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Preface

This book contains selected contributions from the 11th edition of the International
Congress for Applied Mechanics (known as Technical Study Days, JET2022), which
was held in Marrakesh, from November 16 to 18th, 2022. Initiated in 2000 by the
Franco-Maghreb Association of Mechanics and Materials (AF3M, af3m-assoc.org),
this congress has been held periodically every two years. The 11th edition was orga-
nized in collaboration with the Moroccan Society of Mechanical Sciences (SMSM,
smsm.org.ma). The goal of these events is to review research and practical advances in
mechanical sciences and materials that are contributing to sustainable development and
environmental protection.

Mechanical sciences and materials are fundamental elements of a major technolog-
ical change necessary to meet the challenges of sustainable development. The emer-
gence of renewable energies, the importance of energy transition, and the extension
of the operating life of equipment and industrial installations. It is therefore neces-
sary to put more and more knowledge into the design, production, and operation of
equipment by massively using artificial intelligence. At the same time, the evolution
of materials based on biomimetics or bio-based materials will influence many indus-
trial sectors by their mechanical, electrical, phonic, and thermal properties. Currently,
bio-composites are increasingly used in several industrial sectors (mechanical, build-
ing, aeronautic) for their biodegradability, their lightness, and their exceptional resis-
tance, very important assets in order to reduce the impact of industrial products on
the environment. The main idea is to take advantage of local materials in order to
reduce production and operation costs. In coherence with these arguments, the themes
of these events and the 11th edition are: 1) Design/Optimization/Lightening/Lifetime
and integrity check; 2) Materials/Production processes/Recycling and Life Cycle; 3)
Renewable Energies/Energy saving/monitoring of equipment, Artificial Intelligence; 4)
Bio-sourced materials/Eco-materials/Eco-Design; 5) Hydrogen in production, storage,
transport and conversion.

After the congress, the editors of this book selected sixteen papers from the presented
forty-four contributions and asked the authors to submit an extended version of theirwork
for reviewing. Each submission was evaluated, using a single-blind review process, by
at least two reviewers from the scientific committee of the congress edition. As a result,
this book contains sixteen original contributions, and they cover the five themes listed
above and are relating to themajor industrial sectors of energy, transport, andmechanical
industries. Thus, this book is expected to be of interest for both researchers and industrial
actors.

The editors acknowledge the big efforts of the authors of the scientific committee and
Springer editorial team of the book series “Lecture Notes in Mechanical Engineering.”



vi Preface

We thank them for their contribution to the accomplishment of this book. We would like
to thank also the organizing committee together with all the participants for contributing
to the success of the 11th edition. We hope that this event stays and continues to grow
as a platform for scholars from around the world to meet and discuss their innovations.
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Effect of the Nanostrength® M53 on Elastic
Properties of Glass Fiber Reinforced Acrylic

Thermoplastic Resin

A. Y. E. Kouassi1,2, R. Matadi Boumbimba1(B), and M. K. Sangaré2

1 Université de Lorraine, CNRS, Arts et Métiers ParisTech, LEM3, F-57000 Metz, France
{alexis.kouassi,rodrigue.matadi-boumbimba}@univ-lorraine.fr,
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2 Unité Mixte de Recherche et d’Innovation en Mécanique et Science des Matériaux (UMRI

18), Ecole Doctorale Polytechnique, Institut National Polytechnique Félix Houphouët-Boigny de
Yamoussoukro, BP 1093 Yamoussoukro , Côte d’Ivoire

moustapha.sangare@inphb.ci

Abstract. This paper aims to study the elastic properties of glass fibers reinforced
acrylic thermoplastic resin-basedNanostrength®M53. The acrylic resinwas filled
with three weight fractions (5, 10 and 15 wt %) of the Nanostrength® M53.
The effect of Nanostrength® M53 on the elastic properties was studied using
tensile tests and finite element method-based RVEs by means of Digimat-FE. For
this purpose, platelet inclusions and three aspect ratios (AR) were considered for
microstructures reconstruction. A multi-scales homogenization scheme was used
for the determination of the effective elastic properties using Digimat-FE solver.
From the experimental and numerical results, the elastic properties decreased
slightly while the weight fraction (wt %) of the Nanostrength® M53 increased in
the composites. The loss in Young modulus was estimated at about 9.5 to 10%
according to the Nanostrength weight fractions of 10 wt % and the comparison of
the elastic properties was consistent. The use of the Nanostrength® M53 would
then be a source of a slight loss of elastic properties, however, the Nanostrengths®
M53 were suitable for many applications that needed an increase in resistance to
crack propagation, and in the literature, the laminate composites filled with 10 wt
% of Nanostrength® M53 depicted better low-velocity impact resistance.

Keywords: Elastic properties · Elium Acrylic resin · Nanostrength® M53 ·
Copolymers · Laminate composites · Digimat-FE · RVEs · Multi-scales
homogenization

1 Introduction

In recent decades, composite materials have played an important role in the develop-
ment of new technologies, thanks to their numerous advantages in various fields such
as automobile, aeronautics, naval, etc. Composite materials stand out for their ease of
implementation and light weight. They have good mechanical and physicochemical

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Azari et al. (Eds.): JET 2022, LNME, pp. 1–15, 2024.
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properties that offer them a wide range of possibilities in terms of design and use in any
kind of environment [1–5]. One of the disadvantages of polymer-based laminate com-
posites is the fragile appearance of their amorphous matrix facing mechanical stresses.
The fact that the matrix is rigid would lead to the initiation of damage phenomena such
as matrix cracking, fiber-matrix decohesion, delamination and fiber breakage [6]. To
overcome these early damage phenomena, additives like block copolymers and shock
modifiers, consisting of various nanostructures (A-B-S, M-A-M, S-B-M, etc.), were
added to the matrix during the process with the objective of improving the toughness
of the matrix [7, 8]. The Nanostrengths® M53, a tri-block copolymer (M-A-M) devel-
oped by Arkema company, which consists of a centrered PABu block surrounded by two
blocks of PMMA, can be missible with polymer resins like epoxy and thermoplastic
matrices and offers good improvement in low-velocity impact resistance [9]. The envi-
ronmental issues that favour recyclable materials lead researchers to use more and more
thermoplastics instead of thermosetting materials (epoxy, polyester, etc.). For this pur-
pose, Arkema implemented a thermoplastic resin called Elium acrylic. This resin, which
has the ability to polymerize at room temperature, depicts good adhesion with glass
fibers. Moreover, the laminated composite with a glass fiber-reinforced Elium acrylic
matrix showed better low-velocity impact resistance compared to epoxy and polyester
matrices composites [10]. It has also been shown in the literature that the laminated
composites with an acrylic Elium matrix filled with Nanostrength® M53 offer better
impact resistance for a weight concentration of 10 wt % [11]. However, the prediction
of the elastic properties of these composites had not yet been studied, and therefore their
overall mechanical behaviour remained unknown.

The mechanical behavior of a laminated composite can be quantified not only by
experimental tests on conventional machines but also by numerical simulation using
advanced software such as Abaqus, Ansis, etc. [12–14]. Digimat-FE is part of the soft-
ware used for creating complex microstructures (REVs) and computing the effective
elastic properties by the homogenization of the constituent model [15–17]. Digimat-FE
is one of Digimat’s tools which is a multi-scale modeling platform for materials and
structures developed by the HEXAGON group [18]. To better analyze the microstruc-
ture of materials and determine the sizes of nanoparticles, the ImageJ software is often
used, and it can be combined with Digimat to predict accurate elastic properties [19–21].

The objective of our work is to analyze the effect of nanostrength® M53 on the
microstructure of glass fiber-reinforced Elium acrylic resin and to quantify the mechan-
ical behavior of the constituent composite. The Elium acrylic resin was filled with three
Nanostrength weight fractions (5, 10 and 15 wt %). The glass fabric (taffetas) has been
used as the main reinforcement for laminate composites. The estimation of the elastic
properties was carried out initially by tensile tests on the samples. The microstruc-
tures were analyzed using scanning electron microscopy (SEM), and the results allowed
the reconstruction of the microstructures using ImageJ and Digimat-FE softwares. The
effective properties were subsequently determined bymulti-scale homogenization of the
obtained numerical models.
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2 Experiments

2.1 Materials

The Elium (E150) resin used is a thermoplastic liquid resin developed by ARKEMA
company. The kinematic viscosity of this resin was 150 cPs. The Elium resin is a mixture
of acrylic-based polymer diluted in a reactive monomer and additives. This formulation
gives a very fluid behaviour to the resin with a translucent appearance and the character-
istic of curing at room temperature (~20 °C). The bi-directional glass fabrics (taffetas)
used were supplied by CHOROMAT company. The surface density of the fabric was
600 g/m2 and it had an identical pattern of 7.8 mm frequency in both warp and weft
directions. The Nanosthength® M53 used is part of the family of self-assembled block
copolymers, and it was supplied byARKEMA (GRL, France). TheNanosthength®M53
is the acrylic tri-block copolymer M53 and also a symmetric M-A-M copolymer. M-A-
M copolymers are composed of poly (butylacrylate) central blocks and two poly (methyl
methacrylate) side blocks. These copolymers are designed for epoxy formulations such
as Diglycidyl Ether of Bisphenol A(DGEBA). The properties of the materials used are
presented in Table 1.

2.2 Processing

A vacuum resin infusion process at a pressure of 100 mbars was used for the laminate
processing and its can be described in three steps. Firstly, the infusion table was cleaned
with a release treatment which facilitated the release of the composite after infusion. The
glass fabrics of 600 mm × 600 mm dimensions and 0/90° orientation were adjusted and
arranged in sets of four plies. The fabrics were covered successively with a release film
and a draining grid. A batch covered the entire work surface creating a closed enclosure
that was sealed by a mastic glue. Secondly, the resin was degassed with a vacuum bell
at rate of 450 rpm and a pressure of 250 mbars for 15 min. For the Nanosthength®M53
loaded matrix laminated composites, the nanoparticles were added to the resin and
mixed for approximately 2h to ensure good dispersion of them. Three weight fractions
of the Nanosthength® M53 (5, 10 and 15 wt %) were used. The resulting resin was also
degassed in the same conditions as mentioned above. Thirdly, the peroxide catalyst was
added and mixed with the resin, and the infusion was started at room temperature. The
designation of the samples is presented in Table 2.

2.3 Microstructure Characterization

The microstructures of the Nanostrength® M53 reinforced laminate composites were
analyzed by scanning electron microscopy (SEM FEI QUANTA FEG 250). For this
analysis, the samples of 10 mm × 10 mm dimensions were cut using a water jet to
ensure good surface condition after cutting. The sampleswere then cold-coated inmoulds
using the acrylic resin ClaroCit Kit UN1866 provided by STRUERS company. After the
mechanical polishing, the ionic polishing was carried out for 1h at the energy of 5.5 keV
using the PECS II model 695 device. Ionic polishing was used to obtain a good polish
surface, which allows easy identification of the reinforced Nanostrength® M53 in the
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matrix reach regions. The two polishing methods were carried out on the thickness of
the samples and in the same plane.

2.4 Tensile Test

The uniaxial tensile tests were performed at room temperature using a MTS 20/M
machine with capacity of 100 kN. This device was equipped with a control console
and workstation, which were used for the test piloting. The samples used were rectan-
gular in the shape of 250 mm × 25 mm dimensions and thickness of around 2 mm. A
biaxial extensometer measured the deformation in the longitudinal and transverse direc-
tions. The tensile tests were achieved at a stain rate of 10−4s−1, which corresponds to
a travelling rate of 1 mm/min. Five samples of each laminate composite were tested for
the repeatability of the tensile test and to ensure better results.

Table 1. Material properties

Material Acrilyc resin E150 Glass fiber Nanostrength® M53

Density (g/cm3) 1.18 2.56 1.1

Young modulus (GPa) 3.3 73 0.1

Poisson ratio (–) 0.4 0.22 0.43

Table 2. Designation of the laminate composites

Matrix Nanostrength® M53 Laminate composites

Acrylic resin E150 – E150/GF

5 wt % E150_NS5/GF

10 wt % E150_NS10/GF

15 wt % E150_NS15/GF

3 Numerical Simulation

3.1 Homogenization Concept

The effective elastic properties computation of the laminates composites was based on
multi-scale homogenization illustrated by the Fig. 1. The first scale was the homoge-
nization of the acrylic resin filled with Nanostrength® M53 according to their weight
fractions (wt%). Then, the resulting blended resin and the glass fabrics were used for the
second homogenization. The multi-scale homogenizations were based on finite element
homogenization (FEH) [22] using Digimat-FE [18].
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Effective elastic 
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laminate composites

Laminate 

composites

Yes 

No

Second-scale

homogenization

Blended resin

Fig. 1. Flowchart of the computing of the effective elastic properties of laminate composites

3.2 Finite Elements Modeling

The REVs of laminate composites were designed by Digimat-FE 2021.3 based on the
characterization of the microstructures. From Digimat-FE 2021.3, the mechanical anal-
ysis type was selected, and the reconstruction of the microstructures was performed
in two steps, illustrated by the Fig. 1. The first step concerned the acrylic resin and
the Nanostrength® M53 which were assumed as matrix and inclusions phases, respec-
tively. ImageJ software was used previously to determine the size and morphology of the
nanoparticles based on the SEM images, as reported in [17]. Thus from the nanoparticles
dispersion state, platelet inclusions types and ramdom 3D orientation were considered
in the inclusion phase creation. Three aspect ratios (AR) were calculated based on SEM
images using ImageJ software. The aspect ratio was defined by the ratio of the thickness
of the nanoparticles (10 100 nm) by their mean diameters obtained by ImageJ software
analysis. The RVEs of the blended resin were obtained according to the set of parameters
such as materials properties (Table 1), the diameters (minimum, maximum) of platelet
inclusions and the nanoparticles weight fractions (wt %). The second step concerned
the blended matrix and the glass fabrics. The effective elastic properties of the blended
resin were considered as the parameters of a new matrix, and 2D woven was designed
by using the data sheet parameters of the glass fabrics (taffetas). A condition has been
fixed on the volume fraction (vf) of fiber into the laminate, which should be about 55%
in reference to the infusion process [10, 23, 24]. Another condition was applied on yarn
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parameters because of the glass fabricsmanipulation during the infusion process. Indeed,
glass fabrics are very flexible and this characteristic often leads yarn deformation during
the placement of the layers. Two numerical parameters can be explained the deformation
of yarn as shown on the Fig. 2. The yarn spacing ratio is the ratio between the height of a
resin zone introduced between the yarn and the yarn height. As illustrated on the Fig. 2a,
the higher the yarn spacing ratio, the higher the yarn height. The default value of yarn
spacing ratio is 0. The Fig. 2b shows yarn crimp which describes the yarn tortuosity. The
higher the yarn crimp, the higher the warp yarn tortuosity and the lower the weft yarn
tortuosity. The same tortuosity is applied to the warp and weft yarn for the default value
of 0.5. According to the vacuum infusion process of which the pressure was normal to
the glass fabrics layers, the yarn spacing ratio was used as default value. However, the
yarn tortuosity was considered for the yarn crimp value of 0.75. The laminate composites
was obtained by creating four similar layers oriented at 0/90°.

spacing ratio = 0 spacing ratio = 1

crimp = 0.5 crimp = 1

(a)

(b)

Fig. 2. 2D woven morphologies [18], (a) Yarn spacing ratio and (b) Yarn crimp

3.3 Conditions of Computing

The computing of the effective elastic properties was carried out by mechanical con-
ditions, which were displacements. For the blended resin RVEs, the periodic boundary
conditions (PBC) were fixed on the numerical models. These conditions ensure that the
displacement is periodic concerning the faces of the RVE, and the RVEs should be as
small as possible to obtain better effective elastic properties [22, 25, 26]. The REVs of
1,5 μm were meshed by the integrated Abaqus/CAE module, and conforming meshing
with tetrahedral elements was used. The automatic meshing type was selected, and the
main parameters were the sizes of the elements (minimum and indicative). The number
of elements required for convergence of the RVE was about 250 000 elements. In the
case of the laminate composites, only the PBC in plane (x, y) was used because the RVEs
were periodic in plane (x. y) and therefore they represented an orthotropic symmetry in
the global basis (x, y, z). The RVEs size was 8 mm× 8 mm 2mm and the voxel meshing
type was used. The number of meshing elements was about 500 000 elements. The load-
ing types imposed on RVEs was uniaxial-x loading and biaxial-x,y loading for blended
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resin and laminate composite, respectively. The automatic properties evaluation and the
Digimat solver were selected as the loading source and computing solver, respectively.
The required elastic engineering constants were computed in quasi-static mode.

4 Results and Discussions

4.1 Microstructures

The SEM images of the laminate composites are shown in Fig. 3. The Fig. 3a shows
the microstructure of the composite without Nanostrength® M53 of which the tex-
ture of neat Elium resin was observed. As shown in Fig. 3b, the microstructure of
E150_NS5/GF presented different sizes of glass fibers and at the scale of 50 μm a
continuous matrix phase can be observed. The diameters of the fibers varied from 14.8
μm to 20 μm. The cross sections of the yarns were elliptical, and their small and
large diameters varied from 0.37 mm to 0.57 mm and from 2.73 mm to 3.5 mm, respec-
tively. For nanostrength reinforced acrylic resin shown in Fig. 3c, d, two phases can be
observed, in particular, a continuous phase and clustered phase. Figure 3c shows the
microstructure of E150_NS5/GF in which some isolated clustered areas were observed.
However, the continuous phase texture was denser compared to the pure acrylic matrix.
The microstructure of E150_NS15/GF shown in Fig. 3d presents a two phases morphol-
ogy, and the nanoparticle sizes were larger than those for the other composites. The
higher the weight fraction of nanoparticles was, the higher the saturation of the matrix
was. The inclusions sizes were in the range of 1 to 2 μm, 3 to 10 μm and 3 to 30 μm
for the composites E150_NS5/GF, E150_NS10/GF and E150_NS15/GF, respectively.
The higher the weight fraction of nanoparticles was, the higher the inclusions were
visible and close together. These clustered microstructures could explain the slow dif-
fusion of the blended resin during the infusion process. We observed that the viscosity
increased with the weight fraction of the Nanostrength, which did not allow the com-
posite E150_NS15/GF to be fully infused. The infused composite plates were square in
size of 600 mm × 600 mm and their thickness was around 2 mm. The glass fabrics were
weighed before and after the infusion process which allowed the average fibers volume
ratio (νf ) of about 55.11%. This fiber volume ratio is in agreement of the literature
concerning the infusion process [10, 23, 24].

4.2 Elastic Constants (E11 and ν12)

The elastic constants were determined during the post-treatment of the tensile tests
carried out on the samples oriented at 0/90°. The initial tensile length was about 150 mm.
The 0/90° oriented samples allowed the determination of the Young moduli E11 and the
Poisson ratio ν12 according to the longitudinal stain range (0,005≤ ε ≤ 0.0025) given by
the standard NF EN 527-1. The Young modulus was the guiding coefficient of the linear
part of the curve of the nominal stress according to the nominal strain in the longitudinal
direction of the samples. The Poisson ratio was determined by the ratio of transverse
deformation to longitudinal deformation.

The elastic constants are mentioned in Table 3. The Young modulus decreased while
the weight fraction (wt %) of the Nanostrength increased in the composite. However, the
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(a)

(d)(c)

(b)

Fig. 3. SEMimages of laminate composites, (a, b)Microstructures ofE150/GF, (c)Microstructure
of E150_NS5/GF and (d) Microstructure of E150_NS15/GF

deviations were not high according to their standard deviations. The Poisson ratios pre-
sented the same trends. Considering the results of the tensile test, the use of nanostrength
leads to a slight decrease in the elastic properties of the laminate composites. According
to Arkema, the nanostrength would reinforce the mechanical properties of the matrices
at the molecular scale [9]. The nanostrengths are suitable for every application that need
an increase in resistance to crack propagation while maintaining the Tg and modulus
of the systems. Indeed in the literature, the Nanostrength were often used to improve
impact resistance [7, 11, 27–29]. It has been proved that the impact resistance increases
more for 10 wt % of nanostrength reinforced acrylic resin compared to other composites
[11]. At the same weight fraction, the Young modulus decreased by about 9.5%.

Table 3. Elastic constants (E11 and ν12)

Laminate
composites

E150/GF E150_NS5/GF E150_NS10/GF E150_NS15/GF

Young modulus
E11 (GPa)

23.59 ± 0.46 22.13 ± 0.85 21.36 ± 0.69 –

Poisson ratio
ν12 (–)

0.20 ± 0.05 0.15 ± 0.03 0.13 ± 0.09 –
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4.3 Effective Elastic Properties

4.3.1 First-Scale Homogenization

Microstructures of the Blended Resin
The Fig. 4 shows the microstructures of the blended resin with platelet inclusion types.
The choice of the platelet inclusion typeswasmade according to the SEM images (Fig. 3)
which show globally circular morphology of nanoparticles. Considering the particle size
of 10 nm and following the same procedure in [17], the aspect ratios were 0.02, 0.05
and 0.08 according to the weight fractions 5, 10 and 15 wt %, respectively. The more the
weight fraction of nanoparticles increases in RVEs, the more the nanoparticle thickness
increases, and the more the aspect ratio also increases. Indeed, the increase in thickness
would increasingly show a clustered microstructure. This is what could explain the bi-
phasic morphology observed for the highweight fraction (Fig. 3). As shown in Fig. 5, the
numericalmodelswere obtained based onRVEs. Figure 5a shows the randomorientation
of the nanoparticles. Figure 5b shows the numerical model contained the matrix phase
and the random 3D oriented nanoparticles. The tetrahedral meshing elements is shown
in Fig. 5c.

(a) (b) (c)

Fig. 4. RVEs of acrylic filled Nanostrength®M53, assuming as platelet inclusions, (a)
E150_NS5/GF, (b) E150_NS10/GF and (c) E150_NS15/GF.

Effective Elastic Properties of the Blended Resin
The blended resin presented an isotropic symmetric material. Considering this observa-
tion, the Young modulus (E) and the Poisson ratio (ν) were considered for illustrations
shown in the Fig. 6. The Young modulus shown in the Fig. 6a decreased with the vol-
ume fraction (vp %) of the Nanostrength®M53. This observation was also made for the
Poisson ratio (Fig. 6b). According to the characteristic data provided by Arkema com-
pany, the elongation at the break of the nanostrength was about 90%. The elongation
at break is a characteristic value describing the maximum percentage elongation that a
tensile specimen experiences at the break. It, therefore, describes the deformability of
a material under tensile load. Using nanostrength in the acrylic resin has improved the
deformability of the blended matrix. This is what could explain the slight loss in the
elastic module.
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(b)(a) (c)

Fig. 5. Random orientation of Nanostrength®M53 at 5 wt % reinforced RVE, (a) platelet
inclusions, (b) numerical model, and (c) Meshing with tetrahedral elements C3D4
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Fig. 6. Effective elastic properties of the blended resin, (a) Young modulus and (b) Poisson ratio

4.4 Second-Scale Homogenization

Microstructures of the Laminate Composites
Figure 7 shows the reconstruction steps of the laminate composites. As shown in Fig. 7a,
the acrylic resin and fibers properties were used to create the yarn. The yarn cross section
dimensions were 3.12 mm and 0.21 mm and the fiber’s diameter was 0.017 mm. A
mesoscopic glass fabric was obtained by considering two yarns in the both warp and
weft directions as shown in the Fig. 7b. The resulting pattern was similar to the actual
glass fabric (taffetas) in terms of periodicity in warp and weft directions. The laminate
composite shown in Fig. 7c was obtained by filling four plies of glass fabric. For all
studied laminate composites, the same modeling characteristics were considered except
for the weight fraction of Nanostrength. According to these RVEs parameters, the fibers
volume ratio was about 55.08%. From the obtained RVEs, the numerical models were
meshed as shown in Fig. 7d in order to compute the effective elastic properties.
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Resin 

Fibers Yarn 

(a)

(d)(c)

(b)

Fig. 7. Reconstruction steps of laminate composites, (a) Section of fiber and yarn, (b) RVE of
two yarns in one ply, (c) RVE of laminate in four plies and (d) voxel meshing

Effective Elastic Properties of the Laminate Composites
Figure 8 shows the effective elastic properties of the laminate composites. The general
observation is that the curves were similar to those in Fig. 6 except for the values of the
properties, which were higher. The increase in values was due to the high strength of the
glass fibers compared to that of the blended resin. However, the values of the properties
decreased while the volume fraction (vp %) of Nanostrength increased in the composite.
As shown in Fig. 8a, the variation of the Young modulus is approximately linear in the
range of 0 to 0.05 vp %. The same trends can be observed in the case of the Poisson
ratio shown in Fig. 8b. This observation was probably due to the good dispersion of the
Nanostrength below 0.05 vp % in the acrylic resin. From 0.05 to 0.16 vp %, the curves
of Young modulus and Poisson ratio presented a less sharp slope with a small difference
in values. This could be due to a non-homogeneous dispersion of nanoparticles in the
acrylic resin. Indeed, as shown in Fig. 4, the thickness of the nanoparticles increasedwith
the volume fraction in RVE and this observation reflecting clustered inclusions illustated
by Fig. 3d. A clusteredmicrostructures could be a source of loss ofmechanical properties
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due to the poor interfacial adhesion between the acrylic resin matrix and the clustered
inclusions.

Comparison of Effective Elastic Properties and Experimental Data
Figure 8 also shows the experimental elastic constants graphs which presented the same
trends compared to the effective elastic properties. As shown in Fig. 8a, the curve of
the effective Young modulus coincided approximatively with experimental data. The
effective Young modulus decreased by about 10% at 10 wt % of Nanostrength, and
compared to that of the experimental, the results were consistent. Moreover, the decrease
in effective properties was also observed for 15 wt %. In the case of the Poisson ratio,
the results presented in Fig. 8b, revealed a slight deviation for pure composite, when
compared to the experimental value. For the other composites, the curve of effective
Poisson ratio was in agreement with experimental data.

The general observation was that the elastic properties decreased slightly by adding
Nanostrength to the laminate composites. As mentioned above [9, 11], this nanoparticle
type was used to improve the impact and cracking resistance and could also maintain
elastic properties for low weight fractions.
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Fig. 8. Comparison of effective elastic properties and experimental data according to the volume
fraction (vp %) of Nanostrength

5 Conclusion

This work is about the experiments and numerical determination of the elastic proper-
ties of glass fibers reinforced acrylic thermoplastic resin-based Nanostrength® M53 at
weight fractions of 5, 10 and 15 wt %. The microstructures were characterized by SEM
analysis, and ImageJ software was used to access the nanoparticles distribution. The
microstructures were then reconstructed based on the Nanostrength® M53 distribution
and their aspect ratios (AR) using platelet inclusion by means of Digimat-FE. Multi-
scales homogenization-based RVEs was used and the effective elastic properties were
computed by Digimat-FE solver. The experimental elastic properties decreased while
the weight fraction (wt %) of the Nanostrength®M53 increased, as well as the effective
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elastic properties of the blended matrices and the constituent laminate composites. At
the Nanostrength weight fraction of 10wt%, the loss in Youngmodulus was estimated at
about 9.5% and 10% for the experimental and numerical results, respectively. The slight
decrease of the youngmodulusmay be permissible because in the literature, the laminate
composite would show a better low-velocity impact resistance at the weight fraction of
10 wt %. In addition, the Nanostrength® M53 can be used as a better reinforcement for
the laminate composite-based acrylic resin thanks to their advantages like tensile and
low-velocity impact resistances.
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Abstract. Due to the large applications field of Unmanned Aerial Vehi-
cles (UAV) in civil, military, and scientific activities, with the associated
missions’ specific operating points requirements, there is a need for a
large amount of experimental and numerical testing for new concepts
development. In aerodynamic studies, aeromodelling or more specifically;
small scale models, are often used in wind tunnel testing or numerical
simulations thanks to Reynolds number similarity. On another hand, the
possible uses of additive manufacturing (AM) have significantly increased
in recent years, due to the freedom it offers for the manufacture of com-
plex parts and the reduced cycle time to manufacturing, in contrast to
conventional processes. For rapid aero-models manufacturing, we focus in
this work on the filament deposition modelling (FDM), which is the most
affordable, compared to other AM technics. But, before going from CAD
to physical model, some preliminary assessments of the process fidelity
have to be introduced. In this context, the aim of our present paper is
the manufacture of a small scale UAV Blended Wing Body (BWB) using
FDM for subsonic wind tunnel testing. The results of the models in the
wind tunnel are compared to numerical results obtained from XFLR5,
and then the process fidelity is discussed.

Keywords: fused deposition modeling · process fidelity · unmanned
aerial vehicles · wind tunnel · numerical testing

1 Introduction

It is well known that wind tunnel testing is a useful experimental method for
flow characterization, visualization, and aerodynamic performances measuring,
which also serves to numerical models and CAD validations. Regarding this last
point, a recent study [1], elaborates an integrated and cost effective approach to
deal with UAV preliminary analysis where many missions and flight requirements
have to be fulfilled by a trial-and-error iterations. It is shown in conceptual and
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preliminary design stage, that integration of a proven medium fidelity numeri-
cal tool; such as XFLR5; based on potential and 3D panel methods, is a viable
and appropriate solution for selecting candidate configuration for detailed anal-
ysis. This is in contrast to high fidelity simulations, based on advanced Navier
Stocks resolution methods, which are very skilled topics requiring large time and
computational resources.

For new UAV development, it is essential to use wind tunnel testing in con-
junction with numerical simulations to reduce the development cycle time and
prevent errors in the early design stages. However, one of the main challenges
associated with wind tunnel testing is the fabrication of complex models with
intricate shapés and planforms. To overcome this difficulty, Additive Manufac-
turing (AM) processes have made significant progress in recent years by enabling
the rapid and cost-effective fabrication of complex shapes using automated man-
ufacturing [2]. AM has bridged the gap between the physical and digital worlds
by allowing individuals to easily create tangible objects from digital files, making
it possible to design, scan, distribute, and transmit digital versions of physical
items.

In UAV manufacturing, several additive methods are frequently used, includ-
ing fused deposition modelling (FDM), selective laser sintering (SLS), stere-
olithography (SLA), selective laser melting (SLM), and electron-beam melting
(EBM). For example, Michelson et al. [3] used FDM and SLA to construct a
robust and intricate wing rib structure for an entomopter in 1998. Easter et al.
[4] conducted a comparative study on ABS and UltemTM materials for manu-
facturing wing structures using an FDM printer, and they also used the same
technology to design and build a blended-wing-body UAV. Zhang et al. [5] used
an FDM printer to print the frame, tail, and gears for a UAV with flapping
wings.

Due to its technical and economic advantages in the rapid prototyping pro-
cess of complex aerodynamic designs (such as twist and sweep), our focus is on
evaluating the fidelity of the Fused Deposition Modeling (FDM) process in terms
of shape and dimensional accuracy. The subsequent sections describe the tools
and methodology employed in this study.

2 Manufacturing Models

2.1 Fused Deposition Machine

From the several existing additive manufacturing technologies, we have chosen
fused deposition modeling (FDM) due to the following reasons. First, it is an
affordable rapid prototyping solution compared to other technologies. Second, it
provides rigid and lightweight plastic parts that can withstand the applied forces.
The machine used for FDM is the Prusa i3 MK3S with a working volume of
210 mm× 210 mm× 250 mm, as shown in Fig. 1. The material chosen for printing
is Polylactic Acid (PLA) because it is simpler and more practical than other
materials. It also shrinks far less, lays flat on the print bed, is less ductile, has a
higher tensile strength, and is less expensive [6].
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Fig. 1. Prusa i3 MK3S

2.2 Model Design

The primary goal of the design was discussed in [1], and its geometric parameters
are listed in Table 1. The solid model of the design was created using Catia V5
software, and it was divided into two symmetrical models: the right and left
models, as shown in Fig. 2(a). Due to the machine length restrictions, each part
was split into two parts, labeled as Part 1 and Part 2, and assembled after
printing using adhesive and steel bar rods as inserts, as illustrated in Fig. 2(b).
An hexagonal orifice was implemented in the models to serve as a fixture point
and ensure the link to the wind tunnel by a steel bar. The choice of the hexagonal
shape was justified to prevent model rotation during the tests. The solid model
was then converted to an STL file with a carefully surface mesh, which was
exported to the printer.

Fig. 2. Design in CATIA V5
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Table 1. Geometric parameters

Model (right or left)

Section Chord y position x position Twist Aspect ratio

S0 208 mm 0 0 4◦ 4.29

S1 208 mm 56 mm 0 4◦

S2 80 mm 88 mm 80 mm 0◦

S3 80 mm 144 mm 80 mm 0◦

S4 48 mm 240 mm 167 mm 0◦

In order to set the printing parameters, we used the PrusaSlicer software
to generate the G code that is used as input to the printing machine. The
PrusaSlicer software provides a simulation for the settings of different features,
such as filling, the amount of filament used, and printing time. These features
are listed in Table 2. The printing process is illustrated in Fig. 3.

Table 2. Printing parameters

Model/Parameter Time printing Used filament Infill Temperature Layer height Nozzle diameter

Part a 7h35 30.10 m 15% 215 ◦C 0.2 m 0.4 m

Part b 8h44 30.64 m 15% 215 ◦C 0.2 m 0.4 m

Fig. 3. Part printing
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2.3 Post Printing Process

One of the most well-known limitations of 3D printing is the poor surface quality
of the parts obtained from the process. In our case, the models had noticeable
ridges on their surfaces due to the layers of filaments deposited during the man-
ufacturing process. Since surface cleanliness is an important criterion, a series of
surface treatment steps was planned for each model. Both models were smoothed
using sandpaper, as shown in Fig. 4(a). The left model was then treated with
a polyester mastic, primer, and paint, while the right model was treated with
plastoflex primer and paint, as shown in Fig. 4(b) and 4(c).

Fig. 4. Models before and after surface treatment

3 Wind Tunnel Testing

In the field of aerodynamic studies, access to full-scale flight test results is lim-
ited for most researchers and engineers. Therefore, they heavily rely on wind
tunnels as a common tool for aerodynamic studies. Wind tunnels provide highly
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accurate results, as long as the scaling effect and reduced Reynolds numbers are
considered. For our study, we used the AF100 subsonic wind tunnel (shown
in Fig. 5). This wind tunnel is an open return suction type with a variable
speed axial fan (Vmax = 36 m/s ) that pulls air through an aerodynamic diffuser
with a conical geometry and consists of a closed test section with dimensions of
305 mm× 305 mm× 600 mm. The objective of the diffuser is to accelerate the air
in a linear way. The velocity of the air is calculated by measuring the pressure
with a pitot tube that is integrated into the test section through slots. The aero-
dynamic characteristics are measured by an aerodynamic balance of the three
components (lift, drag, and pitching moment).

Fig. 5. AF100 subsonic wind tunnel

4 Simulation Tool

XFLR5 [7] is an open-source software that is capable of simulating the perfor-
mance of an aircraft configuration at any point in the design process. It does
so by coupling 2D airfoil analysis from XFOIL [8] with a 3D solver. For the
purpose of wing design and related analysis, XFLR5 provides three numerical
methods: the nonlinear Lifting Line Theory (LLT), the Vortex Lattice Method
(VLM), and a 3D Panel Method (as shown in Fig. 6). In our study, we made use
of the 3D Panel Method for our wing analysis.

Fig. 6. 3D panel method

Given that the wing is the most critical component in a flying wing design, the
XFLR5 software’s ability to provide trends and analyze the sensitivity to design
parameters makes it well-suited for our intended use. Additionally, since the
software is widely used and has been verified and validated within the potential
methods validity, we can rely on it for our analysis.
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5 Results and Discussion

The accuracy and calibration of the AF100 subsonic wind tunnel have been dis-
cussed in [9]. In our study, we compared the wind tunnel results of the two printed
models with their respective XFLR5 numerical values on the nominal model
(Catia V5 model). Figure 7 shows the lift, drag, and pitch moment coefficients
versus different angles of attack for a wind speed of V = 33 m/s, corresponding

Fig. 7. (continued)
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Fig. 7. Polars of the models

to a mean chord Reynolds number of 3.02 × 105 (The choice of this value is
based on the highest Reynolds achieved on the sub-scaled model, when working
10% below maximum wind tunnel speed). We observe a clear agreement between
the experimental and numerical results for the lift coefficient in the small angle
of attack (linear) region before reaching the stall region. However, at high angles
of attack, the 3D panel method cannot predict the stall behavior, leading to
differences between the numerical and experimental drag coefficients. Neverthe-
less, we obtained the same trend in the curve before the stall region. Regarding
the pitch moment coefficient, we noticed a deviation between the experimental
and numerical values, which we corrected by shifting the fixture point 5 mm
towards the leading edge in the nominal model. Additionally, the experimental
curves show a relative retarding effect of the stall for the right model, which
had less surface treatment and more roughness, leading to possible turbulent
reattachment.

The results presented here, in addition to the drag polar discussed earlier,
lead us to conclude that the effects of aspect ratio, sweep, and twist are well
represented by the printed models within the linear region of −5 < α < 10,
where the numerical model is valid. However, the pitch moment polar showed a
discrepancy in the fixture point on the printed model, which could be attributed
to shrinkage during the printing process.

6 Conclusion

The study presented here demonstrates the successful agreement between wind
tunnel experimental results and numerical results for aero models produced by
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3D fused deposition. This assessment confirms the fidelity of the FDM process
in replicating aspect ratio, sweep, and twist and suggests that other configura-
tions can be tested with confidence using this method. Future work should focus
on quantitative analysis of shrinkage reduction and metrological aspects such as
form and dimensional inspections. Additionally, extending the numerical mod-
eling to the boundary layer development would allow for a better understanding
of the nonlinear behavior of the models.

Acknowledgements. The authors express their gratitude to the Centre National
de la Recherche Scientifique of Morocco for providing funding for this study, and to
Mohammed V University in Rabat for project management.
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Abstract. Graphite-epoxy composites arewidely used in the space industry. They
have the advantage of being resistant to thermal distortion with high structural
rigidity and minimal weight. However, the non-complete adhesion between fiber
and matrix and the defects resulting from the manufacturing processes can affect
these structures. It seems therefore necessary to control these materials. The non-
destructive testing by ultrasonic guided waves presents an interesting alternative
for the detection of these imperfections. For a proper ultrasonic non-destructive
testing by guided waves, the knowledge of dispersion curves is an essential step to
determine the modes susceptible to propagate in our material during the control.

In this paper, we present analytical matrix methods for plotting the dispersion
curves of a graphite-epoxy laminate composite material. The formulations and
limitations of these methods have been presented. We have modeled the propaga-
tion of ultrasonic guided waves in two- and four-layer anisotropic laminates for
different fiber orientations. The accuracy of the obtained results has been checked
with the help of the software DISPERSION CALCULATOR.

Keywords: Guided waves · dispersion curves · layered composite · matrix
method

1 Introduction

UltrasonicGuidedWaves (UWG) arewidely used in the field ofNon-Destructive Testing
(NDT) of diverse structures, especially laminated composite structures. They are widely
used in very sensitive areas where the safety of these structures is capital. A reliable and
precise calculation of the dispersion curves of UGW allows to well define the conditions
of generation and detection of the waves susceptible to propagate in these structures.
Traditionally the dispersion curves are determined by Roots-Finding Methods (RFM)
which are based on numerical algorithms to find the roots of the characteristic equations
as a function of frequency and wave number. Analytical methods dedicated in general to
the calculation of dispersion curves for simple cases such as free or fluid loaded elastic
plates are known since Lord Rayleigh [1–4]. Some exact solutions for isotropic media of
standard geometry are available in books or articles such asMindlin [5] or Pao [6]. These
methods remain relatively simple for simple standard cases. However, the introduction
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of curvature, inhomogeneity, damping, anisotropy or when the studied structures are
multi-layered, the calculations become expensive and fastidious. A challenge is then
presented to the researchers and the industrialists to overcome the deficiencies of the
classical methods. Several solutions have been proposed to improve the performance
and the quality of plotting these dispersion curves. Among these methods, we cite the
TransferMatrixMethod (TMM). It was initially introduced by Thomson [6] and Haskell
[7] to calculate the dispersion curves in a layered structure made of anisotropic materi-
als. Later Nayfeh [8] extended it for the treatment of horizontal shear waves SH (Shear
Horizontal). Despite the fact that it is easy to formulate, the TMM remains limited
in these results [9]. Indeed, this method presents instabilities especially in the case of
thick layers and high frequencies. Rokhlin [9] has stated that under these conditions,
this method presents singular values because of its dependence on the exponential. The
SMM (Stiffness Matrix Method) [9, 10] was subsequently introduced to overcome these
singularities. A reformulation of the problem, which consists in regrouping the stresses
of a layer into a single vector, has been implemented. The resulting matrix of this manip-
ulation is a stiffness matrix. This last one does not include the instabilities presented by
the TMM. However, when the number of layers becomes more important, both methods
remain inadequate. The Global Matrix Method (GMM) has also been introduced for the
plotting of the dispersion curves. By exploiting the potential of the technique, LOWE
has developed the industrial software DISPERSE [1] which is the leader in the field of
ultrasonic NDT and which has been appreciated by many authors, but remains inade-
quate when the laminate exceeds a few hundred of layers. Monnier [10, 11] proposed the
equivalent matrix method, which consists in the calculation of an equivalent behavior
matrix for the whole laminate. However, the accuracy of the results is only valid for the
low frequencies of the first S0 and A0 modes for periodical piles (0◦ and 90◦). Several
other methods were introduced later, such as the semi-analytical SAFE (Semi Anlytical
Finite Elements) method [10, 12], the spectral method [13] and the method based on the
Legender polynomial [14]. These numerical methods present a great gain in computa-
tional time with a simplicity of coding. In addition to the DISPERSE software, recently
we have noticed the appearance of free software and applications allowing the calcu-
lation of dispersion properties of UGW in different types of waveguides. For example,
the interactive interface GUIGUW [15] using the semi-analytical SAFEmethod, the DC
(Dispersion Calculator) software, developed by Huber [16], based on the SMM, capable
of modeling the propagation of UGW in layered composites composed of a few hundred
layers.

In this paper, we introduce a new formulation based on the work of Nayfeh [8,
17] concerning the decoupling of ultrasonic guided waves for certain configurations of
multilayer composite waveguides. For this purpose, we have used the analytical matrix
methods SMM and TMM with some modifications. These modifications concern the
separation of the Lamb wave and horizontal transverse wave formulations. This separa-
tion allowed us to obtain more accuracy and less instability. The proposed approach has
been applied for four-layer structures for symmetric and asymmetric piles. The results
obtained are compared with those of the DISPERSION CALCULATOR (DC) software
based on the SMM formulation [16]. A perfect agreement of the results of the two
techniques was observed.
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2 Theoretical Formulation

We consider the propagation of UGW in a laminated composite with N layers that is
free from stresses, the thickness of each layer is h along the x3 direction. The structure
is considered unlimited along the two directions x1 and x2 (Fig. 1).

Fig. 1. Laminated composite with N layers.

The displacement components are written:
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q are the amplitude ratios developed in [17], U (l)
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tudes of the displacements, k is the wave number along the direction of propagation x1,
c is the phase velocity and the index l represents the number of the layer, it varies from
I to N .

Using Hooke’s law and the strain-displacement relations, the expression of the
stresses related to these displacements are written [17]:
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3 Transfer Matrix Method TMM

The TMM consists of expressing the displacements and stresses of the upper interface of
the laminate as a function of those of the lower interface while respecting the continuity
of displacements and stresses between the layers. For this purpose, the displacements (1)
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and the stresses (2) are combined into a single vector, called the state vector P(l). This
vector depends on the displacement magnitudes U (l)

1q . By expressing it on the two sides
of the same layer, we obtain a relation that joins the components of the displacements
and the stresses of the two sides of the same layer. The resulting matrix is called the
transfer matrix A(l), to calculate it, we just have to multiply the transfer matrices of each
layer A = A(I)A(II)...A(N ).

{
{P}(l)

(6,1) = [X ](l)(6,6)

{
Ujq

}(l)
(6,1)

{P}1(6,1) = [A]6,6{P}n+1
(6,1)

(3)

The matrix A(4 : 6, 1 : 3) expresses the boundary conditions of the free laminate
which results in the cancellation of the stresses on the top and bottom faces.

4 Stiffness Matrix Method SMM

Instead of having a transfermatrix between layers, the SMMmethod consists in grouping
the stresses at the upper and lower interfaces of a layer into a single vector and expressing
them in accordance with their associated displacements. This gives a stiffness matrix of
the layer:

{
σ1

σ2

}

(6,1)

= [S](6,6)

{
u1
u2

}

(6,1)

(4)

where [S](6,6) is the layer stiffness matrix expressed in [9], it depends on D(l)
jq ,V

(l)
q ,W (l)

q

and α
(l)
q .

Thereafter, the global stiffness matrix of the laminate is obtained by using a recursive
algorithm between layers (based on the equality of the stresses between layers). In this
waywe obtain a system that links the stresses on the top and bottom faces of the laminate.
Assuming that the stresses are zero at faces 1 and n + 1 (see Fig. 1), the characteristic
dispersion equation of the laminate is obtained by considering the cancellation of the
determinant of the global stiffness matrix.

5 Numerical Results and Discussion

Consider the case of a unidirectional fiber graphite-epoxy laminate composite of thick-
ness h and density ρ = 1.61 g/cm3. The values of the elastic constants of this material
are given in Table 1 and are expressed in GPa.

Table 1. Elastic constants of the graphite-epoxy composite plate [9].

C11 C22 C33 C12 C13 C23 C44 C55 C66

162 17 17 11.8 11.8 8.2 4.4 8 8
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To plot the dispersion of this material, we developed a Matlab program that plots
these curves in the (frequency, wavenumber) plane. The frequency range used is
f = 10 : 50 : 6106(Hz) and the wave number k = 10−5 : 100 : 12000(m−1

)
. We

compare our results with the Dispersion Calculation (DC) software [16]. Figure 2 shows
the variation of the elastic constants of the graphite-epoxy material as a function of
the φ angle. For angles of 0◦, 90◦, 180◦ and 270◦ the constants C16,C26,C36 and C45
are zero and the transversely isotropic material is described by these nine constants
(C11,C12,C13,C22,C23,C33,C44,C55 andC66). On the other hand, for angles different
from those mentioned before, the material has a monoclinic behavior and is therefore
described by 13 elastic constants (C16,C26,C36 andC45 �= 0).

Fig. 2. Polar diagram of the elastic constants of the epoxy graphite plate.

5.1 Laminated Composites

In this subsection, we will study the dispersion of UGW in layered composite struc-
tures. These structures are assumed to consist of a repetition of the [0◦/90◦] motif in
a symmetric or asymmetric arrangement. The [0◦/90◦] motif is an assembly of two
graphite-epoxy layers (Table 1) with fiber orientations of 0◦ and 90◦ respectively. For
these orientations, the Lamb modes are decoupled from the SH modes. For a 0◦ orienta-
tion, the material has a transverse isotropic behavior and the matrix of elastic constants
contains five independent constants. For a 90◦ orientation, the material behavior remains
the same (transverse isotropic) and we have a 90◦ permutation of the elastic constants.
For example, the value of the constant C11 at 0◦ becomes that of the constant C22 at
90◦ (Fig. 2). In addition, the symmetrical or asymmetrical arrangement of the [0◦/90◦]
motif will influence the nature of the modes generated in the laminate.

The considered structures have all a total thickness of 4 mm equally distributed on
the number of constituting layers. First, we will study a structure composed of a single
motif [0◦/90◦]. Next, we will study a four-layer structure consisting of a symmetrical
arrangement of the [0◦/90◦] motif that is, [0◦/90◦/90◦/0◦] and finally, we consider
a four-layer structure consisting of an asymmetrical repetition of the [0◦/90◦] motif
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that is [0◦/90◦/0◦/90◦]. We apply TMM and SMM to plot the dispersion curves of the
considered structures. The results obtained will then be compared to those of the DC
(Dispersion Calculator) software for validation.

Fig. 3. Dispersion curves of a 4 mm bilayer plate [0◦/90◦] (a), a 4 mm tetra-layer plate for
[0◦/90◦/90◦/0◦] (b), [0◦/90◦/0◦/90◦] (c) and a 3 mm tetra-layer plate for [0◦/90◦/90◦/0◦] (d)
of the epoxy graphite composite. Solid lines: DC software; Points: TMM; Stars: SMM.

Figure 3 shows the dispersion curves of the four laminated composites. Figure 3a
and 3c show asymmetric arrangements of the layers with respect to the median axis,
the modes present in these structures do not resemble the ones mentioned before. Here
we find modes (Mn) that we call pseudo-Lamb modes, and modes (Mn′) that we call
pseudo horizontal shear modes. Concerning Fig. 3b and 3d, they represent symmetrical
arrangements of the layers, the modes that propagate there are Lamb modes (Sn and
An) and horizontal shear modes (SH). We have developed an efficient procedure [18] to
classify the obtained results by exploiting the symmetry and antisymmetry properties
of Lamb and SH modes. As results, the red solid line curves represent symmetric Lamb
modes and the blue solid line curves represent antisymmetric Lamb modes. For the
SH modes, represented by dashed curves, we have symmetric SHSn (red color) and
antisymmetric SHAn (blue color) modes.

Both matrix methods were able to model the UGW dispersion of a four-layer com-
posite laminate. Since the laminates consist of layers with angles φ of 0◦ and 90◦, Lamb
waves and horizontal shear waves are then uncoupled and so their formulations are sep-
arated [8, 17]. Effectively, in this case the displacements that define the propagation of
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the pseudo-Lamb modes will depend on four constants and those of the pseudo trans-
verse modes on two constants. This dependence influences the size of the matrix and
consequently the dispersion relations.We then findmore simplified formulations in both
methods (SMM and TMM). For the TMM, the instabilities are almost no longer present
in theMn′modes (solution obtained in thewhole frequency range), but remain in the case
of theMn modes (solution valid for 0 < fd ≤ 2 MHz.mm). Note that this simplification
cannot be implemented in the case where Lamb modes are coupled to SH modes (fiber
directions different from 0◦ and 90◦) [10, 19]. For a three-layer laminated composite, of
3 mm thickness and with a motif [0◦/90◦/0◦], the DC software does not allow to treat
this type of structure. DC considers this structure as symmetrical and requires to con-
sider only the half. To overcome this problem, we then considered a four-layer structure
[0◦/90◦/90◦/0◦] while considering the two central layers [90◦/90◦] as a single layer of
each thickness are equal to 0.5 mm. The example in Fig. 3d shows a pile of 4 layers,
the first and the fourth layer have thicknesses of 1 mm and the central layers of 0.5 mm.
In contrast to the DC software, our program plots the dispersion curves of the laminate
with the [0◦/90◦/0◦] motif. The results presented in Fig. 3d show a very good agree-
ment. This reflects the ability of our program to plot dispersion curves for motifs that
are not supported by the DC software. We note that our formulation allows us to plot the
dispersion curves of a laminate with layer thickness variation, which is not the case for
some methods [11]. This advantage can be very useful for some industrial applications
where the layer thickness is variable, for example, the coating of a structure.

Table 2. Comparison of the calculation time between the used methods.

Methods DC software TMM SMM

Calculation time (s) 750 2540 1983

Table 2 shows the calculation times of the methods used to plot the dispersion curves
of the four-layer laminate with a representation of [0◦/90◦/90◦/0◦]. We note that the
DC software allows us to have the dispersion curves in a lower time than the other
methods (TMMand SMM). This large computation time of thematrixmethods ismainly
caused by the roots finding algorithm used. We use here the bisection method. Despite
its certitude of convergence, the dichotomy method remains expensive in computation
time. Indeed, the scanning in some domains where the solution does not exist and the
very large number of iterations remain limits of the method.

As perspectives, we consider the use of hybrid analytical methods combining two
to three roots finding algorithms to decrease the computation time. As an example, the
hybrid method used in reference [20] combining the dichotomymethod and the Newton-
Raphson method. This combination allowed a gain in computation time of almost 50%
of the time used by the bisection method alone.
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6 Conclusion

Matrix methods offer a very competitive way to plot the dispersion curves of graphite-
epoxymultilayer composites. In this work, we have focused on the TMM transfer matrix
method, which has shown some instabilities for large values of the frequency and the
wavenumber. We proposed a simplified formulation for the case where the modes are
uncoupled, which allowed a significant decrease in the size of the matrix and thus the
appearance of less singular values in the matrix. We have also been interested in the
stiffness matrix method SMM. This method does not include the weaknesses specific to
the TMM, but remains nevertheless dependent on the number of layers chosen and the
thickness of the structure to be controlled. In the same way, a simplified formulation was
implemented in the case of mode uncoupling which allowed the reinforcement of the
stiffnessmatrix and the reduction of these variables. The reliability of the results obtained
was demonstrated during the comparison with the DC software. The encouraging results
obtained for the case of a four-layer structure with symmetrical and asymmetrical piling
and with variable layer thickness motivate us in future work to study the influence of the
orientation of the plies, especially in materials with deficient pilings on the dispersion
curves.
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Abstract. This work aims to examine combined heat transfers through concrete
hollow bricks. The thermal behavior of hollow bricks is simulated using a math-
ematical model based on the conservation of mass, momentum and energy. The
effect of internal surfaces emissivity, aspect ratio of inner holes and solid wall
thermal conductivity on global heat transfer is investigated using practical val-
ues of the thermal excitations. The results show that the contribution of radiation
to the overall heat transfer through hollow bricks increases progressively with
higher values of the thermal emissivity. The results reveal also that the overall
heat flux through the concrete bricks is greatly influenced by the solid walls’
thermal conductivity. Since thermal conductivity cannot be adjusted after con-
struction, this finding emphasizes the importance of careful material selection in
designing energy-efficient structures, especially in regions characterized by hot
and arid climates. Based on these results, we propose a practical recommendation
to opt for concrete with low thermal conductivity in such climates. By adopting
this approach, construction practices can be tailored to enhance the overall energy
efficiency and thermal performance of buildings, providing sustainable solutions
for the challenges posed by extreme environmental conditions.

Keywords: Concrete hollow brick · Coupled heat transfer · 3D numerical
simulation

1 Introduction

The enormous amount of energy consumed to heat or cool buildings has led researchers to
explore the best ways to improve building wall thermal efficiency. In fact, the residential
sector represents 40% of the world’s energy consumption [1]. The building envelope can
act as a barrier between the cold or unpleasant heat from the outside and indoor climate,
decreasing the demand for mechanical heating or cooling. Hence, the best strategy for
reducing building energy use is to properly design the building envelope [2].
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Because of their high compression and long life, hollow bricks have been an essen-
tial building material for over a century. Bricks are mainly used in building construc-
tion because they offer a number of advantages including quick construction, excellent
mechanical resistivity and resistance to moisture variations.

In recent years, several numerical and experimental studies have been performed
to evaluate the thermal performances of hollow bricks. Dos Santos [3] carried out a
numerical investigation on the heat conductivity of hollow concrete blocks. The findings
demonstrate that through concrete hollow blocks, thermal radiation may be a significant
factor in the overall heat flux and that bigger holes offer greater transmittance values
owing to convection. Fioretti and Principi [4] evaluated the thermal efficiency of hollow
bricks. They demonstrate that the coating method reduces radiation in the cells, thus
increasing the thermal resistance offered by the block. The equivalent conductivity can
be reduced by 55% to 70% using the low emissivity coating.

The research presented above actually uses a two-dimensional (2D) model. The
three-dimensional (3D) model has only been used in a very small number of researches
to examine the coupled heat exchange through hollow bricks. In a three-dimensional
partitioned enclosure, the coupled heat transfers were examined byGossard and Lartigue
[5]. They found that thermal conductivity and emissivity significantly impacted the
thermal resistance of the enclosure. Shi et al. [6] analyzed combined heat transfer in
hollow blocks. They discovered that the equivalent conductivity of hollow blocks can be
effectively reduced from 13.65% to 40.42% by installing partitions vertical to the heat
flux.

The literature review reveals that there is limited three-dimensional research on
the combined heat transfer through concrete hollow bricks. Due to the arrangement
of the bricks in the walls, the heat exchange through the hollow brick walls is really
three-dimensional. Therefore, 3D numerical simulation can be used to more accurately
describe the heat transfer and fluid flow process.

The present work aims to investigate the effect of the aspect ratio of the inner holes
and the thermal emissivity and conductivity on the heat transfer for different realistic
values of thermal excitations.

2 Mathematical Formulation

The considered configuration is illustrated in Fig. 1 using the coordinate system. It
represents a concrete hollow brick composed of three cells surrounded by solid walls. In
Morocco, the construction of building walls frequently uses this prefabricated element
which has the geometrical parameters indicated in Table 1. The outer and inner surfaces
of the blocks are assumed to be isothermal, while the other surfaces are supposed to
be adiabatic. Air in the holes is assumed Newtonian and laminar [7]. For radiative heat
exchange, the fluid is supposed perfectly transparent and cavity surfaces are supposed
gray with diffuse emission and reflection [8].

The following are the key equations for the studied problem:

∂U

∂X
+ ∂V

∂Y
+ ∂W

∂Z
= 0 (1)
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o

Fig. 1. Studied concrete hollow brick.

Table 1. Dimensions of each aspect ratio of the considered hollow bricks.

Aspect ratio L (cm) H (cm) W (cm) Ah = H/W

Ah1 50 20 10 2

Ah2 50 20 15 1.34

Ah3 50 20 20 1
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Prandtl number is Pr, Planck number is P andRayleigh number is Ra given as follows:

Ra = gβ(To − Ti)H3

(να)f
(6)

Pl = ka(Te − Ti)

σT4
i L

(7)

The dimensionless conduction equation is expressed as follows:

∂θs

∂τ
= αs

αf

(
∂2θs

∂X2 + ∂2θs

∂Y2 + ∂2θs

∂Z2

)
(8)
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The analyzed problem’s boundary conditions are as follows:

θs = 1 at Y = 0 (9)

θs = 0 at Y = 1 (10)

• Condition of adiabaticity:

∂θs

∂η
= 0 (11)

On the interior surfaces of the cavities, the no-slip velocity conditions are applied:

U = V = 0 (12)

The conditions below are imposed on the solid-fluid boundary:

θs(X,Y) = θf(X,Y) (13)

−∂θs

∂n
= −Nk

∂θf

∂n
+ NrQR (14)

The following expression provides the dimensionless average heat flux through the
concrete hollow brick:

qa = −
∫ L

0

∫ H

0

∂θs(X,Z)

∂Y

∣∣∣∣
Y=0

dXdZ = −
∫ L

0

∫ H

0

∂θs(X,Z)

∂Y

∣∣∣∣
Y=1

dXdZ (15)

3 Numerical Procedure and Validation

The control volume approach is adopted to discretize the governing equations. A self-
developed Fortran program is used to perform the numerical computations.

The developed numerical code was validated by confronting our results with those of
the literature in the presence of convection in a cubic cavity. Table 2 presents the obtained
results. The comparison results show strong agreement, with a maximum difference of
1.16%.

The resulting code was additionally verified for conjugate natural convection and
radiation based on credible works in the literature. Hu et al. [11] carried out a benchmark
work on combined convective and radiative in a cubic cavity. Table 3 shows that the
results of the computational code and those of Hu et al. [11] are in good agreement.
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Table 2. Nusselt numbers are compared to those in the literature.

Ra Frederick and Moraga [9] Tric et al. [10] Present study

103 1.071 1.070 1.069

104 2.057 2.054 2.049

105 4.353 4.337 4.322

106 8.740 8.640 8.638

Table 3. Validation of our model with the benchmark (Hu et al. [11]): H (hot wall); C (cold wall);
R (radiative).

Ra NuCH NuCC NuRH NuRC

Hu et al. [11] 104 2.0906 2.0966 0.22746 0.22153

105 4.2726 4.2848 0.51514 0.50295

106 8.3237 8.3499 1.1171 1.0903

Present work 104 2.0901 2.0957 0.2301 0.2232

105 4.2867 4.2961 0.5194 0.5063

106 8.3458 8.3702 1.1265 1.0971

4 Results and Discussion

4.1 Heat Transfer by Radiation

To investigate the impact of radiation on total heat flux through the concrete hollow brick,
Fig. 2 illustrates the evolution of the heat flux q. The results illustrate that the thermal
emissivity ε has an considerable impact on the total flux through the brick. In fact, the
global heat flux for emissive walls is greater in comparison with the case where ε = 0.1.
The improvement in heat flux is approximately 26% when the emissivity increases from
0.1 to 0.9. Interestingly, the role of radiation in global heat transfer is significant for
hollow concrete brick surfaces with high emissivity values. Therefore, the heat transfer
is drastically decreased by lowering the thermal emissivity, which can improve the walls
thermal resistance.

4.2 Effect of the Aspect Ratio of the Hole Ah

Figures 3(a)–(c) illustrate the isotherms obtained for hollow bricks with various aspect
ratios Ah1, Ah2 and Ah3. As shown, the temperature fields are strongly affected by the
aspect ratio Ah. In the proximity of the top and bottom inner faces of the right and
left sidewalls, the isotherms become tighter when rising the Ah from Ah1 to Ah3, while
the fluid is in a condition of thermal stratification as the isotherms become parallel to
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Fig. 2. Variation of the global heat flux for different thermal emissivity values.

the horizontal sides in the middle of the holes. Furthermore, the intensity of convec-
tion increases, as shown by the distortion of the isotherms. It is worth noting that the
temperature profiles in the solid walls are almost linear.

4.3 Contribution of Various Heat Exchange Modes

Using the simulation results, it is very advantageous to estimate the contribution of each
heat exchange mode to the total heat flux through the studied bricks. The percentages of
the three modes are given in Table 4. The results show that conduction is predominant,
which accounts for more than 50% of total flux. The heat transfer by radiation accounts
for about 30%. As for convection, it has a lower percentage (about 15%) but undergoes
an augmentation according to �T. We also note that when �T increases, the fraction
of heat transfer by conduction reduces while the proportion of radiative and convective
exchanges increases.

4.4 Effect of Solid Walls’ Heat Conductivity

The variations of heat flux with different values of thermal conductivity are shown in
Fig. 4. The results reveal that the overall heat flux is strongly affected by the increase of
the thermal conductivity, especially for high�T. In fact, when the conductivity ks varies
from 1W/mK to 2W/mK, the heat flux increases by 80% for�T= 40 °C. This is due to
the interaction between convective and radiative transfers and mainly to the increase of
the conduction rate at the expense of the other modes when the thermal conductivity ks
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Fig. 3. Isotherms obtained for �T = 30 °C and various aspect ratios: (a) Ah = Ah1, (b) Ah =
Ah2 and (c) Ah = Ah3.

increases. These findings demonstrate that the global heat flux is considerably influenced
by the solid material’s conductivity greater than 1 W/mK.
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Table 4. Heat transfer modes contribution to the globall heat flux.

�T qcond (%) qrad (%) qconv (%)

10 64.43 25.21 10.36

20 60.11 27.79 12.10

30 57.84 28.24 13.92

40 55.72 29.65 14.63
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Fig. 4. Evolution of the heat flux with various values of thermal conductivity.

5 Conclusion

This study involved a numerical simulation of combined heat transfer through hol-
low concrete bricks. A computational model has been developed to simulate the heat
exchange properties of hollow concrete bricks. The effect of the inner surfaces’ ther-
mal emissivity, the thermal conductivity and the aspect ratio of inner cells on the heat
exchange and fluid flow is investigated for various practical values of the thermal exci-
tations. The results reveal that the contribution of radiation to the global heat transfer
through the hollow bricks is increasingly significant for high interior surface emissivity
values. Therefore, coating the interior surfaces of concrete bricks with a low-emissivity
substance limits heat transfer, which can increase the thermal resistance of the building
walls.
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Abstract. During the last decades, manufacturers have opted for the miniaturiza-
tion of electronic devices as an answer to high-performance equipment demand.
However, Downscaling the Integrated Circuit (IC) technology has several side
effects on the device’s performance. Considered one of the IC problems in the
design, the skin effect impacts the IC design. In addition, high clock frequency can
lead to severe Electromagnetic Compatibility (EMC) issues. The present work has
used an efficient numerical method for transient analysis based on the Finite Dif-
ference Time Domain (FDTD) Method to investigate the previous phenomenon.
It is used to examine the skin and incident electromagnetic field effect on the sig-
nals applied in non-uniform submicron CMOS interconnects. We have selected
two research situations of non-uniform interconnects loaded by linear terminals,
either in the absence or presence of an incident field. TheMATLAB tool is used to
implement the proposed algorithms. The outcomes are contrasted with PSPICE’s
results. A close match was obtained between the two results.

Keywords: Skin effect · Nonuniform Interconnections · Electromagnetic
Coupling · FDTD · CMOS Driver

1 Introduction

A variety of high-speed interconnect phenomena, including distortion, reflections, sig-
nal delay, and crosstalk, must be taken into account when designing high-frequency
integrated circuits (ICs). Skin effect is also one of the previous design side effects. It
is manifested in interconnections by the resistance increase of those conductors due to
a current crowding electromagnetic effect in the metal conductor under high frequency
[1, 2]. In addition, the nonuniform interconnections structures are frequently utilized
in microwave systems and high-speed electronics. For instance, they are employed in
RF and microwave circuits as filters, resonators, impedance matching, delay equalizers,
analog signal processing, wave shaping, VLSI interconnects, etc. [3]. The use of high-
frequency devices can cause electromagnetic compatibility (EMC) problems. EMC is a
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device or system’s ability to run in its electromagnetic environment without compromis-
ing its functions and without faults and vice versa. The effects of EMC are increasing
in several domains, such as microelectronics, automotive, and aeronautics [4]. Several
approaches have thus far been suggested to study the uniform transmission lines [5–7]
and the nonuniform ones [8] in the absence and presence of a radiated EMwave coupling
such as the finite difference quadrature [9].

The goal of this manuscript is to propose and develop amodel that represents the skin
effect in coupled nonuniform interconnect. The novelty of this work is due to the study
of skin effect influence in presence of incident electromagnetic field and the nonuniform
interconnect behavior in such an environment. Indeed, this work is dispatched as follows:
Sect. 2 is reserved to the formulation of the electromagnetic coupling in nonuniform
interconnections with the existence of a parasitic electromagnetic field means of the
FDTD method. Section 3 of the paper provides examples of electromagnetic coupling
with skin effect. The examples are presented both in the absence and presence of incident
field excitation. Section 4 concludes the paper.

2 Electromagnetic Coupling of Nonuniform Interconnect Lines

On the one hand, transmission lines full-wave analysis can give greater accuracy. On
the other hand, it is computationally more expensive than solving the multiconductor
transmission line equations (MTL). Therefore, the MTL model is often used as a good
approximation. It assumes that the parasitic field is a transverse electromagnetic (TEM)
field, composed of an electric and magnetic field lying in a line axis transverse plane
[10]. This section explains the modeling of the electromagnetic coupling of nonuniform
interconnects suffered from skin effects and radiated by an incident field.

2.1 The FDTD Formulation for Electromagnetic Coupling

The quasi-transverse electromagnetic model is assumed to investigate and evaluate the
skin effect of coupled nonuniform interconnections [10]. Thus, by applying theKirchhoff
law on the circuit shown in Fig. 1, we obtain the linked partial differential equations
system shown below. (Telegrapher’s equations) [11, 12]:

⎧
⎨

⎩

∂
∂xV (x, t) + Z(x, t)I(x, t) + L(x) ∂

∂t I(x, t) = Vs(x, t)

∂
∂x I(x, t) + G(x)I(x, t) + C(x) ∂

∂tV (x, t) = Is(x, t)
(1)

where the currents I and voltages V are written in Mx1 column vector form. The inter-
connect per unit parameters R, L, C and G are given by MxM matrices. VS and IS are
representing respectively per unit length electromagnetic induced field, and are written
as follows [12]:

Vs(x, t) = − ∂

∂x
ET(x, t) + EL(x, t) (2)

Is(x, t) = −G(x)ET(x, t) − C(x)
∂

∂x
ET(x, t) (3)
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where IS and VS are expressed in Mx1 column vector. ET and EL are respectively the
transverse and longitudinal components of the incident electric field.

The skin effect can be approximated as internal impedance that includes a resistance
and an internal inductance, and we may write [10]:

Z(x, t)I(x, t) = R(x)I(x, t) + B(x)√
π

∫ t

0

1√
u

∂I(x, t − u)

∂(t − u)
du (4)

where: R(x) = 100
1+K(x) ; B(x) =

√
μ
ε

2.10−6(5+50K(x))
; K(x) = 0.25

[
1 + sin

(
6.25πx + π

4

)]
.

To solve Eq. (1), we used finite difference time domain (FDTD) method. This algo-
rithm divides the time and space domains into Nt intervals and Nx cells, each with a
duration of�t and a length of�x, respectively. This discretization uses Yee’s grid where
the currents are determined at (t+ �t/2) steps and (x+ �x) positions, while the voltages
are computed at (t+ �t) steps and (x+ �x/2) positions. To ensure the model’s stability,
the spatial increment step �x must be smaller than the wavelength propagated on the
line and �t must be minor to satisfy Courant-Friedrichs-Lewy condition [13].

The equations describing the recurrent voltage and current along an interconnect line
are expressed:

For k = 2,3, … Nx

Vn+1
k = A4

−1
(

A5V
n
k + �xInsk + I

n+ 1
2

k + I
n+ 1

2
k+1

)

(5)

with:

Insk =
[

G(k)En
gk + C(k)

�t

(
En
gk − En−1

gk

)]

{Ai} (6)

For k = 1,2,3, … Nx

I
n+ 3

2
k = A−1

1

(

A2I
n+ 1

2
k + �x Vn

sk + Vn+1
k − Vn+1

k+1 − A3J
n
k

)

(7)

with:

Vn
sk =

(
En+1
gk − En

gk

)

�t
.{Di} (8)

In (8), the term Jnk represents the skin effect and it is written as:

Jnk =
n∑

m=1

P0(m)

(

I
n+ 3

2+m
k − I

n+ 1
2−m

k

)

(9)

with A1, A2, A3, A4, and A5 are square matrices MxM, line parameters dependent. The
Mx1 column vectors Ai and Di based on the the interconnections ith position, the modal
velocities propagated in the structure and the characteristics of the incident field.

Therefore, A1 = L(k)�x
�t + R(k)�x

2 + B(k) �x√
π�t

P0(0);
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A2 = L(k)�x
�t − R(k)�x

2 + B(k) �x√
π�t

P0(0); A3 = B(k) �x√
π�t

;

A4 = �x
�t C(k) + �x

2 G(k), and A5 = �x
�t C(k) − �x

2 G(k) with En
k is the incident

field at position k and time n.
The load circuits must be detailed to calculate the currents and voltages at the ends

of the line structure. The following subsection describes in detail the CMOS nonlinear
loads.

Fig. 1. Equivalent circuit model of single interconnect illuminated by an incident field
−→
E .

2.2 The Boundary Condition

By considering Fig. 2, we obtain the following equations:

Vg = RsIin+Vin (10)

Iin + �x
2

Is1 = I1 + G1
�x
2

(

Vin + �x
2

Vs1

)

+ C1
�x
2

∂

∂t

(

Vin + �x
2

Vs1

)

(11)

By combining the previous equations, we get:

Gs
(
Vg − Vin

) + �x
2

Is1 = I1 + G1
�x
2

(

Vin + �x
2

Vs1

)

+ C1
�x
2

∂Vin

∂t
+ C1

(
�x
2

)2 ∂Vs1

∂t
(12)

After simplification, (12) is written as:

Vn
in = B−1

1
�x
2�t

(
C1V

n−1
in + GsV

n
g − In1 + B2E

n
g1 − B3E

n−1
g1 + B4E

n+1
g1

)
(13)

where:B1 = Gs+�x
2 C1+ �x

2�tC1;B2 = �x
2

(
G1 + C1

�t

)
A1−

(
�x
2

)2 G1
�tD1+2

(
�x
2�t

)2
C1D1;

B3 = �x
2

(
C1
�t

)
A1 − (

�x
2

)2 G1
�tD1 + (

�x
2�t

)2
C1D1; B4 = (

�x
2�t

)2
C1D1.

By considering Fig. 3, we obtain the following equations:

GLV
n
out = InNdx + �x

2
InsNdx − �x

2
Gn
Ndx

(

Vn
out + �x

2
V
n

sNdx

)

− �x
2

Cn
Ndx

(

Vn
out + �x

2
V
n

sNdx

)

(14)
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Fig. 2. Equivalent circuit model of single interconnect illuminated by an incident field
−→
E .

Thus, (14) can be simplified as:

Vn
out = F−1

1

(

InNdx + �x
2

Cn
Ndx

�t
Vn−1
out + F2E

n
gNdx − F3E

n−1
gNdx + F4E

n+1
gNdx

)

(15)

where: F1 = GL + �x
2 CNdx + �x

2�tCNdx; F2
�x
2

(
GNdx + CNdx

�t

)
ANdx − (

�x
2

)2 GNdx
�t DNdx +

2
(

�x
2�t

)2
CNdxDNdx; F3 = �x

2

(
CNdx
�t

)
ANdx − (

�x
2

)2 G1
�tDNdx + (

�x
2�t

)2
CNdxDNdx; F4 =

(
�x
2�t

)2
CNdxDNdx.

Fig. 3. Single interconnect’s equivalent circuit model illuminated by an incident field
−→
E .
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The following section will study some cases of voltage and current implementation
in MATLAB.

3 Study Cases and Discussions

3.1 Nonuniform Interconnects Loaded with Linear Circuits and the Absence
of Incident Field Excitation

A trapezoidal pulse with an amplitude of 1 kV/m, rise and fall time of 100 ps, and pulse
width of 0.3 ns is applied to the first line.

Fig. 4. Two interconnects test circuit with linear loads.

We used MATLAB to implement near and far-end voltage recurrence relations. The
results at the far end voltage of the first line are shown in Fig. 5-a. PSPICE tool simulation
of Fig. 4 is shown in Fig. 5-b.

Similarly, we have simulated the structure and plotted second line output voltage
using MATLAB (Fig. 6-a), and PSPICE (Fig. 6-b).

In the previousfigures, it has beenobserved that the skin effect has impacted generally
the amplitude of the different voltages. For instance, the input and the output of the first
line are going respectively more than 600 mV and up to 1 V (Fig. 5). The apparent
fluctuations in Matlab results (Fig. 5-a) and (Fig. 6-a) and their absence in PSPICE
results (Fig. 5-b) and (Fig. 6-b) are due in part to discretization in the FDTD method.

In a conclusion, we found thatMATLABoutcomesmatch closely the industrial-level
PSPICE. Thus, the accuracy of our model is proven.

3.2 Excitation by an Incident Field of Nonuniform Interconnects with Linear
Loads

The following discussed study case is commonly found in reality. The growing demand
for faster data transmission and processing in telecommunication systems has led to an
increased interest in modeling the non-ideal effects of conductors that connect different
subsystems. The second study case schematic in Fig. 7 shows two nonuniform intercon-
nect lines, where the whole circuit is excited by an incident field of 3ns delay, with an
application of a trapezoidal voltage source of 1ns delay on the first line.
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(a)

(b)

Fig. 5. First line simulation, (a) MATLAB (b) PSPICE.

For the example given, and considering the previous parameters, we have done some
MATLAB (Fig. 8.a) and PSPICE tool (Fig. 8.b) simulations.

The induced voltage at the second line input is considered as a victim and it is shown
in Fig. 9.

On the one hand, Figs. 8 and 9 have confirmed the skin effect influence on the
amplitude of the various signals, for example, the input voltage of the first line is going
up to 600 mV to reach 800 mV. On the other hand, sharp peaks have appeared at the
output voltage which can be explained by the incident field impact.

The comparison of the results from MATLAB and PSPICE, it was observed a good
agreement between them. Thus, came the conclusion of the validity of the proposed
model.



50 N. Youssef et al.

(a)

(b)

Fig. 6. Second line simulation, (a) MATLAB (b) PSPICE.
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Fig. 7. Two interconnects test circuit exited by an external field
−→
E .

(a)

(b)

Fig. 8. First line simulation, (a) MATLAB (b) PSPICE.
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(a)

(b)

Fig. 9. Second line simulation, (a) MATLAB (b) PSPICE.

4 Conclusion

The paper presents amodel and simulation of nonuniform interconnect lines electromag-
netic coupling affected by skin effect. The telegrapher equations and the FDTD method
were employed to model the coupling. The signal propagation mode is assumed to be
quasi-TEM. The validity of the algorithm is analyzed using MATLAB and PSPICE, in
the absence and presence of external incident disturbances. The outcomes demonstrate
a close match between MATLAB and PSPICE simulations.
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Abstract. This work presents an experimental evaluation into the effect of the
temperature upon the thermal properties and the mechanical properties of jute
fabric/epoxy composite heated at different temperatures. The jute fabric/epoxy
was prepared at the ambient temperature and fixed volume fraction of jute (four
fabric layers) using infusion method. To examine the effect of the temperature,
the composite was heated at different temperatures. The mechanical properties of
the jute fabric/epoxy heated at different temperatures were carefully investigated.
The results shows that the composites exposed to the high temperature are prone
to the lower mechanical properties. At the temperature (80 °C), the composite
shows a high ability to deformation due to the matrix softening which reduces
the cohesion between the epoxy and the jute fabric, which is the reason for the
decrease of the tensile stress. Moreover, the matrix softening increase with an
increase of heating temperature. The lowest tensile stress (reduce by more than
58%)was determined in the case of the composite heated at the temperature 80 °C.
The results in this research confirm the limitation of the composite use in different
applications, especially at high temperature.

Keywords: Jute fabric · epoxy · composite · thermal properties · mechanical
properties

1 Introduction

Because of increasing environmental alertness, vegetal fibers have become the most
requestedmaterials by researchers and in the industry as reinforcement for polymer resin.
The vegetal fibers have many advantages such as environmentally friendly, low cost,
availability in all world region, renewability and good mechanical properties [1]. The
composite reinforced by vegetal fibers are used inmany applications such as automobile,
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aerospace and construction [2, 3]. However, the composites reinforced by the natural
fibers are exposed to the environmental conditions such as temperature and humidity
[4, 5]. These conditions influence the mechanical properties of composites [6, 7]. This
changers in the properties due to the changers on their mechanical properties of the
components of the composite [8]. Bensmail et all [6] investigate the effects of the heat
treatment on themechanical properties of the jute yarns. The results found shows that the
tensile stress and modulus of elasticity are influenced by water evaporation and reduce
at the heated temperature 100 °C. As reported by Debarati et al. [9] the performance
of ozone treated jute fabric / epoxy composites was evaluated at different temperatures
after incorporation of ozonized and pulverized corn husk particles. The results of this
investigation show that the filler was found successful in removal of non-cellulosic
contents.Moreover, the treatment of the particles and their incorporation in the composite
reduce the creep deformation of jute fabric/epoxy composite. This behavior was due to
increased mechanical bonding between the jute fabric and the matrix epoxy. Sagar et al.
[10] studied the effect of Nano-SiO2 powder on the mechanical properties of a jute
fabric/epoxy composite and showed that the composite is significantly improved by
incorporation of the filler especially the improvement of the tensile stress. Parabina et al.
[11] indicate that the incorporation of the groundnut shell particulate filler in the jute
fabric/epoxy composite reveal that the tensile stress is increased and reach a maximum
up to 15wt%filler. In this investigation, the effect of the heat treatment on themechanical
properties of the composite jute fabric/epoxy is evaluated and the specimens are exposed
to the temperature less than 100 °C [6]. The tensile tests are carried out to determine
tensile strength, modulus of elasticity and elongation at break for each specimen based
on the temperatures. The thermal stability of the jute fabric, epoxy and composite are
also evaluated.

2 Materials and Methods

2.1 Materials

The jute fabric is extracted from fabric used for the manufacturing of agricultural prod-
ucts bags in the southeast of Asia. The epoxy is Resoltech 1800 ECO/1804 ECO it
is 34% biobased on the mix from resoltech: advanced technology resin, French. The
manufacturing process of the specimens is summarized in the figure (Fig. 1).

2.2 Thermal Analysis

The thermal stability of the simples was determined by thermogravimetric analysis
(Shimadzu TGA device). The samples weight loss is between 3 and 8 mg of epoxy,
jute fabric and composite. Each specimen was examined under air atmospheric with the
heating speed at 10 °C/min from the ambient temperature to 600 °C.

2.3 Mechanical Testing Method

The mechanical properties of the jute fabric and the composite at different temperatures
was carried to studies the mechanical performance of the simples. The jute fabric dimen-
sion estimated are 1 mm × 20 mm × 50 mm (Fig. 2) and the composite dimension are
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Fig. 1. Fabrication process of the composite Jute fabric/epoxy.

4 mm× 20 mm× 50 mm (Fig. 3). The tensile test speed of the specimens is 2 mm/min.
Before each test the samples are heated at different temperatures for 24 h.

Fig. 2. Fixation system of Jute fabric specimen.
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Fig. 3. Dimensions and fixation system of the composite Jute fabric specimen.

3 Results and Discussion

3.1 Thermal Analysis

The thermal stability curves of the jute fabric, epoxy resin and the composite jute fab-
ric/epoxy are shown in Fig. 4 (a). The first weight loss below 100 °C is due to water
evaporation. The second decomposition occurred at the temperature range of 240–350 °C
due to degradation of the hemicellulose and α-cellulose [12]. The third decomposition
occurred at the temperature range of 350–450 which is due to the degradation of the
cellulose and non-cellulosic substances [1, 6]. The matrix decomposition occurs on the
main steps: the first one occurs at the temperature range of 200–350 °C due to volatiliza-
tion of epoxy by random chain scission and intermolecular transfer demanding tertiary
hydrogen extractions from the polymer [13]. The second decomposition is the degra-
dation of the residue formed after degradation takes place at higher temperatures. The
composite is less stable than the matrix epoxy and their decomposition occur on three
steps: the first decomposition is due to water release, the second decomposition in due
to decomposition of the jute fibers and the volatilization of the matrix epoxy [14, 7]. The
last decomposition is due to the degradation non-cellulosic substances and the residue
of the polymer degradation. The DTA curves confirm the degradation occurred during
the decomposition of the materials used in this study (Fig. 4 (b)).

3.2 Tensile Properties of Jute Fabric

The tensile stress-strain curves of the jute fabric are presented in the figure (Fig. 5 (a)).
The results show a dispersion of themechanical properties due to the natural composition
of the jute fibres, the jute yarns which are constituted of continuous and discontinuous
fibres and number of the fibres in each jute fabric. The figure (Fig. 5 (b)) show the typical
tensile stress-strain curve. The curve can be divided into four zones: the first zone (Z1) is
due to the alignment of the jute yarns and the fibres lose their twisted. The second zone
(Z2) is the elastic zone used on the determination of the Yong modulus. This aligned
zone is followed by a third zone (Z3) which is characterised by non-alignment of the
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Fig. 4. TGA (a) and DTA (b) curves of jute fabric, epoxy matrix and composite jute/epoxy.

curve and damage of the fibres. The last zone (Z4) where occur a gradual drop of tensile
stress until the total rupture of the jute fabric specimens [15]. The table (Table 1) plot
the mechanical properties average of ten specimens of the jute fabric [7].

3.3 Tensile Properties of Composite

The heat treatment effect on themechanical properties of the composite jute fabric/epoxy
is evaluated in this study. The stress-strain curves of the composite jute fabric/epoxy at
ambient temperaturewhich are used to determine themechanical properties are presented
in figure (Fig. 6 (a)). The figure (Fig. 6 (b)) plots the effect of heat treatment on the tensile
strength of the composite. The results show that the tensile strength of the composite is
less than that of the pure matrix due to several factors: the tensile strength of the fabric
is less compared of that of the matrix, the adhesion between the matrix and the jute
fabric and the cavity content on the composite. The tensile strength of the composite
reduces with the increase of the heated temperature due to the softening of the matrix.
The module of elasticity decreases with the increase of temperature due to the composite
deformation caused by the softening of the matrix and the loads are transferred by jute



Effect of the Temperature on the Mechanical Properties 59

0 2 4 6 8 10
0

5

10

15

20

25

St
re
ss

(M
Pa

)

Strain (%)

(a)

0 2 4 6 8 10
0

5

10

15

20

25

St
re
ss

(M
Pa

)

Strain (%)

Z2Z1 Z3 Z4

(b)

Fig. 5. (a) Stress-strain curves of ten specimens and (b) typical experimental curve stress-strain
of jute fabric.

Table 1. The average mechanical properties of ten jute fabric specimens.

Tensile Stress (MPa) Modulus of elasticity (GPa) Tensile Strain (%)

17.98 ± 1.8 0.72 ± 0.089 5.16 ± 0.439

fabric which have a module of elasticity less than that of the pure matrix (Fig. 6 (c)).
The tensile strain increases with the increases of the temperature due to the ability of
deformation of the composite caused by softening of the matrix (Fig. 6 (d)).
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Fig. 6. (a) Stress-Strain curves of composite at temperature 22 °C; (b) tensile stress, (c) modulus
of elasticity and (d) tensile strain of the composite as function of the temperature.
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Fig. 6. (continued)

4 Conclusion

The effect of the heat treatment on the mechanical properties and thermal stability of
matrix epoxy and jute fabric/epoxy composite were investigated and the conclusion
drawn are the tensile strength and modulus of the elasticity reduce with the increase of
the heated treatment temperature of the composite, whereas the tensile strain decreases
with increase of the temperature. This explained by the softening of the matrix epoxy.
Furthermore, to benefit of the mechanical properties of the composite the most possible
their use must be at the low temperature.
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Abstract. The field of non-destructive evaluations (NDE) using ultrasonic waves
is widely used in industry to guarantee the safety and proper functioning ofmateri-
als. Thus, mastering the dispersion curves of propagation waves in a material is an
essential first step. This paper presents a numerical approach used for plotting the
dispersion curves of cross-section ultrasonic guided waves. The spectral colloca-
tion method (SCM) described here can turn the set of partial differential equations
for sound waves into an eigenvalue problem. In order to evaluate the efficiency of
this method for an isotropic aluminum plate, we have established algorithm exe-
cuted with Matlab program. The results were compared with a classical bisection
zero-finding method, the stiffness matrix method, and SAFE method. The results
found confirm that the SCM remains conceptually simpler and depends on the
differentiation matrices used. Finally, the method proves its accuracy, its calcula-
tion speed and its capacity to compute the phase velocity and wavenumber curves
as well as the complete three-dimensional dispersion spectrum which includes
both propagative (real wavenumber) and non-propagative modes (complex wave
number).

Keywords: Dispersion curves · Spectral Collocation Method · Lamb waves ·
Guided waves

1 Introduction

Lamb waves propagating in solid materials were first described by Horace Lamb [1].
They are part of waves found in thin plates and shell structures without traction with
the characteristic of being guided by the boundaries. This type of wave is widely used
in industry for the non-destructive evaluation (NDE) of finite-dimensional solids. They
make it possible to detect damage inside or on both surfaces of the plates.

According to Auld’s classification [2], two types of Lamb modes solutions are dis-
tinguished: propagatif modes with a real wave number which transport energy inside
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the structure and propagate without attenuation, for this they are often most useful for
NDT engineering applications. The second type is that modes with a complex or purely
imaginary wave number, these modes are non-propagating.

Dispersion curves are an indispensable tool in NDTwith Lambwaves. They allow us
to know the current phase and its propagation speeds (phase and group speed) depending
on the frequency of the wave generated and the thickness of the plate that one wants
to inspect. Several previous researches have worked on dispersion curves and their
several applications in NDT. In this context, several techniques for plotting dispersion
curves have been proposed. Among these methods we find: the bisection method [3],
the Newton-Raphson method [4], the transfer matrix method [5], etc.

To properly study the behavior of Lamb waves, the FEM remains the most robust
numerical tool available. But the major drawback of simulation with the FEM is that
require a lot of computing time even with the current developed computing resources.
These facts have prompted many researches to create and perfect other numerical meth-
ods. i.e. spectral element method [6], finite difference method [7], hybrid boundary ele-
ment (HBE) method [8], wave finite element (WFE) method [9] and the semi-analytical
finite element method (SAFE) [11]. The latter is also taken as a validation method in
this paper. In the work of Barazanchy and Giurgiutiu, the performance and speed of the
SAFE method have been demonstrated by comparison with Disperse software [12].

The first use of spectral methods was in fluid dynamics problem solving and was
introduced by Kreiss and Oliger [13]. The spectral collocation method (SCM), [14],
is used to solve elastic guided wave (GUW) problems. The principle of SCM consists
in reducing the differential equations governing the GUWs to the ordinary differential
equations on the thickness of the plate. Then, A discretization of the domain is carried out
at a set of collocation points, thus, we obtain an approximation of the motion equations
by an eigenvalue problem in matrix form. The method has the notable advantage of not
missing any dispersion mode.

The purpose of this study is to evaluate the performance of the SCM in terms of
accuracy and computational cost for plotting dispersion curves for an isotropic material.
To verify the accuracy of the method, we compared the curves plotted with those plotted
by the Dispersion Calculator software which uses the stiffness matrix method SMM [15]
and with the SAFE method. We first present the theoretical formulation of the method
for an arbitrary section waveguide, then, we discuss some parameters that need to be
optimized to ensure accuracy.

2 SCM Formulation and Resolution of Motion’s Equation
for a Plate

2.1 Theoretical Model

The plate used in this paper is a homogeneous isotropic medium. The geometry of the
plate and the system of axes are shown in Fig. 1. We consider a 2h thick plate with the
z axis as a wave propagating direction.
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Fig. 1. Geometry of the plate. The free faces of the plate are placed at y = +h and y = −h.

The Chebyshev interpolation using differentiation matrices described by Weideman
and Reddy [16] is used here. The Chebyshev interpolation points are defined as:

y = cos

(
(j − 1)π

N − 1

)
, j = 1, . . . .,N . (1)

2.2 Equation of Motion

A detailed description of the SCM can be found in [17]. The motion’s equations for a
homogeneous anisotropic medium with linear elastic behavior are:

Cijkluk,jl = − ρω2ui (2)

Cijkl is the stiffness tensor of the plate [4], and ui are the components of the vector
of displacement.

uj = Uj(y)e
i(kz−ωt); j = x, y, z, (3)

With k is the wave number, ω is the angular frequency, and i is the imaginary unit
(i2 = −1).

As shown in Fig. 1, the faces of the plate are located at y = ±h, , and the plate is
free in stress on both sides, the boundary conditions (BC) are expressed as:

σyy(±h) = σyx(±h) = σyz(±h) = 0. (4)

The relationship between the stress tensor field and the strain tensor field is written
as:

σij = Cijkl εkl (5)

And the strain tensor field, εij, is written as function of the displacement vector field,
uj, as:

εij = 1

2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(6)
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As a result, we end up with a system of three equations of motion and six equations
for the boundary conditions. With this method we approximate the differential operators
defined in y by Chebyshev differentiation matrices (DM).

∂n

∂yn
→ Dn = [DM ]nN×N . (7)

The order of derivation is noted n.
Each of Eq. (2) can be represented in matrix form and for the first component of

displacement Ux, the motion’ equation can be written as follow:

AN×NUx + BN×NUy + CN×NUz = − ρω2 Ux. (8)

The N × N matrices AN×N ,BN×NandCN×N are defined as:

AN×N = C55D
(2) − C11k

2I + 2C15kiD
(1)

BN×N = C45D
(2) − C16k

2I + C14 + C56)kiD
(1)

CN×N = C35D
(2) − C15k

2I + C13 + C55)kiD
(1)

With I the identity matrix and CKL the elastic stiffness constants.
The same approach is followed for a matrix representation of the other components

of the vector field of displacement. Thus, the system of equations can be rewritten as an
eigenvalue problem where the unknowns are the vectors Uj:

⎡
⎣ A B C
D E F
G H I

⎤
⎦
3N×3N

⎧⎨
⎩
Ux

Uy

Uz

⎫⎬
⎭

3N×1

= ω2

⎡
⎣−ρ I 0 0

0 −ρ I 0
0 0 −ρ I

⎤
⎦

⎧⎨
⎩
Ux

Uy

Uz

⎫⎬
⎭. (9)

Or, in reduced form.

L(k)U = ω2MU , (10)

where U is the vector of displacement with three components:
[
Ux,Uy,Uz

]T .
Then, we proceed to a discretization of the six Eqs. (4) and a rearrangement of their

terms, as in [17], so the boundary conditions can be represented in matrix notation:

S =
⎡
⎣S1 S2 S3
S4 S5 S6
S7 S8 S9

⎤
⎦

⎧⎨
⎩
Ux

Uy

Uz

⎫⎬
⎭

(±h)

=
⎧⎨
⎩
0
0
0

⎫⎬
⎭. (11)

Before resolution, we introduce the boundary conditions to the system of Eq. (9), we
replace the 1, N, (N+1), 2N, (2N+1) and 3N rows of the matrix L with those of the matrix
S of Eq. (11). These lines correspond, for each component of the field of displacement
vectors U , to the points of the grid y = ±h, i.e. lines 1 and N evaluate Ux on the top
and bottom surfaces of the plate (at y = h and y = −h), respectively, the rows N+1 and
2N go with Uy, and so on. The same rows modified in the matrix L are replaced in the
matrix M with rows filled with zeros.
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2.3 Eigenvalue Problem

A reorganization of the matrix Eq. (10) will lead to an eigenvalue problem in terms of
the wavenumber k having the expression:

[P2k
2 + P1k + P0ω

2]U = 0 (12)

The matrix on the left of Eq. (12) is not regular and admits infinite eignvalues [18].
We use the Linear Companion Matrix Method [19] as a method of linearization, thus,
the eigenvalue problem can be written as follow:

(A − kB)X = 06N . (13)

where A; B, and X are defined as:

A =
[
P1 P0 + M
I3N Z3N

]
,B =

[−P2 Z3N

Z3N I3N

]
,X =

{
kU
U

}

The matrices P(j); (j = 0, 1, 2,) of size 3N × 3N are formed from the DMs up to the
second degree (D(1),D(2)), the identity matrix I and the elastic stiffness constantsCKL.

To solve the noted problem of instability of the numerical results, we balanced the
matrices A and B. The balancing is done by scaling the identity matrices located in the
lower halves of A and B by a constant whose value is comparable to the entries in Pj

and M.
Using this formulation, a complex wavenumbers k = kr+i ki can be solved for by

fixing real ω. So, we can study both propagative modes with real wavenumber and
non-propagative modes with complex or purely imaginary wavenumber.

3 Results and Discussion

An example of isotropic plate is studied in this paper. The plate material is an aluminum
with the characteristics cited in the Table 1 below:

Table 1. Characteristics of the studied plate.

Thichness Young’s modulus Poisson’s ratio Mass density

1 mm 72.4 GPa 0.33 2770 kg/m3

A Matlab programs are established based on SCM and SAFE methods to compute
(k,f) dispersion curves. The separation between the symmetric modes (S) and the anti-
symmetric modes (A) is performed by checking the displacement components obtained
from the eigenvectors.
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Zoom in 9 mode (c)

Fig. 2. Dispersion curves in the (f,k) plane plotted by SCM (dashed line) and by DC software
(continuous line) according to the number of collocation points Nc: (a) Nc = 20; (b) Nc = 30;
the symmetric modes (in red) and antisymmetric modes (in blue). (c) zoom in A9 mode showing
good accuracy after increasing Nc.
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In works relating to the spectral method we define Nc = 2m+10 to obtain the neces-
sary precision (see a detailed demonstration on convergence rates of Chebyshev series
in Gottlieb and Orszag [20]), with m being the mode number. This condition is verified
in the plotting of the wavenumber dispersion curve as a function of the frequency see
Fig. 2. We note that the accuracy has improved from Nc = 20 to Nc = 30 for the first 10
modes, see Fig. 2(a) and Fig. 2(b), respectively.
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Fig. 3. (a) Evolution of relative error of A0 mode computed with SCM, with Bisection method
as reference for a given two frequencies f1 < f2. (b) Running time using SCM in function of the
number of collocation points (Nc).

Figure 3 (a) shows that is a positive correlation between the frequency and the relative
error. For a given number of collocation points (Nc), when the frequency increases the
error does as well.

Figure 3 (b) shows the variation in running time using a computer with a processor
of 2 GHz and a memory (RAM) of 4 Go. The stepwise increment in the wavenumber k
is set as 0.25. we note that the evolution of the computation time as function of Nc is of
cubic form.

The dispersion curve representing thewavenumber-frequency dependence computed
with the SCM are shown in Fig. 4 (a) and have been found to present very good concor-
dance with those in Fig. 4 (b) computed with the SAFE method. On one hand, in Fig. 4
(a), junction points 1,2,3,4 show frequency-thickness products for which the modes
change in nature and become propagative, non-propagative, or attenuated. On the other
hand, in Fig. 4 (b), the SH modes are included and the purely imaginary modes too
(non-propagating highly attenuated modes).

Very good accuracy observed at low frequencies for the non-propagative modes
which remain confined in their excitation zone (Fig. 5).
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(a)

(b)

Fig. 4. 3D-dispersion curves in the complex domain: (a) Lamb modes plotted using the SCM.
(b) Lamb and SH modes plotted using SAFE, corresponding to the symmetric (in red) and
antisymmetric (in blue).
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Fig. 5. Wavenumber curve of non-propagative Lambmodes: SCM(dashed lines) and SAFE (solid
lines).

4 Conclusion

For the purpose of evaluating the performance of the SCM in plotting dispersion curves
for an isotropic aluminum plate, an algorithm is established based on the theoretical
formulation presented at the beginning of this paper. The results were compared with
two numerical methods based on SMM and SAFE method.

The SCM remains conceptually simpler, no need to handle special functions such
as interpolation functions, easy in programming and has a high convergence rate by
increasing the number of collocation points.

The results found illustrate the significant capability of the method to compute all
the modes without missing any and without parasitic modes, unlike zero-finding and
SMM methods which require processing in the choice of the frequency-thickness step.

The ability of SCM to find complete real and complex solutions for dispersion
curves has been confirmed here. The plots include real, complex, and purely imaginary
wavenumbers.
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Abstract. In this study, thermal radiation and mixed convection in a ventilated
horizontal channel are analyzed. The channel contains five cylindrical blocks that
produce different volumetric heat rates. The channel is ventilated by two open-
ings; the inlet is located on the left wall, and the outflow is on the top one. All the
channel walls are adiabatic, except for the upper wall, which is held at a constant
low temperature of TC = 20 °C. To numerically solve the differential equations
governing the current problem, a numerical code based on the finite volume app-
roach and the SIMPLE algorithm is utilized. The discrete ordinate method is used
to discretize the radiative transfer equation. The impacts of the Reynolds number
and the emissivity of the surfaces on the heat transfer and fluid flow are analyzed.
The numerical simulations indicate that increasing the Reynolds number or the
emissivity considerably decreases the maximum temperature in the cavity and
improves the performance of the considered system.

Keywords: Mixed convection · Ventilated channel · Finite volume method ·
Numerical simulation · Heat sources

Nomenclature

d cylinders diameter, m
D cylinders diameter D = d/H
g gravitational acceleration, ms−2

h∗ openings size h∗ = h/H
h openings size, m
H cavity’s height, m
i radiation intensity, Wm−2

I dimensionless intensity
k thermal conductivity, Wm−1K−1

K conductivity ratio K = kS/kf
L cavity’s length, m
Nu Nusselt number
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Pr Prandtl number
Pl Planck number
P dimensionless pressure
Q internal heat generation, Wm−3

Ri Richardson number
Re Reynolds number
Ra Rayleigh number
TR temperature ratio
T dimensional temperature, ◦C
t time, s
U, V velocity components
X , Y Cartesian coordinates

Greek symbols

σ Stefan-Boltzmann constant, Wm−2K−4

α thermal diffusivity, m2s−1

β thermal expansion coefficient, K−1

ε emissivity of radiative surface
ω scattering albedo
φ phase function
θ dimensionless temperature
υ kinematic viscosity, m2s−1


 solid angle, sr
λ heat generation parameter
ρ density, kgm−3

τ dimensionless time
μ, η direction cosines
τ ∗ optical thickness
ψ dimensionless stream function

Subscripts

C convective term, cell, or cold wall
f fluid
i block index
in inlet
LR local radiative
LC local convective
max maximum
R radiative
s solid (blocks)
T total

Abbreviations

B block
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1 Introduction

The miniaturization of modern electronic devices has resulted in a reduction of physical
space available for the components, leading to a rise in power density. Since electronic
components are temperature-sensitive and can be damaged or perform poorly if their
temperature falls outside the nominal operating range. Therefore, thermal dissipation has
become a critical aspect of their operation. However, implementing cooling systems in
compact electronic systems is often challenging, mainly when the components generate
different amounts of heat or are not uniformly distributed in electronic packaging. To
ensure effective cooling in these systems, it is necessary to employ convection in its three
forms (forced, mixed, and natural) in conjunction with thermal radiation. Researchers
are actively pursuing new cooling system designs (usually simulated using cavities con-
taining heating bodies) that offer a balance of compactness, high performance, and
cost-effectiveness [1–5].

Mixed convection (MC) occurs as a result of a combination of both free and forced
convection, where the flow is impacted by both a non-uniform density distribution of the
fluid and an external forcing system. Numerous numerical studies have investigated MC
in cavities that contain isothermal blocks. One such study conducted by Chamkha et al.
[6], analyzed two-dimensional MC surrounding an isothermal square body placed at the
center of a vented air-filled cavity. The cavity’s right wall is fixed at a low temperature,
while the remaining walls are kept adiabatic. The study assessed the impact of various
factors such as the Richardson number, Reynolds number, outlet position, position, and
aspect ratio of the block on the thermal fields and flow patterns. The findings indicated
that the heat transfer was optimal when the outflow was positioned at the top of the right
wall. In their research, Javadzadegan et al. [7] investigated the MC heat transfer and
fluid flow inside a ventilated cavity containing a hot elliptical obstacle maintained at a
constant temperature. The study’s main objective was to examine the impact of using a
porous medium on the velocity and thermal fields.

In comparison to an isothermal block, a heat-generating block (HGB) offers a more
accurate portrayal of an electrical component. A numerical investigation was carried out
by Ahammad et al. [8] to examine the impact of various factors, such as the Richardson
number, the solid/fluid thermal conductivity ratio, and the diameter of the HGB, on a
magnetohydrodynamic MC problem in a vented cavity. The study found that a smaller
block size and a lower thermal conductivity ratio improved heat transfer in the system.
Ahammad et al. [9] revisited the same configuration to investigate the impact of the
Reynolds,Hartmann, and Prandtl numbers on the flowand thermal fields. It was observed
that these parameters have a considerable impact on both the thermal and flow fields.
MC in cavities containing simple heat-conducting bodies (obstacles) has been studied
in the references [10–12].

MC in channels is usually used as a methodology for designing and optimizing cool-
ing systems for electronic equipment. Pirouz et al. [13] numerically examined theMC in
a horizontal channel with upper and lower bodies mounted on the horizontal walls and
receiving uniform heat flux through their base. Ghaneifar et al. [14] investigated numer-
ically the MC of a nanofluid in an insulated horizontal channel containing two central
HGBs. Hamouche and Bessaïh [15] considered a 2D channel with two identical heaters
on the bottomwall. The same problemwas considered by Boutina and Bessaïh [16] with



76 R. Hidki et al.

an inclined channel. Hssain et al. [17] studied numerically steady MC of a nanofluid
in a horizontal channel with isothermal blocks to simulate extremely heat-conductive
electronic components. All these studies are agreed with the effect of ventilation (Re
effect) on the behavior of the considered system.

It is important to remember that thermal radiation (TR) is necessary for cooling
electronic components [18]. Numerous studies have been conducted on the coupling of
natural convection (NC) and TR in closed cavities containing heating blocks of various
geometrical shapes, including rectangular [19], circular [20], and square [21, 22]. These
investigations reveal that TR improves total heat exchange, enabling more effective
cooling of the investigated heat sources. Mandal et al. [23] and Peiravi and Alinejad [24]
examine the convective heat transfer and TR in a channel with blocks. Mandal et al. [23]
investigated MC with TR in a channel containing discrete heat sources on the bottom
wall. Their results show that the TR interaction between the surfaces decreases with
an increase in the Reynolds number. Peiravi and Alinejad [24] evaluated the combined
effects of TR and MC on heat transfer between a channel’s working fluid and a square
solid. The results reveal that when the radiation parameter rises, the heat transfer rate
decreases.

The above literature review suggests that insufficient focus has been given to TR
exchange, especially when heat-generating blocks are present in channels and cavities.
This study aims to demonstrate the significance of MC and TR for cooling multiple
HGBs located in a horizontal channel. This research is motivated by the search for
cost-effective cooling systems for high-performance computers that are both compact
and powerful. The findings are displayed in terms of isotherms, streamlines, maximum
temperature profiles, and those of the Nusselt number.

2 Mathematical Model and Validation

2.1 Problem Description

Figure 1 presents a schematic representation of an open cavity, highlighting its various
parameters. The air-filled rectangular cavity, with dimensions of L = 3H = 15 cm,
contains five HGBs, representing different electronic components. The positions of the
HGBs are at Xi = 0.5i and Yi = 0.5 with 1 ≤ i ≤ 5. . The blocks having the
same thermal conductivity (kS) and diameter (d), and generate heat at varying rates,
with Qi = λi × Q = 1720 × λi, where λi = 23−i is the internal heat generation
parameter. All the cavity walls are kept adiabatic except the upper one, which is kept at
the same temperature as the air inlet TC = Tin = 20 ◦C. The inlet and outlet are placed,
respectively, on the left wall and the top wall, with equal sizes h = h∗ × H. The fluid
enters the cavity with a velocity of uin. Simulations were also carried out for h∗ = 0,
which represents a closed cavity, to show that combining TR andMC instead of NCmay
significantly enhance the total heat transfer.
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Fig. 1. Schematic configuration

2.2 Mathematical Model

The flow under examination is assumed to be two-dimensional, laminar, Newtonian, and
incompressible. Except for the density in the buoyancy component, which is addressed
using the Boussinesq approximation, the thermophysical characteristics of the air are
maintained constant. These assumptions permit the formulation of governing equa-
tions, which are expressed in dimensionless form, including the conservation of mass,
momentum, energy, and the radiative transfer equation (RTE).
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Table 1 summarizes the boundary conditions utilized to solve these equations (Eqs. 1–
6).

The non-dimensional parameters and variables that appear in Eqs. 1–6 are:

τ = αft

H2 , (U,V) = (u, v)H

αf
,�T = QH2

kf
, (X,Y) = (x, y)

H
, θ = (T − TC)

�T
, IR = iR

σT4
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(7)
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υ
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, Pr = υ
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, K = ks
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CH

, TR = TC

�T
(8)
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Table 1. Boundary conditions.

Inlet Outlet Solid walls

θ = 0
U = Re × Pr
V = 0

∂θ
∂Y = 0

∂U
∂Y = 0

∂V
∂Y = − ∂U

∂X

θ = 0 at Y = 1
U = V = 0
∂θ
∂n = ±ε

(
QRinc
Pl + IRb

)
at adiabatic walls

∂θf
∂n = K ∂θs

∂n ± ε
(
QRinc
Pl + IRb

)
and θf = θs

at the fluid-cylinder interface

IRb = 4
(

θ
TR

+ 1
)4

and φ correspond, respectively, to the non-dimensional emission

and phase function of the blackbody. (μ,η) are the directional cosines and (ω, τ∗) denote,
respectively, the scattering albedo and optical thickness. These latter are set to zero in
this study.

The following equation gives the local and mean heat transfer by convection and
radiation on the upper wall.

NuLC(X) = − ∂θ

∂Y

∣∣∣∣
Y=1

, NuLR(X) = QR(X)

Pl

∣∣∣∣
Y=1

,

NuC or R = 1

3 − h∗ ∫3−h∗
0 NuLC or LR(X)dX and NuT = NuR + NuR

(9)

2.3 Numerical Approach

The Finite Volume Method (FVM) is employed to discretize the previous equations and
boundary conditions. The RTE is integrated using theDiscrete OrdinateMethod (DOM).
A computer program written in FORTRAN is then used to solve the resulting system
of equations. The solution is acceptable only if the following condition is satisfied on

all variables: max

∣∣∣∣
(

φnew
i,j −φold

i,j

φold
i,j

)∣∣∣∣ ≤ 10−5, where φ represents a given dependence of

the variables (ψ, θ), and i, j are the coordinates of space. A mesh test was done on the
accuracy of the results and the computation time, it was found that the mesh 250× 80
gives good results.

To verify its accuracy, the numerical code underwent thorough testing using bench-
mark problems. The numerical results ofHabchi andAcharya [25] in a horizontal channel
that include a hot block fixed to the bottom wall were considered. The comparison of
velocity obtained before and after the block (Fig. 2) shows a satisfactory matching.
More validation of the numerical code with other previous studies can be found in the
references [4, 5, 26, 27].
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Fig. 2. Comparison of velocity profiles with Habchi and Acharya [25].

3 Results and Discussion

The effect of TR onMC cooling of electronic components simulated byHGBs in a venti-
lated rectangular channel is demonstrated in this section. The flow structure and thermal
field are investigated for various Reynolds number and emissivity. The parameters Ra,
D, K, and Pr are set to 2 × 106, 0.4, 0.1, and 0.71, respectively.

The effect of the Reynolds number on the obtained results is analyzed for ε = 0,
h∗ = 0.2. The streamlines (a) and isotherms (b) obtained for various values of Re are
shown in Fig. 3. For the case h∗ = 0, the flow pattern exhibits a bicellular structure.
The first cell, (C1), is concentrated around block B1 which generates over 50% of the
total heat. The second cell, (C2), surrounds the remaining blocks, but with less intensity.
These two cells (C1,C2) rotate in opposite directions, indicating that blockB1establishes
the flow direction within the cavity. This behavior can be explained by considering that
block B1 generates a considerable amount of heat, creating a thermal plume that induces
fluid flow in the cavity. When the mode is changed to MC (h∗ �= 0), the cell (C2) is
replaced by lines connecting the two openings via different paths. This change in the
flow structure can be attributed to the presence of the cooling fluid, which alters the flow
pattern and promotes more efficient heat transfer. Figure 3a also demonstrates that when
the buoyancy force contribution reduces (Re rises), the number of lines flowing between
the cylinders reduces.

According to Fig. 3b, the isotherms are tightly concentrated in the blocks that produce
a significant amount of heat (Qi > Q). Conversely, the last two blocks (Qi < Q)
appear to be nearly isothermal. The isotherms in the solids show a circular pattern,
indicating that the temperature extremes (θi,max) are located in the center of blocks Bi.
This phenomenon can be explained by considering that the heat generated by the blocks
is primarily conducted towards the center, where it accumulates, leading to the formation
of a hot spot in the middle. At h∗ = 0, a thermal plume appears over block B1, which
generates a significant amount of heat. As the value of Re increases, the influence of
buoyancy force decreases, resulting in a gradual reduction in the intensity of the thermal
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plume. This reduction can be explained by the fact that as Re rises, the inertia of the
fluid flow becomes dominant over the buoyancy force, leading to a more streamlined
flow pattern.

Reference case

)b()a(

Fig. 3. Streamlines (a) and isotherms (b) obtained for different values of Re with ε = 0.

The profiles of the average convective Nusselt number (NuC) and that of the max-
imum temperature (Tmax) are plotted in Fig. 4. This figure shows that NuC decreases
significantly with increasing Re number. For Re = 700, more than 40% of the overall
heat generated (Qtot = 7.75Q) is removed through the outlet, implying that the cool-
ing method is effective in dissipating a considerable amount of heat from the system.
In addition, a decrease of 4.4% is observed in the maximum temperature of block B1.
This value reaches its lowest point at Re ≈ 300 before experiencing a slight increase at
higher values of Re. These findings suggest that the cooling method (MC) is effective
in dissipating heat from multiple components (Bi) that generate varying levels of heat,
as long as the Ri number is chosen appropriately (in this case, Ri = Ra/Re2Pr ≈ 31).
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In other words, the cooling method can effectively dissipate heat in the presence of heat
sources if the flow regime is appropriately selected.
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Fig. 4. Maximum temperature andmean convective Nusselt number for various values of Re with
ε = 0 and h∗ = 0.2.

The impact of emissivity on the maximum temperature (Tmax) and the total heat
transfer (NuT) within the cavity was studied for h∗ = 0.2(0) and Re = 300 (Fig. 5). The
results shown in Fig. 5a reveal that Tmax decreases with ε for bothMC (h∗ = 0.2) andNC
(h∗ = 0) modes. The recorded temperature drop was 3.4% and 5.5% for h∗ = 0.2 and
h∗ = 0, respectively, indicating the effectiveness of radiative cooling in bothmodes. This
effect can be explained by considering that an increase in emissivity leads to a higher rate
of radiation heat transfer, which can dissipate more heat from the system, reducing the
maximum temperature.On the other hand, Fig. 5b demonstrates thatNuT does not exhibit
a significant change with an increase in emissivity. For NC mode, the total heat transfer
is not dependent on emissivity as all the heat produced is removed by both radiation
and convection via the active wall. However, in the MC mode, only a portion of the
produced heat is removed through the cold wall, with NuT(h∗ = 0.2)/NuT(h∗ = 0) =
71% (78% ) for ε = 0(1).
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Fig. 5. Maximum temperature (a) and total Nusselt number (b) for Re = 300 and different values
of ε.
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Overall, these results provide insights into the impact of emissivity on the system’s
thermal behavior and can be useful for designing cooling systems that incorporate radia-
tive cooling. The results suggest that the effectiveness of radiative cooling can vary
depending on the cooling mode and the emissivity of the surfaces.

4 Conclusion

In this paper, coupled thermal radiation and mixed convection in an elongated horizontal
ventilated cavity with five heat-generating blocks that generate varying levels of heat
have been investigated. The outcomes of the mixed convection mode are contrasted to
those found in the case of a closed unventilated cavity (natural convection). The key
findings demonstrating the impact of surface emissivity and the Reynolds number are
as follows:

• The cavity’s maximum temperature decreases by 4.4% as the Re number increases
and stabilizes around Re ≈ 300.

• An increase in Re reduces lines flowing between the blocks, indicating a decrease in
buoyancy contribution.

• The maximum temperature in the cavity reduces by 3.4% and 5.5% for h∗ = 0.2 and
h∗ = 0, respectively, with an increase in emissivity from 0 to 1, demonstrating the
effectiveness of radiative cooling in both mixed and natural convection.
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Abstract. Water absorption and vibration issues are major concerns for manu-
facturers and researchers using bio-based composites. In light of this, this work
examines how water aging affects the dynamic characteristics of a sandwich with
a reentrant auxetic core. The material considered to manufacture the specimens
is polylactic acid (PLA) reinforced with flax fibers. It is manufactured using 3D
printing which proceeds by adding layers successively. For various immersion
times, the impact of water absorption on the dynamic characteristics is examined.
Water aging obviously affects equivalent stiffness and damping. We therefore
observe a decrease in rigidity and an increase in damping. These results could be
explained by the plasticizing effect of water on bio-based composites, stimulated
by water absorption as well as by the architecture of the core of the sandwich.
Finally, a numerical strategy based on the finite element technique is developed. It
made it possible to evaluate the equivalent rigidity and the damping for different
immersion times. The results of this approach are in close agreement with those
obtained experimentally.

Keywords: auxetic core · bio-sourced composite · water aging · dynamic
analysis · 3D-printing

1 Introduction

The advantage of natural fibers in several sectors compared to synthetic fibers is essen-
tially due to the substantially equivalent mechanical properties. In addition, these new
materials have ecological advantages. Several studies have shown the ability of plant
fibers to replace glass fibers [1–3]. The fibers extracted from flax plants have properties
equivalent to those of glass fibers, mainly in terms of rigidity and even better in terms
of dissipation of vibrational energy. Apart from the environmental benefits, studies have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
Z. Azari et al. (Eds.): JET 2022, LNME, pp. 85–91, 2024.
https://doi.org/10.1007/978-3-031-49727-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49727-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-49727-8_9


86 Z. Kesentini et al.

been done on how natural fiber composites behave when they vibrate. Duc et al. [4]
have shown that the ability to dampen vibration is owing to the viscoelastic nature of
the cellulose that this type of natural fiber contains, the friction between the different
constituents of the fiber, the interaction between the fibers and the fiber/matrix inter-
face. The effectiveness of the fiber/matrix contact was also discovered to be a significant
factor affecting the damping qualities [5]. The comparison of the vibration behavior of
epoxy composites reinforced with glass fibers and with flax fibers has been studied by
Prabhakaran et al. [6] in free vibrations. The results obtained show that the damping
behavior of composites reinforced with flax fibers exceeds that of fiberglass composites
by 50%. The combination of natural fibers and biobased polymers can be interesting in
several areas of use.

Essassi et al. [7] have explored the vibrational characteristics of a 3D-printed
PLA/flax bio-composite in this context. The results obtained showed that this composite
has, among other things, significant damping properties. 3D printing is an automated
manufacturing technology that uses 3D model data to create structures [8]. It is used by
Antony et al. [8] to study the mechanical characteristics of PLA/hemp composites with a
honeycomb structure. Auxetic structures have shown their significant damping capacity
[7]. This extensive study has demonstrated that a material with excellent mechanical and
dampingqualitiesmaybe created by combining sandwich composites, auxetic structures,
and bio-based materials, particularly bio-composites reinforced with flax fibers.

However, all these works mentioned above are not exhaustive if one seeks to study
the behavior of natural fiber auxetic sandwich materials in vibration combined with
water absorption. Considering the water aging effect on the dynamic properties of the
composite is essential to be able to use the sandwiches in all environments (dry and wet).

In this context, the influence of water absorption on the vibration behavior of a
reentrant auxetic core sandwich with four auxetic cells along the width of the specimen
(designated S4C in the figures) is studied in this article.

2 Experimental and Numerical Procedures

2.1 Experimental Setup

The sandwiches are made by a method of additive manufacturing that works by melt
extrusion (3D printing). It makes it possible to develop parts with complex geometries
at a lower cost and faster than conventional development methods.

The auxetic form studied in this work is that of a reentrant auxetic honeycomb. It was
first presented byGibson andAshby in 1982 [9]. It is based on the hexagonal geometry of
a conventional honeycomb structure. The design and geometry of the auxetic honeycomb
core with a reentrant unit cell are shown in Fig. 1 and defined in Table 1.

The sandwich has a width of 25 mm, a length of 270 mm and a thickness of 7 mm. It
consists of two skins and a soul with 4 elementary cells in PLA/flax. The limit value of
the angle θ is set at −20° so as not to lose the auxetic character during the development
of the structure. After making the sandwich with the 3D printing technique, several test
pieces are immersed in tap water at room temperature. The specimens are removed from
the water at various well-chosen times to study the effect of water aging.
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Fig. 1. a) Auxetic cell and b) Core with four cells.

Table 1. Design settings

Parameter Definition

l Length of the inclined walls

h Length of the vertical walls

θ Angle between the inclined walls and the X direction

t Cell wall thickness

L the lengths of the cell along the X axis

H the lengths of the cell along the Y axis

The experimental method of excitation by impact is applied for different immersion
time in order to determine the effect of water aging on the vibration characteristics of
the sandwich.

Figure 2 presents the experimental device in clamped-free configuration. For embed-
ding and clamping, a 40 mm block was printed at the end of all the specimens. Three
lengths of specimens, 170 mm, 200 mm and 230 mm, were tested and this to vary
the resonance frequencies. Using an impact hammer (PCB084A14), the specimen is
excited near the clamping block. The response is recovered at the free end, the signals
are detected using an OFV 303 Sensor Head laser vibrometer. Then, these signals are
digitized with the acquisition card and processed with the NVGate software. These tests
are carried out at least 3 times and this for each duration of immersion.

The frequency response function (FRF)was examinedwith an automated loop devel-
oped under MATLAB. Following this analysis, the damping factors and the frequen-
cies of the resonance modes are determined. Subsequently, the equivalent moduli was
deduced [10].

The−3 dB bandwidthmethod involves separating the resonance peaks from the FRF
and processing them. This method makes it possible to determine the eigenfrequencies
as well as the damping. For each isolated peak, the bandwidth at −3 dB is defined with
respect to the maximum value of the amplitude.

2.2 Numerical Approach

The finite element analysis method is used to calculate frequencies and then determine
the damping of the sandwich beams and the stiffnessmodulus. The CADof the sandwich
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Fig. 2. Experimental equipment for clamped-free vibration tests

is carried out using the Solidworks software. Then, the geometric model is converted
into instructions compatible with the finite element software ABAQUS, with which
numerical simulations have been carried out. The model is studied in an embedded-free
configuration. For the boundary conditions, the 6 degrees of freedom in translation and
in rotation of the fixed end are blocked. For loading, a nodal force of 10 N is applied
to a node close to the clamped end, to simulate the excitation of the vibration bench
impact hammer. For the results, a node is chosen to visualize the behavior of the model
on the other free end of the specimen. The results are proposed with curves plot for
amplitude (dB) as a function of frequency (Hz). These responses were used to estimate
the damping factor of the sandwich using theHPBmethod. The behavior of the sandwich
is considered linear elastic. The behavior laws used for unaged and aged materials are
determined from bending tests. The structure is meshed using tetrahedral linear elements
(Fig. 3). The number of nodes used to mesh the sandwich structure depends on the core
densities and the configuration used and it is equal to 29511.

Fig. 3. Example of meshed sandwich.

3 Results and Discussions

Figure 4 illustrates the results obtained following the experimental modal analysis for
the unaged and aged sandwich. The equivalent stiffness is normalized to the initial value
of the unaged sandwich. The same is done for the loss factor.

The results show that the equivalent stiffness decreases with increasing immersion
time and this as a function of frequency. The damping increases according to the duration
of immersion and the frequencies. These results can be explained by the dissipation of
vibrational energy through the material on the one hand and by the penetration of water
also. Indeed, the viscoelastic nature of flax fibers and the biobased resin PLA as well
as the spaces created in this metamaterial by auxetic cells promote the dissipation of
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Fig. 4. Hydric aging effect on: a) equivalent stiffness and b) loss factor.

energy. It has been observed that an amount of energy is dissipated through the spaces
of the auxetic cells.

The biobased material’s constituent macromolecular linkages become weaker due to
the presence of water molecules inside. The modification of the mechanical properties
of the composite by aging is potentially due to the phenomenon of decohesion or to
the generation of microcracks in the matrix. Pantaloni et al. [11] showed that the two
types of damage are related to the absorption of water by the biobased composite. Water
absorption plays an important role in themobility ofmacromolecular chains, responsible
for the evolution of dynamic properties. The water molecules cause the formation of
hydrogen type bonds by replacing the bonds in the lattice of the composite. On the other
hand, the energy is dissipated by friction between the different elementary layers of the
fiber and also between the fibers and the matrix.

Figure 5 illustrates the comparison of the experimental results with the numerical
simulation results for the unaged and aged sandwich. The curves present a superposition
of the two results. However, a slight discrepancy is observed. The discrepancy can
be attributed to the shape of the manufacturing process of the 3D printed structures,
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Fig. 5. Comparison of dynamic characteristics of experimental tests and numerical simulations:
a) unaged and b) aged for 30 days.

the quality of the numerical calculations and the method used for the calculations. In
addition, to have a repeatability of the test, the tightening of the specimen is carried out
using a torque wrench. A slight dispersion in the tightening value can have an impact
on the frequencies and damping coefficients of the sandwich. On the other hand, for the
model, the material is considered as an isotropic and continuous homogeneous material
in all the finite element analyses. These are the few factors that cause the numerical
results and the results of the experimental tests not to overlap perfectly.

The results of the numerical simulations obtained present a good agreement with the
results of the experimental tests.

4 Conclusion

The water absorption effect on a biobased sandwich’s vibrational behavior with a reen-
trant auxetic core fabricated using 3D printing technology is studied. Vibration tests
in the embedded-free specimen configuration are carried out. The results show that
with increasing immersion duration, damping has increased and equivalent stiffness has
reduced. These results can be explained by the vibrational energy dissipation through
the material on the one hand and by the penetration of water on the other hand. The
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viscoelastic nature of PLA/flax (fibers and matrix) as well as the spaces created by the
auxetic cells of this metamaterial favor the dissipation of energy. A finite element anal-
ysis is developed to evaluate the vibration behavior of the studied structures, using the
material properties obtained during static bending tests. The outcomes of the experi-
mental tests and the outcomes of the numerical simulations exhibit good agreement for
the unaged and aged sandwich. An iterative method will be developed in future works
to automate the frequency response for different configurations and different immersion
times.
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Abstract. In this work we propose a microstructurally motivated
hyperelastic model to describe the behavior of elastomer materials. At
the scale of the Representative Volume Element (RVE), composed of
randomly oriented macromolecular chains, we assume that the segments
of the chains are deformable and that there is a bending energy between
two consecutive segments. We propose to model each macromolecular
chain using micromechanical elements: linear elastic bars to represent the
segments between the cross-linking points and non linear elastic spires
to represent the flexibility of rotations around the cross-linking points.
Numerical simulations, on different structured RVEs composed of 3, 4,
and 8 chains in the case of three boundary conditions: uniaxial com-
pressible tension, uniaxial incompressible tension, and shear, show that
this modeling allows to find the classical response curves of hyperelas-
tic elastomeric. In the proposed model, we have to identify only three
parameters: a, M0 and K. From numerical simulations, we show that
the first parameter, a, control the first phase of activation of rotations
between chain segments, the second parameter, M0, control the unfold-
ing phase, and that the third parameter K control the stiffening phase
at large deformations.

Keywords: Hyperelasticity · elastomer materials · polymer chains ·
micro-mechanical

1 Introduction

On a microscopic scale, an elastomer consists of long molecular chains with
junctions. These macromolecules form a 3D network whose chain segments are
randomly oriented. Rubber elasticity is the result of the weak interaction between
the macro molecules.

Phenomenological or statistical models have been developed since years.
Many works are interested in the modeling of the unfolding mechanisms of
macromolecular chains to describe the microphysically motivated behavior of this
type of network. In [1] the authors propose a form of hyperelastic strain energy
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density of elastomers based on an 8-chain representation and a non-Gaussian
behavior of the individual chain. In [5], the authors compare several statistical
and phenomenological models with Treloar’s experimental data under uniaxial,
biaxial and shear loads [7]. In [2], the authors propose a statistical non-Gaussian
macrochain model, coupled with tetrahedral finite elements to transfer the infor-
mation from the micro scale to the macro scale. More recently the authors in
[3] proposed a model that combines the mechanism of a crosslinked network
of Langevin macrochains, and an entangled network with chains confined in a
non-affine tube.

In this work, we propose a new microstructurally motivated hyperelastic
model. We propose to model each macromolecular chain using micro-mechanical
elements: elastic bars to represent the segments between crosslinking points and
elastic spires, to translate the flexibility of rotations around the cross-linking
[6]. The proposed model aims to reflect the three phases of the deformation
mechanism of elastomers.

In Sect. 2, we present the proposed 2D modeling in the case of a Repre-
sentative Volume Element (RVE) consisting of M chains. In Sect. 3, we present
numerical simulations on some examples of RVE to assess the validity of the
proposed model.

2 A Microstructurally Motivated Hyperelastic Model

The elastomers belong to the family of high polymers, microscopically, they are
presented in the form of macromolecules constituted by long chains of polymers
(see Fig. 1). In this section, we represent a 2D modeling of a proposed model
that describes the hyperelastic behavior of this type of material, starting from
the modeling of a macrochain thus the Representative Element Volume (RVE).

2.1 Model Description

In an elastomer material, we consider a Representative Volume Element (RVE)
constituted by M random chains Ck made of nk Kuhn segments [4] (see Fig. 1-a).

We limit ourselves to the 2D case and we will first consider the case of a
single macromolecular chain (Fig. 1-b). In an orthonormal frame of reference of
origin O and basis (i , j ), we designate by Pi the origin point of the ith segment
in the initial state and by pi its transform in the deformed state. We note by
(ui, vi) the components of the displacement vector of the initial point Pi.

For each chain, in the initial state the lengths of the segments will be noted
Li and the angle between the basis vector i and the segments P iP i+1 will be
noted Φi = ̂(i,P iP i+1). In the deformed state, the lengths of the segments will
be noted li and the angle between the basis vector i and the segments pipi+1

will be noted ϕi = ̂

(
i,pipi+1

)
.

We propose to model each macromolecular chain Ck in the RVE using micro-
mechanical elements: n elastic bars to represent the effective segments between
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Fig. 1. (a) A Representative Volume Element (RVE) constituted by M chains Ck made
of nk Kuhn segments. (b) A single macromolecular chain: Initial and deformed states.
(c) Variation of the angle ϕi between the basis vector i and the segment.

crosslinking points pi (the Kuhn segments are assumed deformable) and n elastic
spires, to translate the flexibility of rotations around the cross-linking points pi .
Each macromolecular chain will thus be represented by n elastic springs linked
together by n elastic spiral springs.

We will assume that each effective segment of each molecular chain admits
a tensile strain energy wk

ti and we model the rotational flexibility between two
consecutive effective segments by a bending strain energy wk

bi
. The total strain

energy W (lki , ϕk
i ) of the RVE is then the sum of the strain energy of all chains

Ck, each one is represented as a sum of tensile strain energy wk
ti depending

on the elongation of each segment lki − Lk
i and a bending strain energy wk

bi

depending on the variation of the angle between two consecutive segments θk
i =

(ϕk
i − ϕk

i−1) − (Φk
i − Φk

i−1). The potential energy of the system is then written
as:

Ep

(
lki , ϕk

i

)
= W

(
lki , ϕk

i

)
=

M∑

k=1

(
nk∑

i=1

wk
ti

(
Δlki

)
+ wk

bi

(
θk

i

)
)

(1)

We propose to model the tensile strain energy of the segments by an elastic
tension spring’s energy of stiffness K: wk

ti

(
lki − Lk

i

)
= 1

2K
(
lki − Lk

i

)2 and, as in
[7], we use a modeling of the strain energy for the spiral spring in the following
form: wk

bi

(
θi

k
)

= a ·M0 · ln
(
cosh

(
θk
i

a

))
, where a and M0 are the characteristics

of the material.
As boundary conditions, we will impose a gradient of the macroscopic defor-

mation F on the boundary ∂V . The displacement u on the boundary ∂V of the
RVE is then given by the following relation:

u = ud = (F − I)x on ∂V

uk
j = ud,k

j = (F − I)xk
j for k = 1 to M and j = 1 to J

(2)

where xk
j represents the coordinates of the points on the boundary ∂V of the

RVE before deformation and J is the total number of the chains points on this
boundary.
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It is assumed that junctions can occur in the network of macromolecular
chains, reflecting the cross-linking effect resulting from the vulcanization reaction
of the material. This results in a network of cross-linked chains. We suppose that
these junction points correspond to the smallest distance between two points r1
and r2 of the two chains Ck1 and Ck2 . The junction can be effective only if the
distance between the two points is lower than a given characteristic distance.
Thus, we must add 2R linking equations where R is the number of junctions
between the chains:

{
uk1

r1
− uk2

r2
= gr(u) = 0

vk1
r1

− vk2
r2

= gr(v) = 0 r = 1 to R (3)

The optimum of the potential energy (1) under conditions (2) and (3),
(boundary conditions (2) and linking conditions (3)), is the optimum of the
following Lagrangian:

L (
lki , ϕk

i , ηk
x, ηk

y , ξr, F

)
= Ep

(
lki , ϕk

i

) − ∑M
k=1

∑J
j=1

(
ηj,k
x

(
uk
j − ud,k

j

)
+ ηj,k

y

(
vk
j − vd,k

j

))

−∑2R
r=1 ξrgr

(4)
The components of the displacements uk

j and vk
j in (4) can be expressed in

terms of the main variables lkp and ϕk
p:

uk
j =

∑j−1
p=0

(
lkp cos ϕk

p − Lk
p cos Φk

p

)

vk
j =

∑j−1
p=0

(
lkp sin ϕk

p − Lk
p sin Φk

p

) (5)

In (4), ηj,k
x , ηj,k

y and ξr, for j = 1 to j = J and for r = 1 to r = 2R, are the
Lagrange multipliers. The Lagrangian in (4) depends also on the imposed gradi-
ent of macroscopic deformation F. Hence, the nonlinear equilibrium equations,
δL = 0, depend on the principal variables lkj , ϕk

j for j = 1 to nk; k = 1 to M ,
on the Lagrange multipliers ηj,k

x , ηj,k
y for j = 1 to J ; k = 1 to M , ξr for r = 1

to 2R and on the imposed gradient of macroscopic deformation F. We shall use
an arc length Newton-Raphson method to solve this strongly nonlinear problem
depending on the gradient of the macroscopic deformation F.

In the numerical results we will present a component of the macroscopic first
Piola-Kirchoff stress tensor Π̄ij at the RVE scale as a function of a component of
the imposed macroscopic strain gradient tensor F. The macroscopic first global
Piola-Kirshoff stress tensor Π̄ij is obtained by [8]:

Π̄ij =
1
V

∫

∂V

Πikxjnkdl (6)

where Πik, V and ∂V are respectively the microscopic first Piola-Kirchoff stress
tensor, the volume and boundary of the RVE. We denote respectivly by xj , nj

and dl the components of the local coordinates, the normal vector external to
the RVE and the element length of the boundary of the RVE. Using (6), the
discretized form of the global first Piola-Kirshoff stress tensor on the boundary
can be written as follow:

Π̄ij =
1
V

∑

p∈∂V

(Πiknkdl)p
xp

j =
1
V

∑

p∈∂V

ηp
i xp

j (7)
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In formula (7) the summation is done on all the points xp
j of the boundary ∂V

of the RVE. The components of the forces applied on these nodes are given by
(Πiknkdl)p = ηp

i , that have been calculated during the resolution of the nonlinear
system.

3 Numerical Simulations, on Different RVEs

In this section, we evaluate the proposed model by presenting numerical simu-
lations on three RVEs (see Fig. 2) composed of 3, 4, and 8 chains under three
different boundary conditions: uniaxial compressible tension, uniaxial incom-
pressible tension, and shear. Note that there is no junction for the first RVE
formed by 3 chains and that for the two other RVEs (4-chains and 8-chains), we
have assumed that there is only one junction at the intersection of the diagonals.

Fig. 2. Three specimens of RVE composed of 3, 4 and 8 chains.

Three boundary conditions will be considered in (9): an uniaxial compress-
ible tension, an uniaxial incompressible tension, and a shear, which correspond

respectively to a macroscopic gradient tensor F, in 2D case, in the form:
[

λ 0
0 1

]
,

[
λ 0
0 1/λ

]
and

[
1 γ
0 1

]
.

In the numerical applications, we have considered that the number of seg-
ments of the 3-chains RVE are respectively n1 = 10, n2 = n3 = 11 with an initial
lengths of segments Li = 1.1 nm; the number of segments of the 4-chains RVE
are respectively n1 = n2 = n3 = n4 = 7 with an initial lengths of segments
Li = 1.1 nm; and the number of segments of the 8-chains RVE are respectively
n1 = n2 = n3 = n4 = 8, n5 = n6 = n7 = n8 = 11 with an initial lengths of
segments Li = 1 nm. The orientation of the chains is as shown in Fig. 2.

The characteristics of the macrochains for each RVE were chosen equal to
a = 0.03 nm, M0 = 0.01 N.nm and K = 10 N/nm for 3-chains RVE; a = 0.03 nm,
M0 = 0.02 N.nm and K = 10 N/nm for 4-chains RVE; a = 0.05 nm, M0 =
0.01 N.nm and K = 10 N/nm for 8-chains RVE.

We obtained the response curves shown in Fig. 3. In Fig. 3-a and 3-b, we
plotted the Π̄11 component of the macroscopic first Piola Kirchhoff stress tensor
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as a function of F11 = λ, where F11 is the first component of the macroscopic
gradient tensor F and in Fig. 3-c, we plotted the macroscopic first Piola Kirchhoff
stress tensor Π̄12 component as a function of the component F12 = γ.

Fig. 3. Response curves for the three RVEs: 3-chain, 4-chain, and 8-chain representa-
tion (a) Π̄11 component of the 1st Piola-Kirchhoff stress tensor as a function of λ in
uniaxial compressible case. (b) Π̄11 component of the 1st Piola-Kirchhoff stress ten-
sor as a function of λ in uniaxial incompressible case. (c) Π̄12 component of the 1st
Piola-Kirchhoff stress tensor as a function of γ in shear case.

The results, in Fig. 3, show that, for the three RVEs specimen and for the
three boundary conditions, the model represents well the three phases of the
behavior of an elastomer: an untangling phase, an unfolding phase and a stiffen-
ing phase due to the crystallization at large deformations. These results, using
this microstructural modeling, agree with the hyperelastic models classically pro-
posed and this using only three characteristic parameters a, M0 and K, where
the first is a bending angle, the second is the maximum moment, and the last
one represents the stiffness of the longitudinal spring. It can be observed from
these numerical simulations (Fig. 3) that this model, in large deformation, for
the case of uniaxial tension, implies a greater stiffness for the RVE with 8 chains,
followed by that with 3 chains and then that with 4 chains. In the shear case
the most rigid RVE is the one with 4 chains followed by the one with 8 chains
and finally the one with 3 chains in small and large deformation.

In Figs. 4-a, 4-b, and 4-c, we have presented, in the case of a 4-chain repre-
sentation and in the case of compressible traction, respectively the effect of the
three characteristics of the material a, M0 and K. In each of these figures, we
have fixed two parameters and varied the third. We can see that, the parameter
a controls the first disentanglement zone (see Fig. 4-a), M0 controls the second
unfolding zone (see Fig. 4-b) and the third parameter K controls the third crys-
tallization zone under large deformation (see Fig. 4-c). This effect of the three
characteristics is valid whatever the RVE and whatever the boundary condition.
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Fig. 4. Effect of the 3 characteristics of the material a, M0 and K on the behavior of
the RVE in the case of 4-chain representation. Response in uniaxial compressible case.
The Π̄11 component of the 1st Piola-Kirchhoff stress tensor as a function of F11 = λ.

4 Conclusion

These first numerical simulations show that the proposed model allows to find
the classical response behavior of polymer materials with and without junctions.
Only three parameters should be identified. We are working on integrating this
model in the case of a micro macro modeling.
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Abstract. In this work, we propose an explicit meshless approach based
on the coupling of the Weighted Least Squares (WLS) method and the
explicit Runge-Kutta (RK) scheme. This last scheme is used to approx-
imate time derivatives while WLS approximation is used for spatial dis-
cretization. The proposed meshless approach offers several advantages
over traditional methods. This approach provides a powerful tool for
simulating compressible fluid flows, offering improved accuracy and com-
putational efficiency compared to traditional methods. This approach is
dedicated to the study of the flows of compressible isothermal fluids
whose mathematical formulation is governed by the Navier-Stokes equa-
tions written in a strong formulation to avoid any difficulty in integration
calculating. This meshless approach is tested on the classic example of a
square cavity with a discussion on effects of the Mach number and the
monomial basis order. The results are compared to those obtained using
a traditional finite difference method.

Keywords: WLS · Runge-Kutta · Navier-Stokes equations ·
Compressible fluid flow

1 Introduction

The simulation of physical problems described by systems of differential or par-
tial differential equations is traditionally carried out using numerical resolu-
tion methods as Finite Element Method (FEM) [1] or Finite difference Method
(FDM) [2].... In these methods, the spatial domain is discretized by meshes
whose function is to define a topological link between the nodes. Meshless meth-
ods generally uses the same ingredients as traditional methods (approximation,
resolution of the obtained algebraic system) but do not require a definition of the
mesh then the considered domain is simply replaced by a cloud of nodes. Among
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these methods, one can find the Smoothed Particle Hydrodynamics (SPH) [3,4],
the Moving Least Squares (MLS) [5], the Radial Point Interpolation Method
(RPIM) [6], the Weighted Least Squares (WLS) [7,8], etc. According to litera-
ture survey, these methods are widely used in various numerical algorithms to
solve the Navier-Stokes equations for incompressible and compressible fluid flows
[3–5,9].

For instationary problems, time scheme techniques are unavoidable and rep-
resent an active field of research. Many time discretization methods where used
to solve the Navier-Stokes equations such as Euler Method [4,14], improved
Euler [15] or Runge-Kutta [2,10,11], that uses either an explicit or an implicit
time-stepping scheme. Explicit schemes are well known to be conditionally sta-
ble. Indeed, this requires a stability study of the numerical scheme leading to
very small time steps and a large computation time.

In this work, a space-time procedure that combines the WLS approximation
with the explicit Runge-Kutta scheme is proposed to study numerically the
subsonic isothermal flows (Ma < 0.4) of a compressible viscous fluid, where
Ma represents the Mach number. The performance of this approach will be
tested on the standard benchmark lid-driven cavity problem, in order to display
its advantage over the reference explicit scheme algorithms that uses FDM and
MLS methods.

2 Governing Equations

Generally, the motion of a fluid is governed by three conservation laws that
describe the conservation of mass, momentum and energy. For a subsonic isother-
mal viscous fluid flows (Ma < 0.4), the motion is described by the first two
conservation laws, which are expressed as follows:

⎧
⎨

⎩

∂ρ
∂t + ∇.(ρV ) = 0 in Ω

∂(ρV )
∂t + ∇.(ρV .V ) = ∇.σ in Ω

(1)

where ρ, T V = <u, v> and σ represent respectively the mass density, the bidi-
mensional velocity vector and the stress tensor, this latter is defined for a New-
tonian fluid by: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ = −pI + τ

τ = 2μD − 2
3μTr(D)I

D = 1
2 (T ∇V + ∇V )

(2)

where p is the pressure term, I denotes the identity tensor, τ is the viscous stress
tensor, μ denotes the dynamic viscosity and D is the strain rate tensor.

The state equation relates the pressure term to the density of a compressible
fluid. For isothermal subsonic flows (Ma < 0.4), this equation is defined by:

p = c2ρ (3)



Meshless Approach 101

where c is the speed of sound propagation in the fluid [3,5,9].
By injecting Eqs. (2) and (3) into Eq. (1), the subsonic compressible isother-

mal Navier-Stokes equations are obtained as follows:
⎧
⎨

⎩

∂ρ
∂t + ∇.(ρV ) = 0 in Ω

∂(ρV )
∂t + ∇(ρV .V ) = μΔV + μ

3∇(∇.V ) − c
2∇ρ in Ω

(4)

The initial conditions for the velocity V and for the mass density ρ are given
as: ⎧

⎨

⎩

V (M, t0) = V 0 for M ∈ Ω

ρ(M, t0) = ρ0 for M ∈ Ω
(5)

where V 0 and ρ0 are respectively the initial state of fluid velocity and its mass
density and M is a point of coordinates (x, y).

For the boundary conditions, the non-slip condition of the velocity is used on
∂ΩV , while for the mass density they are derived from the momentum equation
using the normal vector n =T < nx, ny > on the boundary ∂Ωσ as follows :
⎧
⎨

⎩

c2∇ρ.n = (μΔV + μ/3∇(∇.V ) − ∂(ρV )
∂t − ∇(ρV .V )).n for M ∈ ∂Ωσ

V (M, t) = V d for M ∈ ∂ΩV

(6)
where V d is a given speed vector. In order to simply apply the proposed approach
procedures, we choose to rewrite the system of Eqs. (4), (5) and (6) in the
following compact quadratic form:

MU̇ + L(U) + Q(U ,U) = 0 (7)

where M is the mass operator, U =T <u, v, ρ> is a vector that collects the
unknowns of the problem, L is the linear operator and Q represents the quadratic
form.

3 Resolution Strategy

In the literature, the resolution of the instationary Navier-Stokes equations is
accomplished by the use of space-time discretization methods. This combination
represents a necessary tool to transform the continuous problem into a discrete
problem in time and space. In this work, the explicit Runge-Kutta scheme and
the WLS method are used to solve under the strong formulation the space-time
problem of (7).

3.1 Approximation for Spatial Discretization

The Weighted Least Squares (WLS) approximation is an extensively used tech-
nique for data fitting and surface construction [6]. The WLS approximation is
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one of the meshless methods that allows to avoid meshing generation techniques
which requires considerable computation time. The approximation of a function
u(x, y) at a point of coordinates (x, y) is defined as follows:

u(x, y) =
m∑

i=0

pi(x, y)ai = <p(x, y)>{a} (8)

where pi(x, y) is a given monomial basis function in the space coordinates (x, y),
m is the number of monomials, and ai is the coefficient for pi(x, y) which is yet
to be determined. The pi(x, y) in Eq. (8) is built using Pascal’s triangles, and a
complete basis is usually (but not always) preferred. The most used vectors of
monomial basis functions are defined as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m = 3 : <p(x, y)> = <1, x, y>

m = 6 : <p(x, y)> = <1, x, y, xy, x2, y2>

m = 10 : <p(x, y)> = <1, x, y, xy, x2, y2, x2y, xy2, x3, y3>

(9)

The determination of the unknown coefficients ai is carried out by minimizing
the following weighted discrete norm by using all the nodes selected inside the
local support domain:

J =
n∑

i=1

Wi (u(x, y) − ui)
2 (10)

where n is the number of the selected nodes in the support domain, ui is the
nodal unknown of u and Wi is the Gaussian weighting function associated to
node i defined by:

Wi =
e−( r

cw
)2k − e−( 1

cw
)2

1 − e−( 1
cw

)2
(11)

with r =
√

(x − xi)2 + (y − yi)2/rs, (x, y) is the coordinate of the interest point,
rs is the size of local support domain and cw is a constant to be determined by
the analyst before calculation. The stationary condition of Eq. (10) gives:

∂J

∂{a} = 0 (12)

The Eq. (12) leads to the following linear relation between the vector {a} and
the nodal vector {U}:

[A]{a} = [B]{U} (13)

where the matrices [A] and [B] the nodal vector {U} are defined as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[A] =
∑n

i=1 Wi{p(xi, yi)}<p(xi, yi)>

[B] =
∑n

i=1 Wi{p(xi, yi)}

<U> = <u1, u2, · · · , un>

(14)
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By injecting the expression of {a} in Eq. (8), the WLS approximation of the
field unknown u(x, y) is obtained as follows:

u(x, y) = <φ(x, y)>{U} =
n∑

i=1

φi(x, y)ui (15)

where <φ(x, y)> is the vector of shape functions expressed by:

<φ(x, y)> = <p(x, y)>[A]−1[B] (16)

Finally, the field unknowns of the problem (7) are approximated via WLS as
follows: ⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u =
∑n

i=1 φiui

v =
∑n

i=1 φivi

ρ =
∑n

i=1 φiρi

(17)

3.2 Explicit Runge-Kutta Scheme

Several numerical solvers, that use the explicit fourth-order Runge-Kutta
scheme, have been used in literature to solve the Navier-Stokes equations for
compressible and incompressible fluids [2,9,10]. The explicit time discretization
aims at searching the temporal solution by using the time-stepping scheme at
the current moment tn = nΔt, with Δt is the time step, such as:

MU̇n = −L(Un) − Q(Un, Un) (18)

This latter allows to obtain a linear equation, by searching the unknowns at the
moment tn+1 using a time-stepping integration of U̇n. In this study, the fourth-
order Runge-Kutta time integration is used in order to obtain the unknowns at
the moment tn+1 = (n + 1)Δt as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U0 : Initial condition

K1 = F (Un)

K2 = F (Un +
Δt

2
K1)

K3 = F (Un +
Δt

2
K2)

K4 = F (Un + ΔtK3)

F =
Δt

6
(K1 + 2(K2 + K3) + K4)

Un+1 = Un + M−1
n F

(19)



104 R. Fadil et al.

where F (•) = −L(•)−Q(•, •). For this type of schemes, the study of the stability
in time is limited to the choice of the time step Δt. It is usually calculated by the
Courant-Friedrichs-Lewy condition (CFL-Condition) [2,9,12,13]. The latter is a
stability condition for unstable numerical schemes. For the Navier-Stokes equa-
tions of isothermal compressible Newtonian fluids, the time step Δt is defined
by:

Δt < min

(
h

c +
√

u2 + v2
,
ρh2

4μ

)

(20)

where h is the inter-point distance, c is the speed of sound, u and v are the
components of the velocity of the fluid, ρ and μ are respectively the mass density
and the dynamic viscosity of the fluid.

4 Numerical Application and Discussion

The classical flow in a cavity is used to test the validity of the proposed explicit
meshless approach. The cavity is represented schematically in Fig. 1. The domain
is assumed to be square with side Lx = Ly = l0 = 1m where the three sides AB,
BC and AD are fixed, while the top wall DC moves with a constant horizontal
velocity u0. The study of this problem is made in the system of origin M and of
axes x and y.

Fig. 1. Domain and boundary conditions

The properties of the fluid are chosen such as: the initial density of the fluid
is taken equal to ρ0 = 1 kg/m3, the dynamic viscosity μ = 0.1 kg/ms, the Mach
number is chosen as Ma = 0.1, the Reynolds number is taken as Re = 100 and
the speed of sound is given by c = u0/Ma, where u0 is the initial given velocity
at the top wall DC, with u0 = μRe/(Lxρ0) (i.e. for Re = 100, u0 = 10 m/s).

To show the efficiency of our approach, we present in Fig. 2 the time evolution
of the velocity components at the center of the cavity and a comparison of the
stationary solutions obtained by WLS, MLS and FDM [2], using a number of
nodes equal to 2601, a support domain radius rs = 3.03 h, h = Δx = Δy = 0.02
and cω = 0.2. The value of cω is selected after conducting a series of numerical
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experiments. From this figure, we notice that the stationary state is reached after
the time t = 0.9 s and that the stationary solutions obtained by the meshless
methods coincide with the solution obtained using the FDM coupled with the
explicit Runge-Kutta scheme.

Fig. 2. Comparison of the solutions obtained by the three methods WLS, MLS and
FDM

In Fig. 3, the steady state solutions of the streamlines are presented. The
streamline results show a typical separation of one primary and two secondary
vortices located at the lower corners of the cavity. The obtained solution repre-
sents a result similar to those in the literature [5].

Fig. 3. Streamlines of subsonic flow in a square cavity for Re = 100 and for Ma = 0.1

In the following, we will study the effects of the monomial basis order and
the Mach number.
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4.1 Effect of the Monomial Basis Order

In Table 1, we present the effect of the monomial basis order m used in the
WLS and MLS approximations on the relative error of the stationary solutions
obtained by the meshless methods with the FDM. The table shows that the WLS
approximation has a good convergence whatever the order of the basis, while the
MLS approximation converges only with order m = 6. These results show the
stability of the WLS approximation compared to the MLS for the same radius
of the domain support. Let note that to obtain good results via MLS, one must
increase the support domain radius for each value of the monomial basis order
m > 6.

Table 1. Effect of the monomial basis order m in the MLS and WLS approximations
on the relative error with respect to the FDM

Approximation number of basis m

6 10 15

MLS 10−6 10−2 10−1

WLS 10−6 10−6 10−6

4.2 Effect of Mach Number

The important parameter in the analysis of compressible fluid flow is the Mach
number Ma. It is the ratio of the actual speed of the fluid to the speed of sound
in the same fluid at the same state. For this, we propose to study the effect of this
parameter on the fluid density behavior in square cavity. For that, we present
in Fig. 4 the isovalues of mass density distribution at Re = 100 and for a Mach
number equal to Ma = 0.1, 0.2 and 0.3. The results show that the mass density
reaches a maximum value where the flow speed is imposed and a minimum
value at the primary fluid’s recirculation. It is also noticed that the fluid density
concentration increases when Mach number increases as well. Let note that these
results are similar to those presented in the literature investigations [2,5].



Meshless Approach 107

Fig. 4. Steady state density distribution of subsonic flow in a square cavity for Ma =
0.1, 0.2, 0.3

5 Conclusion

In this work, we proposed an algorithm combining the explicit Runge-Kutta
scheme and the WLS approximation to solve the Navier-Stokes equations
describing the isothermal subsonic flow of compressible fluids. The proposed
approach is tested on the classical square cavity example. The results obtained
from the presented tests have shown that our approach is able to simulate isother-
mal subsonic flows. Work is in progress to extend this technique to the study of
supersonic flows.
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Abstract. In this paper, we focus on analyzing the linear stability of
a Newtonian fluid layer whose upper surface is subjected to parametric
thermal excitation that is periodic in time with zero mean. The fluid layer
is considered of infinite extension in the horizontal directions. The Flo-
quet theory and the Chebyshev spectral collocation method are used to
solve the linear stability problem in the case of rigid-rigid boundary con-
ditions. Although the unmodulated version of this configuration, where
the fluid layer is heated from above, is known to be linearly stable, it
turns out that destabilization is possible in the presence of modulation
on the top surface. Parametric resonances appear at the onset of the
instability, and the convection threshold is harmonic or sub-harmonic
depending on the range of oscillation frequencies. The dynamics of this
instability is characterized by the existence of a bifurcation point in codi-
mension two, giving rise to a discontinuity in the evolution of the critical
wavenumber at a specific frequency number.

Keywords: stability · convection · temperature modulation · Floquet
theory · spectral method

1 Introduction

The stability of time-dependent equilibrium states was the subject of several
studies over the last century. This circumstance is encountered in several indus-
trial and natural applications. Examples include the earth’s atmosphere, which
is periodically heated by the sun, and flows in internal combustion engines. A
time-periodic heating/cooling, in addition to ventilation and air-conditioning,
helps control the onset of instability, providing thermal comfort in a confined
space. This control strategy could modify the energy performance of the building
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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by predicting the thermal responses and optimizing therefore the energy costs.
Rayleigh-Bénard convection is considered one of the classic prototypes of natu-
ral convection, which appears in many building engineering applications, such as
thermal comfort through floor heating or ceiling cooling. In this framework, clas-
sical textbooks on thermal convection and hydrodynamic instabilities in general
(Chandrasekhar 1961 [1], Drazin & Reid 1982 [2]) were implemented in the case
of steady temperatures in the boundaries. Recently, Nasseri et al. [3] investi-
gated the time-periodic cooling of Rayleigh-Bénard convection using the Lattice
Boltzmann method with multiple relaxation time. It was shown that the flow
structure shifts from a single-cell flow to a counter-rotating two-cell flow at very
high Rayleigh numbers and low heating amplitudes. In this paper, we extend
this flow configuration to a fluid layer with infinite extension in the horizontal
directions, focusing on the critical onset of the transition between conductive
and convective heat transfer regimes. We are interested in the case where the
stationary component of the temperature gradient is zero, which means that the
instability mechanism is governed by a parametric resonance. In other words,
this is an example where a linearly stable equilibrium can be destabilized by
parametric excitation.

Early work on modulating boundary conditions was initiated experimentally
by Donnelly, who studied time-periodic flow between two concentric cylinders.
He considered the case where the outer cylinder is stationary and the inner
cylinder subject to a periodic angular velocity. He found that at low frequencies,
instability is delayed compared to the stationary case. This configuration has
been revisited by several authors in the literature in various forms of modula-
tion of boundary conditions in the case of Newtonian and non-Newtonian fluids
[5–11].

Donnelly’s configuration was extended by Venezian to Rayleigh-Bénard con-
vection. He asserted that an additional sinusoidal time-varying perturbation
applied to the temperature of the lower surface can control the convection thresh-
old. A linear stability analysis showed a stabilizing effect at low modulation
amplitudes. For low-frequency modulation with arbitrary amplitude, Rosenblat
and Herbert [13] gave an asymptotic solution. Yih and Li [14] also used the
Galerkin method to study the case where the modulated temperature gradient
is symmetrical with respect to the median plane. They showed that pertur-
bations (or convective cells) oscillate either synchronously or sub-harmonically.
Souhar et al. performed a linear stability analysis of an equilibrium state gen-
erated by generated by in-phase time modulation without a stationary gradient
component. In this case, the upper and lower plates were subjected to a time-
periodic modulation of temperature with the same frequency and amplitude.
The system proved potentially unstable at moderate frequencies, while stabi-
lization occurs at low and high frequencies. The case of the Maxwellian liquid
layer in the presence of temperature modulation was studied by Oukada et al.
[16]. They emphasized the combined effects of fluid elasticity and time periodic
boundary conditions on the onset of instability. Rayleigh-Bénard convection in
a horizontal fluid layer subjected to time periodic heating with the presence
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of two frequencies was analyzed numerically by Kaur et al. [17]. They showed
that the frequency ratio and the mixing angle of the modulation amplitudes con-
trol instability. It was also concluded that, compared to single-frequency forcing,
two-frequency modulation triggers more bicritical states between the well-known
harmonic and subharmonic thresholds. Recently, Hazra et al. [18] studied the
modulated magnetoconvection in Rayleigh-Benard configuration using Floquet
theory. The system becomes dependent on a new magnetic parameter called the
Chandrasekhar number Q, and it turned out that temperature modulation can
either delay or accelerate the onset of magnetoconvection. They found a new
type of bicritical state that occurs between two different sets of harmonically
unstable tongues.

The aim of the present paper is to examine the effect of a time-periodic
temperature modulation with zero mean on the stability of a Newtonian liquid
layer, between two parallel horizontal walls. Here, we consider the case where the
liquid layer is sinusoidally heated from above. Although the steady configuration
corresponding to a fluid layer heated from above is well known to be linearly
stable, we show that a temporal modulation can lead to a destabilization.

2 Linear Stability Analysis of the Basic State

Consider a Newtonian liquid layer, between two parallel horizontal walls, d apart
and of infinite extension in the horizontal directions x∗ and y∗, see Fig. 1. The
two surfaces (z∗ = 0, z∗ = d) are respectively subject to the temperatures:
T (0, t∗) = Tm and T (d, t∗) = Tm + Ts cos(ω∗t∗), where Tm is the ambient tem-
perature, Ts is the modulation amplitude and ω∗ is the modulation frequency.
The system of equations governing the convective instability is that of classical
conservation equations obeying to the Boussinesq approximation, written in the
following dimensionless form:

∇ · V = 0 (1)

Pr−1

(
∂V
∂t

+ (V · ∇)V
)

= −∇P + ΔV+ RaTez (2)

∂T

∂t
+V · ∇T = ΔT (3)

This dimensionless form is obtained by using the characteristic distance
between the two horizontal walls d as the space scale, κ/d for the velocity scale,
d2/κ for the time scale, Ts for the temperature and finally μκ/d2 for the pressure,
where μ and κ are the dynamic viscosity and thermal diffusivity respectively.
The Prandtl number is given by Pr =

ν

κ
while the Rayleigh number is defined

by Ra =
βgTsd

3

νκ
, where κ is the coefficient of thermal dilatation and ν is the

kinematic viscosity.
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Fig. 1. Geometry of the problem

For very small Rayleigh number, the system is supposed in a purely conduc-
tive regime and the fluid is then considered at rest, V = 0. The dimensionless
energy Eq. (3) at equilibrium is expressed as follows

∂Tb

∂t
=

∂2Tb

∂z2
. (4)

with the following boundary conditions:

Tb(z = 0, t) = 0 and Tb(z = 1, t) = cos(σt) (5)

The Eq. (4) is solved for a very long time scale. The solution is therefore expressed
as follows:

T (z, t) = T1(z) cos(σt) + T2(z) sin(σt) (6)

where

T1(z) =
cosh(γz) cos(γ(1 − z)) cosh(γ) − cosh(γ(1 − z)) cos(γz) cos(γ)

cosh2(γ) − cos2(γ)
(7)

T2(z) =
sinh(γz) sin(γ(1 − z)) cosh(γ) − sinh(γ(1 − z)) sin(γz) cos(γ)

cosh2(γ) − cos2(γ)
(8)

The frequency parameter γ =
√

σ/2 = d/δS is the ratio between two charac-
teristic lengths: d and the thickness of the thermal boundary layer defined by:
δS = (2ν/ω∗)1/2. The parameter σ = ω∗d2/k is the ratio between the modulation
period T and the thermal diffusive time d2/k.

To study the stability of the basic solution, it is perturbed as follows:

V∗ = V∗(x, y, z) = (u, v, w); p∗ = pb + p; T ∗ = Tb + T ; ρ∗ = ρb + ρ (9)

By substituting these variables (9) into the dimensionless governing Eqs. (1)–
(3) and by subsequently neglecting all nonlinear terms, the following stability
system is obtained:

∇.V∗ = 0 (10)
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Pr−1 ∂Δw

∂t
= Δ(Δw) + RaΔ2T (11)

∂T

∂t
+ w

∂Tb

∂z
= ΔT (12)

The system (10)–(12) is associated to the rigid-rigid boundary conditions:

w =
∂w

∂z
= T = 0 at z = 0.1 (13)

where Δ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and Δ2 = ∂2

∂x2 + ∂2

∂y2 . Taking into account spatial
periodic conditions in the horizontal directions, solution of the system (10)–(12)
is in the form:

(w(x, y, z, t), T (x, y, z, t)) =
(
w̃(z, t), T̃ (z, t)

)
ei(qxx+qyy). (14)

We denote by qx and qy the wavenumbers in the x and y directions respectively.
Thus, the linear stability system (10)–(12) becomes:

(
Pr−1 ∂

∂t
− M

)
Mw̃ + q2RaT̃ = 0 (15)

(
∂

∂t
− M

)
T̃ + w̃

∂Tb

∂t
= 0 (16)

where M = ∂2

∂z2 − q2 and q2 = q2x + q2y. The boundary conditions (17) are now
written as follows:

w̃ =
dw̃

dz
= T̃ = 0 at z = 0.1 (17)

3 Numerical Resolution

3.1 Spatial Discretization

The system of Eqs. (15)–(16) is solved numerically using a spatial discretization
in the interval [−1, 1] referring to Chebyshev’s spectral collocation method. An
example of this method is given in the references [10,11]. This discretization
leads to a matrix formulation written as follows:

¯̄B
∂

∂t
X̂ = ¯̄M(t)X̂ (18)

where ¯̄M(t) = M0 +Mc cos(σt) +Ms sin(σt) is a
2π
σ

periodic matrix whereas
¯̄B, M0, Mc and Ms are constant coefficient matrices.



114 M. Sakine et al.

3.2 Floquet Theory

The Floquet theory is used to solve the system (16) which is 2π/σ periodic in
time. This theory stipulates that there exists a constant matrix R such that;

S(t + T ) = RS(t) (19)

Thus, we obtain

¯̄B
∂S
∂t

= (M0 +Mc cos(σt) +Mo sin(σt))S (20)

Moreover, if μj (1; . . . ;N+2) denote the eigenvalues of the matrix R, the solution
of the system (20) is:

φj = Zj(t) exp(λjt) (21)

where Z(t) is a periodic function of period T and the Floquet exponents λj are
given by the relation:

λj =
1
T

ln(μj) (22)

Thus, R is determined numerically via a fourth-order Runge-Kutta numerical
scheme integrating the system (20) over one period with the initial condition
S(0) = I, where I is the identity matrix. The eigenvalues of the matrix R, μj

allow us to determine the Floquet exponents λj using Eq. (23). It should be
noted here that the stability of the basic state is determined by the Floquet
multipliers:

μ = e(λr+iλi)T (23)

where the real part of its exponent, λr, represents the growth rate of the per-
turbation while the imaginary part, λi, designates the argument (angle) of the
Floquet multiplier that represents the existence of a temporal quasi-periodicity
in the system response. As there are no quasi-periodic solutions in the present
study, this quantity is taken to be zero. Instability therefore depends only on λr

in the sense that for λr ≺ 0 perturbations decreases exponentially fast and the
system is stable. Otherwise, the system is unstable, with perturbations increas-
ing rather than decreasing. Equivalently, stability could be discussed on the basis
of the Floquet multiplier, meaning that stability is conditioned by the moduli
of the Floquet multipliers which are smaller than one. Moreover and as it is
commonly known, systems subjected to time-periodic forcing (considered here
as thermal) react synchronously or subharmonically according to the frequency
response sigmaF . Indeed, if σF = σ the solution is harmonic, also called syn-
chronous, whereas it is considered subharmonic if σF = σ/2. The distinction
between these responses can be made by considering the growth rate λr. Har-
monic solutions correspond to λr = 1 while λr = −1 corresponds to subharmonic
ones.
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4 Numerical Results

4.1 Instability in Sense of Floquet: Growth Rate and Floquet
Multiplier

To illustrate the criterion of instability in the Floquet sense, we plot in Fig. 2(a)
the evolution of the maximum growth rate of the perturbation as a function of
the wavenumber q at frequency number γ = 1.3 and for different values assigned
to the Rayleigh number. Considering water as the fluid confined between the hor-
izontal walls, we assign Prandlt’s number the value Pr = 7. For Ra1/2 = 116,
we can clearly see that all calculated values of λr are negative, which means that
the flow is stable. Instability arises at Ra1/2 = 118.015 for q = 3.3. These values
of Rayleigh and wavenumbers are then said to be critical, as they correspond to
a case where a value of the Floquet exponent crosses the 0 value. Note here that
this evolution has two maxima, due to the existence of two types of solutions
known as “harmonic” and “subharmonic”. These modes exist at Ra1/2 = 118.051,
but the instability is initiated by the subharmonic mode, meaning that the har-
monic mode is still stable. By increasing the Rayleigh number, in particular to
Ra1/2 = 121.8, the harmonic mode becomes unstable and two solutions coexist
for Ra1/2 � 121.8.

The same evolution is depicted in Fig. 2(b) for a constant value of the
Rayleigh number, Ra1/2 = 116, and different values of the frequency number.
The most interesting feature is the change in nature of the first instability as
the frequency modulation is varied. Indeed, for γ = 1.41, the basic state is
unstable with qc = 3.4 and this instability corresponds to an harmonic solution.
This instability is suppressed at a lower oscillation frequency γ = 1.3. More-
over, the system becomes unstable with subharmonic instability at γ = 1.23
with qc = 4.5. We can therefore conclude that frequency modulation not only
controls the onset of system instability, but also brings about a change in the
nature of that instability.

Fig. 2. Dominant growth rate of the perturbation versus the wavenumber for some
representative values of the Rayleigh number at γ = 1.3.
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Fig. 3. Floquet multipliers at γ = 1.3 and q = 3.2 for: (a) Ra1/2 = 116, (b) Ra1/2 =
117.8, (c) Ra1/2 = 118.051 and (d) Ra1/2 = 118.15.

To determine the nature of the modes observed in Fig. 2(a) and 2(b), we
recourse to the Floquet multiplier shown in Fig. 3 for γ = 1.3 in the complex
plane. Let’s start with the first branch in the low-wavenumber range and arbitrar-
ily choose q = 3.3, since all points in this branch have the same characteristics.
For Ra1/2 = 116, all Floquet multipliers (dots) lie inside the unit circle, which
means the system is stable at this Rayleigh number with |μ|= 0.2, see Fig. 3(a).
As the Rayleigh number increases, particularly at Ra1/2 = 117.8, the multiplier
approaches the unit circle, with |μ|= 0.82. At the onset of instability where
Ra1/2 = 118.051, this multiplier crosses the unit circle with |μ|= 1. This latter
becomes greater than one beyond Ra1/2 = 118.051 especially it takes |μ|= 1.08
when Ra1/2 = 118.15 is reached. It should be noted here that the imaginary
part of these multipliers vanishes since no quasi-periodic behavior is expected.
Besides, the real part of this multiplier equals −1 since we are dealing with a
subharmonic solution.

The same approach is adopted to determine the nature of the second branch
of the Fig. 2, which corresponds to a harmonic mode. Here, a positive value of
λr is expected, reaching 1 at the critical onset of instability.

4.2 Marginal Stability Curves and Instability Diagrams

For certain representative values of the frequency number, marginal stability
curves are illustrated in Fig. 4. As one can see, these curves are composed of
two parabolas with two minima and a bi-critical state is obtained. This latter
corresponds to a state with two critical wavenumbers having the same criti-
cal Rayleigh number. Such behavior was observed in modulated Taylor-Couette
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Fig. 4. Marginal stability curves near the co-dimension two bifurcation point.

Fig. 5. Stability diagrams showing the evolution of the critical instability parameters.
a)

√
Rac versus σ and b) qc versus σ.

flow [5–11] and Poiseuille flow [21] and dubbed the “mode competition” phe-
nomenon and concerns the appearance of an inversion flow observed in similar
configurations [22,23]. Indeed, at σ = 3.38 two instability modes, harmonic and
subharmonic, arise and the most unstable one is subharmonic. At σ = 3.1752 two
incommensurate critical wavenumbers are obtained at the critical Rayleigh num-
ber Rac = 14042.5. However, the primary instability switch from subharmonic
to harmonic mode by decreasing the frequency number.

In Fig. 5, we report the stability diagram of the system obtained from several
computations of marginal stability curves at different frequencies showing the
critical Rayleigh number versus the frequency modulation. At γ = 8 the onset of
convection appears at Rac = 11664 and qc = 3.4 and a decrease in the parameter
σ leads to an increase in the critical Rayleigh number. In this situation, the
system responds subharmonically (with half the frequency) to the thermal drive
with a relatively constant critical wavenumber. This behavior also indicates a
stabilizing effect of the modulation frequency. However, a jump in the evolution
of the wavenumber from qc = 3.3 to qc = 4.9 is observed at sigma = 3.1752 where
the bicritical state occurs. This feature is accompanied by a discontinuity in the
critical Rayleigh number evolution and a change in the primary bifurcation from
subharmonic to harmonic solution. In this case, the system reacts harmonically
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to the thermal drive (with the same frequency). Finally, a destabilizing effect of
modulation frequency is observed when σ > 3.1752, where the critical Rayleigh
number decreases.

5 Conclusion

We studied the effect of temperature modulation imposed on the upper boundary
of a fluid layer of infinite extension on the convection threshold. This modula-
tion is considered to have no stationary component in the temperature gradient.
We determined the stability criterion by looking at the evolution of the criti-
cal Rayleigh number and the critical wavenumber versus the dimensionless fre-
quency of the modulation. Using Floquet theory and spectral method, we showed
that, depending on the frequency range, modulation generates a destabilizing or
stabilizing effect. This work proposes the use of temporal periodic modulation
of temperature boundary conditions as a means of controlling convective heat
transfer in such a considered configuration.
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Abstract. In this study, we present a new high-order implicit algorithm
to simulate cardiac electrophysiological waves. Several cardiac patholo-
gies are due to a malfunction in the propagation of the wave causing the
contraction of the heart: the cardiac action potential. Its dynamics are
described by a system of nonlinear and nonstationary partial differen-
tial equations (EDP). However, these equations retain major challenges
for numerical simulation. These challenges are mainly reflected in the
coexistence of a slow dynamic and a rapid dynamic inducing abrupt
changes in time and space and having a wavefront type behavior. Faced
with these challenges, we propose in this work an algorithm belonging
to the family of asymptotic numerical methods (ANM), which combines
representations in whole series, implicit time schemes, a mesh-less app-
roach to spatial discretization using radial base functions (RBF) and a
continuation method. This combination improves accuracy and signifi-
cantly reduces computation time. To demonstrate its effectiveness, we
first apply the algorithm to a one-dimensional equation (1D) of Fisher
flame propagation, then to a two-dimensional equation (2D) modeling
cardiac electrical activity, especially the well-known FitzHugh-Nagumo.

Keywords: Asymptotic Numerical Method · Implicite time scheme ·
RBF meshless method · cardiac action potential · Cardiac Electrical
Activity

1 Introduction

Knowledge of the electrical activity of the myocardium is crucial for treating
heart diseases and understanding heart rhythm disorders. Numerical modeling
provides the tools to comprehend both normal and abnormal cardiac electrical
activity. However, accurately simulating electrical waves in the human heart is
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a challenging task. The simulation of cardiac electrophysiological waves is well-
known to necessitate highly refined meshes, particularly when considering the
transmembrane potential with its exceedingly thin depolarization and repolar-
ization fronts. As a consequence, the current numerical models are constrained
in their applicability, predominantly to simplified geometries and ionic models.

For instance, simulating the propagation of such waves across the entire
myocardium using traditional discretization methods like the Finite Element
Method, Finite Difference Method, or Finite Volume Methods necessitates an
excessively fine mesh and extensive computation time. Despite the existence
of mesh adaptation techniques in the literature, they remain computationally
expensive. In reference [1], the authors estimate that a typical whole-core sim-
ulation may require approximately 107 grid points. Furthermore, the equations
describing the electrical activity of the heart present significant challenges for
numerical solutions. These challenges arise from the coexistence of slow and fast
dynamics, resulting in abrupt changes in both time and space, reminiscent of
wavefront behavior. From a numerical perspective, these wavefronts manifest as
discontinuities in discrete solutions, leading to unstable calculations.

The equations used to describe the studied phenomenon of transmembrane
potential propagation in the heart are a regular system of two non-linear differen-
tial equations, one for each of the intra- and extracellular potentials, coupled to
a system of ordinary differential equations representing the ionic activity of the
cell (the FitzHugh-Nagumo model is an example). The Asymptotic Numerical
Method (ANM) is a highly efficient computational tool for numerically solving
nonlinear equations. The first step in the ANM is the representation of the solu-
tion in integer series, which in this case poses no difficulty since the solution
to the problem under study is analytic. In the case of non-regular equations,
we have proposed various regularization methods in order to use integer series
representations, such as contact or plasticity problems, see, for example, [6].

The aim of this study is to introduce a novel, efficient, and cost-effective
algorithm that effectively addresses these challenges and mitigates mesh-related
issues. The proposed algorithm’s robustness and efficiency are initially demon-
strated in a 1D scenario using the Fisher flame propagation equation, with
a comparison of the results to those obtained in reference [3]. Subsequently,
the algorithm’s performance is evaluated in a 2D setting, specifically on the
FitzHugh-Nagumo equation that models the electrical activity of the human
heart in a 2D geometry. These results are then contrasted with those obtained
in the 3D case, as described in reference [1].

Section 2 outlines the proposed implicit high-order algorithm’s application in
a general context, encompassing unsteady nonlinear PDEs. In Sect. 3, we present
the numerical results and engage in discussions, focusing on both the 1D and
2D scenarios.

2 An Implicit High-Order Algorithm: Coupling ANM
and RBF

In this section, we present our algorithm, which is a coupling of the global
RBF meshless method with the techniques of the Asymptotic Numerical Method
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(ANM): homotopic transformation, high-order truncated Taylor series represen-
tation of the solution and continuation method [3,4] . The interest of this cou-
pling is to treat well the nonlinearity and to reduce considerably the computation
time. The ANM allows us to transform our non-linear problem into a succession
of linear problems with the same tangent matrix and the use of RBFs allows us
to reduce the degree of freedom.

Consider a problem with initial values, verified by the unknown of the prob-
lem u(t), where t denotes time, which can be written as :{

∂u
∂t + F (u) = ∂u

∂t + L(u) + Fnl(u) = f
u (t0) = u0

(1)

where f(t) is a given external excitation, u0 is the initial condition, F (.) denotes a
spatial non-linear operator, which has been separated into a linear part L(.) and
a non-linear part Fnl(.). In order to facilitate the calculations in the Asymptotic
Numerical Method (ANM) [4], it is possible, by adding additional variables, to
reduce the nonlinear part Fnl(.) in (1) to a quadratic form Q(., .). We then write
the problem (1) in the following form:

{
∂u
∂t + L(u) + Q(u, u) = f
u (t0) = u0

(2)

To solve problem (2), we propose a new implicit high-order algorithm based
on the following steps: (a) variable change, (b) time discretization, (c) homotopy
technique, (d) Taylor series representation, (e) meshless RBF method and (f)
continuation. In order to have zero initial conditions, the following change of
variable is introduced: u = u0+v. The new unknown v thus verifies the following
equation:

{
∂v
∂t + Lt(v) + Q(v, v) = g
v (t0) = 0

(3)

The operator Lt(.) and the second member g(t) in (3) are defined by Lt(.) =
L(.) + Q(u0, .) + Q(., u0) and g = f − L(u0) − Q(u0, u0). The time interval
considered [0, T ] is subdivided into N time intervals [nΔt, (n+1)Δt] where Δt =
T
N is the time step. The method of the finite differences off-centre on the right
makes it possible to approach ∂v

∂t at time t = (n + 1)Δt by the expression :

∂v

∂t
(n + 1)Δt � vn+1 − vn

Δt
(4)

where vk is the solution at time kΔt. Substituting relation (4) into problem
(3), written at time (n + 1)Δt, we obtain the nonlinear problem verified by the
solution vn+1 :

{Ltv
n+1 + ΔtQ

(
vn+1, vn+1

)
= vn + Δtgn+1

v0 = 0 (5)

Lt is the tangent operator given by : Lt(.) = I(.) + .ΔtLt(.) and where I(.)
est l’opérateur identité.
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To solve the nonlinear problem (5), we define a homotopy transformation.
We then introduce a parameter ε in front of the nonlinear term in (5), which
leads to the following problem:

{Ltw
n+1 + εΔtQ

(
wn+1, wn+1

)
= vn + Δtgn+1

w0(ε) = 0 (6)

In this way, the solution wn+1(ε) of (6) continuously changes from the solu-
tion of a linear problem from (6) (make ε = 0 in (6)) to the solution vn+1 of the
starting problem (5) when ε = 1.

The solution of the non-linear problem (6) is sought in the form of an integer
series representation truncated to order p with respect to the parameter ε :

wn+1(ε) = wn+1
0 + εwn+1

1 + · · · + εpwn+1
p (7)

The terms wn+1
k (k = 0, 1, 2, ..., p) in the series (7) are then the new unknowns

of the problem. The use of the expansion (7) transforms the problem (6) into a
succession of p + 1 linear problems with the same tangent operator Lt(.) :

(k = 0)
{Ltw

n+1
0 = vn + Δtgn+1

w0
0 = 0 (8)

(1 ≤ k ≤ p)
{Ltw

n+1
k = −Δt

∑k−1
r=0 Q

(
wn+1

r , wn+1
k−r−1

)
w0

k = 0
(9)

Note that all problems (9), verified by the terms of the vector series (7),
are linear and admit the same tangent operator. We have thus replaced the
resolution of the non-linear problem (5) by the succession of linear problems (9).

The solution of these linear problems will be done using a meshless method
based on the introduction of radial basis functions (RBF) [2]. Let then be N
points x1, x2, ..., xN arbitrarily distributed in the study domain. We approach
the solution wn+1

k (1 ≤ k ≤ p) at any evaluation point x as :

wn+1
k (x) =

N∑
j=1

αn+1
k,j ϕj(x) (10)

where the functions in (9) are given by : ϕj(x) = ϕ
(‖x − xj‖2

)
, ϕ being a

radial basis function [2], ‖.‖2 denotes the norm used. The introduction of (10)
into the linear problems (9), leads to the following matrix linear problems :

(k = 0)
{

KtW
n+1
0 = V n + ΔtGn+1

W 0
0 = 0 (11)

(1 ≤ k ≤ p)
{

KtW
n+1
k = −Δt

∑k−1
r=0 q

(
Wn+1

r ,Wn+1
k−1−r

)
Wn+1

k = 0
(12)
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where Wn+1
k , V n, q are the spatial discretizations of wn+1

k , vn, Q. The tangent
matrix Kt is the discretized form of the tangent operator Lt. Once the Wn+1

k

are calculated numerically, the solution of problem (2) at time tn+1 is obtained
by equating ε to the unit :

Un+1 = U0+V n+1 = U0+wn+1(ε = 1) = U0+Wn+1
0 +Wn+1

1 +· · ·+Wn+1
p (13)

The development in series (7), truncated at a given order p, is only valid on
its domain of convergence. To be able to attribute to ε the unit value it is nec-
essary that the unit is lower than this radius of convergence. An approximation
of the radius of convergence is obtained by comparing two series solutions at
consecutive orders. This led to an estimate of the domain of convergence which
depends on the truncation order p, the tolerance δ and the time t given by the
criterion [3,4]:

εvalidity (t) =

(
δ
‖Wn

1 ‖∥∥Wn
p

∥∥
) 1

p−1

(14)

The acceptable solutions then correspond to εvalidity(t) greater than unity.
The solution-series given by (7) are therefore valid up to a maximum time tmax =
nmaxΔt which is the largest t such that :

εvalidity(t) ≥ 1, t ∈ [0, tmax] , εvalidity(t + Δt) < 1 (15)

3 Numerical Application and Discussion

3.1 Simulation of the Flame Propagation Equation

In order to validate the proposed algorithm, we will take the same Fisher flame
propagation equation which is modelled by a PDE of the type (2) :

⎧⎪⎨
⎪⎩

∂u
∂t − ∂2u

∂x2 + u(u − 1) = 0

u(x, t = 0) =
(
1 + exp

(
μx√
6

))−2

u(x = −∞, t) = 0, u(x = +∞, t) = 1

(16)

This nonlinear diffusion equation was solved in reference [3] using the same
implicit high-order algorithm but the discretisation in space was done by finite
differences. The analytical solution is known:

u(x, t) =
(

1 + exp
(

μ(x − μct)√
6

))−2

(17)
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We will look for the numerical solution of (15) on the time interval [0,20]
and on the spatial interval [−150, 150]. We will take μ = −1 and c = 5√

6
,

we discretise the temporal domain in 200 time steps Δt = 0.1 and the spatial
domain using 301 nodes with a space step of Δx = 1. The RBF used is the
Hardy multiquadric defined by [2] : ϕ(r) =

√
r2 + c2 with r = ‖xi − xj‖2, where

c is the shape parameter (Fig. 2 and Fig. 3).

Fig. 1. Proposed algorithm. First large computational step. Evolution of the conver-
gence criterion εvalidity(t) as a function of time for various orders, δ = 10−4, c = 10
(shape).

Fig. 2. Curve u(0, t) as a function of time. In blue, the numerical solution and in red
the exact solution. δ = 10−4, c = 10 (shape parameter).

Fig. 3. Solution at time t = 5. Left: Curves of the numerical and exact solutions. Right:
Absolute error curve. δ = 10−4, c = 10 (shape parameter).
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In Fig. 1 , we notice that beyond order 2, εvalidity(t) remains significantly
greater than 1 over the entire interval studied. This means that the proposed
algorithm can obtain the whole response u(t), 0 ≤ t ≤ 20 with a single matrix
inversion.

3.2 Simulation of the Propagation Equation of the Cardiac
Transmembrane Potential (FitzHugh-Nagumo Model)

It is proposed to use this algorithm to simulate cardiac electrophysiological
waves. Several mathematical models have been established to study the phe-
nomenon of the electrical activity of the heart [8–10].

In this work we consider the most commonly used monodomain model in
the literature and the simple FitzHugh-Nagumo (FHN) ionic kinetics [1]. This
model is given by the following PDEs :

{
∂U
∂t = ∇ · (D∇U) + Iion(U, V ) + IS
∂V
∂t = G(U, V )

(18)

The FHN ionic model is given by: Iion = kU(U−a)(1−U)−V and G(U, V ) =
ε(γU − βV ), where U denotes the transmembrane potential of the heart, V is
the recovery variable. The variable V and the associated ordinary differential
equation mimic the slow ionic behaviour of myocardial cell membranes, “slow”
compared to the fast dynamics of the transmembrane potential U . All parameters
including time are dimensionless.

The numerical solution of this model was done in the paper [1], in 3D cubic
geometry, using a second-order implicit scheme in time and discretising the study
domain by quadratic finite elements in space. The resulting non-linear problem
is solved using a 3D Newton-Raphson type correction prediction method.

In this work, we first restrict ourselves to the 2D case: we consider only a
2D square cut of the initial 3D domain used in [1]. In this case, in the initial
solution used in [1] we imposed z = 0 :

{
1 if

√
(x − 100)2 + (y − 100)2 < 30,

0 if
√

(x − 100)2 + (y − 100)2 ≥ 30
(19)

The values of the parameters used are: k = 1; a = 0.25; ε = 0.01; β = 1;
γ = 0.16875; D = 1. The homogeneous Neumann conditions are applied on all
the edges of the domain.

By introducing additional variables, one can write the nonlinear PDE (17)
in the form (2) and use the proposed implicit high-order algorithm.

We used a uniform regular distribution of, (see Fig. 4). We use the meshless
method, the multiquadric function (MQ-RBF), which was used in the previ-
ous problem (flame propagation), and the inverse quadratic function (IQ-RBF):
ϕ(r) = 1

1+ε2r2 , with r = ‖xi − xj‖2, where c is the shape parameter.
The convergence criterion of the proposed algorithm for choosing the time

step and spatial step is difficult to establish because, with RBF-meshless meth-
ods, the stability of the solutions depends on the number of used points and the
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spacing between these points. Therefore, the RBF method depends on a param-
eter called the shape parameter, which has a significant influence on the stability
of the solution. This parameter has been the subject of several research studies,
and one of the most commonly used and reliable criteria for its optimal selection
is as follows: shape = αds, ds = 1

Np

∑Np

i di [7], where α is a coefficient to be
determined and di is the distance from the ith center to its nearest neighbor. It
has been proven that with MQ-RBF, the value α = 0.815 is the most reliable.

In Fig. 5, we plot εvalidity(t) as a function of time for various orders. The
convergence curve shows that the algorithm allows obtaining all the solutions
U(t) and V (t), 0 ≤ t ≤ 700 with a single matrix inversion starting from order 20
using the MQ-RBF and IQ-RBF methods.

Fig. 4. Regular Uniform distribution of 625 points. Interpolation point (50,50)

Fig. 5. Proposed algorithm. First large computational step. Evolution of the conver-
gence criterion εvalidity(t) as a function of time for various orders, δ = 10−3 (shape).
In solid line, we used MQ-RBF with c = 7. In dashed line, we used IQ-RBF with c =
0.1.

Because of the lack of an exact solution, we compared the results obtained by
the proposed 2D algorithm with the time response curves of the transmembrane
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potential U(t) and the recovery variable V (t) found in the 3D [1]. We found the
same trend with the depolarization time: t � 117. see Fig. 6.

Time responses of the transmembrane potential and the recovery variable in
the interval [0, 700] at the central point of the domain X1 = (50, 50), at order
p = 20, with Δt = 0.1, δ = 10−3 using MQ-RBF method (c=7) and IQ-RBF
method (c=0.1).:

Fig. 6. Temporal Solution at order p = 20 for MQ-RBF and IQ-RBF methods. Left:
Curve of transmembrane potential. Right: Recovery variable curve. δ = 10−3

The MQ-RBF and IQ-RBF method can achieve better accuracy and effi-
ciency due to its superior performance in global interpolation with few points.
Therefore, the algorithm is much more computationally efficient in terms of CPU
time. The major disadvantage is that we do not precisely control the criterion
for choosing the numerical parameters for solution stability [4].

4 Conclusion and Perspectives

In this study, we have demonstrated the effectiveness of combining meshless
methods with high-order implicit algorithms. Our algorithm utilizes 625 evenly
distributed points, resulting in 625 degrees of freedom. Remarkably, a single
inversion of the tangent matrix proved sufficient to achieve accurate solutions
up to time 700, with a remarkable computation time of only 180 s. The numeri-
cal results have clearly shown the efficiency of this algorithm in simulating the
equations that describe the electrical activity of the heart.

The next step of our work will be the simulation of cardiac electro-mechanical
activity, which involves coupling the electrical model presented in this study
with the non-linear stress equilibrium equations that govern large deformation
hyperelasticity, in order to investigate the mechanisms of cardiac arrhythmias
in electrophysiology [11]. Finally, we will utilize deep learning techniques for
inverse modeling, which involves using the results of previous studies to infer
the characteristics of the heart [12–14].
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Abstract. The aim of this work is to examine the effect of a periodic vertical
oscillation with two frequencies on the instability of a thin horizontal fluid layer
in a Rayleigh Taylor configuration. The linear stability analysis leads to the peri-
odic Mathieu equation, which describes the evolution of the interface amplitude.
To solve the linear problem numerically, a combination of Floquet’s theory and
the Runge-Kutta method is used. Numerical results show, as indicated in pre-
vious works for a single frequency, that the Rayleigh Taylor instability is not
affected by the oscillation, while the resonances are. Moreover, the incorporation
of two frequencies produces a richer dynamic, in terms of parametric resonances,
than in the case of a single-frequency oscillation. The most unstable parametric
resonances depend on the frequency ratio and can occur over a wide range of
wavenumbers (large or small). Thus, the wavelength of the waves can be selected
according to this ratio. It should also be noted that this ratio can have a stabiliz-
ing or destabilizing effect. The effect of fluid layer thickness on the threshold of
parametric resonances is also discussed in this study.

Keywords: Rayleigh-Taylor instability · interfacial instability · periodic
oscillation · commensurate frequencies · Floquet’s theory

1 Introduction

The Rayleigh-Taylor instability (RTI) [1] represents one of the classical and paradig-
matic types of hydrodynamic instabilities, including the well-known Kelvin-Helmholtz,
Rayleigh-Bénard, and Benard-Marangoni instabilities, which have captivated signifi-
cant attention for several decades. It appears when a lighter fluid layer provides sup-
port to a heavier layer from below within the gravitational field. In its general context,
Rayleigh-Taylor instability (RTI) manifests when a denser fluid accelerates into a less
dense one. This phenomenon is observed in various fields such as astrophysics, bal-
listics, coatings on solid substrates, technological applications like the flow of liquid
polymer films, environmental aspects involving raindrop dynamics and their impact on
the biosphere, microfluidics, and others.
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Z. Azari et al. (Eds.): JET 2022, LNME, pp. 130–138, 2024.
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Recent study [2] focused on the flow dynamics of a thin liquid film placed on the
underside of a solid planar substrate, subjected to two commensurate frequencies asym-
metric forcing in the tangential direction to the substrate. The effect of the amplitude
ratio was examined with a linear stability analysis.

In this study, our primary focus is on investigating the impact vertical periodic
oscillation with two frequencies on the stability of the interface between two layers
of immiscible and incompressible fluids with varying densities. The Fourrier differenti-
ation matrix method (Fourdif) [4] and Floquet’s theory combined with the Runge-Kutta
method are used to solve numerically the linear problem. After validating the results in
the case of oscillation with one frequency [3], We examine the impact of the frequen-
cies ratio ω, the thickness d and the angular vibration frequency ωx on the threshold of
the interfacial instability.

2 Formulation

Let’s consider a rigid substrate supporting an isothermal, incompressible, Newtonian
liquid film of thickness d and infinite extension in the horizontal directions. In con-
trast to the previous works [2,3] that has focused on single frequency oscillation, in the
present work we consider the situation where the substrate is subjected to a periodic
oscillation having two commensurate frequencies. The system is therefore considered
to be subject to the field of gravity g and to an oscillating motion in the vertical direc-
tion with an acceleration as follows: ã(t̃) = ga(t̃) = Ã

(
ω̃2
1 cos(ω̃1t̃) + αω̃2

2 cos(ω̃2t̃)
)

where ω̃1 and ω̃2 are two commensurate frequencies, α is the amplitudes ratio and t̃ is
the time. The system is analyzed within the x̃− z̃ plane, with the x̃ axis aligned parallel
to the substrate, while the z̃ axis is perpendicular to the substrate, (see Fig. 1).

The equations describing the flow are the continuity equation and the momentum
equations written in the relative frame linked to the substrate:

∂ũ

∂x̃
+

∂w̃

∂z̃
= 0 (1)

∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ w̃

∂ũ

∂z̃
= −1

ρ

∂p̃

∂x̃
+ νΔũ (2)

∂w̃

∂t̃
+ ũ

∂w̃

∂x̃
+ w̃

∂w̃

∂z̃
= −1

ρ

∂p̃

∂z̃
+ νΔw̃ − g(1 + a(t̃)) (3)

where the quantities ũ, ṽ, p̃, g, ρ and ν = μ/ρ designate respectively the axial and
longitudinal components of the velocity field, the pressure, the acceleration of gravity,
the density and the kinematic viscosity.

The boundary conditions at the solid substrate, z̃ = 0, are the no slip and no pene-
tration conditions:

ũ = 0 , w̃ = 0 en z̃ = 0 (4)
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Fig. 1. Schematic illustration of the studied configuration. In the Rayleigh-Taylor configuration,
the force of gravity acts in the upward direction of the z̃ axis and g > 0.

At the free surface, the kinematic and the dynamic condition, are given respectively
by:

∂h̃

∂t̃
+

∂

∂x̃

h̃(x̃,t̃)∫

0

ũ dz̃ = 0 (5)

(p̃a − p̃) n + D n = κγ n (6)

where D =
(

2μ∂ũ
∂x̃ μ(∂w̃

∂x̃ + ∂ũ
∂z̃ )

μ(∂w̃
∂x̃ + ∂ũ

∂z̃ ) 2μ∂w̃
∂z̃

)
is the viscous stress tensor in the liquid

phase, γ is the surface tension coefficient, n = (− ∂
∂x̃ h̃,1)√
1+ ∂h̃2

∂x̃2

is the unit vector normal to the

interface, κ =
∂2h̃
∂x̃2

(1+ ∂h̃2

∂x̃2 )
3
2
is the interface curvature.

The dimensionless form of Eqs. (1)–(3) and boundary conditions (2)–(6) are rewrit-
ten in a dimensionless form using the following scales : d (liquid film thickness) and l̃
(wavelength) for the vertical and horizontal coordinates, respectively, w0 for velocities,
and d/w0 for time. By introducing a small film parameter :

δ = d
l̃

<< 1,

and using the approximation of lubrification, the dimensionless equations governing the
problem in the relative frame correspond to those in references [2,3]:

∂h

∂t
+

∂q

∂x
= 0 (7)

6
5
Re(

∂q

∂t
+

17
7

q

h

∂q

∂x
− 9

7
q2

h2

∂h

∂x
) = −3q

h2
+ h(Γ

∂3h

∂x3
− G(1 + a(t))

∂h

∂x
) (8)
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where q =
h∫

0

u dz. The dimensionless quantities Re = w0d
ν , G = δ2gd2

νw0
, Γ = δ4γ

ρνw0

are respectively, the Reynolds, Galileo and the inverse capillary numbers. The dimen-
sionless vertical acceleration, denoted a(t), is given by:

a(t) = A
(
ω1

2 cos(ω1t) + αω2
2 cos(ω2t)

)
(9)

where A = Ãw2
0

gd2 , ω1 = ω̃1
d

w0
, ω2 = ω̃2

d
w0

. Hereafter, we denote by ω = ω1
ω2

the ratio
of frequencies. The parameter α, in Eq. (9), remains the ratio of the amplitudes of the
oscillatory motion related to each cosine function.

3 Linear Stability Analysis

Equations (7)–(8) are linearized in the vicinity of the basic solution, q = 0 and h = 1.
The solutions of the linear problem are sought in the normal modes : q = qk(t)eikx and
h = 1 + ηk(t)eikx. Equations (7)-(8) and dimensionless form of boundary conditions
(2)–(6) are reduced to the Mathieu equation with damping [2,3] :

Reη̈k +
5
2
η̇k +

5
6
k2

[
G[1 + a(t)] + Γk2

]
ηk = 0 (10)

This differential Eq. (10) corresponds to the amplitude equation of the elevation of the
interface governing the Rayleigh-Taylor instability problem in the presence of vertical
periodic oscillation. It is solved numerically using Fourier differentiation matrix method
[4]. The numerical results are also obtained using the Floquet’s theory combined with
the four order Runge-Kutta method.

4 Discussion

The marginal stability curves are presented in Figs. 2, 3 and 4. These curves can be
used to determine the value of the amplitude, tildeA, at which the liquid layer interface
becomes unstable to standing waves of wavenumber k̃.

In Fig. 2, for ωx = 125 rad/s and α = 0, we validate the work in which a single
frequency is considered [3]. Figure 2 agrees with the results of reference [3] and illus-
trates the presence of two distinct types of marginal stability curves. The first is the
Rayleigh-Taylor instability that occurs at long wavelengths (small wavenumbers), here
for k̃ < 0.37 mm. The second appears for k̃ > 0.37 mm and corresponds to several
parametric tongue-shaped resonance zones whose origin is the presence of oscillation.
Note that the zone corresponding to the second resonance is the most unstable compared
with the other three resonance zones.
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Fig. 2. Validation of the numerical procedure with results in reference [3] : Marginal stability
curves showing the amplitude, Ã, versus the wavenumber, k̃, for the film thickness d = 0.1 mm,
the angular oscillation frequency ωx = 125 rad/s and α = 0.

4.1 Effect of the Thickness

In Fig. 3 (a), (b), (c), numerical results are obtained with the angular frequency ωx =
125 rad/s and for the frequencies ratios ω = 5

4 , ω = 2
3 and ω = 1

2 . Here we restrict
our study to the situation where α satisfies the relation: αω2 = 1. As expected, the
Rayleigh-Taylor instability is not affected by oscillation, whereas parametric reso-

Table 1. Effect of the depth and frequency ratio on the threshold of resonances.

(a) : ω = 5
4

kmin[mm−1] Amin[mm] The most unstable resonance

d = 0.1 mm 1.36 29.16 second resonance

d = 0.14 mm 0.9 11.57 second resonance

(b) : ω = 2
3

kmin[mm−1] Amin[mm] The most unstable resonance

d = 0.1 mm 1.91 30.75 ninth resonance

d = 0.14 mm 1.016 11.9 first resonance

(c) : ω = 1
2

kmin[mm−1] Amin[mm] The most unstable resonance

d = 0.1 mm 1.11 22.38 second resonance

d = 0.14 mm 0.75 7.619 first resonance
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nances are. Note that the layer with thickness d = 0.14 mm is more unstable and
has a smaller wavenumber than the layer with d = 0.1 mm.

Fig. 3. Marginal stability curves showing the amplitude Ã versus the wavenumber k̃ for the
angular oscillation frequency ω1 = 125 rad/s, αω2 = 1 and for the frequencies ratios
ω = 5

4
, ω = 2

3
, ω = 1

2
. The star and solid lines correspond to film thicknesses of d = 0.1

mm and d = 0.14 mm respectively.

For the ratio of frequencies ω = 5
4 (Fig. 3(a), Table 1), the most unstable resonance

zones are the second for d = 0.1mm and d = 0.14mm. However, For ω = 2
3 (Fig. 3(b),

Table 1), the most unstable resonance zones become the ninth for d = 0.1 mm and the
first for d = 0.14 mm. For ω = 1

2 (Fig. 3(c), Table 1), the most unstable resonance
zones are the second for d = 0.1 mm and the first one for d = 0.14 mm.
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From ω = 5
4 to ω = 2

3 , and for both film thicknesses d = 0.1 mm and d = 0.14 mm
a stabilizing effect is observed with a slight increase in the wavenumber. However from
ω = 2

3 to ω = 1
2 a destabilizing effect is noticed with a decrease in the wavenumber.

4.2 Effect of the Angular Frequency

Figure 4 (a), (b), (c) shows the marginal stability curves, again as in Fig. 3, includ-
ing Rayleigh-Taylor instability and parametric resonances for two angular frequencies
ω1 = 125 rad/s and ω1 = 200 rad/s, for d = 0.1 mm and for the same frequency
ratios as in Fig. 3. Table 2 contains the critical parameters of the instability thresholds
for the same parameters. As can be observed, for each frequency ratio, when decreasing
the angular frequency of oscillation, the resonance curves undergo upward translations,
which means we’re in the presence of a stabilizing effect.

For each angular frequency ω1, the transition from ω = 5
4 to ω = 2

3 is accompanied
by a very slight stabilizing effect with a constant wavenumber. Whereas the transition
from ω = 2

3 to ω = 1
2 is accompanied by a significant destabilizing effect, with an

equally significant decrease in the wavenumber.

Table 2. Effect of the angular frequency ω1, for different frequency ratios ω, on the threshold of
resonances.

(a) : ω = 5
4

kmin[mm−1] Amin[mm] The most unstable resonance

ω1 = 125 rad/s 1.36 29.16 second resonance

ω1 = 200 rad/s 1.858 11.15 fifth resonance

(b) : ω = 2
3

kmin[mm−1] Amin[mm] The most unstable resonance

ω1 = 125 rad/s 1.91 30.75 ninth resonance

ω1 = 200 rad/s 1.85 11.23 third resonance

(c) : ω = 1
2

kmin[mm−1] Amin[mm] The most unstable resonance

ω1 = 125 rad/s 1.11 22.38 second resonance

ω1 = 200 rad/s 1.004 7.861 first resonance
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Fig. 4. Marginal stability curves showing the amplitude Ã versus the wavenumber k̃ for d = 0.1
mm, and the frequencies ratios ω = 5

4
, ω = 2

3
, ω = 1

2
. The star and solid curves correspond to

the angular oscillation frequencies of ω1 = 125 rad/s and ω1 = 200 rad/s, respectively.

5 Conclusion

We studied the Rayleigh-Taylor instability under periodic vertical oscillation with two
commensurate frequencies by performing a linear stability analysis on the behavior
of the liquid-air interface. The governing equations are reduced, as in the references
[2,3], to a periodic Mathieu equation describing the evolution of the interface ampli-
tude. This initial study enabled us to identify stable and unstable regions and modes
by considering the various physical parameters associated with the problem. The effect
of thickness and that of angular frequency of vibration ω1 were studied for different
frequency ratios ω. Finally, the introduction of two frequencies into the oscillation gen-
erates richer dynamics than single-frequency oscillation in terms of resonance zones
and wavenumber selection.
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Abstract. This work aims to the introduction of a new micromechanical model-
ing of the elastic behavior of nanocomposite materials with coated nanoparticles.
The model is developed taking into account the interphase and particle clustering
effects. The model is used to explain the relationship between mechanical proper-
ties of nanocomposites and their complex microstructure. Here we consider that
the micromechanical modeling of the complex microstructure of nanocomposites
requires the combination of the four-phase model and the three-phase model and
we assume that all phases are elastic, isotropic and perfectly bonded. In this way,
the effective elastic properties are derived using the integral equation and inter-
facial operators. In the micromechanical study, it was observed that the elastic
modulus increases with the increasing in the volume fraction of nanoparticles.
The effect of interphase zone is studied and the performance of the present model
is showing by comparing with numerical and experiment results and show a good
agreement.

Keywords: Nanocomposite ·Micromechanics · Coated nanoparticles · Cluster ·
Three-phase model · Four-phase model

1 Introduction

Real microstructure of nanocomposites is very complex and can be decomposed to a sev-
eral representative volume elements RVE. Therefore, many micromechanical modeling
have been applied to evaluate the mechanical properties of nanocomposites (see e.g. [1–
6]). These nanomaterials are very important due to theirmechanical, thermo/mechanical,
optical and electrical properties.

When the radius of nanoparticles is about one nanometer, the interphase zone linking
the nanoparticle and matrix in nanocomposite play a decisive role in the manufacturing
and performance of nanomaterial. The interphase can be taken as the third phase in the
nanocomposite with different properties and form with special atomistic, soft interfacial
coatings, diffusion and chemical interaction phases at the interface betweennanoparticles
and matrix. Peng et al. [1] developed a numerical/analytical model of nanocomposites,
which allows to characterize the interphase and clustering effects. Amraei et al. [2]
developed a interphase model based on finite/size representative volume element to
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obtain the mechanical properties of nanocomposites. Mortazavi et al. [6] evaluate the
effect of the interphase on the conductivity and the elastic behavior of nanocomposite.

Here we consider that the present micromechanical modeling requires the combi-
nation of two patters [7] consisting of the four-phase model [8] and of the three-phase
model. Analytical equations for the effective elastic properties of the nanocomposite are
given and use the integral equation [9] and interfacial operators [10]. We suppose that
all constituents are isotropic, homogeneous and the interfaces (bonds) are perfect.

2 General Framework and Micromechanical Model

Figure 1 shows a typical nanocomposite material. In this figure, we can distingue two
different patterns [7] consisting of coated nanoparticles and clusters formed by the same
coated nanoparticles.

Fig. 1. Microstructure of nanocomposite

Here and following the generalized self-consistent scheme [11], the nanocomposite
is modeled as shown in Fig. 2; except for one coated nanoparticle surrounding by a shell
matrix and except for one cluster surrounding by matrix layer, all other constituents are
replaced by the effective medium.

Effective medium

Fig. 2. Schematization of nanocomposites using the generalized self-consistent scheme

In the next, we consider that the cluster can be considered as an assemblage of coated
spherical nanoparticles [12]. To determine the cluster properties, we use the generalized
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self-consistent scheme [11] and then the final topology of the present model is shown in
Fig. 3.

Effective medium

Fig. 3. Four-phase and three-phase models

In the Fig. 3, the four-phase model is made with nanoparticle, interphase, matrix
coating and effective medium while the three-phase model is made with homogenized
cluster, matrix coating and effective medium. The inclusion, the interphase, the homoge-
nized cluster, thematrix and the effectivemedium are characterized by the elastic moduli
ci, cz, cc, cm and Ceff , respectively.

The mean global stress and strain in the nanocomposite are given, respectively, by:

� = f iσ
i + f z σ z + f c σ c + f m σm (1)

E = f iε
i + f z εz + f c εc + f m εm (2)

f , σ and ε indicate the volume fraction, the mean stress and the mean strain in inclusion
(i), in interphase (z), in cluster (c) and in matrix (m).

The elastic stiffness Ceff of nanocomposite are given as follow:

Ceff = cm + f i
(
ci−cm

)
: A(i4) + f z

(
cz−cm

) : A(z4) + f c
(
cc−cm

) : A(c) (3)

The determination ofCeff implies the determination of the strain localization tensors
A(i4), A(z4) and A(c).

A(i4) and A(z4) are the localization tensors of global strain in nanoparticle and in
interphase, respectively. These tensors are given in [8].

A(c) is the localization tensor of global strain in the homogenized cluster, such that:

A(c) = A(i3) + A(z3) (4)

A(i3) and A(z3) are the localization tensors of global strain in nanoparticle and in
interphase in the three-phase model. These tensors are deduced from [8].
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cc are the elastic properties of homogenized cluster and are determined by consider-
ing each cluster as an assemblage of composite spheres [12] and using the generalized
self-consistent scheme [11] such that:

cc = cz + f i
(
ci−cz

)
: A(i3) (5)

2.1 Four-Phase Model

A(i4) And A(z4) are determined by the four-phase model shown in Fig. 4.

Effective medium

Fig. 4. Four-phase model

According to Barhdadi et al. [8], The tensors A(i4), A(z4) are given by:

A(i4) =
[
f i

(
I + TJ

(
Ceff

)
:
(
ci−Ceff

))
+ f z

(
I + TJ

(
Ceff

)
:
(
cz−Ceff

))
: ω(z/ i)

+f m
(
I + TJ

(
Ceff

)
:
(
cm−Ceff

))
:
(

f i
f i+f z

ω(m/ i) + f z
f i+f z

ω(m/ z) : ω(z/ i)
)]−1

(6)

A(z4) = ω(z/ i): A(i4) (7)

The tensors TJ(Ceff ), ω(z/ i), ω(m/ i) and ω(m/ z) are obtained from the Eshelby’s
tensor [13] and can be decomposed into spherical and deviatoric parts;

TJ
(
Ceff

)
= 1(

3keff + 4µeff
)J + 3

(
keff + 2µeff

)

5µeff
(
3keff + 4µeff

)K (8)

ω(z/ i) = 4µz + 3ki
(3kz + 4µz)

J + 3kz(2µi + 3µz)+ 4µz(3µi + 2µz)

5µz(3kz + 4µz)
K (9)

ω(m/ i) = 4µm + 3ki
(3km + 4µm)

J + 3km(2µi + 3µm)+ 4µm(3µi + 2µm)

5µm(3km + 4µm)
K (10)

ω(m/ z) = 4µm + 3kz
(3km + 4µm)

J + 3km(2µz + 3µm)+ 4µm(3µz + 2µm)

5µm(3km + 4µm)
K (11)

k and μ are the bulk and shear moduli, respectively, while J and K result from the
decomposition of the unit tensor I.
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2.2 Three-Phase Model

A(c) Is determined by the three-phase model shown in Fig. 5.

Effective medium

Fig. 5. Three-phase model.

According to Barhdadi [8], the tensor A(c) is given by:

A(c) =
[
f c

(
I + TJ

(
Ceff

)
:
(
cc − Ceff

))
+f m

(
I + TJ

(
Ceff

)
:
(
cm − Ceff

))
:
(
I − TH(

cm
) : (

cm − cc
))]−1

(12)
(
I − TH(cm) : (cm − cc)

)
is the localization tensor expressing the jump of mean

strain between the matrix coating and the homogenized cluster and is obtained from the
Eshelby’s tensor [13] as follow:

[
I − TH(

cm
) : (

cm−cc
)] = 4μm+3kc

(3k2+4μ2)
J + 3km(2μc+3μm)+4μm (3μc+2μm)

5μm(3km+4μm)
K

(13)

According to the Eq. (5) the properties of cluster are given by:

kc = kz + fi(ki − kz) : M (i3) (14)

µc = µz + fi(µi − µz) : D(i3) (15)

M(i3) and D(i3) express the isotropic and deviatoric parts, respectively, of A(i3).
According to the Eq. (3), The effective properties of nanocomposite are given by:

Keff = km + f i(ki − km) : M(i4) + f z(kz − km) : M(z4) + f c(kc − km) : M(c) (16)

μeff = μm + f i(μi − μm) : D(i4) + f z
(
μz − μm

) : D(z4) f c(μc − μm) : D(c) (17)

M(i4), D(i4), M(z4), D(z4), M(c) and D(c) Are the Isotropic and Deviatoric Parts,
Respectively, of A(i4), A(z4) and A(c), Such that:

M(c) = M(i3) +M(z3) (18)
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D(c) = D(i3) +D(z3) (19)

A(c) = A(i3) +A(z3) (20)

M(z3) and D(z3) Are the Isotropic and Deviatoric Parts, Respectively, of A(z3).
The TensorsM(i4),D(i4),M(z4),D(z4),M(i3),M(z3),D(i3) andD(z3) Are Given in [8].

3 Results and Discussions

In Figs. 6 and 7, the Poisson’s ratio of nanoparticles, interphase and matrix are equal to
0.3 and the Young’s moduli of silica nanoparticles is Ei = 70GPa = 20Em, where Em is
the Young’s modulus of polymer matrix. In the Fig. 6, the interphase thickness is taken
as 0.5 nm and the nanoparticles radius is assumed as 1 nm. This figure shows the effect
of IMC (properties contrast of interphase to matrix) on the effective elastic modulus.
For IMC equal to 0.5, we observe that the reinforcement with nanoparticles is stabilized
due to the low interphase properties and when the IMC increase, we observe a higher
reinforcement effects. The Fig. 7 shows the effect of interphase thickness at IMC = 2.
The higher effect of reinforcement is also due to the increasing of interphase thickness.
Figures 6 and 7 clearly show the importance of interphase for the case of nanocomposite
structures filled with nanoparticles.
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IMC No interphase
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Nanoparticles volume fraction (%)

Eeff

Fig. 6. Young’smodulus (GPa) as a function of IMCandnanoparticles content. The reinforcement
to matrix properties contrast is equal to 20.

Figure 8 shows the overall elastic modulus of nanocomposite at various volume
fractions of nanoparticles. In this application the radius of the nanoparticle was taken
to be 1 nm. The thickness of interphase is 0.6 nm. The Young’s moduli for each phase
is assumed as: nanoparticles, 88.7GPa; interphase, 3.5GPa; and matrix, 4.2GPa. The
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Fig. 7. Young’s modulus (GPa) as a function of interphase thickness and nanoparticles content.
The reinforcement to matrix properties contrast is equal to 20.

Poisson’s ration is taken as: 0.26, 0.4, and 0.4 for nanoparticles, interphase and matrix,
respectively. As shown in Fig. 8, the effective elastic modulus decreases with increasing
the thickness of interphase. This figure shows also that the present model is in a good
agreement with numerical results [1].

Nanoparticles volume fraction (%)

Eeff

Present model

Computational experiment (Peng et al.)

Fig. 8. Young’s modulus (GPa) as a function of nanoparticle content (Interphase thickness =
0.6 nm)

Figure 9 shows the effect of nanoparticle content on the effective elastic modulus of
nanocomposites. The elastic modulus of nanocomposites estimated by the new model
is compared with experimental data [14] and with the predictions of Halpin-Tsai model
[15]. Here the radius of the nanoparticle is taken equal to 3 nm and the thickness of
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interphase is 0.5 nm. The Young’s moduli of nanoparticles and matrix are 69GPa and
3GPa, respectively. The Poisson’s ration of nanoparticles and matrix are 0.15 and 0.35,
respectively.

0
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0 0.1 0.2 0.3 0.4 0.5 0.6

Present model

Halpin - Tsai

Experimental

Eeff

Nanoparticles volume fraction 

Fig. 9. Young’s modulus (GPa) as a function of nanoparticle content (Interphase thickness =
0.5nm)

The interphases properties are evaluated by Saber-Samandari et al. [16]. Young’s
moduli and Poisson’s ratio of interphase are 3.48GPa and 0.4, respectively.

As shown in Fig. 9, a very good accuracy between experimental data [14] and the
present model while the Halpin–Tsai [15] model overestimate the experimental data.

4 Conclusion

A micromechanical model for evaluating the elastic properties of nanocomposite mate-
rials has been developed. The model takes into account the interphase and clustering
effects and use the Green function and interfacial operators. The methodology requires
the combination of the four-phase model and the three-phase model. In the obtained
results, it was observed that the Young’s modulus increases with increasing the inter-
phase thickness and with increasing the interphase to matrix properties contrast (IMC).
It was shown also that the present model is compared successfully with computational
and experiment results. This suggests that the proposedmodel is suitable for determining
the effective elastic modulus of nanocomposites.

References

1. Peng, R. D., Zhou, H. W., Wang, H. D., Leon Mishnaevsky, Jr.: Modeling of nano-reinforced
polymer composites: microstructure effect on Young’s modulus. Compos. Mater. Sci. 60,
19–31 (2012)



On a Novel Micromechanical Modeling of the Elastic Behavior of Nanocomposites 147

2. Amraei, J.E., Jam, J., Arab, B., Firouz-Abadi, R.D.: Effect of interphase zone on the overall
elastic properties of nanoparticle reinforced polymer nanocomposites. J. Compos. Mater.
9(53), 1–14 (2018)

3. Abu Taqa, A. G., Abu Al-Rub, R. k., Senouci, A., Al-Nuaimi, N., Bani-Hani, K. A.: The
effect of interfacial transition zone properties on the elastic properties of cementitious
nanocomposite materials. J. Nanomater. 1(16), 1–13 (2015)

4. Wernik, J.M.,Meguid, S.A.:Multiscalemodeling of the nonlinear response of nano-reinforced
polymers. Acta Mech. 82(217), 1–16 (2010)

5. Paliwal, B., Cherkaoui, M.: Estimation of anisotropic elastic properties of nanocomposites
using atomistic-continuum interphase model. Int. J. Solids Struct. 18(49), 2424–2438 (2012)

6. Mortazavi, B., Bardon, J., Ahzi, S.: Interphase effect on the elastic and thermal conductivity
response of polymer nanocomposite materials: 3D finite element study. Compos. Mater. Sci.
69, 100–106 (2013)

7. Bornert, M., Stolz, C., Zaoui, A.: Morphologically representative pattern-based bounding in
elasticity. J. Mech. Phys. Solid. 3(44), 307–331 (1996)

8. Barhdadi, E.H., Lipinski, P., Cherkaoui, M.: Four phase model: a new formulation to predict
the effective elastic moduli of composites. J. Eng. Mater. Technol. 129(2), 313–320 (2007)

9. Dederichs, P.H., Zeller, R.: Variational Treatment of the Elastic Constants of Disordered
Materials. Zeitschrift für Physik A Hadrons and nuclei 259, 103–113 (1973)

10. Hill, R.: Interfacial operators in the mechanics of composite media. J. Mech. Phys. Solid.
297, 347–357 (1983)

11. Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere
and cylinder models. J. Mech. Phys. Solid. 27, 315–330 (1983)

12. Hashin, Z.: The elastic moduli of heterogeneousmaterials. J. Appl.Mech. 17, 143–150 (1962)
13. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related

problems. Proc. Royal Soc. London A 241, 376–396 (1957)
14. Rousseau, C.E., Tippur, H.V.: Compositionally graded materials with cracks normal to the

elastic gradient. Acta Mater. 48, 4021–4033 (2000)
15. Halpin, J.C., Tsai, S.W. : Effects of Environmental Factors on Composite Materials, AFML-

TR, 67–243 (1969)
16. Saber-Samandari, S., Afaghi-Khatib, A.: Evaluation of elastic modulus of polymer matrix

nanocomposites. Polym. Compos. 28, 405–411 (2007)



Effect of Number of Engines and Payload
Weight on Static Stability of an Unmanned

Aerial Vehicle

Amina Kottat(B) and Mohamed ElAmine Ait Ali

Université Mohammed V de Rabat, Ecole Mohammadia d’Ingénieurs, ERG2(ME),
Av. Ibn Sina, Rabat, Morocco

amina.kottat@research.emi.ac.ma, aitali@emi.ac.ma

Abstract. The goal of this work is to study the effect of number of engines and
payload weight on the static stability of an unmanned aerial vehicle (uav) after
the pre-sizing phase of its design. The aim is to answer the designer’s question, at
this early stage, what will happen to the uav’s static stability if we increase these
two parameters? After pre-sizing an uav that satisfies our requirements, we start
by using the semi-empirical method known as Data Compendium to calculate and
quantify their effect on static stability derivatives coefficients. In the next step,
we develop a model using the vortex lattice method of the XFLR5 software to
characterize these effects. Both methods give similar qualitative results. Using
these results, we show that increasing the number of engines of this uav induces a
non-monotonic change in its static stability with respect to the three axes. We also
show that increasing the payload weight increases its static stability. However,
this increase is non-monotonic with the increase of the number of engines. These
conclusions show uav designers, focused on increasing static stability with respect
to specific axis, how to choose the right number of engines and tomanage payload’s
weight during operations.

Keywords: Unmanned Aerial Vehicle · Static stability · uav design · VLM ·
XFLR5 · engines number effect · payload weight effect

1 Introduction

Stability of an unmanned aerial vehicle (uav) is its ability to return to its original equi-
librium state after a disturbance that could induce a sudden change in its angle of attack
or sideslip. It is said to have static stability if the forces generated by this disturbance
tend to bring it to the original equilibrium. And it is said to have dynamic stability if it
has a dynamic motion, with or without oscillation, after the same disturbance during its
movement towards this equilibrium. Both types of stability are important characteristics
of handling and control of uavs. A lack of stability leads to losing control, to possible
serious accidents and to loss of equipment. Which explain why stability analysis is an
integrated part of uav design process. It is first considered in the conceptual design phase
with formulas to have an initial geometry and ensure equilibrium [12], then in prelimi-
nary design phase [1] where we calculate aerodynamic forces and moments for different
flying conditions to deduce stability coefficients.
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Z. Azari et al. (Eds.): JET 2022, LNME, pp. 148–157, 2024.
https://doi.org/10.1007/978-3-031-49727-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49727-8_16&domain=pdf
https://doi.org/10.1007/978-3-031-49727-8_16


Effect of Number of Engines and Payload Weight 149

Before fabrication of a prototype, calculating these stability coefficients is done by
mainly three approaches. i. either by high fidelity computational fluid dynamic (cfd)
which is time consuming and limits its use to a limited number of simulations of flying
conditions; ii. or by low fidelity numerical analysis such as panel methods described
by [15], lifting line theory [16] and vortex lattice methods [17]. These methods are
considered as an effective numerical method in aircraft stability analysis [8]; iii. or by
semi-empirical systematic methods such as DATCOMmethod, described thoroughly in
[7]. The latter two approaches give good and fast resultsmaking themagood compromise
between computational cost and accuracy [3] to study the effect of various parameters
on stability. Sun et al. [18] used cfd simulation to evaluate the stability of Diamond
Joined-Wing uav. Sugandi et al. [6] used the same approach on a tandem wing uav.
Moelyadi et al. [4] used a similar simulation and compared the results to those of panel
methods in evaluating the stability of a twin tail boom. Septiyana et al. [2] used the three
approaches to validate the static stability of the same type of uav. Kuitche et al. [19] used
these approaches to study the stability of similar type of uav for multiple altitudes. Kim
et al. [3] used a less time consuming cfd method, called actuator method, to study the
effect of engines location in the uav on the static stability of two fixed wings uavs with
four engines. Pobikrowska et al. [5] used a panel method to analyze the stability of an
airplane and rectify its geometry to better its stability. In these mentioned works, studies
are carried out on frozen configuration and sensibility studies to design parameters are
limited. In this study, we pre-size an uav that satisfies our requirement, and we quantify
the effect of number of engines on the static stability of this fixed wing uav. For this,
we consider three uavs where we increase their number from one to three, all other
parameters are the same. Then we consider two more payload weights and quantify their
effect on static stability of each of the three uavs. This change represents the increase
of payload weight during effective use of the uav. We carry out these studies using first
DATCOM approach then using a vortex lattice method (VLM) included in XFLR5 and
we compare the results. We have a good agreement between the two methods. These
results help the designer to answer the question, in early stages of the design process:
what will happen to the uav’s static stability if we increase the number of engines and if
we increase its payload weight?

2 Study of the Effect of Engines Number and Payload Weight
on Static Stability Using DATCOMMethod

2.1 Preliminary Sizing and Calculating Stability Coefficients of the Uav

Before proceeding to the static stability study, we start by pre-sizing the uav based on
a design methodology described by Raymer [12], Sadraey [13] and Gundlach [14]. A
detailed description of the method, parameters and formulas used are given in [20]. We
set the following requirements: payload weight 8.5 kg, takeoff and landing distances
12 m, rate of climb 3 m/s, range 20 km, maximum cruise speed 22 m/s, stall speed 7
m/s, ceiling 200 m, 4h endurance and a flight mission with a single cruise. After the
preliminary design, we obtain all the initial parameters of the uav’s geometry as shown
in (Fig. 1). For this study, we chose NACA 4418 as profile for the wing and NACA
64012-A for the horizontal and vertical tail.
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Fig. 1. Views of the uav model developed with preliminary method (all distance measures are in
mm)

Todetermine its static stability characteristics,we calculate three stability coefficients
[9] in the body axis system: i. derivative of the pitching moment coefficient, Cmα to
evaluate static longitudinal stability; ii. Derivative of the yawing moment coefficient
Cnβ to evaluate static directional stability; iii. And derivative of the rolling moment
coefficient, Clβ to evaluate static lateral stability.

In this section, we use DATCOM method for estimating these coefficients. A com-
plete description of the method and the equations are described in [7]. We followed the
implementation of Nelson [10] and Roskam [11] of DATCOM procedures to calculate
them. To have a statically stable uav in longitudinal, lateral and directional modes Cmα

and Clβ must be negative and Cnβ must be positive. In addition to pitching moment
coefficient Cm0 for an angle of attack of zero, must be positive. If these conditions are
satisfied, any increase of themodulus value of the stability coefficientsmeans an increase
of the uav’s static stability relative to that direction (longitudinal, directional or lateral).

2.2 Effect of the Number of Engines on the Static Stability of the Uav

To study the effect of the number of engines on the static stability of the uav, we keep
the same geometry, and we change the number of engines from one to three. For the uav
with one engine, we put it on its nose; for the one with two engines, we put them on its
wings; for the one with three engines, we put one on its nose and two on its wings. Then
we use DATCOM method to calculate pitching moments for angle of attack, α, varying
from−10° to 10° and yawing and rolling moments for angle of sideslip, β, varying from
−10° to 10°.

Figure 2 and Fig. 3 show the results for the three cases considered. Then we calculate
the coefficients: Cmα, Cnβ, Clβ, Cm0 and the trim point (angle).

of attack), αs, where the pitching moment is zero. Table 1 summarizes the values of
these parameters for each case. From this table we find that: i. according to the conditions
mentioned in Sect. 2.1 all three uavs are statically stable ii. The static longitudinal and
directional stability of the uav with three engines is greater than the one with one engine
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Table 1. Static stability parameters for uav with a payload of 8.5kg with one, two and three
engines calculated using DATCOM method

Uav characteristics Uav (1 engine) Uav (2 engines) Uav (3 engines)

Cm0 0.1846 0.1991 0.1747

Cmα (rad−1) (increase relative to uav
with 1 engine in %)

−1.6242 −1.4405 (−11.3%) −1.7507 (7.8%)

Cnβ (rad−1) (increase relative to uav
with 1 engine in %)

0.1402 0.1363 (−2.8%) 0.1440 (2.7%)

Clβ (rad−1) (increase relative to uav
with 1 engine in %)

−0.0454 −0.0421 (−7.3%) −0.0440 (−7%)

Trim point αs (°) 6.5 7.9 5.7

Fig. 2. Pitching moment versus angle of attack in the case of uav with one, two and three engines
calculated using DATCOM method

and both are more static stable than the one with two engines; iii. The static lateral
stability of the uav with one engine is greater than the one with three engines and both
are more static stable than the one with two engines; vi. Each uav has a different value
for the trim point αs.

2.3 Effect of Payload Weight on the Static Stability of the Uav

To study the effect of payload weight on the static stability of the uav, we consider the
three uavs of the previous section and we increase the payload weight to 20 kg and 30
kg for each uav. In total, we have nine cases to study their static stability. For each case,
similarly to the previous section we use DATCOM method to calculate the necessary
moments by varying α and β from −10° to 10° by a step of 1°. Table 2 shows the
calculated parameters. The cases with a payload weight of 8.5kg are already presented
in Table 1. From Table 1 and 2 we find that: i. according to the conditions mentioned in
Sect. 2.1 all the cases studied in this section are statically stable. ii. Increasing the payload
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                                      (a)                                                                   (b)

Fig. 3. (a) Yawing moment versus sideslip angle, and (b) Rolling moment versus sideslip angle
in the case of uav one, two and three engines calculated using DATCOM method

weight increases the static stability in the three directions: longitudinal, directional and
lateral; iii. The increase is more important in the case of uav with two engines followed
by the one with one engine then by the one with three engines for static longitudinal and
directional stability; iv. For static lateral stability increase is more important in the case
of two engines followed by the one with three engines then by the one with one engine;
v. therefore, the trim point αs changes for every case. This quantification of changes is
valuable information in controlling the uav during flying.

Table 2. Static stability parameters of uavs with a payload weight of 20 kg and 30 kg compared to
the uav with same number of engines and a payload weight of 8.5 kg calculated using DATCOM
method

Uav characteristics Uav (1 engine) Uav (2 engine) Uav (3 engine)

20 kg 30 kg 20 kg 30 kg 20 kg 30 kg

Cm0 0.1658 0.1602 0.1736 0.1658 0.1613 0.1569

Cmα (rad−1) −1.8641 −1.9351 −1.7648 −1.8641 −1.9209 −1.9776

Increase relative to
8.5 kg in %

−14.8% −19.1% −22.5% −29.4% −9.7% −12.9%

Cnβ (rad−1) 0.1430 0.1436 0.1421 0.1428 0.1449 0.1457

Increase relative to
8.5 kg in %

1.2% 2.4% 4.3% 4.8% 0.6% 1.2%

Clβ (rad−1) −0.0457 −0.0465 −0.0452 −0.0460 −0.0461 −0.0466

Increase relative to
8.5 kg in %

−3.4% −1.7% −7.4% −9.3% −4.8% −5.9%

Trim point αs (°) 5.1 4.7 5.6 5 4.8 4.5
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3 Numerical Study and Comparison to DATCOM Method
of the Effect of Engines Number and Payload Weight on Static
Stability

3.1 Description of the Numerical Model Developed Using XFLR5

To compare the DATCOM results to those of numerical approach for the nine cases stud-
ied in the previous section, we used the open-source programXFLR5 [21]. This software
employs various methods such as lifting line theory and vlm method to determine aero-
dynamic properties of small aircrafts and to calculate their static stability coefficients.
We inserted same geometrical details and data specified (profiles, air density, altitude…)
in Sect. 2.1 without including the fuselage as its participation in the static stability coef-
ficients is negligible. For the study of the effect of engines number, we positioned for
each case the engines as described in Sect. 2.2. For the study of the effect of payload
weight, we kept it in the same position, and we changed only its weight. To solve the
problem, we used the vlm method and we segmented the geometry into 3655 panels.
Then we obtain the static stability coefficients of every case in addition to Cm0 and trim
point αs.

3.2 Numerical Study of the Effect of the Number of Engines on the Static
Stability of the Uav

Weused themodel described in the previous section in the case of the three uavswith one,
two and three engines and a payload of 8.5 kg. Table 3 shows the stability parameters
calculated with XFLR5 and its comparison to the values calculated using DATCOM
method. On one hand, we find that results given by XFLR5 confirm all the findings (i.
to vi.) by DATCOM method in Sect. 2.2. On the other hand, the numerical results are
close to those of DATCOMmethod for the static longitudinal stability coefficient (1.6%
as mean difference in the three cases); less so for static directional stability coefficient
(−9.3% as mean difference in the three cases); and quite different for the static lateral
stability coefficient (−27.9% as mean difference in the three cases).

3.3 Numerical Study of Payload Weight Effect on the Static Stability of the Uav

To study the payload weight effect, in addition to the three uavs with a payload of 8.5 kg
wemodeled using XFLR5 in the previous section, wemodeled six additional uavs where
we increase the payloadweight to 20 kg and 30 kg. Table 4 shows the stability parameters
calculated using XFLR5 and its comparison to the values calculated using DATCOM
method. On one hand, we find that results given by XFLR5 confirm all the findings (i.
to v.) by DATCOM method in Sect. 2.3. On the other hand, the numerical results are
close to those of DATCOMmethod for the static longitudinal stability coefficient (0.8%
as mean difference in the nine cases); less so for static directional stability coefficient
(-9.1% as mean difference in the nine cases); and quite far for the static lateral stability
coefficient (-26.3% as mean difference in the nine cases).
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Table 3. Static stability parameters for uav with a payload of 8.5 kg with one, two and three
engines calculated using XFLR5 and compared to those calculated using DATCOM method

Uav characteristics Uav (1 engine) Uav (2 engines) Uav (3 engines)

Cm0 0.2047 0.2126 0.1996

Cmα (rad−1) (increase relative to
uav with 1 engine in %)

−1.6044 −1.3809 (−13.9%) −1.7519 (9.2%)

Cmα increase relative to
DATCOM result %

−1% −4% 0.07%

Cnβ (rad−1) (increase relative to
uav with 1 engine in %)

0.1275 0.1246 (−2.3%) 0.1294 (1.5%)

Cnβ increase relative to
DATCOM result %

−9.1% −8.6% −10.1%

Clβ (rad−1) (increase relative to
uav with 1 engine in %)

−0.0329 −0.0296 (−10%) −0.0324 (−1.5%)

Clβ increase relative to DATCOM
result %

−27.5% −29.7% −26.4%

Trim point αs (°) 7.3 8.8 6.5

Table 4. Static stability parameters for uav with a payload of 20 kg and 30 kg compared to the
uav with same number of engines and a payload weight of 8.5 kg calculated using XFLR5 and
compared to those calculated using DATCOM method

Uav
characteristics

Uav (1 engine) Uav (2 engine) Uav (3 engine)

20 kg 30 kg 20 kg 30 kg 20 kg 30 kg

Cm0 0.1940 0.1908 0.1982 0.1938 0.1918 0.1894

Cmα (rad−1) −1.9006 −1.9878 −1.7792 −1.9017 −1.9625 −2.0288

Increase relative
to 8.5 kg in %

18.5% 23.9% 28.8% 37.7% 12% 15.8%

Increase relative
to DATCOM
result %

1.9% 2.7% 0.8% 2% 2.2% 2.6%

Cnβ (rad−1) 0.1313 0.1325 0.1297 0.1313 0.1321 0.1330

Increase relative
to 8.5 kg in %

3% 3.9% 4.1% 5.3% 2.1% 2.8%

Increase relative
to DATCOM
result %

−8.9% −8.3% −9.6% −8.2% −9.8% −9.5%

Clβ (rad−1) −0.0340 −0.0347 −0.0335 −0.0343 −0.0344 −0.0349

(continued)
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Table 4. (continued)

Uav
characteristics

Uav (1 engine) Uav (2 engine) Uav (3 engine)

20 kg 30 kg 20 kg 30 kg 20 kg 30 kg

Increase relative
to 8.5 kg in %

3.2% 5.2% 11.6% 13.7% 5.8% 7.2%

Increase relative
to DATCOM
result %

−25.6% −25.4% −25.9% −25.4% −25.4% −25.1%

Trim point αs (°) 5.1 4.7 5.6 5 4.8 4.5

4 Conclusion and perspectives

In this work we studied the effect of the number of engines and payload weight on the
static stability of a fixedwing uav, to help the designer, in the pre-sizing phase, understand
the relations of these parameters to static stability of an uav. We started by pre-sizing
an uav that satisfies our requirements, and we obtained all the initial parameters of the
uav’s geometry that we took as a reference for our study.

In the first part, we usedDATCOMmethod to calculate the static stability parameters.
To study the effect of the number of engines, we varied the number of engines from one to
three and we kept the other parameters unchanged. For the uav with one engine, we put it
on its nose; for the one with two engines, we put them on its wings; for the one with three
engines, we put one on its nose and two on its wings. This effect is different depending
on the direction. We showed that the static longitudinal and directional stability of the
uav with three engines is greater than the one with one engine and both are more static
stable than the one with two engines. On the other hand, we showed that the static lateral
stability of the uav with one engine is greater than the one with three engines and both
are more static stable than the one with two engines.

In the next step, we increased the payload weight from 8.5 kg to 20 kg and 30 kg
in each uav with a different number of engines and we kept it in the same position in
the uav. We showed an increase of static stability in the three directions. However, this
increase is more important in the case of uav with two engines followed by the one with
one engine then by the one with three engines for static longitudinal and directional
stability. For static lateral stability the increase is more important in the case of two
engines followed by the one with three engines then by the one with one engine. This
quantification of static stability increase would help in better controlling the uav.

In the second part, to compare the obtained results to those of numerical approach
based on vlm method. We used XFLR5 to calculate the static stability parameters. All
the findings are confirmed qualitatively. Quantitatively the numerical results are close for
the static longitudinal stability coefficient (0.8% as mean difference in the nine cases);
less so for static directional stability coefficient (−9.1% as mean difference in the nine
cases); and quite far for the static lateral stability coefficient (−26.3% asmean difference
in the nine cases). Which makes this tool a viable option for future studies that would
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interest the designer at pre-sizing phase such as studying the relationship between these,
or other, parameters to better the uav’s dynamic stability.
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