instant and on the future suffix.

For instance, the work in [7] introduces dynamic partial observability, in
which the observation of a set of events is controlled by a dynamic mask and
changes over time. Opacity verification under a dynamic projection is then
addressed. Moreover, the authors in [8] introduce the synthesis of infinite-step
opacity under a dynamic projection. Opacity under an Orwellian observation is
first investigated in [9], in which the authors prove that opacity and intransitive
non-interference are equivalent. Therein, the Orwellian projection reveals the
entire trajectory when a particular event, named a downgrading event, occurs,
i.e., the outsider knows the current state precisely. However, in this paper, it is
assumed that only some of the unobserved events (not all of the entire path)
are revealed (become noticeable) when a particular event occurs in order to pre-
serve the uncertainty of the intruder. The work in [10] extends the approach in
[9] to address opacity verification and enforcement under the proposed Orwellian
observation model. The authors in [10] show that opacity verification is decidable
under their suggested Orwellian observation function with PSPACE-complete
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complexity, while it is undecidable under a general Orwellian observation func-
tion. Later, the authors in [11] propose a new Orwellian-type observation
model called a dynamic information release mechanism (DIRM) which is state-
dependent, where they assume that only partial information of the trajectory
can be released when a particular state is reached. The verification of current-
state opacity under the proposed Orwellian-type observation is then discussed.
In this paper, we address language-based opacity (LBO) verification in discrete
event systems under an Orwellian observation model using Petri nets (PNs).

In the context of an automaton framework, the work in [12] proposes algo-
rithms to verify both strong and weak LBO, in which the construction of nine
types of graphs is required and the complexity of the proposed approach is
PSPACE-complete. Later, weak opacity has been checked by an algorithm with
polynomial time complexity, which is proposed in [13]. On the other side, the
authors in [20] introduce an algebraic representation of labeled PNs to verify ini-
tial state opacity. However, only the works in [14] and [15] study language-based
opacity verification using labeled PNs. The study in [14] verifies language-based
opacity using a special structure called a verifier under the assumption that an
intruder is interested in the set of observable transitions only. This work con-
structs the basis reachability graph (BRG) of a given PN and applies the related
approach proposed in [12]. In [15], an approach based on integer linear program-
ming is proposed, where an algebraic representation of labeled Petri net (LPN)
is exploited and two conditions are derived to check LBO with respect to a given
finite secret language.

As stated, this paper addresses the verification of language-based opacity in
the context of discrete-event systems under Orwellian observations. We consider
Orwellian partial observability, where some unobservable events, not visible when
occurring, can be noticeable due to the further system evolution. In other words,
besides the standard sets of observable and unobservable events, we propose a set
of unobservable events that are no longer unobservable once an event in another
particular disjoint event subset is triggered. This concept is invented in order to
release information as much as possible to maintain accountability while keeping
the system’s security. First, the verification of language-based opacity in dis-
crete event systems is addressed using integer linear programming, which helps
us further consider unbounded Petri nets. A new Orwellian projection is then
proposed that is event-based, i.e., the system is allowed to re-interpret the obser-
vation of the already triggered events when a particular observable event occurs.
Finally, language-based opacity in modular systems under Orwellian observation
is defined.

2 Preliminaries

2.1 Petri Net

A Petri net is a four-tuple N = (P, T, Pre, Post), where P is a finite set of
m places, graphically represented by circles; T is a finite set of n transitions,
graphically represented by bars, with P ∩T = ∅ and P ∪T �= ∅; Pre: P ×T → N
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and Post : P ×T → N are the pre- and post-incidence functions that respectively
specify the arcs directed from places to transitions and vice versa, where N = {0,
1, 2, . . .} is a set of non-negative integers. In a Petri net, the pre- (post-) incidence
function Pre (Post) can be represented by a matrix indexed by P and T , i.e.,
Pre, Post ∈ N

m×n. We use C = Post − Pre to represent the incidence matrix
of a net.

A marking is a mapping M : P → N that assigns tokens to places; graphically
a token is drawn by a black dot. The marking of a place p at a marking M
is denoted by M(p). For economy of space, the multi-set notation is used, i.e.,
write M = Σp∈P M(p).p to denote a marking M . For mathematical convenience,
a marking M can be represented as a vector with its i-th entry being M(pi).

A Petri net system 〈N,M0〉 is a net N equipped with an initial marking M0.
A transition t is enabled at a marking M if M ≥ Pre(·, t). The firing of t at M
yields a marking M ′, satisfying M ′ = M +C(·, t). We write M [t〉 to denote that
t is enabled at M and M [t〉M ′ to denote that the firing of t drives a system from
M to M ′.

Write M [σ〉 if a sequence of transitions σ = t1 . . . ti ∈ T ∗ is sequentially
enabled at the marking M such that M [t1〉M1[t2〉M2 . . . [ti〉Mi holds, denoted
as M [σ〉Mi. The set of all firable (feasible) transition sequences in 〈N,M0〉 is
denoted as L(N,M0) = {σ ∈ T ∗|M0[σ〉}. Given a transition sequence σ ∈ T ∗,
function τ : T ∗ → N

n defines the firing count vector of the transition sequence
σ, i.e., τ(σ) ∈ N

n, where τ(σ) = y with y(t) = k representing that the number
of occurrences of t in σ is k. By a slight abuse of notation, we write t ∈ σ if t is
contained in σ.

A marking M is said to be reachable in 〈N,M0〉 if there exists a transition
sequence σ ∈ T ∗ such that M0[σ〉M . The reachability set of 〈N,M0〉, denoted
by R(N,M0), contains all markings of the net system reachable from M0, i.e.,
R(N,M0) = {M ∈ N

m | ∃σ ∈ T ∗ : M0[σ〉M}. If M0[σ〉M , then the state
equation of the net is M = M0 + C · y, where y = τ(σ).

2.2 Labeled Petri Net

A labeled Petri net (LPN) is a four-tuple G = (N , M0, E, λ), where 〈N,M0〉 is a
net system, E is an alphabet, and λ : T → E is a labeling function that assigns
a label in E to a transition t ∈ T . The labeling function can be extended in a
usual way, written again as λ in the case of no confusion. The extended labeling
function λ : T ∗ → E∗ is defined as follows: λ(ε) = ε and λ(σt) = λ(σ)λ(t), in
which σ ∈ T ∗ and t ∈ T , where ε is the empty string.

Due to the partially observable characteristics of a system, the set E is parti-
tioned into two disjoint parts: namely Eo and Eu, representing the sets of observ-
able and unobservable events, respectively. Accordingly, transition set T in an
LPN can be divided into two disjoint sets T = To∪Tu, where To = {t ∈ T | λ(t) ∈
Eo} is the set of observable transitions, while Tu = T \ To = {t ∈ T | λ(t) ∈ Eu}
is the set of unobservable transitions, also called silent transitions. Herein,
we assume that a label e ∈ E can be associated with more than one transi-



On Language-Based Opacity Verification Problem 49

tion. We then define the set of transitions associated with the same label e as
T (e) = {t ∈ To|λ(t) = e}.

Given a word ω ∈ E∗, its observation is the output of a natural projection
function Pr : E∗ → E∗

o , which is recursively defined as Pr(ε) = ε; Pr(e) = e
if e ∈ Eo and Pr(e) = ε if e ∈ Eu; Pr(ωe) = Pr(ω)Pr(e), where ω ∈ E∗ and
e ∈ E. The natural projection Pr can be extended to Pr : 2E∗ → 2E∗

o , i.e., given
a language L ⊆ E∗, Pr(L) = {Pr(ω) ∈ E∗

o | ω ∈ L}. The inverse project of Pr,
denoted by Pr−1, can be accordingly defined by Pr−1 : 2E∗

o → 2E∗
. Let s ∈ E∗

be a string. Write, as before, e ∈ s if s contains e. Set ||s|| = {e ∈ E | e ∈ s} is
called the support of s. The length of s is the number of symbols contained in
it.

The language generated by an LPN system G = (N , M0, E, λ) from M0 that
defines its behavior is given by

L(G,M0) = {ω ∈ E∗|∃σ ∈ T ∗ : M0[σ〉, λ(σ) = ω} (1)

Given a subset of transitions T ′ ⊆ T , we define the T ′-derived subnet of N
as N ′ = (P, T ′, P re′, Post′) that is the net resulting by removing all transitions
in T\T ′ from N , where Pre′ and Post′ are the restrictions of Pre and Post
to T ′, respectively. The incidence matrix of the T ′-derived subnet is defined by
C ′ = Post′ − Pre′.

2.3 Some Results on Reachability in Petri Nets

Definition 1 (Basis Partition [16]). Given a Petri net N = (P , T , Pre,
Post), a pair π = (TE , TI) is called a basis partition of transition set T if TI ⊆ T ,
TE = T \ TI , and the TI-induced subnet is acyclic.

Sets TE and TI collect the explicit and implicit transitions, respectively. In
simple words, π divides T into two disjoint sets TE and TI such that the TI -
induced subnet is acyclic. Note that terms “implicit” and “explicit” are not
related to the physical meanings of transitions. Let |TE | = nE and |TI | = nI ,
where nE and nI represent the cardinalities of TE and TI , respectively.

Definition 2 (Explanations [16]). Given a marked net (N,M0) with N =
(P, T, Pre, Post), a basis partition π = (TE, TI), a marking M ∈ R(N,M0),
and a transition t ∈ TE, the set of explanations of t at M is defined as

Σ(M, t) = {σ ∈ T ∗
I |M [σ〉M ′,M ′ ≥ Pre(·, t)} (2)

The set of e-vectors (explanation vectors), denoting the firing vectors associated
with the sequences in Σ(M, t), is defined as Y (M, t) = {yσ ∈ N

nI | σ ∈ Σ(M, t) :
yσ = τ(σ)}.

Definition 3 (Minimal Explanations [16]). Let (N , M0) be a marked net
with N=(P , T , Pre, Post). Given a basis partition π=(TE, TI), a marking M
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∈ R(N,M0), and an explicit transition t ∈ TE, the set of minimal explanations
of t at M is defined as

Σmin(M, t) = {σ ∈ Σ(M, t)|�σ′ ∈ Σ(M, t) : yσ′ � yσ} (3)

and the corresponding set of minimal e-vectors is defined by Ymin(M, t) = {yσ ∈
N

nI |σ ∈ Σmin(M, t) : yσ = τ(σ)}.
Definition 4 (Basis Marking [16]). Given a net N = (P , T , Pre, Post)
with initial marking M0 and a basis partition π = (TE , TI), the set of its basis
markings M is a subset of R(N,M0) such that:

a) M0 ∈ M;
b) If M ∈ M, then for all t ∈ TE, for all yI ∈ Ymin(M, t), it holds M ′ ∈ M,

where M ′ = M + CI · yI + C(·, t).
Note that CI is the incidence matrix of the subnet derived from TI . A marking
M ∈ M is called a basis marking with respect to π = (TE , TI).

3 Verification of Language-Based Opacity

Opacity is a safety property for analyzing secret leakages of DESs. A secret is
usually represented by a set of states or a set of event sequences. When the
second type of secret is considered, opacity is referred to as language-based
opacity (LBO). The definition of LBO of DESs is initially formulated based
on automata and then consistently extended to the Petri net framework [14],
where a secret is represented as a set of transition sequences. Given a transition
sequence σ ∈ T ∗, λ(σ) ∈ E∗ is by definition the string generated by σ and
Pr(λ(σ)) ∈ E∗

o is called the observation of σ. Accordingly, Pr(L(G,M0)) ⊆ E∗
o

is called the observation language of G.

3.1 Language-Based Opacity Description

Definition 5 ([14]). Let G = (N,M0, E, λ) be an LPN and S ⊆ L(N,M0) be a
secret. A transition sequence σ ∈ S is said to be opaque w.r.t S if there exists
σ′ ∈ L(N,M0)\S such that Pr(λ(σ)) = Pr(λ(σ′)).

Definition 6 ([14]). Let G = (N,M0, E, λ) be an LPN and S ⊆ L(N,M0) be
a secret. The system G is said to be language-based opaque w.r.t. S if all the
transition sequences in S are opaque.

In other words, G is language-based opaque if, for all the strings generated
by a secret transition sequence in S, there exists at least one string generated
by a non-secret sequence in L(N,M0)\S with the same observation under the
natural projection Pr.
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Definition 7. Given an LPN G = (N,M0, E, λ) and an observation ω ∈
Pr(L(G,M0)), the set of transition firing sequences consistent with ω is defined
as

S(ω) = {σ ∈ L(N,M0)|Pr(λ(σ)) = ω} (4)

Definition 8. Given an LPN G = (N,M0, E, λ) and a secret S ⊆ L(N,M0),
the set of secret observations is defined as

LS = {ω ∈ E∗
o |∃σ ∈ S : Pr(λ(σ)) = ω} (5)

Lemma 1. Let G = (N,M0, E, λ) be an LPN and S ⊆ L(N,M0) be a secret. G
is language-based opaque w.r.t. S if for all ω ∈ LS, S(ω) � S.

Proof. Consider the contrapositive case when there exists ω ∈ LS such that
S(ω) ⊆ S. Following that, all the transition sequences that are consistent with ω
are secret sequences. Accordingly, there does not exist any non-secret transition
sequence σ ∈ L(N,M0)\S consistent with the secret observation ω ∈ LS . Given
that any sequence generating ω is a secret transition sequence, Definition 6
establishes that G is non-language opaque which contradicts the assumption
and concludes the proof.

3.2 An Integer Linear Programming Solution

A specific basis partition π = (TE , TI) is proposed to address language-based
opacity verification. Consider an LPN G = (N,M0, E, λ), we assume that the
explicit transition set TE is a combination of two sets To and T̂u in which TE =
To ∪ T̂u, where the set T̂u denotes the set of unobservable transitions contained
in the secret transition sequences, i.e., T̂u = {t ∈ Tu | ∃σ ∈ S : t ∈ σ}. To
ensure a precise representation of a system’s observable behavior, we additionally
assume that the set To is included in TE . In order to handle a specific scenario
in which unobservable transitions can render a system opaque, the set T̂u is also
intended to be included in the set TE . Thus, a non-null e-vector is required for
a transition t from the transition sequences representing secret words in order
for a system to be opaque (details will be provided later). Indeed, TE = To ∪ T̂u

represents the proposed explicit transition set, and TI = T\TE represents the
implicit transition set. The basis partition formed from secret S in this instance
is denoted by (TE , TI). In order to designate |TE | and |TI |, respectively, we use
nE and nI once more.

Theorem 1. Given an LPN G = (N,M0, E, λ) with E = Eo∪̇Eu, a secret
S ⊆ L(N,M0), a secret sequence σ ∈ S with Pr(λ(σ)) = ω = e1e2 · · · en and
y = τ(σ), such that for all j ∈ {1, 2, · · · , n}, ej ∈ Eo, and the basis partition
π = (TE , TI) derived from S, the sequence σ is opaque if and only if there exists
a non-negative integer k ≥ n such that the set of constraints (6) admits a feasible
solution:
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⎧
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yEi
∈ N

nE ,∀i ∈ {1, 2, · · · , k}
yIi ∈ N

nI ,∀i ∈ {1, 2, · · · , k + 1}
M0 − PreI · yI1 ≥ 	0 (6a)
M0 + CI · yI1 − PreE · yE1 ≥ 	0 (6b)
∃tm ∈ Te1 ∪ T̂u, yE1(tm) + yI1(tm) ≤ 1 ∀m ∈ N

M0 + CE · yE1 + CI · yI1 − PreI · yI2 ≥ 	0 (6c)
∃tm ∈ Te1 ∪ T̂u, yE1(tm) + yI2(tm) ≤ 1 ∀m ∈ N

M0 + CE · yE1 + CI ·
2∑

i=1

yIi − PreE · yE2 ≥ 	0 (6d)

∃tm ∈ Te2 ∪ T̂u, yE2(tm) + yI2(tm) ≤ 1 ∀m ∈ N

· · ·
M0 + CE ·

k−1∑

i=1

yEi
+ CI ·

k∑

i=1

yIi − PreE · yEk
≥ 	0 (6e)

M0 + CE ·
k∑

i=1

yEi
+ CI ·

k∑

i=1

yIi − PreI · yIk+1 ≥ 	0 (6f)

M0 + CE ·
k∑

i=1

yEi
+ CI ·

k+1∑

i=1

yIi ≥ 	0 (6g)

k∑

i=1

yEi
= yE ∈ N

nE

k+1∑

i=1

yIi = yI ∈ N
nI

∑
tm∈Tej

∪T̂u
yEi

(tm) + yIi(tm) ≤ 1 (6h)
∀i ∈ {1, 2, · · · , k + 1},∀m ∈ N

yE + yI �= τ(σ) (6i)
where PreI and PreE, are the pre-incidence functions of subnets derived from
TI and TE, respectively. CI and CE are the incidence matrices of subnets derived
from TI and TE, respectively. yEi

and yIi represent the firing vectors of an
explicit transition and an implicit transition, respectively.

Before presenting the proof, let us explain the constraints of this theorem.
Let ω = e1e2 · · · en be the observation of a secret transition σ ∈ S. Starting from
the initial marking M0 and by the event e1 ∈ ω, at each instant i, Constraints
(6a)–(6g) indicate the firing of a transition that generates an event ei that must
be either observable with the same observability of the event ej ∈ ω, with
j ∈ {1, 2, · · · , n}, or unobservable, i.e., ei ∈ Eu. The satisfaction of Constraints

(6a)–(6g) implies the existence of two vectors yE =
k∑

i=1

yEi
and yI =

(k+1)∑

i=1

yIi .

The yE represents the firing vector of the transition sequence that generates
the observation ω, which is guaranteed by Constraint (6h). This means that
Constraint (6h) forced that the firable transitions must either have the same
observation as the events in ω or be unobservable. In order to guarantee that yE

does not represent the secret transition sequence σ that generates ω, Constraint
(6i) is presented to ensure the firing of a vector yI that enables the firing of
unobservable transitions, which makes yE + yI �= y.
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Proof. (If) Let us suppose that the set of Constraints (6a)–(6i) is satisfied. Start-
ing from M0, if there exist firing vectors yI and yE that satisfy Constraints
(6a)–(6g), then there exists a sequence σ′ = tu1to1tu2to2 · · · tuk

tok
tuk+1 such that

M0[σ′〉 holds, where λ(tui) ∈ Eu and λ(toi) ∈ Eo, i ∈ {1, 2, . . . , k +1}. Note that
in Constraints (6a)–(6g) the firing vector could be equal to an empty vector
which means that any tui or toi could not exist. This means that σ′ could be in
any form while ignoring any tui or toi since its firing vector could be the 	0.

Based on the proposed basis partition, we have TE = To ∪ T̂u, which implies
that the elements in the firing vector yE contain the observable transitions and

the unobservable ones in the secret sequences. Thus, yE =
k∑

i=1

yEi
and yI =

(k+1)∑

i=1

yIi hold, where k � n. At a time, each integer vector yEi
enables only

the firing of one transition which either has the same observation as the j-th
observable event in the secret observation, i.e., ej ∈ ω, or has no observation
due to the fact that it is included in T̂u (unobservable transition contained in a
secret sequence), which is forced by Constraint (6h).

The vector yE represents the firing vector of the transition sequence that
generates ω, where ω = Pr(λ(σ)). Moreover, the firing vector yE could represent
the sequence σ, i.e., yE = y = τ(σ). For this reason, the firing of a vector
yI that enables the firing of unobservable transitions is required in order to
guarantee that yE + yI �= y, i.e., yE + yI �= τ(σ), yE + yI = τ(σ′), and σ �= σ′,
which is assured by Constraint (6i). The satisfaction of the set of constraints (6)
implies that there exists a sequence σ′ that is different from σ but has the same
observation ω under the natural projection Pr. Thus, the sequence σ is opaque.

(Only If) Let us now suppose that σ is opaque. Thus, there exists a sequence
σ′ ∈ S(ω) such that σ �= σ′, M0[σ〉, and σ′ = tu1to1tu2to2 · · · tun

ton
tun+1 . This

implies that there exists a firing vector y′ = yE + yI such that y′ = τ(σ′)
and y′ �= y, i.e., yE + yI �= y. Based on the proposed basis partition, we have
TE = To ∪ T̂u. The vector yE could represent the observable transitions and the
unobservable ones that are contained in the secret sequences. For this reason,
we have

yE =
k∑

i=1

yEi
, yI =

k+1∑

i=1

yIi ,

where k � n.
By the state equation, the firing vectors yE and yI satisfy the following

constraint

M0 + CE ·
k∑

i=1

yEi
+ CI ·

k+1∑

i=1

yIi ≥ 	0.

Thus, Constraints (6a)–(6g) hold. Since σ′ ∈ S(ω), for each firing vector yEi

only one transition having the same observation as the j-th observable event, i.e.,
ej ∈ ω, or an unobservable transition from T̂u can be fired, which requires the
satisfaction of Constraint (6h). However, the firing vector yE can be associated
with the sequence σ, i.e., yE = τ(σ). To deal with that, yE + yI �= y must hold,
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which can be imposed by Constraint (6i). Thus, the fact that the sequence σ is
opaque implies that the set of Constraints (6) admits a feasible solution.

Corollary 1. Given an LPN G = (N,M0, E, λ), a particular basis partition
π = (TE , TI), and a secret S ∈ L(N,M0), G is said to be language opaque if and
only if for all σ ∈ S, with Pr(λ(σ)) = ω, the set of Constraints (6) admits a
feasible solution.

Example 1. Let us consider the LPN G portrayed in Fig. 1, where To =
{t1, t3, t5, t6} and Tu = {t2, t4, t7}, leading to Eo = {a, b} and Eu = {c}.
Let S = {t1t2t3} be a secret and accordingly the set LS = Pr(λ(S)) =
{Pr(λ(t1t2t3))} = {ab} represents the secret observations. Based on the pro-
posed basis partition, TE = {t1, t2, t3, t5, t6} and TI = {t4, t7} hold. According
to Theorem 1, the sequence σ = t1t2t3 is opaque if and only if the set of Con-
straints (6) admits a feasible solution. Let y = [1110000]T be the associated fir-
ing vector of σ. Executing the set of Constraints (6), there exists a sequence
σ′ = tI1tE1tI2tE2tI3tE3tI4 = εt1εt2εt3t7 that is enabled at M0 and has the
same observation as σ, i.e., Pr(λ(σ′)) = Pr(λ(σ)) = ab. Thus, we have found
seven firing vectors yI1 = [00]TI , yE1 = [10000]TE, yI2 = [00]TI , yE2 = [01000]TE,
yI3 = [00]TI , yE3 = [00100]TE, and yI4 = [01]TI which satisfy Constraints (6a)–
(6h). We also have yE + yI = [1110001]T �= y, which is assured by Constraint
(6i). According to Corollary 1, G is language opaque.

( ) ( )

( )

( )

( )

( )

( )

Fig. 1. A labeled Petri net example.

4 Orwellian Observation

In the DES community, opacity analysis, verification, and enforcement are usu-
ally addressed under the notion of natural projection due to the nature of partial
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observation of such systems. However, in real applications and for transparency
reasons, it is desirable to release information as much as possible to maintain
accountability. In this context, the notion of “information release to maintain
opacity” is explored in order to compromise between security and transparency
[17,19].

In order to keep a system’s opacity, it is preferable to declassify (release)
only partial history information to users. For this reason, the notion of Orwellian
projection is defined [2,9]. Herein, we assume that some particular events are
revealed only when a particular event in a system occurs. To this end, we identify
two subsets, denoted by Eor and Eur, from Eo and Eu, respectively. As before,
Eo represents the set of standard observable events whose occurrences can be
immediately observed and Eu represents a set of standard unobservable events
whose occurrence can never be observed, where E = Eo ∪ Eu and Eo ∩ Eu = ∅.

In this work, we assume that the set Eur ⊆ Eu groups the quasi-unobservable
events whose occurrences may not be immediately observed but may be observed
in the future when a particular observable event e ∈ Eor occurs. Note that
Eor ⊆ Eo represents the set of particular observable events, called observability-
triggering events, whose occurrences reveal the observability of the events in
Eur that have already occurred in the trajectories generated by a system. Thus,
a transition with a label e ∈ Eur become observable only when an upcoming
transition in Eor occurs, while the other transitions in Eur with the same label
e remain unobservable. For example, suppose that only a trajectory s = αβγ
is generated by a system (from the initial marking) with Eo = Eor = {γ},
Eu = {α, β}, and Eur = {β}. Then, after the occurrence of γ, only the transition
with the label β in this particular string s becomes observable, while the other
transitions with label β (those not appearing in s) keep unobservable (a formal
description will be given later).

Write Tur = {t ∈ T | λ(t) ∈ Eur} and Tor = {t ∈ T | λ(t) ∈ Eor}. It is
obvious that Tur ⊆ Tu and Tor ⊆ To. In the framework of static observation,
the set of events is divided into observable and unobservable events, in which
the observability of an event is fixed, i.e., either it is always observable or not
observable. The event release mechanism used here is event-based. A system is
allowed to re-interpret the observation of previously triggered events. Therefore,
it is assumed that a system can hold on to the occurrence of events from Eur

and release their observation when an observability-triggering event occurs.
Let σ ∈ L(N,M0) be a transition sequence and λ(σ) = ω be its corresponding

generated word. We define by ω[1, i] the longest prefix of ω ending with an event
e ∈ Eor. In this sense, notation i with 1 ≤ i ≤ |ω| represents the latest instant
when an event in Eor is triggered. Then, we naturally use ω[i+1, |ω|] to represent
the suffix of ω such that ω = ω[1, i]ω[i + 1, |ω|]. Formally, given an LPN G with
E = Eo ∪ Eu ∪ Eor ∪ Eur, the Orwellian projection Pro : E∗ → (E\{Eu\Eur})∗

of a given observation ω, denoted by Pro(ω), is defined as

Pro(ω) = PrEo∪Eor∪Eur
(ω[1, i])Pr(ω[i + 1, |ω|]).

For the sake of succinctness, write PrEo∪Eor∪Eur
as Pr�. To formally define

Pr�, suppose that ω = sts′ and ω[1, i] = st, i.e., st is the longest prefix of ω
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ending with an event t ∈ Eor. In this case we know that s′ = ω[i + 1, |ω|] is the
suffix of ω such that for all e ∈ Eor, e /∈ s′ holds, where s, s′ ∈ E∗ and t ∈ Eor.
Thus, we define

Pr�(st) =

⎧
⎨

⎩

Pr�(s) if t ∈ (Eu\Eur);
ε if st = ε;
Pr�(s)t otherwise.

Note that Pr(s′) = Pr(ω[i+ 1, |ω|]) is the observation of the prefix s′ under the
standard natural projection Pr. In the setting of natural projection Pr, the users
can observe the occurrence of observable events immediately, which are events
in Eo (including of course Eor). Recall that “i” represents the latest instant
to release the occurrence of already triggered events in Eur. Thus, Pr�(ω[1, i])
release (declassify) all the transitions in ω[1, i] except those in the set (Eu\(||st||∩
Eur)). It is obvious that all the transitions with labels being in Eur that occur
before the instant “i” become observable. Meanwhile, the transitions with their
labels being in Eur that occur after the instant “i” remain unobservable, which
is figured by Pr(ω[i + 1, |ω|]).

Given an LPN G, with E = Eo ∪ Eu ∪ Eor ∪ Eur, and a string ω ∈ L(G,M0),
a pre-language with respect to a string ω ∈ L(G,M0) is defined as

L(G, ω) = {σ ∈ T ∗|∃s1 ∈ Eor,∃ω′ ∈ E∗ ∪ {ε} :

λ(σ) = ω[1, i], ω[1, i]s1 = ω, ωω′ ∈ L(G,M0)}.

In summary, provided that an observation ω is observed, the current observ-
able set will be Eo ∪ [∪σ∈L(G,ω)(||λ(σ)||∩Eur)]. The following example illustrates
the proposed Orwellian projection mechanism.

( ) ( )

( ) ( ) ( )

Fig. 2. An example of LPN.

Example 2. Let us consider the LPN in Fig. 2, where To = {t1, t2, t4, t5},
Tu = Tur = {t3}, and Tor ⊆ To = {t1, t4}. We then have Eo = {a, c},
Eur = {d}, and Eor = {a}. Let S = {t1t2} be a secret and LS = {ac} be
its corresponding secret language. Under the standard natural projection, the
system is language opaque since there exists another sequence t3t4t5, in which
Pr(λ(t3t4t5)) = Pr(λ(t1t2)) = ac. However, under the Orwellian projection,
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Pro(λ(t3t4t5)) = dac holds, where d ∈ Eur, a ∈ Eor, and da is the longest
prefix of dac that ends with an observability-triggering event, i.e., an event
from the set Eor in which i = 2. The observability of event d is released after
the following event a is triggered. The Orwellian observation of the sequence
t3t4t5 is different from the Orwellian projection of the secret sequence, i.e.,
Pro(λ(t3t4t5)) = dac �= Pro(λ(t1t2)) = ac. Hence, the system is non-opaque
under the Orwellian projection.

Remark 1. Note that the unobservable events in Eur become observable after
the occurrence of an event from Eor while the upcoming firable events from
Eur remain unobservable until the next occurrence of an observability-triggering
event. For example, considering Example 2 again, where this time we suppose
that To = {t1, t4}, Tu = Tur = {t2, t3, t5}, and Tor ⊆ To = {t4}. Then,
Eur = {d, c} holds. Suppose that the transition sequence t3t4t5 occurs. We have
λ(t3t4t5) = dac and Pro(dac) = da. The event d is released while the event c is
still unobservable since there does not exist any observability-triggering event in
Eor that has been occurred after the event c. �

The Orwellian projection in this paper is closely related to the ones proposed
in [9] and [11]. The main distinctions could be summarized as follows:

– As the same as the dynamic information release mechanism proposed in [11],
the Orwellian projection in this paper is the partial information release, while
the one in [9] is the full information release.

– The information release mechanism in [11] is state-based in which the occur-
rence of some unobservable events is released when the system reaches a
particular state; however, herein, the information release is event-based.

– In [9], once a downgrading event (particular event) is triggered, the unob-
servable events that have been fired in the past become observable. Thus, an
intruder infers immediately the exact reached state of the system, which is
not the case in our research since only some events become observable once
an observability-triggering event in Eor occurs.

5 Opacity Verification Under Orwellian Observation

In this section, the verification of language-based opacity in discrete event sys-
tems under an Orwellian mapping is presented. The Orwellian observation repre-
sents a conditional anonymity, in which some events may be initially anonymous
but later in the future their occurrences can be revealed when certain condi-
tions are satisfied. The Orwellian projection captures the trade-off between secu-
rity and transparency by maintaining opacity during the release of information.
Presently, sites, businesses, hospitals, and governments aim to be transparent
while ensuring the requirement of critical information concealment or privacy.
Thus, the notion of Orwellian projection becomes more applicable in practice
than the standard natural projection [17]. Extending language-based opacity
from natural projection to Orwellian projection in discrete event systems can
be effected by simply replacing Pr by Pro. Thus, the following definition is
introduced.
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Definition 9 (Orwellian Opacity). Given an LPN G = (N,M0, E, λ), a basis
partition π = (TE , TI), a secret S ⊆ L(N ,M0), and an Orwellian projection Pro,
G is said to be Orwellian opaque w.r.t. S if Pro(λ(S)) ⊆ Pro(λ(L(N,M0)\S)).

Proposition 1 ([18]). Deciding the opacity of regular languages under
Orwellian projection is PSPACE-complete.

A static or dynamic projection represents a particular case of Orwellian
projection. It has been shown that the problems using such projections are
already PSPACE-complete. Thus, deciding opacity under Orwellian projection
is PSPACE-complete.

Proposition 2. Given an LPN G = (N,M0, E, λ), a basis partition π =
(TE , TI), a secret S ⊆ L(N,M0), and an Orwellian projection Pro, G is said
to be Orwellian opaque w.r.t. S if it is opaque under the natural projection Pr
and for all σ ∈ S, there does not exist any t ∈ σ such that t ∈ Tur.

Proof. Assume that G is opaque under the natural projection Pr. For all σ ∈ S,
there exists σ′ ∈ L(N,M0\S such that Pr(λ(σ)) = Pr(λ(σ′)). Assume now
that there does not exist t ∈ σ such that t ∈ Tur. As a result, there will be no
unobservable transitions that will be noticed in the future, which may reveal the
opacity of σ. This indicates that if σ is opaque under Pr, it will be opaque under
Pro as well.

Proposition 3. Given an LPN G = (N,M0, E, λ), a basis partition π =
(TE , TI), a secret S ⊆ L(N,M0), and an Orwellian projection Pro, G is said
to be Orwellian opaque w.r.t. S if it is opaque under the natural projection Pr
and for all σ ∈ S, there does not exist any t ∈ Tor that belongs to the secret σ’s
trajectory.

Proof. Assume that G is opaque under the natural projection Pr. For all σ ∈ S,
there exists σ′ ∈ L(N,M0\S such that Pr(λ(σ)) = Pr(λ(σ′)). Assume now that
there does not exist t ∈ Tor that belongs to the secret σ’s trajectory. As a result,
there will be no unobservable transitions that will be noticed in the future since
there does not exist any t ∈ Tor that may reveal the observation of the quasi-
unobservable transitions. This indicates that if σ is opaque under Pr, it will be
opaque under Pro as well.

6 Conclusion

In this paper, we address the problem of language-based opacity verification in
discrete event systems under a newly proposed Orwellian projection function.
First, language-based opacity verification is presented by solving an integer lin-
ear programming problem to deal with unbounded Petri nets. Then, we propose
a new observation model based on an Orwellian-type projection. Finally, a frame-
work for language opacity verification under Orwellian projection is established.
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Abstract. In this paper, we aim to advance the state of the art in the
verification process of systems, predominantly modeled as Probabilistic
Automata (PA). This model accommodates both nondeterministic and
probabilistic behaviors. Our primary strategy to address the notorious
state space explosion problem inherent in model checking is the adoption of
abstraction and compositional verification techniques, culminating in the
development of a distributed verification approach centered on the commu-
nication interface amongst composed automata. Initially, the abstraction
technique refines the system in relation to the requirement under verifi-
cation and amalgamates states demonstrating comparable behaviors. Not
only does it simplify the system, but it also enables a decomposition of
global requirements into local ones. This decomposition process facilitates
parallel verification and securely allows inference on the global requirement
from local results. Moreover, the soundness of our proposed framework has
been substantiated, ensuring that it correctly interprets and applies the
properties of the system under scrutiny. In the final phase, we leveraged
thePRISMmodel checker to assess the effectiveness of our proposed frame-
work. This evaluation was carried out on three benchmark tests, providing
empirical evidence to support the benefits of our approach. Our contribu-
tion to the field lies in the novel combination of abstraction and composi-
tional verification techniques in a distributed verification framework, val-
idated through theoretical soundness proofs and practical tests using the
PRISM model checker. This result paves the way for more efficient and
scalable model-checking processes for Probabilistic Automata.

Keywords: Abstraction · Compositional Verification · Probabilistic
Automata · PRISM · PCTL

1 Introduction

Model checking [1,2] is a well-established formal automatic verification technique
designed for finite-state concurrent systems. It examines temporal logic specifi-
cations and automata-based formalism on system models. Alongside qualitative
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model checking, quantitative verification methods based on probabilistic model
checkers [3,4] have recently gained traction. Probabilistic verification enables
probabilistic interpretation of a given property’s satisfiability in systems that
intrinsically exhibit probabilistic behavior. Despite its broad adoption, model
checking typically requires substantial memory and processing time, which can
be attributed to the potentially exponential growth of the system’s state space
due to the number of variables and concurrent behaviors. Therefore, reducing
the complexity of the verification process is paramount for verifying large-scale
systems.

Various techniques have been investigated [1–3,5] to address the aforemen-
tioned issue in qualitative model checking, which were subsequently extended
to the probabilistic case. These solutions broadly aim to enhance the model-
checking algorithms by introducing symbolic data structures such as binary
decision diagrams, or focusing on model analysis. Predominantly, two classes
of solutions are identified in the literature: abstraction and compositional ver-
ification. Abstraction provides a compact representation of the global system
under verification, while compositional verification bypasses the construction of
the whole system parts. Our work delves into both classes.

Abstraction techniques fall into four categories [2]: 1) state merging abstrac-
tion, 2) variable abstraction, 3) restriction-based abstraction, and 4) observer
automata abstraction. Our proposed framework exploits the first and third cat-
egories. Additionally, well-recognized compositional verification techniques [6]
include partitioned transition relation, lazy parallel composition, interface pro-
cesses, and assume-guarantee. We employ the interface processes technique to
counteract the state explosion problem in our work.

Contributions. Figure 1 presents an overview of our proposed framework,
which accepts a system modeled as a composition of Probabilistic Automata
(PA) and a requirement expressed in Probabilistic Computation Tree Logic
(PCTL) [4] as input. Initially, the abstraction by restriction disregards the irrele-
vant propositions concerning a specific requirement. Subsequently, our developed
state merging rules aggregate states that depict similar behaviors. To showcase
the efficiency of our approach, we employ compositional verification using inter-
face processes to verify local PCTL properties on the resultant PAs separately.
Finally, we use the probabilistic model checker PRISM [7] as a probabilistic
verification engine.

PA
+ PCTL Property

Global Result

Abstracted PA
+ Local PCTL Properties

Minimized PA
+ Local Properties

Parallel
Verification

Inferring

Abstracting Distributing

Minimizing

CheckingPrism

Fig. 1. The Interface-based Probabilistic Compositional Verification.
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Related Work. There is a vast literature dealing with the abstraction and
compositional verification of probabilistic systems. For instance, [8] introduced
a game-based abstraction approach for systems exhibiting both discrete and
continuous events, as well as Markov Decision Processes, as described in [9].
Symmetry reduction has been proposed in [10,11]. The partial order reduction
is applied for the probabilistic branching time in [12]. In terms of probabilis-
tic compositional verification, [13–15] proposed an assume-guarantee method
for verifying the probabilistic safety properties of discrete-time Markov chains.
Compositional verification powered by abstraction can be also applied to indus-
trial modeling formalism, like SysML [16]. Also, models were shaped to fit the
abstraction and composition, and refined to accelerate the verification process
[17]. To our knowledge, several probabilistic model checkers, such as PRISM,
which supports symmetry reduction, and LiQuor1, which includes the partial-
order reduction, also support abstraction.

Paper Organization. The remainder of this paper is structured as follows.
The subsequent section presents the models for our systems and the specifica-
tions for their requirements. The compositional reduction approach we propose
is detailed in Sect. 3. Experimental results are presented in Sect. 4, and finally,
Sect. 5 concludes the paper.

2 Probabilistic Systems

This section delves into the fundamental characteristics and applications of prob-
abilistic systems, and further examines the methodologies employed in proba-
bilistic modeling. Subsequently, specific focus is dedicated to the precise specifi-
cation of probabilistic system requirements.

2.1 Probabilistic Modeling

In systems featuring both non-determinism and probabilistic choices, Probabilis-
tic Automata (PAs) present an apt formal model for design and representation.
For a clearer understanding, let’s look at the formal definition of a PA in Defi-
nition 1.

Definition 1 (Probabilistic Automata). A Probabilistic Automaton (PA)
is a quintuple M = (s, S, L,Σ, δ) wherein:

– s, a member of S, denotes the initial state,
– S is a finite set of states that are reachable from s,
– L : S → 2AP is a labeling function assigning a set of atomic propositions

from a set AP to each state,
– Σ stands for a finite set of actions,

1 http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor.

http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor
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– δ : S ×Σ → Dist(S) is a probabilistic transition function that, for each state
s ∈ S and action α ∈ Σ, assigns a probability distribution μ ∈ Dist(S). Here,
Dist(S) symbolizes the set of convex distributions over S.

Typically, a system is composed of multiple interacting components. This
concept in PAs is manifested through the principle of parallel composition,
described in Definition 2.

Definition 2 (Parallel Composition of PAs). The parallel composition of
two PAs: M1 = (s1, S1, L1, Σ1, δ1) and M2 = (s2, S2, L2, Σ2, δ2), is represented
as a PA M = ((s1, s2), S1 × S2, L,Σ1 ∪ Σ2, δ) where:

– L(s1, s2) = L1(s1) ∪ L2(s2),
– For each pair of probability distributions μ1 ∈ δ1(s1, α) and μ2 ∈ δ2(s2, α),

we define:

δ((s1, s2), α) =

⎧
⎪⎨

⎪⎩

μ1 × μ2 if α ∈ Σ1 ∩ Σ2,

μ1 if α ∈ Σ1 \ Σ2,

μ2 if α ∈ Σ2 \ Σ1.

2.2 Requirements Specification

To verify a Probabilistic Automaton (PA), we apply the Probabilistic Computa-
tion Tree Logic (PCTL) to define associated specifications. In the BNF grammar
provided below, ”ap” represents an atomic proposition, k is an element of the
natural numbers set N, p is within the interval [0, 1], and �� signifies the set of
relational operators <,≤, >,≥. The symbols “∧” and “¬” are logical operators
denoting conjunction (AND) and negation (NOT), respectively. Temporal logic
operators include “X” (next), “U≤ k” (bounded until), and “U” (until). Formally,
the PCTL syntax is defined as:

φ ::= 	 | ap | φ ∧ φ | ¬φ | P�� p[ψ], (1)

where
ψ ::= Xφ | φU≤ kφ | φUφ. (2)

We can also derive additional operators:

– True logic: 	 ≡ ¬⊥.
– Disjunction: φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2).
– Implication: φ1 → φ2 ≡ ¬φ1 ∨ φ2.
– Future operator: Fφ ≡ 	 U φ or F≤ kφ ≡ 	 U≤ k φ.
– Globally operator: Gφ ≡ ¬(F¬φ) or G≤ kφ ≡ ¬(F≤ k¬φ).
– Probability of always φ: P≥p[Gφ] = P≤1−p[F¬φ].

To describe a satisfaction relation of a PCTL formula in a given state “s”,
we introduce the concept of a class of adversaries (Adv) [4]. An adversary is
employed to resolve the non-deterministic choices in a PA, meaning a PCTL
formula should be satisfied under all possible adversaries. Thus, the satisfaction
relation (|=Adv) of a PCTL formula is defined as follows, where “s” is a state
and “π” is a sequence of states, or path:
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– s |=Adv 	 is always satisfied.
– s |=Adv a ⇔ a ∈ L(s), where L(s) is the labeling function of state s.
– s |=Adv φ1 ∧ φ2 ⇔ s |=Adv φ1 and s |=Adv φ2, and s |=Adv ¬φ ⇔ s �|=Adv φ.
– π |=Adv Xφ ⇔ π(1) |=Adv φ, where π(1) is the second state in path π.
– π |=Adv φ1U

≤kφ2 ⇔ ∃i ≥ k,∀j < i : π(i) |=Adv φ2 and π(j) |=Adv φ1.
– π |=Adv φ1 Uφ2 ⇔ ∃ k ≥ 0 : π |=Adv φ1U

≤kφ2.
– s |=Adv P�� p[ψ] ⇔ PsAdv

({π|πAdv |= ψ}) �� p, where PsAdv
represents the

probability measure over all paths π starting from state s under adversary
Adv.

3 Interface-Based Verification Approach

This section provides a comprehensive overview of our methodology for verify-
ing a PCTL property in a probabilistic system. The explanation is structured
into two key subsections. The first subsection, i.e., Sect. 3.3, introduces a mini-
mization algorithm that aims at reducing a Probabilistic Automaton (PA) while
considering a PCTL property.

Suppose S is a probabilistic system composed of n Probabilistic Automata
(PAs), represented as Mj:1≤j≤n. The system S can be denoted by the expres-
sion M1 ‖i1 · · · ‖in−1 Mn, where “‖i” signifies a composition operation involving
synchronization between PAs through a particular interface i. Crucial properties
associated with the composition operator “‖i” are commutativity and associa-
tivity, as described in Property 1.

Property 1 (Commutativity and Associativity). The operator ‖i exhibits both
commutativity and associativity:

1. M1 ‖i M2 ≡ M2 ‖i M1.
2. M1 ‖i1 (M2 ‖i2 M3) ≡ (M1 ‖i1 M2) ‖i2 M3.

Proof. The proof is reported in the appendix. ��

3.1 Minimization Phase

In an attempt to manage the complexity of model composition, we propose a
strategy to reduce the behavior of a model utilizing a minimization operator.
This operator is defined in Definition 3 and represented by “↓”. We define M ′ =
M ↓ap as the operation of minimizing the behavior of M to obtain M ′ with
respect to the atomic proposition ap. We also use L(ap) to denote the set of
PCTL formulas that include ap ∈ AP .

Definition 3 (Model Minimization). The process of minimizing a model M
to M ↓ap should abide by the following rules:

1. Rule 1: ∀ap /∈ APsi
: M(si−1 → si → si+1) ↓ap= M(si−1 → si+1).

2. Rule 2: ∀ap /∈ APsi
: M(si−1 →p1 si →p2 si+1) ↓ap= M(si−1 →p1×p2 si+1).
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3. Rule 3: ∀ap /∈ APsi
∩ APs′

i
: M(si−1 →p si →p1 si+1; si →1−p1 s′

i+1;
si−1 →1−p s′

i →p2 si+1; s′
i →1−p2 s′

i+1) ↓ap= M(si−1 →
p1×p× 1

p+p′ +p2× p′
p+p′

si+1; si−1 →
1−p1× p

p+p′ +p2× p′
p+p′

s′
i+1).

In this paper, we describe a relation between two Probabilistic Automata
(PAs), denoted as M and M ′ and symbolized as MRM ′. This relationship is
characterized by the concept of weak simulation, which incorporates the idea
of observable actions interspersed between invisible actions. We denote the lat-
ter using the symbol “↓”. Formally, the probabilistic weak simulation relation
introduces the concept of observable action “a”, which is preceded and followed
by sequences of invisible steps. This weak transition is notated as s

a=⇒ P ,
where P is the distribution over states reached from state s through a series of
combined steps.

Definition 4 (Probabilistic Weak Simulation). A probabilistic weak sim-
ulation between two Probabilistic Automata (PAs) M1 and M2 is a relation
R ⊆ S1 × S2 if, and only if:

1. Each initial state of M1 is related to at least one initial state of M2, and
2. For each pair of states (s1, s2) such that s1Rs2, and for each transition s1

a−→
μ1 in M1, there exists a weak combined transition s2

a=⇒ μ2 in M2 such that
μ1 �R μ2.

In the above definition, �R is the lifting of relation R to probability distri-
butions, achieved by employing a weight function as introduced by Segala [18].
This weight function, denoted by �, associates each state in M1 with a set of
states in M2, each assigned a particular probability. The formal definition of the
weight function is provided below.

Definition 5 (Weight Function). A function � : S × S′ → [0, 1] is a weight
function for the two distributions μ1, μ2 ∈ Dist(S) with respect to R ⊆ S × S′,
if and only if:

1. If �(s1, s2) > 0 then (s1, s2) ∈ R,
2. For all s1 ∈ S:

∑
s2∈S �(s1, s2) = μ1(s1), and

3. For all s2 ∈ S′ :
∑

s1∈S �(s1, s2) = μ2(s2).

Below, Proposition 1 establishes that the relation between two Probabilistic
Automata, M and M ′, is a probabilistic weak simulation.

Proposition 1 (Minimization Relation). Given two Probabilistic Auto-
mata, M and M ′, we denote the probabilistic weak simulation of M by M ′ as
M �w M ′, where M ′ is the result of a reduction process applied to M which
abstracts away invisible actions, symbolized by M ′ = M ↓ap.

Proof. The proof is provided in the appendix section. ��



66 S. Ouchani et al.

Property 2 (Minimization Preservation). Given a property φ expressed in the
PCTL language L(ap), and a set of atomic propositions ap that are relevant in
the context of M , if the minimized version of M , denoted by M ↓ap, satisfies φ,
then the original PA M must also satisfy φ. Mathematically, this is expressed as
∀φ ∈ L(ap), ap ∈ APM : M ↓ap|= φ ⇒ M |= φ.

Proof. The proof is given in the appendix. ��
Proposition 2 (�w Composition). The probabilistic weak simulation relation
preserves the composition of PAs: if M1 is weakly simulated by M ′

1, then the
composition of M1 with another PA M2 is weakly simulated by the composition of
M ′

1 with the same M2. Mathematically, this is expressed as M1 �w M ′
1 ⇒ M1 ‖i

M2 �w M ′
1 ‖i M2.

Proof. The proof is in the appendix. ��
Definition 6 (Minimization Rule). Given a composed PA M1 ‖i M2, the
minimization rule prescribes the following transformations:

– Construct M ′
2 as the minimized version of M2 with respect to the shared

interface i, formally M ′
2 ≡ M2 ↓ap(i). Here, M ′

2 represents the behavior of M2

that is observable by M1.
– For any property φ expressed in the language L(ap(i) ∪ APM1), if M1 ‖i M′

2

satisfies φ, then M1 ‖i M2 also satisfies φ. Mathematically, ∀φ ∈ L(ap(i) ∪
APM1) : M1 ‖i M′

2 |= φ ⇒ M1 ‖i M2 |= φ.

Theorem 1 (Soundness). The minimization rule, as specified in Definition
6, is sound.

Proof. The proof of the soundness is given in the appendix. ��

3.2 The Composition Phase

In this section, we detail the process of decomposing a global property into local
ones. Definition 7 introduces the decomposition operator “
”, which enables com-
positional verification by substituting the propositions of a PA with propositions
related to its interfaces. This operator utilizes the substitution notation Q[z/y]
from the π-calculus, which denotes that in the structure Q, the term z replaces
the term y.

Definition 7 (PCTL Property Decomposition). Let φ be a PCTL property
to be verified on M1 ‖i M2. The decomposition of φ into φ1 and φ2 is denoted by
φ = φ1
iφ2, where:

1. AP (φ) = (AP (φ1) ∪ AP (φ2))\{ap(i)}, with ap(i) representing the atomic
propositions related to interface i,

2. AP (φ1) is a subset of APM1 ,
3. AP (φ2) is a subset of APM2 ,
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4. φ1 = φ([[ap(i)/APM2 ]]),
5. φ2 = φ([[ap(i)/APM1 ]]).

Property 3 demonstrates that the decomposition operator “
” exhibits com-
mutative and associative properties.

Property 3. For M1 ‖i M2, the decomposition operator 
i is both commutative
and associative:

1. φ1
iφ2 ≡ φ2
iφ1.
2. φ1
i1(φ2
i2φ3) ≡ (φ1
i1φ2)
i2φ3.

Proof. The proof approach for Property 3 is based on Definition 7. ��
Proposition 3. The decomposition of the PCTL property φ using the decom-
position operator 
 for the parallel composition M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 is in the appendix. ��
The key advantage of Proposition 4 is its ability to derive the deduction rule

for the interface operator, as outlined in Theorem 2.

Theorem 2 (Compositional Reduction - CR). Let φ be a PCTL property
to be verified on M , such that: M = M1 ‖i M2 and φ = φ1
iφ2. The following
deduction rule applies:

M1 ‖i M2 ↓ap(i)|= φ1 M2 |= φ2 φ = φ1
iφ2

M1 ‖i M2 |= φ

Property 4 (CR-Symmetry). The compositional reduction rule is symmetric.

M1 ‖i M2 ↓ap(i)|= φ1 M2 |= φ2 φ = φ1
iφ2

M1 ‖i M2 |= φ

Proof. The proof follows the same structure as the proof of Theorem 2. ��
Proposition 4. The decomposition of a PCTL property φ by the decomposition
operator 
 for M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 is in the appendix. ��

3.3 The Verification Phase

Our approach fundamentally relies on the PRISM model checker to ensure the
soundness of the probabilistic system under scrutiny, which is modelled as a com-
position of Probabilistic Automata (PAs). In this section, we delve into defining
the syntax and semantics inherent in the PRISM programming language. PRISM
has a versatile architecture that can accommodate a range of probabilistic mod-
els. These include Discrete-Time Markov Chains (DTMCs), Continuous-Time
Markov Chains (CTMCs), Markov Decision Processes (MDPs), Probabilistic
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Timed Automata (PTAs), and Probabilistic Automata (PAs). It’s noteworthy
to mention that within the PRISM framework, PAs are referred to as MDPs.
However, in the process of formalizing the approach for this study, our primary
focus will be directed towards PAs. The choice of focusing on PAs is due to their
ability to model a wide array of complex, probabilistic behaviors that are crucial
for our study.

A probabilistic system S described by a PRISM program P comprises a set
of n modules (n > 0). Each module’s state is defined by an evaluation of a set of
finite-ranging local variables. The system’s global state is the union of evaluations
of the local variables Vl and the global variables Vg, denoted as V = Vg ∪Vl. The
behavior of each module is defined by a set of guarded commands.

Each command dictates the primary behavior changes of P . A command
is of the form: [a] g → p1 : u1+...+pm : um or [a] g → u. This implies
that, for the action ‘a’, if the guard ‘g’ holds, then an update ‘ui’ is enabled
with a probability ‘pi’. Guards are propositional formulas based on expres-
sions’ comparisons. An update ‘ui’ is a conjunction of assignments to variables:
(v′

j = valj)& · · · (v′
k = valk), where vi are variables and vali are values evaluated

via expressions, ensuring type consistency.

Definition 8 (PRISM Command). A PRISM command c is a tuple c =
(a, g, u) where:

– a is an action label,
– g is a predicate over V ,
– u = {(pi, ui)|m > 1, i ≤ m,

∑m
i=1,pi>0 pi = 1 and ui = {(v, eval(v))}} where

eval : V → N ∪ {true, false} assigns an integer or a boolean value to each
variable v ∈ V . If pi = 1, we omit the probability.

A module, which describes the behavior of a system’s sub-part, can be con-
sidered as a set of commands. Formally, it is defined as follows:

Definition 9 (PRISM Module). A PRISM module M is a tuple M =
(var, init, cmd) where:

– var is a finite set of local variables for the module,
– init are the initial values of var,
– cmd = {ci : 0 ≤ i ≤ m} is a set of commands defining the module’s behavior.

A system S, comprising n parts, can be described by a PRISM program P
containing n modules. The system components are combined using a Communi-
cating Sequential Processes (CSP) expression.

Definition 10 (PRISM System). A PRISM system is a tuple P =
(var, exp,M1, . . . , Mn, sys) where:

– var = VG

⋃n
i=1 Vli is a finite set comprising the union of global and local

variables,
– exp is a global logic expression,
– M1, . . . , Mn is a finite set of modules,
– sys is a CSP algebraic expression defining the combination of the models.
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4 Experimental Results

We implement our proposed framework on the Probabilistic Broadcast Proto-
col (PBP), the Randomized Dining Philosophers (RDP), and Leader Election
Protocol (LEP) benchmarks2. To compare the results of our approach, we ver-
ify PCTL properties on Probabilistic Automata (PA) models with and without
our method applied. We measure and compare the number of states (#S), the
number of transitions (#T), the time needed for the model construction (Tc

in seconds), and the time needed for the model verification (Tv in seconds).
We undertake this comparison with the aim of presenting empirical results that
validate the efficiency and effectiveness of our approach.

For the PBP benchmark, we aim to measure “the minimum probability that
the message sent by the base node 0 is successfully received by node j”, where
j ranges from 1 to 8. This property can be expressed in PCTL as follows:

Pmin =? [G ((active0 ∧ ¬send0) ⇒ F (¬activej ∧ ¬sendj))] (3)

Following the PBP model and the decomposition rule (Definition 7), we
decompose Property 3 into two properties, 4 and 5. Property 4 concerns the
atomic propositions of node 0 and the propositions related to the interaction
between nodes 0 and j. As per Definition 7, the propositions of Property 5 only
belong to node j’s propositions.

Pmin =? [G ((active0 ∧ ¬send0) ⇒ F (activej ∧ ¬sendj))] (4)

Pmin =? [G ((activej ∧ ¬sendj) ⇒ F (¬activej ∧ ¬sendj))] (5)

Table 1 shows the verification costs for these properties.

Table 1. Verification Cost for PBP Benchmark

j 1 2 3 4 5 6 7 8

Res(3) 0.246 0.0615 0.246 0.104 0.035 0.0615 0.035 0.0148

Res(4) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Res(5) 0.246 0.0615 0.246 0.104 0.035 0.0615 0.035 0.0148

For the RDP benchmark, we aim to verify the proposition “if a philosopher
is hungry, then eventually some philosopher eats”. Here, “hungry” refers to any
action prior to the “eat” action. This property can be expressed in PCTL as
follows:

“hungry” ⇒ P ≥ 1[true U “eat”] (6)

2 http://www.prismmodelchecker.org/benchmarks.

http://www.prismmodelchecker.org/benchmarks
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This benchmark does not incorporate interfaces, so we confine our experi-
ments to the minimization algorithm. The verification costs of Property 6 are
shown in Table 2, where #Phil denotes the number of philosophers.

Table 2. Verification Cost for RDP Benchmark

PRISM CR-Approach

#Phil #S #T Tc Tv Res #S #T Tc Tv Res

3 956 3696 0.027 0.379 T 596 2286 0.025 0.135 T

4 9440 48656 0.127 8.357 T 3964 20360 0.000905 4.396 T

5 93068 599600 0.358 124.707 T 36788 233208 0.006481 49.448 T

6 1288574 9879228 1.011 week T 460336 3475264 0.56 35289.578 T

For the LEP benchmark, we evaluate “the minimum probability that two
different processes do not have the same source”. For two different processes Pi

and Pj , the PCTL property for verification is expressed as follows:

Pmin =? [(Pi �= Pj) ⇒ (source(Pi) �= source(Pj))] (7)

Table 3 presents the verification cost of Property 7, where #Proc is the num-
ber of processes. Similar to the RDP benchmark, LEP does not incorporate
common interfaces.

Table 3. Verification Cost For LEP Benchmark

PRISM CR-Approach

#Proc #S #T Tc Tv Res #S #T Tc Tv Res

3 27 108 0.023 0.005 1 8 24 0.0 0.005 1

4 81 432 0.028 0.034 1 16 64 0.020 0.031 1

5 243 1620 0.113 0.249 1 32 160 0.036 0.041 1

6 729 5832 0.154 0.893 1 64 384 0.044 0.43 1

7 6561 69984 0.327 9.994 1 128 896 0.047 0.49 1

The above results demonstrate that our verification framework preserves the
verification of PCTL properties while significantly reducing the verification size
and time.

5 Conclusion

In this paper, we presented a verification framework aimed at enhancing the
scalability of probabilistic model-checking. In particular, we targeted systems
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modeled as probabilistic automata, which accommodate both nondeterminism
and probabilistic choice behaviors. Our proposed framework harnesses proba-
bilistic abstraction to disregard and amalgamate behaviors deemed irrelevant
to a specified PCTL property. In addition, we introduced a probabilistic com-
positional verification mechanism to optimize model-checking efficiency. This
mechanism operates by decomposing a global PCTL property into local proper-
ties corresponding to the interfaces between PAs. We established the soundness
of our algorithms by elucidating the relationship between the abstract and con-
crete PAs, demonstrating that this relationship upholds the satisfaction of PCTL
properties. Considering our reliance on PRISM, we proposed dedicated syntax
and semantics for PAs specified within this context. Finally, we substantiated
the effectiveness of our approach by applying it to a benchmark.

Looking forward, we aim to extend our approach along several trajectories.
First, we intend to integrate our algorithms within the PRISM model checker.
Second, we plan to expand our proposed abstraction to address other formalisms
such as probabilistic timed and priced automata, stochastic Petri nets, and
SysML activity diagrams. Furthermore, we aim to investigate other abstrac-
tion approaches, specifically data abstraction targeting system features like time
and data. Lastly, we propose to explore strategies to reduce property within the
model.

A Appendix

Property 5 (Commutativity and Associativity). The operator ‖i exhibits both
commutativity and associativity:

1. M1 ‖i M2 ≡ M2 ‖i M1.
2. M1 ‖i1 (M2 ‖i2 M3) ≡ (M1 ‖i1 M2) ‖i2 M3.

Proof. Here, we present a detailed proof of Property 1:

1. The proof of the commutativity property is based on the composition of PAs
as described in “Definition 2”. The procedure consists of three steps:
(a) Construction of A = M1 ‖i M2, which involves defining the composed

system where M1 and M2 are synchronized on the interface i.
(b) Construction of B = M2 ‖i M1, which represents the composed system

where the roles of M1 and M2 are switched.
(c) Comparison of the structures of A and B to confirm their equivalence,

which supports the commutativity of the ‖i operation.
2. The proof of the associativity property is also based on Definition 2. The

demonstration consists of the following five steps:
(a) Construction of A1 = M2 ‖i2 M3, defining the composed system where

M2 and M3 are synchronized on interface i2.
(b) Construction of A = M1 ‖i1 A1, representing the system where M1 is

synchronized with the already composed system A1 on interface i1.
(c) Construction of B1 = M1 ‖i1 M2, defining the composed system where

M1 and M2 are synchronized on interface i1.
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(d) Construction of B = B1 ‖i2 M3, representing the system where M3 is
synchronized with the already composed system B1 on interface i2.

(e) Comparison of A and B to establish their equivalence, hence validating
the associativity of the ‖i operation. ��

Proposition 5 (Minimization Relation). Given two Probabilistic Automata,
M and M ′, we denote the probabilistic weak simulation of M by M ′ as M �w

M ′, where M ′ is the result of a reduction process applied to M which abstracts
away invisible actions, symbolized by M ′ = M ↓ap.

Proof. The proof of Proposition 1 relies on establishing a mapping between states
of M and M ′ through a weight function �. This function quantifies each state’s
contribution in M to its corresponding state in M ′ based on probabilities.

To minimize M to M ′, we apply minimization rules, noted as M ′ = M ↓ap,
which simplify M by eliminating specific transitions.

We then validate that the weight function still accurately maps states from
M to M ′ after minimization. Specifically, we confirm that the sum of weights for
each state in M matches its corresponding distribution in M ′, ensuring behavior
consistency between M and M ′.

This process proves that the weight function successfully maps states between
M and M ′, thus validating the weak simulation relation and proving the propo-
sition. ��
Property 6 (Minimization Preservation). Given a property φ expressed in the
PCTL language L(ap), and a set of atomic propositions ap that are relevant in
the context of M , if the minimized version of M , denoted by M ↓ap, satisfies φ,
then the original PA M must also satisfy φ. Mathematically, this is expressed as
∀φ ∈ L(ap), ap ∈ APM : M ↓ap|= φ ⇒ M |= φ.

Proof. The proof for the preservation of PCTL properties through minimization
can be obtained through an inductive argument based on the structure of the
PCTL properties. The inductive base case can be the satisfaction of φ in M ↓ap,
and the inductive step can assume the property holds for a given structure and
then prove it for the next level of structure complexity. ��
Proposition 6 (�w Composition). The probabilistic weak simulation relation
preserves the composition of PAs: if M1 is weakly simulated by M ′

1, then the
composition of M1 with another PA M2 is weakly simulated by the composition of
M ′

1 with the same M2. Mathematically, this is expressed as M1 �w M ′
1 ⇒ M1 ‖i

M2 �w M ′
1 ‖i M2.

Proof. The proof of Proposition 2 relies on the previously established Probabilis-
tic Weak Simulation Relation (Proposition 1) and the specific details of the PA
composition (Definition 2). More specifically, we must show that each transition
in the composed M1 ‖i M2 can be simulated by a corresponding transition in
M ′

1 ‖i M2, which in turn relies on the definition of weak simulation. ��
Theorem 3 (Soundness). The minimization rule, as specified in Definition 6,
is sound.
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Proof. The soundness of the minimization rule can be proven by combining
the results of Proposition 2 and Property 2. In detail, Property 2 ensures that
minimization preserves the PCTL properties, and Proposition 2 guarantees that
the weak simulation preserves the composition. Hence, the combination of these
two results ensures that the minimization process, which involves both reducing
M2 to M ′

2 and composing M1 with M ′
2, does not affect the satisfaction of φ by

the composed system, confirming the soundness of the minimization rule. ��
Proposition 7. The decomposition of the PCTL property φ using the decom-
position operator 
 for the parallel composition M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 is built upon Definition 2 and Definition 7. It
proceeds by using structural induction on the structure of PCTL formulas.

As an example, consider the “until” operator “U”. Let φ = α1Uα2 where
α1 ∈ APM1 and α2 ∈ APM2 . From here, we can deduce the following:

1. φ1 = α1Uα(i) and φ2 = α(i)Uα2, as per Definition 7.
2. From the hypothesis, it is assumed that M1 ‖i M2 |= α1Uα(i) and M1 ‖i

M2 |= α(i)Uα2.
3. According to the semantics of PCTL, we have M1 ‖i M2 |= (α(i)Uα2) ∧

(α1Uα(i)).
4. Hence, we obtain M1 ‖i M2 |= φ1Uφ2 based on PCTL semantics.
5. Therefore, it follows that M1 ‖i M2 |= φ1
iφ2, which is exactly what Propo-

sition 4 claims.

By adopting a similar proof strategy for the rest of the PCTL operators, we
can assert that Proposition 4 is valid. ��
Proposition 8. The decomposition of a PCTL property φ by the decomposition
operator 
 for M1 ‖i M2 is sound.

Proof. The proof of Proposition 4 relies on Definition 2 and Definition 7, and it
proceeds by a structural induction on the PCTL structure. For each α1 ∈ APM1 ,
α2 ∈ APM2 , and i in the interface, we consider the until operator “U” and let
φ = α1Uα2. We can perform the following steps:

1. Define φ1 = α1Uα(i) and φ2 = α(i)Uα2 based on Definition 7.
2. Assume that M1 ‖i M2 |= φ1 and M1 ‖i M2 |= φ2.
3. From PCTL semantics, it follows that if both φ1 and φ2 hold, then their

conjunction also holds: M1 ‖i M2 |= (φ1) ∧ (φ2).
4. Furthermore, again by PCTL semantics, if the conjunction of two properties

holds, then their until operation also holds: M1 ‖i M2 |= φ1Uφ2.
5. Finally, by Proposition 4, we can express the until operation as a decompo-

sition operation: M1 ‖i M2 |= φ1
iφ2.

By repeating the above style of proof for the remaining operators in the
PCTL structure, we find that Proposition 4 holds. ��
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Abstract. With the increasing application of neural networks (NN) in
safety-critical systems, the (formal) verification of NN is becoming more
than essential. Although several NN verification techniques have been
developed in recent years, these techniques are often limited to small
networks and do not scale well to larger NN. The primarily reason for
this limitation is the complexity and non-linearity of neural network mod-
els. Abstraction and model reduction approaches, that aim to reduce the
size of the neural networks and over-approximate their outcomes, have
been seen as a promising research direction to help existing verification
methods to handle larger models. In this paper, we introduce a model
reduction method for neural networks with non-negative activation func-
tions (e.g., ReLU and Sigmoid). The method relies on merging neurons
while ensuring that the obtained model (i.e., the abstract model) over-
approximates the original one. Concretely, it consists in merging a set of
neurons that have positive outgoing weights and substituting it with a
single abstract neuron, while ensuring that if a given property holds on
the abstract network, it necessarily holds on the original one. In order to
assess the efficiency of the approach, we perform an experimental com-
parison with two existing model reduction methods on the ACAS Xu
benchmark. The obtained results show that our approach outperforms
both methods in terms of precision and execution time.

Keywords: Neural network abstraction · model reduction · Neural
network verification · Output range computation

1 Introduction

Due to their performance in dealing with complex problems, neural net-
works (NN) are increasingly developed and deployed in many areas including
autonomous systems, such as autonomous cars and trains [2,19]. Such systems
are known as safety-critical systems, where each module must meet some specific
safety requirements before its deployment. In the other hand, recent works have
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demonstrated the sensitivity and the vulnerability of NN to even minor input’s
perturbations and adversarial attacks [24]. Consequently, neural networks veri-
fication is becoming a popular and attractive research domain. NN verification
aims to formally provide guarantees on NN and to ensure that the network
behaves as intended. Several NN verification approaches have been introduced
to assess the safety and the robustness of NN models [16]. Originally, the NN
verification problem is transformed to an optimization problem by encoding the
NN behaviour and the property to verify as a linear programming problem, and
then apply an adequate solver for verification. Mixed-integer Linear Program-
ming (MILP) and SAT/SMT solvers are intensively exploited and applied to
deal with the verification problem of NN [5,7,13,15,18]. Next, several formal
methods have been developed supporting different properties and architectures
of neural networks [10,11,25]. For instance, techniques based on abstract inter-
pretation [9,21] and interval analysis [26,27] are successfully applied to verify
some NN models.

However, the existing NN verification methods face challenges when it comes
to scaling up and handling real-world sized networks. The complexity and non-
linearity of NN models make the verification process computationally expensive
and resource-demanding. As a result, the scalability of these methods becomes
a significant concern. To address this issue, model reduction methods, also
known as abstraction methods, are seen as a promising research direction to
handle larger models. The key insight behind model reduction is to reduce
the state-space (number of neurons) of the network by merging a set of neu-
rons, while guaranteeing that the obtained reduced (abstract) model is an over-
approximation of original one. In other words, the property at hand holds on
the original network N whenever it holds on the reduced network N [3,8,17].
Therefore, instead of verifying properties on the large original model, these prop-
erties can be checked on the reduced model which is easier and faster to verify,
enabling to enhance the scalability of the verification process.

In this paper, we propose a new model reduction method for feed-forward
neural networks with non-negative activation functions. A function α : R → R

is non-negative, if ∀x ∈ R, α(x) ≥ 0. For instance, ReLU and Sigmoid, that
are broadly applied in NN, are non-negative functions. Concretely, the pro-
posed method consists of merging neurons that have positive outgoing weights.
However, in case the set of neurons to be merged have some negative outgoing
weights, a pre-processing step is required. This step involves building an initial
abstract network by eliminating negative edges. The next step is model reduc-
tion, which consists of merging a set of nodes and computing its corresponding
incoming and outgoing weights as follows: the incoming weight is the maximum
value over the incoming weights of the merged nodes, and the outgoing weight
is the sum of the weights of the corresponding nodes on the original network N .
This method guarantees that the obtained abstract network’s output is always
greater than or equal to the original network N , i.e., N(x) ≥ N(x).

To evaluate its performance, we implemented the approach in Python and
carried out a series of experiments on the ACAS Xu benchmark [13]. In addition,
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we conducted a comparison study with respect to two existing model reduction
approaches [3,17]. Based on the experimental results, the proposed method out-
performs the two approaches in terms of both abstraction time and output range
precision.

The remaining of this paper is organized as follows: Sect. 2 provides an
overview of existing works in the field of neural network verification, with a spe-
cific focus on model reduction methods. Section 3 presents the background and
notations related to neural networks and the NN verification problem. The theo-
retical development of the proposed approach is provided in Sect. 4. In Sect. 5, we
summarize the used experimental configurations along with the obtained results.
Finally, we provide some conclusion remarks in Sect. 6.

2 Related Works

Neural network verification is an active research area aiming to ensure the safety
and dependability of NN in various applications. The verification of NN consists
of applying verification methods to formally prove that the network satisfies a
set of required properties [10,25]. In recent years, several approaches have been
proposed to address this problem. These approaches relies on different tech-
niques, including SAT/SMT solvers [11,14,18], Mixed-Integer Linear Program-
ming [5,6,15], abstract interpretation [9,22,29], and reachability analysis [26–28].

These techniques are often limited to small networks and do not scale to
large networks with practical interest. Thus, abstraction and model reduction
methods have emerged as a promising direction towards enhancing the scalability
of NN verification. These methods aim to reduce the size of the network while
preserving relevant properties, such as the over-approximation relation between
the original and reduced networks. Ashok et al. [1] proposed a model reduction
method based on applying the k-mean clustering algorithm to regroup neurons of
the same layer into clusters, and then replace each cluster with a representative
node. The average error between the original neuron and its representative node
is calculated, and then propagated through the model’s layers until the output
layer. Moreover, this error is used to over-approximate the real output. Ashok
et al. [1] used the verification tool DeepPoly [22] on the MNIST benchmark to
check the robustness of the model. In another work, Elboher et al. [8] introduced
a method consisting of classifying the neurons according to the sign of their
weights (positive or negative) and their direct impact on the output (increasing
or decreasing). Next, neurons of the same category are merged and the new
weights are calculated by taking the sum of the outgoing weights and the min
or max of the incoming weights in such a way that the output of the reduced
model is always greater than the one of the original one. To assess the efficiency
of their approach, Elboher et al. [8] used the Marabou verifier [14] to check
some properties on the ACAS Xu benchmark [12]. Inspired by code refactoring,
Shriver et al. [20] established a method to redesign a NN model while preserving
its behaviour. The restructuring of the NN model helps further operations, like
verification, to be applicable on the refactored model. The proposed approach
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consists of changing some NN operations and parameters that are not supported
by the existing verification tools. An interval weight-based model reduction is
introduced by Prabhakar and Afzal [17]. The main idea is to replace weights
of the merged neurons by the interval hull of their incoming and the outgoing
weights. Thus, the model is called interval neural networks (INN). To solve
the verification problem on INN, a MILP encoding of the INN is proposed. A
generalization of INN, namely Abstract Neural Networks (ANN) is proposed
in [23]. In ANN, the weights of the reduced model are obtained by applying
abstract domains, and not limited to intervals as in [17]. Recently, Boudardara
et al. [3] proposed a method based on INN that support NN with ReLU and
Tanh activation functions. Please refer to our survey work [4] to get a general
overview on the abstraction and model reduction methods for neural networks
verification.

Figure 1 depicts an illustrative example demonstrating the application of
some of the presented model reduction methods on a small network.

Fig. 1. The application of different model reduction methods on a toy example of NN.
v(n) and v̂(n) represents the value of the node s on the original and the abstract
networks, respectively.
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3 Background

In this paper, we focus on feed-forward neural networks, and we shortly refer
to them as neural networks (NN). A NN is a sequence of connected neurons
which are grouped in layers. A NN has an input layer, an output layer and one
or more hidden layers. The neurons of a layer li are connected to all neurons of
the successive layer li+1 via weighted edges (see Fig. 2). These connections are
denoted by the matrix Wi ∈ R

|li|×|li−1|, where the weight of the edge connecting a
neuron ni−1,k ∈ li−1 to a neuron ni,j ∈ li is represented as wi

jk = w(ni−1,k, ni,j).
The propagation of the input values through these layers allows the calculation
of the output of the network.

For a NN of L layers, with n inputs and m outputs, we can recursively define
its associated function N : Rn → R

m as follows:
⎧
⎪⎨

⎪⎩

N(x) = vL(x)
vi(x) = Wi × α(vi−1(x)) + bi

v0(x) = x

(1)

where α is an activation function of the network, and vi is a vector function asso-
ciated with layer li. In this paper, we consider NN with non-negative activation
functions (see Definition 1). For instance, Eqs. 2 and 3 represent the non-negative
activation functions ReLU and Sigmoid, respectively.

ReLU(x) = max(0, x) ; x ∈ R (2)

σ(x) =
1

1 + e−x
; x ∈ R (3)

Definition 1. A function α : R → R is non-negative if: ∀x ∈ R : α(x) ≥ 0.

For a neural network N , defined with its associated function N : Rn → R
m,

a formal verification of N consists of checking whether the respective output of
N for a specific input region is within a pre-defined output region. A property
to be verified on a network N can be expressed by a tuple 〈N,Pre, Post〉, where

Fig. 2. A neural network with 3 inputs, one hidden layer with 3 neurons, and an output.
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Pre and Post are the input and the output constraints, respectively. The NN
verification problem can be formulated as:

∀x ∈ R
n, P re(x) =⇒ Post(N(x)) (4)

Neural network are known to be complex, and NN verification has been
proven to be an NP-hard problem [13]. This poses challenges for verifying large-
scale NN. One way to mitigate this is by reducing the size of the network before
verification, while ensuring that the obtained network is an over-approximation
of the original one. Thus, instead of directly verifying a property on the original
large network N , the property can be verified on the reduced model N , and then
the verification results is deduced on the original network N .

It is worth noticing that the over-approximation does not guarantee that the
non satisfaction of the property is preserved on the original model. Indeed, if a
property does not hold on the abstract network, this does not mean that the
property does not hold on the original one. Practically, in this case a counter-
example is generated (from the abstract model) and executed on the original
one in order to check whether it is really a counter-example. If not, this type of
counter-example is referred to as a spurious counter-example.

In this paper, we propose a model reduction method for NN with non-
negative activation functions. The approach consists of merging nodes while
guaranteeing that the output of the reduced network (also called abstract net-
work) N is always greater than or equal to the output of the original network
N . For the sake of simplicity and clarity, we consider that the network has one
output y, and we focus on properties of the following form:

∀x, Pre(x) =⇒ N(x) < c (5)

where c ∈ R is a given constant. It is worth noting that many properties can be
reduced into one-single output property, as presented in [8]. More details about
the approach are provided in the following section.

4 The Proposed Model Reduction Approach

The motivation behind our approach is to reduce the size of the network, which
enables faster computation of the output range and improves the scalability for
larger NN. The aim of our method is to construct an abstract network, denoted
as N , from the original network N by merging a set of neurons within the same
hidden layer, while ensuring the over-approximation of N ,i.e.:

∀x ∈ R
n : N(x) ≥ N(x) (6)

In this paper, we consider that the network N has one output and we want to
verify that N(x) < c for some constraints Pre on the input x (see Eq. 5)1. So,

1 Many properties of interest can still be accommodated by adding additional neurons
to the network [8].
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whenever we are able to demonstrate that N(x) < c, we can directly infer the
correctness of the property for the original network N :

∀x, (Pre(x) =⇒ N(x) < c) =⇒ (Pre(x) =⇒ N(x) < c)

To construct an abstract network N from the original network N , we replace
a set of neurons s of layer li having positive outgoing weights with a single
abstract neuron n̂. Since neurons have often a combination of positive and neg-
ative weights, we begin by eliminating the negative connections of the relevant
neurons, i.e., starting from the hidden layer li towards the succeeding layers
until reaching the last hidden layer of the network N . The abstract neuron is
then connected to the previous and next layers through new weighted edges. The
calculation of the incoming and outgoing weights for this abstract neuron n̂ is
computed in a way to ensure that the over-approximation relation presented in
Eq. 6 is always satisfied:

– Incoming weight: the maximum value among the incoming weights of the
individual neurons that are being merged.

– Outgoing weight: the sum of the outgoing weights of the corresponding
individual neurons that are being merged.

Formally, let us consider a set of neurons s, which belong to a hidden layer
li. Each neuron n in the set s has incoming and outgoing weights denoted as
w(ni−1,j , n) and w(n, ni+1,k), respectively. Here, ni−1,j represents a neuron in
the preceding layer li−1, and ni+1,k represents a neuron in the succeeding layer
li+1. The first step consists of eliminating negative weights to ensure that: ∀i ≤
t ≤ L − 1,∀nt ∈ lt ∧ nt+1 ∈ lt+1 : w(nt, nt+1) ≥ 0. The second step is to replace
the set of neurons s by the abstract neuron n̂ such that the weights of n̂ are
calculated as follows:

1. Incoming weights:

∀ni−1,j ∈ li−1 : w(ni−1,j , n̂) = max
n∈s

{w(ni−1,j , n)} (7)

2. Outgoing weights:

∀ni+1,k ∈ li+1 : w(n̂, ni+1,k) =
∑

n∈s

w(n, ni+1,k) (8)

Example 1. Figure 3 depicts an example of the model reduction method applied
on a small network employing the ReLU activation function, where the objective
in this example is to merge the set of neurons s = {n1, n2, n3} of the original
network N (Fig. 3a) and replace it with the abstract neuron n̂. The first step
involves eliminating the negative outgoing weights of neurons in s. The resulting
network of this step is presented in Fig. 3b. Subsequently, the model reduction
method is applied on this network to merge the set of neurons s, and calculate the
incoming and outgoing weights of the obtained abstract neuron n̂ using Eqs. 7
and 8, respectively. The final abstract network is shown in Fig. 3c. Notice that
N(x) ≥ N(x), for all possible values of x.
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Fig. 3. The application of the proposed model reduction method on a toy example of
NN.

Remark 1. Theoretically, the proposed method allows for the merging of all neu-
rons, leading to a network with only one neuron in each hidden layer. However,
in practical applications, this may not be beneficial as there is a trade-off to be
found between reducing the size of original model and maintaining the precision
of the abstract model.

Algorithm 1 provides a summary of the main steps involved in the model
reduction procedure applied to a hidden layer li. The procedure assumes that
all neurons in set s have positive outgoing weights. To apply the model reduc-
tion on different hidden layers, a general algorithm is presented in Algorithm 2.
The algorithm begins by eliminating negative weights and then, for each set of
neurons to be merged on a hidden layer li, it invokes the AbstractOneLayer pro-
cedure (presented in Algorithm 1). The algorithm finally returns the abstract
network N . The procedure SelectNodes employed in Algorithm 1 is responsible of
selecting the set of nodes to be merged. In this paper, we applied random nodes
selection strategy. However, this procedure can be re-implemented to support
heuristic-based nodes selection strategies.

In the following, we state the main results for model reduction of NN with
non-negative activation function.

Lemma 1. Let v1, v2, ..., vn be positive numbers, and w1, w2, ..., wn be real num-
bers. Let z =

∑n
i=1 wivi and z =

∑n
i=1,wi≥0 wivi. Then we have: z ≥ z.

Proposition 1. For a neural network N : Rn → R that have a non-negative
activation function. Let N be the abstract network of N obtained using Algo-
rithm 2. Then we have also N defined as N : Rn → R, and:

∀x ∈ R
n, N(x) ≥ N(x)
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Algorithm 1. Pseudo-algorithm of the proposed model reduction method for
one hidden layer
1: procedure AbstractOnLayer(N , s, i) � N is the original network, s is the set

of nodes of layer li
2: for ni−1,j ∈ li−1 do � Incoming weights
3: w(ni−1,j , n̂) ← max

n∈s
{w(ni−1,j , n)}

4: end for
5: for ni+1,k ∈ li+1 do � Outgoing weights
6: w(n̂, ni+1,k) ← ∑

n∈s w(n, ni+1,k)
7: end for
8: replace s with n̂
9: end procedure

Algorithm 2. Pseudo-algorithm of the proposed model reduction method
1: procedure Abstract(N) � N : the original network
2: N ← duplicate(N) � Create a copy of N
3: for i ← 1 to L − 1 in N do � Pre-processing: remove negative weights
4: for n1 ∈ li do
5: for n2 ∈ li+1 do
6: if w(n1, n2) < 0 then
7: w(n1, n2) ← 0
8: end if
9: end for

10: end for
11: end for
12: for i ← 1 to L − 1 in N do
13: s ← SelectNodes(N, i)
14: AbstractOneLayer(N, s, i)
15: end for
16: return N
17: end procedure

The proof of Proposition 1 relies on Lemma 1, which states that removing
negative elements from a sum yields to a value greater than the original sum
with negative values. Please recall also that the activation function of N of is
monotonically increasing and positive.

5 Early Experiments

We developed our model reduction method as a Python tool, which includes a
reader for the input network (in the NNET format [12]). This allows users to
easily apply our method to neural networks and customize the model reduction
parameters. The parameters include the number of the (desired) remaining nodes
on each hidden layer after the abstraction and the strategy for node selection.
While we utilized a random selection strategy in this first series of experiments,
it is possible to integrate different node selection strategies by exploiting some
heuristic techniques.
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We compared the performance of our proposed method with two existing
methods: the method proposed by Prabhakar et al. [17] and a method that we
have previously proposed in [3]. In the former method (Prabhakar et al. [17]), the
weights of an abstract neuron are defined as the interval hull of the weights of the
merged neurons. On the other hand, in the latter method (Boudardara et al. [3]),
the incoming weights of an abstract neuron are determined by multiplying the
signs of the corresponding outgoing weights with the incoming weights of the set
of neurons to be merged. The outgoing weight of the abstract neuron is computed
as the sum of the absolute values of the outgoing weights of the merged neurons.

We conducted our experiments on ACAS Xu (Airborne-Collision Avoidance
System) benchmark2 [12]. This benchmark is a collection of 45 feed-forward NN
that are trained to provide guidance to the ownship aircraft to avoid a collision
with an intruder aircraft. Each network has 5 hidden layers, with 50 neurons in
each layer. The network takes 7 inputs including the distance between the two
aircraft, their speeds and their directions, and it outputs one of the 5 possible
advisories: clear-of-conflict, strong/weak turn to the left, or strong/weak turn to
the right.

For purpose of comparison, we adopted the same experimental configuration
as [3]. We used the network ACASXU experimental v2a 1 1.nnet, then we gen-
erated eight abstract models N i by varying the numbers of abstract neurons on
hidden layers. The eight configurations have 45, 40, 35, 30, 20, 15, and 10 neu-
rons, respectively. We used the Interval Bound Propagation (IBP) algorithm to
calculate the output range for the original network and the abstract ones. Over
50 random runs, we calculated the average abstraction time for each abstract
network N i, the output range (the first output) and the IBP computation time.
We performed a comparison study between our method and two other model
reduction techniques proposed by Boudardara et al. [3] and Prabhakar et al [17].
The obtained results are summarized in Figs. 4b, 4a, and 5. In these Figures,
“Our” refers to our method, and “Method1” and “Method2” refer to the meth-
ods introduced in [3] and [17], respectively.

As depicted in Figs. 4a and 4b, reducing the number of remaining neurons
(nodes) significantly decreases the abstraction time and increases the IBP com-
putation time for the two alternative methods [3,17]. In contrast, our proposed
method exhibits only minor fluctuations and tends to remain stable when vary-
ing the number of neurons of the abstract networks. Moreover, our method is
computationally more efficient, with consistently lower abstraction time and IBP
computation time compared to the two methods [3,17].

Moreover, as shown in Fig. 5, reducing the number of neurons in the abstract
networks leads to an increase in the corresponding upper bound using the three
techniques. However, our method is more precise (i.e., with the tightest bounds).
The generated abstract networks provides tighter bounds compared to the two
others methods [3,17]: the upper bounds obtained on the abstract networks using
our method is always less than the upper bounds using the two other methods.

2 Available at https://github.com/NeuralNetworkVerification/Marabou/tree/master/
resources/nnet/acasxu.

https://github.com/NeuralNetworkVerification/Marabou/tree/master/resources/nnet/acasxu
https://github.com/NeuralNetworkVerification/Marabou/tree/master/resources/nnet/acasxu
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Fig. 4. IBP and abstraction time results

Fig. 5. Output range (upper bound) results

Through this series of experiments, we observe that the proposed method
exhibits faster execution time and provides more precise results (tighter bounds)
compared to Method1 [3] and Method2 [17]. In addition, we can see that the
precision of the abstract model is strongly influenced by the number of merged
nodes. Specifically, as more nodes are merged, resulting in a higher level of
abstraction and more abstract nodes, the upper bound of the abstract models
tends to increase.

6 Conclusion

In this paper, we introduced a model reduction method for reducing the
size of neural networks and ensuring that the obtained network is an over-
approximation of the original one. This leads to enhance the scalability of NN
analysis operations such as verification. The introduced method supports feed-
forward NN with non-negative activations functions, such as ReLU and Sigmoid,
and provides formal guarantees that the output of the abstract network is always
greater than the output of the original one.

We carried out a comparison of our method with two existing abstraction
methods [3,17]. The results clearly show that our method outperforms the other
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approaches, and demonstrates that our method can be used to reduce the size
of NN leading to faster operations on the abstract networks, while preserving
tighter output bounds.

In future work, we have identified several plans to improve the efficiency of
the proposed approach. Mainly, we aim to propose some heuristics for selecting
neurons to be merged during the abstraction process, towards enhancing the
precision of the constructed abstract networks. Furthermore, in order to assess
the scalability and the applicability of our approach, we intend to evaluate the
performance of our method on different benchmarks and larger networks.
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Abstract. The world has been witnessing a proliferation of Internet
of Things (IoT) applications in the last decade thanks to the growing
awareness of the opportunities they can bring in various domains. How-
ever, the widespread adoption of IoT technologies highlights the impor-
tance of ensuring the correctness of these applications, which can have
an impact on their security and reliability. The work presented in this
paper contributes to the efforts addressing the verification in IoT. In this
work, we are particularly interested in IoT applications developed using
Node-RED, which despite being one of the most used tools by the IoT
community still lacks attention when it comes to formal verification of
its applications’ correctness and security.

We therefore propose a first step towards a formal approach based on
the formalization of IoT applications modeled with Node-RED flows that
permits their formal verification. This step consists in formally defining
Node-RED concepts and proposing a semantically equivalent Petri net
model that would serve as a starting point for the development of a
model-checker for Node-RED applications.

Keywords: Internet of Things · Petri nets · Formal Verification ·
Node-RED

1 Introduction

Whether in the form of wearable gadgets, monitors or sensors, smart devices have
pervaded almost every aspect of our modern life, especially throughout the last
decade. This proliferation has played the main role in the advent of the Internet
of Things (IoT) as a concept that has rapidly evolved and been associated with
other emerging technologies such as Cloud computing. Its adoption has quickly
expanded to range from consumer applications (e.g., for smart homes) to organi-
zational, industrial and other applications (e.g., for transportation, healthcare,
agriculture). Faced by the inevitability of the increasing connectivity between the
different “things” in our physical and informational world, IoT raises concerns for
the privacy of the exchanged data and security of the used applications. In fact,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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https://doi.org/10.1007/978-3-031-49737-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49737-7_7&domain=pdf
https://doi.org/10.1007/978-3-031-49737-7_7


Towards Formal Verification of Node RED-Based IoT Applications 91

many IoT-related attacks have been reported over the last years. For instance,
in January 2012, hackers were able to exploit a vulnerability in the software of
nearly 700 SecureView cameras which allowed them to access and share their live
feeds [1]. A CNN report [8] declares that the FDA discovered vulnerabilities in
implantable cardiac devices that could allow a hacker to administer inappropri-
ate pacing or shocks to the patients. The fact that such attacks could have fatal
consequences proves the necessity to make privacy and security a high priority
in the design of IoT systems.

One of the most widely used design tools for IoT application is Node-
RED [15]. It is an open-source visual programming tool used for wiring together
hardware devices, APIs (Application Programming Interfaces), and online ser-
vices. It provides a browser-based flow editor that allows users to create and
deploy applications by connecting nodes visually. Users can therefore create
complex automation tasks and IoT applications using Node-RED without the
need for traditional programming. It is particularly popular for building home
automation systems, IoT prototypes, and integrating various systems and ser-
vices together. Node-RED supports a wide range of nodes contributed by the
community, which can be easily extended and customized. Additionally, it has
a large active user community, providing support, sharing flows, and offering
additional functionality through custom nodes and modules.

Despite being widely used by the IoT community, we notice a lack in studies
and tools that target the correctness and security of Node-RED applications.
This can be traced back to the lack of formal definition of the different elements
and concepts of Node-RED.

Through this present work, we aim to take the first step towards a formal
verification approach for Node-RED applications, which consists in proposing
a formal definition for such applications. More precisely, our final goal is to
develop a model-checker dedicated for Node-RED, that would be used to verify
the correctness of IoT applications with reference to properties that can be
defined by the designer. The aim of this paper is therefore to prepare the input
artifact for our end-goal model-checker in the form of a Petri net [12].

The contributions of our work can therefore be presented as follows:

1. We propose a formal definition of the different concepts in Node-RED.
2. We propose a formal representation of Node-RED application as a Petri net

model.
3. We formally prove the semantic equivalence between Node-RED applications

and our proposed Petri net model.

The rest of the paper is organized as follows. In Sect. 2 we present related
work on the verification of IoT applications. Then, some preliminaries will be
introduced in Sect. 3. We formalize the syntax and the semantics of Node-RED
models in Sect. 4. In Sect. 5, we propose a Petri net representation of Node-RED
models and prove the preservation of the semantics between the source (Node-
RED) and the target formal model (corresponding Petri net). An example of
application of our proposed formal model is presented in Sect. 6. Finally, our
conclusions and future perspectives are presented in Sect. 7.
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2 Related Work

The verification of different aspects of IoT systems has been addressed in litera-
ture. In [14] a taxonomy of formal verification approaches for IoT applications is
proposed, in which the authors consider three main formal techniques, namely
model checking, process algebra and theorem proving. The survey concludes that
security is the most targeted issue by formal verification in IoT and that model
checking is the most used formal technique in such a context.

For instance, in [11] the authors propose a model-checking-based approach
for IoT security analysis. They start by transforming an IoT model expressed
in a formalism that they propose into a probabilistic model and leverage the
PRISM tool for its verification with respect to a set of attack trees that they
also propose in the form of PCTL formulae expressing functional properties to
be checked.

The authors in [5] present an MDE (Model-Driven Engineering) based app-
roach for the formal verification of IoT applications using rewriting logic. This
latter technique is leveraged to model and reason about the behavior and prop-
erties of IoT systems.

Frama-C has recently been used to verify software in the context of the
IoT [2–4,9,10,13], more precisely the modules of Contiki, an open source oper-
ating system for the IoT.

While Node-RED itself has been widely adopted and used in practice, for-
mal verification studies specifically focused on Node-RED applications are, to
the best of our knowledge, non-existent. However, it’s important to note that for-
mal verification techniques and methodologies, in general, can be applied to the
underlying components and technologies used within Node-RED applications.
For example, if a Node-RED application interacts with a specific IoT protocol
or relies on external services, the formal verification techniques applicable to
those components can be utilized.

As Node-RED continues to gain popularity and mature as a platform, it is
necessary to have more research and studies emerge in the future, specifically
targeting the formal verification of Node-RED applications. It is an area that
holds potential for further exploration and development, considering the growing
importance of reliable and secure IoT applications.

3 Preliminaries

In this section, we introduce the different formal concepts that we will be using
throughout this paper.

3.1 Petri Nets

A Petri net [12] is a formal model featuring execution semantics based on math-
ematics. It is visually represented as a directed bipartite graph containing tran-
sitions (represented as rectangles) and places (represented as circles). This for-
malism has proved to be an efficient means to model and analyse distributed
systems and workflows.
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Definition 1 (Petri net [12]). A Petri net is 4-tuple N = 〈P, T, F,W 〉 s.t.:

– P is a finite set of places (circles)
– T is a finite set of transitions (rectangles) such that (P ∪T ) �= ∅ and (P ∩T ) =

∅;
– F ⊆ (P × T ) ∪ (T × P ) is a flow relation;
– W : (P × T ) ∪ (T × P ) → N is a mapping assigning a weight to each arc.

Each node x ∈ P ∪T of the net has a pre-set and a post-set defined respectively
as follows: •x = {y ∈ P ∪ T | (y, x) ∈ F}, and x• = {y ∈ P ∪ T | (x, y) ∈ F}.

The incidence matrix C associated with the net is defined as follows : ∀(p, t) ∈
P × T : C(p, t) = W (t, p) − W (p, t).

A marking of a Petri net N is a function m : P → N. The initial marking of
N is denoted by m0. The pair 〈N ,m0〉 is called a Petri net system. A transition
t is said to be enabled by a marking m (denoted by m t−→) iff ∀p ∈ •t, W (p, t) ≤
m(p). If a transition t is enabled by a marking m, then its firing leads to a new
marking m′ (denoted by m t−→m′) s.t. ∀p ∈ P : m′(p) = m(p) + C(p, t). Given
a set of markings Q, we denote by Enable(Q) the set of transitions enabled
by elements of Q. The set of markings reachable from a marking m in N is
denoted by R(N ,m). The set of markings reachable from a marking m, by firing
transitions of a subset T ′ ⊆ T is denoted by Sat(m,T ′). By extension, given a
set of markings S and a set of transitions T ′, Sat(S, T ′) =

⋃
m∈S Sat(m,T ′).

The reachability graph of a marked net 〈N ,m0〉, denoted G(N ,m0), is a graph
whose nodes are the markings of R(N ,m0), and the arcs are labeled with the
transitions of T of N . The initial node is the initial marking m0, and a node
(marking) m′ is the successor of a node m iff ∃t ∈ T s.t. m

t−→ m′.

3.2 Labeled Transition Systems

While Petri nets are adequate for the syntactic representation of systems,
Labeled Transition Systems are usually used to formally represent their exe-
cution semantics.

Definition 2 (Labeled Transition System). A Labeled Transition System is
a tuple G = 〈Q, q0, Σ,→, qf 〉 where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– qf ∈ Q is the final state;
– Σ is the alphabet of actions;
– →: Q × Σ → Q is the transition function.

Let Σ be a finite alphabet. Σ∗ is the set of all finite words over Σ including the
empty word ε. Given two words u, v ∈ Σ∗, we denote by u.v the concatenation
of u and v defined in the usual way. |u| stands for the length of u (|ε| = 0).

In the following, q
a−→ q′ denotes the fact that → (q, a) = q′, and q

a−→
means that ∃q′ s.t. → (q, a) = q′. By extending → to sequences of transitions
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σ = a1 · a2 · ... · an, q
σ−→ qn denotes the fact that there exist states q1, ..., qn s.t.

q
σ1−→ q1

σ2−→ q2 . . .
σn−1−−−→ qn−1

σn−−→ qn. We denote by Succ(Q′, a) the successor
of a set of states Q′ ⊆ Q with the action a ∈ Σ s.t. Succ(Q′, a) = {q′ ∈
Q such that ∃q ∈ Q′ and q

a−→ q′}.
The language of a LTS G = 〈Q, q0, Σ,→, qf 〉 is defined by L(G) = {σ ∈

Σ∗, q0
σ−→ qf}. Furthermore, a language LQ′⊆Q(G), is defined as LQ′(G) = {σ ∈

Σ∗, q0
σ−→ q′ and q′ ∈ Q′}.

4 Formalization of Node-RED Applications

First created by IBM’s Emerging Technology Services team and currently owned
by the OpenJS Foundation, Node-RED is a flow-based programming tool. It
provides a way to represent an application’s behavior as a network of black-
boxes or “nodes” (as they are known in Node-RED). Each node serves a specific
job: it receives data, processes it, and then transmits the results to other nodes.
Data transmission between nodes is handled by the network. In the following,
we propose a formal definition for a Node-RED application, by formally defining
its syntax and semantics.

4.1 Syntax of a Node-RED Application

In Node-RED, a flow operates by transmitting messages between nodes. These
messages are basic JavaScript objects that can have various properties. Typically,
a message will have a “msg.payload” property, which is the default property that
most nodes will work with. Depending on the type of the node transferring the
message, other properties can be required to characterize it (e.g., msg. msgid,
msg.parts, etc.). Other properties can also be added by users.

Let P be the set of such properties. A Node-RED message can then be defined
as follows:

Definition 3 (Node-RED message). A Node-RED message is a tuple
NRM = 〈p1, p2, .., pn〉 such that ∀i ∈ [1, n], pi ∈ P is a message property and n
is the number of its properties. A message NRM has at least one property called
payload which represents its content.

We will be referring to the simple example in Fig. 1 to illustrate the different
definitions we propose throughout this section. In this example, the function node
fn receives information from 3 input nodes (in blue) and sends out information
to 3 output nodes (in green) according to its implemented behaviour described
as follows: if fn receives at least 1 message from in 1 and 2 messages from in 2
then it sends out 2 messages on its output port op4 and 4 messages on its output
port op5; if fn receives at least 1 message from in 2 and 2 messages from in 3
then it sends out 1 message on its output port op4 and 3 messages on its output
port op5.

A Node-RED node is the main element in a Node-RED Flow. It is distin-
guishable and can be either an input, intermediary or output node depending on
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Fig. 1. A simple Node-RED illustrative example

its type (see Table 1 for the list of Node-RED node types and their correspondent
categories). In the following, we denote by Type the set of all node types (i.e.,
Type = Input∪ Inter ∪Output∧ Input∩ Inter ∩Output = ∅). An input node is
generally used to inject information into a flow. It has no input ports and has at
least one output port. An output node is generally used to send out information
(e.g., to third-party components). It has exactly one input port and no output
ports. On the other hand, an intermediary node has exactly one input port and
at least one output port. Some nodes (e.g., function nodes) can be configured to
have more than a single output port and their behaviour (i.e., message relaying)
can depend on the source(s) and number of received messages on the input port.
Hence, we formally define a Node-RED node as follows:1

Definition 4 (Node-RED node). A Node-RED node nd is a tuple 〈id, t, Op〉
where:

– id ∈ N is the node’s unique identifier.
– t ∈ Type is the node’s type
– Op = {opi,∀i ∈ [1,m]} is the set of the node’s output ports (with m the

number of these output ports).

Table 1. Node types in Node-RED

Category Type

Input serialin, emailin, inject, cachinput, MQTTinput, httpin,
twitterin, Linkin

Output serialout, emailout, debug, cachoutput, MQTToutput,
httpout, twitterout, Linkout

Intermediary function, template, http request, tcp request, switch, delay,
trigger, change, range, csv, html, json, xml, rbe, yml, encrypt,
decrypt, file, hmac, sqlinsert, encode, decode, sqldelete,
sqlselect, sqlupdate, mongo

In the following, given a set of Node-RED nodes N , we denote by OPN =⋃
nd∈N{op ∈ nd.Op} the set of output ports in N .

1 In the following, we denote by x.y the element y of the tuple x.
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Example. The Node-RED flow in Fig. 1 comprises 7 nodes, including 3 input
nodes (of type inject), 3 output nodes (of type debug) and 1 intermediary node
(of type function). The application of our definition on the latter can for instance
give the following: fn = 〈52382, function, {op4, op5}〉. The set of all output
ports in this example can be denoted by: OP{in 1,in 2,in 3,fn,out 1,out 2,out 3} =
{op1, op2, op3, op4, op5}.

Definition 5 (Node-RED Flow). A Node-RED flow is a tuple 〈N,A,R〉
where:

– N is the set of Node-RED nodes in the flow, such that N = Nin ∪Nout ∪Nint

where:
• Nin is the set of Node-RED input nodes such that ∀nd ∈ Nin, nd.t ∈

Input and nd.Op �= ∅
• Nout is the set of Node-RED output nodes such that ∀nd ∈ Nout, nd.t ∈

Output and nd.Op = ∅
• Nint is the set of Node-RED intermediate nodes s.t., that ∀nd ∈

Nint, nd.t ∈ Inter and nd.Op �= ∅.
• Nin, Nout and Nint are pairwise disjoint

– A ⊆ OPN × N is the flow relation defined as follows:
• ∀ nd ∈ Nin, �op ∈ OPN s.t. (op, nd) ∈ A
• ∀ nd ∈ Ninter ∪ Nout, ∃nd′ ∈ Nin ∪ Ninter such that ∃op′ ∈ nd′.Op ∧

(op′, nd) ∈ A
• ∀ nd ∈ Ninter ∪Nin,∀op ∈ nd.Op, ∃ nd′ ∈ Ninter ∪Nout s.t. (op, nd′) ∈ A

– R is a set of functions that define the behaviour of Node-RED nodes according
to their input.
Let V End = {ve : A → N} be a set of functions that define the minimal valid
entries for a node nd ∈ N of the flow as per the definition of the node (in
case of a node with a predefined behaviour) or that of the designer (in case of
a node whose behaviour is set by the designer).
R can therefore be defined as follows: R = {Rnd : V End → (A → N),
∀nd ∈ N}.
For each node nd ∈ N of the flow, Rnd is defined on V End such that Rnd(ve)
is a function assigning to each arc in A an integer value (i.e., A → N).

Example. The application of our definition on the Node-RED flow F in Fig. 1
gives: F = 〈N,A,R〉 where:

– N = {in 1, in 2, in 3, fn, out 1, out 2, out 3}
– A= {(op1, fn), (op2, fn), (op3, fn), (op4, out 1), (op4, out 2), (op5, out 2),

(op5, out 3)}
– R = {Rnd,∀nd ∈ N} such that:

• V Ein 1 = V Ein 2 = V Ein 3 = {ve0} where ve0 is defined such that
ve0(a) = 0,∀a ∈ A.
In fact, input nodes have no incoming arcs and therefore have no minimal
valid entries.
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• V Eout i = {veopj
,∀opj ∈ OPN such that (opj , out i) ∈ A},∀i ∈ {1, 2, 3},

where veopj
is defined such that veopj

(a) = 1 if a = (opj , out i) and
veopj

(a) = 0 otherwise.
Output nodes will send out information as soon as they receive it and
therefore their minimal valid entries would correspond to 1 message on
any of the incoming arcs. In our example, we will explicitly have the
following:

∗ V Eout 1 = {ve1} where ve1 is defined such that ve1(a) = 1 if
a = (op4, out 1) and ve1(a) = 0 otherwise.
∗ V Eout 2 = {ve2, ve3} where ve2 is defined such that ve2(a) = 1 if
a = (op4, out 2) and ve2(a) = 0 otherwise; and ve3 is defined such
that ve3(a) = 1 if a = (op5, out 2) and ve3(a) = 0 otherwise.
∗ V Eout 3 = {ve4} where ve4 is defined such that ve4(a) = 1 if
a = (op5, out 3) and ve4(a) = 0 otherwise.

• V Efn = {ve5, ve6} where:

∗ ve5(a) =

⎧
⎪⎨

⎪⎩

1 if a = (op1, fn)
2 if a = (op2, fn)
0 otherwise

∗ ve6(a) =

⎧
⎪⎨

⎪⎩

1 if a = (op2, fn)
2 if a = (op3, fn)
0 otherwise

The valid entries of the function node fn correspond to the behaviours
defined in the description of the illustrative example in Fig. 1.
Input nodes inject messages into the flow, message by message. Rnd for
such nodes are therefore defined as follows:

• (Rin 1(ve0))(a) =

{
1 if a = (op1, nd)
0 otherwise

• (Rin 2(ve0))(a) =

{
1 if a = (op2, nd)
0 otherwise

• (Rin 3(ve0))(a) =

{
1 if a = (op3, nd)
0 otherwise

Output nodes send messages out of the flow but do not circulate any
messages in it. Rnd for such nodes are therefore defined as follows:

• (Rout 1(ve1))(a) = 0,∀a ∈ A
• (Rout 2(ve2))(a) = 0,∀a ∈ A
• (Rout 2(ve3))(a) = 0,∀a ∈ A
• (Rout 3(ve4))(a) = 0,∀a ∈ A

• (Rfn(ve5))(a) =

⎧
⎪⎨

⎪⎩

2 if a = (op4, nd)
4 if a = (op5, nd)
0 otherwise

Rnd of the function node fn is defined according to the behaviours defined
in the description of the illustrative example in Fig. 1.
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• (Rfn(ve6))(a) =

⎧
⎪⎨

⎪⎩

1 if a = (op4, nd)
3 if a = (op5, nd)
0 otherwise

4.2 Semantics of a Node-RED Application

Having set the formal definition of the syntax of Node-RED applications in the
previous subsection, we now focus on the formal definition of the semantics of
such applications, which provides a formal means to describe their behaviours.
To do so, we start by defining what a state is for a Node-RED flow (Defini-
tion 6) and then we define the dynamics between different states (Definitions 7–
9). Finally, we propose a representation of these semantics using a transition
system (Definition 10).

Definition 6 (Node-RED State). The state of a Node-RED flow F =
〈N,A,R〉 can be characterized as the numbers of messages on its arcs. This
can be formally defined as a function: S : A �→ N. We note that, similarly to
what is conventionally the case for a marking in a Petri net, the function S can
also be seen as a vector (of size |A|) in which each element represents the number
of messages on one of the arcs of the flow.

Definition 7 (Node-RED Initial State). We denote by S0 the initial state
of a Node-RED flow 〈N,A,R〉 where no messages are circulating between its
nodes. Such a state is therefore defined as follows: ∀a ∈ A, S(a) = 0.

Definition 8 (Valid Node-RED Node). A non initial node nd of a Node-
RED flow F = 〈N,A,R〉 (i.e., nd ∈ N \ Nin) is said to be valid in a state
S iff it receives from its predecessors a combination of messages that satisfies
the minimal requirements defined by its flow relation Rnd. This can be formally
expressed as follows:
A node nd is said to be valid under a state S iff ∃ve ∈ V End s.t S ≥ ve and is
denoted S

nd−→.

Definition 9 (Node Execution). If a node nd in a Node-RED flow F =
〈N,A,R〉 is valid under a state S (i.e., S

nd−→), then its execution results in a
new state S′ defined as follows:
S′ = S − ve + Rnd(ve) such that ve ∈ V End ∧ ve ≤ S. This is denoted by

S
nd/ve−−−−→ S′.

Definition 10 (Semantics of a Node-RED flow as a transition system).
A Node-RED flow 〈N,A,R〉 is a transition system 〈Q, q0, Σ,→, qf 〉 where:

– Q = {qs;∀s ∈ S}
– q0 = qs ∈ Q s.t s = S0

– Σ = {and/ve;∀nd ∈ N and ∀ve ∈ V End}
– →: Q × Σ → Q s.t → (qs, and/ve) = qs′ iff s

nd/ve−−−−→ s′
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5 From Node-RED to Petri Nets

Now that we have proposed a formal definition for the syntax and semantics
of Node-RED flows, this section will focus on the transformation of such flows
into semantically equivalent Petri net models. In fact, such a transformation
allows to take benefits from the existing verification tools allowed by Petri net
representation. Verifying the correctness of a Node-RED flow would therefore
amount to the verification of the correctness of its corresponding Petri net.

5.1 Formalization of a Node-RED Flow

In the following, we propose a Petri net model for a Node-RED flow, which
we will later prove to be semantically equivalent. Such a Petri net is obtained
by creating a place for each arc in the represented flow, a set of transitions
for each node (a transition for each specified behaviour). These elements are
then interconnected according to the definition of the set of functions R of the
modeled Node-RED flow.

Definition 11. A Node Red flow 〈N,A,R〉 is a Petri net 〈P, T, F,W 〉 where:

– P = {pa,∀a ∈ A}
– T =

⋃
nd∈N Tnd where Tnd = {tnd

ve ,∀ve ∈ V End}
– F is defined s.t. ∀nd ∈ N,∀ve ∈ V End,∀a ∈ A

{
(pa, tnd

ve ) ∈ F iff ve(a) �= 0
(tnd

ve , pa) ∈ F iff (Rnd(ve))(a) �= 0

– W is defined s.t.
{

∀(pa, tnd
ve ) ∈ F, W ((pa, tnd

ve )) = ve(a)
∀(tnd

ve , pa) ∈ F, W ((pa, tnd
ve )) = (Rnd(ve))(a)

Example. The application of the transformation on the illustrative example of
Fig. 1 yields the Petri net in Fig. 2 that comprises 8 transitions: 3 “source” transi-
tions (in 1, in 2 and in 3) representing the input nodes in the flow, 2 transitions
(fn1 and fn2) representing the function node (a transition for each specified
behaviour for fn) and 4 “sink” transitions (out 1, out 21, out 22 and out 3) rep-
resenting the output nodes in the flow (a transition for each link to an output
node). It also includes 7 places (pa1 to pa7) representing the arcs in the flow.
These elements are linked as per the aforementioned formalization. We note that
this would result in an unbounded Petri net (the source transitions can always
fire in order to simulate real life unbounded resources). However, in order to
allow the analysis of the system, we need to make the Petri net bounded. To do
so, we add an input place pin that we link to every source transition and that
initially contains as many tokens as messages that can be injected into the flow,
and an output place pout that we link to every sink transition.
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Fig. 2. Petri net of the illustrative example

5.2 Semantics Equivalence/Preservation

In order to ensure that the Petri net resulting from the formalization that we
propose for Node-RED applications exhibits an equivalent behaviour to the mod-
eled application, we need to establish the semantics equivalence between the two
models.

We recall that the semantics of a marked Petri net 〈N ,m0〉 are represented
by its reachability graph G(N ,m0) (see Definition 1), which can adequately be
represented by a LTS whose states are the set R(N ,m0) (amongst which, the
initial state q0 corresponds to the initial marking m0) and alphabet of actions is
the set of transitions T . Its transition function is the counterpart of the arcs in
the reachability graph (i.e., → (q, a) = q′ iff ∃m,m′ ∈ R(N ,m0) that correspond
to q and q′ respectively, and ∃t ∈ T that corresponds to a, such that m

t−→ m′).

Definition 12 (Marking Equivalence). A state SN of a Node-RED flow
〈N,A,R〉 is said to be equivalent to a marking mP of a corresponding Petri
net 〈P, T, F,W 〉 iff ∀pa ∈ P, mP (pa) = SN (a). We note SN ≡ mP .

Definition 13 (Execution Sequence Equivalence). An execution sequence
of length k of a Node-RED flow 〈N,A,R〉, denoted σN

k = ndi/vei · ... · ndj/vej

(with k = j − i+1), is said to be equivalent to an execution sequence of the same
length of a corresponding Petri net 〈P, T, F,W 〉, denoted σT

k = tndi
vei

· ... · tndj
vej , iff

∃SN
1 , SN

2 ,mP
1 and mP

2 such that (SN
1 ≡ mP

1 ∧ SN
1

σN
k−−→ SN

2 ∧ mP
1

σT
k−−→ mP

2 ) =⇒
SN
2 ≡ mP

2 . We note σN
k ≡ σT

k .

Theorem 1. Let F be a Node-RED flow and N the corresponding Petri net as
per Sect. 5.1, then F and N are semantically equivalent.

Proof. Let F be a Node-RED flow and N the corresponding Petri net as per
Sect. 5.1. In order to prove that F and N are semantically equivalent we need
to prove that: (I) ∀σN

k ,∃σT
k , and(II) ∀σT

k ,∃σN
k , such that σN

k ≡ σT
k ,∀k ∈ [1,m]

with m the length of the longest execution sequence. We start by proving (I ):
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– Let P (n) the statement: ∀σN
n ,∃σT

n such that σN
n ≡ σT

n

– P (1) : ∀σN
1 ,∃σT

1 such that σN
1 ≡ σT

1 . This can be derived from the formal-
ization in Sect. 5.1. In fact, the initial marking of N (mP

0 ) corresponds to the
initial state SN

0 of F (see Definition 7). The initial state of a Node-RED flow
being a state where no messages are circulating on its arcs, the initial marking
of the corresponding Petri net is a marking where no tokens are present in
any of its places. Therefore, only source transitions are fireable in this initial
marking. By definition, these transitions represent input nodes, which are the
only nodes that can be executed from the initial state of the flow. We can
then deduce that the set of fireable transitions (mP

0 →) corresponds to the
set of valid nodes (SN

0 →). Additionally, the marking mP
i obtained by firing

tndi
vei

is equivalent to that obtained by executing ndi/vei (mP
i ≡ SN

i ) since the
marking mP

i is defined as to correspond to the effects of the execution of ndi

considering vei in F .
– Assume that P (k) : ∀σN

k = nd1/ve1 · ... · ndk/vevek,∃σT
k = tnd1

ve1
· ... · tndk

vek

such that σN
k ≡ σT

k is true for some k ∈ [2,m − 1]. We will prove that
P (k + 1) : ∀σN

k+1 = nd1/ve1 · ... · ndk+1/vek+1,∃σT
k+1 = tnd1

ve1
· ... · t

ndk+1
vek+1 such

that σN
k+1 ≡ σT

k+1 is true.

σN
k+1 ≡ σT

k+1 =⇒ ∃nd ∈ N, ve ∈ V End, tnd
ve ∈ T such that σN

k · nd/ve ≡ σT
k · tnd

ve

(1)

σN
k ≡ σT

k ⇐⇒ (SN
0

σN
k−−→ SN

k ∧ mP
0

σT
k−−→ mT

k ∧ SN
k ≡ mT

k ) (2)

Analogously to the reasoning in the previous point, we can deduce that:

∀nd ∈ N,∀ve ∈ V End such that SN
k

nd/ve−−−−→ SN
k+1,

∃tnd
ve ∈ T such that (mT

k

tnd
ve−−→ mT

k+1 ∧ SN
k+1 ≡ mT

k+1)
(3)

And therefore:

∀σN
k+1 = nd1/ve1 · ... ·ndk+1/vek+1, ∃σT

k+1 = tnd1
ve1 · ... · tndk+1

vek+1 such that σN
k+1 ≡ σT

k+1

(4)
The second part (II ) is provable following a similar reasoning.

��

6 Example of Application

As application, we consider a healthcare case study (Fig. 3) depicting a mobile
medical application that tracks heath indicators of the user2. Our use case con-
siders IoT integration with Cloud computing. We use a connected watch, fog
nodes, a private and a public Cloud, and a web application, which together form
2 To develop this use case, we used the healthcare case study in [16]; where we changed

the factories ensuring cardiovascular diseases and the type of alerts sent to the
patients in case of danger.
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a medical application. This latter provides continuous monitoring of the vital
data of a given patient. Regular or routine measurements could help to detect
the first symptoms of heart disease, and make it possible to immediately trig-
ger an alert. The vital information collected by the watch worn by the patient
includes blood sugar level, blood pressure, cholesterol level and physical activity.

Fig. 3. Node Red flow

The application of our formalization on this Node-RED example yields the
Petri net model depicted in Fig. 4.

Fig. 4. Use Case Petri Net
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7 Conclusion and Perspectives

In this paper we proposed a first step towards closing the gap in the formal
verification of Node-RED-based IoT applications. More specifically, we proposed
a formalization of both the syntax and the execution semantics of Node-RED
flows. Then, we proposed to use Petri nets model as a pivot formal model by
giving a way to translate Node-RED flows to a semantically equivalent Petri net.
This model would eventually serve as a basis for our end-goal model-checker for
Node-RED applications. The formal definition that we propose for Node-RED
flows could also serve as a starting point for other researchers to develop their
own formal verification approaches.

Besides the development of a generic model-checker, we note that we are
particularly interested in the verification of the opacity property [7] in IoT appli-
cations. Currently, we are working on using the SOG technique [6] to check this
property and eventually integrate our approach as a plugin in the Node-RED
platform that will perform the required steps transparently in the background in
order to provide a seamless experience to the users. Further perspectives include
the enforcement of the opacity as well as other security properties, using the
supervisory and control theory.

Our ongoing research efforts also encompass the formalization of Node-RED
applications using Colored Petri Nets (CPN). This parallel approach using CPN
adds an additional layer of formalization that provides complementary perspec-
tives which allows the verification of a wider range of properties (e.g., data-
related) while keeping the models compact.
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Abstract. The Signal protocol is used by billions of people for instant mes-
saging in applications such as Facebook Messenger, Google Messages, Signal,
Skype, and WhatsApp. However, advances in quantum computing threaten the
security of the cornerstone of this protocol: the Diffie-Hellman key exchange.
There actually are resistant alternatives, called post-quantum secure, but replac-
ing the Diffie-Hellman key exchange with these new primitives requires a deep
revision of the associated security proof. While the security of the current Signal
protocol has been extensively studied with hand-written proofs and computer-
verified symbolic analyses, its quantum-resistant variants lack symbolic security
analyses.

In this work, we present the first symbolic security model for post-quantum
variants of the Signal protocol. Our model focuses on the core state machines
of the two main sub-protocols of Signal: the X3DH handshake, and the so-
called double ratchet protocol. Then we show, with an automated proof using the
Tamarin prover, that instantiated with the Hashimoto-Katsumata-Kwiatkowski-
Prest post-quantum Signal’s handshake from PKC’21, and the Alwen-Coretti-
Dodis KEM-based double ratchet from EUROCRYPT’19, the resulting post-
quantum Signal protocol has equivalent security properties to its current classical
counterpart.

Keywords: Secure instant messaging · Signal protocol · Quantum resistant ·
Formal verification · Tamarin prover · X3DH · Double ratchet

1 Introduction

The Signal protocol is divided into two sub-protocols: X3DH [21], and the dou-
ble ratchet protocol [20]. The X3DH protocol can be seen as an Authenticated Key
Exchange (AKE) protocol. It ensures the authenticity of an initial key shared between
two users. It is an asynchronous protocol, which means that there is no need for users
to be online at the same time to initialize the protocol. To use the X3DH protocol, each
user must first generate a long-term static pair of public and private keys for them to
be authenticated, as well as a batch of ephemeral pairs of public and private keys. Both
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long-term public keys and ephemeral key batches are then stored on an honest interme-
diate server which acts as a buffer. When Bob wants to start a conversation with Alice,
he sends a request to the server, and then receives the Alice’s long-term public key and
a fresh Alice’s ephemeral public key from her batch. These two public keys enable Bob
to perform the X3DH handshake protocol by sending a message to Alice, which will
enables her to derive their X3DH pre-shared secret key when she is online.

The double ratchet protocol is used to encrypt messages to send through the Signal
protocol with an Authenticated Encryption with Associated Data (AEAD) scheme and
a session key that is shared between the two parties. The session key is renewed each
time a message is sent, using symmetric and asymmetric mechanisms called ratchets.
The double ratchet protocol is initialized with the X3DH pre-shared key as session
key, and an ephemeral public key from the corresponding batch as public key. Then,
to send a message, the public key is used to exchange a fresh secret key, from which
the new session key is derived with the output of a one-way function applied to the
current session key. In addition, a new ephemeral key pair is generated whose public
key is encrypted then sent with the message, using this new session key. This protocol
is repeated for each message sent to ensure strong security properties such as forward
secrecy and post-compromise recovery against passive adversaries.

The current Signal protocol heavily uses the well-known, flexible, and efficient, but
vulnerable to quantum attacks, Diffie-Hellman (DH) key exchange protocol. However,
with the threat of upcoming quantum computers, post-quantum alternatives are subject
to extensive analysis in order to gain assurance in their security. In 2016, the NIST initi-
ated a process to evaluate and standardize quantum-resistant key-establishment and sig-
nature schemes, but all remaining candidates in the key-establishment category are key
encapsulation mechanisms (KEMs) like RSA, and not key exchanges like DH. Con-
sequently, the integration of post-quantum KEMs in cryptographic protocols is quite
challenging due to the differences between KEMs and DH, which requires some funda-
mental adjustments to these protocols to maintain the same security guarantees.

Aside from that, the active area of formal protocol verification is increasingly
accompanying protocol specifications. Designing cryptographic protocols is known to
be hard to get right and hand-written proofs remain highly complex and error-prone.
At the design level, automatic verification aims to manage the complexity of security
proofs and even reveal subtle flaws or as-yet-unknown attacks as the historic example of
the man-in-the-middle attack [16]. Efficient automatic verification tools as Tamarin [17]
or ProVerif [6] have been used to analyze large, real-world protocols. For instance,
ProVerif has been used to analyze TLS 1.3 [4] and Signal [14] and Tamarin as been
used to analyze the 5G AKE protocol [3] and TLS 1.3 [10].

Related Works. The security of the (EC)DH-based Signal protocol has been extensively
studied using hand-written proofs [9]. Those proofs were completed with a symbolic
analysis [14] using the ProVerif prover. Regarding the transition to post-quantum cryp-
tography, there are KEM-based alternatives to the Signal sub-protocols X3DH [7,12]
(the security properties in [12] being closer to that of X3DH, in particular thanks to
the encryption of the signature) and double ratchet [1], with hand-written proofs for
the same security properties as the current Signal protocol. Such KEM-based proto-
cols can be instantiated with post-quantum KEMs from the NIST competition such as
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Kyber [2], which will be the first NIST PQC standard for key-establishment. However,
those potential replacements for X3DH and double ratchet have so far lacked computer-
verified symbolic analyses which results in a limited trust in these protocols. By con-
trast, some other protocols, such as WireGuard [13] and (KEM)TLS [8,19], already
have computer-verified symbolic analyses for post-quantum variants, both using the
Tamarin prover.

Contributions. We present the first symbolic proof of a post-quantum variant of the
Signal protocol. Our model focuses on the core state machines of the two main sub-
protocols of this variant: the Hashimoto-Katsumata-Kwiatkowski-Prest post-quantum
X3DH handshake [12] which we refer to as PQ-X3DH, and the Alwen-Coretti-Dodis
KEM-based double ratchet [1] that we call KEM-Double-Ratchet. Then we show, using
the Tamarin prover, that these two protocols meet the same security properties as clas-
sical X3DH and double ratchet protocols. In addition, we prove the well-formedness of
the two models, which informally means that their behavior is as expected.

Our PQ-X3DH Tamarin symbolic analysis ensures the integrity of the two
exchanged messages, the authentication of users, the resistance to unknown key-share
attacks and replay attacks, and other properties, such as the weak forward secrecy [15]
and the key compromise attack resistance, to mitigate the leak of secret information.

With regard to KEM-Double-Ratchet, our Tamarin model ensures the integrity of all
the messages, the forward secrecy, and the post-compromise recovery [1]. It is worth
noting that in the particular case of Signal, post-compromise recovery is met only if
the adversary is passive during the recovering process. While within the double ratchet
protocol two parties can exchange a potentially infinite number of messages, we model
only three exchanges, which represents the minimum number of exchanges for each
security property to hold. A simple induction argument then enables us to generalize
these properties to any number of exchanges. To our knowledge, our formal verification
model is the first one that covers the post-compromise recovery security property.

Outline. In Sect. 2 we present the two sub-protocols of the considered variant of the
Signal protocol and their Tamarin model. Then we present in Sect. 3 the Tamarin for-
malism used in our symbolic analysis, the different security properties verified, and the
results of our formal verification.

2 A KEM-Based Signal Protocol

In this section, we describe the KEM-based variant of the Signal protocol that is the
subject of our symbolic analysis. As explained in the introduction, the Signal proto-
col is separated in two sub-protocols providing different functionalities, we respect this
separation for this KEM-based variant in order to facilitate its analysis and clearly iden-
tify the contribution of each sub-protocol in the security of the whole protocol. The first
sub-protocol named PQ-X3DH is used as authenticated key agreement while the sec-
ond one named KEM-double-ratchet is used for secure instant messaging by refreshing
the session key at each time a message is sent.
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2.1 The PQ-X3DH Protocol

Alice Bob
Public Parameters : (s, ppKEM , ppwKEM , ppSig)

lpkA={epkA, ltpkA}
lskA={eskA, ltkA}

lpkB={epkB , ltpkB}
lskB={eskB , ltkB}

(epkT , eskT ) ←− wKEM.KeyGen(ppwKEM )

Init: epkT

(K, C) ←− KEM.Encap(epkA)

(KT , CT ) ←− wKEM.Encap(epkT )

sidB := ltpkA||ltpkB ||lpkA||epkT ||C||CT ||K
kroot||k̃ ←− HKDF(KT , sidB)

σ ←− S.Sign(ltkB , sidB)

c ←− AEAD.Enc(σ, k̃)

Respond: C, CT , c

K ←− KEM.Decap(eskA, C)

KT ←− wKEM.Decap(eskT , CT )

sidA := ltpkA||ltpkB ||lpkA||epkT ||C||CT ||K
kroot||k̃ ←− HKDF(KT , sidA)

σ ←− AEAD.Dec(c, k̃)

S.Verify(ltpkB , sidA, σ) ?= 1

Fig. 1. The PQ-X3DH protocol.

X3DH [21] is an asynchronous protocol that generates a shared secret between the com-
municating parties to initialize their communication as well as authenticate themselves.
It fully authenticates the receiver Bob and partially authenticates the initiator Alice. It
is called asynchronous because both parties can initiate the connection while the other
is offline. Such property provides flexibility but could completely break the protocol
in the case of a malicious server. Apart from such a case the asynchronous protocol is
highly secure. We consider here the PQ-X3DH presented in [12] which preserve the
security properties of the classical protocol and we focus on the variant of PQ-X3DH
that does not use a signature to fully authenticate Alice. The motivation for this change
is to allow Alice to deny having taken part in the exchange, in the same way that Bob
can deny it thanks to the encryption of his signature.

The PQ-X3DH sub-protocol is presented in Fig. 1. Two key encapsulation mecha-
nisms, KEM and wKEM, are employed as building blocks in this key agreement proto-
col. wKEM, which is IND-CPA secure, is for ephemeral use. KEM is IND-CCA secure
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here. Tamarin considers the public-key encryption as ideal (thus IND-CCA), but for an
ephemeral use, IND-CPA is sufficient.

PPPKI

AInit

ARecv

AEnd

BInit

BEnd

Init A

A B Send

A Recv

Init B

B Recv Then Send

Ephemeral KEM public key

KEM ciphertext and signature

Fig. 2. Graph of the Tamarin PQ-X3DH model.

Tamarin Model. Since Tamarin has no built-in KEM we replace the KEM with an
asymmetric encryption scheme encrypting a fresh ephemeral key. The two approaches
are equivalent considering the idealization of cryptographic primitives used in Tamarin.
Our model for the PQ-X3DH protocol is represented as the state machine in Fig. 2 with
nine transition rules:

– PKI and PP: these rules formalize the Public Key Infrastructure (PKI), the Public
Parameters (PP). PKI assigns only once a long term key with an ephemeral key to a
user. Instead of handling non-replayability with a batch of ephemeral one-time keys
we directly use restrictions to ensure the a key can only be used once.

– Init_A and Init_B: each user get from PKI and PP the public parameters and
public keys needed for the PQ-X3DH protocol.

– A_B_Send: Alice sends an ephemeral public key to initiate a key encapsulation.
– B_Recv_Then_Send: Bob receives Alice’s ephemeral public key, encapsulates two
secret keys into two KEM ciphertexts, one with Alice’s ephemeral public key and
wKEM, the other by using Alice’s long-term public key and KEM. Bob also sign
the protocol transcript and send his signature encrypted with an AEAD scheme.

– A_Recv: Alice receives Bob’s ciphertext and signature and derives a session key that
will be used by Alice and Bob to communicate. Then, she decrypts and verifies the
signature.

– RevealE: Reveals to the attacker the ephemeral secret keys.
– RevealL: Reveals to the attacker the long-term secret keys.



110 H. Beguinet et al.

2.2 The KEM-Double-Ratchet Protocol

The double ratchet protocol (DR for short) is used for securing an ongoing exchange of
messages between two peers by repeatedly producing fresh session keys while saving
the authentication made with the PQ-X3DH initialization.

This protocol is self-healing, which means that it is made so that if at some point a
user’s key is intercepted by an attacker, the upcoming renewal of the session key is there
to protect the secrecy of the future messages. This property is sometimes called post-
compromise security. To satisfy this property, a cryptographic ratchet based on a key
exchange method, such as Diffie-Hellman in the classical case, is used in the protocol,
and a ratchet based on key derivation functions enables key renewal without interaction
between the peers.

In order to communicate securely, the double ratchet protocol derives three types of
shared secrets: root, chain and message secrets. They are used respectively as master,
derivation and amessage keys [20]. Since we consider a KEM-based double ratchet, we
deviate a bit from this definition. As specified in Fig. 3, in KEM-Double-Ratchet the two
communicating peers Alice and Bob start the KEM-DR sub-protocol with a common
pre-shared key kroot. This key comes from the key agreement protocol PQ-X3DH.

Tamarin Model. As shown in Fig. 4 we only perform three exchanges of the KEM-
double-ratchet protocol. Three exchanges are sufficient to verify all considered security
properties as discussed in Sect. 3. Our KEM-DR model has nine transition rules:

– Init_A and Init_B: each user get a secret preshared key and Bob gets an Alice’s
KEM ephemeral public key.

– Send_B1, Send_A, and Send_B2: the user encapsulates a fresh secret key with the
current KEM public key, derives a new session key, encrypts the message, then sends
it encrypted with the KEM ciphertext and a new ephemeral KEM public key.

– Recv_A1, Recv_B, and Recv_A2: the user receives a message, derives the new ses-
sion key, and verifies the integrity.

– LeakState: Reveals to the attacker the current user secrets.

3 Tamarin Formal Verification

In Tamarin, a protocol is seen as a state machine. A state is a multiset of facts, and
rules are transitions which shift the state when some conditions are fulfilled. A rule
consists of three sets of facts: premise, action facts, and conclusion. If all the premise
facts exist, then the rule is applied. Applying a rule means consuming premise facts to
produce conclusion facts while recording action facts in the protocol trace.

Some facts are native in Tamarin such as In() and Out() to model inputs and
outputs of the protocol following the Dolev-Yao model [11]. Moreover, the Fr() fact
is used to produce fresh or unique variables.

Tamarin proposes a set of built-ins cryptographic primitives to model protocols,
including symmetric and asymmetric encryption, hash function, and signature. It also
allows to define new primitives, via functions and equations commands. In the
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Alice Bob
External Key Agreement : kroot

epkA,1
fetch←−−−− KeyBatch[Alice]eskA,1

rd = kroot rd = kroot

(KT , C)←− wKEM.Encaps(epkA,1)
(rd, kd) ←− HKDF(rd, KT )

KT ←− Hash(kd)
(epkB,2, eskB,2) ←− wKEM.Keygen()

E ←− AEAD.Enc(KT ,(ts,m))

Send : (C ,epkB,2), E

KT = wKEM.Decaps(C, eskA,1)

(m, ts) ←− AEAD.Dec(KT , E)

(rd, kd) ←− HKDF(rd, KT )
KT ←− Hash(kd)

Verify: ts exchange 1

(KT , C)←− wKEM.Encaps(epkB,2)
(rd, kd) ←− HKDF(rd, KT )

KT ←− Hash(kd)
(epkA,3, eskA,3) ←− wKEM.Keygen()

E ←− AEAD.Enc(KT ,(ts,m))

Send : (C ,epkA,3), E

KT = wKEM.Decaps(C, eskB,2)

(m, ts) ←− AEAD.Dec(KT , E)

(rd, kd) ←− HKDF(rd, KT )
KT ←− Hash(kd)

Verify: tsexchange 2

(KT , C)←− wKEM.Encaps(epkA,3)
(rd, kd) ←− HKDF(rd, KT )

KT ←− Hash(kd)
(epkB,4, eskB,4) ←− wKEM.Keygen()

E ←− AEAD.Enc(KT ,(ts,m))

Send : (C ,epkB,4), E

KT = wKEM.Decaps(C, eskA,3)

(m, ts) ←− AEAD.Dec(KT , E)

(rd, kd) ←− HKDF(rd, KT )
KT ←− Hash(kd)

Verify: ts exchange 3

Fig. 3. The KEM-double-ratchet protocol.
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AInit

ARecv

ASend

AEnd

BInit

BSend

BRecv

BEnd

Init A

Recv A1

Send A

Recv A2

Init B

Send B1

Recv B

Send B2

Out of Bond Secret Sharing

First Encrypted Message

Second Encrypted Message

Third Encrypted Message

Fig. 4. Graph of the Tamarin KEM-Double-Ratchet model.

context of this work, we define a KEM as an asymmetric encryption scheme encrypt-
ing a fresh random key, and we consider the following AEAD Tamarin formalization
from [13].

In some cases, we need to restrict some transitions in the protocol, e.g., to check the
equality of two terms as shown below. Hence, when a rule has the restriction Eq(x,y)
in its action facts, then the rule is applied if and only if x = y.

restriction Eq: "All x y #i. Eq(x,y) @ #i ==> x = y"

Tamarin uses the logic of first order to formalize security properties as lemmas. The
keyword All stands for ∀, Ex for ∃ and @ represents a marker for chronological events.
Lemmas use action facts produced by the rules to prove or disprove properties. A trivial
lemma is given below, it means that if Action1() happened then Action2() happened
too.

lemma example:
" All x #i. Action1(x) @ #i ==> Ex y #k. Action2(y) @ #k "

In order to verify that a protocol has given security property, Tamarin takes as input
the protocol model, with all its possible transitions as rules, and a lemma corresponding
to this security property. Then, if Tamarin completes its verification process, it will
either output a proof of the property or an attack trace which falsifies it.
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3.1 Security Properties

The security properties verified in our symbolic analysis of PQ-X3DH and KEM-DR
are the same properties as those considered in the formal verification of classical X3DH
and Double-Ratchet protocols [14].

Integrity. Integrity is an important property for key exchange protocols. It allows the
receiver of a message to have the assurance that the message has come unaltered from
the intended sender. We separate the integrity of a message that can be verified upon
receipt, called instantaneous integrity, and that which can be verified upon receipt of a
subsequent message, called delayed integrity.

Authentication.We consider two authentication notions: the partial authentication from
Definition 1 and the full authentication from Defintion 2.

Definition 1 (Partial Authentication). A user U is partially authenticated to another
user V if V can prove that the message she receives comes from the same user as the
one with whom she has initialized the session.

Definition 2 (Full Authentication). A user U is fully authenticated to another user
V if U is partially authenticated to V and V can prove the identity of U.

Forward Secrecy. Here again we consider two different notions: the perfect Forward
Secrecy (FS) from Definition 3 and the weak Forward Secrecy (wFS) from Definition 4.
In this work, we also consider a new notion called weak state Forward Secrecy (wsFS)
that we define as the wFS property except that the leakage concerns states instead of
long term keys.

Definition 3 (perfect Forward Secrecy (FS) [18]). A protocol is said to have perfect
forward secrecy if compromised long-term keys does not compromise past session keys.

Definition 4 (weak Forward Secrecy (wFS) [15]). Any session key established by
uncorrupted parties without active intervention by the attacker is guaranteed to remain
secrete even if the parties to the exchange are corrupted after the session key has been
erased.

Key Compromise Impersonation Resistance. The KCI resistance from Definition 5 is
related to the use of long term public/private keys. Since there is no use of long term
public/private key in the KEM-DR protocol, the KCI property is only applicable to the
PQ-X3DH protocol.

Definition 5 (Key Compromise Impersonation (KCI) Resistance). Even if an
adversary compromises the long term private key of a user U, this adversary can not
use this key to impersonate (to U) another user V that is communicating to U.

Unknown Key-Share Resistance. We recall the definition of a UKS attack in Defini-
tion 6. UKS attacks can be seen as implicit impersonation. Thus, in the same way as for
the KCI resistance, this property is only applicable to the PQ-X3DH protocol.
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Definition 6 (Unknown Key-Share (UKS) attack [5]). An unknown key-share attack
on an AKE protocol is an attack whereby a user U ends up believing she shares a key
with V, and although this is in fact the case, V mistakenly believes the key is instead
shared with an entity W � U.

Post-Compromise Recovery. We recall the post-compromise recovery property in Def-
inition 7. By definition, this property is only applicable when a protocol is iterated
repeatedly between the parties, this is the case for KEM-DR but not for PQ-X3DH.

Definition 7 (Post-Compromise Recovery (PCR) [1]). If the attacker remains pas-
sive, i.e., the attacker does not inject any messages, and if users have access to fresh
randomness, then the users recover a secure state from a compromised state after a few
communication rounds.

3.2 Tamarin Formalization

Before describing in more detail the Tamarin formalization of the different security
properties presented above, we need to define some notations that will be useful later.
In the rest of the paper, we use the following notations:

– L = {0, 1, 2} is the set of iteration indices, i.e., the three first exchanges ;
– M ⊂ {0, 1}∗ is the set of messages sent via the Signal protocol ;
– K ⊂ {0, 1}k is the set of secret keys where k is the key length ;
– S ⊂ {0, 1}∗ is the set of message indices, i.e., the message numbers ;
– Σ is the set of protocol states.
– Γ is the set of user states.

Moreover, using the Tamarin formalism, we note:

– KU(x): The adversary sent x and therefore has knowledge of x ;
– K(x): The adversary has knowledge of x.

In Table 1, respectively Table 2, we introduce the Tamarin action facts and their
abbreviations needed in our symbolic analysis of PQ-X3DH, respectively KEM-DR.
These action facts are used to define the Tamarin lemmas corresponding to the security
properties.

In Tamarin, the user state is the current set of the secrets of this user. In order to
characterize respectively full and partial knowledge of the user’s secrets by the attacker,
we define the revealed state in Definition 8 and the compromised state in Definition 9.

Definition 8 (Revealed State). A state is said to be revealed if the adversary has
knowledge of every hidden elements of the state.

Definition 9 (Compromised State). A state is said to be compromised if the adversary
has knowledge of any hidden element of the state.
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Table 1. Tamarin action facts for PQ-X3DH, abbreviations and definitions

Action fact Abbreviation Definition

SessA SA(A,B,k) A accepts the key k as valid to communicate with B

ExplicitAuth EA(B,A) A explicitly authenticates B

RevealL RL(A) The long-term key of A is revealed to the attacker

RevealE RE(A) The ephemeral key of A is revealed to the attacker

SendConnect SC(A) A initiates the PQ-X3DH protocol

RecvConnect RC(A,B) B receives the initialization message from A

SendSign SS(B,A) B sends its signature to A

weakFS wFSA,B(k) Saves k to check its resistance against future reveal

Send/Recv SendA,n(m) A sends the message m of index n

RecvB,A,n(m) B checks the integrity of message m of index n from A

Table 2. Tamarin action facts for KEM-Double-Ratchet, abbreviations and definitions

Action fact Abbreviation Definition

IntegS/IntegR IS/R(n,m,s) Sends or receives message m of index n associated
With session key s and checks its integrity in reception

FS FS(A,B,n,st) Saves the current state st associated with the sending
of the message of index n between A and B in order to
check its resistance against future reveal

Healed HA,B(st) Checks if the state st has recovered from a previous
reveal in the communication between A and B

Reveal R(A,n) Reveals the secrets of A associated with the message
of index n

PQ-X3DH Security Properties. For the sake of clarity, we describe the security prop-
erties verified with Tamarin in the usual mathematical formalism. Let E = A <t B the
notation <t means that E is true if and only if event A occurs before event B. For lack
of space, the definitions of the corresponding Tamarin lemmas are presented in the full
version of this paper.

Integrity. The integrity is checked on both messages transmitted through the PQ-X3DH
protocol. Nothing in this protocol allows an immediate integrity check of the first trans-
mitted message. However, if both parties share the same key at the end of the protocol,
then the integrity of this message is ensured in a delayed manner. For this reason, we
define the following condition under which the delayed integrity of the first message is
assured:
The following properties insure, for any user A, B that have shared a common secret
k by respectively sending message m1 and receiving message m2 on the first exchange,
that m1 = m2. Which leads with Tamarin formalism too:
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∀A,B ∈ U,∀m1,m2 ∈ M,∀k ∈ K .
SA(A,B,k) ∧ SB(B,A,k) ∧ SendA,1(m1) ∧ RecvB,A,1(m2) =⇒ m1 = m2 .

The integrity of the second message can be immediately verified thanks to the signa-
ture. Thus the condition to check the immediate integrity is modeled as: For any user
A and B, any message m1,m2 if in the second flow of the exchange B sent m1 and A
received m2 without any corruption of the long term key of B and ephemeral key of
A before the reception of the second flow by A then m1 = m2. Which leads to the
following Tamarin formalism:

∀A,B ∈ U, ∀m1,m2 ∈ M. SendB,2(m1) ∧ RecvA,B,2(m2)∧
∧ ¬ (RE(A) ≤t RecvA,B,2(m2)

) ∧ ¬ (RL(B) ≤t RecvA,B,2(m2)
)
=⇒ m1 = m2 .

Authentication. We consider two different notions of authentication depending on the
role of the user in the PQ-X3DH protocol. Indeed, the initiator, Alice, does not sign any
message and her KEM long term key is provided by a server without guaranteeing its
authenticity. In these conditions, Alice can only be partially authenticated according to
Definition 1. In the case where the equivalent of a certificate of the Alice’s KEM long
term key was added, then she could be fully authenticated at the end of the PQ-X3DH
protocol. The second user, Bob, signs the message which allows Alice to explicitly
authenticates him under the classical conditions of a public key infrastructure. The fol-
lowing condition is for the full authentication of Bob by Alice:

∀A,B ∈ U. EA(B,A) ≤t RL(B) =⇒ [SS(B,A) ∧ RC(A,B)

∧ (SC(A) ∧ SS(B,A) ≤t EA(B,A)) ∧ (SC(A) ≤t SS(B,A)) ∧ (RC(A,B) =t SS(B,A))] .

This can be described as for any user A and B, if the explicit authentication has been
done before any corruption on B’s long term key, then the protocol has been honestly
executed by A and B.

weak Forward Secrecy. The following condition verifies the wFS property on kroot and

k̃ keys of the PQ-X3DH protocol in case of future compromise of the initiator’s short-
term and responder’s signing keys.

∀A,B ∈ U,∀k ∈ K . ¬RL(B) ≤t wFSA,B(k1, k2) ∧ ¬RE(A) =⇒ ¬KU(k) .
It means that for any user A and B that have agreed on a common key k, if at a certain
point no corruption on the long term key of B has happened and if no corruption on the
ephemeral key of A has happened then the adversary does not know the common key k.

KCI Resistance. The only possible scenario in which a KCI attack occurs is when the
signing long-term key of the responder is compromised, in this case it must be guaran-
teed that an attacker cannot use this key to impersonate any of the users. Thus we have
the following condition for KCI resistance:

(∀A,B,S ∈ U,∀k ∈ K .SA(A,S,k) ∧ RL(A) ∧ SB(B,A,k) =⇒ S = B) ∧
(∀A,B,S ∈ U,∀k ∈ K .SA(A,B,k) ∧ RL(B) ∧ SB(B,S,k) =⇒ S = A) .
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In other word if A or B have shared a key k with a user S and if respectively A or B’s
long term key has been corrupted and if A or B have agreed with respectively B or A
on the key k too, then respectively the user S is B or A and cannot another user.

UKS Resistance. The UKS resistance consists of ensuring that if two users have agreed
on a common session key, then they have the assurance that if neither key is compro-
mised then no other user can impersonate either of them.

∀A,B,C,S ∈ U,∀k ∈ K . SA(A,S,k) ∧ SB(B,C,k) =⇒ S = B ∧ C = A .

This is a somewhat stronger approach compared to the previous properties that insure
that no impersonation will occurs.

Double-Ratchet Security Properties. Regarding the KEM-DR protocol, we verify the
classical security properties as well as the post-compromise recovery from [1].

Integrity. For each exchange, we verify that the message sent is indeed the message
received thanks to the integrity provided by the AEAD scheme.

∀n ∈ S,∀m1,m2 ∈ M,∀k ∈ K . IS(n,m1, s) ∧ IR(n,m2, s) ∧ ¬K(k) =⇒ m1 = m2 .

PCR.As this property ensures that for a corruption during a given exchange it is enough
to wait for two exchanges before the session key is secret again, it is necessary to check
this condition on three consecutive exchanges. Then this base case allows to prove
Theorem 1 by induction.

∀A,B ∈ U,∀st ∈ Σ.
HA,B(st) ∧ R(B,0) ∧ HA,B(st) <t R(B,0) =⇒ ¬K(st) ∨ R(B,2) ∨ R(A,1) .

As it can be deduced this properties is proven only on the three first messages. This
can be proven using Tamarin for any fixed triplet (n, n + 1, n + 2) of ratchet exchange.
However for pure theoretical insurance we prove it using induction using this case as
the base case of the induction proof.

weak state Forward Secrecy. Similarly, two consecutive exchanges of the KEM-DR
protocol are sufficient to prove by induction the wsFS property in Theorem 2.

∀A,B ∈ U,∀st ∈ Σ.
FS(A,B,0,st) ∧ R(A,1) ∧ FS(A,B,0,st) <t R(A,1) =⇒ ¬K(st) ∨ R(B,0) .

3.3 Formal Verification Results

In Table 3 we present the results obtained from the automatic verification with Tamarin
of the security properties considered for the PQ-X3DH and KEM-DR protocols.
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Table 3. Results of Tamarin verification for PQ-X3DH and KEM-Double-Ratchet protocols.

Protocols Integrity Auth. Imp. resistance Forward secrecy PCR

Instant Delayed KCI UKS FS wFS wsFS

PQ-X3DH ✗ ✓ ✓ ✓ ✓ ✗ ✓ NA NA

KEM-Double-Ratchet ✓ NA NA NA NA ✓ NA ✓ ✓

Since the KEM-DR protocol admits an arbitrary number of interactions, properties
impacting previous or future states of the protocol require an additional proof in order
to holds for any exchange of the protocol. Only the PCR and wsFS properties fall in this
case, the others are trivially proven. To be more precise Tamarin allows these propreties
to be true for any k < n with n fixed. We therefore propose to extend it to arbitrary n by
induction for theoretical purposes.

Theorem 1 (KEM-Double-Ratchet Post Compromise Security). For all user state
Staten with n > 0:

Compromised(Staten) ∧ ¬ Revealed(Staten+1) ∧ ¬ Revealed(Staten+2)

=⇒ Healed(Staten+2) .

Proof. We prove Theorem 1 by induction for all integer n > 0. The base case has been
proven using Tamarin. Suppose that the theorem is true for all integer k < n, and that:

¬ Healed(Staten+3) with ¬ Compromised(Staten+3)

First:
Compromised(Staten+1) =⇒ ∃k ≤ n + 1, Revealed(Statek)

Let name i = max{k ≤ n + 2, Revealed(Statek)}, if i < n + 2 then by definition of i:

¬ Revealed(Statei+1) ∧ ¬ Revealed(Statei+2)

and by induction hypothesis, the state i+ 2 is healed which means that the state n+ 3 is
healed too since there is no reveal in between step i + 1 and n + 3. Now if i = n + 2 let
remind the definition of an healed state:
By definition of a healed state, for all n > 2 we have:

Healed(Staten) ⇐⇒ ∃k < n, [Revealed(Statek) ∧ ¬ Compromised(Staten)]

∧ ¬Revealed(Staten)
And thus:

¬ Healed(Staten) =⇒ ∀k < n, [¬Revealed(Statek) ∨ Compromised(Staten)]

∨ Revealed(Staten)

=⇒ ∀k < n, [¬Revealed(Statek) ∨ ∃ j ≤ n, Revealed(State j)]

∨ Revealed(Staten), by definition of Compromised
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Since we have i = n + 2 then: Revealed(Staten+2). Additionally:

∀k ≤ n,¬Revealed(Statek) ⇐⇒ ¬Compromised(Staten)
Therefore:

¬Healed(Staten+3) =⇒ ¬Compromised(Staten+1)
∨ Revealed(Staten+2) ∨ Revealed(Staten+3)]

Which ends our induction proof. �
We introduce the notion of healing ball in Definition 10 to prove the wsFS property

in Theorem 2.

Definition 10 (Healing Ball). We define the healing ball Bh for all user state S ∈ Γ,
as Bh(S ) = {γ ∈ Γ | Revealed(γ) =⇒ ¬ Healed(S )}.
Theorem 2 (KEM-Double-Ratchet weak state Forward Secrecy). For all user state
Staten with n ≥ 2:

Compromised(Staten) ∧ (∀k < n, S ∈ Bh(Statek), ¬ Revealed(S ))

=⇒ ¬ Compromised(Statek) .

Proof. We prove Theorem 2 by induction for all integer n > 1. The base case has been
proven using Tamarin. Suppose that the theorem is true for all integer � ≤ n, and that
Staten+1 has been compromised. Then, we have:

Compromised(Staten+1) =⇒ Revealed(Staten) ∨ Revealed(Staten+1)

and by definition, for all �:

Revealed(State�) =⇒ Compromise(State�)

If Staten has been revealed and not Staten+1, we apply the induction hypothesis. Now
suppose that Staten+1 has been revealed but not Staten, we then use the fact that
KEM.decaps is supposed ideal by Tamarin and then deterministic, so regarding the
backward analysis Staten+1 is a deterministic function of Staten. Finally, if both states
have been revealed, then we apply the induction hypothesis. �
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Abstract. With the rapidly growing number of cybersecurity training
solutions, new opportunities have been introduced for real-world simu-
lated cyber threats to be accessible. It has improved the participant’s
ability to detect and respond in a timely and effective manner. These
platforms vary in technical details. However, all have one common objec-
tive to improve cybersecurity understanding and awareness. This paper
presents and surveys the ten most popular commercial and open-source
cybersecurity training platforms for online learning based on practical
training. In addition, a comparative analysis and discussion of platform-
specific features based on a proposed software taxonomy that aids in the
classification is presented. The findings of this study can be useful to
both developers and contributors of cybersecurity training platforms for
further improvements or to develop new ones.

Keywords: Capture the Flag · Comparative analysis · Cybersecurity
education · Cybersecurity exercises · Cybersecurity training platforms

1 Introduction

With the world’s widespread adoption of digital technology in many fields, cyber-
attacks have become a major worry for governments, organizations, and individ-
uals as well [1,2]. Cyber threats have become increasingly complex, with attack-
ers using sophisticated methods to infiltrate networks and steal valuable data
[3]. The consequences can incur billions of losses [4] and the public exposure of
confidential information. The counted severe cyber-attacks grow each year and
almost in real-time, presenting a challenge to construct effective detection and
prevention systems. A recent report by Microsoft’s Digital Security Unit [5] high-
lights the hybrid war in Ukraine, where more than 40% of cyber-attacks targeted
critical infrastructure, resulting in severe consequences for the government, mili-
tary, economy, and citizens. Despite the urgent need for cybersecurity specialists
to combat these threats, there is a significant shortage of trained professionals in
the field. This shortage has been highlighted in a recent cybersecurity Workforce
Study (ISC)2 research [7], which revealed a significant shortage workforce gap
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reaching up to 4.07 million in 2019. Shedding a sharp focus on an urgent need
for trained cybersecurity specialists to combat threats as they arise [6]. However,
the problem that is raised by the literature [8] and also reported by DHS Cyber-
Skills Report [9], the industry blames higher education institutions for failing
to adequately prepare students with the necessary technical capabilities. There-
fore, education and training play a crucial role in equipping individuals with the
latest defense techniques to prevent such threats [10,11].

Technology can assist job seekers’ skills and knowledge, while it also provides
an excellent assessment method for determining applicants’ eligibility for cyber-
security job positions [12]. It facilitates engaging in practical training and allows
learners to develop advanced problem-solving skills in the field [13]. It also brings
opportunities for all levels of learners to see and practice by doing. Great initia-
tives have been devoted to this context. Researchers and practitioners developed
and proposed a variety of cybersecurity training platforms. Capture The Flag
(CTF) is one of the most popular examples. It has been introduced as a new way
of cybersecurity education. Designed challenges, competition events, and hosted
environments made training more accessible, skills enhancing, and an interesting
way to learn. Some platforms may also offer certification programs or other pro-
fessional development opportunities for individuals who want to advance their
careers in the field. Moreover, it can also be used by universities, tech giants, and
organizations, as well as communities of practitioners that want to learn about
best practices for protecting their data and systems assets.

Currently, there are many online platforms that can be either commercial
(i.e., cloud-based platforms) or free open-source platforms (i.e., self-hosted plat-
forms) [10,14]. Each with its unique software features and characteristics to offer
cybersecurity training environments to interested users. Regardless of the tech-
nical details, all have one common objective: to enhance cybersecurity under-
standing and awareness. Subsequently, providing hands-on training and chal-
lenges events that simulate real-world cyber threats as closely as possible and
respond to the workforce gap as well. This paper presents a survey of the ten
most popular self-hosted and cloud-based hosted online cybersecurity training
platforms. The main contributions of this work are as follows:

– Identifying design features and functionalities of current cybersecurity train-
ing platforms.

– The proposition of a software taxonomy.
– Assessment and comparison of current cybersecurity training platforms based

on their features.

This paper is organized into sections: (S1) the introduction; (S2) the related
work; (S3) the methodology; (S4) the results and discussion; and (S5) the con-
clusion and future works.
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2 Related Works

Notable works have been conducted by the literature to examine and evaluate
cybersecurity training platforms with the aim of identifying the best features
and characteristics for creating an ideal platform.

Kucek and Leitner [14], conducted an empirical evaluation to survey and
compare eight open-source platforms designed for hosting CTF challenges. In
particular, they have evaluated their specific technical features, characteristics,
and functionalities. The study aimed to provide a reference for CTF organizers
and participants in choosing the right platform and configuring challenges. The
authors reported that the majority of open-source platforms can be installed
on various operating systems, and it is highly advisable to install them within
either Vagrant or Docker for optimal performance and compatibility.

In a similar work, Karagiannis et al. [15], conducted a comprehensive analy-
sis and evaluation of four open-source platforms specifically developed for host-
ing CTF challenges accompanied by a comparative evaluation. They collected
descriptive insights along with undergraduate student’s participants through
interviews and evaluated the platforms based on criteria related to function-
ality, extensibility, teaching presence, and flag and challenge management. The
conducted work aimed to highlight the distinct features of each platform as
well as observe the advantages, disadvantages, characteristics, limitations, and
capabilities, focusing on their use as cybersecurity e-learning tools.

On the other side, Raman et al. [16], proposes a framework that focuses on
assessing the similarities among CTF events. The authors analyzed ten CTFs
and classified them based on challenge types and mapped them to well-known
software vulnerabilities and OWASP vulnerabilities. The authors identified fac-
tors such as challenge classification, solvability of tasks, periodicity, training,
geographical reach, and problem-solving skills. They highlight their notable tech-
nical distinctions by assigning weights to these factors using the Analytic Hier-
archy Process. Their results suggest the importance of features like challenge
classification, levels of difficulty, the training provided before CTF events, and
the solvability of tasks as important factors to evaluate and rank CTF events.

In contrast to prior works mentioned above, Swann et al. [17], conducted
a comprehensive review of the top cybersecurity gamified learning platforms
(i.e., commercial and open-source) available in the literature. They focused on
identifying the essential features needed for organizing CTF events. The authors
selected 14 widely recognized commercial and open-source (i.e., self-hosted) plat-
forms for evaluation. They categorize the platforms based on the type of chal-
lenge format they offer, such as Jeopardy-style challenges and Attack-Defense
challenges. The evaluation is based on six key comparison measures, includ-
ing user experience, coordinator features, scoring system, deployment process,
extensibility, and API integration. The authors conclude that PicoCTF is the
best self-hosted platform, while TryHackMe, HackTheBox, and RootMe are suit-
able commercial options.

Knüpfer et al. [18], conducted a study in which they presented a holistic
taxonomy framework based on their experience in organizing CTF events related
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to cybersecurity training and education. The taxonomy primarily emphasizes
different key aspects such as the technical dimension, the intended audience,
and various additional considerations. The taxonomy is extendable and can be
used in further application areas as research on new security technologies.

In this paper, a survey and comparative analysis of the ten most popular
commercial and open-source cybersecurity training platforms available in the
literature is presented. The study focuses on platform-specific features, services,
and technical details and proposes a software and services taxonomy for a com-
prehensive evaluation of each platform.

3 Methodology

This section outlines the methodology adopted for conducting this work. The
process has been carried out to explore, analyze, and report relevant information
of selected online cybersecurity training platforms. To survey the selected plat-
forms, six key steps have been followed as shown in Fig. 1. These steps, involve
selecting and extracting observed features and characteristics for each platform.
Those features and parameters are then used to build a comparison software and
services taxonomy that aids in comparison, which is presented in Fig. 2.

Fig. 1. Proposed Methodology

– Phase 1: Define Goals and Purpose: The first phase consists of identify-
ing the goals and the aims (i.e., the purpose of this comparative study). This
paper focuses on surveying the specific software features, technical details,
and services of the current and most popular cybersecurity online platforms
available in the literature. Additionally, providing a comprehensive compari-
son based on their specific functions, the types of challenges, training modules,
and supported configuration options.
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– Phase 2: Identify Sources: The second phase consists of selecting sources.
Thus, a manual lookup has been performed using the widely recognized and
adopted search engines by the scientific community. The initial lookup was
conducted utilizing popular search engines such as Scopus (https://www.
scopus.com/) and Google Scholar (http://scholar.google.com). This initial
lookup revealed the existence of two main types of cybersecurity training plat-
forms, particularly open-source (i.e., self-hosted platforms) where the source
code is available on the web, and commercial platforms (i.e., cloud-based
hosted platforms) that offers some services for free while others are restricted
behind a membership subscription. Additionally, a second lookup has been
performed over GitHub (https://github.com/) for searching of identified plat-
forms as open-source, based on their popularity (i.e., GitHub stars count) for
additional information’s collection.

– Phase 3: Review and Evaluation: In this phase, a careful evaluation
and review to conduct a final selection have been performed. The platforms
included in this comparative study were selected based on their popularity
and the availability of information about their features online. Considering the
wide variety of solutions currently exists, the research exploration, revealed
two main types of training platforms which are primarily distinguished as
open-source or commercial platforms. Thus, it was important to include both
in order to assess and compare their core features among each other. The
final selected platforms reviewed in this paper consist of 10 main platforms
that were specifically assessed. Moreover, the study focused on the software
(i.e., technical details) and services (i.e., additional support and assistance
provided by the platform) characteristics that are relevant for the evaluation.

– Phase 4: Collect Features and Terms: During this phase, a comprehen-
sive manual evaluation of each selected platform is performed. The primary
objective is to identify and assess their specific features, as well as their simi-
larities and differences among them. As a result, a set of software and services
features and parameters were identified. These findings formed the founda-
tion for the construction of the proposed software taxonomy, as illustrated in
Fig. 2.

– Phase 5: Group Similar Features: During this phase, the primary objec-
tive is to group similar features identified during the evaluation process. The
purpose of this grouping is to construct a software taxonomy that aids in the
comparison. As noted by Landwehr et al. [19], a taxonomy serves the pur-
pose of specifying the data to be collected and providing guidelines for rec-
ognizing similarities and differences among individuals. Therefore, this phase
involves grouping similar features into distinct categories and establishing a
hierarchical structure of parameter groupings and clusters within the subject.
This systematic approach ensures a clear and organized representation of the
parameters used to construct the overall taxonomy.

– Phase 6: Append Additional Details: The proposed taxonomy has been
further expanded to include additional details, encompassing additional fea-
tures and parameters. The final taxonomy, depicted in Fig. 2, comprises 11
categories with a total of 33 parameters. These observed parameters com-

https://www.scopus.com/
https://www.scopus.com/
http://scholar.google.com
https://github.com/
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Fig. 2. Cybersecurity training platforms’ software and services taxonomy

prehensively describe various aspects of the platforms, including their types,
deployment methods, provided support, pricing, target audience, features,
challenge types, categories, authentication methods, challenge connections,
and access options, among others. The inclusion of these detailed parameters
enhances the overall completeness and clarity of the taxonomy. This taxon-
omy will serve as a framework for the comparative analysis.

4 Results and Discussion

This section, which is broken down into two subsections, summarizes the survey’s
findings. The selected platforms have been categorized into two main classifica-
tions: cloud-based hosted platforms [10] and self-hosted training platforms where
the source code is available on the web [14] which are presented in the first sub-
section. The second subsection, discusses the main findings with a comparison
table based on the selected relevant features.
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4.1 Overview of Selected Cybersecurity Training Platforms

Cloud-Based Hosted Platforms. Cloud-based cybersecurity training plat-
forms are commercial platforms that provide certain content at no cost while
restricting the others under a membership subscription. Online resources of plat-
forms are hosted and delivered over an intermediary network, rather than being
installed and run on a local computer or server.

– TryHackMe [20] is an online platform created in 2018 that offers a
diverse collection of cybersecurity challenges. It provides users with weekly
community-released challenges, virtual machines containing specific chal-
lenges, detailed lab descriptions, required tools, and defined goals. The plat-
form enables users to enhance their skills in a secure, legal, and controlled
environment. With a wide selection of difficulty levels available, ranging from
beginner to advanced, users can learn at their own pace and tailor their learn-
ing experience accordingly.

– HackTheBox [21] was founded in 2017 and it is intended to provide a more
realistic and challenging environment for learning and practicing cybersecu-
rity skills through a variety of penetration testing labs. The challenges and
tasks are grouped into different levels of difficulty and virtual machines. The
platform offers virtual machines bundled with required tools for hands-on
security activities for both red and blue teams. Furthermore, the platform
serves as a valuable resource for individuals, corporations, universities, and
organizations worldwide, enabling them to enhance their offensive and defen-
sive security skills in an engaging and interactive learning environment.

– Root-Me [22] is a non-profit organization with the primary goal of educating
and raising awareness about hacking and information security. The platform
provides the public with access to relevant knowledge and resources. Root-
Me is designed for users of all proficiency levels and offers a range of chal-
lenges from beginner to expert. It also provides a variety of learning resources,
including tutorials and documentation, to help users improve their skills.

– PentesterLab [23] is a platform dedicated exclusively to web-based vulnera-
bility testing. It offers guidance to users through various of different concepts
related to web application penetration testing. The platform provides a combi-
nation of written courses and videos that cover a wide range of topics, starting
from basic SQL injections and progressing to advanced concepts. The creators
frequently update the content to address newly discovered vulnerabilities and
techniques.

– Virtual Hacking Lab (VHL) [24] is an e-learning company focusing on
practical penetration testing training solutions. They provide comprehensive
course materials and easy-to-follow walkthrough guides. VHL offers a wide
variety of challenges and exercises to enhance users’ cybersecurity skills and
allow them to practice penetration testing in a flexible and virtual environ-
ment. VHL is designed to be accessible to users of all proficiency levels, with
challenges ranging from beginner to advanced.
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Self-hosted Platforms. Self-hosted cybersecurity training platforms are plat-
forms that users can install and set up on their own local machines or virtual
private servers (VPS). These platforms offer a range of challenging training labs
that users can use to practice locally.

– OWASP Juice Shop (OJS) [25] is a free and open-source vulnerable web
application released under the MIT License. It is constructed using the widely-
used MEAN stack, which comprises MongoDB, Express.js, AngularJS, and
Node.js. OJS includes a range of common web-based vulnerabilities. Its pri-
mary purpose is to facilitate the learning and exploitation of the OWASP Top
10 web-based vulnerabilities, offering challenges at different levels of difficulty.

– Facebook Capture the Flag (FBCTF) [26] is an open-source web-based
jeopardy-style system developed by Facebook security engineers and released
in 2016 under creative commons attribution 4.0. It has been hosted since 2013
to assist with cybersecurity education and training. Moreover, it is meant
to be used for organizing CTF competitions that are designed to challenge
participants to find and exploit vulnerabilities.

– CTFd [27] is an open-source web-based jeopardy-style platform released
under Apache license 2.0. Its primary objective is to facilitate the coordi-
nation and hosting of Capture the Flag (CTF) competitions, addressing the
global demand for cybersecurity awareness worldwide. Notably, the system
stands out due to its user-friendly installation process, ease of use, and cus-
tomizable options, making it an appealing choice for CTF organizers.

– PicoCTF [28] is a free and open-source project released under an MIT
license. It is developed using the Python programming language alongside
JavaScript. It is a platform with original content built on a capture-the-flag
framework created by security and privacy experts at Carnegie Mellon Uni-
versity.

– TinyCTF [29] is a free and open-source jeopardy-style platform to facilitate
the organization of CTF events. It is written with PHP and released under the
MIT license. TinyCTF includes a web interface and a scoreboard, providing
a comprehensive solution for CTF event management. Additionally, it offers
a range of challenges that are user-friendly, featuring clear instructions and
hypertext links to guide participants.

4.2 Overview of Selected Features and Parameters

When comparing cybersecurity online platforms, several parameters are relevant
to consider. One important parameter is the audience, which can be divided
into three categories: community, individuals, and IT specialists. The platform
is catered to the specific needs and requirements of each audience group. Another
parameter is the training level, which can range from beginners to intermedi-
ate and advanced users. The platform offers appropriate training materials and
resources for each level of expertise. Deployment is another important parame-
ter, with options including self-hosted platforms or cloud-based hosted platforms.
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The choice depends on factors such as scalability and maintenance requirements.
Pricing is ranging from free, free trials, and commercial offerings.

The functionality of the platform is another key consideration, including fea-
tures such as scoring, awarding, grading, and statistics. Scoring refers to the
system’s ability to assign points or rankings to users based on their perfor-
mance or achievements. Awarding involves granting rewards, badges, or certi-
fications to users who meet certain criteria. It can be granted both manually
and automatically. Grading refers to the platform’s ability to assess and evalu-
ate users’ progress or knowledge. Statistics involve the collection and analysis of
data related to users’ performance, progress, or engagement on the platform.

Evaluation methods can be automatic or manual, depending on the plat-
form’s capabilities. Automatic evaluation system is built into the platform itself,
where the system checks if the user has successfully completed the tasks or
challenges. This can be done through various mechanisms such as checking for
correct answers, flag submissions, or successful exploitation of vulnerabilities. On
the other hand, some platforms may rely on manual evaluation by administrators
or moderators. In such cases, the users may need to submit their solutions or flag
codes, which are then manually reviewed by the administrators to determine if
the tasks have been accomplished efficiently.

Documentation can be provided as reading materials, webinars, live online
sessions, and in-person training. Various training types are offered by a platform,
such as networking, information security, penetration testing, and cryptography.
Additionally, the training environments is provided as virtual machines, con-
tainers, or downloaded resources. Authentication options, such as email and
password or single sign-on, are used for ensuring secure access to the platform.
Finally, the training access options, including VPN, direct access (i.e., using
public IP address), or browser-based access are used to access to the training
environment for users.

4.3 Comparison of Selected Cybersecurity Training Platforms

Table 1 presents a thorough comparison of the selected platforms discussed in this
paper. The comparison is based on the proposed software and services taxonomy
depicted in Fig. 1.

Cybersecurity training platforms are online resources that offer a range of
training environments and various types of exercises for users to practice and
improve their cybersecurity skills. These platforms can be self-hosted, mean-
ing that users install and set up the platform on their own local machines or
virtual private servers (VPS), or they can be cloud-based, meaning that the
platform is hosted on remote servers and can be accessed from anywhere with
an internet connection. Moreover, cloud-based platforms may offer more com-
prehensive support and documentation, while open-source platforms may rely
more on community-driven support and resources. Additionally, cloud-based
platforms can be extensible and additional features can be added and unlocked
by users with a subscription payment, unlike the limited features of open-source
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platforms. With this, cloud-based platforms offer more possibilities and advan-
tages of provisioning complete virtual environments such as containers or virtual
machines which makes it more popular for users.

Table 1. Cybersecurity training platforms comparison
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5 Conclusion and Future Works

Hands-on training opens up new opportunities for learners of all types and levels
to gain practical experience through active engagement. It allows individuals to
practice and enhance their skills, ensuring they can effectively defend against
emerging threats. There are numerous online platforms available that provide
practical training opportunities by simulating real-world cyber threats as closely
as possible. Consequently, responding to the workforce gap. This paper surveys
and examines the ten most popular cloud-based and self-hosted cybersecurity
online training platforms currently available. Furthermore, a comparative anal-
ysis based on their specific technical features and details is presented. Moreover,
a proposed software and services taxonomy consisting of 11 features and 33
parameters is presented. This taxonomy serves as a comprehensive framework
for analyzing and evaluating the platforms to perform the comparison. Future
research is needed to compare the compatibility and extensibility of the current
cybersecurity online platforms with the NIST NICE cybersecurity workforce
framework [30]. Moreover, design an improved cybersecurity training platform
and explore its impacts on enhancing learners’ performance.
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Abstract. Once being deployed on the blockchain, smart contracts can-
not be altered, requiring more testing. A fault-based testing technique
called mutation testing (MT) can significantly increase the utility of a
test for smart contracts. MT is a type of white-box testing which is
mainly used for unit testing. In fact, certain statements of the source
code are changed to check if the test cases are able to find errors in
source code. The main objective of MT is ensuring the quality of test
cases in terms of robustness in the way that it should fail the mutated
source code. In this paper, our goal is to identify and classify the main
applications of mutation testing of smart contracts by providing a quick
review on the application perspective of mutation testing based on a
collection of several papers. In particular, we analysed in which quality
assurance processes mutation testing of smart contracts is used, which
mutation tools and which mutation operators are employed.

Keywords: White-Box testing · Mutation Testing · Blockchain ·
Smart Contract

1 Introduction

Blockchain is a modern technology that has revolutionized the way society inter-
acts and trades [18]. It might be described as a network of distributed, decen-
tralized blocks that store data with digital signatures. This approach was ini-
tially used to develop digital currencies like Bitcoin and Ethereum. However,
recent research and commercial studies have concentrated on the chances that
blockchain offers in a variety of other application fields to benefit from this
technology’s key qualities, such as decentralization, persistency, and anonymity.
Healthcare [13], internet of things [15,17] and vehicles [12,14] are just a few of
the industries that employ blockchain.

In this context, smart contracts are computer programs implementing busi-
ness logic that manage the data or assets on a blockchain environment. Although
they have been introduced several years ago, the development of smart con-
tracts is still challenging for developers. The latter usually produce vulnerable
code which can lead to huge monetary losses. Therefore, it is essential to ensure
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
B. Ben Hedia et al. (Eds.): VECoS 2023, LNCS 14368, pp. 135–148, 2024.
https://doi.org/10.1007/978-3-031-49737-7_10
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that smart contracts do not contain such vulnerabilities. The most important
verification and validation technique for detecting both semantic errors and vul-
nerabilities is software testing. Testing smart contracts is even more crucial than
testing regular programs, since their source code once deployed on the blockchain
cannot be altered or changed due to their immutable nature. Furthermore, it is
highly demanded to evaluate the quality of the tests and improve their adequacy.
A powerful approach that can perform such assessments is Mutation Testing
(MT). Indeed, this test technique consists on injecting faults into a given pro-
gram to check the fault-detection capabilities of test suites [16].

A wide range of papers make use of this mature fault-based software test-
ing technique to detect functional bugs and vulnerabilities in smart contracts
because it is widely studied for over four decades. Thus, several approaches and
tools are introduced in order to increase confidence on smart contracts [8,19,21].
However, we noticed the absence of surveys that include work done on mutation
testing of smart contracts and give researchers new trends and challenges in this
emerging research line.

Therefore, this paper presents a quick review that surveyed the most relevant
studies related to MT of smart contracts dated from 2019. Particularly, we tackle
the following main research questions:

– RQ1: What are the methodologies, approaches and tools based on mutation
testing to verify smart contracts ?

– RQ2: Which mutation operators are mostly used by the studied approaches?

The answers to these questions help researchers to understand the studied
topic, to identify the challenges in this research area and their solutions and
also to discuss future directions. To do so, we first chose four well-known scien-
tific and electronic databases (ScienceDirect Elsevier1, ACM Digital Library2,
SpringerLink3 and IEEE Xplore4) with the aim of extracting the most relevant
papers related to our research topic. Second, we used the following search key-
words which were the same in all databases: “Mutation Testing AND Smart
contract” OR “Mutation Testing AND Blockchain”. Then, the selection of arti-
cles was performed by removing irrelevant articles after checking their titles and
their abstracts and after being fully read we selected 14 as primary studies.

The remainder of this paper is organized as follows. Section 2 provides key
concepts related to mutation testing and smart contracts. Related reviews and
surveys are discussed in Sect. 3. Next, we investigate in Sect. 4 the most relevant
researches on mutation testing applied in the context of smart contract verifi-
cation. Finally, in Sect. 5, we conclude with a summary of paper contributions,
and we identify possible areas of future research.

1 https://www.elsevier.com.
2 https://portal.acm.org.
3 https://www.springerlink.com.
4 https://www.ieee.org/web/publications/xplore/.
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2 Background Materials

2.1 Mutation Testing

The use of mutation testing in software testing has the potential to improve
software quality. Indeed, it is defined as a testing technique that injects faults
into a program by creating several versions, each one contains one semantic
fault. These faulty programs are named mutants. The generation of mutants is
called mutation and that semantic fault is called mutation operator (MO). There
are several traditional mutation operators that depend usually on programming
languages such as deleting a statement, replacing boolean expressions, replacing
arithmetic, and replacing a variable [24].

As highlighted in Fig. 1, the mutation testing process can be explained simply
in following steps:

1. Given a program P and a set of test cases T .
2. Produce the mutant P1 from P by inserting only one semantic fault into P .
3. Execute T on both P and P1 and save results as R and R1.
4. Compare the output of mutant program R1 to the expected output R:

(a) If R1 is not equal to R (i.e., R1 �= R), the test cases detect the faults and
the mutant is killed.

(b) If R1 is equal to R (i.e., R1 = R), this can be due to the inefficiency of
the test cases or the equivalence5 of the mutant to the original program.

5. Calculate the mutation score (MS) which is the number of killed mutants
divided by the total number of mutants, multiplied by 100. A mutation score
of 100% means the test was efficient.

The process of adding test cases, examining expected output, and executing
mutants continues until the threshold proposed by the tester is satisfied.

Fig. 1. Mutation Testing process.

5 An equivalent mutant is a mutant, which is functionally equivalent to the original
program.
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2.2 Smart Contracts

Smart Contracts (SCs) are one of the most interesting features that have been
introduced by several blockchain platforms with the purpose of managing digi-
tal assets and attaching business logic code to transactions. A SC is seen as a
special program that was designed to be deployed on the distributed ledger, the
blockchain. Without the need of third parties, SC is executed when some events
occur allowing for making irreversible transactions. In the case of Ethereum6,
blockchain developers make use of a Turing complete language called Solidity7

to implement Ethereum smart contracts. Similarly to JavaScript, the solidity
language supports features like user-defined types, libraries and inheritance.
By using the solc, the solidity compiler, smart contracts are compiled to the
Ethereum Virtual Machine (EVM) bytecode.

As highlighted in Listing 1.1, a code snippet of a smart contract is given.
A solidity smart contract is a collection of code (i.e., its functions) and data
(i.e., its state variables) which is stored in a particular address on the Ethereum
blockchain. In the first line, we specify the compiler version, then the keyword
contract declares the contract with its name. In line 3, a state variable called
“numbers” is declared as mapping(address=>uint). Mapping data structure in
solidity acts like a hash table in which data are stored in the form of key-value
pairs. Mappings are used here to associate each Ethereum address with its lucky
number. Next, several functions are defined either to modify the state variable
“numbers” by adding a new address with is associated lucky number or to read
the lucky number of a given address.

1 pragma solidity ^0.8.17;

2 contract LuckyNumber {

3 mapping(address => uint) numbers;

4 function setNum(uint _num) public {

5 numbers[msg.sender] = _num;

6 }

7 function getNum(address _myAddress) public view returns (uint)

{

8 return numbers[_myAddress ];

9 }

10 function addNumbers(address _myaddress , uint _num) public {

11 numbers[_myaddress ]= _num;

12 }

13 }

Listing 1.1. Code snippet of the LuckyNumber smart contract.

It is highly demanded to ensure the correctness and the security of smart
contracts before deploying them since executing transactions from boggy smarts
contracts can lead to significant financial loss. Meanwhile, testing is one of the
most important verification and validation techniques for ensuring software qual-

6 https://ethereum.org/en/.
7 https://solidity.readthedocs.io/.

https://ethereum.org/en/
https://solidity.readthedocs.io/
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ity. Especially, mutation testing was widely applied in the context of smart con-
tract to check test suite adequacy and their ability to detect defects as more as
possible.

3 Related Reviews

Many researchers are now interested in applying mutation testing technique to
enhance software quality especially in the context of Blockchain oriented appli-
cations. Indeed, we have found recent surveys and methodical literature reviews
that concentrate on dressing a literature review either on static testing [20] or
dynamic testing of smart contracts [21].

A systematic review was introduced in [20] and it presented static analysis
tools for Ethereum blockchain smart contracts. In this review, authors surveyed
86 papers that are published between 2016 to 2021. Among them only one paper
dealt with mutation testing, that introduced the Musc tool [23].

A comprehensive survey on blockchain testing was presented in [22]. The
authors mentioned academic articles on the subject of testing blockchains. Since
it concentrated on static testing, dynamic testing, and formal verification, it had
more scope than our work. It included only 6 papers that dealt with mutation
testing.

Similarly, authors in [21] published a survey in which they provided a clas-
sification of 20 studies according to the accessibility of smart contract code.
Among these papers (written from 2017 to 2021), only 6 of them focused on
mutation testing and showed that this testing technique has a good effect on
smart contract quality.

To the best of our knowledge, there are no current surveys that give thorough
investigations connected to the issue of mutation testing of smart contracts and
fully list the quantity and quality of relevant research results. Except the survey
in [25] which investigated efforts on mutation testing tools while giving the pros
and cons of them. The studied tools are only five: MuSC [23], SuMo [4], Deviant
[5], Vertigo [10] and RegularMutator [11].

Compared to all these cited surveys, our review focuses on recent research
effort by identifying methodologies and tools in this emerging field, assessing
them, and highlighting both their difficulties and the unexplored areas that need
more study.

4 Mutation Testing of Smart Contracts

In this section, we describe the different 14 selected papers dealing with white-
box mutation testing of smart contracts. Figure 2 illustrates the year-wise anal-
ysis of the studied papers. It is clear that the increasing interest of academic
research on mutation testing is rising over the years. The trend of using this
technique to check the quality of test suites has a constant evolution from 2019
until 2022. Also, Fig. 3 highlights the classification of the selected primary studies
by types.
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Fig. 2. Year-wise analysis of the
selected studies.

Fig. 3. Analysis of the selected primary
studies by type.

First of all, the authors provide in [4] a mutation testing approach and an
associated fully working tool for Solidity smart contracts. For simulating a vari-
ety of conventional and Solidity-specific vulnerabilities, SuMo includes a com-
plete set of mutation operators. Seven of the eleven innovative mutation opera-
tors were created with a focus on Solidity’s distinctive features by means of the
research of the Solidity documentation and the available tools. SuMo introduces
mutation operators in particular that focus on the overloading mechanism. The
SafeMath library, global blockchain variables, function modifiers, cryptographic
global functions, enums, return values, and explicit conversions are other areas
where SuMo adds additional operators.

ReSuMo [3] provides a regression testing and mutant selection technique to
the SuMo tool [4] to accelerate mutation testing on evolving projects without
affecting the accuracy of testing results. During a regression mutation testing
initiative, ReSuMo chooses a selection of smart contracts to mutate and a subset
of test files to run again using a static, file-level technique. ReSuMo continually
updates the results of mutation testing while taking into account the results
of the previous program version; this allows it to accelerate mutation testing
on evolving projects without reducing the mutation score. The authors should
concentrate on examining additional fine-grained regression mutation testing
methodologies in order to increase ReSuMo’s efficacy, particularly for small and
tightly-coupled smart contract projects. The tester would then be able to define
a preferred level of computation granularity.

The authors specifically address in [27] the EtherFuzz mutation fuzzy test-
ing technique to find TOD (Transaction-Ordering Dependent) vulnerabilities in
smart contracts. They create test cases for the intelligent contract using the ABI
(Application Binary Interface), test the byte code of the contract using TOD to
find vulnerabilities, then they change the tested data to create new test cases.
After recording the execution of the smart contract, the fuzzy test process is
regulated until the vulnerability is identified.

The study in [26] proposes five mutation operators specifically for integer
overflow vulnerability and applies mutation testing to the integer overflow vul-
nerability test in Ethereum smart contracts. According to the empirical research,
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mutation operators are able to produce these vulnerability mutants and assess
the appropriate testing tools. The experiment choice of ERC20 token smart con-
tracts, however, could skew the findings in one direction.

Besides, the authors of [6] present AGSOLT (Automated Generator of Solid-
ity Test Suites). They use two search algorithms to automatically construct test
suites for standalone Solidity smart contracts, taking into account some of the
specific challenges of the blockchain. However, the used data set is not typical of
Solidity smart contracts in general, although showing each of the characteristics
that are indicative of the identified blockchain specific issues.

In [7], the authors provide a tool called TestSmart that can create a set of
efficient test cases for Ethereum smart contracts automatically. It is made up
of a module to generate test suites, a module for generating mutants, and a
module to select test cases based on the mutants. The generation of the test
suite was performed using the Manticore tool. An expansion of the Universal
Mutator was used for mutant generation; it comprises the mutation operators
previously introduced for Solidity smart contracts. The test cases against the
mutants were examined using the Manticore API. The inability to generate test
cases with transactions generated neither by the contract owner nor the attacker
is a significant weakness of Manticore.

The authors suggest in [11] applying mutational analysis to enhance Solidity
smart contracts reliability. They developed a RegularMutator tool for mutation
analysis after finding widespread errors in the source code of existing contracts.
However, it took around 50 h of machine time to complete the experiments.
Actually, mutation analysis is computationally challenging, which prevents it
from being useful in some contexts. Additionally, a large number of mutants
that survived the experiment need to be manually checked and analysed.

In addition, the authors of [9] evaluate the efficiency of large-scale smart
contract mutation testing. They select among the available specific mutation
operators for smart contracts, assess their effectiveness in regards to killability,
and identify critical vulnerabilities that can be exploited by the mutations. The
authors only take into account a replay test suite, which is less efficient than
other testing methods and can yield a higher mutation score. The objective of
this work was to develop a mutation-based test quality assurance approach that
can also act as a starting point for other testing techniques, even though there
are better testing methods.

In [2], the authors provide a mutation-based testing system for smart con-
tracts written in the Solidity programming language. They reviewed a compre-
hensive list of known Solidity smart contract faults and developed 10 classes of
mutation operators that were designed based on the actual errors. Furthermore,
they added mutation operators to the Universal Mutator tool, enabling it to
automatically produce mutants for Solidity-written smart contracts.

The development of a mutation testing framework and its application to the
field of smart contracts were both studied by the authors in [10]. They demon-
strated how developers may use mutation testing to evaluate the effectiveness of
their test suite and make improvements to it in order to make it more efficient.
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They also produced a tool called Vertigo, which should identify the precise tests
that cover the line on which the mutant causes a syntactic change rather than
executing the complete test suite for each mutant. The final result of tests that
do not include this line should not be impacted by the modification.

The authors describe in [1] a fully automated method, called SolAnalyser, for
Solidity smart contract vulnerability detection that combines static and dynamic
analysis. The proposed SolAnalyser tool can be expanded to handle different
vulnerability types and allows the automatic detection of 8 different vulnerability
classes that are currently underrepresented in existing technologies. In addition,
the authors included a fault seeding tool that introduces various vulnerabilities
into smart contracts. However, by enhancing the quality of the generated inputs,
SolAnalyser precision can further be improved.

The challenge of Ethereum smart contracts test generation was described
by the authors of [28] as a Pareto minimization problem. Minimizing uncovered
branch coverage, time costs, and gas costs are three objectives that are taken
into consideration. Then, in order to identify test suites, the authors suggest a
multi-objective strategy based on randomness and NSGA-II (a representative
multi-objective genetic algorithm).

The authors of [23] introduce MuSC, an Ethereum Smart Contract (ESC)
mutation testing tool. It facilitates autonomous processes including building test
nets, deploying them, and running tests, besides it has the capacity to quickly
produce large numbers of mutants. With regard to the Solidity ESC program-
ming language, MuSC implements a number of unique mutation operators in
particular. As a consequence, it can expose the defects of smart contracts to a
certain degree. However, there are several issues that need to be enhanced, like
handling errors.

Deviant, a mutation testing tool for Solidity smart contracts, is presented
in [5]. It generates mutants of a particular Solidity project automatically and
analyses each mutation against the specified tests to determine its efficiency.
Deviant offers mutation operators for all of Solidity’s special features in accor-
dance with the Solidity fault model, in addition to conventional programming
constructs, that simulate various problems in Solidity smart contracts. Using
Deviant, the authors evaluated the effectiveness of the tests for three Solidity
projects. The findings show that these tests have not yet attained high mutation
scores and that a test suite that meets the requirements of Solidity smart con-
tracts for statement and branch coverage does not always guarantee the highest
level of code quality.

We highlight that all the previously introduced papers are depicted in Table 1
such as:

– Column Paper: refers to the surveyed paper.
– Column Tool: refers to the name of the proposed testing tool (if it exists).
– Column Testing objective: refers to the aim behind performing mutation

testing.
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– Column Number of MO: refers to the number of adopted mutation opera-
tors in each paper (if mentioned), considering the known real bugs made by
smart contract developers.

– Column MS calculation: refers to the mutation score calculation or not for
each paper.

– Column Number of vulnerabilities: refers to the number of weaknesses
that malicious actors can exploit in smart contracts (if mentioned).

– Column Year: refers to the publication year of each paper.

Table 1. Surveyed approaches on white-box mutation testing of smart contracts.

Paper Tool Testing objective Number of MO MS calculation Number of
vulnerabilities

Year

[3] ReSuMO Regression testing 44 Yes Not
mentioned

2022

[27] EtherFuzz Security testing 14 No 1 2022

[26] No proposed tool Security testing 5 Yes 1 2022

[4] SuMo Functional testing 44 Yes 6 2021

[6] AGSolT Functional testing Not mentioned No Not
mentioned

2021

[7] TestSmart Security testing 57 Yes Not
mentioned

2021

[11] RegularMutator Security testing 6 Yes 3 2020

[9] ContractMut Scalability testing 14 Yes 7 2020

[2] Extension of the Universal Mutator tool Security testing 57 No 8 2020

[10] Vertigo Functional testing 6 Yes Not
mentioned

2019

[1] SolAnalyser Security testing Not mentioned No 8 2019

[28] No proposed tool Performance testing 3 No Not
mentioned

2019

[23] MuSC Security testing 15 Yes Not
mentioned

2019

[5] Deviant Functional testing 61 Yes Not
mentioned

2019

To respond the first research question RQ1 and as presented in Table 1,
both [26] and [28] did not propose testing tools as an automation of their solu-
tions, while the other approaches implemented their frameworks in form of dif-
ferent mutation tools, even for the majority source codes are open on GitHub.

Besides, each surveyed approach focuses on a specific testing objective using
mutation testing. It could be about:

– Regression testing [3]: concerns testing existing software applications to make
sure that a change has not broken any existing functionality.

– Security testing [1,2,7,11,23,26,27]: concerns a cybersecurity technique that
organizations use to identify, test and highlight vulnerabilities in their security
posture.

– Functional testing [4–6,10]: concerns a type of testing that seeks to establish
whether each application feature works as the software requirements.
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– Scalability testing [9]: concerns a testing of a software application to measure
its capability to scale up or scale out in terms of any of its non-functional
capability.

– Performance testing [28]: concerns evaluating how a system performs in terms
of responsiveness and stability under a particular workload.

Besides, the authors of [6] and [1] did not mention explicitly the number of
introduced mutation operators, whereas this latter criterion varies widely from
3 to 61 mutation operators among the other publications. In fact, it is up to the
tester to choose the scope or specificity of the operators. Some authors prefer to
introduce a specific operator for every singular change, others choose to group
together similar changes into one operator. Note that the power of mutation
testing is very much dependent on its mutation operators, and the operators
that can mimic the real bugs can select more effective test cases.

As a response to RQ2, and based on a collection of most repeated bugs that
may happen in the implementation of a smart contract in Solidity programming
language, the majority of researchers categorize them to two groups:

1) Classic Bugs: these bugs occur in almost any programming language,
from which we can mention arithmetic issues or logical bugs (inside condi-
tions).
2) Solidity Bugs: these faults are mostly related to the Solidity program-
ming languages, and the distributed nature of blockchain and smart contracts.
Hence, it is noticed that classical mutation operators designed for general-
purpose programming languages, e.g. JavaScript, are not sufficient for the
Ethereum platform, and other mutation operators need to be designed to
simulate the Solidity specific bugs. So, mutation operators are divided as well
into two groups: (i) Classic mutation operators, and (ii) Solidity mutation
operators.

In addition, 9 out of 14 papers calculate the mutation score for a set of test
cases, which corresponds to the percentage of mutants killed by these scenarios,
and is a metric for evaluating the effectiveness of test cases.

50% of studied works mentioned the number of treated vulnerabilities, among
basically eight well-known vulnerabilities that are reported frequently in the
smart contract weakness classification (SWC) registry8. It is about: integer over-
flow/underflow, division by zero, timestamp dependency, authorisation through
tx.orgin, unchecked send, repetitive call function and finally out of gas.

The assessment of the selected studies is based on several criteria highlighted
in Table 2. Then, the obtained results are introduced in Table 3. Only four studies
achieved 100% on quality evaluation [6,9,10,27]. A wide range of papers are
greater than 80%.

8 https://swcregistry.io/.

https://swcregistry.io/
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Table 2. Quality criteria

ID Criteria

QC1 Are the study context and objectives appropriately
described?

QC2 Is the proposed approach described in detail?

QC3 Are the study findings discussed?

QC4 Is the effectiveness of the proposed approach evaluated on
at least an example of case study?

QC5 Are the proposed approach limitations outlined and
discussed?

QC6 Does the study include a positioning among existing
related works?

Table 3. Quality assessment scores of the selected and analysed studies

Paper QC1 QC2 QC3 QC4 QC5 QC6 Quality %

[3] 1 1 1 1 0 1 83.34%

[27] 1 1 1 1 1 1 100%

[26] 1 1 1 1 0 1 83.34%

[4] 1 1 1 1 0 1 83.34%

[6] 1 1 1 1 1 1 100%

[7] 1 1 1 1 0 1 83.34%

[11] 1 0 1 1 0 1 66.67%

[9] 1 1 1 1 1 1 100%

[2] 1 1 1 1 0 1 83.34%

[10] 1 1 1 1 1 1 100%

[1] 1 1 1 1 0 1 83.34%

[28] 1 1 1 1 0 0 66.67%

[23] 1 1 1 1 0 0 66.67%

[5] 1 1 1 1 0 1 83.34%

5 Conclusion

In this quick review, we investigated the state of art related to mutation testing
of smart contracts. We included 14 studies published from 2019 to 2022 and
we analysed them to provide researchers relevant information about the used
mutation operators and the calculation of mutation score. Moreover, a deep
classification of these studies were discussed while giving their strengths and
weaknesses.

Up to our best knowledge, existing surveys focused on static analysis and
dynamic testing. Our survey has a significant contribution in the literature since
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it was the first one that dealt specifically with mutation testing of smart con-
tracts. Definitely, more refinement should be accorded in the future to review
the latest studies on mutation testing of smart contracts and more meaningful
research questions should be proposed.

In conclusion, the study’s findings showed that most research publications
come from conference proceedings and all of them focused on Ethereum smart
contracts written in Solidity language. We think that further research and devel-
opment are needed in order to advance the state of the art in this research line.
For instance, we can investigate the application of mutation testing techniques
on others programming languages used for smart contracts (e.g., Serpent, Vyper,
Go, etc.) and also other blockchain platforms like HyperLedger Fabric.
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Abstract. Nowadays, many services keep evolving and can be used in differ-
ent environments. One of the challenging environments is the Internet of Things,
which makes people’s lives easier. Nevertheless, securing these systems is a big
challenge. To address this challenge, severalmethods have been proposed to estab-
lish a trust level for entities considering different characteristics, basically the
direct observations and feedbacks. In this paper, we present a trust computation
model that considers not only the collected observations from different nodes, but
also the collected medical data. In this contribution, we choose to work with ECG
data. In our model, a decentralized propagation method is adopted where we use
a private blockchain to track different trust updates. The results show the time
required to compute the trust.

Keywords: IoT · Trust · Healthcare · ECG · Blockchain

1 Introduction

The IoT (Internet of Things) proposes a wireless network composed of a collection of
nodes communicating with each other. In the past few years, this network has led to a
huge exchange of information between different sensors and environments facilitating,
as a result, the access to distinct services such as the healthcare service called IoMT
(Internet ofMedical Things) based onmedical sensors collecting miscellaneous medical
data. This allows remote patient monitoring and offers different customized services.
The major problem in this environment consists of having security threats and cyber-
attacks [1–3]. Those threats affect one or many security objectives such as integrity and
availability [4]. Consequently, it can cause data alteration and service damaging. Thus,
researchers focus on mechanisms to boost security in the IoMT environment.

One of thosemechanisms is the trust-based systemswhere each networkmust ensure
a certain level of trust between network nodes to avoid any malicious behavior. Trust
can be defined as having belief that something does not represent a danger [5]. In the
healthcare IoT, the doctor must guarantee a minimum of trust towards the data received
from the patient such as ECG (Electrocardiogram) data. To limit the dangers on the
IoMT and to offer a better service to patients and doctors, we propose a trust system
using features to compute trust level and to share it using a decentralized network i.e.
blockchain. Thus, our main objectives are:
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• Deploying a system that controls trust between patient and medical side,
• Considering the medical data (i.e., ECG attributes) as an additional factor in the trust

level,
• Deploying a blockchain network that brings interesting features like decentralization

and traceability to store trust variations.

Our paper is organized as Follows: Sect. 2 introduces the related works, which
motivates our work detailed in Sect. 3. The performance evaluation of the proposed
solution is presented in Sect. 4, while Sect. 5 concludes the paper.

2 Related Work

Recent researches worked on designing trust systems ensuring confidence between enti-
ties. They designed different approaches related to different domain of application in
IoT. But they are always based on the same trust management system architecture [6–8].

The contribution [9] treats the case of SMP (Smart Marketplace) that calculates a
participant trust per resources. It is calculated according to feedbacks, past experiences,
and the degree of commitment. There are three important components in the commitment
feature: Resource availability, successful transactions rate and the turnaround time that
describe the responding time to a request.

In the IoT systems, regardless the application domain, numerous contributions were
proposed. Xu. And Junbin in [10] designed a framework of BBTM (Blockchain-based
Trust Management Method) that focuses on reliability in trust management to energy-
limited nodes in IoT network. The fundamental metric used is the feedback. The eval-
uation is ensured by mobile edge that is rewarded according to their results. In [11],
the authors designed a trust system included in an ABAC (Attribute Based Access Con-
trol) authorization system that supervises Service Provider and Service Consumer. The
storage is divided into two parts: private storage for sensitive data and public storage
for nodes’ scores. The TRS (Trust and reputation system) is based on experiences and
feedbacks. Another blockchain-based trust model presented by Tu. et al. [12] where
the architecture is composed of devices connected to gateways. Both direct and indi-
rect reputation are based on gateways’ evaluations. They also implemented a dynamic
Evaluation Mechanism that adapts the used time interval between trust calculations.

In the IoMT and healthcare, we present the trust mechanism BFT-IoMT [13] that
aims to mitigate Sybil attacks based on a fuzzy logic. The algorithm uses essentially
the node’s MAC address and energy. An approach based on Deep learning: NeuroTrust
was proposed in [14]. In fact, authors propose to divide the trust features into two types:
direct and indirect. Direct evaluation calculates trust using the packet delivery ratio, the
compatibility between different nodes, and reliability. For nodes without previous obser-
vations, the solution appeals to indirect evaluation that includes the shared experience
by neighboring nodes. In [15], the authors designed TrIDS that calculates trust level
using beta reputation model to exploit it in the intrusion detection system. The IDS is
deployed inMedical Cyber-physical Systems. The trust level is computed based on rules
checking the existence of intrusions and alerts. This is done using behavior monitoring
and collection to create intrusive profiles. Based on binomial Distribution, the Binomial
Distribution-Based Trust Management Algorithm [5] aims to protect theWBAN system
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through devices’ reputation and information encryption. The reputation level is based
on cooperation occurrence between nodes as well as the cooperation probability.

Those proposals used both direct observations and indirect recommendations but
disregard the control over medical signals transmitted via the WSN (Wireless Sensor
Networks).

Table 1. Related work Overview

Paper Trust Metrics Trust Propagation Application
fieldDirect

observations
Indirect
recommendations
(feedbacks)

Service/Health
related data

Centralized Decentralized

T-smart [9] ✔ ✔ ✔ Smart
Marketplace

BBTM [10] ✔ ✔ ✔ IoT

Trust-based
Blockchain
Authorization for
IoT [11]

✔ ✔ IoT

Blockhain-based
Trust and
Reputation Model
[12]

✔ ✔ ✔ IoT

BFT-IoMT[13] ✔ ✔ IoT
healthcare

NeuroTrust [14] ✔ ✔ ✔ IoT
healthcare

TrIDS [15] ✔ ✔ Smart
healthcare

Binomial
Distribution-Based
Trust [5]

✔ ✔ IoT
healthcare

Trust-Based
Decision Making
for Health IoT
Systems [16]

✔ ✔ ✔ ✔ IoT
healthcare

Authors in [16] considered the medical aspect of the patient and proposed a trust
computation process that takes into consideration not only user’s localization ratings’
but also loss health possibility. Through this protocol design, they can make decisions
related to only the trustworthy users. But they used as a trust propagation mechanism a
centralized cloud.

The previously studied related works are resumed in Table 1. They proposed trust
computing solutions based on different features. These works analyses user’s behaviors
and history. Nevertheless, these works do not consider the network-based intrusions
and anomalies detected from patient medical data that can be corresponded to executed
attacks, which affects the patient life. Added to that, some works uses a centralized
trust storage which can affect data availability if there are no security mechanisms
implemented.
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To overcome these drawbacks, our approach proposes a different way to estimate
the trust level by using not only direct sensors’ related observations but also medical
attributes to evaluate the trustworthiness of a patient in the network. Moreover, to track
attackers, we propose to store trusts levels into a private Blockchain.

3 Proposed Solution

In this section, we propose to ameliorate the existent trust systems by introducing (1)
other features in the trust computing; (2) formulas considering attacks aiming the patient
data and (3) traceability of the trust updates via the blockchain technology. Hence, we
develop in the following the calculating trust solution.

Fig. 1. System Architecture

3.1 Architecture

Our system architecture is derived from [14], wherewe have twomain sides: the user side
and the medical supervision side. The user side contains nodes and sensors collecting
both health data and surrounding environment data like the humidity and temperature.
Those sensors gather the information that will be sent to the gateway (see Fig. 1).
The medical sensors can collect multiple health data: ECG measures, blood pressure,
temperature. In our approach we will consider ECG features.

The medical side represents the hospital or the medical organization inspecting the
patient data. It englobes the medical personal that can access medical patient data.

This architecture aims to ensure trust between entities constituting the IoT system.
In fact, the hospital side must trust the data of every patient. In fact, before the doctor
can consult collected data, the gateway gw2 retrieves trust level from the Blockchain. If
it is trusted, the data will be allowed to access. The trust level is stored in the blockchain
network. As a result, the user U and the organization must have a connected blockchain
node to guarantee the connectivity and the visibility of the transactions in the ledger.
Added to that, they will be able to set the trust value and get it. In our solution, the
gateway will be the blockchain node.

As described in Fig. 2, the gateway collects information from different sensors and
performs attributes’ pre-processing before invoking the features and the final score in
the smart contract.

The trust is then stored in a deployed smart contract in the blockchain network.
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Fig. 2. General Process

3.2 Trust Management Model

Wepropose to implement a trust solution based on differentmetrics. The gatewayhandles
the trust mechanism, composed of data reception, computation and sending data to the
blockchain. The global algorithm is detailed in the organigram in Fig. 3.

The patient that wants to access the network is always controlled. In fact, if it is
his first access, he will be accepted and each time interval the trust is updated. The
first decrease in the trust will not eliminate him from the network. However, successive
decrease that led to a trust value less than the defined threshold will result the rejection.

If the device that wants to join the system is rejected before, then it will be accepted
and monitored during some time interval, to estimate his good faith.

Let w1 and w2 present weights with: w1 + w2 = 1 and w1 < w2, since we want to
take into consideration the trust history. Trust threshold is a value defined by the network
administrator. It defines the limit that helps deciding when the user is either trusted or
not.

3.3 Trust Computation

The trust metrics are divided into direct observations and medical information. The
metrics associated to direct observations are energy consumption rate and packet trans-
mission ratio. Those features are collected from every node connected to a person. Trust
is calculated every interval �t that is defined by the administrator.

The energy feature presents the energy consumption rate of a sensor. The consump-
tion is controlled, so if there is any suspicious deviation in the energy use, it will be
tracked as a sign of malicious behavior like the DoS (Denial of Service) attack [17].
This consumption differs from a sensor nature to another. In fact, the user U is con-
nected to numerous sensors. Hence, we collect the energy rate of every node i connected
to him. Then, we calculate the normalized energy value consumed per sensor i as detailed
in Eq. (1).

ei = energy ratei
100

(1)
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Fig. 3. General algorithm organigram

The patient’s energy consumption valuewill be the average of different energy values
ei (Eq. (2)). An important increase in the energy consumption leads to a decrease in the
trust level.

e = 1 −
∑

iei
i

(2)

The packet ratio is inspired from [14] which is defined as described in (3).

PDR =
∑

received packets gw1
∑

total sent packets gw1
(3)

In our network, healthcare sensors present a fundamental information source. Those
data can be affected either by normal noise (for example noise caused by patient move-
ment) or by intrusion. It is necessary to detect anomalies accruing from intrusions to
include this information in the trust score. As the medical data is miscellaneous, and
each body sensor can return a specific data form, we will focus on the ECG signals. ECG
or Electrocardiography is used to track the electric signal of the human body heart [18].
ECG signals are characterized by different attributes such as QRS interval and heart
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beats. Any changes in the characteristics of the signal reflects a disease or an instability
in the human body. Many works like [19] described the different diseases patterns in
ECG signals that can appear on the patient data.

Fig. 4. Relation between observation and ECG period

We propose in this work to detect, in each time interval �t, the existing security
related anomalies in the ECG data. A detected value is declared as anomaly if it deviates
from the normal pattern of the disease. In other words, any value that exceeds the normal
threshold is considered as anomaly.

A time interval�t is an observation that include n ECG periods as detailed in Fig. 4.
With n is the periods’ number per observation that is fixed by the system’s administrator.

ECG data is analyzed by the gateway. In fact, the received ECG value is compared
to the normal disease threshold. The output of this operation is dissected into two cate-
gories according to the deviation: normal or abnormal behavior. The number of detected
anomalies in an observation is used in the trust equation. Anomalies rate is described in
Eq. (4).

Arate = NBanomalies

NBperiods
(4)

Added to that, we consider the margin between detected ECG value in the period and
the defined threshold thn for a malicious behavior. Therefore, we calculate this deviation
DECGperiod in every medical period as explained in Eq. (5).

DECGperiod = value − thn (5)

Based on (6), the final signal deviation D�t considered in the trust formula is
expressed by the mean of different deviations values issued from (5).

D�t = mean(DECGperiod ) (6)
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With (7), the related trust for those medical signals is the weighted combination of
Eqs. (4) and (6) where the trust increments when the anomalies’ number decrements.

TECG = 1 − (wECG ∗ Arate + (1 − wECG) ∗ D�t) (7)

The trust value for the interval �t will be as defined in (8). α, β, and γ represent
weights.

T (�t) = α ∗ PDR + β ∗ TECG + γ ∗ e (8)

Since a node cannot deflect behavior suddenly, the instant trust value will include
the old one with the use of weights (λ and μ) as indicated in Eq. (9).

Tpatient = λT (�(t − 1)) ∗ μT (�t) (9)

The whole trust calculation process is described in Algorithm 1.
All the collected patient data related either to the environment or to the medical state

is handled by the gateway to calculate the trust level. If it is the first time that we affect
a trust level to the patient, we note this information in the distributed ledger. Otherwise,
we retrieve the current state from the blockchain network, we recalculate the trust and
we publish the transaction in the ledger.

Every medical entity wishing access to the patient data must be sure that the patient
data are reliable. That’s why, the system recovers the trust value from the blockchain. If
it is classified as trusted, then the system will allow access to the doctor. If not, it will
be rejected and not taken into consideration.

3.4 Blockchain Network

The blockchain technology consists of different nodes that share a distributed ledger to
ensure transactions storage. One of the most interesting characteristics of this network is
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decentralization and traceability. The blockchain network can be either public or private
[20].

In our proposed solution, we adopted the private blockchain because we will imple-
ment it into a healthcare ecosystem that contains known nodes. We propose to create the
blockchain (as described in Fig. 5) consisting of nodes. Those nodes represent different
gateways connected to the network either a medical professional or a person.

The used blockchain platform is GoQuorum. It is a permissioned blockchain based
on the Ethereum network. The major difference between GoQuorum and Ethereum is
the used consensus protocol. In fact, to achieve consensus, this permissioned network
does not rely on proof of work algorithms. Instead, it is based on different consen-
sus algorithms in particular Raft, algorithms based on Byzantine fault tolerance and
Clique PoA [21]. To implement the blockchain, we should select a consensus algorithm.
According to [22], achieving consensus in the raft consensus algorithm is faster than
other algorithms. Thus, we have chosen raft as consensus algorithm.

As Fig. 5 shows, the network is composed of several nodes. Every node is a gateway
connected either to a medical side or a simple user. Therefore, the number of nodes
vary according to gateways’ number. To identify an entity into the blockchain network,
we use the account address generated by the GoQuorum network. As the blockchain is
based on cryptography, each entity must have a key pair.

After creating network and nodes, the connected account aims to save or retrieve
a value from the blockchain. Hence, the node must call the adequate function from
the smart contract. In fact, the smart contract is a self-executing program that ensures
treatment via transactions.

The relative smart contract to our system contains methods that allows a node to
invoke either a store action or a retrieve action. Once the smart contract developed
with the solidity programming language, it should be compiled then deployed into the
blockchain network. This is a one-time but a fundamental action to make the methods’
call possible. Indeed, the output of the contract deployment is the contract address that
each node should indicate to perform a transaction.

Fig. 5. Blockchain architecture
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4 Performance Evaluation

Two parts are evaluated in this part: trust calculation algorithm and blockchain deploy-
ment and calls. Those experiments are executed on a terminal with 8 GB RAM and an
intel Core i7 CPU.

To evaluate the trust approach, we have used Matlab to run the proposed algorithm.
PDR data and energy is generated randomly within the defined intervals. We supposed
that the total number of sensors in the connected home is 5. So, we have 5 different
values for PDR and energy rate.

ECG trust weight is fixed to wecg = 0.4. Weights in the trust associated to the patient
are defined as: α = 0.3, β = 0.3, and γ = 0.4. Weights between instant and previous
patient trust is fixed to w1 = 0.4 and w2 = 0.6.

Used ECG data [23] called Cardiac Arrhythmia Database, contains different ECG
characteristics like QRS interval, P interval, t interval and heart rate. Also, it contains
tags for different arrythmia diseases. We based our evaluation on associated values to
normal ECG, ECG containing tachycardia and abnormal ECG values.

First, we calculated the needed time to execute this process in the gateway. The
duration of this algorithm was 0.0032 s.
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After that, we visualized the trust variation for different observations as illustrated in
Fig. 6. In fact, each value reflects 5 ECG records. The minimal value of trust is obtained
at observation 11 (as highlighted in Fig. 6). This dropping value is caused by the decrease
in ECG trust and an increase of energy consumption. Indeed, in this time interval, ECG
data reflects values exceeding the normal threshold.
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Fig. 7. Effect of ECG data and anomalies on patients’ trust

Also, we tested anomalies’ direct effects on the trust values. That is why we repre-
sented the trust according to intrusion number (Fig. 7). We can obviously notice that any
decrease in ECG trust score led to a decrease of the patient trust degree.

Finally, we studied the effect of period number per observation on the processing
time. As it is shown in Fig. 8, we have obtained a decreasing curve. In one hand,
incrementing the period’s number in one observation led to an amelioration in the QoS
of our model since the rate of exchanging data decreases. In the other hand, this increase
affects the system security, as the update interval will be higher. Therefore, the system’s
security efficiency is affected.
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After the algorithm evaluation, we have tested the blockchain network. We started
with the GoQuorum network creation, with different node number ≥ 3. We selected
RAFT as a consensus algorithm. To invoke different actions, we used web3js API
(Application Programming Interface). This Javascript API allows us to interact with our
GoQuorum network via the IPC protocol (Inter-Process Communication). To consume
this contract, we need to generate its ABI (Application Binary Interface) and bytecode.
Therefore, we compiled our contract.

Table 2. Variation of contract deployment duration

Nodes’ number Duration (ms)

3 15,09316

5 16,99486

7 20,13085

First, we deployed our smart contact to obtain the contract address. Table 2 shows
the different durations taken by the deployment process according to nodes’ number. It
is interesting to see that the deployment does not introduce an important overhead in
term of time (in ms) compared to the execution algorithm (in s).

Table 3. Variation of actions duration

Nodes’ number Action Duration (ms)

3 Get 11,056433

Set 12,042064

5 Get 11,7667

Set 13,000227

7 Get 10,439524

Set 12,569601

Then, we use this address and test the contract offered actions. We start with storing
a value, then getting it. Table 3 resumes the nodes’ number impact on the required time
to execute the get or set treatment, where approximatively “set” takes 2 ms more than
“get”, which is acceptable. In fact, the set operation changes the ledger state unlike the
get operation that just reads values stored in the blockchain.

5 Conclusion

This article examines various methods for calculating trust, whether or not related to
medical IoT. Our proposed trust calculation method aims to improve the efficiency and
safety of medical-based patient monitoring systems. It relies on direct observations and
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medical data. Each trust update is stored in a transaction on the private blockchain to
track identified attackers.

We studied the approach performancewith ECGdata and defined the threshold based
on tachycardia disease. Our model is applied on different medical data; we just have to
adapt the deviation calculation module to our input medical data. Our evaluation showed
the different effects of data on the trust score. The overhead in terms of processed time is
also evaluated, where our solution is not time consuming, which is interesting regarding
the proposal benefits.

In the future, we plan to improve the model in several ways: (1) increase the security
of the gateway as itmanages data collection and processing, and (2) include a comparison
of our solution with others to validate the performance of our work. In addition, it is
interesting to make the system smarter by using machine learning to study the impact
of variations in medical data on trust.
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Abstract. Save-And-Rescue missions often present risks for first
responders when their mission occurs in hazardous or risky environments.
Thanks to significant advances in robotics and Artificial Intelligence,
deploying a swarm of Unmanned Aerial Vehicules (UAVs) (also known
as drones) for these missions, has become a promising direction to facili-
tate first responders’ work. However, despite these recent advances, this
remains a difficult challenge because of the ever changing environment
and operation conditions the drones evolve in. Ideally, drones should col-
laborate and share information about the situation, and eventually report
back to the humans involved when key decisions have to be taken, freeing
up time and human resources for other challenging and crucial tasks.

Command & Control (C2) is a military concept that studies how a
set of entities and resources may be best deployed, organised, and driven
towards the achievement of tasks at the service of a high-level objective.
With the recent increase in distributiveness and variety of information,
C2 found new interesting application areas (disaster relief and financial
operations; mass vaccination campaigns; etc.)

This paper explores the meaning of implementing C2 in UAV fleets
for deployment in large ground missions such as Save-And-Rescue, as a
way to systematically implement human-to-drones and drones-to-human
communications. We capture in a metamodel the specification of a C2
system that describe how teams of drones work collaboratively, based on
a C2 approach. We show how the C2 System may evolve when change is
detected, while keeping the C2 System coherent.

1 Introduction

Save-and-Rescue missions often present risks for first responders when happening
in hazardous environments (e.g. rugged mountains, large-area fires, floods, etc.)
Deploying Unmanned Aerial Systems (UAVs) on those fields is therefore becom-
ing a norm. Relying on an UAV fleet equipped with onboard intelligence opens
the way to semi-autonomous tasks execution, resulting in enhanced response
times and better efficiency for responders, improving in fine the rescue mission’s
outcome. This intelligence requires a careful design of the many interactions
and communications: humans communicate mission goals and tasks to drones,
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and with other humans as well; while drones report their progress, difficulties,
and results to humans, and sporadically need feedback to appropriately react to
unexpected events.

Command & Control (C2) [3,17] is a military concept that studies how a set
of entities and resources may be best deployed, organised, and driven towards
the achievement of missions realising a high-level objective. With the increase
in distributiveness and variety of information, C2 found new interesting appli-
cation areas: e.g., disaster relief and financial operations [8]; mass vaccination
campaigns [10,12]; etc. NATO attempted in recent years to promote and delib-
erately implement C2 in its own large-scale operations [13]. Various C2 domains
describe scenarios with increasing complexity raising from the dynamic nature
of the environment, the entities’ interactions, and the very nature of the humans
involved. This is known as C2 Agility: the ability for task-performing entities to
effectively detect changes, and adapt accordingly, in a timely fashion [18].

C2 advocates the use of so-called approaches, i.e. guidelines for defining how
entities involved in performing a mission may coordinate, communicate and
interact in a “fractal” way [3], meaning that those guidelines are adopted at
any level of decomposition for the teams involved. These C2 approaches define
three central components: who is in charge of the internal and external com-
munications (the so-called leader in a team, and the point/person of contact, or
PoC, for different teams); how the communication is organised among members;
and what the communication consists of.

In this paper, we explore how it may be possible to apply NATO’s notion
for C2 in the context of a fleet of drones deployed to complete a Save-and-
Rescue mission, i.e. organising the drones into so-called teams that operate under
designated C2 approaches. After explaining what C2, C2 Approaches and C2
Agility consist of in the NATO vision (cf. Sect. 2), we propose a metamodel (cf.
Sect. 3) enabling the creation and edition of C2 Systems, defined as collaborating
teams under C2 Approaches, from which it becomes possible to simulate the
System (cf. Sect. 5), and in particular to interactively force changes on the drones
environment to observe C2 Agility (cf. Sect. 4).

2 Command & Control in a Nutshell

Command & Control, often abbreviated as C2, is a set of features and processes,
based on humans, physical and informational systems aimed at solving problems
at large scale. We briefly review in this section the appropriate literature on how
C2 emerged, what it precisely is, and organically consists of, and why it requires
agility, i.e. the ability to react to change, which inevitably occurs during mission.

2.1 Command & Control (C2)

Despite being clearly grounded into military’s doctrinal and operational vocab-
ulary, the terms command, control, and the expression Command & Control, do
not have a consistent meaning or a clear, common understanding. As stated by
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[16], only humans may command, because they may demonstrate the ability to
exercise their knowledge, experience, intuition, innovative thinking, dedication,
motivation, etc. to take the decisions associated with Command and live with
the consequences. Since C2 plays a crucial role for organising military operations,
it progressively integrated information and communication technologies for han-
dling the difficulties of contemporary missions and challenges, opening the door
for multiple concepts enriching the original C2 concept with Intelligence (C2I),
Surveillance and Reconnaissance (C2ISR), and even more advanced and focused
technologies designed for Target Acquisition and Reconnaissance.

To understand what C2 is, it is helpful to explain what it is intended for, and
how it is structured. For the military context, there exists three definitions. The
US Department of Defense, in its Dictionary of Military and Associated Terms,
defines C2 as “the exercise of authority and direction by a properly designated
commander over assigned and attached forces in the accomplishment of a mis-
sion. Command and Control functions are performed through an arrangement
of personnel, equipment, communications, facilities, and procedures employed by
a commander in planning, directing, coordinating, and controlling forces and
operations in the accomplishment of the mission.”1. The NATO Glossary defines
C2 as “the functions of commanders, staffs, and other Command and Control
bodies in maintaining the combat readiness of their forces, preparing operations,
and directing troops in the performance of their tasks. The concept embraces
the continuous acquisition, fusion, review, representation, analysis and assess-
ment of information on the situation; issuing the commander’s plan; tasking of
forces; operational planning; organizing and maintaining cooperation by all forces
and all forms of support; organizing command and control; preparing subordi-
nate command and control bodies and forces for combat operations; supervising
and assisting subordinate commanders, staffs and forces; the direct leadership
of troops during performance of their combat missions”2. [20] define C2 as “a
set of organisational and technical attributes and processes that employ human,
physical, and information resources to solve problems and accomplish missions”.

What is interesting in these definitions is their commonalities enlighting a
list of operating concepts: (i) C2 is a list of functions; (ii) intended, as a ultimate
objective, to help accomplish missions (iii) which may be seen as composed of
tasks assigned to some entities (or, “forces”). Before going deeper into the func-
tions constituting C2, it may be interesting to first focus on what is intended
as Control and Command, and precisely identify their relationships and interac-
tions. According to [16], Control is composed of “those [Control] structures and
processes devised by Command to enable and manage the risks” associated to
missions; while Command is “the creative expression of human will necessary
to accomplish the mission”.

1 Dictionary of Military and Associated Terms, Joint Publication I-02, Retrieved on
March 2021, http://www.dtic.mil/doctrine/jel/doddict/data/.

2 NATO Glossary, Retrieved on March 2021, available at https://www.nato.int/docu/
glossary/eng/15-main.pdf.

http://www.dtic.mil/doctrine/jel/doddict/data/
https://www.nato.int/docu/glossary/eng/15-main.pdf
https://www.nato.int/docu/glossary/eng/15-main.pdf
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The authors provide interesting insights on how and why those components
(Control, and Command) are interdependent and both necessary. When facing
a mission, there are an infinite possibility for performing it, considering the var-
ious interest factors (costs, resources, etc.) Defining a Control structure reduces
the problem space to a more manageable space that fixes the set of possibili-
ties, but also directly influences the possible course of actions. In this reduced
problem space, Control procedures define regulated processes that allow control
structures to effectively perform work. Command, then, requires to study the
specificities of this framework, and to exercise the human mind and creativity to
devise solutions to accomplish the mission with the best possible outcomes. Just
like control in cyber-physical systems, Control in the C2 sense requires to moni-
tor structures, but also processes; however, in C2, Control goes beyond because
it also require to carry out and adjust procedures according to pre-established
plans. On the other hand, Command is the act of enabling command and manag-
ing risk using the existing structures and processes: this would require to create
new, and to modify existing control structures and processes when necessary,
but also to initiate and terminate control as well as defining the conditions for
initiation and termination.

Note that C2 is a “fractal” concept [3], meaning that it applies to various
granularity levels. Therefore, Control structures and processes range over a large
variety of artefacts that may fundamentally differ in their formality and rigidity:
in the military context, this would include at the most formal and rigid end of the
spectrum the equipment (including software and communication technologies)
and tangible resources (including humans), to the less rigid end of organisa-
tional structures and doctrine. Therefore, when applied at an organisation level,
C2 determines the organisation’s purpose, priorities and ultimately, capabilities,
shaping the horizon of possible actions; when applied at the missions level, C2 is
concerned by how to best use an organisation’s assets (people, systems, material
and their relationships) to achieve the organisation’s goals.

2.2 C2 Functions and Approaches

C2 does not represent an end to itself, but is rather a means towards creating
value, which, in the military context, is often understood as accomplishing, or
completing, a (set of) mission(s). Therefore, C2 designates a set of interrelated,
but distinct functions that apply to organisations at different scales. Many def-
initions, including the ones provided above issued by military (inter-)national
organisations, seem rather regulatory in nature, and limited in their applica-
bility to the military context. In order to focus on concepts and approaches of
C2 in general, the NATO System Analysis and Studies (SAS) Panel proposed to
clarify two important questions: why one does C2; and what functions an instan-
tiation of C2 needs to accomplish to achieve its purposes [17, Chap. 2]. Similar
to [3], the Panel notices that due to the fractal nature of C2, the purpose of
applying C2 at the mission level is to employ the assets of an organisation—its
people, systems, materiel and relationships with others—in pursuit of mission-
specific goals and objectives. Any instantiation of C2 should at least propose the
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Fig. 1. C2 Approaches definition according to NATO (reproduced from [18])

following functions3 [3]: (i) Establish intent, i.e. the goal or the objective of a
mission; (ii) Determine roles, responsibilities and relationships; (iii) Establish
rules and constraints (e.g. schedules, etc.); and (iv) Monitor and assess the situ-
ation and progress. As a consequence, C2 should be seen as determining “bounds
for decisions” rather than enforcing decisions themselves. The latter is indeed
unrealistic in situations where frequent changes in the problem space where a
mission takes place prevents uniform and monolithic solutions in intents, organ-
isations, command and control. As observed earlier, decisions (and Command)
requires creativity and willingness to cope with the uncertainty and scale of
complex problems.

Given a mission, many possible approaches to accomplish those C2 functions
may be envisioned. The Panel [17] defined precisely three dimensions for C2
Approaches. The Allocation of Decision Rights (ADR) designates the way
authority and responsibilities are distributed within an entity, i.e. which deci-
sions are assigned to which entities, and when (under which circumstances) and
how to take them. The Patterns of Interactions (PoI) relate to the info-
structure available, as well as doctrine, culture and other factors, and covers the
“reach” (number and variety of participants), “richness” (breadth and quality of
the content involved), and interaction quality (medium, availability, continuity,
etc.). Finally, the Distribution of Information (DoI) designates the nature
of information that is shared and transmitted among entities, but also who is
responsible for it and when transmission is supposed to occur. Those dimensions
are obviously far from being independent: the way decisions rights are allocated

3 The authors add leading-related functions associated with Command, such as “inspir-
ing, motivating, engendering trust, training, educating”, etc. However, these func-
tions have little interest for our purpose of applying C2 for a Cyber-Physical System
such as a drone swarm.
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directly influences how interactions operate, and which information is shared
and transmitted; on the other hand, information may change the interactions
and even ultimately reorganise decision rights.

All three dimensions include so-called “positive” understandings enforced by
the Command aspect of C2, but also “negative” ones monitored by the Control
aspect: they all define what is required, permitted and prohibited. For example,
using a specific kind of systems may be prohibited in general, but may become
possible under circumstances where the approval of Command is itself required.

These dimensions are related to multiple variables that the Panel identified
and precisely listed [17] (which go beyond this paper). It is likely impossible
to capture all possible combinations of these variables, since each organisation
likely has its own structure, works with specific characteristics and objectives,
and has to perform particular tasks related to a given environment. However,
the Panel defined several C2 Approach classes that span over the corresponding
tridimensional space; thus encompassing similar combinations of these variables,
corresponding to a specific way of considering each of the three dimensions:
Conflicted, Deconflicted, Coordinated, Collaborative and Edge (cf. Fig. 1a). We
elaborated and operationalise these classes in Sect. 3.2.

2.3 C2 Agility and C2 Approach Manœuver

Hypothetically, there exist a most appropriate C2 Approach for a particular
mission conducted in specific circumstances. However, as time passes and cir-
cumstances change, entities have to adapt and evolve to complete missions: this
so-called C2 Agility may be performed at two scales. First, when changes are rel-
atively circumscribed, entities may choose to organise and behave differently to
cope with new elements; however, when those prove to be insufficient, a change
in the C2 Approach may be required, triggering a change at a larger scale.

The so-called endeavour space captures the changes occurring during mis-
sions, as a theoretical construction representing the set of possible futures,
according to three changing dimensions: “Self ”, i.e., changes occurring inside
the entities themselves, e.g., added and lost capacity, degradation of system’s
performances due to physical damage or system failure; modification of teams;
breach of information security; etc.; Mission , i.e., changes affecting the mission
itself, e.g., completion time, scope, ground conditions, etc.; and finally Environ-
ment , i.e., changes affecting elements outside of the entities and the mission,
e.g.,. operating conditions (weather, terrain, etc.) Small changes in the endeav-
our space may be anticipated with changes in the Self, showing that an entity
stays successful in completing a mission with agility. However, larger, or simulta-
neous changes, may require C2 Approach Agility that requires three steps: first,
detection, i.e. understanding that such a large-scale change occurred; then analy-
sis to recognise that the current C2 Approach no longer operates well under new
circumstances; second, selection, i.e. figuring out which C2 Approach becomes
more relevant; and third, transition to the new C2 Approach in a timely manner.
These steps are referred to as C2 Manœuver, as illustrated in Fig. 1.
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3 A Metamodel for Control & Command

We now explore the possibility of articulating Control & Command (C2) strate-
gies in the context of drone swarms, that are deployed from a Control Centre to
perform Save-And-Rescue Missions, according to the following use case.

A Mission Officer receives a Mission Description that needs to be translated
into a Mission Specification aimed at being handled by a swarm. This Specifica-
tion is send to a Drone Engineer, who will prepare the drones fleet accordingly:
which drones need to be equipped with what kind of workload (video, night vision
and/or thermal cameras, GPS, different payloads, etc.) A drone may come in
various sizes, autonomy, speed/altitude flight capability, with various software
variations, etc. This aspect is described in our settings with a Feature Model [6]:
a description of the material and the drone, their characteristics, and their possi-
ble combinations (e.g., a thermal camera weighs 8 kg, requiring a drone capable
of at least carrying this weight). This results in a series of constraints that are
easily solvable once the Feature Model has been elaborated [9].

To simplify the description, we consider that a Mission Specification consists
of a list of tasks that are independent of each other, i.e. the completion of one
Task does not influence the completion of others. Furthermore, we consider that
each Task is handled by one Drone at a time: each Drone is assigned a list of
tasks so that all tasks constituting the Mission Specification are initially covered.
Knowing which hardware is available in the Control Centre, the Drone Engineer
comes with an initial proposal of a C2 System that is able to cover the Mission
Specification’s list of tasks (or revisit it, if necessary). This C2 System covers
the following aspects: (i) Drones are organised into teams that will collaborate
towards fulfilling the Mission Specification. Each drone receives an initial valid
configuration. (ii) All teams operate under a specific C2 Approach.

We further interpreted the notions of NATO’s C2 notions of ADR (Alloca-
tion of Decision Rights), PoI (Patterns of Interactions) and DoI (Distribution of
Information) as follows. For ADR, each entity explicitly designates a leader, who
may for example keep track of the failed tasks and try to allocate them to other
drones, assuming a direct communication is possible. The PoI is encoded into
a communication topology that enables communication channels between enti-
ties. The DoI is left as future work, as the detail of the information raises many
questions regarding format, security, communication channels, etc.; however, we
capture components directly influencing the mission.

We describe in Sect. 3.1 a candidate metamodel for creating, editing and
deploying C2 systems, as entities organised along C2 Approaches. We then dis-
cuss how those C2 Approaches may translate topologically into the C2 system
in Sect. 3.2.

3.1 Metamodel Description

Figure 2 describes a possible metamodel for capturing C2 Systems, as envisioned
by NATO [18]. The root element is C2System: it describes the system in its
entirety: which teams of drones are deployed to perform a mission, as specified
by the set of tasks it is composed of.
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Fig. 2. A Metamodel to specify and edit C2 Systems

A C2System is composed of a set of Entities that are composite aggrega-
tions of drones (named Members) organised into Teams. A Member is uniquely
defined in the swarm by an id, and integrates a set of HW/SW features that are
valid according to a predefined Feature Model. The features attribute is a String
encoding of the list of atomic features present in the Member. We assume the
ability for the Drone Engineer to check the hardware and software constraints
resulting from a candidate configuration of teams. The Engineer may eventually
benefit from recommenders that would help in choosing particular equipments,
or reaching the best combination(s) fitting a given Mission Specification.

A C2System is created to respond to a particular Mission defined as a list
of Tasks. For now, we consider Tasks are independent from each others, atomic,
and specified with a completion duration and a geographical Location. They may
later be detailed with richer features.

A C2System is always defined with a specific C2Approach, as defined by [18],
enforcing the C2 characteristic elements: The ADR for each Entity is captured
as a leader in a non-composite Entity; and as a poc(s) for a composite one. The
PoI is captured by the C2AType, whose examples of organisation patterns are
described in Table 1, following the NATO classification [18]. We abstract for
now from the DoI, since it requires further investigation and captures detailed
behaviour of the C2System. Note that the PoI is freely defined at each Entity
composition level, as depicted in the examplar model of Fig. 3.

By using Model-Driven Engineering techniques [21], defining such a meta-
model leads to the automatic generation of an editor to create instances of a C2
System, as demonstrated by a sample system in Fig. 3. Note that the metamodel
described in Fig. 2 is tailored for creating systems, rather than analysis or any
other activities surrounding C2 systems. To that end, we explicitly distinguished
Intra and Cross communication Channels that may have been amalgamated on
a first approach. On our sample C2 system, these Channels are visually repre-
sented differently, and the Leader is represented as a dark circle, as opposed
to other Members. Note that our editor enforces the correlation between the
C2Approach declared for a Team (under the reference operates) and the actual
topology depicted for it.
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Fig. 3. A Simple C2System with a top-level Team Primary: it is composed of three sub-
Teams A, B (themselves further decomposed), and C (containing only drones). Each
Team operates under a particular C2Approach refered to by its C2AType (in blue text),
defining the communication topology (cf. Table 1).

3.2 C2 Approaches

The PoI (Patterns of Interactions) are a crucial part for defining an appropriate
C2 Approach. Based on first ideas and insights by [2], we argue that it is possible
to explicitly describe PoIs in a rigorous way. Table 1 depicts and summarises the
PoIs and links them with their visual representation as C2AType, and illustrates
them on teams from C2 System of Fig. 3. Furthermore, we described what we
intended as “patterns” in Table 1: each name associated to a C2AType translates
into a specific structure that clearly identifies (i) one (or several) leaders (#L)
and/or Point of Contacts (PoCs) ( #PoCs), depending on the composite nature
of each Entity; and (ii) a mathematical structure capturing the Topology intended
by the PoI pattern.

Conflicted designates a situation where team members maintain no commu-
nication at all: each member evolves completely independently from the others,
and no coordination is expected. This kind of situation is sometimes encountered
in hostile fields where communication signals may be intercepted and used as
exploits to retrieve information that may be lethal. In Figure 3, only Team B3
operates under this approach. This C2 Approach does not require any specifica-
tion, since it does enforce no pattern at all.

Deconflicted corresponds to a situation where communication is kept at
minimal: each team member communicates with exactly two other members,
thus forming a ring between members; a specific member is elected (or chosen)
as a leader for ensuring external communication with other teams. Since this
C2A approach is more common, Teams C and A2 operates under this approach
in Fig. 3. This pattern enforces a ring, which is defined with one leader/poc,
and an ordering of the entities constituting the team (modelled as a function
producing a list from the set of entities).

Coordinated designates a situation where communication becomes more
affordable and centralised, allowing each member to directly and solely com-



172 M. Amrani et al.

Table 1. Patterns of Interactions (PoIs), as part of C2 Approach. The terms in the
first column are used as values for the C2AType enumeration in Fig. 2. The column Ex.
illustrates the PoI using the model of Fig. 3.

municate with the leader. This leads to a star -like topology, and is adopted by
Teams A1, B1, A and Primary itself. This C2 Approach enforces a star pattern,
which only requires one leader/poc that connects all other entities.

Collaborative describes a situation where team members need to more tor-
oughly coordinate their efforts, leading to an intermediate topology: a number
of small clusters operate as if they were COORDINATED, i.e. they solely refer
to their (sub-)leader, but leaders are allowed to communicate with each other,
resulting in clusterised starred topologies, as operated by A3. This C2 App-
roach enforces a clustered-starred pattern, which requires identifying multiple
leaders/pocs, and a function mapping each to the entities connected to it.

Edge describes a situation where everyone is reachable, allowing each member
to communicate with any other member. For coordination and centralisation
purposes, this C2 Approach still defines a leader. This C2 Approach is adopted
by A4, B2 and B. This C2 Approach enforces a full connection between members,
which does not require further specification.

Note that for Save-And-Rescue, the communication channels have to be sup-
ported by an underlying network that will handle message passing. This may be
achieved through classic networks (e.g. Global System for Mobile communica-
tion, or military communication networks), or ensured with an additional drone
(typically flying at higher altitudes) that serve as a relay between the drones.

4 Tackling C2 (Approach) Agility

Once a C2 System is deployed, the drones start the tasks they are assigned to,
and communicate to the leaders/PoCs when they eventually complete them. As
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defined by [3], change certainly occurs in a C2 System during mission at three
different levels (self, mission and environment). In the context of Save-And-
Rescue missions, the drones themselves may encounter difficulties due to bat-
tery or flight issues, damage or system failures (e.g. hitting a high-voltage line).
Similarly, the mission may evolve over time when new information is acquired,
triggering new tasks to perform. For example, detecting a distress signal may
require to reallocate the drones in a specific place; and locating someone in a
location difficult to access may require to carry special material near the res-
cue location. Finally, operating conditions may rapidly change in some locations
(e.g. in mountains) that prevent drone flights, or require special equipment like
anti-wind or anti-lightning prevention measures.

Our proposal for tackling C2 Approaches Agility in the context of Save-
And-Rescue missions consists of defining a communication protocol aimed at
organising when, where and how decisions for agility are taken, and how com-
munication for supporting these decisions are transmitted. This protocol is based
on two major choices: we define roles associated with specific entities on a Team,
that confer specific tasks in the decision process; and we rely on events to detect
and carry information throughout a Team to support agility decisions.

4.1 C2 Roles

Resources in a C2System need to find a balance between two crucial tasks: on
the one hand, performing the tasks in order to complete the mission as soon
and as well as possible; and on the other hand, monitoring the fleet to detect
changes, and eventually react by redistributing the tasks, or reconfiguring the
entire system. We identify three roles to achieve this balance:

(Task Performing) Entities execute tasks that are assigned to them by
the Task Allocator, performing them in the order they are transmitted. A task
execution may complete successfully, or fail. Both situations are reported back to
the Task Allocator for providing a chance to reallocating failed tasks to another
entity. Furthermore, during the course of the mission, an entity maintains a set
of live sensors (corresponding to features), starting from the full list of sensors
the drone is launched with; and sensors may stop functioning properly. Finally,
a drone may stop functioning entirely.

A Task Allocator (Entity) keeps track of the tasks constituting a mission,
and tries to allocate them to entities for performing them. It also collects sensor
failures in order to appropriately dispatch tasks to drones that are able to handle
them. Periodically, the Task Allocator attempts to reassign the tasks that were
reported to have failed, trying to ensure an overall progress on the mission.

The C2A Selector (Entity) is the central communication point responsible
for a team and centralises communication with the Command Base. When the
drone fleet is deployed, it communicates the task list constituting the mission to
the Task Allocator for enabling dispatch, and it may receive updates with new
tasks to handle from the Base. The C2A Selector also has the capability to react
to new situations and changes by enforcing a new C2 Approach over the team
it is leading.
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Table 2. List of Events Definitions, together with their Producer and Consumer.

Producer Event Consumer Description

Entity Completed() self The current task completed successfully
Failed() self The current task failed
SensorFailed(Feature) self The sensor realising feature f is out of service
TaskCompleted(Id, Task) TA Entity Id has completed Task

TaskFailed(Id, Task) TA Entity Id has failed Task

SensorFailed(Id, F) TA Entity Id lost the ability to use sensor F

TA Allocate(Id, Task) Entity Allocate Task to Entity Id

Reschedule() self The Task rescheduling period is reached
Evaluate() self The C2 System evaluation period is reached
Manœuver(T) C2AS Trigger C2A Manœuver with pending Tasks T

C2AS NewTask(T) TA Update Task list with T

addTask(T) C2AS Updated Mission with new Task T

Note that roles may be freely distributed among team entities: a single drone
may fulfil several roles (e.g. being a Task Allocator and C2A Selector); and
depending on the team’s size, task allocation may be distributed over several
entities, depending on the C2 Approach at hand.

4.2 Event Communication

To enable intra- (i.e. among team’s entities) and inter- (i.e. between teams)
communication, we specify a set of events that capture what may happen in
a C2 System that needs to be reported. These events are presented according
to the role they refer to. At a first level, we have three auto-diagnostic events
each drone is able to produce while executing tasks. These events are closely
related to the way tasks are implemented, including which languages are used
for describing these tasks. Two events notify when the current executing Task
has Completed() or Failed(); and an extra event informs of a SensorFailed().

Each Entity can communicate with an associated Task Allocator to report
internal events: the corresponding events simply report what happened at the
first level with events TaskCompleted, TaskFailed, and SensorFailed (with appro-
priate parameters indicating the Entity, the Task and the sensor).

A Task Allocator may Allocate() a Task to an Entity (assuming it has adequate
equipment for the Task), which is triggered when the periodic event Reschedule
is issued. The Task Allocator also periodically Evaluate the C2 System since
it collects the information about successful and failed Tasks as well as each
Entity status regarding its sensors. When critical conditions are reached, the Task
Allocator notifies the C2A Selector a deeper evaluation needs to be performed.

Table 2 classifies those events according to the Entity or role that produces
and consumes it. Note that many events are produced and consumed by the
same Entity (noted self ); and that exactly one event (addTask) comes from the
C2 System’s environment (i.e. from outside the defined C2 System).
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The event Evaluate triggers a special safety function embedded in the drone
swarm software that periodically scans the overall system, through the appropri-
ate communication channels, and reports the necessity of change. This function
evaluates the current state of the C2 System (which drones are alive, with which
capabilities), and gathers some information about the environment, to assess
the feasibility of the mission with the current C2 Approach. If necessary (and
eventually after reporting back to the Mission Officer), a manœuver is issued,
changing the current C2 Approach into a new one.

4.3 C2 Approaches Manœuvering

C2 Approaches Agility is performed through manœuvering, i.e. the ability to
adapt a C2 System to the changes occurring in the endeavour space (cf. Sect.
2.3). According to Table 1, manœuvering requires two pieces of information.
First, defining new leader(s)/PoC(s). This can automatically be inferred
from the C2 System’s current state, or recommended a priori when the mission
is launched, using an election system inside teams, thus defining a candidate
leader/PoC and possible replacements in case the candidate is not available.
Second, changing the Topology. With our definition of topology (cf. Table 1),
we only need to define an (communication) order among members, or a subset of
members reachable from a common entity. This may easily be preprogrammed,
or defined on the fly with more elaborated mechanisms taking into account the
C2 System dynamic state. This process works at any level of Team decomposi-
tion, allowing to select C2 Approaches appropriate for any Team.

5 A C2 System Simulator

We built a prototype implementation based on a pipeline of tools that exchange
informations in order to provide the ability to (i) specify C2 Systems; and (ii)
simulate them. Thanks to our metamodel, we automatically generate a visual
editor that allows to create and configure a C2 System based on the available
sensors (e.g. vision or thermal cameras, GPS, etc.), and to define C2 Approaches
for teams, that are enforced using a simple communication protocol. Once the C2
System is ready, it is automatically transfered to a multi-agent simulation engine
[7] (based on Repast Symphony) that visually demonstrates how drones handle
mission’s tasks. The Officer may trigger changes (limited for now to predefined
use cases where drones lose one particular sensor, or become unavailable, or force
an environment change), or alter the mission with new tasks (cf. Fig. 4).



176 M. Amrani et al.

Fig. 4. Prototype simulator for building C2 System and simulating C2A Agility.

6 Conclusion

In this paper, we precisely captured, and made operational, the NATO notion of
Command & Control (C2), for structuring the organisation and communication
of Unmanned Aerial Systems deployed on missions such as Save-And-Rescue.
We provided a metamodel that enables creating and editing C2 Systems using
an arbitrary number of drone teams operating under C2 Approaches. We pro-
vided a simulator for deploying a C2 System that performs predefined tasks. The
simulator allows to observe changes resulting from C2 Agility and the influence
of C2 Approaches on mission completion.

We are currently putting an effort to formalise the behavioural semantics of
C2 Systems, based on the choices described in this paper. Our goal is to provide
empirical proof that a C2 System should, under reasonable expectations from
the environment, enable to complete the mission [4].

Many challenges remain open. First, specifying mission’s tasks need to be
refined for measuring their progress, and allowing to resume tasks [11,15,19].
Second, when and how reconfiguring a C2 System after change detection is cru-
cial, and still under investigation (in particular, clarifying the three-step mech-
anism explained in Sect. 2.3), possibly using Machine Learning [14] techniques
in each phase (cf. among others, [1,5]).
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