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Abstract. We consider the general case of approval-based committee
elections, where some attributes divide the voters into diverse groups
which vary in size. This scenario occurs in applications like the presi-
dential election, where voters come from different parties, or the student
board election at a university with students from different schools. How-
ever, all existing committee election rules either are derived for the single-
group case, or neglect the welfare of groups with few votes. Therefore,
new voting rules are needed for this setting. In this paper, We propose
two natural axioms for this setting, namely, small group benefited rep-
resentation (SGBR) and large group benefited representation (LGBR).
SGBR requires that if the committee size exceeds the number of groups,
at least one candidate approved by each group is in the winning commit-
tee. LGBR requires that the winning committee must have at least as
many candidates approved by a large group as by a small group. Based
on the axioms, we propose three models and investigate parameterized
complexity of the models with respect to various parameters. We show
that all models are fixed-parameter tractable (FPT) when parameter-
ized by the number n of votes, whereas they become fixed-parameter
intractable when parameterized by the size k of the committee or d of
the satisfaction bound.

Keywords: Parameterized Complexity · Voting Problems ·
Computational Social Choice

1 Introduction

Voting problems, which form a core topic in the field of artificial intelligence and
computational social choice [8,13], have great significance in serving as a tool
to aggregate conflicting preferences [8,13] and receive a considerable amount of
attention [28]. The axiomatic properties as well as algorithmic and computational
aspects of voting problems have been extensively studied [2,9], where voters
express their preferences over all candidates and the goal is to compute winners
according to voting rules. Herein, the most widely used and straightforward
voting rules are based on Approval Voting (AV), which is originally defined for
dichotomous votes, where each vote assigns an approval to each of her favorite
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candidates and all other candidates receive disapproval. The winner set consists
of those candidates who receive the most approvals.

AV has many desirable properties in single-winner case including simplicity,
monotonicity and robustness against manipulation [5,17]. But it becomes less
favorable for the case of multiple winners and the most significant drawback is the
lack of egalitarian [20]. Attempting to address fairness when using AV for multi-
winner voting, some variants of AV have been introduced in the literature [20].
Among them are Proportional Approval Voting (PAV) [27], Satisfaction Approval
Voting (SAV) [7], Approval Chamberlin-Courant Voting (CCAV) [12,27], and
Minimax approval voting (MAV) [6]. The AV, SAV, PAV, and CCAV use a score
to represent each vote’s satisfaction with respect to the committee, and MAV
use a score to represent each vote’s dissatisfaction with respect to the commit-
tee. The goal is to select a committee, which maximizes the sum of all votes’
satisfaction scores for AV, SAV, PAV, and CCAV, or minimizes the maximum
of all votes’ dissatisfaction scores for MAV. Among the rules, only AV and SAV
are polynomial-time solvable the others are NP-hard [2,22,25].

Most of previous researches of committee elections consider each voter as an
individual, who is independent of other voters and there is no relation among
the voters. However, we often have the scenario in real-world applications, where
every voter belongs to a group due to some attributes, which can be formulated
as committee election problems with vote attributes. Below we describe several
scenarios.

Student Board Election. The first example is the student board election of a
university. Here, students are voters and the schools or departments they belong
to define an attribute of the voters.

International Sports Election. The second one is people from different coun-
tries try to elect a sort of place to hold an international sports event, where each
voter has a natural attribute that the country he comes from.

Favorite Singers and Best Film. In some TV shows, like The Singer, audi-
ences are asked to vote for TOP3 favorite singers and the audiences from different
ages may like different kind of singers. Similarly, for the election of the best film
of the year with votes being given by different film websites, voters from the
same website may have the same taste.

Under these scenarios, voters are partitioned into different groups according
to these attributes. The groups might admit significantly different sizes. In the
first example, a medical school normally has thousands of students, while less
than a hundred students are enrolled in a school of sport sciences. Obviously,
the rules for committee elections without voter attributes are not appropriate
for this application. For example, if PAV is applied, then the opinion of the sport
sciences students might be completely ignored.

Some researches considered the case where the candidates are defined by
some attributes and the goal is to select a committee that for each attribute
offers a certain representation [4,10,11,18,21]. While, there are few researches
consider the case of committee elections, where the voters are associated with
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some attributes. In addition, a lot of axioms studied these years only focus on the
welfare of large groups, the welfare of a group with few voters always be neglected
[1,16]. For instance, Justified Representation (JR) is introduced to make sure
that if a large enough group of voters exhibits agreement by supporting the
same candidate, then at least one voter in this group has an approved candidate
in the winning committee.

Therefore, new voting rules are needed for this setting, which takes the fol-
lowing consideration into account: (1) Even small groups have the right to be
represented in the committee. (2) Candidates approved by a large group have no
less chance to be members of the committee than that approved by a small group.
We formally define the two axioms in Sect. 2, namely, Small group benefited rep-
resentation (SGBR) and Large group benefited representation (LGBR). Based on
the above two goals, we propose three models, namely, Group Representative-σ-π
(GR-σ-π), Group Average-π (GA-π), and Group Egalitarian-π (GE-π).

GR-σ-π. With π ∈ {AV, SAV, PAV, CCAV, MAV}, this voting rule can be
thought as having two rounds. To be more specific, we first use an internal
election rule σ to select or construct a set of votes for each group based on the
votes in the group, which will serve as that group’s representation, called the
representative votes of the group. Then, based on the representative votes of all
groups, we use a voting rule π to select a winning committee.

GA-π. With π ∈ {SAV, PAV, CCAV, MAV}, this rule uses the average sat-
isfaction of the votes in a group as the satisfaction of that group. More pre-
cisely, use the average π-score of the votes in a group as the π-score of that
group. Then, find a committee maximizes the minimum score of all groups for
π ∈ {SAV, PAV, CCAV}, or a committee minimizes the maximum score of all
groups.

GE-π. Despite having rules that satisfy at least one of the LGBR and SGBR
as we will show in Sect. 3, GR-σ-π and GA-π both have shortcomings. In GR-
σ-π, the satisfaction of minorities in a group is ignored; more specifically, a
group member whose approved candidates differ from the majority’s of the group
may not be taken into account. In GA-π with π ∈ {PAV, CCAV}, if a group
contains some individuals whose choices for candidates differ from those of the
majority, the group’s score is likely to be lower. Here, we design two voting
rules to overcome these drawbacks, called Group Egalitarian-PAV (GE-PAV)
and Group Egalitarian-CCAV (GE-CCAV), such that a minority’s opinion does
not lead to a decrease in the group’s score, and furthermore, an increase in
the group’s score if the candidates approved by minorities are members of the
winning committee.

Related Work. The goal of selecting a subset of candidates with different
attributes under fairness constraints has recently been the focus of a lot of
research [4,10,11,18,21]. Fairness constraints are typically captured by abso-
lute upper bounds and/or lower bounds on the number of selected candidates in
specific attributes, or proportional representative of selected candidates in spe-
cific attribute. In contrast to our setup where the groups of voters are provided
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in the input, Talmon [26] and Faliszewski and Talmon [15] studied the question
of how to partition the votes into disjoint groups. A vertex-labeled graph with
each vertex representing a vote is provided as input; the task is to divide the
graph into disjoint groups and assign a member of the committee to each group,
so that each vote is represented by one of her preferred alternatives. The axioms
that concern the fairness of groups of votes also been studied these years, namely,
Justified Representation (JR) [1], Extended Justified Representation (EJR) [1]
and Proportional Justified Representation (PJR) [16]. They concentrate on the
scenario where a number of voters supporting the same candidates form a group,
and at least a certain number of voters in this group has an approved candidate
in the winning committee. While, the welfare of a group with few voters might
be neglected. For instance, PAV satisfies all the axioms but fails to fulfil the
SGBR, the small group benefited representation.

2 Preliminaries

In this section, we introduce the definitions and notations used in our models for
the committee elections with grouped voters. A committee election with grouped
voters can be denoted as E = (C, V, ζ), where C = {c1, c2, . . . , cm} is the set
of the candidates, V = {v1, v2, . . . , vn} is a list of voters represented by their
votes, and ζ = {G1, G2, . . . , G�} denotes the set of groups with Gi

⋂
Gj = ∅ and

⋃�
i=1 Gi = V . In this paper, we interchangeably use the terms vote and voter.

The number of the votes in a certain group Gi ∈ ζ is denoted as |Gi| = |{v |
v ∈ Gi}|. We focus on approval votes, where an approval vote vi ∈ V can be
considered as a {0, 1}-vector of length m. The x-th position of vi is denoted as
vi[x] with vi[x] ∈ {0, 1}, where vi[x] = 1 (or 0) means that the candidate cx is
approved (or disapproved) by vi. Given a vote v ∈ V and a subset of candidates
C ′ ⊆ C, we let v ∩ C ′ denote the set of candidates approved by v in C ′. Let
k be a non-negative integer. A k-committee is a k-size subset of candidates. A
k-committee selection rule maps each election (C, V ) and every non-negative
integer k with k ≤ |C| to a collection of k-committees of C with the winning
k-committees of (C, V ) having the optimal scores under this rule.

2.1 Approval Voting Rules

We first introduce some important approval-based multi-winner voting rules,
namely, AV, SAV, PAV, CCAV, and MAV. With respect to each rule, each k-
subset of C receives a score and the winning k-committees are those with the
desired score.

Under AV , the score of a candidate c ∈ C, denoted as AV(c), is the number
of votes approving c. Given a subset C ′ ⊆ C, AV(C ′) =

∑
c∈C′ AV(c). Under

the SAV, PAV, CCAV, and MAV, given a subset C ′ ⊆ C and a vote v ∈ V ,
the scores with respect to C ′ and v are set as follows. SAV(v, C ′) = |v∩C′|

|v| .
PAV(v,W ) = 1 + 1

2 + · · · + 1
|v∩C′| . If v ∩ C ′ �= ∅, CCAV(v, C ′) = 1; otherwise,
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CCAV(v, C ′) = 0. SAV(v,W ) = H(v, C ′) with H being the Hamming distance
between v and C ′, that is, H(v, C ′) = |Cv \ C ′| + |C ′ \ Cv| with Cv being the
candidates approved by v.

Given a vote set V ′ ∈ V and a candidate set C ′ ∈ C, the score with respect
to V ′ and C ′ is set as π(V ′, C ′) =

∑
v∈V ′ π(v, C ′) with π being SAV, PAV, and

CCAV. For MAV, we have MAV(V ′, C ′) = maxv∈V ′ MAV(v, C ′).
The π-Winner Determination (π-WD) problem is defined as: Input: given

an election E = (C, V ), a committee size k and a rational number d. Question:
is there a committee W ⊆ C with |W | = k satisfying that, AV(W ) ≥ d with
π = AV, or π(V,W ) ≥ d with π ∈ {SAV, PAV, CCAV}, or π(V,W ) ≤ d with
π = MAV.

2.2 Axioms

We introduce two axioms for multi-winner approval voting with grouped votes,
namely, large group benefited representation and small group benefited repre-
sentation. The first axiom captures the intuition that a large group deserves no
fewer representatives than a small group. The second axiom considers that even
a small group still deserve at least one representative if the committee size is no
less than the number of groups.

Definition 1. Let E = (C, V, ζ) be an election, k be an integer, W be a com-
mittee with |W | = k:

1. W provides large group benefited representation (LGBR) for E if there
do not exist two groups Gi, Gj ∈ ζ with |Gi| > |Gj |, such that |⋃v∈Gi

v ∩
W | < |⋃v′∈Gj

v′ ∩ W |.
2. W provides small group benefited representation (SGBR) for E if for

each group Gi ∈ ζ, we have (
⋃

v∈Gi
v) ∩ W �= ∅.

We say that an approval-based voting rule satisfies LGBR (SGBR) if for each
election E and target committee size k it outputs a committee providing LGBR
(SGBR).

2.3 The Models

Given an election E = (C, V, ζ) and an integer k of the target committee size, we
define the score of a group Gi ∈ ζ with respect to a k-size subset of C, denoted
as C ′, as follows.

Group Representative-σ-π (GR-σ-π). We set GR-σ-π(Gi, C
′) =

π(V i, C ′) with V i being the set of representative votes of Gi.
Group Average-π (GA-π). We use the average π-score of the votes in a

group as the π-score of that group, that is, GA-π(Gi, C
′) =

∑
v∈Gi

π(v,C′)
|Gi| .

Group Egalitarian-π (GE-π). GE-PAV(Gi,W ) = 1 + 1
2 + 1

3 + · · · +
1∑

v∈Gi
|v∩W | . In GE-CCAV, the input contains a set of integer {t1, · · · , t�}.

GE-CCAV(Gi,W ) = 1 + 1
2 + 1

3 + · · · + 1
|{v|v∈Gi,|v∩W |≥ti}| .
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We now have all tools to define the problem of this paper, called Win-
ner Determination for τ (τ -WD), where τ ∈{GR-σ-π1, GE-π2} with π1 =
{AV, SAV, PAV, CCAV, MAV} and π2 = {PAV, CCAV}.

Winner Determination for τ (τ-WD)
Input: An election E = (C, V, ζ), a positive integer k, and a positive
rational number d, and a set of integer {t1, · · · , t|ζ|} for GE-CCAV.
Question: Is there a k-size subset W ⊆ C satisfying maxG∈ζ τ(G,W ) ≤ d
for π being MAV, or

∑
G∈ζ τ(G,W ) ≥ d for π being others?

GA-π3-WD with π3 = {SAV, PAV, CCAV, MAV} can be defined similarly by
replacing the question as: Is there a k-size subset W ⊆ C satisfying that (1) for
π being MAV, maxG∈ζ τ(G,W ) ≤ d, or (2) minG∈ζ τ(G,W ) ≥ d for π being
others?

In this paper, we consider the following parameters: m = |C|, n = |V |,
� = |ζ|, k, the maximal size of groups max

i
|Gi|, and d (called the total satisfaction

bound).

3 Large/Small Group Benefited Representation

GR-σ-π. We first show that, no matter what σ is, it might be a bad idea to
allow each group to have multiple representative votes.

Theorem 1. (*) (1) If there exists a group having more than one representative
vote, then GR-σ-π does not satisfy SGBR even with � = 2, where π ∈ {AV, SAV,
PAV, CCAV, MAV}. (2) If groups can have more than one representative vote,
then GR-σ-π does not satisfy LGBR even with � = 3, where π ∈ {AV, SAV,
PAV, CCAV, MAV}.

The theorem above implies that if we use π to handle the grouped voters
case without making any changes, then π does not satisfy SGBR and LGBR
with π ∈ {AV, SAV, PAV, CCAV, MAV}. Here, we only need to let all votes
in a group be the representative votes of the group, which can be seen as an
internal election rule σ.

Corollary 1. AV, SAV, PAV, CCAV, and MAV do not satisfy both SGBR and
LGBR.

We then look into the possibility that each group only has one representative
vote. In this situation, some voting rules can fulfil SGBR even while none of
them satisfies LGBR.

Theorem 2. (*) If each group has exactly one representative vote, then (1) GR-
σ-π does not satisfy SGBR even with � = 3, where π ∈ {AV, SAV}. (2) GR-σ-π
satisfies SGBR with π ∈ {PAV, CCAV}. (3) if |vGi | = |vGj | with Gi, Gj ∈ ζ, GR-
σ-MAV satisfies SGBR. (4) if |vGi | > |vGj | with |Gi| > |Gj | for all Gi, Gj ∈ ζ,
GR-σ-MAV does not satisfy SGBR even with � = 2.
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It is easy to show that GR-σ-π does not satisfy LGBR, since each group
have exactly one representative vote. As a result, the voting rule cannot make
use of the information about the sizes of the groups. Indeed, GR-σ-π fails to
fulfill LGBR even if we allow |vGi | > |vGj | if |Gi| > |Gj | with π ∈ {AV, SAV,
PAV, CCAV}., where Gi, Gj ∈ ζ, vGi , vGj are the representative votes of Gi, Gj ,
and |vGi |(|vGj |) is the number of candidates approved by vGi(vGj ).

Theorem 3. (*) If each group has exactly one representative vote, then (1) GR-
σ-π does not satisfy LGBR even with � = 3, where π ∈ {AV, SAV, PAV, CCAV}.
(2) if |vGi | = |vGj | with Gi, Gj ∈ ζ, GR-σ-MAV does not satisfy LGBR even
with � = 2. (3) if |vGi | > |vGj | with |Gi| > |Gj | for all Gi, Gj ∈ ζ, GR-σ-MAV
satisfies LGBR.

It can be seen that even if there is only one representative vote per group,
most of the voting rules studied in this subsection fail to satisfy both LGBR and
SGBR. Finding a voting rule that fulfills both axioms in this setting is therefore
important. To address this issue, we define a voting rule Group-based General-
ized Approval Voting (GGAV) as follows, which can be seen as generalization of
GAV [19]. For each group Gi ∈ ζ, there is a score-vector wi = {a1

i , · · · , am
i }. The

score of a subset of C, denoted as W , with respect to Gi and ζ are defined as
GGAV(Gi,W ) =

∑|vGi∩W |
j=1 aj

i , and GGAV(ζ,W ) =
∑

Gi∈ζ GGAV(Gi,W ). By
carefully designing each vector, we can make GGAV satisfy LGBR and SGBR.
Given a set of groups ζ = {G1, · · · , G�} with |Gp| ≥ |Gq| if p > q, we set aj

i

with 1 ≤ i ≤ � as follows. (1) ak
i = � − i + 1; (2) aj

i = 0, for k < j ≤ m. (3)
aj

i =
∑

j+1<β≤k

∑
1≤α≤� aβ

α +
∑

i+1<γ≤� aj
γ , for 1 ≤ j < k. In other word, if we

denote aj
i as b(k−j)×k+(n−i+1), then bp =

∑
1≤q<p bq with p > �. By doing this,

We say the score-vectors are set to grouped setting. It is easy to see that, GR-σ-
PAV is a special case of GR-σ-GGAV by setting wi as wi = {1, 1

2 , 1
3 , · · · , 1

m} for
each group Gi ∈ ζ. Therefore, we do not study the parameterized complexity of
GGAV in Sect. 4, since all the hardness results of GR-σ-PAV hold for GGAV.

Theorem 4. (*) If each group has exactly one representative vote, GR-σ-GGAV
satisfies both LGBR and SGBR with score-vectors being set to grouped setting.

Theorem 5. (*) (1) GA-π satisfies SGBR with π ∈ {SAV, PAV, CCAV}. (2)
GA-MAV does not satisfy SGBR. (3) GA-π does not satisfy LGBR even with
� = 2, where π ∈ { SAV, PAV, CCAV, MAV}.

Unfortunately, even GE-PAV and GE-CCAV can overcome the shortcomings
of GR-σ-Π and GA-Π, neither of them satisfies the LGBR and SGBR.

Theorem 6. (*) GE-PAV and GE-CCAV do not satisfy the LGBR and SGBR.

4 Parameterized Complexity

In this section, we demonstrate the parameterized complexity results of GR-
σ-π-WD, GA-π-WD, and GE-π-WD with parameter being n,m, k, �,maxi |Gi|,
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and d. With σ being AV, SAV, or t-Count, it is obvious that GR-σ-AV-WD,
GR-σ-SAV-WD, and GA-SAV-WD can be solved in polynomial time. All other
problems are NP-hard since PAV-WD, CCAV-WD, and MAV-WD are NP-hard
even in the non-grouped setting. Unsurprisingly, parameterized complexity of
GR-σ-π-WD with π ∈ {PAV, CCAV, MAV} is quite similar. Specifically, for
a certain parameter, if GR-σ-PAV is W-hard, then GR-σ-CCAV and GR-σ-
MAV are also W-hard; likewise, if GR-σ-PAV is FPT, GR-σ-CCAV and GR-
σ-MAV are also FPT. To GA-π-WD, the same thing took place. Therefore,
instead of displaying the parameterized complexity of all models of GR-σ-π-WD
and GA-π-WD, we choose GR-(t-Count)-PAV-WD and GA-MAV-WD to serve
as exemplars of R-σ-π-WD and GA-π-WD and examine their parameterized
complexity. In addition, we also investigate the parameterized complexity of
GE-PAV-WD and GE-CCAV-WD. See Table 1 for the summary of the results.

Table 1. Summary of the results. The results with m as parameter are trivial (by
trying all size-k subsets of candidates in O∗(2m) time). Here, m = |C|, n = |V |,
� = |ζ|, k is the size of committee, max

i
|Gi| is the maximal size of groups, and d is the

total satisfaction bound.

GE-CCAV GE-PAV GR-(t-Count)-PAV GA-MAV

m FPT FPT FPT FPT

n FPT FPT FPT FPT

� Para-NP-hard open FPT open

max
i

|Gi| W[2]-hard Para-NP-hard Para-NP-hard Para-NP-hard

k W[2]-hard W[2]-hard W[1]-hard W[2]-hard

d W[1]-hard open open W[2]-hard

Theorem 7. (*) (1) GE-CCAV-WD is FPT with respect to n.
(2) Even with only one group, GE-CCAV-WD is NP-hard and W[2]-hard with k
as parameter.
(3) GE-CCAV-WD is NP-hard even when max

i
|Gi| = 1.

(4) GE-CCAV-WD is W[1]-hard with d as parameter.
(5) GE-PAV-WD is FPT with respect to n.
(6) GE-PAV-WD and GR-(t-Count)-PAV-WD are W[1]-hard with k as param-
eter.
(7) GR-(t-Count)-PAV-WD is FPT with respect to � or n. (8) GA-MAV-WD is
NP-hard even if max

i
|Gi| = 1.

Theorem 8. GA-MAV-WD is FPT with n as parameter.

Proof. In the following, we use the tool of integer linear program (ILP) to prove
the theorem.

We can think of all votes as an n×m matrix M with binary values. From the
column perspective, there are m columns which can be considered as a collection
of n-dimensional vectors. We call two columns identical, if both columns contain
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the same value at each position. The set of pairwise identical columns is called
a column type. Clearly, there are at most 2n different column types. Moreover,
let T denote the set of different column types, and for each type t ∈ T , let nt

denote the number of columns of type t in the input. Additionally, let Σ = {0, 1}.
The ILP can be formulated as follows. It contains 2 × 2n variables xt,ϕ, where
t denotes a column type and ϕ ∈ Σ. The value of xt,ϕ denotes the number of
columns of type t whose corresponding positions in the winning committee W
are set to be ϕ. We use ϕt,i,j to denote the value of the vote vj

i at the positions
corresponding to columns of type t. Considering that the goal of GA-MAV-WD
is to minimize the maximum score among all groups, we aim to minimize

max
1≤i≤�

∑
1≤j≤|Gi|

∑
t∈T

∑
ϕ∈(Σ\{ϕt,i,j}) xt,ϕ

|Gi| ,

where � denotes the number of groups and the number of votes in a certain
group Gi is represented by |Gi|. Notice that the above objective function can be
replaced by the following constraint by introducing the maximum distance d:

∑

1≤j≤|Gr|

∑

t∈T

∑

ϕ∈(Σ\{ϕt,i,j})

xt,ϕ ≤ d × |Gi| , ∀1 ≤ i ≤ �

Doing so, we arrive at an ILP without objective function. In addition, we add
the following constraints:

∑

ϕ∈Σ

xt,ϕ = nt, ∀t ∈ T,

which means that each column is assigned a value of 0 or 1 in the corre-
sponding position of W , determining whether the corresponding candidate is
selected in W or not. All variables xt,ϕ must be non-negative integers, that
is, xt,ϕ ∈ {0, 1, 2,. . . , nt},∀t ∈ T and ∀ϕ ∈ {0, 1}. We need an equation con-
straint to make sure that the winning committee contains exactly k candidates:∑

t∈T xt,1 = k.
If there is a solution for the above ILP instance, then we can construct a size-k

committee W by adding xt,1 many candidates whose corresponding column type
is t to W . Thus, we can give an ILP formulation for GA-MAV-WD, where the
number of variables depends solely on the parameter value n, the total number
of the votes. It is easy to verify that the above ILP has a solution if and only if
the GA-MAV-WD instance has a solution. The theorem follows from the result
of Lenstra’s [23]. 
�
Theorem 9. GA-MAV-WD is W[2]-hard with respect to parameters k and d.

Proof. We prove the theorem by reducing Dominating Set to GA-MAV-WD. The
Dominating Set problem is defined as below. Input: A non-negative integer k′

and an undirected graph G′ = (V ′, E′) with |V ′| = n′ and |E′| = m′. Question:
Is there a subset S ⊆ V ′ with k′ vertices such that every vertex v ∈ V ′ is
contained in S or has at least one neighbor in S?
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Dominating Set is W[2]-hard with respect to k′ [14]. Without loss of gener-
ality, we assume each vertex in G′ has a degree at least k′, since we can add a
k′-clique to G′ if there is a vertex v′ ∈ G′, whose degree is less than k′, then make
v′ be adjacent to each vertex of the added k′-clique. Given an instance (G′, k′) of
Dominating Set, we construct an instance F ((C, V, ζ), k, d) as follows. We create
a candidate for each vertex in the graph G′. We call these candidates as “real
candidates”, denoted as c1, c2, . . . , cm with m = n′. In addition, we construct
3n′ “dummy candidate” denoted as: c′

1, c
′
2, . . . , c

′
3n′ . There are 4n′ candidates in

total. For each vertex v′
i ∈ V ′, we construct a group Gi, where the votes one-

to-one correspond to the edges incident to vi. In addition, we add a “special”
vote to each group. Therefore, the total number |Gi| of votes in group Gi is
deg(v′

i) + 1, where deg(v′
i) denotes the degree of vertex v′

i, that is, the number
of edges incident to v′

i. Observe that each edge in G′ corresponds to two votes,
because it has two endpoints. The total number n of votes is 2m′ + n′. For a
vote vj in group Gi constructed for the edge ej = {v′

r, v
′
s}, it solely approves the

two real candidates cr and cs, who correspond to the endpoints v′
r and v′

s, but
disapproves of all other candidates. We can consider this vote as a vector with
two positions of value 1 and 4n′ − 2 positions of value 0. For the special vote in
group Gi, it only approves three dummy candidates, c′

(i−1)×3+1, c
′
(i−1)×3+2 and

c′
(i−1)×3+3 but disapproves all other candidates. In fact, each dummy candidate

is approved only once, because each special vote approves three distinct dummy
candidates. By doing so, adding a dummy candidate to the committee is never
better than adding a real candidate. We denote a committee as a {0, 1}4n′

vec-
tor which has exactly k′ 1’s in the real candidate part, so that the Hamming
distance of each special vote to the winning committee is k′ +3. Then, let k = k′

and d = k′ + 2. We show the equivalence between the instances in the following.
Here we omit the “⇒”.

“⇐”: Assume that there is a solution of GA-MAV-WD, which means that
there is a winning committee W of size k′ satisfying GA-MAV(Gi,W ) ≤ d =
k′ + 2 with 1 ≤ i ≤ n′. Let W = W1

⋃
W2, where W1 denotes the set of real

candidates in W and W2 denotes the set of dummy candidates in W . We consider
the following cases according to whether |W2| = 0 or not.

Case 1: |W2| = 0: Then, |W1| = k′. That is, all candidates in W are real
candidates. Let S be the set of the vertices corresponding to the candidates in
W . Since the score of each group is at most d = k′ + 2 and each vote in the
group approves either two real candidates or three dummy candidates, there is
at least one vote in this group Gi whose Hamming distance to W is at most k′,
meaning that this vote approves at least one candidate in W and thus there is
at least one neighbor of the corresponding vertex v′

i in S. This implies that the
set S forms a dominating set.

Case 2: |W2| �= 0: Let |W2| = j and |W1| = k′ − j. By the construction, each
dummy candidate is approved exactly once by a special vote in a group. Thus,
adding a dummy candidate to W can only decrease the score of one group. Then
we can replace this dummy candidate by a real candidate, which is approved by
other votes in this group but not in W . With the degree of each vertex in G′
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being at least k′, we can conclude that such a real candidate exists. By doing so,
we decrease |W2| by one without increasing the score of any group. Repeating
this replacing operation for all dummy candidates in W2, we arrive at another
solution W , containing only real candidates, and Case 1 applies. In summary, a
solution of GA-MAV-WD implies a dominating set in G′. 
�

5 Concluding Remarks

In this paper, we propose three models to deal with the case of approval-based
committee elections with grouped voters. At the same time, we propose two
axioms named Large group benefited representation and small group benefited
representation, and investigate whether the proposed models satisfy the two
axioms. We show that all models can hardly satisfy both axioms except the
GGAV with the score-vectors being set to grouped setting. We show that all
models are fixed-parameter tractable (FPT) when parameterized by the number
n of votes, whereas they become fixed-parameter intractable when parameterized
by the size k of the committee or d of the satisfaction bound.

We left four questions in Table 1 open, GE-PAV-WD, GR-(t-Count)-PAV-
WD and GCMAV-WD with respect to d, GE-PAV-WD and GA-MAV-WD with
the parameterization by �. Thus, one future research goal is to resolve the param-
eterized complexity for them.

Inspired by the work of Baumeister and Dennisen [3], we propose the direction
for future research to extend the voting models to other forms of votes, such as
trichotomous votes, complete linear orders, and partial linear orders. Another
task worthy of detailed study is the problem of coalitional manipulation in the
case of committee elections with grouped voters [24].
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