
Strong Edge Coloring of Subquartic
Graphs

Junlei Zhu1(B) and Hongguo Zhu2

1 College of Data Science, Jiaxing University, Jiaxing 314001, China
zhujl-001@163.com

2 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
zhuhongguo@zjnu.edu.cn

Abstract. A strong k-edge coloring of a graph G is a mapping c :
E(G) → {1, 2, 3, ..., k} such that for any two edges e and e′ with distance
at most two, c(e) �= c(e′). The strong chromatic index of G, written
χ′
s(G), is the smallest integer k such that G has a strong k-edge coloring.

In this paper, using color exchange method and discharging method, we
prove that for a subquartic graph G, χ′

s(G) ≤ 11 if mad(G) < 8
3
, where

mad(G) = max{ 2|E(G)|
|V (G)| , H ⊆ G}.

Keywords: subquartic graph · strong edge coloring · maximum
average degree

1 Introduction

To solve the Channel Assignment Problem in wireless communication networks,
Fouquet and Jolivet [8] first introduced the notion of strong edge coloring in 1983.
A strong k-edge coloring of a graph G is a mapping c : E(G) → {1, 2, 3, · · · , k}
such that c(e) �= c(e′) for any two edges e and e′ with distance at most two. The
smallest integer k such that G has a strong k-edge coloring of G is called the
strong chromatic index of G, written χ′

s(G). By greedy algorithm, it is easy to
see that 2Δ2−2Δ+1 is a trivial upper bound on χ′

s(G), where Δ is the maximum
degree of G. However, it is NP-complete to decide wether χ′

s(G) = k holds for
a general graph G [14]. In 1989, Erdős and Nešetřil [7] proposed the following
important conjecture while studying the strong edge coloring of graphs.

Conjecture 1. [7] For any graph G with maximum degree Δ, χ′
s(G) ≤ 5

4Δ2 if Δ
is even, χ′

s(G) ≤ 5
4Δ2 − 1

2Δ + 1
4 if Δ is odd.

In [7], Erdős and Nešetřil constructed two classes of graphs satisfying χ′
s(G) =

χ′(G) = |E(G)| while |E(G)| attains the upper bound in Conjecture 1. This
illustrate that the upper bound is sharp if Conjecture 1 is true. Also, they asked a
question: For a general graph G, is there any positive number ε such that χ′

s(G) ≤
(2−ε)Δ2, where Δ is the maximum degree of G. As yet, there are many research
results on strong edge coloring. For a graph G with sufficient large Δ, Molloy
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and Reed [15] proved that χ′
s(G) ≤ 1.998Δ2 using probabilistic methods. In the

next decides, this result was improved to 1.93Δ2 by Bruhn and Joos [4], 1.835Δ2

by Bonamy, Perrett and Postle [3]. For graphs with small Δ, scholars also made
a lot of research works. It is an obvious result that χ′

s(G) ≤ 5 = 5
4Δ2 while

Δ = 2. For subcubic graphs, the above conjecture was verified by Andersen [1],
and independently by Horák, Qing, Trotter [10]. For subquartic graphs, χ′

s(G) ≤
22 was proven by Cranston [6] using algorithms. Huang, Santana and Yu [11]
reduced 22 to 21. For graphs with Δ = 5, Zang [18] confirmed that χ′

s(G) ≤ 37.
For graphs with maximum average degree restriction, there are also a mount

of results. The maximum average degree of a graph G, written mad(G), is the
largest average degree of its subgraph. In other words, mad(G) = max{2|E(H)|

|V (H)| :
H ⊆ G}. In 2013, Hocquard [9] studied the strong chromatic index of subcubic
graphs with maximum average degree and obtained the following theorem.

Theorem 1. [9] Let G be a graph with Δ(G) = 3.

(1) If mad(G) < 7
3 , then χ′

s(G) ≤ 6;
(2) If mad(G) < 5

2 , then χ′
s(G) ≤ 7;

(3) If mad(G) < 8
3 , then χ′

s(G) ≤ 8;
(4) If mad(G) < 20

7 , then χ′
s(G) ≤ 9.

The given upper bound on mad(G) in Theorem 1(1)(2)(4) is optimal since
there exist subcubic graphs with mad(G) = 7

3 (or mad(G) = 5
2 , 20

7 ) and χ′
s(G) >

6 (or χ′
s(G) > 7, 9), see Fig. 1.

Fig. 1. mad(G) = 7
3

(or 5
2
, 20

7
) and χ′

s(G) = 7 (or χ′
s(G) = 8, 10)

For subquartic graphs with bounded maximum average degree, Lv et al. [13]
gave out the following theorem, which improved the corresponding upper bound
on mad(G) due to Bensmail et al. [2].

Theorem 2. [13] Let G be a graph with Δ(G) = 4.

(1) If mad(G) < 61
18 , then χ′

s(G) ≤ 16;
(2) If mad(G) < 7

2 , then χ′
s(G) ≤ 17;

(3) If mad(G) < 18
5 , then χ′

s(G) ≤ 18;
(4) If mad(G) < 26

7 , then χ′
s(G) ≤ 19;

(5) If mad(G) < 51
13 , then χ′

s(G) ≤ 20.

Ruksasakchai and Wang [17] studied the strong edge coloring of graphs with
Δ(G) ≤ 4 and mad(G) < 3 and obtained the following theorem.
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Theorem 3. [17] If G is a graphs G with maximum degree Δ ≤ 4 and
mad(G) < 3, then χ′

s(G) ≤ 3Δ + 1.

For graphs with maximum degree 5 and bounded maximum average degree,
Qin et al. [16] obtained the following theorem.

Theorem 4. [16] Let G be a graph with Δ(G) = 5.

(1) If mad(G) < 8
3 , then χ′

s(G) ≤ 13;
(2) If mad(G) < 14

5 , then χ′
s(G) ≤ 14.

Additionally, Choi et al. [5] studied the strong edge coloring of graphs with
maximum degree Δ ≥ 7 and bounded maximum average degree. They obtained
a theorem as follows.

Theorem 5. [5] Let G be a graph with maximum degree Δ.

(1) If Δ ≥ 9 and mad(G) < 8
3 , then χ′

s(G) ≤ 3Δ − 3;
(2) If Δ ≥ 7 and mad(G) < 3, then χ′

s(G) ≤ 3Δ.

Recently, Li et al. [12] studied the strong edge coloring of graphs with max-
imum degree Δ ≥ 6 and bounded maximum average degree. The following the-
orem is given in [12].

Theorem 6. [12] Let G be a graph with maximum degree Δ.

(1) If Δ ≥ 6 and mad(G) < 23
8 , then χ′

s(G) ≤ 3Δ − 1;
(2) If Δ ≥ 7 and mad(G) < 26

9 , then χ′
s(G) ≤ 3Δ − 1.

In this paper, we further consider the strong edge coloring of subquartic
graphs by using color exchange method and discharging method. We obtained
the following theorem.

Theorem 7. If G is a graph with Δ(G) = 4 and mad(G) < 8
3 , then χ′

s(G) ≤ 11.

G1 G2 G3

Fig. 2. Subquartic graphs.

G1, G2, G3 in Fig. 2 are subquartic graphs, where mad(G1) = 8
3 , χ′

s(G1) = 10;
mad(G2) = 20

7 , χ′
s(G2) = 11 and mad(G3) = 3, χ′

s(G3) = 12 (we can take the
graph obtained from G1 by deleting two 1-vertices, G2 by deleting the 1-vertex
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and G3 as subgraphs, respectively). We do not know whether the upper bound
mad(G) < 8

3 in Theorem 7 is optimal. However, due to the graph G3 in Fig. 2, we
know that there exists a graph G with Δ(G) = 4, mad(G) = 3 and χ′

s(G) = 12.
For the strong edge coloring of subquartic graphs, Theorem 2 gives out some

sufficient conditions for χ′
s(G) ≤ 16 (respectively 17,18,19,20). Theorem 3 indi-

cates that any graph G with Δ(G) = 4 and mad(G) < 3 satisfies χ′
s(G) ≤ 13.

Therefore, Theorem 7 enriches the results of strong edge coloring for subquartic
graphs.

2 Notations

All graphs considered here are finite undirected simple graphs. For a graph G,
V (G), E(G), Δ(G) and δ(G) denote its vertex set, edge set, maximum degree
and minimum degree respectively. For v ∈ V (G), dG(v) (abbreviated by d(v))
denotes the degree of v in G. v is a i (or i+, i−)-vertex if d(v) = i (or d(v) ≥ i,
d(v) ≤ i). For a vertex v, a i-neighbor of v is a i-vertex in N(v). A ij-vertex
is a i-vertex adjacent to exactly j 2-vertices. A 2-vertex is bad if it is adjacent
to a 2-vertex, semi-bad if it is adjacent to a 32-vertex. A 2-vertex is good if it
is neither bad nor semi-bad. For an edge e, F (e) denotes the set of forbidden
colors for it.

3 Proof of Theorem 7

Suppose G is a counterexample with minimum 2+-vertices and then with min-
imum edges. Let H be the graph obtained from G by deleting all 1-vertices.
Obviously, H ⊆ G and then mad(H) ≤ mad(G) < 8

3 . In the following, we first
illustrate some properties of H.

Lemma 1. H does not have vertices of degree 1.

Proof. Suppose v is a 1-vertex in H and uv ∈ E(H). Since H is the graph
obtained from obtained from G by deleting all 1-vertices, dG(v) > 1 and v has
at least one 1-neighbor v1 in G. Compared with G, G − v1 has the same 2+-
vertices but fewer edges. By the minimality of G, χ′

s(G − v1) ≤ 11. Note that in
G, |F (vv1)| ≤ 6. Thus, vv1 can be colored, which leads to a contradiction.

Lemma 2. If dH(v) = 2, then dG(v) = 2.

Proof. Suppose dG(v) > 2. Then, v has at least one 1-neighbor v1 in G. Com-
pared with G, G − v1 has fewer edges while the same 2+-vertices. By the min-
imality of G, χ′

s(G − v1) ≤ 11. Note that in G, |F (vv1)| ≤ 9. Thus, vv1 can be
colored, which leads to a contradiction.

Lemma 3. If v is a 3i-vertex in H, where i ≥ 1, then dG(v) = 3.
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Proof. Suppose dG(v) > 3. Then, v has at least one 1-neighbor v′ in G. Let v1
be a 2-neighbor of v in H, By Lemma 2, dG(v1) = 2. Let G′ = G−v′. Compared
with G, G′ has the same 2+-vertices but fewer edges. By the minimality of G,
χ′
s(G− v1) ≤ 11. Note that in G, |F (vv′)| ≤ 10. Thus, vv′ can be colored, which

leads to a contradiction.

Lemma 4. Every bad vertex in H is adjacent to a 4-vertex.

Proof. Suppose v is a bad vertex in H and it is adjacent to a 2-vertex u and a
3−-vertex w. By Lemma 2, dG(u) = dG(v) = 2. Denote NG(u) = {u1, v}. Note
that 2 ≤ dH(w) ≤ 3. If dH(w) = 2, then dG(w) = 2 by Lemma 2. If dH(w) = 3,
then by Lemma 3, dG(w) = 3 since dH(v) = 2. Let G′ = G − uv + ww1, where
ww1 is a pendent edge incident with w. Note that 3 ≤ dG′(w) ≤ 4 and G′

has fewer 2+-vertices than G. By the definition of maximum average degree,
mad(G′) < 2 if mad(G) < 2 and mad(G′) ≤ mad(G) < 8

3 if 2 ≤ mad(G) < 8
3 .

By the minimality of G, χ′
s(G

′) ≤ 11. Let c be a strong 11-edge coloring of
G′. Note that in G, |F (uv)| ≤ 8. If c(uu1) �= c(vw), then uv can be colored,
which is a contradiction. If c(uu1) = c(vw), then we first exchange the colors on
pendant edges wv and ww1 in G′. After that, uv can be colored, which leads to
a contradiction.

Lemma 5. H does not have 33-vertices.

Proof. Suppose v is a 33-vertex in H and NH(v) = {v1, v2, v3}. By Lemma 2,
dG(vi) = 2, i = 1, 2, 3. By Lemma 3, dG(v) = 3. Let G′ = G − v. Note that G′

has fewer 2+-vertices than G. By the minimality of G, χ′
s(G

′) ≤ 11. Note that
in G, |F (vvi)| ≤ 6, i = 1, 2, 3, vvi can be colored, which is a contradiction.

Lemma 6. Every semi-bad vertex in H is adjacent to a 4-vertex.

Proof. Suppose v is a semi-bad vertex in H and it is adjacent to a 32-vertex
u and a 3−-vertex w. Let NH(u) = {u1, u2, v}, where dH(u1) = 2 (see Fig. 3).
By Lemma 2, dG(u1) = dG(v) = 2. By Lemma 3, dG(u) = 3. Note that 2 ≤
dH(w) ≤ 3 and dH(v) = 2, we have dG(w) = dH(w) by Lemma 2 and Lemma 3.
Let G′ = G−uv+ww1, where ww1 is a pendant edge incident with w. Note that
G′ has fewer 2+-vertices than G, by the definition of maximum average degree,
mad(G′) < 2 if mad(G) < 2 and mad(G′) ≤ mad(G) < 8

3 if 2 ≤ mad(G) < 8
3 . By

u1 u v w

u2

Fig. 3. .

v1 v v3u

v2

Fig. 4. .

v1 v v3v1u

v2

Fig. 5. .
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the minimality of G, χ′
s(G

′) ≤ 11. Let c be a strong 11-edge coloring of G′. Erase
on color on uu1. Note that in G, |F (uu1)| ≤ 9, |F (uv)| ≤ 9. If c(uu2) �= c(vw),
then uu1, uv can be colored, which is a contradiction. If c(uu2) = c(vw), then
we first exchange the colors on pendant edges wv and ww1 in G′. After that,
uu1 and uv can be colored, which leads to a contradiction.

Lemma 7. Let v be a 4i-vertex in H, where i ≥ 3. Then its 2-neighbors are all
good vertices.

Proof. Suppose that v1, v2, v3 are 2-neighbors of v and at least one of them is
not good. Without loss of generality, we assume that v1 is not a good vertex.
This implies that v1 is adjacent to a 2-vertex or a 32-vertex.

If v1 is adjacent to a 2-vertex u (see Fig. 4), then by Lemma 2, dG(vi) =
dG(u) = 2, i = 1, 2, 3. Let G′ = G − v1. Note that G′ has fewer 2+-vertices
than G. By the minimality of G, χ′

s(G
′) ≤ 11. Note that in G, |F (uv1)| ≤ 7,

|F (vv1)| ≤ 9, uv1, vv1 can be colored, which is a contradiction.
If v1 is adjacent to a 32-vertex v′

1 and u �= v1 is the other 2-neighbor of
v′
1 (see Fig. 5). By Lemma 2, dG(vi) = dG(u) = 2, i = 1, 2, 3. By Lemma 3,

dG(v′
1) = 3. Let G′ = G− v1. Note that G− v1 has fewer 2+-vertices than G. By

the minimality of G, χ′
s(G

′) ≤ 11. Note that in G, |F (v1v′
1)| ≤ 9, |F (vv1)| ≤ 10.

Thus, vv1, v1v
′
1 can be colored in order, which is a contradiction.

Proof of Theorem 7: We define weight function w(v) = d(v) for each
v ∈ V (H) and we define five discharging rules R1-R5 as follows. Let w′(v) be
the final weight function while discharging finished. As we know, the sum weigh
is fixed. However, we shall prove that w′(v) ≥ 8

3 for each v ∈ V (H). This will
lead to a contradiction as follow.

8
3
|V (H)| ≤

∑

v∈V (H)

w′(v) =
∑

v∈V (H)

w(v) ≤ mad(H)|V (H)| <
8
3
|V (H)|.

Discharging Rules:

R1 Each 4-vertex gives 2
3 to each adjacent bad vertex.

R2 Each 4-vertex gives 1
2 to each adjacent semi-bad vertex.

R3 Each 4-vertex gives 1
3 to each adjacent good vertex.

R4 Each 32-vertex gives 1
6 to each adjacent semi-bad vertex.

R5 Each 31-vertex gives 1
3 to each adjacent good vertex.

In the following, we shall verify that w′(v) ≥ 8
3 for each v ∈ V (H).

By Lemma 1, δ(H) ≥ 2.

• d(v) = 2

If v is bad, then by Lemma 4, v is adjacent to a 4-vertex. By R1, w′(v) =
2 + 2

3 = 8
3 .

If v is semi-bad, then by Lemma 6, v is adjacent to a 4-vertex. By R2 and
R4, w′(v) = 2 + 1

2 + 1
6 = 8

3 .
If v is good, then by the definition of good vertex and Lemma 5, each neighbor

of v is either 31-vertex or 4-vertex. By R3 and R5, w′(v) = 2 + 1
3 × 2 = 8

3 .
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• d(v) = 3

By Lemma 5, v is 3i-vertex, where 0 ≤ i ≤ 2.
If v is a 32-vertex, then by R4, w′(v) ≥ 3 − 1

6 × 2 = 8
3 .

If v is a 31-vertex, then by R5, w′(v) ≥ 3 − 1
3 = 8

3 .
If v is a 30-vertex, then w′(v) = w(v) = 3.

• d(v) = 4

If v is a 4i-vertex, where i ≥ 3, then by Lemma 7, the 2-neighbors of v are
good. Thus, w′(v) ≥ 4 − 1

3 × 4 = 8
3 by R3.

If v is a 4i-vertex, where 0 ≤ i ≤ 2, then by R1-R3, w′(v) ≥ 4 − 2
3 × 2 = 8

3 .
Therefore, for each v ∈ V (H), w′(v) ≥ 8

3 and the proof of Theorem 7 is
finished. �	

4 Further Considered Problems

Theorem 7 illustrates that χ′
s(G) ≤ 11 holds for any graph G with Δ(G) = 4

and mad(G) < 8
3 . For the graph G3 in Fig. 2, it satisfies that Δ(G3) = 4,

mad(G3) = 3 and χ′
s(G3) = 12. Then a question follows out naturally. What

is the supremum M such that any graph G with Δ(G) = 4 and mad(G) < M
satisfying χ′

s(G) ≤ 11?
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