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Glacier Using GIS and ML in the Wake 
of Physico-Climatic Factors 
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Introduction 

Glaciers on Earth are important components of the climate system. Changes in 
glaciers are indicators of climate change (Forsberg et al., 2017), and they contribute 
to and sustain significant river systems on the face of the earth (Bolch et al., 2012; 
Verma et al., 2021). In total, 15–28% of run off is contributed by glaciers (Liljedahl 
et al., 2017), and thus their existence is viable for rivers and streams (Kong et al., 
2019). 

Himalayas are the largest adobe of ice and snow outside poles, and various 
mighty glaciers straddle in the Himalayan Valleys (Ramsankaran et al., 2021), 
covering an area of 33,000 km2 (Bahuguna, 2003). These glaciers hold great 
ecological importance for the Indian sub-continent, as rivers draining the 
sub-continent acquire a considerable proportion of their recharge from them 
(Thayyen & Gergan, 2010; Jones et al., 2018). However, the past few decades 
have not been very favourable for glaciers due to climate change (Clark et al., 
2002; Pörtner et al., 2022). It is claimed that colder areas are getting hot faster 
than the rest of the earth’s average (Arndt and Schembri, 2015), rendering glaciers 
especially vulnerable. The Himalayan range recorded the second fastest warming on 
the earth after the poles, leaving glacial bodies highly susceptible to rapid meltdown 
(Banerjee & Shankar, 2013; Kargel et al., 2011). Several studies are strongly 
suggestive of glacier recession under rising temperatures in the Kumaun Himalayas 
(Bisht et al., 2018; Singh et al., 2018) and Garhwal Himalayas (Chaujar, 2009). 
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Gangotri is one such glacier resting in the Garhwal Himalayas with strong signs 
of retreat (Bhambri et al., 2012) and has been the focus of researchers due to its 
hydrological, fluvial and economic significance (Arora & Malhotra, 2023). 
Ambinakudige, 2010, applied optical remote sensing images to support the recession 
of Gangotri while Varugu & Rao, 2016, exploited the SAR dataset for assessing 
Gangotri. Shi et al. (2023) used dug deeper using sedimentary biological structure to 
delve into the ecology of these glaciers. The glacial variability in the context of space 
and time is also assessed (Joshi et al., 2020). In studies, sub-alpine tree extension was 
used to support the crunching Gangotri glacier over the past century. Most of these 
scholars attributed the declining glaciers to climate change. Scholars such as Mitra 
et al. (2009), Ambinakudige (2010), and Bhambri et al. (2012), also associate the 
retreat with warming temperatures; however, the role of physical characteristics of 
the catchment remained uncredited in the context of Gangotri glacier. Paxman et al. 
(2017) argue that underlying topography plays a key role in the dynamics of 
overlying ice mass in a mountain range. The influence of underlying physiography 
is believed to have an effect even on the ice sheets with gentler and uniform aspects 
and altitude (Gassen et al. 2015), and thus, zones of ablation and accumulation in a 
glacier are not the sole outcome of temperature, but other physiological character-
istics (Yu et al., 2013). This sort of research work is limited to the context of 
Gangotri or Himalayan region for that matter. Singh et al. (2017) have attempted 
to associate glacial retreat with morphological zones; however, their impact on the 
glaciers was not studied. Local physiological construct of the glacier catchment is in 
situ factors. Climate change or global temperature rise are ex site factors influencing 
a glacier. Both in situ and ex situ factors and their complex interrelationship in 
association with climatic factors play a great part in glacial dynamics, and therefore, 
these causative factors must be considered in holistic glacial studies. Arguably, a 
catchment represents the fundamental unit of hydrological studies that is defined by 
underlying topography (Jarvis, 2012); therefore, it is rational to study glacial 
dynamics at the catchment level. 

In this study, for the first time, an attempt is made to explain the complex 
interrelationships of physico-climatic factors using Random Forest Regression 
(RFR), their impact on Gangotri and tried to model the potential zone of ablation, 
equilibrium, and accumulation at catchment level. The aims to explain the impact of 
the topographic factors as well as the temperature on the glacial dynamics. The study 
also seeks to quantify the areal changes in the foresaid potential zones of the glacier 
by temporal comparison. 

Study Area 

Gangotri is an alpine glacier nestling in the central Himalayas, falling in the district 
of Uttarkashi, Uttarakhand (Fig. 14.1). Being one of the largest glacial deposits in the 
Himalayas (Naithani et al., 2001), Gangotri pertains massive hydrological and 
ecological significance. It is one of the major tributary glaciers of the river Ganges.



Apart from that, Gangotri also has great mythological and religious importance in 
Hindu culture. The study area, i.e. catchment of Gangotri—the fundamental hydro-
logical unit, is processed in a GIS environment. The processed glacial catchment 
covers 184 km2 . There are massive variations in the altitude due to uneven topog-
raphy. The altitude varies from 4474 m at its lowest point to 7085 m at its highest 
point across the catchment. The terrain of the catchment is full of undulation. This 
undulating terrain is also responsible for changing aspects over short distances 
causing uneven reception of the Sun’s energy flux. Being curved by glacial ice, 
Gangotri sits in a U-shaped valley with a variant slope that ranges from 0° in the 
central part to 82° along the ridges. Hypsometric curve (Fig. 14.2) suggests that 
roughly 50% area of the catchment lies above 6500 m and roughly 95% area is above 
5000 m; therefore, it can be implied that almost all of the glacial catchment is above 
the snow-line (Ray, 2009). 
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Fig. 14.1 Study area 

A strong influence of aspect, slope and elevation can be visually observed in the 
maps. Aspect affects insolation and therefore determines temperature, slope deter-
mines movement under gravity and environmental lapse rate of temperature is 
controlled by elevation.
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Fig. 14.2 Hypsometric curve of the catchment 

Database and Methods 

Database (Table 14.1) 

Table 14.1 Data sources 

Bands 
used 

Cloud 
cover 

Maps 
generated 

Landsat 5 TM B2, B5, 
B6 

0% https:// 
earthexplorer. 
usgs.gov/ 

NDSI NDSI 
(B2-B5/B2 + B5) 

LST Mono window 
algorithm (band 
6) 

Landsat 8 OLI and 
TIRS 

B3, B6, 
B10, B11 

0% https:// 
earthexplorer. 
usgs.gov/ 

NDSI NDSI 
(B3-B6/B3 + B6) 

LST Split-window 
algorithm 
(bands 10 and 11) 

Terra ASTER ASTER 
DEM 

N.A. https:// 
earthexplorer. 
usgs.gov/ 

Slope Calculated in GIS 
environment 

Elevation ASTER DEM 

Insolation Estimated in GIS 
environment

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Rationale of Selection 

Elevation 

There is an inverse relationship between altitude, i.e. the mean height from sea level 
and temperature (Aigang et al., 2009); therefore, it seems fair to acknowledge 
altitude as one of the most important factors affecting the distribution of snow in a 
region. Altitude is the lone responsible factor for the accumulation of snow-clad 
regions in low latitudes in the form of alpine glaciers (Braithwaite, 2008). Increasing 
altitude provides favourable climatic conditions, i.e. decreasing temperatures and 
increasing precipitation directly leading to the formation of glaciers (Křížek & Mida, 
2013). It has been found that glaciers situated at higher altitudes show less suscep-
tibility towards depletion, i.e. their rate of retreat is lower, while glaciers at lower 
altitudes are retreating at faster rates. A study based on the Chandra basin in 
Himalayan glaciers has found that out of 18% of water loss of the total basin from 
the year 1984–2012, about 67% of the loss was reported from smaller and lower 
altitude glaciers (Tawde et al., 2017). The data for the altitude of the Gangotri basin 
has been obtained from the DEM (digital elevation model) and ASTER (Advanced 
Spaceborne Thermal Emission and Reflection Radiometer) project by USA and 
Japan in 2009. A digital elevation model (DEM) is a digital raster representation 
of ground surface topography or terrain. Each raster cell (or pixel) has a value 
corresponding to its altitude above sea level. ASTER’s GDEM was created by stereo 
correlation of more than 1.2 million individual ASTER stereo scenes contained in 
the archive. The GDEM had 1 arc-second latitude and longitude postings (~30 m) 
and a vertical accuracy of approximately 10 m (Abrams et al., 2020). 

Except obtaining, altitude raster, DEM dataset is used in terrain analysis and for 
extracting other terrain parameters such as slope and aspect, and modelling water 
flow and catchment modelling. 

Slope 

The slope or gradient of a line is a number that describes both the direction and the 
steepness of the line. The direction of a slope is significant as it offers information 
about the duration of incoming solar radiation. In the northern hemisphere, south-
facing slopes receive solar radiation for longer duration in comparison to north-
facing slopes. Therefore, the south-facing slopes are more prone to melting due to 
longer exposure to solar radiation (Wegmann et al., 1998). The steepness of slope 
determines the movement of glaciers under gravity (Evans, 2018). Slope is an 
important factor controlling the speed of glacier movement, together with their 
temperature, and amount of meltwater at the base of the glacier. Snow cover is 
expected to be low on steeper slopes. Therefore, slope of a glacier is expected to be 
an important factor behind glacier retreat, as the rate of retreat is directly controlled

https://en.wikipedia.org/wiki/Line_(mathematics)


by the slope of the glacier (Falaschi et al., 2017). It has been estimated that in the 
glaciers of the same climatic zones, different rates of retreat/advancement of glaciers 
can be explained by the mean slope and size of the glacier. In this study, slope in the 
glacier catchment area has been extracted from the ASTER DEM using GIS tools 
and techniques. 
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Insolation 

Insolation, short for incoming solar radiation, is the incident energy of the Sun on 
any celestial body in a unit of area for a given time. One unit is Watt-hour/meter-
square (WH/m2 ). In the context of Earth, not all the Sun’s energy that strikes the 
earth actually reaches the surface. 30% of it gets reflected back by the atmosphere 
into space. Insolation is responsible for maintaining the temperature, and more 
insolation means higher temperature (Lund, 1968). Therefore, insolation is another 
factor affecting glacier cover. However, insolation is controlled by the topography of 
the surface and the interaction between slope, aspect and solar geometry, which 
decide the angle of incoming solar radiation. Insolation is also affected by any 
nearby higher landscape, which is responsible for shading the glaciers. The diffused 
radiation received from the sky is also affected by the nearby landscape, as it controls 
the proportion of the sky visible from the glacier (Bertoldi et al., 2010). Since 
Himalayan terrain is very undulating and has steep slopes (Kumar et al., 2021), 
the incoming solar radiation is greatly affected by the location of glaciers with 
respect to slope and aspect. The incoming solar radiation in this study has been 
calculated in a GIS environment. The tool calculates incoming solar radiation by 
using methods from the hemispherical view shed algorithm developed by Hetrick 
et al., 1993; Rich et al., 1995; Fu & Rich, 1999, 2002). The first step of calculation of 
incoming solar radiation involves the calculation of global radiation, i.e. total radi-
ation of a particular area. Furthermore, the calculation of direct solar radiation is 
repeated for every feature or location of the topographic surface to generate an 
insolation map of the region. 

Globaltot =Dirttot þ Diftot ð14:1Þ 

where 

Globaltot = total global radiation 
Dirtot = total direct radiation of all sun map sectors 
Diftot = diffuse radiation of all sky map sectors 

Total direct insolation (Dirtot) for a given point is the sum total of the direct 
insolation (Dirθ,α) from all sun map sectors, which is calculated using the following 
equation:



ð
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Dirtot = Σ Dirθ,α ð14:2Þ 

The direct insolation from the sun map sector, i.e. (Dirθ,α) with a zenith angle 
of θ and azimuth angle of α is calculated using the following equation: 

Dirθ,α = SConst
�βm mð Þ�SunDurθ,α�SunGapθ,α

� cos AngInθ,α ð14:3Þ 

where 

SConst = 1367 W/m2 

β = atmospheric transmissivity 
m(θ) = relative optical path length 
SunDurθ,α = time duration represented by the sky sector 
SunGapθ,α = gap fraction for the sun map sector 
AngInθ,α = angle of incidence between the centroid of the sky sector and the normal 

Land Surface Temperature 

Temperature is the most important element of climate. Land surface temperature 
(LST) is a robust remote sensing-based method for the estimation of the temperature 
of the land surface. The impact of LST over glaciers is a well-recognized fact. 
Surface temperature is one of the most important parameters for estimating the effect 
of climatic change on glaciers. LST has a vast application in the study of glaciers. 
Brabyn & Stichbury, 2020, used LST to estimate the rate of thaw of ice sheet, while 
Mortimer et al., 2016, used MODIS LST data set to literally procure the temperature 
of the glacier surface. Wu et al., 2015, and Baral et al., 2020, also adopted LST to 
obtain glacier surface temperature. In this study, an attempt has been made to 
estimate surface temperatures from Landsat 5 ETM and Landsat 8 TIRS for Gangotri 
Glacier. Mono window algorithm using band 6 has been used for ETM, while the 
split window algorithm using bands 10 and 11 has been adopted for TIRS data. 
Mono Window algorithm has been used for LST calculation. The processes involved 
in the retrieval of LST are as follows: 

Calculation of TOA (Top of Atmospheric) spectral radiance. 

TOA Lð Þ=ML
� Qcal þ ALð Þ 14:4Þ 

where 

ML = band-specific multiplicative rescaling factor from the metadata of downloaded 
imagery (RADIANCE_MULT_BAND_x, where x is the band number) 

Qcal = corresponds to band 10 
AL = band-specific additive rescaling factor from the metadata of downloaded 

imagery (RADIANCE_ADD_BAND_x, where x is the band number)



ð
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TOA to Brightness Temperature conversion utilized the following formula: 

BT = K2= ln K1=Lð Þ þ 1ð Þð Þ- 273:15Þ 14:5Þ 

where 

K1 = band-specific thermal conversion constant from the metadata of downloaded 
imagery (K1_CONSTANT_BAND_x, where x is the thermal band number). 

K2 = band-specific thermal conversion constant from the metadata of downloaded 
imagery (K2_CONSTANT_BAND_x, where x is the thermal band number). 

Calculation of NDVI utilized the following formula: 

NDVI= NIR–REDð Þ= NIRþ REDð Þ 14:6Þ 

The formula for Landsat 5: 

NDVI= Band 4–Band 3ð Þ= Band 4þ Band3ð Þ 14:7Þ 

where Band 4 is a near-infrared band and Band 3 is a visible red band in Landsat 5. 
The formula for Landsat 8: 

NDVI= Band 5–Band 4ð Þ= Band 5 þ Band4ð Þ 14:8Þ 

where Band 5 is a near-infrared band and Band 5 is a visible red band in Landsat 8. 
Calculation of the NDVI is important because, subsequently, the proportion of 

vegetation (Pv), which is highly related to the NDVI, and emissivity (ε), which is 
related to the Pv, must be calculated. 

Calculation of the proportion of vegetation Pv utilized the following formula: 

Pv = Square NDVI–NDVIminð Þ= NDVImax–NDVIminðð 14:9Þ 

Calculation of emissivity ε: 

ε= 0:004�Pv þ 0:986 ð14:10Þ 

It is essential to calculate the land surface emissivity LSE(ε) in order to estimate 
LST, since the LSE is a proportionality factor that scales blackbody radiance 
(Planck’s law) to predict emitted radiance, and it is the efficiency of transmitting 
thermal energy across the surface into the atmosphere (Jiménez-Muñoz & Sobrino, 
2006). The land surface emissivity LSE (ε) is calculated as proposed by Sobrino and 
Jiménez-Muñoz et al., 2014.
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Calculation of LST: 

LST=BT= 1þ λ� BT=ρð Þ � Ln eð Þð 

where 

BT = brightness (at satellite temperature) 
λ = Wavelength of emitted radiance (0.00115) 
ρ = 14,380 (Constant) 
e = Emissivity 

In order to deal with seasonal variation in temperature, taking mean annual 
temperature is a safe method. Therefore, in this study, LST is calculated on a 
quarterly basis. The member LST rasters for each reference year, thus, represent 
the mean LST value of all four seasons, i.e. summer, spring, autumn and winter. 

Normalized Difference Snow Index 

Normalized Difference Snow Index (NDSI) developed by Hall et al., 1995, is  
remote-sensing method to map snow-cover area. It is a widely accepted method to 
study glacier dynamics and glacier expanse (Khan, 2019; Kulkarni et al., 2002; Yao 
et al., 2010). Here, one should acknowledge the optical properties and thermody-
namics of ice and snow, having an albedo of 0.5–0.7, respectively, meaning that 
these surfaces reflect 50–70% of insolation (NSIDC, n.d.). Higher intrinsic albedo of 
snow and ice results in more radiative heat loss (Demenocal & Rind, 1993). While 
studying glaciers, Rose et al., 2017, explained the albedo-feedback of the snow, 
which accounted responsible for affecting the zonal energy budget. More snow-
covered glacier catchment means a greater amount of radiative heat loss. Therefore, 
it is justified to assess the snow cover by the means of the NDSI method for an 
integrated catchment-level study of Gangotri. NDSI is a measure of the relative 
magnitude of the reflectance difference between visible (green) and shortwave 
infrared (SWIR). It controls the variance of two bands (one in the short-wave 
infrared and another one in the visible parts of the spectrum), which is suitable for 
snow mapping. The snow absorbs most of the shortwave radiance from the sun, but 
the cloud does not. Thus, the NDSI can effectively differentiate snow and cloud and, 
therefore, can be used, subsidiarity, in glacier monitoring. 

NDSI= GREEN–SWIRð Þ= GREEN þ SWIRð Þ 14:11Þ 

Formula for Landsat 5: 

NDSI= Band2–BAND5ð Þ= BAND2þ BAND5ð 14:12Þ 

where Band 2 is a visible green band and Band 5 is short wave infrared band in 
Landsat 5.



Þ ð
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Formula for Landsat 8: 

NDSI= Band3–BAND6ð Þ= BAND3 þ BAND6ð 14:13Þ 

where Band 3 is a visible green band and Band 6 is short-wave infrared band in 
Landsat 8. 

In order to capture the correct amount of snow in the catchment, a quarterly mean 
NDIS is calculated for each reference year. The member NDSI raster, thus, repre-
sents the mean NDSI value of all four seasons, i.e. summer, spring, autumn and 
winter. 

Methods 

Principle Component Analysis 

Principle component analysis (PCA) is a mathematical tool based on linear algebra 
that is used to reduce the dimensionality of a dataset. The dimensionality reduction is 
done by reduction of directions, i.e. principal component (PC) (Ringnér, 2008). In 
PCA, each PC is identified as a linear combination of variables, whereas the first 
principal component presents maximum variation (Wold et al., 1987). PCA can 
effectively be employed to procure the variables to analyse a phenomenon at an 
optimal level (Sarkar & Chouhan, 2021). In the process of data analysis, PCA is 
adopted to better discriminate the data (Adler & Golany, 2002) and to select the 
variables that are not equally important in explaining the given phenomena (Das 
et al., 2021). Lencioni et al., 2007, used PCA for ecological studies of glacier. Walsh 
& Butler, 1997, used PCA weights to monitor glacier debris flow for morphometric 
analysis using slope, aspect, sun angle and elevation. 

Application of PCA: In this study, we require weights for the predictor variables 
for running fuzzy product algorithms over the rasters representing predictor vari-
ables. Eigenvalues of PCs are assigned as weights for predictor rasters in fuzzy 
product. For that purpose, it is most suitable to run PCA over all the pixels of 
predictor rasters to obtain eigenvalues that represent the whole raster rather than a 
sample of its pixels. To calculate eigenvalues of the predictor rasters i.e., elevation, 
slope, Insolation, LST and NDSI, a suitable GIS environment is utilized. 

Random Forest Regression (RFR) 

Within the last few decades, various predictive techniques have been used in civil 
and environmental engineering applications (Gislason et al., 2006; Pal et al. 2013; 
Were et al. 2015). In this research, we refer to RFR, which is an extension of a 
technique developed by Breiman, 2001, called random forest (RF) that has



y

outstanding performance with regard to predicting error. Having tree-structured 
predictors, injected with randomness, makes it an exceptionally robust predictor. It 
is a supervised machine learning method that uses ensemble learning (Bakshi, 2020) 
for regression by boosting and bagging and generates significantly unbiased estima-
tions of generalized errors (Chakure, 2019). The decision trees randomly create 
training data and test data. The test data used to test the fitting of the model and the 
error is usually called ‘out of bag error’ or OOB. OOB error is expressed as: 
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MSEOOB = n- 1 n 

1 
yi- yOOBið Þ2 ð14:14Þ 

where, yOOBi is the mean of OOB predictions for ith observation. 
Mean square residual (MSE) is another method of cross-validation. The lower the 

value, the better the fit of data. However, a value below 0.05 is safe for the validity of 
the results. MSR is mathematically expressed as: 

y- y= E, 2 ð14:15Þ 

where y is observed value and y and percent of variance explained are computed as: 

1-
MSEOOB2 

σ2 y 
ð14:16Þ 

where σ2 is computed as a divisor with n (not as n-1). 

RFR has been very popular in various scientific investigations of numerical 
relationships. It has been applied to remotely sensed data as well (Zhou et al., 
2016), while Wangchuk & Bolch, 2020, applied this method to sentinel datasets 
for glacial mapping. RFR method has also been used in automatic glacier rock 
detection by Brenning, 2009. RF is a binary stepwise regressor that can explain 
mutual non-linear relationship (Brenning, 2009). 

Application of RFR: In this study, the rationale to utilize RFR is to delve into the 
complexity of various factors that affect glacial dynamics. For modelling the poten-
tial zones of accumulation, equilibrium or ablation, it is of utmost importance that 
that we perform RFR that give Gini-impurity for all predictor variables and regress 
the values with explained variation. Thus, RFR is applied to predictor variables, 
i.e. elevation, slope, Insolation, LST and NDSI for validating their adoption for 
modelling the zones of glacial catchment. Pixel values of 251 random pixels (less 
than 10% of population according to central limit theorem) of the predictor variables 
are extracted using random sampling without replacement for the ML. RFR is 
performed using R version 3.6. cforest package is utilized for performing RFR in 
RStudio. Before running the algorithm, multicollinearity is visually checked for the 
reference years for all the variables. To train the data, 70% of the sample are selected, 
and ntree is tuned to 170. ntree 170 gives minimal test error (Figs. 14.5 and 14.6) and 
optimizes the accuracy for present modelling. For validation of results of RF MSE 
is used.
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Fuzzy Overlay 

Fuzzy overlay is based on Zadeh’s (1972) fuzzy theory (Hsieh & Chen, 1999) that 
allows the analysis of a phenomenon belonging to multiple sets. It explains the 
relationship between multiple members of the set. Unlike Boolean, it transforms the 
data onto a scale of 0 to 1 using the theory of partial truth (Kaur & Mahajan, 2015). 
0 is given to the data points that are absolute non-members and 1 is given to the data 
points that are absolute members; however, there are various methods to perform the 
computation, ranging from fuzzy Sum, fuzzy And, fuzzy Or, fuzzy Gaussian and 
fuzzy product. 

Application of Fuzzy Product: We, in this study, have utilized fuzzy products that 
multiply each of the values for all member rasters (DEM, slope, insolation, LST, 
NDSI) for each cell in a GIS environment. The eigenvalues (Tables 14.2 and 14.3) 
calculated through PCA are supplied as weights for fuzzy products for each 
corresponding year. The returned raster is then classified into accumulation, equi-
librium and ablation zones. The threshold for classification of the returned easter for 
the zone of accumulation is 0–0.2; for the zone of equilibrium, the range is 0.2–0.36, 
and for zone of ablation, it is 0.36–0.99. 

In this study, the reference period denotes a 20-year difference. Therefore, we 
argue that it is a short period of time for orogenic elevation increase or associated 
slope change; however, small avalanches have not been taken into account. We also 
assume that the insolation has remained constant over the 20 years. Thus, rasters of 
DEM, slope and insolation are kept uniform for both years. In each operation, NDSI 
and LST rasters are supplied accordingly. 

Table 14.2 Accumulative Eigen values, 1995 

1995 – Percent and accumulative eigenvalues 

PC Layer Eigen value Percent of Eigen values Accumulative of Eigen values 

Insolation 1 0.04047 49.5870 49.5870 

LST 2 0.02231 27.3319 76.9189 

Slope 3 0.01151 14.1070 91.0260 

DEM 4 0.00540 6.6178 97.6437 

NDSI 5 0.00192 2.3563 100.0000 

Table 14.3 Accumulative Eigen values, 2015 

2015 – Percent and accumulative eigenvalues 

PC Layer Eigen value Percent of Eigen values Accumulative of Eigen values 

Insolation 1 0.04143 48.3052 48.3052 

LST 2 0.02315 26.9871 75.2923 

Slope 3 0.01275 14.8612 90.1535 

DEM 4 0.00476 5.5554 95.7089 

NDSI 5 0.00368 4.2911 100.0000
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Results 

PCA 

All causative factors are important in the modelling of the glacial zones of Gangotri, 
with varying degrees of importance. The potential zones of the ablation loosely 
coincide with LST variation across the catchment. However, the eigenvalues of PCA 
are highest for Insolation followed by LST, i.e. 50% and 27%, respectively. Slope 
and DEM account for only 14% and 7% of eigenvalues for the year 1995. For the 
year 2015, the order of variables remains constant, but percentage eigenvalue 
contribution changes where insolation contributes 48% followed by LST with 
14%. Slope and DEM count 14% and 7% of eigenvalues, respectively. NDSI 
eigenvalues increased from 2% to 4% approximately from 1995 to 2015. All these 
values are case specific, and we propound no generalization. 

Collinearity in Data 

The visual assessment of the scatter plots for the reference years represents peculiar 
associations in the variables (Figs. 14.3 and 14.4). There is a strong negative 
correlation between NDSI and LST. The respective figures represent a strong 
positive correlation in slope and elevetion of the catchment area. The scatter plot 
is also suggestive of a weak negative association between LST. The association of 
other variables is not explainable through the scatter plots. 

RFR 

The RFR for 1995 regresses the values of predictor variables at an MSE (Eq. 14.15) 
of 0.019 and the variance explained is 41.16%. The values of the mean of MSE 
remain 0.020 and the variance explained 41.4% for 2015. Error plots for RF through 
minimal error at 170 ntree for both reference years, i.e. 1995 and 2015 (Figs. 14.5 
and 14.6). 

Fuzzy Product 

The member rasters (map a, map b, map c, map d, map e, map f, map g) are together 
(Fig. 14.7) supplied to the GIS environment for running fuzzy products with 
corresponding weights. The returned rasters produce interesting results. The result 
demonstrates a vast increase in the potential ablation zone of the glacial catchment



over the period of 1995 and 2015 (map h and map j). The increase in the potential 
ablation zone is more prominent on the south-facing slope, whereas the potential 
equilibrium zone and potential accumulation zone seem to have depleted much more 
in lower elevation areas. The higher latitudes and north-facing slopes represent 
minimal changes. 

258 Z. Khan et al.

4500 5500 6500 0 –0.2 0.2 0.6 

–0
.2

 
0.

2
0 

15
00

00
0

45
00

 
55

00
 

65
00

0.
6 

–2
5 

–1
0 

0
0 

20
60

 

0 

Elevation 

Slope 

Insolation 

Collinearity 1995 

LST 

NDSI 

20 40 60 –25 –15 –5 5 

1000000 2500000 

Fig. 14.3 Collinearity of data, 1995 

The study propounds a vast increase in the areal extent of the potential ablation 
zone over the period of 1995 and 2015, expanding over threefold of what it used to 
be in 1995. The areal increase in the potential ablation zone has taken place at the 
expense of the potential accumulation zone and potential equilibrium zones 
(Fig. 14.8).
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Fig. 14.5 Error Plot, 1995 
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Fig. 14.6 Error Plot, 2015 
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Fig. 14.7 Input raster and resultant raster 
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Map a: Digital elevation model 

Map b: Slope
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Map c: Insolation 

Map d: Land surface temperature,1995
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Map e: Land surface temperature, 2015 

Map f: NDSI, 1995
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Map g: NDSI, 2015 
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Discussion and Conclusion 

Gangotri glacier is receding in space over time, and a large glacial mass has been 
claimed by rising temperatures. The accumulation zone is retreating, and the ablation 
zone is increasing in the area (Haritashya et al., 2006). It appears that an increase in 
the ablation zone is very crucial for the sustenance of a glacier (Oerlemans, 1991) 
and a very strong negative sign for the health of the glacier (Agrawal et al., 2018). 
This study confirms the increase in the potential ablation zone of Gangotri from 1995 
and 2015 at the expense of potential zones of equilibrium and accumulation. 
However, it is noteworthy that the zoning glacier is based on the potential outcomes 
of member rasters, which does not represent the true ablation, equilibrium or 
accumulation zone of Gangotri. 

Fuzzy overlay operations have been used for demarcating hierarchical zones of 
complex geographical phenomena. Through GIS, input of causative rasters can be 
re-scaled and integrated generating a single raster that can be reclassified in multiple 
zones. Unlike weighted overlay, this method defines possibility rather than proba-
bility, and therefore, the membership of a causative raster is immune to assigned 
weights (Ahmed et al., 2014). Scholars have gone to great lengths to propound the 
significance of these methods for mapping suitable zones or susceptible zones for a 
specific phenomenon (Dimri et al., 2007; Kayastha et al., 2013; Kumar et al., 2013).



For instance, the fuzzy AHP method was used by Kumar et al., 2021, to demarcate 
potential zones of groundwater. The application of fuzzy overlay combined with 
dimensionality reduction methods is limited for glacial studies. Most of the previous 
GIS-based inventory research focuses on the glacial retreat in Gangotri (Singh et al., 
2017; Ghosh 2017; Sparavigna, 2017) where due importance is not given to the 
zonal dynamics. The role of topographical causative factors is not modelled at large 
by scholars like Ding (2010), Rai et al. (2017). In this study, we combine the fuzzy 
product method with PCA to demarcate the potential zones of glacial mass balance 
along with the statistically significant result of RFR. We have to acknowledge that 
the modelled potential zones of glaciers are estimations and have limited capacity to 
represent the true processes and mass balance of the glaciers. 
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The objective of this chapter is to model and analyse the dynamics of Gangotri in 
the wake of underlying physiological factors in association with climatic factor, 
i.e. temperature. The study is one of its kind where for the first time role topography 
is modelled for glacial zonation of Gangotri catchment using the fuzzy product 
overly method, and the mutual relationship of various predictive variables is 
assessed with ML. Glacial zones are essential sub-units of a glacier, and each one 
is important to understand the glacial mass balance. This study puts forth the spatial 
extent of these zones for Gangotri and compares it with two time periods and, thus, 
highlights the gravity of climate change by areal quantification of the potential for 
glacial mass loss. 

This study concludes that the Gangotri glacier is experiencing climate-imposed 
vulnerability and is prone to further loss of ice mass. The areal increase in the 
potential zone of ablation in the catchment poses higher risks of glacial losses against 
reduced possibility of replenishment from fresh snow at the catchment level. Being 
an alpine glacier, the dynamics are complex in association with topographical 
heterogeneity. Glacial zones coincide with slope, and physiology seems to have a 
key role in glacial dynamics and zonation. Hence, the study strongly suggests the 
inclusion of physiological factors in holistic glacial studies. Gangotri crucially 
contributes to India’s fluvial system and, therefore, its thorough analyses are of 
key importance, and quantification of risks and vulnerabilities of the glacier both in 
situ and ex situ causative factors are worth delving. 

Fuzzy product combined with PCA eigenvalues produces reasonable results for 
the potential glacier zone modelling and, hence, can be safely used for glacial studies 
in the future. Regression methods are useful to explain the mutual relationship of the 
various predictive variables. This study is a stand-alone piece of research that opens 
up a new arena for alpine glacial studies. 
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