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Abstract. We introduce a robust optimization model for scheduling
operating rooms with uncertain surgical durations. The model addresses
multiple operating rooms and surgical procedures. In the numerical anal-
ysis, we verify the influence of the risk-averse tendency on the schedule.
The schedules created by the robust optimization are compared with
those of stochastic programming. The results suggest that robust opti-
mization avoids long delays, and obtains a solution faster than stochas-
tic programming. In specific control conservative, robust optimization
exhibits the same performance as stochastic programming. The robust
optimization model is more effective for operating room managers who
desire to obtain an accurate solution quickly.

Keywords: Operations research in health service · Operating room
scheduling · Robust optimization · Stochastic programming

1 Introduction

Hospital management is critical to improving the quality of service to
patients [19]. Surgeries account for most of the hospital revenue and expen-
diture [15,18]. Efficient surgical management is required to achieve optimal hos-
pital management. By clarifying the cost structure underlying operating room
time, Dexter and Macario revealed that improved operating room scheduling
can effectively reduce costs [8]. Creating a robust operating room schedule is
effective in managing the operating room.

In the flow of the operating room scheduling, the surgeon and patient decide
the surgery date through mutual agreement. The surgeon then reports the
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surgery date and estimated duration of surgery to the operating room man-
ager. The manager decides when and in which operating room to perform the
surgery based on information such as the estimated duration of surgery and
department.

It is the issue of operating room management that surgery is often not per-
formed according to the schedule. The quality of service to patients is affected
because of the waiting time occurrence owing to the delay from the scheduled
end time of surgery. Surgical duration is uncertain, influenced by the patient’s
condition, lack of information on the preoperative diagnosis, and the surgeon’s
skill. The challenge is to cope with the uncertainty of the surgical duration.

The manager desires to avoid a risk of delay, with surgery being delayed
significantly from the scheduled end time. Long delays lead to increased overtime
for surgical staff, not only increasing costs, but also reducing staff satisfaction. In
operating room scheduling, it is necessary to consider decision-making to avoid
the risk of delay.

In this study, we propose a robust optimization model that considers surgical
procedures and minimizes delay from the regular opening time of the operating
room. After calculating the delay for uncertain surgical duration parameter sets
in the numerical analysis and comparing the performance of the proposed model
to those of the stochastic programming model, we verify whether risk avoidance
tendencies are reflected in schedules. In the proposed model, we consider multiple
operating rooms that could not be considered in Namba et al. [14].

From the numerical results, three important points are obtained as follows:

• Robust optimization tends to avoid long delays.
• Robust optimization, which has only information on the 10th and 90th per-

centile duration of the scenario, exhibits the same performance as stochastic
programming, which has complete information on the scenario in specific
control conservative.

• Robust optimization obtains a solution faster than stochastic programming
because the number of variables and constraints in robust optimization is
smaller than in stochastic programming.

The remainder of the paper is organized as follows: Sect. 2 provides a liter-
ature review. Section 3 introduces the problem setting and robust optimization
model of operating room scheduling. In Sect. 4, we describe the data used in
the study and report the results of our numerical experiments. We conclude the
paper in Sect. 5 with comments regarding matters for future exploration.

2 Literature Review

Operating room scheduling has been studied extensively [5,10,20]. A few stud-
ies have proposed a stochastic model for operating room scheduling [2,9,17].
Batun et al. [4] presented a two-stage stochastic mixed-integer programming
model with uncertain surgical duration. Addis et al. [1] proposed the oper-
ating room rescheduling with uncertain patient arrival and surgical duration.
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Kamran et al. [16] approached the operating room scheduling problem with
different formulations of stochastic programming. Ito et al. [11,12] proposed
a stochastic programming model for scheduling an operating room using the
conditional value-at-risk (CVaR). The CVaR expresses the risk-aversion of the
manager towards the risk that the surgical duration estimated by the surgeon
could be significantly delayed. Another technique that reflects delayed risk aver-
sion is robust optimization. Bandi and Gupta [3] developed a new criterion and
a robust optimization approach for staffing and operating room scheduling prob-
lems under uncertain case mix and case lengths. Denton et al. [6] proposed an
operating room scheduling model with robust optimization to address the uncer-
tain surgical duration.

Our work is somewhat related to Denton et al. [6], but is particularly differ-
ent in that their study did not address the sequence of surgeries in the operating
room. It is important to consider the sequence of surgeries within the operat-
ing room [7]. The manager is making efforts regarding the order of surgeries,
e.g., surgeries belonging to the same department consecutively perform when
arranging surgical equipment and adjusting schedules.

3 Operating Room Scheduling

3.1 Robust Optimization

We propose a robust optimization model for the operating room scheduling prob-
lem under uncertain parameter sets; the worst-case that results in maximum
total surgical duration. The operating room scheduling determines the alloca-
tions to an operating room and surgery procedures.

Surgeries are limited to elective surgeries with prior consent between the
patient and surgeon; thus, we did not consider the interruption of emergency
surgery. In addition, all operating rooms are treated with the same function. We
define surgical duration as the difference between a patient’s entry times and
when the patient leaves the operating room.

The formulation of the maximum surgical duration problem, which is consid-
ered the main problem, is presented in Sect. 3.2. The formulation of the operating
room scheduling problem is shown as follows:

Notation
Index sets.

J: Set of surgeries.
D: Set of departments.
Ed (d ∈ D): Set of surgeries belonging to the department d.
M : Set of operating rooms.

Parameters.

dm(m ∈ M): Regular opening time of the operating room.
nd(d ∈ D): Number of surgeries in department d, nd = |Ed|.
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pj , pj(j ∈ J): Upper and lower bounds on the duration for surgery j.
τ : Control conservative. Set how conservatively you want to control the worst-

case scenario from the decision-maker’s perspective. This represents the num-
ber of surgeries for which the upper bound of the surgical duration is reached.

Variables.

pj(j ∈ J): Duration of surgery j.
cj(j ∈ J): Finishing time of surgery j.
tm(m ∈ M): Delay from the regular opening time of the operating room.
zij(i, j ∈ J, i �= j): Binary variable for surgery precedence, where zij = 1 if

surgery i is processed before surgery j, zij = 0 otherwise.
xmj(m ∈ M, j ∈ J): Binary variable for surgery assignment to the operating

room, where xmj = 1 if in operating room m, surgery j is assigned, xmj = 0
otherwise.

γmij(m ∈ M, i, j ∈ J, i �= j): Linearized binary variables, where γmij = 1 if in
operating room m, surgery i precedes surgery j, γmij = 0 otherwise.

θm(m ∈ M): Linearized binary variables, where θm = 1 if surgeries l and k in
the department d perform in operating room m, θm = 0 otherwise.

α, βj(j ∈ J): Dual variables.
Formulation
Minimize

∑

m∈M

tm (1)

subject to
∑

i∈J

pjxmj ≤ dm + tm, ∀m ∈ M, (2)

∑

m∈M

xmj = 1, ∀j ∈ J, (3)

zij + zji = 1, i �= j,∀i, j ∈ J, (4)

zij + zjk + zki ≤ 2, i �= j, j �= k, k �= i,∀i, j, k ∈ J, (5)

∑

j∈J

jx(m−1)j ≥
∑

j∈J

jxmj , m = 2, ..., |M |, (6)

∑

m∈M

mxmi −
∑

m∈M

mxmj = (|M | − 1)zji, i �= j,∀i, j ∈ J, (7)

∑

i∈Ed

∑

j∈J

zij =
nd(nd + 1)

2
, ∀d ∈ D, (8)
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∑

m∈M

θm ≥ 1, (9)

∑

j∈J

(pj − pj) ≥ ατ +
∑

j∈J

(pj − pj)βj , (10)

1
pj − pj

α + βj ≥ 1, ∀j ∈ J, (11)

pj ≤ pj ≤ pj , ∀j ∈ J, (12)

γmij + 1 ≥ zji + xmi, ∀m ∈ M, i �= j,∀i, j ∈ J, (13)

1 − xml − xmk − θm ≥ 0, ∀l, k ∈ Ed,∀m ∈ M,∀d ∈ D, (14)

xml − θm ≥ 0, ∀l ∈ Ed,∀m ∈ M,∀d ∈ D, (15)

tm ≥ 0, ∀m ∈ M, (16)

α ≥ 0, (17)

βj ≥ 0, ∀j ∈ J, (18)

zij ∈ {0, 1}, i �= j,∀i, j ∈ J, (19)

xmj ∈ {0, 1}, ∀m ∈ M,∀j ∈ J, (20)

γmij ∈ {0, 1}, ∀m ∈ M, i �= j,∀i, j ∈ J, (21)

θm ∈ {0, 1}, ∀m ∈ M. (22)

In the above formulation, the objective function (1) minimizes the total delay
from the regular closing time of the operating room. Constraint (2) deter-
mines delay based upon the surgical duration and regular closing time of oper-
ating room m. Constraint (3) ensures that only one surgery is performed at a
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time. Constraints (4) and (5) are partial circuit constraints for surgery assign-
ments. Constraints (6) and (7) prevent symmetry in surgery assignments.
Constraint (8) ensures that surgeries in the same department are performed
in succession. Note that the constraint has a hidden constraint; surgeries in
the same department are assigned last of the operating room. Constraint (9)
ensures that surgeries in the same department are performed in the same
operating room. The right-hand side of constraint (10) is the objective func-
tion value of the dual problem, and constraint (11) is the constraint for the
dual problem. Here, the dual problem is the complement problem of maxi-
mizing the total duration of the surgery in the next section. Constraint (12)
limits the upper and lower bounds of surgical duration. Constraint (13) is
a constraint on the linearization variable γmij . Constraint (14) and (15) are
constraints on the linearization variable θm. Constraints (16)–(18) are non-
negative constraints on variables tm, α, βj . Constraints (19)–(22) are binary
variable constraints on variables zij , xmj , γmij and θm.

3.2 Surgical Duration Uncertainty

Real-world surgical durations are often subject to uncertainties. A robust opti-
mization model with uncertainty may be more suitable and reasonable for
decision-making. We assume that the uncertain surgical duration q̃j for surgery
j is with respect to the uncertainty set, without assumptions on distribution.
This assumption eliminates the need for accurate distribution information and
enables the scheduling using only limited information, such as the average, min-
imum, and maximum values of data. Variable q̃j is defined q̃j = pj − pj , ∀j ∈ J .
The formulations are as follows:
Maximize

∑

j∈J

q̃j (23)

subject to

∑

j∈J

(
q̃j

pj − pj

)
≤ τ, (24)

0 ≤ q̃j ≤ pj − pj , ∀j ∈ J. (25)

The objective function (23) maximizes the total surgical duration. Con-
straint (24) limits worst-case scenarios by conservative τ . Worst-case scenarios
represent the number of surgeries for which the upper bound of the surgical dura-
tion is reached. Constraint (25) defines the possible range of uncertain surgical
duration q̃j .
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4 Numerical Analysis

4.1 Data

In the following analysis, we used a dataset based on Ito et al. [13]. We solved the
scheduling problem of five operating rooms and eleven surgeries using Gurobi
9.5.1. We compared the schedule created using the robust optimization model
with that created using the stochastic programming model. The computational
equipment is an Intel(R) Core (TM) i7-7500U CPU 2.90 GHz 8.00 GB.

The time from the operating room opening to the time when surgery j should
be completed, dm is 8 h or 480 min. It is desirable that all surgeries be completed
within the regular opening time dm. There are ten departments, i.e., |D| = 10.
Surgeries 1 and 2 were in the same department. Table 1 shows the expected value
Ej [pj ] and standard deviation σj of the duration of surgery j. The upper pj and
lower pj bounds on the surgical duration used in robust optimization were the
10th and 90th percentiles of the duration in surgical scenarios. The conservative
τ varied from 0 to 10 with 1. We assumed that the occurrence probability of the
1000 scenarios used in the stochastic programming model followed a uniform
distribution, and the surgical duration in each scenario followed a log-normal
distribution. We used the stochastic programming model proposed by Ito et
al. [12].

4.2 Results

Figure 1 shows the results of total delay under different τ of robust optimization.
The total delay of the stochastic programming is shorter than that of the robust
optimization for all control conservatives because the surgical scenarios in the
stochastic programming are used. The surgical scenario refers to a combined set
of the duration of surgery. From Fig. 1, when the control conservative τ is 6, the
total delay of the robust optimization shows a value equivalent to that of the

Table 1. Expected value and standard deviation of surgical duration (min).

Surgery j Ej [pj ] σj

1 230 141

2 235 146

3 236 70

4 225 70

5 271 66

6 230 117

7 242 131

8 242 131

9 245 134

10 242 138

11 241 142
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Fig. 1. Results of total delay.

Fig. 2. Number of schedule scenarios with an excessive delay of 1000min or more, ‘-’:
result obtained by stochastic programming.

stochastic programming. Figure 2 shows the number of schedule scenarios with an
excessive delay of 1000 min or more. From Fig. 2, when the control conservative
τ is 6, the number of schedule scenarios with an excessive delay also shows
an equivalent value in robust optimization and stochastic programming. In the
above results, the robust optimization, which has only information on the 10th
and 90th percentile duration of the scenario, exhibits the same performance as
the stochastic programming, which has complete information on the scenario
in specific control conservative. The robust optimization does not require the
estimation of accurate distribution.

Table 2 provides the CPU times required to obtain robust optimization and
stochastic programming solutions for a single instance as the constant control
conservative varies. From Table 2, the CPU time of the robust optimization is
shorter than that of the stochastic programming in all cases. From the above
results, robust optimization can obtain a solution faster than stochastic pro-
gramming because the number of variables and constraints in robust optimiza-
tion is smaller than in stochastic programming. The robust optimization involves
1,311 constraints and 759 variables, while the stochastic programming comprises
11,271 constraints and 5,742 variables.
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Table 2. CPU times for robust optimization and stochastic programming solutions
(seconds).

Model τ

0 1 2 3 4 5 6 7 8 9 10

Robust optimization 0.10 0.11 0.10 0.20 0.10 0.09 0.09 0.10 0.15 0.12 0.12

Stochastic programming 380.38

5 Conclusion

In this study, we proposed a robust optimization model that minimizes the delay
from the regular closing time of the operating room. The proposed model consid-
ers multiple operating rooms and surgical procedures. We also verified whether
the risk-averse tendency is reflected in the schedule. The numerical analysis sug-
gests that robust optimization models tend to avoid long delays. From the numer-
ical analysis, robust optimization exhibits the same performance as stochastic
programming, which has complete information on the scenario in specific con-
trol conservative. Robust optimization obtains a solution faster than stochastic
programming because the number of variables and constraints in robust opti-
mization is smaller than in stochastic programming. The robust optimization
model is more effective for operating room managers who desire to obtain an
accurate solution quickly.

In future work, we will clarify the effect of optimizing the surgical sequence
on delay reduction. For this purpose, we define delay from the planned surgery
end time and modify a part of the proposed model.
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scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)

6. Denton, B.J., Miller, A.J., Balasubramanian, H.J., Huschka, T.R.: Optimal allo-
cation of surgery blocks to operating rooms under uncertainty. Oper. Res. 58,
802–816 (2010)

7. Denton, B.J., Viapiano, A.V.: Optimization of surgery sequencing and scheduling
decisions under uncertainty. Health Care Manag. Sci. 10(1), 13–24 (2007)



Robust Optimization for Operating Room Scheduling 177

8. Dexter, F., Macario, A.: Applications of information systems to operating room
scheduling. Anesthesiology 85, 1232–1234 (1996)

9. Gerchak, Y., Gupta, D., Henig, M.: Reservation planning for elective surgery under
uncertain demand for emergency surgery. Manag. Sci. 42(3), 321–334 (1996)

10. Guerriero, F., Guido, R.: Operational research in the management of the operating
theatre: a survey. Health Care Manag. Sci. 14, 89–114 (2011)

11. Ito, M., Kobayashi, F., Takashima, R.: Minimizing conditional-value-at-risk for a
single operating room scheduling problems. In: Proceedings of International Multi-
Conference of Engineers and Computer Scientists 2018, vol. 2, pp. 968–973 (2018)

12. Ito, M., Kobayashi, F., Takashima, R.: Risk averse scheduling for a single operating
room with uncertain durations. In: Ao, S.-I., Kim, H.K., Castillo, O., Chan, A.H.,
Katagiri, H. (eds.) IMECS 2018, pp. 291–306. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-32-9808-8 23

13. Ito, M., Hoshino, K., Takashima, R., Suzuki, M., Hashimoto, M., Fujii, H.: Does
case-mix classification affect predictions?: a machine learning algorithm for surgical
duration estimation. Healthc. Anal. 2, 100119 (2022)

14. Namba, Y., Ito, M., Takashima, R.: A robust optimization for a single operating
room scheduling problem with uncertain durations. In: Proceedings of the 12th
International Conference on Operations Research and Enterprise Systems, pp. 180–
184 (2023)

15. Jackson, R.: The bushiness of surgery. Health Manag. Technol. 23(7), 20–22 (2002)
16. Kamran, M.A., Karimi, B., Dellaert, N.: Uncertainty in advance scheduling prob-

lem in operating room planning. Comput. Ind. Eng. 126, 252–268 (2018)
17. Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A stochastic model for operating

room planning with elective and emergency demand for surgery. Eur. J. Oper.
Res. 185, 1026–1037 (2008)

18. Macario, A., Vitez, T.S., Dunn, B., McDonald, T.: Where are the costs in peri-
operative care? Analysis of hospital costs and charges for inpatient surgical care.
Anesthesiology 83, 1138–1144 (1995)

19. Suzuki, A.: Analytics approach to the improvement of the management of hospi-
tals. In: Sinha, B.K., Bagchi, S.B. (eds.) Strategic Management, Decision Theory,
and Decision Science, pp. 247–256. Springer, Singapore (2021). https://doi.org/10.
1007/978-981-16-1368-5 15

20. Zhu, S., Fan, W., Yang, S., Pei, J., Pardalos, P.M.: Operating room planning and
surgical case scheduling: a review of literature. J. Comb. Optim. 37, 757–805 (2019)

https://doi.org/10.1007/978-981-32-9808-8_23
https://doi.org/10.1007/978-981-32-9808-8_23
https://doi.org/10.1007/978-981-16-1368-5_15
https://doi.org/10.1007/978-981-16-1368-5_15

	Robust Optimization for Operating Room Scheduling with Uncertain Surgical Durations: Impact of Risk-Aversion on Delay
	1 Introduction
	2 Literature Review
	3 Operating Room Scheduling
	3.1 Robust Optimization
	3.2 Surgical Duration Uncertainty

	4 Numerical Analysis
	4.1 Data
	4.2 Results

	5 Conclusion
	References


