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Abstract. While the topic of assortment optimization has received a
significant amount of attention, the relationship between advertising and
its impact on this issue has not been well-explored. This paper aims to
fill the gap in research by addressing the joint advertising and assort-
ment optimization problem. We propose that advertising can influence
product selection by increasing preference for certain products, and the
extent of this effect is determined by the product-specific effectiveness of
advertising and the resources allocated to advertising for that product.
Our goal is to find an optimal solution, which comprises of a combination
of advertising strategy and product assortment, that maximizes revenue,
taking into account budget constraints on advertising. In this paper, we
examine the characteristics of this problem and present efficient methods
to solve it under various scenarios. Both the unconstraint and cardinal-
ity constraint settings are studied and the joint assortment, pricing, and
advertising problem is also examined. We further extend our findings to
account for consumer decision-making patterns.

Keywords: budget allocation · advertising effect · assortment
optimization

1 Introduction

One of the major challenges faced by both online and offline retailers is the prob-
lem of assortment optimization, in which they choose a specific group of products
to offer to customers such that their expected revenue can be maximized. The
revenue generated by an assortment of products is usually determined by two
factors: the revenue generated by selling each individual product, and the pur-
chasing behavior of consumers. The latter is often captured by discrete choice
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models such as a multinomial logit (MNL) model [26] and a nested logit (NL)
model [7]. Unlike previous studies that assume fixed choice models, we take
into account the fact that customer purchasing behavior may be influenced by
sophisticated selling practices such as advertising. Specifically, advertising is an
important and effective strategy for establishing brand recognition and commu-
nicating the value of a product effectively to the public. Given the importance of
advertising, determining how to allocate the promotional budget over products
and time is a critical aspect of retailers’ decision making [13,19,22], hence, it is
important for a retailer to consider the impact of advertising on their product
choices to increase revenue. To maximize this effect, the retailer should align
their advertising and product recommendations.

In this paper, we propose and investigate a joint advertising and assortment
optimization problem (JAAOP). We employ the MNL model to understand con-
sumer purchasing behavior, in which every product, including the choice not to
purchase, is assigned a random utility. Once presented with a variety of products,
the consumer chooses the one with the highest utility. Our study differs from pre-
vious research on traditional assortment optimization by taking into account the
influence of advertising. That is, rather than just selecting a group of products,
we investigate the potential of combining advertising with traditional product
selection to enhance the overall optimization. Specifically, we assume that the
platform can increase the attractiveness (a.k.a. utility) of a product by adver-
tising it, the effectiveness of which is represented by a product-specific response
function and the amount of advertising efforts allocated to that product. With
constraints on the advertising budget, our goal is to jointly determine which
products to present to consumers and how to allocate the advertising budget
among them in order to maximize expected revenue. In one extension of our
work, we also examine the sequential choice behavior of consumers [15], a com-
mon feature on online shopping platforms such as Amazon and Taobao, where
a large number of products are displayed to the consumer in stages. If the con-
sumer does not select any products in a stage, they will move on to the next
set of products. This requires the platform to not only select which products to
display, but also their positions. We formulate this problem as a joint multi-stage
advertising and assortment optimization problem.

1.1 Summary of Contributions

This section summarizes the major contributions of our work.

– We introduce the JAAOP in which the platform must concurrently select (1)
an advertising strategy and (2) a set of products to present to consumers. By
using the MNL model and assuming no constraint on the maximum number
of products that can be displayed to a user, we can obtain an optimal revenue-
ordered assortment and an efficient advertising strategy.

– When a constraint on the maximum number of products that can be dis-
played to a user is present, we analyze the problem under different response
functions. If the response function is a log function, the optimal advertising
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strategy is to allocate all the advertising budget to a single product. If the
response function is a general concave function, we formulate our problem as
a nonlinear continuous optimization problem and use McCormick inequalities
to convert it into a convex optimization problem. We then develop an efficient
algorithm to find the optimal strategy.

– In Appendix A and B, we study several extensions. In one extension of this
study, we include the price of each product as a decision variable and consider
the joint product assortment, pricing, and advertising optimization problem.
We also extend our model to incorporate the multi-stage purchase behav-
ior and investigate the structural properties of the problem. We develop a
heuristic method that comes with a performance guarantee.

– We also conduct a series of experiments to evaluate the performance of our
solutions and further confirm the value of advertising in AppendixC. Our
proposed heuristic method is robust and outperforms other methods in dif-
ferent settings. Specifically, the results suggest that allocating the advertising
budget uniformly or greedily leads to substantial revenue loss.

2 Literature Review

Our work is closely related to the assortment optimization problem in revenue
management, which aims to select a subset of products to maximize the expected
revenue. Various discrete choice models have been proposed to model consumer
decision-making behavior, including the MNL model [26], the Nested Logit (NL)
model, the d-level NL model and so on. Recently, several works have considered
sequential choice behavior. For example, Flores et al. [12] investigated a two-
stage MNL model, where the consumer sequentially browses two stages that
are disjoint in terms of potential products and [17] extended to the multi-stage
setting. Moreover, [15] developed a sequential MNL model, where the utility of
the no-purchase option is fixed at the beginning instead of being resampled each
time, and studied the assortment and pricing problem with impatient customers.

Another related problem is the advertising budget allocation problem. [2]
proposed a model to allocate resources among multiple brands in a single period.
[9] further considered advertising budget allocation across products and media
channels. [11] considered the lagged effect of advertising and studied the dynamic
marketing budget allocation problem for a multi-product, multi-country setting.
[1] proposed a single-product spatiotemporal model that includes the spatial
differences and sale dynamics.

Finally, our work belongs to the growing literature that aims to improve
revenue through sophisticated selling practices beyond product selection. The
approaches in this area include offering certain items only through lotteries [18]
and making certain products unattractive to consumers [4]. [4] studied the refined
assortment optimization problem for several regular choice models, including
the MNL, latent-class MNL (LC-MNL), and random consideration set (RCS)
models. While the authors in [4] focus on reducing the utilities of some products
to improve revenue, our approach aims to increase revenue by increasing the
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utilities of some products. The main differences are: 1. [4] focus on strategically
reducing the utilities of products, whereas our study centers on increasing the
utilities of products. 2. [4] assume that changing the utility of a product has no
cost, while our model takes into account the cost of increasing the utility of a
product through advertising and considers budget constraints in the optimization
problem. We also show that the platform has no incentive to decrease the utilities
of any products in the MNL model under a cardinality constraint. A similar result
was discovered independently by [4] for an unconstrained MNL model.

3 Preliminaries and Problem Formulation

3.1 MNL Model

We list the main notations in Table 1. Generally, the input of our problem is a
set of n products N = {1, 2, · · · , n}. In the MNL model, each product i ∈ N
has a utility qi + εi, where qi is a constant that captures the initial utility of
product i, and εi is a random variable that captures the error term. We assume
that εi follows a Gumbel distribution with a location-scale parameter (0, 1). Let
v denote the preference vector of N , where vi := eqi for each i ∈ N . Given
an assortment S ⊆ N and a preference vector v, for each product i ∈ N , a
consumer will purchase product i with a probability of

φi(S,v) =

{
vi

1+
∑

j∈S vj
if i ∈ S

0 otherwise.
(1)

The no-purchase probability is φ0(S,v) = 1
1+

∑
j∈S vj

. Let r denote the revenue
vector of N , where for each product i ∈ N , ri > 0 represents the revenue from
product i. Based on the above notations, the expected revenue R(S,v) of the
assortment S is given by

R(S,v) =
∑
i∈S

ri · φi(S,v) =
∑

i∈S rivi

1 +
∑

i∈S vi
. (2)

3.2 Joint Advertising and Assortment Optimization

We use a vector x to represent an advertising strategy where for each i ∈ N ,
xi represents the amount of advertising efforts allocated to i. Let c denote the
advertising effectiveness of N . We assume that the utility of each product i ∈ N ,
increases by f(cixi) if it receives xi advertising efforts from the platform, where
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f(·) is called response function and ci is the advertising effectiveness of product
i. Intuitively, c and f(·) together determine the degree to which a product’s
preference weight is influenced by the advertising it receives from the platform.
For a given preference vector v, the expected revenue R(S,v,x) of an assortment
S under an advertising strategy x is calculated as

R(S,v,x) =
∑

i∈S rie
qi+f(cixi)

1 +
∑

i∈S eqi+f(cixi)
=

∑
i∈S rivig(cixi)

1 +
∑

i∈S vig(cixi)
, (3)

where g(·) = ef(·). Hence, R(S,v) = R(S,v, 0).
We next formally introduce the JAAOP.

Definition 1. Let X = {x|∑n
i=1 xi ≤ B} denote the set of all feasible adver-

tising strategies subject to the advertising budget B. JAAOP aims to jointly find
an assortment S of size at most K and a feasible advertising strategy x ∈ X to
maximize the expected revenue, that is,

max
x∈X

max
S:|S|≤K

R(S,v,x). (4)

Let S∗ and x∗ denote the optimal assortment and advertising strategy,
respectively, subject to the advertising budget B and cardinality constraint K.
In case of multiple optimal assortments, we select the one with the smallest
number of items. For ease of presentation, let Sv denote the optimal assortment
when B = 0, that is, Sv = arg maxS:|S|≤K R(S,v). In this paper, we make two
assumptions about g(·).
Assumption 1. g(·) is differentiable, concave, and monotonically increasing.

We will now provide the reasoning behind this assumption. Several
researchers have investigated the impact of advertising on customer utility,
including [10,25], and [28]. These studies all assumed logarithmic response func-
tions, which imply that market share is a concave function of advertising efforts,
meaning that the benefit of incremental advertising decreases as advertising
efforts increase. This property, also known as the law of diminishing returns, has
been widely used in other works [3,9,21]. The assumption we made in our study,
known as Assumption 1, captures this property effectively. For the market share
of product i in assortment S, that is, vig(cixi)

1+
∑

i∈S vig(cixi)
, we can verify the con-

cavity of the market share function = by observing the negativity of the second
derivative. The second assumption states that the advertising effect is zero if a
product receives zero amount of advertising efforts from the platform.

Assumption 2. g(0) = 1.

We present a useful lemma that states that there exists an optimal advertising
strategy that always uses the entire advertising budget.

Lemma 1. There exists an optimal advertising strategy x∗ for problem (4) such
that

∑
i∈S∗ xi = B.
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4 Unconstrained JAAOP

We start by examining a special case of the JAAOP, where K = n, meaning
there is no limit on the assortment size.

In the absence of any size constraints and advertising budget, our prob-
lem becomes the standard unconstrained assortment optimization problem. As
proven by [26], the optimal assortment in this scenario is a revenue-ordered
assortment, i.e. all products generating revenue greater than a certain threshold
are included. This threshold, as demonstrated in [24], is the expected optimal
revenue.

Lemma 2 [24, Theorem 3.2]. If K = n and B = 0, there exists an optimal
assortment Sv such that Sv = {i ∈ N|ri > R(Sv,v)}.
This characteristic has been noted in other contexts as well, such as the joint
pricing and assortment optimization problem [27] and the robust assortment
optimization problem [24]. The optimal assortment, given a fixed advertising
strategy, remains revenue-ordered. Thus, to find the best solution, we find the
optimal advertising strategy for each possible revenue-ordered assortment, and
choose the one with the highest expected revenue as the final result. The number
of possible revenue-ordered assortments is at most n. The efficiency of this algo-
rithm can be improved by taking into consideration the following observations.

Lemma 3. There exists an optimal assortment S∗ such that S∗ ⊆ Sv.

Lemma 3 implies that to find the optimal advertising strategy, we must eval-
uate all the revenue-ordered assortments within Sv and determine the optimal
advertising plan. Then, for any revenue-ordered assortment S, we find the opti-
mal advertising strategy to obtain the complete solution, i.e.,

max
x≥0

∑
i∈S rivig(cixi)

1 +
∑

i∈S vig(cixi)
(5)

s.t.
∑
i∈S

xi = B.

With ui = vig(cixi), (5) can be rewritten as:

max
u

A(u)
B(u)

=
∑

i∈S riui

1 +
∑

i∈S ui
(6)

s.t. u ∈ U ,

where U = {u|∑n
i=1 mi(ui) ≤ B, ui ≥ vi, i = 1, . . . , n} and mi(·) = g−1( ·

vi
)/ci.

Here (6) is a single-ratio fractional programming (FP) problem. Before present-
ing our solution to (6), we show that U is a convex set.

Lemma 4. The constraint set U in (6) is a convex set.
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This part describes our solution to (6) in detail. Lemma 4 indicates that (6)
is a concave-convex FP problem. We apply the classical Dinkelbach transform
[8] by iteratively solving the following parameterized problem:

max
u

h(y) = A(u) − yB(u) (7)

s.t. u ∈ U .

In particular, our algorithm starts with iteration t = 0 and y0 = A(v)
B(v) , and

in each subsequent iteration t + 1, we find ut+1 to maximize h(yt) by solving
(7) and update yt+1 = A(ut+1)

B(ut+1)
. This process iterates until the optimal solution

of (7) is 0 and we output the corresponding maximizer uF . Equation (7) can
be solved efficiently because A(u) is a concave function and B(u) is a convex
function. This algorithm is guaranteed to converge to the optimal solution [8].
After solving (6) and obtaining uF , we transform (6) to an optimal advertising
strategy such that for each i ∈ S, we set xi = mi(uF

i ); that is, we allocate mi(uF
i )

efforts to i. A detailed description of our solution is presented in Algorithm1.

Algorithm 1. Optimal Solution for Unconstrained JAAOP
Input: preference weight v, revenue r, advertising effectiveness c, budget B
Output: optimal assortment S∗, advertising strategy x∗

1: Solve the classic unconstrained assortment optimization problem, and obtain the
optimal assortment Sv when B = 0

2: Solve (6) for each revenue-ordered assortment in Sv, and return the best one as
the final solution

5 Cardinality-Constrained JAAOP

We next study our problem under a cardinality constraint of K > 0. First, we
examine a scenario where g(·) is a linear function, and then we delve into the
general case where g(·) is a concave function.

5.1 g(x) as Linear Function

We first study the scenario where g(·) is a linear function, expressed as 1 + ax
for some a ≥ 0. The next lemma demonstrates the existence of an optimal
advertising strategy that allocates the entire budget to a single product. For
each i ∈ N , we define xi as a vector in which the i-th element is B and all other
elements are zero.

Lemma 5. For any assortment S, the optimal solution for the following problem
is achieved at xi for some i ∈ S:

max
x≥0

L(S,x) =
∑

i∈S rivi(1 + acixi)
1 +

∑
i∈S vi(1 + acixi)

(8)

s.t.
∑
i∈S

xi = B.
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This lemma implies that to find the optimal advertising strategy, we need to
consider at most n candidate advertising strategies: {xi|i ∈ N}. Specifically, con-
sidering xi, we replace the original preference weight vi of i using vig(ciB) and
then solve the standard capacity-constrained assortment optimization problem
to obtain an optimal assortment. Among the n returned solutions, we return
the best one as the final solution. [23] showed that the standard cardinality-
constrained assortment optimization problem for each xi can be solved in O(n2)
time. Thus, the overall time complexity of our solution is n × O(n2) = O(n3).
Assume all products are indexed in non-increasing order of ri. The next lemma
shows that we can further narrow the search space and reduce the time complex-
ity to O(n2T ), where T = max{i|i ∈ Sv} represents the index of the product
that has the smallest revenue in Sv.

Lemma 6. Assume all products are indexed in non-increasing order of ri. Let
T = max{i|i ∈ Sv}, there exists an optimal assortment S∗ such that S∗ ⊆
{1, 2, ..., T}.

We present the detailed implementation of our algorithm in Algorithm 2.

Algorithm 2. Optimal Cardinality Constrained Solution for Log Response
Function
Input: preference weight v, revenue r, cardinality constraint K, advertising effective-

ness c, budget B
Output: optimal assortment S∗ and advertising strategy x∗

1: Let T = max{i|i ∈ Sv}
2: for i = 1, . . . , T do
3: Compute an assortment Si that maximizes R(S,v,xi)
4: end for
5: Return the best (Sj ,xj).

5.2 g(x) as a General Concave Function

We next discuss the general case. Before presenting our solution, we first con-
struct an example to demonstrate that allocating the entire budget to a single
product is not necessarily optimal.

Example 1. Consider three products with revenue r = (8, 7.5, 2.8), preference
weight v = (1.2, 1, 1.7) and the effectiveness c = (0.9, 0.8, 1). Assume the car-
dinality constraint is K = 2 and the total advertising budget is B = 10. We
consider a concave function g(x) =

√
x + 1. If we are restricted to allocating

the entire budget to a single product, then the optimal advertising strategy is
(10, 0, 0), the optimal assortment is composed of the first two products, and the
expected revenue of this solution is 6.75. However, the actual optimal advertis-
ing strategy is (approximately) (8.285, 1.715, 0), the actual optimal assortment
contains the first two products, and it achieves expected revenue of 6.812. The
above example shows that the single-product advertising strategy is no longer
optimal for a general concave response function.
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We next present our solution. Let ui = vig(cixi) and define mi(·) =
g−1( ·

vi
)/ci for each i ∈ N , we first transform (4) to an equivalent nonlinear

mixed integer program (9) by replacing
∑n

i=1 xi = B using
∑n

i=1 mi(ui) ≤ B,

max
u∈U

max
t∈{0,1}n

∑n
j=1 ujrjtj

1 +
∑n

j=1 ujtj
(9)

s.t.
n∑

i=1

ti ≤ K,

where U = {u|∑n
i=1 mi(ui) ≤ B, ui ≥ vi, i = 1, . . . , n}. We next present a useful

lemma from [6].

Lemma 7 (Theorem 1 [6]). The inner problem of (9) is equivalent to the fol-
lowing linear program

max
w,w0

n∑
j=1

riwi (10)

s.t.
n∑

i=1

wi + w0 = 1, (11)

n∑
i=1

wi

ui
≤ Kw0, (12)

0 ≤ wi

ui
≤ w0 ∀i ∈ N . (13)

Notice that (12) and (13) involve some nonlinear constraints if u is not fixed.
Thus we introduce new variables �i = wi

ui
, i ∈ N and rewrite (9) as follows:

(NO) max
u∈U

max
w,�,w0

n∑
j=1

riwi (14)

s.t.
n∑

i=1

wi + w0 = 1, (15)

n∑
i=1

�i ≤ Kw0, (16)

0 ≤ �i ≤ w0 ∀i ∈ N , (17)
wi = �iui ∀i ∈ N . (18)
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We further use the classic McCormick inequalities ([20]) to relax the noncon-
vex constraints (18):

(MC) wi ≥ �ivi ∀i ∈ N ,

wi ≥ ui + �ivig(Bci) − vig(Bci) ∀i ∈ N ,

wi ≤ �ivig(Bci) ∀i ∈ N ,

wi ≤ ui + �ivi − vi ∀i ∈ N .

Through the above relaxation, we transform (NO) into a convex optimization
problem that can be solved efficiently. After solving this relaxed problem and
obtaining a solution w, we can compute the final assortment S as follows: we first
find the product for which the wi is strictly larger than 0, that is Sw = {i|i ∈
N , wi �= 0}. Then we sort the products in Sw by the value of wi and choose
the first K products. Notice that the advertising strategy that is obtained from
solving the previous relaxed problem may not be optimal. One can solve (6) to
find the optimal advertising strategy for S. Lastly, if the size of the input is
large, we can reduce the problem size by selecting a smaller group of candidate
products based on Lemma 6. A detailed description of our solution is listed in
Algorithm 3.

Algorithm 3. Cardinality Constrained Solution for General Response Function
Input: preference weight v, revenue r, capacity constraint K, advertising effectiveness

c, budget B
Output: assortment S and advertising strategy x
1: Let T = max{i|i ∈ Sv}
2: Solve the optimization problem (NO + MC) for the first T products to find an

assortment S
3: Solve problem (6) for S to find the advertising strategy x
4: Return (S,x).

6 Conclusion

This paper considers the JAAOP problem under the MNL model, where the
seller decides their advertising strategy for all products to improve the current
revenue. We consider both the log and general concave response functions. If
there are no capacity constraints, we show that the optimal assortment is still
revenue-ordered. However, this result does not hold in the presence of a cardi-
nality constraint. When the response function is a log function, we prove that
the optimal advertising strategy is a single-product advertising strategy, thus
the optimal solution could be found in polynomial time. For the general concave
response function, we develop an efficient algorithm to find a near-optimal solu-
tion. We further consider the seller could adjust the price simultaneously, and
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show that such a problem can be efficiently solvable under unconstrained setting
or be transformed as a mixed-integer nonlinear programming for the cardinal-
ity constraint setting. Additionally, as an extension, we study the multi-stage
MNL choice model, in which the customer browses the assortments sequentially.
Our results demonstrate that the seller has no incentive to decrease the utility
of any product, even under the capacity constraint. Finally, we conduct exten-
sive experiments to illustrate that the advertising strategy is more effective with
small cardinality constraint and large no-purchase utility.

Appendix

A Joint Assortment, Pricing, and Advertising
Optimization

In this section, we study the case when the price of each product is also a decision
variable. Formally, we assume that the preference weight of each product i ∈ N
can be represented as eqi+f(cixi)−pi , whose value is jointly decided by i’s initial
utility qi, i’s price pi, and the advertising efforts xi received from the platform.
Hence, the revenue ri of each product i ∈ N is ri = pi − di, where di is the
production cost of i. Based on the above notations, we can represent the expected
revenue R(S,p,x) of an assortment S as

R(S,p,x) =
∑

i∈S(pi − di)eqi+f(cixi)−pi

1 +
∑

i∈S eqi+f(cixi)−pi
=

∑
i∈S(pi − di)eqi−pig(cixi)
1 +

∑
i∈S eqi−pig(cixi)

. (A.1)

A.1 Unconstrained Case

If there is no cardinality constraint, our goal is to solve the following joint adver-
tising, pricing, and assortment optimization problem:

max
p,x,S

R(S,p,x) (A.2)

s.t.
∑
j∈S

xj ≤ B.

Before describing our solution, we first present a useful lemma from [16].

Lemma A.1 [16]. Given any assortment S, the optimal price for each product
i ∈ S is pi = W (

∑
i∈S eqi−di−1)g(cixi) + di + 1, where W (·) is the Lambert W

function; that is, W (·) is the value of x that satisfies xex = z. Moreover, the
revenue of the optimal solution is W (

∑
i∈S eqi−di−1g(cixi)).

For any given advertising strategy x and assortment S, the optimal price
and corresponding expected revenue are explicitly given by LemmaA.1. Because
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W (·) is an increasing function, LemmaA.1 implies that the optimal assortment
must include all products. Hence, we can transform (A.2) into

max
x

n∑
i=1

eqi−di−1g(cixi) (A.3)

s.t.
n∑

i=1

xi ≤ B,

xi ≥ 0 ∀i ∈ N .

Denote αi = eqi−di−1, and rewrite the above problem as

max
x

n∑
i=1

αig(cixi) (A.4)

s.t.
n∑

i=1

xi ≤ B,

xi ≥ 0 ∀i ∈ N .

Because g(·) is a concave function (Assumption 1) and
∑n

i=1 xi ≤ B is a
linear constraint, (A.4) is a concave maximization problem with convex con-
straints. Hence, (A.4) is a convex minimization problem over a convex set, and
the problem has efficient solutions [5].

A special case where g(·) is a linear function: If g(·) is a linear function, that
is, g(x) = ax + 1 for some a ≥ 0, then the optimal advertising strategy is to
allocate the entire advertising budget to a single product.

Lemma A.2. When g(·) is a linear function, the optimal solution to (A.4) is
to allocate the entire advertising budget to the product with the largest αici.

A.2 Cardinality-Constrained Case

We next consider a case where the size of the assortment is at most K ≥ 0.
Lemma A.1 indicates that the optimal assortment contains the top K products
that have the largest eqi+f(cixi)−di−1. We next show that if ef(·) is a linear func-
tion, then we only need to consider two possible advertising strategies. Hence,
this problem can be solved efficiently.

Lemma A.3. Let αi = eqi−di−1 and g(x) = ax + 1 for some a ≥ 0.
Assume all products are indexed in non-increasing order of αi. Let t1 =
argmaxi∈{1,··· ,K}{αici} and t2 = argmaxj∈{K+1,...,n}{αj(acjB + 1)}, then the
optimal advertising strategy is xt1 or xt2 .

We next discuss a case with a general response function. For each product i ∈
N , let tj = 1 if a product j is offered in the assortment and let tj = 0 otherwise.
Our problem can be formulated as the following mixed-integer programming
problem:
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max
x,t

n∑
i=1

αitig(cixi) (A.5)

s.t.
n∑

i=1

xi ≤ B,

n∑
i=1

ti ≤ K,

xi ≥ 0 ∀i ∈ N ,

ti ∈ {0, 1} ∀i ∈ N .

If all products have the same advertising effectiveness, that is, ci = c, for all
i ∈ N , the optimal assortment is to select the top K products that have the
largest αi.

Lemma A.4. Assume all products are indexed in non-increasing order of αi

and ci = c for all i ∈ N . The optimal assortment is S∗ = {1, . . . , K}, and the
optimal advertising strategy x∗ satisfies x∗

i ≥ x∗
j ∀i ≤ j.

To find the optimal advertising strategy under S∗ = {1, . . . ,K}, we need
to solve an optimization problem that is similar to (A.4). Because this problem
is a concave maximization problem with convex constraints, it can be solved
efficiently.

For a general case, where advertising effectiveness is heterogeneous, the objec-
tive function of (A.5) contains the bilinear terms tig(cixi). We linearize each of
these terms by relaxation. Specifically, for each tie

f(cixi), we introduce a new
continuous variable wi = tig(cixi) and add the inequalities: g(cixi) − wi ≤
g(ciB)(1 − ti), 0 ≤ wi ≤ g(cixi), and wi ≤ g(ciB)ti. This leads to the following
mixed-integer nonlinear programming problem:

max
x,t,w

n∑
i=1

αiwi (A.6)

s.t.
n∑

i=1

xi ≤ B,

n∑
i=1

ti ≤ K,

g(cixi) − wi ≤ g(ciB)(1 − ti) ∀i ∈ N ,

0 ≤ wi ≤ g(cixi) ∀i ∈ N ,

wi ≤ g(ciB)ti ∀i ∈ N ,

xi ≥ 0 ∀i ∈ N ,

ti ∈ {0, 1} ∀i ∈ N .
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B Sequential Joint Advertising and Assortment
Optimization

In this section, we extend our study to consider a sequential joint advertising and
assortment problem. The model put forward by [15] examines the behavior of
consumers who may visit multiple product assortments before making a purchase
or leaving the store. The consumer is assumed to progress through a sequence
of m stages, each featuring a different assortment (S = (S1, . . . , Sm)). If the
consumer chooses to buy a product in stage i, they will leave the store, but if
they do not make a purchase, they will proceed to the next stage. If no product
is selected after visiting all m assortments, the consumer exits the store without
making a purchase. This choice model is referred to as the sequential multinomial
logit (SMNL) choice model. For the purpose of simplicity, we assume that the
consumer will continue visiting subsequent assortments if they do not make a
purchase in the current stage. However, it should be noted that this assumption
can be relaxed to include the factor of consumer patience.

We will now provide a detailed explanation of the SMNL model. Given a
sequence of assortments S, the consumer will purchase product i in stage k with
a probability of

φk
i (S) =

vi

(1 +
∑k−1

�=1 V (S�))(1 +
∑k

�=1 V (S�))
.

Let V (S) =
∑

i∈S vi and W (S) =
∑

i∈S rivi. The expected revenue is repre-
sented as

R(S) =
m∑

k=1

W (Sk)

(1 +
∑k−1

�=1 V (S�))(1 +
∑k

�=1 V (S�))
.

Under the advertising strategy x, the expected revenue increases to

R(S,x) =
m∑

k=1

W (Sk,x)

(1 +
∑k−1

�=1 V (S�,x))(1 +
∑k

�=1 V (S�,x))
, (B.1)

where V (S,x) =
∑

i∈S vig(cixi) and W (S,x) =
∑

i∈S rivig(cixi).
Based on the transformation in (5), the optimization problem can be written

as

max
u,S

m∑
k=1

∑
i∈Sk

riui

(1 +
∑k−1

l=1

∑
i∈Sl

ui)(1 +
∑k

l=1

∑
i∈Sl

ui)
(B.2)

s.t. u ∈ U .

We focus on the unconstrained setting. Given an arbitrary advertising strat-
egy, [15] demonstrated that the optimal assortments are sequential revenue-
ordered assortments. Specifically, there exists a set of decreasing thresholds
{t∗1, t

∗
2, . . . , t

∗
m+1}, such that S∗

k =
{
i ∈ N : t∗k+1 ≤ ri < t∗k

}
for k ∈ M =

[1, 2, . . . ,m]. The values of {t∗i }m+1
i=1 are given in the following lemma.
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Lemma B.1 [15, Theorem 3.1]. There exists an optimal solution
(
S∗
1 , . . . , S∗

m

)
such that for i ∈ S∗

k , we have

t∗
k+1 ≤ ri < t∗

k. Let Rk(S∗
1 , . . . , S∗

m) =
W (S∗

k)

(1+
∑k−1

�=1 V (S∗
�
))(1+

∑k
�=1 V (S∗

�
))

. The value of t∗
k can be chosen as

follows:

t
∗
1 = +∞, t

∗
k =

Rk−1(S
∗
1 , . . . , S∗

m) + Rk(S∗
1 , . . . , S∗

m)

1
1+

∑k−2
�=1 V (S∗

�
)

− 1
1+

∑k
�=1 V (S∗

�
)

∀k ∈ M\{1}, t
∗
m+1 =

Rm(S∗
1 , . . . , S∗

m)

1
1+

∑m−1
�=1 V (S∗

�
)

.

Based on this lemma, we analyze the structure of the optimal assortments
and the advertising strategy. We denote the optimal solution of B.2 as u∗ and
S∗.

Lemma B.2. For the optimization problem (B.2), we have ∂R(S∗,u∗)
∂u∗

i
≥

∂R(S∗,u∗)
∂u∗

j
≥ 0 for all products i, j ∈ N and i < j.

[4] showed that in the MNL choice model, the partial derivative h1
i ≥ 0,

indicating that the seller has no incentive to reduce the utilities of products in
order to maximize their expected revenue. In Lemma B.2, we extend this result
to the SMNL choice model. Moreover, due to the sequential revenue-ordered
property stated in LemmaB.1 being maintained for any feasible set of products,
this result remains valid even under capacity constraints, meaning that the seller
has no incentive to decrease product utilities in the capacity-constrained scenario
either. If the seller has the ability to enhance product utilities, the optimal
advertising strategy would be to allocate the entire budget to the product that
generates the highest revenue.

Lemma B.3. Denote the optimal solution of the following optimization problem
as (x∗,S∗). x∗

1 = B and x∗
i = 0 for all i ∈ N \ {1}.

max
x,S

m∑
k=1

∑
i∈Sk

ri(vi + xi)

(1 +
∑k−1

l=1

∑
i∈Sl

(vi + xi))(1 +
∑k

l=1

∑
i∈Sl

(vi + xi))
(B.3)

s.t.
n∑

i=1

xi ≤ B

In our setting, the allocation of budget xi to product i increases its utility
to vie

f(cixi), where f is the nonlinear response function. Due to the hetero-
geneous advertising effectiveness, utility and nonlinear response function, the
optimal advertising strategy may be more complex than a single-product adver-
tising strategy. Given a specific sequence of assortments, finding the optimal
advertising strategy is equivalent to solving the following optimization problem.

max
u

m∑
k=1

∑
i∈Sk

riui

(1 +
∑k−1

l=1

∑
i∈Sl

ui)(1 +
∑k

l=1

∑
i∈Sl

ui)
(B.4)

s.t. u ∈ U
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where U = {u|∑n
i=1 mi(ui) ≤ B, ui ≥ vi, i = 1, . . . , n} and mi(·) = g−1( ·

vi
)/ci.

When m = 1, this problem is a single-ratio FP problem, which can be solved effi-
ciently. However, the sum-of-ratio problem is generally NP-complete [14]. Hence,
even though the optimal assortments may be sequential revenue-ordered assort-
ments, finding the optimal advertising strategy may not be straightforward. As
a result, we propose a heuristic method as an alternative approach.

B.1 Heuristic Method

The design of our heuristic method (listed in Algorithm4) is based on two
key observations. Firstly, given an advertising strategy, the optimal sequence of
assortments can be found efficiently in polynomial time. Secondly, given the set
of products to be displayed, the single-stage optimal advertising strategy is com-
putationally tractable. Specifically, Algorithm4 iteratively updates the assort-
ments and advertising strategy until the expected revenue cannot be improved
any further.

Algorithm 4. Heuristic for Unconstrained Multi-stage JAAOP
Input: preference weight v, revenue r, advertising effectiveness c, budget B
Output: approximate assortment S∗, advertising strategy x∗

1: i = 0, rev0 = 0
2: Implement Algorithm 1 and obtain the advertising strategy x0

3: repeat
4: i = i + 1
5: Find the optimal sequence of assortments Si and expected revenue revi based

on the current advertising strategy xi−1

6: Find the optimal advertising strategy for Si = ∪m
j=1Sj , denoted as xi

7: until revi < revi−1

By exploring the structure of the objective function in (B.2), we next show
that our heuristic method achieves an approximation ratio of 50%.

Lemma B.4. Let (S∗,x∗), (Sh,xh) be the optimal values of (B.2) and our
heuristic method. We have R(Sh,xh) ≥ 1

2R(S∗,x∗).

C Numerical Study

In this section, we explore the effect of advertising on assortment optimization
and validate the superiority of our algorithms compared with several heuristic
methods on randomly generated instances and different response functions. The
revenue of each product is drawn uniformly from the interval [1, 10]. For the
preference weight vi of product i, we first sample γi uniformly from the interval
[1, 10] and then assign vi = γi/Δ, where Δ = P0

∑
i∈N γi/(1 − P0). In this

case, we guarantee the no-purchase probability when providing all products is
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exactly P0. We consider three types of response functions: g1(x) =
√

x + 1,
g2(x) = log(x+1)+1, g3(x) = 2−e−x. For advertising effectiveness, we consider
the following settings.

– Setting A: The advertising effectiveness ci of each product i ∈ N is drawn
uniformly from the interval [0, 1].

– Setting B: The advertising effectiveness ci of each product i ∈ N is drawn
independently from a standard log-normal distribution and rescaled by a
factor of 1

2
√

e
to make sure the same mean as setting A. In this case, there is

more dispersion in advertising effectiveness.

We choose the number of products from {50, 100, 200}, the cardinality con-
straint K from {5, 10, 20}, and the value of P0 from {0.1, 0.3}. For the multi-stage
problem, the stage m is chosen from {3, 5, 8}. For each setting, we randomly gen-
erate 10 instances and calculate the average percentage of improvement over the
non-advertising strategy. Finally, we denote our heuristic algorithm as HA.

C.1 Compared Heuristics

For the cardinality-constrained single-stage problem, the main challenge lies in
finding the optimal advertising strategy as the optimal assortment for a given
advertising strategy can be found efficiently in polynomial time. In order to
tackle this difficulty, we propose two practical advertising strategies.

– Uniform advertising (UA) strategy: for any assortment S, we have xi = B/|S|
if i ∈ S.

– Revenue advertising (RA) strategy: for any assortment S, we have xi = B ·
ri∑

i∈S ri
if i ∈ S.

We start with the optimal assortment with no advertising strategy S1. After
allocating the budget according to the heuristic method, we recompute the opti-
mal assortment S2; if S1 �= S2, then we reallocate the budget and compute the
new assortment. This process continues until the assortment is unchanged with
advertising (Table 2).

C.2 Performance Evaluation

Table 1 presents the average performance of three heuristic algorithms for the
single-stage joint advertising and assortment problem, evaluated over 36 different
parameter settings. Algorithm 3 demonstrates superior performance compared to
the other heuristic algorithms, particularly when P0 is large and the cardinality
constraint is small. In most cases, the RA strategy performs slightly better than
the UA strategy. The performance of each heuristic algorithm does not vary
significantly with an increase in the dispersion of advertising effectiveness. When
the set of products is less attractive and the cardinality constraint is small,
advertising has a more significant impact, and the gap between our algorithm
and the compared heuristic algorithms is even larger.
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Table 1. Average Performance of Tested Heuristic Algorithm on Single Stage Problem

Parameters g1(x) g2(x) g3(x)

Setting n K P0 HA UA RA HA UA RA HA UA RA

A 50.0 5.0 0.1 27.08 25.82 25.88 21.38 19.47 19.53 18.5 17.74 17.78

50.0 10.0 0.1 14.45 13.27 13.34 10.56 8.49 8.55 9.56 8.19 8.24

50.0 20.0 0.1 9.76 7.95 8.11 6.86 4.14 4.29 6.03 4.08 4.22

50.0 5.0 0.3 57.26 53.02 53.26 43.78 38.05 38.29 36.98 34.1 34.18

50.0 10.0 0.3 31.94 29.85 29.94 22.75 18.14 18.2 20.26 17.45 17.5

50.0 20.0 0.3 19.48 17.28 17.57 12.88 8.69 8.94 11.65 8.57 8.81

100.0 5.0 0.3 75.21 68.19 68.19 57.29 48.65 48.64 48.09 43.32 43.3

100.0 10.0 0.3 44.16 42.09 42.14 30.21 26.13 26.17 27.55 25.0 25.03

100.0 20.0 0.3 25.23 23.88 24.01 15.62 11.89 12.01 14.57 11.73 11.84

100.0 5.0 0.1 41.13 39.28 39.32 32.01 29.57 29.59 27.79 26.66 26.66

100.0 10.0 0.1 21.69 20.87 20.93 15.04 13.68 13.73 14.26 13.16 13.2

100.0 20.0 0.1 11.2 10.72 10.8 7.48 5.63 5.7 6.94 5.56 5.62

200.0 5.0 0.1 60.48 52.98 53.04 46.5 38.29 38.35 38.54 34.33 34.38

200.0 10.0 0.1 32.24 30.17 30.22 22.58 19.1 19.14 20.42 18.3 18.34

200.0 20.0 0.1 16.55 16.13 16.2 10.77 8.39 8.44 9.7 8.28 8.32

200.0 5.0 0.3 90.46 77.76 77.78 67.21 54.17 54.2 57.44 47.98 48.03

200.0 10.0 0.3 54.22 50.86 50.85 37.26 30.78 30.75 33.49 29.34 29.32

200.0 20.0 0.3 32.7 31.11 31.19 19.69 15.3 15.37 18.44 15.07 15.13

B 50.0 5.0 0.1 28.7 25.83 25.96 22.67 19.26 19.38 18.77 16.83 16.84

50.0 10.0 0.1 15.59 13.89 14.02 11.37 8.94 9.06 9.72 8.29 8.4

50.0 20.0 0.1 9.3 7.42 7.6 6.35 3.6 3.74 5.51 3.51 3.64

50.0 5.0 0.3 61.14 53.73 54.03 45.3 38.11 38.34 35.77 31.92 31.85

50.0 10.0 0.3 32.77 29.65 29.83 22.76 17.71 17.85 18.64 16.4 16.44

50.0 20.0 0.3 20.43 17.14 17.6 13.86 8.73 9.09 11.69 8.43 8.76

100.0 5.0 0.1 43.47 36.75 36.84 33.61 26.12 26.2 25.99 22.66 22.66

100.0 10.0 0.1 20.68 19.2 19.29 14.48 11.72 11.82 12.75 11.13 11.21

100.0 20.0 0.1 11.96 10.65 10.75 8.4 5.64 5.7 7.3 5.47 5.52

100.0 5.0 0.3 76.08 63.21 63.22 56.17 43.04 43.05 43.28 37.37 37.41

100.0 10.0 0.3 43.16 38.01 38.12 31.0 22.11 22.22 25.18 20.68 20.8

100.0 20.0 0.3 25.42 22.46 22.62 17.15 10.94 11.1 14.24 10.52 10.66

200.0 5.0 0.1 67.19 52.12 52.16 52.04 37.22 37.27 38.03 32.2 32.23

200.0 10.0 0.1 31.58 28.81 28.84 20.74 17.75 17.78 18.75 16.72 16.76

200.0 20.0 0.1 17.15 15.66 15.72 11.61 8.28 8.33 9.91 7.92 7.98

200.0 5.0 0.3 95.94 67.3 67.19 68.48 43.43 43.3 51.34 38.86 38.79

200.0 10.0 0.3 56.04 47.21 47.27 37.58 27.28 27.35 31.49 25.82 25.86

200.0 20.0 0.3 32.8 28.57 28.73 21.97 13.85 14.02 18.11 13.11 13.22
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Table 2. Average Performance of Tested Heuristic Algorithm on Multiple Stage Prob-
lem

Parameters g1(x) g2(x) g3(x)

Setting n m P0 HA UA RA HA UA RA HA UA RA

A 50.0 3.0 0.1 7.32 5.31 5.94 4.99 2.03 2.57 4.48 2.02 2.55

50.0 5.0 0.1 6.83 4.85 5.58 4.61 1.75 2.34 4.14 1.74 2.33

50.0 8.0 0.1 6.69 4.75 5.51 4.49 1.68 2.3 4.04 1.68 2.29

50.0 3.0 0.3 14.48 10.83 12.21 8.88 3.81 4.86 8.14 3.8 4.84

50.0 5.0 0.3 14.55 10.92 12.35 8.92 3.79 4.9 8.18 3.78 4.87

50.0 8.0 0.3 14.48 10.96 12.37 8.86 3.81 4.89 8.14 3.8 4.87

100.0 3.0 0.1 5.67 3.95 4.42 3.43 1.12 1.45 3.22 1.12 1.45

100.0 5.0 0.1 5.42 3.65 4.25 3.29 0.98 1.37 3.07 0.98 1.36

100.0 8.0 0.1 5.37 3.62 4.23 3.24 0.96 1.36 3.04 0.96 1.35

100.0 3.0 0.3 11.32 8.17 9.31 6.09 2.12 2.83 5.73 2.11 2.82

100.0 5.0 0.3 11.18 8.17 9.31 5.99 2.11 2.82 5.64 2.11 2.82

100.0 8.0 0.3 11.17 8.2 9.33 5.98 2.12 2.82 5.63 2.12 2.82

200.0 3.0 0.1 4.55 2.96 3.33 2.54 0.58 0.77 2.34 0.58 0.77

200.0 5.0 0.1 4.1 2.56 3.02 2.24 0.46 0.66 2.07 0.46 0.65

200.0 8.0 0.1 4.01 2.55 2.99 2.18 0.46 0.65 2.02 0.46 0.65

200.0 3.0 0.3 8.27 5.72 6.55 3.87 1.0 1.35 3.66 1.0 1.35

200.0 5.0 0.3 8.5 5.96 6.8 4.07 1.07 1.43 3.86 1.07 1.43

200.0 8.0 0.3 6.87 5.19 6.08 4.7 0.92 1.45 3.51 0.97 1.05

B 50.0 3.0 0.1 9.03 5.65 6.3 6.4 2.32 3.0 5.0 2.23 2.84

50.0 5.0 0.1 6.22 4.12 4.88 3.85 1.24 1.74 3.49 1.24 1.73

50.0 8.0 0.1 6.07 4.2 4.91 3.97 1.37 1.89 3.61 1.36 1.87

50.0 3.0 0.3 14.16 9.91 11.33 9.04 3.27 4.29 8.2 3.24 4.25

50.0 5.0 0.3 14.6 10.14 11.71 9.17 3.2 4.36 8.08 3.19 4.33

50.0 8.0 0.3 13.93 10.0 11.38 8.74 3.28 4.26 7.73 3.26 4.22

100.0 3.0 0.1 6.36 4.05 4.54 4.21 1.16 1.53 3.58 1.16 1.52

100.0 5.0 0.1 5.43 3.13 3.63 3.54 0.78 1.07 2.73 0.78 1.06

100.0 8.0 0.1 4.88 3.25 3.75 2.97 0.82 1.11 2.73 0.82 1.11

100.0 3.0 0.3 12.09 7.96 9.2 7.17 2.09 2.86 6.16 2.09 2.84

100.0 5.0 0.3 10.48 7.28 8.2 6.18 1.91 2.46 5.34 1.9 2.44

100.0 8.0 0.3 10.77 7.32 8.24 6.52 1.96 2.53 5.38 1.94 2.49

200.0 3.0 0.1 4.02 2.7 3.01 2.16 0.53 0.67 1.99 0.53 0.67

200.0 5.0 0.1 3.93 2.31 2.7 2.31 0.42 0.59 1.9 0.42 0.59

200.0 8.0 0.1 4.54 2.53 2.99 2.99 0.5 0.72 2.39 0.5 0.72

200.0 3.0 0.3 8.04 5.4 6.14 4.44 1.0 1.32 3.89 1.0 1.31

200.0 5.0 0.3 8.33 5.54 6.33 4.61 1.02 1.37 4.11 1.02 1.37

200.0 8.0 0.3 7.94 5.31 6.05 4.37 0.94 1.25 3.71 0.94 1.25

The multi-stage setting has a decreasing impact on advertising as the seller is
given more stages. Even without a cardinality constraint, the revenue improve-
ment can still be significant when the utility of the no-purchase option is rel-
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atively high. The improvement under the UA strategy can be less than 0.5%,
while the improvement using the heuristic method is at least 2%. This shows the
importance of advertising strategy on expected revenue (Fig. 2).

Finally, we evaluate the computational efficiency of our Algorithm3. Table 3
shows its average running time for different parameters. Our algorithm has a
low computational complexity as it only requires solving two linear programming
problems to find the optimal assortment and a few convex optimization problems
to find the corresponding advertising strategy. The results in Table 3 demonstrate
that our algorithm has a running time of less than 2 s for all cases, making it
highly efficient.

Table 3. Average Running Time of Algorithm 3

Parameters g1(x) g2(x) g3(x)

n K P0 A B A B A B

50 5 0.1 0.076 0.065 1.499 1.533 1.131 1.1

50 10 0.1 0.074 0.075 1.543 1.452 1.454 1.445

50 20 0.1 0.072 0.129 1.342 0.74 1.651 1.472

50 5 0.3 0.111 0.136 0.625 0.562 0.986 0.778

50 10 0.3 0.131 0.122 0.57 0.57 0.677 0.671

50 20 0.3 0.127 0.154 0.764 0.721 0.96 0.87

100 5 0.1 0.09 0.142 1.042 1.129 1.046 0.916

100 10 0.1 0.128 0.115 0.83 0.775 1.28 0.768

100 20 0.1 0.165 0.131 0.749 0.818 1.305 1.105

100 5 0.3 0.167 0.193 0.615 0.744 0.935 0.739

100 10 0.3 0.196 0.197 0.749 0.742 0.751 0.744

100 20 0.3 0.163 0.174 0.826 0.827 0.932 0.851

200 5 0.1 0.219 0.166 0.764 1.06 1.593 1.474

200 10 0.1 0.169 0.226 0.895 0.838 1.179 1.033

200 20 0.1 0.165 0.166 1.015 1.136 0.807 0.948

200 5 0.3 0.368 0.289 0.962 1.086 1.039 0.986

200 10 0.3 0.289 0.238 1.054 1.106 0.967 1.019

200 20 0.3 0.215 0.235 1.084 1.059 1.141 1.125

C.3 Effect of Budget on Expected Revenue

In practicality, the seller must also decide on the advertising budget. Since the
return per budget investment can reduce with increasing budget, this subsection
examines the relationship between expected revenue and invested budget. The
experiment has 100 products and the budget is varied from 0 to 50 while the
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revenue and advertising effectiveness are kept constant. 100 preference weights
are sampled for each budget and response function. The results of the expected
revenue for each of these settings are displayed in Fig. 1.

The expected revenue is shown to increase with an increase in advertising
budget as illustrated by Fig. 1. For the first response function g1, when the
budget is adequate and P0 = 0.1, the difference in revenue between the different
cardinality constraints becomes small, as indicated by Fig. 1(a). Hence, when the
seller has an adequate budget, limiting their focus to a small group of products
does not result in a significant reduction in revenue. For the same response
function, the trend of increasing expected revenue remains consistent across
different values of P0, with lower values leading to higher expected revenue. For
the third response function, g3(x) = 2 − e−x, the increase in expected revenue
becomes insignificant when more than 20 units of the budget are allocated to
advertising.

Fig. 1. The relationship between budget and expected revenue for 100 products in
different settings

D Omitted Proofs

Proof of Lemma 1: Consider an arbitrary advertising strategy x that satisfies∑
i∈S∗ xi = B1 < B, define Δ = B − B1 and τ = arg maxi∈S∗ ri. To prove

this lemma, we can increase the expected revenue by allocating the remain-
ing budget Δ to the product τ . Let S∗ denote the optimal assortment, and x′

denote this new strategy. Because x′ and x only differs in entry τ , we rewrite
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R(S∗,v,x′) as β+rτ vτ (g(cτ (xτ+Δ))−g(cτ xτ ))
α+vτ (g(cτ (xτ+Δ))−g(cτ xτ ))

and rewrite R(S∗,v,x) as β
α , where

β =
∑

i∈S∗ rivig(cixi) and α = 1 +
∑

i∈S∗ vig(cixi). Notice that

R(S∗,v,x′) − R(S∗,v,x) =
(rτα − β) · vτ (g(cτ (xτ + Δ)) − g(cτxτ ))
α · (α + vτ (g(cτ (xτ + Δ)) − g(cτxτ )))

.

Because τ = arg maxi∈S∗ ri, we have rτ − ri ≥ 0,∀i ∈ S∗. Thus, rτ +∑
i∈S∗(rτ − ri)(vig(cixi)) > 0, which is equivalent to rτ (1 +

∑
i∈S∗ vig(cixi)) >∑

i∈S∗ rivig(cixi). Hence, rτα > β. Because g(·) is an increasing function, we
have g(cτ (Δ+xτ ))−g(cτxτ ) ≥ 0. Moreover, because both rτα−β and g(cτ (Δ+
xτ )) − g(cτxτ ) are non-negative, we obtain that R(S∗,v,x′) ≥ R(S∗,v,x). �
Proof of Lemma 3: Proof: Because (S∗,x∗) is optimal solution, we have
R(S∗,v,x∗) ≥ R(Sv,v). According to Lemma 2, there exists an S∗ such that
S∗ = {i ∈ N|ri > R(S∗,v,x∗)}. The following chain proves this lemma:
S∗ = {i ∈ N|ri > R(S∗,v,x∗)} ⊆ {i ∈ N|ri > R(Sv,v)} = Sv. �
Proof of Lemma 4: Proof: Because g(·) is an increasing concave function, its
inverse function g−1(x) is a convex function. Moreover, because u

vi
is a linear

function, its composition with g−1(·) is also a convex function. Finally, because
U1 = {u|∑n

i=1 mi(ui) ≤ B}, which is the level set of
∑n

i=1 mi(ui), is a convex
set, its intersection with the convex set U2 = {u|ui ≥ vi, i = 1, . . . , n} is also a
convex set. �
Proof of Lemma 5: Proof: For a given assortment S, we can represent any
feasible advertising strategy y that satisfies

∑
i∈S yi = B as a convex combina-

tion of xi; that is, y =
∑

i∈S λixi, where λi = yi/B and
∑

i∈S λi = 1. Assume
k = argmaxj∈S L(S,xj). We have L(S,y) ≤ L(S,xk) based on the following
observation:

L(S,y) = L(S,
∑
i∈S

λixi) =
β + aB

∑
i∈S λirivici

α + aB
∑

i∈S λivici
,

where α = 1 +
∑

i∈S vi and β =
∑

i∈S rivi. By the definition of k, we have
L(S,xk) ≥ L(S,xj),∀j ∈ S. Moreover, L(S,xk) ≥ L(S,xj) is equivalent to

αckvkrk − βckvk ≥ αcjvjrj − βcjvj + aBckvk(rj − rk)cjvj , (D.1)

based on the following observation:

L(S,xk)− L(S,xj) =
β + aBrkckvk

α + aBckvk
− β + aBrjcjvj

α + aBcjvj

=
(β + aBrkckvk)(α + aBcjvj)− (β + aBrjcjvj)(α + aBckvk)

(α + aBckvk)(α + aBcjvj)

= aB · α(ckvkrk − cjvjrj) + β(cjvj − ckvk) + aBckvk(rk − rj)cjvj

(α + aBckvk)(α + aBcjvj)
.

By multiplying λj by both sides of (D.1) for all j ∈ S and summing up all
inequalities, we have

αckvkrk − βckvk ≥ α
∑
j∈S

λjcjvjrj − β
∑
j∈S

λjcjvj + aBckvk

∑
j∈S

λj(rj − rk)cjvj .

(D.2)
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Using a similar argument as the one used to prove the equivalence of
L(S,xk) ≥ L(S,xj) and (D.1), we show that (D.2) is equivalent to L(S,xk) ≥
L(S,

∑
i∈S λixi) = L(S,y). �

Proof of Lemma 6: Proof: Let Z = R(Sv,v) denote the expected revenue
of Sv when B = 0, we have

∑
i∈Sv

(ri − Z)vi = Z. If there exists a product
i ∈ Sv such that ri < Z, then removing this product from Sv would increase
the expected revenue, which contradicts the assumption that Sv is the optimal
assortment when B = 0. Thus, we have Sv ⊆ {1, . . . , T}, where T = max{i|i ∈
Sv}. Similarly, let Z∗ = R(S∗,v,x∗), we have S∗ ⊆ {1, . . . T ∗} where T ∗ =
maxi{i|ri ≥ Z∗}. Since Z∗ ≥ Z, we conclude that rT ∗ ≥ rT , otherwise we have
Z∗ ≤ rT ∗ < Z or Z ≤ rT ∗ < rT . Thus we have S∗ ⊆ {1, . . . T ∗} ⊆ {1, . . . , T}. �
Proof of LemmaA.2: Proof: When g(x) = ax+1 for some a ≥ 0, the objective
function of (A.4) can be written as

∑n
i=1 αi + a

∑n
i=1 αicixi. Allocating the

entire advertising budget to the product that has the largest αici maximizes∑n
i=1 αi + a

∑n
i=1 αicixi. �

Proof of LemmaA.3: Proof: Consider a fixed feasible assortment S. If f(x) =
log(ax+1) for some a ≥ 0, then the objective function R(S,p,x) can be written
as

∑
i∈S αi + a

∑
i∈S αicixi. It is easy to verify that the optimal advertising

strategy for S must come from {x0,x1, . . . ,xn}, where x0 is an all-zero vector.
Let S(x) be the optimal assortment under the advertising strategy x. Thus
S(x) contains the top K products that have the largest αi(acixi + 1). Because
acixi ≥ 0 for all i ∈ {1, . . . , n}, we have S(xi) = S(x0) = {1, . . . , K}, and
the expected revenue for S(xi) is W (

∑K
j=1 αj + aαiciB) for all i ∈ {1, ...,K}.

When j ∈ {K + 1, ..., n}, there are two possible cases: S(xj) \ S(x0) = {∅} or
S(xj) \ S(x0) = {j}.

Case 1 : When S(xj)\S(x0) = {∅} for all j ∈ {K + 1, . . . , n}, the opti-
mal assortment is {1, . . . ,K}. Because the expected revenue for S(xj) is
W (

∑K
j=1 αj) for all j ∈ {K + 1, . . . , n}, which is the same as S(x0), and

t1 = argmaxi∈{1,...,K} W (
∑K

j=1 αj + aαiciB), the optimal advertising strat-
egy is xt1 .

Case 2 : When S(xj)\S(x0) = {j} for some j ∈ {K + 1, ..., n}, the expected
revenue for S(xj) is W (

∑K−1
i=1 αi + αj(acjB + 1)). We denote this subset as

Sc. Because t2 = argmaxj∈Sc
W (

∑K−1
i=1 αi + αj(acjB + 1)), xt2 is the best

advertising strategy in {xK+1, . . . ,xn}. Moreover, because xt1 is the best
advertising strategy in {x0,x1, . . . ,xK}, the better strategy between xt1 and
xt2 must be the optimal advertising strategy. �

Proof of LemmaA.4: When ci = c for all i ∈ N , the objective function of
(A.5) can be simplified to h(x, S) =

∑
i∈S αig(cxi). To prove the first part of

this lemma, we show that for any optimal solution (S,x), we can construct a new
solution (S′,x′), where S′ = {1, . . . , K}, which is no worse than (S,x). Due to the
monotonicity of the objective function, |S| = K can be assumed. We construct
such x′ as follows: for each i ∈ {1, . . . , K}, let x′

i = xL(i), where L(i) represents
the product that has the i-th largest αi in S. Therefore h(x′, S′) − h(x, S) =
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∑
i∈S′(αi − αL(i))g(cxi) ≥ 0; the inequality exists because S′ contains the top

K products that have the largest αi. Hence, (x′, S′) is no worse than (S,x).
We next prove that the optimal advertising strategy x∗ satisfies x∗

i ≥ x∗
j ∀i ≤

j through contradiction. Assume there exist two products i, j ∈ S∗ such that
x∗

i < x∗
j and i < j. We can construct a new advertising strategy x such that

xk = x∗
k for k /∈ {i, j}, and xi = x∗

j , xj = x∗
i . The following chain proves that

h(x, S∗) − h(x∗, S∗) = (αi − αj) · (g(cx∗
j ) − g(cx∗

i )):

h(x, S∗) − h(x∗, S∗) = αig(cxi) + αjg(cxj) − αig(cx∗
i ) − αjg(cx∗

j )

= αi(g(cx∗
j ) − g(cx∗

i )) + αj(g(cx∗
i ) − g(cx∗

j ))

= (αi − αj) · (g(cx∗
j ) − g(cx∗

i )).

Because αi ≥ αj and x∗
i < x∗

j , x is a better solution than x∗ which contradicts
to the assumption that x∗ is the optimal solution. �
Proof of LemmaB.2: Proof: For simplicity, let hk

i = ∂R(S∗,u∗)
∂u∗

i
be the partial

derivative for product i in assortment S∗
k , and denote Ak =

∑k
l=1 V (S∗

l ) and
Bk = W (S∗

k)
V (S∗

k)
. We have

hk
i =

(ri − W (S∗
k)

1+Ak
)

(1 + Ak−1)(1 + Ak)
−

m∑
j=k+1

Bj ·
(

1
(1 + Aj−1)2

− 1
(1 + Aj)2

)
.

According to Lemma B.1, S∗
k = {i ∈ N|t∗k+1 ≤ ri < t∗k}. We first consider

the products in the same stage, that is i, j ∈ S∗
k , and i < j. hk

i ≥ hk
j because

ri ≥ rj . Then, we consider the cases i and j in two different stages. The difference
between hk

i and hk+1
j is

h
k
i − h

k+1
j =

(ri − W (S∗
k)

1+Ak
)

(1 + Ak−1)(1 + Ak)
− Bk+1 ·

(
1

(1 + Ak)2
− 1

(1 + Ak+1)2

)
−

(rj − W (S∗
k+1)

1+Ak+1
)

(1 + Ak)(1 + Ak+1)

≥
[

1

(1 + Ak−1)(1 + Ak)
− 1

(1 + Ak)(1 + Ak+1)

]
t
∗
k+1 − W (S∗

k)

(1 + Ak−1)(1 + Ak)2

− 2(1 + Ak) + V (S∗
k+1)

(1 + Ak)2(1 + Ak+1)2
· W (S

∗
k+1) +

W (S∗
k+1)

(1 + Ak)(1 + Ak+1)2

=
W (S∗

k)

(1 + Ak−1)(1 + Ak)2
+

W (S∗
k+1)

(1 + Ak)2(1 + Ak+1)
− W (S∗

k)

(1 + Ak−1)(1 + Ak)2

− 2(1 + Ak) + V (S∗
k+1)

(1 + Ak)2(1 + Ak+1)2
· W (S

∗
k+1) +

W (S∗
k+1)

(1 + Ak)(1 + Ak+1)2

=
2 + Ak + Ak+1 − 2(1 + Ak) + V (S∗

k+1)

(1 + Ak)2(1 + Ak+1)2
· W (S

∗
k+1)

= 0.

The first inequality uses the fact that ri ≥ t∗k+1 ≥ rj . Lastly, for the product

in the last assortment Sm, we have hm
i =

ri− W (S∗
m)

1+Am

(1+Am−1)(1+Am) . In this case, ri ≥
t∗m+1 = W (S∗

m)
1+Am

, which means hm
i ≥ 0. �
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Proof of LemmaB.3: Proof: Let Q(x) = R(S∗,x). Based on the analysis in
Lemma B.2, ∂Q(x)

∂xi
≥ ∂Q(x)

∂xj
≥ 0 for all i < j. For any x satisfying the budget

constraint, through the mean value theorem, we have

Q(x) − Q(x∗) = ∇Q(x + (1 − c)x∗)T · (x − x∗)

= Q(xc)T · (x − x∗)

=
n∑

i=2

∂Q(xc)
∂xi

xc
i +

∂Q(xc)
∂x1

(xc
1 − B)

≤ ∂Q(xc)
∂x1

n∑
i=2

xc
i +

∂Q(xc)
∂x1

(xc
1 − B)

=
∂Q(xc)

∂x1
(

n∑
i=1

xc
i − B)

≤ 0.

Here, c ∈ (0, 1), and we denote x + (1 − c)x∗ as xc. The first inequality exists
because ∂Q(xc)

∂xi
≤ ∂Q(xc)

∂x1
, and the last inequality is due to the budget constraint.

�
Proof of LemmaB.4: Proof: Let T ∗

k = ∪k
i=1S

∗
i . We have

R(S∗
, x

∗) =
m∑

k=1
·

W (T ∗
k , x∗) − W (T ∗

k−1, x∗)

(1 + V (T ∗
k−1, x∗))(1 + V (T ∗

k , x∗))

=
m−1∑

k=1

W
(
T ∗

k , x∗)

1 + V
(

T ∗
k , x∗)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1 + V
(

T ∗
k−1, x∗) −

1

1 + V
(

T ∗
k+1, x∗)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
W

(
T ∗

m, x∗)

(

1 + V
(

T ∗
m−1, x∗)) (

1 + V
(
T ∗

m, x∗))

≤ max
S,x

W (S, x)

1 + V (S, x)

⎡

⎢
⎢
⎢
⎣

m−1∑

k=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

1 + V
(

T ∗
k−1, x∗) −

1

1 + V
(

T ∗
k+1, x∗)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
1

1 + V
(

T ∗
m−1, x∗)

⎤

⎥
⎥
⎥
⎦

= max
S,x

W (S, x)

1 + V (S, x)

⎡

⎢
⎢
⎣1 +

1

1 + V
(
T ∗
1 , x∗) −

1

1 + V
(
T ∗

m, x∗)

⎤

⎥
⎥
⎦

≤ 2max
S,x

W (S, x)

1 + V (S, x)

≤ 2R(Sh
, x

h).

The last inequality holds because our heuristic method starts with the optimal
solution of the single-stage problem and iteratively improves upon it. �
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