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Preface

This book includes extended and revised versions of selected papers from the 11th
and 12th International Conferences on Operations Research and Enterprise Systems
(ICORES 2022 and 2023). ICORES 2022 was held as an online event due to the Covid-
19 pandemic, from 3–5 February 2022, and ICORES 2023 was held in Lisbon, Portugal,
from 19–21 February 2023.

ICORES 2022 received 55 paper submissions of which 9% are included in this book,
and ICORES 2023 received 55 paper submissions of which 15% are also included in this
book. These papers were selected based on several criteria including reviews provided
by program committee members, session chair assessments, and also program chair
perspectives across all papers included in the technical program. The authors of these
selected papers were then invited to submit revised and extended versions of their papers
for publication in this book.

The purpose of the annual International Conference on Operations Research and
Enterprise Systems (ICORES) is to bring together researchers, engineers and practi-
tioners interested in both advances and applications in the field of operations research.
Two simultaneous tracks are held, one covering domain independent methodologies and
technologies and the other practical work developed in specific application areas.

The papers selected for this book contribute to the understanding of relevant trends
of current research in Operations Research and Enterprise Systems, including: OR in
Transportation, Predictive Analytics, Management Sciences, Maintenance, Logistics,
Industrial Engineering and Energy and Environment, Optimization, Linear Program-
ming, Decision Support Systems, Decision Analysis, Automation of Operations, Rout-
ing, Simulation, Stochastic Processes, SupplyChainManagement andNewApplications
of OR.

We thank all authors for their contributions and our reviewers for ensuring a quality
publication.

February 2023 Federico Liberatore
Slawo Wesolkowski

Marc Demange
Greg H. Parlier
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Multiple Heuristics with Reinforcement
Learning to Solve the Safe Shortest Path

Problem in a Warehouse

Aurélien Mombelli(B), Alain Quilliot, and Mourad Baiou

Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne, Clermont-Auvergne-INP,
LIMOS, 63000 Clermont-Ferrand, France
aurelien.mombelli@uca.fr

Abstract. Intelligent vehicles, provided with an ability to move with some level
of autonomy, recently became a hot spot in the mobility field. Still, determin-
ing what can be exactly done with new generations of autonomous or semi-
autonomous vehicles able to follow their way without being physically tied to any
kind of track (cable, rail,. . .) remains an issue. We focus here on the top level of
hierarchical decision level (distributes and schedules Pick up and Delivery tasks)
and deal with the problem which consists in inserting an additional vehicle into
an already working fleet and routing it while introducing a time-dependent esti-
mation of the risk induced by the traversal of an arc at a given time. We propose a
model and design a bi-level heuristic with dynamic programming and an A*-like
heuristic along with three methods to generate speed functions which can all rely
on a reinforcement learning scheme to route and schedule this vehicle.

Keywords: Shortest path · Risk aware · Time-dependant · A* · Reinforcement
learning · Dynamic programming

1 Introduction

In an empty warehouse, an autonomous vehicle may travel at full speed toward its des-
tination. However, if other autonomous vehicles are already working, travelling inside
the warehouse implies avoiding congestion and costly accidents.

Monitoring a fleet involving autonomous vehicles usually relies on hierarchical
supervision. The trend is to use three levels. At the low level, or embedded level, robotic-
related problems are tackled for specific autonomous vehicles like controlling trajecto-
ries in real-time and adapting them to the possible presence of obstacles, see [23]. At
the middle level, or local level, local supervisors manage priorities among autonomous
vehicles and resolve conflicts in a restricted area [10,16] who worked on crossroad
strategies. Then, at the top level, or global level, global supervisors assign tasks to the
fleet and schedule paths. This level must take lower levels into account to compute its
solution. See [4,6,13] for example or [22] who compute the shortest path thanks to the
A* algorithm but assign each task to the fleet of autonomous vehicles using a multi-
agent artificial intelligence to avoid conflict in arcs as much as possible.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
F. Liberatore et al. (Eds.): ICORES 2022/2023, CCIS 1985, pp. 3–25, 2024.
https://doi.org/10.1007/978-3-031-49662-2_1
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Redirecting some vehicles to non-shortest paths may seem to increase the sum of
the travel times but [20] showed that, in an airport, it actually decreased the sum of
the travel times by decreasing the congestion time. With the same idea, several authors
computed the shortest path thanks to the A* algorithm, first published by [19] in 1968.
Then, if any conflict is detected, an avoidance strategy is applied [16].

This study puts the focus on the global level: routing and giving instructions to
an autonomous vehicle in a fleet. An autonomous vehicle, idle until now, is chosen to
carry out a new task. Since a vehicle is moving from some origin to some destination,
performing some loading or unloading transaction and keeping on, one may think of
related problems as a kind of constrained shortest path problems, see [12], if there is
only one task or a PDP: Pick up and Delivery problem, see [17], if there are more tasks.
But some specific features impose new challenges:

• The time horizon for autonomous or semi-autonomous vehicles is usually short and
decisions have to be taken online, which means that decision processes must take
into account the communication infrastructure, see [7], and the way the global super-
visor can be provided, at any time, with a representation of the current state of the
system and its short term evolution;

• As soon as autonomous vehicles are involved, safety is at stake (see [9]). The global
supervisor must compute and schedule routes in such a way that not only tasks are
going to be efficiently performed, but also that local and embedded supervisors will
perform their job more easily.

To compute a safe shortest path, [8] used, a weighted sum of time and risks in
Munster’s roads in Ireland using an A* algorithm. In their case, the risk is a measure
of dangerous steering or braking events on roads. But these techniques mostly cannot
be applied here because the risk, in our case, is time-dependent. One can search for
the optimal solution in a time-expanded network as did [14,15]. A connection between
two nodes in this network represents the crossing of an arc in the static network at a
given time. Those kinds of networks are used, among other applications, for evacuation
routing problems as did [11].

Here, the risk will not be a measure of dangerous events on the roads of a city but the
expected repair costs in a destructive accident scenario, should it happens. To compute
such expectation, planning of risks is to be computed from the already working fleet
because the path they will follow and their speed functions are known. A risk planning
procedure, we are provided with, is then used to transform previous information into
risk functions over time that is necessary to compute the expected repair costs for the
autonomous vehicle.

This article aims to answer the problem of finding a safe shortest path while consid-
ering a warehouse structure, paths followed by already working autonomous vehicles
and a risk planning procedure. It is the continuation of a previous article presented at
ICORES [1] with 3 new methods to generate decisions (i.e. speed functions) and a lot
more experiences. First, a precise description of the problem is presented with structural
results and complexity discussion. Then, the problem is tackled when the path is fixed
and only the speed functions are unknown. In the fourth section, the whole problem
is approached with two heuristics followed by, in the fifth section, learning processes.
Lastly, numerical experiments are presented with a conclusion.
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2 Detailed Problem

2.1 A Warehouse and the Risk Induced by Current Activity

A warehouse is represented as a planar connected graph G = (N,A) where the set
of nodes N represents crossroads and the set of arcs A represents aisles. For any arc
a ∈ A, La represents the minimal travel time for an autonomous vehicle to go through
aisle a. Moreover, two aisles may be the same length but one may stock fragile objects
so that vehicles have to slow down.

Also, risk functions Ra : t �→ Ra(t), generated from activities of aisle a, are com-
puted using the risk planning procedure on experimentation in a real warehouse that we
are provided with. It is important to note that the risk is not continuous. Indeed, there is,
in an aisle, a finite number of possible configurations: empty, two vehicles in opposite
directions, etc. (see Fig. 1). Each configuration is, then, associated with an expected cost
of repairs in the event of accidents. Therefore, they are staircase functions evaluated in
a currency (euro, dollars, etc.). Figure 2 shows an example of a risk function of an aisle.

Fig. 1. At time t, 3 aisles have 1 vehicle each. At the next time, Blue and Purple join in the same
aisle. One time after, all 3 vehicles join, generating high risks in this aisle (figure from [1]). (Color
figure online)

Fig. 2. Risk function of an aisle (figure from [1]).

From a risk function, we can have an estimation of the risk an autonomous vehicle
takes in an aisle a between two times t1 and t2 with v : t �→ v(t) as its speed function
with Eq. 1.

risk(t1, t2, v) = H(v)
∫ t2

t1

Ra(t) dt (1)
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We impose function H to be such that H(v) � v
vmax

in order to express the fact that
a decrease of the speed implies a decrease of the risk. In further sections, H is set to

H : v �→
(

v
vmax

)2

.

Remark 1. Speed Normalization: We only care here about traversal times of arcs e ∈
A, and not about their true length, in the geometric sense. So we suppose here that, for
any arc e, vmaxe

= 1. According to this we deal with reduced speed values u ∈ [0, 1]
and Le means the minimal traversal time for arc e.

2.2 Our Problem: Searching for a Safe Shortest Path Inside the Warehouse

An idle autonomous vehicle must now carry out a new task inside the warehouse. Its
task is to go from an origin node o to a destination node p. We must determine its path
and its speed functions in each aisle of its path while being provided with:

• The warehouse structure: G = (N,A) a planar connected graph with N the set of
crossroads and A the set of arcs (i.e. aisles);

• The minimum travel time La of every arc a;
• The risk function Ra : t �→ Ra(t) of every arc a;
• The origin node o and the destination node p;

Then, we want to compute:

• the path Γ from o to p that will be followed by the vehicle, along with entry time ta
and leaving time ta+1 of every arc a of Γ .
If arc a is followed by arc b, ta+1 = tb

• the speed functions v : t ∈ [ta; ta+1] �→ va(t) to apply when the vehicle is located
inside every arc a of Γ .

As it is, we could have worked with a multi-objective problem. However, we want
to compute a path and speed such that the autonomous vehicle is “safe”. That means a
maximum risk value constraint is added. The warehouse manager will impose a maxi-
mum value of risk Rmax (quantified in currency, it can correspond to the cost of replac-
ing a vehicle in the event of an accident) that an autonomous vehicle can take for a task.
Then, the objective is to determine quickly:

SSPP: Safe Shortest Path Problem
Compute path Γ together with entry times ta, leaving times ta+1 and speeds func-

tions va

such that:
the arrival time in p is minimal;
the global risk

∑
a∈Γ

risk (ta, ta+1, va) <= Rmax.

2.3 Some Structural Results

As it is stated, SSPP looks more like an optimal control problem than a combinatorial
one. But, as we are going to show now, we may impose restrictions on speed function
v, which are going to make the SSPP model get closer to a discrete decision model.
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Proposition 1. Optimal solution (Γ, v) of SSPP may be chosen in such a way that v
is piecewise constant, with breakpoints related to the times ti when vehicle V arrives
at the end-nodes of arcs ti, i = 1, . . . , n, and to the breakpoints of function Πe

i , i =
1, . . . , n.

Proof. Let us suppose that V is moving along some arc e = ei, and that δ1, δ2 are
2 consecutive breakpoints in above sense. If v(t) is not constant between δ1 and δ2
then we may replace v(t) by the mean value v∗ of function t �→ v(t) between δ1 and
δ2. Time value Time(Γ, v) remains unchanged, while risk value Risk(Γ, v) decreases
because of the convexity of function H . So we conclude.

Proposition 2. If optimal SSPP trajectory (Γ, v) is such that v(t) �= 1 at some t, then
Risk(Γ, v) = Rmax.

Proof. Let us suppose that path Γ is a sequence e1, . . . , en of arcs of G. We proceed by
induction on n.

• First case: n = 1.
Let us suppose above assertion to be false. Breakpoints of e = e1, may be written
t0 = 0, t1, . . . , tQ = Time(Γ, v), and we may set:

◦ q0 = largest q such that v < 1 between tq and tq+1;
◦ u0 = related speed; l0 = distance covered by V at time tq0 .

Let us increase u0 by ε > 0, such that u0 + ε ≤ 1 and that induced additional risk
taken between tq0 and tq0+1 does not exceed Rmax − Risk(Γ, v). Then, at time
tq0+1, vehicle V covered a distance l > l0. If l < Le, then it keeps on at speed
v = 1, and so arrives at the end of e before time tQ, without having exceeded the
risk threshold Rmax. We conclude.

• Second case: n > 1.
Let us suppose above assertion to be false and denote by R1 the risk taken at the
end of arc e, and by t1 related time value. Induction applied to arcs e2, . . . , en, and
risk threshold Rmax − R1 implies that the speed of V is equal to 1 all along the
arcs e2, . . . , en. Let us denote by τ0 = 0, τ1, . . . , τQ the breakpoints of e1 which are
between 0 and t1 and let us set τQ+1 = t1 and:

◦ q0 = largest q such that v < 1 between τq and τq+1;
◦ u0 = related speed; l0 = distance covered by V at time tq0+1.

Then we increase u0 by ε > 0, such that u0 + ε ≤ 1 and that induced additional risk
taken between τq0 and τq0+1 does not exceed (Rmax − Risk(Γ,v))

2 . While moving
at speed u0 + ε along e1, vehicle V faces 2 possibilities: either it arrives at the end
of e1 before time τq0+1 or it may keep on moving from time τq0+1 on along e1 at
speed v = 1. In any case, it reaches the end of e1 at some time t1 − β, β < 0, with
an additional risk no larger than (Rmax − Risk(Γ,v))

2 . So, for any i = 2, . . . , n we
compute speed value ui such that moving along ei at speed ui between ti−1 − β

and ti−1 does not induce an additional risk more than (Rmax − Risk(Γ,v))
2n . So we

apply to V the following strategy: move as described above on arc e1 and next, for
any i = 2, . . . , n, move along ei at speed ui between ti−1 − β and ti−1 and next at
speed 1 until the end of ei. The additional risk induced by this strategy cannot exceed
(Rmax−Risk(Γ, v)). On another side, this strategy makes vehicle V achieve its trip
strictly before time tn. We conclude.
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Proposition 3. Given an optimal SSPP trajectory (Γ, v), with Γ = {e1, . . . , en} and
v satisfying Proposition 1. Let us denote by ti the arrival time at the end of arc ei.
Then, for any i = 1, . . . , n, and any t in [ti−1, ti] such that v = v(t) < 1, the quantity
H ′(v(t)).Πeq (t) is independent on t, where H ′(v) denotes the derivative of H in v.

Proof. Once again, let us denote by ti time when vehicle V arrives at the end of arc
ei. For a given i, we denote by δ1, . . . , δH(i), the breakpoints of function Πei which

are inside interval ]ti−1, ti[, by Π
iq
q related value of Πeq on the interval ]δj , δj+1[,

by u0, . . . , uq, . . . , uH(q), the speed values of V when it leaves those breakpoints, and
by Rq the risk globally taken by V when it moves all along eq . Because of Proposi-
tion 2, vector (u0, . . . , uH(q)) is an optimal solution of the following convex optimiza-
tion problem:

• Compute (u0, . . . , uH(q)) such that
∑

q uq.(δq+1 − δq) and which minimizes∑
q H(uq)Πei

q (δq+1 − δq).

Then, Kuhn-Tucker conditions for the optimality of differentiable convex optimiza-
tion program tell us that there must exists λ ≥ 0 such that: for any q such that
uq < 1,H ′(uq).Πei

q = λ. As a matter of fact, we see that λ cannot be equal to 0.
We conclude.

Remark 2. In case H(v) = u2, above equality H ′(uq)Πei
q = λ becomes uqR

ei
q = λ

2

where uqR
ei
q means the instantaneous risk per distance dR

dL value at the time when V
moves along ei between times δq and δq+1.

2.4 A Consequence: Risk Versus Distance Reformulation of the SSPP Model

Remark 1 leads us to define the Risk versus Time coefficient for arc ei as the value
2H ′(uq)Πei

q involved in Proposition 3. This proposition, combined with Proposition 1,
allows us to significantly simplify SSPP: We define a risk versus distance strategy as a
pair (Γ, λRD) where:

• Γ is a path, that means a sequence {e1, . . . , en} of arcs, which connects origin node
o do destination node d;

• λRD
e associates, with any arc e in Γ , Risk versus Distance coefficient λRD

e =
2H ′(v)Re. In case H(v) = u2, we notice that this coefficient means the amount
of risk per distance unit induced on arc e at any time t such that v(t) < 1, by any
trajectory (Γ, v) which satisfies Proposition 3.

Let us suppose that we follow a trajectory (Γ, v) which meets Proposition 3, and that
we know value λRD

e for any arc e of Γ . Since H is supposed to be convex and such that
H(v) � v, we may state that H ′ admits a reciprocal function H ′−1. Then, at any time
t when vehicle V is inside arc e, we are able to reconstruct value

v(t) :

{
H ′−1(λRD

e

2Re
), if H ′−1(λRD

e

2Re
) < 1

1, otherwise
(2)

According to this and Proposition 3, SSPP may be ewritten as follows with the notations
Risk(Γ, v) and Time(Γ, v) as Risk(Γ, λRD) and Time(Γ, λRD):
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Risk versus Distance SSPP Reformulation: Compute risk versus distance strategy
(Γ, λRD) such that Risk(Γ, λRD) ≤ Rmax and Time(Γ, λRD) is the smallest

possible.

Then, a greedy algorithm can be derived from this reformulation on the shortest
path:

RD Greedy Algorithm:
At any node u at time T and risk Π , the next arc of the path is traveled with

λRD = Rmax−Π
L∗

u,p
where L∗

u,p is the distance between u and p in the shortest path.

2.5 Discussion About the Complexity

The time dependence of the transit network together with the proximity of the SSPP
model with Shortest Path Constraint models suggests that SSPP is a complex problem.
Sill, identifying the complexity of SSPP is not that simple, since we are dealing with
continuous variables. Complexity also depends on function H , and so we suppose here
that H(v) = v2. We first may check that:

Proposition 4. SSPP is in NP.

Proof. It is clearly enough to deal with the case when Γ = {e1, . . . , en} is fixed.
Let us denote by Δ = {0, d1, . . . , dH} the set of all breakpoints related to functions
Πe, e ∈ Γ , and by ti the time when vehicle V will arrive at the end of ei (we set
t0 = 0). If we know values {t1, . . . , tn}, then we may retrieve values λRD

e , e ∈ Γ ,
through binary search. It comes that the core of our problem is about the computation
of values {t1, . . . , tn}. For any i, value ti may be either equal to some value dH or
located inside some interval ]dH , dH+1[. In order to make the distinction between those
2 configurations, we introduce the following function σ, which is going to characterize
this logical positioning of values ti with respect to Δ:

• If ti = dH then we set σ(i) = (h, 0);
• If ti ∈]dH , dH + 1[ then we set σ(i) = (h, 1).

The number of possible functions σ is bounded by CHn . Now we notice that, once
function σ is fixed, the problem becomes about computing values for those among
variables {t1, . . . , tn} which are not non-instantiated, together with speed values for all
consecutive intervals defined by elements of Δ and by those time values. This problem
can be formulated as a cubic optimization problem, and one may check that, in case
this problem has a feasible solution, then first order Kuhn-Tucker equations for local
optimality determine exactly one local optimum. We conclude.

Conjecture 1. SSPP is in NP-Hard.

This conjecture is motivated by the fact that SSPP seems to be close to the con-
strained shortest path problems, which are most often NP-Hard [12]. Practical diffi-
culty of SSPP may be captured through the following example (Fig. 3), which makes
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Fig. 3. Functions Πe1 and Πe2.

appear that if (Γ, v) defines an optimal SSPP trajectory, the risk per distance value
λRD

e = 2.H ′(v(t)).Πe may be independent on t on arc e as told in Proposition 3, but
cannot be considered as independent on arc e.

Path Γ contains 2 arcs, e1 and e2, both with length 1 and maximal speed 2. Function
Πe2 is constant and equal to 1. Function Πe1 takes value 2 for 0 ≤ t ≤ 1, and a very
large value M (for instance 100) for t > 1 (see Fig. 3). Rmax = 3

4 ; Function H is:
v �→ H(v) = v2. Then we see that vehicle V must go fast all along the arc e1, in order
to get out of e1 before this arc becomes very risky. That means that its speed is equal
to 1 on e1, and that its risk per distance value is equal to 1

2 . Next it puts the brake, in
the sense that its speed remains equal to 1 but its risk per distance value decreases to 1

4 .
It is easy to check that this routing strategy is the best one, with Risk(Γ, v) = 3

4 and
Time(Γ, v) = 2.

3 Solving the SSPP When the Path is Fixed

As the wanted output is made of two parts (the path and the speed functions on every
arc of the path) and the second depends on the first, a sub-problem can be generated:
let us denote by ti, i = 1 . . . n the time when the vehicle finishes the traversal of the ith

arc of Γ . Then, Γ being fixed, subproblem SSP(Γ ) comes as follows:

SSP(Γ ) Subproblem
Compute exit times t1, . . . , tn of Γ ’s arcs (and tn is the arrival time in p).
such that:
the exit time tn is minimal;

the global risk
n−1∑
i=0

risk (ti, ti+1, vi) is less than Rmax.

As the exit time of the ith arc depends on the exit of (i − 1)th arc, a Dynamic
Programming forward scheme is well fitted because its time-space is the set of nodes
that we are visiting one after another. The scheme we used is explained in Table 1 but
the decision space and the filtering processes need more explanations and are detailed
in the following sections.

3.1 Generate Decisions with Three Methods

As we saw in Sect. 2.4, there is a Risk versus Distance method to generate decisions but
we propose two others: Risk versus Time and Distance versus Time.
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Table 1. Dynamic Programming scheme used.

Time space I I = {0, . . . , n}
The ordered set of nodes of the path
Do not mistake time in the sense of the vehicle
with the dynamic programming time space
The latter will be called “nodes” from now on

State space S s = (t, r) ∈ S
t (resp. r) is a feasible date (resp. sum of the risks) at node i

Decision space δ ∈ DEC(i, s)

DEC(i,s) At node i, vi is a feasible speed function on the arc (i, i + 1)
with ti+1 the exit date
It means that ti+1 − t ≥ L(i,i+1) and
r + risk (t, ti+1, vi) ≤ Rmax

Transition space (i, s)
ti+1−−−→ (i + 1, s′)

Transition from (t, r) to (ti+1, r + risk (t, ti+1, vi))

Bellman Principle At node i + 1
Only non-dominated feasible states are kept:
∀(t1, r1), (t2, r2) ∈ S, if t1 ≤ t2 and r1 ≤ r2, (t2, r2) is
dominated

Search Strategy Scanning time I forwardly and construct the feasible State
space accordingly
Filtering processes are discussed in Sect. 3.2

• First Approach: The Risk versus Distance approach.

Since H(v) = v2, H ′(v(t))Πe(t) = 2u(t)Πe(t) for any t during the traversal of e. It
comes that if we fix λRD the speed value v(t) is given by: v(t) = Inf(1, λRD/Πe(t)).
Resulting state (i + 1, r2, t2)will be obtained from λRD and (i, r1, t1) through the fol-
lowing iterative process:

Risk Distance Transition Procedure:
Let us denote by Le the length of arc e and by T1, . . . , TQ the breakpoints of Πe which
are larger than t1 and by Πe

0 , . . . , Πe
Q related Πe values.

Initialization: t2 = t1, r2 = r1, l = 0 and q = 0;
While Le < l, do:

v = λRD

Πe
q

if < 1 else 1

dt = Le−l
v if < Tq+1 − Tq else Tq+1 − Tq

t2 = t2 + dt
l = l + v.dt
r2 = r2 + v2Πe

q dt
q = q + 1

If r2 < Rmax then Success, else Fail
A special attention will be put for the first value of dt as it needs to be less than Tq+1−t1
and not Tq+1 − Tq.
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• Second Approach: The Risk versus Time approach.

Since H(v) = v2 we have that at any time t during the traversal of e, related risk
speed dR

dT (t) is equal to v(t)2Πe(t). It comes that if we fix λRT we get: v(t) =

Inf(1,
(

λRT

Πe(t)

)1/2

).

Resulting state (i+1, r2, t2) will be obtained from λRT and (i, r1, t1) through the same
following iterative process a for the Risk versus Distance approach.

• Third Approach: The Distance versus Time approach (mean speed approach).

This method is a little different from the two other as a λDT will not give the speed
function easily but only the value t2: t2 = t1 + Le

λDT . In order to determine the speed
function t �→ v(t) and the value r2, the following quadratic program must be solved:

Distance Time Transition Procedure:
Let us denote by Le the length of arc e and by T1, . . . , TQ the breakpoints of Πe which
are larger than t1 and by Πe

0 , . . . , Πe
Q related Πe values.

Then we must compute speed values u1, . . . , uQ ∈ [0, 1] such that:∑
q u2

qΠ
e
q (Tq − Tq−1) is minimal.∑

q uq(Tq − Tq−1) = t2 − t1
This quadratic convex program may be solved through direct application of Kuhn-
Tucker 1st order formulas for local optimality. Then we get r2 by setting: r2 =
r1 +

∑
q u2

qΠ
e
q .(Tq − Tq−1). If r2 > Rmax then the Mean Speed transition related

to λDT yields a Fail result.

3.2 The Filtering Issue - Speeding up the Heuristic

There is a logical filtering that can be applied first: if the lower bound of the arrival time
from a state (the time it took from o plus the time needed to p at vmax) is greater than
an existing solution (from the RD Greedy algorithm for example). However, the logical
filtering alone will not be very efficient. We propose two more filtering processes: one
to limit the number of generated decisions and one to limit the number of states.

Limit the Number of Decisions. Starting from state s = (ti, ri), a lot of decisions can
be generated. But most of them are useless or not promising enough to be considered
(too slow, too risky, slower and riskier than another state, etc.) and the optimal value
λopt is unknown.

We propose to generate decisions by generating states for a few λ values between
the low and high estimations of λopt: λinf and λsup.

Those values will be distributed between λinf and λmax and led by λmidst (half of
them uniformly distributed between λinf and λmidst and half of them between λmidst

and λsup).
Then, λ values need to be discussed as there are two possibilities: keeping them

static for an instance or computing them for every state.
For static possibility, if our algorithms have already been used in the warehouse,

their λ values will be kept as computed paths can overlap and will then be already
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learned for the next execution. For example, preprocessing can be applied to the ware-
house by generating random paths solved by a greedy algorithm to generate one exit
time and learn from all those decisions. The generation of random paths can end after a
fixed number of generations or when the λ values seem to stabilise themselves.

The computed possibility relies on Rmax, L∗
s,p and the solution of the greedy algo-

rithm and will compute λ values with the risk left, the distance left and the time left to
the greedy solution from a current state.

Limit the Number of States. Now that, from every state of node i − 1, new states are
generated, they are put together in an ordered set (λmidst is used to order the set). Let
us call this set Si.

The Bellman principle and the logical filter are first applied: remove dominated
states (states that are slower and riskier than another one) and those which finish after
the computed upper bound. However, the number of generated states is still exponential.
To keep a quick algorithm, the number of states in Si will be bounded to Smax.

If #Si > Smax, which states must be removed? If the λmidst value is very close
to λopt, the Smax lowest value states are kept and all others are removed from Si.
However, if it is not, a high state can be better than the lowest state. Therefore, a method
to determine whether λmidst is a good approximation must be used.

We propose to compute the deviation of the state’s risks of Si from the travelled
percentage of the path (TravPer) as in Eq. 3.

Δ =

∑
(t,r)∈Si

( r
Rmax

− TravPer)

#Si
(3)

If Δ’s absolute value is high, generated states take, on average, too much risk or too
little (meaning they can go faster).

States are, then, removed depending on Δ’s value:

• If |Δ| is “high” (close to 1), λmidst is supposed a bad approximation:⌊
#Si−Smax

3

⌋
states are removed from each third of Si independently.

• If |Δ| is “medium”:
⌊
#Si−Smax

2

⌋
states are removed from the union of the 1st and

2nd third of Si and the 3rd third of Si independently.
• If |Δ| is “small” (close to 0), λmidst is supposed a good approximation: the first

Smax states are kept and all others are removed.

4 Solving the SSPP - Proposed Algorithms

Then, two algorithms can be created as follows:

• A decoupled method Algorithm 1: choose a path, choose speed values on it, modify
the path locally, choose speed values again, keep the best, repeat.

• An A*-like method Algorithm 2: choose a node, expand it by one arc, choose the
speed value on the new arc, push the new arrival node with the other unvisited nodes,
repeat.
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The A* algorithm is commonly used to search for the shortest path in a very large graph
because a lower bound of expected value is associated with every unvisited node. In so
doing, the most promising nodes will be visited first and all nodes having a greater lower
bound than an existing solution will not be used at all. To solve the problem exactly, the
A* algorithm applied in the time-expanded network of the warehouse is enough but is
very slow and does not fit our requirements.

First, we introduce Algorithm 1, the decoupled heuristic to solve the SSPP.

Algorithm 1. SSPP - Decoupled method.

Require: o and p, the origin and destination node.
Require: Smax the maximum number of state to keep in the Dynamic Programming
scheme.
Require: Γ an initial path between o and p.
END = False
While not END Do

END = True
Generate V : neighborhood of Γ
For all neighbor ∈ V Do

Compute exit times of neighbor with the Dynamic Programming scheme.
If neighbor finish earlier than Γ Then

Γ = neighbor
END = False

End If
End For

End While
Return Γ .

With no generation limit and no additional filter than those of the Dynamic Program-
ming scheme, this heuristic can become an exact algorithm if the generated neighbour-
hood is large enough (modulo the time units precision).

The generation method used is: for every couple of nodes that are less or equal
than two arcs away, pre-compute a path between them, other than the shortest one. The
neighbour of a path is made by using the pre-computed non-shortest path of a portion
of that path. The neighbourhood is then made of every possible neighbour of the path.

Finally, we introduce Algorithm 2, the heuristic based on A* algorithm. As the A*
heuristic needs a function to estimate the value of the remaining path, we propose the

function: bλ : x|(t, r, Γ ) �→ sp(x)
(

fλ(t,r)
length of Γ

)
.

This function uses the value of the current path to estimate the value of the shortest
path from the current node to the destination. A downside of this estimation is if the
start of the path is very risky, the function will estimate the rest of the path to be very
risky as well. That way, the A* like heuristic will abandon this state even if it is not true.
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Algorithm 2. SSPP - A* like method.

Require: o and p, the origin and destination node.
Require: Smax the maximum number of states to keep in the Dynamic Programming
scheme.
Let sp : x �→ sp(x) be the length of the shortest path from x to p.

Let bλ : x|(t, r, Γ ) �→ sp(x)
(

fλ(t,r)
length of Γ

)
be an estimation of the remaining value to p.

Let Dict be a dictionary indexed by nodes of priority queues which are ordered by
fλ(x) + bλ(x) in ascending order.
push node = o|(t = 0, r = 0, Γ = []) in Dict.
At all times, BestDict denotes the smallest value’s state among heads of priority queues
of Dict.
While node of BestDict isn’t p Do

current = BestDict = xi−1|(ti−1, ri−1, Γi−1).
Pop BestDict from corresponding priority queue.
Generate elongations (xi|ti, ri, Γi−1 + [xi−1])i from current.
Push all elongations in their priority queues of D.
For all priority queue PQ ∈ Dict

If#PQ > Smax Then
Filter PQ.

End If
End For

End While
Return Γ of BestDict.

With no generation limit and no priority queue filter, this heuristic becomes an exact
algorithm (modulo the time units precision).

Because this heuristic was too slow, another filter was added: Each node is to be vis-
ited 2Smax times at most. However, short arcs are then privileged and Rmax is reached
before the end of the path.

Thankfully, a small change in the ordering of priority queues was enough to com-
pensate. Priority queues are now separated in two halves: states {x|(t, r, Γ )} that
respect r < Rmax ∗ t

t+sp(x) first. Each ordered by fλ(x) + bλ(x) in ascending order.

5 Speeding Algorithms Through Statistical Learning Techniques

We consider here two ways of speeding our algorithms in order fit with a dynamic con-
texts. The first one impose to generate only three possible decisions and the second one
is to learn better values of λ while solving an instance in a reinforcement learning way.

5.1 Bounding the Number of States Generated

Once acceleration parameter ρ has been tuned, controlling the size of decision set Λ
means fixing the value of Gmax. If we set Gmax = 1 (greedy algorithm in the case of
DP Evaluate and shortest path algorithm in the case of A* SPR), then the choice is
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about λRD
mean, which, in a first approach, should be equal to Rmax

L∗
o,d

. If Gmax �= 1, then

we apply the following statistical learning process:

• We apply DP Evaluate to instances which fit parameter ρ, while using some refer-
ence decision number Gmax. For any instance I , we retrieve the optimal decision
sequence {λ1, . . . , λn}.

• Then we compute, for every value λi in {λmin, . . . , λmax}, the percentage τ(i) of
occurrence of λi in those decision sequences.

• Finally, Gmax being the target decision number, we split the decision range
[λRD

min, λRD
max] for possible decisions λRD into Gmax + 1 intervals corresponding

to same percentages of decisions λi. For instance, if Gmax = 3, we split interval
[λmin, λmax] into 4 intervals [λmin, λ

1
4 ], [λ

1
4 , λ

1
2 ], [λ

1
2 , λ

3
4 ] and [λ

3
4 , λmax] in such

a way that:
◦ 1/4 of decisions λi belong to interval [λmin, λ14];
◦ 1/4 of decisions λi belong to interval [λ

1
4 , λ

1
2 ];

◦ 1/4 of decisions λi belong to interval [λ
1
2 , λ

3
4 ];

◦ 1/4 of decisions λi belong to interval [λ
3
4 , λmax].

Then restricted Λ to a 3-elements set: {λ
1
4 , λ

1
2 , λ

3
4 }.

Bounding the Number of States Through Reinforcement Learning. Above method
needs at least two resolutions of each instance to compute a good Λ set. Below, we
propose to learn a good λ set during the resolution of the instance. For example, if the
beginning of the path is very risky, the λ value will be slightly modified to authorized
lower speeds for the rest of the path. Then, the learning process is as follow:

• Every time a states set is filtered, we compute, for every value λi in
{λmin, . . . , λmax}, a value Δi that is the sum of the percentage of risk in relation
to the percentage of traveled path of every states generated by λi. This is the same
deviation used to limit the number states in Sect. 3.2 but here, Δi is computed only
with states generated by λi.

• Apply a modification on every λi depending on its respective above value. We
choose to apply λi = λi ∗ (1 − 0.2 ∗ Δi∑

j Devj
).

6 Numerical Experiments

Goal: We perform numerical experiments with the purpose of studying the behavior
of static DP Evaluate, Dec SSPP and A* SSPP algorithms of Sect. 4. We pay special
attention to the dependence of those algorithms to the choice of the decision mode (Risk
versus Distance, Risk versus Time, Distance versus Time).

Technical Context: Algorithms were implemented in C++17 on an Intel i5-9500 CPU
at 4.1 GHz. CPU times are in milliseconds.

Instances: We generated networks (N,A) as random planar graph create by a Delaunay
triangulation. Those graphs are summarized through their number |N | of nodes and
their number |A| of arcs. Length values Le, e ∈ A, are uniformly distributed between 3
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Table 2. Instance parameters table.

id |M | Freq R α L∗ Greedy

1 4 0.2 2 0.4 59 142.32
2 5 0.25 1.9 1 55 82.47
3 6 0.19 2 1.5 63 72.72

4 4 0.43 2 0.4 67 141.15
5 6 0.6 1.9 1 61 118.89
6 7 0.42 2 1.5 68 93.34

7 6 0.16 1.9 0.4 104 317.61
8 7 0.18 1.9 1 96 142.3
9 6 0.18 2 1.5 93 102.79

10 7 0.41 2 0.4 102 194.87
11 6 0.45 2 1 104 185.33
12 8 0.32 2 1.5 101 129.06

13 11 0.16 1.9 0.4 130 251.43
14 8 0.15 2 1 126 219.55
15 7 0.19 2 1.5 142 172.05

16 6 0.33 1.9 0.4 138 351.25
17 9 0.3 1.9 1 133 199.06
18 7 0.36 2 1.5 140 175.94

and 10. Function H is taken as function u �→ H(u) = u2. Function Πe are generated by
fixing a time horizon Tmax, a mean frequency Freq of break points tei , and an average
value R for value Πe(t): More precisely, values Πe are generated within a finite set
{2R, 3R

2 , R, R
2 , 0}. As for threshold Rmax, we notice that if functions Πe are constant

with value R and if we follow a path Γ with length Ldiam, the diameter of network
G, at speed 1

2 = vmax

2 , then the expected risk is LdiamR
2 . It comes that we generate

Rmax as a quantity αLdiamR
2 , where α is a number between 0.2 and 2. Finally, since

an instance is also determined by origin/pair (o, p), we denote by L∗ the value L∗
o,p.

Table 2 presents a package of 18 instances with their characteristics and the time value
obtained by the greedy algorithm presented in Sect. 2.4.

Outputs related to the behavior of DP SSPP.
We apply DP SSPP while testing the role of parameters λ = λRD, λRT , λDT , as well
as Smax and ρ. So, for every instance, we compute:

• in Table 3: The time value T DPmode, the percentage of risk R DPmode from
Rmax, and the CPU times (in milliseconds.) CPUmode, induced by application of
DP SSPP on the shortest path between o and p with λmode = λRD, λRT , λDT ,
Smax = +∞, Gmax = 21 and ρ = 8;

• in Table 6: The time value T DPmode, the percentage of risk R DPmode from
Rmax, and the CPU times (in milliseconds.) CPUmode, induced by application of
DP SSPP on the shortest path between o and p with λmode = λRD, λRT , λDT ,
Smax = 21, Gmax = 5 and ρ = 4;

• in Table 7: For the specific mode λRD, related number #S of states per node i,
together with time value TRD, when Smax = 3, 7, 11, 15, 21, Gmax = 5 and ρ = 4;
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Table 3. DynProg - Impact of λmode, with Smax = +∞, Gmax = 21 and ρ = 8.

id T RD RRD T RT RRT T DT RDT

1 102.3 98.3 118.5 99.9 126.2 78.9
2 66.1 96.1 68.1 99.1 62 87.8
3 63 84.1 63 84.1 72.3 49.5

4 129.4 79.8 136.6 89.7 131.7 96.3
5 72 97.2 70.2 98.2 75.3 92.7
6 78.7 99.8 77.6 98.1 76.2 99.6

7 279.1 97.3 278.1 99.5 284.6 99.2
8 116 96.3 116.2 94.3 118.5 99.9
9 94.7 98.9 93.2 97.9 93.2 86.2

10 176.7 92.6 167.4 99.3 174.7 99.8
11 123.5 92.8 123.4 93.5 123.2 92.6
12 110.3 99.8 109.6 99.7 111 99.9

13 208.1 97.4 208.6 97.9 226.5 99.1
14 149.4 98 148.1 99.7 148.9 97.6
15 157.3 96.9 161 89.7 152 89

16 254.8 99.9 259.9 90.1 251.5 95.4
17 161.1 97.4 155.7 99.5 155.1 99.9
18 146.1 99.8 147 98.5 146.5 99.5

Table 4. DynProg - Impact of ρ, with λRD , Smax = +∞ and Gmax = 21.

ρ 1.5 #S 4 #S

id T RD T RD

1 113.4 236.75 103.2 75.5
2 79.7 370.3 62 221.15
3 66.2 118.75 63 254.75

4 130.6 70.7 127.9 62.9
5 81.9 151.8 71.2 174.7
6 80.4 723.8 76.1 623.45

7 282.8 233.06 275.7 203.4
8 118.5 550.13 115.8 331.63
9 95.8 61.73 93.2 170.86

10 183.2 222.36 176.5 293.76
11 127.3 91.2 123.2 210.36
12 112.9 542 110.3 511.86

13 212.7 675.02 207.7 473
14 159.2 188.55 147.8 254.62
15 161.2 311.05 157.5 205.32

16 264.7 127.55 250.8 254.25
17 174.2 395.87 155.4 523.22
18 154.8 131.3 146 160.9

• in Table 4: For the specific mode λRD, mean number #S of states per node i,
together with time value TRD, when Smax = +∞, Gmax = 21 and ρ = 1.5, 4.

Comments:
There are two important points in those four tables:
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Table 5. Instance parameters table.

id |N | |M | Freq R α #SP Greedy

1 20 87 0.2 2 0.4 59 142.3
2 20 87 0.25 1.9 1 55 82.4
3 20 87 0.19 2 1.5 63 72.7

4 20 87 0.43 2 0.4 67 141.1
5 20 90 0.6 1.9 1 61 118.8
6 20 90 0.42 2 1.5 68 93.3

7 30 147 0.16 1.9 0.4 104 317.6
8 30 138 0.18 1.9 1 96 142.3
9 30 144 0.18 2 1.5 93 102.7

10 30 153 0.41 2 0.4 102 194.8
11 30 147 0.45 2 1 104 185.3
12 30 150 0.32 2 1.5 101 129

13 40 201 0.16 1.9 0.4 130 251.4
14 40 204 0.15 2 1 126 219.5
15 40 204 0.19 2 1.5 142 172

16 40 201 0.33 1.9 0.4 138 351.2
17 40 201 0.3 1.9 1 133 199
18 40 204 0.36 2 1.5 140 175.9

Table 6. DynProg - Impact of λmode, with Smax = 21, Gmax = 5 and ρ = 4.

id T RD RRD cpuRD T RT RRT cpuRT T DT RDT cpuDT

1 140 93.9 0.28 132.8 99.6 0.27 142.3 87.8 0.53
2 72.3 99.5 1.57 78.7 96.1 0.46 79.6 88.5 1.19
3 63 84.1 1.22 63 84.1 1.14 72.6 55.1 1.04

4 140.3 96.6 0.34 137.1 91.7 0.19 229.1 91.3 0.18
5 90.2 90.4 0.98 76.2 98.2 1.1 85.6 96.6 1.34
6 81.4 99.9 1.36 78 99.6 1.72 78.2 97.8 1.99

7 280.5 98 1.21 283.3 98.4 1.01 287.5 82.4 1.12
8 120.2 99.2 1.5 121.2 96.5 1.44 125.8 99.6 1.03
9 95.7 97.2 0.99 93.2 97.4 0.88 94.6 83.5 1.06

10 187.2 94.7 1.08 188.9 97.6 1.07 194.8 95.8 1.11
11 124.9 96.2 1.08 124.5 93.8 1.14 125.1 95.9 1.74
12 126 95.9 1.5 111.2 99.2 2.84 115.6 98.4 3.43

13 214.4 73.4 3.2 212 90.6 1.74 255.3 89 1.5
14 156.9 93.5 1.18 149.2 99 1.31 153.5 77.7 1.4
15 158.2 96.3 1.04 161.2 90.6 0.87 172 96.1 0.83

16 276.2 92.1 0.87 292.4 80.7 10.35 351.2 79.4 1.01
17 167.9 93.5 1.61 161 99.8 1.61 178 95 2.65
18 148.9 98.5 1.11 148.6 98.4 1.16 153.4 99.2 1.8

• the length of the shortest path of the instance 3 is 63 time unit. Therefore solutions
that go at full speed do not reach Rmax;
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Table 7. DynProg - Impact of Smax, with λRD , Gmax = 5 and ρ = 4.

Smax 3 #S 7 #S 11 #S 15 21 #S

id T RD T RD T RD T RD #S T RD

1 142.3 1.1 141 2.45 140 3.4 140 3.75 140 3.95
2 82.3 2.5 72.3 4.09 78.3 5.5 78.3 6.45 72.3 7.55
3 63 4 63 7.75 63 10.05 63 11.65 63 12.95

4 187 1.45 150.1 3.55 140.8 4.34 140.3 4.84 140.3 5.4
5 109.1 3.6 109.1 6.4 90.2 8.8 90.2 10.15 90.2 12.3
6 111.1 4.15 111.1 8.3 110.8 11.3 82.8 14.05 81.4 18.75

7 445.6 2.1 316.7 3.73 326.1 4.66 286.9 6.6 280.5 7.93
8 171.5 2.36 146.6 4.8 120.2 6.93 120.2 8.63 120.2 10.63
9 101.2 1.9 95.9 3.86 95.8 5.73 95.7 7.66 95.7 9.26

10 190.1 2.2 187.6 3.93 187.2 5.06 187.2 6.86 187.2 8.53
11 200 2.33 139.6 4.2 144.1 6.33 124.9 7.2 124.9 8.5
12 144.4 2.86 140.1 5.76 137.2 7.73 111.7 9.63 126 12.4

13 281.9 3.55 313.6 7.45 215.2 8.6 221.7 11.62 214.4 13.25
14 207.3 2.4 156.9 4.17 156.9 6 156.9 7.47 156.9 9.52
15 160.8 1.57 159.9 3.6 158.2 5.77 158.2 6.17 158.2 8.92

16 353.6 1.5 332.4 2.85 304.6 4 304 5.09 276.2 6.32
17 205.9 2.85 176.1 5.32 167.9 7.57 167.9 9.17 167.9 11.1
18 190.4 1.92 148.9 3.7 148.9 4.92 148.9 6.72 148.9 8.12

Table 8. A* - λRD , Smax = 21, Gmax = 5 and ρ = 4.

id T A∗ R A∗ #T cpu #S dev

1 102.9 98.5 19 7.86 52.2 16.9

2 67.5 97.1 18 3.8 27.25 0
3 63 84.1 19 4.5 42.25 0

4 117.6 99 19 6.19 40.45 0
5 66.7 79.9 19 9.95 62.15 0

6 69.1 99.8 19 5.89 44.2 0

7 144.8 99.2 29 9.15 48.4 3.84

8 104.7 99 29 10.97 56.66 2.08
9 95 88.2 28 9.16 53 2.15

10 181.1 98.8 29 8.29 35.5 0
11 118.9 96.3 29 13.56 57.3 1.92

12 108.3 98 29 17.62 69.93 1.98

13 180.5 75.4 37 15.16 57.3 9.23

14 150.7 99.2 39 21.13 70.45 3.17
15 143.4 97.5 35 19.91 60.17 0

16 186.4 99.4 35 14.11 42.72 0
17 146.5 96.9 35 17.56 61.72 1.5

18 143.6 98.3 39 25.04 76 0

• the RD method always performs best or is near the best solution as it can be expected
because of the RD reformulation, see Sect. 2.4;

• the DT method is designed to minimise its risks, then it may end without reaching
Rmax more often than the two other methods;

• on instance 11, the tree methods end without reaching Rmax, so we can deduct that
the last arc is not risky around the arrival date.
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Table 9. Decoupled - λRD , Smax = 21, Gmax = 5 and ρ = 4.

id T Dc R Dc #T cpu #S dev

1 118 97.9 11 5.96 5.35 6.77

2 67.4 97.1 5 2.83 6.25 0

3 63 84.1 6 5.24 8.19 0

4 140.3 96.6 3 1.67 4.7 0

5 69.8 92 20 26.76 12.25 0

6 70.8 95.5 14 14.83 10.6 0

7 159.9 79.9 27 27.47 10.3 11.5

8 119.5 92.4 13 13.59 6.13 4.16

9 95 88.2 9 9.71 8.46 2.15

10 187.2 94.7 8 9.86 8.03 0

11 124.9 96.2 7 7.03 7.43 0

12 114.1 95.1 15 22.21 10.73 5.94

13 187.2 97.8 53 114.4 11.12 1.53

14 151.1 99.6 15 21.46 7.42 3.17

15 143.7 97.9 22 32.62 6.92 0

16 252.2 92.5 5 5.05 3.75 0

17 155.4 89.7 16 26.01 8.15 0

18 148.9 98.5 7 8.24 6.47 0

Table 10. Distribution of optimal decisions - λRD , Smax = +∞, Gmax = 21 and ρ = 8.

idλ 1 2 3 4 5 6 7

% 16.6 0.4 1.2 1.2 1.2 2.4 1.2

idλ 8 9 10 11 12 13 14

% 1.4 0.9 1.6 7.4 15.2 11.3 7.9

idλ 15 16 17 18 19 20 21

% 4.8 3.3 3.3 2.4 1.9 2.4 11

Then, we can see that the solutions in Table 6 are fairly close to the solutions in Table 3
but with just a few states kept at every node (hence the very short computing time).

Outputs related to the behavior of A* SSPP and Dec SSPP. We test the ability
A* SSPP and Dec SSPP. to catch optimal solution, and observe the characteristics of
resulting path. The instances used are shown with their parameters in Table 5. We rely
on λ = λRD, Smax = 21, Gmax = 5 and ρ = 4. For every instance, we compute:

• in Table 8: The time value T A∗, the percentage of risk R A∗ from Rmax, CPU
time (in s.) cpu, the number #T of visited nodes, the number #S of generated
states, and the deviation dev between the length of resulting path Γ and L∗, induced
by A* SSPP with λmode = λRD, Smax = 10 and ρ = 4;
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Table 11. Decision Sets - λRD , Smax = 21, Gmax = 5 and ρ = 4.

id mR MR mS MS

1 3 9 19 35

2 2.8 6 21.8 36

3 0 0 21.66 40

4 3.75 9 18.75 34

5 2.83 7 22.5 33

6 5.85 10 28.28 58

7 1.33 3 20.83 38

8 6.28 12 17.57 25

9 2.16 3 28 49

10 4.85 23 30.28 74

11 3.66 9 27.16 48

12 2.37 9 24.5 51

13 6.09 21 26.36 47

14 4.62 19 18.62 34

15 0 0 25 45

16 6 18 24.16 45

17 6.44 16 25.44 39

18 3.42 8 26.42 39

• in Table 9: The time value TDc, the percentage of risk R Dc from Rmax, CPU time
(in s.) cpu, the number #T of trials, the number #S of generated states, and the
deviation dev between the length of resulting path Γ and L∗, which derives from
applying Dec SSPP with λmode = λRD, Smax = 10 and ρ = 4.

Comments:
We see that A* SSPP and Dec SSPP are close to each other but the latter is behind
most of the time. This is because Dec SSPP explores more paths but generates fewer
states and therefore obtains less good results when using the same path as A* SSPP.

Outputs related to characteristics of the solutions. Once again, we rely on
DP Evaluate, and we look for information on the decision set Γ . We use λ = λRD,
Smax = 21, Gmax = 3 and ρ = 4. We consider the instances as a whole and compute:

• in Table 10: For every λ value, the percentage of optimal decisions related to λ in
the optimal decision sequences computed by DP Evaluate;

• in Table 11: The mean rank mR and the max rank MR of states (T,R) involved into
those optimal trajectories, inside the state sets STATE[i], i = 1, . . . , n, according
to the order induced by increasing T values, estimated as in Table 6. mS and MS
respectively refer to the mean size of state set State[i], i = 1, . . . , n, and its maximal
size.

Comments:
We can see that optimal decisions are often generated thanks to the middle λ values
(from the 9th to the 15th value) and, in case of uncommon scenarios, the far left and far
right values will come handy.

Outputs related to the learning process.
Lastly, we will use DP Evaluate with the learning process of Sect. 5.1 while testing the



Multiple Heuristics with Reinforcement Learning 23

Table 12. DynProg with Learning - Impact of λmode, with Smax = 9, Gmax = 3 and ρ = 4.

id T RD RRD cpuRD T RT RRT cpuRT T DT RDT cpuDT

1 104.6 98.5 0.22 118.6 98.4 0.19 142.3 87.8 0.36

2 75 97.9 0.29 96.4 99.8 0.41 71.6 98.2 0.68

3 63 84.1 0.62 63 84.1 0.68 0 0 0

4 160.4 98.6 0.26 138.2 99.8 0.25 195.7 69.7 0.24

5 86.4 86.7 0.4 81.6 98.4 0.54 81.5 99.6 0.96

6 101.5 99.9 0.59 0 0 0 82.1 97.5 0.98

7 284.7 88.8 0.4 280 99.7 0.37 284.6 88.6 0.63

8 126.6 99.5 0.48 160.6 98.2 0.36 121.4 99.7 0.85

9 93.2 97.7 0.75 93.2 97.6 0.42 96 82.5 0.77

10 191.5 97 0.63 196.4 99.3 0.55 180.4 99.8 0.83

11 126.5 96.2 0.54 187.1 99.8 0.53 121.5 97.6 2.1

12 136.8 76.1 0.57 0 0 0 138.4 99.3 1.08

13 298.9 99.7 0.82 214 95.8 0.81 349.8 99.2 0.98

14 164.1 99.1 0.57 155.7 91.4 0.55 158.1 87.3 0.82

15 168.1 97.8 0.5 165.4 87.8 0.57 161.5 96.3 0.62

16 346.4 95.3 0.38 294.9 95.1 0.4 332.6 77.5 0.84

17 206.4 98.9 3.47 173.8 98.5 0.7 152 91.4 1.91

18 149.1 98.9 0.48 148.9 99.7 0.46 151.2 99.9 0.86

role of parameters λ = λRD, λRT , λDT , as well as Smax and ρ. So, for every instance,
we compute in Table 12: The time value T DPmode, the risk value R DPmode, and
the CPU times (in milliseconds.) CPUmode, induced by application of DP SSPP on the
shortest path between o and p with λmode = λRD, λRT , λDT , Smax = 9, Gmax = 3
and ρ = 4;

Comments:
Because of the short number of states kept (Smax) and generated (Gmax), the method
is the fastest of all and it performs as well as with Smax = 11 and Gmax = 5 shown on
Table 7. So it is the method that has performed best so far.

7 Conclusion

We dealt here with a shortest path problem with risk constraints, which we handled
under the prospect of fast, reactive and interactive computational requirements. But in
practice, a vehicle is scheduled in order to perform some kind of pick up and deliv-
ery trajectory while performing retrieval and storing tasks. It comes that a challenge
becomes to adapt previously described models and algorithms to such a more general
context. Also, there exist a demand from industrial players to use our models in order
to estimate the best-fitted size of an AGV fleet, and the number of autonomous vehicles
inside this fleet. We plan addressing those issues in the next months.
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Abstract. The current crisis that struck the automotive industry created an
urgency for improvement initiatives throughout the value chain. And, although
it is vital to improve the primary value chain, we should also look to improve the
support services that provide for it. To this end, the current work focuses on the
Manufacturing Tool Repair service, a support service in an automotive factory.
This service is responsible for delivering repaired tools to the production lines
and collecting the used ones. The time spent on this activity comprises 30% of
the total shift time, which means that 142 min of a 480-min shift are used in this
non-value-adding activity. To improve this service efficiency, we look for ways to
increase the number of tools delivered in each trip, and consequently reduce the
number of trips performed. For that, a mathematical model formulation for the
Two-Dimensional Bin-Packing Problem was proposed. The approach was tested
in 12 real-world instances and the results show that the model was able to opti-
mally solve all within satisfying CPU time, thus allowing for real-time feedback.
Also, we tested the efficiency of the model by increasing the pickup and delivery
demand and the number of bins available to perform each trip.

Keywords: Two-Dimensional Bin-Packing · Vehicle routing problem ·
Simultaneous pickup and delivery

1 Introduction

The automotive industry has suffered greatly in the last couple of years. Decrease in
sales, increase in raw material prices and COVID-19 led to an economic crisis within
this industry. As a result, is highly imperative that these organizations increase the effi-
ciency in all parts of the business, not just the production processes. Organizations must
therefore look at their value chains and improve all services that support it. The current
paper intents to do just that, by looking at one of those services – the Manufacturing tool
repair (MTR) service of an automotive factory.
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This work was initiated in [1], where a Vehicle Routing Problem with Simultaneous
Pickup and Delivery, and Time windows (VRPSDPTW) was formulated to calculate
the most time efficient route to Pickup and Delivery (P&D) the manufacturing tools
from, and to the factory’s production lines. The workers of the MTR service pickup
used tools from the production lines, repair and calibrate them, and then deliver them
to the respective production lines. The delivery and collection process is performed by
two different vehicles and consumes, on average, 30% of the total working time of each
shift. This means that 30% of the time is spent on a non-value-adding activity, causing
delays in the repair and calibration, which are value-adding. To solve the problem a
data processing framework and aMixed-Integer Linear Programming (MILP) model for
the VRPSDPTW were developed and implemented. The result was a 49% reduction of
the travelling time for one vehicle and a 14% reduction for the other. Extending on the
previous, the present work intends to further improve the P&D process by optimizing
the vehicle volume utilization. Hence, the present work addresses the Two-Dimensional
Bin-Packing Problem (2D-BPP) to obtain the most efficient allocation of the tools to
the vehicles. As it will be presented ahead, two different vehicles are used for the trans-
portation of manufacturing tools: a manual vehicle and an automatic vehicle. The paper
will concentrate on the allocation of tools in the automatic vehicle, rather than in both
vehicles. This is due to the fact that the manual vehicle’s capacity is only influenced by
the quantity of tools, not their positioning and volume. In summary, this paper adds to
the current literature by:

• Proposing a formulation for the 2D-BPP that limits the number of levels in a bin;
• Extending the application of the 2D-BPP together with the VRPSDPTW in a real-

world situation, considering the real-time demand at the production lines.

This paper is organized as follows: Sect. 2 offers a compilation of works related
to the 2D-BPP. A detailed description of the MTR service current problems and of the
solution proposed are presented in Sect. 3. In Sect. 4 the proposed model formulation is
presented. In Sect. 5 the model is tested in different instances and the results are given
and analyzed. Also in this section, the integration of the two models is presented with
two real-world examples. Lastly, a summary of the main conclusions and future work is
shown in Sect. 6.

2 Related Works

A combinatorial optimization problem is defined as the process of evaluating the solu-
tions according to an objective function with the goal of finding the optimal solution
[2, 3]. The Bin-Packing Problem (BPP) is one of the most widely studied combinatorial
optimization problems in the literature. TheBPP intends to pack a set of items into a finite
number of fixed-capacity bins, with the goal of minimizing the number of bins used.
According to the dimension of the items to be packed, the BPP can be defined as one-
Dimensional Bin-Packing Problem (1D-BPP), two-Dimensional Bin-Packing Problem
(2D-BPP), and three-Dimensional Bin-Packing Problem (3D-BPP) [2].

In this paper, we will be looking at the two-Dimensional Bin-Packing Problem
(2D-BPP), where a set of m items, each with a positive width w1, . . . ,wm and height
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h1, . . . , hm, are placed inside a number of finite bins with widthW and heightH , in such
a way that the items are placed orthogonally and do not overlap. The objective of this
problem is to minimize the number of bins used to pack all the items [4–6].

In this section a collection of works related to the 2D-BPP is presented. Table 1
offers a summary of the types of 2D-BPP published works and presented in this section
and Table 2 presents a summary of the related objective functions. Table 3 categorizes
each approach used in the works. The work presented in this paper also appears in all
tables under the column Paper as “Our”.

In [5] a 2D-BPP with due dates is solved using a sequential value correction heuris-
tic, with the objective of minimizing the number of bins and the maximum lateness
of the items inside the bins. The approach is compared to two benchmark algorithms,
the multicrossover genetic heuristic (MXGA) presented in [7] and the Hybrid constraint
and integer programming approach (CPMIP) proposed by [8]. The computational results
clearly show that the approach in [5] outperforms the two benchmark approaches, obtain-
ing better primal-dual gaps in smaller times. The authors also tested the approach in real
world instances obtaining solutions in reasonable computational times.

Table 1. A summary of the 2D-BPP found in the literature.

Paper 2D-BPP 2D-VBPP 2D-VSBPP

[5] x

[6] x

[8] x

[9] x

[10] x

[11] x

[12] x

[13] x

[14] x

[15] x

Our x

Polyakovskiy & M’Hallah [8], as stated above, proposed a CPMIP to solve the 2D-
BPP, with the objective of minimizing the maximum lateness of the packed items. In
their model they have several constraints regarding the overlapping of the items inside
the bin and the rotation of those items is allowed. The authors tested the approach in
the 1500 benchmark instances from [7], showing that their approach improves existing
upper bounds on average 27.45% and obtains optimal solutions for 586 instances. Also,
the CPMIP is compared to the MXGA from [7], obtaining better quality solutions in
lower computational (CPU) times. The 2D-BPP with levels is addressed in [6] with
the goal of minimizing the number of bins used. The authors used an Integer Linear
Programming (ILP) model and added width and height constraints to each level of the
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bin. To test the ILPmodel 200 instances from [9] and 300 instances from [16]. Out of the
500 instances the ILP solved 316 instances optimally. Even when the optimal solution
was not obtained the approach was able to get a solution within the imposed time limit
for 470 instances. Martello and Vigo [9] implemented the first exact approach to solve
the 2D-BPP using a Branch-and-Bound (BB) algorithm. They tested the algorithm with
36 benchmark instances from [17, 18] and [19], and 300 randomly generated instances
proposed by [16]. The exact approach solved 34 out of the 36 benchmark instances
optimally, and 211 out of the 300 instances. The authors in [10] simplified a 3D-BPP
into a 2D-BPP by creating layers of even height. This simplification allowed them to
apply a mixed-integer programming formulation to solve it. The formulation was then
tested in a total of 20 instances where 250, 500, 750 and 1000 size boxes were randomly
selected. According to the results 79% of the boxes are successfully grouped within, on
average, 5.3 s and 157 s for 100 items.

Table 2. A summary of the objective functions found in the literature.

[5] [6] [8] [9] [10] [11] [12] [13] [14] [15] Our

Maximize total area of boxes
placed in the 1st section of the
long layer

x

Minimize total cost of all bins x x x

Minimize number of trucks x

Minimize number of
refrigerated trucks

x

Minimize number of
refrigerated trucks with frozen
products

x

Minimize number of
refrigerated trucks with
standard products

x

Minimize splitting x

Minimize number of bins x x x x x

Minimize the maximum
lateness of the items

x x

In contrast with the aforementioned authors in [11], a Two-dimensional Vector Bin-
Packing Problem (2D-VBPP) is addressed using a heuristic algorithm and a Branch-
and-Price (BP) algorithm. The proposed problem has several objectives as it can be
seen by Table 2. Both algorithms were tested in 80 real world instances. The exact
approach reaches the optimum for 68 out of the 80 instances within a 10-min CPU time,
if splitting items is not allowed. With splitting items, the results show that the BP is
still able to optimally solve 62 instances. The heuristic approach was able to find the
optimal solution for 86% of the instances. Similarly, to the previous authors in [13] the
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2D-VBPP was solved using an Integer Programming (IP) model for small instances and
an Iterated local Search (ILS) for both smaller and bigger instances. The authors defined
40 instances with known optimal solution and randomly generated 120 instances. The
ILS was compared to a Greedy-on-Weight-Range (GWR) heuristic also proposed by the
authors of the paper. The computational results show that for small instances the ILS
outperforms the GWR. For the randomly generated instances ILS gets better quality
solutions with a small tradeoff in CPU time. Wei et al. [12] also used a BP approach
to solve the 2D-VBPP and tested it in 400 instances from [20]. Then the computational
results were compared to two BP from [20] and [21], and to two heuristics, a ILS
proposed by [22] and a Consistent Neighborhood Search (CNS) from [23]. Compared to
the BP algorithms the approach proposed by the authors was able to obtain the optimal
solutions for 390 out of 400 instances, 6% more than in [20] and 35%more than in [21].
To compare the heuristics the authors only used 200 of the 400 benchmark instances.
The results show that for both CNS and the proposed BP optimally solved 190 of the
200 selected instances. However, the latter used less CPU time in more than half of the
test sets. In [15] the authors applied the BP algorithm to a 2D-VBPP with volumetric
weight and general costs. The approach was tested in 90 test instances proposed in [24]
and the computational results show that it solved optimally 86 of the 90 test instances,
outperforming the approached tested in [24]. On top of this the total computational
(CPU) time was reduced by 84.5%.

Table 3. A summary of the approaches used in the literature.

Paper Exact Heuristic Hybrid

[5] x

[6] x

[8] x

[9] x

[10] x

[11] x x

[12] x

[13] x x

[14] x

[15] x

Our x

Another type of the 2D-BPP was solved in [14], the Two-Dimensional Variable
Sized Bin-Packing Problem (2D-VSBPP). As most of the aforementioned authors, a BP
approach was used and tested with benchmark instances from [16] and [25]. The authors
came to the conclusion that it was easier to solve the 2D-BPP.
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3 Case Study

3.1 Manufacturing Tool Repair Service

The Manufacturing tool repair (MTR) service performs the repair and calibration of the
manufacturing tools used to produce gearbox and motor metal components. On top of
these activities, the MTR service is also responsible for:

• Picking the tools that need to be repaired from the production lines;
• Delivering, new or repaired and calibrated tools to the production lines;
• Helping production with possible problems related to manufacturing tools.

Note that, only the repair and calibration activities are considered value-added for
this service. The picking and delivering activities are considered transport wastes and the
resolution of problems are considered defects. Since each tool has a different lifespan,
defined by the number of components produced, the repair and calibration frequency is,
in normal conditions, the same for each tool. However, due to defects or misuse, it can
happen that the manufacturing tool is not used until the end of its lifespan. In either case,
the used tools have to be collected from the production lines and the new or repaired
ones delivered. It’s imperative that no production line stops due to lack of tools available
for use.

The P&D points are defined in Fig. 1, as well as the routes currently followed by the
MTR workers. All points in the routes are visited and this process takes an average of
18, 15 and 8 min for Routes A, B and C, respectively.

Fig. 1. Pick and Delivery Points and Current Routes [1].

Also, the pickup and delivery activity may be performed by one of two different
vehicles: a manual vehicle and an automatic vehicle (Fig. 2).
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The manual vehicle can carry a total of 90 tools, and it was adapted to transport tools
which have special characteristics. Those tools will be defined henceforth as, extraordi-
nary tools. In this case, the location of the tools in the vehicle is straightforward, because
a tool corresponds to a space in the vehicle.

Fig. 2. Vehicles used by the MTR service: A – Manual vehicle; B – Automatic Vehicle [1].

For the automatic vehicle, themanufacturing tools are transported in baskets placed in
a trailer attached to it. The trailer has 120x120 cm (Weight andHeight) and it’s divided in
3 levels, all with the same height and weight. The baskets have standardized dimensions
and depending on the manufacturing tool transported they can carry a specific number
of tools. Figure 3 shows the different types of brackets, their dimensions and the number
of tools they can carry.

Fig. 3. Baskets used to transport tools in the automatic vehicle.

To deal with the current demand, the MTR service workers need to do each route at
least 2 times, one within the first 20min of the shift and another in the middle of the shift.
However, depending on the production line, the MTR workers can go and check if any
additional tools are necessary. Thus, sometimes they have an average of 6 additional trips
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per shift. This means that in each shift, 30% of the workers time is wasted in transport.
On top this, this situation also causes delays in the repair and calibration processes,
which hinders the service’s efficiency and risks tool shortages in the production lines.

3.2 Solution Proposed

Since the pickup and deliver activities highly impact the service’s response time the
solution is to optimize them, which means:

• Reducing the number of pickup and delivery trips that the workers must do;
• Reducing the total time of the trip;
• Optimizing the automatic vehicle’s volumeutilization, so that it can collect and deliver

more tools in the same trip.

To do so, we created a data collection and analysis framework, which gathers and
processes data from the P&D points andMTR service. Then, the problem is modelled as
a VRPSDPTW to get the optimized route and as a 2D-BPP to obtain the most efficient
allocation of the baskets to the automatic vehicle. The first was addressed and presented
in thework ofRomeira andMoura [1], and the latterwill be presented in the currentwork.
To do the connection between the two models, some changes in the data pre-processing
process presented in [1] had to be introduced in this paper, as it will be shown ahead.

The Data Pre-processing Process
The data pre-processing process presented in Fig. 4, is a matheuristic algorithm that uses
the data retrieved from the e-Kanban system [26] to determine if a trip must occur. This
can happen when a production line reaches the minimal stock of a specific tool or when
the number of tools available to P&D is sufficient to perform a route. Note that, from
here onwards the production lines will be referred as customers.

On one hand, when the minimal stock is reached the related customer is now con-
sidered a priority customer and, because of that, a trip alert is generated. After this alert,
the system verifies if that tool is available for delivery in the MTR service. If the priority
tool is not available an urgent alert is sent to the MTR Workers, so they can prepare
the priority tools. In the event that the tool is available, the system calls the “Vehicle
Selection” procedure to choose which vehicle will do the P&D route. Then, to take full
advantage of the chosen vehicle’s capacity the system runs the procedure “Availability
of tools to P&D”. This procedure determines if, for the same priority customers, there
are any non-priority tools to be picked or delivered in that same route. Once the tools
to P&D are sorted the MILP model will create the P&D route that minimizes the total
travel time. After that, if the vehicle chosen for the route is the automatic vehicle, the
system will use the 2D-BPP model to optimize the vehicle’s space when it leaves the
MTR service.

This model works by first performing the 2D-BPP for the depot node (MTR service),
obtaining the most efficient way to allocate the baskets to the vehicle. Additionally, by
using the value of the objective function (OF) it’s possible to allocate additional baskets
to the vehicle. Since we have 2 sides of the trailer each one with 3 levels, this means that
if OF < 6 then there are still places available in the vehicle. Using this information, the
system verifies if there are any additional tools to deliver the priority customers.
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Once this is done, the final P&D route and Bin-Packing at the MTR service solution
are available to the worker.

Fig. 4. The Data pre-processing process (Adapted from [1]).

On the other hand, when the number of tools is sufficient to do a trip the “Tools
to P&D” procedure is performed. Then the appropriate vehicle is selected, using the
procedure “Vehicle Selection”. Once the vehicle is chosen the route is obtained with the
MILP model and the Bin-packing model solved, if the vehicle selected is the automatic.

In summary, at the end of the pre-processing process we aim to obtain:

• The customers to visit in the route;
• The tools to pickup and delivery in each customer;
• The tools’ location in the vehicle when using the automatic vehicle.

It is important to note that, to due the connection between the two proposed models,
instead of using the number of tools as the input data for the VRPSDPTW, we now
convert this number into number of baskets. The data processing does this conversation
the following way:

• We have 1 tool that uses Type 2 baskets, this corresponds 1 basket in the VRPDSPTW
model;

• We have 6 tools that use Type 2 baskets, this corresponds to 1 basket in the
VRPDSPTW model;

• We have 8 tools that use Type 2 baskets, this corresponds to 2 baskets in the
VRPDSPTW model;
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• We have 2 tools that use Type 1 baskets, this corresponds to 2 baskets in the
VRPDSPTW model;

Considering the number and dimensions of the baskets, the automatic vehicle’s
capacity limit is 22 baskets.

Vehicle Selection Procedure
The vehicle selection procedure selects the vehicle according to the type of tools and the
vehicle’s available at the time a route is triggered. First the procedure checks if the tools
are extraordinary, if so, themanual vehicle is automatically selected. If not, the number of
vehicles available is verified. When none of vehicles are available the procedure chooses
the first vehicle that is confirmed to arrive at the MTR service. If only one vehicle is
available, that vehicle is used for the trip. In the case that both vehicles are available the
automatic vehicle is the one selected. In Fig. 5 the described procedure is summarized.

Fig. 5. The Vehicle Selection procedure.

4 2D-BPP Model

To allocate the baskets to the vehicles a linear programming model was developed based
on the well-known 2D-BPP.

Considering B = {1, . . . , k} a set of k identical rectangular bins, where each Bin
k ∈ B has awidthW and a heightH , we have that for each bin k, there areN = {1, . . . , i}
identical levels. Every item j ∈ IT = {1, . . . , it} has a width wj ≤ W , and a height
hj ≤ H . The model is formulated in order to only place the items in the bin once and
without overlap.

For the problem in the study, a bin corresponds a side of the automatic vehicle’s
trailer, which means k ∈ B = {1, 2}. Both bins have H = 120 cm andW = 120 cm. As
said before, each side of the automatic vehicle has 3 levels all identical, thus the model
assumes that i ∈ N = {1, 2, 3}. The items to be placed in the bins correspond to the
baskets that contained the manufacturing tools. Depending on the type of basket we can
have different widths and different heights for each one.
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The first decision variable defines if basket j was placed in bin k and level i. Thus,
the basket packing is:

xkij =
{
1 if basket j is packed in bin k level i

0 otherwise
∀k ∈ B,∀i ∈ N ,∀j ∈ IT (1)

The second decision variable, zki, defines whether level i is allocated in bin k. So,
the level packing is modeled by:

zki =
{
1 if i is allocated to bin k

0 otherwise
∀k ∈ B, ∀i ∈ N (2)

Thus, the proposed 2D-BPP model used is as follows:

min
b∑

k=1

n∑
i=1

zki (3)

Subjected to

b∑
k=1

n∑
i=1

xkij = 1∀j ∈ IT (4)

n∑
i=1

zki ≤ 3∀k ∈ B (5)

xkij ≤ zki ∀k ∈ B,∀i ∈ N ,∀j ∈ IT (6)

it∑
j=1

wjxkij ≤ W ∀k ∈ B,∀i ∈ N (7)

n∑
i=1

hjxkij ≤ H ∀k ∈ B,∀j ∈ IT (8)

Decision variables

zki ∈ {0, 1} ∀k ∈ B,∀i ∈ N (9)

xkij ∈ {0, 1} ∀k ∈ B,∀i ∈ N ,∀j ∈ IT (10)

For the current model, the objective function (3) intends tominimize not only the number
of bins used, but also the number of levels. This means that it is intended to minimize
the number of vehicles used, taking into consideration that each vehicle is considered to
have 2 bins (each side of the basket holder) and each of the bins has 3 layers. Constraint
(4) is used to guarantee that each basket is only placed once in a bin and respective level.
In other words, we guarantee that each basket is only packed once. To define the upper
limit for the number of possible levels, which in this study is 3, constraint (5) is used.
Constraints (7) and (8) guarantees that both width and height of a bin (the automatic
vehicle’s trailer) is not exceeded by the placed baskets. Equations (9) and (10) define
the decision variable’s domains.
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5 Computational Results

The model was tested in 12 different instances from normal demand requests of the
automatic vehicle. Each problem instance is defined by the number of brackets with
repaired and calibrated tools that leave theMTR service to be delivered to the production
lines. Table 4 presents the number of baskets of each type in the problem instances. The
trailer in the automatic vehicle has height and weight equal to 120 cm. The baskets have
the dimensions presented in Fig. 3.

Table 4. Number of baskets of each type in the problem instances.

Instance Nº baskets Type 1 Type 2 Type 3 Type 4

#1 6 0 1 1 4

#2 10 1 4 3 2

#3 14 2 2 2 8

#4 15 0 6 2 7

#5 18 0 6 2 10

#6 21 0 8 2 11

#7 23 0 12 1 10

#8 23 1 9 4 9

#9 24 1 13 1 9

#10 25 2 14 0 9

#11 25 1 9 4 11

#12 26 0 17 0 9

5.1 Results

The model presented was implemented using the CPLEX Studio IDE 20.1.0, and the
experiments were run on an Intel (R) CORE(TM) i7-10750H CPU 2,60 GHz with 16
Gb of memory.

Table 5 shows the results obtained for the test instances. The first column gives the
test instances and the second, the OF. To better understand the OF results column S
“Bins” and “Levels” were added. The first gives the number of trailer sides used and the
latter the number of levels used. The “CPU” column gives the time needed to perform the
Bin-Packing model. The last column has the GAP (in %) given by CPLEX, which gives
the tolerance on the GAP between the best integer solution and the best node remaining.

The results show that the optimal solution was met for 12 out of the 12 test instances.
All the solutions were obtained within a very good CPU time, on average 0.09 s, with
the highest being 0.25 s. As we can see, even with a bigger number of baskets, the test
instances are solved optimally and within the very small CPU times.
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Table 5. Model results for the 2D-BPP.

Instances OF Nº Trailers Nº Levels CPU(s) GAP (%)

#1 2 1 2 0.03 0

#2 3 1 3 0.25 0

#3 4 2 4 0.09 0

#4 4 2 4 0.05 0

#5 5 2 5 0.06 0

#6 6 2 6 0.05 0

#7 6 2 6 0.08 0

#8 6 2 6 0.05 0

#9 6 2 6 0.05 0

#10 6 2 6 0.13 0

#11 6 2 6 0.20 0

#12 6 2 6 0.05 0

Figure 6 and Fig. 7 present the representation of the solutions obtained for the first
and last instances of the problem, respectively.

From the model results for the first instance, we know that only one side of the trailer
is used, and the baskets are all placed in two levels as is shown in Fig. 6.

Fig. 6. Solution for the 1st instance.

For the 12th instance, we have a mixed of Type 2 and Type 4 baskets. Due to the
number of baskets the solution uses the two sides of the trailer. Also, the baskets occupy
all the available levels, as we can see by Fig. 7.
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Fig. 7. Solution for the 12th instance.

5.2 Model Efficiency

Presently, the company in the study uses only one trailer with three levels. However, it’s
important to know if the proposed model would work in the case the company decides
to increase the number of trailers used.

To that end, 10 randomly generated instances (presented in Table 6), infeasible on the
original model and (since they have a number of baskets higher than the normal trailer
capacity) were tested and the number of trailers increased to create a feasible solution.
Also, it is important to highlight that the instances generated have noticeable different
in the number of different types of baskets used.

Table 6. Number of baskets for each randomly generated instance, unfeasible by the original
model.

Instance Nº baskets Type 1 Type 2 Type 3 Type 4

#U1 32 1 16 2 13

#U2 35 2 17 4 12

#U3 35 8 4 13 10

#U4 40 12 10 18 0

#U5 45 5 20 2 18

#U6 50 5 14 9 22

#U7 60 17 3 12 28

#U8 100 0 8 45 47

#U9 120 20 0 90 10

#U10 155 43 98 0 14
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The results obtained with the model are presented in Table 7. As we can see the
model is still able to obtain the optimal solution for each of the instances.

Table 7. Model results for the higher instances.

Instance OF Nº Trailers Nº Levels CPU (s) GAP (%)

#U1 8 3 8 0.23 0

#U2 9 3 9 0.13 0

#U3 9 3 9 0.13 0

#U4 10 4 10 0.33 0

#U5 11 4 11 0.25 0

#U6 13 5 13 0.55 0

#U7 15 5 15 0.27 0

#U8 31 11 31 5.66 0

#U9 34 12 34 7.92 0

#U10 32 11 32 11.86 0

The average CPU time for these instances is 2.73 s and, although it increases with the
number of baskets to be transported, specifically in the last three instances, the results
are still obtained within a very acceptable time, which permits the model to be used in
a real time situation. Comparing instances U9 and U10 we can see that U9 uses more
bins than U10 even though it transports less baskets. This happens because U9 has more
baskets type 3 and those are bigger than the baskets type 2 used in instance U10.

Considering the results, the model proposed is still efficient to be used in case the
company intends to increase the number of trailers to better fulfill the demand of the
production lines and as an end objective, the reduction of the number of P&D trips.

5.3 Integrated Solution with VRPSDPTW and 2D-BPP

As stated before, this work is an extension of the work started in [1]. Therefore, to show
how the two papers connect we will present in this sub-section an end-to-end route
creation for pickup and delivery in two different real-world scenarios: when the route
is triggered due to minimal stock levels or when the number of tools is enough to fill a
vehicle.

Minimal Stock Trigger
The data collected from the e-Kanban system detected that in P&D points 3, 13 and 15
(see Fig. 1) tools A, B and C reached the minimal stock. Once the availability of the
replacement tools is confirmed, the vehicle is selected. Having no extraordinary tools and
both vehicles available, the automatic vehicle is selected. Table 8 gives us the number
of tools to pickup and delivery in each point and the number and type of baskets used
for each type of tool.
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Table 8. Tools to pickup and delivery after the minimal stock trigger.

P&D point Tool Type Tool quantity Basket quantity Basket Type

Pickup 3 A 4 1 Type 2

13 B 4 1 Type 4

15 C 6 1 Type 3

Deliver 3 A 6 1 Type 2

13 B 8 2 Type 4

15 C 3 1 Type 3

Following the diagram in Fig. 4, the system applies the procedure “Availability of
tools to P&D”, to guarantee that the vehicle’s capacity is maximized. The procedure
determines which additional tools can be delivered and collected from these points.
Table 9 summarizes the tools that will be collected and delivered, as well as the number
and type of baskets after the procedure “Availability of tools to P&D” is performed.

Table 9. Tools to pickup and delivery after “Availability of tools to P&D” procedure.

P&D point Tool Type Tool quantity Basket quantity Basket Type

Pickup 3 A 4 1 Type 2

13 B 4 1 Type 4

15 C 6 1 Type 3

3 E 1 1 Type 1

13 F 4 1 Type 2

15 G 6 1 Type 4

Deliver 3 A 6 1 Type 2

13 B 8 2 Type 4

15 C 3 1 Type 3

3 D 4 1 Type 2

With this information, we apply the VRPSPDTWmodel to obtain the quickest route
to pickup and delivery the selected tools, which is shown in Fig. 8. The blue circles
represent the customers to be visited, and the blue square represents the depot. In green,
we can see the number of baskets delivered and in grey, the pickup quantities.

The table in the figure contains the following information:

• Vehicle’s arrival time at customer;
• Vehicle’s departure time from customer;
• Number of baskets collected after leaving the customer (lpki );
• Number of baskets to be delivered to the customer and the following customers (ldk

i );
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Fig. 8. Route obtained for the minimal stock trigger example.

• Total number of baskets after the vehicle leaves the customer (lki ).

It is important to note that, the model obtained the optimal solution, and it was
calculated within 0.03 s. Having the final route, the 2D-BPP model is called to calculate
the allocation of the baskets in the MTR node. The optimal solution is shown in Fig. 9
and it was calculated within 0.05 s.

Fig. 9. 2-Dimensional Bin-Packing for the minimal stock trigger example.

The next step of the data pre-processing process includes the verification of the space
still available in the vehicle to transport additional tools. This is done by analyzing the
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OF obtained for the 2D-BPP. In the present example, the OF value is 3, which means
that only one side of the trailer is used, and the other side is completely free. Thus, the
system will look for more tools to deliver in the points with the minimal stock. Having
none, the final P&D route and bin-packing solution are given to the MTR worker.

Tools to P&D Trigger
In contrast to the previous procedure, in this case the route creation is triggered when
there are enough tools to fill a vehicle. The set of tools to be picked and delivered
from Points 3, 4, 11, 13 and 15 triggered a new route. Table 10 gives the number of
tools that triggered the route and the respective number and type of baskets where they
are transported. Once this happens the vehicle is selected according to the procedure
“Vehicle Selection”.

Table 10. Tools to pickup and delivery after the “Tools to P&D” procedure.

P&D point Tool Type Tool quantity Basket quantity Basket Type

Pickup 3 A 8 2 Type 2

3 E 1 1 Type 1

4 H 8 2 Type 4

11 J 2 2 Type 1

13 B 4 1 Type 4

15 C 6 1 Type 3

13 F 4 1 Type 2

15 G 6 1 Type 4

Deliver 3 A 6 1 Type 2

3 D 12 2 Type 2

4 H 5 1 Type 4

4 I 6 1 Type 3

11 J 3 3 Type 1

13 B 8 2 Type 4

15 C 3 1 Type 3

Considering that the selected vehicle was the automatic the route is created using
the VRPSPDTWmodel and the result presented in Fig. 10. The route has a total time of
10.89 min and was obtained 0.25 s with a GAP of 0%.

Having the P&D route the 2D-BPP model is applied to the depot node. Figure 11
shows the place of each basket in the trailer in order to optimize the trip. The model was
able to obtain the solution within 0.06 s and with a GAP of 0%.

Note that the vehicle as still space for, at least, 4 more baskets. However, since the
OF = 6 there will be no addition of tools to the vehicle for this trip.
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Fig. 10. Route obtained for the Tools to P&D example.

Fig. 11. 2-Dimensional Bin-Packing for the “Tools to P&D” trigger example.

6 Conclusions and Future Work

The inefficiencies associated to the Manufacturing Tool Repair service led to the devel-
opment of a data collection and optimization framework for the pickup and delivery
process of the manufacturing tools from and to the production lines. This framework
was initiated in [1] with the definition of the pre-processing process and the implementa-
tion of a VRPSDPTW to obtain the quickest route to pick and delivery themanufacturing
tools. The current work was the culmination of this work and aims to further improve
this service’s efficiency by implementing a 2D-BPP model. With this it’s possible to
increase the number of tools delivered, by the automatic vehicle. For this end, several
changes were made in the pre-processing process, being them:

• Introduction of the “Vehicle Selection” procedure;
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• Introduction of the Bin-Packing model in the MTR service node for the automatic
vehicle.

The developed 2D-BPP model was then tested using 12 real-world test instances
and 10 randomly generated instances, infeasible for the current vehicle’s capacity. For
the real test instances, the model is able to find the optimum for all instances, and it
does so within a very satisfying CPU time (average 0.09 s. For the randomly generated
instances, we assessed the efficiency of the model in case the company decides to invest
in more trailers for the automatic vehicle. The results show that the model still performs
very well. The optimal solution was still obtained for all test instances within a good
CPU time.

Moreover, the integration of both the VRPSDPTW and the 2D-BPP was tested using
the minimal stock trigger and the “Tools to P&D” trigger. The results support the use of
the approach, since it is possible to obtain the solutions within seconds.

As future work we propose the improvement of the current 2D-BPP model by:

• improving the calculation of the free space in the vehicle, so we know exactly how
many free spaces are available in the vehicle and their size;

• considering in the procedures “Availability of tools to P&D” and “Tools to P&D”,
the customers that triggered a new route and also other customers that are within a
pre-defined distance limit from the triggering customers.

On top of this, we propose the implementation of the final matheuristic framework
in the factory, in order to test its effectiveness and to calculate the actual efficiency
improvements.

References

1. Romeira, B., Moura, A.: Optimizing route planning for minimising the non-added-value
tasks times: a simultaneous pickup-and-delivery problem. In: 11th International Conference
on Operations Research and Enterprise Systems, pp. 153–60 (2022). https://doi.org/10.5220/
0010821000003117

2. Wang, N., Wang, J.-S., Zhang, Y.-X., Li, T.-Z.: Two-dimensional Bin-packing problem with
rectangular and circular regions solved by genetic algorithm. Int. J. Appl. Math. 51, 268–278
(2021)

3. Hoos, H.H., Stützle. T.: 1-Introduction. In: Stochastic Local Search, pp. 13–59. Morgan
Kaufmann, Burlington (2005)

4. Zhang, Q., Liu, S., Zhang, R., Qin, S.: Column generation algorithms for mother plate design
in steel plants. OR Spectr. 43, 127–153 (2020). https://doi.org/10.1007/S00291-020-00610-Z

5. Arbib, C., Marinelli, F., Pizzuti, A.: Number of bins and maximum lateness minimization
in two-dimensional bin packing. Eur. J. Oper. Res. 291, 101–113 (2021). https://doi.org/10.
1016/J.EJOR.2020.09.023

6. Lodi, A., Martello, S., Vigo, D.: Models and bounds for two-dimensional level packing prob-
lems. J. Comb. Optim. 8, 363–379 (2004). https://doi.org/10.1023/B:JOCO.0000038915.628
26.79

7. Bennell, J.A., Soon Lee, L., Potts, C.N.: A genetic algorithm for two-dimensional bin packing
with due dates. Int. J. Prod. Econ. 145, 547–560 (2013). https://doi.org/10.1016/J.IJPE.2013.
04.040

https://doi.org/10.5220/0010821000003117
https://doi.org/10.1007/S00291-020-00610-Z
https://doi.org/10.1016/J.EJOR.2020.09.023
https://doi.org/10.1023/B:JOCO.0000038915.62826.79
https://doi.org/10.1016/J.IJPE.2013.04.040


46 B. Romeira and A. Moura

8. Polyakovskiy, S., M’Hallah, R.: A hybrid feasibility constraints-guided search to the two-
dimensional bin packing problem with due dates. Eur. J. Oper. Res. 266, 819–839 (2018).
https://doi.org/10.1016/J.EJOR.2017.10.046

9. Martello, S., Vigo, D.: Exact solution of the two-dimensional finite bin packing problem.
Manage. Sci. 44, 388–399 (1998). https://doi.org/10.1287/MNSC.44.3.388

10. de Carvalho, P.R.V., Elhedhli, S.: A data-driven approach for mixed-case palletization with
support. Optim. Eng. (2021). https://doi.org/10.1007/S11081-021-09673-5

11. Heßler, K., Irnich, S., Kreiter, T., Pferschy, U.: Bin packing with lexicographic objectives
for loading weight- and volume-constrained trucks in a direct-shipping system. OR Spectr.
(2021). https://doi.org/10.1007/S00291-021-00628-X

12. Wei, L., Lai, M., Lim, A., Hu, Q.: A branch-and-price algorithm for the two-dimensional
vector packing problem.Eur. J.Oper.Res.281, 25–35 (2020). https://doi.org/10.1016/J.EJOR.
2019.08.024

13. Hu, Q., Lim, A., Zhu,W.: The two-dimensional vector packing problemwith piecewise linear
cost function. Omega 50, 43–53 (2015). https://doi.org/10.1016/J.OMEGA.2014.07.004

14. Pisinger, D., Sigurd, M.: The two-dimensional bin packing problem with variable bin sizes
and costs. Discret. Optim. 2, 154–167 (2005). https://doi.org/10.1016/J.DISOPT.2005.01.002

15. Wang, T., Hu, Q., Lim, A.: An exact algorithm for two-dimensional vector packing problem
with volumetric weight and general costs. Eur. J. Oper. Res. 300, 20–34 (2022). https://doi.
org/10.1016/J.EJOR.2021.10.011

16. Berkey, J.O., Wang, P.Y.: Two-dimensional finite bin-packing algorithms. J. Oper. Res. Soc.
38, 423–429 (1987). https://doi.org/10.1057/JORS.1987.70

17. Bengtsson, B.E.: Packing rectangular pieces—a heuristic approach. Comput. J. 25, 353–357
(1982). https://doi.org/10.1093/COMJNL/25.3.353

18. Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Oper.
Res. 25, 30–44 (1977). https://doi.org/10.1287/OPRE.25.1.30

19. Beasley, J.E.: Algorithms for unconstrained two-dimensional guillotine cutting. J. Oper. Res.
Soc. 36, 297–306 (2017). https://doi.org/10.1057/JORS.1985.51

20. Caprara,A., Toth, P.: Lower bounds and algorithms for the 2-dimensional vector packing prob-
lem. Discret. Appl. Math. 111, 231–262 (2001). https://doi.org/10.1016/S0166-218X(00)002
67-5

21. Alves, C., DeCarvalho, J.V., Clautiaux, F., Rietz, J.:Multidimensional dual-feasible functions
and fast lower bounds for the vector packing problem. Eur. J. Oper. Res. 233, 43–63 (2014).
https://doi.org/10.1016/J.EJOR.2013.08.011

22. Masson, R., Vidal, T., Michallet, J., Penna, P.H.V., Petrucci, V., Subramanian, A., et al.:
An iterated local search heuristic for multi-capacity bin packing and machine reassignment
problems. Expert Syst. Appl. 40, 5266–5275 (2013). https://doi.org/10.1016/J.ESWA.2013.
03.037
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Abstract. This paper focuses on predictive maintenance optimiza-
tion under stochastic production in complex systems using prognostic
Remaining Useful Life (RUL) information. At each stage of such a sys-
tem, we consider redundant assets and use their RUL to guarantee system
availability. However, the production capacity of our system is stochas-
tic due to environmental and human factors. We aim at meeting client
demands in a given optimization planning horizon while reducing the
generated cost. We propose a deterministic mathematical model before
providing a chance-constrained programming formulation to minimize
the total cost. Two solution approaches for dealing with chance con-
straints are proposed to approximate the stochastic model in this main-
tenance optimization. Experimental results show the efficiency of the
proposed model and chance-constrained approximation approaches.

Keywords: Predictive maintenance · Stochastic optimization ·
Chance constraints · Complex systems · Remaining useful life

1 Introduction

Lifetime of industrial assets in general decreases due to internal or external fac-
tors, which can impact the production of systems and cause economic problems.
In order to reduce the deterioration rate of assets, maintenance is seen as an
important solution by many enterprises because it can bring assets back to bet-
ter conditions [1]. However, real-life maintenance faces two difficulties: on the
one hand, traditional maintenance tools for single-asset systems are not suit-
able for contemporary complex systems because they require commonly more
than one asset for production [2]. On the other hand, uncertainty in complex
systems brings more challenges when taking maintenance and production deci-
sions. Industrial managers and academic researchers have thus been focusing on
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Fig. 1. Predictive maintenance is done for complex systems such that production and
inventory can meet client demands. In this research, a stochastic production factor is
considered when optimizing maintenance.

promising maintenance and production strategies for complex systems with the
consideration of uncertainty.

Our recent research paper [3] has focused on overcoming the first challenge,
which solves a predictive maintenance optimization problem for complex sys-
tems. More specifically, we consider a generic complex system with a series of
processing stages and each stage contains multiple redundant assets. The pro-
ductivity of this system depends on the conditions of assets and inventory is
allowed as a buffer. To avoid a sudden failure, predictive maintenance is carried
out on assets based on their prognostic information, i.e., Remaining Useful Life
(RUL). The definition of an asset’s RUL is the currently remaining time of oper-
ation before it fails [4]. In summary, the purpose of [3] is to use the obtained
asset-level RUL information, coordinate the operations in different stages, and
provide global maintenance and production decisions such that demands can be
met in the planning horizon.

In this paper, we are dedicated to overcoming the second challenge and we
thus extend our research [3] by considering stochastic production in mainte-
nance optimization. Figure 1 illustrates the novelty part of this paper to reflect
stochastic production that can occur due to a variety of factors, such as human
operations, environmental issues, or electricity supply.

Hence, we extend the Deterministic Predictive Maintenance Optimization
(DPMO) of [3] and propose a new Stochastic Predictive Maintenance Optimiza-
tion (SPMO) problem in which production is stochastic. Our objective is to
design a mathematical model to efficiently optimize the total cost (maintenance,
system failure, inventory) while meeting client demands under stochastic pro-
duction capacity. Our contributions to this paper are as follows:

– A new preventive maintenance optimization problem under stochastic pro-
duction is studied to minimize the total cost in complex systems.

– A chance-constrained programming model is formulated for our stochastic
optimization problem.
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– Two linear approximations of the stochastic model are designed to attain
approximate solutions for our problem.

– A comparison of the two provided approximations is made, and the impact
of different probability choices in chance constraints are evaluated.

The remainder of this paper is organized as follows. We review related lit-
erature in Sect. 2 to position our research. Section 3 is dedicated to the DPMO
problem in [3] and its mixed-integer linear programming (MILP) model, based
on which the SPMO problem and a new chance-constrained programming model
are proposed. In Sect. 4, we provide two approximation approaches to solve the
chance-constrained model. In Sect. 5, we compare the proposed solution methods
and evaluate the impact of probability in chance constraints. Conclusions and
future research directions are provided in Sect. 6.

2 Related Work

In this section, we review previous works to situate our contributions to this
paper. First, we review deterministic and non-deterministic maintenance lit-
erature related to our research. Then, we focus on maintenance optimization
solution methods in terms of deterministic and stochastic circumstances.

2.1 Maintenance Optimization in Complex Systems

Deterministic Maintenance Problems. The RUL is an important indicator
reflecting the current status of an asset [5]. It could be either obtained by defin-
ing the time length from the current time to the end-of-life of an asset. More
frequently, it is defined as the time left before the health condition reaches a
warning threshold. More than 270 papers have studied the prediction of asset’s
RUL [6]. However, in our paper, we focus on how to use the obtained RUL to
decide maintenance planning. To our best knowledge, there are three distinct
branches of RUL usage in the literature: (i) RUL-based inspection: Do et al. [7]
utilized RUL prognostics for deciding the time point for the next coming inspec-
tion. (ii) RUL-based maintenance strategies: Chen et al. [8] decided different
maintenance actions through the combinations of degradation levels and RUL
values. (iii) RUL-based constraints: Camci et al. [4] used prognostic information
to formulate failure rate constraints of components. Note that most existing
works focus on the first two types while using RUL prognostics for formulating
mathematical models is rare.

For describing the availability of a complex system through the conditions of
its assets, Wu and Castro [9] proposed a linear combination of the degradation
processes of several components. If this value exceeded a given threshold, pre-
ventive maintenance was performed. Lei and Sandborn [10] adopted a prognostic
health analysis to predict the RUL of wind turbines. The authors assumed that
turbines were dependent and system availability relied on the minimum RUL
among them. Dong et al. [11] supposed that normal-distributed shocks occurred
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independently and described system reliability by conditioning on the numbers
of arrived shocks.

Maintenance optimization in complex systems can also combine with some
problems in other scopes so as to make global decisions. One mainstream branch
is to simultaneously take maintenance and spare part ordering into account.
Camci [12] studied corrective maintenance and spare part inventory strategies
using prognostic information to minimize the failure risk. A genetic algorithm
was proposed and computational results were compared with the ones obtained
by the preventive maintenance strategy. Plenty of papers have considered spare
part ordering, see the review article [1]. The integration of maintenance and pro-
duction is also a main research direction because maintenance activities eventu-
ally impact the productivity of complex systems. Xiao et al. [13] assumed that a
given set of jobs were processed on a series system. A genetic algorithm was used
to determine the production schedule and the preventive maintenance interval
to minimize the failures. Bahria et al. [14] devised an integrated approach to
control the balance of maintenance, production, and quality in manufacturing.
Different appropriate thresholds for conducting maintenance were discussed to
guarantee the robustness of the production system.

Maintenance Problems with Uncertainty. Compared to deterministic
maintenance optimization problems, the ones with uncertainty are rare. And
even fewer are concerned with prognostic information, system availability, and
maintenance integration. To the best of our knowledge, in the literature, uncer-
tainty in maintenance optimization problems is usually considered as stochastic
maintenance quality and stochastic maintenance duration. Khatabe and Aghez-
zaf [15] studied selective maintenance optimization when the quality of mainte-
nance actions was stochastic. This quality was treated as a random variable with
identified probability distributions. Shahraki et al. [16] also studied stochastic
imperfect maintenance actions considering the dependency among components.
Ghorbani et al. [17] assumed future operating conditions to be uncertain. The
system was subject to several uncertain condition scenarios of exposure, condi-
tional, usage, and stress. Each scenario was modeled with its associated occur-
rence probability. For stochastic maintenance duration, Khatabe et al. [18] stud-
ied a selective maintenance problem and maintenance duration was seen as a
stochastic factor. Liu et al. [19] considered a multi-component maintenance and
repair person assignment problem with stochastic maintenance duration.

From the literature, we observe that there is a lack of mathematical model-
ing based on RUL-based constraints. Moreover, the influence of individual RUL
information on complex systems is seldom discussed. Hence, and to the best
of our knowledge, the integrated optimization of maintenance and production
in complex systems with backup assets has not been studied. Different from
the above works, our recent research [3] used RUL information to plan predic-
tive maintenance if the RUL of an asset reaches a given threshold. The system
availability is related to the conditions (RUL values) of its assets. Besides, the
integration of maintenance, production, and inventory is considered such that



Predictive Maintenance Optimization Under Stochastic Production 51

demands can be satisfied. However, the work in [3] is only valid in deterministic
circumstances. In this paper, we extend it to a non-deterministic manner with
the consideration of stochastic production capacity.

2.2 Maintenance Optimization Methods

Difference solution methods for maintenance problems in complex systems have
been proposed, such as analytic, simulation, optimization [20,21]. In the fol-
lowing, we only discuss optimization-related references and clearly situate our
contribution compared to these approaches.

Deterministic Optimization Methods. In the mentioned Camci [12] and
Xiao et al. [13], problem-specific genetic algorithms were proposed to solve the
problems. Rivera-Gómez et al. [22] considered a continuous production system
with unexpected quality deterioration, with the purpose to reduce the occurred
cost with a quality constraint. A non-linear programming model was formulated
and solved for the problem. Zhou et al. [23] proposed an optimal preventive
maintenance policy in order to get operational parameters for a production line.
A non-linear model and a heuristic were designed to minimize the cost and
guarantee the operating speed. Compared to the widely used non-linear formu-
lation and (meta-) heuristics, linear formulation for maintenance optimization
is very limited [4]. Our previous work [3] formulated a MILP model for the
considered predictive maintenance optimization problem, with the purpose to
provide optimal maintenance decisions. However, in order to solve the mainte-
nance optimization problem under stochastic production in this work, we need
to use corresponding stochastic optimization solution methods.

Stochastic Optimization Methods. For the mentioned stochastic mainte-
nance optimization, Khatabe and Aghezzaf [15] proposed a stochastic non-linear
programming model and used identified distributions to approximately solve the
stochastic model. Khatabe et al. [18] further proposed a chance-constrained pro-
gramming model, the expected value of stochastic duration was used for approx-
imation. Then for Ghorbani et al. [17], Shahraki et al. [16], Liu et al. [19], the
authors used the scenarios of stochastic factors for stochastic model approxima-
tion. From the existing stochastic solution methods for maintenance optimiza-
tion, we only see chance-constrained programming in [18]. This kind of stochastic
optimization method allows that some constraints in a model hold on reliability
within the area, it is called stochastic probabilistic or chance-constrained pro-
gramming (Birge [24], Charnes and Cooper [25] and Prékopa [26]). In our consid-
ered SPMO problem, we aim at guaranteeing with a probability that although
production capacity is stochastic, the complex system can yield enough prod-
ucts to meet demands. As chance-constrained programming cannot be solved
directly, we, therefore, concentrate on representing chance constraints by linear
approximations with proper solution methods.
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3 Problem Description and Formulation

In this section, we first recall the DPMO problem and its MILP model in our pre-
vious work [3]. Based on this, we then introduce stochastic production capacity
into the model to obtain the SPMO problem, and formulate a chance-constrained
programming approach for this problem.

3.1 DPMO and MILP Model

For sake of clarity, and to recall the DPMO problem and its MILP model, the
used parameters and decision variables are provided in Table 1.

In the considered DPMO problem, the generic complex systems contains |K|
processing stages and each stage k is configured with |Jk| assets. For example,
we can see in Fig. 2 that |K| = 4 and |J1| = 2 as there are two assets (in cir-
cle) belonging to stage 1. Each asset may have three states: working (in grey),
standby (in white), and maintenance (in dashed fill), respectively. We assume
that each asset is repairable, and that maintaining it does not affect the oper-
ation of a stage if there exists any available standby (redundant) asset. The
planning horizon contains |T | periods (a period denotes one week for example).
The purpose is to meet demands during this optimization planning horizon. In
the following, we describe the main constraints to formulate the MILP model of
the DPMO problem.

Table 1. Parameters and decision variables for DPMO.

Parameters

K set of stages in complex systems

Jk set of assets in stage k

T set of periods, i.e., the planning horizon

ak,j decreased RUL per period if asset j in stage k is used

bk,j recovered RUL if asset j in stage k is maintained

ok,j original RUL of asset j in stage k

γk RUL threshold of assets in stage k

mk maintenance duration of assets in stage k

qmax production capacity of the system per period

dt demands in period t

cm unit maintenance cost

cf unit failure cost

ci unit inventory cost

Decision variables

Xt
k,j binary variable, = 1 if the RUL of asset j in stage k reach the threshold in

period t, = 0 otherwise

Y t
k,j binary variable, = 1 if asset j in stage k operates in period t, = 0 otherwise

P t
k binary variable, = 1 if stage k is working in period t, = 0 otherwise

St binary variable, = 1 if the system is working in period t, = 0 otherwise

Rt
k,j RUL value of asset j in stage k in period t

Qt production amount of the system in period t

It inventory in period t. Note that there is no inventory at the beginning
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RUL Track Over Time. It is assumed that the prognostic RUL of asset j in
stage k contains: the original RUL ok,j at the beginning of the horizon, the
RUL usage rate ak,j , and the recovered RUL bk,j if maintenance is done. Note
that RUL can be alternatively depicted by values, quantiles, or probabilities. We
choose the first one in our proposal, and consider the others for future work. As
there are backup assets in each stage and only one asset is required to guarantee
the performance of a stage, therefore, the model should keep track of the RUL
of assets over the planning horizon. We recall the three conditions of assets in
Fig. 2 to generate the following RUL-evolution formulas: (i) if an asset is used,
its RUL value decreases based on a given usage rate; (ii) if an asset is in standby,
its RUL will not change; (iii) if the RUL of an asset reaches the threshold, its
RUL will stay at the threshold γk until maintenance is carried out. Note that
any asset reaching the corresponding threshold can no longer operate and needs
to be maintained. After maintenance, its RUL is restored to bk,j . We assume
that RUL threshold γk is provided by industrial experts.

Rt+1
k,j =

⎧
⎪⎨

⎪⎩

bk,j if asset j in stage k requires maintenance in period t

Rt
k,j − ak,j if asset j in stage k is used in period t

Rt
k,j if asset j in stage k is in standby in period t

Fig. 2. The generic complex system has |K| processing stages and each stage have asset
redundancy with a number of |Jk|. For each period of the planning horizon, an asset
has one of the three statuses: on-working, standby, or being maintained.

Complex System Availability and Production. The availability of the entire com-
plex system is guaranteed if and only if all stages are processing, which further
requires that one asset from each stage is working. The production amount of
the complex system depends on asset conditions and is limited by a given upper
bound. If the system cannot work in a period, there is no production and thus
client demands may not be satisfied. To avoid this, we allow some possible inven-
tory in preparation to make sure that the sum of production and inventory can
meet demands.

The deterministic MILP model (denoted as M1) for the DPMO problem is
formulated as follows. The objective function (1) is a sum of three parts: total
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maintenance cost Cmaintenance, total system failure penalty Cfailure, and total
inventory expense Cinventory, specifically:

– Cmaintenance equals to unit maintenance cost cm times the total number of
maintenance actions in the planning horizon.

– Cfailure equals to unit system failure penalty cf times the total number of
occurrences of system failures.

– Cinventory equals to unit inventory expense ci times the inventory over time.

Model M1: min Cmaintenance + Cfailure + Cinventory (1)

Cmaintenance = cm ·
∑

k∈K

∑

j∈Jk

∑

t∈T
Xt

k,j

Cfailure = cf ·
∑

t∈T
(1 − St)

Cinventory = ci ·
∑

t∈T
It

The constraints of M1 are presented as follows. Constraints (2) to (11)
describe RUL evolution. Specifically, constraints (2) and (3) claim that mainte-
nance is required for an asset if its RUL is no bigger than the threshold. Con-
straints (4) show the maintenance duration if an asset is under maintenance.
Constraints (5) restrict that only one asset can be working in each stage if nec-
essary. Constraints (6) to (11) present the evolution of asset’s RUL under three
conditions as we have defined before: constraints (6) and (7) show RUL track
if an asset is maintained; constraints (8) and (9) show RUL track if an asset is
used; constraints (10) and (11) show RUL track if an asset is in standby.

Rt
k,j > γk − M · Xt

k,j , ∀k ∈ K, j ∈ Jk, t ∈ T (2)

Rt
k,j ≤ γk + M · (1 − Xt

k,j), ∀k ∈ K, j ∈ Jk, t ∈ T (3)
∑

t′∈[t,t+mk−1]

Y t′
k,j ≤ 1 − Xt

k,j , ∀k ∈ K, j ∈ Jk, t ∈ [1, |T | − mk + 1] (4)

∑

j∈Jk

Y t
k,j ≤ 1, ∀k ∈ K, t ∈ T (5)

Rt+1
k,j ≥ bk,j − M · (1 − Xt

k,j), ∀k ∈ K, j ∈ Jk, t ∈ [1, |T | − 1] (6)

Rt+1
k,j ≤ bk,j + M · (1 − Xt

k,j), ∀k ∈ K, j ∈ Jk, t ∈ [1, |T | − 1] (7)

Rt+1
k,j ≥ Rt

k,j − ak,j − M · (1 − Y t
k,j), ∀k ∈ K, j ∈ Jk, t ∈ [1, |T | − 1] (8)

Rt+1
k,j ≤ Rt

k,j − ak,j + M · (1 − Y t
k,j), ∀k ∈ K, j ∈ Jk, t ∈ [1, |T | − 1] (9)

Rt+1
k,j ≥ Rt

k,j − M · (Xt
k,j + Y t

k,j), ∀k ∈ K, j ∈ Jk, t ∈ [1, |T | − 1] (10)

Rt+1
k,j ≤ Rt

k,j + M · (Xt
k,j + Y t

k,j), ∀k ∈ K, j ∈ Jk, t ∈ [1, |T | − 1] (11)
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Constraints (12) to (16) describe stage availability and further system avail-
ability for each period via the RUL track of assets, based on which system
production and inventory can be calculated. The premise that a stage operates
normally is that one asset belonging to it is working. To this end, the availabil-
ity of a stage can be described by constraints (12). System availability strictly
requires that all the stages are available, which is expressed by constraints (13)
and (14). The inventory in constraints (15) is calculated by summing up the pro-
duction amount and the inventory in the last period after meeting the demands.
Constraints (16) provide the upper bound of production amount in each period
respecting system production capacity.

P t
k ≤

∑

j∈Jk

Y t
k,j , ∀k ∈ K, t ∈ T (12)

1
|K|

∑

k∈K
P t

k ≤ St +
∑

k∈K
(1 − P t

k), ∀t ∈ T (13)

P t
k ≥ St, ∀k ∈ K, t ∈ T (14)

It = Qt + It−1 − dt, ∀t ∈ T (15)
Qt ≤ qmax · P t

k, ∀k ∈ K, t ∈ T (16)

The ranges of model M1 are as follows, where R
∗ represents non-negative

real numbers.

Xt
k,j , Y

t
k,j , P

t
k, St ∈ {0, 1}, ∀k ∈ K, j ∈ Jk, t ∈ T (17)

It, Qt, Rt
k,j ∈ R

∗, ∀k ∈ K, j ∈ Jk, t ∈ T (18)

The above DPMO problem and its corresponding MILP model (studied in
[3]) are only valid under deterministic environments. However, as indicated in
Sect. 1, stochastic factors may bring more challenges when doing maintenance
and production decisions for complex systems. In the following, we consider that
production capacity is stochastic to extend the DPMO problem to the SPMO
problem. Also, we formulate a chance-constrained programming model for it.

3.2 SPMO and Chance-constrained Programming Model

Stochastic production capacity of complex systems in the SPMO problem is
denoted as qmax(ξ̃). The reason is that this capacity can be impacted by unpre-
dictable elements such as human operations, environmental factors, etc. In the
SPMO problem, we aim at guaranteeing that even under stochastic production
capacity, client demands should be met in the planning horizon. To achieve this
goal, we introduce chance constraints to formulate a chance-constrained pro-
gramming model.

The original chance-constrained programming model was proposed by
Charnes and Cooper [25]. The basic idea is that, in some models, constraints
need not hold exactly but rather they may hold with some reliability or proba-
bility levels. For our considered SPMO problem, we propose chance constraints
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(19) to guarantee that the event “Given a stochastic production capacity, the
production system can meet demands at every period” holds a probability of α,
where 0 ≤ α ≤ 1:

P
(
qmax(ξ̃) · P t

k ≥ Qt
)

≥ α, ∀t ∈ T (19)

Note that constraints (19) are the extended chance-constraints of deterministic
constraints (16) in M1. With the above stochastic production capacity and
chance constraints (19), a chance-constrained programming model (denoted by
M2) for the SPMO problem can be formulated as follows.

Model M2: min Cmaintenance + Cfailure + Cinventory

Subject to: (2) − (15), (17), (18), and(19)

Due to the complexity and non-linearity of chance constraints (19), model
M2 cannot be solved directly. In the next section, we present two methods to
approximate M2 so that approximate solutions can be reached.

4 Approximations of the Chance-Constrained Model

In this section, we propose two approaches to solve the chance-constrained pro-
gramming model M2 approximately. These approaches respectively assume that
stochastic production capacity qmax(ξ̃) takes on discrete values or continuous
values. We also explain the relationship between the proposed solution methods.

4.1 Approximation Using Discrete Information

In this subsection, we assume that qmax(ξ̃) can be expressed by a discrete set of
scenarios. We consider a fixed number of scenarios |Ω| where scenario ω ∈ Ω is
associated with positive probability ρ(ω), and qmax(ξ̃) takes a value of qmax(ω)
with a probability of ρ(ω). Note that, for each given scenario, the SPMO problem
reduces to the corresponding DPMO problem.

Chance-constrained programming model M2 can now be rewritten as the
following expectation model (denoted as EXP):

Model EXP: min
(
Cmaintenance + Cfailure + Cinventory

)
/|Ω|

Cmaintenance = cm ·
∑

ω∈Ω

∑

k∈K

∑

j∈Jk

∑

t∈T
Xt

k,j(ω)

Cfailure = cf ·
∑

ω∈Ω

∑

t∈T
(1 − St(ω))

Cinventory = ci ·
∑

ω∈Ω

∑

t∈T
It(ω)



Predictive Maintenance Optimization Under Stochastic Production 57

Subject to: (2)� − (15)�

∑

ω∈Ω

Pω

(
qmax(ω) · P t

k(ω) ≥ Qt(ω)
)

≥ α, ∀t ∈ T (20)

where � denotes that decision variables in these constraints are related to a
scenario-based dimension, and their ranges are as follows:

Xt
k,j(ω), Y t

k,j(ω), P t
k(ω), St(ω) ∈ {0, 1}, ∀k ∈ K, j ∈ Jk, t ∈ T , ω ∈ Ω, (21)

It(ω), Qt(ω), Rt
k,j(ω) ∈ R

∗, ∀k ∈ K, j ∈ Jk, t ∈ T , ω ∈ Ω. (22)

The complete version of model EXP can be found in the Appendix for ref-
erence. This model is an expectation approximation of M2 using scenarios,
however, it still cannot be directly solved because of chance constraints (20).

For this reason, we introduce a new binary variable W (ω) defined as follows:

W (ω) =

{
1, if the event is satisfied under ω, i.e., qmax(ω) · P t

k(ω) ≥ Qt(ω)
0, if the event is not satisfied under ω

Proposition 1. Using binary variable W (ω), chance constraints (20) can be
approximated by the following linear constraints (23) and (24), where M is a
sufficient large number:

Qt(ω) − qmax(ω) · P t
k(ω) ≤ M · (1 − W (ω)), ∀k ∈ K,∀t ∈ T ,∀ω ∈ Ω (23)

∑

ω∈Ω

ρ(ω) · W (ω) ≥ α (24)

Proof. For scenario ω with a probability of ρ(ω), constraints (23) mean that if
W (ω) = 1, then the event in chance constraints (20) is satisfied under scenario ω.
As chance constraints (20) make sure that for the scenarios satisfying the event,
the sum of their probabilities is greater than or equal to the given probability.
Therefore, we use constraint (24) to collect all scenarios with W (ω) = 1 for
ensuring this. �

Applying Proposition 1, our model EXP can be approximated by the fol-
lowing MILP model (denoted as A1).

Approximation A1: min
(
Cmaintenance + Cfailure + Cinventory

)
/|Ω|

Cmaintenance = cm ·
∑

ω∈Ω

∑

k∈K

∑

j∈Jk

∑

t∈T
Xt

k,j(ω)

Cfailure = cf ·
∑

ω∈Ω

∑

t∈T
(1 − St(ω))

Cinventory = ci ·
∑

ω∈Ω

∑

t∈T
It(ω)
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Subject to: (2)� − (15)�, (21) − (22), (23) − (24)

where constraints (23) and (24) are the linear approximation of chance con-
straints.

We have thus obtained model A1 which is a linear approximation of M2
and can be solved directly by off-the-shelf solvers.

4.2 Approximation Using Continuous Information

In this subsection, we assume that qmax(ξ̃) is expressed using continuous values
following normal distributions. Under this assumption, we obtain Proposition 2
below, and hence the second approximation of model M2. The choice of normal
distributions is reasonable in this context because, in most cases, the stochastic
production capacity will take values near its mean, so values further away from
the mean should have lower probabilities.

Proposition 2. If stochastic production capacity qmax(ξ̃) follows a normal dis-
tribution, i.e., qmax(ξ̃) ∼ N (μ, σ2), then chance constraints (19) can be approx-
imated by linear constraints as follows:

Qt ≤
(
σ · Φ−1(1 − α) + μ

)
· P t

k, ∀t ∈ T . (25)

Proof. For qmax ·P t
k ≥ Qt in (19), it holds that Qt = 0 if binary variable P t

k = 0,
and qmax ≥ Qt if P t

k = 1. We consider separately the two cases P t
k = 0 and

P t
k = 1 to approximate (19):

– If P t
k = 0, then it is obvious that (19) holds Qt = 0 for any probability α.

– If P t
k = 1, then P t

k �= 0 and (19) for t ∈ T can be rewritten as:

P

(

qmax(ξ̃) ≥ Qt

P t
k

)

≥ α (26)

As qmax(ξ̃) ∼ N (μ, σ2), we have that qmax(ξ̃)−μ
σ ∼ N (0, 1), and thus con-

straint (26) can be standardized as:

P

⎛

⎝
qmax(ξ̃) − μ

σ
≥

Qt

P t
k

− μ

σ

⎞

⎠ ≥ α, (27)

or equivalently as:

1 − P

⎛

⎝
qmax(ξ̃) − μ

σ
≤

Qt

P t
k

− μ

σ

⎞

⎠ ≥ α. (28)
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Now, constraint (28) can be written as follows using the properties of the
standard normal distribution:

Φ

⎛

⎝

Qt

P t
k

− μ

σ

⎞

⎠ ≤ 1 − α, (29)

where Φ(·) denotes the probability distribution function of the standard nor-
mal distribution. Because the right-hand side of (29) is revealed as a given
value, we have the following equivalent constraint:

Qt

P t
k

− μ

σ
≤ Φ−1(1 − α) (30)

Using again the fact that P t
k �= 0 in this case, constraint (30) can be expressed

as Qt ≤
(
σ · Φ−1(1 − α) + μ

)
· P t

k, which is (25) as desired. �

Using Proposition 2, chance-constrained programming model M2 can be refor-
mulated as another linear model (denoted as A2):

Approximation A2: min Cmaintenance + Cfailure + Cinventory

Subject to: (2) − (15), (17) − (18), (25)

where constraints (25) are the approximated linear formulas that we have
obtained in the proposition. Model A2 is also a linear approximation of M2,
which can be solved directly by off-the-shelf solvers.

4.3 Relationship Between the Approximation Approaches

The relationship between the two proposed approximation solutions is summa-
rized in Fig. 3.

First, we have formulation M1 that is a MILP model for the DPMO prob-
lem. Next, we consider stochastic production capacity qmax(ξ̃) and treat meeting
demands as a probabilistic event, and this leads to a chance-constrained pro-
gramming model M2 for the SPMO problem. As M2 cannot be solved directly,
we proposed two approximation methods A1 and A2 that express qmax(ξ̃) in a
discrete manner or a continuous manner, respectively.

The dashed line between the two approaches A1 and A2 means that they
may be related in a specific way when the scenarios in A1 are generated through
normal distributions. For sake of clarity, we provide more details on their rela-
tionship in Sect. 5.
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Fig. 3. Relationships among the proposed approaches.

5 Computational Experiments

In this section, we first introduce the settings of the parameters for the instances,
stochastic production capacity, and result indicators for our computational
experiments. We then compare the performance of the approximation meth-
ods A1 and A2. Finally, we evaluate the influence of different probability levels
(confidence levels) on the performance of the proposed methods.

The proposed simulations are carried out on a computer with Core I7 and
an 8 GB RAM system. The deterministic and approximation models are solved
using CPLEX 12.8 and Python V3.7.8.

5.1 Parameter Settings of Instances, Uncertainty, and Indicators

We carried out experiments using generated data with characteristics based on
industrial applications. These parameters are generated according to the follow-
ing rules.

– Number of stages |K| is up to 8.
– Number of assets |Jk| in each stage is generated as an integer within the

interval [1, 5]. Note that |Jk| = 1 means only one single asset without any
backup (no redundancy) in stage k, while |Jk| ≥ 2 indicates that there is a
redundancy of |Jk| of assets in process k.

– Number of periods |T | in the planning horizon is up to 20. We consider each
period in our data to be one week.

– RUL decrease coefficient ak,j is set within the interval [1, 3].
– RUL recovery factor bk,j is generated as a real number in the interval [50, 100].
– Original RUL is generated uniformly from the continuous interval [20, 100].
– RUL threshold is selected as a real number within the interval [1, 10].
– Asset maintenance duration is set to 1 or 2.
– Deterministic production capacity of the complex system is set to 200.
– Demand is randomly generated uniformly from the interval [120, 220].
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– Unit maintenance cost, unit failure cost, and unit inventory cost are set to
50, 100, and 0.05, respectively.

For stochastic production capacity qmax(ξ̃), we use the following settings for
the various models and approximations.

– For the deterministic model M1, production capacity qmax is set to 200 (as
mentioned above).

– For the approximation A1, in order to be consistent with model M1 and
approximation A2, scenarios are generated following a normal distribution
qmax(ω) ∼ N (200, 102), where 200 is the mean value as in M1 and 10 is
the standard deviation. The number of scenarios varies from 5 up to 30.
We assume that the scenarios are equiprobable, i.e., ρ(ω) = 1

|Ω| , and thus

constraint (24) can be rewritten as
∑

ω∈Ω

W (ω)
|Ω| ≥ α.

– For the approximation A2, we use the same normal distribution as for A1
and set qmax(ξ̃) ∼ N (200, 102).

To evaluate and compare the solution approaches M1, A1, and A2, we use
the following computational settings and metrics.

– We set a CPU time limit of 2 h (7200 s) with a view to practical applicability.
– We use obj to refer to the optimal objective value (total cost) of each app-

roach.
– We use time(s) to refer to the CPU time (in seconds) taken by each approach.
– We use gap1 to refer to the final gap between the upper and lower bounds

computed by CPLEX, in the cases where this gap could not be reduced suf-
ficiently within the given time limit, and the solver could only provide a
near-optimal solution.

– We use gap2 to denote the percentage gap between the (near-)optimal objec-
tive values of M1 and A1, or of M1 and A2. Specifically,

gap2(M1, A1) =
objA1 − objM1

objM1
× 100%

and
gap2(M1, A2) =

objA2 − objM1

objM1
× 100%.

5.2 Comparison of Our Approaches

In this subsection, we set the planning horizon to 10 periods. The probabilities
(confidence levels) are set to 80%, 85%, 90%, and 95% for both A1 and A2.
For the scenario-based approximation A1, we set the number of scenarios as 5,
10, and 30. Except for the values of probabilities and scenarios, the instances
are exactly the same for M1, A1, and A2. The results are reported in Table 2
averaged over the 10 instances for each line in the table.
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Table 2. Average performance of M1, A1, and A2 over 10 instances.

Methods α Φ−1(1 − α) totalcost(gap1) gap2 time(s)

M1 – – 150.95 – 0.9

A1 |Ω| = 5 95% – 151.50 0.36% 5.1

90% – 151.50 0.36% 5.1

85% – 151.50 0.36% 5.1

80% – 150.66 (33.19%) – 7200

A1 |Ω| = 10 95% – 151.89 0.62% 10.5

90% – 151.37 (33.03%) – 7200

85% – 151.37 (33.03%) – 7200

80% – 150.95 (33.13%) – 7200

A1 |Ω| = 30 95% – 151.17 (33.63%) – 7200

90% – 150.94 (33.04%) – 7200

85% – 150.84 (33.04%) – 7200

80% – 150.68 (31.85%) – 7200

A2 95% –1.64 155.25 2.84% 0.3

90% –1.28 152.55 1.06% 0.3

85% –1.03 152.05 0.72% 0.3

80% –0.84 151.85 0.59% 0.3

From Table 2, we observe that the deterministic model M1 provides the
optimal solution with a total cost of 150.95 and computational time of 0.9 s. We
take this as the benchmark for evaluating the performance of the approximations
A1 and A2:

– For the approximation A1, we observe that when |Ω| = 5, the optimal costs
for probabilities 95%, 90%, and 85% are the same. This is because all five
scenarios must meet (no violation) constraints (23) in Proposition 1 when
these probability levels are required. By contrast, for probability 80%, only
four scenarios out of five have to respect constraints (23), and we see that
the optimization problem is not solved within 7200 s. The best solution found
has cost 150.66, with a gap of 33.19% between the upper bound and lower
bound (provided by CPLEX). Similar observations hold for |Ω| = 10 and
|Ω| = 30. Naturally, a greater number of scenarios can provide a more reliable
approximation, but the computational time for A1 is very high, even for
small-size instances.

– For the approximation A2, we observe that the optimal costs change from
155.25 to 151.85 with the reduction of α from 95% to 80%. As our optimiza-
tion minimizes the cost, it is to be expected that if we require the chance
constraints to hold with higher probabilities, then this cost will increase. In
other words, higher probabilities in the chance constraints mean that the
event can be guaranteed even with a smaller stochastic production capac-
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Table 3. Computational results with |T | = 10.

Methods α Φ−1(1 − α) totalcost gap2 time(s)

M1 – – 45.42 – 0.8

A2 99% –2.33 51.53 13.5% 0.4

98% –2.05 49.45 8.9% 0.3

97% –1.88 48.61 7.0% 0.3

96% –1.75 48.27 6.3% 0.4

95% –1.64 47.98 5.6% 0.4

94% –1.55 47.71 5.0% 0.3

93% –1.48 47.47 4.5% 0.3

92% –1.41 47.47 4.5% 0.3

91% –1.34 47.26 4.1% 0.3

90% –1.28 47.06 3.6% 0.3

89% –1.22 47.06 3.6% 0.3

88% –1.17 46.88 3.2% 0.4

87% –1.13 46.88 3.2% 0.4

86% –1.08 46.72 2.9% 0.4

85% –1.03 46.72 2.9% 0.4

100% −∞ infeasible – –

50% 0 45.42 0.0% 0.8

0% +∞ 45.00 –0.9% 0.6

Table 4. Computational results with |T | = 20.

Methods α Φ−1(1 − α) totalcost gap2 time(s)

M1 – – 150.83 – 11.0

A2 99% –2.33 163.07 8.1% 11.2

98% –2.05 159.10 5.5% 6.3

97% –1.88 157.78 4.6% 9.8

96% –1.75 156.54 3.8% 7.1

95% –1.64 155.95 3.4% 14.4

94% –1.55 155.41 3.0% 9.3

93% –1.48 154.94 2.7% 9.7

92% –1.41 154.94 2.7% 9.5

91% –1.34 154.51 2.4% 9.1

90% –1.28 154.12 2.2% 9.1

89% –1.22 154.12 2.2% 9.1

88% –1.17 153.76 1.9% 11.8

87% –1.13 153.76 1.9% 11.7

86% –1.08 153.43 1.7% 8.2

85% –1.03 153.43 1.7% 8.1

100% −∞ infeasible – –

50% 0 150.83 0.0% 11.1

0% +∞ 150 –0.6% 27.9
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ity. This leads to lower production amounts, which may contribute increased
inventory cost to the total cost. We note that while there are no significant
differences between the maintenance decisions of M1 and A2, what changes
is the inventory cost, depending on varying production capacity. As regards
computational time, A2 can be solved for these instances within 1 s, just like
M1.

Considering the limited capability for solving A1, we henceforth only con-
sider A2 in the next subsection, where we study the impact of probability α.

5.3 Impact of Probabilities in Chance Constraints

In this subsection, we study the impact of the choices of probability (confidence
level) when using method A2. We test M1 and A2 using the same instances
and the computational results (average of 10 instances) are reported in Tables 3
and 4 for |T | = 10 and |T | = 20, respectively. We do not test larger values of |T |
because solving either M1 or A2 is time-consuming for more that 25 periods in
the planning horizon.

As shown in Tables 3 and 4, we have tested α values from 99% to 85%
(because high probabilities are more realistic in practice) as well as three specific
probabilities: 0%, 50%, and 100%. From Table 3, we observe that the benchmark
model M1 has an average optimal total cost of 45.42 and mean computational
time of 0.8 s. As the probability in the chance constraints decreases, A2 gen-
erally provides lower total costs, as discussed in Sect. 5.2. This trend is clearly
illustrated by Fig. 4. The deviation between M1 and A2 also becomes smaller,
as expected. In terms of computational time, A2 under different probabilities
remains very close to the benchmark. However, new observations can be made
in Table 3 when α takes values of 0%, 50%, and 100%, specifically:

– If α = 100%, the value of item Φ−1(1−α) is negative infinity. Then constraints
(25) in Proposition 2 become Qt ≤ −∞,∀t ∈ T , meaning that there is no
production in any period. This is the theoretical significance of α = 100%,
and it explains why A2 with α = 100% is always infeasible. In practical
terms, it is obvious that holding a stochastic event with 100% probability is
not possible, which is consistent with A2 being infeasible for α = 100%.

– If α = 50%, the value of item Φ−1(1 − α) is 0, and therefore the stochastic
factor takes the expected value. This is equivalent to the deterministic case,
and indeed constraints (25) become equivalent to those in the deterministic
model. Therefore, when α = 50%, A2 gives the same results as M1.

– If α = 0%, the value of item Φ−1(1 − α) is +∞, and constraints (25) become
Qt ≤ +∞,∀t ∈ T , meaning that the system can produce without any limit.
Therefore, there will be no inventory in any period, and the only contributions
to the total cost are from the maintenance and failure costs. This is why the
optimal cost of A2 is smaller than M1.

All the conclusions obtained from Table 3 also hold for the results in Table 4.
The purpose of the latter tests is to further confirm our observations. The only
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Fig. 4. Trends of the optimal costs of A2 under different probabilities: the blue line
above corresponds to the instances with |T | = 10, while the green line below corre-
sponds to the instances with |T | = 20.

difference between the two tables is the length of the planning horizon, and a
longer horizon implies greater optimal costs and computational times if all other
size-related parameters remain the same. This observation was already made in
our previous work [3].

6 Conclusions and Future Work

In this paper, we addressed predictive maintenance optimization under stochastic
production in generic complex production systems. The RUL information of
assets was used to manage the redundancy in each processing stage in order to
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guarantee system availability. Stochastic production capacity was considered in
this work concerning real-life applications. The purpose was to meet the demands
of clients with the minimum total cost within the planning horizon when facing
uncertainty in production capacity. We extended a deterministic mixed-integer
linear programming model to a chance-constrained programming model. In order
to computationally handle this stochastic model, two approximation approaches
were proposed. Through different test instances, we showed the efficiency of
our approaches for solving the proposed maintenance optimization model for
complex systems under uncertainty in production.

For future research directions, we propose to extend the proposed stochastic
optimization problem from a single site to multiple sites such that asset main-
tenance and routing of maintenance resources could be jointly optimized.

Acknowledgements. This work is supported by the project Maintenance
Prévisionelle et Optimisation of IRT SystemX.

Appendix

The complete version of scenario-based expectation chance-constrained program-
ming model EXP is presented as follows.

ModelEXP : min
(
Cmaintenance + Cfailure + Cinventory

)
/|Ω|

Cmaintenance = cm ·
∑

ω∈Ω

∑

k∈K

∑

j∈Jk

∑

t∈T
Xt

k,j(ω)

Cfailure = cf ·
∑

ω∈Ω

∑

t∈T
(1 − St(ω))

Cinventory = ci ·
∑

ω∈Ω

∑

t∈T
It(ω)
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Abstract. Today the use of vehicles has greatly increased especially in cities
where alternative transportation methods cannot really be relied on. Inevitably,
this causes excessive increases in noise and air pollution. Our previous study
[4] has exposed real-life measures of pollution levels in certain areas in Cairo,
however, there is a lack in identifying certain maximum pollution thresholds to
particular neighbourhoods or city segments. In this paper, we attempt to provide
a solution to the pollution issue via threshold attribution and using New Cairo
as an illustrative example. Our approach uses geographical coordinates and an
input radius in meters to generate an interactive map. The map segments the city
into different sections. Furthermore, we plot each section with corresponding pol-
lution thresholds that appear when hovering over those areas. In Addition, we
categorize each segment into one of three categories, where each category has a
defined pollution threshold value.

Keywords: Pollution · IoT · Segmentation · ITS

1 Introduction

The WeForum Study in 2015 [9] estimated the number of vehicles to be around 1.1
Billion. The study also expected the number to increase to 1.5 Billion by 2025 and 2
Billion by 2040. This study indicates how overused vehicles are nowadays. The overuse
shows that there will be a dramatic increase in pollution levels. Cars cause different
types of pollution. Air Pollution affects the human heart and the respiratory system,
which puts your life at risk. Noise Pollution can affect patients and doctors in hospitals
or teachers and students in schools. In this paper, we aim to limit those two types of
pollution, as they are the ones that affect human health with extreme affections.

The main goal of our research is to reduce noise and air pollution. This paper pro-
poses an addition to a larger system. The approach aims to find a way to segment the city
into different parts and define threshold values for each of those city segments. After
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calculating the thresholds, we compare them with data extracted by a mobile applica-
tion and an IoT device that reads and calculate noise and air pollution in real-time [4].
This paper is organized as follows: Sect. 2 presents the literature review related to our
work, Sect. 3 presents our methodology and describes the experimental set-up of our
case study. Section 4 discusses the results. Finally, a conclusion follows in Sect. 5.

2 Literature Review

The main purpose of [7] was to prove that the sound energy will be reduced with the
doubling of the distance from the sound source. The readings of the paper were not
made with measurements, it was made out by calculations actually. The findings showed
that doubling the distance reduces the sound energy by 6 DBs each doubling distance.
The drawbacks of the paper are that the reduction in sound was made by calculations
not by measurements. What we concluded from the paper is that “A doubling of the
distance results in a level reduction of 6 dB as a typical characteristic of this type of
source”.

The main purpose of [2] was to find out the short term three dimensional variable
at a vertical-horizontal axis of pollution related to vehicles emissions around highways.
The experiment was made by using a drone (DJI M600 UAV) that had some portable
sensors added to the drone that was added to monitor the air quality. They selected a
highway in G3 (eastern Dezhou) which overlaps the G2 while passing through Dezhou.
They have two lanes in each direction with a speed limit of 100–120 Km/h, the aver-
age vehicles passing daily is 717–1317 vehicles/hour which means 17208–31608 vehi-
cles per day. The researcher have defined a route for the drone to pass on, the route
is included in the paper to measure the air quality around the highway. Findings and
results showed that most of the pollutants were higher at the sides of the road and
then decreased when the distance was incremented. The field experiments showed that
almost all the pollutants dropped to the background level after 100m horizontally,
which means when moving away from the source of pollution level drops. The draw-
backs are no certain amount of air quality improved as mentioned in the paper. I could
use the paper readings in increasing the distance to reduce the air pollution as the pol-
lutants dropped in the areas away from the pollution source, values of pollution started
dropping after 100m horizontally.

The goal of [8] is to set a certain threshold for the allowed pollution levels for
each of the following pollutants: PM2.5, PM10, Ozone, NO2, SO2 and CO. The thresh-
olds that was defined by the paper. The thresholds are as follows: for Particular Mat-
ter (PM2.5): 10µ-g/m3 (annual mean) and 25µ-g/m3 (24 h mean), Particular Matter
(PM10): 20µ-g/m3 (annual mean) and 50µ-g/m3 (24 h mean), Ozone: 100µ-g/m3

(8 h mean), Nitrogen Dioxide: 40µ-g/m3 (annual mean) and 200µ-g/m3 (1 h mean),
Nitrogen Dioxide: 20µ-g/m3 (24 h mean) and 500µ-g/m3 (10min mean) and Carbon
Monoxide: 60mg/m3 (30min mean), 30mg/m3 (1 h mean) and 10mg/m3 (8 h mean).
The drawbacks of this paper is that the defined thresholds are actually global thresh-
olds, which means there is no specific threshold for each area. Actually there must be
different thresholds for different areas (or segments). Hospitals for example will need
the least air pollution than other areas (or segments). I could use the Threshold val-
ues defined in this paper to be used as our thresholds as it is a trusted source (World’s
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Health Organization). This paper defined thresholds for each of the pollutants: Par-
ticulate Matter (<2.5 Diameter), Particulate Matter (<10 Diameter), Ozone, Nitrogen
Dioxide, Sulfur Dioxide and Carbon Monoxide.

The main purpose of [1] is to show that noise is one of the main factors that would
negatively affect humans, causing multiple health problems like sleep annoyance and
distribution, this study was made to determine noise pollution and reduce the nega-
tive health impact on humans. The thresholds was defined in different areas of the city,
those areas and there thresholds are: 1) Outdoor living area LAeq[dB(A)] : 55 - greater
than 55, 2) Inside bedrooms LAeq[dB(A)] : 30, 3) Outside bedrooms LAeq[dB(A)] :
45, 4) School classrooms preschoolers, indoors LAeq[dB(A)] : 35, 5) Preschool Bed-
rooms, indoor LAeq[dB(A)] : 30, 6) School, playground outdoor LAeq[dB(A)] : 55, 6)
Hospital, wardrooms, indoors LAeq[dB(A)] : 30 and 7) Public addresses, indoors and
outdoors LAeq[dB(A)] : 85. Drawbacks of the paper that the paper is missing some
important values that are needed such as noise levels outside the hospitals. Other cru-
cial values would be missing also, outside hospitals is just an example. The paper can
help us in knowing the thresholds of noise in different places and the paper is made by
the World’s Health Organization (WHO), this is a trusted organization which defined a
threshold table for the noise pollution covering different places. Each place has a thresh-
old for the inside and the outside of the place. The thresholds defined in this paper could
be used in our project for two things. First we could segment the areas according to the
places that have a defined noise pollution threshold in this paper. Second we are going
to use the outside threshold for the outside of each place in the segments.

The main aim of the paper [5] is to provide a new Intelligent Transportation System
(ITS) that allows them to measure, record and monitor noise and air pollution caused
by road vehicles. According to the pollution levels, the system should output the most
efficient route. Using IOT Sensors which are placed in cars and the infrastructure, they
were able to measure real-time data for both noise and air pollution. A defined city rep-
resents the city that is covered in their system and has real-time measurements. System
was tested in different ways. One of the testing ways was testing getting the route from
a not defined city to a defined city. The other way is the opposite, which is from inside
the defined city to the outside of the city (undefined). Another way from a point in the
defined city to another point in the defined city. Also they were testing the system on
different levels of pollution. This paper is related somehow to our project. The system
represented in this paper could be integrated with our machine to provide them with the
thresholds defined for each segment of the city.

From the literature review, we can conclude that most proposed systems measure
pollution levels in real-time or tackle pollution reduction on a general scale. We aim to
define areas that need certain thresholds of maximum pollution levels.

3 Methodology

Our system segments cities according to buildings in each area. The segments defined
by our system keep track of certain pollution levels that should not be exceeded. We use
schools, universities, hospitals, and parks to define the different areas in the segmenta-
tion process. The thresholds are defined based on the WHO air pollution thresholds
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(Particulate Matter 2.5, Particulate Matter 10, Ozone, Nitrogen Dioxide, Sulfur Diox-
ide, and Carbon Monoxide).

Fig. 1. Overview of the system proposed.

This section describes the steps to obtain segmented cities with different categories
and a defined threshold for each area. We further divide the section into the following
parts:

1. Dataset formation.
2. Sorting technique.
3. Increasing boundaries.
4. Plotting and visualization.
5. Pollution Measurement.

The overview of the system proposed is shown in Fig. 1.
First, the system uses a latitude and longitude input to define the area to segment.

Furthermore, a radius input decides how big the segmentation area is. The system then
generates a map for visualization. The map shows the different areas and their thresh-
olds.

3.1 Dataset Formation

The data used is obtained using Overpass OpenStreetMap API. Datasets are obtained
from Overpass as two datasets for each of the categories. The first dataset contains
nodes data, while the second dataset includes ways data. The process is repeated for
each of the categories. In total, we collect six datasets. The categories for each city are
as mentioned in Fig. 2.
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Fig. 2. Datasets are retrieved and divided into three categories.

3.2 Sorting Technique

Each way has a set of nodes. When connecting nodes we need to connect them with
each other in the correct order. Connecting the set of nodes together without sorting
would lead to unexpected intersecting lines in the middle of the shape. After sorting the
set of nodes the boundaries are connected together using the correct sequence, giving
the right shape.

Figure 3 shows the three main steps of Sorting Coordinates. The first step is finding
the left and right-most points of a building. A line is drawn between both of them. The

Fig. 3. The map for the sorting technique.
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second step is dividing the points into two sets; Set A contains points below the line,
while Set B contains those above. Lastly, Set A is sorted in increasing order based on
the X-Coordinates, and Set B is sorted in decreasing order based on the X-Coordinates.

3.3 Increasing the Boundaries

As mentioned in [7], noise level is reduced by 6 dBs by doubling the distance away
from the noise source. Also as mentioned in [2,6], air pollution is reduced when moving
away from the source. The aim in this stage is to increase the boundaries of the areas to
decrease both noise and air pollution inside the segments. As an input for this stage we
take in the sorted points to begin the process of the boundaries extension.

Center of the Boundaries. The center point is needed for drawing the new boundaries,
as it will be the center of the newly drawn rectangle. According to the outputs from the
previous stage, we can obtain the center point by getting the mean of the X and Y
coordinates.

Finding Length and Width

– To measure the length and width of any facility, we need to find the left most, right
most, up most, and down most points. The width is calculated using the Right Most
and Left Most points, while the height is calculated using the Up and Down most
points.

– The Haversine Formula (Fig. 4) is used to calculate the distance between points to
get the needed lengths and widths.

Fig. 4. Formula used for distance calculation between geographic coordinates [3].

Creating NewWay Boundaries. New boundaries are created to extend the shape into
a rectangle. The center point, height, and width are given as inputs. The center is used
to justify the rectangle center, while the width and height are used to get the rectangle
dimensions. The system can then output a set of four geographic coordinates.

Creating New Node Boundaries. Buildings are saved as a set of points. However,
some buildings exist in the dataset as single points instead. To solve this, we draw a
circle around the node to define a boundary. The node point is used as the center of the
circle.

3.4 Plotting on Maps

Plotting Boundaries. Our system works as follows; First, it starts by looping on the
first category ways, getting the set of nodes for each of them, and passing through the
sorting technique. For each category, each element is added to the array. Afterward,
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elements of the nodes dataset will be added to the array. For the map visualization,
Scattermapbox is used. There are two visualization modes; The first is used to update
the map based on categories by changing their colors. The second fully displays the
map. The first mode uses the input mode (markers+lines), while the other uses (stamen-
terrain).

Defining Thresholds

– Defining and Dividing Categories: According to both research papers done byWHO
[1,8]. One of those papers covers the topic of noise pollution thresholds for different
areas, and the other covers the expected thresholds for components of air pollution.
We grouped similar thresholds into three different categories. For each group, the
threshold is defined by the minimum threshold of all elements belonging to that
group.

– Adding Thresholds to Map: After defining different groups, they are plotted on the
map with different colors to differentiate the criticality of the threshold values. The
colors are Red, Orange, and Green. Red is the most critical, followed by orange and
green being the least critical.

3.5 Pollution Measurement

The data-set generated by [4] is used to compare the actual pollution levels in real life
and the thresholds produced by our system. IoT device and mobile application were
used to measure air and noise pollution successively.

Fig. 5. Air Pollution Device.
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Air Pollution Measurement. The computing unit of the IoT device shown in Fig. 5
consists of a sensor unit which consists of 3 sensors, MQ135 sensor which is used in
measuring the air quality index, DHT11 to measure the temperature and the humidity
and GP2Y1010AU0F to measure the concentration of PM10 in the air. The sensors are
connected to Arduino Mega which opens a serial connection with a Node-MCU that
has a built-in WiFi chip to transfer the data to their server. The device is stationed in
two locations around New Cairo City, near by a very popular street in the area. 3307
samples were obtained from both locations, each sample contains 6 fields, AQI value,
PM10 concentration, Temperature, humidity, and the location of the sample.

Noise Pollution Measurement. An android application was also implemented in [4]
to accomplish a real-time noise pollution measurement. The application has been dis-
tributed among volunteers to measure noise levels across Cairo to acquire a large num-
ber of recordings and to be able to quantify noise pollution in a variety of locations.

4 Results

4.1 Area of Test

The area of test is New Cairo, Cairo, Egypt. The city’s Longitude is 30.0288, Latitude
is 30.0288 and the radius is 8000m.

4.2 Datasets Formation

Fig. 6. Datasets are retrieved as Node Dataset and Way Dataset.

In this section, the datasets samples that were retrieved in the first stage are provided.
Figure 6 shows the dataset retrieved.

Node Dataset. A sample of the Node Dataset is shown in Figure shown in Fig. 7.
Columns give more information about each of the nodes. “Amenity” is a tag which
could be, for example, a hospital. “Name” is the name of the node. “Latitude” and
“Longitude” are the geographical coordinates of the node.
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Fig. 7. A sample of 1st Category Nodes Dataset.

Fig. 8. A sample of 1st Category Ways Dataset.

Way Dataset. A sample of the Way dataset is shown in Fig. 8. The columns used are
similar to those from the node dataset above.

4.3 Sorting Technique

Fig. 9. Sorting Technique Initial Output.

As shown in Fig. 9, the line is drawn between the left most point and the right most
one, then set of points above and below the line are sorted according to our proposed
approach. Figure 10 shows the difference between a non-sorted set of points and the
results of sorting the points.



78 K. E. Eldin et al.

Fig. 10. Before and after sorting the coordinates.

4.4 Increasing the Boundaries

As explained, there are two types of boundaries, Way boundaries where all the points
exist, and Node boundaries where building are only available as a single point.

Fig. 11. Before and after increasing way boundaries.

Way Boundaries. Figure 11 shows the difference before and after increasing the
boundaries.

Fig. 12. Before and after increasing node boundaries.

Node Boundaries. Figure 12 shows the results of using a circle instead of a point for
Node boundaries.

4.5 Plotting on Maps

Figure 13 shows the result of drawing all categories and boundaries on the map. As
explained before, the areas were divided into three categories. Each category has areas
that have similar threshold values. Red (Clinics, Hospitals); Orange (Colleges, Schools,
Libraries). Green (Cafes, Restaurants, Food Courts).
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Fig. 13. 3rd Category is plotted on the map. (Color figure online)

Fig. 14. Threshold values for 1st category for each air and noise pollution.

According to our study, air pollution thresholds are the same for all categories, but
noise pollution should be different. For critical categories like the 1st and 2nd cate-
gories, we increase the boundaries more than usual to reduce the air pollution within
the facility. Thresholds are shown when hovering above the area, as shown in Fig. 14.

4.6 Air Pollution

Overview. Collecting the data regarding the air pollution measurement has been done
in 2 locations inside Cairo [4], nearby a famous street in New Cairo city with is the
90th street, the first location has been chosen based on its surrounded area. The other is
located in front of a construction area that would increase air pollution. A total of 1784
samples were collected at the first location and 1523 samples at the second location.

Data-Set. Figure 15 shows a sample of the dataset.

Fig. 15. Sample of the Air pollution measurements data.

4.7 Noise Pollution

Overview. Noise pollution measurements were done using a mobile application, dis-
tributed to volunteers, and reading noise pollution levels from streets known to have
high traffic congestion.
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Dataset. Figure 16 shows a sample of the collected data.

Fig. 16. Noise Pollution records in the Database.

4.8 Comparison of Measurements and Threshold

Fig. 17. Noise & Air Pollution Thresholds Defined.

Fig. 18. Noise Pollution Measurements.

Noise Pollution. According to Fig. 18, the noise reading is 43 DBs. However, Fig. 17
shows that the threshold is 35 DBs. This indicates that the noise pollution is above the
threshold value.

Air Pollution. As mentioned in the results section in [4], at the same location the
peak hours were in the evening. Three scenarios were introduced, two of them were
within a peak hour in the weekend with average PM10 concentrations 70.07 µg/m3

and 44.91 µg/m3. The third scenario was an exceptional case in which it was during the
EURO 2020 final game divided into 3 parts; during the game, during the ceremony, after
the ceremony, regarding the first part, the average concentration of PM10 was 85.888
µg/m3, the second part (during the ceremony) the average concentration of PM10 was
83.1559 µg/m3, the last part (after the ceremony) the average concentration of PM10

was 82.143 µg/m3.
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5 Conclusion

In this paper, we proposed a Noise and Air pollution management system to segment
a city into different sectors and define thresholds for each of those parts. The pro-
posed system provides different segments of a city, categorizing them into one of three
categories and defining a threshold for each type. The thresholds are defined based
on the WHO air pollution thresholds (Particulate Matter 2.5, Particulate Matter 10,
Ozone, Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide). We tested our sys-
tem in New Cairo, Cairo, Egypt. Furthermore, we compared our results to actual mea-
surements taken in a previous study [4]. We observe that the pollution measurements
exceeded the required thresholds. The observations show that actions to reduce pollu-
tion levels are needed. Our system could be used as a part of a larger ITS that should
help in the reduction of pollution.
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Abstract. In this work we investigate the bus group assignment problem consid-
ering the maximization of both the revenue derived from the tickets sale and the
service level offered to the customers. The service level is defined as the capacity
of the company to satisfy customers’ demands by taking into account the seat-
ing configuration, i.e. guaranteeing that all the members of the same group are
seated close to each other. We propose a dynamic formulation of the problem,
then, a linear programming approximation. Furthermore, we implement a booking
limit revenue management policy to solve the problem and manage seat inventory.
Empirical tests are made in order to compare the performance of the booking limit
policy with a first came first served strategy, and a model solution in a context of
perfect knowledge of the occurred demand. The computational results show that
the booking limit policy performs better than the first came first served strategy
and in many cases equals the performance of the perfect knowledge strategy.

Keywords: Seat allocation problem · Passenger transportation · Service level ·
Group assignment

1 Introduction

Passenger transportation sector is constantly growing. According to the report published
by the Business Research Company, the global transit and ground passenger transport
market size is expected to grow from 578,44 billion in 2021 to 638,28 billion in 2022
and will reach 911,78 billion in 2026 (www.thebusinessresearchcompany.com).

Since transport companies offer a set of perishable products over a finite time hori-
zon, the management of vehicle capacity is crucial. The seat allocation is one of the
main problem that every provider of passenger transport service has to deal with before
selling the tickets, it consists in finding the optimal assignment of passengers to the
available seats.

It is a well known problem, in fact, several researchers have studied and proposed
numerous variants as well as several approaches to solve them.

Yazdani et al. [1] propose an algorithm to solve a real-time seat allocation problem
for minimizing boarding/alighting time on trains, improving the quality of the service
and guarantee the passengers’ safety.
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F. Liberatore et al. (Eds.): ICORES 2022/2023, CCIS 1985, pp. 82–95, 2024.
https://doi.org/10.1007/978-3-031-49662-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-49662-2_5&domain=pdf
http://orcid.org/0000-0002-3887-1317
http://orcid.org/0000-0001-9193-4332
http://orcid.org/0000-0001-6762-3622
www.thebusinessresearchcompany.com
https://doi.org/10.1007/978-3-031-49662-2_5


Customer Satisfaction and Company Revenue 83

Sumalee et al. [2] propose a stochastic dynamic transit assignment model with an
explicit seat allocation process applicable to a general transit network, to estimate the
probability of a passenger waiting at a station or onboard to get a seat. The authors
develop an heuristic algorithm and the numerical tests show significant influences of
the seat allocation model on the equilibrium departure time and the route choices of
passengers.

Yan et al. [3] develop a probabilistic nonlinear programming seat allocation model
for high-speed railway passenger service network based on flexible train composition
that is able to provide a decision-making basis for discount sales and ticket allocation.

Milne and Salari [4] investigate the optimization of assigning passengers on air-
planes based on their carry-on luggage by proposing a mixed integer programming
model that determines the number of luggage to be carried by passengers assigned to
each seat. Numerical results indicate that the proposed approach allows to reduce the
time to complete the boarding of the plane, and the improvement is greatest when a high
number of luggage is carried into the plane. The optimal distribution of luggage assigns
passengers with few carry-on bags to the rows of the plane closest to the entrance.

Notomista et al. [5] propose a novel seat allocation algorithm to minimize the board-
ing time using online seat assignment based on passenger classification. Extensive sim-
ulations show that a mean reduction of the boarding time, about the 15%, is achieved
compared to existing boarding strategies.

A variant of this problem, widely investigated by the scholars, is the seat realloca-
tion problem, that arises when the vehicle (typically an aircraft) is changed just before
departure. For example, Dae Ko et al. [6] propose an efficient airline seat reallocation
algorithm to minimize customers’ dissatisfaction. Another variant of the seat allocation
problem is the group seat allocation problem whose objective is finding the optimal
allocation of groups of passengers.

Tajima and Misono [7] use a set packing formulation to solve airline seat alloca-
tion and reallocation problems considering groups of passengers. Both problems aim
at maximizing customers’ satisfaction, i.e., guaranteeing that the members of the group
are seated close one to each other.

Song et al. [8] develop a seat allocation model for group demand in air travel mar-
kets aimed at maximizing the total revenue. The same authors also provide an extension
of this work that consists in an integrated stochastic programming seat allocation model
for individual and group demand in airlines [9].

Although the seat allocation problem is widely used in the context of passenger
transportation, it is worth to notice that it can be applied in many other fields.

Kwag et al. [10] investigate the seat allocation problem for an e-sports gaming cen-
ter where generally groups of people play games while eating. Lee [11] proposes a
min-cut algorithm for the arrangement problem of the seats in wedding hall aimed at
minimizing the loss of guest relations for a complex guest relations network.

From this analysis, we can notice that even if the seat allocation problem is widely
addressed for airline and railway, scarce attention is dedicated to the bus sector despite
its market growth. Thus, in our work we investigate the seat allocation problem applied
in the bus sector, considering groups of passengers and level of service.
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In particular, we propose an extension of the Bus Group Assignment Problem under
Covid-19 social distancing introduced by [12]. Since the majority of rules imposed dur-
ing the pandemic time to prevent the contagion are relaxed or removed, some features
of the previous work are been readjusted and changed. In particular, we do not con-
sider social distancing anymore but we concentrate the attention on the management
of groups of passengers on buses with the purpose to maximize total revenue, optimize
the capacity of the buses and maximize the customer satisfaction respecting the service
level.

The novelty of this work is not only the application field, but also the introduction of
the service level as the capacity of the company to respect a closeness criterion to assign
the seats of the members of the same group. To the best of our knowledge, only Tajima
and Misono [7] consider a similar definition of the service level; however, our work
differs from this paper for several aspects. In fact, Tajima and Misono [7] consider the
airline sector, that is very different from the bus one. In fact, the aircraft has one origin
and one destination, while a bus may have several origins and destinations. Moreover,
their fleet is composed of only one vehicle, while in our work we consider more than one
bus. Finally, they adopt a different approach, i.e., a set packing formulation, in which
the objective function is the minimization of a cost function related to the passengers.

The rest of the paper is organized as follow: Sect. 2 describes the features of the
problem, Sect. 3 contains the dynamic formulation of the problem and Sect. 4 its lin-
ear approximation. Section 5 is devoted to the explanation of the booking limit policy
that is used to solve the proposed problem. In Sect. 6 computational experiments and
numerical results are discussed and Sect. 7 is dedicated to sum up conclusions.

2 Problem Description

In this section, we present a mathematical model for managing groups of passengers,
characterized by a different size, on a bus, to maximize the total revenue deriving from
the sale of travel tickets and ensuring, if possible, a certain service level. The service
level can be defined as the ability of the company to satisfy the requests and the expec-
tations of the customers, i.e., being seated close to each other, at the right time and
with the right products or services. The model can be seen as a variant of the bus group
assignment problem under COVID-19 social distancing, proposed in [12].

In particular, we consider a bus company that sells, on a given time horizon, a set
of products to several groups of customers. The products offered by the company are
transportation services from a given set of origins to a given set of destinations, per-
formed by its buses. At each time of the planning horizon, the company has to decide
how to manage the overall capacity in the most profitable way.

Let:

– 𝐸 = {𝑒1, . . . , 𝑒𝑛} be the set of 𝑛 origins
– 𝐹 = {𝑒1, . . . , 𝑒𝑛} be the set of 𝑞 destinations

We may indicate as (𝑒, 𝑓 ) with {(𝑒, 𝑓 ) : 𝑓 > 𝑒, 𝑒 ∈ 𝐸, 𝑓 ∈ 𝐹} the generic product,
i.e., the OD transportation service from the bus station 𝑒 to the bus station 𝑓 . In addition,
let:
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– (𝐸𝐹) = (𝑒1, 𝑓1), . . . , (𝑒1, 𝑓𝑞), (𝑒2, 𝑓1), . . . , (𝑒𝑛, 𝑓𝑞) be the set of all the product
sorted in an increasing order of the origin station

We introduce an index 𝑝 with 𝑝 = (1, . . . , | (𝐸𝐹) |) used to identify the products
offered by the company. The company has a set of buses, each of them is characterized
by:

– 𝑚 rows, 𝑖 with 𝑖 = 1, . . . 𝑚
– 𝑙 seats on each row, each row has the same number of seats

The company offer several lines, each line is performed by a bus.
Let W with 𝑤 = 1, . . . 𝑊 be the number of lines of the bus company. Each line is

characterized by:

– a given number of stops denoted as 𝑆𝑤 + 1 including the starting and the terminal
bus stations

– legs between each two bus stations denoted as 𝑆𝑤

We also indicate as 𝑞𝑤𝑖 the capacity of the row 𝑖 on the line 𝑤, that is the seating
capacity on each row of the bus, which performs the line 𝑤.

All the products (i.e., Origin-Destination (OD) transportation service) produced by
each line 𝑤, 𝑤 = 1, . . . , 𝑊 are stored in a sequence according to the incremental order
of 𝑓 and 𝑒, that is (𝐸𝐹)𝑤 = (1, 2)𝑤 , . . . , (1, 𝑆𝑤 + 1)𝑤 , (2, 3), . . . , (𝑆𝑤 , 𝑆𝑤 + 1). After
numbering all the products in (𝐸𝐹)𝑤 from left to right, we can get the product sequence
indexed by the serial number 𝑝𝑤 = (1, . . . , | (𝐸𝐹)𝑤 |).

In order to model the information related to legs, OD transport service and lines
we introduce the binary matrix 𝐻𝑤 = ℎ𝑤

𝑠𝑝𝑤 , 𝑠 = 1, . . . , 𝑆𝑤 , 𝑝𝑡 = 𝑤 . . . , | (𝐸𝐹)𝑤 |. Each
element of the matrix is equal to 1 if product 𝑝𝑤 generated by the line 𝑤 uses leg 𝑠 and
zero otherwise. Thus, each column of matrix 𝐻𝑤 contains all the information related
to the legs involved in the OD transportation services provided by the line 𝑤. Table 1
represents an example of the matrix 𝐻𝑤 for a line with 28 products and 𝑆𝑤 = 7 legs.
We indicate with 𝑘 = 1, . . . , 𝐾 the group size and we assume that alternative products
are available, that is different lines can deliver the same OD transportation service from
𝑒 to 𝑓 . In order to handle this specific situation, thus to keep track of which lines can
deliver a specific product we introduce a binary parameter 𝛾𝑤

𝑝 that denotes the relation-
ship between product 𝑝 and line 𝑤. In particular, 𝛾𝑤

𝑝 = 1, if the transportation service
𝑝 can be delivered by the line 𝑤, that is (𝑒, 𝑓 ) ∈ (𝐸𝐹)𝑤 , and zero otherwise. At each
time period of the booking horizon, the company has to decide on accepting/denying
the request of a group of customers asking for a product 𝑝, that is an OD transportation
service. In addition, we assume that booking requests made for groups with 𝑘 greater
than one cannot be partially accepted.

The service level depends on how the members of the groups of passengers are
allocated in the bus. Thus, it is defined on the basis of a closeness criterion, that could
be fully, partially or not respected. In particular, it is fully respected if all the passengers
of the group are seated closer one to each other; it is partially respected if only part of
the group is seated close one to each other, otherwise, if all the customers’ seats are
scattered in the bus, the criterion is not respected. If the closeness criterion is either
partially or not respected, the service level is low, and thus the revenue deriving from
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Table 1. Representation of the matrix H, for a line with 28 products and 7 legs.

𝐿𝑒𝑔𝑠

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (1,2) (2,3) (3,4) (4,5) (5,6) (6,7) (7,8)

1,2 1 0 0 0 0 0 0

1,3 1 1 0 0 0 0 0

1,4 1 1 1 0 0 0 0

1,5 1 1 1 1 0 0 0

1,6 1 1 1 1 1 0 0

1,7 1 1 1 1 1 1 0

1,8 1 1 1 1 1 1 1

2,3 0 1 0 0 0 0 0

2,4 0 1 1 0 0 0 0

2,5 0 1 1 1 0 0 0

2,6 0 1 1 1 1 0 0

2,7 0 1 1 1 1 1 0

2,8 0 1 1 1 1 1 1

3,4 0 0 1 0 0 0 0

3,5 0 0 1 1 0 0 0

3,6 0 0 1 1 1 0 0

3,7 0 0 1 1 1 1 0

3,8 0 0 1 1 1 1 1

4,5 0 0 0 1 0 0 0

4,6 0 0 0 0 1 0 0

4,7 0 0 0 0 1 1 0

4,8 0 0 0 0 1 1 1

5,6 0 0 0 0 1 0 0

5,7 0 0 0 0 1 1 0

5,8 0 0 0 0 1 1 1

6,7 0 0 0 0 1 1 0

6,8 0 0 0 0 0 1 1

7,8 0 0 0 0 0 0 1

the passengers request decreases. In other words, it is assumed that the company incurs
a penalty, when the service level is not fully satisfied.

It is worth observing that several configurations can be used to allocate different
sized groups in the bus, in such a way to provide a satisfactory service level for the
passengers, without reducing the revenues.

To make an example, let us assume that each row of the bus contains 4 individual
seats. In this case, the feasible assignment configurations that fully respect the service
level, depending on the group size (i.e., 𝑘 = 2, 3, 4), are shown in Figs. 1–3. It is worth
observing that for a single customer the service level is always fully satisfied.

In Figs. 1, 2 and 3 the orange squares represent a layout configuration, where the
allocation of groups ensures a fully service level and satisfies the capacity constraint
(seats availability).

To model all the possible configurations, including those in which the service level
in not fully satisfied, we introduce, for each line 𝑤, a matrix 𝐵𝑤 , whose single element,
denoted by 𝑏𝑤

𝑖 𝑗 , represents the number of seats of the row 𝑖 used in the configuration
𝑗 . The dimension of the matrix 𝐵𝑤 depends on both the possible group size and the
number of rows composing the bus. In particular, 𝐵𝑤 can be viewed as partitioned in 𝐾
sub-matrices 𝐵𝑤

𝑘 , 𝑘 = 1, . . . , 𝐾 , one for each possible group size: 𝐵𝑤
𝑘 contains 𝑚 rows

and 𝑛𝑘 columns, where 𝑛𝑘 represents the number of possible configurations to allocate
a group of 𝑘 people in a bus with 𝑚 rows.
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Fig. 1. Example of a possible bus layout configuration considering the allocation of a group of
2 people ensuring a fully service level. The orange squares represent the occupied seats. (Color
figure online)

Fig. 2. Example of possible bus layout configuration considering the allocation of a group of 3
people ensuring a fully service level. The orange squares represent the occupied seats. (Color
figure online)

Table 2. Representation of the matrix 𝐵𝑤 with 𝑘 = 1, . . . , 4 and 𝑚 = 4.

k = 1 k = 2 k = 3 k = 4

1 0 0 0 2 0 0 0 1 0 0 1 0 1 3 0 0 0 2 0 0 1 0 0 1 0 2 0 2 1 0 1 1 1 4 0 0 0 2 0 0 3 0 0 1 0 0 2 0 1 0 1 0 1 2 0 2 3 0 3 1 0 1 2 2 1 1 1 1

0 1 0 0 0 2 0 0 1 1 0 0 1 0 0 3 0 0 1 2 0 2 1 0 1 1 0 2 0 0 1 0 0 1 0 4 0 0 2 2 0 1 3 0 3 1 0 1 2 2 1 1 1 1 0 2 0 0 3 0 0 1 0 0 1 0 0 2 1

0 0 1 0 0 0 2 0 0 1 1 1 0 0 0 0 3 0 0 1 2 0 2 1 1 1 1 0 0 2 0 0 1 0 0 0 4 0 0 2 2 0 1 3 0 3 1 1 1 1 2 2 1 1 2 0 0 1 0 0 3 0 0 1 0 2 1 0 0

0 0 0 1 0 0 0 2 0 0 1 0 1 1 0 0 0 3 0 0 1 0 0 2 0 1 0 1 1 0 2 2 1 1 0 0 0 4 0 0 2 0 0 1 0 0 3 0 1 0 1 0 2 1 0 2 2 0 1 1 0 3 3 1 1 1 2 1 2

Table 2 gives a representation of the matrix 𝐵𝑤 , when 𝑘 = 1, . . . , 4 and the buses
contain 𝑚 = 4 rows. In this specific scenario, 𝐵𝑤 is partitioned in 𝑘 = 4 sub-matrices,
one for each value of the group size: 𝐵𝑤

1 ∈ 𝑁4𝑥4, 𝐵𝑤
2 ∈ 𝑁4𝑥10, 𝐵𝑤

3 ∈ 𝑁4𝑥20, 𝐵𝑤
4 ∈
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Fig. 3. Example of possible bus layout configuration considering the allocation of a group of 4
people ensuring a fully service level. The orange squares represent the occupied seats. (Color
figure online)

𝑁4𝑥35. Considering a bus of real size, commonly characterized by 13 rows and 52 seats,
the total number of columns that compose the matrix 𝐵 are 2271.

The main goal is to maximize the total revenue obtained from the accepted requests
of a group of size 𝑘 for the product 𝑝 on the booking horizon, trying to fully satisfy, if
possible, the level of service.

3 Dynamic Programming Formulation

This section is devoted to the description of a dynamic programming formulation of the
problem under study. To this aim, we introduce the matrix 𝑋 (𝑡) to represent the capacity
of the system at the time 𝑡, reported below:

𝑋 (𝑡) =
���
�

𝑥111 · · · 𝑥𝑊11 · · · 𝑥1
𝑠11

· · · 𝑥𝑤𝑠𝑤1 · · · 𝑥𝑊
𝑠𝑊1

...
. . .

...
. . .

...
. . .

...
. . .

...
𝑥11𝑚 · · · 𝑥𝑊1𝑚 · · · 𝑥1

𝑠1𝑚
· · · 𝑥𝑤𝑠𝑤𝑚 · · · 𝑥𝑊

𝑠𝑊𝑚

���
�

The matrix 𝑋 (𝑡) has been defined by taking into account that the capacity of the sys-
tem depends on the number of available seats for each row 𝑖 = 1, . . . , 𝑚 for each line
𝑤 = 1, . . . , 𝑊 . In particular, the generic column of the matrix 𝑋 (𝑡) represents the seats
available for each row 𝑖 of the line 𝑤 for a specific leg 𝑠.

We denote as:

– 𝜆𝑡 𝑘
𝑝 the probability that at the time 𝑡 arrives a booking request for the product 𝑝 for

a group of 𝑘 people;

– 𝜆𝑡 𝑘
0 the probability that no request arrives at the time 𝑡. Since it is assumed that at

most one booking request could arrive for each time period, the following condition
is satisfied:
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𝐾∑

𝑘=1

𝜆𝑡 𝑘
0 +

𝐾∑

𝑘=1

𝑇∑

𝑡=1

| (𝐸𝐹) |∑

𝑝=1

𝜆𝑡 𝑘
𝑝 = 1;

– 𝜇𝑡 𝑘𝑤
𝑝 𝑗 a boolean variable which assumes a value equal to 1 if a booking request for

a product 𝑝 for a group of size 𝑘 is satisfied at the time 𝑡 with the line 𝑤 and the
configuration 𝑗 ; a value equal to 0 otherwise.

– 𝑅𝑘
𝑝 the revenue obtained if a request for a product 𝑝 for a group of size 𝑘 is satisfied.

– Ω 𝑗 a parameter used to represent the penalty related to the service level. In particu-
lar, Ω 𝑗=1 if the service level is fully respected (people belonging to the same group
are seated near each other) and Ω 𝑗=0.5 when the service level is partially or not
respected.

– 𝑉𝑡 (𝑋) the maximum expected revenue obtainable from periods 𝑡, 𝑡 + 1, . . . , 𝑇 given
that, at time 𝑡, the system capacity is 𝑋 (𝑡).

The dynamic model can be represented mathematically as follows:

𝑉𝑡 (𝑋) =
𝐾∑

𝑘=1

| (𝐼 𝐽) |∑

𝑝=1

∑

𝑗=(𝑛𝑘−1+1) ,...,𝑛𝑘

𝜆𝑡 𝑘
𝑝 max

𝜇𝑡𝑘𝑤
𝑝 𝑗 ∈{0,1}

{𝑤: 𝛾𝑤
𝑝 =1}

[
Ω 𝑗𝑅

𝑘
𝑝𝜇𝑡 𝑘𝑤

𝑝 𝑗 +𝑉𝑡+1 (𝑋)
]
+

𝐾∑

𝑘=1

𝜆𝑡 𝑘
0 𝑉𝑡+1 (𝑋)

with boundary conditions:

𝑉𝑡 (0) = 0, ∀𝑡;
𝑉𝑇+1(𝑋) = 0, if 𝑥𝑤𝑠𝑖 ≥ 0 for all 𝑠 = 1, . . . , 𝑆𝑤 , for all 𝑖, for all 𝑘

𝑉𝑡 (𝑋) = −∞, if 𝑥𝑤𝑠𝑖 < 0 for some 𝑠 ∈ 𝑆𝑤 , 𝑘 and 𝑖

where 𝑋 represents the updated system capacity, related to the following event: at time 𝑡
a request for a product 𝑝 for a group of size 𝑘 occurs. The passenger transport company
can accept or deny the current request.

If the request is accepted by using product 𝑝𝑤 of the line 𝑤 and the configuration
𝑗 we need to update the leg capacities by decreasing the seats availability on all the
legs involved in 𝑝𝑤 . In other words, we subtract from the columns of the matrix 𝑋 that
correspond to the legs related to the product 𝑝𝑤 the column 𝐵 𝑗 , that is the j-th column
of the matrix 𝐵, as many times as the number of legs.
Due to the curse of dimensionality, the proposed model cannot be solved to the optimal-
ity, thus a linear approximation is developed and used to define a booking limit revenue
management policy.

4 Linear Programming Approximation

Starting from the dynamic programming problem, in the linear programming approxi-
mation we replace stochastic quantities by their mean values and we assume that capac-
ity and demand are continuous. A summary of the parameters and the variable of the
model is presented in what follows.
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The parameters are:

– 𝑑 is the random cumulative future demand at time 𝑡, and 𝑑 its mean. In particular,
𝑑𝑘
𝑝 is the aggregate number of requests for the product 𝑝 for groups of size 𝑘;

– 𝑅𝑘
𝑝 is the revenue for the product 𝑝 for a group of size 𝑘;

– 𝑞𝑤𝑖 is the capacity of the row 𝑖 on the line 𝑤 (seats available on the row 𝑖 of the
buses belonging to the line 𝑤;

– Ω 𝑗 is the parameter of penalty related to the service level;

– 𝛾𝑤
𝑝 , 𝑝 = 1, . . . , | (𝐸𝐹) |, is equal to 1 if the product 𝑝 can be delivered by using the

line 𝑤 and zero otherwise;

– ℎ𝑤
𝑠𝑝𝑤 , 𝑠 = 1, . . . , 𝑆𝑤 , 𝑝𝑤 = 1 . . . , | (𝐸𝐹)𝑤 | is equal to 1 if the leg 𝑠 is used in the

product 𝑝𝑤 and zero otherwise. ℎ𝑤
𝑠𝑝𝑤 is an element of the matrix 𝐻 introduced

above;

– 𝑏𝑤
𝑖 𝑗 represents the number of seats used to allocate, on the row 𝑖 of the line 𝑤, a group

of 𝑘 people with 𝑗 = 1, . . . , 𝑛𝐾 .
𝑏𝑤
𝑖 𝑗 is an element of the matrix 𝐵 introduced above.

The variable is:

– 𝑦𝑝𝑤
𝑗 integer variable representing the number of satisfied requests for the product 𝑝

by the line 𝑤 with the configuration 𝑗 .

The linear programming model is:

𝑀𝑎𝑥

| (𝐸𝐹) |∑

𝑝=1

∑

𝑤∈𝑊

∑

𝑘∈𝐾

∑

𝑗=(𝑛𝑘−1+1) ,...,𝑛𝑘

𝛾𝑤
𝑝 𝑅𝑘

𝑝Ω 𝑗 𝑦
𝑝𝑤
𝑗 (1)

𝑊∑

𝑤=1

∑

𝑗=(𝑛𝑘−1+1) ,...,𝑛𝑘

𝛾𝑤
𝑝 𝑦𝑝𝑤

𝑗 ≤ 𝑑𝑘
𝑝 𝑝 = 1, . . . , | (𝐸𝐹) | , 𝑘 = 1, ..., 𝐾 (2)

| (𝐸𝐹)

𝑤
|∑

𝑝𝑤=1

∑

𝑗=1,...,𝑛𝐾

| (𝐸𝐹) |∑

𝑝=1

ℎ𝑤
𝑠𝑝𝑤 𝛾𝑤

𝑝 𝑏𝑤
𝑖 𝑗 𝑦

𝑝𝑤
𝑗 ≤ 𝑞𝑤𝑖 𝑤 = 1, . . . , 𝑊, 𝑠 = 1, . . . , 𝑆𝑤 (3)

𝑖 = 1, ..., 𝑚

𝑦𝑝𝑤
𝑗 ≥ 0, integer 𝑝 = 1, . . . , | (𝐸𝐹) |, 𝑤 = 1, . . . , 𝑊, 𝑗 = 1, ..., 𝑛𝐾 (4)

The objective function 1 represents the total revenue deriving from the accepted
requests according to the service level. Equations 2 represent the demand constraints
and state that the demand for a product 𝑝 (transportation service) for a group of size 𝑘
can be satisfied with all the products generated by all the lines 𝑤,𝑤 = 1, ..., 𝑊 , that can
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deliver the considered transportation service. Equations 3 represent the capacity con-
straints and they allow the right allocation of capacity on the rows of the buses. Finally,
constraints 4 define the variables domain. Since in the objective function and in the
capacity and demand constraints the summation on 𝑗 depends on the group size 𝑘 , it
worth to notice that for 𝑘 = 0 the value of 𝑛0=0.

5 Booking Limit Policy

To solve the proposed problem, we can use the primal variables obtained from the
solution of the linear approximation of the dynamic model to apply a booking limit
control policy. Tajima and Misono [13] divide the vehicle into zones and define the
booking limit policy as a control that limits the zones capacity, i.e., the amount of seats
that can be sold to a particular class at a given time. In this case the booking limit policy
is partitioned, since the available capacity is divided in some defined separated blocks
and the capacity of each blocks can be used only for the requests belonging to a specific
class.

In our case, since in the bus transportation there are not classes, we do not set a
booking limit for a particular class but we compute a booking limit for a specific request.
In particular, a value of booking limit indicates how many requests can be accepted for
a specific product 𝑝, for a specific configuration 𝑗 and thus for a specific group size 𝑘 ,
on a particular line 𝑤.

In other words, the optimal solutions 𝑦∗𝑝𝑤𝑗 give partitioned booking limits that cor-
respond to a fixed amount of capacity of each resource, that can be used to satisfy
requests for a particular product offered by the bus company. The demand for each
product has access only to its allocated capacity and no other product may use this
capacity.
The booking limit policy follows the scheme reported in Algorithm 1.

Algorithm 1. Booking Limit Policy.

Solve the linear programming model and let 𝑦
∗𝑝𝑤
𝑗 denote its optimal solutions;

FOR each 𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑝𝑘𝑡 , request for the product 𝑝 for a group of size 𝑘 arrived at the time 𝑡

IF 𝑦
∗𝑝𝑤
𝑗 > 0 and there is enough capacity 𝑞𝑤𝑖 − 𝑏𝑤𝑖 𝑗 ≥ 0

THEN Accept the request;
SET 𝑦

∗𝑝𝑤
𝑗 = 𝑦

∗𝑝𝑤
𝑗 − 1;

UPDATE the capacity: 𝑞𝑤𝑖 = 𝑞𝑤𝑖 − 𝑏𝑤𝑖 𝑗
UPDATE the revenue: 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑃𝑜𝑙𝑖𝑐𝑦 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑃𝑜𝑙𝑖𝑐𝑦 + 𝑅𝑘

𝑝 ;
ELSE

Deny the request
END IF

END FOR

Applying this policy we solve the linear programming problem only once, to deter-
mine the values of booking limit and then we process the requests according to their
ascending arrival order.
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6 Numerical Results

In this section we analyse the numerical results obtained by testing all the proposed
strategies. All the experiment are carried out using AIMMS 4.85.2.4, with Cplex 22.1
as solver, on a Intel(R) Core(TM) i7-10610U CPU 1.80 gigahertz 16,0 gigabytes of
RAM PC, under Windows 10 Pro operating system.

In the experimental phase we want to assess the solution quality of the policy and
also its scalability.

Considering the real features of the buses, each instance is characterized by a certain
number of lines, with a total capacity of 52 seats. In particular, the layout of the bus
operating a certain line is composed of 13 rows, each of which has 4 seats. Every line
is composed of a given set of origin-destination products. A different fare is associated
to each OD product for a group of size k. We consider 4 possible types of groups,
depending on the size, in fact, a group can be composed from a minimum of one person
(a single passenger) to a maximum of 4 people.

The values of demand, arrival time an revenues are randomly generated for each test
problem. In particular, demand is generated within the interval [0,10] and the arrival
time is generated with a Poisson process. In addition, even if the values of revenue are
randomly generated they depend on the group size. For example, the revenue associated
to a group of size 2 for a specific product 𝑝 is always less than the revenue associated
to the same product for a group composed by 3 people. The considered instances have
different sizes, in terms of number of lines, legs and products. Table 3 reports the char-
acteristics of each considered instance, the first column report the name, the second one
the number of lines, the third column the number of legs and the fourth one the number
of products.

Table 3. Test Problems.

Test Lines Legs Products

T 3 1 3 3 3

T 3 2 3 6 6

T 3 3 3 6 10

T 3 4 3 10 10

T 3 5 3 15 10

T 3 6 3 15 15

T 3 7 3 20 15

T 4 1 4 8 4

T 4 2 4 10 10

T 4 3 4 10 15

T 8 1 8 5 5

T 8 2 8 10 10

T 10 1 10 5 10
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In the computational study we compare the results obtained using three different strate-
gies. Firstly, we solve the proposed model supposing to have a “perfect knowledge”,
thus considering to know exactly all the values of the demands. We use these values in
the demand constraints.

The second strategy consists in solving the problem applying the booking limit
policy defined in Sect. 5.

The third strategy refers to the solution obtained applying a first came first served
(FCFS) policy (also known as first input first output FIFO), in which, the demand for a
product 𝑝 for a group of size 𝑘 is allocated, if there is enough capacity, simply following
the arrival order. Table 4 summarizes the computational results obtained using the three
strategies. In particular, for each instance, it provides the value of revenue obtained for
each strategy.

Table 4. Computational Results on randomly generated instances.

Test Revenue Perfect Knowledge Revenue Booking Limit Revenue FCFS

T 3 1 4081 3972 3925

T 3 2 5438 5268 4880

T 3 3 5542 5542 3875

T 3 4 5730 5730 4803

T 3 5 5816 5816 4080

T 3 6 5618 4415 4289

T 3 7 5816 4346 4280

T 4 1 6801 6282 6462

T 4 2 7375 7375 5394

T 4 3 7592 5625 5692

T 8 1 4810 4810 4810

T 8 2 13244 13244 11676

T 10 1 14624 14624 14078

From the results reported in the Table 4 it easy to notice that for every test problem the
revenue obtained considering the perfect knowledge strategy is always higher than the
values of revenue for the booking limit and the FCFS strategies. This is an expected
result, since in the perfect knowledge we exactly know the values of the demands, thus,
the maximum value of objective function is reached. Thus, the value of the revenue
obtained with the perfect knowledge represents an upper bound for the other policies.

It is worth to notice that, albeit in few cases, it is possible that the revenue obtained
with the FCFS overcomes the revenue obtained with the booking limit policy.

In particular, this happens for the T 4 1 and for the T 4 3 but, however, the booking
limit policy performs on average 12,97% better in terms of revenue than the FCFS. For
the instance T 8 1, instead, the revenue is the same for each of the three cases.
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Fig. 4. Revenue as a function of the number of lines, with fixed number of products and legs:
Orange line: Revenue obtained applying the booking limit policy for instances with 10 legs, and
10 products; Grey line: Revenue obtained applying the FCFS policy for instances with 10 legs,
and 10 products. (Color figure online)

To summarize, for these problem tests the revenues obtained with the booking limit
policy exceed the revenues obtained with the FCFS in the 76,92 % of the considered
cases. The revenues obtained with the booking limit policy equal the revenues obtained
with the perfect knowledge in the 53,84% of the considered cases.

In addition, looking at Fig. 4, that graphically represents the obtained revenues as
a function of the number of lines, fixed number of products and legs, we can see that
for the instances with 10 legs and 10 products the revenue obtained with the booking
limit policy not only overcomes the revenue obtained with the FCFS but also equals the
revenue derived from the resolution with the perfect knowledge. The execution times to
solve the model and to apply the booking limit policy are in the orders of minutes and
increase with the increasing of the instance size.

Thus, we can state that the application of the booking limit policy is an effective and
efficient way to manage the allocation of group of passengers maximizing revenues.

7 Conclusions

In this paper we have presented an extension of the Bus Group Assignment Problem
under Covid-19 social distancing proposed by [12].

We have readjusted and changed some of the features of the previous work, strongly
related to the pandemic time, and we have been more focused on the customers’ satis-
faction.

In particular, we supposed that the closer the members belonging to the same group
are allocated, the higher the level of service offered to the customers. We have mathe-
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matically modeled the problem, then, we have proposed a booking limit policy to solve
the it.

In the computational tests we compare the performance of the booking limit policy
with a first come first served strategy, and a situation of perfect knowledge. The results
show that the booking limits performs better than the first come first served strategy on
average.

Moreover, in many cases the revenue obtained with the booking limit policy equals
the revenue obtained solving the model under perfect knowledge. This confirms that
the application of the booking limit policy is an effective and efficient way to solve the
proposed problem.
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Abstract. Over the last years, the field of artificial intelligence (AI) has con-
tinuously evolved to great success. As a subset of AI, Reinforcement Learning
(RL) has gained significant popularity as well and a variety of RL algorithms
and extensions have been developed for various use cases. Although RL is appli-
cable to a wide range of problems today, the amount of options is overwhelm-
ing and identifying the advantages and disadvantages of methods for selecting
the most suitable algorithms is difficult. Sources use conflicting terminology,
imply improvements to alternative algorithms without mathematical or empiri-
cal proof, or provide incomplete information. As a result, there is the chance for
engineers and researchers to miss alternatives or perfect-fit algorithms for their
specific problems. In this paper, we identify and explain essential properties of
RL problems and algorithms. Our discussion of these concepts can be used to
select, optimize, and compare RL algorithms and their extensions with respect to
particular problems, as well as reason about their performance.

Keywords: Reinforcement learning · Decision support · Markov decision
Processes · Conceptual comparison

1 Introduction

Most of the RL algorithms to solve Markov decision process (MDP) problems that
were proposed in recent years include at least one unique feature designed to improve
performance under specific challenges. These challenges usually originate from specific
problem properties or from the statistical drawbacks of related optimization problems.
The corresponding publications often include performance comparisons to the closely-
related algorithms with respect to particularly challenging problems but mostly lack
an extensive overview of the advantages and disadvantages of their solution within the
broader field of research.

In addition, research articles often fail to include categorizations of their solutions
concerning other RL properties and capabilities.

In [26] for example, the authors motivate in their introduction that robustness of RL
algorithms with respect to hyperparameters is desirable. The evaluation section of their
publication, however, does not include comparisons to other algorithms in that regard.

Introductory material often only categorizes algorithms sparsely or within the main
RL families, as shown in Fig. 1, cf. [1], instead of consistently outlining and explaining
the differences for various properties.
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Fig. 1. Overview of modern RL algorithms as displayed in the OpenAI Spinning Up documenta-
tion. Figure adapted from [1].

This paper is an extended version of [24] in which we discussed properties of differ-
ent state-of-the-art RL approaches and outlined respective implications for capabilities
of RL algorithms, their variants, extensions, and families.

In this paper, we make the following contributions: First, we extend our analysis
and conceptual comparison by discussing further related articles. Second, we added
sections comparing discrete time vs. continuous time problems (Sect. 2.6) as well as
discussing the bias-variance tradeoff (Sect. 3.3). Third, throughout the paper, we pro-
vide extended discussions and explanations. We also added several formulas and figures
to better describe specifics of the RL approaches used.

This paper is organized as follows. Section 2 introduces properties which are influ-
enced by the process definition. The following Sect. 3 discusses properties, which can
be chosen freely in theory but highly influence learning dynamics. In Sect. 4, we sum-
marize key insights and infer recommendations regarding the choice of RL algorithms
for given problem characteristics. Section 5 concludes the paper.

2 Classes of MDP Problems and Suitable RL Algorithms

In this section, we distinguish different classes and properties of MDP problems. These
properties can be seen as algorithm properties which cannot be chosen freely, but are
predefined by the Markov process which is considered. Further, so-called value estima-
tion and policy optimization methods are discussed.

2.1 Model-Free and Model-Based RL

When categorizing RL algorithms typically model-free and model-based algorithms
are distinguished. Fig. 1 shows a categorization tree by [1] that uses this property as
the first differentiator. In contrast to standard machine learning terminology, the term
“model” in model-free or model-based does not refer to the trainable algorithm but to a
representation of the environment with information beyond the observations. A model
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like this can include reward function parameters, state transition probabilities, and even
optimal expected future return values for the environment at training time. Notably,
this information does not necessarily have to be available at evaluation time for model-
based RL algorithms. In self-play for example, the environment model during training
is defined with a clone of the so far best version of the algorithm. At evaluation time,
the algorithm is expected to have learned a policy that generalizes from its training
experience and that lets it beat other opponents.

Model-based algorithms use such additional information to simulate the environ-
ment without having to take actions in the actual, potentially much more expen-
sive environment. Some model-based algorithms do not use an environment at all. In
Dynamic Programming, for example, the knowledge about state transition probabilities
and rewards is used to build a table of exact expected future rewards instead of stepping
through an environment and making observations. Environment models can be learned
or already known through the problem definition. Another popular model-based algo-
rithm with a given model is AlphaZero by DeepMind [28]. According to [1] model-
based algorithms can improve sample efficiency but tend to be harder to implement and
tune.

2.2 Policy Optimization and Value Learning

In the following, we discuss two categories of RL algorithms: policy learning and value
learning methods. Algorithms like DDPG, SAC, and REINFORCE are policy learning
methods, which use a parametric mapping from states to actions. The parameters are
adjusted to maximize the expected discounted reward of the policy when taking an
action produced by the mapping for a specific state [29].

Many of those methods also incorporate value learning, which is another option to
define policies. For value learning, the goal is to develop an estimation of the expected
discounted reward given a certain action is taken in a certain state. This value is called
the Q-value of the state-action pair, which constitutes the foundation for Q-learning as
a large group of algorithms.

The choice of policy learning versus value learning is partly defined by the process,
because the majority of algorithms from the value learning category do not work in
continuous action spaces, see Sect. 2.5. In other cases, both might be applied. [29] sug-
gests, that policy learning methods might outperform value learning methods in those
usecases, where the policy is easier to represent than the value function of the process.

2.3 Finite and Infinite Horizon Problems

MDP problems can have a finite or an infinite time horizon. The applicability of RL
algorithms strongly depends on whether a problem has a finite or infinite horizon, as this
property has implications on objective functions and learning strategies. The decisive
factor behind all those implications is whether an algorithm follows a Monte Carlo
(MC) or Temporal Difference (TD) approach [29]. This section introduces Monte Carlo
and Temporal Difference methods. Additionally, the core ideas behind TD(n), TD(λ),
and eligibility traces are examined.
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The main properties of Monte Carlo methods are that they are on-policy by design
and only work on finite horizon problems. The current policy plays the environment
until a terminating state is reached. Then, the realized discounted returns for the full
episode are calculated. Notably, the possible stochastic nature of the environment and
the policy can cause drastically different realized discounted returns for the same state
in-between trajectories, even under the same policy. The described Monte Carlo returns
are used by some Policy Gradient variants, like REINFORCE1.

In contrast to Monte Carlo methods, Temporal Difference (TD) approaches do not
need complete trajectories or terminating states to be applied. Therefore, they can be
used on infinite horizon problems as well. The core idea of TD methods is to only use a
section of a trajectory between the states st and st+n to define target values for a value
estimator V̂φ. The target values can be calculated by summing the realized rewards
for the observed trajectory section and adding an approximation of the expected future
return of the last state st+n, given by the current version of the value-learner. Formally,
the target value is calculated by:

Gφ
t:t+n :=

t+n−1∑

t′=t

γt′−tr (st′+1|st′ , at′) + γnV̂φ(st+n)

= Gt:T − Gt+n:T + γnV̂φ(st+n)

and the temporal difference, also called approximation error is given by Gφ
t:t+n−V̂φ(st)

and is used to update V̂φ(st).
Using the current version of a value-estimator like this for an update of the same

estimator is called bootstrapping in RL. Algorithms that use the temporal difference
over n steps are called n-step TD methods or TD(n) algorithms. Notably, TD(n) for all
n > 1 is automatically on-policy learning, as the sequence of rewards used for the net-
work updates depends on the policy. Therefore, the values learned by the value-learner
reflect the values of states under the current policy (see Sect. 3.1). TD(1) algorithms
can be trained in an off-policy or on-policy fashion, as single actions and rewards are
policy-independent. The off-policy updates would be unbiased towards the current pol-
icy. DQN is an example of an off-policy TD(1) algorithm, while SARSA is an on-policy
TD(1) method.

Some RL libraries like Tianshou [32] include off-policy DQN algorithms with an n-
step parameter. RAINBOW uses similar updates. Different tricks are used to make this
possible. RAINBOW, for example, omits off-policy exploration, see Sect. 3.2. Figure 2
categorizes methods like DP, MC, and TD according to the depth and the width of the
updates calculated from the state transition tree.

Monte Carlo methods have a high variance and no bias in their network updates.
This is because they look at complete trajectories, with potentially drastic differences
between each other. Still, since the trajectories are complete and include no estimations,
they fully reflect actual results from the environment. Temporal Difference approaches

1 [25] present an overview over PG variants. They use terms like
∑∞

t=0 rt to indicate general
correctness for infinite horizon problems. Still, in practice, those sums reflect the Monte Carlo
PG variants, which operate on finite horizons and break down to finite sums.
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Fig. 2. Categorization of algorithms based on the depth and width of the implemented value
updates in the state transition tree. Figure adapted from [29].

have a low variance in their network updates, as they only consider a few consecutive
realized rewards. However, a significant bias is added towards their initial estimations
of the bootstrapping term. Increasing the number of steps in TD(n) makes the updates
more similar to MC updates, and bias decreases while variance increases.

Because of the bias-variance tradeoff and differences in episode lengths, for exam-
ple, the best n in TD(n) is highly problem-specific. An approach called TD(λ) tries to
combine the advantages of all TD(n) versions by creating a target value Gλ,φ

t that is a
combination of all possible TD(n) targets. TD(λ) can be explained and calculated from
a forward or a backward view, but both variants are mathematically equivalent [29].

The forward view combines all TD(n) targets Gφ
t:t+n using an exponentially

weighted moving average over all possible TD(n)’s and is defined by:
Gλ,φ

t = (1 − λ) · ∑T−t−1
n=1 λn−1Gφ

t:t+n + λT−t−1Gt:T for the finite horizon case. For
infinite horizon problems, the definition includes an infinite sum, which is approximated
in practice using the truncated λ-return [29], where the sum is truncated after many
steps. Notably, for λ = 1 this formula reduces to the Monte Carlo update Gt:T = G1,φ

t

and for λ = 0 it reduces to the TD(1) update Gt:t+1 = G0,φ
t for 00 = 1. This forward

version of TD(λ) can be seen as a Monte Carlo method because it needs to wait until
the end of an episode before the updates can be computed.

The backward view was introduced to overcome this limitation. Instead of looking
forward on the trajectory to compute the network updates, it calculates errors locally
using TD(1). It then passes the results back to the previously visited states of the tra-
jectory. This means that if a high estimation error is discovered at step t of a trajectory,
the state-values V̂φ(st′) of the previous states st′ with t′ < t are adjusted in the same
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direction as the local error. Notably, not all of the states visited previously are similarly
responsible for the change in the value of state st. One way to approach this so called
credit assignment problem [19] is to assume that the most recent decisions have the
most substantial influence on achieved rewards and actions, that have been taken far in
the past, are ineligible for present success. Similarly, the backward version of TD(λ)
uses eligibility traces to quantify the eligibility of past states for discovered state-value
errors. In practice, such an eligibility trace is a vector e containing decaying factors for
each previously visited state of the trajectory. Different decay strategies can be applied,
in which eligibility values of revisited states are increased differently. Updates in back-
ward TD(λ) for every previous state s ∈ Sτp of a partial trajectory τp are computed as
in:

∀s ∈ Sτp : V̂φ(s) ← V̂φ(s) + αδtet(s). (1)

The learning rate is defined as α, and λ generally denotes the eligibility decay factor
[27].

With backward TD(λ), it is unnecessary to wait until an episode ends. Instead,
updates can be performed online, i. e. while exploring the environment. Similar to
TD(n) with n > 1, TD(λ) is also an on-policy approach and is theoretically incom-
patible with off-policy techniques like replay buffers.

2.4 Discrete and Continuous State Spaces

Besides discrete state spaces also uncountable state sets, where at least one state param-
eter lives in a continuous space, are found in many real-world applications.

All of the table-based predecessors of RL, like Dynamic Programming or tabular
Q-Learning, fail under uncountable state sets, as an infinite amount of memory and
time would be necessary to compute all state-values [29]. Algorithms like this require
discretization of the state space, limiting the exactness of the solution.

RL algorithms using neural networks as regression algorithms can take continuous
values of states as inputs and have the ability to generalize over uncountable state sets
after learning from a finite number of training samples.

2.5 Discrete and Continuous Action Sets

Similar to uncountable state space components, uncountable action sets are standard
in continuous control tasks, where actions can be chosen from a range of continuous
numbers.

Table-based algorithms like Q-Learning that calculate state-action values cannot be
applied to problems with uncountable action sets, as an infinite amount of memory and
time would be required for calculations across the whole table [29].

On-policy (see Sect. 3.1) RL algorithms can be trained under uncountable action sets
by learning the parameters to a parameterized distribution over a range of actions. Train-
ing off-policy RL algorithms under uncountable action sets introduces new challenges.
In regular off-policy RL, the policy network is trained to reflect a discrete probability
distribution over the countable Q-values of each state. In the case of uncountable action
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sets, the Q-value distribution over the uncountable action set is neither fully accessible
nor differentiable if the learner was trained to output single values to state-action input
pairs. Generally, constructing the value-learner under uncountable action sets to output
parameters to parameterized distributions is impossible, as the action values follow an
unknown, possibly non-differentiable distribution. Training with arbitrary distributions
would result in inaccurate state-value estimates2. Because of these limitations, when
facing a problem with uncountable action sets, deterministic policies must be trained in
an off-policy manner. Working with continuous actions, however, allows the exploita-
tion of other properties.

DDPG for example, takes advantage of the differentiability of continuous actions
output by deterministic policies [15]. The objective function of DDPG is defined as:

Jπ(θ) = Es∼D

[
Q̂φ (μθ(s)|s)

]
.

The policy parameters θ are trained to choose the Q-value-maximizing actions for
the state s ∼ D of the state distribution D of the off-policy data. Gradients of the policy
network parameters are backpropagated through the Q-learner Q̂φ, through the contin-
uous action policy output μθ(s) and into the policy network. Gradient calculations like
this would not be possible for discrete actions.

Some algorithms take one further step further and make it possible to learn stochas-
tic policies under uncountable action sets. One example of those algorithms is SAC [8],
which introduces some beneficial additions which improve learning performance when
compared to DDPG. The policy objective of SAC is to minimize the expected KL-
divergence between the distribution output by the policy and the distribution defined by
the Q-values.

The objective of the SAC policy is given by:

Jπ(θ) = Es∼D

[
DKL

(
πθ (·|s) ||e

Q̂φ
πθ

(·|s)

Zφ (s)

)]

= Es∼D

[
DKL

(
πθ (·|s) ||eQ̂φ

πθ
(·|s)−log Zφ(s)

)]

= Es∼D,a∼πθ

[
−log

(
eQ̂φ

πθ
(a|s)−log Zφ(s)

πθ (a|s)

)]

= Es∼D,a∼πθ

[
log πθ (a|s) − Q̂φ

πθ
(a|s) + log Zφ (s)

]
. (2)

It contains a KL-divergence term, initially proposed by [8], that aims at minimizing
the difference between the distribution of the policy πθ in a state s and the distribution
implied by the Q-value estimations Q̂φ

πθ
(·|s). Zφ (s) is a normalization term that does

not contribute to the gradients.
The objective function can be rewritten as shown in the following lines of (2). As

the Z-term does not affect the gradients of θ, it can be removed, and by additionally

2 Notably, in policy optimization for uncountable action sets, the learned distribution does not
have to accurately reflect the distribution of the true Q-values, as they are not used to estimate
state-values.
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negating the other terms, this results in the equivalent maximization objective:

J′
π(θ) = Es∼D,a∼πθ

[
Q̂φ

πθ
(a|s) − log πθ (a|s)

]

= Es∼D,a∼πθ

[
Q̂φ

πθ
(a|s)

]
− Es∼D,a∼πθ

[log πθ (a|s)] . (3)

These equations demonstrate, that SAC’s policy is trained to maximize both the
expected Q-values, as well as its entropy given by

H (πθ (·|s)) = −Ea∼πθ
[log πθ (a|s)] .

Notably, although the Q-values in SAC already contain an entropy coefficient, opti-
mizing the policy to maximize the Q-values would not guarantee that the policy itself
has high entropy. The policy might choose the Q-maximizing actions with 99% proba-
bility density, i. e. a very low entropy, which is why this entropy term is also necessary
for the policy objective.

A problem with the formulation in (3) is the expectation over the actions
Es∼D,a∼πθ

, which depends on the policy parameters θ, cf. [1]. Notably, with count-
able action sets, this is no problem at all. The expected value of the Q-values in a
state s can be calculated precisely using the finite sum

∑
a∈A π (a|s) Q̂φ

πθ
(a|s). With

uncountable action sets, however, there is usually no way to calculate the expectation
precisely. It is approximated using samples instead. This leads to a high variance in the
resulting gradients, which can be avoided by a reformulation of the problem using the
so-called reparameterization trick, which externalizes the source of randomness. Due
to the reparameterization trick, the objective can be further rewritten, which exchanges
the expectation over the actions with an expectation over a random sample from the
standard normal distribution ε ∼ N as in:

J′
π(θ) = Es∼D,ε∼N

[
Q̂φ

πθ
(ã|s) − log πθ (ã|s)

]
, (4)

where ã = f (ε, πθ (·|s)). The reparameterization function f uses the policy network
outputs to transform this random sample from a standard normal distribution to the
distribution defined by the policy network. This can be done by adding the mean and
multiplying by the variance output by the policy network. The reparameterization trick
separates sampling from the policy distribution, and in turn reduces the variance of the
computed gradients.

2.6 Discrete and Continuous Time Problems

All of the previously presented RL algorithms operate on problems with discrete-
time. This is a natural property of round-based problems like board games, most Atari
games, or combinatorial problems. Other optimal control tasks are naturally based on
continuous-time, like physics simulations or robot movement.

All of these tasks can be approached with discrete-time algorithms by discretiz-
ing the time dimension, and this is most often the case. Still, some research has been
targeted at true continuous-time algorithms specifically. [2] introduced approaches to
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continuous-time RL based on the Hamilton Jacobi Bellman Equation [12]. In their and
related work, there are no discrete state transitions. Instead, a vector field ẋ (first-order
derivative of the state function x), given by

ẋ (t|φ) = f (x (t′|φ) , uφ(t)) (5)

defines gradients of a state x, based on the current state x and the value of a continuous
action function u. The state function itself is formally defined by:

x (t|φ) = x(0) +
∫ t

0

f (x (t′|φ) , uφ(t′)) dt′. (6)

Both of these theoretical formulas contain circular dependencies (in x (t|φ)). In prac-
tice, the state function is usually approximated [35] using functions like odeint of
the scipy.integrate library which can integrate systems of ordinary differential
equations as:

x (t|φ) = x(0) +
n−1∑

i=1

t

n
f

(
x

(
it

n
|φ

)
, uφ

(
it

n

))
. (7)

The continuous-time actions are modeled as functions of the continuous-time states
and are usually denoted by uφ (t|x) = fφ(x(t)). Values of states can be calculated
using integrals over the reward function r as in:

Vφ (x(t)) =
∫ ∞

t

e− t′−t
γ r (x(t′), uφ(t′)) dt′. (8)

The continuous-time RL versions approximate the value function using neural net-
works and iteratively improve their policy, i. e. the action function, as well as their
value-estimates, similarly to their discrete-time counterparts. For this, they use special
continuous-time TD updates [2].

3 Further Properties of RL Algorithms

Whereas the previously discussed aspects are all partly dictated by the problem under
assessment, for others there might be multiple algorithms available which in turn vary
only in their learning dynamics.

3.1 On-Policy and Off-Policy RL

In this section, we explore the differences between on-policy and off-policy for value-
learning RL algorithms, like DQN. Afterward, importance sampling and its applications
for off-policy learning in policy optimization methods are explored.

In value-learning, the difference between on-policy and off-policy is best explained
by the type of state-action values learned by the algorithm. There are two main options
for learning state-action values.
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One option is to learn the expected state-action values of the current policy. In this
case, in each learning step, the Q-values reflect expected returns under the current pol-
icy. This kind of policy is optimized by repeatedly adjusting the parameters slightly in
a direction that minimizes the difference to a target value and reevaluating the expected
returns. This is the main idea behind the Q-Learning variant SARSA. Algorithms like
SARSA are called on-policy, as the current policy needs to be used to collect new expe-
riences, and no outdated or unrelated data can be utilized. This dependency on policy-
related actions is also reflected in the Q-value update function which uses the realized
action in the Bellman expectation equation instead of an aggregation over all the pos-
sible actions. Notably, not all algorithms that learn values under the current policy are
on-policy methods. The critics in SAC, for example, learn Q-values of the current policy
in an off-policy way by inputting the succeeding states (st+1) of the off-policy experi-
ence into the current policy network. The result is a probability map over the actions that
can be taken in st+1. The value of state st+1 under the current policy can be estimated
as the sum of the Q-values in st+1 weighted by the calculated probability distribution.

The second possibility to approach value-learning is to learn the optimal state-action
values achievable in the environment in general and independent of the current policy.
This is done by Deep Q-Learning [20]. A deterministic policy is implicitly defined by
maximizing actions, and stochastic policies can be formulated by applying temperature-
regulated softmax over the state-action values. This is called off-policy learning, as
state-action values like this can be learned using policy-unrelated experience from the
environment. For off-policy learning any experience from the environment can be used
to train the model. A human player for example, could deliberately collect a batch
of experience to provide the algorithm with a non-random, initial training foundation.
Still, in some cases, the data is generated using a greedy version of the current policy.
Furthermore, all data points can be trained multiple times, as they are never outdated
w. r. t. the state-action-value definition.

The optimization objectives of pure policy optimization methods are usually defined
as maximizing the expected future return when following the current policy. Because
of this, most pure policy optimization algorithms are naturally on-policy methods. Dur-
ing training, states and actions are sampled from the current policy, and probabilities or
actions are adjusted according to their realized or expected future return. Notably, with-
out any adjustments, using state samples from the stationary state distribution of the
current policy is crucial. While it is technically possible to collect policy-independent
experience from the environment and use the policy log probabilities of the chosen
actions for policy updates, this optimization objective would maximize the expected
value under the wrong state distribution. With this setting, the policy might visit differ-
ent states when performing independently and achieve far-from-optimal expected future
returns under its state distribution. Even if a lot of experience was available, covering
all the state-action space, the optimization objective would be unsuitable.

One way to overcome this limitation and train a policy optimization algorithm using
data that was collected from a different state distribution is importance sampling [29].
The importance sampling theorem, i.e.,

Es,a∼πθ
[f (a|s)] = Es,a∼D

[
πθ (a|s)
D (a|s) f (a|s)

]
,
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states that the expected value of any deterministic function f when drawing from a
distribution πθ is equal to the expected value of f multiplied by the ratio of the two
probabilities when drawing from a distribution D.

In the RL setting, expectations like this reflect the policy optimization objective and
cannot be calculated precisely. Instead, the policy performance is updated based on a
batch of samples that approximate this expectation. Similarly, the expectation can also
be approximated using the importance sampling equation and samples from an arbi-
trary, known state distribution. As per the central limit theorem, the approximations
with both methods follow a normal distribution around the actual expected value. Still,
they can have significant differences in variance if the two distributions are very differ-
ent [29].

Some Monte Carlo RL variants use importance sampling to reduce simulation and
calculation overhead for environments with very long trajectories. For those cases, sim-
ulating and calculating the realized rewards for just a single network update is inef-
ficient. Using importance sampling, the latest trajectories can be reused for multiple
network updates if the policy does not change drastically in between a few updates.

One policy optimization approach that attempts to combine the benefits of off-policy
and on-policy learning is called P3O [4]. In this work, the authors propose a combina-
tion of regular on-policy optimization, importance sampling off-policy optimization,
and techniques to keep the target policy close to the behavior policy.

Actor-critic algorithms can be designed to operate on-policy or off-policy. The on-
policy actor-critic variants use a policy optimization objective similar to pure policy
optimization algorithms [29]. In this case, the policy is improved by altering the log
probabilities of actions according to their learned Q-values or advantage-values. Off-
policy actor-critic variants are possible by training the policy to reflect the action dis-
tributions implicitly defined by the learned Q-values. This is a valid objective, as the
policy is trained to choose the Q-value-maximizing action in every state.

The choice between on-policy and off-policy algorithms primarily affects its sample
efficiency and the bias-variance tradeoff of the network updates [4]. On-policy algo-
rithms need to consistently generate new data using their current policy, making them
sample inefficient. Accordingly, they are less suited for problems with high time com-
plexity environments. On the other hand, off-policy algorithms can operate on problems
with arbitrarily generated experience, even without direct access to the environment.

Off-policy algorithms usually add self-generated experience to a buffer, called the
experience replay buffer, of which they can sample batches for training. Prioritized
Experience Replay (PER [23]) is an extension that stores per-element training priorities,
which are used for weighted sampling and could be the individual loss values of each
experience. This way, elements that an agent has not performed well on yet, have a
higher probability of being trained more often.

Off-policy algorithms tend to be harder to tune than on-policy alternatives because
of the significant bias from old data and value-learner initializations [5]. The bias-
variance tradeoff will be further discussed in Sect. 3.3.
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(a) A possible deterministic policy with the
problem of equal decisions on the grey squares.

(b) Decisions that could be made by a stochas-
tic policy, enabling the agent to reach the re-
ward from both grey squares.

Fig. 3. Example of a problem with imperfect information that can only be solved with a stochastic
policy. In this setting, the agent can only observe adjacent squares, making the grey squares look
equivalent to the algorithm. A deterministic policy would always move left or always move right
on these grey squares. With a stochastic policy and enough tries, the agent eventually always finds
its way to the reward. Figures adapted from [27].

3.2 Deterministic and Stochastic Policies

Policies can be deterministic, i.e., they assign a particular action to a certain state, as
well as stochastic, i.e., actions are chosen from a certain distribution. RL algorithms
are designed to learn stochastic or deterministic policies. While most stochastic policies
can be evaluated deterministically by selecting the actions with the highest probabilities,
there is no sophisticated way of converting deterministic solutions to stochastic variants
other than applying ε-greedy actions or temperature-controlled softmax.

It could be argued, that deterministically choosing the optimal action could outper-
form stochastic policies, as they tend to diverge from the optimal policy. In practice
this does not as hold, for example SAC outperforms DDPG in its peak performance [7].
Also, there are problems with imperfect information that can only be reliably solved by
stochastic policies, as demonstrated by [27].

Figure 3 shows a mini-game that is used by [27] as an example. In this environment,
the robot is controlled by the RL algorithm, but it can only observe all adjacent squares
of the playing field. This means that the observations from within the two gray squares
are identical since, in both cases, the only two visible squares are both empty. A fixed
deterministic policy without exploration would have to perform the same action in both
of these squares, which would trap the robot on one of the two sides of the playing field,
as shown in Fig. 3a. A true stochastic policy would be able to randomly move left or
right when positioned on a gray square and could therefore reach the trophy eventually
from every starting square, cf. Fig. 3b.

Exploration during training can be done natively with stochastic policies by ran-
domly choosing actions according to the current probability distribution. Deterministic
policies usually require ε-greedy exploration to allow theoretical convergence to the
global optimum. For ε-greedy exploration, every time an action is chosen, there is a
chance to choose a random action instead of the assumed optimal action, with a proba-
bility of ε, cf. [29]. Stochastic policies have advantages over their deterministic alterna-
tives in multi-player games, as opponents can quickly adapt to deterministic playstyles.
A straightforward example of such a game is rock-paper-scissors, see [27].
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3.3 Bias-Variance Tradeoff

This section will examine the bias-variance tradeoff for multiple on-policy policy opti-
mization versions, and for different value-learning approaches.

Variance in the context of on-policy policy optimization refers to the variance in
approximations of the policy parameter gradients. The Expected Grad-Log-Probability
Lemma (EGPL):

Ex∼Dθ
[Δθ logDθ(x)] = 0

=⇒ Ea∼πθ(·|s) [Δθ log πθ (a|s)] = 0 (9)

is essential for explaining the effects of different gradient formulations on the approxi-
mation variance. It says that when sampling values from a distribution D parameterized
by θ, the gradients Δ of the log probabilities w. r. t. θ will be 0 in expectation. This
means that those gradients of log probabilities follow some distribution with a mean
of 0. The EGPL lemma can be transferred to an expectation over state-action samples
from a policy. Additionally, it implies that by multiplying the gradient log probabilities
with a baseline value b(s), the result remains 0 in expectation as inferred in:

Ea∼πθ(·|s) [Δθ log πθ (a|s)] = 0
=⇒ Ea∼πθ(·|s) [b(s)Δθ log πθ (a|s)] = 0

=⇒ Es∼πθ

[
Ea∼πθ(·|s) [b(s)Δθ log πθ (a|s)]] = 0

=⇒ E(a,s)∼πθ
[b(s)Δθ log πθ (a|s)] = 0. (10)

This baseline stretches or compresses the distributions of gradients of log probabilities
but does not change their mean. When approximating this expectation using sampling,
the baseline affects the variance of the approximations but not the mean.

For on-policy policy optimization, there are many equivalent formulas for calculat-
ing the gradients of the policy parameters θ, cf. [25,30,33]:

Δθ Jπ (θ) = Eτ∼πθ

[
T∑

t=0

Δθlog πθ (at|st)
T∑

t′=0

γt′
r (st′+1|sτ

t′ , at′)

]
(11)

= Eτ∼πθ

[(
T∑

t=0

Δθlog πθ (at|st)

)
T∑

t′=0

γt′
r (st′+1|st′ , at′)

]
(12)

= Eτ∼πθ

[
T∑

t=0

Δθlog πθ (at|st)

(
t−1∑

t′=0

γt′
r (st′+1|st′ , at′) +

T∑

t′=t

γt′
r (st′+1|st′ , at′)

)]
(13)

= Eτ∼πθ

[
T∑

t=0

Δθlog πθ (at|st)

(
T∑

t′=0

γt′
r (st′+1|st′ , at′) − b(s0)

)]

(14)
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= Eτ∼πθ

[
T∑

t=0

Δθlog πθ (at|st)
T∑

t′=t

γt′−tr (st′+1|st′ , at′)

]
(15)

= Eτ∼πθ

[
T∑

t=0

Δθlog πθ (at|st)

(
T∑

t′=t

γt′−tr (st′+1|st′ , at′) − b(st′)

)]

(16)

= Eτ∼πθ

[
T∑

t=0

Δθlog πθ (at|st) Qπθ
(at|st)

]
(17)

= Eτ∼πθ

[
T∑

t=0

Δθlog πθ (at|st) Aπθ
(at|st)

]
. (18)

These options originate from the different Policy Gradient variants. In the current
section, the notation with an upper τ is omitted for all actions and states to improve
readability (for example, st is used instead of sτ

t ). All of the gradient formulas from
(11) to (18) can be shown to be equal in expectation [1]. This means that when approxi-
mating them using samples, they all produce the same sample mean but can have signif-
icant differences in variance. Notably, some of these definitions ((17) and (18)) include
exact Q-values and advantage-values, and in practice, those are unknown and have to
be estimated. With estimated Q- and advantage-values, the calculated gradient can be
biased3.

The gradient calculation for the vanilla Policy Gradient algorithm in (11) produces
the worst sample variance, where each gradient log probability is scaled by the total
realized reward of the whole trajectory. This creates a high sample variance for three
reasons:

1. With stochastic policies and potentially stochastic environments, the realized
rewards can differ significantly in-between episodes. Many samples are necessary to
reflect the expected value of state-action pairs. The high variance in realized rewards
directly affects the variance of the approximations.

2. For vanilla Policy Gradients, each gradient log probability is multiplied by the total
trajectory return

∑T
t′=0 γt′

r (st′+1|st′ , at′), so it can be factored out of the first sum
as in (12). Notably, the expectation of this formula is likely not zero, as the trajec-
tory reward, unlike baselines, depends not only on the states but also on the actions.
Thus the sum over the gradients of log probabilities and the total trajectory reward
are likely correlated. (12) reveals the second reason for a high variance of the approx-
imations, which are potentially high trajectory returns in expectation. Suppose the
total trajectory returns for a problem are very large, strictly positive, and lie within
[1000, 1010]. Further, suppose that most gradient log probability sums lie within the
range [−1, 1]. Without using a baseline, their product likely lies in [−1010, 1010].
By subtracting an “average trajectory return”-baseline of value 1000 from the trajec-
tory returns, the likely range of the product becomes [−5, 5]. As mentioned before,

3 As an example, assume a Q-values estimator wrongly predicts all values as 0. This would
always make the result of the gradient calculations 0 as well.
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the two factors can be correlated, affecting the variance. A high correlation leads
to reduced variance in both formulations. For example, assuming the strongest pos-
sible correlation in this setting, the respective ranges of samples of the products
are [−1000, 1010] and [5, 5]. This shows that sample variance can be significantly
reduced by using a baseline as in (14) to shift the mean of the expected trajectory
returns towards zero.

3. The third reason for the high variance in approximations of the expectation in (12) is
shown in (13). By scaling each log probability by the total trajectory return, actions
get reinforced based on previous rewards. These rewards do not depend on the action
of a particular step. They, therefore, act as baselines that do not affect the sam-
ple mean but potentially increase the sample variance by shifting the mean of the
expected trajectory returns away from zero. This explains why the reward-to-go Pol-
icy Gradient in (15) generally has a lower sample variance than the vanilla Policy
Gradient.

Notably, the arguments of this section are only considering Monte Carlo PG variants
so far, as calculating realized rewards until the end of an episode is impossible for
infinite horizon problems. Only the PG variants with estimations of the rewards-to-go
are eligible for infinite horizon settings, and they will be considered further below.

Multiple alternative gradient formulations have been developed to reduce the sam-
ple variance by manipulating the three presented variance-increasing factors. (16) is
a popular variant that combines the reward-to-go sum with a baseline term, which
empirically reduces the sample variance significantly4 but does not resolve the problem
of high variance introduced by stochastic trajectories. Theoretically-optimal baselines
exist [31], but in practice, critic neural networks or exponential moving averages of
the previous returns are the most frequently used options. Instead of using the realized
returns, learned Q-values can be implemented to reinforce certain actions according to
their expected future state-action value5 as in (17). This version accounts for the vari-
ance of stochastic trajectories. It removes the problem of using full-trajectory returns
as factors, but it lacks some form of baseline to reduce the variance originating from
returns that have large absolute means. This last source of variance can be reduced by
using advantage-values for reinforcing actions as in (18), because they include the miss-
ing state-value baseline (Aπθ

(at|st) = Qπθ
(at|st) − Vπθ

(st)). As the Q-values and
advantage-values have to be estimated, they can introduce bias to the gradient estimates.
Because of this, their supremacy compared to the Monte Carlo options depends on the
quality of the value estimates.

There are many ways to estimate advantage-values. For problems with discrete
action spaces, it is possible to implement a Q-value learner and estimate the advantages
by subtracting all Q-values by the Q-value mean of a state. This can be computationally
expensive with large action sets. For continuous action spaces, a separate state-value
learner needs to be introduced to calculate the advantage by subtracting the respective
state-value from the Q-value. In general, learning Q-values is considered harder than

4 See the Spinning Up article: https://spinningup.openai.com/en/latest/spinningup/rl_intro3.
html.

5 See proof for exact Q-values in Spinning Up documentation: https://spinningup.openai.com/
en/latest/spinningup/extra_pg_proof2.html.

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof2.html
https://spinningup.openai.com/en/latest/spinningup/extra_pg_proof2.html
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learning state-values and might require many more samples or does not converge. This
can lead to lousy advantage estimates, which do not have the desired benefits to the
Policy Gradient computations.

Estimating the advantage-values is also possible with just a state-value learner, and
the different approaches are similar to Q- and state-value estimations.

A Monte Carlo advantage estimator takes the realized rewards-to-go of a state-
action pair and subtracts the corresponding state-value:

ÂMC (a|st) = Gt:T − V̂φ(st). (19)

A TD(1) advantage estimator adds the immediate reward of a state-action pair
r (st′+1|st, at) with the proceeding state’s value estimate V̂φ(st+1) and calculates the
difference to the state-value estimate V̂φ(s). The formula for the TD(1) advantage esti-
mate is given by:

Â(1) (at|st) = r (st′+1|st, at) + γV̂φ(st+1) − V̂φ(st)

= Gφ
t:t+1 − V̂φ(st). (20)

A TD(n) advantage estimate is calculated with the realized rewards of n steps and is
defined as:

Â(n) (a|st) =

(
t+n−1∑

t′=t

γt′−tr (st′+1|st′ , at′) + γnV̂φ(st+n)

)
− V̂φ(st)

= Gφ
t:t+n − V̂φ(st). (21)

Notably, the formula for a TD(n) advantage estimate is the same as the TD(n) approx-
imation error used for updating the state-value estimator V̂φ. This is because the value
estimator is trained to learn values that let this term become 0 in expectation. advantage-
values are 0 in expectation, but their importance for policy optimization lies within their
correlation to action probabilities.

Just like TD(λ), Generalized Advantage Estimation (GAE [25]) is a method to con-
trol the bias-variance tradeoff between the high bias TD(1) advantage estimates and the
high variance MC advantage estimates by applying an exponentially-moving average
over all estimates defined in:

ÂGAE(γ,λ) (a|st) = (1 − λ)
∞∑

k=0

λkÂ(k) (a|st) . (22)

GAE works natively in finite horizon settings, but it can also be applied with infinite
horizon problems by truncating the endless sum after many steps as γ and λ diminish
the effect of rewards that lie far in the future.

Notably, bias in the learned Q-values or advantage estimates affects the policy opti-
mization’s bias and sample variance, similar to bad baselines. This is important because
of the bias-variance tradeoff in value learning, which will be discussed next.

In value-learning, there is a bias-variance tradeoff in the target values, i. e. decreas-
ing the variance tends to increase the bias. As mentioned in Sect. 2.3, this tradeoff is
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(a) Development of target expected future re-
turns for a Monte Carlo estimator. The high
variance of the target values is caused by the
many different trajectories that can occur dur-
ing training. Over time, the variance decreases
as the algorithm converges to fewer, more
promising trajectories.

(b) Development of target expected future re-
turns for a TD(1) estimator. The early bias is
caused by the initialization of the Q-values. The
variance is low as only a single realized reward
is considered. Over time the Q-value estima-
tions get more accurate, and bias decreases.

Fig. 4. Illustration of the development of target expected future returns (target EFR) for an arbi-
trary but fixed state over time for a Monte Carlo estimator and a TD(1) estimator.

determined by the depth of the value updates. Monte Carlo calculations have high vari-
ance but no bias. In expectation, the sum of realized returns after a state correctly reflects
the state-value, but stochastic policies or environments might realize many different tra-
jectories and rewards. In the case of on-policy value-learning, this variance decreases
over time as the policy becomes less random and narrows its options to the most promis-
ing trajectories. Both of these properties are visualized in Fig. 4a. Temporal Difference
calculations of single steps have very low variance, as they only use a single realized
reward with bootstrapping in their updates. This means that the sum of the immediate
reward after a state and a bootstrapped value varies much less than the realized rewards
of Monte Carlo trajectories. The benefits in variance come at the cost of bias towards the
initializations of the value estimators. At the beginning of the learning phase of state-
action values, the estimated Q-values are still far from the actual state-action values, but
those wrong estimations are used for bootstrapping. Off-policy Deep Q-Learning suf-
fers from an additional overestimation bias. This is caused by choosing the maximum
Q-value of the following state in bootstrapping, which significantly slows down conver-
gence in combination with bad initializations. Algorithms like Double DQN (DDQN)
have been developed to reduce this overestimation bias but are known to introduce
some underestimation bias [9,22]. Over time, the learned Q-value estimations tend to
converge to the correct values, but there are no guarantees6. Figure 4b visualizes the
composition of TD(1) target values for a particular state and their development over
training.

The larger the number of steps in Temporal Difference calculations, the closer the
TD target values get to the Monte Carlo targets and variance increases as bias decreases.
TD(n) and TD(λ) can therefore be used to tune the bias-variance tradeoff in value-
learning.

6 See this discussion on Stack Exchange: https://ai.stackexchange.com/questions/11679.

https://ai.stackexchange.com/questions/11679
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During training, the variance in approximations of the gradients can be lowered fur-
ther by increasing the number of samples used for the approximation, i. e. by increasing
the batch size.

3.4 Exploration-Exploitation Tradeoff

Next, we discuss the tradeoff between exploration and exploitation during training. The
exploration-exploitation tradeoff is a dilemma that not only occurs in RL but also in
many decisions in real life. When selecting a restaurant for dinner, the two main options
are to revisit the favorite restaurant or try a new one. By choosing the favorite restaurant,
there is a high likelihood of achieving the known satisfaction, but without exploring
other options, one will never know whether there are even better alternatives. By only
exploring new restaurants, the pleasure will generally be lower in expectation than with
the favorite restaurant. The same concept applies to RL as well. The agent needs to
balance exploration for finding better solutions with exploitation to direct exploration
and motivate convergence towards optimal solutions.

Many different exploration-exploitation strategies exist, including no exploration, ε-
greedy exploration, upper confidence bounds exploration, Boltzmann exploration, max-
imum entropy exploration, and noise-based exploration [34]. ε-greedy exploration is
often applied when learning deterministic policies to produce new trajectories. Other-
wise, the deterministic policy would not include any exploration, which would prevent
the agent from discovering better policies than those already present in the data.

Upper confidence bounds exploration introduces a notion of confidence to Q-value
estimations. Actions are chosen based on the sum of each Q-value with an individ-
ual uncertainty value. The uncertainty value is defined to be inversely proportional to
the number of times an action was taken. The sum of a Q-value with its uncertainty
value represents the upper confidence bound of that Q-value, i. e., Q-values of actions
that have rarely been trained have high uncertainty and could be much larger in reality.
Upper confidence bounds encourage exploration of rarely visited actions while consid-
ering their current Q-value estimation. Figure 5 displays exemplary Q-values with their
respective confidence intervals.

Boltzmann exploration applies the softmax operation over the Q-values to define
a stochastic policy and regulates the strength of exploration by the softmax tempera-
ture parameter. In maximum entropy exploration, the agents’ objective functions are
extended by an entropy term that penalizes the certainty of the learned policy. Algo-
rithms like SAC use this type of exploration. Noise-based exploration adds random
noise to observations, actions, or even model parameters to introduce variation.

Some settings are especially challenging for exploration to find better solutions con-
sistently. For example, very sparse or deceptive rewards can be problematic, which is
called the hard exploration problem. [34] and [18] provide further information on explo-
ration challenges and possible solutions.
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Fig. 5. Visualization of the confidence intervals according to five Q-value estimations with their
respective uncertainty values. Upper confidence bounds exploration greedily chooses the action
with the largest upper confidence bound.

3.5 Hyperparameter Tuning and Robustness

In the context of RL, hyperparameter sensitivity characterizes how much an algorithm’s
performance depends on carefully tuned hyperparameters and how much the hyperpa-
rameters need to be adjusted between different problems. In other words, it describes
the size of the hyperparameter space that generally produces good results. Brittleness
can be used as a synonym for hyperparameter sensitivity in some literature [7] but also
to convey a neural network’s ability to generalize to unseen inputs. Many publications
of new RL algorithms mention hyperparameter sensitivity and claim or imply improve-
ments compared to previous work. [7,8], for example, note that their algorithm SAC is
less sensitive than DDPG. [26] also suggest in their publication of PPO that it is less
sensitive than other algorithms. These papers fail to include concrete sensitivity analysis
to support their claims.

Other researchers have published work on hyperparameter tuning and sensitivity
comparisons on specific RL tasks [10,11,14,16]. Most emphasize the high sensitivity of
all compared RL algorithms and the lack of generally well-performing configurations.
These articles suggest a need for less sensitive algorithms to be developed and for more
research on best-performing hyperparameters in different settings.

Robustness is used as an antonym to hyperparameter sensitivity in some articles [26]
to describe how successful an algorithm is on various problems without hyperparam-
eter tuning. Most of the literature uses robustness as a measure of how well a learned
algorithm can handle differences between its training and test environment [3,17]. The
second definition of robustness is specifically important for real-world applications that
incorporate a shift between training and testing environments.
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There are several approaches to increase the robustness of RL algorithms. One idea
is to compose a distribution of environments and optimize the average performance
of an agent on multiple environment samples from this distribution. The properties of
the distribution highly influence the success of this procedure. One the other hand, an
optimized average performance can result in the agent being exceptionally good in a
few environments and much worse in the others.

A second option for robustness in RL is to create an adversarial setup, where an
adversary is trained to adjust the environment such that the agent’s performance drops.
Hence, the agent constantly trains on different environments. Such setups are promis-
ing but not easy to implement. [3] show that maximum entropy RL algorithms like
SAC are robust to environment changes, as the respective agents learn to recover from
disturbances introduced by “surprising” actions.

3.6 Learning Stability

A crucial feature of an RL algorithm is the so-called learning stability. This particu-
larly involves the tendency to forget intermediate best-performing policies throughout
training. This phenomenon is sometimes referred to as catastrophic forgetting in the
literature [6], although catastrophic forgetting is also used in the context of sequentially
training a model on different tasks [13].

Learning instability in policy optimization algorithms is mainly caused by noise in
the gradient estimations, producing destructive network updates. Such noise is usually
created by a high variance in the gradient estimates as discussed in Sect. 3.3. There-
fore, learning stability can be increased by choosing RL algorithms with low-variance
gradient estimators. Another option to prevent destructive updates to the policy during
training is to limit the change of the policy in-between updates, as done by PPO. A less
sophisticated alternative with similar effects is to clip the gradient norms before using
them in network updates. This is called gradient norm clipping.

In [21], the authors propose to transfer stochastic weight averaging (SWA) to the RL
setting to increase learning stability. SWA has improved generalization in supervised
and unsupervised learning and is based on averaging the weights of the models collected
during training [21].

4 Summary

In this section, we summarize the key takeaways for the different RL properties dis-
cussed in the Sect. 2 and Sect. 3.

(i) Model-Free and Model-Based RL. The categorization of model-free and model-
based RL algorithms indicates whether an algorithm learns or is given additional knowl-
edge of the environment beyond the observations. This allows simulations of the envi-
ronment and wider updates and exploration compared to following one trajectory at a
time. It can be especially powerful if acting in the real environment is expensive or an
environment model is available anyway. Model-free algorithms are more popular, and
model-based implementations are not supported by as many frameworks because of the
problem-specifics.
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(ii) Policy Optimization and Value Learning Methods. For many problems, there is
only one alternative. For all others, it depends on the complexity of a problem’s value
function, if it is easier to learn a value function or directly search for the optimal policy.

(iii) Bias-Variance Tradeoff. Many different formulations of the reinforcing term in the
objectives are available in policy optimization, which differ significantly in approxima-
tion variance. The order of the various options in decreasing variance is roughly given
by:

– vanilla, Monte Carlo (entire trajectory) return
– Monte Carlo reward-to-go
– Monte Carlo calculations with baselines
– true Q-Values
– true advantage values.

Using estimators for the Q-Values or advantage values introduces bias to the gradi-
ent estimates. Advantage values can be estimated in many ways, similar to the different
TD options. Generalized Advantage Estimation (GAE) is the equivalent of TD(λ) for
advantage estimation. In value learning, the bias-variance tradeoff is mostly defined by
the choice between Monte Carlo, TD(1), TD(n), and TD(λ) targets. Monte Carlo calcu-
lations have high variance, TD(1) has low variance but suffers from strong initialization
bias and potentially significant overestimation bias, especially when trained off-policy.
TD(n) and TD(λ) provide options to interpolate between the MC and TD(1) extremes.

(iv) Finite and Infinite Horizon Problems. Whether a problem has a finite or infinite
horizon has implications on which options for value estimations are applicable. Monte
Carlo methods only work with finite horizons, as whole trajectories are necessary. MC
targets for value estimators have no bias but high variance, especially with extended
episodes. Temporal Difference methods are applicable to both finite and infinite horizon
methods and allow tuning of the problem-specific tradeoff between bias and variance.
TD(λ) combines all TD(n) updates and ideally their problem-specific benefits and is
technically an on-policy method, as it includes Monte Carlo estimates. Truncating the
infinite sum is possible for applying TD(λ) to infinite horizon problems. Forward and
backward views can be used to calculate TD(λ) estimates. Usually, the backward view
is applied with eligibility traces, as it allows online updates of the estimator.

(v) Discrete and Continuous State Spaces. Traditional table-based methods can only
operate on countable state sets, as only finite memory is available on a computer. Neural
networks can generalize to infinitely-many inputs with limited memory, making them
suitable for problems with uncountable state sets.

(vi) Discrete and Continuous Action Sets. Table-based algorithms are in most cases
inapplicable for uncountable action sets, but RL with neural networks can be used.
Most on-policy RL algorithms can handle both countable and uncountable action sets.
Off-policy learning of uncountable action sets includes additional challenges because
the distribution type of the action values of a state is unknown. TD methods’ state
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values cannot be calculated easily, and adding another expected value over these distri-
butions is required in the objectives. Using action samples and the reparameterization
trick, these expectations can be approximated and gradients can be backpropagated
through the continuous actions into the policy network. Learning stochastic policies
under uncountable action sets is also possible, as done by SAC.

(vii) Discrete and Continuous Time Problems. Continuous-time problems are often
discretized and approached with traditional RL algorithms, but formulations for actual
continuous-time algorithms exist. These use the Hamilton Jacobi Bellman Equation
and incorporate ideas from discrete problems, like TD updates and value estimations
by neural networks.

(viii) On-Policy and Off-Policy RL. On-policy algorithms need to be trained with expe-
rience of the latest version of the policy. Off-policy alternatives can use and re-use any
experience acquired in an environment. A significant advantage of off-policy algorithms
is sample efficiency, but they tend to be harder to tune because of the bias-variance
implications between the respective learning strategies. Learning values of states or
state-action pairs under the current policy is usually done on-policy, in which case, all
Monte Carlo, TD(n), and TD(λ) methods can be used. SARSA is an example that uses
TD(1) calculations. Only the TD(1) targets can be used if values under the current pol-
icy are learned off-policy. The bootstrapped value of the succeeding state can then be
estimated by the current policy’s probability distribution of that state and the respective
Q-values, as done by SAC. Actual values within the environment are learned off-policy,
and the maximizing action is chosen for updates. One example of such an algorithm is
Deep Q-Learning.

Most policy optimization objectives are defined over the stationary state distribution
of the current policy and therefore require on-policy training. Importance sampling still
allows for off-policy gradient calculations in policy optimization but can significantly
increase gradient approximation variance. Consequently, it is only used in special cases,
for example, to execute a few consecutive network updates with just one batch of data.
Prioritized Experience Replay is an extension that can only be applied to off-policy
algorithms.

(ix) Deterministic and Stochastic Policies. Some problems with imperfect information
can not be solved by deterministic policies, in which case stochastic alternatives are
more powerful. Deterministic policies or deterministic evaluations of stochastic poli-
cies tend to have higher total expected returns as only the best known actions are cho-
sen. Stochastic policies have benefits in exploration and in multi-player games, where
unpredictability is beneficial.

(x) Exploration-Exploitation Tradeoff. The exploration-exploitation tradeoff is a nat-
ural dilemma when not knowing whether an optimum is reached in a decision pro-
cess. Exploration is necessary to discover better solutions, but exploitation is needed
for directed learning instead of random wandering. Many different exploration strate-
gies exist, such as ε-greedy, stochastic exploration, maximum entropy exploration,
upper confidence bounds exploration, etc. Some problems are especially challenging
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for exploration. The hard exploration problem, for example, occurs in environments
with very sparse rewards.

(xi) Hyperparameter Tuning and Robustness. The sensitivity of algorithms indicates
how narrow the usable ranges of hyperparameters are and how well they can be trained
on multiple problems with the same configuration. Sensitivity is often mentioned in
the literature but rarely analyzed in detail. It is highly problem-specific, which makes
studying sensitivity on multiple problems valuable. Algorithms like PPO can make
algorithms less sensitive by limiting the incentives of drastic adjustments to the policy.
The ability of an algorithm to cope with changes between training and test environment
is referred to as robustness. It can be improved by training in multiple environments,
creating adversarial setups, or applying maximum entropy RL.

(xii) Learning Stability. The learning stability of an algorithm is an indicator for its
tendency to forget intermediate best-performing policies throughout training. Low vari-
ance gradient estimators help improve algorithms’ stability, and methods like PPO’s
objective function clipping can help prevent destructive updates. Additional options
include gradient norm clipping and stochastic weight averaging.

5 Conclusion

To solve real-world problems with incomplete information, RL is a promising approach
as it only requires a suitable reward function and no optimal or complete data. Over the
training process, the model incrementally builds better solutions by observing the con-
sequences of consecutive decisions. The practicality of RL is impaired by the opaque
selection of algorithms and their extensions as well as the more complicated tuning
compared to supervised learning. In this context, we reviewed multiple properties of
RL problems and algorithms and inferred helpful guidelines to decide under which cir-
cumstances to apply which algorithm. As a complementing future research direction,
we will verify the presented conceptual insights by evaluating numerical results, e.g.,
for specific combinatorial problem applications.
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Abstract. In this study, three performance metrics based on data envelopment
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1 Introduction

In operations research, many practical problems have been addressed through multi-
objective linear programming (MOLP). In this way, as mentioned by (Gómez-Lagos
et al., 2023), MOLP models have been proposed in transport (Demir et al., 2014), agri-
culture (Varas et al., 2020), manufacturing (Mirzapour Al-E-Hashem et al., 2011), loca-
tion (Karatas & Yakıcı, 2018), among others. Solving these MOLP models is usually
challenging (Deb, 2014), and, as a result, both exact and heuristic methods have been
proposed for their solution. However, selecting an appropriate solution method is not
a straightforward task. Consequently, various performance metrics have been proposed
to analyze the solutions obtained by these methods. Regarding this matter, Riquelme
et al. (2015) presented a literature review on performance metrics for evaluating MOLP
solutionmethods, classifying them into three categories: cardinality, accuracy, and diver-
sity. Cardinality represents the number of non-dominated solutions found by a MOLP
solution method. Accuracy refers to the convergence of the non-dominated solutions to
the Pareto frontier, measuring the distance between each non-dominated solution and
the theoretical Pareto frontier (Riquelme et al., 2015). Diversity considers the distribu-
tion and spread of non-dominated solutions. Distribution considers the relative distance
among the non-dominated solutions, while spread corresponds to the range of objective
function values covered by the non-dominated solutions. It is worth mentioning that dif-
ferent metrics have been proposed within each category (Audet et al., 2021; Riquelme
et al., 2015). Furthermore Riquelme et al. (2015) also classified the performance met-
rics as unary or binary. A metric is unary if the non-dominated solutions are obtained
using only one solution method. Conversely, a metric is binary if the non-dominated
solutions are obtained by using two solution methods. In Audet et al. (2021), a liter-
ature review analyzing 63 performance metrics was carried out, classifying them into
cardinality, accuracy, spread, and distribution categories. In another study, Halim et al.
(2021) critically analyzed the advantages and disadvantages of 100 performance met-
rics. In addition, they defined the desirable attributes and properties that a performance
metric must have.

In the literature, data envelopment analysis (DEA)models have been used to estimate
MOLP performance metrics. Bal & Satoglu (2019) used the BCC model (Banker et al.,
1984) as a metric to evaluate the performance of Pareto optimal solutions obtained
by the augmented epsilon constraint method 2. This solution method was applied to a
MOLP model with four objective functions, aiming to enhance the coordination of an
appliance supply chain. Hong & Jeong (2019) applied the CCR model (Charnes et al.,
1978) to evaluate solutions obtained through the weighting method. The method was
used to solve a MOLP model with five objective functions, which aimed to determine
strategic decisions for a facility location–allocation problem. Recently, Gómez-Lagos
et al. (2023) proposed three performance metrics based on DEA models for evaluating
solutions obtained by MOLP solution methods.

In this study, three performance metrics based on DEA models to evaluate MOLP
solution methods are proposed. Each metric is associated with a category of cardinal-
ity, accuracy, or diversity, and can be classified as unary or binary. The current study
differs from Gómez-Lagos et al. (2023) in the development of a non-linear model to
a linear model based on the Slack Based Measure (SBM) model (Tone, 2001), and in
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the demonstration that the proposed integer SBM model (INT-SBM) can identify and
evaluate non-dominated solutions in the non-convex region of a Pareto frontier.

This study is divided as follows: Sect. 2 describes the applied DEA models. In
Sect. 3, the performance metrics based on DEA models are proposed and the procedure
for calculating eachmetric is described. Section 4 presents the results of this study, while
Sect. 5 summarizes the conclusions.

2 Applied Data Envelopment Analysis Models

The DEA models used for assessing different performance metrics of MOLP solution
methods, as the associated procedure for applying them, are presented in this section. As
mentioned previously, the categories considered in this analysis are cardinality, accuracy,
and diversity. The proposed cardinality and accuracy metrics are estimated using a DEA
model based on the slacks-based measure proposed by Tone (2001). On the other hand,
the proposed diversity metric is calculated applying the super efficiency DEA model
developed by Andersen & Petersen (1993). The characteristics for selecting these DEA
models and the way that they can be used for estimating every metric are detailed in the
following sub-sections.

The nomenclature of parameters and decision variables used in the DEA models are
defined in Table 1 and Table 2, respectively. In this definition, the MOLP nature of the
DEA assessment is considered.

Table 1. Parameters of the DEA models (Gómez-Lagos et al., 2023).

Parameter Definition

m Number of objective functions to be minimized in the MOLP model

s Number of objective functions to be maximized in the MOLP model

n Number of solutions obtained by a MOLP solution method

xij Value of the minimized objective function i obtained by solution j, where
i = 1, . . . ,m, j = 1, . . . , n

yrj Value of the maximized objective function r obtained by solution j, where
r = 1, . . . , s, j = 1, . . . , n

j0 Evaluated solution in every execution of a DEA model

In the following sub-sections, the applied DEA models are described.
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Table 2. Decision variables of the DEA models (Gómez-Lagos et al., 2023).

Variable Definition

S−
i Slack of the minimized objective function i, where i = 1, . . . ,m

S+
r Slack of the maximized objective function r, where r = 1, . . . , s

λj Intensity of the solution j for establishing the target in the Pareto frontier of the
evaluated solution j0, j = 1, . . . , n

θ Proportional reduction of the objective functions for the evaluated solution j0

2.1 Integer Slack-Based Measure Model (INT-SBM)

In this sub-section, aDEAmodel based on the slacks-basedmeasuremodel (SBM) devel-
oped by Tone (2001) is proposed in order to obtain a measure related to the domination
degree of every solution. In thisway, efficient solutionswill correspond to non-dominated
solutions. Furthermore, the SBM does not require inputs in an output-oriented model,
nor does it require outputs in an input-oriented model. In this way, it can evaluate MOLP
solution methods that solve models that have only maximization objective functions or
only minimization objective functions.

The SBM proposed by Tone (2001) is a non-linear model, which is linearized apply-
ing the linear transformation proposed by Charnes & Cooper (1962). In this study, the
proposed DEAmodel is based on the model presented by Tone (2001), but it uses binary
variables. The binary variables allow us to identify non-dominated solutions located in
the non-convex region of the Pareto frontier. On the other hand, the SBM proposed by
Tone (2001) does not allow us to identify this kind of non-dominated solutions. For
this reason, the SBM model proposed in this study is called integer-SBM (INT-SBM).
Figure 1 illustrates an example where some non-dominated solutions are in the non-
convex region of the Pareto frontier (highlighted through the red ellipse). In the abscissa
axis (x), a FO to be minimized is considered, and in the ordinates axis (y), a FO to be
maximized is considered.

It is important to notice that the INT-SBMmodel must be executed for every solution
j obtained by a MOLP method, where j0 is the evaluated solution in a specific model
execution. The non-linear INT-SBM model (Model 1) for every evaluated solution j0 is
formulated as follows.

(Model 1)

Minimize ξj0 =
1 − 1

m

∑m
i=1

S−
i
/
xij0

1 − 1
s

∑s
r=1

S+
r
/
yrj0

(1)

Subject to

xij0 =
n∑

j=1

xijλj + S−
i , i = 1, . . . ,m, (2)
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Fig. 1. Non-dominated solutions located in the non-convex region of the Pareto frontier.

yrj0 =
n∑

j=1

yrjλj − S+
r , r = 1, . . . , s, (3)

n∑

j=1

λj = 1, (4)

λj ∈ {0, 1}, j = 1, . . . , n, (5)

S−
i ≥ 0, i = 1, . . . ,m, (6)

S+
r ≥ 0, r = 1, . . . , s, (7)

As can be observed inModel 1, the objective function (1) is non-linear. This objective
function estimates the efficiency score of the solution j0 based on the maximation of
slacks associated to their values of the MOLP objective functions. Constraints (2) and
(3) calculate the slacks associated to the values of the minimized and maximized MOLP
objective functions of the solution j0, respectively. Constraint (4) corresponds to the
convexity constraint of the efficient frontier, and it is associated to variable returns to
scale. Finally, constraints (5) to (7) establish the nature of the decision variables.

In the Model 1, ξj0 corresponds to the efficiency score of the evaluated solution
j0, which can take values greater than zero, and equal or lower than one. Thus, ξj0=
1 represents a non-dominated solution, and ξj0< 1 represents a dominated solution. In
addition, this score represents the closeness to the Pareto frontier.

For linearizing the objective function (1), a decision variable t is introduced according
to the transformation proposed by Charnes & Cooper (1962). The decision variable t is
defined as follows:

t = 1

1 + 1
s

∑s
r=1

S+
r

yrj0

(8)
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Therefore, the objective function (1) is:

Minimizeξj0 =
(

1 − 1

m

m∑

i=1

S−
i

xij0

)

× t = t − 1

m

m∑

i=1

S−
i × t

xij0
(9)

This multiplication by t requires to linearize the decision variables using the
following equations:

ζ−
i = S−

i × t, i = 1, . . . ,m, (10)

ζ+
r = S+

r × t, r = 1, . . . , s, (11)

ϒj = λj × t, j = 1, . . . , n. (12)

In this way, a new linearized INT-SBM model (Model 2) can be formulated as:
(Model 2)

Minimizeξj0 = t − 1

m

m∑

i=1

ζ−
i

xij0
(13)

Subject to

1 = t + 1

s

s∑

r=1

ζ+
r

yrj0
, (14)

xij0 t =
n∑

j=1

xijϒj + ζ−
i , i = 1, . . . ,m, (15)

yrj0 t =
n∑

j=1

yrjϒj − ζ+
r , r = 1, . . . , s, (16)

n∑

j=1

ϒj = t, (17)

ϒj ∈ {0, t}, j = 1, . . . , n, (18)

ζ−
i ≥ 0, i = 1, . . . ,m, (19)

ζ+
r ≥ 0, r = 1, . . . , s, (20)

t ≥ 0. (21)

It is important to notice that Eq. (14) corresponds toEq. (8) after performing algebraic
operations on both sides of the equation. As can be observed in constraint (18), the
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variableϒj only can take values equals to zero or t. For this reason, the big-M constraints
are used in the formulation for transforming ϒj in a continuous variable. Consequently,
the linearized INT-SBM formulation used for estimating the performance metrics is:

(Model 3)

Minimize ξj0 = t − 1

m

m∑

i=1

ζ−
i

xij0
(13)

Subject to

1 = t + 1

s

s∑

r=1

ζ+
r

yrj0
, (14)

xij0 t =
n∑

j=1

xijϒj + ζ−
i , i = 1, . . . ,m, (15)

yrj0 t =
n∑

j=1

yrjϒj − ζ+
r , r = 1, . . . , s, (16)

n∑

j=1

ϒj = t, (17)

n∑

j=1

λj = 1, (22)

ϒj ≥ t − (
1 − λj

)
, j = 1, . . . , n, (23)

ϒj ≤ t + (
1 − λj

)
, j = 1, . . . , n, (24)

λj ∈ {0, 1}, j = 1, . . . , n, (25)

ϒj ≥ 0, j = 1, . . . , n, (26)

ζ−
i ≥ 0, i = 1, . . . ,m, (19)

ζ+
r ≥ 0, r = 1, . . . , s, (20)

t ≥ 0. (21)

In Model 3, the new constraints are from constraint (22) until constraint (26). Equa-
tion (22) is incorporated for ensuring that ϒj only takes values equal to zero or t. On the
other hand, constraints (23) and (24) establish that ϒj is equal to t when λj is equal to
one. Finally, constraints (25) and (26) correspond to the nature of the decision variables
λj and ϒj. The other constraints of Model 3 were explained in Model 2 description.
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2.2 Super-Efficiency DEA Model (SE-DEA)

Andersen & Petersen (1993) proposed the super-efficiency DEA model for ranking all
the evaluated units according to their efficiency score. This efficiency score could be
greater than one, for an input-oriented model, or lower than one, for an output-oriented
model. These values are possible because the data of every evaluated solution j0 are not
considered in the observed data of the DEA model for determining the DEA efficient
frontier. Figure 2 presents an example where the Pareto frontier is modified when an
extreme solution is withdrawn from the observed data. In this figure, the dashed line
represents the frontier when the extreme solution highlighted in yellow is withdrawn.
As mentioned previously, the efficiency score for this extreme solution will be greater
than one, for an input-oriented DEA model, and lower than one, for an output-oriented
DEA model, because it defines the Pareto frontier. Additionally, as it is explained later
in this sub-section, for variable returns to scale, the super-efficiency DEA model could
be infeasible.
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Fig. 2. Pareto frontier modification when an extreme solution is withdrawn from the observed
data set.

In this study, an input-oriented super-efficiency DEA model (SE-DEA) was used,
aiming to improve the discrimination among the non-dominated solutions. It is important
tomention that themodel orientation does not vary the identification of the super-efficient
solutions’ set. In addition, the SE-DEA model must be executed for every solution j,
where j0 corresponds to the evaluated solution in a specific model execution.

The SE-DEA formulation is:

Minimize δj0 = θ (27)
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Subject to

n∑

j = 1
j �= j0

λjxij ≤ θxij0 , i = 1, . . . ,m, (28)

n∑

j = 1
j �= j0

λjyrj ≥ yrj0 , r = 1, . . . , s, (29)

n∑

j = 1
j �= j0

λj = 1, (30)

λj ≥ 0, j = 1, . . . , n, (31)

θ free (32)

The objective function (27) minimizes the proportional reduction of the minimized
objective functions obtained by solution j0. Constraint (28) establishes that the propor-
tional reduction of the minimized objective functions obtained by solution j0 must be
greater or equal than the composed target in the efficient frontier (left hand of the con-
straint). Constraint (29) estimates that the maximized objective functions obtained by
solution j0 must be lower or equal than the composed target in the efficient frontier (left
hand of the constraint). Constraint (30) imposes the convexity of the efficient frontier,
which is associated to variable returns to scale (Banker et al., 1984). Constraints (31)
and (32) establish the nature of the decision variables.

In the SE-DEA model, δj0 corresponds to the efficiency score of the evaluated solu-
tion j0. This efficiency score, differently from a traditional BCC input-oriented model
(Banker et al., 1984), could achieve values greater than one or even the model could be
infeasible. The necessary and sufficient conditions for infeasibility of SE-DEA models
when variable returns to scale are considered (constraint 30), are presented in the study
of Seiford & Zhu (1999). Consequently, a solution j0 that is an extreme point of the
Pareto efficient frontier will have a δj0 value greater than one or the associated model
could be infeasible.

In the following sub-section, the performance metrics for evaluatingMOLP solution
methods and the steps for implementing them using the formulated DEA models are
described.

3 Performance Metrics Based on DEA Models

Asmentioned previously, the considered categories for evaluatingMOLP solutionmeth-
ods are cardinality, accuracy, and diversity. The proposed metrics in every category and
the steps for calculating them are presented as follows.
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3.1 Cardinality Metric (CM)

The cardinality metric (CM) represents the domination degree of the solutions obtained
by a MOLP method. For this reason, it is a unary metric, using the information of a
unique solution set. In this study, it is calculated using the INT-SBM model, where data
of all the solutions (S) obtained by a solution method are evaluated. It is important to
highlight that the dominated and non-dominated solutions obtained by a solutionmethod
are considered as observed data of the model. The following steps must be carried out
for obtaining the cardinality metric CM.

Step 1: Execute the INT-SBM model for every solution of set S. In this step, a
vector � is obtained, which corresponds to the vector of ξi, the efficient measure of the
INT-SBM model for every solution i of the set S.

Step 2: Calculate the efficiency average of vector �. This value will correspond to
the cardinality metric CM.

The cardinality metric CM is greater than zero, and lower than or equal to one. A
value equal to one means that any solution dominated by other does not exist in the set
S. On the other hand, a value close to zero means that few non-dominated solutions exist
in the set S.

3.2 Accuracy Metric (AC)

The accuracy metric (AC) represents the domination degree of one MOLP solution
method over other MOLP solution method. Furthermore, it is a binary metric because it
needs two sets of non-dominated solutions for making the comparison. In this study, for
estimating the accuracy metric AC, the INT-SBMmodel and the metafrontier approach,
proposed byO’Donnell et al. (2008), are used together. Themetafrontier approach allows
us to classify the non-dominated solutions into different groups. In this way, two sets
of non-dominated solutions, S1 and S2, obtained by two different solution methods, are
compared. The following steps must be carried out for estimating the proposed accuracy
metric AC.

Step 1: Execute the INT-SBM model for every non-dominated solution of set S1.
In this step, a vector �1 is obtained, which corresponds to the vector of ξi, the efficient
measure of the INT-SBM model for every non-dominated solution i of the set S1.

Step 2: Execute the INT-SBM model for every non-dominated solution of set S2.
In this step, a vector �2 is obtained, which corresponds to the vector of ξi, the efficient
measure of the INT-SBM model for every non-dominated solution i of the set S2.

Step 3: Execute the INT-SBM model for every solution belonging to the union of
sets S1 and S2. In this step, a vector �3 is obtained, which corresponds to the vector of
ξi, the efficient measure of the INT-SBM model for solution i belonging to the union of
sets S1 and S2.

Step 4: Separate the efficiency vector �3 in two sets, efficiency scores of solutions
from set S1 (�3

1), and efficiency scores of solutions from set S2 (�3
2).

Step 5:Calculate the efficiency averages of vectors�1,�2,�3
1, and�3

2, individually.
Step 6: Make the difference between the efficiency averages of vectors �1 and �3

1,
which corresponds to AC1, and between �2 and �3

2, which corresponds to AC2.
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Step 7: Calculate the minimum value between AC1 and AC2. This value will
correspond to the accuracy metric AC.

It is important to notice that AC is greater than or equal to zero, and lower than one.
Moreover, the solution method with the minimum value AC will be the best method,
meaning that this method obtains a lower number of dominated solutions than the other
solution method.

3.3 Diversity Metric (DM)

The diversity metric DM evaluates a change in the Pareto frontier when a new solution
is added. This is a unary metric because it uses the information of a unique solution set.
In this study, the diversity metric DM is calculated using the SE-DEA model. In this
model, the non-dominated solutions (NS) obtained by a MOLP method are evaluated.
The following steps must be carried out for obtaining the DM.

Step 1: Execute the SE-DEA model for every solution of the set NS. A vector 	 is
obtained, which corresponds to the vector of δi, that is, a vector of the efficiency score
obtained by the SE-DEA model for every solution i of the set NS.

Step 2: Identify the subset of NS that corresponds to extreme solutions. These solu-
tions are those that in step 1, obtained a δi value greater than one or the respective
SE-DEA model is infeasible. This subset denominated ES, defines the Pareto frontier.

Step 3: Calculate DM using Eq. (33).

DM = |ES|
|NS| (33)

The diversity metric DM is greater than zero, and lower than or equal to one. A
value close to zero means that most of the solutions are a linear combination of extreme
solutions in ES. A value equal to one means that all the solutions are not a linear
combination of other extreme solutions in ES. In this way, the best value for the DM is
one.

4 Analysis of MOLP Solutions Applying the Proposed DEA
Metrics

In this section, the proposed metrics are analyzed in order to demonstrate their adequacy
for evaluating different Pareto frontiers’ structures. For this reason, in the first sub-
section, the proposed INT-SBM is applied to show its performance when non-convex
regions in the Pareto frontier exist Furthermore, in the second sub-section, two Pareto
frontiers obtained by two MOLP metaheuristics are compared using the proposed met-
rics. The Pareto frontiers were estimated for a real case study (Gómez-Lagos et al.,
2021).

4.1 Analysis of the Non-Convex Region of a Pareto Frontier

In this sub-section, an analysis of the non-convex region of a Pareto frontier using the
INT-SBM and the SBM models is shown. For this purpose, two Pareto frontiers are
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(a) Convex Pareto frontier (example A)

(b) Non-convex Pareto frontier (example B)
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Fig. 3. Analyzed Pareto frontiers.

compared according to the accuracy metric (AC) proposed in Sect. 3. Figure 3 presents
the two analyzed Pareto frontiers.

In Fig. 3.a, a convex Pareto frontier is shown (example A), and, in Fig. 3.b, a non-
convex Pareto frontier is illustrated (example B). The non-dominated solutions of exam-
ple b include the non-dominated solutions of exampleA.Moreover, three non-dominated
solutions are included in the Pareto frontier of example B for establishing the non-convex
region. The non-dominated solutions of both frontiers are evaluated using the INT-SBM
and SBMmodels. The purpose of this comparison is to demonstrate that the SBMmodel
(Tone, 2001) is not able to recognize and assess the non-convex region of a Pareto frontier.
The results of both models are summarized in Table 3.

In Table 3, the first eight non-dominated solutions, which are in the convex region
of the Pareto frontiers, are highlighted in red in Figs. 3.a and 3.b. The last three non-
dominated solutions are in the non-convex region of the Pareto frontier depicted in
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Table 3. Comparison of efficiency scores obtained by INT-SBM and SBM models.

Non-dominated Solutions Efficiency Score Average
for
Example A

Efficiency Score Average
for
Example B

INT-SBM SBM INT-SBM SBM

Located in the
Convex Region

1 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00

4 1.00 1.00 1.00 1.00

5 1.00 1.00 1.00 1.00

6 1.00 1.00 1.00 1.00

7 1.00 1.00 1.00 1.00

8 1.00 1.00 1.00 1.00

Located in the
Non-convex
Region

9 – – 1.00 0.63

10 - – 1.00 0.51

11 – – 1.00 0.51

Average 1.00 1.00 1.00 0.88

Fig. 3.b and are highlighted in yellow. The efficiency scores obtained by both models
for solutions in the convex region of the Pareto frontier are equal to one. On the other
hand, the efficiency scores obtained by the models for the solutions in the non-convex
region of the Pareto frontier differ. Using the INT-SBM model, the efficiency scores
for these solutions are one. However, using the SBM model, the efficiency scores for
these solutions are lower than one. Therefore, the SBM model considers the solutions
in the non-convex region of a Pareto frontier as inefficient, without recognizing their
non-dominance characteristic. Comparing the average scores presented in Table 3, the
SBMmodel evaluates the Pareto frontier with non-convex regions worse than the Pareto
frontier without non-convex regions. Consequently, the SBM model is not suitable for
assessing Pareto frontiers, because it does not consider the possibility of non-convex
regions.

4.2 Performance Analysis of Pareto Frontiers for a Real Case Study

In this sub-section, the solutions obtained by twoMOLPmethods are used for calculating
the proposed metrics. The solutions were obtained for a MOLP model based on the
tactical harvest planning model proposed by Gómez-Lagos et al. (2021), where the
same case study used in this study was analyzed. In this MOLPmodel, the first objective
corresponds to the harvest costs’ minimization (Z1); the second objective corresponds to
the harvest days’ minimization (Z2); and the third objective corresponds to the harvest
fruit in the optimal conditions’ maximization (Z3). The two applied MOLP methods are
two solution strategies of the MO-GRASP algorithm (algorithms a and b), that is, two
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solution strategies of the multi-objective greedy randomized adaptive search procedure
(Martí et al., 2015).

After executing every MO-GRASP algorithm 1000 times for solving the MOLP
model, two sets of solutions were obtained, Sa and Sb; one set of 1000 solutions for
every algorithm. In Fig. 4, the trade-off between the objective function values obtained
by the set Sa are represented. The first trade-off corresponds to Z1 and Z2; the second,
Z1 and Z3; and the third, Z2 and Z3.
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Fig. 4. Trade-offs between objective function values of set Sa (Gómez-Lagos et al., 2023).

A conflict between the objective functions can be observed in Fig. 4 because when
an objective function improves, the other deteriorates.

Figure 5 represents the trade-off between the objective function values obtained by
the set Sb. The conflict between the objective functions is also observed in Fig. 5, where
an objective improves the other objective function worsens.

Table 4 summarizes the metrics calculated for both sets of solutions, Sa and Sb. In
this way, it can be observed that the set Sa obtains the best value for the cardinality metric
CM (0.980). Regarding the accuracy metric AC, the set Sa again achieves the best value
(0.999), meaning that main of solutions of Sa are not dominated by the solutions of Sb.
Finally, for the diversity metric DM, both sets obtain low values. However, the set Sb
obtains the best value (0.131), meaning that around 13% are extreme-efficient solutions,
that is, define the Pareto frontier.
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Fig. 5. Trade-offs between objective function values of set Sb (Gómez-Lagos et al., 2023).

Table 4. Values of the performance metrics for Sa and Sb (Gómez-Lagos et al., 2023).

Set of Solutions CM AC DM

Sa 0.980 0.999 0.101

Sb 0.977 0.962 0.131

From the values presented in Table 4, it could be suggested selecting the algorithm
for solving the MOLP model because it shows the best performance in the binary metric
AC, and in the unary metric CM. Furthermore, for the unary metric DM, around 10%
the solutions obtained by the algorithm a are extreme-efficient, close toDM obtained by
algorithm b.

5 Conclusions

In this study, three performance metrics associated with cardinality, accuracy, and diver-
sity categories, and based on DEAmodels were proposed for evaluating MOLP solution
methods. A procedure was presented for calculating each metric through the application
of the proposed DEA models, which are the INT-SBM model, an integer version of the
SBM model (Tone, 2001), and the SE-DEA model developed by Andersen & Petersen
(1993). The INT-SBM model was developed to properly evaluate non-dominated solu-
tion in the non-convex region of the Pareto frontier. In this way, an illustrative example
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comparing the INT-SBM model with the SBM model was carried out, demonstrating
that the INT-SBM can identify and assess the non-convex region of a Pareto frontier.
The proposed metrics were applied to analyze Pareto frontiers in a real case study,
where the Pareto frontiers obtained from two MO-GRASP algorithms were compared.
The INT-SBM efficiency score, used to calculate the cardinality and accuracy metrics,
enabled discrimination among the non-dominated solutions regardless their location in
the Pareto frontier. The SE-DEA efficiency score, used to estimate the diversity metric,
facilitated the identification of the set of non-dominated solutions that determine each
Pareto frontier. Therefore, the proposed metrics allow for discrimination by consider-
ing desirable characteristics of the Pareto frontiers obtained through different MOLP
solution methods, and even aid in the selection of a suitable solution method.

For future research, exploring DEA models that incorporate zero or negative values
within the set of non-dominated solutions could be of interest. Moreover, new DEA
models to identify non-dominated solutions located in non-convex regions of the Pareto
frontier, with an emphasis on enhancing the diversity metric, could be developed.
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Abstract. The process of charging electric vehicles (EVs) within an electric-
ity network is a complex stochastic process. Various factors contribute to this
complexity, including the stochastic arrivals and demands of users at charging
stations, the nonlinear nature of power flow in the network, and the need to
uphold reliability constraints for the network’s proper functioning. While non-
linear power flow equations can be approximated by computationally simpler
linear equations, the consequences of linearizing the physics in such a complex
stochastic process require careful examination. In this study, we apply a blend of
analytical and simulation techniques to compare the performance of the nonlin-
ear Distflow model with the linear Linearized Distflow model in the context of
EV charging. The results demonstrate that across various parameter settings, the
network’s performance is comparable when using either of the power flow mod-
els. Specifically, in terms of the mean number of EVs and mean charging time,
there is a relative difference of less than 5% between the two models. These find-
ings suggest that the Linearized Distflow model can be effectively employed as a
simplified approximation for the Distflow model, providing a faster yet efficient
analysis of network performance.

Keywords: Electric vehicle charging · Power flow models · Bandwidth-sharing
networks

1 Introduction

In recent years, congestion has become a recurring issue in electrical distribution net-
works. The combination of increasing electricity consumption, the rapid adoption of
renewable energy generation, the ongoing energy transition, and the slow expansion of
network infrastructure has pushed these networks to their limits. The consequences of
congestion are far-reaching, with potential network damage and the risk of blackouts.
The significance of congestion and its potential consequences are highlighted in a study
by [11], where they evaluate the impact of the energy transition on an actual electricity
network in the Netherlands. The authors show that charging a small number of EVs is
enough to cause a blackout in a neighborhood.

In the coming years, the integration of EVs leads to increased congestion in distri-
bution networks. The increasing demand for EVs is driven by factors such as decreasing
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battery costs, advancements in charging technologies, and the implementation of var-
ious decision policies [12]. As a result, there is expected to be a rapid and substantial
integration of EV load into the power grid.

This paper considers the stochastic process of charging EVs in a neighborhood such
that the voltage losses in the distribution network, a small part of the electricity network,
stay small. The stochastic nature of this process arises from the random arrivals of
EVs at charging stations and the energy demands of EV owners. The voltage losses,
also known as voltage drops, on the cables within the network arise from the physical
properties of the network and are directly related to power losses in the network.

In a distribution network, the total power generated by the generator is shared
among all EVs connected to the network. However, due to power losses that occur dur-
ing the transportation of electricity, not all EVs charging at different stations can receive
an equal amount of power. These losses arise due to resistance in network cables. As a
result, the power allocation for each EV in the network depends on the total number of
EVs present and their respective charging locations within the network.

While the problem setup allows for a more general problem description, i.e., consid-
ering the process of controlling stochastic loads in a neighborhood such that the voltage
losses in the distribution network stay small, our specific focus is on EV charging. The
model description is appropriate for EVs due to two key elements: neglecting reactive
power and considering a maximum number of parking spaces.

In general, power can be divided into two components: active power and reactive
power. Active power, also known as real power, is the portion of power that performs
useful work, such as generating mechanical energy or producing heat. Reactive power,
on the other hand, represents the power consumed or produced by inductive or capaci-
tive elements in an electrical system. The exclusion of reactive power is suitable for EVs
as they typically do not introduce a significant reactive power component. This char-
acteristic aligns with resistive loads such as incandescent light bulbs, electric heaters,
toasters, and electric stoves, which primarily consume active power without generating
substantial reactive power.

Additionally, the consideration of a maximum parking lot capacity makes our setup
specific to EVs. It is common for parking lots or charging stations to have a restricted
number of charging points available, which naturally establishes a finite capacity for
accommodating EVs. At the same time, parking lots often have limited physical space.
Consequently, this imposes a maximum threshold on the number of EVs that can be
accommodated simultaneously within the given parking lot.

In our modeling approach, we represent the process as a queuing system.Within this
system, EVs are treated as individual “jobs”, while the charging stations are considered
the “servers” responsible for delivering the service, which is the power supplied to the
EVs. The power allocation is subject to physical laws and network constraints. At each
charging station, all EVs are served simultaneously, and the service begins immediately
upon arrival. Furthermore, each EV receives an equal proportion of the power allocated
to that particular charging station.

The queuing model we utilize belongs to the broader category of queuing networks
known as bandwidth-sharing networks. In these networks, customers (in our setting:
EVs) necessitate simultaneous service, which entails the parallel usage of multiple
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“servers” (in our setting: all distribution lines between the EV’s location to the gen-
erator within the distribution network).

An early paper in the field of queuing literature related to EV charging is [21],
where the authors focus on maximizing utility while minimizing the probability of over-
loads. They emphasize the importance of avoiding synchronization in EV-charging start
times to prevent overloads. Next, [4] and [28] delve into queuing models specifically
for fast charging. In these studies, the authors propose control mechanisms that result
in improved outcomes, such as reduced blocking of EVs, more efficient utilization of
power resources, and minimal queuing. In [1], the authors develop a stochastic resource-
sharing network for EV charging. They also introduce a fluid approximation to estimate
the number of uncharged EVs within a distribution network.

Besides general literature on charging electric vehicles in a queuing framework,
there is related literature on the stability of queuing networks that are used in the con-
text of EV charging, although very limited. In [6], the authors investigate the stability
of queuing networks that can be used in the context of EV charging through simula-
tions. They find that there exists a threshold on the arrival rates of EVs, beyond which
some cars experience increasingly long waiting times to complete their charging. This
finding highlights the importance of managing arrival rates to ensure efficient charging
processes. The first analytical study in [9] explores the stability of queuing networks
for stochastic load demands on a line, which fits the framework of EV charging. The
authors compare the critical arrival rates under different power flow models and explic-
itly compute the differences between these rates as the number of nodes in the network
approaches infinity.

In order to model the physical laws and network constraints, we utilize two differ-
ent approximations of the alternating current (AC) power flow equations [17]. The first
model we examine is the nonlinearDistflowmodel, where the nonlinear terms explicitly
account for the electric power losses within the system. This model captures the com-
plex nature of power flow in the network. The second model we consider is a simplified
version of the Distflow model known as the Linearized Distflow model, as proposed in
[2,3]. The Linearized Distflow model approximates the power flow equations by dis-
regarding the nonlinear terms that represent the electric power losses in the original
Distflow model.

The practical utilization of the Linearized Distflow model as a substitute for the
Distflow model is based on the assumption that power losses on cables are generally
small. Experimental studies have demonstrated that this approximation introduces only
a minor relative error, typically on the order of 1% [10]. However, it is important to
investigate the potential magnification of these small relative errors when applied in
complex stochastic processes, which is the focus of our research in this paper. Several
other numerical studies have also been conducted to validate the accuracy and effective-
ness of the Linearized Distflow model [3,5,7,15,19,23,24,26,27]. These studies pro-
vide further evidence supporting the practical utility of the Linearized Distflow model
in various scenarios.

Regardless of the chosen power flow model, it is crucial to adhere to the physical
laws and constraints of the network. One significant constraint in distribution networks
is the regulation of voltage losses, commonly referred to as voltage drop, across network
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cables. These losses arise due to the resistance of the network’s cables. Maintaining
control over voltage losses is essential to ensure that all network users receive electricity
at a safe and reliable voltage level within specified standards, which may vary across
different countries [13]. For instance, in accordance with Dutch legislation, the voltage
drop within a distribution network must not exceed 4.5% [25].

In this study, we assess the accuracy and effectiveness of the Linearized Distflow
model compared to the Distflow model. To achieve this, we utilize simulation tech-
niques along with analytical results that establish the relationship between the power
flow equations of both models. Our goal is to compare the performance of different
power flow models in the stochastic process of EV charging, specifically in terms of
the mean number of EVs and the average charging time for each EV within the net-
work. Furthermore, we focus on analyzing the critical arrival rates under both power
models. These critical arrival rates represent specific rates at which the mean number
of EVs reach their maximum capacity. By studying these critical arrival rates, we gain
valuable insights into the difference between the two power flow models. Moreover,
to capture more realistic scenarios, we introduce heterogeneity into the network. This
entails incorporating variability in the distribution of arrival rates across different nodes
within the network. By considering this heterogeneity, we can explore how variations
in arrival rates impact the overall network performance.

This paper builds upon our previous work presented in [8], expanding it in two sig-
nificant directions. First, we consider a more general network topology compared to
the previous study. While the network topology in [8] was limited to a line, this paper
focuses on a radial, i.e., a tree, topology. This extension allows us to explore the impli-
cations of the power flow models in a more general and realistic network structure,
as distribution networks often have a tree topology. Second, in contrast to our previ-
ous work in [8], this paper provides a comprehensive comparison of both power flow
models, allowing for a more informed evaluation of their respective performances and
characteristics. By considering a more general network topology and introducing ana-
lytical comparisons between the power flow models, we deepen our understanding of
the effects of different network topologies and power flow approximations on the over-
all performance of the system.

This paper yields several notable contributions, which can be summarized as fol-
lows. First, we observe that the performance of the Linearized Distflow model is com-
parable to that of the Distflow model. Specifically, the mean number of EVs and the
average charging time of EVs under both power flow models exhibit similar behavior.
Moreover, the relative difference in critical arrival rates is below 5%. These findings
provide further evidence that the Linearized Distflow model serves as a valid and accu-
rate approximation of the Distflow model, even in scenarios with high heterogeneity
and tree network topologies. Second, regarding the heterogeneity within the network,
our numerical examples consider cases where one particular node has almost all the
load of the system. Even in such highly heterogeneous scenarios, the performance of
the network remains unchanged when employing either the Linearized Distflow or the
Distflow model. However, it is important to note that the network’s performance is not
symmetric under the same loads. If the load of an individual node is way larger than
the other loads of the other nodes, the performance of the network is different from the
performance of the network if the same largest load is placed on a different node.
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The paper is structured as follows. We introduce the queuing network and outline
the constraints and assumptions of the electrical distribution network. Additionally, we
present the power flow models that we consider for analysis. In Sect. 3, we present
two analytical results that allow us to compare the feasible regions of the optimization
problem governing the dynamics of the queuing model under both power flow models.
These results provide valuable insights into the differences between the two models.
Section 4 presents a series of numerical experiments that demonstrate the accuracy and
effectiveness of the Linearized Distflow model. We also investigate the impact of vari-
ability in the distribution of arrival rates on the network’s performance. A summary of
the paper’s results is provided in Sect. 5, where we discuss the main findings and their
implications. Finally, in Sect. 6, we gather some proofs of results in this paper.

2 Model Description

This section provides a detailed model description. We discuss the main components of
the EV-charging model, i.e.; we describe the characteristics of the queuing, the distri-
bution network, and the power flow models.

2.1 Queuing Model of EV-Charging

We use a queuing model to study the process of charging EVs in a distribution network.
In this model, EVs, referred to as jobs require service, which is provided by charging
stations acting as servers. The service being delivered is the power supplied to EVs.
Each parking lot is equipped with a single charging station comprising multiple park-
ing spaces, with each space having its own EV charger. The capacity of each queue
corresponds to the number of parking spaces available in a charging station, denoted as
K, where K is a positive value. It represents the maximum number of EVs that can be
accommodated at each charging station simultaneously.

Thus, in the queuing system, we considerN single-server queues, where each queue
represents a parking lot with its own arrival stream of jobs. We denote the state of the
system at time t as X(t) = (X1(t), . . . , XN (t)) where Xi(t) represents the number of
jobs in queue i at time t. At each queue, jobs arrive independently according to Poisson
processes with arrival rates λi, where i ranges from 1 to N . The service requirements of
the jobs are independent exponentially distributed random variables with a mean of 1. If
the capacity of a queue is already reached when a new job arrives, the job does not enter
the system but is assumed to leave immediately. In other words, if all parking spaces in
a charging station are occupied, a newly arriving EV cannot be accommodated and is
considered to depart without receiving service.

At each queue, all jobs are served simultaneously and there is no queuing. Each
job starts receiving service immediately upon arrival. The service capacity, which
represents the charging rate, is allocated equally among all jobs in the queue. We
denote the vector of service capacities allocated to each queue at time t as p(t) =
(p1(t), . . . , pN (t)). From now on, for simplicity, we drop the dependence on time t
from the notation. Therefore, we write Xj and pj instead of Xj(t) and pj(t), respec-
tively.
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The service capacities, represented by the vector p, are dependent on the current
state of the system, characterized by the vectorX, which represents the number of jobs
at each parking lot. For each state of the system, i.e. a given number of EVs charging
at each parking lot, we assume that the charging rates p are determined as the unique
solution of the optimization problem:

max
p

∑

j

Xj log
(

pj

Xj

)
, (1)

which are called proportional fair allocations. The feasible region of this optimization
problem can take many forms and depends heavily on the power flow model that is
used. In Sect. 2.2, we discuss the feasible regions for both power flow models in more
detail.

Under our assumption of independent arrivals of EVs according to Poisson pro-
cesses and independent service requirements that are exponentially distributed, we can
model the number of EVs charging at each station as an N -dimensional continuous-
time Markov process. The evolution of the queue at node j is given by

Xj(t) → Xj(t) + 1 at rate λj ,

and

Xj(t) → Xj(t) − 1 at rate pj .

2.2 Distribution Network Model

As distribution networks are typically radial [1], we model the distribution network as
a directed graph G = (N+, E). Here, N+ = {0} ∪ N represents the set of nodes, with
node 0 being the root node. The number of nodes in the network, excluding the root
node, is denoted as N , and E represents the set of directed edges. We assume that G has
a tree topology. Each edge (i, j) ∈ E corresponds to a line connecting nodes i and j,
where node j is located farther away from the root node than node i. The impedance of
each edge (i, j) ∈ E is characterized by the values zij = rij + ixij , where rij and xij

are the resistance and reactance along the lines, respectively. We make the following
natural assumption, given that rij >> xij in distribution networks [14,20].

Assumption 1 . Each edge εi,j ∈ E has a resistance value rij > 0 and reactance value
xij = 0.

Furthermore, introduce the complex power consumption at node j as sj = pj +iqj ,
where pj and qj denote the active and reactive power consumption at node j, respec-
tively. By convention, a positive active (reactive) power term corresponds to consuming
active (reactive) power, while a negative active (reactive) power term corresponds to
generating active (reactive) power. Since EVs can only consume active power [6], it is
natural to make the following assumption:
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Assumption 2 . Each node j ∈ N has a non-negative active power pj ≥ 0 and a
reactive power qj = 0.

We denote the voltage at node j as Vj . Given Assumptions 1 and 2, the voltages at each
node j, Vj , can be chosen to have zero imaginary components [1,6].

Voltage Drop Constraint. The distribution network constraints, i.e., in our case only the
voltage drop constraint, represent the feasible region of (1) and are described by a set C.
The set C is contained in an N -dimensional vector space and represents feasible power
allocations. In our setting, a power allocation is feasible if the maximal voltage drop;
i.e., the relative difference between the root voltage V0 and the minimum voltage among
all nodes between the root node and any other node, is bounded by a value Δ ∈ (0, 1

2 ].
Thus, the distribution network constraints can be described as follows:

C :=
{
p :

V0 − minj∈N+ Vj

V0
≤ Δ

}
, (2)

where 0 < Δ ≤ 1
2 .

2.3 Power Flow Equations

We introduce two commonly used models to represent the power flow that are used for
radial systems; i.e., systems where all charging stations have only one (and the same)
source of supply. These models are called the Distflow model and Linearized Distflow
model [3,16]. Both power flow models yield a relation in three complex variables (as
derived in [16]), namely the magnitude of the squared voltages |Vj |2 for all nodes j ∈
N+, the complex power Sij and the complex current Iij for all edges εij ∈ E .

In the following sections, we discuss each power flow model, which provides us
with expressions for the (squared) voltages. These voltage expressions make the voltage
drop constraint in Eq. (2) more concrete for each power flow model.

Linearized Distflow Model. For the Linearized Distflow model, we follow the approach
in [16]. Using Assumptions 1 and 2 yields the following explicit expression for the
squared voltage (V L

j )2 at every node j ∈ N+:

(V L
j )2 = V 2

0 −
∑

(h,i)∈P(0,j)

2

⎛

⎝rhi

∑

l∈T (i)

pl

⎞

⎠ . (3)

Distflow Model. For the Distflow model, we derive a relation in a single complex vari-
able, namely the complex voltage at each node. However, given Assumptions 1 and 2,
this relation simplifies to a relation in the real voltage at each node.

This power flowmodel is based on three principles. The first principle is Kirchhoff’s
current law (4); the injected current at each bus is equal to the sum of outward flowing
current from that bus, i.e.,

Ij = −Iij +
∑

k:j→k

Ijk, (i, j), (j, k) ∈ E . (4)
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Second, by Ohm’s law, the current flowing from bus i to bus j is proportional to the
voltage across points i and j, where the constant of proportionality is given by the
resistance rij , i.e.,

Iij =
V D

i − V D
j

rij
, (i, j) ∈ E .

Third, by the complex power formula, the injected current at bus j is given by

Ij =
pj

V D
j

, j ∈ N+. (5)

Before we proceed with the alternative derivation, we introduce some notation and
conventions. We denote L as the set of leaf nodes in the tree G and T (j) as the subtree
rooted at node j, including node j itself. To indicate that node k belongs to subtree T (j),
we write “k ∈ T (j)”. Similarly, (k, l) ∈ T (j) denotes that the edge (k, l) belongs to
subtree T (j). Additionally, P(j, k) represents the set of edges on the unique path from
node j to node k.

It is worth noting that there are different labeling schemes for nodes in a network.
However, for our purposes, the specific labeling is not crucial. The only conventions we
adhere to are that the label 0 corresponds to the root of the tree, and ν ∈ L refers to one
of the leaf nodes of the tree.

We continue with the alternative derivation. Using Kirchhoff’s current law, Ohm’s
law, and the definition of complex power, we obtain the following set of equations
governing the voltages differences in the network;

V D
h − V D

i = rhi
pi

V D
i

, i ∈ L, (6)

V D
h − V D

i =
∑

k:i→k

rhi

rik
(V D

i − V D
k ) + rhi

pi

V D
i

, i /∈ {0,L}, (7)

0 =
∑

k:0→k

1
r0k

(V D
0 − V D

k ) +
p0
V D
0

. (8)

From (7), we observe that the voltage differences between neighboring nodes form a
telescoping series. As a result, we can express the voltage differences between subse-
quent nodes in a simple closed-form expression. The expression is given in Lemma 1.

Lemma 1. Let (h, i) ∈ E , the voltage differences V D
h − V D

i is given by

V D
h − V D

i = rhi

∑

�∈T (i)

p�

V D
�

. (9)

The proof of Lemma 1 can be found in Appendix 6.2.
Furthermore, having the Lemma 1 at our disposal, we recognize another telescoping

sum in the left-hand side of (9) for the voltage difference between neighboring nodes
when summing over a set of edges on the unique path from node j to node k. This
allows us to write an alternative expression for the voltage at every node j ∈ N+ in
terms of voltages located deeper in the network. The alternative expression is presented
in Lemma 2.
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Lemma 2. Let j ∈ N+, the voltage V D
j is given by

V D
j = V D

k +
∑

(h,i)∈P(j,k)

⎛

⎝rhi

∑

�∈T (i)

p�

V D
�

⎞

⎠ , (10)

with the convention that node k is further away from the root node than node j.

The proof of Lemma 2 can also be found in Appendix 6.2.

2.4 Summary

In Sects. 2.1–2.3, we covered all individual components of the modeling of the process
of charging EVs within a distribution network, employing two different power flow
models. In this section, we provide a complete description of this process under both
power flow models.

Despite the difference in the power flow model, the processes of charging EVs
exhibit the same characteristics. Both processes are defined by:

1. The network topology G, including the set of nodes N+ that represent parking lots
with charging stations and a set of edges E that represent distribution lines, along
with the characteristics of the network, given by the resistances rij on each edge.

2. The behavior of an individual parking lot by the arrivals and departures of EVs,
as well as the current number of EVs being charged at that particular location. If
k denotes the number of EVs at a parking lot, then an arrival at this parking lot
increases k by 1 and a departure decreases k by 1 up to the maximum number of
parking spaces of a parking lot, given by parameter K.

3. The transitions between values of k that occur according to the arrival rates λj and
the charging rates pj for parking lot j. In our setting, the charging rates pj depend on
the total number of EVs currently in the network and their location. We assume that
the charging rates pj are the unique solution of the optimization problem in (1), con-
strained by the voltage drop constraint in (2) for a given voltage drop parameter Δ.

Besides the similarities described above, the difference in both processes can be found
in the voltage drop constraint. The calculation of voltages required in the voltage drop
constraint depends on the specific power flow model employed. If the Distflow model is
utilized, these voltages are computed using Eq. (10). On the other hand, if the Linearized
Distflow model is employed, these voltages are computed using Eq. (3).

To distinguish between the two processes, we assign the label “model D” to the pro-
cess defined by characteristics (1)–((3)) above and Eq. (10) when utilizing the Distflow
model. Similarly, we assign the label “model L” to the process defined by characteristics
(1)–(3) above and Eq. (3) when employing the Linearized Distflow model.

3 Analytical Results

In this section, we derive two analytical results to compare both power flow models,
specifically their feasible regions for optimizationproblem (1). First,wedevelop aduality
in tree networks for the Distflowmodel. Second, we construct an inner region of the fea-
sible region for the Distflowmodel in terms of the Linearized Distflowmodel equations.



Comparing Power Flow Models in Tree Networks 147

The first result provides a way to characterize the feasible region of optimization
problem (1) for the Distflow model. Observe that the feasible region consists of the
implicit expression for the voltages for the Distflow model (cf. Eq. (10)) and the voltage
drop constraint (cf. Sect. 2.2). In other words, the first result provides a way to check
if there exist voltages that satisfy the non-linear power flow Eqs. (10) and the voltage
drop constraint (2) for any given set of active power p.

The reason to develop such a result is simple. The active powers p are the solution
to the optimization problem in (1). If we are not able to check whether the powers p
are a feasible solution to (1), it is impossible to find the powers p that maximize the
expression in (1).

Therefore, in Sect. 3.1, we first establish an equivalence between two cases, namely
case I and II. Case I involves fixing the voltage at the root node and verifying the exis-
tence of voltages that satisfy the power flow equations and voltage drop constraint. Case
II involves setting the voltages at the leaf nodes and checking if there exist voltages such
that the maximum voltage difference in the network is smaller than a predefined volt-
age drop parameter Δ (cf. Eq. (2)). This latter case is computationally favorable given
the recursive structure of the voltages starting at the leaf nodes. However, even in this
case, it remains nontrivial to check if there exist voltages that satisfy the power flow
equations for the Distflow model and the voltage drop constraint. Hence, as a second
step, we provide a method for the computations of voltages in case II and present an
example involving a small network.

The second result is a direct way to compare the feasible regions of the optimization
problems in (1) for both the Distflow model and the Linearized Distflow model. In our
previous work [8], we observed that the feasible region under the Linearized Distflow
is slightly larger than the feasible region under the Distflow model. This is due to the
overestimation of voltages under the Linearized Distflow model. However, with the
second result, we construct a feasible region in terms of the Linearized Distflow model
equations that is slightly smaller than the feasible region under the Distflow model.

Having an inner region in terms of the Linearized Distflow model offers at least two
advantages:

1. The inner region is not only smaller but easy to compute as well. This is due to the
availability of the explicit expressions for the squared voltages in the network under
this power flow model (cf. Eq. (3)).

2. The inner region provides a lower (or upper) bound on the optimal value when
embedded in a maximization (or minimization) problem. For example, consider the
optimization problem in (1).

In combination with the slightly larger feasible region under the Linearized Distflow
model, the last advantage enables us to bound the solution to such optimization prob-
lems for the Distflow model between solutions of computationally easier optimization
problems.

Therefore, we construct in Sect. 3.2 an inner region of the feasible region under the
Distflow model in terms of the Linearized Distflow model.
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3.1 Duality in Tree Networks

In this section, we derive a duality result in tree networks for the Distflow model. The
duality result enables us to verify the feasibility of any given power allocation. To estab-
lish this duality, we follow the approach described in [22], which provides the proof of
the duality result for a line network. In our study, we extend this result from a line
network to a more complex tree network structure.

In Corollary 1, we show that a sequence of voltages V D
j , . . . , V D

ν from any node j
in the network to any leaf node ν ∈ L forms a decreasing sequence. This is a technical
result that allows us to show that the voltage at node j, as a function of the voltage at a
leaf node ν ∈ L, is an increasing function. This has been established in Lemma 3. This
allows us to prove the desired equivalence between cases I and II.

We first start with the decreasing sequence of voltages.

Corollary 1. Consider any leaf node ν ∈ L. Suppose the voltage V D
ν is positive

(V D
ν > 0). Then, for every path from node j to node ν in the network, the voltages

V D
j , . . . , V D

ν form a decreasing sequence.

Proof. This is an immediate consequence of Lemma 2. We prove it by induction. From
Lemma 2, we have for the leaf node ν, i.e. ν ∈ L, and its unique parent node M :

V D
M = V D

N + rMN
pN

V D
N

≥ V D
N ,

since rMN , pN and V D
N are positive by assumption. Now, suppose that we have a

decreasing sequence of voltages for some node k in the unique path from node j to
ν. In other words, suppose that V D

k ≥ V D
i for all edges (k, i) on the unique path from

node k to node N (i.e., (k, i) ∈ P(k,N)). By the induction hypothesis, we have for
the unique parent node K of node k,

V D
K = V D

k + rKk

∑

�∈T (k)

p�

V D
�

≥ V D
k + rKk

∑
�∈T (k) p�

V D
N

≥ V D
k + 0 = V D

k ,

since the resistance rKk, all powers p� for � ∈ T (k), and V D
N are positive.

Before we continue to Lemma 3, we introduce some new notation. To establish the
equivalence between case I and case II, we consider the voltage at each node j as a
function of the voltage at a leaf node ν ∈ L. Thus, let the voltage V D

ν be positive and
define vj : R+ → R+ to be the function defined by the equation vj(V D

ν ) = V D
j . This

is another formulation of the voltage at node j under the Distflow model, as shown in
Eq. (10), expressed as a function of the voltage at a leaf node ν ∈ L.

In Lemma 3, we show that the function vj is an increasing function.

Lemma 3. Consider any leaf node ν ∈ L. Suppose the voltage V D
ν is positive (V D

ν >
0). If V D

0 ≤ 2V D
ν , then

0 ≤ dvj

dV D
ν

≤ 1.
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Proof. This is true for j = ν, since dvν

dV D
ν

= dV D
ν

dV D
ν

= 1. Suppose that there is some

J ∈ N+ such that 0 ≤ dvj

dV D
ν

≤ 1 for all j ∈ T (J), then we have for the (unique) parent
node K, by Lemma 2 and the definition of the function vj ,

dvK

dV D
ν

=
d

dV D
ν

⎛

⎝V D
ν +

∑

(i,k)∈P(K,ν)

⎛

⎝rik

∑

�∈T (k)

p�

V�

⎞

⎠

⎞

⎠

= 1 −
∑

(i,k)∈P(K,ν)

⎛

⎝rik

∑

�∈T (k)

p�

v2
� (V D

ν )
dv�

dV D
ν

⎞

⎠

= 1 −
∑

(i,k)∈P(K,ν)

⎛

⎝rik

∑

�∈T (k)

p�

V 2
�

dv�

dV D
ν

⎞

⎠ . (11)

First, we show that dvK

dV D
ν

≥ 0. By Corollary 1, the sequence of voltages V D
K , . . . , V D

ν

on the unique path from node K to node ν is a decreasing sequence. This implies that
− 1

V D
�

≥ − 1
V D

ν
for any node � on the path from node K to node ν. In combination with

the induction hypothesis this yields,

dvK

dV D
ν

≥ 1 − 1
V D

ν

∑

(i,k)∈P(K,ν)

⎛

⎝rik

∑

�∈T (k)

p�

V�

⎞

⎠

= 1 − 1
V D

ν

(
V D

K − V D
ν

)
,

where the last equality follows from Lemma 2. Combining the fact that the sequence
of voltages V D

K , . . . , V D
ν on the unique path from node K to node ν is a decreasing

sequence and the assumption that V D
0 ≤ 2V D

ν , yields,

dvK

dV D
ν

= 2 − V D
K

V D
ν

≥ 2 − 2V D
ν

V D
ν

= 0.

Now, we show that dvK

dV D
ν

≤ 1. By the induction hypothesis, we have − dv�

dV D
ν

≤ 0 for all
nodes � on the unique path from node K to node ν. Starting from (11), we immediately
get,

dvK

dV D
ν

= 1 −
∑

(i,k)∈P(K,ν)

⎛

⎝rik

∑

�∈T (k)

p�

V 2
�

dv�

dV D
ν

⎞

⎠ ≤ 1,

which concludes the induction step.

Note that the assumption V D
0 ≤ 2V D

ν in Lemma 3 is not restrictive due to the volt-
age drop constraint stated in Eq. (2). The voltage drop constraint ensures that volt-
ages cannot go below 50% of the voltage at the root node. Therefore, the assumption
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V D
0 ≤ 2V D

ν imposes the same limitation on the voltages in the network as imposed by
the voltage drop constraint.

Now, we have all the preliminary results to prove the desired equivalence between
the two cases. Specifically, we consider the case where the voltage at the root node is
fixed and check if there exist voltages that satisfy the power flow equations and voltage
drop constraint. We compare this case to the scenario where the voltages at the leaf
nodes are set, and we verify if there exist voltages such that the largest voltage differ-
ence in the network is smaller than a predefined voltage drop parameter. The formal
statement of this equivalence is summarized in Proposition 1.

Proposition 1. Let the resistances rik for all edges (i, k) ∈ E and power consumptions
p� for all nodes � ∈ N+ be given. Then, the following equivalence, for a voltage drop
parameter, 0 < Δ ≤ 1

2 , for the voltages (under the Distflow model) at the root node
and any leaf node (ν ∈ L) of the network holds:

(
∃x ≥ (1 − Δ)c s.t. V D

ν = x and v0(V D
ν ) = c

)
if and only if

(
V D

ν = (1 − Δ)c and v0(V D
ν ) ≤ c

)
, (12)

where c > 0.

Proof. In order to prove the implication from left to right, we take the negation of the
right-hand side of (12). Suppose v0(V D

ν ) > c. By Lemma 3, v0 is a increasing function
in V D

ν , so c < v0((1 − Δ)c) ≤ v0(x) for x ≥ (1 − Δ)c. Hence, there exists no
x ≥ (1 − Δ)c such that v0(x) = c.

For the order implication, we first observe that v0 is a continuous function, because
it is a composition of continuous functions itself. To prove the implication from the
right-hand side of (12) to the left-hand side of (12), we assume that at V D

ν = (1− Δ)c,
we have v0(V D

ν ) ≤ c. Then, by the intermediate value theorem, we know that there
exists (1 − Δ)c ≤ x ≤ c such that v0(x) = c.

In Proposition 1, the equivalence between cases I and II holds for any leaf node ν ∈ L.
However, in order to satisfy the condition of maintaining the maximum voltage dif-
ference in the network below a predefined threshold Δ, we employ the equivalence
between cases I and II specifically for the leaf node where the minimal voltage in the
network is attained. This choice ensures that the voltage constraints are met throughout
the complete network. The result is summarized in Theorem 1.

Theorem 1. Let the resistances rik for all edges (i, k) ∈ E and power consumptions p�

for all nodes � ∈ N+ be given. Denote by H the node with the minimal voltage in the
network. If V D

H = (1 − Δ)c and v0(V D
H ) ≤ c, then the power allocation p is feasible

(given the resistances rik for all edges (i, k) ∈ E).

Proof. Let the resistances rik for all edges (i, k) ∈ E and power consumptions p� for
all nodes � ∈ N+ be given. Denote by H the node with the minimal voltage in the
network. If V D

H = (1 − Δ)c and v0(V D
H ) ≤ c, then, by Proposition 1, there exists a

voltage V D
0 = c and V D

H ≥ (1 − Δ)c. Hence, the relative maximal voltage drop (cf.
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Eq. (2)) in the network is

V D
0 − V D

H

V D
0

≤ c − (1 − Δ)c
c

= Δ,

which implies that the power allocation p is feasible.

It is important to notice that finding the node with the minimal voltage in the net-
work influences the practical use of Theorem 1. Therefore, we conjecture that the mini-
mum voltage is attained at the node that is heaviest loaded. Here, we define the heaviest
loaded node as the leaf node that yields the largest weighted sum of loads along the
path from the root node to that leaf node. The weighted sum takes into account the
resistances by multiplying the load on each node by the sum of resistances along the
unique path from the root node to that particular node. The conjecture can be summa-
rized as follows:

Conjecture 1. Let the resistances rik for all edges (i, k) ∈ E and power consumptions
p� for all nodes � ∈ N+ be given. Denote by H the node with the heaviest load, i.e.,

H := argmax
ν∈L

⎧
⎨

⎩
∑

(i,k)∈P(0,ν)

rik

∑

�∈T (k)

p�

⎫
⎬

⎭ . (13)

Then, the minimum voltage in the network is located at node H , i.e., V D
ν ≤ V D

� for all
� ∈ N+.

Conjecture 1 has been confirmed to be true based on our numerical experiments for dif-
ferent small distribution networks across a wide range of parameter settings, providing
evidence for its validity.

Notice that it is possible to find the heaviest loaded node H without explicitly the
voltages based on the Distflow model. The determination of node H can be done based
on network characteristics and a specific power allocation (cf. Eq. (13)).

Furthermore, observe that this conjecture is not crucial for the applicability of The-
orem 1, it provides a means to streamline the process of determining feasible power
allocations. In cases where the specific node with the minimum voltage is unknown,
one can iterate the procedure for each leaf node in the network, verifying if there exists
a scenario where the maximum voltage difference is below the predefined threshold Δ.
However, if the node at which the minimum voltage is attained is known, the proce-
dure only needs to be executed once, specifically for node H , reducing computational
overhead.

Procedure for the Computation of Voltages for the Distflow Model. Until now, we have
established a method to determine the feasibility of a given power allocation p accord-
ing to Theorem 1. However, it is necessary to develop a procedure for computing the
voltages in case II, starting from the leaf nodes and working our way up in the network.

Before we start with the procedure, it is helpful to introduce some new notation. For
all remaining leaf nodes, we define the total load as the weighted sum of loads along
the path from the root node to each specific leaf node. Similar to the case of the heaviest
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loaded node, the weighted sum accounts for the resistances by multiplying the load at
each node by the sum of resistances along the unique path from the root node to that
particular node.

We propose to use a forward-backward type algorithm to compute the voltage at the
root node for the Distflow model. The algorithm follows these steps:

1. Initialization: compute the total load for all leaf nodes, sort the voltages in ascending
order based on their total load, and set the voltages at all leaf nodes equal to the
minimum allowed voltage.

2. Backward computation: knowing all voltages in a subtree rooted at node j, allows
for the computation of the voltage at its unique parent node i, i.e., we compute in a
backward manner,

V D
i = V D

j + rij

∑

�∈T (j)

p�

V�
. (14)

3. Forward recomputation: when we encounter a node with multiple children, we need
to recompute the voltages along all paths leading back to their respective leaf nodes,
excluding the path with the highest total load. This recomputation is performed in a
forward manner. Given the voltage at a junction node i and the voltages in a subtree
rooted in one of the children nodes j of the junction node, excluding the child node
j itself, we can compute the voltage at this child node j. This step ensures that all
voltage values in the subtree rooted at node i are appropriately updated.

To compute the voltage at node j during the forward step, we follow these steps.
First, we rewrite Eq. (14) in terms of the voltage at node j. Then, we multiply both
sides of the equation by the voltage at node j and rearrange the terms, resulting in a
second-order equation in the voltage at node j:

(V D
j )2 =

⎛

⎝Vi − rij

∑

�∈T (j),� �=j

p�

V�

⎞

⎠ V D
j − rijpj . (15)

Equation (15) provides a relationship between the voltage at node j and the voltages
and power allocations of its parent node i and children nodes � ∈ T (j), excluding
node j itself. By solving (15), we can determine the voltage at node j in terms of
the network’s characteristics, the power allocations and all voltages in the subtree of
node j, excluding node j itself:

V D
j =

1
2

⎛

⎝V D
i − rij

∑

�∈T (j),� �=j

p�

V D
�

⎞

⎠ ·

·

⎛

⎜⎝1 ±
√√√√1 − 4rijpj(

V D
i − rij

∑
�∈T (j),� �=j

p�

V D
�

)2

⎞

⎟⎠ . (16)
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In Sect. 1, it was observed that the voltages at each node j, denoted as V D
j , can be

chosen to have zero imaginary components. Moreover, to ensure that the voltage
drop is not violated, we have to use the plus-sign in (16). Using the minus-sign
in (16) would result in V D

i ≥ 2V D
j for any edge (i, j) ∈ E , indicating that the

voltage drop on this edge is at least equal to the maximum allowed voltage drop in
the network. Therefore, when computing voltages in a forward manner, we use the
expression in (16) with the plus-sign. This allows us to calculate the voltage at node
j as follows:

V D
j =

1
2

⎛

⎝V D
i − rij

∑

�∈T (j),� �=j

p�

V D
�

⎞

⎠ ·

·

⎛

⎜⎝1 +

√√√√1 − 4rijpj(
V D

i − rij

∑
�∈T (j),� �=j

p�

V D
�

)2

⎞

⎟⎠ . (17)

Starting at the leaf node that is heaviest loaded, denoted as node H . By iteratively
performing the backward computation and forward recomputation steps as described
earlier, we can compute the voltages for all nodes in the network.

Example 1. As an illustrative example, consider a tree network with a fixed number
of parking lots, specifically N = 3. The network consists of a root node (node 0)
connected to node 1, which serves as a parent node to two children, nodes 2 and 3. In
this setting, we set the voltage at the root node as V0 = 1. For the cables connecting
th nodes, we assume equal resistance values. Specifically, the resistance of each cable
is set to r01 = r12 = r13 = 0.1. Next, we allocate power to the parking lots. In this
example, we allocate equal power to nodes 1 and 2, specifically p1 = p2 = 0.1, while
node 3 is allocated a higher power, specifically p3 = 0.2. To control the voltage drop
across the network, we introduce a parameter Δ = 0.05.

The node with the heaviest load is node 3. This can be determined by comparing
the total load that is placed on the path from the root node to node 3 with the total load
that is placed on the path from the root node to node 2. Specifically, we have:

r01 (p1 + p2 + p3) + r13 (p3) = 0.06 > 0.05 = r01 (p1 + p2 + p3) + r12 (p2) .

Since the total load on the first path is greater than the total load on the second path, we
conclude that node 3 is heaviest loaded. Consequently, we set the voltage at the third
node equal to the minimum allowed voltage in the network, which is 1 − Δ = 0.95.
Thus, we set V3 = 0.95.

By moving backward in the tree, we compute the voltage at node 1:

V D
1 = V D

3 + r13
p3
V D
3

= 0.95 + 0.1
0.2
0.95

= 0.9711.

Then, moving forward in the tree, solving for the voltage at node 2, gives

V D
2 =

1
2
V D
1

⎛

⎝1 +
√

1 − r12p2(
1
2V D

1

)2

⎞

⎠ = 0.9606,
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and finally, moving backward in the tree, we find for the voltage at the root node that

V D
0 = V D

1 + r01

(
p1
V D
1

+
p2
V D
2

+
p3
V D
3

)
(18)

= 0.9711 + 0.1
(

0.1
0.9711

+
0.1

0.9606
+

0.1
0.95

)
= 1.0023.

According to Theorem 1, based on the previous voltage calculations, we can conclude
that the power allocation p = (0.1, 0.1, 0.2) is not feasible for the given network con-
figuration.

However, by making a slight change in the power allocation, we can obtain a feasi-
ble power allocation. Let the power allocation for nodes 1 and 2 be the same as before,
i.e., let p1 = p2 = 0.1, but change the power allocation at node 3 to p3 = 0.11. In this
case, the node with the heaviest load remains node 3, as we have:

r01 (p1 + p2 + p3) + r13 (p3) = 0.042 > 0.041 = r01 (p1 + p2 + p3) + r12 (p2) .

By following the same steps as in the previous case, we compute consecutively

V D
1 = 0.9618, V D

2 = 0.9511, and V D
0 = 0.9932.

According to Theorem 1, the power allocation p = (0.1, 0.1, 0.11) is indeed feasible
for the given network configuration.

3.2 Inner Region of Feasible Region

In this section, we construct an inner region of the feasible region of the optimization
problem in (1) for the Distflow model. An inner region, by definition, restricts the feasi-
ble region by excluding certain feasible points. In our case, we express an inner region
of the feasible region under the Distflow model in terms of the Linearized Distflow
model.

To show the desired inner region of the feasible region, we first obtain the feasible
set of power allocations for both power flow models. This set consists of all power
allocation vectors, denoted as p, that satisfy the voltage drop constraint set in Eq. (2).
In other words, the set that consists of all power allocations vectors p such that the
voltage at each node j satisfies the constraint Vj(p) ≥ (1 − Δ)V0.

Next, we obtain an inner region of the feasible region of the optimization problem
in (1) for the Distflow model for a given voltage drop parameter Δ. Additionally, we
carefully select another voltage drop parameter η in such a way that the inner region of
the feasible region of the optimization problem in (1) for the Distflow model is equal
to the feasible region of the optimization problem in (1) for the Linearized Distflow
model that uses the voltage drop parameter η. This inner region corresponds to the set
of power allocation vectors p for which the voltage at each node j satisfies the constraint
V L

j (p) ≥ (1−η)V0, where V L
j (p) is the voltage at node j obtained using the Linearized

Distflow model equations. The result is summarized in Theorem 2.
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Theorem 2. Given Δ ∈ (0, 1
2 ], we define η = 1 −

√
1 − 2Δ(1 − Δ). Then, the feasi-

ble set of the optimization problem in (1) for the Linearized Distflow model, using the
constraint V L

j ≥ (1 − η)V0 for each node j, is contained within the feasible set of the
optimization problem in (1) of the Distflow model, using the constraint V D

j ≥ (1−Δ)V0

for each node j, i.e.,
{
p : V L

j (p) ≥ 1 − η, j ∈ N+
}

⊆
{
p : V D

j (p) ≥ 1 − Δ, j ∈ N+
}

. (19)

Proof. We first derive the feasible set of power allocations for the Distflow model, we
then obtain an inner region of this feasible set and lastly, we construct a feasible set of
power allocations in terms of the Linearized Distflow model equations that is equal to
this inner region.

The feasible set of power allocations for the Distflow model is given by,
{
p : V D

j (p) ≥ (1 − Δ)V0, j ∈ N+
}
=

{
p : V D

H (p) ≥ (1 − Δ)V0

}
, (20)

where H denotes the heaviest loaded node at which we conjecture that the minimum
voltage in the network is attained. Then, by the expression of the voltages for the Dist-
flow model in Eq. (10), we find

{
p : V D

H (p) ≥ (1−Δ)V0

}
=

{
p :

∑

(i,k)∈P(0,H)

⎛

⎝rik

∑

l∈T (k)

pl

V D
l

⎞

⎠ ≤ ΔV0

}
. (21)

However, since we have a minimum allowed voltage in the network, i.e., V D
j (p) ≥

(1 − Δ)V0 for all j ∈ N+, we obtain an inner region for the feasible set of power
allocations for the Distflow model equations, described by the following set:

{
p :

∑

(i,k)∈P(0,H)

⎛

⎝rik

∑

l∈T (k)

pl

⎞

⎠ ≤ Δ(1 − Δ)V 2
0

}
. (22)

On the other hand, the feasible set of power allocations for the Linearized Distflow
model is given by,

{
p : V L

j ≥ (1 − η)V0, j ∈ N+
}
=

{
p :

∑

(i,k)∈P(0,H)

⎛

⎝rik

∑

l∈T (k)

pl

⎞

⎠ ≤ η

(
1 − 1

2
η

)
V 2
0

}
, (23)

since the minimal voltage under the Linearized Distflow model is attained at the heavi-
est loaded node H . Now, we choose η in such a way that the inner region of the feasible
region of the Distflow model in (22) is equal to the feasible region of the Linearized
Distflow model in (23). Therefore, we choose η such that

η

(
1 − 1

2
η

)
V 2
0 = Δ(1 − Δ)V 2

0 ,
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or in other words, such that,

1 − η =
√

1 − 2Δ(1 − Δ). (24)

The construction of the Linearized Distflow model ensures that the feasible set of
the Distflow model (under the constraint V D

j ≥ (1−Δ)V0 for each node j) is contained
within the feasible set of the Linearized Distflowmodel (under the constraint V L

j ≥ (1−
Δ)V0 for each node j). In other words, we have an outer relaxation of the feasible set of
the Distflow model equations in terms of the Linearized Distflow model equations. By
combining this outer relaxation with the inner region obtained in Theorem 2, we have
the following sequence of increasing sets:

{
p : V L

j (p) ≥ (1 − η)V0, j ∈ N+
}

⊆
{
p : V D

j (p) ≥ (1 − Δ)V0, j ∈ N+
}

⊆
{
p : V L

j (p) ≥ (1 − Δ)V0, j ∈ N+
}

, (25)

where 1−η is defined as in (24). Therefore, we do not only have a lower (upper) bound
on the optimal value if we embed the inner region in a maximization (minimization)
problem, but we also have an upper (lower) bound in a maximization (minimization)
problem. In other words, we can bound the optimal solution of an optimization problem
under the Distflow model, using computationally simpler optimization problems under
the Linearized Distflow model.

4 Numerical Results

In Sect. 2, we presented our model for the EV-charging process for two power flow
models, which we labeled as model D and model LD, representing the Distflow and
the Linearized Distflow models, respectively. Both descriptions involve solving con-
strained optimization problems in (1) to allocate charging rates to each parking lot. The
constraints heavily depend on the power flow model that is used. Therefore, in Sect. 3,
we obtained analytical results concerning the feasible regions of the optimization prob-
lems in (1) for the Distflow and Linearized Distflow model. In this section, we obtain
general insights into the performance of models D and LD by simulation over a wide
range of parameter settings. This allows us to compare the behavior of model D and
model LD. Here, we investigate the impact of varying the total arrival rate to the net-
work as well as the distribution of the arrival rate among different parking lots. Our
focus is primarily on two key performance metrics: the mean number of EVs in the
network and the mean charging time of an EV. These metrics provide insights into the
overall state of the system and the efficiency of the charging process. By examining
the behavior of these metrics under different arrival rate scenarios, we gain a valuable
understanding of the network’s performance.

4.1 Line Network

In this section, we obtain these general insights using a small distribution network with
a line topology. We set the number of parking lots to N = 2, the voltage at the root
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node at V0 = 1, the resistance of each cable to r = 0.1, and the parameter to control the
voltage drop to Δ = 0.05. Initially, we assume that all EVs arrive independently at each
parking lot, following Poisson processes with equal rates of λ1 = 1

2λ and λ2 = 1
2λ.

Here, we vary the total arrival rate to the network, λ, between 0.05 and 1. Later, we
relax the assumption of equal arrival rates and vary the fraction of EVs that arrive at
each parking lot. The model is depicted in Fig. 1.

0

V0

1

V1

2

V2

λ1 λ2

Fig. 1. Line network with N = 2 charging stations and arriving vehicles at rate λi, i ∈ N .

In order to effectively manage and control the network, it is important to identify a
critical arrival rate, denoted as λc. This critical arrival rate serves as a threshold at which
the mean number of EVs grows to its maximum capacity. This occurs when the actual
arrival rate surpasses the critical arrival rate. See Fig. 2a, where the mean number of
EVs is plotted versus the individual arrival rate to each parking lot. The figure displays
the mean number of EVs for both power flow models, specifically the Distflow model
(dashed) and the Linearized Distflow model (solid). We observe the mean number of
EVs at parking lot 1 (blue) and parking lot 2 (red). When examining the variation in
the total arrival rate, we notice that the solid curves are close to the dashed lines for
the two parking lots. Additionally, the solid curves are consistently below the dashed
curves. This observation is not surprising given the findings in [9], where it was noted
that the Linearized Distflow power flow model allows for too optimistic arrival rates.
This is due to the fact that the Linearized Distflow model overestimates the voltages
compared to the Distflow model. Consequently, the power allocated to each parking
lot is higher under the Linearized Distflow compared to the Distflow model. Higher
allocated power means faster charging. As a result, EVs leave the parking lots faster
and the mean number of EVs charging is lower.

Besides the observation that there are critical arrival rates under both power flow
models, using the constructed inner region of the feasible region of Theorem 2 and
the observation of the outer relaxation in (25) allows us to compute the critical arrival
rates under the Linearized Distflow model that bound the critical arrival rate under the
Distflowmodel. As discussed in Sect. 1, there are onlyK parking spaces at each parking
lot. Therefore, from a theoretical perspective, the queuing model that we consider is
always stable. However, the critical arrival rate λc that we consider is the arrival rate
that corresponds to the maximum stable arrival rate such that the Markov process X is
positive recurrent given that there is no maximum capacity at each parking lot.

According to [18, Theorem 11], the Markov process X is positive recurrent for an
arrival rate λ if there exists a critical arrival rate λc ∈ C such that λ < λc . Here,
the constraint set C depends on the power flow model. For the Linearized Distflow
model (independent of the voltage drop parameter), the explicit form of the constraint
set C allows for a simple computation of the maximum stable arrival rate (under the
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Linearized Distflow model) that yields a positive recurrent Markov process X. Indeed,
given the assumption that the arrival rates for all parking lots are equal, the expression
for the squared voltage at the end of the line under the Linearized Distflow model (cf.
Eq. (3)) simplifies to,

(V L
2 )2 = 1 − 0.3λL

c ,

where λL
c denotes the critical arrival rate under the Linearized Distflow model. The

maximum stable arrival then corresponds to the arrival rate such that the difference
between the voltage at the root node and the minimum voltage in the network is equal
to the maximal voltage drop.

For the outer relaxation, this implies that the maximum stable arrival rate under the
Linearized Distflow model λL

c (Δ) is the solution to the equation (V L
2 )2 = (1 − Δ)2.

Hence, we denote and compute the critical arrival rate under the Linearized Distflow
model using the voltage drop parameter Δ = 0.05, as follows:

λL
c (Δ) =

1 − (1 − 0.05)2

0.3
= 0.325.

Similarly, for the inner region, we need for the maximum stable arrival rate under the
Linearized Distflow model λL

c (η) that V L
2 = 1 − η. Thus, we denote and compute the

critical arrival rate under the Linearized Distflowmode using the voltage drop parameter
η, as follows:

λc(η) =
2 · 0.05 · (1 − 0.05)

0.3
= 0.317.

Given the critical arrival rates for both the inner region and outer relaxation, under the
Linearized Distflow model, we conclude that the maximum feasible arrival rate under
the Distflow model λD

c (Δ) is bounded by,

0.317 ≤ λD
c (Δ) ≤ 0.325. (26)

The critical arrival rates for each parking lot are then equal to half the total critical
arrival rates as in (26). The critical arrival rates per parking lot are visualized in Fig. 2b.
In this figure, we zoomed in on the mean number of EVs versus the individual arrival
rate to each parking lot for a small range of arrival rates as plotted in Fig. 2a. Besides
the mean number of EVs, we see the critical arrival rate under the Linearized Distflow
model for the inner region (dashed vertical black line) and the outer relaxation (solid
vertical black line). For arrival rates that are smaller than these critical arrival rates,
we see that the mean number of EVs does not grow to the maximum capacity of the
network. On the contrary, for arrival rates that are bigger than these critical arrival rates,
it seems that the number of EVs in the network quickly grows to the maximum capacity
of the network.

Up to this point, our analysis assumed equal arrival rates for all parking lots. How-
ever, in the subsequent analysis, we introduce variability to the distribution of arrival
rates by considering different arrival rates for each parking lot. We vary both the sum
of the arrival rates and the fraction of EVs that arrive at each parking lot. For each
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(a) Mean number of cars (obtained from [8]) (b) Zoom in on mean number of cars

Fig. 2. Mean number of cars vs. the individual arrival rate per parking lot for the Distflow model
(dashed) and the Linearized Distflow model (solid) at parking lot 1 (blue) and at parking lot 2
(red). (Color figure online)

combination of these parameters, we examine the resulting mean number of EVs in
the network. This allows us to gain insights into the impact of varying arrival of the
network’s performance.

The heat map of the mean number of cars exhibits an interesting structure for all
combinations of the sum of all arrival rates and fractions of EVs that arrive at each
parking lot. In Fig. 3, we present the mean number of EVs in the network as a function
of the sum of all arrival rates and the fractions of EVs that arrive at each parking lot. The
heat map reveals a non-symmetric structure in the mean number of EVs in the network.

When we increase the fraction of EVs that arrive at parking lot 1 (and thus decrease
the fraction of EVs that arrive at parking lot 2) compared to the situation with equal
arrival rates, we observe a faster decline in the total mean number of EVs in the network
than when we increase the fraction of EVs that arrive at parking lot 2. This is natural
given the total available power that can be allocated to each parking lot. This outcome
aligns with the total available power that can be allocated to each parking lot. Due to
the power loss on the cables, the available power for charging at parking lot 1 is roughly
twice that of parking lot 2.

To illustrate this, we compare two scenarios: one where a given number of EVs are
charging at parking lot 1 with no EVs charging at parking lot 2 (representing a situation
where the fraction of EVs that arrive at parking lot 1 is high), and another scenario
where the same number of EVs are charging at parking lot 2 with no EVs charging at
parking lot 1 (representing a situation where the fraction of EVs that arrive to parking
lot 2 is high). Since the allocated power to parking lot 1 in the first situation is greater
than the allocated power to parking lot 2 in the second scenario, the mean number of
EVs at parking lot 1 tends to be smaller than the number of EVs at parking lot 2.

Moreover, if we focus on a fixed sum of arrival rates, such as λ1 + λ2 = 0.8, the
variability in the distribution of the total arrival rate has a minor influence on the mean
number of EVs across a wide range of arrival rate ratios. Specifically, we observe that
the relative difference remains below 5% when the fraction of EVs arriving at parking
lot 1 varies between 20% and 60%.
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Fig. 3.Mean number of cars (obtained from [8]). (Color figure online)

Another observation from the heat map of the mean number of cars is that there is a
clear distinction between networks that have reached their capacity and those that have
not. This distinction is visually evident in the color-coded regions.

In the blue region of the heat map, the mean number of EVs is relatively low, indi-
cating that the network is operating below its maximum capacity. However, as we move
towards the green and yellow regions, the mean number of EVs increases significantly
and approaches its maximum capcity of 200 EVs.

Specifically, the green region on the heat map indicates a network where the number
of EVs charging at either one of the parking lots has reached its capacity. This suggests
that one of the parking lots is fully occupied with charging EVs, while the other parking
lot may still have available spaces.

In contrast, the yellow region indicates a network where both parking lots have
reached their capacity, meaning that the number of EVs at both parking lots has reached
its maximum. In this scenario, the network is operating at its full charging capacity, with
all parking spaces occupied by charging EVs.

4.2 Tree Network

In the previous section, we conducted a series of experiments on a small line distribu-
tion network. In this section, we extend our investigations to a small tree distribution
network. Specifically, we consider a tree network with the number of parking lots equal
to 3, i.e., N = 3.

In the tree distribution network, the root node (node 0) is connected to node 1,
which has two children, nodes 2 and 3. Furthermore, we set the voltage at the root node
to V0 = 1, a uniform resistance value r = 0.1 for each cable. Additionally, we use the
parameter, Δ = 0.05, to control the voltage drop.
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Similar to our previous experiments, we assume that at each parking lot, EVs arrive
independently according to Poisson processes with rates λ1 = 2

5λ, λ2 = 3
10λ, λ3 =

3
10λ. Here, λ represents the total arrival rate, which we vary between the range of 0.05
and 0.8. The model is illustrated in Fig. 1.

0 1
3

2

λ1

λ3

λ2

Fig. 4. Tree network with |N | = 3 charging stations and arriving vehicles at rate λi, i ∈ N .

In Fig. 5, the mean number of cars and mean charging time of an EV are visualized
against the total arrival rate to the network. The plot showcases the mean number of
EVs for both the Distflow model (dashed lines) and the Linearized Distflow model
(solid lines) at each parking lot, represented by distinct colors: parking lot 1 (blue),
parking lot 2 (red), and parking lot 3 (green).

For every parking lot, the solid curves are close to, and always below, the dashed
lines. This behavior stems from the fact that the Linearized Distflow model overesti-
mates voltages compared to the Distflow model, as discussed earlier in Sect. 4.1.

From Fig. 5, it becomes clear that at every parking lot, as the actual total arrival
rate to the network surpasses the critical arrival rate, the mean number of EVs at each
parking lot rapidly approaches its maximum capacity. Simultaneously, the mean charg-
ing time experiences a substantial increase across all parking lots when the actual total
arrival rate exceeds the critical arrival rate.

Although the allocated power to parking lot 1 is not enough to lower the mean
number of cars in the system if the total arrival rate to the network is greater than the
critical arrival rate, the allocated power to parking lot 1 lowers the mean charging time
of an EV. This effect can be attributed to the power loss that occurs on the cables.
The power allocated to parking lot 1 is higher than the power allocated to parking lots
2 and 3, which leads to shorter mean charging times for EVs at parking lot 1. This
phenomenon is clearly illustrated in Fig. 5.

We extend our analysis to the tree network depicted in Fig. 4 and compute bounds
on the critical arrival rate for the Distflow model using the inner region approximation
from Theorem 2 and the outer relaxation from (25), similar to what was done for the
line network in Sect. 4.1. Assuming arrival rates of λ1 = 2

5λ, λ2 = 3
10λ, and λ3 = 3

10λ
for each parking lot, and equal cable resistances, the total load on leaf nodes 2 and 3
is identical. Consequently, the expression for the squared voltage at the heaviest loaded
node under the Linearized Distflow model simplifies to:

(V L
2 )2 = 1 − 0.26λL

c ,
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(a) Mean number of cars (b) Mean charging time

Fig. 5. Performance measures vs. total arrival rate per parking lot for the Distflow model (dashed)
and the Linearized Distflow model (solid) at parking lot 1 (blue), at parking lot 2 (red), and
parking lot 3 (green). (Color figure online)

where λL
c represents the critical arrival rate under the Linearized Distflow model. By

computing the critical arrival rates for both the inner region and outer relaxation under
the Linearized Distflow model, we obtain the following bounds on the maximum feasi-
ble arrival rate under the Distflow model:

0.365 ≤ λD
c (Δ) ≤ 0.375.

The critical arrival rates are visually represented in Fig. 5. Here, we see that for arrival
rates smaller than these critical values, the mean number of EVs does not reach the
maximum capacity of the network, and the mean charging time of an EV remains low.
However, as the arrival rates exceed these critical rates, both the number of EVs in the
network and the mean charging time of an EV increase significantly, indicating that the
network’s capacity is being quickly reached.

Instead of assuming fixed arrival rates for all parking lots, we consider different
arrival rates for each parking lot. Following the experiments conducted in the case of
the line network discussed in Sect. 4.1, we explore various combinations of the sum of
the total arrival rate to the network and the fraction of EVs arriving at each parking lot.
Our objective is to examine the mean number of EVs in the network for these different
combinations. To visualize the relationship between the mean number of EVs and the
sum of the total arrival rate along with the fractions of EVs arriving at each parking lot,
we adopt a similar approach as shown in Fig. 3. Specifically, we fix the fraction of EVs
arriving at parking lot 2 and analyze three distinct scenarios: one where this fraction
corresponds to 10% of the total arrival rate, another with 30%, and a third with 60%.

Figure 6 reveals that the observations made in the case of the line network also apply
to the tree network. Specifically, we observe the following consistent patterns:

1. The mean number of EVs exhibits a non-symmetric structure, indicating that the
distribution of EVs across parking lots significantly impacts the overall network
performance.
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2. When considering a fixed total arrival rate, the variability in the distribution of arrival
rates among parking lots has minimal influence on the mean number of EVs. This
finding holds true across a wide range of fraction combinations.

3. A clear distinction persists between networks that have reached their capacity and
those that have not. In the former, where the mean number of EVs approaches the
maximum network capacity, the heatmap exhibits higher values, while in the latter,
the mean number of EVs remains relatively low.

These consistent patterns across both the line and tree network demonstrate the robust-
ness of our findings and provide valuable insights into the behavior of EV charging
networks under varying arrival rate distributions.

(a) λ2
λ1+λ2+λ3

= 0.1 (b) λ2
λ1+λ2+λ3

= 0.3

(c) λ2
λ1+λ2+λ3

= 0.6

Fig. 6. Mean number of cars in tree network.

5 Summary

In summary, our analysis reveals that the performance of both the Distflow model and
the Linearized Distflowmodel in the process of charging EVs is comparable. Simulation
results indicates that, across a wide range of total arrival rates, the mean number of
EVs and mean charging time exhibit a relative difference of less than 5% between the
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two models. This suggests that the Linearized Distflow model provides a reasonable
approximation of the more complex Distflow model.

Furthermore, the critical arrival rates obtained from both power flowmodels demon-
strate close alignment, indicating consistent behavior and agreement between the mod-
els. This observation is reinforced by the computation of critical arrival rates under the
Linearized Distflow model, which provides valuable bounds for the critical arrival rate
under the Distflow model.

Additionally, we find that the variability in the distribution of the total arrival rates
to parking lots has minimal influence on network performance. As long as the fraction
of EVs arriving at each parking lot falls within the range of 20% to 60%, the network’s
performance remains relatively the same, with negligible impact from variations in the
distribution of the total arrival rate over the different parking lots.

These insights have practical implications for the design and operation of EV charg-
ing networks. The results suggest that the Linearized Distflow model can be effectively
utilized as a simplified approximation, enabling faster and more efficient analysis of
network performance. Furthermore, the findings highlight the robustness of the net-
work to variations in the distribution of the total arrival rate over the different parking
lots, providing flexibility in managing EV charging demands across different parking
lots.

6 Proofs

In this section, we provide the proofs of Lemmas 1 and 2. These lemmas establish
important properties of voltage differences and alternative expressions for voltages
under the Distflow model.

6.1 Proof of Lemma 1

Proof. We give a proof by induction. If node i is a leaf node, i.e., i ∈ L, we have the
result immediately from (6) since in that case the only node in the subtree of node i is
node i itself. Now, suppose that there is some j ∈ N+ such that the voltage difference
between subsequent nodes is given by (9) for all k ∈ T (j), then we have for the unique
parent node i,

V D
h − V D

i =
∑

j:i→j

rhi

rij
(V D

i − V D
j ) + rhi

pi

V D
i

=
∑

j:i→j

rhi

rij

⎛

⎝rij

∑

�∈T (j)

p�

V D
�

⎞

⎠ + rhi
pi

V D
i

, (27)

where we used the induction hypothesis in (27). Notice that iterating over all child nodes
j of node i, and then summing over all nodes in the subtrees of nodes j is the same as
summing over all nodes in the subtree of node i excluding node i itself. Hence, after
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simplifying the first term in (27), we find for the voltage difference,

V D
h − V D

i = rhi

∑

j:i→j

∑

�∈T (j)

p�

V D
�

+ rhi
pi

V D
i

= rhi

∑

�∈T (i),� �=i

p�

V D
�

+ rhi
pi

V D
i

. (28)

Combining the two terms on the right-hand side of (28) yield

V D
h − V D

i = rhi

∑

�∈T (i)

p�

V D
�

,

as desired.

6.2 Proof of Lemma 2

The result is an immediate consequence of Lemma 1. Summing over all edges on the
unique path from node j to node k yields a telescoping sum on the left-hand side of (9),
and gives

V D
j − V D

k =
∑

(h,i)∈P(j,k)

⎛

⎝rhi

∑

�∈T (i)

p�

V D
�

⎞

⎠ , (29)

which is, after bringing the voltage V D
k to the right-hand side of (29), equal to the

desired result.
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Abstract. We introduce a robust optimization model for scheduling
operating rooms with uncertain surgical durations. The model addresses
multiple operating rooms and surgical procedures. In the numerical anal-
ysis, we verify the influence of the risk-averse tendency on the schedule.
The schedules created by the robust optimization are compared with
those of stochastic programming. The results suggest that robust opti-
mization avoids long delays, and obtains a solution faster than stochas-
tic programming. In specific control conservative, robust optimization
exhibits the same performance as stochastic programming. The robust
optimization model is more effective for operating room managers who
desire to obtain an accurate solution quickly.

Keywords: Operations research in health service · Operating room
scheduling · Robust optimization · Stochastic programming

1 Introduction

Hospital management is critical to improving the quality of service to
patients [19]. Surgeries account for most of the hospital revenue and expen-
diture [15,18]. Efficient surgical management is required to achieve optimal hos-
pital management. By clarifying the cost structure underlying operating room
time, Dexter and Macario revealed that improved operating room scheduling
can effectively reduce costs [8]. Creating a robust operating room schedule is
effective in managing the operating room.

In the flow of the operating room scheduling, the surgeon and patient decide
the surgery date through mutual agreement. The surgeon then reports the
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surgery date and estimated duration of surgery to the operating room man-
ager. The manager decides when and in which operating room to perform the
surgery based on information such as the estimated duration of surgery and
department.

It is the issue of operating room management that surgery is often not per-
formed according to the schedule. The quality of service to patients is affected
because of the waiting time occurrence owing to the delay from the scheduled
end time of surgery. Surgical duration is uncertain, influenced by the patient’s
condition, lack of information on the preoperative diagnosis, and the surgeon’s
skill. The challenge is to cope with the uncertainty of the surgical duration.

The manager desires to avoid a risk of delay, with surgery being delayed
significantly from the scheduled end time. Long delays lead to increased overtime
for surgical staff, not only increasing costs, but also reducing staff satisfaction. In
operating room scheduling, it is necessary to consider decision-making to avoid
the risk of delay.

In this study, we propose a robust optimization model that considers surgical
procedures and minimizes delay from the regular opening time of the operating
room. After calculating the delay for uncertain surgical duration parameter sets
in the numerical analysis and comparing the performance of the proposed model
to those of the stochastic programming model, we verify whether risk avoidance
tendencies are reflected in schedules. In the proposed model, we consider multiple
operating rooms that could not be considered in Namba et al. [14].

From the numerical results, three important points are obtained as follows:

• Robust optimization tends to avoid long delays.
• Robust optimization, which has only information on the 10th and 90th per-

centile duration of the scenario, exhibits the same performance as stochastic
programming, which has complete information on the scenario in specific
control conservative.

• Robust optimization obtains a solution faster than stochastic programming
because the number of variables and constraints in robust optimization is
smaller than in stochastic programming.

The remainder of the paper is organized as follows: Sect. 2 provides a liter-
ature review. Section 3 introduces the problem setting and robust optimization
model of operating room scheduling. In Sect. 4, we describe the data used in
the study and report the results of our numerical experiments. We conclude the
paper in Sect. 5 with comments regarding matters for future exploration.

2 Literature Review

Operating room scheduling has been studied extensively [5,10,20]. A few stud-
ies have proposed a stochastic model for operating room scheduling [2,9,17].
Batun et al. [4] presented a two-stage stochastic mixed-integer programming
model with uncertain surgical duration. Addis et al. [1] proposed the oper-
ating room rescheduling with uncertain patient arrival and surgical duration.
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Kamran et al. [16] approached the operating room scheduling problem with
different formulations of stochastic programming. Ito et al. [11,12] proposed
a stochastic programming model for scheduling an operating room using the
conditional value-at-risk (CVaR). The CVaR expresses the risk-aversion of the
manager towards the risk that the surgical duration estimated by the surgeon
could be significantly delayed. Another technique that reflects delayed risk aver-
sion is robust optimization. Bandi and Gupta [3] developed a new criterion and
a robust optimization approach for staffing and operating room scheduling prob-
lems under uncertain case mix and case lengths. Denton et al. [6] proposed an
operating room scheduling model with robust optimization to address the uncer-
tain surgical duration.

Our work is somewhat related to Denton et al. [6], but is particularly differ-
ent in that their study did not address the sequence of surgeries in the operating
room. It is important to consider the sequence of surgeries within the operat-
ing room [7]. The manager is making efforts regarding the order of surgeries,
e.g., surgeries belonging to the same department consecutively perform when
arranging surgical equipment and adjusting schedules.

3 Operating Room Scheduling

3.1 Robust Optimization

We propose a robust optimization model for the operating room scheduling prob-
lem under uncertain parameter sets; the worst-case that results in maximum
total surgical duration. The operating room scheduling determines the alloca-
tions to an operating room and surgery procedures.

Surgeries are limited to elective surgeries with prior consent between the
patient and surgeon; thus, we did not consider the interruption of emergency
surgery. In addition, all operating rooms are treated with the same function. We
define surgical duration as the difference between a patient’s entry times and
when the patient leaves the operating room.

The formulation of the maximum surgical duration problem, which is consid-
ered the main problem, is presented in Sect. 3.2. The formulation of the operating
room scheduling problem is shown as follows:

Notation
Index sets.

J: Set of surgeries.
D: Set of departments.
Ed (d ∈ D): Set of surgeries belonging to the department d.
M : Set of operating rooms.

Parameters.

dm(m ∈ M): Regular opening time of the operating room.
nd(d ∈ D): Number of surgeries in department d, nd = |Ed|.
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pj , pj(j ∈ J): Upper and lower bounds on the duration for surgery j.
τ : Control conservative. Set how conservatively you want to control the worst-

case scenario from the decision-maker’s perspective. This represents the num-
ber of surgeries for which the upper bound of the surgical duration is reached.

Variables.

pj(j ∈ J): Duration of surgery j.
cj(j ∈ J): Finishing time of surgery j.
tm(m ∈ M): Delay from the regular opening time of the operating room.
zij(i, j ∈ J, i �= j): Binary variable for surgery precedence, where zij = 1 if

surgery i is processed before surgery j, zij = 0 otherwise.
xmj(m ∈ M, j ∈ J): Binary variable for surgery assignment to the operating

room, where xmj = 1 if in operating room m, surgery j is assigned, xmj = 0
otherwise.

γmij(m ∈ M, i, j ∈ J, i �= j): Linearized binary variables, where γmij = 1 if in
operating room m, surgery i precedes surgery j, γmij = 0 otherwise.

θm(m ∈ M): Linearized binary variables, where θm = 1 if surgeries l and k in
the department d perform in operating room m, θm = 0 otherwise.

α, βj(j ∈ J): Dual variables.
Formulation
Minimize

∑

m∈M

tm (1)

subject to
∑

i∈J

pjxmj ≤ dm + tm, ∀m ∈ M, (2)

∑

m∈M

xmj = 1, ∀j ∈ J, (3)

zij + zji = 1, i �= j,∀i, j ∈ J, (4)

zij + zjk + zki ≤ 2, i �= j, j �= k, k �= i,∀i, j, k ∈ J, (5)

∑

j∈J

jx(m−1)j ≥
∑

j∈J

jxmj , m = 2, ..., |M |, (6)

∑

m∈M

mxmi −
∑

m∈M

mxmj = (|M | − 1)zji, i �= j,∀i, j ∈ J, (7)

∑

i∈Ed

∑

j∈J

zij =
nd(nd + 1)

2
, ∀d ∈ D, (8)
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∑

m∈M

θm ≥ 1, (9)

∑

j∈J

(pj − pj) ≥ ατ +
∑

j∈J

(pj − pj)βj , (10)

1
pj − pj

α + βj ≥ 1, ∀j ∈ J, (11)

pj ≤ pj ≤ pj , ∀j ∈ J, (12)

γmij + 1 ≥ zji + xmi, ∀m ∈ M, i �= j,∀i, j ∈ J, (13)

1 − xml − xmk − θm ≥ 0, ∀l, k ∈ Ed,∀m ∈ M,∀d ∈ D, (14)

xml − θm ≥ 0, ∀l ∈ Ed,∀m ∈ M,∀d ∈ D, (15)

tm ≥ 0, ∀m ∈ M, (16)

α ≥ 0, (17)

βj ≥ 0, ∀j ∈ J, (18)

zij ∈ {0, 1}, i �= j,∀i, j ∈ J, (19)

xmj ∈ {0, 1}, ∀m ∈ M,∀j ∈ J, (20)

γmij ∈ {0, 1}, ∀m ∈ M, i �= j,∀i, j ∈ J, (21)

θm ∈ {0, 1}, ∀m ∈ M. (22)

In the above formulation, the objective function (1) minimizes the total delay
from the regular closing time of the operating room. Constraint (2) deter-
mines delay based upon the surgical duration and regular closing time of oper-
ating room m. Constraint (3) ensures that only one surgery is performed at a
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time. Constraints (4) and (5) are partial circuit constraints for surgery assign-
ments. Constraints (6) and (7) prevent symmetry in surgery assignments.
Constraint (8) ensures that surgeries in the same department are performed
in succession. Note that the constraint has a hidden constraint; surgeries in
the same department are assigned last of the operating room. Constraint (9)
ensures that surgeries in the same department are performed in the same
operating room. The right-hand side of constraint (10) is the objective func-
tion value of the dual problem, and constraint (11) is the constraint for the
dual problem. Here, the dual problem is the complement problem of maxi-
mizing the total duration of the surgery in the next section. Constraint (12)
limits the upper and lower bounds of surgical duration. Constraint (13) is
a constraint on the linearization variable γmij . Constraint (14) and (15) are
constraints on the linearization variable θm. Constraints (16)–(18) are non-
negative constraints on variables tm, α, βj . Constraints (19)–(22) are binary
variable constraints on variables zij , xmj , γmij and θm.

3.2 Surgical Duration Uncertainty

Real-world surgical durations are often subject to uncertainties. A robust opti-
mization model with uncertainty may be more suitable and reasonable for
decision-making. We assume that the uncertain surgical duration q̃j for surgery
j is with respect to the uncertainty set, without assumptions on distribution.
This assumption eliminates the need for accurate distribution information and
enables the scheduling using only limited information, such as the average, min-
imum, and maximum values of data. Variable q̃j is defined q̃j = pj − pj , ∀j ∈ J .
The formulations are as follows:
Maximize

∑

j∈J

q̃j (23)

subject to

∑

j∈J

(
q̃j

pj − pj

)
≤ τ, (24)

0 ≤ q̃j ≤ pj − pj , ∀j ∈ J. (25)

The objective function (23) maximizes the total surgical duration. Con-
straint (24) limits worst-case scenarios by conservative τ . Worst-case scenarios
represent the number of surgeries for which the upper bound of the surgical dura-
tion is reached. Constraint (25) defines the possible range of uncertain surgical
duration q̃j .
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4 Numerical Analysis

4.1 Data

In the following analysis, we used a dataset based on Ito et al. [13]. We solved the
scheduling problem of five operating rooms and eleven surgeries using Gurobi
9.5.1. We compared the schedule created using the robust optimization model
with that created using the stochastic programming model. The computational
equipment is an Intel(R) Core (TM) i7-7500U CPU 2.90 GHz 8.00 GB.

The time from the operating room opening to the time when surgery j should
be completed, dm is 8 h or 480 min. It is desirable that all surgeries be completed
within the regular opening time dm. There are ten departments, i.e., |D| = 10.
Surgeries 1 and 2 were in the same department. Table 1 shows the expected value
Ej [pj ] and standard deviation σj of the duration of surgery j. The upper pj and
lower pj bounds on the surgical duration used in robust optimization were the
10th and 90th percentiles of the duration in surgical scenarios. The conservative
τ varied from 0 to 10 with 1. We assumed that the occurrence probability of the
1000 scenarios used in the stochastic programming model followed a uniform
distribution, and the surgical duration in each scenario followed a log-normal
distribution. We used the stochastic programming model proposed by Ito et
al. [12].

4.2 Results

Figure 1 shows the results of total delay under different τ of robust optimization.
The total delay of the stochastic programming is shorter than that of the robust
optimization for all control conservatives because the surgical scenarios in the
stochastic programming are used. The surgical scenario refers to a combined set
of the duration of surgery. From Fig. 1, when the control conservative τ is 6, the
total delay of the robust optimization shows a value equivalent to that of the

Table 1. Expected value and standard deviation of surgical duration (min).

Surgery j Ej [pj ] σj

1 230 141

2 235 146

3 236 70

4 225 70

5 271 66

6 230 117

7 242 131

8 242 131

9 245 134

10 242 138

11 241 142
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Fig. 1. Results of total delay.

Fig. 2. Number of schedule scenarios with an excessive delay of 1000min or more, ‘-’:
result obtained by stochastic programming.

stochastic programming. Figure 2 shows the number of schedule scenarios with an
excessive delay of 1000 min or more. From Fig. 2, when the control conservative
τ is 6, the number of schedule scenarios with an excessive delay also shows
an equivalent value in robust optimization and stochastic programming. In the
above results, the robust optimization, which has only information on the 10th
and 90th percentile duration of the scenario, exhibits the same performance as
the stochastic programming, which has complete information on the scenario
in specific control conservative. The robust optimization does not require the
estimation of accurate distribution.

Table 2 provides the CPU times required to obtain robust optimization and
stochastic programming solutions for a single instance as the constant control
conservative varies. From Table 2, the CPU time of the robust optimization is
shorter than that of the stochastic programming in all cases. From the above
results, robust optimization can obtain a solution faster than stochastic pro-
gramming because the number of variables and constraints in robust optimiza-
tion is smaller than in stochastic programming. The robust optimization involves
1,311 constraints and 759 variables, while the stochastic programming comprises
11,271 constraints and 5,742 variables.
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Table 2. CPU times for robust optimization and stochastic programming solutions
(seconds).

Model τ

0 1 2 3 4 5 6 7 8 9 10

Robust optimization 0.10 0.11 0.10 0.20 0.10 0.09 0.09 0.10 0.15 0.12 0.12

Stochastic programming 380.38

5 Conclusion

In this study, we proposed a robust optimization model that minimizes the delay
from the regular closing time of the operating room. The proposed model consid-
ers multiple operating rooms and surgical procedures. We also verified whether
the risk-averse tendency is reflected in the schedule. The numerical analysis sug-
gests that robust optimization models tend to avoid long delays. From the numer-
ical analysis, robust optimization exhibits the same performance as stochastic
programming, which has complete information on the scenario in specific con-
trol conservative. Robust optimization obtains a solution faster than stochastic
programming because the number of variables and constraints in robust opti-
mization is smaller than in stochastic programming. The robust optimization
model is more effective for operating room managers who desire to obtain an
accurate solution quickly.

In future work, we will clarify the effect of optimizing the surgical sequence
on delay reduction. For this purpose, we define delay from the planned surgery
end time and modify a part of the proposed model.
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scheduling: a literature review. Eur. J. Oper. Res. 201(3), 921–932 (2010)

6. Denton, B.J., Miller, A.J., Balasubramanian, H.J., Huschka, T.R.: Optimal allo-
cation of surgery blocks to operating rooms under uncertainty. Oper. Res. 58,
802–816 (2010)

7. Denton, B.J., Viapiano, A.V.: Optimization of surgery sequencing and scheduling
decisions under uncertainty. Health Care Manag. Sci. 10(1), 13–24 (2007)



Robust Optimization for Operating Room Scheduling 177

8. Dexter, F., Macario, A.: Applications of information systems to operating room
scheduling. Anesthesiology 85, 1232–1234 (1996)

9. Gerchak, Y., Gupta, D., Henig, M.: Reservation planning for elective surgery under
uncertain demand for emergency surgery. Manag. Sci. 42(3), 321–334 (1996)

10. Guerriero, F., Guido, R.: Operational research in the management of the operating
theatre: a survey. Health Care Manag. Sci. 14, 89–114 (2011)

11. Ito, M., Kobayashi, F., Takashima, R.: Minimizing conditional-value-at-risk for a
single operating room scheduling problems. In: Proceedings of International Multi-
Conference of Engineers and Computer Scientists 2018, vol. 2, pp. 968–973 (2018)

12. Ito, M., Kobayashi, F., Takashima, R.: Risk averse scheduling for a single operating
room with uncertain durations. In: Ao, S.-I., Kim, H.K., Castillo, O., Chan, A.H.,
Katagiri, H. (eds.) IMECS 2018, pp. 291–306. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-32-9808-8 23

13. Ito, M., Hoshino, K., Takashima, R., Suzuki, M., Hashimoto, M., Fujii, H.: Does
case-mix classification affect predictions?: a machine learning algorithm for surgical
duration estimation. Healthc. Anal. 2, 100119 (2022)

14. Namba, Y., Ito, M., Takashima, R.: A robust optimization for a single operating
room scheduling problem with uncertain durations. In: Proceedings of the 12th
International Conference on Operations Research and Enterprise Systems, pp. 180–
184 (2023)

15. Jackson, R.: The bushiness of surgery. Health Manag. Technol. 23(7), 20–22 (2002)
16. Kamran, M.A., Karimi, B., Dellaert, N.: Uncertainty in advance scheduling prob-

lem in operating room planning. Comput. Ind. Eng. 126, 252–268 (2018)
17. Lamiri, M., Xie, X., Dolgui, A., Grimaud, F.: A stochastic model for operating

room planning with elective and emergency demand for surgery. Eur. J. Oper.
Res. 185, 1026–1037 (2008)

18. Macario, A., Vitez, T.S., Dunn, B., McDonald, T.: Where are the costs in peri-
operative care? Analysis of hospital costs and charges for inpatient surgical care.
Anesthesiology 83, 1138–1144 (1995)

19. Suzuki, A.: Analytics approach to the improvement of the management of hospi-
tals. In: Sinha, B.K., Bagchi, S.B. (eds.) Strategic Management, Decision Theory,
and Decision Science, pp. 247–256. Springer, Singapore (2021). https://doi.org/10.
1007/978-981-16-1368-5 15

20. Zhu, S., Fan, W., Yang, S., Pei, J., Pardalos, P.M.: Operating room planning and
surgical case scheduling: a review of literature. J. Comb. Optim. 37, 757–805 (2019)

https://doi.org/10.1007/978-981-32-9808-8_23
https://doi.org/10.1007/978-981-32-9808-8_23
https://doi.org/10.1007/978-981-16-1368-5_15
https://doi.org/10.1007/978-981-16-1368-5_15


Matheuristic Local Search for the Placement
of Analog Integrated Circuits

Josef Grus1,2(B) and Zdeněk Hanzálek2
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Abstract. The suboptimal physical design of the integrated circuits may not only
increase the manufacturing costs due to the larger size of the chip but can also
impact its performance by placing interconnected rectangular devices too far from
each other. In the domain of Analog and Mixed-Signal Integrated Circuits (AMS
ICs), placement automation is lacking behind its digital counterpart, mainly due
to the variety of components and complex constraints the placement needs to
satisfy. Integer Linear Programming (ILP) is a suitable approach to modeling
the placement problem for AMS ICs. However, not even state-of-the-art solvers
can create high-quality placements for large problem instances. In this paper, we
study how to improve the results of our previous ILP model, first by introducing
additional constraints and second by using matheuristics. Given the initial solu-
tion we obtain using our original ILP model, we use the solver to perform a local
search. We try to improve the criterion by considering only a few spatially close
rectangles while keeping the rest of the placement fixed. This local search app-
roach enables us to significantly improve the quality of instances whose solution
space we could not sufficiently explore before, even when the computation time
reserved for the matheuristic is limited. Finally, we evaluate our revised approach
on synthetically generated instances containing more than 200 independent rect-
angles and on real-life problems.

Keywords: Matheuristics · Placement optimization · Analog circuits

1 Introduction

The importance of ICs for modern civilization is apparent. Advanced comput-
ing, Internet-of-Things devices, automotive, and consumer electronics rely on high-
performance ICs. Such market pressure further motivates the companies to shorten
the design time and lower the development costs to increase their profitability and
strengthen their market position. One of the crucial steps in the design of the ICs is the
physical design. During this step, the circuit diagram is converted into the geometrical
representation of the final product - positions and orientations of the rectangular devices
(transistors, resistors, etc.) are determined during the placement phase, and the intercon-
nections between them are planned during the routing phase. While these two steps are
commonly solved one after another, the placement phase needs to consider the approx-
imated interconnections to make the final product competitive and high-performant.
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AMS components remain crucial nowadays, as operational amplifiers and analog-
to-digital converters are required to convert signals from many sensors surrounding
us. The placement phase for the digital ICs has already been successfully automated.
Digital devices are in the form of standardized cells, each sharing the same height,
and they are placed in rows rather than freely. These properties make the digital ICs’
placement similar to the 1D bin packing problem and enable the automation tools to
handle thousands of devices.

On the other hand, AMS ICs usually contain tens or hundreds of devices. However,
the devices may appear in different sizes and aspect ratios and can be placed freely.
They also have different voltage levels, which does not happen in a digital domain.
Furthermore, the presence of noise and other negative effects inherent to the analog
domain significantly influence the overall performance of the circuits. This is mitigated
by additional constraints and rules the engineers must adhere to. Due to these complica-
tions, the placement of the AMS ICs has not been largely automated and still remains a
time-consuming and error-prone manual process; its automation is pursued by projects
funded both by DARPA [8] and EU [7]. It is further complicated by constraints specific
to different technologies of the ICs. This paper specifically discusses BCD technology
(technology combining analog, digital, and high-voltage components), which means the
placer has to consider various minimum distances between devices and isolated pock-
ets, among other features.

ILP offers a formalism to successfully model the placement problem of AMS ICs.
Most constraints regarding the sizes of the devices and their mutual proximity or con-
nectivity can be described using linear inequalities, while the non-linear criterion of
the circuit’s area might be approximated with its half-perimeter. Nevertheless, even the
state-of-the-art ILP solvers, which improve every year, cannot sufficiently well explore
the space of feasible placements of larger ICs.

In this paper, we build upon our previous work [13], where we used warm-started
ILP to place devices of the AMS ICs. We discuss the effect of additional symmetry-
breaking and redundant constraints on the model’s performance. Finally, we develop a
Matheuristic (MH) local search technique, which iteratively optimizes the initial solu-
tion obtained by solving the entire model, and which offers significant improvement,
especially on the large synthetically generated instances with more than 200 devices
to be placed. This paper is structured as follows. In Sect. 2, we mention the previous
work done in domains of both placement and matheuristics. In Sect. 3, we formulate the
placement problem for BCD technology. Section 4 describes our original ILP model, as
well as additional redundant constraints we experimented with. Section 5 describes our
MH approach. In Sect. 6, we describe the problem instances and present the experimen-
tal results, which show how well the MH approach performs. Also, real-life instances
are evaluated and compared with manual benchmarks. Finally, conclusions are drawn
in Sect. 7.

2 Related Work

Even though the placement of the AMS ICs is not as automated as in the case of digi-
tal ICs, the problem has already been tackled in the past. Many methods use so-called
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topological representation - the solution is encoded using relative positions between the
devices. Then, a packing procedure is used to convert the representation into the actual
placement. Sequence pairs are one such representation. Proposed in [25], two permuta-
tions of the devices encode the relative positions between devices. Importantly, as was
demonstrated in [21], this formulation can be extended to successfully model symmetry
groups and other crucial features. Another example of the topological representation is
B*-trees, which use binary trees to determine the relative positions between the parent
and child nodes. Used in [19,31], this representation offers a low level of redundancy
in its search space.

Other methods consider the absolute coordinates of the devices. This makes encod-
ing constraints such as symmetry groups easier; however, it also introduces infeasible
solutions to search space. In the early work of [6], the simulated annealing was used
to optimize the coordinates of the devices. The criterion contained both the area and
wire length of the IC, as well as penalty terms for constraint violations. In [23], a sim-
ilar approach, using a multi-objective constrained variant of simulated annealing, was
also considered. Alternatively, methods described in papers [4,20] firstly use the global
placement phase, where the approximate positions of the devices are determined using
non-linear programming, and then the feasible placement without the overlaps is cre-
ated using Linear Programming (LP). The mentioned core was extended to accommo-
date the different manufacturing layers of the ICs in [34]. In [17], the neural network
was used to estimate the circuit’s performance, and it was added to the differentiable
criterion.

The force-directed approach was successfully applied to placement in [30], where
the attractive and repulsive forces between the devices were derived from the connectiv-
ity of the IC and the devices’ overlaps, respectively. Machine learning found its appli-
cations as well. An end-to-end pipeline of [24] was utilized as a placer of macros, while
the learned model performed fine-optimization of the already-placed IC in [22].

While the methods outlined in the previous paragraphs successfully solved their
associated placement problems, we cannot directly apply them to BCD technology ICs;
these ICs rely on various minimum allowed distances between devices, isolated pockets,
and other features that were rather omitted in the previous works. This was also a reason
why we used the ILP, which allowed us to model these crucial features easily.

The ILP was applied to placement problems in the past. In [35], the authors used
hierarchical decomposition to improve the solver’s performance and created high-
quality placements. In our previous work [13], we employed Force-Directed Graph
Drawing-based (FDGD) method to warm start the solver instead of relying on decom-
position. Our proposed MH offers to improve the results produced by other methods
even when the warm starting the solver or decomposing the problem is not sufficient
or leads to low-quality solutions. Furthermore, ILP is often used to solve subproblems
that arise within the problem of placement, such as the determination of the number of
fingers of transistors [27].

The placement of AMS ICs much resembles other problems encountered within the
domain of operations research. Rectangle packing can be viewed as a simplification
of this paper’s topic due to the rectangular shape of the devices. Papers [2,16] used
constraint programming to solve the rectangle packing problem. In [14], a genetic algo-
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rithm was used together with a Bottom-Left first packing heuristic. Later, the GRASP
metaheuristic was applied to strip packing [1]. Even more closely related to our prob-
lem is Facility Layout Problem (FLP), where the task is to determine the positions
of the facilities while minimizing the travel distances between them. This can be per-
ceived as an analogy to the interconnectivity of the devices. ILP formulations of the FLP
were investigated in [15,33]. The latter work optimized the paths between the depart-
ments simultaneously with the layout, which resembles the simultaneous optimization
of placement and routing in the case of ICs.

MHs, heuristics based on mathematical programming, have been recently success-
fully applied to many combinatorial problems [12], especially with the ever-increasing
performance of the black-box ILP solvers. While the solvers often cannot solve the
industrial-size instances, their search capabilities when the model is smaller cannot be
ignored. The MHs were used successfully in the domains of scheduling or routing, but
the literature regarding their use for packing and cutting is rather sparse [28]. There are
many ways how to build the heuristic around the ILP solver. The constructive MHs iter-
atively solve a series of simpler subproblems and construct the final solution by combin-
ing the intermediate results. This was used both for rostering problems [29], as well as
for FLP [32]. In the latter, authors fix the relative positions between the already placed
facilities and iteratively add the remaining ones until the layout is completed. Evolution-
ary MHs use mathematical programming to tackle the efficiently solvable subproblems
encountered while using metaheuristics. In [26], parallel batch processing scheduling
is tackled using a genetic algorithm, and LP is used to improve the solution by solving
the minimum cost flow problem.

Finally, the MHs are often used to perform the local search. Given a starting solution
to a problem, we try to improve it by solving the restricted variant of the original ILP
model. There are several ways how to achieve such restriction. The first way, called
local branching, limits how many variables can change its value. Assuming the ILP
model only contains binary variables, then the following constraint can be introduced
[12]: ∑

i∈B0

xi +
∑

i∈B1

(1 − xi) ≤ k (1)

where variable xi was originally assigned to 0, if i ∈ B0 and vice versa. The restrictive-
ness depends on the value of k. Local branching was successfully used in the improve-
ment phase of [29]. In [36], the flow-shop problem with time windows was tackled,
and local branching was even used to construct the feasible solution from the initial
infeasible one.

Another way to restrict the search space is to explicitly fix a subset of variables
of the model. This application is very close to Large Neighborhood Search [11] or
Ruin and Recreate heuristics [5]; the damaged solution (i.e., the free variables in the
restricted ILP model) is repaired using the exact solver. Variable-fixing local search
MHs were successfully applied to the scheduling domain, such as in the case of uni-
versity timetabling [18], flow-shop scheduling [10], and evacuations scheduling [9]. In
these works, the choice of free and fixed variables is crucial for the successful appli-
cation of MHs and often depends on domain-specific information. In this paper, we
decided to apply such variable-fixing MH to our placement problem.
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3 Problem Formulation

During the placement phase of the physical design of the AMS ICs, the positions and
orientations of the devices are determined. The input of the problem, the netlist, con-
tains information about the sizes of the devices, their voltage level, and interconnectiv-
ity. The devices have a rectangular shape of fixed size and can be rotated. Furthermore,
we need to consider topological structures. These are higher-level building blocks, such
as differential pairs or current mirrors, and they consist of several devices that have to
be placed in a regular pattern (see two columns of darker rectangles in Fig. 1). Thus, we
enumerate all possible variants (with a varying number of rows and columns into which
the devices are organized) of such topological structures beforehand, using algorithms
based on list scheduling [13]. Afterward, we treat both the single devices and the topo-
logical structures as rectangles with multiple variants (in the case of single devices, the
only alternative variant is rotation). Further in the text, we refer to both types of these
building blocks as rectangles. Given a task to place n rectangles, we describe each
one of them with the coordinates of its bottom-left corner (xi, yi) and its size (wi, hi),
which corresponds to one of its mi variants.

Since we want to create as small a placement as possible, we would like to minimize
its area W · H . However, due to our use of ILP, we minimize the half perimeter of the
placement’s bounding box W + H instead.

The overall connectivity is modeled as Half Perimeter Wire Length (HPWL). The
core concept of connectivity is a set of nets E - each net e ∈ E consists of a set of
connected rectangles Le. Each rectangle can be a member of multiple nets. The overall
connectivity is formulated as follows:

HPWL =
∑

∀e∈E

ce ·
(
max
i∈Le

xc
i − min

i∈Le

xc
i +max

i∈Le

yc
i − min

i∈Le

yc
i

)
(2)

where the centroid coordinates are given by:

xc
i = xi + wi/2 (3)

yc
i = yi + hi/2 (4)

Multiplied by its cost ce, each net contributes to the overall HPWLmetric the half of
the perimeter of the smallest bounding box that contains all of the net’s rectangles’ cen-
troids [34]. Altogether, our task is to find a feasible placement that not only minimizes
the area of its bounding box but minimizes the HPWL metric as well.

The physical devices (darker rectangles surrounded by lighter shells in Fig. 1), such
as transistors, cannot overlap when they are manufactured in the same layer. Further-
more, an increased minimum distance can be imposed between some devices, e.g., to
mitigate the effect of the noise on sensitive components. We also need to model addi-
tional empty space, or pocket, around the placed structures and devices (the lighter
shells around packed devices in Fig. 1). Pockets are needed to isolate devices with dif-
ferent voltage levels, which is common for BCD technology. When the devices do not
share their input voltage (BULK) net, and thus their voltage level may differ, we need
to place them so their pockets do not overlap. Otherwise, their pockets can be merged
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Fig. 1. Example placement with critical constraints of the BCD technology [13].

as long as their internal devices do not overlap, as the yellow and orange rectangles in
Fig. 1 demonstrate.

Additional constraints include the control of the aspect ratio of the final placement.
Also, the engineer can restrict a subset of rectangles from a part of a canvas; we call
this type of constraint a blockage area. An example is shown in the bottom-left corner
of Fig. 1, which remained unoccupied due to the use of the blockage area. Furthermore,
a group of rectangles may belong to a symmetry group, which shares a common axis of
symmetry. An example is a group of darker rectangles with the vertical axis of symme-
try located in the bottom part of Fig. 1.

4 ILP Model and Extensions

4.1 Baseline Model

We use our model proposed in [13], which was extended from rectangle packing for-
mulation in [2]. Let I = {1, . . . , n} be set of rectangles’ indices. Four real vari-
ables represent each rectangle; coordinates of its bottom-left corner (xi, yi) and width
and height (wi, hi), which has to correspond to one of the mi pre-defined variants
(wk

i , hk
i ), k ∈ {1, . . . ,mi}. Note that the sizes of rectangles’ variants are increased to

model the use of the pockets. The selection of variants is made using binary variables
sk

i for each rectangle i and variant k, as is shown in Eqs. (6), (7). k-th variant is selected
if sk

i = 1. Placement’s width W and height H are variables constrained by the positions
of the placed rectangles.
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xi + wi ≤ W, yi + hi ≤ H ∀i ∈ I (5)
mi∑

k=1

sk
i = 1 ∀i ∈ I (6)

wi =
mi∑

k=1

wk
i · sk

i , hi =
mi∑

k=1

hk
i · sk

i ∀i ∈ I (7)

4∑

k=1

rk
i,j ≥ 1 ∀i, j ∈ I : i < j (8)

xi + wi + ai,j ≤ xj + M(1 − r1
i,j) ∀i, j ∈ I : i < j (9)

yi + hi + ai,j ≤ yj + M(1 − r2
i,j) ∀i, j ∈ I : i < j (10)

xj + wj + ai,j ≤ xi + M(1 − r3
i,j) ∀i, j ∈ I : i < j (11)

yj + hj + ai,j ≤ yi + M(1 − r4
i,j) ∀i, j ∈ I : i < j (12)

xi, yi, wi, hi ≥ 0 ∀i ∈ I (13)

W, H ≥ 0 (14)

sk
i ∈ {0, 1} ∀i ∈ I ∀k ≤ mi (15)

rk
i,j ∈ {0, 1} ∀i, j ∈ I : i < j

∀k ∈ {1, 2, 3, 4} (16)

Non-overlapping of the devices is ensured by binary variables rk
i,j and inequali-

ties (8)–(12), which utilize the big-M approach [3]. At least one of the inequalities,
which corresponds to the relationship (left/right/over/under) between rectangles, must
be valid (rk

i,j = 1). Parameter ai,j defines the minimum allowed distance between rect-
angles. By setting the parameter ai,j to the negative value, the solver can place associ-
ated rectangles with their pockets merged, similarly to device layer-aware placements
[34]. Ultimately, the ILP model for feasible placement of n rectangles uses

∑n
i=1 mi

binary variables to encode variant selection, and 4 ·(n
2

)
= 2 ·n · (n−1) binary variables

to encode the relative positions between rectangles.
Blockage areas are modeled as additional dummy rectangles. We fix their positions

and sizes and define the minimum allowed distance parameters. ai,b = 0 if the rectangle
i is blocked by the blockage area b; if the rectangle is unaffected by the blockage area
b, we simply omit the associated relative position constraints from the model.

We define the final aspect ratio as AR = min {W,H} /max {W,H}, and we want
to ensure that lR ≤ AR ≤ uR holds for chosen aspect ratio parameters 0 ≤ lR ≤ uR ≤
1. Then, the following additional constraints are needed. The binary variable rR is used
to handle the non-convex solution space that is induced when uR �= 1. When uR = 1,
we omit the associated inequalities entirely.

lR · W ≤ H ≤ uR · W + M · (1 − rR) (17)

lR · H ≤ W ≤ uR · H + M · rR (18)

rR ∈ {0; 1} (19)
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To model the symmetry groups, we require another continuous variable per group to
represent the axis of symmetry. Assume that G is the symmetry group with the vertical
axis of symmetry, whose horizontal position is determined by the real variable xG.
The symmetry group consists of self-symmetric rectangles (i,−) and symmetric pairs
(i, j). Then the following equations constrain the symmetry group’s rectangles to share
the same axis of symmetry:

wi = wj ∀(i, j) ∈ G (20)

hi = hj ∀(i, j) ∈ G (21)

yi = yj ∀(i, j) ∈ G (22)

xi + xj + wi = 2 · xG ∀(i, j) ∈ G (23)

2 · xi + wi = 2 · xG ∀(i,−) ∈ G (24)

HPWL connectivity elements are formulated per net. Thanks to the minimization
of the connectivity in the final criterion, no integer variables are needed. For each net e,
we create four continuous variables XM

e ,Xm
e , Y M

e , Y m
e ∈ R, which describe the net’s

bounding box. Then, we formulate the connectivity criterion LC using the following
constraints for each net e ∈ E, given the set of the net’s connected rectangles Le and
net cost ce:

XM
e ≥ xi + wi/2 ∀i ∈ Le (25)

Xm
e ≤ xi + wi/2 ∀i ∈ Le (26)

Y M
e ≥ yi + hi/2 ∀i ∈ Le (27)

Y m
e ≤ yi + hi/2 ∀i ∈ Le (28)

LC =
∑

∀e∈E

ce · (
XM

e − Xm
e + Y M

e − Y m
e

)
(29)

To minimize the area of the placement, which is a non-linear expression W · H , we
approximate it using the half perimeter of the placement’s bounding box:

LA = W + H (30)

We expect that thanks to the correlation between the perimeter and the area of the
bounding rectangle, a solution minimizing LA will have a small area as well. Ulti-
mately, the final criterion function is defined as:

L = cA · LA +
cC∑

∀e∈E ce
· LC (31)

where the cA, cC are tunable costs; by tuning them, we can achieve a suitable trade-off
between both LA and LC. However, since there are only two criterion elements, we fix
cA = 1 and tune only the connectivity cost. Furthermore, we divide LC by

∑
∀e∈E ce,

so the effect of using a specific value of cC is less sensitive to a number of nets present
in the IC.
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4.2 Improving the Performance of the Solver

As we have shown in [13], the presented formulation leads to feasible high-quality
placements, but the performance of even the state-of-the-art ILP solvers is insufficient
when the number of rectangles grows. We were able to mitigate this problem by pro-
viding a solver with an FDGD-based solution as a warm start. In this paper, we want
to go even further, and we try to introduce redundant constraints to the original model
that do not affect the optimal solutions but could potentially improve the performance
of the solver.

Symmetry Breaking. Firstly, we tried to remove the symmetric solutions from the
search space. Since all of our constraints are rotation invariant (with the only exception
being symmetry groups), we can prune the search space by fixing the orientations or
positions of specific rectangles. Firstly, we select a suitable rectangle (the largest one
as in [16]); let its index be K. Then, to remove the solutions symmetrical with respect
to the y = x axis, we set all variant variables of rectangle K, which correspond to a
rotated variant with index r, to zero.

The second approach is concerned with the solution symmetry achieved by swap-
ping the quadrants of the bounding box. For example, from the current solution, another
one can be created by simply mirroring it with respect to either x = W

2 or y = H
2 axes,

or by reflecting it with respect to point (W
2 ; H

2 ) point. To prune these parts of the search
tree, we constrain the coordinates of rectangle K so its centroid lies within the first
quadrant, closest to the origin:

2 · xK + wK ≤ W (32)

2 · yK + hK ≤ H (33)

W+H Constraint. If we could predict how large the bounding box of the optimal
solution would be, we could prune the search space using constraint:

W + H ≤ P (34)

where P is the upper bound on the half perimeter of the solution obtained from the pre-
diction. There are two reasons why this could improve the performance of the model.
Firstly, such a hard constraint prunes some branches of the search tree that would other-
wise be investigated, especially when the connectivity metric of the objective function
is more emphasized and the LP relaxation does not offer a tight enough lower bound.
Such restriction can also be beneficial by allowing the model to employ a much smaller
big-M constant than previously possible, which can improve the LP relaxation and mit-
igate issues with numerical stability.

When the W + H constraint is introduced with a bound P , the big-M value can be
set to M = P + aM without making otherwise feasible solutions infeasible. We set
aM to the maximum of the minimum allowed distances between pairs of rectangles,
aM = max(i,j) ai,j . This way, the constraints (9)–(12) hold even in the most extreme
cases. In experiments regarding the W+H constraint, we set the P to half the perimeter
of the previously found solution with additional slack to not restrict the solver too much.
We discuss the obtained results in Sect. 6.2.
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5 Matheuristic as a Local Search

Given the initial solution, which can be provided either by the ILP solver with limited
computation time or a suitable heuristic, we try to improve it using the variable-fixing
MH. We refer to this improvement phase as intensification.

5.1 Intensification

Rectangle Selection. The choice of which variables should be fixed and which should
remain flexible during intensification is crucial. Inspired by the job-window approach
of [10], we select a local group of rectangles G. Given a position (x, y) within the
placement and size of the group g, the set G consists of g rectangles closest to the point
(x, y). We define the ’proximity’ metric of rectangle i to point (x, y) as:

proximity(x, y, i) = max {|xi − x|, |xi + wi − x|, |yi − y|, |yi + hi − y|} (35)

This way, selected rectangles should be located spatially close to each other, and
when removed from the placement, mostly unfragmented empty space should appear.
This should enable the solver to locally improve the connectivity by modifying the
spatially local part of the placement. However, the positions and variants of the selected
rectangles are not constrained, giving the solver the freedom to move them significantly
if necessary.

ILP Intensification. After the rectangle selection, the solver tries to improve the solu-
tion. The used ILP model corresponds to the one shown in Sect. 4.1, so the feasibility
of the solution is ensured. We fix the positions and variants of each rectangle i /∈ G;
thus, their respective relative position variables rk

i,j or variant variables sk
i are not nec-

essary. The selected rectangles belonging to G still have all their associated variables
free. Therefore, the number of binary variables associated with n rectangles decreases
from:

n∑

i=1

mi + 2 · n · (n − 1) (36)

to significantly smaller:

∑

i∈G
mi + 2 · g · (g − 1) + 4 · g · (n − g) (37)

Before the optimization, the solver is warm-started with the current placement. For
a sufficiently small value of g, the solver is able to solve the restricted model optimally
or at least find an improvement in a short time. Since the growing number of rectangles
n may slower intensification significantly, we impose a time limit on optimization.
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LP Fine Optimization. To account for gaps between rectangles that can emerge by
the variable fixing approach, we follow the previous step with LP optimization, which
can lead to a lower value of HPWL and make the placement more compact. For each
pair of rectangles, we find the least violated relative position constraint (9)–(12), and
its associated variable rk

i,j . Then, we optimize the original model of Sect. 4.1, fixing the
chosen relative position variables to 1 and the variant variables to select the variants
present in the current solution. Thus, the model does not contain binary variables, and
the optimization is done quickly, even for large instances.

Overall Intensification. After each successful intensification iteration, the improved
solution replaces the previous one. Then, a new selection point (x, y) is sampled, and
the process repeats until the computation budget is exhausted. In this paper, we generate
the selection points by sampling uniformly from interval 〈0;W 〉, 〈0;H〉 respectively.
While such a simplistic strategy performed well, a more informed approach could yield
better results.

(a) LA = 307.9, LC = 3232.0. (b) LA = 301.8, LC = 3208.3.

Fig. 2. Placement before and after ILP intensification. The black dot shows where the selection
position (x, y) was sampled. Rectangles modified during the process are highlighted. See the
decrease in height after intensification. (Color figure online)

The process of ILP intensification is demonstrated in Figs. 2. The current placement
is shown in Fig. 2a. The sampled position (x, y), shown as a black dot, is located near
the top side of the bounding box, and 5 rectangles were selected (red, purple, green,
blue, and yellow). After the ILP intensification step, the new, improved placement is
shown in Fig. 2b. We can see that the selected rectangles both moved and changed their
variants. Both the half perimeter of the bounding box and the HPWL were decreased
by this step, as is reported in the captions.

5.2 Diversification

While the ILP solver guarantees us that the local neighborhood of the current solution
is thoroughly searched, the algorithm can get stuck in the local minimum. In that case,



Matheuristic Local Search for the Placement of Analog Integrated Circuits 189

it is beneficial to divert from the current solution significantly and try to reach another
potentially better local minimum.

To perform a diversification step, we try to swap the positions of the rectangles so
the overall placement changes, but we still try to keep the placement competitive. To
do this, we create a swapping ILP model. In this model, each rectangle i is associated
with its centroid coordinates (xc

i , y
c
i ), as well as its area Ai = wi · hi. Note that chosen

variant and coordinates of the rectangles are retrieved from the current solution. Then,
the ILP model is formed as follows:

min cA · LA +
cC∑
∀e ce

· LC + cξ · ξ (38)

n∑

j=1

pj
i = 1,

∑

j∈Ti

pj
i = 1 ∀i ∈ I (39)

n∑

i=1

pj
i = 1 ∀j ∈ I (40)

xs
i =

n∑

j=1

xc
j · pj

i , ys
i =

n∑

j=1

yc
j · pj

i ∀i ∈ I (41)

ξ ≥ N − (n −
n∑

i=1

pi
i) (42)

ξ ≥ 0 (43)

xs
i , y

s
i ≥ 0 ∀i ∈ I (44)

pj
i ∈ {0, 1} ∀i, j ∈ I (45)

Binary variable pj
i is equal to one if the rectangle i should be placed to the position

of the rectangle j (thus, pi
i = 1 means the rectangle i does not move). To disallow the

situation when a large rectangle would be placed in a position of the small one, we
create a set of allowed swapping indices Ti for each rectangle i. Note that i ∈ Ti for
each rectangle i.

Ti =
{

j ∈ I
∣∣∣∣

|Ai − Aj |
min {Ai, Aj} ≤ Adiff

}
(46)

Maximum relative difference (Adiff = 0.25) limits the search space of the model
significantly. Variables xs

i , y
s
i track the new centroid positions of the swapped rectangles

that are used to calculate the half perimeter and connectivity criteria, using additional
constraints shown in Sect. 4.1. Finally, ξ is used to penalize the insufficient number
of swaps performed, i.e., when pi

i = 1 for too many rectangles. If the less than the
expected minimum number of swaps N is performed (we use N = n/3), additional
penalty cξ · ξ is applied; we set the cost cξ to quite a large value max {W,H}, so the
solver is motivated to perform the swaps.

After determining which swaps should be performed, we modify the current solu-
tion so the centroids of the swapped rectangles are moved to their associated positions.
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However, this can make the solution infeasible due to possible overlaps. To make the
solution feasible, we use the original ILP model of Sect. 4.1 again. As in LP fine opti-
mization of the intensification phase, we find the least violated relative position con-
straint for each pair of rectangles, and we warm start the solver with the corresponding
variables set to 1. The values of variant variables are also obtained from the previous
solution. The feasible result of the diversification phase is obtained by solving the model
for a limited time. Afterward, we continue with intensification.

Since our intensification implementation does not exhaustively search all possible
neighborhoods, we need a mechanism to decide when to perform the diversification
and when to keep searching locally. Whenever the local search does not improve the
solution’s quality, we increment the counter. When the counter reaches 10, we perform
the diversification and reset the counter. The counter is also reset when the improvement
is achieved during the intensification.

6 Experiments

6.1 Methodology and Data

We utilized the Gurobi ILP solver v9.5.1, using four threads in each experiment. The
project was implemented using Python 3.7. Experiments were performed on an Intel
Xeon E5-2690.

We generated several sets of instances inspired by the structure of real-life ones. Sets
S50 and S100 were already discussed in our previous work [13]. Additional sets S200

and Ssym
200 contain a larger number of rectangles, and the latter also contains several sym-

metry groups as a part of each instance. Each instance contains both the smaller rect-
angles, which only allow rotation, and larger ones with multiple variants. In total, 120
instances were evaluated. The computation time was fixed for each instance, depending
on its set (shown in Table 1). When the MH was used, the initial solution was obtained
by optimizing the original ILP model for a third of the computation time, and the rest
was reserved for MH. The time required for warm starting the original model with the
FDGD method was included in the total computation time. The costs in the criterion
function were set to cA = 1.0, and cC ∈ {0.1, 1.0, 8.0} respectively.

As baseline results, the methods proposed in [13] were used. The baseline model
without any improvement, denoted as ILP, was run only on the instance set S50 and
S100, as it could not recover any solution for larger instances within the given runtime.
FDGD warm-started variant FDGD-ILP solved all the instances.

Table 1. Description of synthetically generated instances.

instance set # instances # rectangles symmetry comp. time

S50 60 20, 30, 50 No 10min

S100 20 100 No 20min

S200 20 200 No 40min

Ssym
200 20 200+ Yes 40min
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To compare the results obtained on the synthetically generated instances, we use the
average relative difference (aRD) of the criterion, calculated for method m and instance
set S as:

aRDm
S =

1
|S| ·

∑

i∈S

Li,m − Li,best

Li,best
· 100 [%] (47)

where Li,m is the value of criterion achieved on instance i by method m, and Li,best

is the lowest value of criterion of among studied methods. Therefore, aRD refers to
the ratio of the method’s and best-known solution’s criterion values averaged over the
entire instance set. The best hits metric (BH) tells us how many times a specific method
achieved the best-known value of the criterion.

6.2 Performance with Redundant Constraints

To study how the additional constraints affect the performance of the ILP solver, we per-
formed experiments on instance sets S50 and S100. In the case of set S100, only results
for cC ∈ {0.1, 1.0} are reported, as for cC = 8.0, not all methods found a feasible solu-
tion for each instance. The baseline ILP model is compared with symmetry-breaking
one SB-ILP from Sect. 4.2, and the model WH-ILP using the W+H constraint from
Sect. 4.2. Note that parameter P used to define theW+H constraint was derived from the
half perimeter of the feasible solution obtained using FDGD-ILP, which we increased
by 20 %. Furthermore, the studied instances did not contain symmetry groups; thus,
utilizing symmetry breaking did not cause any problems.

Table 2. Comparison of solutions obtained using baseline ILP model and the models with addi-
tional constraints, with reported values of aRD (BH) for each instance set and connectivity cost
cC .

method S50 S100

cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0

ILP 2.01 (19) 1.69 (20) 4.41 (22) 1.81 (13) 2.29 (11)

SB-ILP 1.90 (21) 3.16 (21) 5.55 (21) 4.56 (12) 6.07 (12)

WH-ILP 0.92 (31) 1.56 (33) 2.81 (29) – –

As shown in Table 2, the results are rather inconclusive. The symmetry-breaking
constraints help a little for cC = 0.1 on S50 scenario, but lead to worse solutions on
average. The W+H constraint leads to better solutions, but we were not able to find a
feasible solution consistently for S100 instances. In the case of the cC = 0.1 experi-
ment on S100 instance set, the feasible solution was found only for 10 of 20 instances.
Furthermore, the average time needed to find the first feasible solution was 356 s. We
concluded that imposing the upper bound on the half perimeter of the bounding box,
and thus also on the big-M value, can improve the results. However, without passing
the initial solution to a solver, the solver has a problem finding any feasible solution.
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6.3 Matheuristics on Synthetic Data

Our MH approaches rely on several parameters which may significantly influence the
outcome of the local search. We fixed several parameters beforehand. When the diversi-
fication is used, we apply it after 10 non-improving intensification attempts. The max-
imum time reserved for each intensification and diversification optimization step was
set to 10 s.

We performed experiments with four different MH settings. The settings MH-5,
MH-10, and MH-10D used FDGD-ILP to find the initial solution for local search.
Settings MH-5 andMH-10 relied only on intensification and differed in the number of
rectangles g selected to be optimized in each iteration (see Sect. 5.1). The first setting
MH-5 used g = 5, and the second setting MH-10 used g = 10. The larger value of g
was not used, as the complexity of the larger model decreased the performance of the
ILP solver significantly. The third setting MH-10D also used g = 10 and employed
diversification.

Finally, the remaining settingMH-10B used the baseline ILPmethod instead of the
warm-started one to generate the initial solution. Then, it only uses intensification with
g = 10, thus being comparable to MH-10.

Choice of Suitable Setting. Firstly, we tried to determine how the value of g and the
use of diversification affects the results. We ran the experiments on all instance sets for
all three values of the cC . The experiments were performed with MH-5, MH-10, and
MH-10D settings, and with FDGD-ILP serving as a baseline. The results are reported
in Table 3.

We can see the baseline FDGD-ILP was outperformed on all instance sets. Fur-
thermore, the improvement provided by MHs seems to be much more significant when
the connectivity cost is high. This corresponds to the expected behavior of the inten-
sification phase. Since we only free up to 10 rectangles in each iteration, and they are
selected locally close to each other, there often remains a fixed rectangle that keeps the
half perimeter of the bounding box unchanged. On the other hand, the connectivity of a
single net can be significantly changed by moving even a single rectangle.

The improvements provided by the MHs are especially important in the case of
instance set Ssym

200 , where the differences between the baseline results and the proposed
methods are the largest - 30 % on average. We believe that the main reason is the rigid
handling of the symmetry groups our FDGD warm start uses. To create a feasible initial
solution, each symmetry group is handled as a single entity, which, however, may lead
to low-quality placement shown in Fig. 3a (note, that we do not show internal devices
inside the rectangles). Then, the solver cannot sufficiently improve the solution within
the provided computation time due to the complexity of the model. On the other hand,
the MH approach is able to decrease the value of the criterion significantly, and the
overall placement looks more compact, see Fig. 3b. We also demonstrate this in Fig. 4,
which shows how the criterion value changes as the computation progresses. We can see
that both shown MH settings, after their initialization phase, lower the criterion rapidly,
while the solver optimizing the entire model struggles. This holds true even from the
area-wise point of view; MH transforms the FDGD-produced circular placement to a
more compact rectangular one.
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Table 3. Comparison of different MH settings and FDGD-ILP baseline, with reported values
of aRD (BH) for each instance set and connectivity cost cC .

method S50 S100

cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0 cC = 8.0

FDGD-ILP 2.06 (5) 3.51 (0) 10.35 (1) 2.08 (0) 5.50 (0) 12.51 (0)

MH-5 1.71 (6) 2.34 (4) 5.77 (2) 0.85 (9) 1.17 (7) 1.81 (6)

MH-10 0.14 (44) 0.26 (43) 2.48 (15) 0.48 (11) 0.20 (13) 0.26 (14)

MH-10D 2.12 (5) 1.15 (13) 0.70 (42) 3.80 (0) 3.81 (0) 3.82 (0)

method S200 Ssym
200

cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0 cC = 8.0

FDGD-ILP 3.79 (3) 8.02 (1) 15.50 (0) 27.10 (0) 28.72 (0) 31.61 (0)

MH-10 0.33 (16) 0.03 (19) 0.68 (19) 0.68 (15) 0.75 (11) 2.53 (1)

MH-10D 5.38 (1) 5.83 (0) 5.38 (1) 1.51 (5) 0.85 (9) 0.04 (19)

From the experiments on sets with less complex instances S50, S100, we found out
that while freeing only 5 rectangles leads to significant improvements and shorter opti-
mization time per iteration, using g = 10 yields better results on average. Therefore,
we omitted the MH-5 from the experiments on larger instances. Then we studied the
effect of diversification. MH-10 without diversification worked well in all cases, while
the MH-10D was less predictable. However, for two instance sets with cC = 8.0, the
MH-10D offered the best results, as is shown in Table 3. Also, the larger diversifica-
tion step can lead to significant improvements, as is illustrated in Fig. 4, where the first
time the diversification step is used (computation time 1100), the criterion drops sig-
nificantly. We concluded that diversification offers advantages that could be more thor-
oughly exploited. However, due to the consistency of its results, we used the MH-10
setting in the rest of the paper instead.

Importance of the FDGDWarm Start. After the previous experiments, we wanted to
study whether it is still necessary to use the FDGD warm start to find the initial solution
for MH. To do so, evaluated the original ILP model without warm start ILP, as well
as its MH variantMH-10B on instances from S50 and S100. The results are reported in
Table 4.

Table 4. Comparison of FDGD-warm started and non-warm started MHs and ILP baselines,
with reported values of aRD (BH) for each instance set and connectivity cost cC .

method S50 S100

cC = 0.1 cC = 1.0 cC = 8.0 cC = 0.1 cC = 1.0 cC = 8.0

ILP 5.62 (2) 10.29 (1) 19.49 (1) 19.76 (0) 45.16 (0) 46.98 (0)

FDGD-ILP 2.74 (1) 3.78 (0) 9.41 (1) 2.21 (2) 5.36 (0) 12.33 (0)

MH-10B 1.93 (26) 2.43 (15) 2.95 (24) 7.46 (4) 5.60 (4) 7.08 (2)

MH-10 0.82 (31) 0.52 (44) 1.62 (34) 0.62 (14) 0.07 (16) 0.10 (18)
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(a) FDGD-ILP result, L = 1190.09, area = 143894, HPWL = 128885.

(b) MH-10 result, L = 911.54, area = 82235, HPWL = 100000.

Fig. 3. Comparison of final placements obtained by FDGD-ILP and MH-10 respectively, on
instance from set Ssym

200 with cC = 1.0. Both experiments’ computation time was set to 2400 s.
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Fig. 4. Value of criterion during optimization, for instance shown in Fig. 3. Black circles show
when MH-10D performed diversification.

From the provided table, we can see that the MH local search significantly improves
the ILP baseline; it is even able to outperform the FDGD-ILP setting. When we com-
pare theMH-10B with our main settingMH-10, we see that the FDGD warm start still
provides some benefits. The warm-started variant of MH outperforms its non-warm-
started counterpart, and this becomes more prevalent for more complex instances (where
the ILP may not even find any solution).

6.4 Improvement on Real Life Instances

Afterward, we studied how well MH works on real-life instances that were provided by
industry partner STMicroelectronics and which we used previously in [13]. 17 instances
were provided, each consisting of up to 60 independent rectangles, and we ran two
different experimental settings for each instance, either allowing or forbidding the use of
pocket merging. Thus, the total number of experiments was 34. As in our previous work,
the optimization was limited to 8min. Three connectivity costs cC ∈ {0.1, 1.0, 8.0}
were considered for each experiment.

In Table 5, we report the metrics of manual designs and our solutions (the use of
pocket merging depended on themanual design). The shownmetrics are the half perime-
ter of the bounding box W+H, the placement area, and the connectivity metric HPWL.
We found a solution dominating the metrics of the manual one for 12 out of 17 instances,
matching our previous results. However, when we focus on the average ratios between
automated and manual designs and compare them to results generated by FDGD-ILP
in [13], we can see that we were able to quite significantly lower the connectivity while
keeping the area and half-perimeter competitive.

To highlight the differences between solutions found by FDGD-ILP and MH-10,
we show Table 6. We can see that with the exception of the cC = 0.1 scenario, the MH
approach, on average, reduced the criterion of the final solution and found the better
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solution in a majority of the cases. This again corresponds to the observations we made
in Sect. 6.3. The real-life instances also contain only up to 60 rectangles, and as we have
shown, the effect of the MH shows off when the instances are more complex.

Furthermore, note the values reported in columns DOM. These correspond to a num-
ber of occurrences when the method found a solution that had both a smaller area and
HPWL than the solution found by the other method; such a solution is objectively better
given our two main metrics. We can see that MH-10 was able to do so in more cases,
which again highlights the power of local search performed by the ILP solver.

Table 5. Values of W +H in µm, area in µm2 and HPWL in µm for each instance, and average
ratios of automated and manual metrics, obtained using MH-10. The average ratios obtained by
FDGD-ILP in [13] are shown in the last row for comparison. Solutions dominating the manual
one, given all three metrics, are highlighted.

instance manual MH-10

cconn = 0.1 cconn = 1.0 cconn = 8.0

W+H area HPWL W+H area HPWL W+H area HPWL W+H area HPWL

1 158 6118 1850 157 6172 1636 157 6183 1562 166 6889 1478

2 116 2710 1784 88 1936 1024 91 2070 928 106 2757 797

3 106 2650 906 85 1779 660 89 1968 654 92 2119 547

4 129 4096 812 112 3117 782 114 3256 717 131 4064 662

5 207 8972 13797 159 6351 9955 165 6789 8141 169 7120 7863

6 178 7698 4039 169 7167 3666 167 7009 3647 174 7224 3615

7 168 6580 2908 164 6756 2633 168 7093 2314 173 7466 2307

8 173 7294 1501 160 6399 1224 169 6973 1068 173 7139 1093

9 243 14129 4705 225 12647 4205 234 13664 4003 241 14487 3882

10 205 10214 28386 191 9093 38626 194 9446 32363 236 13714 24930

11 225 9922 28527 197 9356 29074 205 10313 17864 241 13717 13210

12 155 5953 3824 123 3803 2315 126 3937 2162 159 6298 1597

13 162 6511 2061 153 5855 1822 155 6002 1665 155 6008 1693

14 247 15235 2399 193 9212 1720 193 9263 1557 211 10657 1363

15 123 3758 1619 115 3309 1817 113 3178 1852 116 3385 1712

16 232 12397 2676 215 11551 1973 223 12318 1792 221 12143 1944

17 247 12525 4586 225 12172 3313 235 13708 3008 252 15790 2964

avg ratio
MH-10

1.00 1.00 1.00 0.89 0.84 0.86 0.91 0.89 0.77 0.98 1.02 0.71

avg ratio
FDGD-ILP [13]

1.00 1.00 1.00 0.88 0.84 0.93 0.91 0.89 0.82 0.99 1.04 0.74

Table 6. Comparison of FDGD-ILP and MH-10 for all 34 experiments performed on real-life
instances. DOM shows in how many cases the method dominated the other one with respect to
both the area and HPWL.

cC = 0.1 cC = 1.0 cC = 8.0

aRD (BH) DOM aRD (BH) DOM aRD (BH) DOM

FDGD-ILP 0.46 (22) 1 1.82 (11) 1 3.84 (14) 0

MH-10 0.60 (12) 8 0.11 (23) 10 0.49 (20) 11
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(a)Manual design, area = 15235µm2, HPWL = 2399µm.

(b) FDGD-ILP, area = 9212µm2, HPWL = 1898µm.

(c) MH-10, area = 9212µm2, HPWL = 1720µm.

Fig. 5. Comparison of manual and automated placements, obtained for cC = 0.1. Shown instance
corresponds to the 14th row in Table 5.
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We illustrate the mentioned results with Figs. 5, which show instance number 14.
Three figures correspond to the manual solution, the solution obtained using FDGD-
ILP, and finally usingMH-10. Note that the manual design does not show the positions
of the physical devices within the rectangles. We can see that both automatically gener-
ated solutions dominated the manual design. The differences between both automated
solutions are subtle; their areas are actually equal. However, even these subtle changes
in the positions of smaller rectangles are enough to dramatically decrease the HPWL
in the case of the solution generated by MH-10.

7 Conclusion

In this paper, we extended our previous work on the automation of the placement of
AMS ICs. We studied the effect of additional redundant constraints on the performance
of the state-of-the-art ILP solver. While the symmetry-breaking constraints did not
enhance the solver’s performance, imposing an additional constraint on the maximum
value of half perimeter of the placement led to improvement on the smaller instances.
However, for larger instances, such constraint made the solver unable to find any fea-
sible solution in a given computation time, even though the bound was derived from a
known feasible solution. Therefore, we need to provide a solver with an initial solution
if we would like to exploit the half-perimeter constraint in the future.

Our experiments with MHs were more successful. We proposed applying the ILP
solver to perform a local search in the created placement. The intensification phase
of the MH relied on freeing variables associated with a few spatially close rectangles
while fixing the other. We showed an additional ILP model that we used to perform the
diversification step, to diverge further from the current solution when the local mini-
mum is reached. We evaluated several different MH settings on synthetically generated
instances. We concluded that using intensification only and freeing 10 rectangles in each
iteration led to the best results overall. However, the potential benefits of diversification
cannot be overlooked, but its application would probably require a more advanced con-
trol mechanism than presented in our paper. Ultimately, we significantly improved our
previous results, obtained using FDGD-warm started ILP, on large instances with 200
and more rectangles, especially when symmetry groups are present in the instance.

Finally, we created automatically generated placements for real-life instances pro-
vided by our industry partner STMicroelectronics. We could compare our results with
the manually created benchmarks and our previous results. We were again able to out-
perform both the area and the HPWL in the case of 12 instances; furthermore, we were
able to reduce the average value of HPWL even further while keeping the area met-
ric unaffected. When we analyzed the improvement against our previous results more
closely, we found that the MH approach dominated its ILP-only counterpart regard-
ing both the HPWL and area in one-third of the experiments performed on real-life
instances. This again suggests that the use of MH could be beneficial not only in the
specific domain of AMS IC placement but in the domains of packing and cutting as
well, where only the area is minimized.
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Abstract. In this paper, we deal with the problem of designing tourist trips with
time windows. The proposed optimization model is characterized by the pres-
ence of three different objectives: 1) the minimization of transportation costs and
expense incurred to access the tourist sites to be visited; 2) the minimization of
CO2 emissions generated by the vehicles used for travel; and 3) the maximization
of the attractiveness of the tourist sites to be visited, where the attractiveness of
each site is measured qualitatively through a predefined index on a homogeneous
scale of values. The constraints of the problem concern, among others, the need to
comply with predefined time windows for visiting tourist sites and the maximum
total time available for the tourist trips. For each tourist trip, it is also possible
to differentiate the tourist sites to be visited belonging to different categories and
also provide for the possibility of a lunch break.

The proposed model has been applied to a real case concerning the city of
Florence, Italy. The results obtained demonstrate the correctness of the model
and allow, in particular, to assess the impact of the objective of attractiveness of
POIs to visit compared to the other two proposed.

Keywords: Green tourist trip · Time windows · Multiobjective

1 Introduction

The performance of the Tourism industry in the world has been heavily impacted by
the COVID-19 pandemic, with many countries imposing travel restrictions and tourist
attractions being closed for long periods. As a result, the number of international tourist
arrivals has decreased significantly in 2020 and early 2021, compared to previous years.
According to the World Tourism Organization (UNWTO), international tourist arrivals
decreased by 72% in 2020 compared to 2019, representing a loss of 1.3 billion interna-
tional arrivals. This has resulted in an estimated loss of $ 1.3 trillion in tourism export
revenues, with many tourism-dependent economies feeling the effects.

However, the pandemic period was also an opportunity for the tourism industry to
evolve more rapidly toward Tourism 2.0. The shift from tourism to Tourism 2.0 is a
result of technological advancements and changes in consumer behavior. The following
are some key steps that have led to this paradigm shift:
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– emergence of mobile technology: with the proliferation of smartphones and tablets,
travelers can now access travel information and services anywhere, at any time.
Tourism 2.0 has leveraged mobile technology to create apps that provide person-
alized experiences and real-time information;

– introduction of big data and artificial intelligence: Tourism 2.0 relies heavily on
data-driven insights and machine learning algorithms to provide personalized rec-
ommendations and insights into traveler behavior. With the use of big data, tourism
companies can anticipate traveler needs and provide customized services;

– shift towards eco-tourism and sustainable tourism: sustainability and eco-tourism
have become increasingly important in recent years, and Tourism 2.0 has adapted
to this trend. Many tourism companies are now adopting sustainable practices and
promoting eco-friendly travel options to appeal to conscious travelers.

Overall, the steps from tourism to Tourism 2.0 have seen the industry undergo sig-
nificant transformations. Tourism 2.0 has disrupted traditional tourism models, provid-
ing tourists with more personalized experiences and empowering them to play an active
role in the tourism ecosystem.

As a consequence, in the last years, it is possible to register the growth of different
Tourist Recommender Systems ([23] and [31]), that are technology-based tools using
data analytics and machine learning algorithms to provide personalized recommenda-
tions to travelers. These systems are designed to help tourists make informed decisions
about travel destinations, accommodation, and activities based on their preferences and
behavior ([24]).

Finally, the concept of sustainability in tourism is closely linked to the United
Nations Agenda 2030 (https://www.unwto.org/tourism-in-2030-agenda), which aims
to promote sustainable economic growth, social development, and environmental pro-
tection. Tourism 2.0 can contribute to achieving the Sustainable Development Goals
outlined in Agenda 2030 (environmental, social, economic, cultural sustainability, edu-
cation and awareness).

Numerical optimization techniques have significant potential for improving the
Tourism 2.0 industry, in particular, for building appealing and sustainable tours. The
problem of helping tourists in the definition of a customized tour is defined Tourist Trip
Design Problem (TTDP) ([25]). In this problem a tourist usually wants to visit a city,
rich of attractions, in a limited amount of time. The scope is to build a personalized tour,
according to the tourist’s preferences, selecting a sequence of POIs to visit. Each POI
is characterized by a score related to its attractiveness, a cost and a time window for
the visit. Usually, the tourist can also impose limits about the total budget available for
the visits. Moreover, the tourist is able to move from a POI to another using a variety
of transportation modes, each of them with different costs (also in terms of CO2 emis-
sions) and travel times. The scope of this paper is to introduce a variant of the Green
Tourist Trip Design Problem (GTTDP) in which the sustainability of the tour is consid-
ered, introduced for the first time by [26]. Under this respect, there are different aspects
to be taken into account: the potential attractiveness of the tour, the number of POIs to
visit, the time windows of the POIs, the cost and the time duration of the tour, and the
quantity of CO2 released during the movements between POIs. From another perspec-
tive, smart and inclusive cities should take care to the needs of the so-called vulnerable

https://www.unwto.org/tourism-in-2030-agenda
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road users (VRUs). Traditionally, pedestrians, bicyclists, and motorcyclists are consid-
ered VRUs, as well as people with disability, elder people and children ([4]). Under this
respect, the research interest is more concentrated to reduce crashes involving VRUs
([1]), to build personalized trips for people with mobility impairments ([3]) or to define
information systems and mobile services sharing real-time information and integrating
a tour design for VRUs ([2]). As argued by [3], it is necessary in the next future to pro-
pose fully accessible and personalized tours in a broader multimodal mobility context
for VRUs, as well as to include useful functionalities into the smart services for the
different users’ needs.

In order to consider all these aspects, a multimodal multiobjective GTTDP with
time windows is presented, which is an extended version of the problem described in
[27]. The rest of the paper is organized as follows: Sect. 2 reports the literature review
in the field and the main contributions of this work. Section 3 describe the methodology
used for the POIs evaluation, Sect. 4 describes the mathematical formulation, whereas
Sect. 5 introduces the case study settings and the computational results. Finally, Sect. 6
reports the conclusions and the future developments.

2 Literature Review

Under the tourism perspective, the TTDP is one of the most investigated class of opti-
mization problems, deriving from the more general class of the Vehicle Routing Prob-
lems (VRP) with profits ([22]), in which two different decisions have to be taken: 1) the
more convenient customers to be served (not defined a-priori like it happens in the clas-
sical VRP) and 2) the routes to be used. If only one route is built, the problem becomes
a variant of the Travelling Salesman Problem (TSP), described in the scientific litera-
ture by using different alternative denominations. The most diffused denomination is
the Orienteering Problem (OP), introduced by [21] and deriving from the well known
orienteering sport, in which each participant has to maximize the total collected prizes
associated with the visited points, returning to the starting point within a certain time.
Alternative definitions and variants of the same problem are: the Maximum Collec-
tion Problem ([20]), the Selective Travelling Salesperson Problem ([19]) and the Bank
Robber Problem ([18]). Note that, when multiple vehicles are involved, the most inves-
tigated variant is the so-called Team Orienteering Problem (TOP). An overview of the
OPs that is worth mentioning is reported in the survey of [25], in which several variants
are classified and described: classical OP, TOP ([17]), TOP with time windows ([15]),
time dependent TOP ([16]), stochastic OP ([14]) and the generalized OP ([13]). The
authors, in their conclusions, also identified the tourism trip design as one of the major
practical applications of this problem. The TTDP is illustrated in the surveys of [12] and
[11]. The authors underlined that the TTDP can be mainly classified in single-objective
and multiobjective problems. In the single-objective case, the scope is the maximiza-
tion of the benefits associated with visiting the POIs. Under this respect, several variants
are investigated: presence of time windows denoting the opening and closing times of
each POI ([10]); score of POIs deriving from personal preferences or sensitive analysis
([9]); hotel selection option ([8]); lunch scheduling ([28]); restaurant selection ([29]);
and time and budget constraints. In the multiobjective case, different objective func-
tions are considered in the TTDP formulations: minimizing transportation and visiting
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costs, minimizing waiting times at POIs, maximizing attractiveness of the tour, min-
imizing travel time between POIs and maximizing the diversity of the selected POIs
(see [6,7] and [5]). Finally, the authors introduced some future perspective in the tourist
trip design, indicating the green variant as one of the most promising research areas
in the next future. Green and sustainable tourism can be declined in different forms:
for example, taking into account CO2 emission during movements between POIs, sug-
gesting alternative mobility options to the users, protecting natural areas or potentiat-
ing the development of nature tourism and ecotourism. This discussion underlines the
timeliness of this work, and a GTTDP with time windows is introduced in the follow-
ing sections. From the best of our knowledge, the GTTDP was previously investigated
only by [26]. The authors introduced a multiobjective and multimodal GTTDP where
a mixed-integer linear model is formulated, considering three objective functions bal-
ancing the total score of the trip, the total cost and the total CO2 emission produced
by the trip. Under this respect, various transportation modes are considered as possi-
ble choice for the tourists in order to move between POIs. Constraints related to travel
time are also considered. A first extension of the cited work was introduced by [27]. The
authors propose three different objective functions: minimizing the total CO2 emissions
and maximizing both the number of visited POIs and the total scores associated with
visited POIs. Moreover, additional constraints are incorporated in the model, in order
to customize the tour considering only the transportation modes chosen by the tourists,
or considering their preferences related to the own physical possibilities (for example,
families with children would not like moving by using bicycles or elder people would
like avoiding long walking paths). In this paper, a further extension of the problem
already introduced by [27] is presented, focusing mainly on the need to personalize the
digital user journey. In details:

– three different objective functions, related to different perspectives from [27]: min-
imizing both the total CO2 emissions and the total costs (consisting in the cost for
travelling between the POIs and the ticked cost for visiting the POIs); maximizing
the quality associated with the attractiveness of the tour;

– the scores associated to the POIs are determined using a multi-criteria method (for
more details see Sect. 3);

– the tour is designed considering a further rich variety of operational constraints: a
minimum number of POIs to be included in the tour, the time windows constraints
related to the opening and closing time of the POIs, the tourists preferences for the
starting and ending times of the tour; the possibility to schedule a lunch break at a
food spot, in a specific time window of the day;

– POIs are classified into different categories (e.g., museums, religious attractions,
seasides, etc.). It is possible to impose a minimum and maximum number of POIs to
visit for each category (further details on the classification procedure are described
in the sequel);

– a larger variety of transportation modes is taken into account (car, public transport,
bike, feet and push scooter);

– the model is tested on a large real-setting case study in an urban context (city of
Florence).
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3 A Multi-criteria Method for the POI Evaluation

To evaluate the POIs, a multi-criteria method can be used, corresponding to the well-
known weighted scoring method ([30]). It is considered accurate and fast enough for
the definition of the attractiveness parameter for each POI, which is only one of the
input data in a larger decision-making process where the proposed optimization model
comes into play (see Sect. 4). Note that, multi-criteria evaluation is successfully applied
in different context, see for example [33,34] and [35].

The weighted scoring method adopted for the evaluation of POIs is outlined below.

1. Establishing criteria. The first step is to identify the criteria that will be used to assess
the POI. The criteria can be economic, social, environmental or cultural and can be
different for each category of POI.
In the sequel, we refer to the following notation: N+ is the set of POIs; H is the
number of categories adopted to classify the POIs. In this way, N+ is assumed to be
partitioned into the following subsets: N+

1 , . . . , N+
H ; Rt, t = 1, . . . , H , is the set of

criteria used to evaluate the attractiveness of the POIs belonging to N+
t .

2. Weighting the criteria. The second step is to assign a weight wr to each criterion
r ∈ Rt, t = 1, . . . , H , based on its relative importance. Criteria that are more
critical to stakeholders will have more significant weights. The sum of the weights
of the criteria for each POI category should be equal to one, that is,

∑

r∈Rt

wr = 1,

for each t = 1, . . . , H .
3. Assigning scores. The third step is to assign a score sir, i ∈ N+

t , r ∈ Rt, t =
1, . . . , H . This can involve collecting data from various sources, such as surveys,
field trips, and expert evaluations. Scores can be assigned on a numerical scale, such
as 1−10.

4. Aggregating the scores. The fourth step is to aggregate the weighted scores to pro-
vide an overall assessment of the attractiveness of each POI:

pi =
∑

r∈Rt

wrsir,∀ i ∈ N+
t , t = 1, . . . , H. (1)

4 Mathematical Formulation

In order to formalize the model under investigation we adopt the following further nota-
tion with respect to that introduced in Sect. 3. Let N+

H+1 be the set of food spots where
tourists can take a lunch break. Let N++ = N+ ∪ N+

H+1 and let |N++| = n. In
this way, N = N++ ∪ {0, n + 1}, where 0 is the starting point of the tour, duplicated
as n + 1 also to denote the ending point of the tour. A is the arc set of the complete
directed graph induced by N . K is the set of possible transportation modes to realize
the visit (car, bus/metro, bike, on foot). For each POI i ∈ N+ the following parameters
are assumed to be known: a score pi (defined as introduced in the Sect. 3), a cost fi,
i.e., the price of the entrance ticket, a time visit vi, ei and li, that is, respectively, the
opening and closing times. The parameters fi, vi, ei and li are also defined for each
food spot i ∈ N+

H+1 (in particular, fi is the cost of lunch consumed at food spot i).
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Other parameters are: e0 and l0, respectively, the earliest and latest times at which
the visit can be planned (the time interval [l0 − e0] corresponds to the time window at
node 0); T is the maximum travel time determined by all movements between nodes,
whereas Tk is the maximum travel time determined by all movements between nodes
considering the transportation mode k (clearly, Tk ≤ T , ∀ k ∈ K); cijk, tijk and sijk
are, respectively, the cost, the time and the level of CO2 emission associated with arc
(i, j) ∈ A when travelled by using transportation mode k; M is an arbitrarily large
constant.

Moreover, αh and δh are the minimum and the maximum number of POIs for each
category h = 1, . . . , H to be visited, and β a binary constant equal to one if the tourist
wishes a lunch break, and zero otherwise. The decision variables are the following: zi,
i ∈ N++, are binary, each of them equal to one if the node i (POI or lunch spot) is
visited, zero otherwise; xijk, (i, j) ∈ A, k ∈ K, are binary, each of them equal to
one if (i, j) is travelled by using transportation mode k, zero otherwise; ui, i ∈ N , are
continuous, each of them is the arrival time at node i and, if i is a POI (or a lunch spot),
corresponds to the starting time of the visit at POI (or lunch spot) i.

The three-objective problem is formulated as follows:

Minimize
∑

(i,j)∈A

∑

k∈K

cijkxijk +
∑

i∈N++

fizi (2)

Minimize
∑

(i,j)∈A

∑

k∈K

sijkxijk (3)

Maximize
∑

i∈N+

pizi (4)

subject to

∑

i∈N\{0}

∑

k∈K

x0ik =
∑

i∈N\{n+1}

∑

k∈K

xi,n+1,k = 1 (5)

∑

i∈N\{j}

∑

k∈K

xijk =
∑

i∈N\{j}

∑

k∈K

xjik = zj ,∀ j ∈ N++ (6)

∑

k∈K

xijk ≤ 1, ∀ (i, j) ∈ A (7)

∑

(i,j)∈A

∑

k∈K

tijkxijk ≤ T (8)

∑

(i,j)∈A

tijkxijk ≤ Tk, ∀ k ∈ K (9)

ui + vi +
∑

k∈K

tijkxijk ≤ uj + M(1 −
∑

k∈K

xijk),

∀ i ∈ N, j ∈ N \ {i} (10)
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ui + vi ≤ lizi, ∀ i ∈ N++ (11)

eizi ≤ ui, ∀ i ∈ N++ (12)

u0 ≥ e0 (13)

un+1 ≤ l0 (14)

αh ≤
∑

i∈N+
h

zi ≤ δh, ∀ h = 1, . . . , H (15)

∑

i∈N+
r

zi = β (16)

xijk ∈ {0, 1}, ∀ (i, j) ∈ A, k ∈ K (17)

zi ∈ {0, 1}, ∀ i ∈ N++ (18)

ui ≥ 0, ∀ i ∈ N (19)

The objective function (2) is the total cost of the tour, whereas the objective func-
tion (3) corresponds to the total level of CO2 emission associated with the visit. Both
(2) and (3) should be minimized. The objective function (4) corresponds to the total
attractiveness of the tour that needs to be maximized. The two constraints (5) state that
the visit starts from node 0 and ends to node n+ 1, respectively. Constraints (6) ensure
the connectivity of the tour. They also provide the logic condition that an arc incident in
any node j can be travelled using any transportation mode only if POI (or lunch spot)
j is selected for the visit. Constraints (7) establish that each arc (i, j) can be travelled
by using one transportation mode at most. Constraint (8) ensures that the total travel
time of the tour does not exceed the value of T (the constraint is assumed because the
visitor does not wish to waste a lot of travel time). Constraints (9) impose a maximum
time budget to be spent for any transportation mode. These constraints allow to limit
(or completely forbid) the use of a particular transportation mode, in accordance with
the specific needs of the tourist who can be a VRU.

Constraints (10) are the subtour elimination constraints. They state that if an arc
(i, j) is visited (i.e., travelled by one transportation mode), then the arrival time at node
i plus the duration of the visit at node i and the travel time from node i to node j cannot
be greater than the arrival time at node j. Of course, if the arc (i, j) is not visited, then,
thanks to the arbitrarily large constant M , the corresponding constraint is redundant.
Constraints (11) and (12) are time windows constraints at each visited POI (or lunch
spot). In particular, constraints (11) impose that if POI (or lunch spot) i is visited, then
the starting time of the visit at node i plus the time visit should be within the closing time
of node i and, thanks to constraints (12), the starting time of the visit should be after the
opening time of node i. Constraints (13) and (14) ensure that the visit starts and ends
within the time window [l0−e0] established for the visit. Constraints (15) impose that a
minimum and a maximum number of POIs for each category has to be visited. Since β
is a binary constant, the constraint (16) imposes the possibility of whether or not a lunch
spot can be included in the tour. Constraints (17) and (18) impose that some decision
variables are binary, whereas constraints (19) define the non-negative conditions on the
remaining ones. In the following section, some computational experiments related to
the real case study are presented.
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5 Case-Study Setting and Computational Results

The mathematical model illustrated in Sect. 4 has been applied to the city of Florence in
Italy. A set N+ of 30 POIs has been considered, whose features, in terms of geographi-
cal coordinates, categories, price, average duration of the visit, time windows and score,
are reported in Table 1. Note that all data are extracted by using the support of available
databases: for the positions, the travel times and distances between POIs (not reported
in details for the sake of brevity), a Python routine linked with Google Maps has
been used. The spatial distribution of the selected POIs is represented in Fig. 1.

Fig. 1. Locations of some POIs and food outlets chosen in the city of Florence.

The score of each POI i ∈ N+
t , t = 1, . . . , H , has been computed considering the

application of the weighted scoring method illustrated in Sect. 3. In the sequel, we refer
to the steps of this method. In particular, we have considered H = 3 categories:

1. squares and parks (|N+
1 | = 6);

2. museums (|N+
2 | = 9);

3. religious attractions (|N+
3 | = 5).

In addition, the set N+
4 of food outlets is composed of 10 items. The set Rt (see Step

1) consists of the same three criteria for each POI category t = 1, 2, 3 (i.e., Rt = R,
t = 1, 2, 3):

1. a performance criterion defined by the Italian Ministry of Tourism (https://catalogo.
beniculturali.it/);

https://catalogo.beniculturali.it/
https://catalogo.beniculturali.it/
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2. a criterion based on the opinion of a group of experts in the tourism industry;
3. a criterion based on the European system of indicators for sustainable tourist destina-

tions (https://single-market-economy.ec.europa.eu/sectors/tourism/eu-funding-and-
businesses/funded-projects/sustainable/indicators en).

The weights chosen for each criterion (see Step 2) are the following: w1 = 0.5,
w2 = 0.3 and w3 = 0.2. The score assigned to each POI for each criterion (see Step 3)
is reported in Tables 2, 3 and 4.

Finally (see Step 4), the score of each POI i ∈ N+
t , t = 1, 2, 3, obtained applying

(1), is reported in the last column of Tables 2, 3 and 4.

Table 2. Multi-criteria analysis on square and parks category.

POI Criterion 1 Criterion 2 Criterion 3 Weighted score

i si1 si2 si3 pi

Piazza Duomo 9.80 10.00 9.50 9.84
Piazza della Signoria 10.00 9.70 9.30 9.71
Ponte Vecchio 9.60 9.70 9.70 9.67
Parco delle Cascine 9.10 8.10 7.80 8.34
Enzo Pazzagli Art Park 8.20 7.90 7.60 7.93
Piazzale Michelangelo 9.00 9.60 8.90 9.28

Weight wr 0.3 0.5 0.2

Table 3. Multi-criteria analysis on museums category.

POI Criterion 1 Criterion 2 Criterion 3 Weighted score

i si1 si2 si3 pi

Galleria degli Uffizi 10.00 10.00 9.80 9.96
Palazzo Strozzi 9.30 9.10 8.80 9.10
Museo Galileo 8.10 9.40 8.70 8.87
Dante’s House 8.60 7.80 7.50 7.98
Marini’s Museum 7.90 7.30 6.70 7.36
Horne Museum 7.60 7.40 7.20 7.42
Clet’s Workshop 7.20 7.10 6.60 7.03
Complesso di Palazzo Pitti 9.70 9.30 9.40 9.44
Gardens and Villa of Castello 8.80 9.50 9.30 9.25

Weight wr 0.3 0.5 0.2

Table 4. Multi-criteria analysis on religious attractions category.

POI Criterion 1 Criterion 2 Criterion 3 Weighted score

i si1 si2 si3 pi

Basilica of Holy Spirit 8.90 9.00 8.70 8.88
Synagogue and Jewish Museum 9.60 9.50 9.90 9.65
English Cemetery 8.00 8.70 8.00 8.28
Piazza della S. Annunziata 8.30 7.30 7.10 7.54
Basilica di Santa Croce 9.80 9.20 9.30 9.41

Weight wr 0.3 0.5 0.2

https://single-market-economy.ec.europa.eu/sectors/tourism/eu-funding-and-businesses/funded-projects/sustainable/indicators_en
https://single-market-economy.ec.europa.eu/sectors/tourism/eu-funding-and-businesses/funded-projects/sustainable/indicators_en


An Urban-Scale Application of the Problem 213

For a more detailed description of how the values shown in the Table have been
chosen, see Sect. 3.

Five different transportation modes are considered: car, walking, traditional bike
(not electric version), public transportation (tram and bus) and push scooter. The amount
of produced CO2 per transportation mode is extracted from the CO2 Connect website
(www.co2nnect.org): 0.183 kg/km for car, 0 kg/km for walking and bike, 0.065 kg/km
for public transportation and 0.126 kg/km for push scooter. Finally, the kilometric cost
per transportation mode is equal to e 0.25 for car, e 0.00 for walking, e 0.20 for bike,
e 0.35 for public transportation and e 0.50 for push scooter. Note that the costs for
bike and push scooter are referred to the most common services of bike sharing and
push scooter sharing. It is assumed that the tourist has indicated the maximum duration
of the daily itinerary (in our test case 10.5 hours, with a feasible time window set to
[9:00;19:30]), the maximum time to be spent for travelling between POIs (90 minutes),
the maximum time to be spent with each transportation mode (30 minutes), the min-
imum number of POIs to be visited for each category (equal to one), the necessity to
have a lunch break at a food spot and the departure/arrival point of the tour, represented
by Santa Maria Novella railway station.

In order to determine a set of Pareto optimal solutions of the problem (2)–(19),
the ε-constraint method has been applied, in the way as introduced in [32]. This is a
posteriori method, in which a set of efficient solutions of the problem is generated and
then the decision maker selects, from these, the preferred one.

A preliminary step is to transform the objective function (4) into a constraint, that is,
∑

i∈N+

pizi ≥ P. (20)

In this way, a minimum level P of total attractiveness is imposed on the tour.
The payoff table (see [32] for more details) defines the ranges of the objective func-

tion (2) and (3) values.
We then divide the range of each objective function in four equal intervals and we

use the five grid points as the value of ε in the ε-constraint method.
In this way, for a fixed value of P , we solve ten different problems, in which we

optimize, alternatively, one of the two objective functions (2) and (3) using the other as
a constraint.

The implementation of any optimization problem has been carried out by using
GAMS 24.7.4 (GAMS Development Corporation) as the algebraic modelling system,
with CPLEX 12.6 (IBM Corporation) as the solver. The code has been executed on a
PC Intel Core i7 (2.3 GHz) with 16 GB of RAM.

Several tests have been carried out, varying the parameter P , to construct several
efficient solutions. Specifically, P has been set equal to 45, 50, 55, 60, 65 respectively.
Below, only the most relevant results obtained by setting the minimum level of total
tour attractiveness to the highest value (P = 65) are reported. In this case, the average
execution time of each test has been on the order of tens of seconds, which is entirely
acceptable when considering the implementation of the algorithm within a mobile app
available to a tourist.

The payoff table for the objective functions (2) and (3) is given in Table 5.
Table 6 reports the corresponding five grid points for each objective function (2) and

(3) used as the value of ε in the ε-constraint method.

www.co2nnect.org
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Table 5. Payoff table considering the minimum level of total tour attractiveness P = 65.

f1 f2
Costs [e] CO2 Emissions [kg]

Min f1 40.614 0.069

Min f2 80.625 0.000

Table 6. Grid points in the epsilon-constraint method.

ε1 ε2 ε3 ε4 ε5

f1 40.614 50.616 60.619 70.622 80.625

f2 0.000 0.017 0.035 0.052 0.069

A total of five efficient solutions have been obtained, shown in Table 7. The table has
the following structure: the column ID identifies the solutions, the column Cost corre-
sponds to the total cost of the tours (value of the objective function (2)), and the column
CO2 Emission refers to the calculation of the total CO2 emissions of the tours (value
of the objective function (3)). The results are also shown in Fig. 2. Finally, Tables 8 and

Fig. 2. Efficient solutions obtained through the ε-constraint method.

Table 7. Efficient solutions.

Solution ID f1 f2
Cost [e] CO2 Emission [kg]

A 42.585 0.00

B 40.757 0.013

C 40.743 0.034

D 40.736 0.038

E 40.614 0.069
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Table 8. Transportation modes activated within the solutions.

Solution ID Car Walk Bicycle Public transport Push scooter

A x x

B x x x

C x x x

D x x x

E x x x

Table 9. Number and category of visited POIs within the solutions.

Solution ID Squares and parks Museums Religious attractions Food outlets

A 2 3 3 1

B 2 3 3 1

C 2 3 3 1

D 2 3 3 1

E 2 3 3 1

9 report the types of transportation modes used and the number of POIs per category
visited within the different solutions, respectively.

Examining the results obtained, it can be observed that, despite an increase in cost
of 4.8% when moving from solution E to solution A, the latter involves entirely green
transportation modes, thus maximizing the sustainability of the tour (see Fig. 2). How-
ever, even in cases where partially green transportation modes are used (solutions B, C,
D and E), the total CO2 emission level remains below 0.1 kg for the entire tour, as car
and public transportation are only used for limited distances.

Note that the push scooter mode, which has the worst cost-CO2 emission trade-off,
is never activated (see Table 8).

Furthermore, it should be highlighted that, although the minimum number of POIs
to visit has been set to three (one for each category) plus a food outlet, every generated
tour includes the visit of eight POIs, thus meeting the needs of the most eclectic tourists
(see Table 9). Figures 3 and 4 show the geography of the two tours corresponding to
solutions A and E, representing the two extreme points of the Pareto front. This allows
for a better appreciation of the differences between the two tours in terms of multi-
modality and categories of visited POIs.

Finally, it is worth highlighting that, from the tests carried out on the city of Flo-
rence and as already mentioned in [27], of which the present work is an extension, the
described model allows for the construction of ad-hoc tourist tours for users, by includ-
ing/excluding particular transportation modes to satisfy the needs of even the most
VRUs, as well as including/excluding specific categories of POIs to visit, thus guar-
anteeing a win-win strategy for defining the tour in terms of cost-score-CO2 emissions.
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Fig. 3. Tour corresponding to solution A.

Fig. 4. Tour corresponding to solution E.
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6 Conclusion

This work addresses the problem of determining a multimodal green tourist trip in an
urban setting that takes into account the preferences and needs of different types of
tourists. The proposed multi-objective optimization model and the approach used for
its solution provide a valid decision support tool for tourists who aim for environmental
sustainability in the planning of tourist itineraries, as well as cost reduction.

Further studies are underway to extend the application of the model to cases where
the number of potentially visitable POIs is higher, and to consider the possibility of
planning tours over multiple days. In this case, although the mathematical model can
be easily extended, its increasing complexity requires the use of heuristic approaches
for its solution.

Finally, a further future development concerns the possibility of considering the
time dependency and stochasticity of some of the parameters used, in particular, travel
times and the duration of visits to POIs.

Acknowledgements. The work of Annarita De Maio is partially supported by MUR (Italian
Minister of University and Research) under the grant H25F21001230004. This support is grate-
fully acknowledged.
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Abstract. The Storage Location Assignment Problem (SLAP) has a significant
impact on the efficiency of warehouse operations. We propose a multi-phase opti-
mizer for the SLAP, where the quality of an assignment is based on distance esti-
mates of future-forecasted order-picking. Candidate assignments are first sam-
pled using a Markov Chain accept/reject method. Order-picking Traveling Sales-
man Problems (TSPs) are then modified according to the assignments and solved.
The model is graph-based and generalizes to any obstacle layout in two dimen-
sions. We investigate whether optimization speed-ups are possible using methods
such as cost approximation, rejection of samples with low approximate cost and
restarts from local minima. Results demonstrate that these methods improve per-
formance, with total travel-cost reductions of up to 30% within 8 h of CPU-time.
We share a public repository with SLAP instances and corresponding benchmark
results on the generalizable TSPLIB format.

Keywords: Storage location assignment problem · Nested annealing ·
Hamming distances

1 Introduction

The Storage Location Assignment Problem (SLAP) concerns the search for suitable
locations for products in a warehouse. There exist dozens of proposed versions and
optimization methods for the SLAP [5]. We work with a standard picker-to-parts sce-
nario where racks and other obstacles can be laid out freely on a two-dimensional plane
and where vehicles may start and end their paths at any location. In order to evaluate
the quality of a location assignment, we combine two costs. The first cost consists of
the travel distance needed to complete a given picking-log, i.e., a set of pick-rounds
(sequences of product visits). A pick-round is equivalent to a Steiner Traveling Sales-
man Problem (TSP) [36], where the origin and destination locations may be different
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Fig. 1. Example of a SLAP with products enumerated 1–7 and an unconventional obstacle-layout
[28]. The picking-log consists of three pick-rounds (TSPs) and their optimal solutions give the
picking-log distance. The initial baseline assignment (top) has a longer picking-log distance com-
pared to a candidate (sample) assignment (bottom left). In this example, the reassignment path
needed to move the products according to the sample (bottom right), is longer than any possible
savings concerning the picking-log (more pick-rounds are needed for savings).

and where the same location may be revisited by one or several vehicles. We obtain the
picking-log distance by solving all TSPs given a location assignment of products. The
second cost is the travel distance needed to move the products such that the assignment
is obtained, in a single reassignment path. We refer to this model as the TSP-based
SLAP. A visualization of the TSP-based SLAP is provided in Fig. 1.

In Sect. 2 we discuss strengths and weaknesses of proposed SLAP models in the
literature. The TSP-based SLAP can be compared to the closely related Order Batch-
ing Problem (OBP)-based SLAP [26], where the picking-log is replaced by a set of
orders (where an order is a set of products). The OBP-based SLAP requires the batch-
ing of orders into pick-rounds, as well as the subsequent TSP optimization of these
pick-rounds, before quality of a proposed location assignment can be estimated. While
the theoretical optimization gains may be higher in the OBP-based SLAP, its larger
search space also adds significant challenges [17,33].

Choice of SLAP-model is inevitably a trade-off between simplicity, on the one
hand, and complexity, on the other. Regarding the former, there is a need in research
to discuss what a relatively simple and standardized version of the SLAP should entail,
since there is little consensus on the matter [5]. Apart from order batching, examples of
other optional features include various forms of dynamicity, warehouse layout, vehicle
types, cost functions and reassignment scenarios. The TSP-based SLAP excludes order-
batching and dynamicity and uses distance instead of more realistic but complex cost
alternatives, such as time-based costs. Nevertheless, the TSP-based SLAP still poses
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a highly intractable problem. This is partly attributable to the reassignment distance.
Hypothetically, more location reassignments are needed to obtain a lower picking-log
distance, but more reassignments also lead to a longer reassignment distance. Thus,
an equilibrium point between two adversarial problems must be found to attain a strong
solution. One final and relatively novel feature of the TSP-based SLAP is that it does not
assume a specific warehouse layout. Although this makes cost calculation more com-
putationally expensive, by disallowing heuristics based on presumed rack-placements,
it allows for a higher degree of generalization.

In Sect. 5 we introduce our optimization algorithm. It is based on Simulated Anneal-
ing and a Hamming-distance location-swap heuristic. Restarts from local minima, as
well as two cost approximators, are investigated to potentially improve computational
efficiency (cost improvement through CPU-time). One of the cost approximators is
based on sub-optimal TSP optimization, while the other is based on a pick-frequency
heatmap. In Sect. 6 we introduce three datasets, including a publicly shared benchmark
instance set on the TSPLIB format [11], and corresponding computational results.

Our contributions are summarized as follows:

1. A SLAP optimizer using a novel version of the Simulated Annealing algorithm and
experiments to test its computational efficiency.

2. Performance comparison of two cost-approximators utilized within the optimizer.
3. A publicly shared SLAP instance set on the TSPLIB format.

This paper is an extension of a ICORES-2023 paper [28]. Apart from a thorough
revision of the text, the extension includes new data (dataset 3 in Sect. 6.3), a new cost
approximator (Sect. 5.3), re-runs of previous experiments, as well as new experiments
and results (Sect. 6 and Sect. 8).

2 Literature Review

In this section we discuss how the SLAP has been described and optimized in previ-
ous work. We particularly refer to the extensive literature review by Charris et al. [5].
There are several strategies for conducting a storage location assignment. These include
Dedicated, Random and Class-based.

– Dedicated: The locations of products are assumed to never change. This strategy is
suitable if the collection of products does not change much through time. If human
picking is used, this approach has the advantage that pickers can learn to associate
products with locations, allowing for speed-ups in picking [43].

– Random: Products can be assigned any location in the warehouse. This is particularly
suitable if the collection of products changes frequently.

– Class-based (zoning): Each product is assigned a class and the warehouse is divided
into zones. Each zone contains one or several classes of products. Class-based
storage can incorporate dedicated and random strategies for certain zones and/or
classes [23]

The quality of a location assignment can be modeled in several ways. In a human pick-
ing scenario, Larco et al. [18] show that there exists a relationship between the height
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at which products are placed and worker welfare. Worker welfare can be quantified
by estimating parameters such as “ergonomic loading”, “discomfort” or “expenditure
of human energy” [5]. On a similar note and for autonomous vehicle or shuttle based
storage and retrieval systems (AVS/R), there exists a model which has the objective to
minimize “energy consumption” [2].

Another way to judge solution quality is through datamining, using computations
such as support, confidence and lift [25]. These can also be used to propose concrete
location assignments [14,43]. Datamining is primarily focused on the statistical analy-
sis of products and their relationships, but it is often combined with order-picking in a
SLAP.

A third proposal studies the effect of traffic congestion. Bottlenecks can be caused
if, for example, too many products with high pick-frequency are placed close to the
depot. Lee et al. [19], propose Correlated and Traffic Balanced Storage Assignment
(C&TBSA), a multi-objective SLAP model which aims to minimize traffic congestion,
while also minimizing aggregate order-picking cost.

Order-picking has many variations, depending on obstacle layout, picking strat-
egy and travel conventions [5,23,31,41]. Concerning obstacle layout, we distinguish
between two types:Conventional andUnconventional. In the conventional layout, ware-
house racks are assumed to be organized in Manhattan style blocks with parallel aisles
and cross-aisles. Conventional layouts are used in the majority of research on both
order-picking and the SLAP [5,15]. The unconventional layout includes the “fishbone”
and “cascade” layouts [4,5], as well as all other layouts that are not conventional.
Regardless of layout, the picking path of a vehicle can be formulated as a Traveling
Salesman Problem (TSP) where paths cannot intersect obstacles [12,31]. For conven-
tional layouts, the TSP is often optimized using S-shape or Largest-Gap algorithms [32].
For unconventional layouts, Google OR-tools or Concorde have been proposed [27,31].

As mentioned in Sect. 1, the SLAP can be optimized as a joint problem with an
Order Batching Problem (OBP). Proposals include Kübler et al. [17], Xiang et al. [40]
and Maruyama et al. [24]. While these authors argue for this approach, arguments also
exist against it, at least for certain settings [23]. One issue with the OBP-based SLAP is
that the OBP is highly intractable in its own right, thus adding to the difficulties involved
in optimizing an already challenging problem.

If order-batching is not included in the SLAP, heuristics such as Cube per Order
Index (COI) [13] and Order Oriented Slotting (OOS) [23] have been proposed. COI
assumes that products with relatively high pick-frequency and low volume should be
placed close to depot. COI does not include associations between products and is there-
fore mainly suitable for pick-rounds with few picks, such as pallet-picking or certain
AVS/R systems [2]. OOS, on the other hand, is specifically designed for scenarios where
orders may contain more than one product. Mantel et al. [23] introduce a Quadratic
Assignment Problem (QAP) heuristic which computes distances between products and
the number of times products appear in the same order. The quality of a candidate loca-
tion assignment can then be estimated using QAP. Similar methods to OOS are used by
Žulj et al. [44], Fontana and Nepomuceno [8] and Lee et al. [19].

The SLAP usecase can be divided into two categories depending on the number of
products that are to be moved. “Re-warehousing” is the case when a large proportion of
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products are moved, whereas a smaller proportion is moved in “healing” [14]. Move-
ments can be conducted in many ways, each accompanied by a (re)assignment “effort”.
Kübler et al. [17] propose the following (re)assignment effort scenarios:

i Product A is moved to an unoccupied location.
ii Product A swaps location with product B.
iii Product A is moved to a location occupied by product B. Product B is moved to

a new location. If there is a product C occupying the new location, the procedure
continues until a final product is placed at an empty location.

Scenario i comes with the least (re)assignment effort and the effort grows through
scenarios ii and iii. Apart from travel distance, time used for product removal/placement
on shelves as well as administrative time, can be added to the effort computation [17].

When it comes to optimization algorithms for the SLAP, both exact and non-exact
methods have been proposed. The exact algorithms include dynamic programming,
branch and bound algorithms and Mixed Integer Linear Programming (MILP) [5]. The
SLAP search space is often reduced in scope when exact solutions are sought. These
include restricting the number of locations [38], number of products [9,21] or by only
working with conventional warehouse layouts [3].

More commonly, non-exact heuristic or meta-heuristic algorithms are used. Propos-
als include Particle Swarm Optimization (PSO) [17], Genetic and Evolutionary Algo-
rithms [7,19,20] and Simulated Annealing [14,43]. The SLAP is often optimized in
multiple phases using these methods. One example is to first generate candidate prod-
ucts for location assignments using datamining, and to then evaluate various candidate
assignments using order-picking optimization [14,39].

It is challenging to judge optimization results in previous work due to the multitude
of variations in SLAP models [5]. For results including reassignment costs, conven-
tional warehouse layouts, dynamic picking patterns and meta-heuristic optimization,
Kofler et al. [14] report best savings around 21%. In a similar scenario, Kübler et al.
[17] report best savings around 22%. Excluding reassignment costs, Zhang et al. [43]
report best savings around 18% on simulated data with thousands of product locations.
In similar settings, Trindade et al. [35] report best savings around 33%, using a multi-
phase optimizer, and Chiang et al. [25] report best savings around 13% using datamin-
ing heuristics and integer programming.

3 Simulated Annealing

Simulated Annealing, which draws inspiration from the annealing process in metallurgy
[14], has a useful analogue with SLAP optimization: A poor storage assignment can
be viewed as more energetic as it leads to more travel for picking in the warehouse.
As the SLAP is optimized, products are reassigned to new locations using a decreasing
temperature. As temperature cools, products become fixed in a lower energy state where
picking travel costs are reduced. There are many complicating factors in the SLAP
which can prevent a smooth decent toward an improved storage assignment, however.
In the remainder of this section, we describe the Simulated Annealing algorithm and
how it may be modified to help attain stronger results in the SLAP.
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A key component in Simulated Annealing (Algorithm 1) is the sample function. In
each iteration i, sample xi+1 is drawn based on a desired distance to sample xi. This
distance is computed using the probability distribution q(xi+1|xi), without involving
the cost of the samples (henceforth we refer to this as the feature-distance). The q
distribution is often chosen to be Normal, so that the distance between xi and xi+1

is low with high probability [22]. The cost∗ function computes/retrieves the cost (f∗)
of the new/previous sample (the first sample is retrieved from memory after the first
iteration). The accept probability α∗ is based on a cost-distance function Δ (which
outputs a negative value if the new cost is lower than the previous) and a decreasing
temperature function T [29]. Functions for q, T and Δ are further discussed in Sect. 5.

Algorithm 1. Simulated Annealing.
1: xi: Sample (an assignment).
2: f∗(xi): Ground truth cost of sample xi.
3: q: Feature-distance function.
4: Δ: Cost-distance function.
5: N : Number of iterations.
6: T : Temperature function.
7: x1: Initial sample (baseline).
8: for i = 1, ..., N do
9: t ← T (i)
10: xi+1 ← sample(q(xi+1|xi))
11: f∗(xi), f

∗(xi+1) ← cost∗(xi, xi+1)
12: α∗ ← exp(−c1Δ(f∗(xi+1), f

∗(xi))/t)
13: u ← U(0, 1) // random uniform
14: if u < α∗ then // sample accepted
15: xi ← xi+1

16: end if
17: end for

Simulated Annealing is a type of Markov Chain Monte Carlo (MCMC) method
and one advantage of this type of method is that its bias-variance tradeoff can be tuned
using relatively few parameters [10]. A known disadvantage is that only two samples are
stored in memory at any given time, which risks leading the Markov Chain to conver-
gence on weak local minima [22]. Several methods have been proposed to reduce this
risk, including mode-jumping [34], Nested Annealing [29] and Basin Hopping [37].
These methods split the search space into regions which are then subjected to local
search. Another method is the Restart Strategy (SARS), which restarts the search from
a random new sample whenever a “non-improving” local minimum is found [42].

Simulated Annealing can be modified to include a cost approximator, f , which pro-
vides fast cost estimates of f∗, to potentially increase computational efficiency. Chris-
ten and Fox [6] propose to use f to reject new samples that are unlikely to yield an
improvement in f∗ over the previous sample. The common MCMC accept method is
accordingly split into two parts: Promote (f∗ cost evaluation for a sample with a strong
f ) and accept (update xi for the next iteration to be a sample with a strong f∗). In our
optimization algorithm (Sect. 5), we utilize this concept and split Simulated Annealing
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into promote based on a fast and less accurate costs computed in f , and accept based
on slow and more accurate costs computed in f∗.

4 Problem Formulation

4.1 Objective Function

The objective in the TSP-based SLAP is to minimize the aggregate travel distance to:

1. Complete a given picking-log (a set of pick-rounds) B.
2. Carry out any proposed location reassignments in a single reassignment path R.

Each pick-round b ∈ B is a list of products. The set of all locations (including pick-
locations, origin and destinations and obstacle corners in 2D Cartesian space) is denoted
L and the set of all pick-locations is denoted L(P). The set of all products in B is
denoted P . Each product p ∈ P is defined as a tuple including a unique key (Stock
Keeping Unit), a pick location l(p) ∈ L(P) and a positive pick frequency count F (p).
Each pick location is a tuple consisting of a unique key, a capacity and a location (repre-
sented as a node in a graph). A product is located at strictly one location and a location
stores strictly one product. A product is allowed to move from its initial location to a
new one as long as the new location’s capacity is not exceeded.

A SLAP solution candidate (also referred to as sample or assignment) is represented
as permutation vector x ∈ X , where the elements are enumerated product keys and the
indices are enumerated locations. For an example warehouse with 3 locations, sample
x = (2, 1, 3)means that product 2 is assigned location 1, 1 assigned 2 and 3 assigned 3.
Each sample x contains positive permutation integers in range 1 tom, 2 ≤ m ≤ |P| and
each permutation x has ground truth cost f∗(x). m denotes the number of products that
are subject to location change, and it does not necessarily have to be equal to the number
of products in the warehouse, but could instead be manually set to limit the search space.
Sample x1 represents the baseline product location assignment (the initial locations
of the products). In order to evaluate performance in optimization experiments, costs
f∗(x2), f∗(x3), ..., f∗(xN ) are compared against f∗(x1).

The objective in the TSP-based SLAP, is to find a sample assignment x such that
picking-log cost

∑
b∈B D(b) and reassignment cost D(R) are minimized:

argmin
x

((
∑

b∈B
D(b)) + λD(R)) (1)

Constant λ is used to weigh the two cost terms. Below we show how the picking-log
and reassignment costs are computed using Euclidean distances.

4.2 Picking-Log Distance

The cost of all pick-rounds in picking-log B is computed using distance
∑

b∈B D(b).
D(b) is the distance of the solution to the Traveling Salesman Problem (TSP) repre-
sented by product locations in b:
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D(b) = dl(originb),l(p1)+dl(p|b|),l(destinationb)+
∑

dl(pi),l(pj), j = i+1, 0 < i < |b|
(2)

where dl(pi),l(pj) denotes the distance between the locations of pi, pj ∈ b, and where
dl(originb),l(p1) connects an origin location and dl(p|b|),l(destinationb) a destination loca-
tion to the path. The location of a product l(pi) is obtained from an index in the loca-
tion assignment sample x. This index is stored for each product and updated when-
ever it changes location. We assume shortest distances and corresponding shortest paths
(needed if path visualization is sought) between pairs of locations are queryable from
Random Access Memory (RAM). All shortest paths and distances are pre-computed
using the Floyd-Warshall graph algorithm, using a warehouse digitization process
beyond the scope of this paper [31]. This process includes capability for uni-directed
and mixed graphs, but in this paper we only work with bi-directed graphs (meaning that
the distance between two locations is equal in both directions). We allow the origin and
destination locations in the pick-rounds to be any locations in L (concerning TSP opti-
mization, this is sometimes referred to as a Multi-Depot TSP or Dial-a-ride Problem).
In Sect. 5 we describe how TSP optimization works for the multi-depot requirement.

4.3 Reassignment Distance

Reassignment path R and its distance D(R) is based on direct and indirect exchange
scenarios (scenarios ii and iii in Sect. 2) with the following assumptions: Since there are
an equal amount of products and locations in the SLAP, scenarios ii and iii represent a
bijective relationship between products and locations. When products change locations,
the bijection can take three forms: Direct exchange, e.g. x1 = (1, 2) to x2 = (2, 1)
(product 2 goes to location 1 and 1 goes to 2), indirect exchange, e.g. x1 = (1, 2, 3)
to x2 = (3, 1, 2) (1 goes to 2, 2 goes to 3 and 3 goes to 1), or a combination of both.
We also assume that the operation to change locations of products, using direct and
indirect exchanges, can be carried out by a single vehicle traveling along a single path
through the warehouse, without intermediate stops at the depot. Algorithm 2 shows how
this single reassignment path can be constructed, just from information in the initial
assignment x1 and a subsequent sample x1+i, generated during optimization iteration
i < N .

r denotes a sub-cycle of locations (a sequence that starts and ends at the same loca-
tion). The add_to_subcycle function has two cases:

1. If the r sequence is empty, a random new element is removed from xm and its initial
location (the index for that product in x1) is added to r.

2. If r is not empty, the new location of the last added product in r is first found in x
and added to r. The product located at that “next” location is found in x1, matched
in and then removed from xm.

If the added location to r is equivalent to the first one in r, the sub-cycle is completed
and r is added to R. After xm is emptied, R is first randomly shuffled and then flattened
(the inner lists of sub-cycles are converted into a single list). The distance D(R) is then
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Algorithm 2. Reassignment Path and Distance.
1: x1: Initial assignment sample (baseline solution).
2: x: Sample obtained during SLAP optimization.
3: xm ← copy(x)
4: D(Rbest) ← ∞
5: for j = 1, ..., K do // iterations.
6: R ← list()
7: while xm not_empty do
8: r ← list()
9: while not_completed(r) do
10: add_to_subcycle(r, x, xm, x1)
11: end while
12: R+ = r
13: end while
14: shuffle_and_flatten(R)
15: D(Rbest) ← update_best(R, Rbest)
16: end for

computed as the sum of all location to location distances in R, plus the distance from an
origin depot location to the first location in R and the last location in R to a destination
depot location. At each iteration, the update_best(R,Rbest) function updates the lowest
minimum found by comparing distance D(R) and distance D(Rbest). For Algorithm
1 and our modifications to it in Algorithm 3, D(R) is included in the cost∗ and cost
functions.

In summary, reassignment path R is a solution to a constrained, linked-list TSP
where a product is dropped off and another product picked up at each location. The
vehicle conducting the reassignment path is assumed to be able to carry the whole
quantity (frequency F (p) in our case) of any single product located at any single loca-
tion. A model of the reassignment path involving vehicle-capacities, enforcing return
trips to depot when a product quantity exceeds vehicle capacity, is left for future work.

5 Optimization Algorithm

5.1 Assignment Sampling Using Markov Chain Monte Carlo (MCMC)
and Hamming Distances

As described in Sect. 3, the Simulated Annealing algorithm includes two distributions
to describe the amount of distance between samples xi and xi+1: Feature-distance q and
cost-distance Δ. For sampling to be effective, there should exist some degree of propor-
tionality between these two distributions. If the feature-distance between xi and xi+1 is
relatively low, the distance between costs f∗(xi) and f∗(xi+1) should also be relatively
low. The cost-distance in a SLAP is in the domain R+, as it represents Euclidean travel
distances in the warehouse. The feature-distance between two samples is represented
by the difference between two assignments. We hypothesize that the feature-distance
can be computed using a Hamming distance heuristic. Hamming distance is a count
of the number of non-identical elements between two permutation vectors (which are
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equivalent to assignments) [30]. The following sampling distribution is then proposed
to utilize this Hamming distance (based on bounds proposed by Christen and Fox [6]):

q(xi+1|xi) = e−CHd(xi,xi+1)
P

(3)

where C and P are hyperparameters in R
+, and Hd denotes Hamming distance. We

propose to use this sampling function within Algorithm 1. Below we propose methods
which may improve computational efficiency (cost reduction through CPU-time) of
Algorithm 1.

5.2 TSP Optimization and Cost Caching

We utilize two TSP optimizers to compute the picking-log distances of assignment sam-
ples. For optimal TSP solutions we use the Concorde TSP solver1 [1]. For approximate
TSP solutions we use the OR-tools TSP optimization suite2 [16]. In order to limit the
CPU-time of OR-tools, we use the solution_limit parameter. For both these TSP opti-
mizers, multi-depot scenarios are handled by modifying the input distance matrix with
a dummy location whose distance is zero to the origin and destination, and whose other
distances are set to infinity.

Before we apply TSP optimization to compute picking-log distance of an assign-
ment sample, we reduce CPU-time through a filtering technique. Given the usage of
sampling distribution q (Eq. 3), we note that many pick-rounds will often not contain
products that had their location changed. For example, assume we start with assign-
ment x1 = (2, 1, 3) and two pick-rounds in the picking-log, one containing products
1 and 2 and the other containing product 3. Picking-log distance is then computed by
TSP-optimizing the two pick-rounds (to keep the example small, we disregard the fact
that TSP optimization only yields savings for longer pick-rounds). Assume we then
swap locations of products 1 and 2: x2 = (1, 2, 3). Since product 3 remains at its initial
location, there is no need to re-optimize the pick-round which contains that product. To
enable this reduction of redundant TSP-optimization, we cache the TSP costs (both opti-
mal and approximate) of any pick-round once computed. These costs are then queried
for the pick-round until one or several product locations are changed, at which point the
TSP gets re-optimized and the costs updated (only after promotion in the case of f∗).

5.3 Heatmap-Based Approximation

In order to motivate SLAP optimization, results need to be as interpretable and visu-
ally representable as possible. One problem with TSP optimization within a SLAP is
that results cannot be easily visualized. Visualizing TSPs entails showing them before
and after SLAP optimization. Figure 1 and Fig. 8 (Appendix) are examples. Interpreta-
tion of these types of figures becomes very challenging when the picking-log contains
hundreds of pick-rounds.

One possible way with which to visualize SLAP optimization in a single figure,
is a heatmap. Figure 2 is an example which shows number of picks at 2700 locations

1 https://math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm, collected 27-05-2022.
2 https://developers.google.com/optimization/routing/tsp, collected 12-06-2022.

https://math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
https://developers.google.com/optimization/routing/tsp
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(several locations share a single cell in the heatmap). The lower picture shows the result
after SLAP optimization. To achieve this movement of the “hotter” products closer to
depot, a dot product is first computed between the pick frequency count of each product
F (p) and the distance of their locations from an origin location and to a destination
location:

|L|∑

i=1

F (pi)(dl(origin),l(pi) + dl(pi),l(destination)) (4)

Location swaps are then conducted based on this dot product. For the heatmap
example in Fig. 2, 200 swaps were conducted to achieve a reduction of cost, according
to Eq. 4, of around 35%. Apart from the visual interpretability, an additional advantage
of using Eq. 4 is that it is very fast to compute. In Sect. 6 we conduct an experiment
to investigate whether there is any correlation between this approximation and optimal
TSP cost. The predictive quality of Eq. 4 is likely weak, but if CPU-time is low enough
it could still outmatch the alternative f approximation achieved by the OR-tools TSP
optimizer. Note that this approach only works for cases when all pick-rounds in the
picking-log use the same origin and destination location.

Fig. 2. Heatmap of picking in a warehouse with a single depot location (the black square). The
colorbar shows how many picks occur within a given cell.

5.4 Nested Annealing

In Sect. 3 we suggested that the computational efficiency of Simulated Annealing
(Algorithm 1) can be increased if there exists a function f which can quickly esti-
mate f∗ . We then proceeded to propose two suggestions for such an f : One using
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sub-optimal TSP optimization (OR-tools), and one using a heatmap based approxima-
tion. In Algorithm 3, we show how either of these can be utilized within a modified
Simulated Annealing algorithm:

Algorithm 3 . Nested Annealing (based on computational
efficiency in cost estimation.
1: xi: Sample (candidate solution).
2: f(xi): Less accurate fast cost estimate.
3: f∗(xi): More accurate slow cost estimate.
4: q: Feature-distance function.
5: Δ: Cost-distance function.
6: α: Probability that sample xi+1 is promoted.
7: α∗: Probability that sample xi+1 is accepted.
8: N : Number of iterations.
9: T : Temperature function.
10: x1: Initial assignment sample (baseline).
11: for i = 1, ..., N do
12: t ← T (i)
13: xi+1 ← sample(q(xi+1|xi))
14: f(xi), f(xi+1) ← cost(xi, xi+1)
15: α ← exp(−c1Δ(f(xi+1), f(xi))/t)
16: u ← U(0, 1) // random uniform
17: if u < α then // sample promoted
18: f∗(xi), f

∗(xi+1) ← cost∗(xi, xi+1)
19: α∗ ← exp(−c2Δ(f∗(xi+1), f

∗(xi))/t)
20: u ← U(0, 1)
21: if u < α∗ then // sample accepted
22: xi ← xi+1

23: end if
24: end if
25: end for

After a sample xi+1 is generated, its cost is estimated using f . If the sample passes
the promote filter on Line 17, cost∗ is computed using f∗. Note that the cost and
cost∗ functions include reassignment distance D(R) (Algorithm 2). Since Algorithm
2 does not guarantee optimality for D(R), cost∗ does not guarantee optimality either,
and hence we refer to f∗ as “more accurate” rather than optimal. Hyperparameters
c1, c2 ∈ R

+ may be set differently. Christen and Fox [6] suggest setting c1 > c2 so that
the promotion of a sample is less likely than the acceptance of a promoted sample. For
the temperature function T we use a shifted and scaled reverse sigmoid (decreasing)
that gives temperatures in range [1, 0]. For the cost-distance function Δ we use a shifted
and scaled sigmoid that gives values in range [0, 1]. Nested Annealing was first intro-
duced by Rajasekaran and Reif [29], but they do not use cost approximation and base
the nesting on variable set temperatures in local search regions. Algorithm 3 offers an
alternative nesting strategy, based on a trade-off between predictive speed and accuracy.



232 J. Oxenstierna et al.

5.5 Restarts

Due to the large search space of the SLAP, the MCMC sampling function xi+1 ←
sample(q(xi+1|xi)), may benefit from occasional restarts (Sect. 3). Yu et al. [42], pro-
pose restarts from randomly generated samples. Their test-problems do not include
reassignment distances, however, and in the SLAP, randomly generated samples can
be expected to have a significantly higher cost than x1 due to reassignment distance
D(R). As a solution to this problem, we instead propose restarts from local minima.
The best minimum found through optimization is denoted xbest and it is used as restart
sample with an increasing probability. Forcing restarts from xbest is motivated because
its local neighbourhood cannot be extensively searched for in any but the smallest SLAP
test-instances. A second minimum is denoted xlowR and it is used as a restart sample
with a decreasing probability. Forcing restarts from xlowR is designed to target a low
reassignment distance D(R). The first such local minimum is xlowR = x1, whose
D(R) = 0. xlowR = x1 can be assumed to be a strong local minimum, due to its
lack of reassignment distance, but after f∗(x1) has been beaten by f∗(x1+i), xlowR is
updated at regular intervals to a previously generated sample which has a relatively low
f∗ cost and D(R). In Sect. 6 we propose probability distributions for xbest and xlowR,
as well as optimization results with and without the use of restarts.

6 Experiments

6.1 Overview

We carry out experiments to investigate the following topics with regard to computa-
tional efficiency (cost reduction through CPU-time), in chronological order specified
below:

1. Utility of Hamming-distance based sampling (q).
2. Utility of restarts.
3. Comparison of two cost approximators for use within Algorithm 3.
4. Comparison of Algorithm 1 and Algorithm 3 (using best settings from 2 and 3).
5. Other features (such as layout and number of products and pick-rounds).

All experiments are carried out using Intel Core i7-4700MQ, 2.40 GHz, 4 cores and
Python3 (with heavy use of Cython) and C.

6.2 Parameters

For all experiments, the number of products open for location reassignment (m) is set
to be equivalent to the number of products in the test-instance. The number of reassign-
ment path optimization iterations (K in Algorithm 2) is set to 300. After optimization
has completed, the reassignment path is re-optimized with K set to 10000. The accept
probability computation is set to be equivalent between Algorithm 1 and 3 (c2 = 1 and
equivalent Δ and T functions). The Δ function is set to approach 1 when the ratio of the
distance between a new sample and a previous sample exceeds 1.05: This means that
if a new sample has a distance 5% higher than the previous sample, it is unlikely to be
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promoted and/or accepted. c1 in Algorithm 3 is set to 2, which makes it more difficult
for a sample to be promoted than accepted once promoted. The reverse sigmoid proba-
bility distribution q, which gives the number of location changes between a new and a
previous sample, is set to approach zero when number of location changes exceeds 20.
For all experiments where a restart strategy is used, sample xi+1 can be built from either
xi, xbest or xlowR (Sect. 5). The probability to pick one of the latter two is governed
by a sigmoid and reverse sigmoid, respectively, with probabilities in range [0, 0.2] and
[0.2, 0], stretched over N iterations. In all iterations where neither xbest nor xlowR is
picked, xi is used (no restarts). λ and N are set depending on the dataset.

6.3 Datasets

The following three datasets are used:

1. 266 TSPLIB instances3 modified for the SLAP and shared in a public repository4.
These instances include 6 different types of warehouse layouts (including one with
no obstacles). The number of products open for location reassignment vary between
5–427 in these instances. The initial locations for all products (baseline assignment
x1) in these instances is selected using a random uniform distribution. Solution pro-
posals are uploaded for each of these instances using Algorithm 3 after a maxi-
mum of 20000 iterations (N ). Experiments to test utility of Hamming distances and
restarts are conducted on this dataset. λ is set to 1 for experiments on this dataset.

2. Data from a real warehouse with a conventional layout. The provided picking-log
includes 260 unique products and 260 product locations. There are 200 pick-rounds
and most products are picked in several pick-rounds. The experiments where Algo-
rithm 1 and 3 are compared are run on this dataset. Algorithm 1 and 3 are run 10
times each on this dataset, with varying random seeds and a maximum CPU-time
set to 8 h. λ is set to 1 for experiments on this dataset.

3. Data from a real warehouse with an unconventional layout. Specific to this dataset is
that there is only a single origin/destination and that some products are not located in
the warehouse apriori. These products are assigned random initial locations. There
are also more locations than products in this dataset. The empty locations are uti-
lized in optimization by placing a mock product at each of them. By flagging these
products, they can be excluded from cost computation, while remaining open for
product locations swaps. This dataset also contains longer pick-rounds than the other
two (with an average of 29 picks per pick-round). The experiments where the two
cost approximators are compared are conducted on this dataset, using a maximum
CPU-time of 4 h. λ is set to 0 for experiments on this dataset: This removes the
reassignment distance and thus ensures that the two approximators can be compared
against an optimal f∗.

In all three datasets, the capacity of all locations is assumed to be identical, meaning
that any product can be placed at any location. We compare costs of samples against the
baseline x1, where each product is fixed to its initial location, where optimal picking
costs are computed in D(B) and where D(R) = 0.
3 https://github.com/johanoxenstierna/OBP/instances, collected 19-10-2022.
4 https://github.com/johanoxenstierna/L40_266, collected 14-11-2022.

https://github.com/johanoxenstierna/OBP/instances
https://github.com/johanoxenstierna/L40_266
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Fig. 3. The total number of product location reassignments needs to be large to achieve the best
total travel costs in f∗(xbest) (dataset 2).

6.4 Experiment Results

Utility of Hamming-Distance Based Sampling. Results show that many location reas-
signments are needed to reach the best reductions in travel cost (Fig. 3). Also, more
reduction in cost is achieved when the Hamming distance (number of location changes)
between a previous sample and a new one is relatively low (Fig. 4). On average, the
cost of sample f∗(xi+1) is more reduced compared to a previous sample f∗(xi) if
fewer location changes are attempted. This result empirically validates the Hamming
distance distribution q(xi+1|xi) and its bias toward conducting fewer location changes
at each step in the Markov Chain (Eq. 3).

Utility ofRestarts. Results with and without restarts (Sect. 5) are shown in Fig. 5. Given
the same amount of optimization iterations (N = 30000) on dataset 2, the best results
for both Algorithm 1 and 3 are obtained using restarts. Restarts enforce revisits to local
minima with relatively short total travel costs f∗ or reassignment costs D(R) (Sect. 5).
Since fewer reassignments mean that fewer pick-rounds contain products whose loca-
tions change, total TSP optimization CPU-time is significantly lower when restarts are
used. This is achieved by the caching of TSP costs (Sect. 5). Furthermore, few reas-
signments mean that the optimization of the reassignment path requires less CPU-time
to reach a relatively strong solution. As can be observed, Algorithm 1 and 3 without
restarts (lighter blue and green) quickly jump up in cost. This is mainly attributed to the
relatively low cost in assignment x1, where D(R) = 0, which is never revisited once
stepped away from and never improved on (without restarts).

Comparison of the Two Cost Approximators for Algorithm 3. Results on dataset 3
are summarized in Table 2. We first study the coefficient of determination R2 (goodness
of fit) between approximations f against f∗. For OR-tools, R2 = 0.97 and for the
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Fig. 4.Distribution (violin) plot showing number of location changes against picking-log distance
D(B) (blue) and reassignment distance D(R) (orange) when moving from a previous sample to
a new sample in the Markov Chain. The mean cost of both D(B) and D(R) increase when more
location changes are attempted in new samples. This plot excludes any xi and xi+1 pairs where
either were restarts back to a local minimum. (Color figure online)

heatmap, R2 = 0.15. Even though the heatmap approximation is thousands of times
faster to compute compared to TSP-optimizing the picking-log using OR-tools, OR-
tools still results in more savings than the heatmap approximation. Due to its high speed,
the heatmap approximation allows for more samples to be generated and higher initial
savings, but due to its weaker predictive quality it, in the end, loses out to the TSP
approximation.

The weakness of the heatmap approximation can be attributed to a combination of
two factors. The first is that a swap of two products may result in a frequently picked
product being located further from the depot, incurring an increased heatmap cost, while
TSP distance, on the contrary, is reduced (this can be observed in Fig. 8). The second
factor is its bias to promote samples where high-frequency products are moved closer
to depot. This type of bias risks leading the search to a pre-mature convergence on a
local minimum. In order to prevent convergence on a local minimum, many samples are
needed which temporarily increase TSP costs, but these types of samples are not often
promoted in Algorithm 3 when the heatmap approximation is used.

Although OR-tools outperforms the heatmap approximation, one noted issue with
the former is its high minimal CPU-time. The CPU-times of OR-tools are averaging
0.1 s to optimize a single TSP, whereas the corresponding CPU-time for Concorde is
averaging 0.2 s. We could not achieve a lower value using the solution_limit parameter
after several tests. On dataset 1 and 2, this CPU-time is potentially advantageous, since
OR-tools delivers TSP distances within 1–2% of optimality (Table 2). This high approx-
imation quality is explainable since pick-rounds b ∈ B rarely exceed 15 locations in
length in those datasets. On dataset 3, when the pick-rounds are 29 products on average,
OR-tools is within 6% of optimality. We did not attempt to tune the CPU-time and the
solution_limit parameter in OR-tools to maximize its utility within Algorithm 3.
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Fig. 5. Algorithm 1 and Algorithm 3 with and without restarts for 30000 iterations on dataset 2
[28]. The costs shown are for f∗(xi+1).

Finally, we compute goodness of fit between both cost approximators and R(D) for
any generated samples (while λ was set to zero for dataset 3, R(D) was still computed
and logged). In both cases, R2 was close to zero. While this may seem disadvantageous,
it also means that R(D) has a high variance and low bias, thus preventing Algorithm 3
from converging on weak local minima. We also note that R2 increases for promoted
samples and even more so for accepted samples (reaching as high as R2 = 0.57 for
accepted samples). This provides further validation for Algorithm 3 and its cost function
(Eq. 1): The Markov Chain tends to converge on regions where picking-log cost is low
and where reassignment costs are low as well.

Algorithm 1 Compared to Algorithm 3. When the best settings found are utilized
in Algorithm 3 (Nested Annealing with the OR-tools TSP cost approximation and
restarts), it outperforms Algorithm 1 (Simulated Annealing without cost approximation
and with restarts) within the given CPU-time (Fig. 6). The Markov chain in Algorithm 3
is more biased compared to the one in Algorithm 1, due to more samples being rejected.
Algorithm 1 searches through less attractive search regions, which reduces risk of con-
vergence on local minima, so if given more CPU-time it could reach stronger results.

Other Features. Aggregate averages of results on the generated instances (dataset 1)
and Algorithm 3 are shown in Table 1 (Appendix). The elements for columns f(xi),
f∗(xi), f(xi+1), f∗(xi+1), f∗(xbest), D(R)1 D(R)300 are all shown as percentages
against the distance of the baseline cost f∗(x1) (100%). D(R)1 and D(R)300 denote
the distance of the reassignment path after Algorithm 2 has been run for 1 and 300
iterations, respectively. The rows are aggregated averages based on number of products
shown in column 1, from a total of 5279885 samples on the instance set (with 3–12 min
CPU-time on each instance).
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Fig. 6. Aggregate CPU-time against shortest total travel cost (f∗(xbest)) on the real warehouse
dataset (20 optimization runs): Blue is Algorithm 1, green is Algorithm 3 and red is the cost of
baseline assignment x1 (100%). The shadowed areas represent 95% confidence intervals [28].

The relationship between number of location changes and D(R) can be seen in
Fig. 7. As more location swaps are carried out, the amount of reassignment distance
increases, but the rate of increase slows down. One possible misconception is that the
gradient should go down to zero as the reassignment path cannot exceed some hypo-
thetical maximum. This is unlikely to occur, however, since the reassignment path may
need to go back and forth through the warehouse several times to perform many reas-
signments.

Fig. 7. Number of location changes vs. reassignment distance (as a percentage of baseline costs)
(Algorithm 3 and dataset 3).
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No correlation was found between the warehouse layout and features such as total
cost improvement, reassignment distance and/or number of final proposed location reas-
signments. This is explainable since both TSP-optimizers (OR-tools and Concorde) and
the reassignment path optimizer (Algorithm 2) are layout-agnostic (Sect. 1).

7 Conclusion

This paper proposes a new optimization model for the Storage Assignment Location
Problem (SLAP). In the Traveling Salesman Problem (TSP)-based SLAP, future fore-
casted picking is assumed to be static, while the warehouse rack layout can have any
shape in two dimensions. In order to optimize the TSP-based SLAP, we propose a
Nested Annealing algorithm. The algorithm is an extension of Simulated Annealing
and generates assignment samples using a Hamming distance function and two sam-
ple filters. The algorithm requires fast and reasonable accurate cost approximations,
and we propose two alternatives: One based on sub-optimal TSP optimization, and the
other based on a pick-frequency heatmap. In order to reduce risk of convergence on a
weak local minimum, we propose a restart heuristic, which forces occasional revisits to
previously generated and relatively strong samples. Since products cannot be reassigned
to new locations for free, a model for the reassignment path and reassignment distance
is proposed. This cost is computed and added to the cost of any generated sample.

To evaluate the proposed optimizer using various SLAP scenarios and optimization
settings, experiments were conducted on three datasets: A set of publicly shared test-
instances on the generalizable TSBLIB format, as well as two datasets from real ware-
houses. Results show that Nested Annealing yields cost savings of up to 30% within
8 h of CPU-time. This result is in line with results in prior work, where strong assump-
tions are made with regard to warehouse layout (but where dynamicity may be included
or where number of products is larger) [14,17,35]. Concerning the cost approxima-
tors, results show that sub-optimal TSP optimization outperforms the pick-frequency
heatmap approach. While the former is thousands of times slower than the latter, it
nevertheless achieves a better result due to its higher predictive accuracy.

For future work, heuristics to increase the amount of bias could be investigated. One
cause of high variance in the proposed algorithm is that any product is allowed to swap
location with any other product. Instead, products could be set up to be allocated to
certain areas in the warehouse. This type of zoning is not trivially achieved, however,
and could, if not carefully handled, lead to premature convergence on local minima. We
concluded this after early tests and instead pursued cost approximation and the promote
filter as another means to constrain the search space.

A topic which we did not explore extensively in this paper is the λ constant (Sect. 4)
and its effect on optimization. We set it to either 0 or 1 and only concluded that it
significantly slows down effective search when used. Instead of a constant, it could be
set to change during optimization to potentially improve performance. For example, λ
could be set to start at a low value and then grow linearly.

A final proposal involves analysis of the picking log and how it relates to potential
cost savings. Zhang et al. [43] and Kofler et al. [14] use datamining heuristics to show
that potential cost savings (the “reassignment potential”) are correlated to the way in
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which products in pick-rounds are distributed. It is challenging to make use of such
heuristics to make concrete proposals for reassignments in a Markov Chain, however.
The SLAP remains a highly intractable problem.

Acknowledgements. This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
We also convey thanks to Kairos Logic AB for software.

A Appendix

Examples of pick-rounds before and after 100 iterations of SLAP optimization (left and
right respectively). The SLAP can be challenging even when there are only six pick-

Fig. 8. Pictures of optimally solved pick-rounds (TSP’s) before (left) and after SLAP optimization
(right). The product which is picked in all pick-rounds is the lower-rightmost one in the upper
two pictures (before and after it was moved).
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rounds in the picking-log. While it is relatively easy to spot suitable swaps of locations
for pick-rounds involving few products, it is more difficult when pick-rounds are long.
One of the products is picked in all of the pick-rounds, and as that product is moved, it
affects total distance in an unforseeable manner.

Table 1. Aggregate averages of results from 5279885 generated samples for optimization runs
on the 266 publicly shared instances. The results are aggregated based on ranges of number of
products (the first column).
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Table 2. Aggregate averages of results on dataset 3, where the two cost approximators are com-
pared. The CPU-times are here for predictions of single TSPs.
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Abstract. We deal with the optimal inventory control problem for
Multi-Stage Supply Chains (MSSC) with uncertain dynamics. The two
sources of uncertainty we consider are about the perishability factor of
stored products and on the customer prediction information. The control
problem consists in defining a Replenishment Policy (RP) keeping the
inventory level as close as possible to a desired value and mitigating the
Bullwhip Effect (BE). The solution we propose is based on Distributed
Robust Model Predictive Control (DRMPC) approach. This implies solv-
ing a set of RMPC problems. To drastically reduce the numerical com-
plexity of this problem, the control signal (i.e. the RP) is sought in the
space of B-spline functions, which are known to be universal approxima-
tors admitting a parsimonious parametric representation.

Keywords: Supply chain management · Inventory control · Bullwhip
effect · Model predictive control

1 Introduction

We consider an MSSC whose dynamics is characterized by perishable goods
with uncertain deterioration rate and an uncertain future customer demand. The
problem we face consists in defining an RP keeping the actual inventory level as
close as possible to a suitably defined reference trajectory though the mentioned
uncertainties. In this context, the fundamental role played by Model Predictive
Control (MPC) is widely recognized and documented [1,2]. This is mainly due
to: 1) the capability of handling hard constraints imposed on some physical
variables, 2) the capability of on-line determining appropriate corrections to the
actual control action.

MPC techniques for large-scale are usually implemented according to three
different control architectures: centralized, decentralized and distributed [3,4].
The application of the first two architectures to MSSC is discussed in [5–10].
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The main drawbacks of centralized approach are: numerical complexity, compu-
tational cost, reluctance to share information. Decentralized approach does not
have these troubles but causes a loss of performance because each agent decides
the control action on his own without exchanging information. This motivated
the recent interest in Distributed MPC (DMPC) [11–13].

All the mentioned papers do not face the problem raised by the presence of
deteriorating items in the inventory system. On the other hand, if the effect of
perishable goods is not taken into account, a serious performance degradation of
the MSSC is observed. Centralized MPC of inventory level for perishable goods
has been investigated in [14,15] under the simplifying assumption of an exactly
known decay factor.

In this paper we extend previous results on single stage SC [16–18] and pro-
pose a DRMPC approach for the optimal inventory control of a MSSC whose
dynamics is affected by two very common sources of uncertainties: perishable
goods with an uncertain decay factor, inaccurate knowledge on the future end
customer demand. Our purpose is to define a DRMPC policy optimally concil-
iating the three following antagonist Control Requirements (CR) at each stage:
CR1) maximize the satisfied demand issued by the neighboring downstream
stage, CR2) minimize the on hand stock level, CR3) mitigate the BE.

A preliminary version of this contribution was presented at [19]. Here we
give more theoretical and implementation insights answering many issues not
addressed in [19]. In Sect. 2.1 we provide more mathematical details on B-splines
functions, in Sect. 6 we provide a rigorous analysis of stability and feasibility
properties of our approach. In this regard, we mention that although, stability
and feasibility play a fundamental role in the MPC [20], most of MPC based
methods for inventory control do not rigorously face these issues. Our contribu-
tion fills this gap. In the numerical simulation we show the effectiveness of the
proposed method applied to seasonal MSSC with unpredictable random fluctu-
ations of the final customer demand: a class of systems whose complexity is well
acknowledged in the literature [21].

Applying MPC requires a reliable estimate of the future end customer
demand. This is a very arduous task due to unpredictable and dynamically
changing behavior of the final consumer. For this reason we give up statistical
methods based on time series analysis and, according to the robust approach, we
assume that at any time instant k ∈ Z+ and over a finite prediction horizon, the
future end customer demand entering the first stage of the MSSC is arbitrarily
time varying inside a given bounded set D1,k. Coherently with this assumption
we conciliate CR1 and CR2 defining a desired inventory level that, for the first
stage of the MSSC, is given by the upper bounding trajectory of D1,k. Then, the
target inventory level of each other upward stage is iteratively defined on the
basis of the predicted demand coming from the previous downstream stage. Sat-
isfying CR3 is a problem of a paramount importance in the MSSC management
as testified by the impressive amount of relevant literature, [22,23]. We face this
problem simultaneously acting on two Fundamental Features (FF) characteriz-
ing the BE: FF1) irregularity of stock replenishment orders, FF2) progressive
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upward amplification of the intervals over which the replenishment orders issued
by each stage take values.

FF1 is addressed applying an RP obtained by a parametrized solution of the
DRMPC problem in terms of smooth functions and defining a cost functional
penalizing excessive differences between consecutive orders. As for FF2, we prove
that, using our approach, the upward interval amplification is proportional to the
perishability rate. The interesting corollary is that, in the case of non perishable
goods, the values of orders issued by all stages may be contained in the same fixed
amplitude interval. Coherently with the assumptions on the uncertainties and
with the CR’s , we develop a DRMPC approach based on a min-max optimization
procedure. The control signal (i.e. the RP) relative to each stage of SC is obtained
in the following way:

1) at each time instant k we minimize the worst case of a quadratic cost func-
tional over a future prediction horizon. The worst case is computed by max-
imizing with respect to all the possible perishability factor values;

2) the actual control law is obtained by receding horizon implementation.

To reduce the computational burden of the min max optimization problem
over each prediction horizon, we propose a parametrized solution in terms of
polynomial B-spline functions. This implies solving a DRMPC problem with
fewer decision variables.

Alternative parametrization methods for reducing the computational com-
plexity of MPC have been proposed in [24–26].

The main reasons for choosing polynomial B-splines are: 1) they inherit the
smoothness of polynomial functions, and, at the same time, their spline structure
is well suited to approximate curves which exhibit different shapes over differ-
ent time-intervals, 2) B-splines admit a parsimonious parametric representation
given by a time varying, linear, convex combination of some parameters named
“control points”. These properties allow us to obtain an RP with a smooth wave-
form and to transfer any hard constraint on the control law to its control points.
This is very useful to deal with FF2 of BE. Property 2 also allows us to refor-
mulate the constrained minimization of the cost functional with respect to the
RP signal as a Weighted Constrained Robust Least Square (WCRLS) estimation
problem that can be efficiently solved using interior point methods [27]. Another
fundamental advantage deriving from using B-spline function is the feasibility
guarantee independently of the length of the prediction and control horizons.
This point is discussed in Sect. 6.

The paper is organized in the following way. Some mathematical prelimi-
naries on B-splines and RLS problem are recalled in Sect. 2. The system model
is described in Sect. 3. The DRMPC problem is formally stated in Sect. 4 and
solved in Sect. 5, where it is reformulated as a WCRLS estimation problem. Fea-
sibility and stability of the DRMPC are proved in Sect. 6. Numerical results are
reported in Sect. 7 and concluding remarks in Sect. 8.
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2 Mathematical Background

2.1 B-Spline Functions [28]

Analytic scalar B-splines functions are defined in the following way:

bs(v) =
�∑

i=1

ciBi,d(v), v ∈ [v̂1, v̂�+d+1] ⊆ R, (1)

where the ci’s are real numbers representing the control points of bs(v), the
integer d is the degree of the B-spline, the (v̂i)�+d+1

i=1 are the non decreasing knot
points and the Bi,d(v) are given by the Cox-de Boor recursion formula

Bi,d(v) =
v − v̂i

v̂i+d − v̂i
Bi,d−1(v) +

v̂i+1+d − v

v̂i+1+d − v̂i+1
Bi+1,d−1(v), d ≥ 1, (2)

with Bi,0(v) = 1 if v̂i ≤ v < v̂i+1, otherwise 0.
In (2) possible division by zero are resolved by the convention that “anything
divided by zero is zero”.

Convex Hull Property. Any value assumed by bs(v), ∀v ∈ [v̂j , v̂j+1], j > d, lies
in the convex hull of its d + 1 control points cj−d, · · · , cj . �

Identifying the parameter v of (1) with the time instant t ∈ R+, the sampled
B-spline bs(k T ) is obtained by direct uniform sampling of the corresponding
analytic B-spline.

The discrete B-spline bs(k) (omitting the explicit dependence on T ) can be
used to represent a scalar discrete time signal. Defining

c
�
= [c1 · · · c�]

T
, Bd(k)

�
= [B1,d(k) · · · B�,d(k)] (3)

where each Bi,d(k) is obtained by (2) setting v = k and v̂i = k̂i, i = 1, · · · , d +
� + 1, the sampled B-spline bs(k) can be represented as

bs(k) = Bd(k)c, k ∈ [k̂1, k̂�+d+1] (4)

Remark 1. From (4) it is apparent that, once the degree d and the knot points
k̂i have been fixed, the B-spline bs(k), k ∈ [k̂1, k̂�+d+1], is completely determined
by the corresponding vector c of � control points. As, in general, � << kM , where
kM is the number of sampled instants of [k̂1, k̂�+d+1], B-splines are said to admit
a parsimonious parametric representation. �

2.2 The CRLS Problem

Consider an overdetermined set of linear equations Df ≈ b where D ∈ Rr×m is
the design matrix and b ∈ Rr, is the observed vector. Both D and b are subject
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to unknown but bounded errors: ‖δD‖ ≤ β and ‖δb‖ ≤ ξ (the matrix norm is the
spectral norm). The RLS estimate f̂ ∈ Rm, [27], is the value of f computed as

min
f

max
‖δD‖≤β, ‖δb‖≤ξ

‖(D + δD)f − (b + δb)‖ (5)

Using norm properties, it can be shown that

max
‖δD‖≤β, ‖δb‖≤ξ

‖(D + δD)f − (b + δb)‖

= ‖D f − b‖ + β‖f‖ + ξ

Hence (5) is equivalent to compute f according to

min
f

‖D f − b‖ + β‖f‖ + ξ (6)

The CRLS version also requires that f satisfies the following component-wise
linear constraints:

f ≤ f ≤ f̄ (7)

Remark 2. The term ‖δb‖ in (5) only appears in (6) through its norm upper bound
ξ, which is independent of f . Hence ξ can be removed from the objective func-
tion without affecting the value of f solving the minimization problem. As it will
be shown in Sect. 5, this allows us to solve the constrained optimization problem
implied by the RMPC algorithm even in the case of uncertain future customer
demand. �

3 TheMSSCModel

Fig. 1. Distributed control scheme of the MSSC network.

As shown in Fig. 1, we assume an MSSC network made up of a number of nodes
Si, i = 1, · · · , n, with counter-current order and material streams.

Management decisions for each node are taken periodically at equally dis-
tributed time instants kT where k ∈ Z+ and T is the review period. At the begin-
ning of each review period [kT, (k + 1)T ) the operations across the MSSC net-
work are performed sequentially from S1 to Sn. Inside each review period, each Si
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executes five actions in the following order: receives delivery from supplier Si+1,
logs the demand of customer Si−1, measures its on hand stock level, delivers the
goods to meet demand and finally places an order according to a suitably defined
replenishment policy. Accordingly, five variables are defined: si(k), di(k), yi(k),
hi(k) and ui(k). They represent the shipment of goods from supplier Si+1, the
demand from Si−1, the on hand stock level, the delivery to customer Si−1 and the
replenishment order, respectively. Each node Si is regulated by an agent Ai that
solves a local RMPC problem based on the following assumptions:

Fig. 2. (a) Example of a set D1,k, (b) Example of a set Di,k, i ≥ 2.

– A1)The end customer demand d1(k), k ∈Z+ is uniformly bounded. Moreover,
at any time instant k, and over an M1-steps prediction horizon [k +1, k +M1],
the unknown future end customer demand d1(k + j), j = 1, · · · ,M1, varies
within a compact set D1,k limited below and above by two known bound-
ary trajectories: d−

1 (k + j) and d+1 (k + j), j = 1, · · · ,M1. The minimum
value of d−

1 (k + j) and the maximum value of d+1 (k + j), j = 1, · · · ,M1,
are denoted by d−

1,k and d+1,k respectively. The demand forecasting D̂1,k =
[d1(k + 1|k), · · · , d1(k + M1|k)] for agent A1 coincides with the central tra-

jectory of D1,k namely D̂1,k
�
= [d̄1(k +1), · · · , d̄1(k +M1)]. Figure 2(a) shows a

typical example of an end-customer demand d1(k + j) and of a predicted end
customer demand d1(k + j|k) over a fixed D1,k.

– A2) At any time instant k, the predicted demand D̂i,k = [di(k +
1|k), · · · , di(k+Mi|k)] for the other agents Ai, i = 2, · · · , n, coincides with the

predicted optimal control sequence (i.e. the optimal predicted RP) Ui−1,k
�
=

[ui−1(k + 1|k), · · · , ui−1(k + Ni−1 − 1|k)] transmitted by Ai−1 to Ai, where
Mi = Ni−1 − 1. Note that also D̂i,k belongs to a given compact set Di,k lim-
ited by the imposed lower and upper values u−

i−1,k and u+
i−1,k respectively (as

shown in Fig. 2(b)). How to compute Ui−1,k, u−
i−1,k and u+

i−1,k is explained in
Sect. 4.

– A3) The goods shipped from supplier Si+1 arrive at customer Si with a time
delay Li = niT , where ni ∈ Z+. Goods arrive at customer Si new and deteri-
orate while kept in stock.
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– A4) Inside each review period, the perishability rate of the goods stocked in
Si is αi ∈ [α−

i , α+
i ] ⊂ (0, 1).

– A5) The operations of inventory replenishment and goods delivery are exe-
cuted simultaneously at the beginning of each review period. Sales are not back-
ordered.

The above assumptions imply that the stock level dynamics of the i-th node is
described by the following uncertain equation

yi(k + 1) = ρi(yi(k) + si(k − Li) − hi(k)), yi(0) ≥ 0, i = 1, · · · , n, (8)

where:

– ρi
�
= 1 − αi ∈ [ρ−

i , ρ+i ] ⊂ (0, 1) is the uncertain decay factor;
– yi(k) is the on hand stock level of Si, i.e. the amount of goods left in stock after

satisfying the demand at the beginning of the k − 1 review period;
– si(k − Li) is the goods delivered to the stage Si with a time delay Li.
– hi(k) is the demand fulfilled by Si, i = 1, · · · , n.

As backorders are not allowed, hi(k) is given by

hi(k)
�
= min{di(k), yi(k) + si(k − Li)}, i = 1, · · · , n (9)

where d1(k) is the end-customer demand, and di(k) = ui−1(k), i = 2, · · · , n, is
the demand issued by Si−1.
Note that the sum yi(k) + si(k − Li) represents the effective amount of goods
available for sale at the beginning of k-th review period.

For future developments we now rewrite Eq. (8) assuming
A6): there exists a k̄ ≥ 0 such that

yi(k) + si(k − Li) ≥ di(k), ∀k ≥ k̄, i = 1, · · · , n (10)

This assumption is justified because, at each stage, the control sequence is
obtained minimizing the maximum weighted �2 norm of the distance between the
on-hand stock level and the maximum demand.

By (9) and (10) we have hi+1(k) = di+1(k). As di+1(k) = ui(k) and hi+1(k) =
si(k) (see Fig. 1) we also have si(k−Li) = ui(k−Li). Hence an equivalent expres-
sion of (8) is

yi(k + 1) = ρi(yi(k) + ui(k − Li) − hi(k)), ∀k ≥ k̄, i = 1, · · · , n (11)

4 The DRMPCApproach

To simplify the derivation of the control strategy but without any loss of gener-
ality we refer to (11) in the ideal case k̄ = 0. Each Ai uses Eq. (11) and the pre-
dicted optimal control policy Ui−1,k communicated by Ai−1 to predict the future
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inventory level of the local subsystem Si. This latter is in turn used to compute
Ui,k minimizing the worst case of a local quadratic cost functional subject to hard
constraints u−

i,k and u+
i,k. Coordination between contiguous agents Ai−1 and Ai,

is imposed by relating the respective constraints u−
i−1,k and u+

i−1,k with u−
i,k and

u+
i,k. Each local RMPC requires each agent Ai to repeatedly solve a Min-Max Con-

strained Optimization Problem (MMCOP) over a future Ni steps control horizon,
and, according to the receding horizon control, to only apply the first sample of
the computed predicted optimal control sequence.

4.1 Local MMCOP for Ai

With reference to (11), the local MMCOP for any Ai, i = 1, · · · , n, is formally
stated as follows

min[ui(k|k),··· ,ui(k+Ni−1|k)] max
ρi ∈ [ρ−

i , ρ+i ] Ji,k k ∈Z+, (12)

subject to

0 ≤ u−
i,k ≤ ui(k + j|k) ≤ u+

i,k < ∞, j = 0, · · · , Ni − 1, (13)

where Ji,k is the following cost functional

Ji,k =
Ni∑

l=1

eT
i (k + Li + l|k)qi,lei(k + Li + l|k) +

Ni−1∑

l=1

λi,lΔu2
i (k + l|k) (14)

and

ei(k + Li + l|k)
�
= ri(k + Li + l|k) − yi(k + Li + l|k) (15)

Δui(k + l|k)
�
= ui(k + l|k) − ui(k + l − 1|k) (16)

yi(k + Li + l|k) = ρLi+l
i yi(k) +

Li−1∑

�=0

ρLi+l−�
i ui(k + � − Li)

+
l−1∑

�=0

ρl−�
i ui(k + �|k) −

Li+l−1∑

�=0

ρLi+l−�
i hi(k + �|k) (17)

ri(k + Li + l|k)
�
=

{
d+1 (k + L1 + l) i = 1

u+
i−1,k i > 1 (18)

4.2 Some Remarks on the Cost Functional Ji,k

– 1) By A1) , A2) and (18), it can be seen that M1 ≥ N1+L1 and Mi = Ni−1−1 =
Ni + Li, i > 1, namely Ni−1 = Ni + Li + 1.

– 2) The time varying target inventory level ri(k) for Si is defined as follows:

r1(k) = d+1 (k) and ri(k) = u+
i−1,k, i > 1 (19)
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where d+1 (k) is the time-varying upper bounding trajectory of the actual
end-customer demand and, analogously u+

i−1,k is the constant upper bound-
ing trajectory of the demand forecasting for Ai, i > 1 (as shown in Figs. 2(a)
and 2(b) respectively). Keeping the on hand stock level as near as possible to
the possible maximum level of the demand forecasting maximizes the amount
of fulfilled demand over each shifted prediction horizon and prevents unneces-
sarily larger stock levels.

– 3) The term
∑Ni−1

l=1 λi,lΔu2
i (k + l|k) and the way the hard constraints (13) are

defined allow us to deal with FF1 and FF2 respectively.
– 4) Exploiting A1), A2), A6) and (9), hi(k + �|k) in (17) can be expressed as

hi(k + �|k) = h̄i(k + �|k) + δhi(k + �|k), (20)

where h̄i(k + �|k) = di(k + �|k).

4.3 The Constraints u−
i,k and u+

i,k

On the basis of CR1-CR3, the constraints u−
i,k and u+

i,k of (13) are determined to
conciliate the two following conflicting criteria:

– 1) maximize the amount of demand that each stage Si can satisfy,

– 2) limit the amplitude (defined as Ai,k) of the interval [u−
i,k u+

i,k]
�
= Ci,k.

To solve this problem we refer to two possible limit situations compatible with
the balance Eq. (11).

Consider the following scenario:

– di(k + Li + j|k), j = 0, · · · , Ni − 1, is a constant signal with value d̃i,k ∈
[d−

i,k, d+i,k] = [u−
i−1,k, u+

i−1,k]. The two mentioned limit situations are d̃i,k =
u−

i−1,k and d̃i,k = u+
i−1,k.

– Each control horizon Hi,k is long enough to allow yi(k+Li+j|k), j = 1, · · · , Ni,
to practically attain the steady-state value ỹi,k under the forcing action of a
constant ui(k + j|k) = ũi,k, j = 0, · · · , Ni − 1.

The problem we now consider is: for a given ũi−1,k ∈ [u−
i−1,k, u+

i−1,k] it is
required to find the corresponding constant control input ũi,k over each Hi,k,
such that Si fully satisfies the demand coming from Si−1, namely ỹi,k ≥ ũi−1,k,
∀ρi ∈ [ρ−

i , ρ+i ].
Simple algebraic calculations based on classical z-transform methods and the

final value theorem [29] allow us to prove that

C1,k
�
= [u−

1,k, u+
1,k] =

1
ρ−
1

[d−
1,k, d+1,k] (21)

Ci,k
�
= [u−

i,k, u+
i,k] =

1
ρ−

i

[
u−

i−1,k, u+
i−1,k

]
, i = 2, · · · , n (22)
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Recalling that Ai−1,k denotes the amplitude of Ci−1,k, from (21), (22) we have

A1,k =
1

ρ−
1

(d+1,k − d−
1,k) and Ai,k =

1
ρ−

i

Ai−1,k, i = 2, · · · , n (23)

At each node Si according to FF2 we define the following measure:

Bi,k =
Ai,k

Ai−1,k
(24)

According to (23)–(24), the proposed DRMPC scheme implies Bi,k = 1/ρ−
i

�
=

Bi > 1.
The two salient conclusions are: 1) an estimate of the overall BE (correspond-

ing to FF2) that propagates along the MSSC network, can be computed “a priori”
and is given by B = 1/(

∏n
i=1 ρ−

i ), 2) our approach does not entail this kind of BE
for ρ−

i → 1.

5 Reformulation of theMMCOP

We reformulate the local MMCOP as a WCRLS estimation to drastically reduce
the numerical complexity of the algorithm solving the original MMCOP. The func-
tional Ji,k, defined in (12), is minimized assuming that the control sequence Ui,k,
is given by the sampled version of a B-spline function. Adapting the notation in
(4) to specify that it is relative to the i-th node and the k-th fixed time instant we
have

ui(j|k)
�
= Bi,d(j)ci,k, j = k, · · · , k + Ni − 1, (25)

with Bi,d(j) = [Bi,1,d(j), · · · , Bi,�,d(j)] and ci,k = [ci,k,1, · · · , ci,k,�]T . The
parameter vector ci,k, defining ui(j|k), is computed as the solution of the WCRLS
estimation problem defined beneath.

As ρi ∈ [ρ−
i ρ+i ], an equivalent representation of ρi is ρi = ρ̄i + δρi, ρ̄i =

(ρ−
i +ρ+i )/2 where ρ̄i is the nominal value and Δρi,k

�
= (ρ̄i +δρi)k − ρ̄k

i is the sum
of all terms containing δρi in the explicit expression of (ρ̄i + δρi)k.

Exploiting (20) and (25) it can be shown that the predicted tracking error given
by (15) can be expressed as

ei(k + Li + l|k) = (bi,k,l + δbi,k,l) − (Di,k,l + δDi,k,l)ci,k (26)

where

Di,k,l
�
=

l−1∑

�=0

ρ̄l−�
i Bi,d(k + �) (27)

δDi,k,l
�
=

l−1∑

�=0

Δρi,l−�Bi,d(k + �) (28)
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bi,k,l
�
= ri(k + Li + l|k) − ρ̄Li+l

i yi(k) −
Li−1∑

�=0

ρ̄Li+l−�
i ui(k + � − Li) (29)

+
Li+l−1∑

�=0

ρ̄Li+l−�
i h̄i(k + �|k)

δbi,k,l
�
= −Δρi,Li+lyi(k) −

Li−1∑

�=0

Δρi,Li+l−�ui(k + � − Li) (30)

+
Li+l−1∑

�=0

ρ̄Li+l−�
i δhi(k + �|k) +

Li+l−1∑

�=0

Δρi,Li+l−�hi(k + �|k)

Similarly Δui(k + l|k)
�
= Bi,d(k + l)ci,k −Bi,d(k + l − 1)ci,k can be rewritten

as
Δui(k + l|k) = (bui,k,l

+ δbui,k,l
) − (Dui,k,l

+ δDui,k,l
)ci,k (31)

where

Dui,k,l

�
= − (Bi,d(k + l) − Bi,d(k + l − 1)) , δDui,k,l

�
= 0 (null row vector) (32)

bui,k,l

�
= 0 and δbui,k,l

�
= 0 (33)

Let’s now define the following extended error vector

ei,k
�
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q
1/2
i,1 ei(k + Li + 1|k)

...
q
1/2
i,N1

ei(k + Li + Ni|k)
λ
1/2
i,1 Δui(k + 1|k)

...
λ
1/2
i,Ni−1Δui(k + Ni − 1|k)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using (27)–(30) for l = 1, · · · , Ni and (32)–(33) for l = 1, · · · , Ni − 1, we also
define analogous extended vectors bi,k, δbi,k and matrices Di,k, δDi,k that allow
us to rewrite ei,k as

ei,k = (bi,k + δbi,k) − (Di,k + δDi,k)ci,k (34)

By (34) we reformulate the local MMCOP (12)–(14) as the following local WCRLS
estimation problem:

min
ci,k

max
‖δDi,k‖≤βi,k ‖δbi,k‖≤ξi,k

‖ei,k‖2 (35)

subject to u−
i,k ≤ ci,k,l ≤ u+

i,k, l = 1, · · · , � (36)
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It is seen that the solution of (35) subject to (36) is the same of a problem of
the kind (5) subject to (7). Hence, according to Sect. 2.2, the solution of the local
MMCOP (12)–(14) is given by the vector ci,k solving

min
ci,k

‖bi,k − Di,k ci,k‖ + βi,k‖ci,k‖ + ξi,k (37)

where the components of ci,k must satisfy (36).

Remark 3. Note that by Remark 2 only the upper bound βi,k on ‖δDi,k‖ in (37)
needs to be determined at each k. Moreover the way the B-spline basis functions
are defined by the Cox-de Boor formula (2) implies that Bi,d(τ) = Bi,d(τ + Ni),

∀τ ∈ Hi,k, k ∈ Z+. Hence, by (28), one has that βi,k
�
= βi, ∀k = 0, 1, · · · and

moreover βi is can be determined putting ρi = ρ+i .

6 Feasibility and Stability of the DRMPC

The calculations reported in Sect. 5 clearly show why the B-spline parametriza-
tion directly implies the feasibility of each local MMCOP (and hence of the
global DRMPC): the constraints (13) on the non parametrized predicted con-
trol sequence are transformed in the consistent system of inequalities (36). These
inequalities concern the vector ci,k of control points of the B-spline that, by (25),
gives the parametrized predicted control sequence. Recalling the convex hull prop-
erty of B-splines, it follows that also condition (13) is always satisfied. The posi-
tivity of yi(k), ∀k ∈ Z+, is implied by (8), (9) and by the positivity of the RP.

The internal stability of the controlled MSSC is guaranteed by: ρi ∈ (0, 1),
i = 1, · · · , n, and by the uniform boundedness of the RP, implied by (13). Fur-
ther, contrary to many proposed methods [30], feasibility and stability are guar-
anteed regardless of the length of the prediction horizon. This is very important
because makes it possible using prediction horizons whose length is inferiorly lim-
ited by considerations only involving the physical structure of the MSSC (point 1
of Sect. 4.2 and Sect. 4.3).

7 Simulation Results

We consider an uncertain MSSC composed of three stages Si, i=1,2,3. The per-
ishability factor αi, the decay factor ρi = 1 − αi, the time delay Li and the initial
stock level yi(0) describing the balance equation (8) of each Si are reported in
Table 1.

Table 1. Model parameters of each node Si, i = 1, 2, 3.

time delay perishability factor decay factor initial stock level

Li = 3 αi ∈ [α−
i , α+

i ] = [0.06, 0.1] ρi ∈ [ρ−
i , ρ+

i ] = [0.9, 0.94] yi(0) = 15
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Fig. 3. The end-customer demand d1(k) (black solid line) and the two boundary tra-
jectories d+

1 (k) and d−
1 (k) (black dashed lines).

The local MMCOP for any agent Ai, i = 1, 2, 3 is solved at each k using B
spline functions of degree d = 3 with a vector ci,k of � = 6 control points. The other
tuning parameters: Ni (length of the control horizon Hi,k), the scalar weights qi,l

e λi,l in (14) and scalars βi,k
�
= βi in (37) are given in Table 2.

Table 2. Tuning parameters of the local MMCOP for any Ai, i = 1, 2, 3.

Ni−1 = Ni + Li + 1 weights in (14) βi,k
�
= βi in (37)

N3 N2 N1 qi,l λi,l

12 16 20 e−0.1 (l−1) e−1 (l−1) β1 = 2.3 β2 = 1.6 β3 = 1

According to Fig. 2, at each k the future end customer demand is assumed to
belong to a set D1,k with length M1 = N1+L1 = 23: the minimum length resulting
from 1) of Sect. 4.2.

We consider a customer demand with a quasi-periodic dynamics, typical in
the case of seasonal goods. Figure 3 shows the actual end-customer demand (solid
line) enclosed in the contiguous positioning of all the D′

1,ks. The dashed trajectory
denotes the predicted end-customer demand d1(k + l|k).
The model equation (8) has been implemented assuming ρi = 0.935, i = 1, 2, 3
and the simulation has been stopped at time k = 250. Figure 4 shows the ordering
signals issued by each stage Si, i = 1, 2, 3 with the respective time-varying lower
and upper bounds. According to FF1) each ui(k) has a smoother behavior with
respect to the end customer demand profile d1(k).

The resulting on hand stock level yi(k) and the time varying desired inventory
level ri(k) for each Si, i = 1, 2, 3 are displayed in Fig. 5. The imposed and fulfilled
demands di(k) and hi(k) respectively at each Si are given in figure 6. As evident
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S1: the boundary trajectories (dashed) and the  ordering signal  u1(k)  
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S2: the boundary trajectories (dashed) and the  ordering signal  u2(k)  
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S3: the boundary trajectories (dashed) and the  ordering signal  u3(k) 

Fig. 4. DRMPC: The ordering signal ui(k) issued by each Si, i = 1, 2, 3 with the respec-
tive time-varying lower and upper bounds.
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S1: the desired reference r1(k)(dashed) and the on hand stock level y1(k) (solid)
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S2: the desired reference r2(k) (dashed) and the on hand stock level y2(k) (solid)
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S3: the desired reference r3(k) (dashed) and the on hand stock level y3(k) (solid)

Fig. 5. DRMPC: The desired inventory level ri(k) and the on hand stock level yi(k) of
each Si.

from Fig. 6, the demand at each Si is not satisfied only over a short initial time
interval as a consequence of the time delay propagation.

A comparison has been performed with the non-linear control strategy pro-
posed in [31]: the method described therein accounts for the effects of time delay
and perishable goods and all details for its reproducibility are provided. Equations
(34)-(36) in [31] have been rewritten in the case of an uncertain n stage SC with
n = 3, decay factors ρi ∈ [0.9, 0.94] and known time delays Li = 3, i = 1, 2, 3
obtaining

ui(k) = sat[ωi(k)] (38)
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S1: the satisfied demand h1(k)(dashed) and the  imposed demand d1(k) (solid)
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S2: the satisfied demand h2(k) (dashed) and the  imposed demand d2(k)=u1(k) (solid)
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S3: the satisfied demand h3(k) (dashed) and the imposed demand d3(k)=u2(k) (solid)

Fig. 6. DRMPC: The imposed demand di(k) and the fulfilled demand hi(k) at each Si,
i = 1, 2, 3.

where

ωi(k) = yref,i − ρLi
i yi(k) +

k−1∑

j=0

ρk−j
i si(j) −

k−Li−1∑

j=0

ρk−j
i si(j) (39)

and the saturation function

sat[ωi(k)] =

⎧
⎨

⎩

ωi(k) if ωi(k) ∈ [0, umax,i]
0 if ωi(k) < 0

umax,i if ωi(k) > umax,i

(40)

According to (45), (46) in [31] and taking into account that ρi ∈ [ρ−
i , ρ+i ],

umax,i and yref,i are inferiorly limited as:

umax,i > dmax,i and yref,i > dmax,i

Li∑

j=0

ρ+i
j

(41)

The topology of the SC network shown in Fig. 1 is such that:

dmax,1 = max
k

d1(k) dmax,2 = umax,1 dmax,3 = umax,2 (42)

According to (41), (42) we fix: umax,1 = 30 > dmax,1 = 25, umax,2 = 35 >
dmax,2 = 30, umax,3 = 40 > dmax,3 = 35, yref,1 = 115 > 110, yref,2 = 130 > 128
and yref,3 = 150 > 147.

We refer to the control strategy (38)–(40) as Modified Non Linear Control
Strategy (MNLCS). The MNLCS has been applied putting ρi = ρ̄i = 0.92, while
the model equation (8) has been implemented assuming ρi = 0.935, i = 1, 2, 3.
The generated orders ui(k) and the resulting on hand stock level yi(k) are dis-
played in Figs. 7 and 8 respectively.
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S1: the boundary trajectories (dashed) and the ordering signal  u1(k)
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Fig. 7. MNLCS: The ordering signal ui(k) issued by each Si, i = 1, 2, 3 with the respec-
tive constant lower umin,i = 0 and upper umax,i bounds, i = 1, 2, 3.
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S1: the desired reference r1(k)=115 (dashed) and the on hand stock level y1(k) (solid) 
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S2: the desired reference r2(k)=130 (dashed) and the on hand stock level y2(k) (solid)
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S3: the desired reference r3(k)=150 (dashed) and the on hand stock level y3(k) (solid)

Fig. 8. MNLCS: The desired constant inventory level ri(k) and the on hand stock level
yi(k) of each Si

The imposed and fulfilled demands di(k) and hi(k) respectively at each Si are
given in Fig. 9.

The performance analysis of both methods has been carried out on the basis
of the following two quantitative indicators:

– UDi
�
= 1

∑Ts
k=0 di(k)

∑Ts

k=0 |di(k) − hi(k)| ∈ [0 1] i = 1, 2, 3;

– IS �
=

∑3
i=1

∑Ts

k=0 yi(k),
where Ts is the length of the simulation.
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The first index measures the normalized amount of Unsatisfied Demand at i-
th stage while the second one computes the total sum of the Inventory Stock in
the SC after satisfying the demand at each k = 0, 1, · · · , Ts.
The results are summarized in Table 3 and evidence that the amount of unsat-
isfied demand is comparable, but the proposed approach requires a very smaller
warehouse occupancy with respect to the non linear control strategy (38)–(40).
The remarkable reduction of warehouse occupancy is a consequence of tracking a
time varying inventory level which is adapted at any k on the basis of the current
value of the demand.

Table 3. The performance evaluation of the DRMPC and MNLCS.

UD1 UD2 UD3 IS
DRMPC 0.0191 0.0302 0.0153 1.60 × 104

MNLCS 0.0191 0.0315 0.0154 4.62 × 104

0 50 100 150 200 250
0

50

S1: the satisfied demand h1(k)(dashed) and the  imposed demand d1(k) (solid)

0 50 100 150 200 250
0

50

S2: the satisfied demand h2(k) (dashed) and the  imposed demand d2(k)=u1(k) (solid)

0 50 100 150 200 250
k

0

50

S3: the satisfied demand h3(k) (dashed) and the imposed demand d3(k)=u2(k) (solid)

Fig. 9. MNLCS: The imposed demand di(k) and the fulfilled demand hi(k) at each Si,
i = 1, 2, 3.

8 Concluding Remarks

We considered the inventory control problem of a MSSC whose dynamics is
affected by interval uncertainties both on the decay factor of perishable goods and
on the future customer demand. The proposed DRMPC approach is based on two
basic features:
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1) a B-splines parametrization of the predicted control law,
2) a desired time-varying inventory level coinciding with a short term prediction

of the upper trajectory of all the possible customer demands.

These features imply numerical advantages and allow an optimal balance of the
opposite control requirements CR1, CR2, CR3. The numerical test confirms the
validity of the DRMPC approach: it is actually able to maximize the customer
service quality without incurring excessive inventory level and control effort.
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